EXPERT INSIGHT

Beginning C++
Game
Programming

Learn C++ from scratch by building fun games

Third Edition

John Horton (pCICk'l')

Beginning C++ Game

Programming
Third Edition

Learn C++ from scratch by building fun games

John Horton

Beginning C++ Game Programming
Third Edition

Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, exceptin the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Senior Publishing Product Manager: Larissa Pinto
Acquisition Editor — Peer Reviews: Jane Dsouza

Project Editor: Meenakshi Vijay

Content Development Editor: Shikha Parashar

Copy Editor: Safis Editing

Technical Editor: Simanta Rajbangshi

Proofreader: Safis Editing

Indexer: Hemangini Bari

Presentation Designer: Rajesh Shirsath

Developer Relations Marketing Executive: Sohini Ghosh

First published: October 2016
Second edition: October 2019
Third edition: May 2024

Production reference: 1240524
Published by Packt Publishing Ltd.
Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK.

ISBN 978-1-83508-174-7

www.packt.com

http://www.packt.com

Contributors

About the author

John Horton is a programming and gaming enthusiast based in the UK.

Dedicated to two brothers, Ray and Barry, for your guidance, example, and support.

About the reviewer

Yoan Rock is a 26-year-old developer with over 4 years of experience in the gaming industry.
With a background in C++ software engineering, Yoan’s expertise lies in C++ programming within
the gaming industry, particularly in utilizing Unreal Engine and sometimes Blueprints to create

immersive experiences.

During his tenure at Limbic Studio, Yoan contributed significantly to the development of Park Be-
yond, an AAA-released game where players create and manage their own theme park. He excelled in

gameplay development, bug fixing, and fostering effective communication among team members.

Yoan later collaborated with Chillchat on Primorden, a multiplayer project using Unreal Engine 5
and the Game play Ability system, where he played a key role in implementing game mechanics,

monster abilities, and Al behavior trees.

At Game Atelier, Yoan led UI development for an unannounced project, showcasing his proficiency

in crafting immersive user experiences using Unreal Engine 5.3, Common U, and, of course, UMG.

Currently, Yoan is part of an exciting project with Blacksheep, contributing to an ambitious, un-
announced venture. Always eager to innovate, Yoan stays updated with industry trends and is

exploring Unreal Engine 5.3 for personal projects.

Table of Contents

Preface XX

Chapter 1: Welcome to Beginning C++ Game Programming Third Edition! 1

The games we will build ... cesereetteeeeiisaatttteess s aaata et e s e s abt et e e s e s b sbtaatese s asrnaaneseens 2

Timber!!! o 2
Ponge3

Zombie Arena e 4
Platform game o 4

Why you should learn game programming using C++ in 2024cceecrneeecssnneeccssnsencssaneescnes 5

SFML e 7
Microsoft Visual Studio 8
What about Mac and Linux? e 10

Installing Visual Studio 2022 ¢ 10

Configuring the project properties o 18

Planning Timber!!!cccceeiiriiiiinnnenrinnnnneee cereneetteieeisaant et se s s saanasesesssasans 20

The PrOJECt ASSELS uuueeeeerercrssrneeeriecsssssueeeeeicssssssseetiesssssssssssesssssansassesssss S, 23

Making your own sound FX e 24
Adding the assets to the project o 24
Exploring the assets e 24

Understanding screen and internal cOOrdinatescccccceeeeeescneeereeccssssseneesscssssneseescsssesnnns 25

vi Table of Contents

Getting started with coding the Ameeeeeivveeeicisniiissneicissneiiissneecsssseccsssseessssssesesssseees 28

Making code clearer with comments o 28
The main function ¢ 28

Presentation and syntax e 29

Returning values from a function e 30
Running the game o 31

Opening a WiNdOW USING SFMLeeeeiieiiiisvseeiiecsssssnectesessssssssseessssssssssssssssssssssssssssssssssssses 31

Including SFML features ¢ 32

OOP, classes, and objects o 32

Using namespace sf ¢ 34

SFML VideoMode and RenderWindow e 34

Running the game o 35

B T8 s T (o RN 36
while loops ¢ 37
C-style code comments e 38
Input, update, draw, repeat e 38
Detecting a key press o 39
Clearing and drawing the scene ¢ 39
Running the game o 40
Drawing the game’s backgroundccceeiiiiveiiissneiiissneiisssneicsssseescsssescsssssessssssessssssenes 40
Preparing the sprite using a texture ¢ 40
Double buffering the background sprite 42
Running the game o 43
HaNALING EITOTS cecueeriirsniiesssnriisssneiessssersessstissssssrsssssstssassssss 44
Configuration errors e 44
Compile errors e 44
Link errors e 45
Bugs e 45

SUMMATY .eeeeeeenncenncenncennceanecns coeessesntsetntensursisesessesesseresseresseresstnesstnesstntsesactsnsessatsesas 45

Frequently asked qUESTIONS ...cccvveeriisseiiiisnniiisssneiiissnntssssneicssssenssssssescssssesessssesssssssssssssees 45

Table of Contents

vii

Chapter 2: Variables, Operators, and Decisions: Animating Sprites

47

Learning all about C++ variablesccceeeeeivueeeeercciscuneeeerccsnanees

Types of variables ¢ 48
User-defined types ¢ 50

Declaring and initializing variables e 50
Declaring variables o 50
Initializing variables 51
Declaring and initializing in one step o 51
Constants e 52
Uniform initialization e 52

Declaring and initializing user-defined types o 53

...... .. 54

Seeing how to manipulate the variables cerereetteeessnnaatnesssnans
C++ arithmetic and assignment operators e 54
Getting things done with expressions ¢ 55
Assignment e 55
Increment and decrement o 57

Adding clouds, a buzzing bee, and a treecccceeeeu..... cerennenneeresisanes

...... . 59

Preparing the tree ¢ 59

Preparing the bee o 61

Preparing the clouds e 62

Drawing the tree, the bee, and the clouds ¢ 64

Random numberseeeeeee.. eeseseesenneseesnsssesernrssesensrrsesenrnssssararssses

Generating random numbers in C++ ¢ 66

Making decisions with if and elSec.cceevueeerueecrueeirurecsnecssnecssneensneessneensneeenne

Logical operators e 67

C++if and else ¢ 69

If they come over the bridge, shoot them! ¢ 69
Else do this instead o 69

Reader challenge o 71

viii Table of Contents

Timing Ceeessssteeeeeisssanttttesesssstttttesesssbrttttteeesssbattteeesesrrrtttteesesssattesesessrsrtttttesesrsrrtttaes 72
The frame rate problem o 72
The SFML frame rate solution e 73

Moving the clouds and the bee cereeesseeesnresareeareeareesaeesanesaeesneesaeesaaeesaas 76

Giving life to the bee o 76

Blowing the clouds e 80

SUMMATY .ceeeeeenceencceenccranccrencenes ceeeeeenntteranitttnictanetanssnnensananns cereerenecnanenns ..86
Frequently Asked QUESLIONS ...ccceeeeerieccisssuneerieccssssnnneeeeccssssnseeeescssssnnnsees ... 86
Chapter 3: C++ Strings, SFML Time: Player Input and HUD 89
Pausing and restarting the gameccccceuuuueeeenee. cessssnnnereesssssannnnnanenes .89
CH SETITIZS teeeeerssnnereeeeccssssnreetecsssssssssseeecsssssssssesessssssssssseessssssssssssesssssssssssessssssssssssesssssssnnns 93

Declaring strings ¢ 93

Assigning a value to strings ¢ 93

String Concatenation e 94

Getting the string length 94

Manipulating strings another way with StringStream e 95

SFML Text and SFML Font e 96

Adding a score and a message ceeseeeesstteessateessstteesntteestttsessrattesstatesssratssssanas . 97
Adding a time-bar .. ceresneetteeesiattttes e nnaassessanans cereresettieesssaraattese s sannaseseses 104
SUINIMATY eeerieennceencennnceeancceenccrancceanccssscecssscesssscsssscsssscssssssssscsssscsssssssssssassssasssssssssanse 110
Frequently asked qUESLIONS ..ccccovvveeeeerccisssnneeticcissssnneeteccssssnnseeeeccsssssnsseesscssssssnsees 111

Chapter 4: Loops, Arrays, Switch, Enumerations, and Functions: Implementing
Game Mechanics 113

LOOPS .ceveeraneeees ceeeeeeeseetanitttntetantettnicttniettnstansstnssansssanessansssanee .. 114

while loops e 114
Breaking out of a loop e 117
for loops ¢ 119
Arrays . ceeterettetenitttntetatttatittanietttstesasessrssesrssesasessansses cereeeseteetttttnneetnnistnnassananens 121

Declaring an array e 121

Table of Contents

ix

Initializing the elements of an array e 122
Quickly initializing the elements of an array e 122

What do these arrays really do for our games? ¢ 123

Making decisions With SWItChcouieeieiineeiiseecssneinseinnnrinseecssnecssneesssecsssecessseessacenss

ClasSS ENUIMETATIONS ceverereeeeeeereeennnsssssecceeesessssssssssscesssessssssssssssssssssssssassssssssssssssssnnssnnnss

Getting started with functionsccceeeeecsseeecssneccssneeccssnneeenn cessreeessnnneeenns
Who designed all this weird and frustrating syntax and why is it the way it is? ¢ 131
Function return types o 133
Function names e 137
Function parameters ¢ 138
The function body e 139
Function prototypes e 139
Organizing functions e 140
Function scope e 140

A final word on functions — for now e 141

Growing the branchesiiiieiiciseiinisniiinsnniinnneeiinnneecieeeicseeccsseessssesessses

Preparing the branches o 143

Updating the branch sprites in each frame o 144
Drawing the branches ¢ 146

Moving the branches o 147

SUMMATY .cceeennecennnnnenens O ceeeeseeeettttnteetatnstcettanssesttasssesannsesssnnnsssasasssenans

150

Frequently asked qUESLIONS ...ccceveueeeeericcisssneeeiiccssssnneeteecsssssnneseesecsssssnnnees

150

Chapter 5: Collisions, Sound, and End Conditions: Making the Game
Playable

Preparing the player (and other SPrites)ccecceerveressnirssnerssnerssercserssssnsssessssssssasseans

Drawing the player and Other SPIitesccccceecssericssnrecssnnrecsssnreccsssnesesssnsesssnnee

Handling the player’s INPUt ...cccccceeeeereeciiiiseetieciisisneeeisccssssneeeesecssssnnnees

Handling setting up a new game o 158
Detecting the player chopping e 159

Detecting a key being released e 163

X Table of Contents

Animating the chopped logs and the axe ¢ 165

Handling deatheeeeeieciiieeeeiiiiiiieneetiiiciiineeeetiecsssenneetiesessssseseessessssssssessssssssssssssessssnns 167
Simple sound effectscocvrrvrcvuerciscnericscnnnnes cerereessnnnens cesseresssnenesssanessssananans 170

How SFML sound works e 170

When to play the sounds 171

Adding the sound code ¢ 171
Improving the game and COAEuuuuueiiiiiiiiirreeiiiiiiiseneetiicinseneetieccsssesseetesesssssssssessesssssans 175
Summary snssssavnssrsassase oavsssonvsssansssnsassavesensassnssssevnsersnssonnssonase . 177
Frequently asked qUESLIONS ...cccvveeiiiiveiicsssniicssnneiisssseticssssticssssersssssstsesssssssssssssssssssssssssnses 177
Chapter 6: Object-Oriented Programming — Starting the Pong Game 179
Object-oriented Programmingcccceeeeecessesneeeeecessssnseereccsssssssseesccssssssssessecssssses 180

Encapsulation e 181

Polymorphism e 181

Inheritance ¢ 181

Why use OOP? ¢ 182

What exactly is a class? o 183
The theory of a PONG DAt ..ccccueirciiveiiiisniiinsnntiessseticsssneicsssniecsssseessssssssssssssessssssessssasssssns 183

Declaring the class, variables, and functions e 183

The class function definitions e 187

Using an instance of a class ¢ 189
Creating the PONG PIOJECT c.eeceeicerrirueeeeeiccsssrnneericcsssssnssereecssssssssseesssssssssssesscssssssnsans 190
Coding the Bat Classccuueeeieeeisrecsneninecssneensneesssessssesssseessssessssessssesssssssssessssssssaessssessases 192

Coding Bat.h « 192

Constructor functions ¢ 193

Continuing with the Bat.h explanation ¢ 194

Coding Bat.cpp e 195
Using the Bat class and coding the main functioneeeeeecneecseensinecssneessneenseecsneenns 198
SUMMATY eeceeeennncerennncceeennnceeeans ceeesseeeettnttteetetnseeeettnsettttssssesannssasasnsssasasssenans 203
Frequently asked qUESLIONS ...ccccvcuueeerreciiscneerieccssssnneeeeeeccsesennnees cereenestieeessaens ..203

Table of Contents xi

Chapter 7: AABB Collision Detection and Physics — Finishing

the Pong Game 205
Coding the Ball Class ...cccceeeeiieiiiiiveeiiiciiiiieeeiiiecissenestiesssssssesetsscssssssssesssessssssssssssssssans 206
Using the Ball class. S 209
Collision detection and SCOTINGeeeeereerrsrsnrerecsssssnseereccssssssseeressssssssssssesssssssssssesssssssssnes 211
Running the gameeeecivceeicsscnnrcsssnnecsssnecscsseneees cereenes 214
Learning about the C++ Spaceship OPeratorccceeecrsveieccsnercsssnniecssneicsssneeecssssesessanees 215
SUMMATY .ceueerencrencrenccranccnancnes ceceeenneeennnens ceeeeseetettteentittnneetntessanasannsssanes .216
Frequently asked qUESLIONS ...cccovvueeeerrcirissneeeiicissssnneeiiccssssnseeteesssssssssessssssssssnsees . 217
Chapter 8: SFML Views — Starting the Zombie Shooter Game 219
Planning and starting the Zombie Arena amecccceeeeesvvneeerescsssssneceesecsssssneeescsssssnnes 220

Creating a new project e 221
The project assets e 223
Exploring the assets 224

Adding the assets to the project ¢ 225

OOP and the Zombie AreNna ProJECT e.ecceeeeerrrreeererecssssnneeieccsssssseseescsssssssssessesssssens . 225
Building the player — the first class cereenenneeneeees cerenestteieissraattesessssaaattesessasnnns 226

Coding the Player class header file ¢ 227

Coding the Player class function definitions e 233

Controlling the game camera With SFML VIEWeeeeeieeisssicsneeieccssssssnseesscsssssssssessesssssens 243
Starting the Zombie Arena game engine . cereseetttiesisaaatteessaanaaesese s annaneees 245
Managing the code filescccevvvuurirrrnnnens tessetesssntiessattessssnesessntsassatesessratssesaraneas 249
Starting to code the main game 100pcccceererrnerciscnerrcsnnnnes cesseeessneresssaneesssananees 251
SUIMNIMATY toeerennnieeeenniceteannieteenneeceessecteessssscssssssssssssssssesssssscssessne 261
Frequently asked qUESLIONS ...ccceevvcuneerieeiiiissnectiecisssssnneetecsssssnnesteesssssssessessssssssnnsees .261
Chapter 9: C++ References, Sprite Sheets, and Vertex Arrays 263
Understanding C++ references ceeseteessttteesnttes bt ee s bt e e st t e e e bt e ee s baaesessatasessaaaases 264

Summarizing references ¢ 267

xii Table of Contents

SFML vertex arrays and SPrite SHEELSccceirvericssneicsssnniiissnneicssnecssssnescssssesesssssesssssnenes 267

What s a sprite sheet? 268

What is @ VErtex array? ...c.ccceceeeesssescssssesssssssessssssesssses cesseresssnenesssnnrsssssnesessnnssssaasases 270

Building a background from tiles ¢ 270
Building a vertex array e 271

Using the vertex array to draw e 272

Creating a randomly generated scrolling backgroundeeeeeeeeciivuneeiiiccissnneecencccnnnees 273
Using the background cereerentteeissanaattesessanaatsesssanans cerernstteeesssaenaeesesssanens 280
SUIMMATY ccucieinsecncsconcsesntscsocsesocscsntoasoossesscscsncssssssessssesssssssssesessesssossessssessesasessesessas .. 283
Frequently asked qUESLIONS ...cccvveeiiiiiniicnssniicnssniiesssnnticsssseiesssssessssssesesssssessssssesesssssassssnes 283

Chapter 10: Pointers, the Standard Template Library, and Texture Management
285

Learning about pointers cereseettteetiisaarttteeessssaattteeessssataattesessarnaatesees 285
Pointer syntax ¢ 286
Declaring a pointer o 287
Initializing a pointer o 288
Reinitializing pointers ¢ 289
Dereferencing a pointer « 290
Pointers are versatile and powerful e 292
Dynamically allocated memory e 292
Passing a pointer to a function e 294
Declaring and using a pointer to an object ¢ 295
Pointers and arrays e 295
Summary of pointers ¢ 296
Learning about the Standard Template LIDraryccccceeveeeccssneeccssneeicssnneecssneescsssseccsnnes 297
Whatis a vector? « 298
Declaring a vector 298
Adding data to a vector ¢ 298
Accessing data in a vector e 299

Removing data from a vector ¢ 299

Table of Contents xiii

Checking the size of a vector ¢ 299

Looping/iterating through the elements of a vector e 299
Whatis a map? ¢ 300

Declaring a map ¢ 300

Adding data to a map e 301

Finding data in a map e 301

Removing data from a map e 301

Checking the size of a map e 301

Checking for keys in a mayp ¢ 302

Looping/iterating through the key-value pairs of a mayp e 302
The auto keyword « 303
STL summary e 303

SUMMATY .eeeeeeencenncenncceanceanecens onvessenssssavesesnsssnnssenues cessecesnccsenonees 303

Frequently asked qUESLIONS ...cccvveriiisnricissnnicsssniecssnticsssnenesssnessssssssssssssessssssssssses ..304

Chapter 11: Coding the TextureHolder Class and Building a Horde of Zombies
305

Implementing the TextureHolder classceereereeeneereccnnnes cessnneneeesessens 305
Coding the TextureHolder header file ¢ 306
Coding the TextureHolder function definitions ¢ 307

What have we achieved with TextureHolder? ¢ 310

Building a horde of zombies N 310
Coding the Zombie.h file « 310
Coding the Zombie.cpp file o 313
Using the Zombie class to create a horde ¢ 318

Bringing the horde to life (or back to life) ¢ 322

Using the TextureHolder class for all textures .. S cereneetteeessanaettesesaanas 327
Changing the way the background gets its textures e 327
Changing the way the Player class gets its texture o 328

SUMMATY .ceeeenneicrrenneicerenneceeenes eseseteseestntesttsentestesantsesttstesestesssestaressesttstesesanressessase 329

Frequently asked qUESLIONS ...cccvveeecrsnieccssniiccssneecssntecsssneecssneescsssseecsssssessssssescses . 329

Xiv Table of Contents

Chapter 12: Collision Detection, Pickups, and Bullets 331

Coding the BUllet Classueeeeiiceiiveeeeiiciiiieneetiicinseeneetieccssnneeeeescssssssssesssessssssssssssssssens 332

Coding the Bullet header file ¢ 332

Coding the Bullet source file o 335

Coding the shoot function e 335
Calculating the gradient in the shoot function e 338
Making the gradient positive in the shoot function e 338
Calculating the ratio between X and Y in the shoot function e 338
Finishing the shoot function explanation e 339

More bullet functions e 340

The Bullet class’s update function e 340

Making the bullets flyeeeeeeeeiiueeeriiciiieeeeiicciieneeeieccseneeeeeeees S, 341
Including the Bullet class 342

Control variables and the bullet array o 342
Reloading the gun ¢ 343

Shooting a bullet o 345

Updating the bullets in each frame o 347
Drawing the bullets in each frame o 347

Giving the player a crosshair 348

Coding a class fOr PICKUPS .ueereersniicsssniiensneiesssnniicssnticsssnetesssssescsssssessssssessssssssssssssassssnns 352
Coding the Pickup header file o 352
Coding the Pickup class function definitions e 355

USIng the PICKUP Class cicccerveueerieicisrssnneieccsssssnneeeiccsssnseeesecsssssssessscsssssssssssessssssns ... 360

Detecting COLLISIONS .icvvuerrerssneriisssninsssnnicsssneiesssssescssserssssssessssssesossssessssssesssssssssssssssssonses 364
Has a zombie been shot? ¢ 365
Has the player been touched by a zombie? ¢ 368
Has the player touched a pickup? « 369

SUMMATY .eeeeceencenncenncceanccennncennes cavsseavssersassavassavassanassanassavasernassrnsssavereansssns 370

Frequently asked qUESTIONSccceeerueiirueissueessueensnnensnecsnecsssecsssnessssessssesssseessasessasesssacsns 370

Table of Contents XV
Chapter 13: Layering Views and Implementing the HUD 371
Adding all the Text and HUD objects N .. 371
Updating the HUD ... cereensetteeeessnaateesessssnnaatasssanans cerenestteeesssnnnattesessens .. 375
Drawing the HUD, home, and 1eVel-Uup SCIEENSccccerrcernircsssnricsssneicsssnneicssserssssssescsnnes 378
SUIMNIMATY tocereennieeeennnieeeennnieetenneeeeesssecctassssscssssssscesssssssssssssssssssssssssssssssessssssssssssssssssssssssses 381
Chapter 14: Sound Effects, File 1/0, and Finishing the Game 383
Saving and loading the high SCOTEcccvvveriiirveiiisseriiissnniiissneicssneiisssneescsssescssseescssssenes 383
Preparing sound effectsccceeeevvvueeeericciiicnneccnnne. ceresestteiesissaant et sesssssaanasesesssasens 386
Allowing the player to level up and spawning a New Waveeeeeeecereneneees 387
Restarting the Game ...cceeeeeeeiiiiiiiieeiticiinieneetieiinieneetteccsssneeteesesssssssssssessssssssssesssssnnns 390
Playing the rest of the SOUNASeiiiivceeiiiisseiiissseiiissseticssnntiissstissssseisssssssssssssessssassses 391

Adding sound effects while the player is reloading 391

Making a shooting sound e 392

Playing a sound when the player is hit e 392

Playing a sound when getting a pickup ¢ 393

Making a splat sound when a zombie is shot ¢ 394
SUIMMIMATY cevrseccscessssssanssssssossessssssssssssscssssssssssssanssssssessssssssssnssssssssssssssssannssssssssssssssane .. 395
Frequently asked qUESLIONScccevvvuneeiieeiisisenetiiecissssnneeiesssssssssessescssssssssssssesssssens .. 395
Chapter 15: Run! 397
ADOUL the GAIME cecurericrsnreicssneecsssnneccssneecsssseessssseecssssseesssssssssssssessssssssssssssesssssssses . 398
Creating the Projectcceceereecssscneeeeeccssscnneeeennens cereneetteiesissaaat st sesssssaaaa e s sesannaseans 401
Coding the main function . cerereetttiieisrta et te s s araa e et s e st saaaa st s es s ssnnanane 403
Handling INPUL ..eeeeeeeiiiiiiinineeiciiiisneetieciisienseteescsssssssseseecssssssssessesssssssssssessssssssssessssssns 408
Coding the FACtOry Class ..cccccicevceericisniiissnricsssneicsssneescsssescssssssssssssescsssssssssssesssssssssssanses 413
Advanced OOP: inheritance and polymorphiSmcccceeecsseeicsssneeccssnnescssnescssssescssaseees 415

Inheritance o 415
Extending a class e 416
Polymorphism e 418

Abstract classes: virtual and pure virtual functions e 419

xvi Table of Contents

DESIGI PALLETILS «uuveeeeeeeessssssssareencssssssssensssssssssssessessasssssssssns 421

Entity Component System patterncccceeeeeveeees cerseesateetancennntenneecnnnens 422

Why lots of diverse object types are hard to manage o 422
Using a generic GameODbject for better code structure o 422
Prefer composition over inheritance o 424
Factory pattern e 426
C++ smart pointers o 428
Shared pointers o 428
Unique pointers o 430
Casting smart pointers e 431
Coding the GameODbject class o 432
Coding the Component class o 435
Coding the Graphics class « 436
Coding the Update class ¢ 438
Running the code ¢ 439
What next? ¢ 439

SUMMATY .ceeeeeencrenceenccranccrencenes ceeeeeetnttetanietanictancsansennessananns 440

Chapter 16: Sound, Game Logic, Inter-Object Communication, and the Player
411

Coding the SOUNAENGINE ClaSS ...uueeeersureecssneecssneecsssnneecssneecsssnseccssnessssssesessasenes e 442

Code the Game 10GiC ...ccvvuueerrieirircuneeereccsssnneceennen. cereneetteiessssaat st sesssaaaa s s e sesannaseaes 445
Coding the LevelUpdate class o 446
Coding the Player: PATt 1 ...ueeciicciivvvceeeiecissssneetiecssssssneseeescssssssseesscssssssssssssessssssssssssssssssns 459

Coding the PlayerUpdate class ¢ 460
Coding the PlayerGraphics class e 464

Coding the factory to use all our new classes ... cereneetteieeissaas et e ee s aas e st ses s sannastaeeaes 470
Remembering the texture coordinates ¢ 470

RUNNING the GAME ceciiiiiiieneeiriiiiiiieetetieiiientetieccsssneettescssssssssseesessssssssssssessssssssessssssssnns 474

Summary 475

Table of Contents xvil
Chapter 17: Graphics, Cameras, Action 477
Cameras, draw calls, and SFML VIeEW ...cccoeessssnnns cessssssssssssssssssssssssrererererrerererene 477
Coding the camera classesccoovvvueerreiccsscneeeeecccsssnnnees cerenesttteesssnnnattesessens 479

Coding the CameraUpdate class ¢ 479

Coding the CameraGraphics class part 1 e 484

The SFML View class ¢ 488

Coding the CameraGraphics class part 2 ¢ 490
Adding camera instances to the game ... cereeseetteeeissaaattesessssaaatesesssansaattesesasans 495
RUNNING the GAIME wuciiiiueiiiiiinriiiisiiiissnticnsntiesssssticssstiesssssisssssstsesssssessssssesssssssssssssssssssans 498
SUMMATY «eceeeennnicenenneccerennnceennns etesetesettttttitttttstestttisttttetetesttttsestttssstsseressassane 499
Chapter 18: Coding the Platforms, Player Animations, and Controls 501
Coding the platformsccccveieiieeiiisseiiiisnntiensstiiissssticsssstiessssescssssesesssssescssssssessassessasaes 501

Coding the PlatformUpdate class ¢ 502

Coding the update function for the PlatformUpdate class ¢ 504

Coding the PlatformGraphics class « 508

Building some platforms in the factory e 511
RUNNING the GAIME wecriireiiiiisniiiiiiniiinisnttiinsntiisssstiesssssescssssesssssssessssssssessassessssssesssssssssssssses 512
Adding functionality to the Playerccccccveeccsseeecssnnricsssnniccssneeisssnnescsssseessssssescssnns 513

Coding the player controls e 514
Running the gameccouueeeeereiiiissneetiecissssneeeeeccssssnneseeenees cerssnsneenessssanntansssannanaans 520
Coding the ANIMAtOr ClaSS ...ecicervverecsssnercsssneicssseressssserssssssresssssessssssssssssssssssssssssssns .. 521
Coding the player animationscccceeeverecsssneicsssneiessseticsssseiesssssescsssescsssssessssssesessssassssnss 524
RUNNING the GAIME wuciiivuiiiiiiniiiciiiiiiisnticniniiinisnntecssssteessssseessssesesssssessssssesssssssssssssssssssaes 533
SUMMATY .ceeeerencrenccennccrancnencnes cereeennneennnens ceeeeteteetaneennetenneeennnens 534
Chapter 19: Building the Menu and Making It Rain 535
Building an interactive menuccceee... RN 536

Coding the MenuUpdate class 536
Coding the MenuGraphics class 543

Building a menu in the factory ¢ 548

xviii Table of Contents
RUNNING the GAIME wuciiinuiiiiiinniiiiiiiiiniinticnintiinisniecsssstecsssseessssseessssssessssssesssssssssssssssssssaes 550
MaAKING IETAIN cuuueeeeeiieiiiiisrnetiecssssssneeeiesssssssseesiessssssssssssessessssssns 551

Coding the RainGraphics class e 551

Making it rain in the factory ¢ 556
RUNNING the GAIME auciiiruiiiiiiiniiiiiiiiiniseticnsntiessssttissssticssssttesssssesesssstsesssssessssssssssssssessosaes 558
SUIMMATY teceeeennieeeeenncceneeencecreennecceeessscesssassscssssssscssssssssssssssscssssssscssssssssssssssessssssssces 558
Chapter 20: Fireballs and Spatialization 559
What is SpatialiZation?cccceicvvceeiieciiisineetiecsiisssnestesisssssssssessessssssssssssessssssssssssessssssssans 559

Emitters, attenuation, and listeners ¢ 560
Handling spatialization using SFMLueeeeeiiciinsscnneeiecissssneeeeescsssssssssessesssssssssessssssssens 560
Upgrading the SOUNAENGINE ClASS w.ciirevueriiisneicsssneiesssneicsssnenessssiesssssssssssssssssssssssssssssssses 563
35 o2 | TN 565

Coding the FireballUpdate class ¢ 565

Coding the FireballGraphics class e 574

Coding FireballGraphics.h ¢ 575
Coding FireballGraphics.cpp » 576

Building some fireballs in the factory ¢ 580
RUNNING the COAE auuriiinniiiiinnriiiisntiiissntiinsnntiicssnticsssntecessstesssseessssssessssssesssssssesssssesssssaes 582
SUIMIMATY ieeuieenieenctenceencceneetancesseccssscecsssscssscssssscsssscssssssssscsssssssssssssssssssssasssssssssanse 582
Chapter 21: Parallax Backgrounds and Shaders 583
Learning about OpenGL, shaders, and GLSLcccccccceereeisiscneetieccsssssnseesscsssssasesesesssssnes 583

The programmable pipeline and shaders ¢ 584

Coding a hypothetical fragment shader ¢ 585

Coding a hypothetical vertex shader ¢ 586
Finishing the CameraGraphics Classcccceeeevsericsseiiissniicsssneiessssneicsssescsssssessssssesessanes 587

Breaking up the new draw code ¢ 591
Coding a shader for the gameueeeeereiciiuneeeriicciscneeeeercccanees 595
Running the completed SAMEuueeeeiiiiiiieneeiiciiirisnetteccinsneeeteeccssssesseesecssssssseesesssssens 595
SUIMIMATY «ucereenniereeneeeereneseereaseseesssnsssssssssssssses 596

Table of Contents

Xix

FUrther reading cccccceeeecceeeccssneeecssneecssnneccssneecssnneccsssnescssseecsssssesssssssessssssessssssssesssssessssns 597
WY SUDSCIIDE? cciiiiiininneeiiiiiiiineneeticciienneetiessssenneettssssssssssessssssssssssesssssssssssssssssnsassens 599
Other Books You May Enjoy 601
Index 607

Preface

Always dreamed of creating your own games? With the third edition of Beginning C++
Game Programming, you can turn that dream into reality! This beginner-friendly guide
is updated and improved to include the latest features of VS 2022, SFML, and modern
C++20 programming techniques. You will get a fun introduction to game programming
by building four fully playable games of increasing complexity. You’ll build clones of pop-

ular games such as Timberman, Pong, a Zombie survival shooter, and an endless runner.

The book starts by covering the basics of programming. You’ll study key C++ topics, such
as object-oriented programming (OOP) and C++ pointers, and get acquainted with the
Standard Template Library (STL). The book helps you learn about collision detection
techniques and game physics by building a Pong game. As you build games, you’ll also
learn exciting game programming concepts such as vertex arrays, directional sound (spa-
tialization), OpenGL programmable shaders, spawning objects, and much more. You’'ll
dive deep into game mechanics and implement input handling, levelling up a character,
and simple enemy Al. Finally, you’ll explore game design patterns to enhance your C++

game programming skills.

By the end of the book, you’ll have gained the knowledge you need to build your own

games with exciting features from scratch.

Who this book is for

This book is perfect for you if you have no C++ programming knowledge, you need a be-
ginner-level refresher course, or you want to learn how to build games or just use games

as an engaging way to learn C++.

xxii Preface

Whether you aspire to publish a game (perhaps on Steam) or just want to impress friends with

your creations, you'll find this book useful.

What this book covers

Chapter 1, Welcome to Beginning C++ Game Programming, Third Edition: This chapter outlines the
journey to writing exciting games for PC using C++ and the OpenGL powered SFML. This third
edition has an overwhelming focus on improving and expanding upon what you will learn in game
programming. All the C++ basics from variables in the beginning, through loops, object-oriented
programming, the Standard Template Library, SFML features, and newer C++ possibilities, have
been added to and expanded upon. By the end of this book, you will not only have four playable

games but also have a deep and solid grounding in C++.

Chapter 2, Variables, Operators, and Decisions: Animating Sprites: In this chapter, we will do quite
a bit more drawing on the screen. We will animate some clouds that travel at a random height
and a random speed across the background and a bee that does the same in the foreground. To
achieve this, we will need to learn some more of the basics of C++. We will be learning how C++
stores data with variables as well as how to manipulate those variables with the C++ operators
and how to make decisions that branch our code on different paths based on the value of variables.
Once we have learned all this, we will be able to reuse our knowledge about the SFML Sprite

and Texture classes to implement our cloud and bee animations.

Chapter 3, C++ Strings, SEML Time, Player Input, and HUD: In this chapter, we will spend around half
the time learning how to manipulate text and display it on the screen and the other halflooking at

timing and how a visual time bar can inform the player and create a sense of urgency in the game.

Chapter 4, Loops, Arrays, Switch, Enumerations, and Functions — Implementing Game Mechanics: This
chapter probably has more C++ information than any other chapter in the book. Itis packed with
fundamental concepts that will move our understanding on enormously. It will also begin to
shed light on some of the murky areas we have been skipping over a little bit, like functions, the

game loop, and loops in general.

Chapter 5, Collisions, Sound, and End Conditions: Making the Game Playable: This is the final phase
of the first project. By the end of this chapter, you will have your first completed game. Once you
have Timber!!! up and running, be sure to read the last section of this chapter as it will suggest
ways to make the game better. Here is what we will cover in this chapter: adding the rest of the
sprites, handling the player input, animating the flying log, handling death, adding sound effects,

adding features, and improving Timber!!!.

Preface xxiii

Chapter 6, Object-Oriented Programming — Starting the Pong Game: In this chapter, there’s a little bit
of theory, but the theory will give us the knowledge that we need to start using object-oriented
programming (OOP). OOP helps us organize our code into human-recognizable structures and
handle complexity. We will not waste any time in putting that theory to good use as we will use
it to code the next project, a Pong game. We will get to look behind the scenes at how we can
create new C++ types that we can use as objects. We will achieve this by coding our first class.
To get started, we will look at a simplified Pong game scenario so that we can learn about some
class basics, and then we will start again and code a Pong game for real using the principles we

have learned.

Chapter 7, AABB Collision Detection and Physics — Finishing the Pong Game: In this chapter, we will
code our second class. We will see that although the ball is obviously quite different from the
bat, we will use the exact same techniques to encapsulate the appearance and functionality of
a ball inside a Ball class, just like we did with the bat and the Bat class. We will then add the
finishing touches to the Pong game by coding some collision detection and scorekeeping. This
might sound complicated but as we are coming to expect, SFML will make things much easier

than they otherwise would be.

Chapter 8, SFML Views — Starting the Zombie Shooter Game: In this project, we will be making even
more use of OOP, and to a powerful effect. We will also be exploring the SFML View class. This
versatile class will allow us to easily divide our game up into layers for different aspects of the
game. In the Zombie Shooter project, we will have a layer for the HUD and a layer for the main
game. This is necessary because the game world expands each time the player clears a wave of
zombies. Eventually, the game world will be bigger than the screen and the player will need to

scroll. The use of the View class will prevent the text of the HUD from scrolling with the background.

Chapter 9, C++ References, Sprite Sheets, and Vertex Arrays: In Chapter 4, Loops, Arrays, Switch, Enu-
merations, and Functions — Implementing Game Mechanics, we talked about scope. This is the concept
thatvariables declared in a function or inner block of code only have scope (that is, can be seen or
used) in that function or block. Using only the C++ knowledge we have currently, this can cause
a problem. What do we do if we need to work on a few complex objects that are needed in the

main function? This could imply all the code must be in the main function.

In this chapter, we will explore C++ references, which allow us to work on variables and objects
that are otherwise out of scope. In addition to this, these references will help us avoid having to
pass large objects between functions, which is a slow process. It is slow because each time we do

this, a copy of the variable or object must be made.

XXiv Preface

Armed with this new knowledge of references, we will look at the SFML VertexArray class, which
allows us to build up a large image that can be quickly and efficiently drawn to the screen using
multiple parts in a single image file. By the end of this chapter, we will have a scalable, random,

scrolling background that’s been made using references and a VertexArray object.

Chapter 10, Pointers, the Standard Template Library, and Texture Management: In this chapter, we
will learn a lot as well as get plenty done in terms of the game in this chapter. We will first learn
about the fundamental C++ topic of pointers. Pointers are variables that hold a memory address.
Typically, a pointer will hold the memory address of another variable. This sounds a bit like a
reference, but we will see how they are much more powerful and use a pointer to handle an ev-

er-expanding horde of zombies.

We will also learn about the Standard Template Library (STL), which is a collection of classes

that allow us to quickly and easily implement common data management techniques.

Chapter 11, Coding the TextureHolder Class and Building a Horde of Zombies: Now that we have under-
stood the basics of the STL, we will be able to use that new knowledge to manage all the textures
from the game because if we have 1,000 zombies, we don’t really want to load a copy of a zombie

graphicinto the GPU for each and every one.

We will also dig alittle deeper into OOP and use a static function, which is a function of a class that
can be called without an instance of the class. At the same time, we will see how we can design
a class to ensure that only one instance can ever exist. This is ideal when we need to guarantee

that different parts of our code will use the same data.

Chapter 12, Collision Detection, Pickups, and Bullets: So far, we have implemented the main visual
aspects of our game. We have a controllable character running around in an arena full of zombies
that chase them. The problem is that they don’t interact with each other. A zombie can wander

right through the player without leaving a scratch. We need to detect collisions between the

zombies and the player.

If the zombies are going to be able to injure and eventually kill the player, it is only fair that we
give the player some bullets for their gun. We will then need to make sure that the bullets can

hit and kill the zombies.

At the same time, if we are writing collision detection code for bullets, zombies, and the player,

it would be a good time to add a class for health and ammo pickups as well.

Preface XXV

Here is what we will do and the order in which we will cover things in this chapter: shooting bul-

lets, adding a crosshair and hiding the mouse pointer, spawning pickups, and detecting collisions

Chapter 13, Layering Views and Implementing the HUD: In this chapter, we will get to see the real
value of SFML Views. We will add a selection of SFML Text objects and manipulate them as we
did before in the Timber!!! project and the Pong project. What’s new is that we will draw the
HUD using a second View instance. This way, the HUD will stay neatly positioned over the top
of the main game action, regardless of what the background, player, zombies, and other game

objects are doing.

Chapter 14, Sound Effects, File 1/O, and Finishing the Game: We are nearly done with this project.
This short chapter will demonstrate how we can easily manipulate files stored on the hard drive
using the C++ standard library, and we will also add sound effects. Of course, we know how to
add sound effects, but we will discuss exactly where the calls to the play function will go in the
code. We will also tie up a few loose ends to make the game complete. In this chapter, we will
cover the following topics: saving and loading the hi-score using file input and file output, adding

sound effects, allowing the player to level up, and spawning a new wave.

Chapter 15, Run!: Welcome to the final project. Run, Run is an endless runner where the objective
of the player is to stay ahead of the disappearing platforms that are catching them up from be-
hind. In this project, we will learn loads of new game programming techniques and even more
C++ topics to implement those techniques. Perhaps the best improvement this game will have
over the previous games is that it will be way more object oriented than any of the others. There
will be many, many more classes than any of the preceding projects but most of the code files
for these classes will be short and uncomplicated. Furthermore, we will build a game where the
functionality and appearance of all the in-game objects is pushed out to classes, leaving the main
game loop unchanged regardless of what the GameObjects do. This is powerful because it means
you can make a hugely varied game just by designing new standalone components (classes) that
describe the behavior and appearance of the required game entity. This means you can use the
same code structure for a completely different game of your own design. But there is way more

to come than just this. Read on for details.

Chapter 16, Sound, Game Logic, Inter-Object Communication, and the Player: In this chapter, we will
quickly implement our game’s sound. We have done this before, so it won’t be hard. In fact, in
just half a dozen lines of code, we will also add music to our sound features. Later in the project,

but not in this chapter, we will add directional (spatialized) sound.

xxvi Preface

In this chapter, we will wrap all our sound-related code into a single class called SoundEngine.
Once we have some noise, we will then move on to get started on the player. We will achieve the
entire player character functionality just by adding two classes: one that extends Update and one
that extends Graphics. This creation of new game objects by extending these two classes will
be how we do almost everything else for the entire game. We will also see the simple way that

objects communicate with each other using pointers.

Chapter 17, Graphics, Camera, Action: In this chapter, we will talk in depth about the way the
graphics will work in this project. As we will be coding the cameras that do the drawing in this
chapter, now seems like a good time to talk about the graphics too. If you looked in the graphics
folder, there is just one graphic. Furthermore we are not calling window. draw at any point in our
code so far. We will discuss why draw calls should be kept to a minimum as well as implement
our Camera classes that will handle this for us. Finally, in this chapter, we will be able to run the

game and see the cameras in action, including the main view, the radar view, and the timer text.

Chapter 18, Coding the Platforms, Player Animations, and Controls: In this chapter, we will code
the platforms and the player animation and controls. In my opinion, we have done the hard
work already and most of what follows has a much higher reward-to-effort ratio. Hopefully this
chapter will be interesting as we will see how the platforms will ground the player and enable
them to run, as well as seeing how we loop through the frames of animation to create a smooth
running effect for the player. We will do the following: coding the platforms, adding functionality
to the player, coding the Animator class, coding the animations, and adding a smooth running

animation to the player.

Chapter 19, Building the Menu and Making It Rain: In this chapter, we will implement two sig-
nificant features. One is a menu screen to keep the player informed of their options for starting,
pausing, restarting, and quitting the game. The other job will be to create a simple raining effect.
You could argue the raining effect isn’t necessary, even that it doesn’t fit the game, but it is easy,
fun, and a good trick to learn. What you should expect by now, and yet is still perhaps the most
interesting aspect of this chapter, is how we will achieve both these objectives by coding classes
derived from Graphics and Update, composing them in GameObject instances, and they will just

work alongside all our other game entities.

Chapter 20, Fireballs and Spatialization: In this chapter, we will be adding all the sound effects and
the HUD. We have done this in two of the previous projects, but we will do things a bit differently
this time. We will explore the concept of sound spatialization and how SFML makes this com-
plicated concept nice and easy. In addition, we will build a HUD class to encapsulate our code

that draws information to the screen.

Preface xxvii

Chapter 21, Parallax Backgrounds and Shaders: This is the last chapter and our last opportunity to
work on our game. It will be fully playable with all the features by the end. Here is what we will
do to wrap up the Run game. We will learn a bit more about OpenGL, shaders, and the Graphics
Library Shading Language (GLSL), finish the CameraGraphics class by implementing a scroll-
ing background and shader, a code a shader by using someone else’s code, and finally run the

completed game

To get the most out of this book

There are no knowledge prerequisites for this book. You do not need to know how to program as
the book takes you from zero knowledge to four playable games. It will help a little if you have

played a few video games and you are determined to learn.

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/

Beginning-C-Game-Programming-Third-Edition. We also have other code bundles from our
rich catalog of books and videos available at https://github.com/PacktPublishing/. Check

them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this book.
You can download it here: https://packt.link/gbp/9781835081747.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “My main

project directory is D: \VS Projects\Timber.”

A block of code is set as follows:

int playerScore = 0;
char playerInitial = 'J°';
float valuePi = 3.141f;

bool isAlive = true;

https://github.com/PacktPublishing/Beginning-C-Game-Programming-Third-Edition
https://github.com/PacktPublishing/Beginning-C-Game-Programming-Third-Edition
https://github.com/PacktPublishing/
https://packt.link/gbp/9781835081747

xxviii Preface

When we wish to draw your attention to a particular part of a code block, the relevant lines or

items are set in bold:

Texture textureTree;
textureTree.loadFromFile("graphics/tree.png");
Sprite spriteTree;
spriteTree.setTexture(textureTree);

spriteTree.setPosition(810, 9);

while (window.isOpen())

{

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

/etc/asterisk/cdr_mysql.conf

Bold: Indicates a new term, an important word, or words that you see on the screen. For instance,
words in menus or dialog boxes appear in the textlike this. For example: “Select System info from

the Administration panel.”

\/V> Warnings or important notes appear like this.

N

',@\' Tips and tricks appear like this.

7/

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of
your message. If you have questions about any aspect of this book, please email us at questions@

packtpub.com.

Preface XXix

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you have found a mistake in this book, we would be grateful if you reported this to us.

Pleasevisithttp://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packtpub.comwith alink to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit http://authors.packtpub.

com.

Share your thoughts

Once you’ve read Beginning C++ Game Programming, Third Edition, we’d love to hear your thoughts!
Please click here to go straight to the Amazon review page for this book and share your
feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1835081746

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily.
Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781835081747

2. Submit your proof of purchase.

3. That’sit!l We'll send your free PDF and other benefits to your email directly.

https://packt.link/free-ebook/9781835081747

Welcome to Beginning C++
Game Programming Third
Edition!

Let’s get started on your journey to writing exciting games for the PC using C++ and the Open-
GL-powered SFML. This third edition has an overwhelming focus on improving and expanding
upon what you will learn. All the C++ basics from variables in the beginning, through loops,
object-oriented programming, the Standard Template Library, SFML features, and newer C++
possibilities have all been added to and expanded upon. By the end of this book, not only will you

have four playable games but you will also have a deep and solid grounding in C++.
Here is what is coming up in this chapter

e First, we will look at the four games we will build across this book. The first game is the
exact same as the previous edition and will help us learn the C++ basics, like variables,
loops, and decision-making. The second and third are enhanced, modified, and refined
from the previous edition, and the fourth is all new and, in my view, way better for playing

and learning than the final two games of the previous edition put together.

e Thisnextbitis mportantin which you will discover why you should learn game program-
ming and perhaps any other programming genre using C++. Using C++ to learn game

development can be the best choice for so many reasons.

e Then, we can explore SFML and its relationship with C++.

2 Welcome to Beginning C++ Game Programming Third Edition!

e Nobodylikes corporate evangelism, and you won’t get any here, but there are good reasons
to find out about Microsoft Visual Studio and why we will use it in this book.

e Next, it’s time to set up the development environment. This is admittedly a slightly dull
affair, but we will get through it in short order, step by step, and when you have done it
once, you will never need to learn it again.

e We will then plan and prepare for the first game project, Timber!!!

e Moving on, we will write the first C++ code of this book and make a runnable first stage of
the game that draws a pretty background — ooh! In the next chapter, things will advance
and begin to move graphics around and what we learned in this chapter will stand us in
good stead to make faster progress with our first game.

e Finally, we will cover how to handle any problems you might get as you learn C++ and

game programming, such as configuration errors, compile errors, link errors, and bugs.

Of course, what you want to know first is what you are going to have to show for yourself by the

end of this weighty tome. So, let’s find out more about the games we will build.

You will find this chapter’s source code in the GitHub repository: https://github.com/

PacktPublishing/Beginning-C-Game-Programming-Third-Edition/tree/main/Timber

The games we will build
This journey will be smooth as we will learn about the fundamentals of the super-fast C++ lan-
guage one step at a time, and then put this new knowledge to use by adding cool features to the

four games we are going to build.

The following are our four projects for this book.

Timber!!!

The first game is an addictive, fast-paced clone of the hugely successful Timberman. Our game,
Timber!!!, will introduce us to all the beginner basics of C++ while we build a genuinely playable
game. Here is what our version of the game will look like when we are done and we have added

a few last-minute enhancements:

https://github.com/PacktPublishing/Beginning-C-Game-Programming-Third-Edition/tree/main/Timber
https://github.com/PacktPublishing/Beginning-C-Game-Programming-Third-Edition/tree/main/Timber

Chapter 1 3

ERS =, 714746,

Figure 1.1: Timber game

Timberman can be found at http://store.steampowered.com/app/398710/.

Pong

Pong was one of the first video games ever made. It is an excellent example of how the basics
of game object animation, player input, and collision detection work. We will build a version of
this simple retro game to explore the concept of classes and object-oriented programming. Here
is what it will look like by the end of Chapter 7:

Figure 1.2: Pong game

http://store.steampowered.com/app/398710/

4 Welcome to Beginning C++ Game Programming Third Edition!

The player will use the bat at the bottom of the screen and hit the ball back to the top of the screen.

If you are interested, find out about Pong’s history here: https://en.wikipedia.org/wiki/Pong.

Zombie Arena

Next, we will build a frantic, zombie survival shooter, not unlike the Steam hit Over 9,000 Zom-
bies!, which you can find out more about athttp://store.steampowered. com/app/273500/. The
player will have a machine gun and must fight off ever-growing waves of zombies. All this will

take place in a randomly generated, scrolling world:

SCORE:300

\?_‘..

WAVE:M Z0MBIES:20

Figure 1.3: Zombie Arena game

To achieve this, we will learn about how object-oriented programming allows us to have a large
code base (lots of code) that is easy to write and maintain. Expect exciting features such as
hundreds of enemies, rapid-fire weaponry, pickups, and a character that can be leveled up after
each wave.

Platform game

The final game is a platform game called Run. Run will be packed with more features enabled by
the C++ skills we will have acquired and made easier by the great features of SFML. Take a look
at the finished game below:

https://en.wikipedia.org/wiki/Pong
http://store.steampowered.com/app/273500/

Chapter 1 5

Figure 1.4: Platform game

Features include a photo-realistic shader background, parallax scrolling cityscape, spatialized
(directional) sound, mini-map, animated player character, rain weather effect, music, pop-up
menu, and more. Best of all, the final game will have a reusable code structure that you can use

to invent and add your own features to.

Why you should learn game programming using C++
in 2024

The title above could also have read, “Why use game programming to learn C++...”, because C++,
game programming, and beginners (in my view) are a perfect match. Let’s look at C++ in more

detail while also staying focussed on games and beginners:

e Speed: C++is known for its high performance and efficiency. In game development, per-
formance is important. C++ allows you to write code that can run close to the native
languages of both the CPU and the GPU, making it well suited for anything demanding,
which includes games. This is achieved because C++ is turned into native executable in-
structions. This is just what we need when coding games with hundreds, thousands, or
even hundreds of thousands of entities in it. In the final chapter, Chapter 21, we will see

how C++ can interact directly with the GPU using shader programs.

Welcome to Beginning C++ Game Programming Third Edition!

Cross-platform development: C++ works almost everywhere, meaning you can write
code that can be compiled and run on various platforms without significant modifications.
This book will focus on Windows but everything we learn and write in this book, with
minor modifications, will work on macOS and Linux. C++ itself is also used extensively in
next-gen console game development and can even be useful on mobile. Compiled means

translating our C++ code into binary machine instructions for the CPU.

Lots of game engines and libraries: Many game engines and libraries are written in
C++ or provide C++ APIs. Learning C++ gives you access to the widest range of tools and
resources for game development, such as Unreal Engine, as well as the fastest and best
graphics libraries like Vulcan, OpenGL, DirectX, and Metal, as well as physics libraries
like Box2D, UI tools like IMGUI, and networking libraries for co-op and multiplayer like

RakNet, Enet and SFML’s very own networking features.

Low-level control: C++ provides low-level control over hardware resources, which is
crucial for optimizing game performance. In game development, you may need to manage
memory, optimize rendering pipelines, and maintain control over the system your game
is running on, and C++ offers the flexibility and power to do this. If managing memory
and rendering pipelines sound ominous, then I can assure you that things will be fine. We
introduce both these topics in a completely beginner-friendly manner in Chapters 10 and
21, respectively. Far from leaving you baffled, knowing how these powerful things can be

controlled will leave you feeling powerful and in control of your programming destiny.

Documentation and support: There is a thriving community around C++ game devel-
opment, with numerous resources, tutorials, and forums available to help you learn and
troubleshoot issues. If you have a C++ problem, I can guarantee you are not the first and
a quick web search will almost always yield a solution. ChatGPT is an ace C++ problem

solver, too.

Learning C++ does have challenges but, taken a step at a time, is easily mastered. It is so
rewarding to struggle over a problem and finally see it burst into an exciting gameplay
feature when you get it right. Game development often involves seemingly difficult algo-
rithms, data structures, and principles but C++ provides tools like the Standard Template
Library (STL) and classes through object-oriented programming (OOP) to boil down
complexity into manageable chunks. We will be covering OOP and STL in Chapters 6 and
10, respectively.

Chapter 1 7

e C++isanindustry standard: It is because of everything we have just discussed that C++
is widely used in the game development industry. Familiarity with C++ can make it easier
to collaborate with other developers, understand existing code bases, switch between

game engines, and secure highly paid jobs in the industry.

Critics will say that C++ can have a steeper learning curve compared to some other programming
languages and that if you’re new to programming or game development, you might consider
starting with a more beginner-friendly language like C# (for Unity development) or Python (for
simple game projects) before diving into C++. There is some truth in this, but it is nowhere near
astrue asitused to be. C++is constantly evolving, and numerous improvements to simplify learn-
ing and dramatically speed up development have been introduced in recent years. For example,
new keywords like auto, intriguing-sounding logic operators like spaceship, as well as language
constructs like lambdas, coroutines, and smart pointers, were introduced over the last 10 years,

which dramatically simplify and speed up C++ development.

In summary, I would suggest that not learning C++ as a first language might be a mistake. And if
you want to make learning as fun and rewarding as it possibly can get then learning with games
is a no-brainer. Finally, if you want to be an indie game developer or work for a top game studio,

unless you have some very specific other path in mind, C++ is the way to go.

But having just stated that C++ is so wonderful and has so many paths and libraries, why would
we choose SFML?

SFML

SFML is the Simple Fast Media Library. It is not the only C++ library for games and multimedia.
Itis possible to make an argument to use other libraries, but SFML seems to come through for me
every time. Firstly, it is written using object-oriented C++. The benefits of object-oriented C++

are numerous, and you will experience them as you progress through this book.

SFML is also easy to get started with and is therefore a good choice if you are a beginner, yet at
the same time, it has the potential to build the highest quality 2D games if you are a professional.
So, a beginner can get started using SFML and not worry about having to start again with a new
language/library as their experience grows. And if you want to build 3D games, C++ and SFML
is a great introduction before moving on to Unreal Engine. As an aside, you can build 3D games
with SFML and OpenGL but most SFML libraries are focused on 2D, as is this book.

8 Welcome to Beginning C++ Game Programming Third Edition!

Perhaps the biggest benefit is that most modern C++ programming uses OOP. Every C++ begin-
ner’s guide I have ever read uses and teaches OOP. OOP is the future (and the now) of coding in
almost all languages, in fact. So why, if you’re learning C++ from the beginning, would you want

to do it any other way?

SFML has a library for just about anything you would ever want to do in a 2D game. SFML works
using OpenGL, which can also make 3D games. OpenGL is the de facto free-to-use graphics li-
brary for games when you want it to run on more than one platform. When you use SFML, you

are automatically using OpenGL.
SFML allows you to create the following:

e 2D graphics and animations, including scrolling game worlds.

e Sound effects and music playback, including high-quality directional sound.
e Input handling with a keyboard, mouse, and gamepad.

e Online multiplayer features.

e The same code can be compiled and linked on all major desktop operating systems, and

mobile as well!

Extensive research has not uncovered any more suitable ways to build 2D games for PC with C++,
even for expert developers, especially if you are a beginner and want to learn C++ in a fun gam-
ing environment. C++, check. SFML, check. Surely we want to steer clear of the big controlling

corporations, though, right?

Microsoft Visual Studio

Visual Studio is an Integrated Development Environment (IDE). Visual Studio provides a neat
and well-featured interface that simplifies the game development process while keeping advanced
features to hand. Beginners can benefit from features like code completion and syntax high-
lighting, which help streamline the process of learning C++. Visual Studio is almost unarguably
the most advanced free-to-use IDE for C++. Microsoft gives it away, not to seek forgiveness for
past transgressions but to get you hooked for the future using a premium version. So, let’s take

advantage of the free stuff for now.

Visual Studio offers a powerful debugger with features like breakpoints and call stacks. You can
run your game in Visual Studio and have it pause at a point of your choosing. You can then inspect
the values held by your code and step through execution a line at a time. This makes it easier for

beginners to understand how their code works and troubleshoot otherwise near-impossible issues.

Chapter 1 9

IntelliSense is Visual Studio’s code suggestions and real-time error-checking tool. It can help those
new to C++ learn the language more quickly by instantly highlighting mistakes and auto-sug-
gesting what you might be trying to think of. This is not just a great learning tool for beginners

butitis also a huge speed boost for professionals.

Visual Studio has a large and active community, and there are many tutorials, forums, and re-

sources available to help beginners with their C++ and SFML projects in Visual Studio.

Visual Studio has many advanced features. As you grow in knowledge and ambition, Visual Studio
can grow with you. Visual Studio integrates with popular version control systems (VCSs) like
Git, making it easy to get started managing larger projects with multiple programmers. Visual
Studio has performance profiling features that allow you to monitor the memory and CPU usage

of your game and, therefore, improve and optimize your game.

Visual Studio is almost an industry standard. Being one of the most widely used IDEs for C++,
Visual Studio has an enormous number of users. This means that beginners can find plenty of
online help and tutorials specific to Visual Studio. As an aside, usually, the last place you will
look for Visual Studio support will be Microsoft. Being knowledgeable with Visual Studio could

be valuable to a future employer.

Visual Studio hides away the complexity of preprocessing, compiling, and linking. It wraps it
all up with the press of a button. In addition to this, it provides a slick user interface for us to
type our code into and manage what will become a large selection of code files and other project

assets as well.

Having extolled the virtues of Visual Studio, it is also true that any game you can create with
Visual Studio, you can also create with open-source tools. Visual Studio will just make your time
as a beginner simpler, and if you decide to switch to a more ethical toolset at some point in the

future, the change will be smoother than if you had gone straight to these other tools.

While there are advanced versions of Visual Studio that cost hundreds of dollars, we will be able
to build all our games in the free Visual Studio 2022 Community edition. This is the latest free
version of Visual Studio at the time of writing. If, when you are reading this, there is a newer ver-
sion, I suggest using the newer version as Visual Studio tends to be highly backward compatible
as well as maintaining a reasonably consistent user interface over the years. This means you
can probably benefit from the new features and ease of availability of the latest version and still

follow along with this book.

10 Welcome to Beginning C++ Game Programming Third Edition!

In the sections that follow, we will set up the development environment, beginning with a dis-

cussion on what to do if you are using Mac or Linux operating systems.

What about Mac and Linux?

The games that we will be making can be built to run on Windows, Mac, and Linux! The code
we use will be identical for each platform. However, each version does need to be compiled and
linked on the platform for which it is intended, and the tutorials will not be able to help with

Mac and Linux.

It would be unfair to say, especially for complete beginners, that this book is perfectly suited for
Mac and Linux users. Although, I guess, if you are an enthusiastic Mac or Linux user and you are
comfortable with your operating system, you will likely succeed. Most of the extra challenges
you will encounter will be in the initial setup of the development environment, SFML, and the

first project.

To this end, I can highly recommend the following tutorials, which will hopefully replace the
next 10 pages (approximately), up to the Planning Timber!!! section, at which point, this book

will become relevant to all operating systems.

For Linux, read this to replace the next few sections: https://www.sfml-dev.org/tutorials/2.5/

start-1linux.php.

On Mac, read this tutorial to get started: https://www.sfml-dev.org/tutorials/2.5/start-
osx.php.

Installing Visual Studio 2022

To start creating a game, we need to install Visual Studio 2022. Installing Visual Studio can be
almost as simple as downloading a file and clicking a few buttons. There is nothing challenging
aboutinstalling Visual Studio provided you choose the correct edition. I will clearly point out the

correct edition at the point of choosing.

Note that, over the years, Microsoft is likely to change the name, appearance, and download page
that’s used to obtain Visual Studio. They might change the layout of the user interface and make
the instructions that follow out of date. My experience, however, is that they try hard to maintain
consistency between editions. Furthermore, the settings that we configure for each project are
fundamental to C++ and SFML, so careful interpretation of the instructions that follow in this

chapter will likely be possible, even if Microsoft does something radical to Visual Studio.

https://www.sfml-dev.org/tutorials/2.5/start-linux.php
https://www.sfml-dev.org/tutorials/2.5/start-linux.php
https://www.sfml-dev.org/tutorials/2.5/start-osx.php
https://www.sfml-dev.org/tutorials/2.5/start-osx.php

Chapter 1 1

Let’s get started with installing Visual Studio:

1.

The first thing you need is a Microsoft account and your login details. If you have a Hotmail,
Windows, Xbox, or MSN account, then you already have one. If not, you can sign up for a
free one here: https://login.live.com/.

At the time of writing (May 2024), Visual Studio 2022 is the latest version, so hopefully,
this chapter will be up to date for a while. To get started, visit https://visualstudio.
microsoft.com/ and find the Visual Studio download. This next image shows what the

page looks like at the time I visited the previous link:

Meet the Visual Studio family

v X

Visual Studio | = Visual Studio Code | = & 2
The most comprehensive IDE for NET and Ce + developers on Windows. Fully A standalene source code editor that runs on Windows, macOS, and Linux
packed with a sweet array of tooks and features to elevate and enhance every The top pick for JavaScript and web developers, with extensions to support
stage of software development Just about any programming language
Learn more = Learmn more -
By wning Visual Shucdie Code you agree o it Scense & privacy statement
Download Visual Studio v Download Visual Studio Code v
Community 2022
Qv Professional 2022 - "l llll llll
Enterprise 2022

Figure 1.5: Downloading Visual Studio

Find the download for Visual Studio and choose Community 2022 from the drop-down
options. Note that editions other than Community are premium products that are not
free and the Visual Studio Code option, also shown in this image, is not what we want

for this book. Click the Save button and your download will begin.

When the download completes, run the download by double-clicking on it. After giving
permission for Visual Studio to make changes to your computer, wait for the installer
program to download some files and set up the next stage of the installation.

Shortly, you will be asked where you want to install Visual Studio. Choose a hard drive
with atleast 50 GB of storage. Various sources on the web suggest you will get away with
much less than 50 GB, but by the time you have started creating projects, 50 GB will make
sure you have plenty of room for future development. When you are ready, locate the
Desktop development with C++ option and select it. Next, click the Install button. This

step might take a while to complete.

https://login.live.com/
https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/

12 Welcome to Beginning C++ Game Programming Third Edition!

Now, we are ready to turn our attention to SFML and then our first project.

Setting up SFML

This short tutorial will guide you through downloading the SFML files that allow us to include
the functionality contained in the SFML library in our projects. In addition, we will see how we
can use the SFML DLL files that will enable our compiled object code to run alongside SFML. To
set up SFML, follow these steps:

1. Visit this link on the SEFML website: http://www.sfml-dev.org/download.php. Click on

the button that says Latest stable version, as shown here:

Download

SFML 2.6.0 Snapshots

Latest stable version A In development versions

Figure 1.6: Downloading SFML 2.6

2. Bythetime youread this book, the latest version will almost certainly have changed. This
won’t matter if you do the next step just right. We want to download the 32-bit version.
This might sound counter-intuitive because you probably (most commonly) have a 64-bit
PC. The reason we will download the 32-bit version is that 32-bit apps can run on both
32- and 64-bit machines. Furthermore, we need to get the Visual Studio 22 version. Click

the Download button that’s shown in the following screenshot:

http://www.sfml-dev.org/download.php

Chapter 1

13

Download SFML 2.6.0

On Windows, choosing 32 or 64-bit libraries should be based on which platform you want to compile for, not which OS you have. Indeed, you can perfectly

compile and run a 32-bit program on a 64-bit Windows. So you'll most likely want to target 32-bit platforms, to have the largest possible audience. Choose

64-bit packages only if you have good reasons.

Unless you are using a newer version of Visual Studie, the compiler versions have to match 100%!

Here are links to the specific GW compiler versions used to build the provided packages:

WinLibs MSVCRT 13.1.0 (nLibs MSVCRT 13.1.0

Visual C++ 17 (2022) - 32-bit Download | 20318 | | Visual C++ 17 (2022) - 64-bit
Visual C++ 16 (2019) - 32-bit Download | 19318 Visual C++ 16 (2019) - 64-bit
Visual C++ 15 (2017) - 32-bit Download | 1778 | Visual C++ 15 (2017) - 64-bit
GCC 13.1.0 MinGW (DW2) - 32-bit Download | 17918 | GCC 13.1.0 MinGW (SEH) - 64-bit

Figure 1.7: Downloading SFML 17_22

Download

Download

Download

Download

21.3 MB

20.8 MB

19.4 MB

15.0 MB

3. When the download completes, create a folder at the root of the same drive where you

installed Visual Studio and name it SFML. Also, create another folder at the root of the

drive where you installed Visual Studio and call it VS Projects.

4. Finally, unzip the SFML download. Do this on your desktop. My file was called SFML-

2.6.0-windows-vc17-32-bit.zip but yours may be different to reflect a newer version

of SFML. When unzipping is complete, you can delete the .zip folder. You will be left

with a single folder on your desktop. Its name will reflect the version of SFML that you

downloaded. Double-click this folder to see its contents; I have a folder called SFML-2.6.0.

Now double-click again into the folder.

14 Welcome to Beginning C++ Game Programming Third Edition!

The following screenshot shows what my SFML folder’s content looks like. Yours should

look the same.

Name Date modified Type

Il bin 01/11/2023 12:36 File folder
Il doc I VARVZIPER P File folder
[l examples 01/11/2023 12:37 File folder
W include 01/11/2023 12:37 File folder
i iib 01/11/2023 12:37 File folder
B license.md 01/11/2023 12:3 MD File

B readmemd 01/11/2023 12:36 MD File

Figure 1.8: SFML folder contents

Copy the entire contents of this folder and paste all the files and folders into the SFML folder that
you created in step 3. For the rest of this book, I will refer to this folder simply as “your SFML folder”.

Now, we are ready to start using C++ and SFML in Visual Studio.

Creating a new project in Visual Studio 2022

As setting up a project is a fiddly process, we will go through it step by step so that we can start
getting used to it:

1. StartVisual Studio in the same way you start any app: by clicking on its icon. The default
installation options will have placed a Visual Studio 2022 icon in the Windows Start menu.

You will see the following window:

Chapter 1 15

Visual Studio 2022

Open recent Get started

| Pl

éz: Clone a repository
Get code from an online repository lke GitHub
or Azure DevOps

ﬁ.” Open a project or solution

Open a local Visual Studio project or sin file

E‘; Open a local folder

Navigate and edit code within any folder

3¢

Create a new project
Choose a project lemplate with code scaffolding
to get started

Continue without code -
Figure 1.9: Starting a new project in VS 2022

2. Click on the Create a new project button, as highlighted in the preceding screenshot. You

will see the Create a new project window, as shown in the following screenshot:

Create a new project

Search for templates (Alt+S 2~
Recent project temp]ates All languages - All platforms - All project types -
Alist of your recently accessed templates will be =ttt Empty Project -
displayed hera, BJ

Start from scratch with C+ + for Windows. Provides no starting files.

Ces Windows Censale

ﬁ‘ Console App

Run code in a Windows terminal. Prints "Hello World™ by default.

Ces Windows Censale
CMake Project
Build modern, cross-platform C++ apps that don't depend on .sln or vokproj files

o

C++ Windows Linux Console

taly Windows Desktop Wizard
L Create youwr own Windows app using a wizard.

e+ Windows Desktop Console Library
Windows Desktop Application

A project for an application with a graphical user interface that runs on Windows.

C++ Windows Desktop

£l

Blank Sclution

eate an emoty solution containing na projects
Back et

Figure 1.10: Create a new project screen

16

Welcome to Beginning C++ Game Programming Third Edition!

In the Create a new project window, we need to choose the type of project we will be
creating. We will be creating a console application that has no Windows-related things
like menus, selection boxes, or other Windows paraphernalia, so select Console App, as
highlighted in the preceding screenshot, and click the Next button. You will then see the
Configure your new project window. The following screenshot shows the Configure your

new project window after the next three steps have been completed:

Configure your new project

Console App ¢+ windows Consale
Project name

Timber

Location

DAVS Projects),

Solution name (I

#| Place solution and project in the same directory

Back Create

Figure 1.11: Configuring your new project

In the Configure your new project window, type Timber in the Project name field. Note
that this causes Visual Studio to automatically configure the Solution name field to the
same name.

In the Location field, browse to the VS Projects folder that we created in the previous
tutorial. This will be the location where all our project files will be kept.

Check the option to place the solution and project in the same directory.

Note that the preceding screenshot shows what the window looks like when the previous
three steps have been completed. When you have completed these steps, click Create.
The project will be generated, including some C++ code. The following screenshot shows

where we will be working throughout this book:

Chapter 1 17

o i fat ew gt v Pl fobe
G-eEas B0, Tw i% A

8- 1 E// Tisber.cop i This #ile contains the ‘main’ sunctiom. Progran execution begins and eacs there.
e ciotreans
& = int main(}
g sta:ioeut <o “helle Vorldiis®;
11 =7/ Bun program: Crl s F5 or Debwg > Start Without Debugging mena
2 /{ bebug program; FS ug » Start Debugging menu
1
15 rer windon to add/sanage Files
1
3 nessages
1 files, or Praject > ASd Existing Item to add existing code files to the project
e is project again, ge te Fils > open > Praject and select the .sln file

Figure 1.12: Visual Studio code editor

8. Wewillnow configure the project to use the SFML files that we putin the SFML folder. From

the main menu, select Project | Timber properties.... You will see the following window:

Timber Property Pages » e

Commen Language Runtime Suppart
(NET Target Framanwork Version
Whaole Program Optimizaticn
Windeows Store App Support

Target Platform
The current target platform of the project.

Configuration: Active{Debug) ¥ Platform: Active{Win32) ~ Confguration Manager...
Configuration Properties ~ General
General Windows
Debugging Windows SDK Version 10.0 (latest installed version]
W4+ Directaries Output Directory S%alutanDins(Configuration),
POICH Intermediate Directory SiConfiguration]y
> Linker Target Name S(ProjectMame)}
> Manifest Tool Target Extension e
5 XML Document Generaton Extensions to Delete on Clean *cdf:* cache:.obj:" objencilk;* ipdb;*iobj: resources: tb;" tli;* Aih: tmp;* rep: pgc® pad;®.m
> Browse Information Build Log File Sntins(MSBuildPrajectamellog
> Build Events Platfarm Toolset Visual Studio 2019 (v142)
 Custom Bulld Step Enable Managed Incremental Build No
> Code Analysis * Project Defaults
Configuration Type Application [exe)
Use of MFC Use Standard Windows Libraries
Character Set Use Unicode Character Set

No Common Language Runtime Suppert

NoWhaole Program Optimization
No

[]

Cancel Apply

Figure 1.13: Timber Property page

In the preceding screenshot, the OK, Cancel, and Apply buttons are not fully formed. This
is likely a glitch with Visual Studio not handling my screen resolution correctly. Yours will
hopefully be fully formed. Whether your buttons appear like mine do or not, continuing

with the tutorial will be the same.

Next, we will begin to configure the project properties. As these steps are quite intricate, I will

cover them in a new list of steps.

18 Welcome to Beginning C++ Game Programming Third Edition!

Configuring the project properties
At this stage, you should have the Timber Property Pages window open, as shown in the preceding

screenshot at the end of the previous section. Now, we will begin to configure some properties

while using the following annotated screenshot for guidance:

Configurati]k\ll Confi i V] Platform: [me(msz} '] l Configuration Manager... |
4 Configuration Properties Additional Indude Directories DASFMLyinclude 5 [E]
General Additional #using Directories |
Debugging Debug Information Format <different options>
VC++ Directories Common Language RunTime Support
4:C/Cxt) C Windows Runtime E
G‘"‘“’ 4 1 Suppress Startup Banner Yes (fnologo)
Optimization Warning Level Leveld (/W3)
Prepracessar_ Treat Warnings As Errors No (/Wx-)
f:nd;u:i;:erahon DL fhm I Yes (/sd)
Precompiled Headers Multi-processor Compilation

Figure 1.14: Configuring the project properties

We will add some intricate and important project settings in this section. This is the laborious
part, but we will only need to do this once per project and it will get easier and faster each time
you do it. What we need to do is tell Visual Studio where to find a special type of code file from
SFML. The special type of file I am referring to is a header file. Header files are the files that de-
fine the format of the SFML code so that when we use the SFML code, the compiler knows how
to handle it. Note that the header files are distinct from the main source code files, and they are
contained in files with the . hpp file extension. All this will become clearer when we eventually
start adding our own header files in the second project. In addition, we need to tell Visual Studio
where it can find the SFML library files. To achieve these things, on the Timber Property Pages

window, perform the following three steps, which are numbered in the preceding screenshot:

1. First (1), select All Configurations from the Configuration dropdown and check that
Win32 is selected in the Platform dropdown to the right.

2. Second (2), select C/C++ then General from the left-hand menu.

3. Third (3), locate the Additional Include Directories edit box and type the drive letter
where your SFML folder is located, followed by \SFML\include. The full path to type, if you
located your SFML folder on your D drive, is as shown in the preceding screenshot — that
is, D:\SFML\include. Vary your path if you put SFML on a different drive.

4. Click Apply to save your configurations so far.

5. Now,stillin the same window, perform these steps, which refer to the following annotated

screenshot. First (1), select Linker and then General.

Chapter 1 19

9.

Now, find the Additional Library Directories edit box (2) and type the drive letter where
your SFML folder is, followed by \SFML\1ib. So, the full path to type if you located your
SFML folder on your D drive is, as also shown in the following screenshot, D: \SFML\1ib.

Vary your path if you put SFML on a different drive:

4 Configuration Properties Qutput File S(OutDir)S(TargetiName)$(TargetExt)
General Show Progress Mot Set
Debugging Version
VC++ Directories Enable Incremental Linking <different options>
P C/C++ Suppress Startup Banner Yes (/NOLOGO)
4 Linker 1 Ignore Import Library No
General Register Output No
Inpu‘rl. : Per-user Redirection No 2
e LB Additional Library Directories D:ASFML\lib
::::igmg Link Library Dependencies Yes
Use Library Dependency Inputs Mo

Figure 1.15: Additional Library Directories

Click Apply to save your configurations so far.

Finally for this stage, still in the same window, perform these steps,which refers to the
following annotated screenshot. Switch the Configuration dropdown (1) to Debug as we
will be running and testing our games in Debugging mode.

coﬁgm&h«& ~] Plattorm: [Activeqwinaz) v [configuration Manager... |

lib;user32.lib:gdi32.lib;winspool.lib;comdig32.libzad »

4 Configuration Properties
General Ignore All Default Libraries

Debugging Ignore Spedific Default Libraries
VC++ Directories Module Definition File
-3 QC*+ Add Module to Assembly
4 Linker Embed Managed Resource File
General Force Symbol References
. Delay Loaded Diis 3
Menifest Fle Assembly Link Resource
Debugging
System
Optimization
Embedded IDL
Windows Metadata
Advanced
All Options
Command Line
b Manifest Tool

[XML Document Generator
b Browse Information

[Build Events

P Custom Build Step

[+ Code Analysis

Additional Dependencies
Spedfies additional items to add to the link command line. [i.e. kernel32.lib]

[o 1[cancet [apoie |

Figure 1.16: Linker input configuration

Select Linker and then Input (2).

20 Welcome to Beginning C++ Game Programming Third Edition!

10. Find the Additional Dependencies editbox (3) and click on it at the far left-hand side. Now,
copy and paste/type the following: sfml-graphics-d.lib;sfml-window-d.lib;sfml-
system-d.lib;sfml-network-d.lib;sfml-audio-d.1lib;attheindicated place.Be extra
careful to place the cursor exactly in the right place and not overwrite any of the text that

is already there.
11. Click OK.
12. Click Apply and then OK.

Phew; that’s it! We have successfully configured Visual Studio and can move on to planning the

Timber!!! project.

Planning Timber!!!
Whenever you make a game, it is always best to start with a pencil and paper. If you don’t know

exactly how your game is going to work on the screen, how can you possibly make it work in code?

At this point, if you haven’t already, I suggest you go and watch a video of Timberman in action
so that you can see what we are aiming for. If you feel your budget can stretch to it, then grab a
copy and give it a play. It is often on sale for under $1 on Steam: http://store.steampowered.
com/app/398710/.

The features and objects of a game that define the gameplay are known as the mechanics. The

basic mechanics of the game are as follows:

e Timeis always running out.
e You can get more time by chopping the tree.
e Chopping the tree causes the branches to fall.
e The player must avoid the falling branches.
e Repeatuntil time runs out or the player is squished by a branch.
Expecting you to plan the C++ code at this stage is obviously a bit silly. This is, of course, the first

chapter of a C++ beginner’s guide. We can, however, look at all the assets we will use and an

overview of what we will need to make our C++ code do.

http://store.steampowered.com/app/398710/
http://store.steampowered.com/app/398710/

Chapter 1 21

Look at this annotated screenshot of the game:

Chopped

log

Lethal .
branches

Player's current score Decorative floating clouds

SCORE = 42 4

Player
Character

Decorative bee
Shrinking time-bar

Figure 1.17: Screenshot of the Timber game

You can see that we have the following features:

The player’s score: Each time the player chops a log, they will get one point. They can
chop a log with either the left or the right arrow (cursor) key.
Player character: Each time the player chops, they will move to/stay on the same side of

the tree relative to the cursor key they use. Therefore, the player must be careful which

side they choose to chop on.

When the player chops, a simple axe graphic will appear in the player character’s hands.
Shrinking time-bar: Each time the player chops, a small amount of time will be added
to the ever-shrinking time-bar.

The lethal branches: The faster the player chops, the more time they will win, but also
the faster the branches will move down the tree and therefore the more likely they are to

get squished. The branches spawn randomly at the top of the tree and move down with

each chop.

22 Welcome to Beginning C++ Game Programming Third Edition!

e When the player gets squished —and they will get squished quite regularly —a gravestone
graphic will appear.

e Thechoppedlog: When the player chops, a chopped log graphic will whiz off, away from
the player.

e Justfor decoration: There are three floating clouds that will drift at random heights and

speeds, as well as a bee that does nothing but fly around.

e Thebackground: All this takes place on a pretty background.

So, in a nutshell, the player must frantically chop to gain points and avoid running out of time. As

a slightly perverse but fun consequence, the faster they chop, the more likely their squishy demise.

We now know what the game looks like, how it is played, and the motivation behind the game

mechanics. Now, we can go ahead and start building it. Follow these steps:

1. Now, we need to copy the SFML . d11 files into the main project directory. My main proj-
ect directoryis D:\VS Projects\Timber. It was created by Visual Studio in the previous
tutorial. If you put your VS Projects folder somewhere else, then perform this step there
instead. The files we need to copy into the project folder are in your SFML\bin folder. Open
a window for each of the two locations and highlight all the files in the SFML\bin folder,

as shown in the following screenshot:

4| openal32.dll

4| sfml-audio-2.dll

4| sfml-audio-d-2.dll
4 sfml-graphics-2.dll
| sfml-graphics-d-2.dll
4 sfml-network-2.dll
< sfml-network-d-2.dll
4| sfml-system-2.dll

4] sfml-system-d-2.dll
| sfml-window-2.dll
4 sfml-window-d-2.dll

Figure 1.18: Selecting all the files you need

2. Now, copy and paste the highlighted files into the project folder — thatis D: \VS Projects\

Timber.

Chapter 1 23

3. The project is now set up and ready to go. You will be able to see the following screen. I
have annotated this screenshot so you can start familiarizing yourself with Visual Studio.
We will revisit all these areas, and others, soon:

Tew Asahyme Tosh Extens

D Seuch Timbs

- I Lol Winddow W mw R

BB

/4 Tinber.cpp : This file contains the 'main’ functicm. Progras ewecution begins and ends there

SOLUTION
EXPLORER

Figure 1.19: Where to type the code

Your layout might look slightly different from what’s shown in the preceding screenshot because
the windows of Visual Studio, like most applications, are customizable. Take the time to locate

the Solution Explorer window and adjust it to make its content nice and clear, as shown in the
previous screenshot.

We will be back here soon to start coding. But first, we will explore the project assets we will be
using.

The project assets

Assets are anything you need to make your game. In our case, these assets include the following:
e Afont for drawing the text on the screen
e Some sound effects for different actions, such as chopping, dying, and running out of time
e Some graphics, known as textures, for the character, background, branches, and other

game objects

All the graphics and sounds that are required for this game are included in the download bundle

for this book. They can be found in the Chapter 1/graphics and Chapter 1/sound folders as
appropriate.

The font that is required has not been supplied. This is because I wanted to avoid any possible

ambiguity regarding the license. This will not cause a problem, though, as I will show you exactly

where and how to choose and download fonts for yourself.

24 Welcome to Beginning C++ Game Programming Third Edition!

Making your own sound FX

Sound effects (FX) can be downloaded for free from sites such as Freesound (www. freesound.org)
but, often, the license won’t allow you to use them if you are selling your game. Another option
is to use an open-source software called BFXR from www. bfxr.net, which can help you generate

lots of different sound FX that are yours to keep and do with as you like.

Adding the assets to the project

Once you have decided which assets you will use, itis time to add them to the project. The follow-
inginstructions will assume you are using all the assets that are supplied in this book’s download
bundle. Where you are using your own, simply replace the appropriate sound or graphic file with

your own, using the same filename:
1. Browse to the project folder — thatis, D:\VS Projects\Timber.

2. Create three new folders within this folder and name them graphics, sound, and fonts.

3. From the download bundle, copy the entire contents of Chapter 1/graphicsintotheD:\
VS Projects\Timber\graphics folder.
4. From the download bundle, copy the entire contents of Chapter 1/sound into the D:\VS

Projects\Timber\sound folder.

5. Now,visithttp://www.1001freefonts.com/komika_poster.font in your web browser

and download the Komika Poster font.
6. Extract the contents of the zipped download and add the KOMIKAP_.ttf file to theD:\VS
Projects\Timber\fonts folder.

Let’s look at these assets — especially the graphics — so that we can visualize what is happening

when we use them in our C++ code.

Exploring the assets

The graphical assets make up the parts of the scene that is our game. If you look at the graphical

assets, it should be clear where in our game they will be used:

http://www.freesound.org
http://www.bfxr.net
ttp://www.1001freefonts.com/komika_poster.font

Chapter 1 25

.

background bee branch cloud

| log player

tree

Figure 1.20: The assets

The sound files are all in .wav format. These files contain the sound effects that we will play at

certain events throughout the game. They were all generated using BFXR and are as follows:
e chop.wav: A sound thatis a bit like an axe chopping a tree
e death.wav: A sound a bit like a retro “losing” sound
e out_of_time.wav: A sound that plays when the player loses by running out of time, as

opposed to being squashed

We have seen all the assets, including the graphics, so now we will have a short discussion related

to the resolution of the screen and how we position the graphics on it.

Understanding screen and internal coordinates

Before we move on to the actual C++ coding, let’s talk a little about coordinates. All the images
that we see on our monitors are made from pixels. Pixels are tiny dots of light that combine to

make the images we see on the screen.

There are many different resolutions of a monitor but, as an example, consider that a typical

monitor might have 1,920 pixels horizontally and 1,080 pixels vertically.

26 Welcome to Beginning C++ Game Programming Third Edition!

The pixels are numbered, starting from the top left of the screen. As you can see from the following
diagram, our 1,920 x 1,080 example is numbered from 0 through to 1,919 on the horizontal (x)
axis and O through 1,079 on the vertical (y) axis:
y=0
x =0 —

 x = 1919
y = 1079

Figure 1.21: Screen and internal coordinates

A specific and exact screen location can therefore be identified by an x and y coordinate. We create

our games by drawing the game objects such as the background, characters, bullets, and text to
specific locations on the screen.

These locations are identified by the coordinates of the pixels. Take a look at the following hypo-
thetical example of how we might draw at the approximately central coordinates of the screen.
In the case of 21,920 x 1080 screen, this would be at the 960, 540 position:

ya=i0 960
x=0

540

x = 1919
y = 1079

Figure 1.22: Drawing central coordinates

Chapter 1 27

In addition to the screen coordinates, our game objects will each have their own similar coordi-
nate system as well. Like the screen coordinate system, their internal or local coordinates start

at 0,0 in the top-left corner.

In the previous image, we can see that 0,0 of the character is drawn at 960, 540 of the screen.
A visual 2D game object, such as a character or perhaps a zombie, is called a Sprite. A sprite is

typically made from an image file. All sprites have what is known as an origin.

If we draw a sprite to a specific location on the screen, it is the origin that will be located at this
specific location. The 0,0 coordinates of the sprite are its origin. The following image demon-

strates this:

Internal Coordinates
(Origin=20, 0)
y=0

x_o increasing values of x >

5
3
5
=

3
=
S
£
o
o
=8

s

Figure 1.23: lllustration of a sprite with its origin

Therefore, in the image showing the character drawn to the screen, although we drew the image

at the central position (960, 540), it appears off to the right and down.

This is important to know as it will help us understand the coordinates we use to draw all the

graphics.

Note that, in the real world, gamers have a huge variety of screen resolutions, and our games
will need to work with as many of them as possible. In the third project, we will see how we can
make our games dynamically adapt to almost any resolution. In this first project, we will need

to assume that the screen resolution is 1,920 x 1,080 or higher.

Now, we can write our first piece of C++ code and see it in action.

28 Welcome to Beginning C++ Game Programming Third Edition!

Getting started with coding the game

Open Visual Studio if it isn’t already open. Open the Timber project by left-clicking it from the

Recent list on the main Visual Studio window.

Find the Solution Explorer window on the right-hand side. Locate the Timber. cpp file under the
Source Files folder. The . cpp stands for C plus plus.

Delete the entire contents of the code window and add the following code so that you have the
same code yourself. You can do so in the same way that you would with any text editor or word
processor; you could even copy and paste it if you prefer. After you have made the edits, we can

talk about it:

return 0;

}

This simple C++ program is a good place to start. Let’s go through it line by line.

Making code clearer with comments

The first line of code is as follows:

Any line of code that starts with two forward slashes (//) is a comment and is ignored by the
compiler. As such, this line of code does nothing. It is used to leave in any information that we
might find useful when we come back to the code at a later date. The comment ends at the end
of the line, so anything on the next line is not part of the comment. There is another type of com-
ment called a multi-line or c-style comment, which can be used to leave comments that take up
more than a single line. We will see some of them later in this chapter. Throughout this book, I

will leave hundreds of comments to help add context and further explain the code.

The main function

The next line we see in our code is as follows:

int main()

Chapter 1 29

int is what is known as a type. C++ has many types, and they represent different types of data.

An intis aninteger or whole number. Hold that thought and we will come back to itin a minute.

Themain() partis the name of the section of code that follows. The section of code is marked out

between the opening curly brace ({) and the next closing curly brace (}).

So, everything in between these curly braces {...} is a part of main. We call a section of code

like this a function.

Every C++ program has amain function and it is the place where the execution (running) of the
entire program will start. As we progress through this book, eventually, our games will have many
code files. However, there will only ever be one main function, and no matter what code we write,
our game will always begin execution from the first line of code that’s inside the opening curly

brace of the main function.

For now, don’t worry about the strange brackets that follow the function name (). We will discuss
them further in Chapter 4, Loops, Arrays, Switch, Enumerations, and Functions — Implementing Game

Mechanics, when we get to see functions in a whole new and more interesting light.

Let’s look closely at the one single line of code within our main function.

Presentation and syntax

Take a look at the entirety of our main function again:

int main()

{

return 0;

We can see that, inside main, there is just one single line of code, return ;. Before we move on to
find out what this line of code does, let’s look at how it is presented. This is useful because it can

help us prepare to write code that is easy to read and distinguished from other parts of our code.

First, notice that return 0; is indented to the right by one tab. This clearly marks it out as being
internal to the main function. As our code grows in length, we will see that indenting our code

and leaving white space will be essential to maintaining readability.

Next, notice the punctuation at the end of the line. A semicolon (;) tells the compiler thatitis the
end of the instruction and that whatever follows it is a new instruction. We call an instruction

that’s been terminated by a semicolon a statement.

30 Welcome to Beginning C++ Game Programming Third Edition!

Note that the compiler doesn’t care whether you leave a new line or even a space between the
semicolon and the next statement. However, not starting a new line for each statement will lead
to hard-to-read code, and missing the semicolon altogether will result in a syntax error and the

game will not compile and run.

A section of code together, often denoted by its indentation with the rest of the section, is called
ablock.

Now that you're comfortable with the idea of the main function, indenting your code to keep it
tidy, and putting a semicolon on the end of each statement, we can move on to finding out exactly

what the return 0; statement does.

Returning values from a function

Actually, return 0; does almost nothing in the context of our game. However, the conceptis an
important one. When we use the return keyword, either on its own or followed by a value, it is
an instruction for the program execution to jump/move back to the code that got the function

started in the first place.

Often, the code that got the function started will be yet another function somewhere else in our
code. In this case, however, it is the operating system that started the main function. So, when

return @; is executed, the main function exits and the entire program ends.

Since we have a 0 after the return keyword, that value is also sent to the operating system. We

could change the value of @ to something else and that value would be sent back instead.

In programming speak, we say that the code that starts a function calls the function and that the

function returns the value.

You don’t need to fully grasp all this function information just yet. It is just useful to introduce it
here. We will go into the full details of functions during this first project. There’s one last thing
on functions that I will cover before we move on. Remember the int from int main()? This tells
the compiler that the type of value that’s returned from main must be an int (integer/whole
number). We can return any value that qualifies as an int; perhaps 0, 1, 999, 6,358, and so on. If
we try and return something thatisn’t an int, perhaps 12.76, then the code won’t compile, and

the game won’t run.

Functions can return a big selection of different types, including types that we invent for our-

selves! That type, however, must be made known to the compiler in the way we have just seen.

This little bit of background information on functions will make things smoother as we progress.

Chapter 1 31

Running the game

You can even run the game at this point. Do so by clicking the Local Windows Debugger button

in the quick-launch bar of Visual Studio. Alternatively, you can use the F5 shortcut key:

P Local Windows Debugger ~

Figure 1.24: The Local Windows Debugger button
Be sure that the version next to the Local Windows Debugger button is set to x86, as shown in the
nextimage. This means our program will be 32-bit and match the version of SFML we downloaded.

Debug ~ x86 - P Local Windows Debugger ~

Figure 1.25: Be sure you’re running in x86

You will just get a black screen. If the black screen doesn’t automatically close itself, you can tap
any key to close it. This window is the C++ console, and we can use this to debug our game. We
don’t need to do this now. Whatis happening is that our program is starting, executing from the

firstline of main, whichis return 0;, and then immediately exiting back to the operating system.

We now have the simplest program possible coded and running. We will now add some more

code to open a window that the game will eventually appear in.

Opening a window using SFML

Now, let’s add some more code. The code that follows will open a window using SFML that Tim-
ber!!! will eventually run in. The window will be 1,920 pixels wide by 1,080 pixels high and will

be full screen (no border or title).

Enter the new code thatis highlighted here to the existing code and then we will examine it. As

you type (or copy and paste), try and work out what is going on:

#include <SFML/Graphics.hpp>

32 Welcome to Beginning C++ Game Programming Third Edition!

RenderWindow window(vm, “Timber!!!", Style::Fullscreen);

return 0;

}

Now we will go through that code a bit at a time to understand it.

Including SFML features

The first thing we will notice in our new code is the #include directive.

The #include directive directs Visual Studio to include, or add, the contents of another file before
compiling. The effect of this is that some other code, which we have not written ourselves, will
be a part of our program when we run it. The process of adding code from other files into our
code is called preprocessing and, perhaps unsurprisingly, is performed by something called a

preprocessor. The . hpp file extension means it is a header file.

Therefore, #include <SFML/Graphics.hpp> tells the preprocessor to include the contents of the
Graphics.hpp file that is contained within the folder named SFML. It is the same folder that we

created while setting up the project.

This line adds code from the file, which gives us access to some of the features of SFML. Exactly
how it achieves this will become clearer when we start writing our own separate code files and

using #include to use them.

The most common files that we will be including throughout this book are the SFML header files
that give us access to all the cool game-coding features. We will also use #include to access the
C++ Standard Library header files. These header files give us access to core features of the C++

language itself.

What matters for now is that we have a whole bunch of new functionalities that have been pro-

vided by SFML available to use if we add that single line of code.

The next new line is using namespace sf;.We will come back to what this line does soon.

OOP, classes, and objects

We will fully discuss OOP, classes, and objects as we proceed through this book. What follows is

a brief introduction so that we can understand what is happening so far.

Chapter 1 33

We already know that OOP stands for object-oriented programming. OOP is a programming par-
adigm — that is, a way of coding. OOP is generally accepted throughout the world of programming
in most languages as the best, if not the only, professional way to write code. Notice I said most;

there are exceptions.

OOP introduces a lot of coding concepts, but fundamental to them all are classes and objects.
When we write code, whenever possible, we want to write code that is reusable, maintainable,
and secure. The way we do this is by structuring our code as a class. We will learn how to do this

in Chapter 6, Object-Oriented Programming — Starting the Pong Game.

All we need to know about classes for now is that once we have coded our class, we don’t just

execute that code as part of our game; instead, we create usable objects from the class.

For example, if we wanted 100 zombie NPCs (non-player characters), we could carefully design
and code a class called Zombie and then, from that single class, create as many zombie objects as
we like. Each and every zombie object would have the same functionality and internal data types,

but each and every zombie object would be a separate and distinct entity.

To take the hypothetical zombie example further but without showing any code for the Zombie

class, we might create a new object based on the Zombie class, like this:

Zombie z1;

The z1 object is now a fully coded and functioning Zombie object. We could then do this:

Zombie z2; Zombie z3; Zombie z4; Zombie z5;

We now have five separate Zombie instances, but they are all based on one carefully coded class.
Let’s take things one step further before we get back to the code we have just written. Our zombies
can contain both behavior (defined by functions) as well as data, which might represent things
such as the zombie’s health, speed, location, or direction of travel. As an example, we could code

our Zombie class to enable us to use our Zombie objects, perhaps like this:
z1.attack(player); z2.growl(); z3.headExplode();

Note again that all this zombie code is hypothetical for the moment. Don’t type this code into

Visual Studio — it will just produce a bunch of errors.

We would design our class so that we can use the data and behaviors in the most appropriate
manner to suit our game’s objectives. For example, we could design our class so that we can

assign values for the data for each zombie object at the time we create it.

34 Welcome to Beginning C++ Game Programming Third Edition!

Let’s say we need to assign a unique name and speed in meters per second at the time we create

each zombie. Careful coding of the Zombie class could enable us to write code like this:

The point is that classes are almost infinitely flexible, and once we have coded the class, we can
go about using them by creating an object/instance of them. It is through classes and the objects
that we create from them that we will harness the power of SFML. And yes, we will also write

our own classes, including a Zombie class.

Let’s get back to the real code we just wrote.

Using namespace sf

Before we move on and look more closely at VideoMode and RenderWindow, which, as you have
probably guessed by now, are classes provided by SFML, we will learn what the using namespace

sf; line of code does.

When we create a class, we do so in anamespace. We do this to distinguish our classes from those

that others have written. Consider the VideoMode class.

It is entirely possible that, in an environment such as Windows, somebody has already written
a class called VideoMode. By using a namespace, we and the SFML programmers can make sure
that the names of classes never clash.

The full way of using the VideoMode class is like this:

sf::VideoMode...

using namespace sf; enables usto omitthe sf:: prefix from everywhere in our code. Without
it, there would be over 100 instances of sf: : in this simple game alone. It also makes our code

more readable, as well as shorter.

SFML VideoMode and RenderWindow

Inside the main function, we now have two new comments and two new lines of executable code.

The first line of executable code is this:

VideoMode vm(1920, 1089);

Chapter 1 35

This code creates an object called vm from the class called VideoMode and sets up two internal

values of 1920 and 1080. These values represent the resolution of the player’s screen.

The next new line of code is as follows:

RenderWindow window(vm, “Timber!!!", Style::Fullscreen);

In the previous line of code, we are creating a new object called window from the SFML-provided

class called RenderWindow. Furthermore, we are setting up some values inside our window object.

Firstly, the vm object is used to initialize part of window. At first, this might seem confusing. Re-
member, however, that a class can be as varied and flexible as its creator wants to make it. And

yes, some classes can contain instances of other classes.

Itis not necessary to fully understand how this works at this point if you appreciate the concept.
We code a class and then make usable objects from that class —a bit like an architect might draw
a blueprint. You certainly can’t move all your furniture, kids, and the dog into the blueprint, but
you could build a house (or many houses) from the blueprint. In this analogy, a class is like a

blueprint and an object is like a house.

Next, we use the "Timber!!!" value to give the window a name. Then, we use the predefined

Style: :FullScreen value to make our window object full-screen.

Style::FullScreen is a value that’s defined in SFML. It is useful because we don’t need to re-
member the integer number the internal code uses to represent a full screen. The coding term
for this type of value is constant. Constants and their close C++ relatives, variables, are covered

in the next chapter.

Let’s look at our window object in action.

Running the game

You can run the game again at this point. You will see a bigger black screen flash on and then
disappear. This is the 1920 x 1080 full-screen window that we just coded. Unfortunately, what
is still happening is that our program is starting, executing from the first line of main, creating
the cool new game window, then coming to return 0; and immediately exiting back to the

operating system.

Next, we will add some code that will form the basic structure of every game in this book. This

is known as the game loop.

36 Welcome to Beginning C++ Game Programming Third Edition!

The game loop

These are some things that we need our program to do that we will achieve in this section. We need
a way to stay in the program until the player wants to quit. At the same time, we should clearly
mark out where the different parts of our code will go as we progress with Timber!!!. Furthermore,
if we are going to stop our game from exiting, we had better provide a way for the player to exit

when they are ready; otherwise, the game will go on forever!
Add the following highlighted code to the existing code and then we will go through it and dis-
cussitall:

int main()

{

RenderWindow window(vm,"Timber!!!", Style::Fullscreen);

while (window.isOpen())

{

if (Keyboard::isKeyPressed(Keyboard: :Escape))
{

window.close();

l

Chapter 1 37

return 9;

}

Next, we will go through and explain the code we have just added.

while loops

The very first thing we saw in the new code is as follows:

while (window.isOpen())

{

The very last thing we saw in the new code is a closing }. We have created a while loop. Everything
between the opening ({) and closing (}) brackets of the while loop will continue to execute over

and over, potentially forever.

Look closely between the parentheses (. . .) of thewhile loop, as highlighted here:

while (window.isOpen())

The full explanation of this code will have to wait until we discuss loops and conditions in Chapter
4, Loops, Arrays, Switch, Enumerations, and Functions — Implementing Game Mechanics. What is im-
portant for now is that when the window object we coded previously is set to closed, the execution
of the code will break out of the while loop and move on to the next statement. Exactly how a

window is closed is covered soon.
The next statement is, of course, return 0;, which ends our game.

We now know that our while loop will whiz round and round, repeatedly executing the code

within it, until our window object is set to closed.

38 Welcome to Beginning C++ Game Programming Third Edition!

C-style code comments

Justinside the while loop, we can see what, at first glance, might look a bit like ASCII art:

\ 7/

@

= more aboutit here: https://en.wikipedia.org/wiki/ASCII_art.

|
g ASCII artis aniche but fun way of creating images with computer text. You can read

The previous code is simply another type of comment. This type of commentis known as a C-style
comment. The comment begins with (/*) and ends with (*/). Anything in between is just for
information and is not compiled. I have used this slightly elaborate text to make it absolutely
clear what we will be doing in each part of the code file. And, of course, you can now work out

that any code that follows will be related to handling the player’s input.

Skip over a few lines of code and you will see that we have another C-style comment, announcing

thatin that part of the code, we will be updating the scene.
If you jump to the next C-style comment, it will be clear where we will be drawing all the graphics.

Let’s go into these sections in more detail.

Input, update, draw, repeat
Although this first project uses the simplest possible version of a game loop, every game will need
these phases in the code. Let’s go over the steps:

1. Getthe player’s input (if any).

2. Update the scene based on things such as artificial intelligence, physics, or the player’s

input.
3. Draw the current scene.
4. Repeatthese steps at a fast enough rate to create an interactive, smooth, animated game

world.

Now, let’s look at the code that does something within the game loop.

https://en.wikipedia.org/wiki/ASCII_art

Chapter 1 39

Detecting a key press

Firstly, within the section that’s identifiable by the comment with the Handle the player's

input text, we have the following code:

if (Keyboard::isKeyPressed(Keyboard::Escape))
{

window.close();

}

This code checks whether the Esc key is currently being pressed. If it is, the highlighted code
uses the window object to close itself. Now, the next time the while loop begins, it will see that
the window object is closed and jump to the code immediately after the closing curly brace of the
whileloop and the game will exit. We will discuss if statements more fully in Chapter 2, Variables,

Operators, and Decisions — Animating Sprites

Clearing and drawing the scene
Currently, there is no code in the Update the scene section, so let’s move on to the Draw the
scene section. The first thing we will do is rub out the previous frame of animation using the

following code:
window.clear();

What we would do now is draw every object from the game. However, we don’t have any game

objects yet.

The next line of code is as follows:

window.display();

When we draw all the game objects, we are drawing them to a hidden surface ready to be displayed.
The window.display() code flips from the previously displayed surface to the newly updated
(previously hidden) one. This way, the player will never see the drawing process as the surface
has all the sprites added to it. It also guarantees that the scene will be complete before it is flipped.

This prevents a graphical glitch known as tearing. This process is called double buffering.

Also note that all this drawing and clearing functionality is performed using our window object,

which was created from the SFML RenderWindow class.

40 Welcome to Beginning C++ Game Programming Third Edition!

Running the game

Run the game and you will get a blank, full-screen window that remains open until you press

the Esc key.

That is good progress. At this stage, we have an executing program that opens a window and
loops around, waiting for the player to press the Esc key to exit. Now, we can move on to drawing

the background image of the game.

Drawing the game’s background

Now, we will get to see some graphics in our game. What we need to do is create a sprite. The
first one we will create will be the game background. We can then draw it in between clearing

the window and displaying/flipping it.

Preparing the sprite using a texture

The SFML RenderWindow class allowed us to create our window object, which took care of all the

functionality that our game’s window needs.

We will now look at two more SFML classes that will take care of drawing sprites to the screen.
One of these classes, perhaps unsurprisingly, is called Sprite. The other class is called Texture.

A texture is a graphic stored in video memory, on the graphics processing unit (GPU).

An object that’s made from the Sprite class needs an object made from the Texture class to
display itself as an image. Add the following highlighted code. Try and work out what is going

on as well. Then, we will go through it, a line at a time:

int main()

{

RenderWindow window(vm,"Timber!!!", Style::Fullscreen);

Chapter 1 41

while (window.isOpen())

{

A point worth noting is that this code comes before the loop because it only needs to happen once.

First, we create an object called textureBackground from the SFML Texture class:
Texture textureBackground;
Once thisis done, we can use the textureBackground object to load a graphic from our graphics
folder into textureBackground, like this:
textureBackground.loadFromFile("graphics/background.png");

We only need to specify graphics/background as the path is relative to the Visual Studio working
directory where we created the folder and added the image.

Next, we create an object called spriteBackground from the SFML Sprite class with this code:
Sprite spriteBackground;
Then, we can associate the Texture object (backgroundTexture) with the Sprite object
(backgroundSprite), like this:
spriteBackground.setTexture(textureBackground);
Finally, we can position the spriteBackground object in the window object at the 8, @ coordinates
— the top-left corner:
spriteBackground.setPosition(0,0);
Since the background. png graphicin the graphics folder is 1,920 pixels wide by 1,080 pixels high,

itwill neatly fill the entire screen. Just note that this previous line of code doesn’t show the sprite.

It just sets its position, ready for when it is shown.

42 Welcome to Beginning C++ Game Programming Third Edition!

The backgroundSprite object can now be used to display the background graphic.

Of course, you are almost certainly wondering why we had to do things in such a convoluted way.

The reason is because of the way that graphics cards and OpenGL work.

Textures take up graphics memory, and this memory is a finite resource. Furthermore, the pro-
cess of loading a graphic into the GPU’s memory is very slow — not so slow that you can watch
it happen or that you will see your PC noticeably slow down while it is happening, but slow
enough that you can’t do it every frame of the game loop. So, itis useful to disassociate the texture

(textureBackground) from any code that we will manipulate during the game loop.

As you will see when we start to move our graphics, we will do so using the sprite. Any objects
that are made from the Texture class will sit happily on the GPU, just waiting for an associated
Sprite object to tell it where to show itself. In later projects, we will also reuse the same Texture

object with multiple different Sprite objects, which makes efficient use of GPU memory.
In summary, we can state the following:

e Textures are very slow to load onto the GPU.
e Textures are very fast to access once they are on the GPU.
e We associate a Sprite object with a texture.

e Wemanipulate the position and orientation of Sprite objects (usually in the Update the

scene section).

e Wedraw the Sprite object, which, in turn, displays the Texture object thatis associated

with it (usually in the Draw the scene section).

So, all we need to do now is use our double buffering system, which is provided by our window
object, to draw our new Sprite object (spriteBackground), and we should get to see our first

graphics in action.

Double buffering the background sprite

Finally, we need to draw that sprite and its associated texture in the appropriate place in the

game loop.

Note that when I present code that is all from the same block, I don’t add the in-

\ 7/

@

= indenting is implied. Check out the code file in the download bundle to see the full

|
g dentations because it lessens the instances of line wraps in the text of the book. The

use of indenting.

Chapter 1 43

Add the following highlighted code:

window.draw(spriteBackground);

The new line of code simply uses the window object to draw the spriteBackground object, in

between clearing the display and showing the newly drawn scene.

We now know what a sprite is, that we can associate a texture with it and then position it on

the screen, and finally, draw it. The game is ready to be run again so that we can see the results
of this code.

Running the game

If we run the program now, we will see the first signs that we have a real game in progress:

Figure 1.26: Running the game

44 Welcome to Beginning C++ Game Programming Third Edition!

It’s not going to get Game of the Year in its current state, but we are on the way at least!

Let’s look at some of the things that might go wrong in this chapter and as we proceed through
this book.

Handling errors

There will always be problems and errors in every project you make. This is guaranteed! The
tougher the problem, the more satisfying it is when you solve it. When, after hours of struggling,
a new game feature finally bursts into life, it can cause a genuine high. Without this struggle, it

would somehow be less worthwhile.

At some point in this book, there will probably be some struggle. Remain calm, be confident that

you will overcome it, and then get to work.

Remember that whatever your problem, it is very likely you are not the first person in the world
to have had this same problem. Think of a concise sentence that describes your problem or error
and then type it into Google or ChatGPT. You will be surprised at the speed and precision of

solving a problem this way as, often, someone else will have already solved your problem for you.

Having said that, here are a few pointers to get you started in case you are struggling with making

this first chapter work.

Configuration errors

The most likely cause of problems in this chapter will be configuration errors. As you probably
noticed during the process of setting up Visual Studio, SFML, and the project itself, there are an
awful lot of filenames, folders, and settings that need to be just right. Just one wrong setting could

cause one of several errors, whose text doesn’t make it clear exactly what is wrong.

If you can’t get the empty project with the black screen working, it might be easier to start again.
Make sure all the filenames and folders are appropriate for your specific setup and then get the
simplest part of the code running. This is the part where the screen flashes black and then closes.

If you can get to that stage, then configuration is probably not the issue.

Compile errors

Compile errors are probably the most common errors we will experience going forward. Check
that your code is identical to mine, especially semicolons on the ends of lines and subtle chang-
es in upper- and lowercase for class and object names. If all else fails, open the code files in the

download bundle and copy and paste it in.

Chapter 1 45

While itis always possible that a code typo made it into this book, the code files were made from

real working projects — they definitely work!

Link errors

Link errors are most likely caused by missing SFML . d11 files. Did you copy all of them into the
project folder?

Bugs

Bugs are what happen when your code works but not as you expect it to. Debugging can actu-
ally be fun. The more bugs you squash, the better your game and the more satisfying your day’s
work will be. The trick to solving bugs is to find them early! To do this, I recommend running
and playing your game every time you implement something new. The sooner you find the bug,
the more likely the code causing it will be fresh in your mind. In this book, we will run the code

to see the results at every possible stage.

Summary
This was quite a challenging chapter. It is true that configuring an IDE to use a C++ library can
be abit awkward and long. Also, the concepts of classes and objects are well known to be slightly

awkward for people who are new to coding.

Now that we are at this stage, however, we can focus on C++, SFML, and games. As we progress
with this book, we will learn more and more C++, as well as implement increasingly interesting
game features. As we do so, we will take a further look at things such as functions, classes, and

objects to help demystify them a little more.

We have achieved plenty in this chapter, including outlining a basic C++ program with the main
function and constructing a simple game loop that listens for player input and draws a sprite

(along with its associated texture) to the screen.

In the next chapter, we will learn about all the C++ we need to draw some more sprites and an-

imate them as well.

Frequently asked questions

Here are some questions that might be on your mind:

Q) I am struggling with the content that’s been presented so far. Am I cut out for programming?

46 Welcome to Beginning C++ Game Programming Third Edition!

A) Setting up a development environment and getting your head around OOP as a concept is
probably the toughest thing you will do in this book. If your game is functioning (drawing the
background), you are ready to proceed with the next chapter.

Q) All this talk of OOP, classes, and objects is too much and kind of spoiling the whole learning

experience.

A) Don’t worry. We will keep returning to OOP, classes, and objects constantly. In Chapter 6,
Object-Oriented Programming — Starting the Pong Game, we will really begin getting to grips with
the whole OOP thing. All you need to understand for now is that SFML has written a whole load
of useful classes and that we get to use this code by creating usable objects from those classes.

When you learn more about OOP, you will feel empowered.
Q) I really don’t get this function stuff.

A) It doesn’t matter; we will be returning to it again constantly and will learn about functions
more thoroughly. You just need to know that, when a function is called, its code is executed, and

when itis done (reaches a return statement), the program jumps back to the code that called it.

Variables, Operators, and
Decisions: Animating Sprites

In this chapter, we will do quite a bit more drawing on the screen. We will animate some clouds
that travel at a random height and a random speed across the background and a bee that does
the same in the foreground. To achieve this, we will need to learn some more of the basics of
C++. We will be learning how C++ stores data with variables as well as how to manipulate those
variables with the C++ operators and how to make decisions that branch our code on different
paths based on the value of variables. Once we have learned all this, we will be able to reuse our
knowledge about the Simple and fast Multimedia Library (SFML) Sprite and Texture classes

to implement our cloud and bee animations.
In summary, here is what is in store:

e Learning all about C++ variables

e Seeing how to manipulate the variables

e Adding clouds, a buzzing bee and a tree for the player to chop away at
e Random numbers

e Making decisions with if and else

e Timing

e Moving the clouds and the bee

48 Variables, Operators, and Decisions: Animating Sprites

Learning all about C++ variables

Variables are the way that our C++ games store and manipulate the values/data in our game. If
we want to know how much health the player has, we need a variable. Perhaps you want to know
how many zombies are left in the current wave? That is a variable as well. If you need to keep
track of the name of the player who got a specific high score, you guessed it, we need a variable

for that. Is the game over or still playing? Yep, that’s a variable too.

Variables are named identifiers to locations in memory. So, we might name a variable called
numberOfZombies, and that variable could refer to a place in memory that stores a value to rep-

resent the number of zombies that are remaining in the current wave.

The way that computer systems address locations in memory is complex. Programming languag-
es use variables to give a human-friendly way to manage our data in that memory. Managing a
complex system in a human-friendly way is really what programming languages are. What varies
from language to language is how efficient and friendly they are. C++ has always been efficient

and in the course of its history has become progressively more user friendly, too.

C++ was created by Bjarne Stroustrup in the early 1980s. C++ evolved from the orig-
\/‘p/' inal Clanguage. Stroustrup developed C++ with the aim of adding object-oriented
programming features to C, allowing for more efficient and manageable code. Over

the years, C++ has had many revisions/improvements.

The small amount we have just mentioned about variables implies that there must be different
types of variables. There are many types of variables in C++. Let’s look at the ones we will use the

most over the course of this book.

Types of variables

It would easily be possible to spend an entire chapter discussing C++ variables and types. There
are already numerous books that do this, so I am not going to do so here because I am guessing
you are here for the fastest path possible to building games. Therefore, what follows is a table
of the most used types of variables in this book. Then, we will look at how to use each of these

variable types.

Type Examples of values Explanation

int -42,0,1,and 9826. Integer whole numbers.

Chapter 2 49
float -1.26f,5.8999996f and Floating point values with
10128.3f. precision up to 7 digits.
double 925.83920655234 and Floating point values with
1859876.94872535. precision up to 15 digits.
char a,b,c,1,2,and 3 (atotal of Any symbol from the ASCII
128 symbols including ?, ~, #, table (see next tip about
etc...). variables).
bool True or false. bool stands for Boolean and
can be only true or false.
String Hello Everyone! I am a Any text value from a single
String. letter or digit up to perhaps
an entire book.

Table 2.1 Types of variables

C++is strongly typed. In programming languages, strong typing refers to a system in which the
data type of a variable is strictly enforced, and implicit type conversions are limited. In a strongly
typed language, operations between different data types often require explicit conversions or
they will result in compiler errors. This strict enforcement reduces the likelihood of unexpected
behaviors in our games, as the compiler or interpreter ensures that variables are used in a manner

consistent with their declared types.

For these reasons, the compiler must be told what type a variable is, so that it can allocate the
right amount of memory for it. Furthermore, when the compiler knows what type a variable s, it
can check thatitisnotbeing used in an erroneous way. For example, you wouldn’t divide a string
by a bool. Itis good practice to use the best and most appropriate type for each variable you use.
In practice, however, you will often get away with promoting a variable to a more precise type.
Perhaps you need a floating-point number with just five significant digits? The compiler won’t
complain if you store it as a double. However, if you try to store a float or a double in an int,
it will change/cast the value to fit the int. This will also change the value that is stored. As we
progress through the book, I will make it plain what the best variable type is to use in each case

and we will even see a few instances where we deliberately convert/cast between variable types.

Afew extra details worth noticing in the preceding table include the f postfix next to all the float
values. This f tells the compiler that the value is type float not double. A floating-point value

without the f prefix is assumed to be double. See the next tip about variables for more about this.

50 Variables, Operators, and Decisions: Animating Sprites

User-defined types

User-defined types are way more advanced than the types we have just seen. When we talk about
user-defined types in C++, we are usually talking about classes or enumerations. We briefly
talked about classes and their related objects in the previous chapter. Soon we will write code
in a separate file, sometimes two separate files. We will then be able to declare, initialize, and
use the classes that we design. We will leave how we define/create our own types until Chapter
6, Object-Oriented Programming: Starting the Pong Game. We will see enumerations in Chapter 4.
Enumerations act as a gentle introduction to classes as they are a way for the programmer to
define their own types, perhaps types of zombies, power-ups, or alien spaceships. Let’s get back
to the built-in basic C++ types often referred to as the fundamental types because they represent

fundamental values like those we saw in the preceding table.

Declaring and initializing variables

So far, we know that variables are for storing the data/values that our games need to work. For
example, a variable would represent the number of lives a player has or the player’s name. We
also know that there is a wide selection of different types of values that these variables can rep-
resent, such as int, float, bool, or user defined. Of course, what we haven’t seen yet is how we

would go about using a variable.

There are two stages for creating and preparing a new variable. The stages are called declaration

and initialization. Let’s look at each in turn.

Declaring variables

We can declare variables in C++ like this:

int playerScore;

char playerInitial;

float valuePi;

bool isAlive;

Chapter 2 51

In the preceding code, we have declared an int called playerScore, a char called playerInitial,
afloat called valuePi, and a bool called isAlive. If you need a reminder of exactly what these
different types are, check back to the previous table. What we have achieved by these declarations
is that we have reserved appropriately sized places in memory to store and manipulate values of

the appropriate types. We haven’t got any data yet. Let’s keep going and find out more.

Initializing variables

Now that we have declared the variables with meaningful names, we can initialize those same

variables with appropriate values, like this:

playerScore = 0;
playerInitial = 'J°;
valuePi = 3.141f;

isAlive = true;

Now, if we execute the preceding code, we have real data in the memory of the computer. In case
it isn’t obvious, the four preceding variables hold the values of zero, the lowercase letter j, the

floating point number 3.141, and the binary value true.

Declaring and initializing in one step

When it suits us, we can combine the declaration and initialization steps into one. If we know the

values we want our variables to start with, we could code them like this next example.

int playerScore = 0;
char playerInitial = 'J';
float valuePi = 3.141f;

bool isAlive = true;

If we needed to determine the value of our variables during program execution, we would more
likely code them as we did in the first examples of the variables. Both are correct to C++, but,

usually, one way is more appropriate for your game.

If you want to see a complete list of C++ types, then check this web page: http://www.
tutorialspoint.com/cplusplus/cpp_data_types.htm.If youwantadeeper dis-
cussion on float, double, and the f postfix, then read this: http: //www.cplusplus.
VA com/forum/beginner/24483/. If you want to know about ASCII character codes,
then there is some more information here: http://www.cplusplus.com/doc/
ascii/. Note that these links are for the extra curious reader, and we have already

discussed enough in order to proceed.

http://www.tutorialspoint.com/cplusplus/cpp_data_types.htm
http://www.tutorialspoint.com/cplusplus/cpp_data_types.htm
http://www.cplusplus.com/forum/beginner/24483/
http://www.cplusplus.com/forum/beginner/24483/
http://www.cplusplus.com/doc/ascii/
http://www.cplusplus.com/doc/ascii/

52 Variables, Operators, and Decisions: Animating Sprites

Constants

Sometimes we need to make sure that a value can never be changed. To achieve this, we can
declare and initialize a constant using the const keyword. The value of Pi doesn’t change, so it

would be more correct in most cases to have used a constant variable.

const float PI = 3.141f;
const int NUMBER_OF_ENEMIES = 2000;

In the preceding code, we guarantee that the value of the PI variable can never change during
program execution, and neither can the NUMBER_OF _ENEMIES variable. When declaring constants,
itis common to use a different format. The format we will use in this book will be all uppercase

with the words denoted by underscores instead of camel casing.

To be clear, when I say that a constant can never be changed, I mean it can’t be changed by the
program execution. As a programmer, you can always change the value of your constants at ini-

tialization time; you just can’t write code to change them during execution.

const int PLANETS_IN_SOLAR_SYSTEM = 8;

We will see some constants in action in Chapter 4, Loops, Arrays, Switch, Enumerations, and Func-

tions: Implementing Game Mechanics.

There is another variable initialization topic to discuss.

Uniform initialization

Uniform initialization or list initialization is a newer way to initialize variables. Uniform ini-
tialization in C++ began with the introduction of C++11, which was a major update to the C++
programming language in 2011. Uniform initialization provides a more consistent syntax for
initializing variables and our user-defined types. It allows initialization using curly braces, {3},
just like the curly braces that wrap the main function. You can use uniform initialization for the

variables we saw previously as follows:

int playerScore{0};
char playerInitial{'J'};
float valuePi{3.141f};

bool isAlive{true};

Chapter 2 53

In the preceding code, I've replaced the assignment operator, =, with the uniform initialization
syntax, { }, for each variable. This syntax is the formal standard in modern C++ and you will most
often see it in modern commercial APIs. There are some advanced reasons why it is less error

prone than the “traditional” method, which we will use in this book.

It’s not wrong to use the traditional syntax like this:

int playerScore = 0;

Both approaches are valid and will work. I just wanted you to see the syntax you will sometimes
come across when exploring C++ elsewhere. Furthermore, we will bump into this style later
in Chapter 6 when we talk about classes. Feel free to use uniform initialization throughout the
book. It would be simple to modify all the code samples. My view is that the traditional syntax
is more beginner friendly but if you are going to work for XYZ corporation, you will probably use

uniform initialization.

Declaring and initializing user-defined types

We have already seen examples of how we declare and initialize some SFML-defined types. It is
because the way that we can create/define these types (classes) is so flexible, that the way we
declare and initialize them is also so varied. Here are a couple of reminders for declaring and

initializing user-defined types from the previous chapter.

Create an object of type VideoMode, called vm, and initialize it with two int values, 1920 and 1080.

VideoMode vm(1920, 10890);

Create an object of the Texture type called textureBackground, but don’t do any initialization.

Texture textureBackground;

Note that it is possible (in fact, very likely) that even though we are not suggesting any specific
values with which to initialize textureBackground, some setup of variables may take place in-
ternally. Whether or not an object needs or has the option of giving initialization values at this
pointis entirely dependent on how the classis coded and is almost infinitely flexible. This further
suggests that when we get to write our own classes, there will be some complexity. Fortunately,
italso means we will have significant power to design our types/classes to be just what we need
to make our games. Add this huge C++ flexibility to the power of the SFML-designed classes and

the potential for our games is almost limitless!

54 Variables, Operators, and Decisions: Animating Sprites

We will see a few more user-created types/classes provided by SFML in this chapter and loads
more throughout the book. In Chapter 6, we will design and code our own types/classes when

implementing a Pong-style game.

Seeing how to manipulate the variables
At this point, we know exactly what variables are, the main types they can be, and how to declare
and initialize them. We still haven’t learned to achieve much with them, however. We need to

manipulate our variables, add them, take away, multiply, divide, and especially, test them.

First, we will deal with how we can manipulate them and later we will look at how and why we

test them.

With this in mind, let’s learn about the C++ arithmetic and assignment operators.

C++ arithmetic and assignment operators

To manipulate variables, C++ has a range of arithmetic operators and assignment operators.
Fortunately, most arithmetic and assignment operators are quite intuitive to use, and those that
aren’t are quite easy to explain. To get us started, let’s look at a table of arithmetic operators fol-

lowed by a table of assignment operators that we will regularly use throughout this book.

Arithmetic operator Explanation

+ The addition operator can be used to add together the values of

two variables or values.

The subtraction operator can be used to take away the value of

one variable or value from another variable or value.

The multiplication operator can multiply the value of variables

and values.

/ The division operator can divide the value of variables and values.

52

The Modulo operator divides a value or variable by another value

or variable to find the remainder of the operation.

Table 2.2 Arithmetic operators

Now, for the assignment operators.

Assignment operators Explanation

= We have already seen this one. It is the assignment operator. We

use it to initialize/set a variable’s value.

Chapter 2 55

Add the value on the right-hand side to the variable on the left.

Take away the value on the right-hand side from the variable on
the left.

Multiply by the value on the right-hand side by the variable on the
left.

/= Divide by the value on the right-hand side by the variable on the
left.

Increment operator that adds one to a variable.

Decrement operator that takes away one from a variable.

The spaceship operator, represented by <=>, is a relatively new

addition to the C++ language, introduced in C++20. It is used for

three-way comparisons. We will explore this in a later project.

Table 2.3 Assignment operators

\/‘n’l Technically, all the preceding operators, except for =, - -, and ++, are called compound
assignment operators because they comprise more than one operator.

Now that we have seen a good range of arithmetic and assignment operators, we can see how

to manipulate our variables by combining operators, variables, and values to form expressions.

Getting things done with expressions

Expressions are the combination of variables, operators, and values, just like expressions in En-
glish are the combination of words and punctuation. Using expressions, we can arrive at a result.
Furthermore, as we will soon see, we can use an expression in a test. These tests can be used to

decide what our code should do next.

Assignment

First, some simple expressions we might see in our game code.

hiScore = score;

Or,

score = 100;

56 Variables, Operators, and Decisions: Animating Sprites

In the preceding code, we assign the value stored in score to the hiScore variable. From this
point forward, hiScore will hold whatever was previously in score. We might do this at the end
of a game when the player beats the previously held highest score. To be clear, we might go on
to reset the score to zero and then use it to keep the score of the next game but hiScore will still
hold the value previously stored in score when hiScore = score was executed. Of course, if we
executed this line of code at the end of every game, we would run the risk of assigning a value to
hiScore that wasn’t a new highest score. This conundrum brings us back to the need for testing

and comparing values. Let’s keep going and we will get to the solution soon.

Next, look at the addition operator, which is used in conjunction with the assignment operator:

score

aliensShot + wavesCleared;

score = score + 100;

Notice that it is perfectly acceptable to use the same variable on both sides of an operator. In the
preceding code, the first line assigns to score the result of adding the values in aliensShot and
wavesCleared together. The second line of code assigns the value of whatever score currently

holds plus one hundred back into score. Perhaps another variation of this example would be useful:

score = score + pointsPerAlien;

In this example, the value assigned to pointsPerAlien is added to the existing value in score.
This technique of using variables on both sides of an operator is very common. Look at the code

again and be sure you understand what is happening.

Next, let’slook at the subtraction operator in conjunction with the assignment operator. The code
that follows subtracts the value on the right side of the subtraction operator from the value on

the left. It is usually used along with the assignment operator, perhaps like this:

lives = lives - 1;

Or:

aliensRemaining = aliensTotal - aliensDestroyed;

Chapter 2 57

This is how we might use the division operator. This next code divides the number on the left by

the number on the right. Again, it is usually used with the assignment operator, like this:

hitPoints = hitPoints / swordLevel;

Or:

recycledValueOfBlock = originalValue / 1.1f;

In the previous example, the recycledvalueOfBlock variable will need to be of the float type
to accurately store the answer to a calculation like that. Hopefully, this syntax is starting to seem
obvious. If it seems like I am teaching you how to do child-level arithmetic, then that means you

have probably got the gist. One more assignment operator example and we will move on.

Perhaps unsurprisingly, we could use the multiplication operator like this:

answer = 10 * 10;

Or:

biggerAnswer = 10 * 10 * 10;

By now, the code probably doesn’t need explaining. In the preceding examples, we are multiplying
two and then, three instances of the number ten together and assigning the results to answer and

then biggerAnswer respectively.

Increment and decrement

Now, let’s look at the increment operator in action. This is a neat way to add 1 to the value of one

of our game’s variables. Stay tuned for a C++ fun fact regarding the increment operator.

This code we have already seen and I do not need to explain it again, but just take another look.

myVariable = myVariable + 1;

Sometimes, it is not necessary to repeat the variable you want to use on both sides of an operator.

Itis possible to make your code clearer and save a tiny bit of typing time too.

58 Variables, Operators, and Decisions: Animating Sprites

This next code gives the same result as the previous code:

myVariable ++;
The increment operator is the exact same as the ++in C++.

As a fun fact, have you ever wondered how C++ gotits name? C++ is an extension of

\/‘/' the C language. Its inventor, Bjarne Stroustrup, originally called it “C with class-
es” but the name evolved. If you are interested, read the C++ story: http://www.

cplusplus.com/info/history/.

The decrement operator, - -, is, you guessed it, a quick way to subtract 1 from something.

playerHealth = playerHealth -1;

This next code is quicker, clearer, and does the same thing as the preceding code:

playerHealth --;

Let’s look at a few more operators in action and then we can get back to building the Timber!!!

game. Try and work out what is happening in all of the lines of code that follow:

int someVariable = 10;

someVariable *= 10;

someVariable /= 5;

someVariable += 3;

http://www.cplusplus.com/info/history/
http://www.cplusplus.com/info/history/

Chapter 2 59

someVariable -= 25;

In the preceding code, we take the use of incrementing and decrementing to a new level using
some compound operators that combine the assignment operator with the increment and dec-
rement operators. We are no longer just adding or subtracting one. When we use the *=, /=, +=,
or -= operators, we are multiplying, dividing, adding, or subtracting the value currently held in

the variable with the number preceding the operator.

So, in the multiplication example, someVariable holds the 10 value, and the code, someVariable
*= 10, will multiply the value by 18 and put the answer, 100, back into someVariable. This syntax

is short, fast, and clear. Nice.

If any of these examples need further clarification, we will be reusing almost all we have just
learned to enhance our game and get the graphics moving. It’s time to add some more sprites

to our game.

Adding clouds, a buzzing bee, and a tree

First, we will add a tree. This is going to be easy. The reason for this is because the tree doesn’t
move. We will use the same procedure that we used in the previous chapter when we drew the
background. In this next section, we will prepare our static tree sprite and our moving bee and
cloud sprites. We can then focus separately on moving and drawing the bee and the clouds be-

cause they will need a bit more C++ knowledge to do so.

Preparing the tree

Add the following highlighted code. Notice the un-highlighted code, which is the code we have
already written. This should help you identify that the new code should be typed immediately
after we set the position of the background but before the start of the main game loop. We will

recap what is going on in the new code after you have added it.

int main()

{

VideoMode vm(1920, 10890);

60

Variables, Operators, and Decisions: Animating Sprites

RenderWindow window(vm, “Timber!!!", Style::Fullscreen);

Texture textureBackground;

textureBackground.loadFromFile("graphics/background.png");

Sprite spriteBackground;

spriteBackground.setTexture(textureBackground);

spriteBackground.setPosition(@, 0);

Texture textureTree;
textureTree.loadFromFile("graphics/tree.png");
Sprite spriteTree;
spriteTree.setTexture(textureTree);

spriteTree.setPosition(810, 9);

while (window.isOpen())

{

The five lines of code (excluding the comment) that we just added, do the following:

e First, we create an object of the Texture type called textureTree.

e Next, we load a graphic into the texture from the tree.png graphics file.

e Then, we declare an object of type Sprite called spriteTree.

e Following on, we associate textureTree with spriteTree. Whenever we draw spriteTree,
it will show the textureTree texture, which is a neat tree graphic.

e Finally, we set the position of the tree using the coordinates 810 on the x-axis and @ on

the y-axis.

Chapter 2 61

A point to note is that the coordinates, 810 and zero, used to position the tree are values that I
have tested and work nicely in our chosen overall resolution. I assigned the values in the manner
that I did to quickly move on to the next subject. In a “real” C++ program, you would probably
assign values to variables as this would make their uses clearer. Furthermore, if the values do not
change, and they don’t, you would probably use a constant variable as we discussed previously.

You could declare variables like this outside the game loop:

const float TREE_HORIZONTAL_POSITION = 810;
const float TREE_VERTICAL_POSITION = 0O,

Then, in the line of code where we draw the tree sprite, you would use the following:

spriteTree.setPosition(TREE_HORIZONTAL_POSITION, TREE_VERTICAL_POSITION);

In this example, the declaration is right before the usage, and I think that the setPosition func-

tion makes it clear enough what the values refer to.

Ileave it as an exercise for the reader should they wish to modify the code if they think the effort
of the two new constant variables will make things clearer. When we write code with unexplained
values as we have, it is sometimes critically referred to as using magic numbers because they do
something thatis sometimes less clear than using a variable with a meaningful name. The point
of this conversation is that the bigger and more complex your code is, the stricter you should be
with your standards, especially if you are collaborating or being paid to be strict. I will occasionally

use magic numbers for brevity but hopefully, the context will always be clear.

Let’s move on to the much more interesting bee.

Preparing the bee

The difference between this next code and the tree code is small but important. As the bee needs
to move, we also declare two bee-related variables. Add the highlighted code in the place shown

and see whether you can work out how we might use the beeActive and beeSpeed variables.

Texture textureTree;
textureTree.loadFromFile("graphics/tree.png");
Sprite spriteTree;
spriteTree.setTexture(textureTree);

spriteTree.setPosition(810, 0);

62 Variables, Operators, and Decisions: Animating Sprites

Texture textureBee;
textureBee.loadFromFile("graphics/bee.png");
Sprite spriteBee;
spriteBee.setTexture(textureBee);
spriteBee.setPosition(0, 800);

bool beeActive = false;

float beeSpeed = 0.0f;

while (window.isOpen())

{

In the preceding new code, we create a bee in the same way we created a background and a tree.

We use a Texture and a Sprite and associate the two.

Note also in the previous bee code some new code we haven’t seen before in our project although
we have just talked about it when discussing variables. There is a bool variable for determining
whether the bee is active or not. Remember that a bool variable can be either true or false. We

initialize beeActive to false, for now.

Next, we declare a new float variable called beeSpeed. This will hold the speed that our bee will

fly across the screen at in pixels per second.

Soon, we will see how we use these two new variables to move the bee. Before we do, let’s set up

some clouds in an almostidentical manner.

Preparing the clouds

Add the highlighted code shown next. Study the new code and try and work out what it will do
—and then I'll explain it.

Texture textureBee;
textureBee.loadFromFile("graphics/bee.png");
Sprite spriteBee;
spriteBee.setTexture(textureBee);
spriteBee.setPosition(0, 800);

Chapter 2

63

// Is the bee currently moving?

bool beeActive = false;

// How fast can the bee fly
float beeSpeed = 0.0f;

// make 3 cloud sprites from 1 texture

Texture textureCloud;

// Load 1 new texture

textureCloud.loadFromFile("graphics/cloud.png");

// 3 New sprites with the same texture
Sprite spriteCloudil;
Sprite spriteCloud2;
Sprite spriteCloud3;
spriteCloudl.setTexture(textureCloud);
spriteCloud2.setTexture(textureCloud);
spriteCloud3.setTexture(textureCloud);

// Position the clouds on the Left of the screen
// at different heights
spriteCloudl.setPosition(@, 9);
spriteCloud2.setPosition(@, 250);
spriteCloud3.setPosition(@, 500);

// Are the clouds currently on screen?
bool cloudlActive
bool cloud2Active

false;

false;
bool cloud3Active = false;

// How fast is each cloud?
float cloudlSpeed = 0.0f;
float cloud2Speed = 0.0f;
float cloud3Speed = 0.0f;

while (window.isOpen())

{

64 Variables, Operators, and Decisions: Animating Sprites

The only thing about the code we have just added that might seem a little odd is that we have
only one object of the Texture type. Itis completely normal for multiple Sprite objects to share
atexture. Once a Texture is stored in GPU memory, it can be associated with a Sprite object very
quickly. It is only the initial loading of the graphic in the loadFromFile code that is a relatively
slow operation. Of course, if we wanted three differently shaped clouds, then we would need

three textures.

Apart from the minor texture-sharing anomaly, the code we have just added is nothing new com-
pared to the bee. The only difference is that there are three cloud sprites, three bool variables to

determine whether each cloud is active, and three float variables to hold the speed for each cloud.

Drawing the tree, the bee, and the clouds

Finally, we can draw them all on the screen by adding this highlighted code in the drawing section.

window.clear();

window.draw(spriteBackground);

window.draw(spriteCloudl);
window.draw(spriteCloud2);

window.draw(spriteCloud3);

window.draw(spriteTree);

window.draw(spriteBee);

Chapter 2 65

window.display();

Drawing the three clouds, the bee, and the tree is done in the same way that the background was
drawn. Notice, however, the order in which we draw the different objects to the screen. We must
draw all the graphics after the background, or they will be obscured by the background, and we
must draw the clouds before the tree, or they will look a bit odd drifting in front of the tree. The
bee would look OK either in front or behind the tree. I opted to draw the bee in front of the tree,

so it can try and distract our lumberjack, a bit like a real bee might.

Run Timber!!! and gaze in awe at the tree, the bee, and the three clouds that don’t do anything!

They look like they are lining up for a race; a race where the bee must go backward.

Figure 2.1: Drawing the tree, bee and clouds

Using what we know about C++ operators, we could try and move the graphics we have just added,
but there are a couple of problems. Firstly, real clouds and bees move in a non-uniform manner.
They don’t have a set speed or location. Although their locations and speed are determined by
factors such as the wind or how much of a hurry the bee might be in. To the casual observer, the

path they take and their speed appear random. Let’s explore randomness further.

Random numbers

Random numbers are useful for lots of reasons in games, for example, determining what card
the player is dealt or how much damage within a certain range is subtracted from an enemy’s
health. As hinted at, we will use random numbers to determine the starting location and speed
of the bee and the clouds.

66 Variables, Operators, and Decisions: Animating Sprites

Generating random numbers in C++

To generate random numbers, we will need to use some more C++ functions. Don’t add any code

to the game yet. Let’s just look at the syntax and the steps required with some hypothetical code.

Computers can’t genuinely pick random numbers. They can only use algorithms to pick a num-
ber that appears to be random. So that this algorithm doesn’t constantly return the same value,
we must seed the random number generator. The seed can be any integer number, although it
must be a different seed each time you require a unique random number. Look at this code, which

seeds the random number generator.

srand((int)time(0));

The preceding code gets the time from the PC using the time function like this: time(0). The call
to the time function is enclosed as the value to be sent to the srand function. The result of this is

that the current time is used as the seed.

The previous code is made to look a little more complicated because of the slightly unusual-look-
ing (int) syntax. What this does is convert/cast the value returned from time to an int. This is

required by the srand function in this situation.

\/V; The term used to describe a conversion from one type to another is cast.

So, in summary, the previous line of code:

1. Gets the time using time.
2. Convertsit to type int.

3. Sends this resulting value to srand which seeds the random number generator.

The time is, of course, always changing. This makes the time function a great way to seed the
random number generator. However, think about what might happen if we seed the random
number generator more than once and in such quick succession that time returns the same value.

We will see and solve this problem when we animate our clouds.

At this stage, we can create the random number between a range and save it to a variable for later

use using code like this:

Chapter 2 67

int number = (rand() % 100);

Notice the odd-looking way we assign a value to number. By using the modulo operator (%) and
the value of 100, we are asking for the remainder after dividing the number returned from rand
by 100. When you divide by 100, the highest number you can possibly have as a remainder is 99.
The lowest number possible is 0. Therefore, the previous code will generate a number between
0 and 99 inclusive. This knowledge will be useful for generating a random speed and starting

location for our bees and clouds.

We will do this soon, but we first need to learn how to make decisions in C++.

Making decisions with if and else

The C++ if and else keywords are what enable us to make decisions. We saw if in action in the

previous chapter when we detected each frame whether the player had pressed the Escape key.

if (Keyboard::isKeyPressed(Keyboard::Escape))
{

window.close();

}

So far, we have seen how we can use arithmetic and assignment operators to create expressions.

Now, we can see some new operators.

Logical operators

Logical operators are going to help us make decisions, by building expressions that can be tested
for a value of either true or false. At first, this might seem like quite a narrow choice and insuf-
ficient for the kind of choices that might be needed in an advanced PC game. Once we dig a little
deeper, we will see that you can make all the required decisions we will need, with just a few of

the logical operators.

Here is a table of the most useful logical operators. Look at them and the associated examples,

and then we will see how to put them to use.

Logical operator Name and example

The comparison operator tests for equality and is either true or

false. An expression like (10 == 9), for example, is false.10is

obviously not equal to 9.

68

Variables, Operators, and Decisions: Animating Sprites

This is the logical NOT operator. The expression (! (2 + 2 ==
5)). This is true because 2 + 2 is NOT 5.

This is another comparison operator but it is different from the =
comparison operator. This tests whether something is not equal. For

example, the expression (10 != 9) istrue.10isnotequal to 9.

Another comparison operator — there are a few more as well. This
tests whether something is greater than something else. The

expression (10 > 9)is true.

You guessed it. This tests for values less than something else. The

expression (10 < 9)is false.

This operator tests whether one value is greater than or equal to
the other and if either is true, the result is true. For example, the
expression (10 >= 9)is true. The expression (10 >= 10) is also

true.

Like the previous operator, this one tests for two conditions, but this
time less than or equal to. The expression (18 <= 9) is false. The

expression (10 <= 10) is true.

&&

This operator is known as logical AND. It tests two or more separate
parts of an expression and both parts must be true for the result

to be true. Logical AND is usually used in conjunction with the
other operators to build more complex tests. The expression ((10

> 9) & & (10 < 11)) istrue because both parts are true, so the
expression is true. The expression ((10 > 9) && (10 < 9))is
false because only one part of the expression is true and the other

is false.

This operator is called logical OR and it is just like logical AND
except that at least one of two or more parts of an expression
need to be true for the expression to be true. Let’s look at the last
example we used but switch the & for | |. The expression ((10 >
9) || (10 < 9))isnow true because one part of the expression

is true.

Table 2.4 Logical operators

Let’s meet the C++ if and else keywords, which will enable us to put all these logical operators

to good use.

Chapter 2 69

C++ if and else

Let’s make the previous examples less abstract. Meet the C++ if keyword. We will use if and
a few operators along with a small story to demonstrate their use. Next is a made-up military

situation that will hopefully be less abstract than the previous examples.

If they come over the bridge, shoot them!

The captain is dying and, knowing that his remaining subordinates are not very experienced, he
decides to write a C++ program to convey his last orders for after he has died. The troops must

hold one side of a bridge while awaiting reinforcements.
The first command the captain wants to make sure his troops understand is this:
“If they come over the bridge, shoot them!”

So, how do we simulate this situation in C++? We need a bool variable, isComingOverBridge. The
nextbit of code assumes that the isComingOverBridge variable has been declared and initialized

to either true or false.

We can then use if like this:

if(isComingOverBridge)

{

}

If the isComingOverBridge variable is equal to true, the code inside the opening and closing
curlybraces {. ..} will run. If not, the program continues after the if block and without running

the code within it.

Else do this instead

The captain also wants to tell his troops to stay put if the enemy is not coming over the bridge.

Now, we can introduce another C++ keyword, else. When we want to explicitly do something

when the if does not evaluate to true, we can use else.

For example, to tell the troops to stay put if the enemy is not coming over the bridge, we could

write this code:

if(isComingOverBridge)

{

70 Variables, Operators, and Decisions: Animating Sprites

else

}

The captain then realized that the problem wasn’t as simple as he first thought. What if the
enemy comes come over the bridge, but has too many troops? His squad would be overrun and

slaughtered. So, he came up with this code (we’ll use some variables as well this time):

bool isComingOverBridge;
int enemyTroops;

int friendlyTroops;

if(isComingOverBridge && friendlyTroops > enemyTroops)

{

else if(isComingOverBridge && friendlyTroops < enemyTroops)

{

else

}

The preceding code has three possible paths of execution. First, if the enemy is coming over the

bridge and the friendly troops are greater in number:

if(isComingOverBridge && friendlyTroops > enemyTroops)

Chapter 2 71

Second, if the enemy troops are coming over the bridge but outnumber the friendly troops:

else if(isComingOveBridge && friendlyTroops < enemyTroops)

Then, the third and final possible outcome, which will execute if neither of the others is true is

captured by the final else, without an if condition.

Reader challenge

Can you spot a flaw with the preceding code? One that might leave a bunch of inexperienced
troops in complete disarray? The possibility of the enemy troops and friendly troops being exactly
equal in number has not been handled explicitly and would therefore be handled by the final
else. The final else is meant for when there are no enemy troops. I guess any self-respecting
captain would expect his troops to fight in this situation. He could change the first if statement

to accommodate this possibility.
if(isComingOverBridge && friendlyTroops >= enemyTroops)
Finally, the captain’s last concern was that if the enemy came over the bridge waving the white

flag of surrender and were promptly slaughtered, then his men would end up as war criminals. The

C++ code needed was obvious. Using the wavingWhiteFlag Boolean variable, he wrote this test:

if (wavingWhiteFlag)
{

}
But where to put this code was less clear. In the end, the captain opted for the following nested
solution and changing the test for wavingWhiteFlag to logical NOT, like this:

if (!wavingWhiteFlag)
{

if(isComingOverTheBridge && friendlyTroops >= enemyTroops)
{

else if(isComingOverTheBridge && friendlyTroops < enemyTroops)

{

72 Variables, Operators, and Decisions: Animating Sprites

else

This demonstrates that we can nest if and else statements inside of one another to create quite

deep and detailed decisions.

We could go on making more and more complicated decisions with if and else but what we
have seen is more than enough of an introduction. It is probably worth pointing out that very
often there is more than one way to arrive at a solution to a problem. The right way will usually

be the way that solves the problem in the clearest and simplest manner.

We are getting closer to having all the C++ knowledge we need to be able to animate our clouds

and bee. There is one final animation issue to discuss and then we can get back to the game.

Timing
Before we can move the bee and the clouds, we need to consider timing. As we already know, the

main game loop executes repeatedly until the player presses the Escape key.

We have also learned that C++ and SFML are exceptionally fast. In fact, my modest laptop executes
asimple game loop (like the current one) at around five thousand times per second. With this in
mind, let’s discuss the problem of making the rate at which each frame of animation is shown

consistent and predetermined.

The frame rate problem

Let’s consider the speed of the bee. For discussion, we could pretend that we are going to move
it at 200 pixels per second. On a screen thatis 1920 pixels wide, it would take, approximately, 10
seconds to cross the entire width, because 10 x 200 is 2000 (near enough to 1920).

Furthermore, we know that we can position any of our sprites with setPosition(...,...). We

just need to put the x and y coordinates in the parentheses.

Chapter 2 73

In addition to setting the position of a sprite, we can also get the current position of a sprite. To

get the horizontal x coordinate of the bee, for example, we would use this code:

float currentPosition = spriteBee.getPosition().x;

The current x (horizontal) coordinate of the bee is now stored in currentPosition. To move the
bee to the right, we could then add the appropriate fraction of 200 (our intended speed) divided

by 5000 (the approximate frames per second on my laptop) to currentPosition, like this:

currentPosition += 200/5000;

Now, we could use setPosition to move our bee. It would smoothly move from left to right by

200 divided by 5000 pixels in each frame. But there are two problems with this approach.

The frame rate is the number of times per second that our game loop is processed. That is, the
number of times that we handle the player’s input, update the game objects, and draw them to
the screen. We will expand on and discuss matters of frame rate now and throughout the rest
of the book.

The frame rate on my laptop might not always be constant. The bee might look like it is intermit-

tently “boosting” its way across the screen as each frame executes at an inconsistent rate.

Of course, we want a wider audience for our game than just my laptop! Every PC’s frame rate
will vary, at least slightly. If you have an old PC, the bee will appear to be weighed down with
lead, and if you have the latest gaming rig, it will probably be something of a blurry turbo bee.

Fortunately, this problem is the same for every game and SFML has provided a neat C++ solution.

The easiest way to understand the solution is to implement it.

The SFML frame rate solution

We will now measure and use the frame rate to control our game. To get started implementing

this, add this code just before the main game loop:

float cloudlSpeed = 9;
float cloud2Speed = 0;
float cloud3Speed = 0;

Clock clock;

74 Variables, Operators, and Decisions: Animating Sprites

while (window.isOpen())

{

In the previous code, we declare an object of the Clock type and we name it clock. The class
name starts with a capital letter and the object name (that we will use) starts with a lowercase
letter. The object name is arbitrary, but clock seems like an appropriate name for, well, a clock.

We will add some more time-related variables here soon as well.

Now, in the update section of our game code, add this highlighted code:

Time dt = clock.restart();

The clock.restart() function, as you might expect, restarts the clock. We want to restart the
clock every frame so that we can time how long each frame takes. In addition, however, it returns

the amount of time that has elapsed since the last time we restarted the clock.

As aresult of this, in the previous code, we are declaring an object of the Time type called dt and

using it to store the value returned by the clock.restart() function.

Now, we have a Time object called dt that holds the amount of time that elapsed since the last

time we updated the scene and restarted the clock. Maybe you can see where this is going.

Let’s add some more code to the game and then we will see what we can do with dt.

\/V; dt stands for delta time, which is the time between two updates.

Chapter 2 75

What we will do with this clock is update our game engine functionality to take time into account.

Now, our game loop could be visualized like this next image:

Update all the game objects
(move them, see if they collided,
Al, etc.)

Respond to the user Draw allthe game objects in their
up-to-date positions

Figure 2.2: Basic game loop

With the introduction of the SFML Clock class, our game loop can be better represented with

this next image:

Update all the game objects
(move them, see if they
collided, Al, etc.)

Track time

Respondto the user Draw allthe game objects in thelr
up-to-date positions

Figure 2.3: Basic game loop with timing

76 Variables, Operators, and Decisions: Animating Sprites

Let’s add the key part of our timing code to see how the math works. Now, we can solve the prob-
lem of an inconsistent frame rate by updating the bees and the clouds relative to the amount of
time that each frame takes to execute. If the frame is fast, we move the bee less than if the frame

is slower.

Moving the clouds and the bee

Let’s use the elapsed time since the last frame to breathe life into the bee and the clouds. This will

solve the problem of needing to achieve a consistent frame rate across different PCs.

Giving life to the bee
The first thing we want to do is set up the bee at a certain height and a certain speed. We only

want to do this when the bee is inactive. So, we wrap the next code in an if block. Examine and

add the highlighted code, and then we will discuss it.

Time dt = clock.restart();

if (!beeActive)
{

srand((int)time(0));
beeSpeed = (rand() % 200) + 200;

srand((int)time(@) * 10);
float height = (rand() % 500) + 500;
spriteBee.setPosition(2000, height);

beeActive = true;

Chapter 2 77

Now, if the bee is not active, just like it won’t be when the game first starts, if (! beeActive) will

be true and the preceding code will do the following things, in this order:

1

2
3.
4

Seed the random number generator.

Get arandom number between 200 and 399 and assign the result to beeSpeed.

Seed the random number generator again.

Get arandom number between 500 and 999 and assign the result to anew float variable

called height.

Set the position of the bee to 2000 on the x-axis (just off-screen to the right) and to what-
ever, height, equals on the y-axis.

SetbeeActive to true so this code doesn’t execute again until we again change beeActive

later in the code.

Note that the height variable is the first variable we have ever declared inside the

game loop. Furthermore, because it was declared inside an if block, it is “invisible”

\/u' outside of the if block. This is fine for our use because once we have set the height of

the bee, we don’t need it anymore. This phenomenon that affects variables is called
scope. We will explore this more fully in Chapter 4, Loops, Arrays, Switch, Enumerations,

and Functions: Implementing Game Mechanics.

If we run the game, nothing will happen to the bee yet, but now that the bee is active, we can

write some code that runs when beeActiveis true.

Add the following highlighted code, which, as you can see, executes whenever beeActiveis true.

This is because it follows with an else after the if(!beeActive) block.

if (!beeActive)

{

78 Variables, Operators, and Decisions: Animating Sprites

// How fast is the bee
srand((int)time(0));
beeSpeed = (rand() % 200) + 200;

// How high is the bee
srand((int)time(0) * 10);

float height = (rand() % 1350) + 500;
spriteBee.setPosition(2000, height);

beeActive = true;

}

else
// Move the bee

{

spriteBee.setPosition(

spriteBee.getPosition().x -
(beeSpeed * dt.asSeconds()),
spriteBee.getPosition().y);

// Has the bee reached the left-hand edge of the screen?
if (spriteBee.getPosition().x < -100)
{
// Set it up ready to be a whole new bee next frame
beeActive = false;

/*

sk 5k 3k ok oK ok 3 oK ok 3k ok ok 3k K ok ok 3k oK ok 3 oK ok sk ok ok ok 3k ok ok oK ok K ok k ok ok ok K

Draw the scene

3k 3k >k 3k 3k 3k >k 3k 3k 3k 3k 3k 3k >k 3k >k 3k >k sk >k sk 3k sk 3k 3k 3k >k sk >k sk >k sk >k sk >k ok kok kok

*/

In the else block, the following things happen.

Chapter 2 79

The bee position is changed using the following criteria. The setPosition function uses the
getPosition function to get the current horizontal coordinate of the bee. It then subtracts

beeSpeed * dt.asSeconds() from that coordinate.

The beeSpeed variable value is many pixels per second and was randomly assigned in the previ-
ous if block. The value of dt.asSeconds () will be a fraction of 1, which represents how long the

previous frame of animation took.

Assume that the bee’s current horizontal coordinate is 1000. Now, suppose a basic PC loops at
5000 frames per second. This would mean that dt . asSeconds would be 0.0002. Further, suppose
that beeSpeed was set to the maximum 399 pixels per second. Then, the code that determines

the value that setPosition uses for the horizontal coordinate can be explained like this:

1000 - 0.0002 x 399

Therefore, the new position on the horizontal axis for the bee would be 999.9202. We can see
that the bee is very, very smoothly drifting to the left, well under a pixel per frame. If the frame
rate fluctuates, then the formula will produce a new value to suit. If we run the same code on a
PC that only achieves 100 frames per second or a PC that achieves a million frames per second,

the bee will move at the same speed.

The setPosition function uses getPosition().y to keep the bee in exactly the same vertical

coordinate throughout this cycle of being active.

The final part of the code in the else block we just added is shown again so we can talk about

it next:

if (spriteBee.getPosition().x < -100)
{

beeActive = false;

}

This code tests, each frame (when beeActive is true), whether the bee has disappeared off the
left-hand side of the screen. If the getPosition function returns less than -100, it will certainly
be out of view of the player. When this occurs, beeActive is set to false, and, on the next frame,

a “new” bee will be set to flying at a new random height and a new random speed.

Try running the game and watch our bee dutifully fly from right to left and then recycle itself back

to the right again at a new height and speed. It’s almost like a new bee every time.

80 Variables, Operators, and Decisions: Animating Sprites

Of course, areal bee would stick around for ages and pester you while you’re trying

L, to concentrate on chopping the tree. Also, a real bee would probably vary its height.
',@\' Don’t worry, we will be making more advanced game objects with each project. The

point is that you should recycle/reuse your sprites and textures whenever possible

for a more sustainable video game.

Now, we will get the clouds moving in a very similar way.

Blowing the clouds

The first thing we want to do is set up the first cloud at a certain height and a certain speed. We
only want to do this when the cloud is inactive. Consequently, we will wrap the next code in an-
other if block. Examine and add the highlighted code, just after the code we added for the bee,

then we will discuss it. It has many similarities to the code we used on the bee.

else

spriteBee.setPosition(

spriteBee.getPosition().x -
(beeSpeed * dt.asSeconds()),
spriteBee.getPosition().y);

if (spriteBee.getPosition().x < -100)
{

beeActive = false;

if (!cloudlActive)
{

Chapter 2 81

srand((int)time(0) * 10);
cloudiSpeed = (rand() % 200);

srand((int)time(0) * 10);

float height = (rand() % 150);
spriteCloudl.setPosition(-200, height);
cloudlActive = true;

The only difference between the code we have just added and the bee-related code is that we
work on a different sprite and use different ranges for our random numbers. Also, we use * 10
to the result returned by time(0) so we are always guaranteed to get a different seed for each of
the clouds. When we code the other cloud movement, you will see that we use * 20 and * 30

respectively.

Now, we can act when the cloud is active. We will do so in the else block. As with the if block,
the code is identical to that of the bee-related code, except that all the code works on the cloud
instead of the bee.

if (!cloudlActive)
{

srand((int)time(0) * 10),;
cloudlSpeed = (rand() % 200);

srand((int)time(0) * 10);
float height = (rand() % 150);

82 Variables, Operators, and Decisions: Animating Sprites

spriteCloudl.setPosition(-200, height);
cloudlActive = true;

}

else

{
spriteCloudl.setPosition(
spriteCloudl.getPosition().x +
(cloudiSpeed * dt.asSeconds()),
spriteCloudl.getPosition().y);

// Has the cloud reached the right hand edge of the screen?
if (spriteCloudl.getPosition().x > 1920)
{
// Set it up ready to be a whole new cloud next frame
cloudlActive = false;

/*

>k >k 3k 3k 3k sk >k >k ok sk sk sk >k sk ok sk sk sk sk >k ok sk sk Sk sk >k ok ok sk sk sk >k sk ok sk ok sk sk k ok

Draw the scene

3k 3k 3k 3k 3k 3k >k >k ok sk sk sk 3k >k ok sk sk sk sk >k >k sk sk sk >k 3k sk ok sk sk sk >k 3k ok ok ok sk k ok k

*/

Now that we know what to do, we can duplicate the same code for the second and third cloud.
Add this highlighted code, which handles the second and third cloud, immediately after the code
for the first cloud:

// Cloud 2
if (!cloud2Active)
{

// How fast is the cloud
srand((int)time(0) * 20);

Chapter 2

83

cloud2Speed = (rand() % 200);

// How high is the cloud
srand((int)time(Q) * 20);

float height = (rand() % 300) - 150;
spriteCloud2.setPosition(-200, height);
cloud2Active = true;

else

spriteCloud2.setPosition(

spriteCloud2.getPosition().x +
(cloud2Speed * dt.asSeconds()),
spriteCloud2.getPosition().y);

// Has the cloud reached the right hand edge of the screen?
if (spriteCloud2.getPosition().x > 1920)
{
// Set it up ready to be a whole new cloud next frame
cloud2Active = false;

if (!cloud3Active)
{

// How fast is the cloud
srand((int)time(Q) * 30);
cloud3Speed = (rand() % 200);

// How high is the cloud
srand((int)time(0) * 30);

float height = (rand() % 450) - 150;
spriteCloud3.setPosition(-200, height);

84 Variables, Operators, and Decisions: Animating Sprites

cloud3Active = true;

else

spriteCloud3.setPosition(
spriteCloud3.getPosition().x +
(cloud3Speed * dt.asSeconds()),
spriteCloud3.getPosition().y);

// Has the cloud reached the right hand edge of the screen?
if (spriteCloud3.getPosition().x > 1920)
{
// Set it up ready to be a whole new cloud next frame
cloud3Active = false;

/*

>k >k 3k sk sk sk >k >k ok sk sk sk sk sk ok sk sk sk sk %k ok sk sk sk sk >k sk ok sk sk sk >k ok ok ok ok sk sk k ok

Draw the scene

3k 3k 3k sk sk 3k 3k >k ok sk sk sk 3k >k ok ok sk sk sk 3k >k ok sk sk sk >k >k ok ok sk sk >k ok ok ok ok sk k ok ok

*/

Now, you can run the game and the clouds will randomly and continuously drift across the screen

and the bee will buzz from right to left before re-spawning once more back on the right.

Chapter 2

85

Figure 2.4: Blowing the clouds

Does all this cloud and bee handling seem a little bit repetitive? We will see how we
can save lots of typing and make our code more readable. In C++, there are ways of
handling multiple instances of the same type of variable or object. These are called
arrays and we will learn about them in Chapter 4, Loops, Arrays, Switch, Enumerations,
and Functions: Implementing Game Mechanics. Furthermore, we will also see how
we can execute the same code but on different values without writing that code
multiple times (as we have done here) using our own custom written functions. All
this time-saving efficiency will be explored in Chapter 4. It was a deliberate choice
to prioritize progress with the game features rather than introducing even more C++
before making more progress. By the end of this book, you will know how to make

this game much better than we can at the moment.

86 Variables, Operators, and Decisions: Animating Sprites

Before you move on, I encourage you to play with the code from this chapter. How about swapping
the texture files for your own images, changing the speed of the bee and the clouds, or making
the bee go up and down in a kind of sine wave across the screen? Look at a few frequently asked

questions related to the topics in this chapter.

Summary

In this chapter, we learned that a variable is a named storage location in memory, in which we

can keep values of a specific type. Types include int, float, double, bool, String, and char.

We can declare and initialize all the variables we need to store the data for our game. Once we
have our variables, we can manipulate them using the arithmetic and assignment operators as
well as use them in tests with the logical operators. Used in conjunction with the if and else

keywords, we can branch execution of our code depending upon the current situation in the game.

Using all this new knowledge, we animated some clouds and a bee. In the next chapter, we will
use these skills some more to add a heads-up display (HUD) and add more input options for the

player, as well as represent time visually using a time bar.

Frequently Asked Questions

Q) Why do we set the bee to inactive when it gets to -100? Why not just zero because zero is the
left-hand side of the window?

A) The bee graphicis 60 pixels wide and its origin is at the top left pixel. As a result, when the bee
is drawn with its origin at x equals zero, the entire bee graphic is still on screen for the player to

see. By waiting until it is at -100, we can be sure it is out of the player’s view.
Q) How do I know how fast my game loop is?

A) If you have a modern NVIDIA graphics card you might be able to already by configuring your
GeForce Experience overlay to show the frame rate. To measure this explicitly using our own code,
however, we will need to learn a few more things. We will add the ability to measure and display

the current frame rate in Chapter 5, Collisions, Sound, and End Conditions: Making the Game Playable.

Q) What is the difference between the assignment operator, =, and the equality operator, ==, in
C++?

A) The assignment operator, =, is used to assign a value to a variable. For example, int x = 5
assigns the value 5 to the variable x. The equality operator, ==, is used to compare two values for

equality. For example, if (x == 5) checks whether the value of x is equal to 5.

Chapter 2 87

Q) How do sprites and textures work together in C++ with SFML?

A) In SFML, a Texture represents an image loaded from a file, while a Sprite is a 2D image that can
be drawn on the screen. The setTexture function associates a Texture with a Sprite, enabling
the rendering of the image on the screen. You can manipulate the sprite’s position, rotation, and

scale, and SFML handles the rendering efficiently using the GPU.

Q) Whatis the purpose of seeding the random number generator when generating random num-

bersin C++?

A) Seeding the random number generator is essential to ensure thatit produces different sequences
of random numbers each time the program runs. Without seeding, the generator would produce
the same sequence of numbers on each program run, making the results predictable rather than
random. Typically, the current time is used as the seed for randomness. This is much the same as
providing a seed to generate a unique map in a game such as Minecraft. Later, in the final project,

we will use more advanced techniques to generate random numbers.

C++ Strings, SFML Time: Player
Input and HUD

Almost every game ever made will need to have some text on the screen — the score, the text of a
character’s speech, and many other examples. Therefore, in this chapter, we will spend around
half the time learning how to manipulate text and display it on the screen and the other half
looking at timing and how a visual time-bar can inform the player of their remaining time and

create a sense of urgency in the game.
We will cover the foallowing:

e Pausing and restarting the game
e C++ strings

e SFML Text and SFML Font

e Adding a score and a message

e Adding atime-bar

As we progress with this game over the next three chapters, the code will get longer and longer.
So, now seems like a good time to think ahead and add a little bit more structure to our code. We

will add this structure to give us the ability to pause and restart the game.

Pausing and restarting the game

We will add code so that when the game is first run, it will be in a paused state. The player will
then be able to press the Enter key to start the game. Then, the game will run until either the

player gets squashed or runs out of time.

90 C++ Strings, SEML Time: Player Input & HUD

At this point, the game will pause once more and wait for the player to press Enter to restart again.

Let’s step through setting this up a bit at a time. First, declare a new bool variable called paused,

outside the main game loop, and initialize it to true.

Clock clock;

bool paused = true;

while (window.isOpen())

{

Now, whenever the game is run, we have a variable, paused, that will be true.

Next, we will add another if statement where the expression will check to see whether the Enter
key is currently being pressed. If it is being pressed, it sets paused to false. Add the highlighted

code just after our other keyboard handling code.

if (Keyboard::isKeyPressed(Keyboard::Escape))
{

window.close();

}

if (Keyboard::isKeyPressed(Keyboard: :Return))

Chapter 3 91

{

paused = false;

k

Now we have a bool called paused, which starts as true but changes to false when the player
presses the Enter key. At this point, we must make our game loop respond appropriately, based

on whatever the current value of paused might be.

This is how we will proceed. We will wrap the entire update part of the code, including the code

we wrote in the last chapter for moving the bee and clouds, in an if statement.

Notice in the next code that the if block will only execute when paused is not equal to true. Or,
put another way, the game won’t move/update when it is paused. We could also wrap the drawing
code in a similar if statement and this would prevent the scene from being drawn to the screen.
As we know, when most games are paused, the action is paused but the scene remains visible.

This is exactly what we want.

Look carefully at the precise place to add the new if statement and its corresponding opening and

closing curly braces, {. . . }. If they are put in the wrong place, things will not work as expected.

Add the highlighted code to wrap the update part of the code, paying close attention to the context
shown next. I have added ellipses, . . ., on a few lines to represent the unshown code. Of course,
the ... is not real code and should not be added to the game. You can identify where to place

the new code (highlighted) at the start and the end by the unhighlighted code surrounding it.

if (!paused)
{

92 C++ Strings, SEML Time: Player Input & HUD

if (spriteCloud3.getPosition().x > 1920)
{

cloud3Active = false;

}
}

Notice that when you place the closing curly brace of the new if block, Visual Studio neatly adjusts
all the indenting to keep the code tidy. However, depending on your Visual Studio settings, this
might not happen. If your code inside the if block does not indent to the right by one tab, you
can select all the code inside the if block by clicking and dragging just as you would in any text-

based app and then tap the Tab key on the keyboard. Now your code should be neatly indented.

Now you can run the game, and everything will be static until you press the Enter key. It is now
possible to go about adding features to our game; we just need to remember that when the player

dies or runs out of time, we need to set the paused variable to true.

In the previous chapter, we had a first glimpse at C++ strings. We need to learn some more about

them so we can implement the player’s HUD.

Chapter 3 93

C++ strings

In the previous chapter, we briefly mentioned strings, and we learned that a string can hold al-
phanumeric data: anything from a single character to a whole book. We didn’t look at declaring,

initializing, or manipulating strings. So, let’s do that now.

Declaring strings
Declaring a string variable is simple. We state the type, followed by the name.
String levelName;

String playerName;

Once we have declared a String, we can assign a value to it.

Assigning a value to strings

To assign a value to a string, as with regular variables, we simply put the name, followed by the

assignment operator, then the value.

levelName = "Dastardly Cave";

playerName = "John Carmack";

Note that the values need to be enclosed in quotation marks. As with regular variables, we can

also declare and assign values in a single line.

String score = "Score = 0";
String message = "GAME OVER!!";

For completeness, I should mention you can also declare and initialize strings using uniform

initialization, as we discussed in Chapter 2, as shown next:

string playerName{"Rob Hubbard"};

Strings in C++ are essential for handling text-based data in game development. Whether it’s dis-
playing player names as just suggested, displaying messages, or keeping track of who achieved
the highest score, understanding how to work with strings is useful. Let’s explore this further,

starting with string concatenation.

94 C++ Strings, SEML Time: Player Input & HUD

String Concatenation

In the next code sample, we use C++ cout to output text to the console window. You can try this
out by copying and pasting the code into just inside the opening curly brace of the main func-
tion of our current project, or start a new project if you want to keep it separate. If you create a
new project, you do not need to add any of the SFML configuration that we did in Chapter 1. Just
create a console app, choose a name, paste the code inside the main function, and add these two
includes for the string and cout functionality: #include <iostream> and #include <string>.

Here is the code; try it out or just look and then we will talk about it.

#include <iostream>

#include <string>

std::string playerName = "Playerl";
std::string message = "Welcome to the game, " + playerName +

npn,
N B

std::cout << message << std::endl;

In the preceding code, we demonstrate how to create and manipulate strings in C++. Itinitializes
a variable called playerName and constructs a string called message that includes the player’s
name, which is then displayed on the screen using std: : cout. Note that in the middle line we

concatenate (join) strings using the + operator.

Note that as with sf:: in SFML, you can omit all the std: : instances by adding a line of code

after your include directives like this:

using namespace std;

There is much more we can do with strings, so let’s keep going.

Getting the string length

In the next code, we go further into the world of strings and use the length function. We are
jumping ahead of ourselves a little as this demonstrates calling a function on an instance of a

class, but as you can see, it is quite intuitive.

string playerName = "Playerl”;

int playerNameLength = playerName.length();

n n

cout << "Player name has characters." <<

endl;

<< playerNamelLength <<

Chapter 3 95

In the preceding code, I have omitted all the std: : specifiers that were present in the previous
example, so if you want to try this code out in Visual Studio, you will need to add the using

namespace std syntax after the include directives.

In the preceding code, we declare and initialize both a string and an int. We then use the
length() function to return the number of characters in the string and store that result in the
playerNameLength variable, which is of type int. We then use cout to print the results to the

console window.

It should be obvious that << joins together the sections of output. << is a bitwise operator, but

you might like to know a bit more aboutiit.

The << operator is one of the bitwise operators. C++, however, allows you to write
Y your own classes and override what a specific operator does, within the context of

-,@\ your class. The iostream class has done this to make the << operator work the way

it does. The complexity is hidden in the class. We can use its functionality without

worrying about how it works.

We are nearly ready to add more features to our game. First, let’s see how we can change our

String variables another way.

Manipulating strings another way with StringStream

We can use the #include <sstream> directive to give us some extra power with our strings. The
sstream class enables us to “add” some strings together. When we do so, it is another way to do

concatenation.

String partl = "Hello “;
String part2 = "World";

sstream ss;

Ss << partl << part2;

In addition to this, using sstream objects, a String variable can even be concatenated with a

variable of a different type. The next code starts to reveal how strings might be quite useful to us.

String scoreText = "Score = ";

int score = 0;

96 C++ Strings, SEML Time: Player Input & HUD

score ++;

sstream ss;

Ss << scoreText << score;

Now we know the basics of C++ strings and how we can use sstream, we can see how to use some

SFML classes to display them on the screen.

SFML Text and SFML Font

Let’s talk about the SFML Text and Font classes a bit with some hypothetical code, before we

actually go ahead and add code to our game.

The first step in drawing text on the screen is to have a font. In the first chapter, we added a font

file to the project folder. Now we can load the font, ready for use, into an SFML Font object.

The code to do so looks like this:

Font font;
font.loadFromFile("myfont.ttf");

In the previous code, we first declare a Font object and then load an actual font file into it. Note

thatmyfont.ttf is a hypothetical font and we could use any font that is in the project folder.

Once we have loaded a font, we need an SFML Text object.

Text myText;

Now we can configure our Text object. This includes the size, the color, the position on screen,

the String that holds the message, and, of course, associating it with our font object.

myText.setString("Press Enter to start!");

myText.setCharacterSize(75);

myText.setFillColor(Color: :White);

Chapter 3 97

myText.setFont(font);

Itis worth interjecting a little at this point. I could interject after introducing almost every single
SFML class we have used so far. It is almost impossible to overstate just how much work SFML

saves us with this fantastic library, and the Font and Text classes are two good examples of this.

What SFML is doing “under the hood” is providing very simplified abstractions for handling fonts
and text rendering, making it significantly easier compared to dealing directly with OpenGL for

these tasks.

The Font class in SFML represents a font that can be used for rendering text. It provides functions
to load fonts from files, in-memory buffers, or system fonts. The Text class is responsible for
rendering text using a given font. It encapsulates the string to be displayed, the font, and various

text-related properties.

SFML abstracts away almost every complexity involved in rendering text with OpenGL. It handles
texture creation, shader management, and other OpenGL details behind the scenes. Using SFML
for text rendering massively simplifies the intricacies of using OpenGL directly. SFML allows us

to focus more on the game rather than the low-level math of OpenGL.

SFML was created by Laurent Gomila. Development of SFML began around 2006 and it has un-
dergone many updates and improvements over the years. Laurent’s dedication, over approaching
two decades, to maintaining SFML cannot be overstated. In my view, it’s incredible. I just thought
I would mention it so every time you effortlessly draw a sprite on the screen, you think of the

tireless effort that has gone into this behind the scenes.

We now know more than enough to add some features to our game. Let’s add an HUD to Timber!!!.

Adding a score and a message

Now we know enough about strings, SFML Text, and SFML Font to go about implementing the
HUD. HUD stands for heads-up display and more formally refers to a cockpit instrumentation
display that doesn’t require the pilot to look down. However, video game user interfaces, espe-
cially in-game interfaces, are often referred to as a HUD because they serve the same purpose as
a cockpit HUD.

98 C++ Strings, SEML Time: Player Input & HUD

The next thing we need to do is add another #include directive to the top of the code file. As we
have learned, the sstream class adds some useful functionality for combining strings and other

variable types together into a single String.

Add the line of highlighted code.

#tinclude <sstream>

#include <SFML/Graphics.hpp>
using namespace sf;

int main()

{

Next, we will set up our SFML Text objects: one to hold a message that we will vary to suit the

state of the game and one that will hold the score and need to be regularly updated.

The next code declares the Text and Font objects, loads the font, assigns the font to the Text
objects, and then adds the String messages, color, and size. This should look familiar from our
discussion in the previous section. In addition, we add a new int variable called score that we

can manipulate to hold the player’s score.

Remember that if you chose a different font to KOMIKAP_.ttf, back in Chapter 1,

\ 7/

@

E that part of the code to match the . ttf file that you have in the Visual Studio
Stuff/Projects/Timber/fonts folder.

' _ Welcome to Beginning C++ Game Programming, Third Edition, you will need to change

Add the highlighted code and we will be ready to move on to updating the HUD.

bool paused = true;

int score = 0;

Text messageText;

Text scoreText;

Chapter 3 99

Font font;
font.loadFromFile("fonts/KOMIKAP_.ttf");

// Set the font to our message
messageText.setFont(font);

scoreText.setFont(font);

// Assign the actual message
messageText.setString("Press Enter to start!");

scoreText.setString("Score = 0");

// Make it really big
messageText.setCharacterSize(75);

scoreText.setCharacterSize(100);

// Choose a color
messageText.setFillColor(Color::White);

scoreText.setFillColor(Color: :White);

while (window.isOpen())

{

/*

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k >k 3k >k sk >k 5k >k 5k 3k 5k 3k >k 3k >k sk >k sk >k sk ok ok >k ok kok k ok

Handle the players input

3k 3k >k 3k >k 3k 3k 3k 3k 5k 3k 3k 3k >k %k >k %k >k 5k >k 5k >k 5k >k 5k 3k >k 3k >k 3k >k %k >k %k %k %k >k %k k ok

*/

The next code mightlook a little convoluted, even complex. Itis, however, straightforward when

you break it down a bit. Examine and add the new code, then we will go through it.

// Choose a color
messageText.setFillColor(Color: :White);
scoreText.setFillColor(Color: :White);

// Position the text
FloatRect textRect = messageText.getLocalBounds();

100 C++ Strings, SEML Time: Player Input & HUD

messageText.setOrigin(textRect.left +
textRect.width / 2.0f,

textRect.top +

textRect.height / 2.0f);

messageText.setPosition(1920 / 2.0f,1080 / 2.0f);
scoreText.setPosition(20, 20);

while (window.isOpen())

{

We have two objects of type Text that we will display on the screen. We want to position scoreText
at the top left with a little bit of padding. This is not a challenge; we simply use scoreText.
setPosition(20, 20) and that positions it at the top left with 20 pixels of horizontal and ver-

tical padding.

Positioning messageText, however, is not so easy. We want to position it on the exact midpoint
of the screen. Initially, this might not seem like a problem, but then we remember that the origin
of everything we draw is the top left-hand corner. So, if we simply divide the screen width and
height by 2 and use theresults inmessageText.setPosition. . ., then the top left of the text will

be in the center of the screen and it will spread out untidily to the right.

What we need is a way to be able to set the center of messageText to the center of the screen. The
rather complex-looking bit of code that you just added repositions the origin of messageText to

the center of itself. Here is the code under current discussion again for convenience.

FloatRect textRect = messageText.getlLocalBounds();

messageText.setOrigin(textRect.left +
textRect.width / 2.0f,

Chapter 3 101

textRect.top +
textRect.height / 2.0f);

Firstin this code, we declare a new object of type FloatRect, called textRect. A FloatRect object,

as the name suggests, holds a rectangle with floating-point coordinates.

The code then uses the mesageText.getLocalBounds function to initialize textRect with the

coordinates of the rectangle that wraps messageText.

The next line of code, which is spread over four lines as it is quite long, uses the messageText.
setOrigin function to change the origin (the point thatis used to draw) to the center of textRect.
Of course, textRect holds arectangle that exactly matches the coordinates that wrap messageText.

Then, this next line of code executes:

messageText.setPosition(1920 / 2.0f,1080 / 2.0f);

Now, messageText will be neatly positioned in the exact center of the screen. We will use this
exact same code each time we change the text of messageText, because changing the message

changes the size of messageText, so its origin will need recalculating.

Next, we declare an object of type stringstream called ss. Note that we use the full name includ-
ing the namespace std: : stringstream. We could avoid this syntax by adding using namespace
std to the top of our code file. We don’t, however, because we use it infrequently. Take a look at
the code and add it to the game, then we can go through it in more detail. As we only want this
code to execute when the game is not paused, be sure to add it with the other code, inside the

if(!paused) block, as shown.

else

{

spriteCloud3.setPosition(

spriteCloud3.getPosition().x +
(cloud3Speed * dt.asSeconds()),
spriteCloud3.getPosition().y);

if (spriteCloud3.getPosition().x > 1920)
{

cloud3Active = false;

102 C++ Strings, SEML Time: Player Input & HUD

std::stringstream ss;
ss << "Score = " << score;

scoreText.setString(ss.str());

We use ss and the special functionality provided by the << operator, which concatenates vari-
ables into a stringstream. So, the code ss << "Score = " << score has the effect of creating
a String with "Score = ", and whatever the value of score is is concatenated together. For
example, when the game first starts, score is equal to O, so ss will hold the value "Score = 0".

If score ever changes, ss will adapt at each frame.

The next line of code simply displays/sets the String contained in ss to scoreText.
scoreText.setString(ss.str());

It is now ready to be drawn to the screen.

This next code draws both Text objects (scoreText and messageText), but notice that the code
that draws messageText is wrapped in an if statement. This if statement causes messageText

to only be drawn when the game is paused.

Add the highlighted code shown next.

window.draw(spriteBee);

window.draw(scoreText);

Chapter 3 103

if (paused)
{

window.draw(messageText);

}

window.display();

We can now run the game and see our HUD drawn on the screen. You will see the SCORE = 0 and

PRESS ENTER TO START! messages. The latter will disappear when you press Enter.

"PRESS ENTER TO

Figure 3.1: HUD in action

If you want to see the score updating, add a temporary line of code, score ++;, anywhere in
the while(window.isOpen) loop. If you add this temporary line, you will see the score go up

fast — very fast!

Figure 3.2: Score

If you added the temporary code score ++;, be sure to delete it before continuing.

104 C++ Strings, SEML Time: Player Input & HUD

Adding a time-bar

Astimeis a crucial mechanicin the game, it is necessary to keep the player aware of it. They need
to know if their allotted six seconds are about to run out. It will give them a sense of urgency as
the end of the game draws near and a sense of accomplishment if they perform well enough to

maintain or increase their remaining time.

A drawing of the number of seconds remaining on the screen is not easy to read (when concen-

trating on the branches) or a particularly interesting way to achieve the objective.

What we need is a time-bar. Our time-bar will be a simple red rectangle, prominently displayed
on the screen. It will start off nice and wide but rapidly shrink as time runs out. When the player’s

remaining time reaches 0, the time-bar will be gone completely.

At the same time as adding the time-bar, we will add the necessary code to keep track of the

player’s remaining time, as well as respond when they run out. Let’s go through it step by step.

Find the Clock clock; declaration from earlier and add the highlighted code just after, as shown

next.

Clock clock;

RectangleShape timeBar;

float timeBarStartWidth = 400;

float timeBarHeight = 80;
timeBar.setSize(Vector2f(timeBarStartWidth, timeBarHeight));
timeBar.setFillColor(Color: :Red);

timeBar.setPosition((1920 / 2) - timeBarStartwWidth / 2, 980);

Time gameTimeTotal;
float timeRemaining = 6.0f;
float timeBarWidthPerSecond = timeBarStartWidth / timeRemaining;

bool paused = true;

First, we declare an object of type RectangleShape and callit timeBar. RectagleShape is an SFML

class that is perfect for drawing simple rectangles.

Chapter 3 105

Next, we add a couple of float variables, timeBarStartWidth and timeBarHeight. We initialize
them to 400 and 80, respectively. These variables will help us keep track of the size we need to

draw timeBar each frame.

Next, we set the size of timeBar using the timeBar.setSize function. We don’t just pass in our
two new float variables. First, we create a new object of type Vector2f. What is different here,
however, is that we don’t give the new object a name. We simply initialize it with our two float

variables and it is passed straight into the setSize function.

\'/

@ Vector2fis a class that holds two float variables. It also has some other function-
b ality that will be introduced in the book.

After that, we color timeBar red by using the setFillColor function.

The last thing we do to timeBar in the previous code is to set its position. The vertical coordinate
is completely straightforward, but the way we set the horizontal coordinate is slightly convoluted.

Here is the calculation again:

(1920 / 2) - timeBarStartWidth / 2

The code first divides 1920 by 2. Then it divides timeBarStartWidth by 2. Finally, it subtracts the

latter from the former.
The result makes timeBar sit neatly and centrally horizontally on the screen.

The final three lines of code that we are talking about declare anew Time object called gameTimeTotal,
anew float called timeRemaining thatis initialized to 6, and a curious-sounding float named

timeBarWidthPerSecond, which we will discuss further next.

The timeBarWidthPerSecond variable is initialized with timeBarStartWidth divided by
timeRemaining. The resultis exactly the amount of pixels that timeBar needs to shrink by, each

second of the game. This will be useful when we resize timeBar in each frame of the game loop.

Obviously, we need to reset the time remaining each time the player starts a new game. The log-
ical way to do this is the Enter key press. We can also set score back to @ at the same time. Let’s

do that now by adding this highlighted code.

if (Keyboard::isKeyPressed(Keyboard::Return))
{

106 C++ Strings, SEML Time: Player Input & HUD

paused = false;

// Reset the time and the score
score = 0;

timeRemaining = 6;

Now, at each frame, we must reduce the amount of time remaining and resize timeBar accordingly.
Add the following highlighted code in the update section as shown here.

/*

3k 3k 3k sk 3k sk >k >k ok ok sk sk 3k >k ok ok sk sk sk 3k >k ok ok sk sk >k >k ok sk sk sk >k >k ok ok ok sk sk k ok

Update the scene

3k 3k 3K 3k 3k sk 3k 3k 3k 5k ok sk 3k 3k 3k 5k 5k 3k sk 3k >k 5k ok sk sk >k >k ok sk sk sk 3k >k ok ok ok sk sk k ok

*/

if (!paused)

{

// Measure time

Time dt = clock.restart();

// Subtract from the amount of time remaining
timeRemaining -= dt.asSeconds();

// size up the time bar
timeBar.setSize(Vector2f(timeBarWidthPerSecond *

timeRemaining, timeBarHeight));

// Set up the bee
if (!beeActive)
{

// How fast is the bee
srand((int)time(0) * 10);
beeSpeed = (rand() % 200) + 200;

// How high is the bee
srand((int)time(0) * 10);
float height = (rand() % 1350) + 500;

Chapter 3 107

spriteBee.setPosition(2000, height);

beeActive = true;

else

In the preceding code, first we subtracted the amount of time the player has left by however long

the previous frame took to execute with this code.

timeRemaining -= dt.asSeconds();

Then we adjusted the size of timeBar with the following code:

timeBar.setSize(Vector2f(timeBarWidthPerSecond *

timeRemaining, timeBarHeight));

The x value of Vector2F isinitialized with timebarWidthPerSecond multiplied by timeRemaining.
This produces exactly the correct width, relative to how long the player has left. The height re-

mains the same and timeBarHeight is used without any manipulation.

And, of course, we must detect when time has run out. For now, we will simply detect that time
has run out, pause the game, and change the text of messageText. Later, we will do more work
here. Add the highlighted code right after the previous code we added and we will look at it in

more detail.

Time dt = clock.restart();

timeRemaining -= dt.asSeconds();

timeBar.setSize(Vector2f(timeBarWidthPerSecond *

timeRemaining, timeBarHeight));

if (timeRemaining <= 0.0f) {

paused = true;

108 C++ Strings, SEML Time: Player Input & HUD

// Change the message shown to the player
messageText.setString("Out of time!!");

//Reposition the text based on its new size
FloatRect textRect = messageText.getLocalBounds();
messageText.setOrigin(textRect.left +
textRect.width / 2.0f,

textRect.top +

textRect.height / 2.0f);

messageText.setPosition(1920 / 2.0f, 1080 / 2.0f);

// Set up the bee
if (!beeActive)
{

// How fast is the bee
srand((int)time(0) * 10);
beeSpeed = (rand() % 200) + 200;

// How high is the bee
srand((int)time(0) * 10);

float height = (rand() % 1350) + 500;
spriteBee.setPosition (2000, height);

beeActive = true;

}

else
// Move the bee

Stepping through the previous code:

e First we test whether time has run out with if(timeRemaining <= @.0f).

e Then we set paused to true so this will be the last time the update part of our code is

executed (until the player presses Enter again).

Chapter 3 109

e Then we change the message of messageText, calculate its new center to set as its origin,

and position it in the center of the screen.

Finally, for this part of the code, we need to draw timeBar. There is nothing new in this code that
we haven’t seen many times before. Just note that we draw timeBar after the tree, so it is not

partially obscured. Add the highlighted code to draw the time-bar.

window.draw(scoreText);

window.draw(timeBar);

if (paused)
{

window.draw(messageText);

}

window.display();

Now you can run the game, press Enter to start, and watch the time-bar smoothly disappear
down to nothing.

Figure 3.3: Time-bar disappearing

110 C++ Strings, SEML Time: Player Input & HUD

The game then pauses and the OUT OF TIME!! message will appear neatly in the center of the

screen.

OUT OF TIME!!

Figure 3.4: Time over

You can, of course, press Enter again to have the whole thing run from the start.

Summary

In this chapter, we learned about strings, SFML Text, and SFML Font. Between them, they enabled
us to draw text to the screen, which provided the player with a HUD. We also used sstream, which

allows us to concatenate strings and other variables to display the score.

We explored the SFML RectangleShape class, which does exactly what its name suggests. We
used an object of type RectangleShape and some carefully planned variables to draw a time-bar
that displays to the player how much time they have left. Once we have implemented chopping

and moving branches that can squash the player, the time-bar will create tension and urgency.

Next, we are going to learn about a whole range of new C++ features, including loops, arrays,
switching, enumerations, and functions. This will enable us to move the tree branches, keep track

of their locations, and squash the player.

Chapter 3 m

Frequently asked questions
Q) I can foresee that positioning sprites by their top-left corner could sometimes be inconvenient.

Is there an alternative?

A) Fortunately, you can choose what point of a sprite is used as the positioning/origin pixel, just

like we did with messageText, using the setOrigin function.

Q) The code is getting rather long and I am struggling to keep track of where everything is. How

can we fix this?

A) Yes, I agree. In the next chapter, we will look at the first of a few ways we can organize our
code and make it more readable. We will see this when we learn about writing C++ functions. In
addition, we will learn a new way of handling multiple objects/variables of the same type (like

the clouds) when we learn about C++ arrays.

Q) I couldn’t get my font to load. How do I know what is going on behind the scenes? How do I
know if I have entered the correct file path or mistyped the name of the font file?

A) We can wrap our font-loading code in an if statement and include some error-handling code

using cout as well. Here is an example:

if (!font.loadFromFile("arial.ttf")) {

cout << "Error loading font!";

Now, if the font doesn’t load, the execution will continue with missing text but you will get an
error message printed to the console to inform you. You can do the same with loading textures

as well, as this code shows:

if (!texture.loadFromFile("texture.png")) {

cout << "Error loading texture!";

Loops, Arrays, Switch,
Enumerations, and Functions:
Implementing Game Mechanics

This chapter probably has more C++ information than any other chapter in the book. Itis packed
with fundamental concepts that will accelerate our understanding enormously. It will also begin
to shed light on some of the murky areas we have been skipping over a little bit, like functions,

the game loop, and loops in general.
This is what we will explore:

e Loops
e Arrays
e Making decisions with switch
e Class enumerations
e Getting started with functions
e Growing the branches
Once we have explored a whole list of C++ language necessities, we will then use everything we

know to make the main game mechanic—the tree branches—move. By the end of this chapter,

we will be ready for the final phase and the completion of Timber!!!.

114 Loops, Arrays, Switch, Enumerations, and Functions: Implementing Game Mechanics

Loops

Welcome to the world of loops in C++! Loops are general programming constructs not unique to
C++ that allow you to repeat a certain block of code multiple times. They are crucial for making
our games more efficient and flexible. It is probably the vital thing that makes computers so useful:
doing the same thing but with different values repeatedly. In C++, there are several types of loops,
each serving specific purposes. In this chapter, we’ll explore the fundamental loop structures and
cover relatively recent updates to C++ that affect your loop-related programming options. The
obvious example that we have seen so far is the game loop. With all the code stripped out, our

game loop looks like this.

while (window.isOpen())

{

The correct term for this type of loop is a while loop. Let’s look at that first.

while loops

The while loop is quite straightforward. Think back to the if statements and their expressions
that evaluated to either true or false. We can use the exact same combination of operators and

variables in the conditional expression of our while loops.

As with if statements, if the expression is true, the code executes. The difference with awhile
loop, however, is that the C++ code within it will repeatedly execute, potentially forever, until

the condition is false. Look at this code:

int numberOfZombies = 100;

while(numberOfZombies > 0)

{

numberOfZombies--;

Chapter 4 115

This is what happened in the previous code. Outside of the while loop, int numberOfZombies
is declared and initialized to 100. Then, the while loop begins. Its conditional expression is
numberOfZombies > 0. Consequently, the while loop will continue looping through the code in
its body until the condition evaluates to false. This means that the code above will be executed

100 times.

On the first pass through the loop, number0fzombies equals 100, then 99, then 98, and so on. But
once number0fzZOmbies is equal to zero, it is, of course, no longer greater than zero. Then, the code

will break out of the while loop and continue to run, after the closing curly brace.

Just like an if statement, it is possible that the while loop will not execute even once. Look at

this next code:

int availableCoins = 10;

while(availableCoins > 10)

{

In the preceding code, the loop condition evaluates to false because availableCoins is not

greater than 10. As the condition is false, the loop does not execute even once.

Moreover, there is no limit to the complexity of the expression or the amount of code that can go
in the loop body. We have already put quite a lot of code in our game loop. Consider this hypo-
thetical variation of a game loop:

int playerlLives = 3;

int alienShips = 10;

while(playerLives !=0 && alienShips !=0)
{

116 Loops, Arrays, Switch, Enumerations, and Functions: Implementing Game Mechanics

The previous while loop would continue to execute until either playerLives or alienShips
was equal to zero. As soon as one of those conditions occurred, the expression would evaluate to

false and the program would continue to execute from the first line of code after the while loop.

Itis worth noting that once the body of the loop has been entered, it will try to complete at least
once, even if the expression evaluates to false part way through, as the condition is not tested

again until the code tries to start another pass. As an example, look at this code:

int x = 1;

while(x > 0)
{

X--;

The previous loop body will execute once. We can also set up a while loop that will run forever,

appropriately called an infinite loop. Here is an example:

int y = 0;

while(true)
{

y++;

cout << y;

If you find the above loop confusing, just think of it literally. A loop executes when its condition
is true. Well, true is always true and will therefore keep executing. The value of y will be printed

each time through the loop as it increases by one on each pass.

Chapter 4 117

As an interesting aside, there is a limit to how big y will get. If you check the table of
variable types back in Chapter 2, you will notice that an int holds a maximum size.
An int can vary from 32- or 64-bit machines and even the brand of compiler can
affect the values an int holds, but typically, an int is 16 bits of data and can represent
\G/\/ -32,767 to 32,767. The preceding code would add up to the maximum 32,767, then
the next value would be -32,767, and then 32,767 iterations of the loop later, y will
be back to zero. You can try this out by creating an empty console app and pasting
the preceding code in the main function. None of the complicated SFML configura-
tions are necessary, just remember to put #include <iostream> atthe top of your

code and using namespace std; before the main function to be able to use cout.

Whether a loop is infinite or not, we sometimes need a way to break out of the loop earlier than
the loop condition allows. For example, a game loop that tracks if the player or the aliens are all

dead is fine, but what if the player just wants to quit early? Here is how to do it.

Breaking out of a loop

We might use an infinite loop so that we can decide when to exit the loop from within its body
rather than in the expression. We would do this by using the break keyword when we are ready

to leave the loop body, perhaps like this:

int z = 0;

while(true)
{

Z++;
cout << z;

break;

In the preceding code, z first equals zero, then it is incremented with z++, and then the value of
z is printed with cout. Immediately after, however, the break keyword makes the code exit the
loop. The break keyword has this effect even if there are more lines of code that follow it. What

is potentially even more useful is we can conditionally use break, as we discuss next.

118 Loops, Arrays, Switch, Enumerations, and Functions: Implementing Game Mechanics

You might also have been able to guess that we can combine any of the C++ decision-making
tools (like if, else, and another we will learn shortly, switch) within our while loops and other
loop types as well. Consider this example:

int x = 0;

int max = 10;

while(true)

{

X++;
if(x == max)

break;

This code demonstrates a controlled use of an infinite loop that is exited based on a specific condi-
tion (x == max).Itis used when you need to perform a task repeatedly until a certain condition is

met. In this case, itincrements x until it reaches the value of max, at which point, the loop is exited.

As a final example of while loops, let’s look at how the user can determine when a while loop
exits. Of course, we, as the game programmers, will determine the format and timing of the
player’s choices. In this next example, I also introduce a new keyword, cin. See if you can work

out what is happening:

int userInput;
while (true)
{

cout << "Enter a positive number to exit: ";

cin >> userInput;

if (userInput > 9)

break;

}

cout << "Invalid input. Try again.";

Chapter 4 119

This example uses awhileloop for validating user input. The loop continues until the user enters

a positive number, using break to exit the loop when the condition is met.

The user input is achieved using cin, which pauses execution and waits for the user to enter a
number and then press the Return key. Notice the operator used with cin points the other way,

>> instead of <<. This operator is called the extraction operator.

The code continuously prompts the user, and a break statement exits the loop when a valid

(greater than zero) input is received.

As afinal word on using the break keyword, itis generally considered good practice
to use it sparingly as it can make the code harder to understand. Don’t be afraid of
using it; there are definitely times when it is exactly what you need. Sometimes, while
\G/\, trying to think about the best form for aloop, I find that I have forgotten about break,
and then it comes back to me and I realize itis just what I need. A good rule of thumb
is not to try and design in break from the start but accept it as a valid solution if it

presents itself as such and a clearer solution is not apparent.

If you want to try out the preceding, copy it into the main function of an existing or new console
app. None of the complicated SFML configurations are necessary, just remember to put #include
<iostream> at the top of your code and using namespace std; before the main function to be

able to use cout and cin.

To dig a bit deeper with cin, it is an object that facilitates the reading of user inputs from the
console. Paired with the extraction operator >>, cin allows us to acquire inputs interactively
during program execution. If you wanted to write a text adventure 1970s/80s style cin, cout, loops,
variables, and conditions would be almost all you need. cin is an instance of a class; it is an object.
Somebody else programmed the class, in this case, the istream class, and we created an instance
of it with cin and used a super-useful feature without worrying about how it works. This class/

instance/object conundrum will make perfect sense when we discuss it properly in Chapter 6.
We could go on for a long time looking at the various permutations of C++ while loops, but at

some point, we want to get back to making games. So let’s move on to another type of loop.

for loops

for loops in C++ are designed for when we need to iterate over a range of values. They provide a

concise way to execute a set of statements repeatedly.

120 Loops, Arrays, Switch, Enumerations, and Functions: Implementing Game Mechanics

A typical for loop consists of three parts: initialization, condition, and iteration statement, mak-
ing it easy to control the loop’s execution. for loops are especially useful when the number of

iterations is known in advance.

It is because of the three parts that the for loop has a slightly more complicated syntax than a
while loop because it takes three parts to set one up. Have a look at the code first and then we

will break it apart:

for(int x = ©; x < 100; X ++)

{

Here is what all the parts of the for loop condition do:
for(declaration and initialization; condition; change before each iteration)

To clarify further, here is a table to explain each of the three key parts as they appear in the pre-

vious for loop example.

Part Description

Declaration and initialization We create a new int variable i and

initialize it to ©

Condition Just like the other loops, it refers to the
condition that must be true for the loop

to execute

Change after each pass through the loop In the example, X ++ means that1is

added/incremented to x on each pass

Table 4.1: Key parts for loop

In summary, the preceding for loop code utilizes the loop to iterate 100 times. It initializes a loop
variable x to zero, sets the loop condition to continue as long as x is less than 100, and increments
x by lin each iteration. The block of code inside the loop, indicated by the curly braces, represents
the job to be performed 100 times. This is useful when you have code that should be executed
repeatedly a predetermined number of times. In this case, the loop allows for concise and clear

code for handling a repetitive task.

We can vary for loops to do many more things. Here is another simple example that counts down

from 10:

Chapter 4 121

for(int i = 10; i > 0; i--)

{

The for loop takes control of initialization, condition evaluation, and the control variable itself.
We will use for loops in our game, later in this chapter. for loops have more advanced uses too,
but we need to learn about some more topics to be able to discuss them. We will see one of these

more advanced uses in the next section when we talk about arrays.

Arrays

Arrays are data structures that allow us to store collections of elements of the same data type
using a single name, perhaps someInts, myFloats, or zombieHorde. Arrays provide a convenient
way to organize and manipulate data, enabling more efficient and structured programming.
Arrays are especially useful for repetitive data, like lists of numbers, characters, or game objects.
This introduction will explore the basics of arrays and, as we proceed through the book, we will

see more advanced uses.

A comparison with a regular variable might help. If a variable is a box in which we can store a
value of a specific type, like int, float, or char, then we can think of an array as a row of boxes.
The row of boxes can be of almost any size and type, including objects made from classes. However,

all the boxes must be of the same type.

\ 7/

@,

E an extent once we learn some more advanced C++ in the final platformer project.

] o
g The limitation of having to use the same type in each box can be circumvented to

If you think this array sounds like it could have been useful for our clouds from Chapter 2, Variables,
Operators, and Decisions: Animating Sprites, you are exactly right. It is too late for the clouds, they
are destined to be clunky bloated code forever. The tree branches, however, we will implement

using arrays. So how do we go about creating and using an array?

Declaring an array

We can declare an array of int type variables like this:

int someInts[10];

122 Loops, Arrays, Switch, Enumerations, and Functions: Implementing Game Mechanics

Now we have an array called someInts thatcan store 10 int values. Currently, however, itis empty.

The only difference with regular variables is that we would use a format known as array notation
to manipulate the individual values as, although our array has aname—someInts—the individual

elements do not have individual names:
someInts_AliensRemaining = 99;

someInts_Score = 100;

Let’s see exactly how we do it.

Initializing the elements of an array

To add values to the elements of an array, we can use the type of syntax we are already familiar
with combined with the new syntax I mentioned, known as array notation. In this next code, we

store the value of 99 in the first element of the array:

someInts[@] = 99;

To store a value of 999 in the second element, we write this code:

someInts[1] = 999;

We can store a value of 3 in the last element like this:
someInts[9] = 3;

Note that the elements of an array always start at zero and go up to the size of the array minus

one. Similar to ordinary variables, we can manipulate the values stored in an array.

In this next code, we will see how we manipulate the individual values. This is how we add the

first and second elements together and store the answer in the third:

someInts[2] = someInts[0] + someInts[1];

Arrays can also interact seamlessly with regular variables, like this perhaps:

int a = 9999;

somelnts[4] = a;
There is much to learn about arrays, so let’s keep going.

Quickly initializing the elements of an array

We can quickly add values to the elements like this example, which uses a float array:

Chapter 4 123

float myFloatingPointArray[3] {3.14f, 1.63f, 99.0f};

Now the values 3.14,1.63, and 99.0 are stored in the first, second and third positions, respectively.

Remember that when using array notation to access these values, we would use [0], [1], and [2].

There are other ways to initialize the elements of an array. This slightly abstract example shows
using a for loop to put the values O through 9 into the uselessArray array:
for(int 1 = 0; i < 10; i++)

{

uselessArray[i] = 1i;

}

The code assumes that uselessArray had previously been initialized to hold at least 10 int vari-

ables.

What do these arrays really do for our games?

We can use arrays anywhere a regular variable can be used, perhaps in an expression like this:

for(int 1 = @; i < someArray[4]; i++)

{

}

Perhaps the biggest benefit of arrays in game code was hinted at at the start of this section. Arrays
can hold objects (instances of classes). Imagine that we have a Zombie class, and we want to store

a whole bunch of them. We could do so like this hypothetical code:

Zombie horde [5] {zombiel, zombie2, zombie3};

The horde array now holds a load of instances of the Zombie class. Each one is a separate, living
(kind of), breathing, self-determining Zombie object. We could then loop through the horde array,
each pass through the game loop, moving the zombies, and checking if their heads have met with

an axe or if they have managed to catch the player.

Had we known about them at the time, arrays would have been perfect for handling our clouds.
We could have had hundreds of clouds and written much less code than we did for our three

measly clouds.

124 Loops, Arrays, Switch, Enumerations, and Functions: Implementing Game Mechanics

Y To check out this improved cloud code in full and in action, look at the enhanced
_,@\' version of Timber!!! in the download bundle in the Chapter 5 folder. Or you can try

to implement the clouds using arrays yourself before looking at the code.

The best way to get a feel for all this array stuff is to see it in action. And we will when we imple-

ment our tree branches.

For now, we will leave our cloud code as it is so we can get back to adding features to the game

as soon as possible. But first, a bit more C++ decision-making with switch.

Making decisions with switch

We have already seen the if keyword, which allows us to decide whether to execute a block of
code based on the result of its expression, but sometimes, a decision in C++ can be better made
in other ways. It is often used for providing an elegant alternative to a series of nested if-else

statements. As we will see, it evaluates an expression and directs program flow.

When we must make a decision based on a clear list of possible outcomes that don’t involve
complex combinations or wide ranges of values, then switch is usually the way to go. We start

a switch decision like this:

switch(expression)

{

In the previous example, expression could be an actual expression or just a variable. Then, with-
in the curly braces, we can make decisions based on the result of the expression or value of the

variable. We do this with the case and break keywords, as in this slightly abstract example:

case X:
break;
case y:

break;

Chapter 4 125

You can see, in the previous abstract example, that each case states a possible result, and each

break denotes the end of that case and the point that execution leaves the switch block.

The classic, non-abstract example is using days of the week, as shown next:

int dayNumber = 3;
switch (dayNumber)

{
case 1:
break;
case 2:
break;
default:
¥

In the preceding code, an int variable called dayNumber is given the value 3, representing a day
of the week. The switch condition evaluates the value of dayNumber. Each case corresponds to a

specific day, with a block of code for each.

However, something new has been introduced. We can also, optionally, use the default keyword
without a value, to run some code in case none of the case statements evaluate to true. Thisis a

bitlike the else keyword without an expression following an if expression, perhaps like this code:

default:

break;

As a final example for switch, consider a retro text adventure where the player enters a letter like
‘n’, ‘e’, ‘s’, or ‘w’ to move north, east, south, or west. A switch block could be used to handle each

possible input from the player:

char command;
cin >> command;

switch(command){

126 Loops, Arrays, Switch, Enumerations, and Functions: Implementing Game Mechanics

o,

case n

break;

case 'e

break;

[P

case 'S

break;

case 'w':

break;

default:

break;

The best way of understanding all we have seen regarding switch will be when we put it into
action along with all the other new concepts we are learning. First, we need to understand enu-

merations, which help us be more precise in our code.

Class enumerations

An enumeration is a list of all the possible values in a logical collection. C++ enumerations are a
great way of, well, enumerating things. For example, if our game uses variables that can only be
in a specific range of values, and if those values could logically form a collection or a set, then enu-
merations are probably appropriate to use. They will make your code clearer and less error-prone.
For example, in the switch example using days of the week, who gets to decide what the first day
of the week is? And what if somebody thinks that dayNumber is something else and does some
arithmetic on it? All of a sudden, our day numbering system is a mess. Class enumerations solve

this and other problems.

Chapter 4 127

To declare a class enumeration in C++, we use the two keywords enum class together, followed
by the name of the enumeration, followed by the values the enumeration can contain, enclosed

in a pair of curly braces, {...}.
As an example, examine this enumeration declaration. Note that it is conventional to declare the
possible values from the enumeration in all uppercase:
enum class daysOflWeek {MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,
SATURDAY, SUNDAY };
Or a more interesting example in a possible game scenario like this:

enum class zombieTypes {REGULAR, RUNNER, CRAWLER, SPITTER, BLOATER };

Note that, at this point, we have not declared any instances of zombieType, just the structure and
metadata of the type itself. If that sounds odd, think about it like this. SFML created the Sprite,
RectangleShape, and RenderWindow classes, but to use any of those classes, we had to declare

an object/instance of the class.

At this point, we have created a new type called zombieTypes, but we have no instances of it. So,

let’s do that now:

zombieType Rishi = zombieTypes::CRAWLER;
zombieType Suella = zombieTypes::SPITTER
zombieType Boris = zombieTypes::BLOATER

Next is a sneak preview of the type of code we will soon be adding to Timber!!!. We will want to
track which side of the tree a branch or the player is on, so we will declare an enumeration called

side, like this:

enum class side { LEFT, RIGHT, NONE };

We could position the player on the left like this:

side playerSide = side::LEFT;

128 Loops, Arrays, Switch, Enumerations, and Functions: Implementing Game Mechanics

We could make the fourth level (arrays start from zero) of an array of branch positions have no

branch at all, like this:

branchPositions[3] = side::NONE;

Itis good to know that we can use enumerations in expressions as well:

if(branchPositions[5] == playerSide)
{

Furthermore, we can use enumerations with switch too. This next code clarifies our previous

days of the week example:

daysOfWeek day = daysOfWeek: :WEDNESDAY;

switch (day) {

case daysOfWeek: :MONDAY :
std::cout << "It's Monday";
break;

case daysOfWeek: :TUESDAY:
std::cout << "It's Tuesday";
break;

case daysOflWeek: :WEDNESDAY:
std::cout << "It's Wednesday";
break;

case daysOfWeek: :THURSDAY:
std::cout << "It's Thursday";
break;

case daysOfWeek::FRIDAY:
std::cout << "It's Friday";
break;

case daysOfWeek: :SATURDAY:
std::cout << "It's Saturday";
break;

case daysOflWeek: :SUNDAY:

Chapter 4 129

std::cout << "It's Sunday";
break;

default:
std::cout << "OOPS try again.";

In the preceding example, the daysOflWeek enumeration is used instead of int. The switch state-
ment evaluates the day variable, and each case corresponds to a specific day of the week. As before,
the default case handles any invalid day that might be encountered. In the preceding example,

itis totally clear that the code block for Wednesday will execute.

We will look at one more vital C++ topic and then we will get back to coding the game.

Getting started with functions

Welcome to the world of C++ functions. Functions are one of the fundamental building blocks
of C++ programming. When I said earlier that you probably knew enough C++ to write a retro

text adventure, after learning about functions, you definitely will!

Functions allow us to wrap reusable parts of our code and create well-organized programs. The
rest of this chapter will walk you through the essentials of functions, from their basic syntax to
more advanced concepts, providing you with a comprehensive foundation and ending on how
functions and classes are part of the same topic. You will then be ready to finish this game in this
chapter and the next and stride confidently on to Chapter 6, where we will finally tackle the topic

of object-oriented programming.

What exactly are C++ functions? A function is a collection of variables, expressions, and control
flow statements (loops and branches). In fact, any of the code we have learned about in the book
so far can be used in a function. In fact, all the code we have written so far has been in the main
function. A quick glance at our project code so far will show that we have hundreds of lines of
code. As suggested in the introduction to functions, we will soon begin to separate (modularize)

and organize (encapsulate) all future code into manageable chunks.

I considered the idea of rewriting Timber!!! as we learned better ways of doing things but decided

it would be better to leave that as an exercise for those of you who wanted to do so.

The first part of a function that we write is called the signature. Here is an example function

signature:

public void shootLazers(int power, int direction)

130 Loops, Arrays, Switch, Enumerations, and Functions: Implementing Game Mechanics

If we add an opening and closing pair of curly braces, {. ..}, with some code that the function

performs, we then have a complete function, a definition:

public void shootLazers(int power, int direction)

{

We could then use our new function from another part of our code, perhaps like this:

shootLazers(50, 180)

When we use a function, we say that we call it. At the point where we call shootLazers, our pro-
gram’s execution branches to the code contained within that function. The function would run
until it reaches the end or is told to return. Then, the code would continue running from the first
line after the function call. We have already been using the functions that SFML provides. What

is different here is that we will learn to write and call our own functions.

Here is another example of a function, complete with the code to make the function return to

the code that called it:

int addAToB(int a, int b)
{

int answer = a + b;

return answer;

The call to use the above function could look like this:

int myAnswer = addAToB(2, 4);

Obviously, we don’t need to write functions to add two variables together, but the overly simplified
example helps us see a little more into the workings of functions. First, we pass in values 2 and

4. In the function signature, the value 2 is assigned to int a and the value 4 is assigned to int b.

Within the function body, the variables a and b are added together and used to initialize the new
variable int answer.Theline return answer; doesjustthat. Itreturns the value stored in answer

to the calling code, causing myAnswer to be initialized with the value 6.

Chapter 4 131

Notice that each of the function signatures in the examples above varies a little. The reason for
this is that the C++ function signature is quite flexible, allowing us to build exactly the functions

we require.

Exactly how the function signature defines how the function must be called and if/how the
function must return a value deserves further discussion. Let’s give each part of that signature a

name so we can break it into parts and learn about them.

Here is a function signature with its parts described by their formal/technical term:
return type | name of function | (parameters)

Here are a few examples we can use for each of those parts:

e Return-type: bool, float, int, etc., or any C++ type or expression.
e Name of function: shootLazers, addAToB, etc.

e Parameters: (int number, bool hitDetected), (int x, int y), (float a, float b)

At this point, a brief interlude into the design of C++, programming, and computer hardware

might be worthwhile.

Who designed all this weird and frustrating syntax and why
is it the way it is?

Sometimes, beginners to C++ will question the way the language is designed, and functions is a
topic (as well as OOP) in particular when the syntax enforced upon us as developers is questioned
forits design. The point to remember is that the syntax of C++ and functions in particular weren’t
just designed in a vacuum. They were designed and chosen around the way that a computer

system (in particular, a CPU) works.

Aswe havelearned, in C++, functions help us organize and modularize our code. When a function

is called, several steps occur.

As we know, when a function is called, the program’s control flow transfers to the function. The
CPU executes ajump instruction to the memory address associated with the function. This memory

address is hidden from us but, actually, it is contained in the function’s name that we assign to it.

Next, a stage called the function prologue is executed, which involves setting up the function’s
stack frame. This is completely hidden from us as programmers, but it is part of how the CPU
handles things. The current state of the calling function, often main, is stored, including the return

address and the values of important CPU registers that hold values.

132 Loops, Arrays, Switch, Enumerations, and Functions: Implementing Game Mechanics

At this stage, our variables and function parameters are allocated on the stack. The stack is a
region of computer memory internal to the CPU used for the dynamic storage of function call
information, local variables, and control flow data. Our function parameters are typically passed
through CPU registers or pushed onto this stack. Variables within the function itself, known as

local variables, are created on the stack and initialized.

Next, the body of the called function executes and local variables and parameters are accessed

within the function.

Before returning from the function, the function epilogue is executed. The function epilogue is
the set of instructions executed before returning from a function, typically involving the deallo-
cation of the function’s stack frame and the restoration of the saved state of the calling function.
The stack frame is deallocated, freeing up space for local variables and parameters. The saved

state of the calling function is restored, including the return address.

After the epilogue, the CPU executes a return instruction, transferring control back to the calling

function. The return value from the function (if any) is stored in a pre-determined register.

The stack pointer is a register that keeps track of the top of the stack. During function calls, the
stack pointer is adjusted to allocate and deallocate space for local variables and parameters. This
isimportant because you can call a function, which calls another function, and so on. In fact, most

complex applications, including games, will have many functions on the stack.

The stack follows a Last In, First Out (LIFO) order, meaning the last item pushed onto the stack
is the first to be popped off. This is why it is called a stack. The best analogy I have heard to visu-
alize the stack is that of a stack of plates at a buffet where the plates are constrained in a device
to make only the top plate accessible. The restaurant manager can always add to the stack by
pushing new plates onto the spring-loaded device, but to get to the plate at the bottom of the

stack, each plate must be individually removed.

In summary, when a function is called, the CPU uses the stack to manage the function’s local
variables and the called function parameters. The stack pointer keeps track of the stack’s top,
and the function prologue and epilogue handle the setup and cleanup of the stack. This process
allows for the efficient execution of multiple nested function calls. Understanding the interaction
between functions and the CPU, hopefully, helps us appreciate half a century of refinement and
improvement into the state of C++ today and not be too critical of the syntax we are forced to

learn. Itis like it is for a reason.

Chapter 4 133

It is not necessary to understand how a CPU works, not even the above brief introduction, but
knowing that C++ is the culmination of half a century of very careful and deliberate evolution
from the early 1970s when the C programming language was being developed can help beginners
to accept that there probably isn’t a “better” way and to embrace all the apparent imperfections
as anecessity for taking efficient control of the great wonder of modernity, the CPU. Over time, if
you stick at it, it will all become obvious why it was done how it was and, while itisn’t necessary,

a knowledge of computer hardware like the CPU and the GPU is useful to aid in understanding.

Now, with karma restored, let’s look at each part of a function in turn.

Function return types

The return type, as the name suggests, is the type of the value that will be returned from the

function to the calling code:

int addAToB(int a, int b){

int answer = a + b;

return answer;

In our slightly dull but useful addAtoB example previously, the return type in the signature is
int. The function addAToB sends back (returns) to the code that called it, a value that will fit in
an int variable. The return type can be any C++ type we have seen so far or one of the ones we

haven’t seen yet.

Afunction does not have to return a value at all, however. In this case, the signature must use the
void keyword as the return type. When the void keyword is used, the function body mustnot at-
tempt to return a value as this will cause an error. It can, however, use the return keyword without

avalue. Here are some combinations of return type and use of the return keyword that are valid:

void doWhatever(){

134 Loops, Arrays, Switch, Enumerations, and Functions: Implementing Game Mechanics

Another possibility is as follows:

void doSomethigCool(){
// our code

// I can do this if I don't try and use a value
return;

The following code shows yet more examples of possible functions. Be sure to read the comments

as well as the code:

void doYetAnotherThing(){

// some code
if(someCondition){

// 1f someCondition 1is true returning to calling code
// before the end of the function body
return;

// More code that might or might not get executed
return;

// As I'm at the bottom of the function body
// and the return type is void, I'm
// really not necessary but I suppose I make it

// clear that the function 1is over.

bool detectCollision(Ship a, Ship b){

// Detect if collision has occurred
if(collision)
{

// Bam!!!

Chapter 4 135

return true;

}

else

{

return false;

The last function example above, detectCollision, is a glimpse into the near future of our C++
code and demonstrates that we can also pass in the user-defined types, called objects, into func-

tions to perform calculations on them.

We could call each of the functions above in turn, like this:

doWhatever();
doSomethingCool();
doYetAnotherThing();

if (detectCollision(milleniumFalcon, lukesXWing))

{

else

Don’t worry about the odd-looking syntax regarding the detectCollision function; we will
see real code like this quite soon. Simply, we are using the return value (true or false) as the

expression, directly in an if statement.

136 Loops, Arrays, Switch, Enumerations, and Functions: Implementing Game Mechanics

Furthermore, the functions could be stacked up on the CPU stack if the functions were recoded as
follows. I have stripped some extraneous code like the comments and highlighted the new parts.

First is a hypothetical main function:

int main()

{

doWhatever()

return 0;
Here is a new version of doWhatever:
void doWhatever(){

doSomethingCool();
}

Here is the new version of doSomethingCool:

void doSomethigCool(){
doYetAnotherThing();
return;
Here is the new version of doYetAnotherThing:
void doYetAnotherThing(){

if(someCondition){

return;

return;

Chapter 4 137

In my above scenario, the main function calls dowWhatever, which calls doSomethingCool, which
calls doYetAnotherThing. At this point, all four functions, including main, will exist on the CPU’s
stack. When doYetAnotherThing completes and goes through its epilogue process, is removed
from the stack, and control returns to doSomethingCool. Then, only three functions exist on the
stack. When doSomethingCool has had its code executed, it too is removed, and so on until just
main is on the stack and, of course, eventually main reaches its return statement and is removed

from the stack and our program is no longer in memory.

As a quick aside, loops also go through a similar process to functions, so if a function
\/‘/' contains a loop, it too will end up on the stack. Everything is executed last in, first
outuntil areturn statementis reached, the currently executing function is removed,

and the calling function continues.
That is more than you need to know to make a great game so let’s keep going.

Function names

The function name when we design our own function can be almost anything at all. Butitis best
to use words, usually verbs, that clearly explain what the function will do. For example, look at

this function:

void functionaroonieboonie(int blibbityblob, float floppyfloatything)
{

The above is perfectly legal and will work, but these next function names are much clearer:

void doSomeVerySpecificTask()

{

int getMySpaceShipHealth()
{

void startNewGame()

138 Loops, Arrays, Switch, Enumerations, and Functions: Implementing Game Mechanics

Next, take a closer look at how we share some values with a function.

Function parameters

We know that a function can return a result to the calling code. What if we need to share some
data values from the calling code with the function? Parameters allow us to share values with
the function. We have already seen examples of parameters while looking at return types. We

will look at the same example but a little more closely:

int addAToB(int a, int b)
{

int answer = a + b;

return answer;

Above, the parameters are int a and int b. Did you notice that in the first line of the function
body, weuse a + b asif they are already declared and initialized variables? Well, that’s because
they are. The parameters in the function signature are their declaration, and the code that calls
the function initializes them.

Notice that we are referring to the variables in the function signatures brackets
Y (int a, int b) as parameters. When we pass values into the function from the
,@ calling code, these values are called arguments. When the arguments arrive, they

are used by the parameters to initialize real, usable variables: int returnedAnswer
= addAToB(10,5);

Also, as we have partly seen in previous examples, we don’t have to just use int in our parameters.
We can use any C++ type. We can also use as many parameters as is necessary to solve our problem,

butitis good practice to keep the parameter list as short and, therefore, manageable as possible.

As we will see in future chapters, we have left a few of the cooler uses of functions out of this
introductory tutorial, so that we can learn about related C++ concepts before we take the topic
of functions further.

Chapter 4 139

The function body

The body is the part we have been kind of avoiding with comments like this:

But actually, we know exactly what to do here already! Any C++ code we have learned about so

far will work in the body of a function.

Next, we will explore the concept of function prototypes.

Function prototypes

We have seen how to code a function and we have seen how to call one as well. There is one more
thing we need to do, however, to make it work. All functions must have a prototype. A prototype
is what makes the compiler aware of our function; without a prototype, the entire game will fail

to compile. Fortunately, prototypes are straightforward.

We can simply repeat the function’s signature, followed by a semicolon. The caveat is that the
prototype must appear before any attempt to call or define the function. So, the absolute most
simple example of a fully usable function in action is as follows. Look carefully at the comments

and the location in the code where the different parts of the function appear:

int addAToB(int a, int b);

int main()

{

int answer = addAToB(2,2);

return 0;

140 Loops, Arrays, Switch, Enumerations, and Functions: Implementing Game Mechanics

int addAToB(int a, int b)

{

return a + b;

What the previous code demonstrates is the following:

e The prototype is before the main function.
e The call to use the function is, as we might expect, inside the main function.

e The definition is after/outside the main function.

Note that we can omit the function prototype and go straight to the definition when
\/‘n’l the definition occurs before the function is used. As our code becomes longer and
spread across multiple files, however, this will almost never happen. We will use

separate prototypes and definitions all the time.
Let’s see how we can keep our functions organized.

Organizing functions

Well worth pointing out if we have multiple functions, especially if they are fairly long, is that
our . cpp file will quickly become unwieldy. This defeats part of the objective that functions are
intended for. The solution that we will see in the next project, which starts in Chapter 6, is that
we can add all our function prototypes to our very own header file (. hpp or . h), then code all our
functions in another . cpp file, and then simply add another #include. .. directive in our main
.cpp file. This way, we can use any number of functions without adding any of their code (proto-

type or definition) to our main code file.

Function scope

We mentioned, in our discussion about the CPU stack, theidea of local variables. Thisis the same
topic as function or variable scope. If we declare a variable in a function, either directly or in one
of the parameters, that variable is not usable/visible outside of the function. Furthermore, any
variables declared inside other functions cannot be seen/used inside the function. After all, they

are in an entirely different stack frame on the CPU stack.

Chapter 4 141

The way that we should share values between function code and calling code is through the

parameters/arguments and the return value.

When a variable is not available because it is from another function, it is said to be out of scope.

When it is available and usable, it is said to be in scope.

Variables declared within any block in C++ only are in scope within that block! This
includesloops and if blocks as well. A variable declared at the top of mainisin scope
anywhere in main. A variable declared in the game loop is only in scope within the
game loop, etc. A variable declared within a function or other block is called a local
\G/\/ variable. The more code we write, the more this will make sense. Every time we come
across an issue in our code regarding scope, I will discuss it to make things clear.
There will be one such issue coming up in the next section. And there are some more
C++ staples that blow this issue wide open. They are called references and pointers,

and we will learn about them in Chapters 9 and 10, respectively.

A final word on functions — for now

There is even more we could learn about functions, but we know enough about them already to
implement the next part of our game. And don’t worry if all the technical terms like parameters,
signatures, definitions, and so on have not completely sunk in. The concepts will become clearer

when we start to use them.

In addition, it has probably not escaped your attention that we have been calling functions, espe-
cially the SFML functions, by appending the name of an object and a period before the function
name, like this:

spriteBee.setPosition...

window.draw...

And yet, our entire discussion of functions saw us calling functions without any objects. What’s
that all about then? We can write functions as part of a class or simply as a standalone function,
as we have seen in this chapter. When we write a function as part of a class, we need an object of

that class to call the function, and when we have a standalone function (as we have seen), we don’t.

We will write a standalone function in a minute, and we will write classes with functions starting
in Chapter 6, Object-Oriented Programming — Starting the Pong Game. Everything we know so far

about functions is relevant in both cases. Only the context changes.

142 Loops, Arrays, Switch, Enumerations, and Functions: Implementing Game Mechanics

Finally, we can use what we have learned to grow the branches on our tree.

Growing the branches

Next, as I have been promising for around the last 20 pages, we will use all the new C++ tech-

niques —loops, arrays, enumerations, and functions —to draw and move some branches on our tree.

Add this code outside of the main function. Just to be absolutely clear, I mean before the int

main() code:

#include <sstream>

#include <SFML/Graphics.hpp>

using namespace sf;

void updateBranches(int seed);

const int NUM_BRANCHES = 6;
Sprite branches[NUM_BRANCHES];

enum class side { LEFT, RIGHT, NONE };
side branchPositions[NUM_BRANCHES];

int main()

{

We just achieved quite a few things with that new code:

e First, we wrote a function prototype for a function called updateBranches. We can see
that it does not return a value (void) and it takes an int argument called seed. We will

write the function definition soon and we will then see exactly what it does.
e Next, we declare a constant int called NUM_BRANCHES and initialize it to 6. There will be
six moving branches on the tree, and we will soon see how NUM_BRANCHES is useful to us.
e Following this, we declare an array of Sprite objects called branches that can hold six

Sprite instances.

Chapter 4 143

e After that, we declare a new enumeration called side with three possible values, LEFT,
RIGHT, and NONE. This will be used to describe the position of individual branches, as well

as the player, in a few places throughout our code.

e Finally, in the preceding code, we initialize an array of side types, with a size of
NUM_BRANCHES (6). To be clear about what this achieves, we will have an array called
branchPositions with six values in it. Each of these values is of type side, and each can
hold the values of either LEFT, RIGHT, or NONE.

Of course, what you really want to know is why the constant, two arrays, and the
enumeration were declared outside of the main function. By declaring them above
main, they now have global scope. Or describing it another way, the constant, two
\G/\/ arrays, and the enumeration have scope for the entire game. This will mean we can
access and use them all, anywhere in the main function and the updateBranches
function. Note that it is good practice to make all variables as local to where they
are used as possible. It might seem useful to make everything global, but this leads

to hard-to-read and error-prone code.

Preparing the branches

Now, we will prepare our six Sprite objects and load them into the branches array. Add the

highlighted code just before our game loop:

FloatRect textRect = messageText.getlLocalBounds();
messageText.setOrigin(textRect.left +
textRect.width / 2.0f,
textRect.top +
textRect.height / 2.0f);

messageText.setPosition(1920 / 2.0f, 1080 / 2.0f);
scoreText.setPosition(20, 20);

Texture textureBranch;

textureBranch.loadFromFile("graphics/branch.png");

144 Loops, Arrays, Switch, Enumerations, and Functions: Implementing Game Mechanics

for (int i = @; i < NUM_BRANCHES; i++) {
branches[i].setTexture(textureBranch);
branches[i].setPosition(-2000, -2000);

branches[i].setOrigin(220, 20);

while (window.isOpen())

{

In the preceding code, first, we declare an SFML Texture object and load the branch. png graphic

into it.

Next, we create a for loop that sets i to zero and increments i by one each pass through the loop,
until i is no longer less than NUM_BRANCHES. This is exactly right because NUM_BRANCHES is 6 and
the branches array has positions O through 5.

Inside the for loop, we set the Texture for each Sprite in the branches array with setTexture

and then hide it off-screen with setPosition.

Finally, we set the origin (the point that is used to locate the sprite when it is drawn) with
setOrigin to the center of the sprite. Soon, we will be rotating these sprites, and having the or-

igin in the center means they will spin nicely around, without moving the sprite out of position.

Updating the branch sprites in each frame

In this next code, we set the position of all the sprites in the branches array, based on their po-
sition in the array and the value of side in the corresponding branchPositions array. Add the

highlighted code and try to understand it, then we can go through it in detail:

std::stringstream ss;

n

ss << "Score: << score;

scoreText.setString(ss.str());

for (int i = @; i < NUM_BRANCHES; i++)

Chapter 4 145

float height = i * 150;

if (branchPositions[i] == side::LEFT)

{
// Move the sprite to the left side
branches[i].setPosition(610, height);

// Flip the sprite round the other way
branches[i].setRotation(180);
}
else if (branchPositions[i] == side::RIGHT)
{
// Move the sprite to the right side
branches[i].setPosition(1330, height);

// Set the sprite rotation to normal
branches[i].setRotation(0);

}

else

{
// Hide the branch

branches[i].setPosition(3000, height);

} // End if(!paused)

/*

3k 3k >k 3k >k 3k >k 3k >k 3k 3k 5k 3k >k 3k >k sk >k sk >k sk >k sk 3k ok 3k >k 3k >k sk >k sk >k sk >k ok kok kok

Draw the scene

3k >k 3k >k 3k >k 3k >k 5k >k 5k >k 3k 3k 3k 3k 3k 3k >k 3k >k %k >k 5k >k 5k >k 5k >k 5k 3k >k 3k >k %k >k %k *k ok k

The code we just added is one big for loop that sets i to zero and increments i by one each time

through the loop and keeps going until i is no longer less than 6.

146 Loops, Arrays, Switch, Enumerations, and Functions: Implementing Game Mechanics

Inside the for loop, a new float variable called height is setto i * 15@. This means that the
first branch will have a height of 0, the second of 150, and the sixth of 750.

Next, we have a structure of if and else blocks. Look at the structure with the code stripped out:
if()
{

}
else if()

The first if uses the branchPositions array to see whether the current branch should be on the
left. If it should, it sets the corresponding Sprite from the branches array to a position on the
screen, appropriate for the left (610 pixels) and whatever the current height is. It then flips the
Sprite by 180 degrees because the branch. png graphic “hangs” to the right by default.

The else if only executes if the branch is not on the left. This part of the code then uses the
same method to see ifitis on the right. If it is, then the branch is drawn on the right (1330 pixels).
Then, the sprite rotation is set to zero degrees, just in case it had previously been at 180 degrees.
If the x coordinate seems a little bit strange, just remember that we set the origin for the branch

sprites to their center.

The final else assumes, correctly, that the current branchPosition must be NONE and hides the

branch off-screen at 3000 pixels.

At this point, our branches are in position, ready to be drawn.

Drawing the branches

Here, we use another for loop to step through the entire branches array from O to 5 and draw

each branch sprite. Add the following highlighted code:

window.draw(spriteCloudl);
window.draw(spriteCloud2);

window.draw(spriteCloud3);

Chapter 4 147

for (int i = @; i < NUM_BRANCHES; i++)
{

window.draw(branches[i]);

window.draw(spriteTree);

Of course, we still haven’t written the function that moves all the branches. Once we have written
that function, we will also need to work out when and how to call that function. Let’s solve the

first problem and write the function.

Moving the branches
We have already added the function prototype above the main function. Now, we code the actual
definition of the function that will move all the branches down by one position each time it is

called. We will code this function in two parts so we can more easily examine what is happening.

Add the first part of the updateBranches function after the closing curly brace of the main function:

void updateBranches(int seed)

{

for (int j = NUM_BRANCHES-1; j > 0; j--) {

branchPositions[j] = branchPositions[j - 1];

In this first part of the function, we simply move all the branches down one position, one at a time,
starting with the sixth branch. This is achieved by making the for loop count from 5 through to

0. The code branchPositions[j] = branchPositions[j - 1]; makes the actual move.

The other thing to note with the previous code is that after we have moved the branch in position
4 to position 5, then the branch in position 3 to position 4, and so on, we will need to add a new

branch at position 0, which is the top of the tree.

148 Loops, Arrays, Switch, Enumerations, and Functions: Implementing Game Mechanics

Now we can spawn a new branch at the top of the tree. Add the highlighted code into the

updateBranches function and then we will talk about it:

void updateBranches(int seed)

{

for (int j = NUM_BRANCHES-1; j > 0; j--) {

branchPositions[j] = branchPositions[j - 1];

srand((int)time(@)+seed);
int r = (rand() % 5);

switch (r) {
case 0:
branchPositions[0] = side::LEFT;

break;

case 1:
branchPositions[@] = side::RIGHT;
break;

default:
branchPositions[0@] = side::NONE;

break;

In the final part of the updateBranches function, we use the integer seed variable that gets passed
in with the function call. We do this to guarantee that the random number seed is always different,

and we will see how this value is arrived at in the next chapter.

Next, we generate a random number between O and 4 and store the result in the int variable r.

Now, we switch using r as the expression.

Chapter 4 149

The case statements mean thatif r is equal to 0, then we add a new branch on the left-hand side
at the top of the tree. If r is equal to 1, then the branch goes on the right. If r is anything else (2,
3, or 4), then default ensures that no branch at all will be added at the top. This balance of left,
right, and none makes the tree seem realistic (for a fake video game tree) and the game works

quite well. You could easily change the code to make the branches more frequent or less so.

Even after all this code for our branches, we still can’t glimpse a single one of them in the game.

This is because we have more work to do before we can call updateBranches.

If you want to see a branch now, you can add some temporary code and call the function five

times with a unique seed each time, just before the game loop:

updateBranches(1);
updateBranches(2);
updateBranches(3);
updateBranches(4);
updateBranches(5);

while (window.isOpen())

{

You can now see the branches in their place. But if the branches are to move, we will need to call

updateBranches on a regular basis.

Figure 4.1: Branches on a tree

150 Loops, Arrays, Switch, Enumerations, and Functions: Implementing Game Mechanics

N\ ! d
_,@\' Don’t forget to remove the temporary code before moving on.

Now we can turn our attention to the player as well as call the updateBranches function for real.

Summary

Although not quite the longest, this was probably the chapter where we covered the most C++.
We looked at the different types of loops we can use, like for and while loops. We studied arrays
for handling large amounts of variables and objects without breaking a sweat. We also learned
about enumerations and switch. Probably the biggest conceptin this chapter was functions, which
allow us to organize and abstract our game’s code. We will be looking more deeply at functions

in a few more places as the book continues.
Now that we have a fully “working” tree, we can finish the game in the last chapter of this project.

Here are some things that might be on your mind.

Frequently asked questions

Q) How does a for loop differ from a while loop in C++?

A) Both for and while loopsin C++ are used for repetition, but a for loop is typically used when
the number of iterations is known in advance and a for loop involves three parts (initialization,
condition, and iteration). In contrast, a while loop is more flexible and used when the number

of iterations is uncertain.
Q) Can functions in C++ return multiple values?

A) No, a function in C++ can only directly return one value. However, multiple values can be
simulated by using parameters passed by references, pointers, or objects. References, pointers,

and objects are all discussed in depth in upcoming chapters.
Q) Tell me briefly how the CPU stack relates to function calls and loops in C++.

A) The stack is a region of memory used for managing function calls, local variables, and control
flow in C++. Both function calls and loops involve the allocation and deallocation of space on
the stack to store information such as local variables, parameters, and the return address. It is
not necessary to understand this in order to proceed but knowing it exists helps accept some

otherwise inexplicable constructs, specifically function syntax from this chapter.

Chapter 4 151

Q) When should I use an enumeration in C++?

A) Enumerations, often abbreviated to enums in C++, are useful when you want to represent a
set of named constant values. They improve code readability and help prevent the use of invalid
values and operations. Enums are sometimes used for menu options in games, or the example
we used in this chapter was days of the week. If you see the value WEDNESDAY, it makes it clear
what it represents, whereas the value 3 could be Tuesday or even the number of toes on a cute

tree-climbing mammal.
Q)How can I prevent an unwanted infinite loop in C++?

A) To avoid unwanted infinite loops, ensure that the loop condition has a way of becoming false.
For example, in a for loop, make sure the condition will eventually evaluate to false.In awhile
loop, ensure that the loop variable is updated or that there is a break statement when a specific

condition is met.

Collisions, Sound, and End
Conditions: Making the Game
Playable

This is the final phase of the first project. By the end of this chapter, you will have your first com-
pleted game. Once you have Timber!!! up and running, be sure to read the last section of this

chapter, as it will suggest ways to make the game better.
We will cover the following topics in this chapter:

e Preparing the player (and other sprites)
e Drawing the player and other sprites

e Handling the player’s input

e Handling death

e Simple sound effects

e Improving the game and code

In this chapter, we will reuse the C++ concepts that we have already learned, but we will see the
SFML (Simple and Fast Multimedia Library) sound features for the first time.

Preparing the player (and other sprites)
Let’s add the code for the player’s sprite, as well as a few more sprites and textures at the same
time. The following code adds a gravestone sprite for when the player gets squashed, an axe sprite

to chop with, and a log sprite that can whiz away each time the player chops.

154 Collisions, Sound, and End Conditions: Making the Game Playable

Notice that after the spritePlayer object, we also declare a side variable, playerSide, to keep
track of where the player is currently standing. Furthermore, we add some extra variables for the
spritelog object,including logSpeedX, logSpeedY, and logActive, to store how fast the log will
move and whether it is currently moving. The spriteAxe also has two related float constant

variables to remember where the ideal pixel position is on both the left and the right.

Add this next block of code just before the while(window.isOpen()) code as we have done so
often before. Note that all the code in this next listing is new, not just the highlighted code. I ha-
ven’t provided any extra context for the following block of code, as thewhile(window. isOpen())

should be easy to identify. The highlighted code is the code we have just specifically discussed.

Add the entirety of this code, just before the while(window.isOpen()) line, and make a mental
note of the highlighted lines we have briefly discussed. It will make the rest of the chapter’s code

easier to understand:

Texture texturePlayer;
texturePlayer.loadFromFile("graphics/player.png");
Sprite spritePlayer;
spritePlayer.setTexture(texturePlayer);

spritePlayer.setPosition(580, 720);

side playerSide = side::LEFT;

Texture textureRIP;
textureRIP.loadFromFile("graphics/rip.png");
Sprite spriteRIP;
spriteRIP.setTexture(textureRIP);
spriteRIP.setPosition(600, 860);

Texture textureAxe;
textureAxe.loadFromFile("graphics/axe.png");
Sprite spriteAxe;
spriteAxe.setTexture(textureAxe);
spriteAxe.setPosition(700, 830);

Chapter 5 155

const float AXE_POSITION_LEFT = 700;
const float AXE_POSITION_RIGHT = 1075;

Texture texturelog;
textureLog.loadFromFile("graphics/log.png");
Sprite spritelog;
spritelLog.setTexture(texturelLog);
spritelLog.setPosition(810, 720);

bool logActive = false;
float logSpeedX = 1000;
float logSpeedY = -1500;

Now, we can draw all our new sprites.

Drawing the player and other sprites

Before we add the code to move the player and use all our new sprites, let’s draw them. This is

so that, as we add code to update/change/move them, we will be able to see what is happening.

Add the highlighted code to draw the four new sprites:

window.draw(spriteTree);
window.draw(spritePlayer);
window.draw(spriteAxe);

window.draw(spriteLog);

156 Collisions, Sound, and End Conditions: Making the Game Playable

window.draw(spriteRIP);

window.draw(spriteBee);

Run the game, and you will see our new sprites in the scene.

Figure 5.1: New sprites in scene

We are really close to a working game now.

Handling the player’s input

Lots of different things depend on the movement of the player. These include:
e When to show the axe
e When to begin animating the log

e When to move all the branches down

Therefore, it makes sense to set up keyboard handling for the player chopping. Once this is done,

we can put all the features we just mentioned into the same part of the code.

Let’s think for a moment about how we detect keyboard presses. In each frame, we test whether

a particular keyboard key is currently held down.

Chapter 5 157

If itis, we take action. If the Escape key is held down, we quit the game, and if the Enter key is held

down, we restart the game. So far, this has been sufficient for our needs.

However, there is a problem with this approach when we try and handle the chopping of the tree.
The problem has always been there; it just didn’t matter until now. Depending on how powerful
your PCis, the game loop could be executed thousands of times per second. Each and every pass

through the game loop when a key is held down is detected, and the related code will execute it.

So actually, every time you press Enter to restart the game, you are most likely restarting it well
in excess of a hundred times. This is because even the briefest of presses will last a significant
fraction of a second. You can verify this by running the game and holding down the Enter key.
Note that the time-bar doesn’t move. This is because the game is being restarted over and over

again, hundreds or even thousands of times a second.

If we don’t use a different approach for the player chopping, then just one attempted chop will
bring the entire tree down. We need to be a bit more sophisticated. What we will do is allow the
player to chop, and then when they do so, disable the code that detects a key press. We will then
detect when the player removes their finger from a key and then re-enable the detection of key

presses. Here are the steps laid out clearly:

1. Wait for the player to use the left or right arrow keys to chop a log.

When the player chops, disable key press detection.

2
3. Wait for the player to remove their finger from a key.
4. Re-enable chop detection.

5

Repeat from step 1.

This might sound complicated, but with SFML’s help, it will be straightforward. Let’s implement

this now, one step at a time.

Add the highlighted line of code that declares a bool variable called acceptInput, which will be

used to determine when to listen for chops and when to ignore them:

float logSpeedX = 1000;
float logSpeedY = -1500;
bool acceptInput = false;

while (window.isOpen())

{

158 Collisions, Sound, and End Conditions: Making the Game Playable

Now that we have our Boolean set up, we can move on to handling setting up a new game.

Handling setting up a new game

Ready for us to handle chops, the highlighted code is added to the i f block that starts a new game:

if (Keyboard::isKeyPressed(Keyboard::Escape))
{

window.close();

if (Keyboard::isKeyPressed(Keyboard::Return))
{

paused = false;

score = 0,

timeRemaining = 6;

for (int i = 1; i < NUM_BRANCHES; i++)
{

branchPositions[i] = side::NONE;

spriteRIP.setPosition(675, 2000);

spritePlayer.setPosition(580, 720);

acceptInput = true;

Chapter 5 159

In the preceding code, we use a for loop to prepare the tree without any branches. This is fair to
the player, as if the game started with a branch right above their head, it might be considered
unsporting. Players are fine with hard games, but they hate unfair games. Then, we simply move
the gravestone off of the screen and the player into their starting location on the left. The last
thing the preceding code does is set acceptInput to true. We are now ready to receive chopping

key presses.

Detecting the player chopping

Now, we can prepare to handle the left and right cursor key presses. Add this simple if block,

which only executes when acceptInput is true:

if (Keyboard::isKeyPressed(Keyboard::Return))

{

paused = false;

score = 0O;

timeRemaining = 5;

for (int i = 1; i < NUM_BRANCHES; i++)
{

branchPositions[i] = side::NONE;

spriteRIP.setPosition(675, 2000);

160 Collisions, Sound, and End Conditions: Making the Game Playable

// Move the player 1into position
spritePlayer.setPosition(675, 660);

acceptInput = true;

// Wrap the player controls to

// Make sure we are accepting input
if (acceptInput)

{

// More code here next...

/*

3k 3k >k 3k >k 3k >k 3k >k 3k 3k 3k 3k >k 3k >k %k >k 5k >k 5k >k 5k 3k 5k 3k >k 3k >k 3k >k %k >k 5k >k %k k %k k ok

Update the scene

3k 3k ok 5k >k 5k >k 5k >k 5k >k 5k 3k >k %k >k 5k >k 5k >k 5k >k 5k >k 5k >k >k >k >k %k >k 5k >k 5k %k 5k kok kok

*/

Now, inside the if block that we just coded, add the following highlighted code to handle what
happens when the player presses the right cursor key on the keyboard:

// Wrap the player controls to

// Make sure we are accepting input
if (acceptInput)

{

// More code here next...

// First handle pressing the right cursor Rey
if (Keyboard::isKeyPressed(Keyboard::Right))
{
// Make sure the player is on the right
playerSide = side::RIGHT;

score ++;

Chapter 5 161

timeRemaining += (2 / score) + .15;

spriteAxe.setPosition(AXE_POSITION_RIGHT,
spriteAxe.getPosition().y);

spritePlayer.setPosition(1200, 720);

updateBranches(score);

spriteLog.setPosition(810, 720);
logSpeedX = -5000;

logActive = true;

acceptInput = false;

Quite a bit is happening in that preceding code, so let’s go through it. First, we detect if the
player has chopped on the right-hand side of the tree. If they have, then we set playerSide to
side: :RIGHT. We will respond to the value of playerSide later in the code.

Then, we add 1 to the score with a score ++. The next line of code is slightly mysterious, so here

itis again as a reminder:

timeRemaining += (2 / score) + .15;

Itisn’t particularly complicated. See if you can work it out for yourself before reading on. All that
is happening is that we add to the amount of time remaining with timeRemaining +=...,and
therefore, we reward the player for taking action. However, the problem for the player is that
the bigger the score gets, the less additional time is added on. By dividing 2 by a score like this
(2 / score), the chopping rewards quickly diminish. You can play with this formula to make

the game easier or harder.

162 Collisions, Sound, and End Conditions: Making the Game Playable

Next, the axe is moved into its right-hand-side position with spriteAxe.setPosition, and the

player sprite is moved into its right-hand-side position also.

Next, we call updateBranches to move all the branches down one place and spawn a new random

branch (or space) at the top of the tree.

Then, spritelLogis moved into its starting position, camouflaged against the tree, and its speedX
variable is set to a negative number so that it whizzes off to the left. Also, logActiveis set to true

so that the log-moving code that we will write soon animates the log at each frame.

Finally, acceptInput is setto false. At this point, no more chops can be made by the player. We
have solved the problem of the presses being detected too frequently, and we will see how we

re-enable the chopping soon.

Now, still inside the if(acceptInput) block that we just coded, add the highlighted code to
handle what happens when the player presses the left cursor key on the keyboard:

if (Keyboard::isKeyPressed(Keyboard::Left))
{

playerSide = side::LEFT;

score++;

timeRemaining += (2 / score) + .15;

spriteAxe.setPosition(AXE_POSITION_LEFT,

spriteAxe.getPosition().y);

spritePlayer.setPosition(580, 720);

updateBranches(score);

spriteLog.setPosition(810, 720);

Chapter 5 163

logSpeedX

5000;

logActive = true;

acceptInput = false;

i

The previous code is just the same as the code that handles the right-hand-side chop, except that
the sprites are positioned differently and the logSpeedX variable is set to a positive value so that
the log whizzes to the right. This is so because the horizontal coordinates increase as sprites are

positioned further to the right.

Next, let’s see how to detect that a key is released.

Detecting a key being released

To make the preceding code work beyond the first chop, we need to detect when the player releases

a key and then set acceptInput back to true.

This is slightly different from the key handling we have seen so far. SFML has two different ways
of detecting keyboard input from the player. The first way we have already seen. It is dynamic

and instantaneous, exactly what we need to respond immediately to a key press.

The following code uses the other method. Enter the next highlighted code at the top of the Handle

the players input section, and then we will go through it:

Event event;

while (window.pollEvent(event))

{
if (event.type == Event::KeyReleased && !paused)

{

164 Collisions, Sound, and End Conditions: Making the Game Playable

acceptInput = true;

spriteAxe.setPosition (2000,
spriteAxe.getPosition().y);

if (Keyboard::isKeyPressed(Keyboard::Escape))
{

window.close();

First, we declare an object of type Event called event. Then, we call the window.pollEvent func-
tion, passing in our new object, event. The pollEvent function puts data into the event object
that describes an operating system event. This could be a key press, key release, mouse movement,
mouse click, game controller action, or something that happened to the window itself (it was

resized, moved, etc.).

The reason that we wrap our code in a while loop is that there might be many events stored in
a queue. The window. pollEvent function will load them, one at a time, into event. Upon each
pass through the loop, we will see if we are interested in the current event and respond if we are.
When window.pollEvent returns false, that means there are no more events in the queue and

the while loop will exit.

Astute readers will notice something is a bit different compared to our discussion of functions.
What is happening will be fully explained when we discuss references in Chapter 9. As a quick
explanation, it is possible to pass a value into a function, and the called function can alter that
value so that the new value is available to the calling function. This is done through the concept

of references, not by returning a value with a return statement.

This if condition (event.type == Event::KeyReleased &% !paused) istrue when both a key

has been released and the game is not paused.
Inside the if block, we set acceptInput back to true and hide the axe sprite off-screen.

You can run the game now and gaze in awe at the moving tree, swinging axe, and animated player.

However, it won’t squash the player, and the log needs to move when chopped as well.

Chapter 5 165

Animating the chopped logs and the axe

When the player chops, logActive is set to true, so we can wrap some code in a block that only
executes when logActive is true. Furthermore, each chop sets logSpeedX to either a positive

or negative number, so the log is ready to start flying away from the tree in the correct direction.

Add the following highlighted code, right after we update the branch sprites:

for (int i = @; 1 < NUM_BRANCHES; i++)

{
float height = i * 150;

if (branchPositions[i] == side::LEFT)

{
branches[i].setPosition(610, height);
branches[i].setRotation(180);
}
else if (branchPositions[i] == side::RIGHT)
{
branches[i].setPosition(1330, height);
branches[i].setRotation(0);
}
else
{
branches[i].setPosition (3000, height);
}

166 Collisions, Sound, and End Conditions: Making the Game Playable

if (logActive)

{
spritelLog.setPosition(
spriteLog.getPosition().x +
(logSpeedX * dt.asSeconds()),
spriteLog.getPosition().y +
(logSpeedY * dt.asSeconds()));
if (spriteLog.getPosition().x < -100 ||
spritelLog.getPosition().x > 2000)
{
logActive = false;
spriteLog.setPosition(810, 720);
}
}

The code sets the position of the sprite by getting its current horizontal and vertical location with
getPosition and then adding to it using logSpeedX and logSpeedyY, respectively, multiplied by

dt.asSeconds.

After the log sprite has been moved to each frame, the code uses an if block to see if the sprite
has disappeared out of view on either the left or the right. If it has, the log is moved back to its
starting point, ready for the next chop.

If you run the game, you will be able to see the log flying off to the appropriate side of the screen.

Chapter 5 167

Figure 5.2: Flying log

Now for a more sensitive subject. Let’s see how we deal with the player losing.

Handling death

Every game must end badly, with either the player running out of time (which we have already
handled) or getting squashed by a branch. The mayfly is an aquatic creature that lives anywhere
between a few hours and a few days. Playing the Timber!!! game is like being a mayfly in a hurry —
you're either running out of time or feeling the branch of destiny squashing your hopes! Our hero
in the Timber!!! game may only last a few seconds, and even an experienced player will struggle

to last more than a few minutes.

Fortunately, detecting the player getting squashed is really simple. All we want to know is whether

the last branch in the branchPositions array equals playerSide. If it does, the player is dead.

Add the highlighted code that detects this, and then we will discuss everything we need to do
when the player is squashed:

if (logActive)
{

spritelog.setPosition(

168 Collisions, Sound, and End Conditions: Making the Game Playable

spritelog.getPosition().x +
(logSpeedX * dt.asSeconds()),

spriteLog.getPosition().y +
(logSpeedY * dt.asSeconds()));

// Has the log reached the right-hand edge?
if (spritelog.getPosition().x < -100 ||
spritelLog.getPosition().x > 2000)

{
// Set it up ready to be a whole new cloud next frame
logActive = false;
spritelog.setPosition(800, 600);

}

// has the player been squished by a branch?
if (branchPositions[5] == playerSide)
{

// death

paused = true;

acceptInput = false;

// Draw the gravestone
spriteRIP.setPosition(525, 760);

// hide the player
spritePlayer.setPosition (2000, 660);

// Change the text of the message
messageText.setString("SQUISHED!!");

Chapter 5 169

FloatRect textRect = messageText.getLocalBounds();

messageText.setOrigin(textRect.left +
textRect.width / 2.0f,
textRect.top + textRect.height / 2.0f);

messageText.setPosition(1920 / 2.0f,
1080 / 2.0f);

The first thing the new code does, after the player’s demise, is set paused to true. Now, the loop
will complete this frame, and it won’t run the update part of the loop again until a new game is

started by the player.

Then, we move the gravestone into a position near where the player was standing and hide the

player’s sprite off-screen.

We set the string of messageText to "Squished!!" and then use the usual technique to center it

on the screen.

170 Collisions, Sound, and End Conditions: Making the Game Playable

You can now run the game and play it for real. This image shows the player’s final score and their

gravestone, as well as the SQUISHED message.

Figure 5.3: Squished

There is just one more problem. No, not that the man has left his axe stuck in the tree. Is it just

me, or is the game a little bit quiet?

Simple sound effects

We will add three sounds. Each sound will be played on a particular game event: a simple thud
sound whenever the player chops, a gloomy losing sound when the player runs out of time, and

aretro crushing sound when the player is squashed to death.

How SFML sound works

SFML plays sound effects using two different classes. The first class is the SoundBuffer class.
This is the class that holds the actual audio data from the sound file. It is SoundBuffer that is
responsible for loading the .wav files into the PC’s RAM, in a format that can be played without

any further decoding work.

When we write code for the sound effects shortly, we will see that once we have a SoundBuffer
object with our sound stored in it, we will then create another object of type Sound. We can then

associate this Sound object with a SoundBuffer object.

Chapter 5 171

Then, at the appropriate moment in our code, we will be able to call the play function of the

appropriate Sound object.

When to play the sounds

As we will see very soon, the C++ code to load and play sounds is really simple. What we need to
consider, however, is when we call the play function. Where in our code will we put the function

calls to play?

e The chop sound can be called from the key presses of the left and right cursor keys.

e The death sound can be played from the if block that detects that a tree has mangled
the player.

e The out-of-time sound can be played from the if block that detects that timeRemaining

is less than zero.

Now, we can write our sound code.

Adding the sound code

First, we add another #include directive to make the SFML sound-related classes available. Add
the highlighted code:

#include <sstream>
#include <SFML/Graphics.hpp>
#tinclude <SFML/Audio.hpp>

using namespace sf;

Now, we declare three different SoundBuffer objects, load three different sound files into them,
and associate three different objects of type Sound with the related objects of type SoundBuffer.
Add the highlighted code:

bool acceptInput = false;

SoundBuffer chopBuffer;
chopBuffer.loadFromFile("sound/chop.wav");
Sound chop;

chop.setBuffer(chopBuffer);

172 Collisions, Sound, and End Conditions: Making the Game Playable

SoundBuffer deathBuffer;
deathBuffer.loadFromFile("sound/death.wav");
Sound death;

death.setBuffer(deathBuffer);

// out of time

SoundBuffer ootBuffer;
ootBuffer.loadFromFile("sound/out_of_time.wav");
Sound outOfTime;

outOfTime.setBuffer(ootBuffer);

while (window.isOpen())

{

Now, we can play our first sound effect. Add the single line of code, as shown next, to the if block
that detects that the player has pressed the right cursor key:

// Wrap the player controls to

// Make sure we are accepting 1input

if (acceptInput)

{

// More code here next...

// First handle pressing the right cursor key
if (Keyboard::isKeyPressed(Keyboard::Right))
{

// Make sure the player 1is on the right
playerSide = side::RIGHT;
score++;

timeRemaining += (2 / score) + .15;

spriteAxe.setPosition(AXE_POSITION_ RIGHT,
spriteAxe.getPosition().y);

spritePlayer.setPosition(1120, 660);

Chapter 5 173

updateBranches(score);

spritelog.setPosition(800, 600);
logSpeedX = -5000;

logActive = true;
acceptInput = false;

chop.play();

Y Add exactly the same code at the end of the next block of code that starts if (Key
; LS board: :isKeyPressed(Keyboard: : Left)) to make a chopping sound when the

player chops on the left-hand side of the tree.

Find the code that deals with the player running out of time, and add the highlighted code shown

here to play the out-of-time-related sound effect:

if (timeRemaining <= 0.f) {

paused = true;
messageText.setString("Out of time!!");

FloatRect textRect = messageText.getlLocalBounds();
messageText.setOrigin(textRect.left +
textRect.width / 2.0f,
textRect.top +
textRect.height / 2.0f);

messageText.setPosition(1920 / 2.0f, 1080 / 2.0f);

174 Collisions, Sound, and End Conditions: Making the Game Playable

outOfTime.play();

}

Finally, to play the death sound when the player is squished, add the highlighted code to the if

block that executes when the bottom branch is on the same side as the player:

if (branchPositions[5] == playerSide)
{

paused = true;

acceptInput = false;

spriteRIP.setPosition(675, 660);

spritePlayer.setPosition(2000, 660);

messageText.setString("SQUISHED!!");
FloatRect textRect = messageText.getlLocalBounds();

messageText.setOrigin(textRect.left +
textRect.width / 2.0f,
textRect.top + textRect.height / 2.0f);

messageText.setPosition(1920 / 2.0f, 1080 / 2.0f);

death.play();

}

If you are having any problems with the sounds not playing, the most likely problem is the sound
files not loading. The way to determine if this is happening is to wrap the code that loads the

sounds in an if block.

Chapter 5 175

First, add the include directive that will allow us to use the cout << function, as we did in Chapter
3 when learning about string concatenation. Here is a reminder of what to add along with the

existing include directives:

#include<iostream>

Now, wrap each loadFromFile function call, as shown here:

if (!chopBuffer.loadFromFile("sound/chop.wav"))
{

std::cout << "didn't load chop.wav";

}

Now, you will get a nice, neat error message telling you if a file didn’t load. If it didn’t load, check

the following:

e Thefileis named exactly as stated in the code, chop.wav.
e Thefileisin the sound folder.

e The sound folder is in the project root folder with the C++ file Timber. cpp.

That’s it! We have finished the first game. Let’s discuss some possible enhancements before we

move on to the second project.

Improving the game and code

Take a look at these suggested enhancements for the Timber!!! project. You can see the enhance-

ments in action in the Runnable folder of the download bundle:

e Speed up the code: There is a part of our code that is slowing down our game. It doesn’t
matter for this simple game, but we can speed things up by putting the sstream code
in a block that only executes occasionally. After all, we don’t need to update the score

thousands of times a second!
e Debugging console: Let’s add some more text so that we can see the current frame rate. As
with the score, we don’t need to update this too often. Once every hundred frames will do.
¢ Addmore treesin the background: Simply add some more tree sprites and draw them in
whatever position looks good (some nearer the camera, and some further away).
e Improve the visibility of the HUD text: We can draw simple RectangleShape objects
behind the score and the FPS counter. Black with a bit of transparency will look quite good.
e Make the cloud code more efficient: As we alluded to a few times already, we can use

our knowledge of arrays to make the cloud code a lot shorter.

176 Collisions, Sound, and End Conditions: Making the Game Playable

Hereis the cloud code using arrays instead of repeating the code three times, once for each cloud:

for (int i = @; 1 < NUM_CLOUDS; i++)

{
clouds[i].setTexture(textureCloud);
clouds[i].setPosition(-300, i * 150);
cloudsActive[i] = false;
cloudSpeeds[i] = 9;

}

In the preceding code, the old, unused code is commented out and the new array-based code
is at the top. Obviously, you would usually delete the unneeded code. I just left it there to show
you. You can view the entire code for the enhanced edition, including the array declaration and

initialization, in the Chapter 5 folder in the file enhanced. cpp.

Chapter 5 177

Take alook at the game in action with extra trees, clouds, and a transparent background for the text:

SCORE = 4 FPS = (1363.6

Figure 5.4: Timber enhanced

To see the code for these enhancements, take a look in the Timber Enhanced Version folder of

the download bundle.

Summary

In this chapter, we added the finishing touches and graphics to the Timber!!! game. If, before this
book, you had never coded a single line of C++, then you can give yourself a big pat on the back.

In just five modest chapters, you have gone from zero knowledge to a working game.

However, we will not be congratulating ourselves for too long because, in the next chapter, we
will move straight on to some slightly more hardcore C++. While the next game, a simple Pong
game, is in some ways simpler than Timber!!! was, what we have learned about writing our own

classes will prepare us to build more complicated and full-featured games.

Frequently asked questions

Q) The array solution for the clouds was more efficient. But do we really need three separate

arrays, one for active, one for speed, and one for the sprite itself?

178 Collisions, Sound, and End Conditions: Making the Game Playable

A) If we look at the properties/variables that various objects have, for example, sprite objects,
we can see that they are numerous. Sprites have a position, color, size, rotation, and much more.
But it would be just perfect if they had active, speed, and perhaps more as well. The problem is
that the coders at SFML can’t possibly predict all the ways that we will want to use their Sprite
class. Fortunately, we can make our own classes. We could make a class called Cloud that has a
Boolean for active and an int for speed. We could even give our Cloud class an SFML Sprite
object. We could then simplify our cloud code even further. We will look at designing our own

classes in the next chapter.

Object-Oriented Programming —
Starting the Pong Game

In this chapter, there’s a little bit of theory, but the theory will give us the knowledge that we
need to start using Object-Oriented Programming (OOP). OOP helps us organize our code into
human-recognizable structures and handle complexity. We will not waste any time in putting
that theory to good use as we will use it to code the next project, a Pong game. We will get to look
behind the scenes at how we can create new C++ types that we can use as objects. We will achieve
this by coding our first class. To get started, we will look at a simplified Pong game scenario so
that we can learn about some class basics, and then we will start again and code a Pong game for

real using the principles we have learned.
In this chapter, we will cover the following topics:
e Object-object programming: Discuss the staples of encapsulation, polymorphism, and
inheritance, and why we would want to use OOP at all
e The theory of a Pong bat: Learn about OOP and classes using a hypothetical Bat class
e Creating the Pong project

e Coding the Bat class: Start working on the Pong game including coding a real Bat class

to represent the player’s bat

e Using the Bat class and coding the main function

The following are our four projects for this book: https://github.com/PacktPublishing/

Beginning-C-Game-Programming-Third-Edition/tree/main/Pong

https://github.com/PacktPublishing/Beginning-C-Game-Programming-Third-Edition/tree/main/Pong
https://github.com/PacktPublishing/Beginning-C-Game-Programming-Third-Edition/tree/main/Pong

180 Object-Oriented Programming — Starting the Pong Game

Object-oriented programming

Object-oriented programming is a programming paradigm that we could consider to be almost
the standard way to code. It is true there are non-OOP ways to code and there are even some
non-OOP game coding languages/libraries. However, since we are starting from scratch, there

is no reason to do things in any other way.
OOP will do the following:

e Make our code easier to manage, change, or update
e Make our code quicker and more reliable to write

e Make it possible to easily use other people’s code (like we have with SFML)
We have already seen the third benefit in action. Now, let’s discuss exactly what OOP is.

OOP is a way of programming that involves breaking our requirements down into chunks that
are more manageable than the whole. Each chunk is self-contained, yet it works with the other
parts of our program. Furthermore, it can also be used by other programs. These chunks are what

we have been referring to as objects.

When we plan and code an object, we do so with a class.

L

',@\' A class can be thought of as the blueprint of an object.

7/

We implement an object of a class. This is called an instance of a class. Think about a house blue-
print. You can’t live in it, but you can build a house from it. You build an instance of the house.
Often, when we design classes for our games, we write them to represent real-world things. In
the next project, we will write classes for a bat that the player controls and a ball that the player

can bounce around the screen with the bat. However, OOP is more than this.

N\ ! 4
_,@\' OOP is a way of doing things, a methodology that defines best practices.

The three core principles of OOP are encapsulation, polymorphism, and inheritance. This might

sound complex but, taken a step at a time, this is reasonably straightforward.

Chapter 6 181

Encapsulation

Encapsulation means keeping the internal workings of your code safe from interference from the
code that uses it. You can achieve this by allowing only the variables and functions you choose
to be accessed. This means your code can always be updated, extended, or improved without
affecting the programs that use it, provided the exposed parts are still accessed in the same way.
C++ achieved encapsulation with the use of the public and private keywords. We will see these

in action soon.

As an example, with proper encapsulation, it wouldn’t matter if the SFML team needed to update
the way their Sprite class works. If the function signatures remain the same, they don’t have to
worry about what goes on inside. The code that we wrote before the update will still work after

the update.

OOP doesn’t eliminate the need for careful planning before we write our code; instead, encapsu-
lation provides a way to structure code that can potentially make our planning more successful.

This is even more the case if we are working as a team.

Polymorphism

Polymorphism allows us to write code that is less dependent on the types we are trying to ma-
nipulate. This will make our code clearer and more efficient. Polymorphism means different forms.
If the objects that we code can be more than one type of thing, then we can take advantage of
this. Polymorphism might sound a little bit like black magic at this point. The classic example
of polymorphism is the relationship between different animals in the animal kingdom. What if
we are making a zoo game and we make a whole bunch of arrays, functions, and variables for
the elephants? Quite quickly, it becomes apparent that we now need to write arrays, functions,
and variables for lions, then tigers, etc. What if we could write one set of arrays, functions, and
variables that worked with all animals? With polymorphism, we can write for a generic animal
object and use it with all our zoo-based classes. We will use polymorphism in the final project,

and everything will become clearer.

Inheritance

Justlike it sounds, inheritance means we can harness all the features and benefits of other people’s
classes, including encapsulation and polymorphism, while further refining their code specifically
to our situation. If we were writing a countryside simulator, we could probably make use of the
animal-based code from the zoo game. We will use inheritance for the first time at the same time

as we use polymorphism.

182 Object-Oriented Programming — Starting the Pong Game

Why use OOP?

When written properly, OOP allows you to add new features without worrying about how they
interact with existing features. When you do have to change a class, its self-contained (encap-

sulated) nature means less or perhaps even zero consequences for other parts of the program.

You can use other people’s code (like the SFML classes) without knowing or perhaps even caring

about how it works inside.

OOP (and, by extension, SFML) allows you to write games that use complicated concepts such
as multiple cameras, multiplayer, OpenGL, directional sound, and more besides—all of this

without breaking a sweat.

You can create multiple similar yet different versions of a class without starting the class from

scratch by using inheritance.

You can still use the functions intended for the original type of object with your new object be-

cause of polymorphism.

All this makes sense really and means that we have loads more time to concentrate on the unique
aspects of our own programs. And as we know, C++ was designed from the start with all this
OOP in mind.

The ultimate key to success with OOP and making games (or any other type of app),
other than the determination to succeed, is planning and design. It is not so much
just “knowing” all the C++, SFML, and OOP topics that will help you to write great
code but, rather, applying all that knowledge to write code that is well structured/
designed. The code in this book is presented in an order and manner that’s appro-
VA priate for learning about the various C++ topics in a gaming context. The art and
science of structuring your code is called design patterns. As your code gets longer
and more complex, effective use of design patterns will become more important. The
good news is that we don’t need to invent these design patterns ourselves. We will
need to learn about them as our projects get more complex. As our projects become

more complex, our design patterns will evolve too.

In this project, we will learn about and use basic classes and encapsulation. As this book pro-
gresses, we will get a bit more daring and use inheritance, polymorphism, and other OOP-related

C++ features too.

Chapter 6 183

What exactly is a class?

A class is a bunch of code that can contain functions, variables, loops, and all the other C++ syn-
tax we have already learned about. Each new class will be declared in its own . h code file with
the same name as the class, while its functions will be defined in their own . cpp file. The syntax
we will apply to the definitions in the . cpp file will make it clear that they are part of the class
declared in the . hfile.

N When we use a function in a class, it is a specialized type of function often referred

',@\' to as a method. For simplicity, I will continue to refer to all functions as functions,

but you could call the functions of our classes methods if you wish.

Once we have written a class, we can use it to make as many objects from it as we want. Remem-
ber, the class is the blueprint, and we make objects based on the blueprint. The house isn’t the

blueprint, just like the object isn’t the class. It is an object made from the class.

N

_,@\' You can think of an object as a variable and the class as a type.

7/

Of course, with all this talk of OOP and classes, we haven’t actually seen any code. Let’s fix that now.

The theory of a Pong bat

What follows is a hypothetical discussion of how we might use OOP to get started with the
Pong project by coding a Bat class. Don’t add any code to the project just yet as what follows is
over-simplified to explain the theory. Later in this chapter, we will code it for real. When we get
to coding the class for real, it will be different, but the principles we will learn about here will

prepare us for success.

We will begin by exploring variables and functions (or methods) as part of a class.

Declaring the class, variables, and functions

Abatis a real-world thing that has properties, behavior, and a specific appearance. It performs
arole; it bounces a ball when it collides with the ball. A bat that bounces a ball is, therefore, an

excellent first candidate for a class.

184 Object-Oriented Programming — Starting the Pong Game

‘@’ If you don’t know what Pong is, then take alook at this link: https://en.wikipedia.
A org/wiki/Pong.

Let’s take a look at a hypothetical Bat.h file:

class Bat

{

private:

int m_Length

100;

int m_Height = 10;
int m_XPosition;

int m_YPosition;
public:
void moveRight();

void movelLeft();

1

At first glance, the code might appear a little complex, but when it has been explained, we will

see there are very few concepts we haven’t already covered.

The first thing to notice is that a new class is declared using the class keyword followed by the
name of the class and that the entire declaration is enclosed in curly braces followed by a closing

semicolon:

class Bat

{

};

Now, let’s look at the variable declarations and their names:

int m_Length = 100;

https://en.wikipedia.org/wiki/Pong
https://en.wikipedia.org/wiki/Pong

Chapter 6 185

int m_Height = 10;
int m_XPosition;

int m_YPosition;

All the names are prefixed with m_. This m_ prefix is not compulsory, but it is a good convention.
Although this naming convention is not enforced by the C++ language itself, it is widely adopted
in the C++ community for class data members. Variables that are declared as part of the class are
called member variables. Prefixing with an m_ makes it plain when we are dealing with a mem-
ber variable. When we write functions for our classes, we will start to see local (non-member)
variables and parameters as well. Then, the m_ convention will prove itself useful. By adhering
to this convention, you make it immediately apparent that these variables are part of the class,
distinguishing them from local variables or parameters. Different projects, companies, and sys-
tems use different conventions for variable naming but using some kind of prefix for member

variables is an industry best practice.

For example, imagine if you had non-member variables in the same scope without the m_ prefix,
like this:

int Length = 50;
Now, without the m_ prefix, it becomes less clear whether Length is a class member or not. Con-

sistent use of the m_ prefix helps avoid such confusion, contributing to more maintainable and

self-explanatory code.

Also, notice that all the variables are in a section of the code headed with the private keyword.
Scan your eyes over the previous code and note that the body of the class code is separated into

two sections:

private:

public:

186 Object-Oriented Programming — Starting the Pong Game

The public and private keywords control the encapsulation of our class. Anything thatis private
cannot be accessed directly by the user of an instance/object of the class. If you are designing a
class for others to use, you don’t want them to be able to alter anything at will. Note that member
variables do not have to be private, but good encapsulation is achieved by making them private

whenever possible.

This means that our four member variables (m_Length,m_Height,m_XPosition,andm_YPosition)
cannot be accessed directly by our game engine from the main function. They can only be ac-
cessed indirectly by the code of the class. This is encapsulation in action. For the m_Length and
m_Height variables, this is easy to accept as long as we don’t need to change the size of the bat.
Them_XPositionand m_YPosition member variables, however, need to be accessed, or how on

earth will we move the bat?

This problem is solved with the public section of the code, as follows:

void moveRight();

void moveLeft();

The class provides two functions that are public and will be usable with an object of the Bat type.
When we look at the definitions of these functions, we will see how exactly these functions ma-

nipulate the private variables.

In summary, we have a bunch of inaccessible (private) variables that cannot be used from the
main function. This is good because encapsulation makes our code less error-prone and more
maintainable. We then solve the problem of moving the bat by providing indirect access to the

m_XPosition and m_YPosition variables by providing two public functions.

The code in the main function can call the public functions using an instance of the class, but the

code inside the functions controls exactly how the variables are used.

We can visualize this class information as shown in this next image:

Bat

- m_Length: int
- m_Height: int
- m_XPosition: int
- m_YPosition: int

+ moveRight(): void
+ moveleft(): void

Figure 6.1: Information for the Bat class

Chapter 6 187

In the preceding image, the top section represents the class name Bat, and the middle section
contains the class’s member variables, each preceded by a dash (-) to indicate that they are pri-
vate. The bottom section contains the class’s member functions, each preceded by a plus sign (+)
to indicate that they are public. This convention helps quickly convey the access levels of class

members, providing a visual representation of encapsulation in the class.

This format of representing a class is part of the Unified Modeling Language or UML. UML is a
huge topic on its own and beyond the scope of this book but understanding that these conven-
tions exist for representing the design decisions in our C++ code is a good start. You can find out

more about UML at the official website: https://www.uml.org/.

Let’s take a look at the function definitions.

The class function definitions

The function definitions we will write in this book will all go in a separate file to the class and
function declarations. We will use files with the same name as the class and the . cpp file extension.
Remember, this is to keep our code organized as well as to separate the declarations from the
definitions, which can be useful if you want to see what a class does at a glance (the declarations
in the .h file) rather than studying the details (the definitions in the . cpp file). So, for example,
the following code would go into a file called Bat.cpp. Look at the following code, which has

just one new concept:

#include "Bat.h"
void Bat::moveRight()

{

m_XPosition ++;
}
void Bat::movelLeft()
{

m_XPosition --;
}

The first thing to note is that we must use an include directive to include the class and function
declarations from the Bat.h file. This makes the code in the . cpp file aware of the declarations
in the . h file.

https://www.uml.org/

188 Object-Oriented Programming — Starting the Pong Game

The new concept we can see here is the use of the scope resolution operator, : :. Since the functions
belong to a class, we must write the signature part slightly different to a standard non-member
function by prefixing the function name with the class name, as well as : :, for example, void

Bat::movelLeft() and void Bat::moveRight.

In this example, Bat: : before each function name indicates that moveRight and movelLeft are
member functions of the Bat class. It explicitly ties these functions to the class declaration, en-

suring that the compiler associates them correctly during compilation.

This usage of the scope resolution operator also enhances code clarity and avoids naming conflicts,

especially when dealing with multiple classes or functions with similar names.

\/‘/' Actually, we have briefly seen the scope resolution operator before (thatis, whenever

we declare an object of a class) and we have not previously used using namespace. ..

Note that we could have put the function definitions and declarations in one file, like this:

class Bat

{

private:

int m_Length = 100;

int m_Height = 10;

int m_XPosition;

int m_YPosition;

public:
void Bat::moveRight()
{
m_XPosition ++;
}

void Bat::movelLeft()

{

Chapter 6 189

m_XPosition --;

};

However, when our classes get longer (as they will with our first Zombie Arena game), itis more
organized to separate the function definitions into their own file. Furthermore, header files are
considered public and are often used for documentation purposes if other people will be using

the code that we write.

But how do we use a class once we have coded it?

Using an instance of a class

Despite all the code we have seen related to classes, we haven’t actually used a class. We already
know how to do this as we have used the SFML classes many times already.

First, we would create an instance of the Bat class, like this:

Bat bat;

The bat object has all the variables we declared in Bat. h. We just can’t access them directly. We

can, however, move our bat using its public functions, like this:

bat.moveLeft();

Or we can move it like this:

bat.moveRight();

Remember that bat is a Bat and, as such, it has all the member variables and all of the functions

available to it.

Later, we may decide to make our Pong game multiplayer. In the main function, we could change

the code so that the game has two bats, perhaps like this:

Bat bat;
Bat bat2;

It is vitally important to realize that each of these instances of Bat is a separate object with its
very own set of variables, just as our player sprite, tree, bee, and axe sprites were all individual
instances of the SFML Sprite class. There are more ways to initialize an instance of a class, and

we will see an example of this when we code the Bat class for real next.

190 Object-Oriented Programming — Starting the Pong Game

Creating the Pong project

Since setting up a project s a fiddly process, we will go through it step by step, like we did for the
Timber!!! project. I won’t show you the same screenshots that I did for the Timber!!! project, but
the process is the same, so flip back to Chapter 1, Welcome to Beginning C++ Game Programming

Third Edition!, if you want a reminder of the locations of the various project properties:

1. Start Visual Studio and click on the Create New Project button. Or, if you still have the
Timber!!! project open, you can select File | New project.

2. Inthewindow thatappears, choose Console app and click the Next button. You will then
see the Configure your new project window.

3. In the Configure your new project window, type Pong in the Project name field. Note
that this causes Visual Studio to automatically configure the Solution name field so that
it has the same name.

4. IntheLocation field, browse to the VS Projects folder that we created in Chapter 1. This

will be the location where all our project files will be kept.

5. Check the option Place solution and project in the same directory.

6. When you have completed these steps, click Create. The project is generated by Visual
Studio, including some C++ code in the main.cpp file.

7. We will now configure the project to use the SFML files that we put in the SFML folder.
From the main menu, select Project | Pong properties.... At this stage, you should have
the Pong Property Pages window open.

8. Inthe Pong Property Pages window, select All Configurations from the Configuration

dropdown and make sure the Platform dropdown is set to Win32.
9. Now), select C/C++ and then General from the left-hand menu.

10. After this, locate the Additional Include Directories edit box and type the drive letter
where your SFML folder is located, followed by \SFML\include. The full path to type, if
you located your SFML folder on your D: drive, is D: \SFML\include. Change your path if
you installed SFML on a different drive.

11. Click Apply to save your configurations so far.

12. Now), still in the same window, perform these steps. From the left-hand menu, select

Linker and then General.

Chapter 6 191

13. Now, find the Additional Library Directories edit box and type the drive letter where
your SFML folder is, followed by \SFML\1ib. So, the full path to type if you located your
SFML folder on your D: drive is D: \SFML\1ib. Change your path if your SFML files are on

a different drive.
14. Click Apply to save your configurations so far.

15. Next, still in the same window, perform these steps. Switch the Configuration dropdown
to Debug as we will be running and testing Pong in debug mode.

16. Select Linker and then Input.

17. Find the Additional Dependencies edit box and click on it on the far left-hand side. Now,
copy and paste/type in the following: sfml-graphics-d.lib;sfml-window-d.1lib;sfml-
system-d.lib;sfml-network-d.lib;sfml-audio-d.lib;. Be extra careful to place the
cursor exactly at the start of the edit box’s current content so that you don’t overwrite
any of the text that is already there.

18. Click OK.

19. Click Apply and then OK.

20. On the main Visual Studio window, next to the Debug dropdown, make sure that x86 is
selected, not x64.

21. Now, we need to copy the SFML . d11 files into the main project directory. My main project
directory is D: \VS Projects\Pong. It was created by Visual Studio in the previous steps.
If you put your VS Projects folder somewhere else, then perform this step there instead.
The files we need to copy into the project folder are located in our SFML\bin folder. Open
a window for each of the two locations and highlight all the files in the SFML\bin folder.

22. Now, copy and paste the highlighted files into the project folder, thatis,D:\VS Projects\
Pong.

We now have the project properties configured and ready to go.

We will be displaying some text for a Heads Up Display (HUD) in this game that will show the

player’s score and remaining lives. For this, we need a font.

Download this free-for-personal-use font from http://www.dafont.com/theme.
)

4

php?cat=302 and unzip the download. Or feel free to use a font of your choice. You

will just need to make some minor changes to the code when we load the font.

http://www.dafont.com/theme.php?cat=302
http://www.dafont.com/theme.php?cat=302

192 Object-Oriented Programming — Starting the Pong Game

Create a new folder called fonts in the VS Projects\Pong folder and add the DS-DIGIT.ttf file
to the VS Projects\Pong\fonts folder.

We are now ready to code our first C++ class.

Coding the Bat class

The simple Pong bat example was a good way of introducing the basics of classes. Classes can be
simple and short, like the preceding Bat class, but they can also be longer and more complicated
and contain other objects made from other classes. Furthermore, there are additional new con-
ceptsregarding classes that we will learn about. We will also see and code a constructor function

that sets up our instances ready for use.

When it comes to making games, there are a few vital things missing from the hypothetical Bat
class. It might be fine for all these private member variables and public functions, but how will
we draw anything? Our Pong bat needs a sprite, and in some games, our classes will also need a
texture. Furthermore, we need a way to control the rate of animation of all our game objects, just
like we did with the bee and the clouds in the previous project. We can include other objects in
our class in the same way that we included them in the main. cpp file. Let’s code our Bat class for

real so that we can see how we can solve all these issues.

Coding Bat.h

To get started, we will code the header file. Right-click on Header Files in the Solution Explorer
window and select ADD | New Item. Next, choose the Header File (.h) option and name the new
file Bat. h. Click the Add button. We are now ready to code the file.

Add the following code to Bat . h:

#pragma once

#include <SFML/Graphics.hpp>
using namespace sf;

class Bat

{

private:

Vector2f m_Position;

RectangleShape m_Shape;
float m_Speed = 1000.0T;
bool m_MovingRight = false;

Chapter 6 193

bool m_MovingLeft = false;
public:
Bat(float startX, float startY);
FloatRect getPosition();
RectangleShape getShape();
void movelLeft();
void moveRight();
void stopLeft();
void stopRight();
void update(Time dt);
¥

First, note the #pragma once declaration at the top of the file. This prevents the file from being
processed by the compiler more than once. As our games get more complicated with perhaps

dozens of classes, this will speed up compilation time.

Note the names of the member variables and the parameters and return types of the functions.
We have a Vector2f called m_Position, which will hold the horizontal and vertical position of
the player’s bat. We also have an SFML RectangleShape, which will visually represent the bat
that appears on the screen. The RectangleShape and Sprite classes are both part of the SFML
graphics module and are used for rendering objects on the screen. RectangleShape is primarily
used for rendering simple rectangles or squares, whereas Sprite is used for rendering textured

images. As a Pong bat is a simple white rectangle, I have opted for the RectangleShape option.

There are two Boolean members that will track which direction, if any, the batis currently moving
in, and we have a float called m_Speed that tells us the number of pixels per second at which the

bat can move when the player decides to move it left or right.

The next part of the code needs some explanation since we have a function called Bat; this is the

exact same name as the class. This is called a constructor.

Constructor functions

As a refresher, when a class is coded, a special function is created by the compiler. We don’t see
this function in our code, but it is there. It is called a constructor. The constructor is provided
behind the scenes by the compiler. It is the function that would have been called if we used our

hypothetical Bat class example.

194 Object-Oriented Programming — Starting the Pong Game

When we need to write some code to prepare an object for use, a good place to do this is often
in the constructor. When we want the constructor to do anything other than simply create an
instance, we must replace the default (unseen) constructor provided by the compiler. This is

what we will do with the Bat constructor function.

Notice that the Bat constructor takes two float parameters. Here is the declaration again for

convenience:

Bat(float startX, float startY);

This is perfect for initializing the position on the screen when we first create a Bat object. Also

note that constructors have no return type, not even void.

We will soon use the constructor function, Bat, and an initializer list to put this game object into
its starting position. Remember that this function is called at the time that an object of the Bat

type is declared.

Continuing with the Bat.h explanation

Next is the getPosition function, which returns a FloatR