

Beginning C++ Game
Programming
Third Edition

Learn C++ from scratch by building fun games

John Horton

Beginning C++ Game Programming
Third Edition

Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Senior Publishing Product Manager: Larissa Pinto
Acquisition Editor – Peer Reviews: Jane Dsouza
Project Editor: Meenakshi Vijay
Content Development Editor: Shikha Parashar
Copy Editor: Safis Editing
Technical Editor: Simanta Rajbangshi
Proofreader: Safis Editing
Indexer: Hemangini Bari
Presentation Designer: Rajesh Shirsath
Developer Relations Marketing Executive: Sohini Ghosh

First published: October 2016
Second edition: October 2019
Third edition: May 2024

Production reference: 1240524

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK.

ISBN 978-1-83508-174-7

www.packt.com

http://www.packt.com

Contributors

About the author
John Horton is a programming and gaming enthusiast based in the UK.

Dedicated to two brothers, Ray and Barry, for your guidance, example, and support.

About the reviewer
Yoan Rock is a 26-year-old developer with over 4 years of experience in the gaming industry.

With a background in C++ software engineering, Yoan’s expertise lies in C++ programming within

the gaming industry, particularly in utilizing Unreal Engine and sometimes Blueprints to create

immersive experiences.

During his tenure at Limbic Studio, Yoan contributed significantly to the development of Park Be-

yond, an AAA-released game where players create and manage their own theme park. He excelled in

gameplay development, bug fixing, and fostering effective communication among team members.

Yoan later collaborated with Chillchat on Primorden, a multiplayer project using Unreal Engine 5

and the Game play Ability system, where he played a key role in implementing game mechanics,

monster abilities, and AI behavior trees.

At Game Atelier, Yoan led UI development for an unannounced project, showcasing his proficiency

in crafting immersive user experiences using Unreal Engine 5.3, Common UI, and, of course, UMG.

Currently, Yoan is part of an exciting project with Blacksheep, contributing to an ambitious, un-

announced venture. Always eager to innovate, Yoan stays updated with industry trends and is

exploring Unreal Engine 5.3 for personal projects.

Table of Contents

Preface � xx

Chapter 1: Welcome to Beginning C++ Game Programming Third Edition! � 1

The games we will build �� 2

Timber!!! • 2

Pong • 3

Zombie Arena • 4

Platform game • 4

Why you should learn game programming using C++ in 2024 ��� 5

SFML • 7

Microsoft Visual Studio • 8

What about Mac and Linux? • 10

Installing Visual Studio 2022 • 10

Setting up SFML ��� 12

Creating a new project in Visual Studio 2022 ��� 14

Configuring the project properties • 18

Planning Timber!!! ��� 20

The project assets ��� 23

Making your own sound FX • 24

Adding the assets to the project • 24

Exploring the assets • 24

Understanding screen and internal coordinates �� 25

Table of Contentsvi

Getting started with coding the game �� 28

Making code clearer with comments • 28

The main function • 28

Presentation and syntax • 29

Returning values from a function • 30

Running the game • 31

Opening a window using SFML �� 31

Including SFML features • 32

OOP, classes, and objects • 32

Using namespace sf • 34

SFML VideoMode and RenderWindow • 34

Running the game • 35

The game loop ��� 36

while loops • 37

C-style code comments • 38

Input, update, draw, repeat • 38

Detecting a key press • 39

Clearing and drawing the scene • 39

Running the game • 40

Drawing the game’s background ��� 40

Preparing the sprite using a texture • 40

Double buffering the background sprite • 42

Running the game • 43

Handling errors �� 44

Configuration errors • 44

Compile errors • 44

Link errors • 45

Bugs • 45

Summary ��� 45

Frequently asked questions ��� 45

Table of Contents vii

Chapter 2: Variables, Operators, and Decisions: Animating Sprites � 47

Learning all about C++ variables �� 48

Types of variables • 48

User-defined types • 50

Declaring and initializing variables • 50

Declaring variables • 50

Initializing variables • 51

Declaring and initializing in one step • 51

Constants • 52

Uniform initialization • 52

Declaring and initializing user-defined types • 53

Seeing how to manipulate the variables �� 54

C++ arithmetic and assignment operators • 54

Getting things done with expressions • 55

Assignment • 55

Increment and decrement • 57

Adding clouds, a buzzing bee, and a tree �� 59

Preparing the tree • 59

Preparing the bee • 61

Preparing the clouds • 62

Drawing the tree, the bee, and the clouds • 64

Random numbers �� 65

Generating random numbers in C++ • 66

Making decisions with if and else �� 67

Logical operators • 67

C++ if and else • 69

If they come over the bridge, shoot them! • 69

Else do this instead • 69

Reader challenge • 71

Table of Contentsviii

Timing ��� 72

The frame rate problem • 72

The SFML frame rate solution • 73

Moving the clouds and the bee ��� 76

Giving life to the bee • 76

Blowing the clouds • 80

Summary ��� 86

Frequently Asked Questions �� 86

Chapter 3: C++ Strings, SFML Time: Player Input and HUD � 89

Pausing and restarting the game �� 89

C++ strings ��� 93

Declaring strings • 93

Assigning a value to strings • 93

String Concatenation • 94

Getting the string length • 94

Manipulating strings another way with StringStream • 95

SFML Text and SFML Font • 96

Adding a score and a message �� 97

Adding a time-bar �� 104

Summary �� 110

Frequently asked questions ��� 111

Chapter 4: Loops, Arrays, Switch, Enumerations, and Functions: Implementing
Game Mechanics � 113

Loops �� 114

while loops • 114

Breaking out of a loop • 117

for loops • 119

Arrays �� 121

Declaring an array • 121

Table of Contents ix

Initializing the elements of an array • 122

Quickly initializing the elements of an array • 122

What do these arrays really do for our games? • 123

Making decisions with switch �� 124

Class enumerations ��� 126

Getting started with functions �� 129

Who designed all this weird and frustrating syntax and why is it the way it is? • 131

Function return types • 133

Function names • 137

Function parameters • 138

The function body • 139

Function prototypes • 139

Organizing functions • 140

Function scope • 140

A final word on functions – for now • 141

Growing the branches ��� 142

Preparing the branches • 143

Updating the branch sprites in each frame • 144

Drawing the branches • 146

Moving the branches • 147

Summary ��� 150

Frequently asked questions ��� 150

Chapter 5: Collisions, Sound, and End Conditions: Making the Game
Playable � 153

Preparing the player (and other sprites) ��� 153

Drawing the player and other sprites �� 155

Handling the player’s input �� 156

Handling setting up a new game • 158

Detecting the player chopping • 159

Detecting a key being released • 163

Table of Contentsx

Animating the chopped logs and the axe • 165

Handling death ��� 167

Simple sound effects �� 170

How SFML sound works • 170

When to play the sounds • 171

Adding the sound code • 171

Improving the game and code ��� 175

Summary �� 177

Frequently asked questions �� 177

Chapter 6: Object-Oriented Programming – Starting the Pong Game � 179

Object-oriented programming ��� 180

Encapsulation • 181

Polymorphism • 181

Inheritance • 181

Why use OOP? • 182

What exactly is a class? • 183

The theory of a Pong bat �� 183

Declaring the class, variables, and functions • 183

The class function definitions • 187

Using an instance of a class • 189

Creating the Pong project ��� 190

Coding the Bat class �� 192

Coding Bat.h • 192

Constructor functions • 193

Continuing with the Bat.h explanation • 194

Coding Bat.cpp • 195

Using the Bat class and coding the main function �� 198

Summary ��� 203

Frequently asked questions ��� 203

Table of Contents xi

Chapter 7: AABB Collision Detection and Physics – Finishing
the Pong Game � 205

Coding the Ball class �� 206

Using the Ball class �� 209

Collision detection and scoring ��� 211

Running the game ��� 214

Learning about the C++ spaceship operator �� 215

Summary �� 216

Frequently asked questions �� 217

Chapter 8: SFML Views – Starting the Zombie Shooter Game � 219

Planning and starting the Zombie Arena game �� 220

Creating a new project • 221

The project assets • 223

Exploring the assets • 224

Adding the assets to the project • 225

OOP and the Zombie Arena project �� 225

Building the player – the first class �� 226

Coding the Player class header file • 227

Coding the Player class function definitions • 233

Controlling the game camera with SFML View �� 243

Starting the Zombie Arena game engine �� 245

Managing the code files ��� 249

Starting to code the main game loop ��� 251

Summary �� 261

Frequently asked questions �� 261

Chapter 9: C++ References, Sprite Sheets, and Vertex Arrays � 263

Understanding C++ references ��� 264

Summarizing references • 267

Table of Contentsxii

SFML vertex arrays and sprite sheets ��� 267

What is a sprite sheet? • 268

What is a vertex array? ��� 270

Building a background from tiles • 270

Building a vertex array • 271

Using the vertex array to draw • 272

Creating a randomly generated scrolling background �� 273

Using the background �� 280

Summary ��� 283

Frequently asked questions ��� 283

Chapter 10: Pointers, the Standard Template Library, and Texture Management �
285

Learning about pointers �� 285

Pointer syntax • 286

Declaring a pointer • 287

Initializing a pointer • 288

Reinitializing pointers • 289

Dereferencing a pointer • 290

Pointers are versatile and powerful • 292

Dynamically allocated memory • 292

Passing a pointer to a function • 294

Declaring and using a pointer to an object • 295

Pointers and arrays • 295

Summary of pointers • 296

Learning about the Standard Template Library ��� 297

What is a vector? • 298

Declaring a vector • 298

Adding data to a vector • 298

Accessing data in a vector • 299

Removing data from a vector • 299

Table of Contents xiii

Checking the size of a vector • 299

Looping/iterating through the elements of a vector • 299

What is a map? • 300

Declaring a map • 300

Adding data to a map • 301

Finding data in a map • 301

Removing data from a map • 301

Checking the size of a map • 301

Checking for keys in a map • 302

Looping/iterating through the key-value pairs of a map • 302

The auto keyword • 303

STL summary • 303

Summary ��� 303

Frequently asked questions ��� 304

Chapter 11: Coding the TextureHolder Class and Building a Horde of Zombies �
305

Implementing the TextureHolder class �� 305

Coding the TextureHolder header file • 306

Coding the TextureHolder function definitions • 307

What have we achieved with TextureHolder? • 310

Building a horde of zombies ��� 310

Coding the Zombie.h file • 310

Coding the Zombie.cpp file • 313

Using the Zombie class to create a horde • 318

Bringing the horde to life (or back to life) • 322

Using the TextureHolder class for all textures �� 327

Changing the way the background gets its textures • 327

Changing the way the Player class gets its texture • 328

Summary ��� 329

Frequently asked questions ��� 329

Table of Contentsxiv

Chapter 12: Collision Detection, Pickups, and Bullets � 331

Coding the Bullet class ��� 332

Coding the Bullet header file • 332

Coding the Bullet source file • 335

Coding the shoot function • 335

Calculating the gradient in the shoot function • 338

Making the gradient positive in the shoot function • 338

Calculating the ratio between X and Y in the shoot function • 338

Finishing the shoot function explanation • 339

More bullet functions • 340

The Bullet class’s update function • 340

Making the bullets fly ��� 341

Including the Bullet class • 342

Control variables and the bullet array • 342

Reloading the gun • 343

Shooting a bullet • 345

Updating the bullets in each frame • 347

Drawing the bullets in each frame • 347

Giving the player a crosshair • 348

Coding a class for pickups �� 352

Coding the Pickup header file • 352

Coding the Pickup class function definitions • 355

Using the Pickup class �� 360

Detecting collisions ��� 364

Has a zombie been shot? • 365

Has the player been touched by a zombie? • 368

Has the player touched a pickup? • 369

Summary ��� 370

Frequently asked questions ��� 370

Table of Contents xv

Chapter 13: Layering Views and Implementing the HUD � 371

Adding all the Text and HUD objects ��� 371

Updating the HUD ��� 375

Drawing the HUD, home, and level-up screens �� 378

Summary ��� 381

Chapter 14: Sound Effects, File I/O, and Finishing the Game � 383

Saving and loading the high score �� 383

Preparing sound effects ��� 386

Allowing the player to level up and spawning a new wave ��� 387

Restarting the game ��� 390

Playing the rest of the sounds ��� 391

Adding sound effects while the player is reloading • 391

Making a shooting sound • 392

Playing a sound when the player is hit • 392

Playing a sound when getting a pickup • 393

Making a splat sound when a zombie is shot • 394

Summary ��� 395

Frequently asked questions ��� 395

Chapter 15: Run! � 397

About the game �� 398

Creating the project ��� 401

Coding the main function �� 403

Handling input ��� 408

Coding the Factory class ��� 413

Advanced OOP: inheritance and polymorphism ��� 415

Inheritance • 415

Extending a class • 416

Polymorphism • 418

Abstract classes: virtual and pure virtual functions • 419

Table of Contentsxvi

Design patterns ��� 421

Entity Component System pattern ��� 422

Why lots of diverse object types are hard to manage • 422

Using a generic GameObject for better code structure • 422

Prefer composition over inheritance • 424

Factory pattern • 426

C++ smart pointers • 428

Shared pointers • 428

Unique pointers • 430

Casting smart pointers • 431

Coding the GameObject class • 432

Coding the Component class • 435

Coding the Graphics class • 436

Coding the Update class • 438

Running the code • 439

What next? • 439

Summary ��� 440

Chapter 16: Sound, Game Logic, Inter-Object Communication, and the Player �
441

Coding the SoundEngine class ��� 442

Code the Game logic �� 445

Coding the LevelUpdate class • 446

Coding the player: Part 1 �� 459

Coding the PlayerUpdate class • 460

Coding the PlayerGraphics class • 464

Coding the factory to use all our new classes ��� 470

Remembering the texture coordinates • 470

Running the game �� 474

Summary ��� 475

Table of Contents xvii

Chapter 17: Graphics, Cameras, Action � 477

Cameras, draw calls, and SFML View ��� 477

Coding the camera classes ��� 479

Coding the CameraUpdate class • 479

Coding the CameraGraphics class part 1 • 484

The SFML View class • 488

Coding the CameraGraphics class part 2 • 490

Adding camera instances to the game �� 495

Running the game �� 498

Summary ��� 499

Chapter 18: Coding the Platforms, Player Animations, and Controls � 501

Coding the platforms ��� 501

Coding the PlatformUpdate class • 502

Coding the update function for the PlatformUpdate class • 504

Coding the PlatformGraphics class • 508

Building some platforms in the factory • 511

Running the game ��� 512

Adding functionality to the player �� 513

Coding the player controls • 514

Running the game �� 520

Coding the Animator class �� 521

Coding the player animations �� 524

Running the game �� 533

Summary ��� 534

Chapter 19: Building the Menu and Making It Rain � 535

Building an interactive menu ��� 536

Coding the MenuUpdate class • 536

Coding the MenuGraphics class • 543

Building a menu in the factory • 548

Table of Contentsxviii

Running the game �� 550

Making it rain ��� 551

Coding the RainGraphics class • 551

Making it rain in the factory • 556

Running the game �� 558

Summary ��� 558

Chapter 20: Fireballs and Spatialization � 559

What is spatialization? ��� 559

Emitters, attenuation, and listeners • 560

Handling spatialization using SFML �� 560

Upgrading the SoundEngine class �� 563

Fireballs ��� 565

Coding the FireballUpdate class • 565

Coding the FireballGraphics class • 574

Coding FireballGraphics.h • 575

Coding FireballGraphics.cpp • 576

Building some fireballs in the factory • 580

Running the code ��� 582

Summary ��� 582

Chapter 21: Parallax Backgrounds and Shaders � 583

Learning about OpenGL, shaders, and GLSL �� 583

The programmable pipeline and shaders • 584

Coding a hypothetical fragment shader • 585

Coding a hypothetical vertex shader • 586

Finishing the CameraGraphics class �� 587

Breaking up the new draw code • 591

Coding a shader for the game ��� 595

Running the completed game �� 595

Summary ��� 596

Table of Contents xix

Further reading �� 597

Why subscribe? �� 599

Other Books You May Enjoy � 601

Index � 607

Preface

Always dreamed of creating your own games? With the third edition of Beginning C++

Game Programming, you can turn that dream into reality! This beginner-friendly guide

is updated and improved to include the latest features of VS 2022, SFML, and modern

C++20 programming techniques. You will get a fun introduction to game programming

by building four fully playable games of increasing complexity. You’ll build clones of pop-

ular games such as Timberman, Pong, a Zombie survival shooter, and an endless runner.

The book starts by covering the basics of programming. You’ll study key C++ topics, such

as object-oriented programming (OOP) and C++ pointers, and get acquainted with the

Standard Template Library (STL). The book helps you learn about collision detection

techniques and game physics by building a Pong game. As you build games, you’ll also

learn exciting game programming concepts such as vertex arrays, directional sound (spa-

tialization), OpenGL programmable shaders, spawning objects, and much more. You’ll

dive deep into game mechanics and implement input handling, levelling up a character,

and simple enemy AI. Finally, you’ll explore game design patterns to enhance your C++

game programming skills.

By the end of the book, you’ll have gained the knowledge you need to build your own

games with exciting features from scratch.

Who this book is for
This book is perfect for you if you have no C++ programming knowledge, you need a be-

ginner-level refresher course, or you want to learn how to build games or just use games

as an engaging way to learn C++.

Prefacexxii

Whether you aspire to publish a game (perhaps on Steam) or just want to impress friends with

your creations, you’ll find this book useful.

What this book covers
Chapter 1, Welcome to Beginning C++ Game Programming, Third Edition: This chapter outlines the

journey to writing exciting games for PC using C++ and the OpenGL powered SFML. This third

edition has an overwhelming focus on improving and expanding upon what you will learn in game

programming. All the C++ basics from variables in the beginning, through loops, object-oriented

programming, the Standard Template Library, SFML features, and newer C++ possibilities, have

been added to and expanded upon. By the end of this book, you will not only have four playable

games but also have a deep and solid grounding in C++.

Chapter 2, Variables, Operators, and Decisions: Animating Sprites: In this chapter, we will do quite

a bit more drawing on the screen. We will animate some clouds that travel at a random height

and a random speed across the background and a bee that does the same in the foreground. To

achieve this, we will need to learn some more of the basics of C++. We will be learning how C++

stores data with variables as well as how to manipulate those variables with the C++ operators

and how to make decisions that branch our code on different paths based on the value of variables.

Once we have learned all this, we will be able to reuse our knowledge about the SFML Sprite

and Texture classes to implement our cloud and bee animations.

Chapter 3, C++ Strings, SFML Time, Player Input, and HUD: In this chapter, we will spend around half

the time learning how to manipulate text and display it on the screen and the other half looking at

timing and how a visual time bar can inform the player and create a sense of urgency in the game.

Chapter 4, Loops, Arrays, Switch, Enumerations, and Functions – Implementing Game Mechanics: This

chapter probably has more C++ information than any other chapter in the book. It is packed with

fundamental concepts that will move our understanding on enormously. It will also begin to

shed light on some of the murky areas we have been skipping over a little bit, like functions, the

game loop, and loops in general.

Chapter 5, Collisions, Sound, and End Conditions: Making the Game Playable: This is the final phase

of the first project. By the end of this chapter, you will have your first completed game. Once you

have Timber!!! up and running, be sure to read the last section of this chapter as it will suggest

ways to make the game better. Here is what we will cover in this chapter: adding the rest of the

sprites, handling the player input, animating the flying log, handling death, adding sound effects,

adding features, and improving Timber!!!.

Preface xxiii

Chapter 6, Object-Oriented Programming – Starting the Pong Game: In this chapter, there’s a little bit

of theory, but the theory will give us the knowledge that we need to start using object-oriented

programming (OOP). OOP helps us organize our code into human-recognizable structures and

handle complexity. We will not waste any time in putting that theory to good use as we will use

it to code the next project, a Pong game. We will get to look behind the scenes at how we can

create new C++ types that we can use as objects. We will achieve this by coding our first class.

To get started, we will look at a simplified Pong game scenario so that we can learn about some

class basics, and then we will start again and code a Pong game for real using the principles we

have learned.

Chapter 7, AABB Collision Detection and Physics – Finishing the Pong Game: In this chapter, we will

code our second class. We will see that although the ball is obviously quite different from the

bat, we will use the exact same techniques to encapsulate the appearance and functionality of

a ball inside a Ball class, just like we did with the bat and the Bat class. We will then add the

finishing touches to the Pong game by coding some collision detection and scorekeeping. This

might sound complicated but as we are coming to expect, SFML will make things much easier

than they otherwise would be.

Chapter 8, SFML Views – Starting the Zombie Shooter Game: In this project, we will be making even

more use of OOP, and to a powerful effect. We will also be exploring the SFML View class. This

versatile class will allow us to easily divide our game up into layers for different aspects of the

game. In the Zombie Shooter project, we will have a layer for the HUD and a layer for the main

game. This is necessary because the game world expands each time the player clears a wave of

zombies. Eventually, the game world will be bigger than the screen and the player will need to

scroll. The use of the View class will prevent the text of the HUD from scrolling with the background.

Chapter 9, C++ References, Sprite Sheets, and Vertex Arrays: In Chapter 4, Loops, Arrays, Switch, Enu-

merations, and Functions – Implementing Game Mechanics, we talked about scope. This is the concept

that variables declared in a function or inner block of code only have scope (that is, can be seen or

used) in that function or block. Using only the C++ knowledge we have currently, this can cause

a problem. What do we do if we need to work on a few complex objects that are needed in the

main function? This could imply all the code must be in the main function.

In this chapter, we will explore C++ references, which allow us to work on variables and objects

that are otherwise out of scope. In addition to this, these references will help us avoid having to

pass large objects between functions, which is a slow process. It is slow because each time we do

this, a copy of the variable or object must be made.

Prefacexxiv

Armed with this new knowledge of references, we will look at the SFML VertexArray class, which

allows us to build up a large image that can be quickly and efficiently drawn to the screen using

multiple parts in a single image file. By the end of this chapter, we will have a scalable, random,

scrolling background that’s been made using references and a VertexArray object.

Chapter 10, Pointers, the Standard Template Library, and Texture Management: In this chapter, we

will learn a lot as well as get plenty done in terms of the game in this chapter. We will first learn

about the fundamental C++ topic of pointers. Pointers are variables that hold a memory address.

Typically, a pointer will hold the memory address of another variable. This sounds a bit like a

reference, but we will see how they are much more powerful and use a pointer to handle an ev-

er-expanding horde of zombies.

We will also learn about the Standard Template Library (STL), which is a collection of classes

that allow us to quickly and easily implement common data management techniques.

Chapter 11, Coding the TextureHolder Class and Building a Horde of Zombies: Now that we have under-

stood the basics of the STL, we will be able to use that new knowledge to manage all the textures

from the game because if we have 1,000 zombies, we don’t really want to load a copy of a zombie

graphic into the GPU for each and every one.

We will also dig a little deeper into OOP and use a static function, which is a function of a class that

can be called without an instance of the class. At the same time, we will see how we can design

a class to ensure that only one instance can ever exist. This is ideal when we need to guarantee

that different parts of our code will use the same data.

Chapter 12, Collision Detection, Pickups, and Bullets: So far, we have implemented the main visual

aspects of our game. We have a controllable character running around in an arena full of zombies

that chase them. The problem is that they don’t interact with each other. A zombie can wander

right through the player without leaving a scratch. We need to detect collisions between the

zombies and the player.

If the zombies are going to be able to injure and eventually kill the player, it is only fair that we

give the player some bullets for their gun. We will then need to make sure that the bullets can

hit and kill the zombies.

At the same time, if we are writing collision detection code for bullets, zombies, and the player,

it would be a good time to add a class for health and ammo pickups as well.

Preface xxv

Here is what we will do and the order in which we will cover things in this chapter: shooting bul-

lets, adding a crosshair and hiding the mouse pointer, spawning pickups, and detecting collisions

Chapter 13, Layering Views and Implementing the HUD: In this chapter, we will get to see the real

value of SFML Views. We will add a selection of SFML Text objects and manipulate them as we

did before in the Timber!!! project and the Pong project. What’s new is that we will draw the

HUD using a second View instance. This way, the HUD will stay neatly positioned over the top

of the main game action, regardless of what the background, player, zombies, and other game

objects are doing.

Chapter 14, Sound Effects, File I/O, and Finishing the Game: We are nearly done with this project.

This short chapter will demonstrate how we can easily manipulate files stored on the hard drive

using the C++ standard library, and we will also add sound effects. Of course, we know how to

add sound effects, but we will discuss exactly where the calls to the play function will go in the

code. We will also tie up a few loose ends to make the game complete. In this chapter, we will

cover the following topics: saving and loading the hi-score using file input and file output, adding

sound effects, allowing the player to level up, and spawning a new wave.

Chapter 15, Run!: Welcome to the final project. Run, Run is an endless runner where the objective

of the player is to stay ahead of the disappearing platforms that are catching them up from be-

hind. In this project, we will learn loads of new game programming techniques and even more

C++ topics to implement those techniques. Perhaps the best improvement this game will have

over the previous games is that it will be way more object oriented than any of the others. There

will be many, many more classes than any of the preceding projects but most of the code files

for these classes will be short and uncomplicated. Furthermore, we will build a game where the

functionality and appearance of all the in-game objects is pushed out to classes, leaving the main

game loop unchanged regardless of what the GameObjects do. This is powerful because it means

you can make a hugely varied game just by designing new standalone components (classes) that

describe the behavior and appearance of the required game entity. This means you can use the

same code structure for a completely different game of your own design. But there is way more

to come than just this. Read on for details.

Chapter 16, Sound, Game Logic, Inter-Object Communication, and the Player: In this chapter, we will

quickly implement our game’s sound. We have done this before, so it won’t be hard. In fact, in

just half a dozen lines of code, we will also add music to our sound features. Later in the project,

but not in this chapter, we will add directional (spatialized) sound.

Prefacexxvi

In this chapter, we will wrap all our sound-related code into a single class called SoundEngine.

Once we have some noise, we will then move on to get started on the player. We will achieve the

entire player character functionality just by adding two classes: one that extends Update and one

that extends Graphics. This creation of new game objects by extending these two classes will

be how we do almost everything else for the entire game. We will also see the simple way that

objects communicate with each other using pointers.

Chapter 17, Graphics, Camera, Action: In this chapter, we will talk in depth about the way the

graphics will work in this project. As we will be coding the cameras that do the drawing in this

chapter, now seems like a good time to talk about the graphics too. If you looked in the graphics

folder, there is just one graphic. Furthermore we are not calling window.draw at any point in our

code so far. We will discuss why draw calls should be kept to a minimum as well as implement

our Camera classes that will handle this for us. Finally, in this chapter, we will be able to run the

game and see the cameras in action, including the main view, the radar view, and the timer text.

Chapter 18, Coding the Platforms, Player Animations, and Controls: In this chapter, we will code

the platforms and the player animation and controls. In my opinion, we have done the hard

work already and most of what follows has a much higher reward-to-effort ratio. Hopefully this

chapter will be interesting as we will see how the platforms will ground the player and enable

them to run, as well as seeing how we loop through the frames of animation to create a smooth

running effect for the player. We will do the following: coding the platforms, adding functionality

to the player, coding the Animator class, coding the animations, and adding a smooth running

animation to the player.

Chapter 19, Building the Menu and Making It Rain: In this chapter, we will implement two sig-

nificant features. One is a menu screen to keep the player informed of their options for starting,

pausing, restarting, and quitting the game. The other job will be to create a simple raining effect.

You could argue the raining effect isn’t necessary, even that it doesn’t fit the game, but it is easy,

fun, and a good trick to learn. What you should expect by now, and yet is still perhaps the most

interesting aspect of this chapter, is how we will achieve both these objectives by coding classes

derived from Graphics and Update, composing them in GameObject instances, and they will just

work alongside all our other game entities.

Chapter 20, Fireballs and Spatialization: In this chapter, we will be adding all the sound effects and

the HUD. We have done this in two of the previous projects, but we will do things a bit differently

this time. We will explore the concept of sound spatialization and how SFML makes this com-

plicated concept nice and easy. In addition, we will build a HUD class to encapsulate our code

that draws information to the screen.

Preface xxvii

Chapter 21, Parallax Backgrounds and Shaders: This is the last chapter and our last opportunity to

work on our game. It will be fully playable with all the features by the end. Here is what we will

do to wrap up the Run game. We will learn a bit more about OpenGL, shaders, and the Graphics

Library Shading Language (GLSL), finish the CameraGraphics class by implementing a scroll-

ing background and shader, a code a shader by using someone else’s code, and finally run the

completed game

To get the most out of this book
There are no knowledge prerequisites for this book. You do not need to know how to program as

the book takes you from zero knowledge to four playable games. It will help a little if you have

played a few video games and you are determined to learn.

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/

Beginning-C-Game-Programming-Third-Edition. We also have other code bundles from our

rich catalog of books and videos available at https://github.com/PacktPublishing/. Check

them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book.

You can download it here: https://packt.link/gbp/9781835081747.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file

extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “My main

project directory is D:\VS Projects\Timber.”

A block of code is set as follows:

int playerScore = 0;

char playerInitial = 'J';

float valuePi = 3.141f;

bool isAlive = true;

https://github.com/PacktPublishing/Beginning-C-Game-Programming-Third-Edition
https://github.com/PacktPublishing/Beginning-C-Game-Programming-Third-Edition
https://github.com/PacktPublishing/
https://packt.link/gbp/9781835081747

Prefacexxviii

When we wish to draw your attention to a particular part of a code block, the relevant lines or

items are set in bold:

// Make a tree sprite

Texture textureTree;

textureTree.loadFromFile("graphics/tree.png");

Sprite spriteTree;

spriteTree.setTexture(textureTree);

spriteTree.setPosition(810, 0);

while (window.isOpen())

{

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

 /etc/asterisk/cdr_mysql.conf

Bold: Indicates a new term, an important word, or words that you see on the screen. For instance,

words in menus or dialog boxes appear in the text like this. For example: “Select System info from

the Administration panel.”

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of

your message. If you have questions about any aspect of this book, please email us at questions@

packtpub.com.

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface xxix

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do

happen. If you have found a mistake in this book, we would be grateful if you reported this to us.

Please visit http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would

be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you

are interested in either writing or contributing to a book, please visit http://authors.packtpub.

com.

Share your thoughts
Once you’ve read Beginning C++ Game Programming, Third Edition, we’d love to hear your thoughts!

Please click here to go straight to the Amazon review page for this book and share your

feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1835081746

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily.

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781835081747

2.	 Submit your proof of purchase.

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly.

https://packt.link/free-ebook/9781835081747

1
Welcome to Beginning C++
Game Programming Third
Edition!

Let’s get started on your journey to writing exciting games for the PC using C++ and the Open-

GL-powered SFML. This third edition has an overwhelming focus on improving and expanding

upon what you will learn. All the C++ basics from variables in the beginning, through loops,

object-oriented programming, the Standard Template Library, SFML features, and newer C++

possibilities have all been added to and expanded upon. By the end of this book, not only will you

have four playable games but you will also have a deep and solid grounding in C++.

Here is what is coming up in this chapter

•	 First, we will look at the four games we will build across this book. The first game is the

exact same as the previous edition and will help us learn the C++ basics, like variables,

loops, and decision-making. The second and third are enhanced, modified, and refined

from the previous edition, and the fourth is all new and, in my view, way better for playing

and learning than the final two games of the previous edition put together.

•	 This next bit is mportant in which you will discover why you should learn game program-

ming and perhaps any other programming genre using C++. Using C++ to learn game

development can be the best choice for so many reasons.

•	 Then, we can explore SFML and its relationship with C++.

Welcome to Beginning C++ Game Programming Third Edition!2

•	 Nobody likes corporate evangelism, and you won’t get any here, but there are good reasons

to find out about Microsoft Visual Studio and why we will use it in this book.

•	 Next, it’s time to set up the development environment. This is admittedly a slightly dull

affair, but we will get through it in short order, step by step, and when you have done it

once, you will never need to learn it again.

•	 We will then plan and prepare for the first game project, Timber!!!

•	 Moving on, we will write the first C++ code of this book and make a runnable first stage of

the game that draws a pretty background – ooh! In the next chapter, things will advance

and begin to move graphics around and what we learned in this chapter will stand us in

good stead to make faster progress with our first game.

•	 Finally, we will cover how to handle any problems you might get as you learn C++ and

game programming, such as configuration errors, compile errors, link errors, and bugs.

Of course, what you want to know first is what you are going to have to show for yourself by the

end of this weighty tome. So, let’s find out more about the games we will build.

You will find this chapter’s source code in the GitHub repository: https://github.com/

PacktPublishing/Beginning-C-Game-Programming-Third-Edition/tree/main/Timber

The games we will build
This journey will be smooth as we will learn about the fundamentals of the super-fast C++ lan-

guage one step at a time, and then put this new knowledge to use by adding cool features to the

four games we are going to build.

The following are our four projects for this book.

Timber!!!
The first game is an addictive, fast-paced clone of the hugely successful Timberman. Our game,

Timber!!!, will introduce us to all the beginner basics of C++ while we build a genuinely playable

game. Here is what our version of the game will look like when we are done and we have added

a few last-minute enhancements:

https://github.com/PacktPublishing/Beginning-C-Game-Programming-Third-Edition/tree/main/Timber
https://github.com/PacktPublishing/Beginning-C-Game-Programming-Third-Edition/tree/main/Timber

Chapter 1 3

Figure 1.1: Timber game

Timberman can be found at http://store.steampowered.com/app/398710/.

Pong
Pong was one of the first video games ever made. It is an excellent example of how the basics

of game object animation, player input, and collision detection work. We will build a version of

this simple retro game to explore the concept of classes and object-oriented programming. Here

is what it will look like by the end of Chapter 7:

Figure 1.2: Pong game

http://store.steampowered.com/app/398710/

Welcome to Beginning C++ Game Programming Third Edition!4

The player will use the bat at the bottom of the screen and hit the ball back to the top of the screen.

If you are interested, find out about Pong’s history here: https://en.wikipedia.org/wiki/Pong.

Zombie Arena
Next, we will build a frantic, zombie survival shooter, not unlike the Steam hit Over 9,000 Zom-

bies!, which you can find out more about at http://store.steampowered.com/app/273500/. The

player will have a machine gun and must fight off ever-growing waves of zombies. All this will

take place in a randomly generated, scrolling world:

Figure 1.3: Zombie Arena game

To achieve this, we will learn about how object-oriented programming allows us to have a large

code base (lots of code) that is easy to write and maintain. Expect exciting features such as

hundreds of enemies, rapid-fire weaponry, pickups, and a character that can be leveled up after

each wave.

Platform game
The final game is a platform game called Run. Run will be packed with more features enabled by

the C++ skills we will have acquired and made easier by the great features of SFML. Take a look

at the finished game below:

https://en.wikipedia.org/wiki/Pong
http://store.steampowered.com/app/273500/

Chapter 1 5

Figure 1.4: Platform game

Features include a photo-realistic shader background, parallax scrolling cityscape, spatialized

(directional) sound, mini-map, animated player character, rain weather effect, music, pop-up

menu, and more. Best of all, the final game will have a reusable code structure that you can use

to invent and add your own features to.

Why you should learn game programming using C++
in 2024
The title above could also have read, “Why use game programming to learn C++…”, because C++,

game programming, and beginners (in my view) are a perfect match. Let’s look at C++ in more

detail while also staying focussed on games and beginners:

•	 Speed: C++ is known for its high performance and efficiency. In game development, per-

formance is important. C++ allows you to write code that can run close to the native

languages of both the CPU and the GPU, making it well suited for anything demanding,

which includes games. This is achieved because C++ is turned into native executable in-

structions. This is just what we need when coding games with hundreds, thousands, or

even hundreds of thousands of entities in it. In the final chapter, Chapter 21, we will see

how C++ can interact directly with the GPU using shader programs.

Welcome to Beginning C++ Game Programming Third Edition!6

•	 Cross-platform development: C++ works almost everywhere, meaning you can write

code that can be compiled and run on various platforms without significant modifications.

This book will focus on Windows but everything we learn and write in this book, with

minor modifications, will work on macOS and Linux. C++ itself is also used extensively in

next-gen console game development and can even be useful on mobile. Compiled means

translating our C++ code into binary machine instructions for the CPU.

•	 Lots of game engines and libraries: Many game engines and libraries are written in

C++ or provide C++ APIs. Learning C++ gives you access to the widest range of tools and

resources for game development, such as Unreal Engine, as well as the fastest and best

graphics libraries like Vulcan, OpenGL, DirectX, and Metal, as well as physics libraries

like Box2D, UI tools like IMGUI, and networking libraries for co-op and multiplayer like

RakNet, Enet and SFML’s very own networking features.

•	 Low-level control: C++ provides low-level control over hardware resources, which is

crucial for optimizing game performance. In game development, you may need to manage

memory, optimize rendering pipelines, and maintain control over the system your game

is running on, and C++ offers the flexibility and power to do this. If managing memory

and rendering pipelines sound ominous, then I can assure you that things will be fine. We

introduce both these topics in a completely beginner-friendly manner in Chapters 10 and

21, respectively. Far from leaving you baffled, knowing how these powerful things can be

controlled will leave you feeling powerful and in control of your programming destiny.

•	 Documentation and support: There is a thriving community around C++ game devel-

opment, with numerous resources, tutorials, and forums available to help you learn and

troubleshoot issues. If you have a C++ problem, I can guarantee you are not the first and

a quick web search will almost always yield a solution. ChatGPT is an ace C++ problem

solver, too.

•	 Learning C++ does have challenges but, taken a step at a time, is easily mastered. It is so

rewarding to struggle over a problem and finally see it burst into an exciting gameplay

feature when you get it right. Game development often involves seemingly difficult algo-

rithms, data structures, and principles but C++ provides tools like the Standard Template

Library (STL) and classes through object-oriented programming (OOP) to boil down

complexity into manageable chunks. We will be covering OOP and STL in Chapters 6 and

10, respectively.

Chapter 1 7

•	 C++ is an industry standard: It is because of everything we have just discussed that C++

is widely used in the game development industry. Familiarity with C++ can make it easier

to collaborate with other developers, understand existing code bases, switch between

game engines, and secure highly paid jobs in the industry.

Critics will say that C++ can have a steeper learning curve compared to some other programming

languages and that if you’re new to programming or game development, you might consider

starting with a more beginner-friendly language like C# (for Unity development) or Python (for

simple game projects) before diving into C++. There is some truth in this, but it is nowhere near

as true as it used to be. C++ is constantly evolving, and numerous improvements to simplify learn-

ing and dramatically speed up development have been introduced in recent years. For example,

new keywords like auto, intriguing-sounding logic operators like spaceship, as well as language

constructs like lambdas, coroutines, and smart pointers, were introduced over the last 10 years,

which dramatically simplify and speed up C++ development.

In summary, I would suggest that not learning C++ as a first language might be a mistake. And if

you want to make learning as fun and rewarding as it possibly can get then learning with games

is a no-brainer. Finally, if you want to be an indie game developer or work for a top game studio,

unless you have some very specific other path in mind, C++ is the way to go.

But having just stated that C++ is so wonderful and has so many paths and libraries, why would

we choose SFML?

SFML
SFML is the Simple Fast Media Library. It is not the only C++ library for games and multimedia.

It is possible to make an argument to use other libraries, but SFML seems to come through for me

every time. Firstly, it is written using object-oriented C++. The benefits of object-oriented C++

are numerous, and you will experience them as you progress through this book.

SFML is also easy to get started with and is therefore a good choice if you are a beginner, yet at

the same time, it has the potential to build the highest quality 2D games if you are a professional.

So, a beginner can get started using SFML and not worry about having to start again with a new

language/library as their experience grows. And if you want to build 3D games, C++ and SFML

is a great introduction before moving on to Unreal Engine. As an aside, you can build 3D games

with SFML and OpenGL but most SFML libraries are focused on 2D, as is this book.

Welcome to Beginning C++ Game Programming Third Edition!8

Perhaps the biggest benefit is that most modern C++ programming uses OOP. Every C++ begin-

ner’s guide I have ever read uses and teaches OOP. OOP is the future (and the now) of coding in

almost all languages, in fact. So why, if you’re learning C++ from the beginning, would you want

to do it any other way?

SFML has a library for just about anything you would ever want to do in a 2D game. SFML works

using OpenGL, which can also make 3D games. OpenGL is the de facto free-to-use graphics li-

brary for games when you want it to run on more than one platform. When you use SFML, you

are automatically using OpenGL.

SFML allows you to create the following:

•	 2D graphics and animations, including scrolling game worlds.

•	 Sound effects and music playback, including high-quality directional sound.

•	 Input handling with a keyboard, mouse, and gamepad.

•	 Online multiplayer features.

•	 The same code can be compiled and linked on all major desktop operating systems, and

mobile as well!

Extensive research has not uncovered any more suitable ways to build 2D games for PC with C++,

even for expert developers, especially if you are a beginner and want to learn C++ in a fun gam-

ing environment. C++, check. SFML, check. Surely we want to steer clear of the big controlling

corporations, though, right?

Microsoft Visual Studio
Visual Studio is an Integrated Development Environment (IDE). Visual Studio provides a neat

and well-featured interface that simplifies the game development process while keeping advanced

features to hand. Beginners can benefit from features like code completion and syntax high-

lighting, which help streamline the process of learning C++. Visual Studio is almost unarguably

the most advanced free-to-use IDE for C++. Microsoft gives it away, not to seek forgiveness for

past transgressions but to get you hooked for the future using a premium version. So, let’s take

advantage of the free stuff for now.

Visual Studio offers a powerful debugger with features like breakpoints and call stacks. You can

run your game in Visual Studio and have it pause at a point of your choosing. You can then inspect

the values held by your code and step through execution a line at a time. This makes it easier for

beginners to understand how their code works and troubleshoot otherwise near-impossible issues.

Chapter 1 9

IntelliSense is Visual Studio’s code suggestions and real-time error-checking tool. It can help those

new to C++ learn the language more quickly by instantly highlighting mistakes and auto-sug-

gesting what you might be trying to think of. This is not just a great learning tool for beginners

but it is also a huge speed boost for professionals.

Visual Studio has a large and active community, and there are many tutorials, forums, and re-

sources available to help beginners with their C++ and SFML projects in Visual Studio.

Visual Studio has many advanced features. As you grow in knowledge and ambition, Visual Studio

can grow with you. Visual Studio integrates with popular version control systems (VCSs) like

Git, making it easy to get started managing larger projects with multiple programmers. Visual

Studio has performance profiling features that allow you to monitor the memory and CPU usage

of your game and, therefore, improve and optimize your game.

Visual Studio is almost an industry standard. Being one of the most widely used IDEs for C++,

Visual Studio has an enormous number of users. This means that beginners can find plenty of

online help and tutorials specific to Visual Studio. As an aside, usually, the last place you will

look for Visual Studio support will be Microsoft. Being knowledgeable with Visual Studio could

be valuable to a future employer.

Visual Studio hides away the complexity of preprocessing, compiling, and linking. It wraps it

all up with the press of a button. In addition to this, it provides a slick user interface for us to

type our code into and manage what will become a large selection of code files and other project

assets as well.

Having extolled the virtues of Visual Studio, it is also true that any game you can create with

Visual Studio, you can also create with open-source tools. Visual Studio will just make your time

as a beginner simpler, and if you decide to switch to a more ethical toolset at some point in the

future, the change will be smoother than if you had gone straight to these other tools.

While there are advanced versions of Visual Studio that cost hundreds of dollars, we will be able

to build all our games in the free Visual Studio 2022 Community edition. This is the latest free

version of Visual Studio at the time of writing. If, when you are reading this, there is a newer ver-

sion, I suggest using the newer version as Visual Studio tends to be highly backward compatible

as well as maintaining a reasonably consistent user interface over the years. This means you

can probably benefit from the new features and ease of availability of the latest version and still

follow along with this book.

Welcome to Beginning C++ Game Programming Third Edition!10

In the sections that follow, we will set up the development environment, beginning with a dis-

cussion on what to do if you are using Mac or Linux operating systems.

What about Mac and Linux?
The games that we will be making can be built to run on Windows, Mac, and Linux! The code

we use will be identical for each platform. However, each version does need to be compiled and

linked on the platform for which it is intended, and the tutorials will not be able to help with

Mac and Linux.

It would be unfair to say, especially for complete beginners, that this book is perfectly suited for

Mac and Linux users. Although, I guess, if you are an enthusiastic Mac or Linux user and you are

comfortable with your operating system, you will likely succeed. Most of the extra challenges

you will encounter will be in the initial setup of the development environment, SFML, and the

first project.

To this end, I can highly recommend the following tutorials, which will hopefully replace the

next 10 pages (approximately), up to the Planning Timber!!! section, at which point, this book

will become relevant to all operating systems.

For Linux, read this to replace the next few sections: https://www.sfml-dev.org/tutorials/2.5/

start-linux.php.

On Mac, read this tutorial to get started: https://www.sfml-dev.org/tutorials/2.5/start-

osx.php.

Installing Visual Studio 2022
To start creating a game, we need to install Visual Studio 2022. Installing Visual Studio can be

almost as simple as downloading a file and clicking a few buttons. There is nothing challenging

about installing Visual Studio provided you choose the correct edition. I will clearly point out the

correct edition at the point of choosing.

Note that, over the years, Microsoft is likely to change the name, appearance, and download page

that’s used to obtain Visual Studio. They might change the layout of the user interface and make

the instructions that follow out of date. My experience, however, is that they try hard to maintain

consistency between editions. Furthermore, the settings that we configure for each project are

fundamental to C++ and SFML, so careful interpretation of the instructions that follow in this

chapter will likely be possible, even if Microsoft does something radical to Visual Studio.

https://www.sfml-dev.org/tutorials/2.5/start-linux.php
https://www.sfml-dev.org/tutorials/2.5/start-linux.php
https://www.sfml-dev.org/tutorials/2.5/start-osx.php
https://www.sfml-dev.org/tutorials/2.5/start-osx.php

Chapter 1 11

Let’s get started with installing Visual Studio:

1.	 The first thing you need is a Microsoft account and your login details. If you have a Hotmail,

Windows, Xbox, or MSN account, then you already have one. If not, you can sign up for a

free one here: https://login.live.com/.

2.	 At the time of writing (May 2024), Visual Studio 2022 is the latest version, so hopefully,

this chapter will be up to date for a while. To get started, visit https://visualstudio.

microsoft.com/ and find the Visual Studio download. This next image shows what the

page looks like at the time I visited the previous link:

Figure 1.5: Downloading Visual Studio

3.	 Find the download for Visual Studio and choose Community 2022 from the drop-down

options. Note that editions other than Community are premium products that are not

free and the Visual Studio Code option, also shown in this image, is not what we want

for this book. Click the Save button and your download will begin.

4.	 When the download completes, run the download by double-clicking on it. After giving

permission for Visual Studio to make changes to your computer, wait for the installer

program to download some files and set up the next stage of the installation.

5.	 Shortly, you will be asked where you want to install Visual Studio. Choose a hard drive

with at least 50 GB of storage. Various sources on the web suggest you will get away with

much less than 50 GB, but by the time you have started creating projects, 50 GB will make

sure you have plenty of room for future development. When you are ready, locate the

Desktop development with C++ option and select it. Next, click the Install button. This

step might take a while to complete.

https://login.live.com/
https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/

Welcome to Beginning C++ Game Programming Third Edition!12

Now, we are ready to turn our attention to SFML and then our first project.

Setting up SFML
This short tutorial will guide you through downloading the SFML files that allow us to include

the functionality contained in the SFML library in our projects. In addition, we will see how we

can use the SFML DLL files that will enable our compiled object code to run alongside SFML. To

set up SFML, follow these steps:

1.	 Visit this link on the SFML website: http://www.sfml-dev.org/download.php. Click on

the button that says Latest stable version, as shown here:

Figure 1.6: Downloading SFML 2.6

2.	 By the time you read this book, the latest version will almost certainly have changed. This

won’t matter if you do the next step just right. We want to download the 32-bit version.

This might sound counter-intuitive because you probably (most commonly) have a 64-bit

PC. The reason we will download the 32-bit version is that 32-bit apps can run on both

32- and 64-bit machines. Furthermore, we need to get the Visual Studio 22 version. Click

the Download button that’s shown in the following screenshot:

http://www.sfml-dev.org/download.php

Chapter 1 13

Figure 1.7: Downloading SFML 17_22

3.	 When the download completes, create a folder at the root of the same drive where you

installed Visual Studio and name it SFML. Also, create another folder at the root of the

drive where you installed Visual Studio and call it VS Projects.

4.	 Finally, unzip the SFML download. Do this on your desktop. My file was called SFML-

2.6.0-windows-vc17-32-bit.zip but yours may be different to reflect a newer version

of SFML. When unzipping is complete, you can delete the .zip folder. You will be left

with a single folder on your desktop. Its name will reflect the version of SFML that you

downloaded. Double-click this folder to see its contents; I have a folder called SFML-2.6.0.

Now double-click again into the folder.

Welcome to Beginning C++ Game Programming Third Edition!14

The following screenshot shows what my SFML folder’s content looks like. Yours should

look the same.

Figure 1.8: SFML folder contents

Copy the entire contents of this folder and paste all the files and folders into the SFML folder that

you created in step 3. For the rest of this book, I will refer to this folder simply as “your SFML folder”.

Now, we are ready to start using C++ and SFML in Visual Studio.

Creating a new project in Visual Studio 2022
As setting up a project is a fiddly process, we will go through it step by step so that we can start

getting used to it:

1.	 Start Visual Studio in the same way you start any app: by clicking on its icon. The default

installation options will have placed a Visual Studio 2022 icon in the Windows Start menu.

You will see the following window:

Chapter 1 15

Figure 1.9: Starting a new project in VS 2022

2.	 Click on the Create a new project button, as highlighted in the preceding screenshot. You

will see the Create a new project window, as shown in the following screenshot:

Figure 1.10: Create a new project screen

Welcome to Beginning C++ Game Programming Third Edition!16

3.	 In the Create a new project window, we need to choose the type of project we will be

creating. We will be creating a console application that has no Windows-related things

like menus, selection boxes, or other Windows paraphernalia, so select Console App, as

highlighted in the preceding screenshot, and click the Next button. You will then see the

Configure your new project window. The following screenshot shows the Configure your

new project window after the next three steps have been completed:

Figure 1.11: Configuring your new project

4.	 In the Configure your new project window, type Timber in the Project name field. Note

that this causes Visual Studio to automatically configure the Solution name field to the

same name.

5.	 In the Location field, browse to the VS Projects folder that we created in the previous

tutorial. This will be the location where all our project files will be kept.

6.	 Check the option to place the solution and project in the same directory.

7.	 Note that the preceding screenshot shows what the window looks like when the previous

three steps have been completed. When you have completed these steps, click Create.

The project will be generated, including some C++ code. The following screenshot shows

where we will be working throughout this book:

Chapter 1 17

Figure 1.12: Visual Studio code editor

8.	 We will now configure the project to use the SFML files that we put in the SFML folder. From

the main menu, select Project | Timber properties…. You will see the following window:

Figure 1.13: Timber Property page

In the preceding screenshot, the OK, Cancel, and Apply buttons are not fully formed. This

is likely a glitch with Visual Studio not handling my screen resolution correctly. Yours will

hopefully be fully formed. Whether your buttons appear like mine do or not, continuing

with the tutorial will be the same.

Next, we will begin to configure the project properties. As these steps are quite intricate, I will

cover them in a new list of steps.

Welcome to Beginning C++ Game Programming Third Edition!18

Configuring the project properties
At this stage, you should have the Timber Property Pages window open, as shown in the preceding

screenshot at the end of the previous section. Now, we will begin to configure some properties

while using the following annotated screenshot for guidance:

Figure 1.14: Configuring the project properties

We will add some intricate and important project settings in this section. This is the laborious

part, but we will only need to do this once per project and it will get easier and faster each time

you do it. What we need to do is tell Visual Studio where to find a special type of code file from

SFML. The special type of file I am referring to is a header file. Header files are the files that de-

fine the format of the SFML code so that when we use the SFML code, the compiler knows how

to handle it. Note that the header files are distinct from the main source code files, and they are

contained in files with the .hpp file extension. All this will become clearer when we eventually

start adding our own header files in the second project. In addition, we need to tell Visual Studio

where it can find the SFML library files. To achieve these things, on the Timber Property Pages

window, perform the following three steps, which are numbered in the preceding screenshot:

1.	 First (1), select All Configurations from the Configuration dropdown and check that

Win32 is selected in the Platform dropdown to the right.

2.	 Second (2), select C/C++ then General from the left-hand menu.

3.	 Third (3), locate the Additional Include Directories edit box and type the drive letter

where your SFML folder is located, followed by \SFML\include. The full path to type, if you

located your SFML folder on your D drive, is as shown in the preceding screenshot – that

is, D:\SFML\include. Vary your path if you put SFML on a different drive.

4.	 Click Apply to save your configurations so far.

5.	 Now, still in the same window, perform these steps, which refer to the following annotated

screenshot. First (1), select Linker and then General.

Chapter 1 19

6.	 Now, find the Additional Library Directories edit box (2) and type the drive letter where

your SFML folder is, followed by \SFML\lib. So, the full path to type if you located your

SFML folder on your D drive is, as also shown in the following screenshot, D:\SFML\lib.

Vary your path if you put SFML on a different drive:

Figure 1.15: Additional Library Directories

7.	 Click Apply to save your configurations so far.

8.	 Finally for this stage, still in the same window, perform these steps,which refers to the

following annotated screenshot. Switch the Configuration dropdown (1) to Debug as we

will be running and testing our games in Debugging mode.

Figure 1.16: Linker input configuration

9.	 Select Linker and then Input (2).

Welcome to Beginning C++ Game Programming Third Edition!20

10.	 Find the Additional Dependencies edit box (3) and click on it at the far left-hand side. Now,

copy and paste/type the following: sfml-graphics-d.lib;sfml-window-d.lib;sfml-

system-d.lib;sfml-network-d.lib;sfml-audio-d.lib; at the indicated place. Be extra

careful to place the cursor exactly in the right place and not overwrite any of the text that

is already there.

11.	 Click OK.

12.	 Click Apply and then OK.

Phew; that’s it! We have successfully configured Visual Studio and can move on to planning the

Timber!!! project.

Planning Timber!!!
Whenever you make a game, it is always best to start with a pencil and paper. If you don’t know

exactly how your game is going to work on the screen, how can you possibly make it work in code?

At this point, if you haven’t already, I suggest you go and watch a video of Timberman in action

so that you can see what we are aiming for. If you feel your budget can stretch to it, then grab a

copy and give it a play. It is often on sale for under $1 on Steam: http://store.steampowered.

com/app/398710/.

The features and objects of a game that define the gameplay are known as the mechanics. The

basic mechanics of the game are as follows:

•	 Time is always running out.

•	 You can get more time by chopping the tree.

•	 Chopping the tree causes the branches to fall.

•	 The player must avoid the falling branches.

•	 Repeat until time runs out or the player is squished by a branch.

Expecting you to plan the C++ code at this stage is obviously a bit silly. This is, of course, the first

chapter of a C++ beginner’s guide. We can, however, look at all the assets we will use and an

overview of what we will need to make our C++ code do.

http://store.steampowered.com/app/398710/
http://store.steampowered.com/app/398710/

Chapter 1 21

Look at this annotated screenshot of the game:

Figure 1.17: Screenshot of the Timber game

You can see that we have the following features:

•	 The player’s score: Each time the player chops a log, they will get one point. They can

chop a log with either the left or the right arrow (cursor) key.

•	 Player character: Each time the player chops, they will move to/stay on the same side of

the tree relative to the cursor key they use. Therefore, the player must be careful which

side they choose to chop on.

•	 When the player chops, a simple axe graphic will appear in the player character’s hands.

•	 Shrinking time-bar: Each time the player chops, a small amount of time will be added

to the ever-shrinking time-bar.

•	 The lethal branches: The faster the player chops, the more time they will win, but also

the faster the branches will move down the tree and therefore the more likely they are to

get squished. The branches spawn randomly at the top of the tree and move down with

each chop.

Welcome to Beginning C++ Game Programming Third Edition!22

•	 When the player gets squished – and they will get squished quite regularly – a gravestone

graphic will appear.

•	 The chopped log: When the player chops, a chopped log graphic will whiz off, away from

the player.

•	 Just for decoration: There are three floating clouds that will drift at random heights and

speeds, as well as a bee that does nothing but fly around.

•	 The background: All this takes place on a pretty background.

So, in a nutshell, the player must frantically chop to gain points and avoid running out of time. As

a slightly perverse but fun consequence, the faster they chop, the more likely their squishy demise.

We now know what the game looks like, how it is played, and the motivation behind the game

mechanics. Now, we can go ahead and start building it. Follow these steps:

1.	 Now, we need to copy the SFML .dll files into the main project directory. My main proj-

ect directory is D:\VS Projects\Timber. It was created by Visual Studio in the previous

tutorial. If you put your VS Projects folder somewhere else, then perform this step there

instead. The files we need to copy into the project folder are in your SFML\bin folder. Open

a window for each of the two locations and highlight all the files in the SFML\bin folder,

as shown in the following screenshot:

Figure 1.18: Selecting all the files you need

2.	 Now, copy and paste the highlighted files into the project folder – that is D:\VS Projects\

Timber.

Chapter 1 23

3.	 The project is now set up and ready to go. You will be able to see the following screen. I

have annotated this screenshot so you can start familiarizing yourself with Visual Studio.

We will revisit all these areas, and others, soon:

Figure 1.19: Where to type the code

Your layout might look slightly different from what’s shown in the preceding screenshot because

the windows of Visual Studio, like most applications, are customizable. Take the time to locate

the Solution Explorer window and adjust it to make its content nice and clear, as shown in the

previous screenshot.

We will be back here soon to start coding. But first, we will explore the project assets we will be

using.

The project assets
Assets are anything you need to make your game. In our case, these assets include the following:

•	 A font for drawing the text on the screen

•	 Some sound effects for different actions, such as chopping, dying, and running out of time

•	 Some graphics, known as textures, for the character, background, branches, and other

game objects

All the graphics and sounds that are required for this game are included in the download bundle

for this book. They can be found in the Chapter 1/graphics and Chapter 1/sound folders as

appropriate.

The font that is required has not been supplied. This is because I wanted to avoid any possible

ambiguity regarding the license. This will not cause a problem, though, as I will show you exactly

where and how to choose and download fonts for yourself.

Welcome to Beginning C++ Game Programming Third Edition!24

Making your own sound FX
Sound effects (FX) can be downloaded for free from sites such as Freesound (www.freesound.org)

but, often, the license won’t allow you to use them if you are selling your game. Another option

is to use an open-source software called BFXR from www.bfxr.net, which can help you generate

lots of different sound FX that are yours to keep and do with as you like.

Adding the assets to the project
Once you have decided which assets you will use, it is time to add them to the project. The follow-

ing instructions will assume you are using all the assets that are supplied in this book’s download

bundle. Where you are using your own, simply replace the appropriate sound or graphic file with

your own, using the same filename:

1.	 Browse to the project folder – that is, D:\VS Projects\Timber.

2.	 Create three new folders within this folder and name them graphics, sound, and fonts.

3.	 From the download bundle, copy the entire contents of Chapter 1/graphics into the D:\

VS Projects\Timber\graphics folder.

4.	 From the download bundle, copy the entire contents of Chapter 1/sound into the D:\VS

Projects\Timber\sound folder.

5.	 Now, visit http://www.1001freefonts.com/komika_poster.font in your web browser

and download the Komika Poster font.

6.	 Extract the contents of the zipped download and add the KOMIKAP_.ttf file to the D:\VS

Projects\Timber\fonts folder.

Let’s look at these assets – especially the graphics – so that we can visualize what is happening

when we use them in our C++ code.

Exploring the assets
The graphical assets make up the parts of the scene that is our game. If you look at the graphical

assets, it should be clear where in our game they will be used:

http://www.freesound.org
http://www.bfxr.net
ttp://www.1001freefonts.com/komika_poster.font

Chapter 1 25

Figure 1.20: The assets

The sound files are all in .wav format. These files contain the sound effects that we will play at

certain events throughout the game. They were all generated using BFXR and are as follows:

•	 chop.wav: A sound that is a bit like an axe chopping a tree

•	 death.wav: A sound a bit like a retro “losing” sound

•	 out_of_time.wav: A sound that plays when the player loses by running out of time, as

opposed to being squashed

We have seen all the assets, including the graphics, so now we will have a short discussion related

to the resolution of the screen and how we position the graphics on it.

Understanding screen and internal coordinates
Before we move on to the actual C++ coding, let’s talk a little about coordinates. All the images

that we see on our monitors are made from pixels. Pixels are tiny dots of light that combine to

make the images we see on the screen.

There are many different resolutions of a monitor but, as an example, consider that a typical

monitor might have 1,920 pixels horizontally and 1,080 pixels vertically.

Welcome to Beginning C++ Game Programming Third Edition!26

The pixels are numbered, starting from the top left of the screen. As you can see from the following

diagram, our 1,920 x 1,080 example is numbered from 0 through to 1,919 on the horizontal (x)

axis and 0 through 1,079 on the vertical (y) axis:

Figure 1.21: Screen and internal coordinates

A specific and exact screen location can therefore be identified by an x and y coordinate. We create

our games by drawing the game objects such as the background, characters, bullets, and text to

specific locations on the screen.

These locations are identified by the coordinates of the pixels. Take a look at the following hypo-

thetical example of how we might draw at the approximately central coordinates of the screen.

In the case of a 1,920 x 1080 screen, this would be at the 960, 540 position:

Figure 1.22: Drawing central coordinates

Chapter 1 27

In addition to the screen coordinates, our game objects will each have their own similar coordi-

nate system as well. Like the screen coordinate system, their internal or local coordinates start

at 0,0 in the top-left corner.

In the previous image, we can see that 0,0 of the character is drawn at 960, 540 of the screen.

A visual 2D game object, such as a character or perhaps a zombie, is called a Sprite. A sprite is

typically made from an image file. All sprites have what is known as an origin.

If we draw a sprite to a specific location on the screen, it is the origin that will be located at this

specific location. The 0,0 coordinates of the sprite are its origin. The following image demon-

strates this:

Figure 1.23: Illustration of a sprite with its origin

Therefore, in the image showing the character drawn to the screen, although we drew the image

at the central position (960, 540), it appears off to the right and down.

This is important to know as it will help us understand the coordinates we use to draw all the

graphics.

Note that, in the real world, gamers have a huge variety of screen resolutions, and our games

will need to work with as many of them as possible. In the third project, we will see how we can

make our games dynamically adapt to almost any resolution. In this first project, we will need

to assume that the screen resolution is 1,920 x 1,080 or higher.

Now, we can write our first piece of C++ code and see it in action.

Welcome to Beginning C++ Game Programming Third Edition!28

Getting started with coding the game
Open Visual Studio if it isn’t already open. Open the Timber project by left-clicking it from the

Recent list on the main Visual Studio window.

Find the Solution Explorer window on the right-hand side. Locate the Timber.cpp file under the

Source Files folder. The .cpp stands for C plus plus.

Delete the entire contents of the code window and add the following code so that you have the

same code yourself. You can do so in the same way that you would with any text editor or word

processor; you could even copy and paste it if you prefer. After you have made the edits, we can

talk about it:

// This is where our game starts from int main()

{

return 0;

}

This simple C++ program is a good place to start. Let’s go through it line by line.

Making code clearer with comments
The first line of code is as follows:

// This is where our game starts from

Any line of code that starts with two forward slashes (//) is a comment and is ignored by the

compiler. As such, this line of code does nothing. It is used to leave in any information that we

might find useful when we come back to the code at a later date. The comment ends at the end

of the line, so anything on the next line is not part of the comment. There is another type of com-

ment called a multi-line or c-style comment, which can be used to leave comments that take up

more than a single line. We will see some of them later in this chapter. Throughout this book, I

will leave hundreds of comments to help add context and further explain the code.

The main function
The next line we see in our code is as follows:

int main()

Chapter 1 29

int is what is known as a type. C++ has many types, and they represent different types of data.

An int is an integer or whole number. Hold that thought and we will come back to it in a minute.

The main() part is the name of the section of code that follows. The section of code is marked out

between the opening curly brace ({) and the next closing curly brace (}).

So, everything in between these curly braces {...} is a part of main. We call a section of code

like this a function.

Every C++ program has a main function and it is the place where the execution (running) of the

entire program will start. As we progress through this book, eventually, our games will have many

code files. However, there will only ever be one main function, and no matter what code we write,

our game will always begin execution from the first line of code that’s inside the opening curly

brace of the main function.

For now, don’t worry about the strange brackets that follow the function name (). We will discuss

them further in Chapter 4, Loops, Arrays, Switch, Enumerations, and Functions – Implementing Game

Mechanics, when we get to see functions in a whole new and more interesting light.

Let’s look closely at the one single line of code within our main function.

Presentation and syntax
Take a look at the entirety of our main function again:

int main()

{

 return 0;

}

We can see that, inside main, there is just one single line of code, return 0;. Before we move on to

find out what this line of code does, let’s look at how it is presented. This is useful because it can

help us prepare to write code that is easy to read and distinguished from other parts of our code.

First, notice that return 0; is indented to the right by one tab. This clearly marks it out as being

internal to the main function. As our code grows in length, we will see that indenting our code

and leaving white space will be essential to maintaining readability.

Next, notice the punctuation at the end of the line. A semicolon (;) tells the compiler that it is the

end of the instruction and that whatever follows it is a new instruction. We call an instruction

that’s been terminated by a semicolon a statement.

Welcome to Beginning C++ Game Programming Third Edition!30

Note that the compiler doesn’t care whether you leave a new line or even a space between the

semicolon and the next statement. However, not starting a new line for each statement will lead

to hard-to-read code, and missing the semicolon altogether will result in a syntax error and the

game will not compile and run.

A section of code together, often denoted by its indentation with the rest of the section, is called

a block.

Now that you’re comfortable with the idea of the main function, indenting your code to keep it

tidy, and putting a semicolon on the end of each statement, we can move on to finding out exactly

what the return 0; statement does.

Returning values from a function
Actually, return 0; does almost nothing in the context of our game. However, the concept is an

important one. When we use the return keyword, either on its own or followed by a value, it is

an instruction for the program execution to jump/move back to the code that got the function

started in the first place.

Often, the code that got the function started will be yet another function somewhere else in our

code. In this case, however, it is the operating system that started the main function. So, when

return 0; is executed, the main function exits and the entire program ends.

Since we have a 0 after the return keyword, that value is also sent to the operating system. We

could change the value of 0 to something else and that value would be sent back instead.

In programming speak, we say that the code that starts a function calls the function and that the

function returns the value.

You don’t need to fully grasp all this function information just yet. It is just useful to introduce it

here. We will go into the full details of functions during this first project. There’s one last thing

on functions that I will cover before we move on. Remember the int from int main()? This tells

the compiler that the type of value that’s returned from main must be an int (integer/whole

number). We can return any value that qualifies as an int; perhaps 0, 1, 999, 6,358, and so on. If

we try and return something that isn’t an int, perhaps 12.76, then the code won’t compile, and

the game won’t run.

Functions can return a big selection of different types, including types that we invent for our-

selves! That type, however, must be made known to the compiler in the way we have just seen.

This little bit of background information on functions will make things smoother as we progress.

Chapter 1 31

Running the game
You can even run the game at this point. Do so by clicking the Local Windows Debugger button

in the quick-launch bar of Visual Studio. Alternatively, you can use the F5 shortcut key:

Figure 1.24: The Local Windows Debugger button

Be sure that the version next to the Local Windows Debugger button is set to x86, as shown in the

next image. This means our program will be 32-bit and match the version of SFML we downloaded.

Figure 1.25: Be sure you’re running in x86

You will just get a black screen. If the black screen doesn’t automatically close itself, you can tap

any key to close it. This window is the C++ console, and we can use this to debug our game. We

don’t need to do this now. What is happening is that our program is starting, executing from the

first line of main, which is return 0;, and then immediately exiting back to the operating system.

We now have the simplest program possible coded and running. We will now add some more

code to open a window that the game will eventually appear in.

Opening a window using SFML
Now, let’s add some more code. The code that follows will open a window using SFML that Tim-

ber!!! will eventually run in. The window will be 1,920 pixels wide by 1,080 pixels high and will

be full screen (no border or title).

Enter the new code that is highlighted here to the existing code and then we will examine it. As

you type (or copy and paste), try and work out what is going on:

// Include important libraries here

#include <SFML/Graphics.hpp>

// Make code easier to type with "using namespace" using namespace sf;

// This is where our game starts from int main()

{

// Create a video mode object VideoMode vm(1920, 1080);

Welcome to Beginning C++ Game Programming Third Edition!32

// Create and open a window for the game

RenderWindow window(vm, "Timber!!!", Style::Fullscreen);

return 0;

}

Now we will go through that code a bit at a time to understand it.

Including SFML features
The first thing we will notice in our new code is the #include directive.

The #include directive directs Visual Studio to include, or add, the contents of another file before

compiling. The effect of this is that some other code, which we have not written ourselves, will

be a part of our program when we run it. The process of adding code from other files into our

code is called preprocessing and, perhaps unsurprisingly, is performed by something called a

preprocessor. The .hpp file extension means it is a header file.

Therefore, #include <SFML/Graphics.hpp> tells the preprocessor to include the contents of the

Graphics.hpp file that is contained within the folder named SFML. It is the same folder that we

created while setting up the project.

This line adds code from the file, which gives us access to some of the features of SFML. Exactly

how it achieves this will become clearer when we start writing our own separate code files and

using #include to use them.

The most common files that we will be including throughout this book are the SFML header files

that give us access to all the cool game-coding features. We will also use #include to access the

C++ Standard Library header files. These header files give us access to core features of the C++

language itself.

What matters for now is that we have a whole bunch of new functionalities that have been pro-

vided by SFML available to use if we add that single line of code.

The next new line is using namespace sf;. We will come back to what this line does soon.

OOP, classes, and objects
We will fully discuss OOP, classes, and objects as we proceed through this book. What follows is

a brief introduction so that we can understand what is happening so far.

Chapter 1 33

We already know that OOP stands for object-oriented programming. OOP is a programming par-

adigm – that is, a way of coding. OOP is generally accepted throughout the world of programming

in most languages as the best, if not the only, professional way to write code. Notice I said most;

there are exceptions.

OOP introduces a lot of coding concepts, but fundamental to them all are classes and objects.

When we write code, whenever possible, we want to write code that is reusable, maintainable,

and secure. The way we do this is by structuring our code as a class. We will learn how to do this

in Chapter 6, Object-Oriented Programming – Starting the Pong Game.

All we need to know about classes for now is that once we have coded our class, we don’t just

execute that code as part of our game; instead, we create usable objects from the class.

For example, if we wanted 100 zombie NPCs (non-player characters), we could carefully design

and code a class called Zombie and then, from that single class, create as many zombie objects as

we like. Each and every zombie object would have the same functionality and internal data types,

but each and every zombie object would be a separate and distinct entity.

To take the hypothetical zombie example further but without showing any code for the Zombie

class, we might create a new object based on the Zombie class, like this:

Zombie z1;

The z1 object is now a fully coded and functioning Zombie object. We could then do this:

Zombie z2; Zombie z3; Zombie z4; Zombie z5;

We now have five separate Zombie instances, but they are all based on one carefully coded class.

Let’s take things one step further before we get back to the code we have just written. Our zombies

can contain both behavior (defined by functions) as well as data, which might represent things

such as the zombie’s health, speed, location, or direction of travel. As an example, we could code

our Zombie class to enable us to use our Zombie objects, perhaps like this:

z1.attack(player); z2.growl(); z3.headExplode();

Note again that all this zombie code is hypothetical for the moment. Don’t type this code into

Visual Studio – it will just produce a bunch of errors.

We would design our class so that we can use the data and behaviors in the most appropriate

manner to suit our game’s objectives. For example, we could design our class so that we can

assign values for the data for each zombie object at the time we create it.

Welcome to Beginning C++ Game Programming Third Edition!34

Let’s say we need to assign a unique name and speed in meters per second at the time we create

each zombie. Careful coding of the Zombie class could enable us to write code like this:

// Dave was a 100 metre Olympic champion before infection

// He moves at 10 metres per second Zombie z1("Dave", 10);

// Gill had both of her legs eaten before she was infected

// She drags along at .01 metres per second Zombie z2("Gill", .01);

The point is that classes are almost infinitely flexible, and once we have coded the class, we can

go about using them by creating an object/instance of them. It is through classes and the objects

that we create from them that we will harness the power of SFML. And yes, we will also write

our own classes, including a Zombie class.

Let’s get back to the real code we just wrote.

Using namespace sf
Before we move on and look more closely at VideoMode and RenderWindow, which, as you have

probably guessed by now, are classes provided by SFML, we will learn what the using namespace

sf; line of code does.

When we create a class, we do so in a namespace. We do this to distinguish our classes from those

that others have written. Consider the VideoMode class.

It is entirely possible that, in an environment such as Windows, somebody has already written

a class called VideoMode. By using a namespace, we and the SFML programmers can make sure

that the names of classes never clash.

The full way of using the VideoMode class is like this:

sf::VideoMode...

using namespace sf; enables us to omit the sf:: prefix from everywhere in our code. Without

it, there would be over 100 instances of sf:: in this simple game alone. It also makes our code

more readable, as well as shorter.

SFML VideoMode and RenderWindow
Inside the main function, we now have two new comments and two new lines of executable code.

The first line of executable code is this:

VideoMode vm(1920, 1080);

Chapter 1 35

This code creates an object called vm from the class called VideoMode and sets up two internal

values of 1920 and 1080. These values represent the resolution of the player’s screen.

The next new line of code is as follows:

RenderWindow window(vm, "Timber!!!", Style::Fullscreen);

In the previous line of code, we are creating a new object called window from the SFML-provided

class called RenderWindow. Furthermore, we are setting up some values inside our window object.

Firstly, the vm object is used to initialize part of window. At first, this might seem confusing. Re-

member, however, that a class can be as varied and flexible as its creator wants to make it. And

yes, some classes can contain instances of other classes.

It is not necessary to fully understand how this works at this point if you appreciate the concept.

We code a class and then make usable objects from that class – a bit like an architect might draw

a blueprint. You certainly can’t move all your furniture, kids, and the dog into the blueprint, but

you could build a house (or many houses) from the blueprint. In this analogy, a class is like a

blueprint and an object is like a house.

Next, we use the "Timber!!!" value to give the window a name. Then, we use the predefined

Style::FullScreen value to make our window object full-screen.

Style::FullScreen is a value that’s defined in SFML. It is useful because we don’t need to re-

member the integer number the internal code uses to represent a full screen. The coding term

for this type of value is constant. Constants and their close C++ relatives, variables, are covered

in the next chapter.

Let’s look at our window object in action.

Running the game
You can run the game again at this point. You will see a bigger black screen flash on and then

disappear. This is the 1920 x 1080 full-screen window that we just coded. Unfortunately, what

is still happening is that our program is starting, executing from the first line of main, creating

the cool new game window, then coming to return 0; and immediately exiting back to the

operating system.

Next, we will add some code that will form the basic structure of every game in this book. This

is known as the game loop.

Welcome to Beginning C++ Game Programming Third Edition!36

The game loop
These are some things that we need our program to do that we will achieve in this section. We need

a way to stay in the program until the player wants to quit. At the same time, we should clearly

mark out where the different parts of our code will go as we progress with Timber!!!. Furthermore,

if we are going to stop our game from exiting, we had better provide a way for the player to exit

when they are ready; otherwise, the game will go on forever!

Add the following highlighted code to the existing code and then we will go through it and dis-

cuss it all:

int main()

{

// Create a video mode object VideoMode vm(1920, 1080);

// Create and open a window for the game

RenderWindow window(vm,"Timber!!!", Style::Fullscreen);

while (window.isOpen())

{

/*

** Handle the players input

**

*/

if (Keyboard::isKeyPressed(Keyboard::Escape))

{

window.close();

}

/*

** Update the scene

**

*/

/*

Chapter 1 37

** Draw the scene

**

*/

// Clear everything from the last frame window.clear();

// Draw our game scene here

// Show everything we just drew window.display();

}

return 0;

}

Next, we will go through and explain the code we have just added.

while loops
The very first thing we saw in the new code is as follows:

while (window.isOpen())

{

The very last thing we saw in the new code is a closing }. We have created a while loop. Everything

between the opening ({) and closing (}) brackets of the while loop will continue to execute over

and over, potentially forever.

Look closely between the parentheses (...) of the while loop, as highlighted here:

while (window.isOpen())

The full explanation of this code will have to wait until we discuss loops and conditions in Chapter

4, Loops, Arrays, Switch, Enumerations, and Functions – Implementing Game Mechanics. What is im-

portant for now is that when the window object we coded previously is set to closed, the execution

of the code will break out of the while loop and move on to the next statement. Exactly how a

window is closed is covered soon.

The next statement is, of course, return 0;, which ends our game.

We now know that our while loop will whiz round and round, repeatedly executing the code

within it, until our window object is set to closed.

Welcome to Beginning C++ Game Programming Third Edition!38

C-style code comments
Just inside the while loop, we can see what, at first glance, might look a bit like ASCII art:

/*

** Handle the player's input

**

*/

The previous code is simply another type of comment. This type of comment is known as a C-style

comment. The comment begins with (/*) and ends with (*/). Anything in between is just for

information and is not compiled. I have used this slightly elaborate text to make it absolutely

clear what we will be doing in each part of the code file. And, of course, you can now work out

that any code that follows will be related to handling the player’s input.

Skip over a few lines of code and you will see that we have another C-style comment, announcing

that in that part of the code, we will be updating the scene.

If you jump to the next C-style comment, it will be clear where we will be drawing all the graphics.

Let’s go into these sections in more detail.

Input, update, draw, repeat
Although this first project uses the simplest possible version of a game loop, every game will need

these phases in the code. Let’s go over the steps:

1.	 Get the player’s input (if any).

2.	 Update the scene based on things such as artificial intelligence, physics, or the player’s

input.

3.	 Draw the current scene.

4.	 Repeat these steps at a fast enough rate to create an interactive, smooth, animated game

world.

Now, let’s look at the code that does something within the game loop.

ASCII art is a niche but fun way of creating images with computer text. You can read

more about it here: https://en.wikipedia.org/wiki/ASCII_art.

https://en.wikipedia.org/wiki/ASCII_art

Chapter 1 39

Detecting a key press
Firstly, within the section that’s identifiable by the comment with the Handle the player's

input text, we have the following code:

if (Keyboard::isKeyPressed(Keyboard::Escape))

{

window.close();

}

This code checks whether the Esc key is currently being pressed. If it is, the highlighted code

uses the window object to close itself. Now, the next time the while loop begins, it will see that

the window object is closed and jump to the code immediately after the closing curly brace of the

while loop and the game will exit. We will discuss if statements more fully in Chapter 2, Variables,

Operators, and Decisions – Animating Sprites

Clearing and drawing the scene
Currently, there is no code in the Update the scene section, so let’s move on to the Draw the

scene section. The first thing we will do is rub out the previous frame of animation using the

following code:

window.clear();

What we would do now is draw every object from the game. However, we don’t have any game

objects yet.

The next line of code is as follows:

window.display();

When we draw all the game objects, we are drawing them to a hidden surface ready to be displayed.

The window.display() code flips from the previously displayed surface to the newly updated

(previously hidden) one. This way, the player will never see the drawing process as the surface

has all the sprites added to it. It also guarantees that the scene will be complete before it is flipped.

This prevents a graphical glitch known as tearing. This process is called double buffering.

Also note that all this drawing and clearing functionality is performed using our window object,

which was created from the SFML RenderWindow class.

Welcome to Beginning C++ Game Programming Third Edition!40

Running the game
Run the game and you will get a blank, full-screen window that remains open until you press

the Esc key.

That is good progress. At this stage, we have an executing program that opens a window and

loops around, waiting for the player to press the Esc key to exit. Now, we can move on to drawing

the background image of the game.

Drawing the game’s background
Now, we will get to see some graphics in our game. What we need to do is create a sprite. The

first one we will create will be the game background. We can then draw it in between clearing

the window and displaying/flipping it.

Preparing the sprite using a texture
The SFML RenderWindow class allowed us to create our window object, which took care of all the

functionality that our game’s window needs.

We will now look at two more SFML classes that will take care of drawing sprites to the screen.

One of these classes, perhaps unsurprisingly, is called Sprite. The other class is called Texture.

A texture is a graphic stored in video memory, on the graphics processing unit (GPU).

An object that’s made from the Sprite class needs an object made from the Texture class to

display itself as an image. Add the following highlighted code. Try and work out what is going

on as well. Then, we will go through it, a line at a time:

int main()

{

// Create a video mode object VideoMode vm(1920, 1080);

// Create and open a window for the game

RenderWindow window(vm,"Timber!!!", Style::Fullscreen);

// Create a texture to hold a graphic on the GPU Texture
textureBackground;

// Load a graphic into the texture textureBackground.
loadFromFile("graphics/background.png");

Chapter 1 41

// Create a sprite Sprite spriteBackground;

// Attach the texture to the sprite spriteBackground.
setTexture(textureBackground);

// Set the spriteBackground to cover the screen spriteBackground.
setPosition(0,0);

while (window.isOpen())

{

A point worth noting is that this code comes before the loop because it only needs to happen once.

First, we create an object called textureBackground from the SFML Texture class:

Texture textureBackground;

Once this is done, we can use the textureBackground object to load a graphic from our graphics

folder into textureBackground, like this:

textureBackground.loadFromFile("graphics/background.png");

We only need to specify graphics/background as the path is relative to the Visual Studio working

directory where we created the folder and added the image.

Next, we create an object called spriteBackground from the SFML Sprite class with this code:

Sprite spriteBackground;

Then, we can associate the Texture object (backgroundTexture) with the Sprite object

(backgroundSprite), like this:

spriteBackground.setTexture(textureBackground);

Finally, we can position the spriteBackground object in the window object at the 0,0 coordinates

– the top-left corner:

spriteBackground.setPosition(0,0);

Since the background.png graphic in the graphics folder is 1,920 pixels wide by 1,080 pixels high,

it will neatly fill the entire screen. Just note that this previous line of code doesn’t show the sprite.

It just sets its position, ready for when it is shown.

Welcome to Beginning C++ Game Programming Third Edition!42

The backgroundSprite object can now be used to display the background graphic.

Of course, you are almost certainly wondering why we had to do things in such a convoluted way.

The reason is because of the way that graphics cards and OpenGL work.

Textures take up graphics memory, and this memory is a finite resource. Furthermore, the pro-

cess of loading a graphic into the GPU’s memory is very slow – not so slow that you can watch

it happen or that you will see your PC noticeably slow down while it is happening, but slow

enough that you can’t do it every frame of the game loop. So, it is useful to disassociate the texture

(textureBackground) from any code that we will manipulate during the game loop.

As you will see when we start to move our graphics, we will do so using the sprite. Any objects

that are made from the Texture class will sit happily on the GPU, just waiting for an associated

Sprite object to tell it where to show itself. In later projects, we will also reuse the same Texture

object with multiple different Sprite objects, which makes efficient use of GPU memory.

In summary, we can state the following:

•	 Textures are very slow to load onto the GPU.

•	 Textures are very fast to access once they are on the GPU.

•	 We associate a Sprite object with a texture.

•	 We manipulate the position and orientation of Sprite objects (usually in the Update the

scene section).

•	 We draw the Sprite object, which, in turn, displays the Texture object that is associated

with it (usually in the Draw the scene section).

So, all we need to do now is use our double buffering system, which is provided by our window

object, to draw our new Sprite object (spriteBackground), and we should get to see our first

graphics in action.

Double buffering the background sprite
Finally, we need to draw that sprite and its associated texture in the appropriate place in the

game loop.

Note that when I present code that is all from the same block, I don’t add the in-

dentations because it lessens the instances of line wraps in the text of the book. The

indenting is implied. Check out the code file in the download bundle to see the full

use of indenting.

Chapter 1 43

Add the following highlighted code:

/*

** Draw the scene

**

*/

// Clear everything from the last run frame window.clear();

// Draw our game scene here

window.draw(spriteBackground);

// Show everything we just drew window.display();

The new line of code simply uses the window object to draw the spriteBackground object, in

between clearing the display and showing the newly drawn scene.

We now know what a sprite is, that we can associate a texture with it and then position it on

the screen, and finally, draw it. The game is ready to be run again so that we can see the results

of this code.

Running the game
If we run the program now, we will see the first signs that we have a real game in progress:

Figure 1.26: Running the game

Welcome to Beginning C++ Game Programming Third Edition!44

It’s not going to get Game of the Year in its current state, but we are on the way at least!

Let’s look at some of the things that might go wrong in this chapter and as we proceed through

this book.

Handling errors
There will always be problems and errors in every project you make. This is guaranteed! The

tougher the problem, the more satisfying it is when you solve it. When, after hours of struggling,

a new game feature finally bursts into life, it can cause a genuine high. Without this struggle, it

would somehow be less worthwhile.

At some point in this book, there will probably be some struggle. Remain calm, be confident that

you will overcome it, and then get to work.

Remember that whatever your problem, it is very likely you are not the first person in the world

to have had this same problem. Think of a concise sentence that describes your problem or error

and then type it into Google or ChatGPT. You will be surprised at the speed and precision of

solving a problem this way as, often, someone else will have already solved your problem for you.

Having said that, here are a few pointers to get you started in case you are struggling with making

this first chapter work.

Configuration errors
The most likely cause of problems in this chapter will be configuration errors. As you probably

noticed during the process of setting up Visual Studio, SFML, and the project itself, there are an

awful lot of filenames, folders, and settings that need to be just right. Just one wrong setting could

cause one of several errors, whose text doesn’t make it clear exactly what is wrong.

If you can’t get the empty project with the black screen working, it might be easier to start again.

Make sure all the filenames and folders are appropriate for your specific setup and then get the

simplest part of the code running. This is the part where the screen flashes black and then closes.

If you can get to that stage, then configuration is probably not the issue.

Compile errors
Compile errors are probably the most common errors we will experience going forward. Check

that your code is identical to mine, especially semicolons on the ends of lines and subtle chang-

es in upper- and lowercase for class and object names. If all else fails, open the code files in the

download bundle and copy and paste it in.

Chapter 1 45

While it is always possible that a code typo made it into this book, the code files were made from

real working projects – they definitely work!

Link errors
Link errors are most likely caused by missing SFML .dll files. Did you copy all of them into the

project folder?

Bugs
Bugs are what happen when your code works but not as you expect it to. Debugging can actu-

ally be fun. The more bugs you squash, the better your game and the more satisfying your day’s

work will be. The trick to solving bugs is to find them early! To do this, I recommend running

and playing your game every time you implement something new. The sooner you find the bug,

the more likely the code causing it will be fresh in your mind. In this book, we will run the code

to see the results at every possible stage.

Summary
This was quite a challenging chapter. It is true that configuring an IDE to use a C++ library can

be a bit awkward and long. Also, the concepts of classes and objects are well known to be slightly

awkward for people who are new to coding.

Now that we are at this stage, however, we can focus on C++, SFML, and games. As we progress

with this book, we will learn more and more C++, as well as implement increasingly interesting

game features. As we do so, we will take a further look at things such as functions, classes, and

objects to help demystify them a little more.

We have achieved plenty in this chapter, including outlining a basic C++ program with the main

function and constructing a simple game loop that listens for player input and draws a sprite

(along with its associated texture) to the screen.

In the next chapter, we will learn about all the C++ we need to draw some more sprites and an-

imate them as well.

Frequently asked questions
Here are some questions that might be on your mind:

Q) I am struggling with the content that’s been presented so far. Am I cut out for programming?

Welcome to Beginning C++ Game Programming Third Edition!46

A) Setting up a development environment and getting your head around OOP as a concept is

probably the toughest thing you will do in this book. If your game is functioning (drawing the

background), you are ready to proceed with the next chapter.

Q) All this talk of OOP, classes, and objects is too much and kind of spoiling the whole learning

experience.

A) Don’t worry. We will keep returning to OOP, classes, and objects constantly. In Chapter 6,

Object-Oriented Programming – Starting the Pong Game, we will really begin getting to grips with

the whole OOP thing. All you need to understand for now is that SFML has written a whole load

of useful classes and that we get to use this code by creating usable objects from those classes.

When you learn more about OOP, you will feel empowered.

Q) I really don’t get this function stuff.

A) It doesn’t matter; we will be returning to it again constantly and will learn about functions

more thoroughly. You just need to know that, when a function is called, its code is executed, and

when it is done (reaches a return statement), the program jumps back to the code that called it.

2
Variables, Operators, and
Decisions: Animating Sprites

In this chapter, we will do quite a bit more drawing on the screen. We will animate some clouds

that travel at a random height and a random speed across the background and a bee that does

the same in the foreground. To achieve this, we will need to learn some more of the basics of

C++. We will be learning how C++ stores data with variables as well as how to manipulate those

variables with the C++ operators and how to make decisions that branch our code on different

paths based on the value of variables. Once we have learned all this, we will be able to reuse our

knowledge about the Simple and fast Multimedia Library (SFML) Sprite and Texture classes

to implement our cloud and bee animations.

In summary, here is what is in store:

•	 Learning all about C++ variables

•	 Seeing how to manipulate the variables

•	 Adding clouds, a buzzing bee and a tree for the player to chop away at

•	 Random numbers

•	 Making decisions with if and else

•	 Timing

•	 Moving the clouds and the bee

Variables, Operators, and Decisions: Animating Sprites48

Learning all about C++ variables
Variables are the way that our C++ games store and manipulate the values/data in our game. If

we want to know how much health the player has, we need a variable. Perhaps you want to know

how many zombies are left in the current wave? That is a variable as well. If you need to keep

track of the name of the player who got a specific high score, you guessed it, we need a variable

for that. Is the game over or still playing? Yep, that’s a variable too.

Variables are named identifiers to locations in memory. So, we might name a variable called

numberOfZombies, and that variable could refer to a place in memory that stores a value to rep-

resent the number of zombies that are remaining in the current wave.

The way that computer systems address locations in memory is complex. Programming languag-

es use variables to give a human-friendly way to manage our data in that memory. Managing a

complex system in a human-friendly way is really what programming languages are. What varies

from language to language is how efficient and friendly they are. C++ has always been efficient

and in the course of its history has become progressively more user friendly, too.

The small amount we have just mentioned about variables implies that there must be different

types of variables. There are many types of variables in C++. Let’s look at the ones we will use the

most over the course of this book.

Types of variables
It would easily be possible to spend an entire chapter discussing C++ variables and types. There

are already numerous books that do this, so I am not going to do so here because I am guessing

you are here for the fastest path possible to building games. Therefore, what follows is a table

of the most used types of variables in this book. Then, we will look at how to use each of these

variable types.

Type Examples of values Explanation

int -42, 0, 1, and 9826. Integer whole numbers.

C++ was created by Bjarne Stroustrup in the early 1980s. C++ evolved from the orig-

inal C language. Stroustrup developed C++ with the aim of adding object-oriented

programming features to C, allowing for more efficient and manageable code. Over

the years, C++ has had many revisions/improvements.

Chapter 2 49

float -1.26f, 5.8999996f and

10128.3f.

Floating point values with

precision up to 7 digits.

double 925.83920655234 and

1859876.94872535.

Floating point values with

precision up to 15 digits.

char a, b, c, 1, 2, and 3 (a total of

128 symbols including ?, ~, #,

etc...).

Any symbol from the ASCII

table (see next tip about

variables).

bool True or false. bool stands for Boolean and

can be only true or false.

String Hello Everyone! I am a
String.

Any text value from a single

letter or digit up to perhaps

an entire book.

Table 2.1 Types of variables

C++ is strongly typed. In programming languages, strong typing refers to a system in which the

data type of a variable is strictly enforced, and implicit type conversions are limited. In a strongly

typed language, operations between different data types often require explicit conversions or

they will result in compiler errors. This strict enforcement reduces the likelihood of unexpected

behaviors in our games, as the compiler or interpreter ensures that variables are used in a manner

consistent with their declared types.

For these reasons, the compiler must be told what type a variable is, so that it can allocate the

right amount of memory for it. Furthermore, when the compiler knows what type a variable is, it

can check that it is not being used in an erroneous way. For example, you wouldn’t divide a string

by a bool. It is good practice to use the best and most appropriate type for each variable you use.

In practice, however, you will often get away with promoting a variable to a more precise type.

Perhaps you need a floating-point number with just five significant digits? The compiler won’t

complain if you store it as a double. However, if you try to store a float or a double in an int,

it will change/cast the value to fit the int. This will also change the value that is stored. As we

progress through the book, I will make it plain what the best variable type is to use in each case

and we will even see a few instances where we deliberately convert/cast between variable types.

A few extra details worth noticing in the preceding table include the f postfix next to all the float

values. This f tells the compiler that the value is type float not double. A floating-point value

without the f prefix is assumed to be double. See the next tip about variables for more about this.

Variables, Operators, and Decisions: Animating Sprites50

User-defined types
User-defined types are way more advanced than the types we have just seen. When we talk about

user-defined types in C++, we are usually talking about classes or enumerations. We briefly

talked about classes and their related objects in the previous chapter. Soon we will write code

in a separate file, sometimes two separate files. We will then be able to declare, initialize, and

use the classes that we design. We will leave how we define/create our own types until Chapter

6, Object-Oriented Programming: Starting the Pong Game. We will see enumerations in Chapter 4.

Enumerations act as a gentle introduction to classes as they are a way for the programmer to

define their own types, perhaps types of zombies, power-ups, or alien spaceships. Let’s get back

to the built-in basic C++ types often referred to as the fundamental types because they represent

fundamental values like those we saw in the preceding table.

Declaring and initializing variables
So far, we know that variables are for storing the data/values that our games need to work. For

example, a variable would represent the number of lives a player has or the player’s name. We

also know that there is a wide selection of different types of values that these variables can rep-

resent, such as int, float, bool, or user defined. Of course, what we haven’t seen yet is how we

would go about using a variable.

There are two stages for creating and preparing a new variable. The stages are called declaration

and initialization. Let’s look at each in turn.

Declaring variables
We can declare variables in C++ like this:

// What is the player's score?

int playerScore;

// What is the player's first initial

char playerInitial;

// What is the value of pi

float valuePi;

// Is the player alive or dead?

bool isAlive;

Chapter 2 51

In the preceding code, we have declared an int called playerScore, a char called playerInitial,

a float called valuePi, and a bool called isAlive. If you need a reminder of exactly what these

different types are, check back to the previous table. What we have achieved by these declarations

is that we have reserved appropriately sized places in memory to store and manipulate values of

the appropriate types. We haven’t got any data yet. Let’s keep going and find out more.

Initializing variables
Now that we have declared the variables with meaningful names, we can initialize those same

variables with appropriate values, like this:

playerScore = 0;

playerInitial = 'J';

valuePi = 3.141f;

isAlive = true;

Now, if we execute the preceding code, we have real data in the memory of the computer. In case

it isn’t obvious, the four preceding variables hold the values of zero, the lowercase letter j, the

floating point number 3.141, and the binary value true.

Declaring and initializing in one step
When it suits us, we can combine the declaration and initialization steps into one. If we know the

values we want our variables to start with, we could code them like this next example.

int playerScore = 0;

char playerInitial = 'J';

float valuePi = 3.141f;

bool isAlive = true;

If we needed to determine the value of our variables during program execution, we would more

likely code them as we did in the first examples of the variables. Both are correct to C++, but,

usually, one way is more appropriate for your game.

If you want to see a complete list of C++ types, then check this web page: http://www.

tutorialspoint.com/cplusplus/cpp_data_types.htm. If you want a deeper dis-

cussion on float, double, and the f postfix, then read this: http://www.cplusplus.

com/forum/beginner/24483/. If you want to know about ASCII character codes,

then there is some more information here: http://www.cplusplus.com/doc/

ascii/. Note that these links are for the extra curious reader, and we have already

discussed enough in order to proceed.

http://www.tutorialspoint.com/cplusplus/cpp_data_types.htm
http://www.tutorialspoint.com/cplusplus/cpp_data_types.htm
http://www.cplusplus.com/forum/beginner/24483/
http://www.cplusplus.com/forum/beginner/24483/
http://www.cplusplus.com/doc/ascii/
http://www.cplusplus.com/doc/ascii/

Variables, Operators, and Decisions: Animating Sprites52

Constants
Sometimes we need to make sure that a value can never be changed. To achieve this, we can

declare and initialize a constant using the const keyword. The value of Pi doesn’t change, so it

would be more correct in most cases to have used a constant variable.

const float PI = 3.141f;

const int NUMBER_OF_ENEMIES = 2000;

In the preceding code, we guarantee that the value of the PI variable can never change during

program execution, and neither can the NUMBER_OF_ENEMIES variable. When declaring constants,

it is common to use a different format. The format we will use in this book will be all uppercase

with the words denoted by underscores instead of camel casing.

To be clear, when I say that a constant can never be changed, I mean it can’t be changed by the

program execution. As a programmer, you can always change the value of your constants at ini-

tialization time; you just can’t write code to change them during execution.

//const int PLANETS_IN_SOLAR_SYSTEM = 9;

// Whoops! Pluto reclassified to dwarf planet in 2006.

const int PLANETS_IN_SOLAR_SYSTEM = 8;

We will see some constants in action in Chapter 4, Loops, Arrays, Switch, Enumerations, and Func-

tions: Implementing Game Mechanics.

There is another variable initialization topic to discuss.

Uniform initialization
Uniform initialization or list initialization is a newer way to initialize variables. Uniform ini-

tialization in C++ began with the introduction of C++11, which was a major update to the C++

programming language in 2011. Uniform initialization provides a more consistent syntax for

initializing variables and our user-defined types. It allows initialization using curly braces, {},

just like the curly braces that wrap the main function. You can use uniform initialization for the

variables we saw previously as follows:

int playerScore{0};

char playerInitial{'J'};

float valuePi{3.141f};

bool isAlive{true};

Chapter 2 53

In the preceding code, I’ve replaced the assignment operator, =, with the uniform initialization

syntax, {}, for each variable. This syntax is the formal standard in modern C++ and you will most

often see it in modern commercial APIs. There are some advanced reasons why it is less error

prone than the “traditional” method, which we will use in this book.

It’s not wrong to use the traditional syntax like this:

int playerScore = 0;

Both approaches are valid and will work. I just wanted you to see the syntax you will sometimes

come across when exploring C++ elsewhere. Furthermore, we will bump into this style later

in Chapter 6 when we talk about classes. Feel free to use uniform initialization throughout the

book. It would be simple to modify all the code samples. My view is that the traditional syntax

is more beginner friendly but if you are going to work for XYZ corporation, you will probably use

uniform initialization.

Declaring and initializing user-defined types
We have already seen examples of how we declare and initialize some SFML-defined types. It is

because the way that we can create/define these types (classes) is so flexible, that the way we

declare and initialize them is also so varied. Here are a couple of reminders for declaring and

initializing user-defined types from the previous chapter.

Create an object of type VideoMode, called vm, and initialize it with two int values, 1920 and 1080.

// Create a video mode object

VideoMode vm(1920, 1080);

Create an object of the Texture type called textureBackground, but don’t do any initialization.

// Create a texture to hold a graphic on the GPU

Texture textureBackground;

Note that it is possible (in fact, very likely) that even though we are not suggesting any specific

values with which to initialize textureBackground, some setup of variables may take place in-

ternally. Whether or not an object needs or has the option of giving initialization values at this

point is entirely dependent on how the class is coded and is almost infinitely flexible. This further

suggests that when we get to write our own classes, there will be some complexity. Fortunately,

it also means we will have significant power to design our types/classes to be just what we need

to make our games. Add this huge C++ flexibility to the power of the SFML-designed classes and

the potential for our games is almost limitless!

Variables, Operators, and Decisions: Animating Sprites54

We will see a few more user-created types/classes provided by SFML in this chapter and loads

more throughout the book. In Chapter 6, we will design and code our own types/classes when

implementing a Pong-style game.

Seeing how to manipulate the variables
At this point, we know exactly what variables are, the main types they can be, and how to declare

and initialize them. We still haven’t learned to achieve much with them, however. We need to

manipulate our variables, add them, take away, multiply, divide, and especially, test them.

First, we will deal with how we can manipulate them and later we will look at how and why we

test them.

With this in mind, let’s learn about the C++ arithmetic and assignment operators.

C++ arithmetic and assignment operators
To manipulate variables, C++ has a range of arithmetic operators and assignment operators.

Fortunately, most arithmetic and assignment operators are quite intuitive to use, and those that

aren’t are quite easy to explain. To get us started, let’s look at a table of arithmetic operators fol-

lowed by a table of assignment operators that we will regularly use throughout this book.

Arithmetic operator Explanation

+ The addition operator can be used to add together the values of

two variables or values.

- The subtraction operator can be used to take away the value of

one variable or value from another variable or value.

* The multiplication operator can multiply the value of variables

and values.

/ The division operator can divide the value of variables and values.

% The Modulo operator divides a value or variable by another value

or variable to find the remainder of the operation.

Table 2.2 Arithmetic operators

Now, for the assignment operators.

Assignment operators Explanation

= We have already seen this one. It is the assignment operator. We

use it to initialize/set a variable’s value.

Chapter 2 55

+= Add the value on the right-hand side to the variable on the left.

-= Take away the value on the right-hand side from the variable on

the left.

*= Multiply by the value on the right-hand side by the variable on the

left.

/= Divide by the value on the right-hand side by the variable on the

left.

++ Increment operator that adds one to a variable.

-- Decrement operator that takes away one from a variable.

<=> The spaceship operator, represented by <=>, is a relatively new

addition to the C++ language, introduced in C++20. It is used for

three-way comparisons. We will explore this in a later project.

Table 2.3 Assignment operators

Now that we have seen a good range of arithmetic and assignment operators, we can see how

to manipulate our variables by combining operators, variables, and values to form expressions.

Getting things done with expressions
Expressions are the combination of variables, operators, and values, just like expressions in En-

glish are the combination of words and punctuation. Using expressions, we can arrive at a result.

Furthermore, as we will soon see, we can use an expression in a test. These tests can be used to

decide what our code should do next.

Assignment
First, some simple expressions we might see in our game code.

// Player gets a new high score

hiScore = score;

Or,

// Set the score to 100

score = 100;

Technically, all the preceding operators, except for =, --, and ++, are called compound

assignment operators because they comprise more than one operator.

Variables, Operators, and Decisions: Animating Sprites56

In the preceding code, we assign the value stored in score to the hiScore variable. From this

point forward, hiScore will hold whatever was previously in score. We might do this at the end

of a game when the player beats the previously held highest score. To be clear, we might go on

to reset the score to zero and then use it to keep the score of the next game but hiScore will still

hold the value previously stored in score when hiScore = score was executed. Of course, if we

executed this line of code at the end of every game, we would run the risk of assigning a value to

hiScore that wasn’t a new highest score. This conundrum brings us back to the need for testing

and comparing values. Let’s keep going and we will get to the solution soon.

Next, look at the addition operator, which is used in conjunction with the assignment operator:

// Add to the score when an alien is shot

score = aliensShot + wavesCleared;

Or:

// Add 100 to whatever the score currently is

score = score + 100;

Notice that it is perfectly acceptable to use the same variable on both sides of an operator. In the

preceding code, the first line assigns to score the result of adding the values in aliensShot and

wavesCleared together. The second line of code assigns the value of whatever score currently

holds plus one hundred back into score. Perhaps another variation of this example would be useful:

score = score + pointsPerAlien;

In this example, the value assigned to pointsPerAlien is added to the existing value in score.

This technique of using variables on both sides of an operator is very common. Look at the code

again and be sure you understand what is happening.

Next, let’s look at the subtraction operator in conjunction with the assignment operator. The code

that follows subtracts the value on the right side of the subtraction operator from the value on

the left. It is usually used along with the assignment operator, perhaps like this:

// Uh oh lost a life

lives = lives - 1;

Or:

// How many aliens left at the end of game

aliensRemaining = aliensTotal - aliensDestroyed;

Chapter 2 57

This is how we might use the division operator. This next code divides the number on the left by

the number on the right. Again, it is usually used with the assignment operator, like this:

// Make the remaining hit points lower based on swordLevel

hitPoints = hitPoints / swordLevel;

Or:

// Give something, but not everything, back for recycling a block

recycledValueOfBlock = originalValue / 1.1f;

In the previous example, the recycledValueOfBlock variable will need to be of the float type

to accurately store the answer to a calculation like that. Hopefully, this syntax is starting to seem

obvious. If it seems like I am teaching you how to do child-level arithmetic, then that means you

have probably got the gist. One more assignment operator example and we will move on.

Perhaps unsurprisingly, we could use the multiplication operator like this:

// answer is equal to 100, of course

answer = 10 * 10;

Or:

// biggerAnswer = 1000, of course

biggerAnswer = 10 * 10 * 10;

By now, the code probably doesn’t need explaining. In the preceding examples, we are multiplying

two and then, three instances of the number ten together and assigning the results to answer and

then biggerAnswer respectively.

Increment and decrement
Now, let’s look at the increment operator in action. This is a neat way to add 1 to the value of one

of our game’s variables. Stay tuned for a C++ fun fact regarding the increment operator.

This code we have already seen and I do not need to explain it again, but just take another look.

// Add one to myVariable

myVariable = myVariable + 1;

Sometimes, it is not necessary to repeat the variable you want to use on both sides of an operator.

It is possible to make your code clearer and save a tiny bit of typing time too.

Variables, Operators, and Decisions: Animating Sprites58

This next code gives the same result as the previous code:

// Much neater, clearer and quicker

myVariable ++;

The increment operator is the exact same as the ++ in C++.

The decrement operator, --, is, you guessed it, a quick way to subtract 1 from something.

playerHealth = playerHealth -1;

This next code is quicker, clearer, and does the same thing as the preceding code:

playerHealth --;

Let’s look at a few more operators in action and then we can get back to building the Timber!!!

game. Try and work out what is happening in all of the lines of code that follow:

int someVariable = 10;

// Multiply the variable by 10 and put the answer

// back in the variable

someVariable *= 10;

// someVariable now equals 100

// Divide someVariable by 5 put the answer back

// into the variable

someVariable /= 5;

// someVariable now equals 20

// Add 3 to someVariable and put the answer back

// into the variable

someVariable += 3;

// someVariable now equals 23

// Take 25 from someVariable and put the answer back

As a fun fact, have you ever wondered how C++ got its name? C++ is an extension of

the C language. Its inventor, Bjarne Stroustrup, originally called it “C with class-

es” but the name evolved. If you are interested, read the C++ story: http://www.

cplusplus.com/info/history/.

http://www.cplusplus.com/info/history/
http://www.cplusplus.com/info/history/

Chapter 2 59

// into the variable

someVariable -= 25;

// someVariable now equals -2

In the preceding code, we take the use of incrementing and decrementing to a new level using

some compound operators that combine the assignment operator with the increment and dec-

rement operators. We are no longer just adding or subtracting one. When we use the *=, /=, +=,

or -= operators, we are multiplying, dividing, adding, or subtracting the value currently held in

the variable with the number preceding the operator.

So, in the multiplication example, someVariable holds the 10 value, and the code, someVariable

*= 10, will multiply the value by 10 and put the answer, 100, back into someVariable. This syntax

is short, fast, and clear. Nice.

If any of these examples need further clarification, we will be reusing almost all we have just

learned to enhance our game and get the graphics moving. It’s time to add some more sprites

to our game.

Adding clouds, a buzzing bee, and a tree
First, we will add a tree. This is going to be easy. The reason for this is because the tree doesn’t

move. We will use the same procedure that we used in the previous chapter when we drew the

background. In this next section, we will prepare our static tree sprite and our moving bee and

cloud sprites. We can then focus separately on moving and drawing the bee and the clouds be-

cause they will need a bit more C++ knowledge to do so.

Preparing the tree
Add the following highlighted code. Notice the un-highlighted code, which is the code we have

already written. This should help you identify that the new code should be typed immediately

after we set the position of the background but before the start of the main game loop. We will

recap what is going on in the new code after you have added it.

int main()

{

// Create a video mode object

VideoMode vm(1920, 1080);

// Create and open a window for the game

Variables, Operators, and Decisions: Animating Sprites60

RenderWindow window(vm, "Timber!!!", Style::Fullscreen);

// Create a texture to hold a graphic on the GPU

Texture textureBackground;

// Load a graphic into the texture

textureBackground.loadFromFile("graphics/background.png");

// Create a sprite

Sprite spriteBackground;

// Attach the texture to the sprite

spriteBackground.setTexture(textureBackground);

// Set the spriteBackground to cover the screen

spriteBackground.setPosition(0, 0);

	

// Make a tree sprite

Texture textureTree;

textureTree.loadFromFile("graphics/tree.png");

Sprite spriteTree;

spriteTree.setTexture(textureTree);

spriteTree.setPosition(810, 0);

while (window.isOpen())

{

The five lines of code (excluding the comment) that we just added, do the following:

•	 First, we create an object of the Texture type called textureTree.

•	 Next, we load a graphic into the texture from the tree.png graphics file.

•	 Then, we declare an object of type Sprite called spriteTree.

•	 Following on, we associate textureTree with spriteTree. Whenever we draw spriteTree,

it will show the textureTree texture, which is a neat tree graphic.

•	 Finally, we set the position of the tree using the coordinates 810 on the x-axis and 0 on

the y-axis.

Chapter 2 61

A point to note is that the coordinates, 810 and zero, used to position the tree are values that I

have tested and work nicely in our chosen overall resolution. I assigned the values in the manner

that I did to quickly move on to the next subject. In a “real” C++ program, you would probably

assign values to variables as this would make their uses clearer. Furthermore, if the values do not

change, and they don’t, you would probably use a constant variable as we discussed previously.

You could declare variables like this outside the game loop:

const float TREE_HORIZONTAL_POSITION = 810;

const float TREE_VERTICAL_POSITION = 0;

Then, in the line of code where we draw the tree sprite, you would use the following:

spriteTree.setPosition(TREE_HORIZONTAL_POSITION, TREE_VERTICAL_POSITION);

In this example, the declaration is right before the usage, and I think that the setPosition func-

tion makes it clear enough what the values refer to.

I leave it as an exercise for the reader should they wish to modify the code if they think the effort

of the two new constant variables will make things clearer. When we write code with unexplained

values as we have, it is sometimes critically referred to as using magic numbers because they do

something that is sometimes less clear than using a variable with a meaningful name. The point

of this conversation is that the bigger and more complex your code is, the stricter you should be

with your standards, especially if you are collaborating or being paid to be strict. I will occasionally

use magic numbers for brevity but hopefully, the context will always be clear.

Let’s move on to the much more interesting bee.

Preparing the bee
The difference between this next code and the tree code is small but important. As the bee needs

to move, we also declare two bee-related variables. Add the highlighted code in the place shown

and see whether you can work out how we might use the beeActive and beeSpeed variables.

// Make a tree sprite

Texture textureTree;

textureTree.loadFromFile("graphics/tree.png");

Sprite spriteTree;

spriteTree.setTexture(textureTree);

spriteTree.setPosition(810, 0);

// Prepare the bee

Variables, Operators, and Decisions: Animating Sprites62

Texture textureBee;

textureBee.loadFromFile("graphics/bee.png");

Sprite spriteBee;

spriteBee.setTexture(textureBee);

spriteBee.setPosition(0, 800);

// Is the bee currently moving?

bool beeActive = false;

// How fast can the bee fly

float beeSpeed = 0.0f;

while (window.isOpen())

{

In the preceding new code, we create a bee in the same way we created a background and a tree.

We use a Texture and a Sprite and associate the two.

Note also in the previous bee code some new code we haven’t seen before in our project although

we have just talked about it when discussing variables. There is a bool variable for determining

whether the bee is active or not. Remember that a bool variable can be either true or false. We

initialize beeActive to false, for now.

Next, we declare a new float variable called beeSpeed. This will hold the speed that our bee will

fly across the screen at in pixels per second.

Soon, we will see how we use these two new variables to move the bee. Before we do, let’s set up

some clouds in an almost identical manner.

Preparing the clouds
Add the highlighted code shown next. Study the new code and try and work out what it will do

– and then I’ll explain it.

// Prepare the bee

Texture textureBee;

textureBee.loadFromFile("graphics/bee.png");

Sprite spriteBee;

spriteBee.setTexture(textureBee);

spriteBee.setPosition(0, 800);

Chapter 2 63

// Is the bee currently moving?

bool beeActive = false;

// How fast can the bee fly

float beeSpeed = 0.0f;

// make 3 cloud sprites from 1 texture

Texture textureCloud;

// Load 1 new texture

textureCloud.loadFromFile("graphics/cloud.png");

// 3 New sprites with the same texture

Sprite spriteCloud1;

Sprite spriteCloud2;

Sprite spriteCloud3;

spriteCloud1.setTexture(textureCloud);

spriteCloud2.setTexture(textureCloud);

spriteCloud3.setTexture(textureCloud);

// Position the clouds on the left of the screen

// at different heights

spriteCloud1.setPosition(0, 0);

spriteCloud2.setPosition(0, 250);

spriteCloud3.setPosition(0, 500);

// Are the clouds currently on screen?

bool cloud1Active = false;

bool cloud2Active = false;

bool cloud3Active = false;

// How fast is each cloud?

float cloud1Speed = 0.0f;

float cloud2Speed = 0.0f;

float cloud3Speed = 0.0f;

while (window.isOpen())

{

Variables, Operators, and Decisions: Animating Sprites64

The only thing about the code we have just added that might seem a little odd is that we have

only one object of the Texture type. It is completely normal for multiple Sprite objects to share

a texture. Once a Texture is stored in GPU memory, it can be associated with a Sprite object very

quickly. It is only the initial loading of the graphic in the loadFromFile code that is a relatively

slow operation. Of course, if we wanted three differently shaped clouds, then we would need

three textures.

Apart from the minor texture-sharing anomaly, the code we have just added is nothing new com-

pared to the bee. The only difference is that there are three cloud sprites, three bool variables to

determine whether each cloud is active, and three float variables to hold the speed for each cloud.

Drawing the tree, the bee, and the clouds
Finally, we can draw them all on the screen by adding this highlighted code in the drawing section.

/*

**

Draw the scene

**

*/

// Clear everything from the last run frame

window.clear();

// Draw our game scene here

window.draw(spriteBackground);

// Draw the clouds

window.draw(spriteCloud1);

window.draw(spriteCloud2);

window.draw(spriteCloud3);

// Draw the tree

window.draw(spriteTree);

// Draw the insect

window.draw(spriteBee);

// Show everything we just drew

Chapter 2 65

window.display();

Drawing the three clouds, the bee, and the tree is done in the same way that the background was

drawn. Notice, however, the order in which we draw the different objects to the screen. We must

draw all the graphics after the background, or they will be obscured by the background, and we

must draw the clouds before the tree, or they will look a bit odd drifting in front of the tree. The

bee would look OK either in front or behind the tree. I opted to draw the bee in front of the tree,

so it can try and distract our lumberjack, a bit like a real bee might.

Run Timber!!! and gaze in awe at the tree, the bee, and the three clouds that don’t do anything!

They look like they are lining up for a race; a race where the bee must go backward.

Figure 2.1: Drawing the tree, bee and clouds

Using what we know about C++ operators, we could try and move the graphics we have just added,

but there are a couple of problems. Firstly, real clouds and bees move in a non-uniform manner.

They don’t have a set speed or location. Although their locations and speed are determined by

factors such as the wind or how much of a hurry the bee might be in. To the casual observer, the

path they take and their speed appear random. Let’s explore randomness further.

Random numbers
Random numbers are useful for lots of reasons in games, for example, determining what card

the player is dealt or how much damage within a certain range is subtracted from an enemy’s

health. As hinted at, we will use random numbers to determine the starting location and speed

of the bee and the clouds.

Variables, Operators, and Decisions: Animating Sprites66

Generating random numbers in C++
To generate random numbers, we will need to use some more C++ functions. Don’t add any code

to the game yet. Let’s just look at the syntax and the steps required with some hypothetical code.

Computers can’t genuinely pick random numbers. They can only use algorithms to pick a num-

ber that appears to be random. So that this algorithm doesn’t constantly return the same value,

we must seed the random number generator. The seed can be any integer number, although it

must be a different seed each time you require a unique random number. Look at this code, which

seeds the random number generator.

// Seed the random number generator with the time

srand((int)time(0));

The preceding code gets the time from the PC using the time function like this: time(0). The call

to the time function is enclosed as the value to be sent to the srand function. The result of this is

that the current time is used as the seed.

The previous code is made to look a little more complicated because of the slightly unusual-look-

ing (int) syntax. What this does is convert/cast the value returned from time to an int. This is

required by the srand function in this situation.

So, in summary, the previous line of code:

1.	 Gets the time using time.

2.	 Converts it to type int.

3.	 Sends this resulting value to srand which seeds the random number generator.

The time is, of course, always changing. This makes the time function a great way to seed the

random number generator. However, think about what might happen if we seed the random

number generator more than once and in such quick succession that time returns the same value.

We will see and solve this problem when we animate our clouds.

At this stage, we can create the random number between a range and save it to a variable for later

use using code like this:

// Get the random number & save it to a variable called number

The term used to describe a conversion from one type to another is cast.

Chapter 2 67

int number = (rand() % 100);

Notice the odd-looking way we assign a value to number. By using the modulo operator (%) and

the value of 100, we are asking for the remainder after dividing the number returned from rand

by 100. When you divide by 100, the highest number you can possibly have as a remainder is 99.

The lowest number possible is 0. Therefore, the previous code will generate a number between

0 and 99 inclusive. This knowledge will be useful for generating a random speed and starting

location for our bees and clouds.

We will do this soon, but we first need to learn how to make decisions in C++.

Making decisions with if and else
The C++ if and else keywords are what enable us to make decisions. We saw if in action in the

previous chapter when we detected each frame whether the player had pressed the Escape key.

if (Keyboard::isKeyPressed(Keyboard::Escape))

{

window.close();

}

So far, we have seen how we can use arithmetic and assignment operators to create expressions.

Now, we can see some new operators.

Logical operators
Logical operators are going to help us make decisions, by building expressions that can be tested

for a value of either true or false. At first, this might seem like quite a narrow choice and insuf-

ficient for the kind of choices that might be needed in an advanced PC game. Once we dig a little

deeper, we will see that you can make all the required decisions we will need, with just a few of

the logical operators.

Here is a table of the most useful logical operators. Look at them and the associated examples,

and then we will see how to put them to use.

Logical operator Name and example

== The comparison operator tests for equality and is either true or

false. An expression like (10 == 9), for example, is false. 10 is

obviously not equal to 9.

Variables, Operators, and Decisions: Animating Sprites68

! This is the logical NOT operator. The expression (! (2 + 2 ==

5)). This is true because 2 + 2 is NOT 5.

!= This is another comparison operator but it is different from the =

comparison operator. This tests whether something is not equal. For

example, the expression (10 != 9) is true. 10 is not equal to 9.

> Another comparison operator – there are a few more as well. This

tests whether something is greater than something else. The

expression (10 > 9) is true.

< You guessed it. This tests for values less than something else. The

expression (10 < 9) is false.

>= This operator tests whether one value is greater than or equal to

the other and if either is true, the result is true. For example, the

expression (10 >= 9) is true. The expression (10 >= 10) is also

true.

<= Like the previous operator, this one tests for two conditions, but this

time less than or equal to. The expression (10 <= 9) is false. The

expression (10 <= 10) is true.

&& This operator is known as logical AND. It tests two or more separate

parts of an expression and both parts must be true for the result

to be true. Logical AND is usually used in conjunction with the

other operators to build more complex tests. The expression ((10

> 9) && (10 < 11)) is true because both parts are true, so the

expression is true. The expression ((10 > 9) && (10 < 9)) is

false because only one part of the expression is true and the other

is false.

|| This operator is called logical OR and it is just like logical AND

except that at least one of two or more parts of an expression

need to be true for the expression to be true. Let’s look at the last

example we used but switch the && for ||. The expression ((10 >

9) || (10 < 9)) is now true because one part of the expression

is true.

Table 2.4 Logical operators

Let’s meet the C++ if and else keywords, which will enable us to put all these logical operators

to good use.

Chapter 2 69

C++ if and else
Let’s make the previous examples less abstract. Meet the C++ if keyword. We will use if and

a few operators along with a small story to demonstrate their use. Next is a made-up military

situation that will hopefully be less abstract than the previous examples.

If they come over the bridge, shoot them!
The captain is dying and, knowing that his remaining subordinates are not very experienced, he

decides to write a C++ program to convey his last orders for after he has died. The troops must

hold one side of a bridge while awaiting reinforcements.

The first command the captain wants to make sure his troops understand is this:

“If they come over the bridge, shoot them!”

So, how do we simulate this situation in C++? We need a bool variable, isComingOverBridge. The

next bit of code assumes that the isComingOverBridge variable has been declared and initialized

to either true or false.

We can then use if like this:

if(isComingOverBridge)

{

// Shoot them

}

If the isComingOverBridge variable is equal to true, the code inside the opening and closing

curly braces {...} will run. If not, the program continues after the if block and without running

the code within it.

Else do this instead
The captain also wants to tell his troops to stay put if the enemy is not coming over the bridge.

Now, we can introduce another C++ keyword, else. When we want to explicitly do something

when the if does not evaluate to true, we can use else.

For example, to tell the troops to stay put if the enemy is not coming over the bridge, we could

write this code:

if(isComingOverBridge)

{

Variables, Operators, and Decisions: Animating Sprites70

// Shoot them

}

else

{

// Hold position

}

The captain then realized that the problem wasn’t as simple as he first thought. What if the

enemy comes come over the bridge, but has too many troops? His squad would be overrun and

slaughtered. So, he came up with this code (we’ll use some variables as well this time):

bool isComingOverBridge;

int enemyTroops;

int friendlyTroops;

// Initialize the previous variables, one way or another

// Now the if

if(isComingOverBridge && friendlyTroops > enemyTroops)

{

// shoot them

}

else if(isComingOverBridge && friendlyTroops < enemyTroops)

{

// blow the bridge

}

else

{

// Hold position

}

The preceding code has three possible paths of execution. First, if the enemy is coming over the

bridge and the friendly troops are greater in number:

if(isComingOverBridge && friendlyTroops > enemyTroops)

Chapter 2 71

Second, if the enemy troops are coming over the bridge but outnumber the friendly troops:

else if(isComingOveBridge && friendlyTroops < enemyTroops)

Then, the third and final possible outcome, which will execute if neither of the others is true is

captured by the final else, without an if condition.

Reader challenge
Can you spot a flaw with the preceding code? One that might leave a bunch of inexperienced

troops in complete disarray? The possibility of the enemy troops and friendly troops being exactly

equal in number has not been handled explicitly and would therefore be handled by the final

else. The final else is meant for when there are no enemy troops. I guess any self-respecting

captain would expect his troops to fight in this situation. He could change the first if statement

to accommodate this possibility.

if(isComingOverBridge && friendlyTroops >= enemyTroops)

Finally, the captain’s last concern was that if the enemy came over the bridge waving the white

flag of surrender and were promptly slaughtered, then his men would end up as war criminals. The

C++ code needed was obvious. Using the wavingWhiteFlag Boolean variable, he wrote this test:

if (wavingWhiteFlag)

{

// Take prisoners

}

But where to put this code was less clear. In the end, the captain opted for the following nested

solution and changing the test for wavingWhiteFlag to logical NOT, like this:

if (!wavingWhiteFlag)

{

// not surrendering so check everything else

if(isComingOverTheBridge && friendlyTroops >= enemyTroops)

{

// shoot them

}

else if(isComingOverTheBridge && friendlyTroops < enemyTroops)

{

// blow the bridge

Variables, Operators, and Decisions: Animating Sprites72

}

}

else

{

// this is the else for our first if

// Take prisoners

{

// Holding position

This demonstrates that we can nest if and else statements inside of one another to create quite

deep and detailed decisions.

We could go on making more and more complicated decisions with if and else but what we

have seen is more than enough of an introduction. It is probably worth pointing out that very

often there is more than one way to arrive at a solution to a problem. The right way will usually

be the way that solves the problem in the clearest and simplest manner.

We are getting closer to having all the C++ knowledge we need to be able to animate our clouds

and bee. There is one final animation issue to discuss and then we can get back to the game.

Timing
Before we can move the bee and the clouds, we need to consider timing. As we already know, the

main game loop executes repeatedly until the player presses the Escape key.

We have also learned that C++ and SFML are exceptionally fast. In fact, my modest laptop executes

a simple game loop (like the current one) at around five thousand times per second. With this in

mind, let’s discuss the problem of making the rate at which each frame of animation is shown

consistent and predetermined.

The frame rate problem
Let’s consider the speed of the bee. For discussion, we could pretend that we are going to move

it at 200 pixels per second. On a screen that is 1920 pixels wide, it would take, approximately, 10

seconds to cross the entire width, because 10 x 200 is 2000 (near enough to 1920).

Furthermore, we know that we can position any of our sprites with setPosition(...,...). We

just need to put the x and y coordinates in the parentheses.

Chapter 2 73

In addition to setting the position of a sprite, we can also get the current position of a sprite. To

get the horizontal x coordinate of the bee, for example, we would use this code:

float currentPosition = spriteBee.getPosition().x;

The current x (horizontal) coordinate of the bee is now stored in currentPosition. To move the

bee to the right, we could then add the appropriate fraction of 200 (our intended speed) divided

by 5000 (the approximate frames per second on my laptop) to currentPosition, like this:

currentPosition += 200/5000;

Now, we could use setPosition to move our bee. It would smoothly move from left to right by

200 divided by 5000 pixels in each frame. But there are two problems with this approach.

The frame rate is the number of times per second that our game loop is processed. That is, the

number of times that we handle the player’s input, update the game objects, and draw them to

the screen. We will expand on and discuss matters of frame rate now and throughout the rest

of the book.

The frame rate on my laptop might not always be constant. The bee might look like it is intermit-

tently “boosting” its way across the screen as each frame executes at an inconsistent rate.

Of course, we want a wider audience for our game than just my laptop! Every PC’s frame rate

will vary, at least slightly. If you have an old PC, the bee will appear to be weighed down with

lead, and if you have the latest gaming rig, it will probably be something of a blurry turbo bee.

Fortunately, this problem is the same for every game and SFML has provided a neat C++ solution.

The easiest way to understand the solution is to implement it.

The SFML frame rate solution
We will now measure and use the frame rate to control our game. To get started implementing

this, add this code just before the main game loop:

// How fast is each cloud?

float cloud1Speed = 0;

float cloud2Speed = 0;

float cloud3Speed = 0;

// Variables to control time itself

Clock clock;

Variables, Operators, and Decisions: Animating Sprites74

while (window.isOpen())

{

In the previous code, we declare an object of the Clock type and we name it clock. The class

name starts with a capital letter and the object name (that we will use) starts with a lowercase

letter. The object name is arbitrary, but clock seems like an appropriate name for, well, a clock.

We will add some more time-related variables here soon as well.

Now, in the update section of our game code, add this highlighted code:

/*

**

Update the scene

**

*/

// Measure time

Time dt = clock.restart();

/*

**

Draw the scene

**

*/

The clock.restart() function, as you might expect, restarts the clock. We want to restart the

clock every frame so that we can time how long each frame takes. In addition, however, it returns

the amount of time that has elapsed since the last time we restarted the clock.

As a result of this, in the previous code, we are declaring an object of the Time type called dt and

using it to store the value returned by the clock.restart() function.

Now, we have a Time object called dt that holds the amount of time that elapsed since the last

time we updated the scene and restarted the clock. Maybe you can see where this is going.

Let’s add some more code to the game and then we will see what we can do with dt.

dt stands for delta time, which is the time between two updates.

Chapter 2 75

What we will do with this clock is update our game engine functionality to take time into account.

Now, our game loop could be visualized like this next image:

Figure 2.2: Basic game loop

With the introduction of the SFML Clock class, our game loop can be better represented with

this next image:

Figure 2.3: Basic game loop with timing

Variables, Operators, and Decisions: Animating Sprites76

Let’s add the key part of our timing code to see how the math works. Now, we can solve the prob-

lem of an inconsistent frame rate by updating the bees and the clouds relative to the amount of

time that each frame takes to execute. If the frame is fast, we move the bee less than if the frame

is slower.

Moving the clouds and the bee
Let’s use the elapsed time since the last frame to breathe life into the bee and the clouds. This will

solve the problem of needing to achieve a consistent frame rate across different PCs.

Giving life to the bee
The first thing we want to do is set up the bee at a certain height and a certain speed. We only

want to do this when the bee is inactive. So, we wrap the next code in an if block. Examine and

add the highlighted code, and then we will discuss it.

/*

**

Update the scene

**

*/

// Measure time

Time dt = clock.restart();

// Setup the bee

if (!beeActive)

{

// How fast is the bee

srand((int)time(0));

beeSpeed = (rand() % 200) + 200;

// How high is the bee

srand((int)time(0) * 10);

float height = (rand() % 500) + 500;

spriteBee.setPosition(2000, height);

beeActive = true;

Chapter 2 77

}

/*

**

Draw the scene

**

*/

Now, if the bee is not active, just like it won’t be when the game first starts, if(!beeActive) will

be true and the preceding code will do the following things, in this order:

1.	 Seed the random number generator.

2.	 Get a random number between 200 and 399 and assign the result to beeSpeed.

3.	 Seed the random number generator again.

4.	 Get a random number between 500 and 999 and assign the result to a new float variable

called height.

5.	 Set the position of the bee to 2000 on the x-axis (just off-screen to the right) and to what-

ever, height, equals on the y-axis.

6.	 Set beeActive to true so this code doesn’t execute again until we again change beeActive

later in the code.

If we run the game, nothing will happen to the bee yet, but now that the bee is active, we can

write some code that runs when beeActive is true.

Add the following highlighted code, which, as you can see, executes whenever beeActive is true.

This is because it follows with an else after the if(!beeActive) block.

// Set up the bee

if (!beeActive)

{

Note that the height variable is the first variable we have ever declared inside the

game loop. Furthermore, because it was declared inside an if block, it is “invisible”

outside of the if block. This is fine for our use because once we have set the height of

the bee, we don’t need it anymore. This phenomenon that affects variables is called

scope. We will explore this more fully in Chapter 4, Loops, Arrays, Switch, Enumerations,

and Functions: Implementing Game Mechanics.

Variables, Operators, and Decisions: Animating Sprites78

// How fast is the bee

srand((int)time(0));

beeSpeed = (rand() % 200) + 200;

// How high is the bee

srand((int)time(0) * 10);

float height = (rand() % 1350) + 500;

spriteBee.setPosition(2000, height);

beeActive = true;

}

else

// Move the bee

{

spriteBee.setPosition(

spriteBee.getPosition().x -

(beeSpeed * dt.asSeconds()),

spriteBee.getPosition().y);

// Has the bee reached the left-hand edge of the screen?

if (spriteBee.getPosition().x < -100)

{

 // Set it up ready to be a whole new bee next frame

 beeActive = false;

 }

}

/*

**

Draw the scene

**

*/

In the else block, the following things happen.

Chapter 2 79

The bee position is changed using the following criteria. The setPosition function uses the

getPosition function to get the current horizontal coordinate of the bee. It then subtracts

beeSpeed * dt.asSeconds() from that coordinate.

The beeSpeed variable value is many pixels per second and was randomly assigned in the previ-

ous if block. The value of dt.asSeconds() will be a fraction of 1, which represents how long the

previous frame of animation took.

Assume that the bee’s current horizontal coordinate is 1000. Now, suppose a basic PC loops at

5000 frames per second. This would mean that dt.asSeconds would be 0.0002. Further, suppose

that beeSpeed was set to the maximum 399 pixels per second. Then, the code that determines

the value that setPosition uses for the horizontal coordinate can be explained like this:

1000 - 0.0002 x 399

Therefore, the new position on the horizontal axis for the bee would be 999.9202. We can see

that the bee is very, very smoothly drifting to the left, well under a pixel per frame. If the frame

rate fluctuates, then the formula will produce a new value to suit. If we run the same code on a

PC that only achieves 100 frames per second or a PC that achieves a million frames per second,

the bee will move at the same speed.

The setPosition function uses getPosition().y to keep the bee in exactly the same vertical

coordinate throughout this cycle of being active.

The final part of the code in the else block we just added is shown again so we can talk about

it next:

// Has the bee reached the right hand edge of the screen?

if (spriteBee.getPosition().x < -100)

{

 // Set it up ready to be a whole new bee next frame

 beeActive = false;

}

This code tests, each frame (when beeActive is true), whether the bee has disappeared off the

left-hand side of the screen. If the getPosition function returns less than -100, it will certainly

be out of view of the player. When this occurs, beeActive is set to false, and, on the next frame,

a “new” bee will be set to flying at a new random height and a new random speed.

Try running the game and watch our bee dutifully fly from right to left and then recycle itself back

to the right again at a new height and speed. It’s almost like a new bee every time.

Variables, Operators, and Decisions: Animating Sprites80

Now, we will get the clouds moving in a very similar way.

Blowing the clouds
The first thing we want to do is set up the first cloud at a certain height and a certain speed. We

only want to do this when the cloud is inactive. Consequently, we will wrap the next code in an-

other if block. Examine and add the highlighted code, just after the code we added for the bee,

then we will discuss it. It has many similarities to the code we used on the bee.

else

// Move the bee

{

 spriteBee.setPosition(

 spriteBee.getPosition().x -

 (beeSpeed * dt.asSeconds()),

 spriteBee.getPosition().y);

 // Has the bee reached the right hand edge of the screen?

 if (spriteBee.getPosition().x < -100)

 {

 // Set it up ready to be a whole new bee next frame

 beeActive = false;

 }

}

// Manage the clouds

// Cloud 1

if (!cloud1Active)

{

 // How fast is the cloud

Of course, a real bee would stick around for ages and pester you while you’re trying

to concentrate on chopping the tree. Also, a real bee would probably vary its height.

Don’t worry, we will be making more advanced game objects with each project. The

point is that you should recycle/reuse your sprites and textures whenever possible

for a more sustainable video game.

Chapter 2 81

 srand((int)time(0) * 10);

 cloud1Speed = (rand() % 200);

 // How high is the cloud

 srand((int)time(0) * 10);

 float height = (rand() % 150);

 spriteCloud1.setPosition(-200, height);

 cloud1Active = true;

}

/*

**

Draw the scene

**

*/

The only difference between the code we have just added and the bee-related code is that we

work on a different sprite and use different ranges for our random numbers. Also, we use * 10

to the result returned by time(0) so we are always guaranteed to get a different seed for each of

the clouds. When we code the other cloud movement, you will see that we use * 20 and * 30

respectively.

Now, we can act when the cloud is active. We will do so in the else block. As with the if block,

the code is identical to that of the bee-related code, except that all the code works on the cloud

instead of the bee.

// Manage the clouds

if (!cloud1Active)

{

 // How fast is the cloud

 srand((int)time(0) * 10);

 cloud1Speed = (rand() % 200);

 // How high is the cloud

 srand((int)time(0) * 10);

 float height = (rand() % 150);

Variables, Operators, and Decisions: Animating Sprites82

 spriteCloud1.setPosition(-200, height);

 cloud1Active = true;

}

else

 {

 spriteCloud1.setPosition(

 spriteCloud1.getPosition().x +

 (cloud1Speed * dt.asSeconds()),

 spriteCloud1.getPosition().y);

 // Has the cloud reached the right hand edge of the screen?

 if (spriteCloud1.getPosition().x > 1920)

 {

 // Set it up ready to be a whole new cloud next frame

 cloud1Active = false;

 }

 }

/*

**

Draw the scene

**

*/

Now that we know what to do, we can duplicate the same code for the second and third cloud.

Add this highlighted code, which handles the second and third cloud, immediately after the code

for the first cloud:

...

// Cloud 2

if (!cloud2Active)

{

 // How fast is the cloud

 srand((int)time(0) * 20);

Chapter 2 83

 cloud2Speed = (rand() % 200);

 // How high is the cloud

 srand((int)time(0) * 20);

 float height = (rand() % 300) - 150;

 spriteCloud2.setPosition(-200, height);

 cloud2Active = true;

}

else

{

 spriteCloud2.setPosition(

 spriteCloud2.getPosition().x +

 (cloud2Speed * dt.asSeconds()),

 spriteCloud2.getPosition().y);

 // Has the cloud reached the right hand edge of the screen?

 if (spriteCloud2.getPosition().x > 1920)

 {

 // Set it up ready to be a whole new cloud next frame

 cloud2Active = false;

 }

}

if (!cloud3Active)

{

 // How fast is the cloud

 srand((int)time(0) * 30);

 cloud3Speed = (rand() % 200);

 // How high is the cloud

 srand((int)time(0) * 30);

 float height = (rand() % 450) - 150;

 spriteCloud3.setPosition(-200, height);

Variables, Operators, and Decisions: Animating Sprites84

 cloud3Active = true;

}

else

{

 spriteCloud3.setPosition(

 spriteCloud3.getPosition().x +

 (cloud3Speed * dt.asSeconds()),

 spriteCloud3.getPosition().y);

 // Has the cloud reached the right hand edge of the screen?

 if (spriteCloud3.getPosition().x > 1920)

 {

 // Set it up ready to be a whole new cloud next frame

 cloud3Active = false;

 }

}

/*

**

Draw the scene

**

*/

Now, you can run the game and the clouds will randomly and continuously drift across the screen

and the bee will buzz from right to left before re-spawning once more back on the right.

Chapter 2 85

Figure 2.4: Blowing the clouds

Does all this cloud and bee handling seem a little bit repetitive? We will see how we

can save lots of typing and make our code more readable. In C++, there are ways of

handling multiple instances of the same type of variable or object. These are called

arrays and we will learn about them in Chapter 4, Loops, Arrays, Switch, Enumerations,

and Functions: Implementing Game Mechanics. Furthermore, we will also see how

we can execute the same code but on different values without writing that code

multiple times (as we have done here) using our own custom written functions. All

this time-saving efficiency will be explored in Chapter 4. It was a deliberate choice

to prioritize progress with the game features rather than introducing even more C++

before making more progress. By the end of this book, you will know how to make

this game much better than we can at the moment.

Variables, Operators, and Decisions: Animating Sprites86

Before you move on, I encourage you to play with the code from this chapter. How about swapping

the texture files for your own images, changing the speed of the bee and the clouds, or making

the bee go up and down in a kind of sine wave across the screen? Look at a few frequently asked

questions related to the topics in this chapter.

Summary
In this chapter, we learned that a variable is a named storage location in memory, in which we

can keep values of a specific type. Types include int, float, double, bool, String, and char.

We can declare and initialize all the variables we need to store the data for our game. Once we

have our variables, we can manipulate them using the arithmetic and assignment operators as

well as use them in tests with the logical operators. Used in conjunction with the if and else

keywords, we can branch execution of our code depending upon the current situation in the game.

Using all this new knowledge, we animated some clouds and a bee. In the next chapter, we will

use these skills some more to add a heads-up display (HUD) and add more input options for the

player, as well as represent time visually using a time bar.

Frequently Asked Questions
Q) Why do we set the bee to inactive when it gets to -100? Why not just zero because zero is the

left-hand side of the window?

A) The bee graphic is 60 pixels wide and its origin is at the top left pixel. As a result, when the bee

is drawn with its origin at x equals zero, the entire bee graphic is still on screen for the player to

see. By waiting until it is at -100, we can be sure it is out of the player’s view.

Q) How do I know how fast my game loop is?

A) If you have a modern NVIDIA graphics card you might be able to already by configuring your

GeForce Experience overlay to show the frame rate. To measure this explicitly using our own code,

however, we will need to learn a few more things. We will add the ability to measure and display

the current frame rate in Chapter 5, Collisions, Sound, and End Conditions: Making the Game Playable.

Q) What is the difference between the assignment operator, =, and the equality operator, ==, in

C++?

A) The assignment operator, =, is used to assign a value to a variable. For example, int x = 5

assigns the value 5 to the variable x. The equality operator, ==, is used to compare two values for

equality. For example, if (x == 5) checks whether the value of x is equal to 5.

Chapter 2 87

Q) How do sprites and textures work together in C++ with SFML?

A) In SFML, a Texture represents an image loaded from a file, while a Sprite is a 2D image that can

be drawn on the screen. The setTexture function associates a Texture with a Sprite, enabling

the rendering of the image on the screen. You can manipulate the sprite’s position, rotation, and

scale, and SFML handles the rendering efficiently using the GPU.

Q) What is the purpose of seeding the random number generator when generating random num-

bers in C++?

A) Seeding the random number generator is essential to ensure that it produces different sequences

of random numbers each time the program runs. Without seeding, the generator would produce

the same sequence of numbers on each program run, making the results predictable rather than

random. Typically, the current time is used as the seed for randomness. This is much the same as

providing a seed to generate a unique map in a game such as Minecraft. Later, in the final project,

we will use more advanced techniques to generate random numbers.

3
C++ Strings, SFML Time: Player
Input and HUD

Almost every game ever made will need to have some text on the screen – the score, the text of a

character’s speech, and many other examples. Therefore, in this chapter, we will spend around

half the time learning how to manipulate text and display it on the screen and the other half

looking at timing and how a visual time-bar can inform the player of their remaining time and

create a sense of urgency in the game.

We will cover the foallowing:

•	 Pausing and restarting the game

•	 C++ strings

•	 SFML Text and SFML Font

•	 Adding a score and a message

•	 Adding a time-bar

As we progress with this game over the next three chapters, the code will get longer and longer.

So, now seems like a good time to think ahead and add a little bit more structure to our code. We

will add this structure to give us the ability to pause and restart the game.

Pausing and restarting the game
We will add code so that when the game is first run, it will be in a paused state. The player will

then be able to press the Enter key to start the game. Then, the game will run until either the

player gets squashed or runs out of time.

C++ Strings, SFML Time: Player Input & HUD90

At this point, the game will pause once more and wait for the player to press Enter to restart again.

Let’s step through setting this up a bit at a time. First, declare a new bool variable called paused,

outside the main game loop, and initialize it to true.

// Variables to control time itself

Clock clock;

// Track whether the game is running

bool paused = true;

while (window.isOpen())

{

/*

**

Handle the players input

**

*/

Now, whenever the game is run, we have a variable, paused, that will be true.

Next, we will add another if statement where the expression will check to see whether the Enter

key is currently being pressed. If it is being pressed, it sets paused to false. Add the highlighted

code just after our other keyboard handling code.

/*

**

Handle the players input

**

*/

if (Keyboard::isKeyPressed(Keyboard::Escape))

{

window.close();

}

// Start the game

if (Keyboard::isKeyPressed(Keyboard::Return))

Chapter 3 91

{

paused = false;

}

/*

**

Update the scene

**

*/

Now we have a bool called paused, which starts as true but changes to false when the player

presses the Enter key. At this point, we must make our game loop respond appropriately, based

on whatever the current value of paused might be.

This is how we will proceed. We will wrap the entire update part of the code, including the code

we wrote in the last chapter for moving the bee and clouds, in an if statement.

Notice in the next code that the if block will only execute when paused is not equal to true. Or,

put another way, the game won’t move/update when it is paused. We could also wrap the drawing

code in a similar if statement and this would prevent the scene from being drawn to the screen.

As we know, when most games are paused, the action is paused but the scene remains visible.

This is exactly what we want.

Look carefully at the precise place to add the new if statement and its corresponding opening and

closing curly braces, {...}. If they are put in the wrong place, things will not work as expected.

Add the highlighted code to wrap the update part of the code, paying close attention to the context

shown next. I have added ellipses, ..., on a few lines to represent the unshown code. Of course,

the ... is not real code and should not be added to the game. You can identify where to place

the new code (highlighted) at the start and the end by the unhighlighted code surrounding it.

/*

**

Update the scene

**

*/

if (!paused)

{

C++ Strings, SFML Time: Player Input & HUD92

// Measure time

...

...

...

// Has the cloud reached the right hand edge of the screen?

if (spriteCloud3.getPosition().x > 1920)

{

// Set it up ready to be a whole new cloud next frame

cloud3Active = false;

}

}

} // End if(!paused)

/*

**

Draw the scene

**

*/

Notice that when you place the closing curly brace of the new if block, Visual Studio neatly adjusts

all the indenting to keep the code tidy. However, depending on your Visual Studio settings, this

might not happen. If your code inside the if block does not indent to the right by one tab, you

can select all the code inside the if block by clicking and dragging just as you would in any text-

based app and then tap the Tab key on the keyboard. Now your code should be neatly indented.

Now you can run the game, and everything will be static until you press the Enter key. It is now

possible to go about adding features to our game; we just need to remember that when the player

dies or runs out of time, we need to set the paused variable to true.

In the previous chapter, we had a first glimpse at C++ strings. We need to learn some more about

them so we can implement the player’s HUD.

Chapter 3 93

C++ strings
In the previous chapter, we briefly mentioned strings, and we learned that a string can hold al-

phanumeric data: anything from a single character to a whole book. We didn’t look at declaring,

initializing, or manipulating strings. So, let’s do that now.

Declaring strings
Declaring a string variable is simple. We state the type, followed by the name.

String levelName;

String playerName;

Once we have declared a String, we can assign a value to it.

Assigning a value to strings
To assign a value to a string, as with regular variables, we simply put the name, followed by the

assignment operator, then the value.

levelName = "Dastardly Cave";

playerName = "John Carmack";

Note that the values need to be enclosed in quotation marks. As with regular variables, we can

also declare and assign values in a single line.

String score = "Score = 0";

String message = "GAME OVER!!";

For completeness, I should mention you can also declare and initialize strings using uniform

initialization, as we discussed in Chapter 2, as shown next:

// Using uniform initialization for a string

string playerName{"Rob Hubbard"};

Strings in C++ are essential for handling text-based data in game development. Whether it’s dis-

playing player names as just suggested, displaying messages, or keeping track of who achieved

the highest score, understanding how to work with strings is useful. Let’s explore this further,

starting with string concatenation.

C++ Strings, SFML Time: Player Input & HUD94

String Concatenation
In the next code sample, we use C++ cout to output text to the console window. You can try this

out by copying and pasting the code into just inside the opening curly brace of the main func-

tion of our current project, or start a new project if you want to keep it separate. If you create a

new project, you do not need to add any of the SFML configuration that we did in Chapter 1. Just

create a console app, choose a name, paste the code inside the main function, and add these two

includes for the string and cout functionality: #include <iostream> and #include <string>.

Here is the code; try it out or just look and then we will talk about it.

// Before the main function

#include <iostream>

#include <string>

// Inside the main function

std::string playerName = "Player1";

std::string message = "Welcome to the game, " + playerName + "!";

std::cout << message << std::endl;

In the preceding code, we demonstrate how to create and manipulate strings in C++. It initializes

a variable called playerName and constructs a string called message that includes the player’s

name, which is then displayed on the screen using std::cout. Note that in the middle line we

concatenate (join) strings using the + operator.

Note that as with sf:: in SFML, you can omit all the std:: instances by adding a line of code

after your include directives like this:

using namespace std;

There is much more we can do with strings, so let’s keep going.

Getting the string length
In the next code, we go further into the world of strings and use the length function. We are

jumping ahead of ourselves a little as this demonstrates calling a function on an instance of a

class, but as you can see, it is quite intuitive.

 string playerName = "Player1";

 int playerNameLength = playerName.length();

 cout << "Player name has " << playerNameLength << " characters." <<
endl;

Chapter 3 95

In the preceding code, I have omitted all the std:: specifiers that were present in the previous

example, so if you want to try this code out in Visual Studio, you will need to add the using

namespace std syntax after the include directives.

In the preceding code, we declare and initialize both a string and an int. We then use the

length() function to return the number of characters in the string and store that result in the

playerNameLength variable, which is of type int. We then use cout to print the results to the

console window.

It should be obvious that << joins together the sections of output. << is a bitwise operator, but

you might like to know a bit more about it.

We are nearly ready to add more features to our game. First, let’s see how we can change our

String variables another way.

Manipulating strings another way with StringStream
We can use the #include <sstream> directive to give us some extra power with our strings. The

sstream class enables us to “add” some strings together. When we do so, it is another way to do

concatenation.

String part1 = "Hello ";

String part2 = "World";

sstream ss;

ss << part1 << part2;

// ss now holds "Hello World"

In addition to this, using sstream objects, a String variable can even be concatenated with a

variable of a different type. The next code starts to reveal how strings might be quite useful to us.

String scoreText = "Score = ";

int score = 0;

The << operator is one of the bitwise operators. C++, however, allows you to write

your own classes and override what a specific operator does, within the context of

your class. The iostream class has done this to make the << operator work the way

it does. The complexity is hidden in the class. We can use its functionality without

worrying about how it works.

C++ Strings, SFML Time: Player Input & HUD96

// Later in the code

score ++;

sstream ss;

ss << scoreText << score;

// ss now holds "Score = 1"

Now we know the basics of C++ strings and how we can use sstream, we can see how to use some

SFML classes to display them on the screen.

SFML Text and SFML Font
Let’s talk about the SFML Text and Font classes a bit with some hypothetical code, before we

actually go ahead and add code to our game.

The first step in drawing text on the screen is to have a font. In the first chapter, we added a font

file to the project folder. Now we can load the font, ready for use, into an SFML Font object.

The code to do so looks like this:

Font font;

font.loadFromFile("myfont.ttf");

In the previous code, we first declare a Font object and then load an actual font file into it. Note

that myfont.ttf is a hypothetical font and we could use any font that is in the project folder.

Once we have loaded a font, we need an SFML Text object.

Text myText;

Now we can configure our Text object. This includes the size, the color, the position on screen,

the String that holds the message, and, of course, associating it with our font object.

// Assign the actual message

myText.setString("Press Enter to start!");

// assign a size

myText.setCharacterSize(75);

// Choose a color

myText.setFillColor(Color::White);

Chapter 3 97

// Set the font to our Text object

myText.setFont(font);

It is worth interjecting a little at this point. I could interject after introducing almost every single

SFML class we have used so far. It is almost impossible to overstate just how much work SFML

saves us with this fantastic library, and the Font and Text classes are two good examples of this.

What SFML is doing “under the hood” is providing very simplified abstractions for handling fonts

and text rendering, making it significantly easier compared to dealing directly with OpenGL for

these tasks.

The Font class in SFML represents a font that can be used for rendering text. It provides functions

to load fonts from files, in-memory buffers, or system fonts. The Text class is responsible for

rendering text using a given font. It encapsulates the string to be displayed, the font, and various

text-related properties.

SFML abstracts away almost every complexity involved in rendering text with OpenGL. It handles

texture creation, shader management, and other OpenGL details behind the scenes. Using SFML

for text rendering massively simplifies the intricacies of using OpenGL directly. SFML allows us

to focus more on the game rather than the low-level math of OpenGL.

SFML was created by Laurent Gomila. Development of SFML began around 2006 and it has un-

dergone many updates and improvements over the years. Laurent’s dedication, over approaching

two decades, to maintaining SFML cannot be overstated. In my view, it’s incredible. I just thought

I would mention it so every time you effortlessly draw a sprite on the screen, you think of the

tireless effort that has gone into this behind the scenes.

We now know more than enough to add some features to our game. Let’s add an HUD to Timber!!!.

Adding a score and a message
Now we know enough about strings, SFML Text, and SFML Font to go about implementing the

HUD. HUD stands for heads-up display and more formally refers to a cockpit instrumentation

display that doesn’t require the pilot to look down. However, video game user interfaces, espe-

cially in-game interfaces, are often referred to as a HUD because they serve the same purpose as

a cockpit HUD.

C++ Strings, SFML Time: Player Input & HUD98

The next thing we need to do is add another #include directive to the top of the code file. As we

have learned, the sstream class adds some useful functionality for combining strings and other

variable types together into a single String.

Add the line of highlighted code.

#include <sstream>

#include <SFML/Graphics.hpp>

using namespace sf;

int main()

{

Next, we will set up our SFML Text objects: one to hold a message that we will vary to suit the

state of the game and one that will hold the score and need to be regularly updated.

The next code declares the Text and Font objects, loads the font, assigns the font to the Text

objects, and then adds the String messages, color, and size. This should look familiar from our

discussion in the previous section. In addition, we add a new int variable called score that we

can manipulate to hold the player’s score.

Add the highlighted code and we will be ready to move on to updating the HUD.

// Track whether the game is running

bool paused = true;

// Draw some text

int score = 0;

Text messageText;

Text scoreText;

// We need to choose a font

Remember that if you chose a different font to KOMIKAP_.ttf, back in Chapter 1,

Welcome to Beginning C++ Game Programming, Third Edition, you will need to change

that part of the code to match the .ttf file that you have in the Visual Studio

Stuff/Projects/Timber/fonts folder.

Chapter 3 99

Font font;

font.loadFromFile("fonts/KOMIKAP_.ttf");

// Set the font to our message

messageText.setFont(font);

scoreText.setFont(font);

// Assign the actual message

messageText.setString("Press Enter to start!");

scoreText.setString("Score = 0");

// Make it really big

messageText.setCharacterSize(75);

scoreText.setCharacterSize(100);

// Choose a color

messageText.setFillColor(Color::White);

scoreText.setFillColor(Color::White);

while (window.isOpen())

{

/*

**

Handle the players input

**

*/

The next code might look a little convoluted, even complex. It is, however, straightforward when

you break it down a bit. Examine and add the new code, then we will go through it.

// Choose a color

messageText.setFillColor(Color::White);

scoreText.setFillColor(Color::White);

// Position the text

FloatRect textRect = messageText.getLocalBounds();

C++ Strings, SFML Time: Player Input & HUD100

messageText.setOrigin(textRect.left +

textRect.width / 2.0f,

textRect.top +

textRect.height / 2.0f);

messageText.setPosition(1920 / 2.0f,1080 / 2.0f);

scoreText.setPosition(20, 20);

while (window.isOpen())

{

/*

**

Handle the players input

**

*/

We have two objects of type Text that we will display on the screen. We want to position scoreText

at the top left with a little bit of padding. This is not a challenge; we simply use scoreText.

setPosition(20, 20) and that positions it at the top left with 20 pixels of horizontal and ver-

tical padding.

Positioning messageText, however, is not so easy. We want to position it on the exact midpoint

of the screen. Initially, this might not seem like a problem, but then we remember that the origin

of everything we draw is the top left-hand corner. So, if we simply divide the screen width and

height by 2 and use the results in messageText.setPosition..., then the top left of the text will

be in the center of the screen and it will spread out untidily to the right.

What we need is a way to be able to set the center of messageText to the center of the screen. The

rather complex-looking bit of code that you just added repositions the origin of messageText to

the center of itself. Here is the code under current discussion again for convenience.

// Position the text

FloatRect textRect = messageText.getLocalBounds();

messageText.setOrigin(textRect.left +

textRect.width / 2.0f,

Chapter 3 101

textRect.top +

textRect.height / 2.0f);

First in this code, we declare a new object of type FloatRect, called textRect. A FloatRect object,

as the name suggests, holds a rectangle with floating-point coordinates.

The code then uses the mesageText.getLocalBounds function to initialize textRect with the

coordinates of the rectangle that wraps messageText.

The next line of code, which is spread over four lines as it is quite long, uses the messageText.

setOrigin function to change the origin (the point that is used to draw) to the center of textRect.

Of course, textRect holds a rectangle that exactly matches the coordinates that wrap messageText.

Then, this next line of code executes:

messageText.setPosition(1920 / 2.0f,1080 / 2.0f);

Now, messageText will be neatly positioned in the exact center of the screen. We will use this

exact same code each time we change the text of messageText, because changing the message

changes the size of messageText, so its origin will need recalculating.

Next, we declare an object of type stringstream called ss. Note that we use the full name includ-

ing the namespace std::stringstream. We could avoid this syntax by adding using namespace

std to the top of our code file. We don’t, however, because we use it infrequently. Take a look at

the code and add it to the game, then we can go through it in more detail. As we only want this

code to execute when the game is not paused, be sure to add it with the other code, inside the

if(!paused) block, as shown.

else

{

spriteCloud3.setPosition(

spriteCloud3.getPosition().x +

(cloud3Speed * dt.asSeconds()),

spriteCloud3.getPosition().y);

// Has the cloud reached the right hand edge of the screen?

if (spriteCloud3.getPosition().x > 1920)

{

// Set it up ready to be a whole new cloud next frame

cloud3Active = false;

C++ Strings, SFML Time: Player Input & HUD102

}

}

// Update the score text

std::stringstream ss;

ss << "Score = " << score;

scoreText.setString(ss.str());

}// End if(!paused)

/*

**

Draw the scene

**

*/

We use ss and the special functionality provided by the << operator, which concatenates vari-

ables into a stringstream. So, the code ss << "Score = " << score has the effect of creating

a String with "Score = ", and whatever the value of score is is concatenated together. For

example, when the game first starts, score is equal to 0, so ss will hold the value "Score = 0".

If score ever changes, ss will adapt at each frame.

The next line of code simply displays/sets the String contained in ss to scoreText.

scoreText.setString(ss.str());

It is now ready to be drawn to the screen.

This next code draws both Text objects (scoreText and messageText), but notice that the code

that draws messageText is wrapped in an if statement. This if statement causes messageText

to only be drawn when the game is paused.

Add the highlighted code shown next.

// Now draw the insect

window.draw(spriteBee);

// Draw the score

window.draw(scoreText);

Chapter 3 103

if (paused)

{

// Draw our message

window.draw(messageText);

}

// Show everything we just drew

window.display();

We can now run the game and see our HUD drawn on the screen. You will see the SCORE = 0 and

PRESS ENTER TO START! messages. The latter will disappear when you press Enter.

Figure 3.1: HUD in action

If you want to see the score updating, add a temporary line of code, score ++;, anywhere in

the while(window.isOpen) loop. If you add this temporary line, you will see the score go up

fast – very fast!

Figure 3.2: Score

If you added the temporary code score ++;, be sure to delete it before continuing.

C++ Strings, SFML Time: Player Input & HUD104

Adding a time-bar
As time is a crucial mechanic in the game, it is necessary to keep the player aware of it. They need

to know if their allotted six seconds are about to run out. It will give them a sense of urgency as

the end of the game draws near and a sense of accomplishment if they perform well enough to

maintain or increase their remaining time.

A drawing of the number of seconds remaining on the screen is not easy to read (when concen-

trating on the branches) or a particularly interesting way to achieve the objective.

What we need is a time-bar. Our time-bar will be a simple red rectangle, prominently displayed

on the screen. It will start off nice and wide but rapidly shrink as time runs out. When the player’s

remaining time reaches 0, the time-bar will be gone completely.

At the same time as adding the time-bar, we will add the necessary code to keep track of the

player’s remaining time, as well as respond when they run out. Let’s go through it step by step.

Find the Clock clock; declaration from earlier and add the highlighted code just after, as shown

next.

// Variables to control time itself

Clock clock;

// Time bar

RectangleShape timeBar;

float timeBarStartWidth = 400;

float timeBarHeight = 80;

timeBar.setSize(Vector2f(timeBarStartWidth, timeBarHeight));

timeBar.setFillColor(Color::Red);

timeBar.setPosition((1920 / 2) - timeBarStartWidth / 2, 980);

Time gameTimeTotal;

float timeRemaining = 6.0f;

float timeBarWidthPerSecond = timeBarStartWidth / timeRemaining;

// Track whether the game is running

bool paused = true;

First, we declare an object of type RectangleShape and call it timeBar. RectagleShape is an SFML

class that is perfect for drawing simple rectangles.

Chapter 3 105

Next, we add a couple of float variables, timeBarStartWidth and timeBarHeight. We initialize

them to 400 and 80, respectively. These variables will help us keep track of the size we need to

draw timeBar each frame.

Next, we set the size of timeBar using the timeBar.setSize function. We don’t just pass in our

two new float variables. First, we create a new object of type Vector2f. What is different here,

however, is that we don’t give the new object a name. We simply initialize it with our two float

variables and it is passed straight into the setSize function.

After that, we color timeBar red by using the setFillColor function.

The last thing we do to timeBar in the previous code is to set its position. The vertical coordinate

is completely straightforward, but the way we set the horizontal coordinate is slightly convoluted.

Here is the calculation again:

(1920 / 2) - timeBarStartWidth / 2

The code first divides 1920 by 2. Then it divides timeBarStartWidth by 2. Finally, it subtracts the

latter from the former.

The result makes timeBar sit neatly and centrally horizontally on the screen.

The final three lines of code that we are talking about declare a new Time object called gameTimeTotal,

a new float called timeRemaining that is initialized to 6, and a curious-sounding float named

timeBarWidthPerSecond, which we will discuss further next.

The timeBarWidthPerSecond variable is initialized with timeBarStartWidth divided by

timeRemaining. The result is exactly the amount of pixels that timeBar needs to shrink by, each

second of the game. This will be useful when we resize timeBar in each frame of the game loop.

Obviously, we need to reset the time remaining each time the player starts a new game. The log-

ical way to do this is the Enter key press. We can also set score back to 0 at the same time. Let’s

do that now by adding this highlighted code.

// Start the game

if (Keyboard::isKeyPressed(Keyboard::Return))

{

Vector2f is a class that holds two float variables. It also has some other function-

ality that will be introduced in the book.

C++ Strings, SFML Time: Player Input & HUD106

paused = false;

// Reset the time and the score

score = 0;

timeRemaining = 6;

}

Now, at each frame, we must reduce the amount of time remaining and resize timeBar accordingly.

Add the following highlighted code in the update section as shown here.

/*

**

Update the scene

**

*/

if (!paused)

{

// Measure time

Time dt = clock.restart();

// Subtract from the amount of time remaining

timeRemaining -= dt.asSeconds();

// size up the time bar

timeBar.setSize(Vector2f(timeBarWidthPerSecond *

timeRemaining, timeBarHeight));

// Set up the bee

if (!beeActive)

{

// How fast is the bee

srand((int)time(0) * 10);

beeSpeed = (rand() % 200) + 200;

// How high is the bee

srand((int)time(0) * 10);

float height = (rand() % 1350) + 500;

Chapter 3 107

spriteBee.setPosition(2000, height);

beeActive = true;

}

else

// Move the bee

In the preceding code, first we subtracted the amount of time the player has left by however long

the previous frame took to execute with this code.

timeRemaining -= dt.asSeconds();

Then we adjusted the size of timeBar with the following code:

timeBar.setSize(Vector2f(timeBarWidthPerSecond *

timeRemaining, timeBarHeight));

The x value of Vector2F is initialized with timebarWidthPerSecond multiplied by timeRemaining.

This produces exactly the correct width, relative to how long the player has left. The height re-

mains the same and timeBarHeight is used without any manipulation.

And, of course, we must detect when time has run out. For now, we will simply detect that time

has run out, pause the game, and change the text of messageText. Later, we will do more work

here. Add the highlighted code right after the previous code we added and we will look at it in

more detail.

// Measure time

Time dt = clock.restart();

// Subtract from the amount of time remaining

timeRemaining -= dt.asSeconds();

// resize up the time bar

timeBar.setSize(Vector2f(timeBarWidthPerSecond *

timeRemaining, timeBarHeight));

if (timeRemaining <= 0.0f) {

// Pause the game

paused = true;

C++ Strings, SFML Time: Player Input & HUD108

// Change the message shown to the player

messageText.setString("Out of time!!");

//Reposition the text based on its new size

FloatRect textRect = messageText.getLocalBounds();

messageText.setOrigin(textRect.left +

textRect.width / 2.0f,

textRect.top +

textRect.height / 2.0f);

messageText.setPosition(1920 / 2.0f, 1080 / 2.0f);

}

// Set up the bee

if (!beeActive)

{

// How fast is the bee

srand((int)time(0) * 10);

beeSpeed = (rand() % 200) + 200;

// How high is the bee

srand((int)time(0) * 10);

float height = (rand() % 1350) + 500;

spriteBee.setPosition(2000, height);

beeActive = true;

}

else

// Move the bee

Stepping through the previous code:

•	 First we test whether time has run out with if(timeRemaining <= 0.0f).

•	 Then we set paused to true so this will be the last time the update part of our code is

executed (until the player presses Enter again).

Chapter 3 109

•	 Then we change the message of messageText, calculate its new center to set as its origin,

and position it in the center of the screen.

Finally, for this part of the code, we need to draw timeBar. There is nothing new in this code that

we haven’t seen many times before. Just note that we draw timeBar after the tree, so it is not

partially obscured. Add the highlighted code to draw the time-bar.

// Draw the score

window.draw(scoreText);

// Draw the timebar

window.draw(timeBar);

if (paused)

{

// Draw our message

window.draw(messageText);

}

// Show everything we just drew

window.display();

Now you can run the game, press Enter to start, and watch the time-bar smoothly disappear

down to nothing.

Figure 3.3: Time-bar disappearing

C++ Strings, SFML Time: Player Input & HUD110

The game then pauses and the OUT OF TIME!! message will appear neatly in the center of the

screen.

Figure 3.4: Time over

You can, of course, press Enter again to have the whole thing run from the start.

Summary
In this chapter, we learned about strings, SFML Text, and SFML Font. Between them, they enabled

us to draw text to the screen, which provided the player with a HUD. We also used sstream, which

allows us to concatenate strings and other variables to display the score.

We explored the SFML RectangleShape class, which does exactly what its name suggests. We

used an object of type RectangleShape and some carefully planned variables to draw a time-bar

that displays to the player how much time they have left. Once we have implemented chopping

and moving branches that can squash the player, the time-bar will create tension and urgency.

Next, we are going to learn about a whole range of new C++ features, including loops, arrays,

switching, enumerations, and functions. This will enable us to move the tree branches, keep track

of their locations, and squash the player.

Chapter 3 111

Frequently asked questions
Q) I can foresee that positioning sprites by their top-left corner could sometimes be inconvenient.

Is there an alternative?

A) Fortunately, you can choose what point of a sprite is used as the positioning/origin pixel, just

like we did with messageText, using the setOrigin function.

Q) The code is getting rather long and I am struggling to keep track of where everything is. How

can we fix this?

A) Yes, I agree. In the next chapter, we will look at the first of a few ways we can organize our

code and make it more readable. We will see this when we learn about writing C++ functions. In

addition, we will learn a new way of handling multiple objects/variables of the same type (like

the clouds) when we learn about C++ arrays.

Q) I couldn’t get my font to load. How do I know what is going on behind the scenes? How do I

know if I have entered the correct file path or mistyped the name of the font file?

A) We can wrap our font-loading code in an if statement and include some error-handling code

using cout as well. Here is an example:

if (!font.loadFromFile("arial.ttf")) {

 // If the loading fails, display an error message

 cout << "Error loading font!";

}

Now, if the font doesn’t load, the execution will continue with missing text but you will get an

error message printed to the console to inform you. You can do the same with loading textures

as well, as this code shows:

 if (!texture.loadFromFile("texture.png")) {

 // If the loading fails, display an error message

 cout << "Error loading texture!";

 }

4
Loops, Arrays, Switch,
Enumerations, and Functions:
Implementing Game Mechanics

This chapter probably has more C++ information than any other chapter in the book. It is packed

with fundamental concepts that will accelerate our understanding enormously. It will also begin

to shed light on some of the murky areas we have been skipping over a little bit, like functions,

the game loop, and loops in general.

This is what we will explore:

•	 Loops

•	 Arrays

•	 Making decisions with switch

•	 Class enumerations

•	 Getting started with functions

•	 Growing the branches

Once we have explored a whole list of C++ language necessities, we will then use everything we

know to make the main game mechanic—the tree branches—move. By the end of this chapter,

we will be ready for the final phase and the completion of Timber!!!.

Loops, Arrays, Switch, Enumerations, and Functions: Implementing Game Mechanics114

Loops
Welcome to the world of loops in C++! Loops are general programming constructs not unique to

C++ that allow you to repeat a certain block of code multiple times. They are crucial for making

our games more efficient and flexible. It is probably the vital thing that makes computers so useful:

doing the same thing but with different values repeatedly. In C++, there are several types of loops,

each serving specific purposes. In this chapter, we’ll explore the fundamental loop structures and

cover relatively recent updates to C++ that affect your loop-related programming options. The

obvious example that we have seen so far is the game loop. With all the code stripped out, our

game loop looks like this.

while (window.isOpen())

{

}

The correct term for this type of loop is a while loop. Let’s look at that first.

while loops
The while loop is quite straightforward. Think back to the if statements and their expressions

that evaluated to either true or false. We can use the exact same combination of operators and

variables in the conditional expression of our while loops.

As with if statements, if the expression is true, the code executes. The difference with a while

loop, however, is that the C++ code within it will repeatedly execute, potentially forever, until

the condition is false. Look at this code:

int numberOfZombies = 100;

while(numberOfZombies > 0)

{

 // Player kills a zombie

 numberOfZombies--;

 // numberOfZombies decreases each pass through the loop

}

// numberOfZOmbies is no longer greater than 0

Chapter 4 115

This is what happened in the previous code. Outside of the while loop, int numberOfZombies

is declared and initialized to 100. Then, the while loop begins. Its conditional expression is

numberOfZombies > 0. Consequently, the while loop will continue looping through the code in

its body until the condition evaluates to false. This means that the code above will be executed

100 times.

On the first pass through the loop, numberOfZombies equals 100, then 99, then 98, and so on. But

once numberOfZOmbies is equal to zero, it is, of course, no longer greater than zero. Then, the code

will break out of the while loop and continue to run, after the closing curly brace.

Just like an if statement, it is possible that the while loop will not execute even once. Look at

this next code:

int availableCoins = 10;

while(availableCoins > 10)

{

 // more code here.

 // Won't run unless availableCoins is greater than 10

}

In the preceding code, the loop condition evaluates to false because availableCoins is not

greater than 10. As the condition is false, the loop does not execute even once.

Moreover, there is no limit to the complexity of the expression or the amount of code that can go

in the loop body. We have already put quite a lot of code in our game loop. Consider this hypo-

thetical variation of a game loop:

int playerLives = 3;

int alienShips = 10;

while(playerLives !=0 && alienShips !=0)

{

 // Handle input

 // Update the scene

 // Draw the scene

}

// continue here when either playerLives or alienShips equals 0

Loops, Arrays, Switch, Enumerations, and Functions: Implementing Game Mechanics116

The previous while loop would continue to execute until either playerLives or alienShips

was equal to zero. As soon as one of those conditions occurred, the expression would evaluate to

false and the program would continue to execute from the first line of code after the while loop.

It is worth noting that once the body of the loop has been entered, it will try to complete at least

once, even if the expression evaluates to false part way through, as the condition is not tested

again until the code tries to start another pass. As an example, look at this code:

int x = 1;

while(x > 0)

{

 x--;

 // x is now 0 so the condition is false

 // But this line still runs

 // and this one

 // and me!

}

// Now I'm done!

The previous loop body will execute once. We can also set up a while loop that will run forever,

appropriately called an infinite loop. Here is an example:

int y = 0;

while(true)

{

 y++; // Bigger... Bigger...

 cout << y;

}

If you find the above loop confusing, just think of it literally. A loop executes when its condition

is true. Well, true is always true and will therefore keep executing. The value of y will be printed

each time through the loop as it increases by one on each pass.

Chapter 4 117

Whether a loop is infinite or not, we sometimes need a way to break out of the loop earlier than

the loop condition allows. For example, a game loop that tracks if the player or the aliens are all

dead is fine, but what if the player just wants to quit early? Here is how to do it.

Breaking out of a loop
We might use an infinite loop so that we can decide when to exit the loop from within its body

rather than in the expression. We would do this by using the break keyword when we are ready

to leave the loop body, perhaps like this:

int z = 0;

while(true)

{

 z++; // Bigger... Bigger...

 cout << z;

 break; // No you're not

 // Code doesn't reach here

}

In the preceding code, z first equals zero, then it is incremented with z++, and then the value of

z is printed with cout. Immediately after, however, the break keyword makes the code exit the

loop. The break keyword has this effect even if there are more lines of code that follow it. What

is potentially even more useful is we can conditionally use break, as we discuss next.

As an interesting aside, there is a limit to how big y will get. If you check the table of

variable types back in Chapter 2, you will notice that an int holds a maximum size.

An int can vary from 32- or 64-bit machines and even the brand of compiler can

affect the values an int holds, but typically, an int is 16 bits of data and can represent

-32,767 to 32,767. The preceding code would add up to the maximum 32,767, then

the next value would be -32,767, and then 32,767 iterations of the loop later, y will

be back to zero. You can try this out by creating an empty console app and pasting

the preceding code in the main function. None of the complicated SFML configura-

tions are necessary, just remember to put #include <iostream> at the top of your

code and using namespace std; before the main function to be able to use cout.

Loops, Arrays, Switch, Enumerations, and Functions: Implementing Game Mechanics118

You might also have been able to guess that we can combine any of the C++ decision-making

tools (like if, else, and another we will learn shortly, switch) within our while loops and other

loop types as well. Consider this example:

int x = 0;

int max = 10;

while(true)// Potentially infinite

{

 x++; // Bigger... Bigger...

 if(x == max)// Not infinite anymore

{

 break;

 }

 // code reaches here only until max equals 10

}

This code demonstrates a controlled use of an infinite loop that is exited based on a specific condi-

tion (x == max). It is used when you need to perform a task repeatedly until a certain condition is

met. In this case, it increments x until it reaches the value of max, at which point, the loop is exited.

As a final example of while loops, let’s look at how the user can determine when a while loop

exits. Of course, we, as the game programmers, will determine the format and timing of the

player’s choices. In this next example, I also introduce a new keyword, cin. See if you can work

out what is happening:

int userInput;

while (true)

{

 cout << "Enter a positive number to exit: ";

 cin >> userInput;

 if (userInput > 0)

 {

 break;

 }

 cout << "Invalid input. Try again.";

}

Chapter 4 119

This example uses a while loop for validating user input. The loop continues until the user enters

a positive number, using break to exit the loop when the condition is met.

The user input is achieved using cin, which pauses execution and waits for the user to enter a

number and then press the Return key. Notice the operator used with cin points the other way,

>> instead of <<. This operator is called the extraction operator.

The code continuously prompts the user, and a break statement exits the loop when a valid

(greater than zero) input is received.

If you want to try out the preceding, copy it into the main function of an existing or new console

app. None of the complicated SFML configurations are necessary, just remember to put #include

<iostream> at the top of your code and using namespace std; before the main function to be

able to use cout and cin.

To dig a bit deeper with cin, it is an object that facilitates the reading of user inputs from the

console. Paired with the extraction operator >>, cin allows us to acquire inputs interactively

during program execution. If you wanted to write a text adventure 1970s/80s style cin, cout, loops,

variables, and conditions would be almost all you need. cin is an instance of a class; it is an object.

Somebody else programmed the class, in this case, the istream class, and we created an instance

of it with cin and used a super-useful feature without worrying about how it works. This class/

instance/object conundrum will make perfect sense when we discuss it properly in Chapter 6.

We could go on for a long time looking at the various permutations of C++ while loops, but at

some point, we want to get back to making games. So let’s move on to another type of loop.

for loops
for loops in C++ are designed for when we need to iterate over a range of values. They provide a

concise way to execute a set of statements repeatedly.

As a final word on using the break keyword, it is generally considered good practice

to use it sparingly as it can make the code harder to understand. Don’t be afraid of

using it; there are definitely times when it is exactly what you need. Sometimes, while

trying to think about the best form for a loop, I find that I have forgotten about break,

and then it comes back to me and I realize it is just what I need. A good rule of thumb

is not to try and design in break from the start but accept it as a valid solution if it

presents itself as such and a clearer solution is not apparent.

Loops, Arrays, Switch, Enumerations, and Functions: Implementing Game Mechanics120

A typical for loop consists of three parts: initialization, condition, and iteration statement, mak-

ing it easy to control the loop’s execution. for loops are especially useful when the number of

iterations is known in advance.

It is because of the three parts that the for loop has a slightly more complicated syntax than a

while loop because it takes three parts to set one up. Have a look at the code first and then we

will break it apart:

for(int x = 0; x < 100; x ++)

{

 // Something that needs to happen 100 times goes here

}

Here is what all the parts of the for loop condition do:

for(declaration and initialization; condition; change before each iteration)

To clarify further, here is a table to explain each of the three key parts as they appear in the pre-

vious for loop example.

Part Description

Declaration and initialization We create a new int variable i and

initialize it to 0

Condition Just like the other loops, it refers to the

condition that must be true for the loop

to execute

Change after each pass through the loop In the example, x ++ means that 1 is

added/incremented to x on each pass

Table 4.1: Key parts for loop

In summary, the preceding for loop code utilizes the loop to iterate 100 times. It initializes a loop

variable x to zero, sets the loop condition to continue as long as x is less than 100, and increments

x by 1 in each iteration. The block of code inside the loop, indicated by the curly braces, represents

the job to be performed 100 times. This is useful when you have code that should be executed

repeatedly a predetermined number of times. In this case, the loop allows for concise and clear

code for handling a repetitive task.

We can vary for loops to do many more things. Here is another simple example that counts down

from 10:

Chapter 4 121

for(int i = 10; i > 0; i--)

{

 // countdown

}

// blast off

The for loop takes control of initialization, condition evaluation, and the control variable itself.

We will use for loops in our game, later in this chapter. for loops have more advanced uses too,

but we need to learn about some more topics to be able to discuss them. We will see one of these

more advanced uses in the next section when we talk about arrays.

Arrays
Arrays are data structures that allow us to store collections of elements of the same data type

using a single name, perhaps someInts, myFloats, or zombieHorde. Arrays provide a convenient

way to organize and manipulate data, enabling more efficient and structured programming.

Arrays are especially useful for repetitive data, like lists of numbers, characters, or game objects.

This introduction will explore the basics of arrays and, as we proceed through the book, we will

see more advanced uses.

A comparison with a regular variable might help. If a variable is a box in which we can store a

value of a specific type, like int, float, or char, then we can think of an array as a row of boxes.

The row of boxes can be of almost any size and type, including objects made from classes. However,

all the boxes must be of the same type.

If you think this array sounds like it could have been useful for our clouds from Chapter 2, Variables,

Operators, and Decisions: Animating Sprites, you are exactly right. It is too late for the clouds, they

are destined to be clunky bloated code forever. The tree branches, however, we will implement

using arrays. So how do we go about creating and using an array?

Declaring an array
We can declare an array of int type variables like this:

int someInts[10];

The limitation of having to use the same type in each box can be circumvented to

an extent once we learn some more advanced C++ in the final platformer project.

Loops, Arrays, Switch, Enumerations, and Functions: Implementing Game Mechanics122

Now we have an array called someInts that can store 10 int values. Currently, however, it is empty.

The only difference with regular variables is that we would use a format known as array notation

to manipulate the individual values as, although our array has a name—someInts—the individual

elements do not have individual names:

someInts_AliensRemaining = 99; // Wrong

someInts_Score = 100; // Wrong!

Let’s see exactly how we do it.

Initializing the elements of an array
To add values to the elements of an array, we can use the type of syntax we are already familiar

with combined with the new syntax I mentioned, known as array notation. In this next code, we

store the value of 99 in the first element of the array:

someInts[0] = 99;

To store a value of 999 in the second element, we write this code:

someInts[1] = 999;

We can store a value of 3 in the last element like this:

someInts[9] = 3;

Note that the elements of an array always start at zero and go up to the size of the array minus

one. Similar to ordinary variables, we can manipulate the values stored in an array.

In this next code, we will see how we manipulate the individual values. This is how we add the

first and second elements together and store the answer in the third:

someInts[2] = someInts[0] + someInts[1];

Arrays can also interact seamlessly with regular variables, like this perhaps:

int a = 9999;

someInts[4] = a;

There is much to learn about arrays, so let’s keep going.

Quickly initializing the elements of an array
We can quickly add values to the elements like this example, which uses a float array:

Chapter 4 123

float myFloatingPointArray[3] {3.14f, 1.63f, 99.0f};

Now the values 3.14, 1.63, and 99.0 are stored in the first, second and third positions, respectively.

Remember that when using array notation to access these values, we would use [0], [1], and [2].

There are other ways to initialize the elements of an array. This slightly abstract example shows

using a for loop to put the values 0 through 9 into the uselessArray array:

for(int i = 0; i < 10; i++)

{

 uselessArray[i] = i;

}

The code assumes that uselessArray had previously been initialized to hold at least 10 int vari-

ables.

What do these arrays really do for our games?
We can use arrays anywhere a regular variable can be used, perhaps in an expression like this:

// someArray[4] is declared and initialized to 9999

for(int i = 0; i < someArray[4]; i++)

{

 // Loop executes 9999 times

}

Perhaps the biggest benefit of arrays in game code was hinted at at the start of this section. Arrays

can hold objects (instances of classes). Imagine that we have a Zombie class, and we want to store

a whole bunch of them. We could do so like this hypothetical code:

Zombie horde [5] {zombie1, zombie2, zombie3}; // etc...

The horde array now holds a load of instances of the Zombie class. Each one is a separate, living

(kind of), breathing, self-determining Zombie object. We could then loop through the horde array,

each pass through the game loop, moving the zombies, and checking if their heads have met with

an axe or if they have managed to catch the player.

Had we known about them at the time, arrays would have been perfect for handling our clouds.

We could have had hundreds of clouds and written much less code than we did for our three

measly clouds.

Loops, Arrays, Switch, Enumerations, and Functions: Implementing Game Mechanics124

The best way to get a feel for all this array stuff is to see it in action. And we will when we imple-

ment our tree branches.

For now, we will leave our cloud code as it is so we can get back to adding features to the game

as soon as possible. But first, a bit more C++ decision-making with switch.

Making decisions with switch
We have already seen the if keyword, which allows us to decide whether to execute a block of

code based on the result of its expression, but sometimes, a decision in C++ can be better made

in other ways. It is often used for providing an elegant alternative to a series of nested if-else

statements. As we will see, it evaluates an expression and directs program flow.

When we must make a decision based on a clear list of possible outcomes that don’t involve

complex combinations or wide ranges of values, then switch is usually the way to go. We start

a switch decision like this:

switch(expression)

{

 // More code here

}

In the previous example, expression could be an actual expression or just a variable. Then, with-

in the curly braces, we can make decisions based on the result of the expression or value of the

variable. We do this with the case and break keywords, as in this slightly abstract example:

case x:

 //code for x

 break;

case y:

 //code for y

 break;

To check out this improved cloud code in full and in action, look at the enhanced

version of Timber!!! in the download bundle in the Chapter 5 folder. Or you can try

to implement the clouds using arrays yourself before looking at the code.

Chapter 4 125

You can see, in the previous abstract example, that each case states a possible result, and each

break denotes the end of that case and the point that execution leaves the switch block.

The classic, non-abstract example is using days of the week, as shown next:

int dayNumber = 3;

switch (dayNumber)

{

 case 1:

 // what happens on Monday

 break;

 case 2:

 // what happens on Tuesday

 break;

 // etc

 default:

 // code for an invalid day

}

In the preceding code, an int variable called dayNumber is given the value 3, representing a day

of the week. The switch condition evaluates the value of dayNumber. Each case corresponds to a

specific day, with a block of code for each.

However, something new has been introduced. We can also, optionally, use the default keyword

without a value, to run some code in case none of the case statements evaluate to true. This is a

bit like the else keyword without an expression following an if expression, perhaps like this code:

default: // Look no value

 // Do something here if no other case statements are true

 break;

As a final example for switch, consider a retro text adventure where the player enters a letter like

‘n’, ‘e’, ‘s’, or ‘w’ to move north, east, south, or west. A switch block could be used to handle each

possible input from the player:

// get input from user in a char called command

char command;

cin >> command;

switch(command){

Loops, Arrays, Switch, Enumerations, and Functions: Implementing Game Mechanics126

 case 'n':

 // Handle move here

 break;

 case 'e':

 // Handle move here

 break;

 case 's':

 // Handle move here

 break;

 case 'w':

 // Handle move here

 break;

 // more possible cases

 default:

 // Ask the player to try again

 break;

}

The best way of understanding all we have seen regarding switch will be when we put it into

action along with all the other new concepts we are learning. First, we need to understand enu-

merations, which help us be more precise in our code.

Class enumerations
An enumeration is a list of all the possible values in a logical collection. C++ enumerations are a

great way of, well, enumerating things. For example, if our game uses variables that can only be

in a specific range of values, and if those values could logically form a collection or a set, then enu-

merations are probably appropriate to use. They will make your code clearer and less error-prone.

For example, in the switch example using days of the week, who gets to decide what the first day

of the week is? And what if somebody thinks that dayNumber is something else and does some

arithmetic on it? All of a sudden, our day numbering system is a mess. Class enumerations solve

this and other problems.

Chapter 4 127

To declare a class enumeration in C++, we use the two keywords enum class together, followed

by the name of the enumeration, followed by the values the enumeration can contain, enclosed

in a pair of curly braces, {...}.

As an example, examine this enumeration declaration. Note that it is conventional to declare the

possible values from the enumeration in all uppercase:

enum class daysOfWeek {MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,
SATURDAY, SUNDAY };

Or a more interesting example in a possible game scenario like this:

enum class zombieTypes {REGULAR, RUNNER, CRAWLER, SPITTER, BLOATER };

Note that, at this point, we have not declared any instances of zombieType, just the structure and

metadata of the type itself. If that sounds odd, think about it like this. SFML created the Sprite,

RectangleShape, and RenderWindow classes, but to use any of those classes, we had to declare

an object/instance of the class.

At this point, we have created a new type called zombieTypes, but we have no instances of it. So,

let’s do that now:

zombieType Rishi = zombieTypes::CRAWLER;

zombieType Suella = zombieTypes::SPITTER

zombieType Boris = zombieTypes::BLOATER

/*

 Zombies are fictional creatures and any resemblance

 to real people is entirely coincidental

*/

Next is a sneak preview of the type of code we will soon be adding to Timber!!!. We will want to

track which side of the tree a branch or the player is on, so we will declare an enumeration called

side, like this:

enum class side { LEFT, RIGHT, NONE };

We could position the player on the left like this:

// The player starts on the left

side playerSide = side::LEFT;

Loops, Arrays, Switch, Enumerations, and Functions: Implementing Game Mechanics128

We could make the fourth level (arrays start from zero) of an array of branch positions have no

branch at all, like this:

branchPositions[3] = side::NONE;

It is good to know that we can use enumerations in expressions as well:

if(branchPositions[5] == playerSide)

{

 // The lowest branch is the same side as the player

 // SQUISHED!!

}

Furthermore, we can use enumerations with switch too. This next code clarifies our previous

days of the week example:

daysOfWeek day = daysOfWeek::WEDNESDAY;

 switch (day) {

 case daysOfWeek::MONDAY:

 std::cout << "It's Monday";

 break;

 case daysOfWeek::TUESDAY:

 std::cout << "It's Tuesday";

 break;

 case daysOfWeek::WEDNESDAY:

 std::cout << "It's Wednesday";

 break;

 case daysOfWeek::THURSDAY:

 std::cout << "It's Thursday";

 break;

 case daysOfWeek::FRIDAY:

 std::cout << "It's Friday";

 break;

 case daysOfWeek::SATURDAY:

 std::cout << "It's Saturday";

 break;

 case daysOfWeek::SUNDAY:

Chapter 4 129

 std::cout << "It's Sunday";

 break;

 default:

 std::cout << "OOPS try again.";

 }

In the preceding example, the daysOfWeek enumeration is used instead of int. The switch state-

ment evaluates the day variable, and each case corresponds to a specific day of the week. As before,

the default case handles any invalid day that might be encountered. In the preceding example,

it is totally clear that the code block for Wednesday will execute.

We will look at one more vital C++ topic and then we will get back to coding the game.

Getting started with functions
Welcome to the world of C++ functions. Functions are one of the fundamental building blocks

of C++ programming. When I said earlier that you probably knew enough C++ to write a retro

text adventure, after learning about functions, you definitely will!

Functions allow us to wrap reusable parts of our code and create well-organized programs. The

rest of this chapter will walk you through the essentials of functions, from their basic syntax to

more advanced concepts, providing you with a comprehensive foundation and ending on how

functions and classes are part of the same topic. You will then be ready to finish this game in this

chapter and the next and stride confidently on to Chapter 6, where we will finally tackle the topic

of object-oriented programming.

What exactly are C++ functions? A function is a collection of variables, expressions, and control

flow statements (loops and branches). In fact, any of the code we have learned about in the book

so far can be used in a function. In fact, all the code we have written so far has been in the main

function. A quick glance at our project code so far will show that we have hundreds of lines of

code. As suggested in the introduction to functions, we will soon begin to separate (modularize)

and organize (encapsulate) all future code into manageable chunks.

I considered the idea of rewriting Timber!!! as we learned better ways of doing things but decided

it would be better to leave that as an exercise for those of you who wanted to do so.

The first part of a function that we write is called the signature. Here is an example function

signature:

public void shootLazers(int power, int direction)

Loops, Arrays, Switch, Enumerations, and Functions: Implementing Game Mechanics130

If we add an opening and closing pair of curly braces, {...}, with some code that the function

performs, we then have a complete function, a definition:

public void shootLazers(int power, int direction)

{

 // ZAPP!

}

We could then use our new function from another part of our code, perhaps like this:

// Attack the player

shootLazers(50, 180) // Run the code in the function

// I'm back again - code continues here after the function ends

When we use a function, we say that we call it. At the point where we call shootLazers, our pro-

gram’s execution branches to the code contained within that function. The function would run

until it reaches the end or is told to return. Then, the code would continue running from the first

line after the function call. We have already been using the functions that SFML provides. What

is different here is that we will learn to write and call our own functions.

Here is another example of a function, complete with the code to make the function return to

the code that called it:

int addAToB(int a, int b)

{

 int answer = a + b;

 return answer;

}

The call to use the above function could look like this:

int myAnswer = addAToB(2, 4);

Obviously, we don’t need to write functions to add two variables together, but the overly simplified

example helps us see a little more into the workings of functions. First, we pass in values 2 and

4. In the function signature, the value 2 is assigned to int a and the value 4 is assigned to int b.

Within the function body, the variables a and b are added together and used to initialize the new

variable int answer. The line return answer; does just that. It returns the value stored in answer

to the calling code, causing myAnswer to be initialized with the value 6.

Chapter 4 131

Notice that each of the function signatures in the examples above varies a little. The reason for

this is that the C++ function signature is quite flexible, allowing us to build exactly the functions

we require.

Exactly how the function signature defines how the function must be called and if/how the

function must return a value deserves further discussion. Let’s give each part of that signature a

name so we can break it into parts and learn about them.

Here is a function signature with its parts described by their formal/technical term:

return type | name of function | (parameters)

Here are a few examples we can use for each of those parts:

•	 Return-type: bool, float, int, etc., or any C++ type or expression.

•	 Name of function: shootLazers, addAToB, etc.

•	 Parameters: (int number, bool hitDetected), (int x, int y), (float a, float b)

At this point, a brief interlude into the design of C++, programming, and computer hardware

might be worthwhile.

Who designed all this weird and frustrating syntax and why
is it the way it is?
Sometimes, beginners to C++ will question the way the language is designed, and functions is a

topic (as well as OOP) in particular when the syntax enforced upon us as developers is questioned

for its design. The point to remember is that the syntax of C++ and functions in particular weren’t

just designed in a vacuum. They were designed and chosen around the way that a computer

system (in particular, a CPU) works.

As we have learned, in C++, functions help us organize and modularize our code. When a function

is called, several steps occur.

As we know, when a function is called, the program’s control flow transfers to the function. The

CPU executes a jump instruction to the memory address associated with the function. This memory

address is hidden from us but, actually, it is contained in the function’s name that we assign to it.

Next, a stage called the function prologue is executed, which involves setting up the function’s

stack frame. This is completely hidden from us as programmers, but it is part of how the CPU

handles things. The current state of the calling function, often main, is stored, including the return

address and the values of important CPU registers that hold values.

Loops, Arrays, Switch, Enumerations, and Functions: Implementing Game Mechanics132

At this stage, our variables and function parameters are allocated on the stack. The stack is a

region of computer memory internal to the CPU used for the dynamic storage of function call

information, local variables, and control flow data. Our function parameters are typically passed

through CPU registers or pushed onto this stack. Variables within the function itself, known as

local variables, are created on the stack and initialized.

Next, the body of the called function executes and local variables and parameters are accessed

within the function.

Before returning from the function, the function epilogue is executed. The function epilogue is

the set of instructions executed before returning from a function, typically involving the deallo-

cation of the function’s stack frame and the restoration of the saved state of the calling function.

The stack frame is deallocated, freeing up space for local variables and parameters. The saved

state of the calling function is restored, including the return address.

After the epilogue, the CPU executes a return instruction, transferring control back to the calling

function. The return value from the function (if any) is stored in a pre-determined register.

The stack pointer is a register that keeps track of the top of the stack. During function calls, the

stack pointer is adjusted to allocate and deallocate space for local variables and parameters. This

is important because you can call a function, which calls another function, and so on. In fact, most

complex applications, including games, will have many functions on the stack.

The stack follows a Last In, First Out (LIFO) order, meaning the last item pushed onto the stack

is the first to be popped off. This is why it is called a stack. The best analogy I have heard to visu-

alize the stack is that of a stack of plates at a buffet where the plates are constrained in a device

to make only the top plate accessible. The restaurant manager can always add to the stack by

pushing new plates onto the spring-loaded device, but to get to the plate at the bottom of the

stack, each plate must be individually removed.

In summary, when a function is called, the CPU uses the stack to manage the function’s local

variables and the called function parameters. The stack pointer keeps track of the stack’s top,

and the function prologue and epilogue handle the setup and cleanup of the stack. This process

allows for the efficient execution of multiple nested function calls. Understanding the interaction

between functions and the CPU, hopefully, helps us appreciate half a century of refinement and

improvement into the state of C++ today and not be too critical of the syntax we are forced to

learn. It is like it is for a reason.

Chapter 4 133

It is not necessary to understand how a CPU works, not even the above brief introduction, but

knowing that C++ is the culmination of half a century of very careful and deliberate evolution

from the early 1970s when the C programming language was being developed can help beginners

to accept that there probably isn’t a “better” way and to embrace all the apparent imperfections

as a necessity for taking efficient control of the great wonder of modernity, the CPU. Over time, if

you stick at it, it will all become obvious why it was done how it was and, while it isn’t necessary,

a knowledge of computer hardware like the CPU and the GPU is useful to aid in understanding.

Now, with karma restored, let’s look at each part of a function in turn.

Function return types
The return type, as the name suggests, is the type of the value that will be returned from the

function to the calling code:

int addAToB(int a, int b){

 int answer = a + b;

 return answer;

}

In our slightly dull but useful addAtoB example previously, the return type in the signature is

int. The function addAToB sends back (returns) to the code that called it, a value that will fit in

an int variable. The return type can be any C++ type we have seen so far or one of the ones we

haven’t seen yet.

A function does not have to return a value at all, however. In this case, the signature must use the

void keyword as the return type. When the void keyword is used, the function body must not at-

tempt to return a value as this will cause an error. It can, however, use the return keyword without

a value. Here are some combinations of return type and use of the return keyword that are valid:

void doWhatever(){

 // our code

 // I'm done going back to calling code here

 // no return is necessary

}

Loops, Arrays, Switch, Enumerations, and Functions: Implementing Game Mechanics134

Another possibility is as follows:

void doSomethigCool(){

 // our code

 // I can do this if I don't try and use a value

 return;

}

The following code shows yet more examples of possible functions. Be sure to read the comments

as well as the code:

void doYetAnotherThing(){

 // some code

 if(someCondition){

 // if someCondition is true returning to calling code

 // before the end of the function body

 return;

 }

 // More code that might or might not get executed

 return;

 // As I'm at the bottom of the function body

 // and the return type is void, I'm

 // really not necessary but I suppose I make it

 // clear that the function is over.

}

bool detectCollision(Ship a, Ship b){

 // Detect if collision has occurred

 if(collision)

 {

 // Bam!!!

Chapter 4 135

 return true;

 }

 else

 {

 // Missed

 return false;

 }

}

The last function example above, detectCollision, is a glimpse into the near future of our C++

code and demonstrates that we can also pass in the user-defined types, called objects, into func-

tions to perform calculations on them.

We could call each of the functions above in turn, like this:

// OK time to call some functions

doWhatever();

doSomethingCool();

doYetAnotherThing();

if (detectCollision(milleniumFalcon, lukesXWing))

{

 // The jedi are doomed!

 // But there is always Leia.

 // Unless she was on the Falcon?

}

else

{

 // Live to fight another day

}

// Continue with code from here

Don’t worry about the odd-looking syntax regarding the detectCollision function; we will

see real code like this quite soon. Simply, we are using the return value (true or false) as the

expression, directly in an if statement.

Loops, Arrays, Switch, Enumerations, and Functions: Implementing Game Mechanics136

Furthermore, the functions could be stacked up on the CPU stack if the functions were recoded as

follows. I have stripped some extraneous code like the comments and highlighted the new parts.

First is a hypothetical main function:

int main()

{

 // call doWhatever

 doWhatever()

 return 0;

}

Here is a new version of doWhatever:

void doWhatever(){

 // Call doSomethingCool

doSomethingCool();

}

Here is the new version of doSomethingCool:

void doSomethigCool(){

 // Call doYetAnotherThing

 doYetAnotherThing();

 return;

}

Here is the new version of doYetAnotherThing:

void doYetAnotherThing(){

 if(someCondition){

 return;

 }

 return;

}

Chapter 4 137

In my above scenario, the main function calls doWhatever, which calls doSomethingCool, which

calls doYetAnotherThing. At this point, all four functions, including main, will exist on the CPU’s

stack. When doYetAnotherThing completes and goes through its epilogue process, is removed

from the stack, and control returns to doSomethingCool. Then, only three functions exist on the

stack. When doSomethingCool has had its code executed, it too is removed, and so on until just

main is on the stack and, of course, eventually main reaches its return statement and is removed

from the stack and our program is no longer in memory.

That is more than you need to know to make a great game so let’s keep going.

Function names
The function name when we design our own function can be almost anything at all. But it is best

to use words, usually verbs, that clearly explain what the function will do. For example, look at

this function:

void functionaroonieboonie(int blibbityblob, float floppyfloatything)

{

 //code here

}

The above is perfectly legal and will work, but these next function names are much clearer:

void doSomeVerySpecificTask()

{

 //code here

}

int getMySpaceShipHealth()

{

 //code here

}

void startNewGame()

As a quick aside, loops also go through a similar process to functions, so if a function

contains a loop, it too will end up on the stack. Everything is executed last in, first

out until a return statement is reached, the currently executing function is removed,

and the calling function continues.

Loops, Arrays, Switch, Enumerations, and Functions: Implementing Game Mechanics138

{

 //code here

}

Next, take a closer look at how we share some values with a function.

Function parameters
We know that a function can return a result to the calling code. What if we need to share some

data values from the calling code with the function? Parameters allow us to share values with

the function. We have already seen examples of parameters while looking at return types. We

will look at the same example but a little more closely:

int addAToB(int a, int b)

{

 int answer = a + b;

 return answer;

}

Above, the parameters are int a and int b. Did you notice that in the first line of the function

body, we use a + b as if they are already declared and initialized variables? Well, that’s because

they are. The parameters in the function signature are their declaration, and the code that calls

the function initializes them.

Also, as we have partly seen in previous examples, we don’t have to just use int in our parameters.

We can use any C++ type. We can also use as many parameters as is necessary to solve our problem,

but it is good practice to keep the parameter list as short and, therefore, manageable as possible.

As we will see in future chapters, we have left a few of the cooler uses of functions out of this

introductory tutorial, so that we can learn about related C++ concepts before we take the topic

of functions further.

Notice that we are referring to the variables in the function signatures brackets

(int a, int b) as parameters. When we pass values into the function from the

calling code, these values are called arguments. When the arguments arrive, they

are used by the parameters to initialize real, usable variables: int returnedAnswer
 = addAToB(10,5);

Chapter 4 139

The function body
The body is the part we have been kind of avoiding with comments like this:

// code here

// some code

But actually, we know exactly what to do here already! Any C++ code we have learned about so

far will work in the body of a function.

Next, we will explore the concept of function prototypes.

Function prototypes
We have seen how to code a function and we have seen how to call one as well. There is one more

thing we need to do, however, to make it work. All functions must have a prototype. A prototype

is what makes the compiler aware of our function; without a prototype, the entire game will fail

to compile. Fortunately, prototypes are straightforward.

We can simply repeat the function’s signature, followed by a semicolon. The caveat is that the

prototype must appear before any attempt to call or define the function. So, the absolute most

simple example of a fully usable function in action is as follows. Look carefully at the comments

and the location in the code where the different parts of the function appear:

// The prototype

// Notice the semicolon on the end

int addAToB(int a, int b);

int main()

{

 // Call the function

 // Store the result in answer

 int answer = addAToB(2,2);

 // Called before the definition

 // but that's OK because of the prototype

 // Exit main

 return 0;

Loops, Arrays, Switch, Enumerations, and Functions: Implementing Game Mechanics140

}// End of main

// The function definition

int addAToB(int a, int b)

{

 return a + b;

}

What the previous code demonstrates is the following:

•	 The prototype is before the main function.

•	 The call to use the function is, as we might expect, inside the main function.

•	 The definition is after/outside the main function.

Let’s see how we can keep our functions organized.

Organizing functions
Well worth pointing out if we have multiple functions, especially if they are fairly long, is that

our .cpp file will quickly become unwieldy. This defeats part of the objective that functions are

intended for. The solution that we will see in the next project, which starts in Chapter 6, is that

we can add all our function prototypes to our very own header file (.hpp or .h), then code all our

functions in another .cpp file, and then simply add another #include... directive in our main

.cpp file. This way, we can use any number of functions without adding any of their code (proto-

type or definition) to our main code file.

Function scope
We mentioned, in our discussion about the CPU stack, the idea of local variables. This is the same

topic as function or variable scope. If we declare a variable in a function, either directly or in one

of the parameters, that variable is not usable/visible outside of the function. Furthermore, any

variables declared inside other functions cannot be seen/used inside the function. After all, they

are in an entirely different stack frame on the CPU stack.

Note that we can omit the function prototype and go straight to the definition when

the definition occurs before the function is used. As our code becomes longer and

spread across multiple files, however, this will almost never happen. We will use

separate prototypes and definitions all the time.

Chapter 4 141

The way that we should share values between function code and calling code is through the

parameters/arguments and the return value.

When a variable is not available because it is from another function, it is said to be out of scope.

When it is available and usable, it is said to be in scope.

A final word on functions – for now
There is even more we could learn about functions, but we know enough about them already to

implement the next part of our game. And don’t worry if all the technical terms like parameters,

signatures, definitions, and so on have not completely sunk in. The concepts will become clearer

when we start to use them.

In addition, it has probably not escaped your attention that we have been calling functions, espe-

cially the SFML functions, by appending the name of an object and a period before the function

name, like this:

spriteBee.setPosition...

window.draw...

// etc

And yet, our entire discussion of functions saw us calling functions without any objects. What’s

that all about then? We can write functions as part of a class or simply as a standalone function,

as we have seen in this chapter. When we write a function as part of a class, we need an object of

that class to call the function, and when we have a standalone function (as we have seen), we don’t.

We will write a standalone function in a minute, and we will write classes with functions starting

in Chapter 6, Object-Oriented Programming – Starting the Pong Game. Everything we know so far

about functions is relevant in both cases. Only the context changes.

Variables declared within any block in C++ only are in scope within that block! This

includes loops and if blocks as well. A variable declared at the top of main is in scope

anywhere in main. A variable declared in the game loop is only in scope within the

game loop, etc. A variable declared within a function or other block is called a local

variable. The more code we write, the more this will make sense. Every time we come

across an issue in our code regarding scope, I will discuss it to make things clear.

There will be one such issue coming up in the next section. And there are some more

C++ staples that blow this issue wide open. They are called references and pointers,

and we will learn about them in Chapters 9 and 10, respectively.

Loops, Arrays, Switch, Enumerations, and Functions: Implementing Game Mechanics142

Finally, we can use what we have learned to grow the branches on our tree.

Growing the branches
Next, as I have been promising for around the last 20 pages, we will use all the new C++ tech-

niques – loops, arrays, enumerations, and functions – to draw and move some branches on our tree.

Add this code outside of the main function. Just to be absolutely clear, I mean before the int

main() code:

#include <sstream>

#include <SFML/Graphics.hpp>

using namespace sf;

// Function declaration

void updateBranches(int seed);

const int NUM_BRANCHES = 6;

Sprite branches[NUM_BRANCHES];

// Where is the player/branch?

// Left or Right

enum class side { LEFT, RIGHT, NONE };

side branchPositions[NUM_BRANCHES];

int main()

{

We just achieved quite a few things with that new code:

•	 First, we wrote a function prototype for a function called updateBranches. We can see

that it does not return a value (void) and it takes an int argument called seed. We will

write the function definition soon and we will then see exactly what it does.

•	 Next, we declare a constant int called NUM_BRANCHES and initialize it to 6. There will be

six moving branches on the tree, and we will soon see how NUM_BRANCHES is useful to us.

•	 Following this, we declare an array of Sprite objects called branches that can hold six

Sprite instances.

Chapter 4 143

•	 After that, we declare a new enumeration called side with three possible values, LEFT,

RIGHT, and NONE. This will be used to describe the position of individual branches, as well

as the player, in a few places throughout our code.

•	 Finally, in the preceding code, we initialize an array of side types, with a size of

NUM_BRANCHES (6). To be clear about what this achieves, we will have an array called

branchPositions with six values in it. Each of these values is of type side, and each can

hold the values of either LEFT, RIGHT, or NONE.

Preparing the branches
Now, we will prepare our six Sprite objects and load them into the branches array. Add the

highlighted code just before our game loop:

// Position the text

FloatRect textRect = messageText.getLocalBounds();

messageText.setOrigin(textRect.left +

 textRect.width / 2.0f,

 textRect.top +

 textRect.height / 2.0f);

messageText.setPosition(1920 / 2.0f, 1080 / 2.0f);

scoreText.setPosition(20, 20);

// Prepare 5 branches

Texture textureBranch;

textureBranch.loadFromFile("graphics/branch.png");

Of course, what you really want to know is why the constant, two arrays, and the

enumeration were declared outside of the main function. By declaring them above

main, they now have global scope. Or describing it another way, the constant, two

arrays, and the enumeration have scope for the entire game. This will mean we can

access and use them all, anywhere in the main function and the updateBranches

function. Note that it is good practice to make all variables as local to where they

are used as possible. It might seem useful to make everything global, but this leads

to hard-to-read and error-prone code.

Loops, Arrays, Switch, Enumerations, and Functions: Implementing Game Mechanics144

// Set the texture for each branch sprite

for (int i = 0; i < NUM_BRANCHES; i++) {

 branches[i].setTexture(textureBranch);

 branches[i].setPosition(-2000, -2000);

 // Set the sprite's origin to dead centre

 // We can then spin it round without changing its position

 branches[i].setOrigin(220, 20);

}

while (window.isOpen())

{

In the preceding code, first, we declare an SFML Texture object and load the branch.png graphic

into it.

Next, we create a for loop that sets i to zero and increments i by one each pass through the loop,

until i is no longer less than NUM_BRANCHES. This is exactly right because NUM_BRANCHES is 6 and

the branches array has positions 0 through 5.

Inside the for loop, we set the Texture for each Sprite in the branches array with setTexture

and then hide it off-screen with setPosition.

Finally, we set the origin (the point that is used to locate the sprite when it is drawn) with

setOrigin to the center of the sprite. Soon, we will be rotating these sprites, and having the or-

igin in the center means they will spin nicely around, without moving the sprite out of position.

Updating the branch sprites in each frame
In this next code, we set the position of all the sprites in the branches array, based on their po-

sition in the array and the value of side in the corresponding branchPositions array. Add the

highlighted code and try to understand it, then we can go through it in detail:

 // Update the score text

 std::stringstream ss;

 ss << "Score: " << score;

 scoreText.setString(ss.str());

 // update the branch sprites

 for (int i = 0; i < NUM_BRANCHES; i++)

Chapter 4 145

 {

 float height = i * 150;

 if (branchPositions[i] == side::LEFT)

 {

 // Move the sprite to the left side

 branches[i].setPosition(610, height);

 // Flip the sprite round the other way

 branches[i].setRotation(180);

 }

 else if (branchPositions[i] == side::RIGHT)

 {

 // Move the sprite to the right side

 branches[i].setPosition(1330, height);

 // Set the sprite rotation to normal

 branches[i].setRotation(0);

 }

 else

 {

 // Hide the branch

 branches[i].setPosition(3000, height);

 }

 }

} // End if(!paused)

/*

**

Draw the scene

**

The code we just added is one big for loop that sets i to zero and increments i by one each time

through the loop and keeps going until i is no longer less than 6.

Loops, Arrays, Switch, Enumerations, and Functions: Implementing Game Mechanics146

Inside the for loop, a new float variable called height is set to i * 150. This means that the

first branch will have a height of 0, the second of 150, and the sixth of 750.

Next, we have a structure of if and else blocks. Look at the structure with the code stripped out:

if()

{

}

else if()

{

}

else

{

}

The first if uses the branchPositions array to see whether the current branch should be on the

left. If it should, it sets the corresponding Sprite from the branches array to a position on the

screen, appropriate for the left (610 pixels) and whatever the current height is. It then flips the

Sprite by 180 degrees because the branch.png graphic “hangs” to the right by default.

The else if only executes if the branch is not on the left. This part of the code then uses the

same method to see if it is on the right. If it is, then the branch is drawn on the right (1330 pixels).

Then, the sprite rotation is set to zero degrees, just in case it had previously been at 180 degrees.

If the x coordinate seems a little bit strange, just remember that we set the origin for the branch

sprites to their center.

The final else assumes, correctly, that the current branchPosition must be NONE and hides the

branch off-screen at 3000 pixels.

At this point, our branches are in position, ready to be drawn.

Drawing the branches
Here, we use another for loop to step through the entire branches array from 0 to 5 and draw

each branch sprite. Add the following highlighted code:

// Draw the clouds

window.draw(spriteCloud1);

window.draw(spriteCloud2);

window.draw(spriteCloud3);

Chapter 4 147

// Draw the branches

for (int i = 0; i < NUM_BRANCHES; i++)

{

 window.draw(branches[i]);

}

// Draw the tree

window.draw(spriteTree);

Of course, we still haven’t written the function that moves all the branches. Once we have written

that function, we will also need to work out when and how to call that function. Let’s solve the

first problem and write the function.

Moving the branches
We have already added the function prototype above the main function. Now, we code the actual

definition of the function that will move all the branches down by one position each time it is

called. We will code this function in two parts so we can more easily examine what is happening.

Add the first part of the updateBranches function after the closing curly brace of the main function:

// Function definition

void updateBranches(int seed)

{

 // Move all the branches down one place

 for (int j = NUM_BRANCHES-1; j > 0; j--) {

 branchPositions[j] = branchPositions[j - 1];

 }

}

In this first part of the function, we simply move all the branches down one position, one at a time,

starting with the sixth branch. This is achieved by making the for loop count from 5 through to

0. The code branchPositions[j] = branchPositions[j - 1]; makes the actual move.

The other thing to note with the previous code is that after we have moved the branch in position

4 to position 5, then the branch in position 3 to position 4, and so on, we will need to add a new

branch at position 0, which is the top of the tree.

Loops, Arrays, Switch, Enumerations, and Functions: Implementing Game Mechanics148

Now we can spawn a new branch at the top of the tree. Add the highlighted code into the

updateBranches function and then we will talk about it:

// Function definition

void updateBranches(int seed)

{

 // Move all the branches down one place

 for (int j = NUM_BRANCHES-1; j > 0; j--) {

 branchPositions[j] = branchPositions[j - 1];

 }

 // Spawn a new branch at position 0

 // LEFT, RIGHT or NONE

 srand((int)time(0)+seed);

 int r = (rand() % 5);

 switch (r) {

 case 0:

 branchPositions[0] = side::LEFT;

 break;

 case 1:

 branchPositions[0] = side::RIGHT;

 break;

 default:

 branchPositions[0] = side::NONE;

 break;

 }

}

In the final part of the updateBranches function, we use the integer seed variable that gets passed

in with the function call. We do this to guarantee that the random number seed is always different,

and we will see how this value is arrived at in the next chapter.

Next, we generate a random number between 0 and 4 and store the result in the int variable r.

Now, we switch using r as the expression.

Chapter 4 149

The case statements mean that if r is equal to 0, then we add a new branch on the left-hand side

at the top of the tree. If r is equal to 1, then the branch goes on the right. If r is anything else (2,

3, or 4), then default ensures that no branch at all will be added at the top. This balance of left,

right, and none makes the tree seem realistic (for a fake video game tree) and the game works

quite well. You could easily change the code to make the branches more frequent or less so.

Even after all this code for our branches, we still can’t glimpse a single one of them in the game.

This is because we have more work to do before we can call updateBranches.

If you want to see a branch now, you can add some temporary code and call the function five

times with a unique seed each time, just before the game loop:

updateBranches(1);

updateBranches(2);

updateBranches(3);

updateBranches(4);

updateBranches(5);

while (window.isOpen())

{

You can now see the branches in their place. But if the branches are to move, we will need to call

updateBranches on a regular basis.

Figure 4.1: Branches on a tree

Loops, Arrays, Switch, Enumerations, and Functions: Implementing Game Mechanics150

Now we can turn our attention to the player as well as call the updateBranches function for real.

Summary
Although not quite the longest, this was probably the chapter where we covered the most C++.

We looked at the different types of loops we can use, like for and while loops. We studied arrays

for handling large amounts of variables and objects without breaking a sweat. We also learned

about enumerations and switch. Probably the biggest concept in this chapter was functions, which

allow us to organize and abstract our game’s code. We will be looking more deeply at functions

in a few more places as the book continues.

Now that we have a fully “working” tree, we can finish the game in the last chapter of this project.

Here are some things that might be on your mind.

Frequently asked questions
Q) How does a for loop differ from a while loop in C++?

A) Both for and while loops in C++ are used for repetition, but a for loop is typically used when

the number of iterations is known in advance and a for loop involves three parts (initialization,

condition, and iteration). In contrast, a while loop is more flexible and used when the number

of iterations is uncertain.

Q) Can functions in C++ return multiple values?

A) No, a function in C++ can only directly return one value. However, multiple values can be

simulated by using parameters passed by references, pointers, or objects. References, pointers,

and objects are all discussed in depth in upcoming chapters.

Q) Tell me briefly how the CPU stack relates to function calls and loops in C++.

A) The stack is a region of memory used for managing function calls, local variables, and control

flow in C++. Both function calls and loops involve the allocation and deallocation of space on

the stack to store information such as local variables, parameters, and the return address. It is

not necessary to understand this in order to proceed but knowing it exists helps accept some

otherwise inexplicable constructs, specifically function syntax from this chapter.

Don’t forget to remove the temporary code before moving on.

Chapter 4 151

Q) When should I use an enumeration in C++?

A) Enumerations, often abbreviated to enums in C++, are useful when you want to represent a

set of named constant values. They improve code readability and help prevent the use of invalid

values and operations. Enums are sometimes used for menu options in games, or the example

we used in this chapter was days of the week. If you see the value WEDNESDAY, it makes it clear

what it represents, whereas the value 3 could be Tuesday or even the number of toes on a cute

tree-climbing mammal.

Q)How can I prevent an unwanted infinite loop in C++?

A) To avoid unwanted infinite loops, ensure that the loop condition has a way of becoming false.

For example, in a for loop, make sure the condition will eventually evaluate to false. In a while

loop, ensure that the loop variable is updated or that there is a break statement when a specific

condition is met.

5
Collisions, Sound, and End
Conditions: Making the Game
Playable

This is the final phase of the first project. By the end of this chapter, you will have your first com-

pleted game. Once you have Timber!!! up and running, be sure to read the last section of this

chapter, as it will suggest ways to make the game better.

We will cover the following topics in this chapter:

•	 Preparing the player (and other sprites)

•	 Drawing the player and other sprites

•	 Handling the player’s input

•	 Handling death

•	 Simple sound effects

•	 Improving the game and code

In this chapter, we will reuse the C++ concepts that we have already learned, but we will see the

SFML (Simple and Fast Multimedia Library) sound features for the first time.

Preparing the player (and other sprites)
Let’s add the code for the player’s sprite, as well as a few more sprites and textures at the same

time. The following code adds a gravestone sprite for when the player gets squashed, an axe sprite

to chop with, and a log sprite that can whiz away each time the player chops.

Collisions, Sound, and End Conditions: Making the Game Playable154

Notice that after the spritePlayer object, we also declare a side variable, playerSide, to keep

track of where the player is currently standing. Furthermore, we add some extra variables for the

spriteLog object, including logSpeedX, logSpeedY, and logActive, to store how fast the log will

move and whether it is currently moving. The spriteAxe also has two related float constant

variables to remember where the ideal pixel position is on both the left and the right.

Add this next block of code just before the while(window.isOpen()) code as we have done so

often before. Note that all the code in this next listing is new, not just the highlighted code. I ha-

ven’t provided any extra context for the following block of code, as the while(window.isOpen())

should be easy to identify. The highlighted code is the code we have just specifically discussed.

Add the entirety of this code, just before the while(window.isOpen()) line, and make a mental

note of the highlighted lines we have briefly discussed. It will make the rest of the chapter’s code

easier to understand:

// Prepare the player

Texture texturePlayer;

texturePlayer.loadFromFile("graphics/player.png");

Sprite spritePlayer;

spritePlayer.setTexture(texturePlayer);

spritePlayer.setPosition(580, 720);

// The player starts on the left

side playerSide = side::LEFT;

// Prepare the gravestone

Texture textureRIP;

textureRIP.loadFromFile("graphics/rip.png");

Sprite spriteRIP;

spriteRIP.setTexture(textureRIP);

spriteRIP.setPosition(600, 860);

// Prepare the axe

Texture textureAxe;

textureAxe.loadFromFile("graphics/axe.png");

Sprite spriteAxe;

spriteAxe.setTexture(textureAxe);

spriteAxe.setPosition(700, 830);

Chapter 5 155

// Line the axe up with the tree

const float AXE_POSITION_LEFT = 700;

const float AXE_POSITION_RIGHT = 1075;

// Prepare the flying log

Texture textureLog;

textureLog.loadFromFile("graphics/log.png");

Sprite spriteLog;

spriteLog.setTexture(textureLog);

spriteLog.setPosition(810, 720);

// Some other useful log related variables

bool logActive = false;

float logSpeedX = 1000;

float logSpeedY = -1500;

Now, we can draw all our new sprites.

Drawing the player and other sprites
Before we add the code to move the player and use all our new sprites, let’s draw them. This is

so that, as we add code to update/change/move them, we will be able to see what is happening.

Add the highlighted code to draw the four new sprites:

// Draw the tree

window.draw(spriteTree);

// Draw the player

window.draw(spritePlayer);

// Draw the axe

window.draw(spriteAxe);

// Draw the flying log

window.draw(spriteLog);

// Draw the gravestone

Collisions, Sound, and End Conditions: Making the Game Playable156

window.draw(spriteRIP);

// Draw the bee

window.draw(spriteBee);

Run the game, and you will see our new sprites in the scene.

Figure 5.1: New sprites in scene

We are really close to a working game now.

Handling the player’s input
Lots of different things depend on the movement of the player. These include:

•	 When to show the axe

•	 When to begin animating the log

•	 When to move all the branches down

Therefore, it makes sense to set up keyboard handling for the player chopping. Once this is done,

we can put all the features we just mentioned into the same part of the code.

Let’s think for a moment about how we detect keyboard presses. In each frame, we test whether

a particular keyboard key is currently held down.

Chapter 5 157

If it is, we take action. If the Escape key is held down, we quit the game, and if the Enter key is held

down, we restart the game. So far, this has been sufficient for our needs.

However, there is a problem with this approach when we try and handle the chopping of the tree.

The problem has always been there; it just didn’t matter until now. Depending on how powerful

your PC is, the game loop could be executed thousands of times per second. Each and every pass

through the game loop when a key is held down is detected, and the related code will execute it.

So actually, every time you press Enter to restart the game, you are most likely restarting it well

in excess of a hundred times. This is because even the briefest of presses will last a significant

fraction of a second. You can verify this by running the game and holding down the Enter key.

Note that the time-bar doesn’t move. This is because the game is being restarted over and over

again, hundreds or even thousands of times a second.

If we don’t use a different approach for the player chopping, then just one attempted chop will

bring the entire tree down. We need to be a bit more sophisticated. What we will do is allow the

player to chop, and then when they do so, disable the code that detects a key press. We will then

detect when the player removes their finger from a key and then re-enable the detection of key

presses. Here are the steps laid out clearly:

1.	 Wait for the player to use the left or right arrow keys to chop a log.

2.	 When the player chops, disable key press detection.

3.	 Wait for the player to remove their finger from a key.

4.	 Re-enable chop detection.

5.	 Repeat from step 1.

This might sound complicated, but with SFML’s help, it will be straightforward. Let’s implement

this now, one step at a time.

Add the highlighted line of code that declares a bool variable called acceptInput, which will be

used to determine when to listen for chops and when to ignore them:

float logSpeedX = 1000;

float logSpeedY = -1500;

// Control the player input

bool acceptInput = false;

while (window.isOpen())

{

Collisions, Sound, and End Conditions: Making the Game Playable158

Now that we have our Boolean set up, we can move on to handling setting up a new game.

Handling setting up a new game
Ready for us to handle chops, the highlighted code is added to the if block that starts a new game:

/*

**

Handle the players input

**

*/

if (Keyboard::isKeyPressed(Keyboard::Escape))

{

 window.close();

}

// Start the game

if (Keyboard::isKeyPressed(Keyboard::Return))

{

 paused = false;

 // Reset the time and the score

 score = 0;

 timeRemaining = 6;

 // Make all the branches disappear

 for (int i = 1; i < NUM_BRANCHES; i++)

 {

 branchPositions[i] = side::NONE;

 }

 // Make sure the gravestone is hidden

 spriteRIP.setPosition(675, 2000);

 // Move the player into position

 spritePlayer.setPosition(580, 720);

 acceptInput = true;

Chapter 5 159

}

/*

**

Update the scene

**

*/

In the preceding code, we use a for loop to prepare the tree without any branches. This is fair to

the player, as if the game started with a branch right above their head, it might be considered

unsporting. Players are fine with hard games, but they hate unfair games. Then, we simply move

the gravestone off of the screen and the player into their starting location on the left. The last

thing the preceding code does is set acceptInput to true. We are now ready to receive chopping

key presses.

Detecting the player chopping
Now, we can prepare to handle the left and right cursor key presses. Add this simple if block,

which only executes when acceptInput is true:

// Start the game

if (Keyboard::isKeyPressed(Keyboard::Return))

{

 paused = false;

 // Reset the time and the score

 score = 0;

 timeRemaining = 5;

 // Make all the branches disappear

 for (int i = 1; i < NUM_BRANCHES; i++)

 {

 branchPositions[i] = side::NONE;

 }

 // Make sure the gravestone is hidden

 spriteRIP.setPosition(675, 2000);

Collisions, Sound, and End Conditions: Making the Game Playable160

 // Move the player into position

 spritePlayer.setPosition(675, 660);

 acceptInput = true;

}

// Wrap the player controls to

// Make sure we are accepting input

if (acceptInput)

{

 // More code here next...

}

/*

**

Update the scene

**

*/

Now, inside the if block that we just coded, add the following highlighted code to handle what

happens when the player presses the right cursor key on the keyboard:

// Wrap the player controls to

// Make sure we are accepting input

if (acceptInput)

{

 // More code here next...

 // First handle pressing the right cursor key

 if (Keyboard::isKeyPressed(Keyboard::Right))

 {

 // Make sure the player is on the right

 playerSide = side::RIGHT;

 score ++;

Chapter 5 161

 // Add to the amount of time remaining

 timeRemaining += (2 / score) + .15;

 spriteAxe.setPosition(AXE_POSITION_RIGHT,

 spriteAxe.getPosition().y);

 spritePlayer.setPosition(1200, 720);

 // Update the branches

 updateBranches(score);

 // Set the log flying to the left

 spriteLog.setPosition(810, 720);

 logSpeedX = -5000;

 logActive = true;

 acceptInput = false;

 }

 // Handle the left cursor key

}

Quite a bit is happening in that preceding code, so let’s go through it. First, we detect if the

player has chopped on the right-hand side of the tree. If they have, then we set playerSide to

side::RIGHT. We will respond to the value of playerSide later in the code.

Then, we add 1 to the score with a score ++. The next line of code is slightly mysterious, so here

it is again as a reminder:

timeRemaining += (2 / score) + .15;

It isn’t particularly complicated. See if you can work it out for yourself before reading on. All that

is happening is that we add to the amount of time remaining with timeRemaining +=..., and

therefore, we reward the player for taking action. However, the problem for the player is that

the bigger the score gets, the less additional time is added on. By dividing 2 by a score like this

(2 / score), the chopping rewards quickly diminish. You can play with this formula to make

the game easier or harder.

Collisions, Sound, and End Conditions: Making the Game Playable162

Next, the axe is moved into its right-hand-side position with spriteAxe.setPosition, and the

player sprite is moved into its right-hand-side position also.

Next, we call updateBranches to move all the branches down one place and spawn a new random

branch (or space) at the top of the tree.

Then, spriteLog is moved into its starting position, camouflaged against the tree, and its speedX

variable is set to a negative number so that it whizzes off to the left. Also, logActive is set to true

so that the log-moving code that we will write soon animates the log at each frame.

Finally, acceptInput is set to false. At this point, no more chops can be made by the player. We

have solved the problem of the presses being detected too frequently, and we will see how we

re-enable the chopping soon.

Now, still inside the if(acceptInput) block that we just coded, add the highlighted code to

handle what happens when the player presses the left cursor key on the keyboard:

 // Handle the left cursor key

 if (Keyboard::isKeyPressed(Keyboard::Left))

 {

 // Make sure the player is on the left

 playerSide = side::LEFT;

 score++;

 // Add to the amount of time remaining

 timeRemaining += (2 / score) + .15;

 spriteAxe.setPosition(AXE_POSITION_LEFT,

 spriteAxe.getPosition().y);

 spritePlayer.setPosition(580, 720);

 // update the branches

 updateBranches(score);

 // set the log flying

 spriteLog.setPosition(810, 720);

Chapter 5 163

 logSpeedX = 5000;

 logActive = true;

 acceptInput = false;

 }

}

The previous code is just the same as the code that handles the right-hand-side chop, except that

the sprites are positioned differently and the logSpeedX variable is set to a positive value so that

the log whizzes to the right. This is so because the horizontal coordinates increase as sprites are

positioned further to the right.

Next, let’s see how to detect that a key is released.

Detecting a key being released
To make the preceding code work beyond the first chop, we need to detect when the player releases

a key and then set acceptInput back to true.

This is slightly different from the key handling we have seen so far. SFML has two different ways

of detecting keyboard input from the player. The first way we have already seen. It is dynamic

and instantaneous, exactly what we need to respond immediately to a key press.

The following code uses the other method. Enter the next highlighted code at the top of the Handle

the players input section, and then we will go through it:

/*

**

Handle the players input

**

*/

Event event;

while (window.pollEvent(event))

{

 if (event.type == Event::KeyReleased && !paused)

 {

Collisions, Sound, and End Conditions: Making the Game Playable164

 // Listen for key presses again

 acceptInput = true;

 // hide the axe

 spriteAxe.setPosition(2000,

 spriteAxe.getPosition().y);

 }

}

if (Keyboard::isKeyPressed(Keyboard::Escape))

{

 window.close();

}

First, we declare an object of type Event called event. Then, we call the window.pollEvent func-

tion, passing in our new object, event. The pollEvent function puts data into the event object

that describes an operating system event. This could be a key press, key release, mouse movement,

mouse click, game controller action, or something that happened to the window itself (it was

resized, moved, etc.).

The reason that we wrap our code in a while loop is that there might be many events stored in

a queue. The window.pollEvent function will load them, one at a time, into event. Upon each

pass through the loop, we will see if we are interested in the current event and respond if we are.

When window.pollEvent returns false, that means there are no more events in the queue and

the while loop will exit.

Astute readers will notice something is a bit different compared to our discussion of functions.

What is happening will be fully explained when we discuss references in Chapter 9. As a quick

explanation, it is possible to pass a value into a function, and the called function can alter that

value so that the new value is available to the calling function. This is done through the concept

of references, not by returning a value with a return statement.

This if condition (event.type == Event::KeyReleased && !paused) is true when both a key

has been released and the game is not paused.

Inside the if block, we set acceptInput back to true and hide the axe sprite off-screen.

You can run the game now and gaze in awe at the moving tree, swinging axe, and animated player.

However, it won’t squash the player, and the log needs to move when chopped as well.

Chapter 5 165

Animating the chopped logs and the axe
When the player chops, logActive is set to true, so we can wrap some code in a block that only

executes when logActive is true. Furthermore, each chop sets logSpeedX to either a positive

or negative number, so the log is ready to start flying away from the tree in the correct direction.

Add the following highlighted code, right after we update the branch sprites:

 // update the branch sprites

 for (int i = 0; i < NUM_BRANCHES; i++)

 {

float height = i * 150;

 if (branchPositions[i] == side::LEFT)

 {

 // Move the sprite to the left side

 branches[i].setPosition(610, height);

 // Flip the sprite round the other way

 branches[i].setRotation(180);

 }

 else if (branchPositions[i] == side::RIGHT)

 {

 // Move the sprite to the right side

 branches[i].setPosition(1330, height);

 // Flip the sprite round the other way

 branches[i].setRotation(0);

 }

 else

 {

 // Hide the branch

 branches[i].setPosition(3000, height);

 }

 }

 // Handle a flying log

Collisions, Sound, and End Conditions: Making the Game Playable166

 if (logActive)

 {

 spriteLog.setPosition(

 spriteLog.getPosition().x +

 (logSpeedX * dt.asSeconds()),

 spriteLog.getPosition().y +

 (logSpeedY * dt.asSeconds()));

 // Has the log reached the right hand edge?

 if (spriteLog.getPosition().x < -100 ||

 spriteLog.getPosition().x > 2000)

 {

 // Set it up ready to be a whole new log next frame

 logActive = false;

 spriteLog.setPosition(810, 720);

 }

 }

} // End if(!paused)

/*

**

Draw the scene

**

*/

The code sets the position of the sprite by getting its current horizontal and vertical location with

getPosition and then adding to it using logSpeedX and logSpeedY, respectively, multiplied by

dt.asSeconds.

After the log sprite has been moved to each frame, the code uses an if block to see if the sprite

has disappeared out of view on either the left or the right. If it has, the log is moved back to its

starting point, ready for the next chop.

If you run the game, you will be able to see the log flying off to the appropriate side of the screen.

Chapter 5 167

Figure 5.2: Flying log

Now for a more sensitive subject. Let’s see how we deal with the player losing.

Handling death
Every game must end badly, with either the player running out of time (which we have already

handled) or getting squashed by a branch. The mayfly is an aquatic creature that lives anywhere

between a few hours and a few days. Playing the Timber!!! game is like being a mayfly in a hurry –

you’re either running out of time or feeling the branch of destiny squashing your hopes! Our hero

in the Timber!!! game may only last a few seconds, and even an experienced player will struggle

to last more than a few minutes.

Fortunately, detecting the player getting squashed is really simple. All we want to know is whether

the last branch in the branchPositions array equals playerSide. If it does, the player is dead.

Add the highlighted code that detects this, and then we will discuss everything we need to do

when the player is squashed:

 // Handle a flying log

 if (logActive)

 {

 spriteLog.setPosition(

Collisions, Sound, and End Conditions: Making the Game Playable168

 spriteLog.getPosition().x +

 (logSpeedX * dt.asSeconds()),

 spriteLog.getPosition().y +

 (logSpeedY * dt.asSeconds()));

 // Has the log reached the right-hand edge?

 if (spriteLog.getPosition().x < -100 ||

 spriteLog.getPosition().x > 2000)

 {

 // Set it up ready to be a whole new cloud next frame

 logActive = false;

 spriteLog.setPosition(800, 600);

 }

 }

 // has the player been squished by a branch?

 if (branchPositions[5] == playerSide)

 {

 // death

 paused = true;

 acceptInput = false;

 // Draw the gravestone

 spriteRIP.setPosition(525, 760);

 // hide the player

 spritePlayer.setPosition(2000, 660);

 // Change the text of the message

 messageText.setString("SQUISHED!!");

Chapter 5 169

 // Center it on the screen

 FloatRect textRect = messageText.getLocalBounds();

 messageText.setOrigin(textRect.left +

 textRect.width / 2.0f,

 textRect.top + textRect.height / 2.0f);

 messageText.setPosition(1920 / 2.0f,

 1080 / 2.0f);

 }

} // End if(!paused)

/*

**

Draw the scene

**

*/

The first thing the new code does, after the player’s demise, is set paused to true. Now, the loop

will complete this frame, and it won’t run the update part of the loop again until a new game is

started by the player.

Then, we move the gravestone into a position near where the player was standing and hide the

player’s sprite off-screen.

We set the string of messageText to "Squished!!" and then use the usual technique to center it

on the screen.

Collisions, Sound, and End Conditions: Making the Game Playable170

You can now run the game and play it for real. This image shows the player’s final score and their

gravestone, as well as the SQUISHED message.

Figure 5.3: Squished

There is just one more problem. No, not that the man has left his axe stuck in the tree. Is it just

me, or is the game a little bit quiet?

Simple sound effects
We will add three sounds. Each sound will be played on a particular game event: a simple thud

sound whenever the player chops, a gloomy losing sound when the player runs out of time, and

a retro crushing sound when the player is squashed to death.

How SFML sound works
SFML plays sound effects using two different classes. The first class is the SoundBuffer class.

This is the class that holds the actual audio data from the sound file. It is SoundBuffer that is

responsible for loading the .wav files into the PC’s RAM, in a format that can be played without

any further decoding work.

When we write code for the sound effects shortly, we will see that once we have a SoundBuffer

object with our sound stored in it, we will then create another object of type Sound. We can then

associate this Sound object with a SoundBuffer object.

Chapter 5 171

Then, at the appropriate moment in our code, we will be able to call the play function of the

appropriate Sound object.

When to play the sounds
As we will see very soon, the C++ code to load and play sounds is really simple. What we need to

consider, however, is when we call the play function. Where in our code will we put the function

calls to play?

•	 The chop sound can be called from the key presses of the left and right cursor keys.

•	 The death sound can be played from the if block that detects that a tree has mangled

the player.

•	 The out-of-time sound can be played from the if block that detects that timeRemaining

is less than zero.

Now, we can write our sound code.

Adding the sound code
First, we add another #include directive to make the SFML sound-related classes available. Add

the highlighted code:

#include <sstream>

#include <SFML/Graphics.hpp>

#include <SFML/Audio.hpp>

using namespace sf;

Now, we declare three different SoundBuffer objects, load three different sound files into them,

and associate three different objects of type Sound with the related objects of type SoundBuffer.

Add the highlighted code:

// Control the player input

bool acceptInput = false;

// Prepare the sound

SoundBuffer chopBuffer;

chopBuffer.loadFromFile("sound/chop.wav");

Sound chop;

chop.setBuffer(chopBuffer);

Collisions, Sound, and End Conditions: Making the Game Playable172

SoundBuffer deathBuffer;

deathBuffer.loadFromFile("sound/death.wav");

Sound death;

death.setBuffer(deathBuffer);

// Out of time

SoundBuffer ootBuffer;

ootBuffer.loadFromFile("sound/out_of_time.wav");

Sound outOfTime;

outOfTime.setBuffer(ootBuffer);

while (window.isOpen())

{

Now, we can play our first sound effect. Add the single line of code, as shown next, to the if block

that detects that the player has pressed the right cursor key:

// Wrap the player controls to

// Make sure we are accepting input

if (acceptInput)

{

 // More code here next...

 // First handle pressing the right cursor key

 if (Keyboard::isKeyPressed(Keyboard::Right))

 {

 // Make sure the player is on the right

 playerSide = side::RIGHT;

 score++;

 timeRemaining += (2 / score) + .15;

 spriteAxe.setPosition(AXE_POSITION_RIGHT,

 spriteAxe.getPosition().y);

 spritePlayer.setPosition(1120, 660);

Chapter 5 173

 // update the branches

 updateBranches(score);

 // set the log flying to the left

 spriteLog.setPosition(800, 600);

 logSpeedX = -5000;

 logActive = true;

 acceptInput = false;

 // Play a chop sound

 chop.play();

 }

Find the code that deals with the player running out of time, and add the highlighted code shown

here to play the out-of-time-related sound effect:

if (timeRemaining <= 0.f) {

 // Pause the game

 paused = true;

 // Change the message shown to the player

 messageText.setString("Out of time!!");

 //Reposition the text based on its new size

 FloatRect textRect = messageText.getLocalBounds();

 messageText.setOrigin(textRect.left +

 textRect.width / 2.0f,

 textRect.top +

 textRect.height / 2.0f);

 messageText.setPosition(1920 / 2.0f, 1080 / 2.0f);

Add exactly the same code at the end of the next block of code that starts if (Key

board::isKeyPressed(Keyboard::Left)) to make a chopping sound when the

player chops on the left-hand side of the tree.

Collisions, Sound, and End Conditions: Making the Game Playable174

 // Play the out of time sound

 outOfTime.play();

}

Finally, to play the death sound when the player is squished, add the highlighted code to the if

block that executes when the bottom branch is on the same side as the player:

// has the player been squished by a branch?

if (branchPositions[5] == playerSide)

{

 // death

 paused = true;

 acceptInput = false;

 // Draw the gravestone

 spriteRIP.setPosition(675, 660);

 // hide the player

 spritePlayer.setPosition(2000, 660);

 messageText.setString("SQUISHED!!");

 FloatRect textRect = messageText.getLocalBounds();

 messageText.setOrigin(textRect.left +

 textRect.width / 2.0f,

 textRect.top + textRect.height / 2.0f);

 messageText.setPosition(1920 / 2.0f, 1080 / 2.0f);

 // Play the death sound

 death.play();

}

If you are having any problems with the sounds not playing, the most likely problem is the sound

files not loading. The way to determine if this is happening is to wrap the code that loads the

sounds in an if block.

Chapter 5 175

First, add the include directive that will allow us to use the cout << function, as we did in Chapter

3 when learning about string concatenation. Here is a reminder of what to add along with the

existing include directives:

#include<iostream>

Now, wrap each loadFromFile function call, as shown here:

if (!chopBuffer.loadFromFile("sound/chop.wav"))

{

 std::cout << "didn't load chop.wav";

}

Now, you will get a nice, neat error message telling you if a file didn’t load. If it didn’t load, check

the following:

•	 The file is named exactly as stated in the code, chop.wav.

•	 The file is in the sound folder.

•	 The sound folder is in the project root folder with the C++ file Timber.cpp.

That’s it! We have finished the first game. Let’s discuss some possible enhancements before we

move on to the second project.

Improving the game and code
Take a look at these suggested enhancements for the Timber!!! project. You can see the enhance-

ments in action in the Runnable folder of the download bundle:

•	 Speed up the code: There is a part of our code that is slowing down our game. It doesn’t

matter for this simple game, but we can speed things up by putting the sstream code

in a block that only executes occasionally. After all, we don’t need to update the score

thousands of times a second!

•	 Debugging console: Let’s add some more text so that we can see the current frame rate. As

with the score, we don’t need to update this too often. Once every hundred frames will do.

•	 Add more trees in the background: Simply add some more tree sprites and draw them in

whatever position looks good (some nearer the camera, and some further away).

•	 Improve the visibility of the HUD text: We can draw simple RectangleShape objects

behind the score and the FPS counter. Black with a bit of transparency will look quite good.

•	 Make the cloud code more efficient: As we alluded to a few times already, we can use

our knowledge of arrays to make the cloud code a lot shorter.

Collisions, Sound, and End Conditions: Making the Game Playable176

Here is the cloud code using arrays instead of repeating the code three times, once for each cloud:

for (int i = 0; i < NUM_CLOUDS; i++)

 {

 clouds[i].setTexture(textureCloud);

 clouds[i].setPosition(-300, i * 150);

 cloudsActive[i] = false;

 cloudSpeeds[i] = 0;

 }

 // 3 New sprites withe the same texture

 //Sprite spriteCloud1;

 //Sprite spriteCloud2;

 //Sprite spriteCloud3;

 //spriteCloud1.setTexture(textureCloud);

 //spriteCloud2.setTexture(textureCloud);

 //spriteCloud3.setTexture(textureCloud);

 // Position the clouds off screen

 //spriteCloud1.setPosition(0, 0);

 //spriteCloud2.setPosition(0, 150);

 //spriteCloud3.setPosition(0, 300);

 // Are the clouds currently on screen?

 //bool cloud1Active = false;

 //bool cloud2Active = false;

 //bool cloud3Active = false;

 // How fast is each cloud?

 //float cloud1Speed = 0.0f;

 //float cloud2Speed = 0.0f;

 //float cloud3Speed = 0.0f;

In the preceding code, the old, unused code is commented out and the new array-based code

is at the top. Obviously, you would usually delete the unneeded code. I just left it there to show

you. You can view the entire code for the enhanced edition, including the array declaration and

initialization, in the Chapter 5 folder in the file enhanced.cpp.

Chapter 5 177

Take a look at the game in action with extra trees, clouds, and a transparent background for the text:

Figure 5.4: Timber enhanced

To see the code for these enhancements, take a look in the Timber Enhanced Version folder of

the download bundle.

Summary
In this chapter, we added the finishing touches and graphics to the Timber!!! game. If, before this

book, you had never coded a single line of C++, then you can give yourself a big pat on the back.

In just five modest chapters, you have gone from zero knowledge to a working game.

However, we will not be congratulating ourselves for too long because, in the next chapter, we

will move straight on to some slightly more hardcore C++. While the next game, a simple Pong

game, is in some ways simpler than Timber!!! was, what we have learned about writing our own

classes will prepare us to build more complicated and full-featured games.

Frequently asked questions
Q) The array solution for the clouds was more efficient. But do we really need three separate

arrays, one for active, one for speed, and one for the sprite itself?

Collisions, Sound, and End Conditions: Making the Game Playable178

A) If we look at the properties/variables that various objects have, for example, sprite objects,

we can see that they are numerous. Sprites have a position, color, size, rotation, and much more.

But it would be just perfect if they had active, speed, and perhaps more as well. The problem is

that the coders at SFML can’t possibly predict all the ways that we will want to use their Sprite

class. Fortunately, we can make our own classes. We could make a class called Cloud that has a

Boolean for active and an int for speed. We could even give our Cloud class an SFML Sprite

object. We could then simplify our cloud code even further. We will look at designing our own

classes in the next chapter.

6
Object-Oriented Programming –
Starting the Pong Game

In this chapter, there’s a little bit of theory, but the theory will give us the knowledge that we

need to start using Object-Oriented Programming (OOP). OOP helps us organize our code into

human-recognizable structures and handle complexity. We will not waste any time in putting

that theory to good use as we will use it to code the next project, a Pong game. We will get to look

behind the scenes at how we can create new C++ types that we can use as objects. We will achieve

this by coding our first class. To get started, we will look at a simplified Pong game scenario so

that we can learn about some class basics, and then we will start again and code a Pong game for

real using the principles we have learned.

In this chapter, we will cover the following topics:

•	 Object-object programming: Discuss the staples of encapsulation, polymorphism, and

inheritance, and why we would want to use OOP at all

•	 The theory of a Pong bat: Learn about OOP and classes using a hypothetical Bat class

•	 Creating the Pong project

•	 Coding the Bat class: Start working on the Pong game including coding a real Bat class

to represent the player’s bat

•	 Using the Bat class and coding the main function

The following are our four projects for this book: https://github.com/PacktPublishing/

Beginning-C-Game-Programming-Third-Edition/tree/main/Pong

https://github.com/PacktPublishing/Beginning-C-Game-Programming-Third-Edition/tree/main/Pong
https://github.com/PacktPublishing/Beginning-C-Game-Programming-Third-Edition/tree/main/Pong

Object-Oriented Programming – Starting the Pong Game180

Object-oriented programming
Object-oriented programming is a programming paradigm that we could consider to be almost

the standard way to code. It is true there are non-OOP ways to code and there are even some

non-OOP game coding languages/libraries. However, since we are starting from scratch, there

is no reason to do things in any other way.

OOP will do the following:

•	 Make our code easier to manage, change, or update

•	 Make our code quicker and more reliable to write

•	 Make it possible to easily use other people’s code (like we have with SFML)

We have already seen the third benefit in action. Now, let’s discuss exactly what OOP is.

OOP is a way of programming that involves breaking our requirements down into chunks that

are more manageable than the whole. Each chunk is self-contained, yet it works with the other

parts of our program. Furthermore, it can also be used by other programs. These chunks are what

we have been referring to as objects.

When we plan and code an object, we do so with a class.

We implement an object of a class. This is called an instance of a class. Think about a house blue-

print. You can’t live in it, but you can build a house from it. You build an instance of the house.

Often, when we design classes for our games, we write them to represent real-world things. In

the next project, we will write classes for a bat that the player controls and a ball that the player

can bounce around the screen with the bat. However, OOP is more than this.

The three core principles of OOP are encapsulation, polymorphism, and inheritance. This might

sound complex but, taken a step at a time, this is reasonably straightforward.

A class can be thought of as the blueprint of an object.

OOP is a way of doing things, a methodology that defines best practices.

Chapter 6 181

Encapsulation
Encapsulation means keeping the internal workings of your code safe from interference from the

code that uses it. You can achieve this by allowing only the variables and functions you choose

to be accessed. This means your code can always be updated, extended, or improved without

affecting the programs that use it, provided the exposed parts are still accessed in the same way.

C++ achieved encapsulation with the use of the public and private keywords. We will see these

in action soon.

As an example, with proper encapsulation, it wouldn’t matter if the SFML team needed to update

the way their Sprite class works. If the function signatures remain the same, they don’t have to

worry about what goes on inside. The code that we wrote before the update will still work after

the update.

OOP doesn’t eliminate the need for careful planning before we write our code; instead, encapsu-

lation provides a way to structure code that can potentially make our planning more successful.

This is even more the case if we are working as a team.

Polymorphism
Polymorphism allows us to write code that is less dependent on the types we are trying to ma-

nipulate. This will make our code clearer and more efficient. Polymorphism means different forms.

If the objects that we code can be more than one type of thing, then we can take advantage of

this. Polymorphism might sound a little bit like black magic at this point. The classic example

of polymorphism is the relationship between different animals in the animal kingdom. What if

we are making a zoo game and we make a whole bunch of arrays, functions, and variables for

the elephants? Quite quickly, it becomes apparent that we now need to write arrays, functions,

and variables for lions, then tigers, etc. What if we could write one set of arrays, functions, and

variables that worked with all animals? With polymorphism, we can write for a generic animal

object and use it with all our zoo-based classes. We will use polymorphism in the final project,

and everything will become clearer.

Inheritance
Just like it sounds, inheritance means we can harness all the features and benefits of other people’s

classes, including encapsulation and polymorphism, while further refining their code specifically

to our situation. If we were writing a countryside simulator, we could probably make use of the

animal-based code from the zoo game. We will use inheritance for the first time at the same time

as we use polymorphism.

Object-Oriented Programming – Starting the Pong Game182

Why use OOP?
When written properly, OOP allows you to add new features without worrying about how they

interact with existing features. When you do have to change a class, its self-contained (encap-

sulated) nature means less or perhaps even zero consequences for other parts of the program.

You can use other people’s code (like the SFML classes) without knowing or perhaps even caring

about how it works inside.

OOP (and, by extension, SFML) allows you to write games that use complicated concepts such

as multiple cameras, multiplayer, OpenGL, directional sound, and more besides—all of this

without breaking a sweat.

You can create multiple similar yet different versions of a class without starting the class from

scratch by using inheritance.

You can still use the functions intended for the original type of object with your new object be-

cause of polymorphism.

All this makes sense really and means that we have loads more time to concentrate on the unique

aspects of our own programs. And as we know, C++ was designed from the start with all this

OOP in mind.

In this project, we will learn about and use basic classes and encapsulation. As this book pro-

gresses, we will get a bit more daring and use inheritance, polymorphism, and other OOP-related

C++ features too.

The ultimate key to success with OOP and making games (or any other type of app),

other than the determination to succeed, is planning and design. It is not so much

just “knowing” all the C++, SFML, and OOP topics that will help you to write great

code but, rather, applying all that knowledge to write code that is well structured/

designed. The code in this book is presented in an order and manner that’s appro-

priate for learning about the various C++ topics in a gaming context. The art and

science of structuring your code is called design patterns. As your code gets longer

and more complex, effective use of design patterns will become more important. The

good news is that we don’t need to invent these design patterns ourselves. We will

need to learn about them as our projects get more complex. As our projects become

more complex, our design patterns will evolve too.

Chapter 6 183

What exactly is a class?
A class is a bunch of code that can contain functions, variables, loops, and all the other C++ syn-

tax we have already learned about. Each new class will be declared in its own .h code file with

the same name as the class, while its functions will be defined in their own .cpp file. The syntax

we will apply to the definitions in the .cpp file will make it clear that they are part of the class

declared in the .h file.

Once we have written a class, we can use it to make as many objects from it as we want. Remem-

ber, the class is the blueprint, and we make objects based on the blueprint. The house isn’t the

blueprint, just like the object isn’t the class. It is an object made from the class.

Of course, with all this talk of OOP and classes, we haven’t actually seen any code. Let’s fix that now.

The theory of a Pong bat
What follows is a hypothetical discussion of how we might use OOP to get started with the

Pong project by coding a Bat class. Don’t add any code to the project just yet as what follows is

over-simplified to explain the theory. Later in this chapter, we will code it for real. When we get

to coding the class for real, it will be different, but the principles we will learn about here will

prepare us for success.

We will begin by exploring variables and functions (or methods) as part of a class.

Declaring the class, variables, and functions
A bat is a real-world thing that has properties, behavior, and a specific appearance. It performs

a role; it bounces a ball when it collides with the ball. A bat that bounces a ball is, therefore, an

excellent first candidate for a class.

When we use a function in a class, it is a specialized type of function often referred

to as a method. For simplicity, I will continue to refer to all functions as functions,

but you could call the functions of our classes methods if you wish.

You can think of an object as a variable and the class as a type.

Object-Oriented Programming – Starting the Pong Game184

Let’s take a look at a hypothetical Bat.h file:

class Bat

{

 private:

 // Length of the pong bat

 int m_Length = 100;

 // Height of the pong bat

 int m_Height = 10;

 // Location on x axis

 int m_XPosition;

 // Location on y axis

 int m_YPosition;

 public:

 void moveRight();

 void moveLeft();

};

At first glance, the code might appear a little complex, but when it has been explained, we will

see there are very few concepts we haven’t already covered.

The first thing to notice is that a new class is declared using the class keyword followed by the

name of the class and that the entire declaration is enclosed in curly braces followed by a closing

semicolon:

class Bat

{

 …

 …

};

Now, let’s look at the variable declarations and their names:

// Length of the pong bat

int m_Length = 100;

If you don’t know what Pong is, then take a look at this link: https://en.wikipedia.

org/wiki/Pong.

https://en.wikipedia.org/wiki/Pong
https://en.wikipedia.org/wiki/Pong

Chapter 6 185

// Height of the pong bat

int m_Height = 10;

// Location on x axis

int m_XPosition;

// Location on y axis

int m_YPosition;

All the names are prefixed with m_. This m_ prefix is not compulsory, but it is a good convention.

Although this naming convention is not enforced by the C++ language itself, it is widely adopted

in the C++ community for class data members. Variables that are declared as part of the class are

called member variables. Prefixing with an m_ makes it plain when we are dealing with a mem-

ber variable. When we write functions for our classes, we will start to see local (non-member)

variables and parameters as well. Then, the m_ convention will prove itself useful. By adhering

to this convention, you make it immediately apparent that these variables are part of the class,

distinguishing them from local variables or parameters. Different projects, companies, and sys-

tems use different conventions for variable naming but using some kind of prefix for member

variables is an industry best practice.

For example, imagine if you had non-member variables in the same scope without the m_ prefix,

like this:

int Length = 50; // Non-member variable

Now, without the m_ prefix, it becomes less clear whether Length is a class member or not. Con-

sistent use of the m_ prefix helps avoid such confusion, contributing to more maintainable and

self-explanatory code.

Also, notice that all the variables are in a section of the code headed with the private keyword.

Scan your eyes over the previous code and note that the body of the class code is separated into

two sections:

private:

 // Anything the instances

 // cannot directly interact with

public:

 // Variables and functions here can be

 // accessed by a user of the instance

Object-Oriented Programming – Starting the Pong Game186

The public and private keywords control the encapsulation of our class. Anything that is private

cannot be accessed directly by the user of an instance/object of the class. If you are designing a

class for others to use, you don’t want them to be able to alter anything at will. Note that member

variables do not have to be private, but good encapsulation is achieved by making them private

whenever possible.

This means that our four member variables (m_Length, m_Height, m_XPosition, and m_YPosition)

cannot be accessed directly by our game engine from the main function. They can only be ac-

cessed indirectly by the code of the class. This is encapsulation in action. For the m_Length and

m_Height variables, this is easy to accept as long as we don’t need to change the size of the bat.

The m_XPosition and m_YPosition member variables, however, need to be accessed, or how on

earth will we move the bat?

This problem is solved with the public section of the code, as follows:

void moveRight();

void moveLeft();

The class provides two functions that are public and will be usable with an object of the Bat type.

When we look at the definitions of these functions, we will see how exactly these functions ma-

nipulate the private variables.

In summary, we have a bunch of inaccessible (private) variables that cannot be used from the

main function. This is good because encapsulation makes our code less error-prone and more

maintainable. We then solve the problem of moving the bat by providing indirect access to the

m_XPosition and m_YPosition variables by providing two public functions.

The code in the main function can call the public functions using an instance of the class, but the

code inside the functions controls exactly how the variables are used.

We can visualize this class information as shown in this next image:

Figure 6.1: Information for the Bat class

Chapter 6 187

In the preceding image, the top section represents the class name Bat, and the middle section

contains the class’s member variables, each preceded by a dash (-) to indicate that they are pri-

vate. The bottom section contains the class’s member functions, each preceded by a plus sign (+)

to indicate that they are public. This convention helps quickly convey the access levels of class

members, providing a visual representation of encapsulation in the class.

This format of representing a class is part of the Unified Modeling Language or UML. UML is a

huge topic on its own and beyond the scope of this book but understanding that these conven-

tions exist for representing the design decisions in our C++ code is a good start. You can find out

more about UML at the official website: https://www.uml.org/.

Let’s take a look at the function definitions.

The class function definitions
The function definitions we will write in this book will all go in a separate file to the class and

function declarations. We will use files with the same name as the class and the .cpp file extension.

Remember, this is to keep our code organized as well as to separate the declarations from the

definitions, which can be useful if you want to see what a class does at a glance (the declarations

in the .h file) rather than studying the details (the definitions in the .cpp file). So, for example,

the following code would go into a file called Bat.cpp. Look at the following code, which has

just one new concept:

#include "Bat.h"

void Bat::moveRight()

{

 // Move the bat a pixel to the right

 m_XPosition ++;

}

void Bat::moveLeft()

{

 // Move the bat a pixel to the left

 m_XPosition --;

}

The first thing to note is that we must use an include directive to include the class and function

declarations from the Bat.h file. This makes the code in the .cpp file aware of the declarations

in the .h file.

https://www.uml.org/

Object-Oriented Programming – Starting the Pong Game188

The new concept we can see here is the use of the scope resolution operator, ::. Since the functions

belong to a class, we must write the signature part slightly different to a standard non-member

function by prefixing the function name with the class name, as well as ::, for example, void

Bat::moveLeft() and void Bat::moveRight.

In this example, Bat:: before each function name indicates that moveRight and moveLeft are

member functions of the Bat class. It explicitly ties these functions to the class declaration, en-

suring that the compiler associates them correctly during compilation.

This usage of the scope resolution operator also enhances code clarity and avoids naming conflicts,

especially when dealing with multiple classes or functions with similar names.

Note that we could have put the function definitions and declarations in one file, like this:

class Bat

{

 private:

 // Length of the pong bat

 int m_Length = 100;

 // Height of the pong bat

 int m_Height = 10;

 // Location on x axis

 int m_XPosition;

 // Location on y axis

 int m_YPosition;

 public:

 void Bat::moveRight()

 {

 // Move the bat a pixel to the right

 m_XPosition ++;

 }

 void Bat::moveLeft()

 {

 // Move the bat a pixel to the left

Actually, we have briefly seen the scope resolution operator before (that is, whenever

we declare an object of a class) and we have not previously used using namespace...

Chapter 6 189

 m_XPosition --;

 }

};

However, when our classes get longer (as they will with our first Zombie Arena game), it is more

organized to separate the function definitions into their own file. Furthermore, header files are

considered public and are often used for documentation purposes if other people will be using

the code that we write.

But how do we use a class once we have coded it?

Using an instance of a class
Despite all the code we have seen related to classes, we haven’t actually used a class. We already

know how to do this as we have used the SFML classes many times already.

First, we would create an instance of the Bat class, like this:

Bat bat;

The bat object has all the variables we declared in Bat.h. We just can’t access them directly. We

can, however, move our bat using its public functions, like this:

bat.moveLeft();

Or we can move it like this:

bat.moveRight();

Remember that bat is a Bat and, as such, it has all the member variables and all of the functions

available to it.

Later, we may decide to make our Pong game multiplayer. In the main function, we could change

the code so that the game has two bats, perhaps like this:

Bat bat;

Bat bat2;

It is vitally important to realize that each of these instances of Bat is a separate object with its

very own set of variables, just as our player sprite, tree, bee, and axe sprites were all individual

instances of the SFML Sprite class. There are more ways to initialize an instance of a class, and

we will see an example of this when we code the Bat class for real next.

Object-Oriented Programming – Starting the Pong Game190

Creating the Pong project
Since setting up a project is a fiddly process, we will go through it step by step, like we did for the

Timber!!! project. I won’t show you the same screenshots that I did for the Timber!!! project, but

the process is the same, so flip back to Chapter 1, Welcome to Beginning C++ Game Programming

Third Edition!, if you want a reminder of the locations of the various project properties:

1.	 Start Visual Studio and click on the Create New Project button. Or, if you still have the

Timber!!! project open, you can select File | New project.

2.	 In the window that appears, choose Console app and click the Next button. You will then

see the Configure your new project window.

3.	 In the Configure your new project window, type Pong in the Project name field. Note

that this causes Visual Studio to automatically configure the Solution name field so that

it has the same name.

4.	 In the Location field, browse to the VS Projects folder that we created in Chapter 1. This

will be the location where all our project files will be kept.

5.	 Check the option Place solution and project in the same directory.

6.	 When you have completed these steps, click Create. The project is generated by Visual

Studio, including some C++ code in the main.cpp file.

7.	 We will now configure the project to use the SFML files that we put in the SFML folder.

From the main menu, select Project | Pong properties…. At this stage, you should have

the Pong Property Pages window open.

8.	 In the Pong Property Pages window, select All Configurations from the Configuration

dropdown and make sure the Platform dropdown is set to Win32.

9.	 Now, select C/C++ and then General from the left-hand menu.

10.	 After this, locate the Additional Include Directories edit box and type the drive letter

where your SFML folder is located, followed by \SFML\include. The full path to type, if

you located your SFML folder on your D: drive, is D:\SFML\include. Change your path if

you installed SFML on a different drive.

11.	 Click Apply to save your configurations so far.

12.	 Now, still in the same window, perform these steps. From the left-hand menu, select

Linker and then General.

Chapter 6 191

13.	 Now, find the Additional Library Directories edit box and type the drive letter where

your SFML folder is, followed by \SFML\lib. So, the full path to type if you located your

SFML folder on your D: drive is D:\SFML\lib. Change your path if your SFML files are on

a different drive.

14.	 Click Apply to save your configurations so far.

15.	 Next, still in the same window, perform these steps. Switch the Configuration dropdown

to Debug as we will be running and testing Pong in debug mode.

16.	 Select Linker and then Input.

17.	 Find the Additional Dependencies edit box and click on it on the far left-hand side. Now,

copy and paste/type in the following: sfml-graphics-d.lib;sfml-window-d.lib;sfml-

system-d.lib;sfml-network-d.lib;sfml-audio-d.lib;. Be extra careful to place the

cursor exactly at the start of the edit box’s current content so that you don’t overwrite

any of the text that is already there.

18.	 Click OK.

19.	 Click Apply and then OK.

20.	 On the main Visual Studio window, next to the Debug dropdown, make sure that x86 is

selected, not x64.

21.	 Now, we need to copy the SFML .dll files into the main project directory. My main project

directory is D:\VS Projects\Pong. It was created by Visual Studio in the previous steps.

If you put your VS Projects folder somewhere else, then perform this step there instead.

The files we need to copy into the project folder are located in our SFML\bin folder. Open

a window for each of the two locations and highlight all the files in the SFML\bin folder.

22.	 Now, copy and paste the highlighted files into the project folder, that is, D:\VS Projects\

Pong.

We now have the project properties configured and ready to go.

We will be displaying some text for a Heads Up Display (HUD) in this game that will show the

player’s score and remaining lives. For this, we need a font.

Download this free-for-personal-use font from http://www.dafont.com/theme.

php?cat=302 and unzip the download. Or feel free to use a font of your choice. You

will just need to make some minor changes to the code when we load the font.

http://www.dafont.com/theme.php?cat=302
http://www.dafont.com/theme.php?cat=302

Object-Oriented Programming – Starting the Pong Game192

Create a new folder called fonts in the VS Projects\Pong folder and add the DS-DIGIT.ttf file

to the VS Projects\Pong\fonts folder.

We are now ready to code our first C++ class.

Coding the Bat class
The simple Pong bat example was a good way of introducing the basics of classes. Classes can be

simple and short, like the preceding Bat class, but they can also be longer and more complicated

and contain other objects made from other classes. Furthermore, there are additional new con-

cepts regarding classes that we will learn about. We will also see and code a constructor function

that sets up our instances ready for use.

When it comes to making games, there are a few vital things missing from the hypothetical Bat

class. It might be fine for all these private member variables and public functions, but how will

we draw anything? Our Pong bat needs a sprite, and in some games, our classes will also need a

texture. Furthermore, we need a way to control the rate of animation of all our game objects, just

like we did with the bee and the clouds in the previous project. We can include other objects in

our class in the same way that we included them in the main.cpp file. Let’s code our Bat class for

real so that we can see how we can solve all these issues.

Coding Bat.h
To get started, we will code the header file. Right-click on Header Files in the Solution Explorer

window and select ADD | New Item. Next, choose the Header File (.h) option and name the new

file Bat.h. Click the Add button. We are now ready to code the file.

Add the following code to Bat.h:

#pragma once

#include <SFML/Graphics.hpp>

using namespace sf;

class Bat

{

private:

 Vector2f m_Position;

 // A RectangleShape object

 RectangleShape m_Shape;

 float m_Speed = 1000.0f;

 bool m_MovingRight = false;

Chapter 6 193

 bool m_MovingLeft = false;

public:

 Bat(float startX, float startY);

 FloatRect getPosition();

 RectangleShape getShape();

 void moveLeft();

 void moveRight();

 void stopLeft();

 void stopRight();

 void update(Time dt);

};

First, note the #pragma once declaration at the top of the file. This prevents the file from being

processed by the compiler more than once. As our games get more complicated with perhaps

dozens of classes, this will speed up compilation time.

Note the names of the member variables and the parameters and return types of the functions.

We have a Vector2f called m_Position, which will hold the horizontal and vertical position of

the player’s bat. We also have an SFML RectangleShape, which will visually represent the bat

that appears on the screen. The RectangleShape and Sprite classes are both part of the SFML

graphics module and are used for rendering objects on the screen. RectangleShape is primarily

used for rendering simple rectangles or squares, whereas Sprite is used for rendering textured

images. As a Pong bat is a simple white rectangle, I have opted for the RectangleShape option.

There are two Boolean members that will track which direction, if any, the bat is currently moving

in, and we have a float called m_Speed that tells us the number of pixels per second at which the

bat can move when the player decides to move it left or right.

The next part of the code needs some explanation since we have a function called Bat; this is the

exact same name as the class. This is called a constructor.

Constructor functions
As a refresher, when a class is coded, a special function is created by the compiler. We don’t see

this function in our code, but it is there. It is called a constructor. The constructor is provided

behind the scenes by the compiler. It is the function that would have been called if we used our

hypothetical Bat class example.

Object-Oriented Programming – Starting the Pong Game194

When we need to write some code to prepare an object for use, a good place to do this is often

in the constructor. When we want the constructor to do anything other than simply create an

instance, we must replace the default (unseen) constructor provided by the compiler. This is

what we will do with the Bat constructor function.

Notice that the Bat constructor takes two float parameters. Here is the declaration again for

convenience:

Bat(float startX, float startY);

This is perfect for initializing the position on the screen when we first create a Bat object. Also

note that constructors have no return type, not even void.

We will soon use the constructor function, Bat, and an initializer list to put this game object into

its starting position. Remember that this function is called at the time that an object of the Bat

type is declared.

Continuing with the Bat.h explanation
Next is the getPosition function, which returns a FloatRect, representing the four points that

define a rectangle. Then, we have getShape, which returns a RectangleShape. This will be used

so that we can return to the main game loop, m_Shape, so that it can be drawn.

We also have the moveLeft, moveRight, stopLeft, and stopRight functions, which are for con-

trolling if, when, and in which direction the bat will be in motion.

Finally, we have the update function, which takes a Time parameter. This function will be used to

calculate how to move the bat in each frame. As a bat and a ball will move differently from each

other, it makes sense to encapsulate the movement code inside the class. We will call the update

function once at each frame of the game from the main function.

Now, we can code Bat.cpp, which will implement all the definitions and use the member variables.

You can probably guess that the Ball class will also have an update function.

Chapter 6 195

Coding Bat.cpp
Let’s create the file, and then we can start discussing the code. Right-click the Source Files folder

in the Solution Explorer window. Now, select C++ File (.cpp) and enter Bat.cpp in the Name:

field. Click the Add button and our new file will be created for us.

We will divide the code for this file into two parts to make discussing it simpler.

First, code the Bat constructor function, as follows:

#include "Bat.h"

// This is the constructor and it is called

// when we create an object

Bat::Bat(float startX, float startY) : m_Position(startX, startY)

{

 m_Shape.setSize(sf::Vector2f(50, 5));

 m_Shape.setPosition(m_Position);

}

In the preceding code, we can see that we include the bat.h file. This makes all the functions and

variables that were declared previously in bat.h available to us.

We implement the constructor because we need to do some work to get the instance set up, and

the default unseen empty constructor provided by the compiler is not sufficient. Remember that

the constructor is the code that runs when we initialize an instance of Bat.

Notice that we use the Bat::Bat syntax as the function name to make it clear we are using the

Bat function from the Bat class.

This constructor receives two float values, startX and startY. Next, we see something we haven’t

seen before. Immediately after the function parameters, we see this code:

: m_Position(startX, startY)

This is called an initializer list. Using member initializer lists is often considered more efficient

than initializing variables in the body of the constructor and can be beneficial for certain types

of variables. What is happening is we are using a shortened and clearer syntax to initialize the

Vector2f mPosition with the values passed into the function as parameters.

Object-Oriented Programming – Starting the Pong Game196

The Vector2f named m_Position now holds the values that were passed in, and because m_

Position is a member variable, these values are accessible throughout the class. Note, however,

that m_Position was declared as private and will not be accessible in our main function file—not

directly, anyway. We will see how we can resolve this issue soon.

Finally, in the body of the constructor, we initialize the RectangleShape called m_Shape by setting

its size and position. This is different from how we coded the hypothetical Bat class in the The

theory of a Pong bat section. The SFML Sprite class has convenient variables for size and position

that we can access using the setSize and setPosition functions, so we don’t need the hypo-

thetical m_Length and m_Height anymore.

Furthermore, note that we will need to vary how we initialize the Bat class (compared to the

hypothetical Bat class) to suit our custom constructor, and we will see this code soon.

We need to implement the remaining five functions of the Bat class. Add the following code to

Bat.cpp after the constructor we just discussed:

FloatRect Bat::getPosition()

{

 return m_Shape.getGlobalBounds();

}

RectangleShape Bat::getShape()

{

 return m_Shape;

}

void Bat::moveLeft()

{

 m_MovingLeft = true;

}

void Bat::moveRight()

{

 m_MovingRight = true;

}

void Bat::stopLeft()

{

 m_MovingLeft = false;

}

void Bat::stopRight()

{

Chapter 6 197

 m_MovingRight = false;

}

void Bat::update(Time dt)

{

 if (m_MovingLeft) {

 m_Position.x -= m_Speed * dt.asSeconds();

 }

 if (m_MovingRight) {

 m_Position.x += m_Speed * dt.asSeconds();

 }

 m_Shape.setPosition(m_Position);

}

Let’s go through the code we have just added.

First, we have the getPosition function. All this does is return a FloatRect to the code that called

it. The m_Shape.getGlobalBounds line of code returns a FloatRect that is initialized with the

coordinates of the four corners of the RectangleShape, that is, m_Shape. We will call this function

from the main function when we are determining whether the ball has hit the bat.

Next, we have the getShape function. All this function does is pass a copy of m_Shape to the calling

code. This is necessary so that we can draw the bat in the main function. When we code a public

function with the sole purpose of passing back private data from a class, we call it a getter function.

Now, we can look at the moveLeft, moveRight, stopLeft, and stopRight functions. What they

do is set the m_MovingLeft and m_MovingRight Boolean variables appropriately so that they keep

track of the player’s current movement intentions. Note, however, that they don’t do anything

to the RectangleShape instance or the FloatRect instance, which determine the position. This

is just what we need.

The last function in the Bat class is update. We will call this function once per frame of the game.

The update function will grow in complexity as our game projects get more complicated. For now,

all we need to do is tweak m_Position, depending on whether the player is moving left or right.

Note that the formula that’s used to do this tweak is the same one that we used for updating the

bee and the clouds in the Timber!!! project. The code multiplies the speed by the delta time and

then adds or subtracts it from the position. This causes the bat to move relative to how long the

frame took to update. Next, the code sets the position of m_Shape with whatever the latest values

held in m_Position happen to be.

Object-Oriented Programming – Starting the Pong Game198

Having an update function in our Bat class rather than the main function is encapsulation. Rather

than updating the positions of all the game objects in the main function as we did in the Timber!!!

project, each object will be responsible for updating itself.

Using the Bat class and coding the main function
Switch to the main.cpp file that was automatically generated when we created the project. If

you had a file called Pong.cpp automatically created, you can leave it as it is or right-click it in

the Solution Explorer to rename it main.cpp. The only thing that matters is that it has the main

function in it so that is where execution will begin. Delete all its auto-generated code and add

the code that follows.

Code the Pong.cpp file as follows:

#include "Bat.h"

#include <sstream>

#include <cstdlib>

#include <SFML/Graphics.hpp>

int main()

{

 // Create a video mode object

 VideoMode vm(1920, 1080);

 // Create and open a window for the game

 RenderWindow window(vm, "Pong", Style::Fullscreen);

 int score = 0;

 int lives = 3;

 // Create a bat at the bottom center of the screen

 Bat bat(1920 / 2, 1080 - 20);

 // We will add a ball in the next chapter

 // Create a Text object called HUD

 Text hud;

 // A cool retro-style font

 Font font;

 font.loadFromFile("fonts/DS-DIGIT.ttf");

 // Set the font to our retro-style

 hud.setFont(font);

 // Make it nice and big

 hud.setCharacterSize(75);

Chapter 6 199

 // Choose a color

 hud.setFillColor(Color::White);

 hud.setPosition(20, 20);

 // Here is our clock for timing everything

 Clock clock;

 while (window.isOpen())

 {

 /*

 Handle the player input

 */

 /*

 Update the bat, the ball and the HUD

 */

 /*

 Draw the bat, the ball and the HUD

 */

 }

 return 0;

}

In the preceding code, the structure of the main game while loop is similar to the one we used in

the Timber!!! project. The first exception, however, is when we create an instance of the Bat class:

// Create a bat

Bat bat(1920 / 2, 1080 - 20);

Object-Oriented Programming – Starting the Pong Game200

The preceding code calls the constructor function to create a new instance of the Bat class. The

code passes in the required arguments and allows the Bat class to initialize its position in the

center of the screen near the bottom. This is the perfect position for our bat to start.

Also note that I have used comments to indicate where the rest of the code will eventually be

placed. It is all within the game loop, just like it was in the Timber!!! project. Here is where the

rest of the code will go again, just to remind you:

 /*

 Handle the player input

 …

 /*

 Update the bat, the ball and the HUD

 …

 /*

 Draw the bat, the ball and the HUD

 …

Next, add the code to the Handle the player input section, as follows:

Event event;

while (window.pollEvent(event))

{

 if (event.type == Event::Closed)

 // Quit the game when the window is closed

 window.close();

}

// Handle the player quitting

if (Keyboard::isKeyPressed(Keyboard::Escape))

{

 window.close();

}

// Handle the pressing and releasing of the arrow keys

if (Keyboard::isKeyPressed(Keyboard::Left))

{

 bat.moveLeft();

}

Chapter 6 201

else

{

 bat.stopLeft();

}

if (Keyboard::isKeyPressed(Keyboard::Right))

{

 bat.moveRight();

}

else

{

 bat.stopRight();

}

The preceding code handles the player quitting the game by pressing the Escape key, exactly like it

did in the Timber!!! project. Next, there are two if–else structures that handle the player moving

the bat. Let’s analyze the first of these two structures:

if (Keyboard::isKeyPressed(Keyboard::Left))

{

 bat.moveLeft();

}

else

{

 bat.stopLeft();

}

The preceding code will detect whether the player is holding down the left arrow cursor key on the

keyboard. If they are, then the moveLeft function is called on the Bat instance. When this function

is called, the true value is set to the m_MovingLeft private Boolean variable. If, however, the left

arrow key is not being held down, then the stopLeft function is called and the m_MovingLeft is

set to false.

The exact same process is then repeated in the next if-else block of code to handle the player

pressing (or not pressing) the right arrow key.

Next, add the following code to the Update the bat, the ball and the HUD section, as follows:

// Update the delta time

Time dt = clock.restart();

bat.update(dt);

Object-Oriented Programming – Starting the Pong Game202

// Update the HUD text

std::stringstream ss;

ss << "Score:" << score << " Lives:" << lives;

hud.setString(ss.str());

In the preceding code, we use the exact same timing technique that we used for the Timber!!!

project, only this time, we call update on the Bat instance and pass in the delta time. Remember,

when the Bat class receives the delta time, it will use the value to move the bat based on the pre-

viously received movement instructions from the player and the desired speed of the bat.

Next, add the following code to the Draw the bat, the ball and the HUD section, as follows:

window.clear();

window.draw(hud);

window.draw(bat.getShape());

window.display();

In the preceding code, we clear the screen, draw the text for the HUD, and use the bat.getShape

function to grab the RectangleShape instance from the Bat instance and draw it to the screen.

Finally, we call window.display, just like we did in the previous project, to draw the bat in its

current position.

At this stage, you can run the game and you will see the HUD and a bat. The bat can be moved

smoothly left and right using the arrow/cursor keys:

Figure 6.2: Our Pong game, complete with HUD and bat

Congratulations! That is the first class all coded and deployed.

Chapter 6 203

Summary
In this chapter, we discovered the basics of OOP, such as how to code and use a class, including

making use of encapsulation to control how code outside of our classes can access the member

variables but only to the extent and in the manner that we want it to. This is just like SFML class-

es, which allow us to create and use Sprite and Text instances, but only in the way they were

designed to be used.

Don’t concern yourself too much if some of the details around OOP and classes are not entirely

clear. The reason I say this is because we will spend the rest of this book coding classes, and the

more we use them, the clearer they will become.

Furthermore, we have a working bat and a HUD for our Pong game.

In the next chapter, we will code the Ball class and get it bouncing around the screen. We will

then be able to add collision detection and finish the game.

Frequently asked questions
Q) I have learned other languages and OOP seems much simpler in C++. Is this a correct assess-

ment?

A) This was an introduction to OOP and its basic fundamentals. There is more to it than this. We

will learn about more OOP concepts and details throughout this book.

Q) Why do we use the :: operator in function definitions outside the class declaration?

A) The :: operator is the scope resolution operator in C++, used to define functions outside

the class declaration. When functions are declared inside a class, they are implicitly associated

with that class. However, when providing the actual implementation outside the class, we use

ClassName:: before the function name to specify the class to which the function belongs. This en-

sures correct association and avoids naming conflicts, enhancing code clarity and maintainability.

Q) Should member variables be initialized in the constructor’s member initializer list or within

the constructor body?

A) It’s recommended to initialize member variables in the constructor’s member initializer list

whenever possible. This approach is more efficient, especially for complex classes, and it ensures

that member variables are initialized before the constructor body is executed. However, simple

initialization within the constructor body is perfectly OK when it suits your use, but we should

always prefer the member initializer list.

7
AABB Collision Detection and
Physics – Finishing the Pong
Game

In this chapter, we will code our second class. We will see that although the ball is obviously quite

different from the bat, we will use the exact same techniques to encapsulate the appearance and

functionality of a ball inside a Ball class, just like we did with the bat and the Bat class. We will

then add the finishing touches to the Pong game by coding some collision detection and score-

keeping. This might sound complicated but as we are coming to expect, SFML will make things

much easier than they otherwise would be.

We will cover the following topics in this chapter:

•	 Coding the Ball class

•	 Using the Ball class

•	 Collision detection and scoring

•	 Running the game

•	 Learning about the C++ spaceship operator

We will start by coding the class that represents the ball.

AABB Collision Detection and Physics – Finishing the Pong Game206

Coding the Ball class
To get started, we will code the header file. Right-click on Header Files in the Solution Explorer

window and select ADD | New Item. Next, choose the Header File (.h) option and name the new

file Ball.h. Then, click the Add button. Now, we are ready to code the file.

Add the following code to Ball.h:

#pragma once

#include <SFML/Graphics.hpp>

using namespace sf;

class Ball

{

private:

 Vector2f m_Position;

 RectangleShape m_Shape;

 float m_Speed = 300.0f;

 float m_DirectionX = .2f;

 float m_DirectionY = .2f;

public:

 Ball(float startX, float startY);

 FloatRect getPosition();

 RectangleShape getShape();

 float getXVelocity();

 void reboundSides();

 void reboundBatOrTop();

 void reboundBottom();

 void update(Time dt);

};

The first thing you will notice is the similarity in the member variables compared to the Bat class.

There is a member variable for the position, appearance, and speed, just like there was for the

player’s bat, and they are the same types (Vector2f, RectangleShape, and float, respectively).

They even have the same names (m_Position, m_Shape, and m_Speed, respectively). The difference

between the member variables of this class is that the direction is handled with two float variables

that will track horizontal and vertical movement. These are m_DirectionX and m_DirectionY.

Chapter 7 207

Note that we will need to code eight functions to bring the ball to life. There is a constructor that

has the same name as the class, which we will use to initialize a Ball instance. There are three

functions with the same name and usage as the Bat class. They are getPosition, getShape, and

update. The getPosition and getShape functions will share the location and the appearance of

the ball with the main function, and the update function will be called from the main function to

allow the Ball class to update its position once per frame.

The remaining functions control the direction the ball will travel in. The reboundSides func-

tion will be called from the main when a collision is detected with either side of the screen, the

reboundBatOrTop function will be called in response to the ball hitting the player’s bat or the

top of the screen, and the reboundBottom function will be called when the ball hits the bottom

of the screen.

Of course, these are just the declarations, so let’s write the C++ that does the work in the Ball.

cpp file.

Let’s create the file, and then we can start discussing the code. Right-click the Source Files folder

in the Solution Explorer window. Now, select C++ File (.cpp) and enter Ball.cpp in the Name:

field. Click the Add button and our new file will be created for us.

Add the following code to Ball.cpp:

#include "Ball.h"

// This the constructor function

Ball::Ball(float startX, float startY) : m_Position(startX,startY)

{

 m_Shape.setSize(sf::Vector2f(10, 10));

 m_Shape.setPosition(m_Position);

}

In the preceding code, we have added the required include directive for the Ball class header

file. The constructor function with the same name as the class receives two float parameters,

which are used to initialize the m_Position member’s Vector2f instance using an initializer

list. The RectangleShape instance is then sized with the setSize function and positioned with

setPosition. The size that’s being used is 10 pixels wide and 10 high; this is arbitrary but works

well. The position that’s being used is, of course, taken from the m_Position Vector2f instance.

Add the following code underneath the constructor in the Ball.cpp function:

FloatRect Ball::getPosition()

AABB Collision Detection and Physics – Finishing the Pong Game208

{

 return m_Shape.getGlobalBounds();

}

RectangleShape Ball::getShape()

{

 return m_Shape;

}

float Ball::getXVelocity()

{

 return m_DirectionX;

}

In the preceding code, we are coding the three getter functions of the Ball class. They each return

something to the main function. The first, getPosition, uses the getGlobalBounds function on

m_Shape to return a FloatRect instance. This will be used for collision detection.

The getShape function returns m_Shape so that it can be drawn in each frame of the game loop. The

getXVelocity function tells the main function which direction the ball is traveling in, and we will

see very soon exactly how this is useful to us. Since we don’t ever need to get the vertical velocity,

there is no corresponding getYVelocity function, but it would be simple to add one if we did.

Add the following functions underneath the previous code we just added:

void Ball::reboundSides()

{

 m_DirectionX = -m_DirectionX;

}

void Ball::reboundBatOrTop()

{

 m_DirectionY = -m_DirectionY;

}

void Ball::reboundBottom()

{

 m_Position.y = 0;

 m_Position.x = 500;

 m_DirectionY = -m_DirectionY;

}

Chapter 7 209

In the preceding code, the three functions whose names begin with rebound. handle what hap-

pens when the ball collides with various places. In the reboundSides function, m_DirectionX

has its value inverted, which will have the effect of making a positive value negative and a neg-

ative value positive, thereby reversing (horizontally) the direction in which the ball is traveling.

reboundBatOrTop does the same but with m_DirectionY, which has the effect of reversing the

direction in which the ball is traveling (vertically). The reboundBottom function repositions the

ball at the top center of the screen and sends it downward. This is just what we want after the

player has missed a ball and it has hit the bottom of the screen.

Finally, for the Ball class, add the update function as follows:

void Ball::update(Time dt)

{

 // Update the ball's position

 m_Position.y += m_DirectionY * m_Speed * dt.asSeconds();

 m_Position.x += m_DirectionX * m_Speed * dt.asSeconds();

 // Move the ball

 m_Shape.setPosition(m_Position);

}

In the preceding code, m_Position.y and m_Position.x are updated using the appropriate di-

rection, velocity, speed, and the amount of time the current frame took to complete. The newly

updated m_Position values are then used to change the position that the m_Shape RectangleShape

instance is positioned at. This is the same math that we used for moving the clouds and the bee

in the first project. The difference is that this logic is contained within the class. If we ever need

to change how the ball moves, it will only affect the code in the Ball class.

The Ball class is done, so let’s put it into action.

Using the Ball class
To put the ball into action, add the following code to make the Ball class available in the main

function:

#include "Ball.h"

Add the following highlighted line of code to declare and initialize an instance of the Ball class

using the constructor function that we have just coded:

// Create a bat

Bat bat(1920 / 2, 1080 - 20);

AABB Collision Detection and Physics – Finishing the Pong Game210

// Create a ball

Ball ball(1920 / 2, 0);

// Create a Text object called HUD

Text hud;

Add the following code, positioned exactly as highlighted:

/*

Update the bat, the ball and the HUD

**

**

**

*/

// Update the delta time

Time dt = clock.restart();

bat.update(dt);

ball.update(dt);

// Update the HUD text

std::stringstream ss;

ss << "Score:" << score << " Lives:" << lives;

hud.setString(ss.str());

In the preceding code, we simply call update on the ball instance. The ball will be repositioned

accordingly.

Add the following highlighted code to draw the ball on each frame of the game loop:

/*

Draw the bat, the ball and the HUD

*/

window.clear();

window.draw(hud);

window.draw(bat.getShape());

window.draw(ball.getShape());

window.display();

Chapter 7 211

At this stage, you could run the game and the ball would spawn at the top of the screen and begin

its descent toward the bottom of the screen. It would, however, disappear off the bottom of the

screen because we are not detecting any collisions yet. Let’s fix that now.

Collision detection and scoring
Unlike in the Timber!!! game, when we simply checked whether a branch in the lowest position

was on the same side as the player’s character, in this game, we will need to mathematically check

for the intersection of the ball with the bat or the ball with any of the four sides of the screen.

Let’s look at some hypothetical code that would achieve this so that we understand what we are

doing. Then, we will turn to SFML to solve the problem for us.

The code for testing the intersection of two rectangles would look something like this. Don’t use

the following code. It is for demonstration purposes only:

if(objectA.getPosition().right > objectB.getPosition().left

 && objectA.getPosition().left < objectB.getPosition().right)

{

 // objectA is intersecting objectB on x axis

 // But they could be at different heights

 if(objectA.getPosition().top < objectB.getPosition().bottom

 && objectA.getPosition().bottom > objectB.getPosition().top)

 {

 // objectA is intersecting objectB

 // on y axis as well-

 // Collision detected

 }

}

The first part of the code tests conditions on the horizontal, or x, axis. The first if statement is

checking whether objectA and objectB intersect along the horizontal (x) axis. It’s comparing the

right side of objectA (objectA.getPosition().right) with the left side of objectB (objectB.

getPosition().left). Additionally, it checks whether the left side of objectA is to the left or the

right side of objectB. If both conditions are true, it means there is an intersection on the x axis.

AABB Collision Detection and Physics – Finishing the Pong Game212

The second part of the code, embedded in the true branch of the first part, tests conditions on the

vertical or y axis. If the first condition is met (i.e., there’s an intersection on the x-axis), the code

proceeds to the inner if statement. Here, it checks whether objectA and objectB are also inter-

secting along the vertical (y) axis. It compares the top side of objectA (objectA.getPosition().

top) with the bottom side of objectB (objectB.getPosition().bottom). Furthermore, it checks

whether the bottom side of objectA is below the top side of objectB. If both conditions are true,

it means there is an intersection on the y-axis.

Finally, if both the x-axis and y-axis conditions are true, the code inside the innermost block is

executed. This block indicates that a collision has been detected between objectA and objectB.

It’s a common technique used in game development to check whether two objects, like game

characters or items, are overlapping or colliding in both horizontal and vertical directions.

The technique is called axis-aligned bounding box or AABB collision detection. This technique

is widely used in 2D graphics and game development due to its computational efficiency (i.e.,

it’s fast). It doesn’t provide precise collision information for irregularly shaped objects or circles,

but even for these types of objects, AABB will often be used as a fast initial check before more

mathematically intensive checks are made.

The good news is we don’t need to write the preceding code; however, we will be using the SFML

intersects function, which works on FloatRect objects. Think of or look back to the Bat and Ball

classes; they both had a getPosition function, which returned a FloatRect object representing

the object’s current location. We will see how we can use getPosition, along with intersects,

to do all our collision detection.

Add the following highlighted code at the end of the update section of the main function:

/*

Update the bat, the ball and the HUD

*/

// Update the delta time

Time dt = clock.restart();

bat.update(dt);

ball.update(dt);

// Update the HUD text

std::stringstream ss;

Chapter 7 213

ss << "Score:" << score << " Lives:" << lives;

hud.setString(ss.str());

// Handle ball hitting the bottom

if (ball.getPosition().top > window.getSize().y)

{

 // reverse the ball direction

 ball.reboundBottom();

 // Remove a life

 lives--;

 // Check for zero lives

 if (lives < 1) {

 // reset the score

 score = 0;

 // reset the lives

 lives = 3;

 }

}

In the preceding code, the first if condition checks whether the ball has hit the bottom of the

screen:

if (ball.getPosition().top > window.getSize().y)

If the top of the ball is at a greater position than the height of the window, then the ball has dis-

appeared off the bottom of the player’s view. In response, the ball.reboundBottom function is

called. Remember that, in this function, the ball is repositioned at the top of the screen. At this

point, the player has lost a life, so the lives variable is decremented.

The second if condition checks whether the player has run out of lives (lives < 1). If this is the

case, the score is reset to 0, the number of lives is reset to 3, and the game is restarted. In the next

project, we will learn how to keep and display the player’s highest score.

Add the following code underneath the previous code:

// Handle ball hitting top

if (ball.getPosition().top < 0)

{

 ball.reboundBatOrTop();

 // Add a point to the players score

 score++;

}

AABB Collision Detection and Physics – Finishing the Pong Game214

In the preceding code, we are detecting that the top of the ball hits the top of the screen. When

this occurs, the player is awarded a point and the ball.reboundBatOrTop function is called, which

reverses the vertical direction of travel and sends the ball back toward the bottom of the screen.

Add the following code underneath the previous code:

// Handle ball hitting sides

if (ball.getPosition().left < 0 ||

 ball.getPosition().left + ball.getPosition().width> window.
getSize().x)

{

 ball.reboundSides();

}

In the preceding code, the if condition detects a collision with the left-hand side (LHS) of the

ball and the LHS of the screen or the right-hand side (RHS) of the ball (left + 10) with the RHS of

the screen. In either event, the ball.reboundSides function is called and the horizontal direction

of travel is reversed.

Add the following code:

// Has the ball hit the bat?

if (ball.getPosition().intersects(bat.getPosition()))

{

 // Hit detected so reverse the ball and score a point

 ball.reboundBatOrTop();

}

In the preceding code, the intersects function is used to determine whether the ball has hit the

bat. When this occurs, we use the same function that we used for a collision with the top of the

screen to reverse the vertical direction of travel of the ball.

Running the game
You can now run the game and bounce the ball around the screen. The score will increase when

you hit the ball with the bat and the lives will decrease when you miss it. When lives reaches 0,

the score will reset, and the lives variable will go back up to 3, as follows:

Chapter 7 215

Figure 7.1: Running the game

Learning about the C++ spaceship operator
As this is a short chapter, I thought it would be a good place to learn some more C++. We don’t

need this theory in the current project. Yes, the spaceship operator is a real thing. It is another

neat C++ operator.

The spaceship operator, represented by <=>, is a relatively new addition to the C++ language,

introduced in C++20. It is used for three-way comparisons between two objects, which means it

helps determine whether one object is less than, equal to, or greater than another. The spaceship

operator returns one of three values: <, ==, or >, indicating the relationship between the two

objects. Here’s how it works.

If the LHS of the spaceship operator is less than the RHS, it returns a negative value. This indicates

that the LHS is “less than” the RHS.

If the LHS is equal to the RHS, it returns 0. This indicates that the two objects are equal.

If the LHS is greater than the RHS, it returns a positive value. This indicates that the LHS is “greater

than” the RHS. An example will help.

int a = 5;

int b = 10;

// Next we use the spaceship operator

 int result = a <=> b;

 if (result < 0)

AABB Collision Detection and Physics – Finishing the Pong Game216

{

 // a is less than b

 }

else if (result == 0)

{

// a is equal to b

 }

else if (result > 0)

{

 // a is greater than b

 }

In the preceding code, we declare two integers, a and b, and then we use the spaceship operator,

<=>, to compare them. The result of the comparison is stored in the int variable result. Remem-

ber that the returned value will be negative, zero, or positive, indicating a is less than, equal to,

or more than b, respectively.

We then check the value of the result to determine the relationship between a and b and respond

differently depending on the result.

In fact, this simplified code example hides some additional learning information. The result of

using the spaceship operator actually returns a new C++ type called strong_ordering. Fortu-

nately, strong_ordering is convertible to int. The strong_ordering type represents the result of

a three-way comparison.

Summary
Congratulations: that’s the second game completed! We could have added more features to that

game, such as co-op play, high scores, and sound effects, but I just wanted to use the simplest

possible example to introduce classes and AABB collision detection. Now that we have these

topics in our game developer’s arsenal, we can move on to a much more exciting project and even

more game development topics.

In the next chapter, we will plan the Zombie Arena game, learn about the SFML View class, which

acts as a virtual camera in our game world, and code some more classes.

Chapter 7 217

Frequently asked questions
Q) Isn’t this game a little quiet?

A) I didn’t add sound effects to this game because I wanted to keep the code as short as possible

while using our first classes and learning to use the time to smoothly animate all the game objects.

If you want to add sound effects, then all you need to do is add the .wav files to the project, use

SFML to load the sounds, and play a sound effect in each of the collision events. We will have

sound in the next project.

Q) The game is too easy! How can I make the ball speed up a little?

A) There are lots of ways you can make the game more challenging. One simple way would be to

add a line of code in the Ball class’ reboundBatOrTop function that increases the speed. As an

example, the following code would increase the speed of the ball by 10% each time the function

is called:

// Speed up a little bit on each hit

m_Speed = m_Speed * 1.1f;

The ball would get quite fast quite quickly. You would then need to devise a way to reset the

speed back to 300.0f when the player has lost all their lives. You could create a new function in

the Ball class, perhaps called resetSpeed, and call it from main when the code detects that the

player has lost their last life.

Q) Name one advantage and one disadvantage of AABB collision detection.

A) AABB is computationally efficient, making it suitable for demanding applications like games

where frequent collision checks are necessary. It is also simple to understand, but that’s two

advantages. While AABB is efficient, it can’t provide precise collision information for irregularly

shaped objects.

8
SFML Views – Starting the
Zombie Shooter Game

In this project, we will be making even more use of OOP and to a powerful effect. We will also

be exploring the SFML View class. This versatile class will allow us to easily divide our game into

layers for different aspects of the game. In the Zombie Shooter project, we will have a layer for

the heads-up display (HUD) and a layer for the main game. This is necessary because the game

world expands each time the player clears a wave of zombies. Eventually, the game world will

be bigger than the screen and will need to scroll. The use of the View class will prevent the text

of the HUD from scrolling with the background.

This is what we will cover in this chapter:

•	 Planning and starting the Zombie Arena game

•	 OOP and the Zombie Arena project

•	 Building the player – the first class

•	 Controlling the game camera with SFML View

•	 Starting the Zombie Arena game engine

•	 Managing the code files

•	 Starting to code the main game loop

You will find this chapter’s source code in the GitHub repository: https://github.com/

PacktPublishing/Beginning-C-Game-Programming-Third-Edition/tree/main/ZombieShooter

https://github.com/PacktPublishing/Beginning-C-Game-Programming-Third-Edition/tree/main/ZombieShooter
https://github.com/PacktPublishing/Beginning-C-Game-Programming-Third-Edition/tree/main/ZombieShooter

SFML Views – Starting the Zombie Shooter Game220

Planning and starting the Zombie Arena game
At this point, if you haven’t already, I suggest you go and watch a video of Over 9000 Zom-

bies (http://store.steampowered.com/app/273500/) and Crimson Land (http://store.

steampowered.com/app/262830/). Our game will obviously not be as in depth or advanced as

either of these examples, but we will also have the same basic set of features and game mechanics,

such as the following:

•	 A HUD that shows details such as the score, high score, bullets in the clip, the number of

bullets left, player health, and the number of zombies left to kill.

•	 The player will shoot zombies while frantically running away from them.

•	 Move around a scrolling world using the WASD keyboard keys while aiming the gun

using the mouse.

•	 In between each level, the player will choose a “level-up” that will affect the way the game

needs to be played for the player to win.

•	 The player will need to collect “pick-ups” to restore health and ammunition.

•	 Each wave brings more zombies and a bigger arena to make it more challenging.

There will be three types of zombies to splatter. They will have different attributes, such as ap-

pearance, health, and speed. We will call them chasers, bloaters, and crawlers. One will be fast,

one will be fat, and one will crawl along the floor, respectively. Take a look at the following an-

notated screenshot of the game to see some of the features in action and the components and

assets that make up the game:

Figure 8.1: Features in action, the components and assets that make up the game

http://store.steampowered.com/app/273500/
http://store.steampowered.com/app/262830/
http://store.steampowered.com/app/262830/

Chapter 8 221

Here is some more information about each of the numbered points:

•	 The score and hi-score: These, along with the other parts of the HUD, will be drawn in

a separate layer, known as a view, and represented by an instance of the View class. The

hi-score will be saved and loaded to a file.

•	 A texture that will build a wall around the arena: This texture is contained in a single

graphic called a sprite sheet, along with the other background textures (points 3, 5, and 6).

•	 The first of two mud textures from the sprite sheet.

•	 This is an “ammo pick-up.” When the player gets this, they will be given more ammuni-

tion. There is a “health pick-up” as well, from which the player will receive more health.

These pick-ups can be chosen by the player to be upgraded in between waves of zombies.

•	 A grass texture, also from the sprite sheet.

•	 The second mud texture, from the sprite sheet.

•	 A blood splat where there used to be a zombie.

•	 The bottom part of the HUD: From left to right, there is an icon to represent ammo, the

number of bullets in the clip, the number of spare bullets, a health bar, the current wave

of zombies, and the number of zombies remaining for the current wave.

•	 The player’s character.

•	 A crosshair, which the player aims with the mouse.

•	 A slow-moving, but strong, “bloater” zombie.

•	 A slightly faster-moving, but weaker, “crawler” zombie. There is also a “chaser zombie”

that is very fast and weak. Unfortunately, I couldn’t manage to get one in the screenshot

before they were all killed.

So, we have a lot to do and new C++ skills to learn. Let’s start by creating a new project.

Creating a new project
As setting up a project is a fiddly process, we will go through it step by step as we did for the Tim-

ber!!! project. I won’t show you the same images as I did for the Timber!!! project, but the process

is the same; so, flip back to Chapter 1, C++, SFML, Visual Studio, and Starting the First Game, if you

want a reminder of the locations of the various project properties.

SFML Views – Starting the Zombie Shooter Game222

Let’s run through the following steps:

1.	 Start Visual Studio and click on the Create New Project button. If you have another project

open, you can select File | New project.

2.	 In the window shown next, choose Console app and click on the Next button. You will

then see the Configure your new project window.

3.	 In the Configure your new project window, type Zombie Arena in the Project name field.

4.	 In the Location field, browse to the VS Projects folder.

5.	 Check the Place solution and project in the same directory option.

6.	 When you have completed the preceding steps, click on Create.

7.	 We will now configure the project to use the SFML files that we put in the SFML folder.

From the main menu, select Project | Zombie Arena properties…. At this stage, you should

have the Zombie Arena Property Pages window open.

8.	 In the Zombie Arena Property Pages window, select All Configurations from the Con-

figuration: drop-down menu, and make sure the drop-down menu to the right is set to

Win32, not x64.

9.	 Now, select C/C++ and then General from the left-hand menu.

10.	 Next, locate the Additional Include Directories edit box and type the drive letter where

your SFML folder is located, followed by \SFML\include. The full path to type, if you lo-

cated your SFML folder on your D: drive, will be D:\SFML\include. Vary your path if you

installed SFML on a different drive.

11.	 Click on Apply to save your configurations so far.

12.	 Now, still in the same window, perform these next steps. From the left-hand menu, select

Linker and then General.

13.	 Now, find the Additional Library Directories edit box and type the drive letter where

your SFML folder is, followed by \SFML\lib. So, the full path to type, if you located your

SFML folder on your D drive, will be D:\SFML\lib. Change your path if you installed SFML

on a different drive.

14.	 Click on Apply to save your configurations so far.

15.	 Select Linker and then Input.

Chapter 8 223

16.	 Find the Additional Dependencies edit box and click on it on the far left-hand side. Now,

copy and paste/type the following: sfml-graphics-d.lib;sfml-window-d.lib;sfml-

system-d.lib;sfml-network-d.lib;sfml-audio-d.lib;. Be extra careful to place the

cursor exactly at the start of the edit box’s current content so as not to overwrite any of

the text that is already there.

17.	 Click on OK.

18.	 Click on Apply and then OK.

19.	 Back on the main Visual Studio screen, check the main menu toolbar is set to Debug and

x86, not x64.

Now, you have configured the project properties and you are nearly ready to go. Next, we need to

copy the SFML .dll files into the main project directory by following these steps:

1.	 My main project directory is D:\VS Projects\Zombie Arena. This folder was created

by Visual Studio in the previous steps. If you put your Projects folder somewhere else,

then perform this step in your directory. The files we need to copy into the project folder

are in your SFML\bin folder. Open a window for each of the two locations and highlight

all the .dll files.

2.	 Now, copy and paste the highlighted files into the project.

The project is now set up and ready to go. Next, we will explore and add the project assets.

The project assets
The assets in this project are more numerous and more diverse than the previous games. The

assets include the following:

•	 A font for the text on the screen

•	 Sound effects for different actions such as shooting, reloading, or getting hit by a zombie

•	 Graphics for the character, zombies, and a sprite sheet for the various background textures

All the graphics and sound effects that are required for the game are included in the download

bundle. They can be found in the Chapter 8/graphics and Chapter 8/sound folders, respectively.

The font that is required has not been supplied. This is done to avoid any possible ambiguity

regarding the license. This will not cause a problem because the links for downloading the fonts

and how and where to choose the font will be provided.

SFML Views – Starting the Zombie Shooter Game224

Exploring the assets
The graphical assets make up the parts of the scene of our Zombie Arena game. Look at the

following graphical assets; it should be clear to you where the assets in the game will be used:

Figure 8.2 Graphical assets

What might be less obvious, however, is the background_sheet.png file, which contains four

different images. This is the sprite sheet we mentioned previously. We will see how we can save

memory and increase the speed of our game using the sprite sheet in Chapter 9, C++ References,

Sprite Sheets, and Vertex Arrays.

The sound files are all in .wav format. These are files that contain the sound effects that will be

played when certain events are triggered. They are as follows:

•	 hit.wav: A sound that plays when a zombie comes into contact with the player.

•	 pickup.wav: A sound that plays when the player collides or steps on (collects) a health

boost (pick-up).

•	 powerup.wav: A sound for when the player chooses an attribute to increase their strength

(power-up) in between each wave of zombies.

•	 reload.wav: A satisfying click to let the player know they have loaded a fresh clip of

ammunition.

•	 reload_failed.wav: A less satisfying sound that indicates failing to load new bullets.

Chapter 8 225

•	 shoot.wav: A shooting sound.

•	 splat.wav: A sound like a zombie being hit by a bullet.

Once you have decided which assets you will use, it is time to add them to the project.

Adding the assets to the project
The following instructions will assume you are using all the assets that were supplied in the book’s

download bundle. Where you are using your own assets, simply replace the appropriate sound

or graphic file with your own, using the same filename. Let’s take a look at the steps:

1.	 Browse to D:\VS Projects\ZombieArena.

2.	 Create three new folders within this folder and name them graphics, sound, and fonts.

3.	 From the download bundle, copy the entire contents of Chapter 8/graphics into the D:\

VS Projects\ZombieArena\graphics folder.

4.	 From the download bundle, copy the entire contents of Chapter 8/sound into the D:\VS

Projects\ZombieArena\sound folder.

5.	 Now, visit http://www.1001freefonts.com/zombie_control.font in your web browser

and download the Zombie Control font.

6.	 Extract the contents of the zipped download and add the zombiecontrol.ttf file to the

D:\VS Projects\ZombieArena\fonts folder.

Now, it’s time to consider how OOP will help us with this project and then we can start writing

the code for Zombie Arena.

OOP and the Zombie Arena project
The initial problem we are facing is the complexity of the current project. Let’s consider that there

is just a single zombie; here is what we need to make it function in the game:

•	 Its horizontal and vertical position

•	 Its size

•	 The direction it is facing

•	 A different texture for each zombie type

•	 A sprite

•	 A different speed for each zombie type

•	 A different health for each zombie type

•	 Keeping track of the type of each zombie

http://www.1001freefonts.com/zombie_control.font

SFML Views – Starting the Zombie Shooter Game226

•	 Collision detection data

•	 Its intelligence (to chase the player), which is slightly different for each type of zombie

•	 An indication of whether the zombie is alive or dead

This perhaps suggests a dozen variables for just one zombie, and entire arrays of each of these

variables will be required for managing a zombie horde. But what about all the bullets from the

machine gun, the pick-ups, and the different level-ups? The code from the much simpler Timber!!!

and Pong games also started to get a bit unmanageable, and it is easy to speculate that this more

complicated shooter will be many times worse!

Fortunately, we will put all the OOP skills we learned in the previous two chapters into action, as

well as learn some new C++ techniques.

We will start our coding for this project with a class to represent the player.

Building the player – the first class
Let’s think about what our Player class will need to do and what we require for it. The class

will need to know how fast it can move, where in the game world it currently is, and how much

health it has. As the Player class, in the player’s eyes, is represented as a 2D graphical character,

the class will need both a Sprite object and a Texture object.

Furthermore, although the reasons might not be obvious at this point, our Player class will also

benefit from knowing a few details about the overall environment the game is running in. These

details are screen resolution, the size of the tiles that make up an arena, and the overall size of

the current arena.

As the Player class will be taking full responsibility for updating itself in each frame (like the bat

and ball did), it will need to know the player’s intentions at any given moment. For example, is

the player currently holding down a keyboard direction key? Or, is the player currently holding

down multiple keyboard direction keys? Boolean variables will be essentially used to determine

the status of the W, A, S, and D keys.

It is clear that we are going to need quite a selection of variables in our new class. Having learned

all we have about OOP, we will, of course, be making all of these variables private. This means

that we must provide access, where appropriate, from the main function.

We will use a whole bunch of getter functions as well as some functions to set up our object. These

functions are quite numerous. There are 21 functions in this class.

Chapter 8 227

At first, this might seem a little daunting, but we will go through all of them and see that most of

them simply set or get one of the private variables.

There are just a few in-depth functions: update, which will be called once each frame from the

main function, and spawn, which will handle initializing some of the private variables each time

the player is spawned. We will see, however, there is nothing complicated.

The best way to proceed is to code the header file. This will give us the opportunity to see all the

private variables and examine all the function signatures.

Coding the Player class header file
Start by right-clicking on Header Files in Solution Explorer and select Add | New Item…. In the

Add New Item window, highlight (by left-clicking on it) the Header File (.h), and then, in the

Name field, type Player.h. Finally, click on the Add button. We are now ready to code the header

file for our first class.

Start coding the Player class by adding the declaration, including the opening and closing curly

braces, followed by a semicolon:

#pragma once

#include <SFML/Graphics.hpp>

using namespace sf;

class Player

{

};

Now, let’s add all our private member variables to the file. Based on what we have already dis-

cussed, see whether you can work out what each of them will do. We will go through them

individually in a moment:

class Player

{

private:

 const float START_SPEED = 200;

 const float START_HEALTH = 100;

Pay close attention to the return values and argument types, as this will make un-

derstanding the code in the function definitions much easier.

SFML Views – Starting the Zombie Shooter Game228

 // Where is the player

 Vector2f m_Position;

 // The sprite

 Sprite m_Sprite;

 // And a texture

 // !!Watch this space – Changes here soon!!

 Texture m_Texture;

 // What is the screen resolution

 Vector2f m_Resolution;

 // What size is the current arena

 IntRect m_Arena;

 // How big is each tile of the arena

 int m_TileSize;

 // Which direction(s)the player is moving in

 bool m_UpPressed;

 bool m_DownPressed;

 bool m_LeftPressed;

 bool m_RightPressed;

 // How much health has the player got?

 int m_Health;

 // What is the max' health the player can have

 int m_MaxHealth;

 // When was the player last hit

 Time m_LastHit;

 // Speed in pixels per second

 float m_Speed;

 // All our public functions next

};

The previous code declares all our member variables. Some are regular variables, while some of

them are objects. Notice that they are all under the private section of the class and, therefore,

are not directly accessible from outside the class.

Also, notice that we are using the naming convention of prefixing m_ to all the names of the

non-constant variables. The m_ prefix will remind us, while coding the function definitions, that

they are member variables, distinct from the local variables we will create in some of the functions,

and also distinct from the function parameters.

Chapter 8 229

All the variables that are used are straightforward, such as m_Position, m_Texture, and m_Sprite,

which are for the current location, texture, and sprite of the player, respectively. In addition to

this, each variable (or group of variables) is commented on to make its usage plain.

However, why exactly they are needed, and the context they will be used in, might not be so ob-

vious. For example, m_LastHit, which is an object of the Time type, is for recording the time that

the player last received a hit from a zombie. It is not obvious why we might need this information,

but we will go over this soon.

As we piece the rest of the game together, the context for each of the variables will become clearer.

The important thing, for now, is to familiarize yourself with the names and data types to make

following along with the rest of the project trouble free.

Now, we can add a complete long list of functions. Add the following highlighted code and see

whether you can work out what it all does. Pay close attention to the return types, parameters,

and the name of each function. This is key to understanding the code we will write throughout

the rest of this project. What do they tell us about each function? Add the following highlighted

code and then we will examine it:

// All our public functions next

public:

 Player();

 void spawn(IntRect arena, Vector2f resolution, int tileSize);

 // Call this at the end of every game

 void resetPlayerStats();

 // Handle the player getting hit by a zombie

 bool hit(Time timeHit);

 // How long ago was the player last hit

 Time getLastHitTime();

 // Where is the player

 FloatRect getPosition();

 // Where is the center of the player

You don’t need to memorize the variable names and types as we will discuss all the

code when they are used. You do, however, need to take your time to look over them

and get more familiar with them. Furthermore, as we proceed, it might be worth

referring to this header file if anything seems unclear.

SFML Views – Starting the Zombie Shooter Game230

 Vector2f getCenter();

 // What angle is the player facing

 float getRotation();

 // Send a copy of the sprite to the main function

 Sprite getSprite();

 // The next four functions move the player

 void moveLeft();

 void moveRight();

 void moveUp();

 void moveDown();

 // Stop the player moving in a specific direction

 void stopLeft();

 void stopRight();

 void stopUp();

 void stopDown();

 // We will call this function once every frame

 void update(float elapsedTime, Vector2i mousePosition);

 // Give the player a speed boost

 void upgradeSpeed();

 // Give the player some health

 void upgradeHealth();

 // Increase the max' health the player can have

 void increaseHealthLevel(int amount);

 // How much health has the player currently got?

 int getHealth();

};

Firstly, note that all the functions are public. This means we can call all these functions using an

instance of the class from the main function with code like this:

player.getSprite();

Assuming player is a fully set-up instance of the Player class, the previous code will return a

copy of m_Sprite. Putting this code into a real context, we could, in the main function, write code

like this:

window.draw(player.getSprite());

Chapter 8 231

The previous code would draw the player graphic in its correct location, just as if the sprite was

declared in the main function itself. This is what we did with the Bat class in the Pong project.

Before we move on to implementing (that is, writing the definitions) these functions in a corre-

sponding .cpp file, let’s take a closer look at each of them in turn:

•	 void spawn(IntRect arena, Vector2f resolution, int tileSize): This function does

what its name suggests. It will prepare the object ready for use, which includes putting

it in its starting location (that is, spawning it). Notice that it doesn’t return any data, but

it does have three arguments. It receives an IntRect instance called arena, which will

be the size and location of the current level; a Vector2f instance, which will contain the

screen resolution; and an int, which will hold the size of a background tile.

•	 void resetPlayerStats: Once we give the player the ability to level up between waves,

we will need to be able to take away/reset those abilities at the start of a new game.

•	 Time getLastHitTime(): This function does just one thing – it returns the time when

the player was last hit by a zombie. We will use this function when detecting collisions,

and it will allow us to make sure that the player isn’t punished too frequently for making

contact with a zombie.

•	 FloatRect getPosition(): This function returns a FloatRect instance that describes

the horizontal and vertical floating-point coordinates of the rectangle, which contains

the player graphic. This is also useful for collision detection.

•	 Vector2f getCenter(): This is slightly different from getPosition because it is a Vector2f

type and contains just the x and y locations of the very center of the player graphic.

•	 float getRotation(): The code in the main function will sometimes need to know, in

degrees, which way the player is currently facing. 3 o’clock is 0 degrees and increases

clockwise.

•	 Sprite getSprite(): As we discussed previously, this function returns a copy of the

sprite that represents the player.

•	 void moveLeft(), ..Right(), ..Up(), ..Down(): These four functions have no return

type or parameters. They will be called from the main function and the Player class will

then be able to act when one or more of the WASD keys have been pressed.

•	 void stopLeft(), ..Right(), ..Up(), ..Down(): These four functions have no return

type or parameters. They will be called from the main function, and the Player class will

then be able to act when one or more of the WASD keys have been released.

SFML Views – Starting the Zombie Shooter Game232

•	 void update(float elapsedTime, Vector2i mousePosition): This will be the only long

function of the entire class. It will be called once per frame from main. It will do everything

necessary to make sure the player object’s data is updated so that it’s ready for collision

detection and drawing. Notice that it returns no data but receives the amount of elapsed

time since the last frame, along with a Vector2i instance, which will hold the horizontal

and vertical screen location of the mouse pointer/crosshair.

•	 void upgradeSpeed(): A function that can be called from the leveling-up screen when

the player chooses to make the character move faster.

•	 void upgradeHealth(): Another function that can be called from the leveling-up screen

when the player chooses to make the character move stronger (that is, have more health).

•	 void increaseHealthLevel(int amount): A subtle but important difference regarding

the previous function is that this one will increase the amount of health the player has,

up to the maximum that’s currently set. This function will be used when the player picks

up a health pick-up.

•	 int getHealth(): With the level of health being as dynamic as it is, we need to be able to

determine how much health the player has at any given moment. This function returns

an int, which holds that value.

Like the variables, it should now be plain what each of the functions is for. Also, the why and the

precise context of using some of these functions will only reveal themselves as we progress with

the project.

Note that these are integer screen coordinates and are distinct from the

floating-point world coordinates.

You don’t need to memorize the function names, return types, or parameters as we

will discuss the code when they are used. You do, however, need to take your time

to look over them, along with the previous explanations, and get more familiar with

them. Furthermore, as we proceed, it might be worth referring to this header file if

anything seems unclear.

Chapter 8 233

Now, we can move on to the meat of our functions: the definitions.

Coding the Player class function definitions
Finally, we can begin writing the code that does the work of our class.

Right-click on Source Files in Solution Explorer and select Add | New Item. In the Add New Item

window, highlight (by left-clicking on) C++ File (.cpp) and then, in the Name field, type Player.

cpp. Finally, click on the Add button.

We are now ready to code the .cpp file for our first class in this project.

Here are the necessary include directives, followed by the definition of the constructor. Remem-

ber, the constructor will be called when we first instantiate an object of the Player type. Add the

following code to the Player.cpp file and then we can take a closer look at it:

#include "player.h"

Player::Player()

 : m_Speed(START_SPEED),

 m_Health(START_HEALTH),

 m_MaxHealth(START_HEALTH),

 m_Texture(),

 m_Sprite()

{

 // Associate a texture with the sprite

 // !!Watch this space!!

 m_Texture.loadFromFile("graphics/player.png");

 m_Sprite.setTexture(m_Texture);

 // Set the origin of the sprite to the center,

 // for smooth rotation

 m_Sprite.setOrigin(25, 25);

}

From now on, I will simply ask you to create a new class or header file. So, commit

the preceding step to memory or refer back here if you need a reminder.

SFML Views – Starting the Zombie Shooter Game234

In the constructor function, which, of course, has the same name as the class and no return type,

we write code that begins to set up the Player object so that it is ready for use.

To be clear, this code will run when we write the following code from the main function:

Player player;

Don’t add the previous line of code just yet.

The m_Speed, m_Health, m_MaxHealth, m_Texture, and m_Sprite members are initialized in the

initializer list. This is considered a good practice as it can lead to more efficient code and ensures

that members are initialized before entering the constructor body.

All we do in the constructor body is load the player graphic into m_Texture, associate m_Texture

with m_Sprite, and set the origin of m_Sprite to the center, (25, 25).

Next, we will code the spawn function. We will only ever create one instance of the Player class.

We will, however, need to spawn it into the current level for each wave. This is what the spawn

function will handle for us. Add the following code to the Player.cpp file and be sure to examine

the details and read the comments:

void Player::spawn(IntRect arena,

 Vector2f resolution,

 int tileSize)

{

 // Place the player in the middle of the arena

 m_Position.x = arena.width / 2;

 m_Position.y = arena.height / 2;

 // Copy the details of the arena

 // to the player's m_Arena

 m_Arena.left = arena.left;

 m_Arena.width = arena.width;

 m_Arena.top = arena.top;

 m_Arena.height = arena.height;

Note the cryptic comment, // !!Watch this space!!, indicating that we will

return to the loading of our texture and some important issues regarding it. We will

eventually change how we deal with this texture once we have discovered a problem

and learned a bit more about C++. We will do so in Chapter 10, Pointers, the Standard

Template Library, and Texture Management.

Chapter 8 235

 // Remember how big the tiles are in this arena

 m_TileSize = tileSize;

 // Store the resolution for future use

 m_Resolution.x = resolution.x;

 m_Resolution.y = resolution.y;

}

The preceding code starts by initializing the m_Position.x and m_Position.y values to half the

height and width of the passed-in arena. This has the effect of moving the player to the center

of the level, regardless of its size.

Next, we copy all the coordinates and dimensions of the passed-in arena to the member object of

the same type, m_Arena. The details of the size and coordinates of the current arena are used so

frequently that it makes sense to do this. We can now use m_Arena for tasks such as making sure

the player can’t walk through walls. In addition to this, we copy the passed in tileSize instance

to the member variable, m_TileSize, for the same purpose. We will see m_Arena and m_TileSize

in action in the update function.

The final two lines from the preceding code copy the screen resolution from the Vector2f resolu-

tion, which is a parameter of spawn, into m_Resolution, which is a member variable of Player.

We now have access to these values inside the Player class.

Now, add the very straightforward code of the resetPlayerStats function:

void Player::resetPlayerStats()

{

 m_Speed = START_SPEED;

 m_Health = START_HEALTH;

 m_MaxHealth = START_HEALTH;

}

When the player dies, we will use this to reset any upgrades they might have used.

We will not write the code that calls the resetPlayerStats function until we have nearly com-

pleted the project, but it is there ready for when we need it.

In the next part of the code, we will add two more functions. They will handle what happens

when the player is hit by a zombie. We will be able to call player.hit() and pass it in the current

game time. We will also be able to query the last time that the player was hit by calling player.

getLastHitTime(). Exactly how these functions are useful will become apparent when we have

some zombies.

SFML Views – Starting the Zombie Shooter Game236

Add the two new definitions to the Player.cpp file and then we will examine the C++ code a

little more closely:

Time Player::getLastHitTime()

{

 return m_LastHit;

}

bool Player::hit(Time timeHit)

{

 if (timeHit.asMilliseconds()

 - m_LastHit.asMilliseconds() > 200)

 {

 m_LastHit = timeHit;

 m_Health -= 10;

 return true;

 }

 else

 {

 return false;

 }

}

The code for getLastHitTime() is very straightforward; it will return whatever value is stored

in m_LastHit.

The hit function is a bit more in depth and nuanced. First, the if statement checks to see whether

the time that’s passed in as a parameter is 200 milliseconds further ahead than the time stored

in m_LastHit. If it is, m_LastHit is updated with the time passed in and m_Health has 10 deducted

from its current value. The last line of code in this if statement is return true. Notice that the

else clause simply returns false to the calling code.

The overall effect of this function is that health points will only be deducted from the player

up to five times per second. Remember that our game loop might be running at thousands of

iterations per second. In this scenario, without the restriction this function provides, a zombie

would only need to be in contact with the player for one second, and tens of thousands of health

points would be deducted. The hit function controls and restricts this phenomenon. It also lets

the calling code know whether a new hit has been registered (or not) by returning true or false.

Chapter 8 237

This code implies that we will detect collisions between a zombie and the player in the main

function. We will then call player.hit() to determine whether to deduct any health points.

Next, for the Player class, we will implement a bunch of getter functions. They allow us to keep

the data neatly encapsulated in the Player class at the same time as their values are being made

available to the main function.

Add the following code right after the previous block:

FloatRect Player::getPosition()

{

 return m_Sprite.getGlobalBounds();

}

Vector2f Player::getCenter()

{

 return m_Position;

}

float Player::getRotation()

{

 return m_Sprite.getRotation();

}

Sprite Player::getSprite()

{

 return m_Sprite;

}

int Player::getHealth()

{

 return m_Health;

}

The preceding code is very straightforward. Each of the previous five functions returns the value

of one of our member variables. Look carefully at each of them and familiarize yourself with

which function returns which value.

The next eight short functions enable the keyboard controls (which we will use from the main

function) so that we can change the data contained in our object of the Player type. Add the

following code to the Player.cpp file and then we will summarize how it all works:

void Player::moveLeft()

{

SFML Views – Starting the Zombie Shooter Game238

 m_LeftPressed = true;

}

void Player::moveRight()

{

 m_RightPressed = true;

}

void Player::moveUp()

{

 m_UpPressed = true;

}

void Player::moveDown()

{

 m_DownPressed = true;

}

void Player::stopLeft()

{

 m_LeftPressed = false;

}

void Player::stopRight()

{

 m_RightPressed = false;

}

void Player::stopUp()

{

 m_UpPressed = false;

}

void Player::stopDown()

{

 m_DownPressed = false;

}

The previous code has four functions (moveLeft, moveRight, moveUp, and moveDown), which set the

related Boolean variables (m_LeftPressed, m_RightPressed, m_UpPressed, and m_DownPressed)

to true. The other four functions (stopLeft, stopRight, stopUp, and stopDown) do the opposite

and set the same Boolean variables to false. The instance of the Player class can now be kept

informed of which of the WASD keys were pressed and which were not.

Chapter 8 239

The following function is the one that does all the hard work. The update function will be called

once in every single frame of our game loop. Add the following code, and then we will examine

it in detail. If you followed along with the previous eight functions and we remember how we

animated the clouds and bees for the Timber!!! project and the bat and ball for Pong, you will

probably understand most of the following code:

void Player::update(float elapsedTime, Vector2i mousePosition)

{

 if (m_UpPressed)

 {

 m_Position.y -= m_Speed * elapsedTime;

 }

 if (m_DownPressed)

 {

 m_Position.y += m_Speed * elapsedTime;

 }

 if (m_RightPressed)

 {

 m_Position.x += m_Speed * elapsedTime;

 }

 if (m_LeftPressed)

 {

 m_Position.x -= m_Speed * elapsedTime;

 }

 m_Sprite.setPosition(m_Position);

 // Keep the player in the arena

 if (m_Position.x > m_Arena.width - m_TileSize)

 {

 m_Position.x = m_Arena.width - m_TileSize;

 }

 if (m_Position.x < m_Arena.left + m_TileSize)

 {

 m_Position.x = m_Arena.left + m_TileSize;

 }

 if (m_Position.y > m_Arena.height - m_TileSize)

 {

 m_Position.y = m_Arena.height - m_TileSize;

 }

SFML Views – Starting the Zombie Shooter Game240

 if (m_Position.y < m_Arena.top + m_TileSize)

 {

 m_Position.y = m_Arena.top + m_TileSize;

 }

 // Calculate the angle the player is facing

 float angle = (atan2(mousePosition.y - m_Resolution.y / 2,

 mousePosition.x - m_Resolution.x / 2)

 * 180) / 3.141;

 m_Sprite.setRotation(angle);

}

The first portion of the previous code moves the player sprite. The four if statements check which

of the movement-related Boolean variables (m_LeftPressed, m_RightPressed, m_UpPressed, or

m_DownPressed) are true and changes m_Position.x and m_Position.y accordingly. The same

formula, from the previous two projects, to calculate the amount to move is also used:

position (+ or -) speed * elapsed time.

After these four if statements, m_Sprite.setPosition is called and m_Position is passed in. The

sprite has now been adjusted by exactly the right amount for that one frame.

The next four if statements check whether m_Position.x or m_Position.y is beyond any of the

edges of the current arena. Remember that the confines of the current arena were stored in m_Arena,

in the spawn function. Let’s look at the first one of these four if statements to understand them all:

if (m_Position.x > m_Arena.width - m_TileSize)

{

 m_Position.x = m_Arena.width - m_TileSize;

}

The previous code tests to see whether m_position.x is greater than m_Arena.width, minus the

size of a tile (m_TileSize). As we will see when we create the background graphics, this calcula-

tion will detect the player straying into the wall.

When the if statement is true, the m_Arena.width - m_TileSize calculation is used to initialize

m_Position.x. This means that the center of the player graphic will never be able to stray past

the left-hand edge of the right-hand wall.

Chapter 8 241

The next three if statements, which follow the one we have just discussed, do the same thing

but for the other three walls.

The last two lines in the preceding code calculate and set the angle that the player sprite is ro-

tated to (that is, facing). This line of code might look a little complex, so let’s dig a little deeper.

First, here is the code again for reference:

 // Calculate the angle the player is facing

 float angle = (atan2(mousePosition.y - m_Resolution.y / 2,

 mousePosition.x - m_Resolution.x / 2)

 * 180) / 3.141;

 m_Sprite.setRotation(angle);

In summary, the code calculates the angle between the center of the screen (assumed to be (m_

Resolution.x / 2, m_Resolution.y / 2)) and the current mouse position. It then sets the

rotation of the sprite representing the player based on this angle.

First, the code calculates the angle:

atan2(mousePosition.y - m_Resolution.y / 2, mousePosition.x - m_
Resolution.x / 2)

The atan2 function is used to calculate the angle formed by an imaginary line formed between

the center of the screen (m_Resolution.x / 2, m_Resolution.y / 2) and the current mouse

position (mousePosition.x, mousePosition.y).

The result of this calculation is in radians, but SFML works in degrees. The next part of that same

line of code converts from radians to degrees:

* 180

Multiplying by 180 converts it to degrees. Next, dividing by 3.141, which is Pi, makes the angle in

the range 0 through 360. This means that the angle is within a full circle.

/ 3.141

Finally, we set the sprite’s rotation:

m_Sprite.setRotation(angle);

As an aside, I have drastically oversimplified the way the atan function works behind the scenes,

but that is what functions are for. That’s my excuse and I’m sticking to it. If you want to dig deeper

into the C++ math library, you can do so.

SFML Views – Starting the Zombie Shooter Game242

The last three functions we will add for the Player class make the player 20% faster, increase the

player’s health by 20%, and increase the player’s health by the amount passed in, respectively.

Add the following code at the end of the Player.cpp file, and then we will take a closer look at it:

void Player::upgradeSpeed()

{

 // 20% speed upgrade

 m_Speed += (START_SPEED * .2);

}

void Player::upgradeHealth()

{

 // 20% max health upgrade

 m_MaxHealth += (START_HEALTH * .2);

}

void Player::increaseHealthLevel(int amount)

{

 m_Health += amount;

 // But not beyond the maximum

 if (m_Health > m_MaxHealth)

 {

 m_Health = m_MaxHealth;

 }

}

In the preceding code, the upgradeSpeed() and upgradeHealth() functions increase the value

stored in m_Speed and m_MaxHealth, respectively. These values are increased by 20% by multi-

plying the starting values by .2 and adding them to the current values. These functions will be

called from the main function when the player is choosing what attributes of their character they

wish to improve (that is, level up) between levels.

The increaseHealthLevel() function takes an int value from main in the amount parameter. This

int value will be provided by a class called Pickup, which we will write in Chapter 12, Collision

Detection, Pickups, and Bullets.

If you want to explore trigonometric functions in more detail, you can do so here:

http://www.cplusplus.com/reference/cmath/.

http://www.cplusplus.com/reference/cmath/

Chapter 8 243

The m_Health member variable is increased by the passed-in value. However, there is a catch for

the player. The if statement checks whether m_Health has exceeded m_MaxHealth and, if it has,

sets it to m_MaxHealth. This means the player cannot simply gain infinite health from pick-ups.

Instead, they must carefully balance the upgrades they choose between levels.

Of course, our Player class can’t do anything until we instantiate it and put it to work in our

game loop. Before we do that, let’s look at the concept of a game camera.

Controlling the game camera with SFML View
In my opinion, the SFML View class is one of the most useful classes. After finishing this book, if

you make games without using a media/gaming library, you will really notice the absence of View.

The View class allows us to consider our game as taking place in its own world, with its own

properties. What do I mean? Well, when we create a game, we are usually trying to create a virtual

world. That virtual world rarely, if ever, is measured in pixels, and rarely, if ever, will that world

be the same number of pixels as the player’s monitor. We need a way to abstract the virtual world

we are building so that it can be of whatever size or shape we like.

Another way to think of SFML View is as a camera through which the player views a part of our

virtual world. Most games will have more than one camera/view of the world.

For example, consider a split-screen game where two players can be in different parts of the world

at the same time. Or, consider a game where there is a small area of the screen that represents

the entire game world, but at a very high level/zoomed out, like a minimap.

Even if our games are much simpler than the previous two examples and don’t need split screens

or minimaps, we will likely want to create a world that is bigger than the screen it is being played

on. This is, of course, the case with Zombie Arena.

Additionally, if we are constantly moving the game camera around to show different parts of the

virtual world (usually to track the player), what happens to the HUD? If we draw the score and

other on-screen HUD information and then scroll the world around to follow the player, the score

will move relative to that camera.

The SFML View class easily enables all of these features and solves this problem with very straight-

forward code. The trick is to create an instance of View for every camera – perhaps a View instance

for the minimap, a View instance for the scrolling game world, and then a View instance for the

HUD.

SFML Views – Starting the Zombie Shooter Game244

The instances of View can be moved around, sized, and positioned as required. So, the main

View instance following the game can track the player, the minimap view can remain in a fixed,

zoomed-out small corner of the screen, and the HUD can overlay the entire screen and never move,

despite the fact that the main View instance will go wherever the player goes.

Let’s look at some code using a few instances of View.

Create and initialize a few instances of View:

// Create a view to fill a 1920 x 1080 monitor

View mainView(sf::FloatRect(0, 0, 1920, 1080));

// Create a view for the HUD

View hudView(sf::FloatRect(0, 0, 1920, 1080));

The previous code creates two View objects that fill a 1920 x 1080 monitor. Now, we can do some

magic with mainView while leaving hudView completely alone:

// In the update part of the game

// There are lots of things you can do with a View

// Make the view centre around the player

mainView.setCenter(player.getCenter());

// Rotate the view 45 degrees

mainView.rotate(45)

// Note that hudView is totally unaffected by the previous code

When we manipulate the properties of a View instance, we do so like this. When we draw sprites,

text, or other objects to a view, we must specifically set the view as the current view for the window:

// Set the current view

window.setView(mainView);

Now, we can draw everything we want into that view:

// Do all the drawing for this view

window.draw(playerSprite);

window.draw(otherGameObject);

// etc

This code is being used to introduce the View class. Don’t add this code to the Zom-

bie Arena project.

Chapter 8 245

The player might be at any coordinate whatsoever; it doesn’t matter because mainView is centered

around the graphic representing the player.

Now, we can draw the HUD into hudView. Note that just like we draw individual elements (back-

ground, game objects, text, and so on) in layers from back to front, we also draw views from back

to front as well. Hence, a HUD is drawn after the main game scene:

// Switch to the hudView

window.setView(hudView);

// Do all the drawing for the HUD

window.draw(scoreText);

window.draw(healthBar);

// etc

Finally, we can draw/show the window and all its views for the current frame in the usual way:

window.display();

Now that we have learned about View, we can start coding the Zombie Arena main function and

use our first View instance for real. In Chapter 13, Layering Views and Implementing the HUD, we will

introduce a second instance of View for the HUD and layer it over the top of the main View instance.

Starting the Zombie Arena game engine
In this game, we will need a slightly upgraded game engine in main. We will have an enumeration

called state, which will track the current state of the game. Then, throughout main, we can wrap

parts of our code so that different things happen in different states.

When we created the project, Visual Studio created a file for us called ZombieArena.cpp. This will

be the file that contains our main function and the code that instantiates and controls all our classes.

We begin with the now-familiar main function and some include directives. Note the addition

of an include directive for the Player class.

If you want to take your understanding of SFML View further than is necessary for

this project, including how to achieve split screens and minimaps, then the best

guide on the web is on the official SFML website: https://www.sfml-dev.org/

tutorials/2.5/graphics-view.php.

https://www.sfml-dev.org/tutorials/2.5/graphics-view.php
https://www.sfml-dev.org/tutorials/2.5/graphics-view.php

SFML Views – Starting the Zombie Shooter Game246

Delete the code that Visual Studio added to ZombieArena.cpp and add the following code to the

ZombieArena.cpp file:

#include <SFML/Graphics.hpp>

#include "Player.h"

using namespace sf;

int main()

{

 return 0;

}

The previous code has nothing new in it except that the #include "Player.h" line means we

can now use the Player class within our code.

Let’s flesh out some more of our game engine. The following code does quite a lot. Be sure to

read the comments when you add the code to get an idea of what is going on. We will then go

through it in more detail.

Add the following highlighted code at the start of the main function:

int main()

{

 // The game will always be in one of four states

 enum class State { PAUSED, LEVELING_UP,

 GAME_OVER, PLAYING };

 // Start with the GAME_OVER state

 State state = State::GAME_OVER;

 // Get the screen resolution and

 // create an SFML window

 Vector2f resolution;

 resolution.x =

 VideoMode::getDesktopMode().width;

 resolution.y =

 VideoMode::getDesktopMode().height;

 RenderWindow window(

 VideoMode(resolution.x, resolution.y),

 "Zombie Arena", Style::Fullscreen);

 // Create a an SFML View for the main action

 View mainView(sf::FloatRect(0, 0,

Chapter 8 247

 resolution.x, resolution.y));

 // Here is our clock for timing everything

 Clock clock;

 // How long has the PLAYING state been active

 Time gameTimeTotal;

 // Where is the mouse in

 // relation to world coordinates

 Vector2f mouseWorldPosition;

 // Where is the mouse in

 // relation to screen coordinates

 Vector2i mouseScreenPosition;

 // Create an instance of the Player class

 Player player;

 // The boundaries of the arena

 IntRect arena;

 // The main game loop

 while (window.isOpen())

 {

 }

 return 0;

}

Let’s run through each section of all the code that we entered. Just inside the main function, we

have the following code:

// The game will always be in one of four states

enum class State { PAUSED, LEVELING_UP, GAME_OVER, PLAYING };

// Start with the GAME_OVER state

State state = State::GAME_OVER;

The previous code creates a new enumeration class called State. Then, the code creates an in-

stance of the State class called state. The state enumeration can now be one of four values,

as defined in the declaration. Those values are PAUSED, LEVELING_UP, GAME_OVER, and PLAYING.

These four values will be just what we need for keeping track of and responding to the different

states that the game can be in at any given time. Note that it is not possible for state to hold

more than one value at a time.

SFML Views – Starting the Zombie Shooter Game248

Immediately after, we added the following code:

// Get the screen resolution and create an SFML window

Vector2f resolution;

resolution.x = VideoMode::getDesktopMode().width;

resolution.y = VideoMode::getDesktopMode().height;

RenderWindow window(VideoMode(resolution.x, resolution.y),

 "Zombie Arena", Style::Fullscreen);

The previous code declares a Vector2f instance called resolution. We initialize the two member

variables of resolution (x and y) by calling the VideoMode::getDesktopMode function for both

width and height. The resolution object now holds the resolution of the monitor on which the

game is running. The final line of code creates a new RenderWindow instance called window using

the appropriate resolution.

The following code creates an SFML View object. The view is positioned (initially) at the exact

coordinates of the pixels of the monitor. If we were to use this View to do some drawing in this

current position, it would be the same as drawing a window without a view. However, we will

eventually start to move this view to focus on the parts of our game world that the player needs to

see. Then, when we start to use a second View instance, which remains fixed (for the HUD), we will

see how this View instance can track the action while the other remains static to display the HUD:

// Create a an SFML View for the main action

View mainView(sf::FloatRect(0, 0, resolution.x, resolution.y));

Next, we created a Clock instance to do our timing and a Time object called gameTimeTotal that

will keep a running total of the game time that has elapsed. As the project progresses, we will

also introduce more variables and objects to handle timing:

// Here is our clock for timing everything

Clock clock;

// How long has the PLAYING state been active

Time gameTimeTotal;

The following code declares two vectors: one holding two float variables, called

mouseWorldPosition, and one holding two integers, called mouseScreenPosition. The mouse

pointer is something of an anomaly because it exists in two different coordinate spaces. We could

think of these as parallel universes if we like. Firstly, as the player moves around the world, we

will need to keep track of where the crosshair is in that world.

Chapter 8 249

These will be floating-point coordinates and will be stored in mouseWorldCoordinates. Of course,

the actual pixel coordinates of the monitor itself never change. They will always be 0,0 to hor-

izontal resolution -1 and vertical resolution -1. We will track the mouse pointer position that is

relative to this coordinate space using the integers stored in mouseScreenPosition:

// Where is the mouse in relation to world coordinates

Vector2f mouseWorldPosition;

// Where is the mouse in relation to screen coordinates

Vector2i mouseScreenPosition;

Finally, we get to use our Player class. This line of code will cause the constructor function

(Player::Player) to execute. Refer to Player.cpp if you want to refresh your memory about

this function:

// Create an instance of the Player class

Player player;

This IntRect object will hold starting horizontal and vertical coordinates, as well as a width and

a height. Once initialized, we will be able to access the size and location details of the current

arena with code such as arena.left, arena.top, arena.width, and arena.height:

// The boundaries of the arena

IntRect arena;

The last part of the code that we added previously is, of course, our game loop:

// The main game loop

while (window.isOpen())

{

}

You have probably noticed that the code is getting quite long. We’ll talk about this inconvenience

in the following section.

Managing the code files
One of the advantages of abstraction using classes and functions is that the length (number of

lines) of our code files can be reduced. Even though we will be using more than a dozen code files

for this project, the length of the code in ZombieArena.cpp will still get a little unwieldy toward the

end. In the next and final project, we will look at even more ways to abstract and manage our code.

SFML Views – Starting the Zombie Shooter Game250

For now, use this tip to keep things more manageable. Notice that on the left-hand side of the

code editor in Visual Studio, there are several + and - signs, one of which is shown in this diagram:

Figure 8.3: Signs on Code editor in Visual Studio

There will be one sign for each block (if, while, for, and so on) of the code. You can expand

and collapse these blocks by clicking on the + and - signs. I recommend keeping all the code not

currently under discussion collapsed. This will make things much clearer.

Furthermore, we can create our own collapsible blocks. I suggest making a collapsible block out

of all the code before the start of the main game loop. To do so, highlight the code and then right-

click and choose Outlining | Hide Selection, as shown in the following screenshot:

Figure 8.4: Making a collapsible block

Now, you can click the - and + signs to expand and collapse the block. Each time we add code

before the main game loop (and that will be quite often), you can expand the code, add the new

lines, and then collapse it again. The following screenshot shows what the code looks like when

it is collapsed:

Chapter 8 251

Figure 8.5: A collapsed code

This is much more manageable than it was before. Now, we can make a start with the main game

loop.

Starting to code the main game loop
As you can see, the last part of the preceding code is the game loop (while (window.isOpen())

{}). We will turn our attention to this now. Specifically, we will be coding the input handling

section of the game loop.

The code that we will be adding is quite long, but there is nothing complicated about it, though,

and we will examine it all in a moment.

Add the following highlighted code to the game loop:

// The main game loop

while (window.isOpen())

{

 /*

 Handle input

 */

 // Handle events by polling

 Event event;

 while (window.pollEvent(event))

 {

 if (event.type == Event::KeyPressed)

 {

 // Pause a game while playing

 if (event.key.code == Keyboard::Return &&

 state == State::PLAYING)

 {

SFML Views – Starting the Zombie Shooter Game252

 state = State::PAUSED;

 }

 // Restart while paused

 else if (event.key.code == Keyboard::Return &&

 state == State::PAUSED)

 {

 state = State::PLAYING;

 // Reset the clock so there isn't a frame jump

 clock.restart();

 }

 // Start a new game while in GAME_OVER state

 else if (event.key.code == Keyboard::Return &&

 state == State::GAME_OVER)

 {

 state = State::LEVELING_UP;

 }

 if (state == State::PLAYING)

 {

 }

 }

 }// End event polling

}// End game loop

In the preceding code, we instantiate an object of the Event type. We will use event, like we did

in the previous projects, to poll for system events. To do so, we wrap the rest of the code from

the previous block in a while loop with the window.pollEvent(event) condition. This will keep

looping each frame until there are no more events to process.

Inside this while loop, we handle the events we are interested in. First, we test for Event::KeyPressed

events. If the Return key is pressed while the game is in the PLAYING state, then we switch state

to PAUSED.

If the Return key is pressed while the game is in the PAUSED state, then we switch state to PLAYING

and restart the clock object. The reason we restart clock after switching from PAUSED to PLAYING

is because, while the game is paused, the elapsed time still accumulates. If we didn’t restart the

clock, all our objects would update their locations as if the frame had just taken a very long time.

This will become more apparent as we flesh out the rest of the code in this file.

Chapter 8 253

We then have an else if block to test whether the Return key was pressed while the game was

in the GAME_OVER state. If it was, then state is changed to LEVELING_UP.

In the previous code, there is a final if condition to test whether the state is equal to PLAYING.

This if block is empty and we will add code to it throughout the project.

Spend some time thoroughly familiarizing yourself with the while, if, and else if blocks we

have just coded. We will be referring to them regularly.

Next, immediately after the previous code and still inside the game loop, which is still dealing

with handling input, add the following highlighted code. Note the existing code (not highlighted)

that shows exactly where the new (highlighted) code goes:

 }// End event polling

 // Handle the player quitting

 if (Keyboard::isKeyPressed(Keyboard::Escape))

 {

 window.close();

 }

 // Handle WASD while playing

 if (state == State::PLAYING)

 {

 // Handle the pressing and releasing of WASD keys

 if (Keyboard::isKeyPressed(Keyboard::W))

 {

 player.moveUp();

 }

 else

Note that the GAME_OVER state is the state where the home screen is displayed. So,

the GAME_OVER state is the state after the player has just died and when the player

first runs the game. The first thing that the player gets to do each game is pick an

attribute to improve (that is, level up).

We will add code to lots of different parts of this file throughout the project. Therefore,

it is worthwhile taking the time to understand the different states our game can be

in and where we handle them. It will also be very beneficial to collapse and expand

the different if, else, and while blocks as and when appropriate.

SFML Views – Starting the Zombie Shooter Game254

 {

 player.stopUp();

 }

 if (Keyboard::isKeyPressed(Keyboard::S))

 {

 player.moveDown();

 }

 else

 {

 player.stopDown();

 }

 if (Keyboard::isKeyPressed(Keyboard::A))

 {

 player.moveLeft();

 }

 else

 {

 player.stopLeft();

 }

 if (Keyboard::isKeyPressed(Keyboard::D))

 {

 player.moveRight();

 }

 else

 {

 player.stopRight();

 }

 }// End WASD while playing

}// End game loop

In the preceding code, we first test to see whether the player has pressed the Escape key. If it is

pressed, the game window will be closed.

Next, within one big if(state == State::PLAYING) block, we check each of the WASD keys in

turn. If a key is pressed, we call the appropriate player.move... function. If it is not, we call the

related player.stop... function.

Chapter 8 255

This code ensures that, in each frame, the player object will be updated with the WASD keys that

are pressed and those that are not. The player.move... and player.stop... functions store the

information in the member Boolean variables (m_LeftPressed, m_RightPressed, m_UpPressed,

and m_DownPressed). The Player class then responds to the value of these Booleans, in each

frame, in the player.update function, which we will call in the update section of the game loop.

Now, we can handle the keyboard input to allow the player to level up at the start of each game and

in between each wave. Add and study the following highlighted code and then we will discuss it:

 }// End WASD while playing

 // Handle the LEVELING up state

 if (state == State::LEVELING_UP)

 {

 // Handle the player LEVELING up

 if (event.key.code == Keyboard::Num1)

 {

 state = State::PLAYING;

 }

 if (event.key.code == Keyboard::Num2)

 {

 state = State::PLAYING;

 }

 if (event.key.code == Keyboard::Num3)

 {

 state = State::PLAYING;

 }

 if (event.key.code == Keyboard::Num4)

 {

 state = State::PLAYING;

 }

 if (event.key.code == Keyboard::Num5)

 {

 state = State::PLAYING;

 }

 if (event.key.code == Keyboard::Num6)

 {

 state = State::PLAYING;

 }

SFML Views – Starting the Zombie Shooter Game256

 if (state == State::PLAYING)

 {

 // Prepare the level

 // We will modify the next two lines later

 arena.width = 500;

 arena.height = 500;

 arena.left = 0;

 arena.top = 0;

 // We will modify this line of code later

 int tileSize = 50;

 // Spawn the player in middle of the arena

 player.spawn(arena, resolution, tileSize);

 // Reset clock so there isn't a frame jump

 clock.restart();

 }

 }// End LEVELING up

}// End game loop

In the preceding code, which is all wrapped in a test to see whether the current value of state is

equal to LEVELING_UP, we handle the keyboard keys 1, 2, 3, 4, 5, and 6. In the if block for each, we

simply set state to State::PLAYING. We will add some code to deal with each level-up option

later in Chapter 14, Sound Effects, File I/O, and Finishing the Game.

This code does the following things:

1.	 If the state is equal to LEVELING_UP, wait for either the 1, 2, 3, 4, 5, or 6 key to be pressed.

2.	 When pressed, change state to PLAYING.

3.	 When the state changes, still within the if (state == State::LEVELING_UP) block,

the nested if(state == State::PLAYING) block will run.

4.	 Within this block, we set the location and size of arena, set the tileSize to 50, pass all

the information to player.spawn, and call clock.restart.

Now, we have an actual spawned player object that is aware of its environment and can respond

to key presses. We can now update the scene on each pass through the loop.

Chapter 8 257

Be sure to neatly collapse the code from the input-handling part of the game loop since we are

done with that for now. The following code is in the updating part of the game loop. Add and

study the following highlighted code and then we can discuss it:

 }// End LEVELING up

 /*

 UPDATE THE FRAME

 */

 if (state == State::PLAYING)

 {

 // Update the delta time

 Time dt = clock.restart();

 // Update the total game time

 gameTimeTotal += dt;

 // Make a fraction of 1 from the delta time

 float dtAsSeconds = dt.asSeconds();

 // Where is the mouse pointer

 mouseScreenPosition = Mouse::getPosition();

 // Convert mouse position to world

 // based coordinates of mainView

 mouseWorldPosition = window.mapPixelToCoords(

 Mouse::getPosition(), mainView);

 // Update the player

 player.update(dtAsSeconds, Mouse::getPosition());

 // Make a note of the players new position

 Vector2f playerPosition(player.getCenter());

 // Make the view centre

 // the around player

 mainView.setCenter(player.getCenter());

 }// End updating the scene

}// End game loop

SFML Views – Starting the Zombie Shooter Game258

Note that the previous code is wrapped in a test to make sure the game is in the PLAYING state. We

don’t want this code to run if the game has been paused, it has ended, or if the player is choosing

what to level up.

First, we restart the clock and store the time that the previous frame took in the dt variable:

// Update the delta time

Time dt = clock.restart();

Next, we add the time that the previous frame took to the accumulated time the game has been

running for, as held by gameTimeTotal:

// Update the total game time

gameTimeTotal += dt;

Now, we initialize a float variable called dtAsSeconds with the value returned by the dt.AsSeconds

function. For most frames, this will be a fraction of one. This is perfect for passing to the player.

update function to be used to calculate how much to move the player’s sprite.

Now, we can initialize mouseScreenPosition using the MOUSE::getPosition function.

We then initialize mouseWorldPosition using the SFML mapPixelToCoords function on the window.

We discussed this function when talking about the View class earlier in this chapter.

At this point, we are now able to call player.update and pass in dtAsSeconds and the position

of the mouse, as required.

We store the player’s new center in a Vector2f instance called playerPosition. At the moment,

this is unused, but we will have a use for this later in the project.

We can then center the view around the center of the player’s up-to-date position with mainView.

setCenter(player.getCenter()).

We are now able to draw the player to the screen. Add the following highlighted code, which

splits the draw section of the main game loop into different states:

You are probably wondering about the slightly unusual syntax for getting the position

of the mouse. This is called a static function. If we define a function in a class with

the static keyword, we can call that function using the class name and without

an instance of the class. C++ OOP has lots of quirks and rules like this. We will see

more as we progress.

Chapter 8 259

 }// End updating the scene

 /*

 Draw the scene

 */

 if (state == State::PLAYING)

 {

 window.clear();

 // set the mainView to be displayed in the window

 // And draw everything related to it

 window.setView(mainView);

 // Draw the player

 window.draw(player.getSprite());

 }

 if (state == State::LEVELING_UP)

 {

 }

 if (state == State::PAUSED)

 {

 }

 if (state == State::GAME_OVER)

 {

 }

 window.display();

 }// End game loop

 return 0;

}

Within the if(state == State::PLAYING) section of the previous code, we clear the screen, set

the view of the window to mainView, and then draw the player sprite with window.draw(player.

getSprite()).

After all the different states have been handled, the code shows the scene in the usual manner

with window.display();.

You can run the game and see our player character spin around in response to moving the mouse.

SFML Views – Starting the Zombie Shooter Game260

You can also move the player around within the (empty) 500 x 500 pixel arena. You can see our

lonely player in the center of the screen, as shown here:

Figure 8.6: Lonely player in the center of the screen

You can’t, however, get any sense of movement because we haven’t implemented the background.

We will do so in the next chapter.

When you run the game, you need to press Enter to start the game, and then select a

number from 1 to 6 to simulate choosing an upgrade option. Then, the game will start.

Chapter 8 261

Summary
Phew! That was a long one. We have done a lot in this chapter: we built our first class for the

Zombie Arena project, Player, and put it to use in the game loop. We also learned about and used

an instance of the View class, although we haven’t explored the benefits this gives us just yet.

In the next chapter, we will build our arena background by exploring what sprite sheets are. We

will also learn about C++ references, which allow us to manipulate variables, even when they

are out of scope. Out of scope means the variables are in another function.

Frequently asked questions
Q) I noticed something odd in the code we have been writing. In if statements, such as the

following:

if (event.type == Event::KeyPressed)…

How does the Event parameter passed into the pollEvent function end up being used? After all,

don’t the variables and objects only have scope in the function in which they are declared?

A) The reason is C++ references. References in C++ are variables that act as aliases for other vari-

ables. In the code under discussion, there are no explicit references. However, references are used

to pass objects to functions efficiently, avoiding unnecessary copying. As the parameter of the

pollEvent function is defined as a reference, values can be assigned to the passed-in event object

and those values persist in our main function. We will understand this more when we discuss

references in the next chapter.

Q) I noticed we have coded quite a few functions of the Player class that we don’t use. Why is this?

A) Rather than coming back to the Player class, we have added all the code that we will need

throughout the project. By the end of Chapter 14, Sound Effects, File I/O, and Finishing the Game,

we will have made full use of all of these functions.

9
C++ References, Sprite Sheets,
and Vertex Arrays

In Chapter 4, Loops, Arrays, Switch, Enumerations, and Functions – Implementing Game Mechanics,

we talked about scope. This is the concept that variables declared in a function or inner block of

code only have scope (that is, can be seen or used) in that function or block. Using only the C++

knowledge we have currently can cause a problem. What do we do if we need to work on a few

complex objects that are needed in the main function? This could imply that all the code must

be in the main function.

In this chapter, we will explore C++ references, which allow us to work on variables and objects

that are otherwise out of scope. In addition to this, these references will help us avoid having to

pass large objects between functions, which is a slow process. It is slow because each time we do

this, a copy of the variable or object must be made.

Armed with this new knowledge of references, we will look at the SFML VertexArray class, which

allows us to build up a large image that can be quickly and efficiently drawn to the screen using

multiple parts in a single image file. By the end of this chapter, we will have a scalable, random,

scrolling background that’s been made using references and a VertexArray object.

In this chapter, we will discuss the following topics:

•	 Understanding C++ references

•	 SFML vertex arrays and sprite sheets

•	 Creating a randomly generated scrolling background

•	 Using the background

C++ References, Sprite Sheets, and Vertex Arrays264

Understanding C++ references
When we pass values to a function or return values from a function, that is exactly what we are

doing – passing/returning by value. What happens is that a copy of the value held by the variable

is made and then sent to the function, where it is used.

The significance of this is twofold:

1.	 If we want the function to make a permanent change to a variable, this system is no good

to us.

2.	 When a copy is made to pass in as an argument or returned from the function, processing

power and memory are consumed. For a simple int, or even perhaps a Sprite, this is in-

significant. However, for a complex object, perhaps an entire game world (or background),

the copying process will seriously affect our game’s performance.

References are the solution to these two problems. A reference is a special type of variable. A

reference refers to another variable. Here is an example to help you understand this better:

int numZombies = 100;

int& rNumZombies = numZombies;

In the preceding code, we declare and initialize a regular int called numZombies. We then declare

and initialize an int reference called rNumZombies. The reference operator, &, which follows the

type, determines that a reference is being declared.

Now, we have an int variable called numZombies, which stores the 100 value, and an int reference

called rNumZombies, which refers to numZombies.

Anything we do to numZombies can be seen through rNumZombies, and anything we do to

rNumZombies, we are actually doing to numZombies. Take a look at the following code:

int score = 10;

int& rScore = score;

score ++;

rScore ++;

The r prefix at the front of the reference name is optional but is useful for remem-

bering that we are dealing with a reference.

Chapter 9 265

In the previous code, we declare an int called score. Next, we declare an int reference called

rScore that refers to score. Remember that anything we do to score can be seen by rScore and

anything we do to rScore is being done to score.

Therefore, consider what happens when we increment score like this:

score ++;

The score variable now stores the 11 value. In addition to this, if we were to output rScore, it

would also output 11. The next line of code is as follows:

rScore ++;

Now, score actually holds the 12 value because anything we do to rScore is done to score.

For now, it is much more important to talk about the why of references. There are two reasons to

use references, and we have already mentioned them. Here they are, summarized again:

1.	 Changing/reading the value of a variable/object in another function, which is otherwise

out of scope.

2.	 Passing/returning to/from a function without making a copy (and, therefore, more effi-

ciently).

Study the following code and then we will discuss it:

void add(int n1, int n2, int a);

void referenceAdd(int n1, int n2, int& a);

int main()

{

 int number1 = 2;

 int number2 = 2;

 int answer = 0;

 add(number1, number2, answer);

 // answer equals zero because it is passed as a copy

If you want to know how this works, then more will be revealed in the next chapter

when we discuss pointers. Simply put, you can consider a reference as storing a

place/address in the computer’s memory. That place in memory is the same place

where the variable it refers to stores its value. Therefore, an operation on either the

reference or the variable has exactly the same effect.

C++ References, Sprite Sheets, and Vertex Arrays266

 // Nothing happens to answer in the scope of main

 referenceAdd(number1, number2, answer);

 // Now answer is 4 because it was passed by reference

 // When the referenceAdd function did this:

 // answer = num1 + num 2;

 // It is actually changing the value stored by answer

 return 0;

}

// Here are the two function definitions

// They are exactly the same except that

// the second passes a reference to a

void add(int n1, int n2, int a)

{

 a = n1 + n2;

 // a now equals 4

 // But when the function returns a is lost forever

}

void referenceAdd(int n1, int n2, int& a)

{

 a = n1 + n2;

 // a now equals 4

 // But a is a reference!

 // So, it is answer, back in main, that equals 4

}

The previous code begins with the prototypes of two functions: add and referenceAdd. The add

function takes three int variables, while the referenceAdd function takes two int variables and

an int reference.

When the add function is called and the number1, number2, and answer variables are passed in, a

copy of the values is made and new variables local to add (that is, n1, n2, and a) are manipulated.

As a result of this, the answer, back in main, remains at zero.

Chapter 9 267

When the referenceAdd function is called, number1 and number2 are again passed by value. How-

ever, answer is passed by reference. When the value of n1 that’s added to n2 is assigned to the ref-

erence, a, what is really happening is that the value is assigned to answer back in the main function.

It is probably obvious that we would never need to use a reference for something this simple. It

does, however, demonstrate the mechanics of passing by reference.

Now, let’s summarize what we know about references.

Summarizing references
The previous code demonstrated how a reference can be used to alter the value of a variable in

one scope using code in another. As well as being extremely convenient, passing by reference is

also very efficient because no copy is made. Our example, which is using a reference to an int, is a

bit ambiguous because, as an int is so small, there is no real efficiency gain. Later in this chapter,

we will use a reference to pass an entire level layout and the efficiency gain will be significant.

This is largely irrelevant for an int, but potentially significant for a large object of a class. We

will use this exact technique when we implement the scrolling background of the Zombie Arena

game later in this chapter.

Next, we will learn about vertex arrays and sprite sheets.

SFML vertex arrays and sprite sheets
We are nearly ready to implement the scrolling background. We just need to learn about SFML

vertex arrays and sprite sheets.

There is one “gotcha” with references! You must assign the reference to a variable

at the time you create it. This means it is not completely flexible. Don’t worry about

this for now. We will explore references further alongside their more flexible (and

slightly more complicated) relations, such as pointers, in the next chapter.

C++ References, Sprite Sheets, and Vertex Arrays268

What is a sprite sheet?
A sprite sheet is a set of images, either frames of animation or individual graphics, contained in

one image file. Take a closer look at this sprite sheet, which contains four separate images that

will be used to draw the background in our Zombie Arena game:

Figure 9.1: Sprite sheet

SFML allows us to load a sprite sheet as a regular texture, in the same way we have done for every

texture in this book so far. When we load multiple images as a single texture, the GPU can handle

it much more efficiently.

Chapter 9 269

What we need to do when we draw an image from the sprite sheet is make sure we refer to the

precise pixel coordinates of the part of the sprite sheet we require, like so:

Figure 9.2: Pixel coordinates of the sprite sheet

A modern PC could handle these four textures without using a sprite sheet. It is

worth learning these techniques, however, as our games are going to start getting

progressively more demanding on our hardware.

You could also refer to the sprite sheet as a texture atlas. Typically, the difference be-

tween a sprite sheet and a texture atlas is that a sprite sheet usually contains multiple

frames for one “thing,” like a character or a background, and the frames are usually

packed uniformly – like ours. A texture atlas, on the other hand, usually consists of

textures for multiple things, perhaps a whole level or even an entire game, and is

likely to be less uniformly arranged and contain textures of different sizes. Further-

more, a texture atlas will often be accompanied by a text file of data describing the

names, locations, and sizes of the individual textures. The game would use this text

file to access the images it needs. Regardless of what you call the graphics file with

multiple images in it, having multiple images in a single file speeds up loading and

accessing them during gameplay.

C++ References, Sprite Sheets, and Vertex Arrays270

The previous diagram labels each part/tile with the coordinates and their position within the sprite

sheet. These coordinates are called texture coordinates. We will use these texture coordinates in

our code to draw just the right parts that we require.

What is a vertex array?
First, we need to ask: what is a vertex? A vertex is a single graphical point, that is, a coordinate.

This point is defined by a horizontal and vertical position. The plural of vertex is vertices. A vertex

array is a whole collection of vertices.

In SFML, each vertex in a vertex array also has a color and a related additional vertex (that is, a

pair of coordinates) called texture coordinates. Texture coordinates are the position of the image

we want to use in terms of a sprite sheet. Later, we will see how we can position graphics and

choose a part of the sprite sheet to display at each position, all with a single vertex array.

The SFML VertexArray class can hold different types of vertex sets. But each VertexArray should

only hold one type of set. We use the type of set that suits the occasion.

Common scenarios in video games include, but are not limited to, the following primitive types:

•	 Point: A single vertex per point.

•	 Line: Two vertices per set that define the start and end point of the line.

•	 Triangle: Three vertices per point. This is the most commonly used (in the thousands) for

complex 3D models, or in pairs to create a simple rectangle such as a sprite.

•	 Quad: Four vertices per set. This is a convenient way to map rectangular areas from a

sprite sheet.

We will use quads in this project because they are just what we need for rectangular sprites.

Building a background from tiles
The Zombie Arena background will be made up of a random arrangement of square images. You

can think of this arrangement like tiles on a floor.

In this project, we will be using vertex arrays with quad sets. Each vertex will be part of a set of

four (that is, a quad). Each vertex will define one corner of a tile from our background, while each

texture coordinate will hold an appropriate value based on a specific image from the sprite sheet.

Let’s look at some code to get us started. This isn’t the exact code we will use in the project, but

it is close enough and allows us to study vertex arrays before we move on to the actual imple-

mentation we will use.

Chapter 9 271

Building a vertex array
As we do when we create an instance of a class, we declare our new object. The following code

declares a new object of the VertexArray type, which we will call background:

// Create a vertex array

VertexArray background;

We want to let our instance of VertexArray know which type of primitive we will be using. Re-

member that points, lines, triangles, and quads all have a different number of vertices. By setting

the VertexArray instance to hold a specific type, it will be possible to know the start of each

primitive. In our case, we want quads. Here is the code that will do this:

// What primitive type are we using

background.setPrimitiveType(Quads);

As with regular C++ arrays, a VertexArray instance needs to be set to a particular size. The

VertexArray class is more flexible than a regular array. It allows us to change its size while the

game is running. The size could be configured at the same time as the declaration, but our back-

ground needs to expand with each wave. The VertexArray class provides this functionality with

the resize function. Here is the code that would set the size of our arena to a 10 by 10 tile size:

// Set the size of the vertex array

background.resize(10 * 10 * 4);

In the previous line of code, the first 10 is the width, the second 10 is the height, and 4 is the num-

ber of vertices in a quad. We could have just passed in 400, but showing the calculation like this

makes it clear what we are doing. When we code the project for real, we will go a step further to

aid clarity and declare variables for each part of the calculation.

We now have a VertexArray instance ready to have its hundreds of vertices configured. Here is

how we set the position coordinates on the first four vertices (that is, the first quad):

// Position each vertex in the current quad

background[0].position = Vector2f(0, 0);

background[1].position = Vector2f(49, 0);

background[2].position = Vector2f(49,49);

background[3].position = Vector2f(0, 49);

Here is how we set the texture coordinates of these same vertices to the first image in the sprite

sheet.

C++ References, Sprite Sheets, and Vertex Arrays272

These coordinates in the image file are from 0,0 (in the top-left corner) to 49,49 (in the bot-

tom-right corner):

// Set the texture coordinates of each vertex

background[0].texCoords = Vector2f(0, 0);

background[1].texCoords = Vector2f(49, 0);

background[2].texCoords = Vector2f(49, 49);

background[3].texCoords = Vector2f(0, 49);

If we wanted to set the texture coordinates to the second image in the sprite sheet, we would

have written the code like this:

// Set the texture coordinates of each vertex

background[0].texCoords = Vector2f(0, 50);

background[1].texCoords = Vector2f(49, 50);

background[2].texCoords = Vector2f(49, 99);

background[3].texCoords = Vector2f(0, 99);

Of course, if we define each and every vertex like this individually, then we are going to be spend-

ing a long time configuring even a simple 10 by 10 arena.

When we implement our background for real, we will devise a set of nested for loops that loop

through each quad, pick a random background image, and assign the appropriate texture coor-

dinates.

The code will need to be quite smart. It will need to know when it is an edge tile so that it can use

the wall image from the sprite sheet. It will also need to use appropriate variables that know the

position of each background tile in the sprite sheet, as well as the overall size of the required arena.

We will make this complexity manageable by putting all the code in both a separate function and

a separate file. We will make the VertexArray instance usable in main by using a C++ reference.

We will examine these details later. You may have noticed that at no point have we associated a

texture (the sprite sheet with the vertex array). Let’s see how to do that now.

Using the vertex array to draw
Now that we have prepared the vertices and texture coordinates, we are ready to draw to the

screen. We can load the sprite sheet as a texture in the same way that we load any other texture,

as shown in the following code:

// Load the texture for our background vertex array

Chapter 9 273

Texture textureBackground;

textureBackground.loadFromFile("graphics/background_sheet.png");

We can then draw the entire VertexArray with one call to draw:

// Draw the background

window.draw(background, &textureBackground);

The previous code is much more efficient than drawing every tile as an individual sprite.

We are now able to use our knowledge of references and vertex arrays to implement the next stage

of the Zombie Arena project, which is the randomly generated scrolling background.

Creating a randomly generated scrolling background
In this section, we will create a function that makes a background in a separate file. We will ensure

the background will be available (in scope) to the main function by using a vertex array reference.

As we will be writing other functions that share data with the main function, we will write them

all in their own .cpp files. We will provide prototypes for these functions in a new header file that

we will include (with an #include directive) in ZombieArena.cpp.

To achieve this, let’s make a new header file called ZombieArena.h. We are now ready to code the

header file for our new function.

In this new ZombieArena.h header file, add the following highlighted code, including the func-

tion prototype:

#pragma once

#include <SFML/Graphics.hpp>

using namespace sf;

int createBackground(VertexArray& rVA, IntRect arena);

The previous code allows us to write the definition of a function called createBackground. To

match the prototype, the function definition must return an int value, and receive a VertexArray

reference and an IntRect object as parameters.

Before we move on, notice the slightly odd-looking & notation before the

textureBackground code. Your immediate thought might be that this has some-

thing to do with references. What is going on here is we are passing the memory

address of the Texture instance instead of the actual Texture instance. We will

learn more about this in the next chapter.

C++ References, Sprite Sheets, and Vertex Arrays274

Now, we can create a new .cpp file in which we will code the function definition. Create a new

file called CreateBackground.cpp. We are now ready to code the function definition that will

create our background.

Add the following code to the CreateBackground.cpp file, and then we will review it:

#include "ZombieArena.h"

int createBackground(VertexArray& rVA, IntRect arena)

{

 // Anything we do to rVA we are really doing

 // to background (in the main function)

 // How big is each tile/texture

 const int TILE_SIZE = 50;

 const int TILE_TYPES = 3;

 const int VERTS_IN_QUAD = 4;

 int worldWidth = arena.width / TILE_SIZE;

 int worldHeight = arena.height / TILE_SIZE;

 // What type of primitive are we using?

 rVA.setPrimitiveType(Quads);

 // Set the size of the vertex array

 rVA.resize(worldWidth * worldHeight * VERTS_IN_QUAD);

 // Start at the beginning of the vertex array

 int currentVertex = 0;

 return TILE_SIZE;

}

In the previous code, we write the function signature as well as the opening and closing curly

brackets that mark the function body.

Within the function body, we declare and initialize three new int constants to hold values that

we will need to refer to throughout the rest of the function. They are TILE_SIZE, TILE_TYPES and

VERTS_IN_QUAD.

The TILE_SIZE constant refers to the size in pixels of each tile within the sprite sheet. The TILE_

TYPES constant refers to the number of different tiles within the sprite sheet. We could add more

tiles to our sprite sheet and change TILE_TYPES to match the change, and the code we are about

to write would still work. VERTS_IN_QUAD refers to the fact that there are four vertices in every

quad. It is less error prone to use this constant compared to always typing the number 4, which

is less clear.

Chapter 9 275

We then declare and initialize two int variables: worldWidth and worldHeight. These variables

might appear obvious as to their use. They are betrayed by their names, but it is worth pointing

out that they refer to the width and height of the world in the number of tiles, not pixels. The

worldWidth and worldHeight variables are initialized by dividing the height and width of the

passed-in arena by the TILE_SIZE constant.

Next, we get to use our reference for the first time. Remember that anything we do to rVA, we are

really doing to the variable that was passed in, which is in scope in the main function (or will be

when we code it).

Then, we prepare the vertex array to use quads using rVA.setType and then we make it just the

right size by calling rVA.resize. To the resize function, we pass in the result of worldWidth *

worldHeight * VERTS_IN_QUAD, which equates to the exact number of vertices that our vertex

array will have when we are done preparing it.

The last line of code declares and initializes currentVertex to zero. We will use currentVertex

as we loop through the vertex array, initializing all the vertices.

We can now write the first part of a nested for loop that will prepare the vertex array. Add the

following highlighted code and, based on what we have learned about vertex arrays, try and

work out what it does:

 // Start at the beginning of the vertex array

 int currentVertex = 0;

 for (int w = 0; w < worldWidth; w++)

 {

 for (int h = 0; h < worldHeight; h++)

 {

 // Position each vertex in the current quad

 rVA[currentVertex + 0].position =

 Vector2f(w * TILE_SIZE, h * TILE_SIZE);

 rVA[currentVertex + 1].position =

 Vector2f((w * TILE_SIZE) + TILE_SIZE, h * TILE_SIZE);

 rVA[currentVertex + 2].position =

 Vector2f((w * TILE_SIZE) + TILE_SIZE, (h * TILE_SIZE)

 + TILE_SIZE);

C++ References, Sprite Sheets, and Vertex Arrays276

 rVA[currentVertex + 3].position =

 Vector2f((w * TILE_SIZE), (h * TILE_SIZE)

 + TILE_SIZE);

 // Position ready for the next four vertices

 currentVertex = currentVertex + VERTS_IN_QUAD;

 }

 }

 return TILE_SIZE;

}

The code that we just added steps through the vertex array by using a nested for loop, which

first steps through the first four vertices: currentVertex + 1, currentVertex + 2, and so on.

We access each vertex in the array using the array notation, rvA[currentVertex + 0].., and so on.

Using the array notation, we call the position function, rvA[currentVertex + 0].position....

To the position function, we pass the horizontal and vertical coordinates of each vertex. We can

work these coordinates out programmatically by using a combination of w, h, and TILE_SIZE.

At the end of the previous code, we position currentVertex, ready for the next pass through

the nested for loop by advancing it four places (that is, adding four) with the code, that is,

currentVertex = currentVertex + VERTS_IN_QUAD.

Of course, all this does is set the coordinates of our vertices; it doesn’t assign a texture coordinate

from the sprite sheet. This is what we will do next.

To make it absolutely clear where the new code goes, I have shown it in context, along with all

the code that we wrote a moment ago. Add and study the following highlighted code:

for (int w = 0; w < worldWidth; w++)

 {

 for (int h = 0; h < worldHeight; h++)

 {

 // Position each vertex in the current quad

 rVA[currentVertex + 0].position =

 Vector2f(w * TILE_SIZE, h * TILE_SIZE);

 rVA[currentVertex + 1].position =

 Vector2f((w * TILE_SIZE) + TILE_SIZE, h * TILE_SIZE);

Chapter 9 277

 rVA[currentVertex + 2].position =

 Vector2f((w * TILE_SIZE) + TILE_SIZE, (h * TILE_SIZE)

 + TILE_SIZE);

 rVA[currentVertex + 3].position =

 Vector2f((w * TILE_SIZE), (h * TILE_SIZE)

 + TILE_SIZE);

 // Define the position in the Texture for current quad

 // Either grass, stone, bush or wall

 if (h == 0 || h == worldHeight-1 ||

 w == 0 || w == worldWidth-1)

 {

 // Use the wall texture

 rVA[currentVertex + 0].texCoords =

 Vector2f(0, 0 + TILE_TYPES * TILE_SIZE);

 rVA[currentVertex + 1].texCoords =

 Vector2f(TILE_SIZE, 0 +

 TILE_TYPES * TILE_SIZE);

 rVA[currentVertex + 2].texCoords =

 Vector2f(TILE_SIZE, TILE_SIZE +

 TILE_TYPES * TILE_SIZE);

 rVA[currentVertex + 3].texCoords =

 Vector2f(0, TILE_SIZE +

 TILE_TYPES * TILE_SIZE);

 }

 // Position ready for the next for vertices

 currentVertex = currentVertex + VERTS_IN_QUAD;

 }

 }

 return TILE_SIZE;

}

C++ References, Sprite Sheets, and Vertex Arrays278

The preceding highlighted code sets up the coordinates within the sprite sheet that each vertex

is related to. Notice the somewhat long if condition. The condition checks whether the current

quad is either one of the very first or the very last quads in the arena. If it is (one of the first or last),

then this means it is part of the boundary. We can then use a simple formula using TILE_SIZE

and TILE_TYPES to target the wall texture from the sprite sheet.

The array notation and the texCoords member are initialized for each vertex, in turn, to assign

the appropriate corner of the wall texture within the sprite sheet.

The following code is wrapped in an else block. This means that it will run through the nested

for loop each time the quad does not represent a border/wall tile. Add the following highlighted

code among the existing code, and then we will examine it:

 // Define position in Texture for current quad

 // Either grass, stone, bush or wall

 if (h == 0 || h == worldHeight-1 ||

 w == 0 || w == worldWidth-1)

 {

 // Use the wall texture

 rVA[currentVertex + 0].texCoords =

 Vector2f(0, 0 + TILE_TYPES * TILE_SIZE);

 rVA[currentVertex + 1].texCoords =

 Vector2f(TILE_SIZE, 0 +

 TILE_TYPES * TILE_SIZE);

 rVA[currentVertex + 2].texCoords =

 Vector2f(TILE_SIZE, TILE_SIZE +

 TILE_TYPES * TILE_SIZE);

 rVA[currentVertex + 3].texCoords =

 Vector2f(0, TILE_SIZE +

 TILE_TYPES * TILE_SIZE);

 }

 else

 {

 // Use a random floor texture

 srand((int)time(0) + h * w - h);

Chapter 9 279

 int mOrG = (rand() % TILE_TYPES);

 int verticalOffset = mOrG * TILE_SIZE;

 rVA[currentVertex + 0].texCoords =

 Vector2f(0, 0 + verticalOffset);

 rVA[currentVertex + 1].texCoords =

 Vector2f(TILE_SIZE, 0 + verticalOffset);

 rVA[currentVertex + 2].texCoords =

 Vector2f(TILE_SIZE, TILE_SIZE + verticalOffset);

 rVA[currentVertex + 3].texCoords =

 Vector2f(0, TILE_SIZE + verticalOffset);

 }

 // Position ready for the next for vertices

 currentVertex = currentVertex + VERTS_IN_QUAD;

 }

 }

 return TILE_SIZE;

}

The preceding highlighted code starts by seeding the random number generator with a formula

that will be different in each pass through the loop. Then, the mOrG variable is initialized with a

number between 0 and TILE_TYPES. This is just what we need to pick one of the tile types randomly.

Now, we declare and initialize a variable called verticalOffset by multiplying mOrG by TileSize.

We now have a vertical reference point within the sprite sheet to the starting height of the ran-

domly chosen texture for the current quad.

Now, we use a simple formula involving TILE_SIZE and verticalOffset to assign the precise

coordinates of each corner of the texture to the appropriate vertex.

We can now put our new function to work in the game engine.

mOrG stands for “mud or grass.” The name is arbitrary.

C++ References, Sprite Sheets, and Vertex Arrays280

Using the background
We have done the tricky stuff already, so this will be simple. There are three steps, as follows:

1.	 Create a VertexArray.

2.	 Initialize it after leveling up each wave.

3.	 Draw it in each frame.

Before we add the new code, the ZombieArena.cpp file needs to know about the new ZombieArena.h

file. Add the following include directive to the top of the ZombieArena.cpp file:

#include "ZombieArena.h"

Now, add the following highlighted code to declare a VertexArray instance called background

and load the background_sheet.png file as a texture:

// Create an instance of the Player class

Player player;

// The boundaries of the arena

IntRect arena;

// Create the background

VertexArray background;

// Load the texture for our background vertex array

Texture textureBackground;

textureBackground.loadFromFile("graphics/background_sheet.png");

// The main game loop

while (window.isOpen())

Add the following code to call the createBackground function, passing in background as a ref-

erence and arena by value. Notice that, in the highlighted code, we have also modified the way

that we initialize the tileSize variable. Add the highlighted code exactly as shown:

if (state == State::PLAYING)

{

 // Prepare the level

 // We will modify the next two lines later

 arena.width = 500;

 arena.height = 500;

 arena.left = 0;

 arena.top = 0;

Chapter 9 281

 // Pass the vertex array by reference

 // to the createBackground function

 int tileSize = createBackground(background, arena);

 // We will modify this line of code later

 // int tileSize = 50;

 // Spawn the player in the middle of the arena

 player.spawn(arena, resolution, tileSize);

 // Reset the clock so there isn't a frame jump

 clock.restart();

}

Note that we have replaced the int tileSize = 50 lines of code because we get the value directly

from the return value of the createBackground function.

Finally, it is time to do the drawing. This is really simple. All we do is call window.draw and pass

the VertexArray instance, along with the textureBackground texture’s memory address:

/*

 Draw the scene

 */

if (state == State::PLAYING)

{

 window.clear();

 // Set the mainView to be displayed in the window

 // And draw everything related to it

 window.setView(mainView);

 // Draw the background

 window.draw(background, &textureBackground);

 // Draw the player

 window.draw(player.getSprite());

}

For the sake of future code clarity, you should delete the int tileSize = 50 lines

of code and its related comment. I just commented it out to give the new code a

clearer context.

C++ References, Sprite Sheets, and Vertex Arrays282

You can now run the game. You will see the following output. Remember to press Enter and select

a number key to get past our temporarily invisible menu:

Figure 9.3: Using the background

If you are wondering what is going on with the odd-looking & sign in front of

textureBackground, then all will be made clear in the next chapter.

Chapter 9 283

Here, note how the player’s sprite glides and rotates smoothly within the arena’s confines. Al-

though the current code in the main function draws a small arena, the CreateBackground function

can create an arena of any size. We will see arenas bigger than the screen in Chapter 14, Sound

Effects, File I/O, and Finishing the Game.

Summary
In this chapter, we discovered C++ references, which are special variables that act as aliases for

other variables. When we pass a variable by reference instead of by value, then anything we do

on the reference happens to the variable back in the calling function.

We also learned about vertex arrays and created a vertex array full of quads to draw the tiles from

a sprite sheet as a background.

The elephant in the room, of course, is that our zombie game doesn’t have any zombies. We’ll fix

that in the next chapter by learning about C++ pointers and the Standard Template Library (STL).

Frequently asked questions
Here are some questions that might be on your mind:

Q) Can you summarize these references again?

A) You must initialize a reference immediately, and it cannot be changed to reference another

variable. Use references with functions so you are not working on a copy. This is good for effi-

ciency because it avoids making copies and helps us abstract our code into functions more easily.

Q) Is there an easy way to remember the main benefit of using references?

A) To help you remember what a reference is used for, consider this short rhyme:

 Moving large objects can make our games choppy,

 passing by reference is faster than copy.

10
Pointers, the Standard
Template Library, and Texture
Management

We will be learning a lot as well as getting plenty done in terms of the game in this chapter. We

will first learn about the fundamental C++ topic of pointers. Pointers are variables that hold a

memory address. Typically, a pointer will hold the memory address of another variable. This

sounds a bit like a reference, but we will see how they are much more powerful and use a pointer

to handle an ever-expanding horde of zombies.

We will also learn about the Standard Template Library (STL), which is a collection of classes

that allow us to quickly and easily implement common data management techniques.

In this chapter, we will cover the following topics:

•	 Learning about pointers

•	 Learning about the Standard Template Library

Learning about pointers
Pointers can be the cause of frustration while learning to code C++. However, the concept is simple.

A pointer is a variable that holds a memory address.

Pointers, the Standard Template Library, and Texture Management286

That’s it! There’s nothing to be concerned about. What probably causes frustration for beginners

is the syntax—the code we use to handle pointers. We will step through each part of the code

for using pointers. You can then begin the ongoing process of mastering them. Later, in the final

project, we will learn about smart pointers, which in some ways simplify what we are about to

learn but are less flexible.

Rarely do I suggest that memorizing facts, figures, or syntax is the best way to learn. However,

memorizing the brief but crucial syntax related to pointers might be worthwhile. This will ensure

that the information sinks so deep into our brains that we can never forget it. We can then talk

about why we would need pointers at all and examine their relationship to references. A pointer

analogy might help:

In the previous chapter, while discussing references, we learned that when we pass values to, or

return values from, a function, we are actually making a completely new variable type, but it’s

exactly the same as the previous one. We are making a copy of the value that’s passed to or from

a function.

At this point, pointers are probably starting to sound a bit like references. That’s because they

are a bit like references. Pointers, however, are much more flexible and powerful and have their

own special and unique uses. These special and unique uses require a special and unique syntax.

Let’s look at that first.

Pointer syntax
There are two main operators associated with pointers. The first is the address of operator:

&

The second is the dereference operator:

*

In this section, we will actually learn more about pointers than we need to for this

project. In the next project, we will make greater use of pointers. Despite this, we

will only scratch the surface of this topic.

If a variable type is a house and its contents are the value it holds, then a pointer is

the address of the house.

Chapter 10 287

We will now look at the different ways in which we can use these operators with pointers.

The first thing you will notice is that the address of the operator is the same as the reference

operator. To add to the woes of an aspiring C++ game programmer, the operators do different

things in different contexts. Knowing this from the outset is valuable. If you are staring at some

code involving pointers and it seems like you are going mad, know this:

You are perfectly sane! You just need to look at the detail of the context.

Now, you know that if something isn’t clear and immediately obvious, it is not your fault. Point-

ers are not clear and immediately obvious, but looking carefully at the context will reveal what

is going on.

Armed with the knowledge that you need to pay more attention to pointers than to previous

syntax, as well as what the two operators are (address of and dereference), we can now start to

look at some real pointer code.

Declaring a pointer
To declare a new pointer, we use the dereference operator, along with the type of variable the

pointer will be holding the address of. Take a look at the following code before we talk about

pointers some more:

// Declare a pointer to hold

// the address of a variable of type int

int* pHealth;

The preceding code declares a new pointer called pHealth that can hold the address of a variable

of the int type. Notice I said can hold a variable of the int type. Like other variables, a pointer

also needs to be initialized with a value to make proper use of it.

The name pHealth, just like other variables, is arbitrary.

Make sure you have memorized the two operators before proceeding.

Pointers, the Standard Template Library, and Texture Management288

The white space that’s used around the dereference operator is optional because C++ rarely cares

about spaces in syntax. However, it’s recommended because it aids readability. Look at the fol-

lowing three lines of code that all do the same thing.

We have just seen the following format in the previous example, with the dereference operator

next to the type:

int* pHealth;

The following code shows white space on either side of the dereference operator:

int * pHealth;

The following code shows the dereference operator next to the name of the pointer:

int *pHealth;

It is worth being aware of these possibilities so that when you read code, perhaps on the web,

you will understand they are all the same. In this book, we will always use the first option with

the dereference operator next to the type.

Just like a regular variable can only successfully contain data of the appropriate type, a pointer

should only hold the address of a variable of the appropriate type.

A pointer to the int type should not hold the address of a String, Zombie, Player, Sprite, float,

or any other type, except int.

Let’s see how we can initialize our pointers.

Initializing a pointer
Next, we will see how we can get the address of a variable into a pointer. Take a look at the fol-

lowing code:

// A regular int variable called health

int health = 5;

// Declare a pointer to hold the address of

// a variable of type int

int* pHealth;

It is common practice to prefix the names of variables that are pointers with a p. It

is then much easier to remember when we are dealing with a pointer and can then

distinguish them from regular variables.

Chapter 10 289

// Initialize pHealth to hold the address of health,

// using the "address of" operator

pHealth = &health;

In the previous code, we declare an int variable called health and initialize it to 5. It makes

sense, although we have never discussed it before, that this variable must be somewhere in our

computer’s memory. It must have a memory address.

We can access this address using the address of operator. Look closely at the last line of the pre-

vious code. We initialize pHealth with the address of health, like this:

 pHealth = &health;

Our pHealth pointer now holds the address of the regular int, health.

We can use pHealth by passing it to a function so that the function can work on health, just like

we did with references.

There would be no reason for pointers if that was all we were going to do with them, so let’s take

a look at reinitializing them.

Reinitializing pointers
A pointer, unlike a reference, can be reinitialized to point to a different address. Look at the fol-

lowing code:

// A regular int variable called health

int health = 5;

int score = 0;

// Declare a pointer to hold the address

// of a variable of type int

int* pHealth;

// Initialize pHealth to hold the address of health

pHealth = &health;

// Re-initialize pHealth to hold the address of score

pHealth = &score;

In C++ terminology, we say that pHealth points to health.

Pointers, the Standard Template Library, and Texture Management290

Now, pHealth points to the int variable, score.

Of course, the name of our pointer, pHealth, is now ambiguous and should perhaps have been

called pIntPointer. The key thing to understand here is that we can do this reassignment.

At this stage, we haven’t actually used a pointer for anything other than simply pointing (holding

a memory address). Let’s see how we can access the value stored at the address that’s pointed to

by a pointer. This will make them genuinely useful.

Dereferencing a pointer
We know that a pointer holds an address in memory. If we were to output this address in our

game, perhaps in our HUD, after it has been declared and initialized, it might look something

like this: 9876.

It is just a value – a value that represents an address in memory. On different operating systems

and hardware types, the range of these values will vary. In the context of this book, we never

need to manipulate an address directly. We only care about what the value stored at the address

that is pointed to is.

The actual addresses used by variables are determined when the game is executed (at runtime)

and so there is no way of knowing the address of a variable and hence the value stored in a pointer

while we are coding the game.

We can access the value stored at the address that’s pointed to by a pointer by using the deref-

erence operator:

*

Yes, this is the exact same symbol we use to declare our pointers. Context is important. The fol-

lowing code manipulates some variables directly and by using a pointer. Try and follow along

and then we will go through it:

// Some regular int variables

int score = 0;

int hiScore = 10;

Warning! The code that follows is pointless (pun intended). It just demonstrates

using pointers.

Chapter 10 291

// Declare 2 pointers to hold the addresses of int

int* pIntPointer1;

int* pIntPointer2;

// Initialize pIntPointer1 to hold the address of score

pIntPointer1 = &score;

// Initialize pIntPointer2 to hold the address of hiScore

pIntPointer2 = &hiScore;

// Add 10 to score directly

score += 10;

// Score now equals 10

// Add 10 to score using pIntPointer1

*pIntPointer1 += 10;

// score now equals 20. A new high score

// Assign the new hi score to hiScore using only pointers

*pIntPointer2 = *pIntPointer1;

// hiScore and score both equal 20

In the previous code, we declare two int variables, score and hiScore. We then initialize them

with the values 0 and 10, respectively. Next, we declare two pointers to int. These are pIntPointer1

and pIntPointer2. We initialize them in the same step as declaring them to hold the addresses

of (point to) the score and hiScore variables, respectively.

Following on, we add 10 to score in the usual way, score += 10. Then, we can see that by using

the dereference operator on a pointer, we can access the value stored at the address they point to.

The following code changed the value stored by the variable that’s pointed to by pIntPointer1:

// Add 10 to score using pIntPointer1

*pIntPointer1 += 10;

// score now equals 20, A new high score

The last part of the preceding code dereferences both pointers to assign the value that’s pointed

to by pIntPointer1 as the value that’s pointed to by pIntPointer2:

// Assign the new hi-score to hiScore with only pointers

*pIntPointer2 = *pIntPointer1;

// hiScore and score both equal 20

Both score and hiScore are now equal to 20.

Pointers, the Standard Template Library, and Texture Management292

Pointers are versatile and powerful
We can do so much more with pointers. Here are just a few useful things we can do.

Dynamically allocated memory
All the pointers we have seen so far point to memory addresses that have a scope limited only to

the function they are created in. So, if we declare and initialize a pointer to a local variable, when

the function returns, the pointer, the local variable, and the memory address will be gone. They

are out of scope.

Up until now, we have been using a fixed amount of memory that is decided in advance of the

game being executed. Furthermore, the memory we have been using is controlled by the operating

system, and variables are lost and created as we call and return from functions. What we need is

a way to use memory that is always in scope until we are finished with it. We want to have access

to memory we can call our own and take responsibility for.

When we declare variables (including pointers), they are in an area of memory known as the

stack. We discussed how the stack works by adding and removing functions and their related

parameters and local variables in Chapter 4. There is another area of memory that, although

allocated and controlled by the operating system, can be allocated at runtime. This other area of

memory is called the heap.

This gives us great power. With access to memory that is only limited by the resources of the

computer our game is running on, we can plan games with huge amounts of objects. In our case,

we want a vast horde of zombies. As Spiderman’s uncle wouldn’t hesitate to remind us, however,

“with great power comes great responsibility.”

Let’s look at how we can use pointers to take advantage of the memory on the heap and how we

can release that memory back to the operating system when we are finished with it.

To create a pointer that points to a value on the heap, we need a pointer:

int* pToInt = nullptr;

Memory on the heap does not have scope to a specific function. Returning from a

function does not delete the memory on the heap.

Chapter 10 293

In the previous line of code, we declare a pointer in the same way we have seen before, but since

we are not initializing it to point to a variable, we initialize it to nullptr. We do this because it

is good practice. Consider dereferencing a pointer (changing a value at the address it points to)

when you don’t even know what it is pointing to. It would be the programming equivalent of

going to the shooting range, blindfolding someone, spinning them around, and telling them to

shoot. By pointing a pointer to nothing (nullptr), we can’t do any harm with it.

When we are ready to request memory on the heap, we use the new keyword, as shown in the

following line of code:

pToInt = new int;

pToInt now holds the memory address of space on the heap that is just the right size to hold an

int value.

It is unlikely that we would ever run out of memory by occasionally taking int-sized chunks of

the heap. But if our program has a function or loop that requests memory and this function or

loop is executed regularly throughout the game, eventually the game will slow and then crash.

Furthermore, if we allocate lots of objects on the heap and don’t manage them correctly, then

this situation can happen quite quickly.

The following line of code hands back (deletes) the memory on the heap that was previously

pointed to by pToInt:

delete pToInt;

Now, the memory that was previously pointed to by pToInt is no longer ours to do what we like

with; we must take precautions. Although the memory has been handed back to the operating

system, pToInt still holds the address of this memory, which no longer belongs to us.

The following line of code ensures that pToInt can’t be used to attempt to manipulate or access

this memory:

pToInt = nullptr;

Any allocated memory is returned when the program ends. It is, however, important

to realize that this memory will never be freed (within the execution of our game)

unless we free it. If we continue to take memory from the heap without giving it

back, eventually it will run out and the game will crash.

Pointers, the Standard Template Library, and Texture Management294

Now, we can declare pointers and point them to newly allocated memory on the heap. We can ma-

nipulate and access the memory they point to by dereferencing them. We can also return memory

to the heap when we are done with it, and we also know how to avoid having a dangling pointer.

Let’s look at some more advantages of pointers.

Passing a pointer to a function
In order to pass a pointer to a function, we need to write a function that has a pointer in the

prototype, like in the following code:

void myFunction(int *pInt)

{

 // Dereference and increment the value stored

 // at the address pointed to by the pointer

 *pInt ++

 return;

}

The preceding function simply dereferences the pointer and adds 1 to the value stored at the

pointed-to address.

Now, we can use that function and pass the address of a variable or another pointer to a variable

explicitly:

int someInt = 10;

int* pToInt = &someInt;

myFunction(&someInt);

// someInt now equals 11

If a pointer points to an address that is invalid, it is called a wild or dangling point-

er. If you attempt to dereference a dangling pointer and you are lucky, the game

will crash, and you will get a memory access violation error. If you are unlucky,

you will create a bug that will be incredibly difficult to find. Furthermore, if we use

memory on the heap that will persist beyond the life of a function, we must make

sure to keep a pointer to it or we will have leaked memory. That is, the memory will

remain allocated, but we will have lost access to it. C++ smart pointers avoid these

possibilities and are often the most appropriate choice, but it is hard to learn about

smart pointers without first understanding regular pointers. Furthermore, there are

things you can only do with a regular pointer.

Chapter 10 295

myFunction(pToInt);

// someInt now equals 12

As shown in the previous code, within the function, we are manipulating the variable from the

calling code and can do so using the address of a variable or a pointer to that variable, since both

actions amount to the same thing.

Pointers can also point to instances of a class.

Declaring and using a pointer to an object
Pointers are not just for regular variables. We can also declare pointers to user-defined types such

as our classes. This is how we would declare a pointer to an object of the Player type:

Player player;

Player* pPlayer = &Player;

We can even access the member functions of a Player object directly from the pointer, as shown

in the following code:

// Call a member function of the player class

pPlayer->moveLeft()

Notice the subtle but vital difference: accessing a function with a pointer to an object rather than

an object directly uses the -> operator.

The -> operator in C++ is called the member access operator or sometimes simply the arrow

operator. It is used to access members of a class through a pointer to that class. The -> operator

is a shorthand notation for dereferencing a pointer to an object and accessing a member of the

object simultaneously.

We won’t need to use pointers to objects in this project, but we will explore them more carefully

before we do, which will be in the final project. Let’s go over one more new pointer topic before

we talk about something completely new.

Pointers and arrays
Arrays and pointers have something in common. An array’s name is a memory address. More

specifically, the name of an array is the memory address of the first element in that array. To

put this yet another way, an array name points to the first element of an array. The best way to

understand this is to read on and look at the following example.

Pointers, the Standard Template Library, and Texture Management296

We can create a pointer to the type that an array holds and then use the pointer in the same way

using exactly the same syntax that we would use for the array:

// Declare an array of ints

int arrayOfInts[100];

// Declare a pointer to int and initialize it

// with the address of the first

// element of the array, arrayOfInts

int* pToIntArray = arrayOfInts;

// Use pToIntArray just as you would arrayOfInts

arrayOfInts[0] = 999;

// First element of arrayOfInts now equals 999

pToIntArray[0] = 0;

// First element of arrayOfInts now equals 0

This also means that a function that has a prototype that accepts a pointer also accepts arrays

of the type the pointer is pointing to. We will use this fact when we build our ever-increasing

horde of zombies.

Summary of pointers
Pointers are a bit fiddly at times. In fact, our discussion of pointers was only an introduction to

the subject. The only way to get comfortable with them is to use them as much as possible. All

you need to understand about pointers in order to complete this project is the following:

•	 Pointers are variables that store a memory address.

•	 We can pass pointers to functions to directly manipulate values from the calling function’s

scope, within the called function.

•	 Array names hold the memory address of the first element. We can pass this address as a

pointer because that is exactly what it is.

Regarding the relationship between pointers and references, the compiler actually

uses pointers when implementing our references. This means that references are just

a handy tool (that uses pointers “under the hood”). You could think of a reference as

an automatic gearbox that is fine and convenient for driving around town, whereas

pointers are a manual gearbox – more complicated, but with the correct use, they

can provide better results/performance/flexibility.

Chapter 10 297

•	 We can use pointers to point to memory on the heap. This means we can dynamically

allocate large amounts of memory while the game is running.

There is just one more topic to cover before we can start coding the Zombie Arena project again.

Learning about the Standard Template Library
The Standard Template Library (STL) is a collection of data containers and ways to manipulate

the data we put in those containers. If we want to be more specific, it is a way to store and ma-

nipulate different types of C++ variables and classes.

We can think of the different containers as customized and more advanced arrays. The STL is part

of C++. It is not an optional thing that needs to be set up like SFML.

The STL is part of C++ because its containers and the code that manipulates them are fundamental

to many types of code that many apps will need to use.

In short, the STL implements code that we and just about every C++ programmer is almost bound

to need, at least at some point, and probably quite regularly.

If we were to write our own code to contain and manage our data, then it is unlikely we would

write it as efficiently as the people who wrote the STL.

So, by using the STL, we guarantee that we are using the best-written code possible to manage our

data. Even SFML uses the STL. For example, under the hood, the VertexArray class uses the STL.

All we need to do is choose the right type of container from those that are available. The types of

containers that are available through the STL include the following:

•	 Vector: This is like an array with boosters. It handles dynamic resizing, sorting, and search-

ing. This is probably the most useful container. We will look at some vector code next.

•	 List: A container that allows for the ordering of the data.

•	 Map: An associative container that allows the user to store data as key/value pairs. This

is where one piece of data is the “key” to finding the other piece. A map can also grow

and shrink, as well as being searched. We will learn about maps after vectors and then

go on to use a map.

There are yet more ways to use pointers. We will learn about smart pointers in the

final project, once we have got used to using regular pointers.

Pointers, the Standard Template Library, and Texture Management298

•	 Set: A container that guarantees that every element is unique.

In the Zombie Arena game, we will use a map.

We can easily see that we will save a lot of time and end up with a better game if we explore the

STL. Let’s take a closer look at how to use a vector instance, and then we will look at map as well

as see how map will be useful to us in the Zombie Arena game.

What is a vector?
A vector in C++ is a dynamic array that allows us to store and manipulate a collection of elements.

It provides a flexible and resizable container, similar to an array but with additional features that

make it a powerful tool for managing collections of data.

Declaring a vector
To declare a vector, we use the vector template class from the Standard Template Library (STL).

Here’s an example of declaring a vector of integers:

// Add the vector header to the project

#include <vector>

vector<int> numbers;

In this example, numbers is a vector that can store integers. However, like arrays, vectors can be

used to store elements of any data type.

Adding data to a vector
Let’s add some integers to our vector:

numbers.push_back(42);

numbers.push_back(73);

numbers.push_back(10);

Now, our vector numbers contain three integers: 42, 73, and 10.

If you want a glimpse into the kind of complexity that the STL spares us, then take a

look at this tutorial, which implements the kind of thing that a list would do. Note

that the tutorial implements only the very simplest bare-bones implementation of

a list: http://www.sanfoundry.com/cpp-program-implement-single-linked-

list/.

http://www.sanfoundry.com/cpp-program-implement-single-linked-list/
http://www.sanfoundry.com/cpp-program-implement-single-linked-list/

Chapter 10 299

Accessing data in a vector
We can access elements in a vector using the same array-like syntax:

int firstNumber = numbers[0]; // Access the first element (42)

int secondNumber = numbers[1]; // Access the second element (73)

And we can remove data from a vector.

Removing data from a vector
Removing elements from a vector can be done using various methods. For example, to remove

the first element:

numbers.erase(numbers.begin());

Now, numbers contains only two elements: 73 and 10. This works because numbers.begin points

to the first element and the erase function does exactly what the name suggests. All these func-

tions are available because numbers is an instance of vector.

Checking the size of a vector
To find out how many elements are in a vector, we can use the size method:

int size = numbers.size(); // Size is now 2

The preceding code uses the size function, which returns the number of elements in a vector and

stores the result in the int variable size.

Looping/iterating through the elements of a vector
We can use a loop to iterate through all the elements of a vector. Here’s an example using a reg-

ular for loop:

for (vector<int>::iterator it = numbers.begin(); it != numbers.end();
it++)

{

 *it += 1; // Increment each element by 1

}

However, we can simplify this using the auto keyword:

for (auto it = numbers.begin(); it != numbers.end(); ++it)

{

 *it += 1; // Increment each element by 1

}

Pointers, the Standard Template Library, and Texture Management300

The auto keyword helps reduce verbosity by allowing the compiler to deduce the type for us. The

type vector<int>::iterator it is the loop variable that is initialized to numbers.begin(). All

the time this variable is not equal to numbers.end, we keep incrementing with it++. As we will

see when we talk about maps, the format of these loops is quite flexible. This concise syntax im-

proves code maintainability, as programmers no longer need to explicitly specify complex iterator

types, resulting in cleaner and more intuitive loop structures, which is definitely a benefit to them.

Vectors are versatile and widely used in C++ for their dynamic resizing capabilities and straight-

forward syntax. They provide a convenient way to manage collections of data efficiently. In the

final project, we will put vectors to work with a vector of game objects. But first, let’s look at maps.

What is a map?
A map is a container that is dynamically resizable. We can add and remove elements with ease.

What makes the map class special compared to the other containers in the STL is the way that we

access the data within it.

The data in a map instance is stored in pairs. Consider a situation where you log in to an account,

perhaps with a username and password. A map would be perfect for looking up the username and

then checking the value of the associated password.

A map would also be just right for things such as account names and numbers, or perhaps com-

pany names and share prices.

Note that when we use map from the STL, we decide the type of values that form the key-value

pairs. The values could be string instances and int instances, such as account numbers; string

instances and other string instances, such as usernames and passwords; or user-defined types

such as objects.

What follows is some real code to make us familiar with map.

Declaring a map
This is how we could declare a map:

map<string, int> accounts;

The previous line of code declares a new map called accounts that has a key of string objects,

each of which will refer to a value that is an int.

We can now store key-value pairs of the string type that refer to values of the int type. We will

see how we can do this next.

Chapter 10 301

Adding data to a map
Let’s go ahead and add a key-value pair to accounts:

accounts["John"] = 1234567;

Now, there is an entry in the map that can be accessed using the key of John. The following code

adds two more entries to the accounts map:

accounts["Smit"] = 7654321;

accounts["Larissa"] = 8866772;

Our map has three entries in it. Let’s see how we can access the account numbers.

Finding data in a map
We would access the data in the same way that we added it: by using the key. As an example, we

could assign the value stored by the Smit key to a new int, accountNumber, like this:

int accountNumber = accounts["Smit"];

The int variable, accountNumber, now stores the value 7654321. We can do anything to a value

stored in a map instance that we can do to that type.

Removing data from a map
Taking values out of our map is also straightforward. The following line of code removes the key,

John, and its associated value:

accounts.erase("John");

Let’s look at a few more things we can do with a map.

Checking the size of a map
We might like to know how many key-value pairs we have in our map. The following line of code

does just that:

int size = accounts.size();

The int variable, size, now holds the value of 2. This is because accounts holds values for Smit

and Larissa, because we deleted John.

Pointers, the Standard Template Library, and Texture Management302

Checking for keys in a map
The most relevant feature of map is its ability to find a value using a key. We can test for the pres-

ence or otherwise of a specific key like this:

if(accounts.find("John") != accounts.end())

{

 // This code won't run because John was erased

}

if(accounts.find("Smit") != accounts.end())

{

 // This code will run because Smit is in the map

}

In the previous code, the != accounts.end value is used to determine when a key does or doesn’t

exist. If the searched-for key is not present in the map, then accounts.end will be the result of

the if statement.

Let’s see how we can test or use all the values in a map by looping through a map.

Looping/iterating through the key-value pairs of a map
We have seen how we can use a for loop to loop/iterate through all the values of an array. But

what if we want to do something like this to a map?

The following code shows how we could loop through each key-value pair of the account’s map

and add one to each of the account numbers:

for (map<string,int>::iterator it = accounts.begin();

 it != accounts.end();

 ++ it)

{

 it->second += 1;

}

The condition of the for loop is probably the most interesting part of the previous code. The first

part of the condition is the longest part. map<string,int>::iterator it = accounts.begin()

is more understandable if we break it down.

map<string,int>::iterator is a type. We are declaring an iterator that’s suitable for a map

with key-value pairs of string and int.

Chapter 10 303

The iterator’s name is it. We assign the value that’s returned by accounts.begin() to it. The

iterator, it, now holds the first key-value pair from the accounts map.

The rest of the condition of the for loop works as follows. it != accounts.end() means the loop

will continue until the end of the map is reached, and ++it simply steps to the next key-value

pair in the map, each pass through the loop.

Inside the for loop, it->second accesses the value of the key-value pair and += 1 adds 1 to the

value. Note that we can access the key (which is the first part of the key-value pair) with it->first.

You might have noticed that the syntax for setting up a loop through a map is quite verbose. C++

has a way to cut down on this verbosity.

The auto keyword
The code in the condition of the for loop was quite verbose – especially in terms of

map<string,int>::iterator. As with the tutorials on vector, we use auto to reduce verbosity.

Using the auto keyword, we can improve the previous code:

for (auto it = accounts.begin(); it != accounts.end(); ++ it)

{

 it->second += 1;

}

The auto keyword instructs the compiler to automatically deduce the type for us. This will be

especially useful with the next class that we write.

STL summary
As with almost every C++ concept that we have covered in this book, the STL is a massive topic.

Whole books have been written covering just the STL. At this point, however, we know enough

to build a class that uses the STL map to store SFML Texture objects. We can then have textures

that can be retrieved/loaded by using the filename as the key of the key-value pair.

The reason why we would go to this extra level of complexity and not just carry on using the

Texture class the same way as we have been so far will become apparent as we proceed.

Summary
In this chapter, we have covered pointers and discussed that they are variables that hold a memory

address to a specific type of object. The full significance of this will begin to reveal itself as this

book progresses and the power of pointers is revealed.

Pointers, the Standard Template Library, and Texture Management304

We also used pointers in order to create a huge horde of zombies that can be accessed using a

pointer, which it turns out is also the same thing as the first element of an array.

We learned about the STL, and in particular the map class. We implemented a class that will store

all our textures, as well as providing access to them.

In the next chapter, we will get to use what we have learned in this chapter. We will implement

a horde of zombies using pointers and arrays and we will explore a neat way to handle textures

for our sprites by using a map. We will also dig a little deeper into OOP and use a static function,

which is a function of a class that can be called without an instance of the class.

Frequently asked questions
Here are some questions that might be on your mind:

Q) What’s the difference between pointers and references?

A) Pointers are like references with boosters. Pointers can be changed to point to different variables

(memory addresses), as well as point to dynamically allocated memory on the heap.

Q) What’s the deal with arrays and pointers?

A) Arrays are really constant pointers to their first element.

11
Coding the TextureHolder
Class and Building a Horde of
Zombies

Now we understand the basics of the Standard Template Library (STL), we will be able to use

that new knowledge to manage all the textures from the game because, if we have 1,000 zombies,

we don’t really want to load a copy of a zombie graphic into the GPU for each and every one.

We will also dig a little deeper into OOP and use a static function, which is a function of a class that

can be called without an instance of the class. At the same time, we will see how we can design

a class to ensure that only one instance can ever exist. This is ideal when we need to guarantee

that different parts of our code will use the same data.

In this chapter, we will cover the following topics:

•	 Implementing the TextureHolder class

•	 Building a horde of zombies

•	 Using the TextureHolder class for all textures

Implementing the TextureHolder class
Thousands of zombies represent a new challenge. Loading, storing, and manipulating thousands

of copies of three different zombie textures take up not only a lot of memory but also a lot of

processing power. We will create a new type of class that overcomes this problem and allows us

to store just one of each texture.

Coding the TextureHolder Class and Building a Horde of Zombies306

We will also code the class in such a way that there can only ever be one instance of it. This type

of class is called a singleton.

Furthermore, we will also code the class so that it can be used anywhere in our game code di-

rectly through the class name, without access to an instance. This is a special type of class called

a static class.

Coding the TextureHolder header file
Let’s make a new header file. Right-click Header Files in the Solution Explorer and select Add

| New Item.... In the Add New Item window, highlight (by left-clicking) Header File (.h), and

then in the Name field, type TextureHolder.h.

Add the code that follows into the TextureHolder.h file, and then we can discuss it:

#pragma once

#ifndef TEXTURE_HOLDER_H

#define TEXTURE_HOLDER_H

#include <SFML/Graphics.hpp>

#include <map>

using namespace sf;

using namespace std;

class TextureHolder

{

private:

 // A map container from the STL,

 // that holds related pairs of String and Texture

 map<string, Texture> m_Textures;

 // A pointer of the same type as the class itself

 // the one and only instance

 static TextureHolder* m_s_Instance;

public:

 TextureHolder();

 static Texture& GetTexture(string const& filename);

};

Singleton is a design pattern. A design pattern is a way to structure our code that

is proven to work.

Chapter 11 307

#endif

In the previous code, notice that we have an include directive for map from the STL. We declare

a map instance that holds the string type and the SFML Texture type, as well as the key-value

pairs. The map is called m_Textures.

In the preceding code, this line follows on:

static TextureHolder* m_s_Instance;

The previous line of code is quite interesting. We are declaring a static pointer to an object of

the TextureHolder type called m_s_Instance. This means that the TextureHolder class has an

object that is the same type as itself. Not only that but, because it is static, it can be used through

the class itself, without an instance of the class. When we code the related .cpp file, we will see

how we can use this.

In the public part of the class, we have the prototype for the constructor function, TextureHolder.

The constructor takes no arguments and, as usual, has no return type. This is the same as the

default constructor. We are going to override the default constructor with a definition that makes

our singleton work how we want it to.

We have another function called GetTexture. Let’s look at the signature again and analyze exactly

what is happening:

static Texture& GetTexture(string const& filename);

First, notice that the function returns a reference to a Texture. This means that GetTexture will

return a reference, which is efficient because it avoids making a copy of what could be a large

graphic. Also, notice that the function is declared as static. This means that the function can

be used without an instance of the class. The function takes a string as a constant reference as

a parameter. The effect of this is two-fold. Firstly, the operation is efficient, and secondly, as the

reference is constant, it can’t be changed.

Next, we’ll move on to coding the TextureHolder function definitions.

Coding the TextureHolder function definitions
Now, we can create a new .cpp file that will contain the function definition. This will allow us

to see the reasons behind our new types of functions and variables. Right-click Source Files in

the Solution Explorer and select Add | New Item.... In the Add New Item window, highlight (by

left-clicking) C++ File (.cpp), and then in the Name field, type TextureHolder.cpp. Finally, click

the Add button. We are now ready to code the class.

Coding the TextureHolder Class and Building a Horde of Zombies308

Add the following code, and then we can discuss it:

#include "TextureHolder.h"

// Include the "assert feature"

#include <assert.h>

TextureHolder* TextureHolder::m_s_Instance = nullptr;

TextureHolder::TextureHolder()

{

 assert(m_s_Instance == nullptr);

 m_s_Instance = this;

}

In the previous code, we initialize our pointer of the TextureHolder type to nullptr. In the

constructor, assert(m_s_Instance == nullptr) ensures that m_s_Instance equals nullptr. If

it doesn’t, the game will exit execution. Then, m_s_Instance = this assigns the pointer to the

this instance. Now, consider where this code is taking place. The code is in the constructor. The

constructor is the way that we create instances of objects from classes. So, effectively, we now

have a pointer to a TextureHolder that points to the one and only instance of itself.

Add the final part of the code to the TextureHolder.cpp file. There are more comments than code

here. Examine the following code and read the comments as you add the code, and then we can

go through it:

Texture& TextureHolder::GetTexture(string const& filename)

{

 // Get a reference to m_Textures using m_s_Instance

 auto& m = m_s_Instance->m_Textures;

 // auto is the equivalent of map<string, Texture>

 // Create an iterator to hold a key-value-pair (kvp)

 // and search for the required kvp

 // using the passed in file name

 auto keyValuePair = m.find(filename);

 // auto is equivalent of map<string, Texture>::iterator

 // Did we find a match?

 if (keyValuePair != m.end())

 {

Chapter 11 309

 // Yes

 // Return the texture,

 // the second part of the kvp, the texture

 return keyValuePair->second;

 }

 else

 {

 // File name not found

 // Create a new key value pair using the filename

 auto& texture = m[filename];

 // Load the texture from file in the usual way

 texture.loadFromFile(filename);

 // Return the texture to the calling code

 return texture;

 }

}

The first thing you will probably notice about the previous code is the auto keyword. The auto

keyword was explained in the previous section.

At the start of the code, we get a reference to m_textures. Then, we attempt to get an iterator to

the key-value pair represented by the passed-in filename (filename). If we find a matching key,

we return the texture with return keyValuePair->second. Otherwise, we add the texture to the

map and then return it to the calling code.

Admittedly, the TextureHolder class introduced lots of new concepts (singletons, static functions,

constant references, this and the auto keyword,) and syntax. Add to this the fact that we have only

just learned about pointers and the STL, and this section’s code might have been a little daunting.

So, was it all worth it?

If you want to know what the actual types that have been replaced by auto are, then

look at the comments immediately after each use of auto in the previous code. You

can also hover over the auto keyword in Visual Studio and see a tooltip showing

the full type.

Coding the TextureHolder Class and Building a Horde of Zombies310

What have we achieved with TextureHolder?
The point is that now that we have this class, we can go wild using textures from wherever we

like in our code and not worry about running out of memory or having access to any texture in a

particular function or class. We will see how to use TextureHolder soon.

Building a horde of zombies
Now, we are armed with the TextureHolder class to make sure that our zombie textures are

easily available as well as only loaded into the GPU once. Then, we can investigate creating a

whole horde of them.

We will store zombies in an array. Since the process of building and spawning a horde of zombies

involves quite a few lines of code, it is a good candidate for abstracting to a separate function.

Soon, we will code the CreateHorde function but first, of course, we need a Zombie class.

Coding the Zombie.h file
The first step to building a class to represent a zombie is to code the member variables and func-

tion prototypes in a header file.

Right-click Header Files in the Solution Explorer and select Add | New Item.... In the Add New

Item window, highlight (by left-clicking) Header File (.h), and then in the Name field, type

Zombie.h.

Add the following code to the Zombie.h file:

#pragma once

#include <SFML/Graphics.hpp>

using namespace sf;

class Zombie

{

private:

 // How fast is each zombie type?

 const float BLOATER_SPEED = 40;

 const float CHASER_SPEED = 80;

 const float CRAWLER_SPEED = 20;

 // How tough is each zombie type

 const float BLOATER_HEALTH = 5;

 const float CHASER_HEALTH = 1;

 const float CRAWLER_HEALTH = 3;

Chapter 11 311

 // Make each zombie vary its speed slightly

 const int MAX_VARRIANCE = 30;

 const int OFFSET = 101 - MAX_VARRIANCE;

 // Where is this zombie?

 Vector2f m_Position;

 // A sprite for the zombie

 Sprite m_Sprite;

 // How fast can this one run/crawl?

 float m_Speed;

 // How much health has it got?

 float m_Health;

 // Is it still alive?

 bool m_Alive;

 // Public prototypes go here

};

The previous code declares all the private member variables of the Zombie class. At the top of

the previous code, we have three constant variables to hold the speed of each type of zombie: a

very slow Crawler, a slightly faster Bloater, and a somewhat speedy Chaser. We can experiment

with the value of these three constants to help balance the difficulty level of the game. It’s also

worth mentioning here that these three values are only used as a starting value for the speed of

each zombie type. As we will see later in this chapter, we will vary the speed of every zombie by

a small percentage from these values. This stops zombies of the same type from bunching up

together as they pursue the player.

The next three constants determine the health level for each zombie type. Note that Bloaters

are the toughest, followed by Crawlers. As a matter of balance, the Chaser zombies will be the

easiest to kill.

Next, we have two more constants, MAX_VARRIANCE and OFFSET. These will help us determine

the individual speed of each zombie. We will see exactly how when we code the Zombie.cpp file.

After these constants, we declare a bunch of variables that should look familiar because we had

very similar variables in our Player class. The m_Position, m_Sprite, m_Speed, and m_Health

variables are for what their names imply: the position, sprite, speed, and health of the zombie

object, respectively.

Coding the TextureHolder Class and Building a Horde of Zombies312

Finally, in the preceding code, we declare a Boolean called m_Alive, which will be true when the

zombie is alive and hunting, but false when its health gets to 0 and it is just a splurge of blood

on our otherwise pretty background.

Now, we can complete the Zombie.h file. Add the function prototypes highlighted in the following

code, and then we will talk about them:

 // Is it still alive?

 bool m_Alive;

 // Public prototypes go here

public:

 // Handle when a bullet hits a zombie

 bool hit();

 // Find out if the zombie is alive

 bool isAlive();

 // Spawn a new zombie

 void spawn(float startX, float startY, int type, int seed);

 // Return a rectangle that is the position in the world

 FloatRect getPosition();

 // Get a copy of the sprite to draw

 Sprite getSprite();

 // Update the zombie each frame

 void update(float elapsedTime, Vector2f playerLocation);

};

In the previous code, there is a hit function, which we can call every time the zombie is hit by

a bullet. The function can then take the necessary steps, such as taking health from the zombie

(reducing the value of m_Health) or killing it (setting m_Alive to false).

The isAlive function returns a Boolean that lets the calling code know whether the zombie is

alive or dead. We don’t want to perform collision detection or remove health from the player for

walking over a blood splat.

The spawn function takes a starting position, a type (Crawler, Bloater, or Chaser, represented by

an int), as well as a seed to use in some random number generation that we will see in the next

section.

Chapter 11 313

Just like we have in the Player class, the Zombie class has getPosition and getSprite functions

to get a rectangle that represents the space occupied by the zombie and the sprite that can be

drawn in each frame.

The last prototype in the previous code is the update function. We could have probably guessed

that it would receive the elapsed time since the last frame, but also, notice that it receives a

Vector2f vector called playerLocation. This vector will indeed be the exact coordinates of the

center of the player. We will soon see how we can use this vector to chase after the player.

Now, we can code the function definitions in the .cpp file.

Coding the Zombie.cpp file
Next, we will code the functionality of the Zombie class – the function definitions.

Create a new .cpp file that will contain the function definitions. Right-click Source Files in the

Solution Explorer and select Add | New Item.... In the Add New Item window, highlight (by

left-clicking) C++ File (.cpp), and then in the Name field, type Zombie.cpp. Finally, click the Add

button. We are now ready to code the class.

Add the following code to the Zombie.cpp file:

#include "zombie.h"

#include "TextureHolder.h"

#include <cstdlib>

#include <ctime>

using namespace std;

First, we add the necessary include directives and then using namespace std. You might remem-

ber a few instances when we prefixed our object declarations with std::. This using directive

means we don’t need to do that for the code in this file.

Now, add the following code, which is the definition of the spawn function. Study the code once

you have added it, and then we will discuss it:

void Zombie::spawn(float startX, float startY, int type, int seed)

{

 switch (type)

 {

 case 0:

 // Bloater

Coding the TextureHolder Class and Building a Horde of Zombies314

 m_Sprite = Sprite(TextureHolder::GetTexture(

 "graphics/bloater.png"));

 m_Speed = BLOATER_SPEED;

 m_Health = BLOATER_HEALTH;

 break;

 case 1:

 // Chaser

 m_Sprite = Sprite(TextureHolder::GetTexture(

 "graphics/chaser.png"));

 m_Speed = CHASER_SPEED;

 m_Health = CHASER_HEALTH;

 break;

 case 2:

 // Crawler

 m_Sprite = Sprite(TextureHolder::GetTexture(

 "graphics/crawler.png"));

 m_Speed = CRAWLER_SPEED;

 m_Health = CRAWLER_HEALTH;

 break;

 }

 // Modify the speed to make the zombie unique

 // Every zombie is unique. Create a speed modifier

 srand((int)time(0) * seed);

 // Somewhere between 80 and 100

 float modifier = (rand() % MAX_VARRIANCE) + OFFSET;

 // Express this as a fraction of 1

 modifier /= 100; // Now equals between .7 and 1

 m_Speed *= modifier;

 // Initialize its location

 m_Position.x = startX;

 m_Position.y = startY;

 // Set its origin to its center

 m_Sprite.setOrigin(25, 25);

 // Set its position

 m_Sprite.setPosition(m_Position);

}

Chapter 11 315

The first thing the function does is switch paths of execution based on the int value, which is

passed in as a parameter. Within the switch block, there is a case for each type of zombie. De-

pending on the type of zombie, the appropriate texture, speed, and health are initialized to the

relevant member variables.

Of interest here is that we use the static TextureHolder::GetTexture function to assign the

texture. This means that no matter how many zombies we spawn, there will be a maximum of

three textures in the memory of the GPU.

The next three lines of code (excluding comments) do the following:

•	 Seed the random number generator with the seed variable that was passed in as a pa-

rameter.

•	 Declare and initialize the modifier variable using the rand function and the MAX_VARRIANCE

and OFFSET constants. The result is a fraction between 0 and 1, which can be used to make

each zombie’s speed unique. The reason we want to do this is so that the zombies don’t

bunch up on top of each other too much.

•	 We can now multiply m_Speed by modifier and we will have a zombie whose speed is with-

in the MAX_VARRIANCE percentage of the constant defined for this type of zombie’s speed.

After we have resolved the speed, we assign the passed-in position held in startX and startY

to m_Position.x and m_Position.y, respectively.

The last two lines of code in the previous listing set the origin of the sprite to the center and use

the m_Position vector to set the position of the sprite.

Now, add the following code for the hit function to the Zombie.cpp file:

bool Zombie::hit()

{

 m_Health--;

 if (m_Health < 0)

 {

 // dead

 m_Alive = false;

We could have used an enumeration for the different types of zombie. Feel free to

upgrade your code when the project is finished.

Coding the TextureHolder Class and Building a Horde of Zombies316

 m_Sprite.setTexture(TextureHolder::GetTexture(

 "graphics/blood.png"));

 return true;

 }

 // injured but not dead yet

 return false;

}

The hit function is nice and simple: reduce m_Health by 1 and then check whether m_Health is

below 0.

If it is below 0, then it sets m_Alive to false, swaps the zombie’s texture for a blood splat, and

returns true to the calling code so that it knows the zombie is now dead. If the zombie has sur-

vived, the hit returns false.

Add the following three getter functions, which just return a value to the calling code:

bool Zombie::isAlive()

{

 return m_Alive;

}

FloatRect Zombie::getPosition()

{

 return m_Sprite.getGlobalBounds();

}

Sprite Zombie::getSprite()

{

 return m_Sprite;

}

The previous three functions are quite self-explanatory, perhaps with the exception of the

getPosition function, which uses the m_Sprite.getLocalBounds function to get the FloatRect

instance, which is then returned to the calling code.

Finally, for the Zombie class, we need to add the code for the update function. Look closely at the

following code as you add it, and then we will go through it:

void Zombie::update(float elapsedTime,

 Vector2f playerLocation)

{

 float playerX = playerLocation.x;

Chapter 11 317

 float playerY = playerLocation.y;

 // Update the zombie position variables

 if (playerX > m_Position.x)

 {

 m_Position.x = m_Position.x +

 m_Speed * elapsedTime;

 }

 if (playerY > m_Position.y)

 {

 m_Position.y = m_Position.y +

 m_Speed * elapsedTime;

 }

 if (playerX < m_Position.x)

 {

 m_Position.x = m_Position.x -

 m_Speed * elapsedTime;

 }

 if (playerY < m_Position.y)

 {

 m_Position.y = m_Position.y -

 m_Speed * elapsedTime;

 }

 // Move the sprite

 m_Sprite.setPosition(m_Position);

 // Face the sprite in the correct direction

 float angle = (atan2(playerY - m_Position.y,

 playerX - m_Position.x)

 * 180) / 3.141;

 m_Sprite.setRotation(angle);

}

In the preceding code, we copy playerLocation.x and playerLocation.y into the local variables

called playerX and playerY.

Next, there are four if statements. They test to see whether the zombie is to the left, right, above,

or below the current player’s position.

Coding the TextureHolder Class and Building a Horde of Zombies318

These four if statements, when they evaluate to true, adjust the zombie’s m_Position.x and

m_Position.y values appropriately using the usual formula – that is, speed multiplied by time

since the last frame. More specifically, the code is m_Speed * elapsedTime.

After the four if statements, m_Sprite is moved to its new location.

We then use the same calculation we previously used with the player and the mouse pointer but,

this time, we do so for the zombie and the player. This calculation finds the angle that’s needed

to face the zombie toward the player.

Finally, for this function and the class, we call m_Sprite.setRotation to actually rotate the

zombie sprite. Remember that this function will be called for every zombie (that is alive) in every

frame of the game.

But we want a whole horde of zombies.

Using the Zombie class to create a horde
Now that we have a class to create a living, attacking, and killable zombie, we want to spawn a

whole horde of them.

To achieve this, we will write a separate function and we will use a pointer so that we can refer

to our horde that will be declared in main but configured in a different scope.

Open the ZombieArena.h file in Visual Studio and add the following highlighted lines of code:

#pragma once

#include "Zombie.h"

using namespace sf;

int createBackground(VertexArray& rVA, IntRect arena);

Zombie* createHorde(int numZombies, IntRect arena);

Now that we have a prototype, we can code the function definition.

Create a new .cpp file that will contain the function definition. Right-click Source Files in the

Solution Explorer and select Add | New Item.... In the Add New Item window, highlight (by

left-clicking) C++ File (.cpp), and then in the Name field, type CreateHorde.cpp. Finally, click

the Add button.

Add the following code to the CreateHorde.cpp file and study it. Afterward, we will break it down

into chunks and discuss it:

#include "ZombieArena.h"

Chapter 11 319

#include "Zombie.h"

Zombie* createHorde(int numZombies, IntRect arena)

{

 Zombie* zombies = new Zombie[numZombies];

 int maxY = arena.height - 20;

 int minY = arena.top + 20;

 int maxX = arena.width - 20;

 int minX = arena.left + 20;

 for (int i = 0; i < numZombies; i++)

 {

 // Which side should the zombie spawn

 srand((int)time(0) * i);

 int side = (rand() % 4);

 float x, y;

 switch (side)

 {

 case 0:

 // left

 x = minX;

 y = (rand() % maxY) + minY;

 break;

 case 1:

 // right

 x = maxX;

 y = (rand() % maxY) + minY;

 break;

 case 2:

 // top

 x = (rand() % maxX) + minX;

 y = minY;

 break;

 case 3:

 // bottom

 x = (rand() % maxX) + minX;

 y = maxY;

 break;

 }

Coding the TextureHolder Class and Building a Horde of Zombies320

 // Bloater, crawler or runner

 srand((int)time(0) * i * 2);

 int type = (rand() % 3);

 // Spawn the new zombie into the array

 zombies[i].spawn(x, y, type, i);

 }

 return zombies;

}

Let’s look at all the previous code again, in bite-sized pieces. First, we added the now familiar

include directives:

#include "ZombieArena.h"

#include "Zombie.h"

Next comes the function signature. Notice that the function must return a pointer to a Zombie

object. We will be creating an array of Zombie objects. Once we are done creating the horde, we

will return the array. When we return the array, we are actually returning the address of the first

element of the array. This, as we learned in the previous chapter, is the same thing as a pointer.

The signature also shows that we have two parameters. The first, numZombies, will be the number

of zombies this current horde requires, and the second, arena, is an IntRect that holds the size

of the current arena in which to create this horde.

After the function signature, we declare a pointer to the Zombie type called zombies and initialize

it with the memory address of the first element of an array, which we dynamically allocate on

the heap:

Zombie* createHorde(int numZombies, IntRect arena)

{

 Zombie* zombies = new Zombie[numZombies];

The next part of the code simply copies the extremities of the arena into maxY, minY, maxX, and

minX. We subtract 20 pixels from the right and bottom while adding 20 pixels to the top and left.

We use these four local variables to help position each of the zombies. We made the 20-pixel

adjustments to stop the zombies appearing on top of the walls:

int maxY = arena.height - 20;

int minY = arena.top + 20;

int maxX = arena.width - 20;

Chapter 11 321

int minX = arena.left + 20;

Now, we enter a for loop that will loop through each of the Zombie objects in the zombies array

from zero through to numZombies:

for (int i = 0; i < numZombies; i++)

Inside the for loop, the first thing the code does is seed the random number generator and then

generate a random number between zero and three. This number is stored in the side variable.

We will use the side variable to decide whether the zombie spawns at the left, top, right, or bot-

tom of the arena. We also declare two int variables, x and y. These two variables will temporarily

hold the actual horizontal and vertical coordinates of the current zombie:

// Which side should the zombie spawn

srand((int)time(0) * i);

int side = (rand() % 4);

float x, y;

Still inside the for loop, we have a switch block with four case statements. Note that the case

statements are for 0, 1, 2, and 3 and that the argument in the switch statement is side. Inside

each of the case blocks, we initialize x and y with one predetermined value, either minX, maxX,

minY, or maxY, and one randomly generated value. Look closely at the combinations of each pre-

determined and random value. You will see that they are appropriate for positioning the current

zombie randomly across either the left side, top side, right side, or bottom side. The effect of this

will be that each zombie can spawn randomly, anywhere on the outside edge of the arena:

switch (side)

{

 case 0:

 // left

 x = minX;

 y = (rand() % maxY) + minY;

 break;

 case 1:

 // right

 x = maxX;

 y = (rand() % maxY) + minY;

 break;

 case 2:

 // top

Coding the TextureHolder Class and Building a Horde of Zombies322

 x = (rand() % maxX) + minX;

 y = minY;

 break;

 case 3:

 // bottom

 x = (rand() % maxX) + minX;

 y = maxY;

 break;

}

Still inside the for loop, we seed the random number generator again and generate a random

number between 0 and 2. We store this number in the type variable. The type variable will de-

termine whether the current zombie will be a Chaser, Bloater, or Crawler.

After the type is determined, we call the spawn function on the current Zombie object in the zombies

array. As a reminder, the arguments that are sent into the spawn function determine the starting

location of the zombie and the type of zombie it will be. The apparently arbitrary i is passed in

as it is used as a unique seed that randomly varies the speed of a zombie within an appropriate

range. This stops our zombies from “bunching up” and becoming a blob rather than a horde:

// Bloater, crawler or runner

srand((int)time(0) * i * 2);

int type = (rand() % 3);

// Spawn the new zombie into the array

zombies[i].spawn(x, y, type, i);

The for loop repeats itself once for each zombie, controlled by the value contained in numZombies,

and then we return the array. The array, as another reminder, is simply an address of the first

element of itself. The array is dynamically allocated on the heap, so it persists after the function

returns:

return zombies;

Now, we can bring our zombies to life.

Bringing the horde to life (or back to life)
We now have a Zombie class and a function to make a randomly spawning horde of them. We

have the TextureHolder singleton as a neat way to hold just three textures that can be used for

dozens or even thousands of zombies. Now, we can add the horde to our game engine in main.

Chapter 11 323

Add the following highlighted code to include the TextureHolder class. Then, just inside main,

we will initialize the one and only instance of TextureHolder, which can be used from anywhere

within our game:

#include <SFML/Graphics.hpp>

#include "ZombieArena.h"

#include "Player.h"

#include "TextureHolder.h"

using namespace sf;

int main()

{

 // Here is the instance of TextureHolder

 TextureHolder holder;

 // The game will always be in one of four states

 enum class State { PAUSED, LEVELING_UP, GAME_OVER, PLAYING };

 // Start with the GAME_OVER state

 State state = State::GAME_OVER;

The following few lines of highlighted code declare some control variables for the number of

zombies at the start of the wave, the number of zombies still to be killed, and, of course, a pointer

to Zombie called zombies that we initialize to nullptr:

// Create the background

VertexArray background;

// Load the texture for our background vertex array

Texture textureBackground;

textureBackground.loadFromFile("graphics/background_sheet.png");

// Prepare for a horde of zombies

int numZombies;

int numZombiesAlive;

Zombie* zombies = nullptr;

// The main game loop

while (window.isOpen())

Next, in the PLAYING section nested inside the LEVELING_UP section, we add code that does the

following:

•	 Initializes numZombies to 10. As the project progresses, this will eventually be dynamic

and based on the current wave number.

Coding the TextureHolder Class and Building a Horde of Zombies324

•	 Deletes any preexisting allocated memory. Otherwise, each new call to createHorde would

take up progressively more memory but without freeing up the previous horde’s memory.

•	 Then, we call createHorde and assign the returned memory address to zombies.

•	 We also initialize zombiesAlive with numZombies because we haven’t killed any at this

point.

Add the following highlighted code, which we have just discussed:

if (state == State::PLAYING)

{

 // Prepare the level

 // We will modify the next two lines later

 arena.width = 500;

 arena.height = 500;

 arena.left = 0;

 arena.top = 0;

 // Pass the vertex array by reference

 // to the createBackground function

 int tileSize = createBackground(background, arena);

 // Spawn the player in the middle of the arena

 player.spawn(arena, resolution, tileSize);

 // Create a horde of zombies

 numZombies = 10;

 // Delete the previously allocated memory (if it exists)

 delete[] zombies;

 zombies = createHorde(numZombies, arena);

 numZombiesAlive = numZombies;

 // Reset the clock so there isn't a frame jump

 clock.restart();

}

Now, add the following highlighted code to the ZombieArena.cpp file:

/*

 UPDATE THE FRAME

 */

if (state == State::PLAYING)

Chapter 11 325

{

 // Update the delta time

 Time dt = clock.restart();

 // Update the total game time

 gameTimeTotal += dt;

 // Make a decimal fraction of 1 from the delta time

 float dtAsSeconds = dt.asSeconds();

 // Where is the mouse pointer

 mouseScreenPosition = Mouse::getPosition();

 // Convert mouse position to world coordinates of mainView

 mouseWorldPosition = window.mapPixelToCoords(

 Mouse::getPosition(), mainView);

 // Update the player

 player.update(dtAsSeconds, Mouse::getPosition());

 // Make a note of the players new position

 Vector2f playerPosition(player.getCenter());

 // Make the view centre around the player

 mainView.setCenter(player.getCenter());

 // Loop through each Zombie and update them

 for (int i = 0; i < numZombies; i++)

 {

 if (zombies[i].isAlive())

 {

 zombies[i].update(dt.asSeconds(), playerPosition);

 }

 }

}// End updating the scene

All the new preceding code does is loop through the array of zombies, check whether the current

zombie is alive, and, if it is, call its update function with the necessary arguments.

Add the following code to draw all the zombies:

/*

 Draw the scene

 */

if (state == State::PLAYING)

Coding the TextureHolder Class and Building a Horde of Zombies326

{

 window.clear();

 // set the mainView to be displayed in the window

 // And draw everything related to it

 window.setView(mainView);

 // Draw the background

 window.draw(background, &textureBackground);

 // Draw the zombies

 for (int i = 0; i < numZombies; i++)

 {

 window.draw(zombies[i].getSprite());

 }

 // Draw the player

 window.draw(player.getSprite());

}

The preceding code loops through all the zombies and calls the getSprite function to allow the

draw function to do its work. We don’t check whether the zombie is alive because even if the

zombie is dead, we want to draw the blood splatter.

At the end of the main function, we need to make sure to delete our pointer because it is a good

practice as well as often being essential. However, technically, this isn’t essential because the

game is about to exit, and the operating system will reclaim all the memory that’s used after the

return 0 statement:

 }// End of main game loop

 // Delete the previously allocated memory (if it exists)

 delete[] zombies;

 return 0;

}

You can run the game and see the zombies spawn around the edge of the arena. They will immedi-

ately head straight toward the player at their various speeds. Just for fun, I increased the size of the

arena and increased the number of zombies to 1,000, as you can see in the following screenshot:

Chapter 11 327

Figure 11.1: Increasing the size of the arena and the number of zombies

This is going to end badly!

Note that you can also pause and resume the onslaught of the horde using the Enter key because

of the code we wrote in Chapter 8, SFML Views – Starting the Zombie Shooter Game.

Let’s fix the fact that some classes still use a Texture instance directly and modify it to use the

new TextureHolder class.

Using the TextureHolder class for all textures
Since we have our TextureHolder class, we might as well be consistent and use it to load all our

textures. Let’s make some very small alterations to the existing code that loads textures for the

background sprite sheet and the player.

Changing the way the background gets its textures
In the ZombieArena.cpp file, find the following code:

// Load the texture for our background vertex array

Texture textureBackground;

textureBackground.loadFromFile("graphics/background_sheet.png");

Coding the TextureHolder Class and Building a Horde of Zombies328

Delete the code highlighted previously and replace it with the following highlighted code, which

uses our new TextureHolder class:

// Load the texture for our background vertex array

Texture textureBackground = TextureHolder::GetTexture(

 "graphics/background_sheet.png");

Let’s update the way the Player class gets a texture.

Changing the way the Player class gets its texture
In the Player.cpp file, inside the constructor, find this code:

#include "player.h"

Player::Player()

{

 m_Speed = START_SPEED;

 m_Health = START_HEALTH;

 m_MaxHealth = START_HEALTH;

 // Associate a texture with the sprite

 // !!Watch this space!!

 m_Texture.loadFromFile("graphics/player.png");

 m_Sprite.setTexture(m_Texture);

 // Set the origin of the sprite to the centre,

 // for smooth rotation

 m_Sprite.setOrigin(25, 25);

}

Delete the code highlighted previously and replace it with the following highlighted code, which

uses our new TextureHolder class. In addition, add the include directive to add the TextureHolder

header to the file. The new code is shown highlighted, in context, as follows:

#include "player.h"

#include "TextureHolder.h"

Player::Player()

{

 m_Speed = START_SPEED;

 m_Health = START_HEALTH;

 m_MaxHealth = START_HEALTH;

 // Associate a texture with the sprite

Chapter 11 329

 // !!Watch this space!!

 m_Sprite = Sprite(TextureHolder::GetTexture(

 "graphics/player.png"));

 // Set the origin of the sprite to the centre,

 // for smooth rotation

 m_Sprite.setOrigin(25, 25);

}

Summary
We have built a TextureHolder class to contain all the images used as textures by our sprites and

coded a Zombie class that we can reuse to make as many zombies as we want.

You might have noticed that the zombies don’t appear to be very dangerous. They just drift through

the player without leaving a scratch. Currently, this is a good thing because the player has no

way to defend themself.

In the next chapter, we will make two more classes: one for ammo and health pickups and one for

bullets that the player can shoot. After we have done that, we will learn how to detect collisions

so that the bullets and zombies do some damage and the pickups can be collected by the player.

Frequently asked questions
Q) Can you remind me about the new keyword and memory leaks?

A) When we use memory on the free store using the new keyword, it persists even when the func-

tion it was created in has returned and all the local variables are gone. When we are done with

using memory on the free store, we must release it. So, if we use memory on the free store that we

want to persist beyond the life of a function, we must make sure to keep a pointer to it or we will

have leaked memory. It would be like putting all our belongings in our house and then forgetting

where we live! When we return the zombies array from createHorde, it is like passing the relay

baton (memory address) from createHorde to main. It’s like saying, OK, here is your horde of zom-

bies; they are your responsibility now. And, we wouldn’t want any leaked zombies running around

in our RAM! So, we must remember to call delete on pointers to dynamically allocate memory.

From now on, we will use the TextureHolder class to load all textures.

12
Collision Detection, Pickups,
and Bullets

So far, we have implemented the main visual aspects of our game. We have a controllable char-

acter running around in an arena full of zombies that chase them. The problem is that they don’t

interact with each other. A zombie can wander right through the player without leaving a scratch.

We need to detect collisions between the zombies and the player.

If the zombies are going to be able to injure and eventually kill the player, it is only fair that we

give the player some bullets for their gun. We will then need to make sure that the bullets can

hit and kill the zombies.

At the same time, if we are writing collision detection code for bullets, zombies, and the player,

it would be a good time to add a class for health and ammo pickups as well.

Here is what we will do and the order in which we will cover things in this chapter:

•	 Coding the Bullet class

•	 Making the bullets fly

•	 Giving the player a crosshair

•	 Coding a class for pickups

•	 Using the Pickup class

•	 Detecting collisions

Let’s start with the Bullet class.

Collision Detection, Pickups, and Bullets332

Coding the Bullet class
We will use the SFML RectangleShape class to visually represent a bullet. We will code a Bullet

class that has a RectangleShape member, as well as other member data and functions. Then, we

will add bullets to our game in a few steps, as follows:

1.	 First, we will code the Bullet.h file. This will reveal all the details of the member data

and the prototypes for the functions.

2.	 Next, we will code the Bullet.cpp file, which, of course, will contain the definitions for

all the functions of the Bullet class. As we step through this, I will explain exactly how

an object of the Bullet type will work and be controlled.

3.	 Finally, we will declare a whole array full of bullets in the main function. We will also

implement a control scheme for shooting, managing the player’s remaining ammo, and

reloading.

Let’s get started with step 1.

Coding the Bullet header file
To make the new header file, right-click Header Files in the Solution Explorer and select Add

| New Item.... In the Add New Item window, highlight (by left-clicking) Header File (.h), and

then, in the Name field, type Bullet.h.

Add the following private member variables, along with the Bullet class declaration, to the

Bullet.h file. We can then run through them and explain what they are for:

#pragma once

#include <SFML/Graphics.hpp>

using namespace sf;

class Bullet

{

private:

 // Where is the bullet?

 Vector2f m_Position;

 // What each bullet looks like

 RectangleShape m_BulletShape;

 // Is this bullet currently whizzing through the air

 bool m_InFlight = false;

 // How fast does a bullet travel?

 float m_BulletSpeed = 1000;

Chapter 12 333

 // What fraction of 1 pixel does the bullet travel,

 // Horizontally and vertically each frame?

 // These values will be derived from m_BulletSpeed

 float m_BulletDistanceX;

 float m_BulletDistanceY;

 // Some boundaries so the bullet doesn't fly forever

 float m_MaxX;

 float m_MinX;

 float m_MaxY;

 float m_MinY;

// Public function prototypes go here

};

In the previous code, the first member is a Vector2f called m_Position, which will hold the

bullet’s location in the game world.

Next, we declare a RectangleShape called m_BulletShape as we are using a simple non-texture

graphic for each bullet, a bit like we did for the time bar in Timber!

The code then declares a Boolean, m_InFlight, which will keep track of whether the bullet is

currently whizzing through the air or not. This will allow us to decide whether we need to call

its update function each frame and whether we need to run collision detection checks.

The float variable, m_BulletSpeed, will (you can probably guess) hold the speed at which the

bullet will travel in pixels per second. It is initialized to the value of 1000, which is a little arbitrary

but it works well.

Next, we have two more float variables, m_BulletDistanceX and m_BulletDistanceY. As the

calculations to move a bullet are a little more complex than those used to move a zombie or the

player, we will benefit from having these two variables on which we will perform calculations. They

will be used to decide the horizontal and vertical changes in the bullet’s position in each frame.

Finally, we have four more float variables (m_MaxX, m_MinX, m_MaxY, and m_MinY), which will later

be initialized to hold the maximum, minimum, horizontal, and vertical positions for the bullet.

It is likely that the need for some of these variables is not immediately apparent, but it will become

clearer when we see each of them in action in the Bullet.cpp file.

Collision Detection, Pickups, and Bullets334

Now, add all the public function prototypes to the Bullet.h file:

// Public function prototypes go here

public:

 // The constructor

 Bullet();

 // Stop the bullet

 void stop();

 // Returns the value of m_InFlight

 bool isInFlight();

 // Launch a new bullet

 void shoot(float startX, float startY,

 float xTarget, float yTarget);

 // Tell the calling code where

 // the bullet is in the world

 FloatRect getPosition();

 // Return the actual shape (for drawing)

 RectangleShape getShape();

 // Update the bullet each frame

 void update(float elapsedTime);

};

Let’s run through each of the functions in turn, and then we can move on to coding their definitions.

First, we have the Bullet function, which is, of course, the constructor. In this function, we will

set up each Bullet instance, ready for action.

The stop function will be called when the bullet has been in action but needs to stop.

The isInFlight function returns a Boolean and will be used to test whether a bullet is currently

in flight or not.

The shoot function’s use is given away by its name, but how it will work deserves some discus-

sion. For now, just note that it has four float parameters that will be passed in. The four values

represent the starting horizontal and vertical position of the bullet (where the player is), as well

as the vertical and horizontal target position (where the crosshair is).

The getPosition function returns a FloatRect that represents the location of the bullet. This func-

tion will be used to detect collisions with zombies. You might remember from Chapter 10, Pointers,

the Standard Template Library, and Texture Management, that zombies also had a getPosition

function.

Chapter 12 335

Following on, we have the getShape function, which returns an object of the RectangleShape type.

As we have discussed, each bullet is represented visually by a RectangleShape object. Therefore,

the getShape function will be used to grab a copy of the current state of RectangleShape in order

to draw it.

Finally, and hopefully as expected, there is the update function, which has a float parameter

that represents the fraction of a second that has passed since the last time update was called. The

update method will change the position of the bullet in each frame.

Let’s look at and code the function definitions.

Coding the Bullet source file
Now, we can create a new .cpp file that will contain the function definitions. Right-click Source

Files in the Solution Explorer and select Add | New Item.... In the Add New Item window, high-

light (by left-clicking) C++ File (.cpp), and then, in the Name field, type Bullet.cpp. Finally, click

the Add button. We are now ready to code the class.

Add the following code, which is for the include directives and the constructor. We know it is a

constructor because the function has the same name as the class:

#include "bullet.h"

// The constructor

Bullet::Bullet()

{

 m_BulletShape.setSize(sf::Vector2f(2, 2));

}

The only thing that the Bullet constructor needs to do is set the size of m_BulletShape, which is

the RectangleShape object. The code sets the size to two pixels by two pixels.

Coding the shoot function
Next, we will code the more substantial shoot function. Add the following code to the Bullet.

cpp file and study it, and then we can talk about it:

void Bullet::shoot(float startX, float startY,

 float targetX, float targetY)

{

 // Keep track of the bullet

 m_InFlight = true;

 m_Position.x = startX;

Collision Detection, Pickups, and Bullets336

 m_Position.y = startY;

 // Calculate the gradient of the flight path

 float gradient = (startX - targetX) / (startY - targetY);

 // Any gradient less than 1 needs to be negative

 if (gradient < 0)

 {

 gradient *= -1;

 }

 // Calculate the ratio between x and y

 float ratioXY = m_BulletSpeed / (1 + gradient);

 // Set the "speed" horizontally and vertically

 m_BulletDistanceY = ratioXY;

 m_BulletDistanceX = ratioXY * gradient;

 // Point the bullet in the right direction

 if (targetX < startX)

 {

 m_BulletDistanceX *= -1;

 }

 if (targetY < startY)

 {

 m_BulletDistanceY *= -1;

 }

 // Set a max range of 1000 pixels

 float range = 1000;

 m_MinX = startX - range;

 m_MaxX = startX + range;

 m_MinY = startY - range;

 m_MaxY = startY + range;

 // Position the bullet ready to be drawn

 m_BulletShape.setPosition(m_Position);

}

In order to demystify the shoot function, we will split it up and talk about the code we have just

added in chunks.

Chapter 12 337

First, let’s remind ourselves about the signature. The shoot function receives the starting and

target horizontal and vertical positions of a bullet. The calling code will supply these based on

the position of the player sprite and the position of the crosshair. Here it is again:

void Bullet::shoot(float startX, float startY,

 float targetX, float targetY)

Inside the shoot function, we set m_InFlight to true and position the bullet using the startX

and startY parameters. Here is that piece of code again:

// Keep track of the bullet

m_InFlight = true;

m_Position.x = startX;

m_Position.y = startY;

Now, we use a bit of trigonometry to determine the gradient of travel for a bullet. Take a look at

the code in question and we will discuss it further and split it up:

// Calculate the gradient of the flight path

float gradient = (startX - targetX) / (startY - targetY);

// Any gradient less than zero needs to be negative

if (gradient < 0)

{

 gradient *= -1;

}

// Calculate the ratio between x and y

float ratioXY = m_BulletSpeed / (1 + gradient);

// Set the "speed" horizontally and vertically

m_BulletDistanceY = ratioXY;

m_BulletDistanceX = ratioXY * gradient;

The code calculates how a bullet moves toward its target. It adjusts the bullet’s path both hor-

izontally and vertically based on the line’s slope. This is necessary because if the slope is very

steep, the bullet could reach its horizontal destination before it moves enough vertically, or the

opposite could happen with less steep angles. Essentially, the code ensures that the bullet travels

the correct horizontal and vertical distances at a consistent speed, according to the gradient of

the flight path.

Collision Detection, Pickups, and Bullets338

Calculating the gradient in the shoot function
Here is the code that calculates the gradient:

float gradient = (startX - targetX) / (startY - targetY);

This computes the gradient of the flight path using two points, (startX, startY) and (targetX,

targetY). It subtracts the ending horizontal position from the starting horizontal position. It

subtracts the ending vertical position from the starting vertical position and divides the former

result by the latter to get a ratio that represents an angle.

Making the gradient positive in the shoot function
Here is the code in question. It’s simple but important to our solution:

if (gradient < 0)

{

 gradient *= -1;

}

This ensures that the gradient is always positive. The negative sign is removed if the gradient is

initially negative. This is necessary because the start and target coordinates that are passed in

can be negative or positive, and we always want the amount of progression in each frame to be

positive. Multiplying by -1 simply changes the negative number to its positive equivalent because

a minus multiplied by a minus gives a positive.

Calculating the ratio between X and Y in the shoot function
Look at this next line of code again and then we will further split it up to discuss it:

float ratioXY = m_BulletSpeed / (1 + gradient);

The 1 + gradient part adds 1 to the calculated gradient. This is done to prevent division by zero

and to ensure that the denominator of the division is not equal to zero.

The part m_BulletSpeed / (1 + gradient) calculates the ratio between the horizontal and

vertical components of the bullet’s movement. The numerator (m_BulletSpeed) represents the

total speed of the bullet, and the denominator (1 + gradient) adjusts this speed based on the

slope of the flight path.

If the flight path has a steep upward slope (large positive gradient), the denominator will be larg-

er, resulting in a smaller ratio. This means that more of the bullet’s speed is allocated vertically.

Chapter 12 339

If the flight path has a steep downward slope (large negative gradient), the denominator will

be smaller, resulting in a larger ratio. This means that more of the bullet’s speed is allocated

horizontally.

Finally, for this line, float ratioXY = stores the result in the variable ratioXY. This variable

now holds a value that represents the ratio between the horizontal and vertical distances that

the bullet should travel based on the calculated gradient and the specified bullet speed.

Finishing the shoot function explanation
The next two lines complete our bullet code:

m_BulletDistanceY = ratioXY;

m_BulletDistanceX = ratioXY * gradient;

These lines determine how far the bullet should move vertically (m_BulletDistanceY) and hori-

zontally (m_BulletDistanceX) based on the previously calculated ratio and the gradient.

Despite all these in-depth calculations, the actual direction of travel will be handled in the update

function by adding or subtracting the positive values we have just arrived at in this update function.

The next part of the code is much more straightforward. We simply set a maximum horizontal

and vertical location that the bullet can reach. We don’t want a bullet carrying on forever. In the

update function, we will see whether a bullet has passed its maximum or minimum locations:

// Set a max range of 1000 pixels in any direction

float range = 1000;

m_MinX = startX - range;

m_MaxX = startX + range;

m_MinY = startY - range;

m_MaxY = startY + range;

The following code moves the sprite that represents the bullet to its starting location. We use the

setPosition function of Sprite, as we have often done before:

// Position the bullet ready to be drawn

m_BulletShape.setPosition(m_Position);

We are now done with the shoot function.

Collision Detection, Pickups, and Bullets340

More bullet functions
Next, we have four straightforward functions. Let’s add the stop, isInFlight, getPosition, and

getShape functions:

void Bullet::stop()

{

 m_InFlight = false;

}

bool Bullet::isInFlight()

{

 return m_InFlight;

}

FloatRect Bullet::getPosition()

{

 return m_BulletShape.getGlobalBounds();

}

RectangleShape Bullet::getShape()

{

 return m_BulletShape;

}

The stop function simply sets the m_InFlight variable to false. The isInFlight function returns

whatever the value of this same variable currently is. So, we can see that shoot sets the bullet

going, stop makes it stop, and isInFlight informs us what the current state is.

The getPosition function returns a FloatRect. We will see how we can use the FloatRect from

each game object to detect collisions soon.

Finally, for the previous code, getShape returns a RectangleShape so that we can draw the bullet

once each frame.

The Bullet class’s update function
The last function we need to implement before we can start using Bullet objects is update. Add

the following code, study it, and then we can talk about it:

void Bullet::update(float elapsedTime)

{

 // Update the bullet position variables

 m_Position.x += m_BulletDistanceX * elapsedTime;

Chapter 12 341

 m_Position.y += m_BulletDistanceY * elapsedTime;

 // Move the bullet

 m_BulletShape.setPosition(m_Position);

 // Has the bullet gone out of range?

 if (m_Position.x < m_MinX || m_Position.x > m_MaxX ||

 m_Position.y < m_MinY || m_Position.y > m_MaxY)

 {

 m_InFlight = false;

 }

}

In the update function, we use m_BulletDistanceX and m_BulletDistanceY, multiplied by the

time since the last frame to move the bullet. Remember that the values of the two variables were

calculated in the shoot function and represent the gradient (ratio to each other) that’s required

to move the bullet at precisely the correct angle. Then, we use the setPosition function to move

the RectangleShape.

The last thing we do in update is a test to see whether the bullet has moved beyond its maximum

range. The slightly convoluted if statement checks m_Position.x and m_Position.y against the

maximum and minimum values that were calculated in the shoot function. These maximum and

minimum values are stored in m_MinX, m_MaxX, m_MinY, and m_MaxY.

The code checks whether the m_Position (.x and .y) is outside the specified rectangular area

defined by m_MinX, m_MaxX, m_MinY, and m_MaxY. Remember, the m_Min… values define the furthest

point the current bullet can travel. If the position is outside this area, the variable m_InFlight

variable is set to false, which stops the bullet.

If the test is true, then m_InFlight is set to false.

The Bullet class is now done. Next, we will look at how we can shoot some in the main function.

Making the bullets fly
In the following sections, we will make the bullets usable with these six steps:

1.	 Add the necessary include directive for the Bullet class.

2.	 Add some control variables and an array to hold some Bullet instances.

3.	 Handle the player pressing R to reload.

4.	 Handle the player pressing the left mouse button to fire a bullet.

Collision Detection, Pickups, and Bullets342

5.	 Update all bullets that are in flight in each frame.

6.	 Draw the bullets that are in flight in each frame.

Including the Bullet class
Add the include directive to make the Bullet class available:

#include <SFML/Graphics.hpp>

#include "ZombieArena.h"

#include "Player.h"

#include "TextureHolder.h"

#include "Bullet.h"

using namespace sf;

Let’s move on to the next step.

Control variables and the bullet array
Here are some variables to keep track of clip sizes, spare bullets, the remaining bullets in the clip,

the current rate of fire (starting at one per second), and the time when the last bullet was fired.

Add the following highlighted code. Then, we can move on and see all these variables in action

throughout the rest of this section:

// Prepare for a horde of zombies

int numZombies;

int numZombiesAlive;

Zombie* zombies = NULL;

// 100 bullets should do

Bullet bullets[100];

int currentBullet = 0;

int bulletsSpare = 24;

int bulletsInClip = 6;

int clipSize = 6;

float fireRate = 1;

// When was the fire button last pressed?

Time lastPressed;

// The main game loop

while (window.isOpen())

Chapter 12 343

Next, let’s handle what happens when the player presses the R keyboard key, which is used for

reloading a clip.

Reloading the gun
Now, we will handle the player input related to shooting bullets. First, we will handle pressing

the R key to reload the gun. We will do so with an SFML event.

Add the following highlighted code. It is shown with lots of context to make sure the code goes

in the right place. Study the code and then we can talk about it:

// Handle events

Event event;

while (window.pollEvent(event))

{

 if (event.type == Event::KeyPressed)

 {

 // Pause a game while playing

 if (event.key.code == Keyboard::Return &&

 state == State::PLAYING)

 {

 state = State::PAUSED;

 }

 // Restart while paused

 else if (event.key.code == Keyboard::Return &&

 state == State::PAUSED)

 {

 state = State::PLAYING;

 // Reset the clock so there

 // isn't a frame jump

 clock.restart();

 }

 // Start a new game while in GAME_OVER state

 else if (event.key.code == Keyboard::Return &&

 state == State::GAME_OVER)

 {

 state = State::LEVELING_UP;

 }

 if (state == State::PLAYING)

Collision Detection, Pickups, and Bullets344

 {

 // Reloading

 if (event.key.code == Keyboard::R)

 {

 if (bulletsSpare >= clipSize)

 {

 // Plenty of bullets. Reload.

 bulletsInClip = clipSize;

 bulletsSpare -= clipSize;

 }

 else if (bulletsSpare > 0)

 {

 // Only few bullets left

 bulletsInClip = bulletsSpare;

 bulletsSpare = 0;

 }

 else

 {

 // More here soon?!

 }

 }

 }

 }

}// End event polling

The previous code is nested within the event handling part of the game loop (while(window.

pollEvent)), within the block that only executes when the game is actually being played (if(state

== State::Playing)). It is obvious that we don’t want the player reloading when the game has

finished or is paused, and wrapping the new code as we’ve described achieves this.

In the new code itself, the first thing we do is test for the R key being pressed with if (event.

key.code == Keyboard::R). Once we have detected that the R key was pressed, the remaining

code is executed. Here is the structure of the if, else if, and else blocks:

if(bulletsSpare >= clipSize)

 ...

else if(bulletsSpare > 0)

Chapter 12 345

 ...

else

 ...

The previous structure allows us to handle three possible scenarios, as shown here:

•	 The player has pressed R and they have more bullets spare than the clip can take. In this

scenario, the clip is refilled and the number of spare bullets is reduced.

•	 The player has some spare bullets but not enough to fill the clip completely. In this sce-

nario, the clip is filled with as many spare bullets as the player has and the number of

spare bullets is set to zero.

•	 The player has pressed R but they have no spare bullets at all. For this scenario, we don’t

actually need to alter the variables. However, we will play a sound effect here when we

implement the sound in Chapter 14, Sound Effects, File I/O, and Finishing the Game, so we

will leave the empty else block ready.

Now, let’s shoot a bullet.

Shooting a bullet
Here, we will handle the left mouse button being clicked to fire a bullet. Add the following high-

lighted code and study it carefully:

 if (Keyboard::isKeyPressed(Keyboard::D))

 {

 player.moveRight();

 }

 else

 {

 player.stopRight();

 }

 // Fire a bullet

 if (Mouse::isButtonPressed(sf::Mouse::Left))

 {

 if (gameTimeTotal.asMilliseconds()

 - lastPressed.asMilliseconds()

 > 1000 / fireRate && bulletsInClip > 0)

 {

 // Pass the centre of the player

Collision Detection, Pickups, and Bullets346

 // and the centre of the cross-hair

 // to the shoot function

 bullets[currentBullet].shoot(

 player.getCenter().x, player.getCenter().y,

 mouseWorldPosition.x, mouseWorldPosition.y);

 currentBullet++;

 if (currentBullet > 99)

 {

 currentBullet = 0;

 }

 lastPressed = gameTimeTotal;

 bulletsInClip--;

 }

 }// End fire a bullet

}// End WASD while playing

All the previous code is wrapped in an if statement that executes whenever the left mouse button

is pressed, that is, if (Mouse::isButtonPressed(sf::Mouse::Left)). Note that the code will

execute repeatedly, even if the player just holds down the button. The code we will go through

now controls the rate of fire.

In the preceding code, we check whether the total time elapsed in the game (gameTimeTotal)

minus the time the player last shot a bullet (lastPressed) is greater than 1,000, divided by the

current rate of fire, and that the player has at least one bullet in the clip. We use 1,000 because

this is the number of milliseconds in a second.

If this test is successful, the code that actually fires a bullet is executed. Shooting a bullet is easy

because we did all the hard work in the Bullet class. We simply call shoot on the current bullet

from the bullets array. We pass in the player’s and the crosshair’s current horizontal and ver-

tical locations. The bullet will be configured and set in flight by the code in the shoot function

of the Bullet class.

All we must do is keep track of the array of bullets. We incremented the currentBullet variable.

Then, we need to check to see whether we fired the last bullet (99) with the if (currentBullet

> 99) statement. If it was the last bullet, we set currentBullet to zero. If it wasn’t the last bullet,

then the next bullet is ready to go whenever the rate of fire permits it and the player presses the

left mouse button.

Chapter 12 347

Finally, in the preceding code, we store the time that the bullet was fired into lastPressed and

decrement bulletsInClip.

Now, we can update every bullet, each frame.

Updating the bullets in each frame
Add the following highlighted code to loop through the bullets array, check whether the bullet

is in flight, and if it is, call its update function:

 // Loop through each Zombie and update them

 for (int i = 0; i < numZombies; i++)

 {

 if (zombies[i].isAlive())

 {

 zombies[i].update(dt.asSeconds(), playerPosition);

 }

 }

 // Update any bullets that are in-flight

 for (int i = 0; i < 100; i++)

 {

 if (bullets[i].isInFlight())

 {

 bullets[i].update(dtAsSeconds);

 }

 }

}// End updating the scene

Finally, we will draw all the bullets.

Drawing the bullets in each frame
Add the following highlighted code to loop through the bullets array, check whether the bullet

is in flight, and if it is, draw it:

/*

 Draw the scene

 */

if (state == State::PLAYING)

Collision Detection, Pickups, and Bullets348

{

 window.clear();

 // set the mainView to be displayed in the window

 // And draw everything related to it

 window.setView(mainView);

 // Draw the background

 window.draw(background, &textureBackground);

 // Draw the zombies

 for (int i = 0; i < numZombies; i++)

 {

 window.draw(zombies[i].getSprite());

 }

 for (int i = 0; i < 100; i++)

 {

 if (bullets[i].isInFlight())

 {

 window.draw(bullets[i].getShape());

 }

 }

 // Draw the player

 window.draw(player.getSprite());

}

Run the game to try out the bullets. Notice that you can fire six shots before you need to press R to

reload. The obvious things that are missing are some visual indicators of the number of bullets in

the clip and the number of spare bullets. Another problem is that the player can very quickly run

out of bullets, especially since the bullets have no stopping power whatsoever. They fly straight

through the zombies. Add to this that the player is expected to aim at a mouse pointer instead of

a precision crosshair and it is clear that we have work to do.

We will replace the mouse cursor with a crosshair next and then spawn some pickups to replenish

bullets and health after that. Finally, in this section, we will handle collision detection to make

the bullets and the zombies do damage and make the player able to actually get the pickups.

Giving the player a crosshair
Adding a crosshair is easy and only requires one new concept. Add the following highlighted code,

and then we can run through it:

Chapter 12 349

// 100 bullets should do

Bullet bullets[100];

int currentBullet = 0;

int bulletsSpare = 24;

int bulletsInClip = 6;

int clipSize = 6;

float fireRate = 1;

// When was the fire button last pressed?

Time lastPressed;

// Hide the mouse pointer and replace it with crosshair

window.setMouseCursorVisible(true);

Sprite spriteCrosshair;

Texture textureCrosshair = TextureHolder::GetTexture("graphics/crosshair.
png");

spriteCrosshair.setTexture(textureCrosshair);

spriteCrosshair.setOrigin(25, 25);

// The main game loop

while (window.isOpen())

First, we call the setMouseCursorVisible function on our window object. We then load a Texture,

declare a Sprite instance, and initialize it in the usual way. Furthermore, we set the sprite’s or-

igin to its center to make it convenient and simpler to make the bullets fly to the middle, as you

would expect to happen.

Now, we need to update the crosshair in each frame with the world coordinates of the mouse.

Add the following highlighted line of code, which uses the mouseWorldPosition vector to set the

crosshair’s position in each frame:

/*

 UPDATE THE FRAME

 */

if (state == State::PLAYING)

{

 // Update the delta time

 Time dt = clock.restart();

 // Update the total game time

 gameTimeTotal += dt;

Collision Detection, Pickups, and Bullets350

 // Make a decimal fraction of 1 from the delta time

 float dtAsSeconds = dt.asSeconds();

 // Where is the mouse pointer

 mouseScreenPosition = Mouse::getPosition();

 // Convert mouse position to world coordinates of mainView

 mouseWorldPosition = window.mapPixelToCoords(

 Mouse::getPosition(), mainView);

 // Set the crosshair to the mouse world location

 spriteCrosshair.setPosition(mouseWorldPosition);

 // Update the player

 player.update(dtAsSeconds, Mouse::getPosition());

Next, as you have probably come to expect, we can draw the crosshair in each frame. Add the

following highlighted line of code in the position shown. This line of code needs no explanation,

but its position after all the other game objects is important, so it is drawn on top:

/*

 Draw the scene

 */

if (state == State::PLAYING)

{

 window.clear();

 // set the mainView to be displayed in the window

 // And draw everything related to it

 window.setView(mainView);

 // Draw the background

 window.draw(background, &textureBackground);

 // Draw the zombies

 for (int i = 0; i < numZombies; i++)

 {

 window.draw(zombies[i].getSprite());

 }

 for (int i = 0; i < 100; i++)

 {

 if (bullets[i].isInFlight())

Chapter 12 351

 {

 window.draw(bullets[i].getShape());

 }

 }

 // Draw the player

 window.draw(player.getSprite());

 //Draw the crosshair

 window.draw(spriteCrosshair);

}

Now, you can run the game and you will see a cool crosshair instead of a mouse cursor:

Figure 12.1: A cool crosshair instead of a mouse cursor

Notice how the bullet fires neatly through the center of the crosshair. The way the shooting mech-

anism works is analogous to allowing the player to choose to shoot from the hip or aim down

the sights. If the player keeps the crosshair close to the center, they can fire and turn rapidly, yet

must carefully judge the position of distant zombies.

Alternatively, the player can hover their crosshair directly over the head of a distant zombie and

score a precise hit; however, they then have much further to move the crosshair back if a zombie

attacks from another direction.

An interesting improvement to the game would be to add a small random amount of inaccuracy

to each shot. This inaccuracy could perhaps be mitigated with an upgrade between waves.

Collision Detection, Pickups, and Bullets352

Coding a class for pickups
In this section, we will code a Pickup class that has a Sprite member, as well as other member

data and functions. We will add pickups to our game in just a few steps:

1.	 First, we will code the Pickup.h file. This will reveal all the details of the member data

and the prototypes for the functions.

2.	 Then, we will code the Pickup.cpp file which, of course, will contain the definitions for

all the functions of the Pickup class. As we step through this, I will explain exactly how

an object of the Pickup type will work and be controlled.

3.	 Finally, we will use the Pickup class in the main function to spawn them, update them,

and draw them.

Let’s get started with step 1.

Coding the Pickup header file
To make the new header file, right-click Header Files in the Solution Explorer and select Add

| New Item.... In the Add New Item window, highlight (by left-clicking) Header File (.h), and

then, in the Name field, type Pickup.h.

Add and study the following code to the Pickup.h file and then we can go through it:

#pragma once

#include <SFML/Graphics.hpp>

using namespace sf;

class Pickup

{

private:

 //Start value for health pickups

 const int HEALTH_START_VALUE = 50;

 const int AMMO_START_VALUE = 12;

 const int START_WAIT_TIME = 10;

 const int START_SECONDS_TO_LIVE = 5;

 // The sprite that represents this pickup

 Sprite m_Sprite;

 // The arena it exists in

 IntRect m_Arena;

 // How much is this pickup worth?

Chapter 12 353

 int m_Value;

 // What type of pickup is this?

 // 1 = health, 2 = ammo

 int m_Type;

 // Handle spawning and disappearing

 bool m_Spawned;

 float m_SecondsSinceSpawn;

 float m_SecondsSinceDeSpawn;

 float m_SecondsToLive;

 float m_SecondsToWait;

// Public prototypes go here

};

The previous code declares all the private variables of the Pickup class. Although the names

should be quite intuitive, it might not be obvious why many of them are needed at all. Let’s go

through them, starting from the top:

•	 const int HEALTH_START_VALUE = 50: This constant variable is used to set the starting

value of all health pickups. The value will be used to initialize the m_Value variable, which

will need to be manipulated throughout the game.

•	 const int AMMO_START_VALUE = 12: This constant variable is used to set the starting

value of all ammo pickups. The value will be used to initialize the m_Value variable, which

will need to be manipulated throughout the game.

•	 const int START_WAIT_TIME = 10: This variable determines how long a pickup will wait

before it respawns after disappearing. It will be used to initialize the m_SecondsToWait

variable, which can be manipulated throughout the game.

•	 const int START_SECONDS_TO_LIVE = 5: This variable determines how long a pickup

will last between spawning and being de-spawned. Like the previous three constants, it

has a non-constant associated with it that can be manipulated throughout the game. The

non-constant it uses to initialize is m_SecondsToLive.

•	 Sprite m_Sprite: This is the sprite to visually represent the object.

•	 IntRect m_Arena: This will hold the size of the current arena to help the pickup spawn

in a sensible position.

•	 int m_Value: How much health or ammo is this pickup worth? This value is used when

the player levels up the value of the health or ammo pickup.

Collision Detection, Pickups, and Bullets354

•	 int m_Type: This will be either 1 or 2 for health or ammo, respectively. We could have used

an enumeration class, but that seemed like overkill for just two options.

•	 bool m_Spawned: Is the pickup currently spawned?

•	 float m_SecondsSinceSpawn: How long has it been since the pickup was spawned?

•	 float m_SecondsSinceDeSpawn: How long has it been since the pickup was de-spawned

(disappeared)?

•	 float m_SecondsToLive: How long should this pickup stay spawned before de-spawning?

•	 float m_SecondsToWait: How long should this pickup stay de-spawned before respawn-

ing?

Next, add the following public function prototypes to the Pickup.h file. Be sure to familiarize

yourself with the new code so that we can go through it:

// Public prototypes go here

public:

 Pickup(int type);

 // Prepare a new pickup

 void setArena(IntRect arena);

 void spawn();

 // Check the position of a pickup

 FloatRect getPosition();

 // Get the sprite for drawing

 Sprite getSprite();

 // Let the pickup update itself each frame

 void update(float elapsedTime);

 // Is this pickup currently spawned?

 bool isSpawned();

 // Get the goodness from the pickup

 int gotIt();

 // Upgrade the value of each pickup

 void upgrade();

};

Note that most of the complexity of this class is due to the variable spawn time and

its upgradable nature. If the pickups just respawned when collected and had a fixed

value, this would be a very simple class. We need our pickups to be upgradable so

that the player is forced to develop a strategy to progress through the waves.

Chapter 12 355

Let’s talk briefly about each of the function definitions:

•	 The first function is the constructor and is named after the class. Note that it takes a single

int parameter. This will be used to initialize the type of pickup it will be (health or ammo).

•	 The setArena function receives an IntRect. This function will be called for each Pickup

instance at the start of each wave. The Pickup objects will then “know” the areas into

which they can spawn.

•	 The spawn function will, of course, handle spawning the pickup.

•	 The getPosition function, just like in the Player, Zombie, and Bullet classes, will return

a FloatRect instance that represents the current location of the object in the game world.

•	 The getSprite function returns a Sprite object that allows the pickup to be drawn once

each frame.

•	 The update function receives the time the previous frame took. It uses this value to update

its private variables and make decisions about when to spawn and de-spawn.

•	 The isSpawned function returns a Boolean that will let the calling code know whether or

not the pickup is currently spawned.

•	 The gotIt function will be called when a collision is detected with the player. The code

of the Pickup class can then prepare itself for respawning at the appropriate time. Note

that it returns an int value so that the calling code knows how much the pickup is “worth”

in either health or ammo.

•	 The upgrade function will be called when the player chooses to level up the properties of

a pickup during the leveling-up phase of the game.

Now that we have gone through the member variables and function prototypes, it should be quite

easy to follow along as we code the function definitions.

Coding the Pickup class function definitions
Now, we can create a new .cpp file that will contain the function definitions. Right-click Source

Files in the Solution Explorer and select Add | New Item.... In the Add New Item window, high-

light (by left-clicking) C++ File (.cpp), and then, in the Name field, type Pickup.cpp. Finally, click

the Add button. We are now ready to code the class.

Add the following code to the Pickup.cpp file. Be sure to review the code so that we can discuss it:

#include "Pickup.h"

#include "TextureHolder.h"

Pickup::Pickup(int type): m_Type{type}

Collision Detection, Pickups, and Bullets356

{

 // Associate the texture with the sprite

 if (m_Type == 1)

 {

 m_Sprite = Sprite(TextureHolder::GetTexture(

 "graphics/health_pickup.png"));

 // How much is pickup worth

 m_Value = HEALTH_START_VALUE;

 }

 else

 {

 m_Sprite = Sprite(TextureHolder::GetTexture(

 "graphics/ammo_pickup.png"));

 // How much is pickup worth

 m_Value = AMMO_START_VALUE;

 }

 m_Sprite.setOrigin(25, 25);

 m_SecondsToLive = START_SECONDS_TO_LIVE;

 m_SecondsToWait = START_WAIT_TIME;

}

In the previous code, we added the familiar include directives. Then, we added the Pickup con-

structor. We know it is the constructor because it has the same name as the class.

The constructor receives an int called type and the first thing the code does is assign the value

that’s received from type to m_Type. After this, there is an if else block that checks whether

m_Type is equal to 1. If it is, m_Sprite is associated with the health pickup texture and m_Value

is set to HEALTH_START_VALUE.

If m_Type is not equal to 1, the else block associates the ammo pickup texture with m_Sprite and

assigns the value of AMMO_START_VALUE to m_Value.

After the if else block, the code sets the origin of m_Sprite to the center using the setOrigin

function and assigns START_SECONDS_TO_LIVE and START_WAIT_TIME to m_SecondsToLive and

m_SecondsToWait, respectively.

The constructor has successfully prepared a Pickup object that is ready for use.

Now, we will add the setArena function. Examine the code as you add it:

void Pickup::setArena(IntRect arena)

Chapter 12 357

{

 // Copy the details of the arena to the pickup's m_Arena

 m_Arena.left = arena.left + 50;

 m_Arena.width = arena.width - 50;

 m_Arena.top = arena.top + 50;

 m_Arena.height = arena.height - 50;

 spawn();

}

The setArena function that we just coded simply copies the values from the passed-in arena

object but varies the values by + 50 on the left and top and - 50 on the right and bottom. The

Pickup object is now aware of the area in which it can spawn. The setArena function then calls

its own spawn function to make the final preparations for being drawn and updated each frame.

The spawn function is next. Add the following code after the setArena function:

void Pickup::spawn()

{

 // Spawn at a random location

 srand((int)time(0) / m_Type);

 int x = (rand() % m_Arena.width);

 srand((int)time(0) * m_Type);

 int y = (rand() % m_Arena.height);

 m_SecondsSinceSpawn = 0;

 m_Spawned = true;

 m_Sprite.setPosition(x, y);

}

The spawn function does everything necessary to prepare the pickup. First, it seeds the random

number generator and gets a random number for both the horizontal and vertical position of the

object. Notice that it uses the m_Arena.width and m_Arena.height variables as the ranges for the

possible horizontal and vertical positions.

The m_SecondsSinceSpawn variable is set to zero so that the length of time that’s allowed before it

is de-spawned is reset. The m_Spawned variable is set to true so that, when we call isSpawned, from

main, we will get a positive response. Finally, m_Sprite is moved into position with setPosition,

ready to be drawn to the screen.

Collision Detection, Pickups, and Bullets358

In the following block of code, we have three simple getter functions. The getPosition function

returns a FloatRect of the current position of m_Sprite, getSprite returns a copy of m_Sprite

itself, and isSpawned returns true or false, depending on whether the object is currently spawned.

Add and examine the code we have just discussed:

FloatRect Pickup::getPosition()

{

 return m_Sprite.getGlobalBounds();

}

Sprite Pickup::getSprite()

{

 return m_Sprite;

}

bool Pickup::isSpawned()

{

 return m_Spawned;

}

Next, we will code the gotIt function. This function will be called from main when the player

touches/collides with (gets) the pickup. Add the gotIt function after the isSpawned function:

int Pickup::gotIt()

{

 m_Spawned = false;

 m_SecondsSinceDeSpawn = 0;

 return m_Value;

}

The gotIt function sets m_Spawned to false so that we know not to draw and check for collisions

anymore. m_SecondsSinceDespawn is set to zero so that the countdown to spawning begins again

from the start. m_Value is then returned to the calling code so that the calling code can handle

adding extra ammunition or health, as appropriate.

Following this, we need to code the update function, which ties together many of the variables

and functions we have seen so far. Add and familiarize yourself with the update function, and

then we can talk about it:

void Pickup::update(float elapsedTime)

{

Chapter 12 359

 if (m_Spawned)

 {

 m_SecondsSinceSpawn += elapsedTime;

 }

 else

 {

 m_SecondsSinceDeSpawn += elapsedTime;

 }

 // Do we need to hide a pickup?

 if (m_SecondsSinceSpawn > m_SecondsToLive && m_Spawned)

 {

 // Remove the pickup and put it somewhere else

 m_Spawned = false;

 m_SecondsSinceDeSpawn = 0;

 }

 // Do we need to spawn a pickup

 if (m_SecondsSinceDeSpawn > m_SecondsToWait && !m_Spawned)

 {

 // spawn the pickup and reset the timer

 spawn();

 }

}

The update function is divided into four blocks that are considered for execution in each frame:

•	 An if block that executes if m_Spawned is true: if (m_Spawned). This block of code adds

the time from this frame to m_SecondsSinceSpawned, which keeps track of how long the

pickup has been spawned.

•	 A corresponding else block that executes if m_Spawned is false. This block adds the time

this frame took to m_SecondsSinceDeSpawn, which keeps track of how long the pickup

has waited since it was last de-spawned (hidden).

•	 Another if block that executes when the pickup has been spawned for longer than it

should have been: if (m_SecondsSinceSpawn > m_SecondsToLive && m_Spawned). This

block sets m_Spawned to false and resets m_SecondsSinceDeSpawn to zero. Now, block 2

will execute until it is time to spawn it again.

Collision Detection, Pickups, and Bullets360

•	 A final if block that executes when the time to wait since de-spawning has exceeded the

necessary wait time, and the pickup is not currently spawned: if (m_SecondsSinceDeSpawn

> m_SecondsToWait && !m_Spawned). When this block is executed, it is time to spawn

the pickup again, and the spawn function is called.

These four tests are what control the hiding and showing of a pickup.

Finally, add the definition for the upgrade function:

void Pickup::upgrade()

{

 if (m_Type == 1)

 {

 m_Value += (HEALTH_START_VALUE * .5);

 }

 else

 {

 m_Value += (AMMO_START_VALUE * .5);

 }

 // Make them more frequent and last longer

 m_SecondsToLive += (START_SECONDS_TO_LIVE / 10);

 m_SecondsToWait -= (START_WAIT_TIME / 10);

}

The upgrade function tests for the type of pickup, either health or ammo, and then adds 50% of

the (appropriate) starting value to m_Value. The next two lines after the if else blocks increase

the amount of time the pickup will remain spawned and decrease the amount of time the player

must wait between spawns.

This function is called when the player chooses to level up the pickups during the LEVELING_UP

state.

Our Pickup class is ready for use.

Using the Pickup class
After all that hard work implementing the Pickup class, we can now go ahead and write code in

the game engine to put some pickups into the game.

The first thing we will do is add an include directive to the ZombieArena.cpp file:

#include <SFML/Graphics.hpp>

Chapter 12 361

#include "ZombieArena.h"

#include "Player.h"

#include "TextureHolder.h"

#include "Bullet.h"

#include "Pickup.h"

using namespace sf;

In the following code, we are adding two Pickup instances: one called healthPickup and another

called ammoPickup. We pass the values 1 and 2, respectively, into the constructor so that they are

initialized to the correct type of pickup. Add the following highlighted code, which we have just

discussed:

// Hide the mouse pointer and replace it with crosshair

window.setMouseCursorVisible(true);

Sprite spriteCrosshair;

Texture textureCrosshair = TextureHolder::GetTexture(

 "graphics/crosshair.png");

spriteCrosshair.setTexture(textureCrosshair);

spriteCrosshair.setOrigin(25, 25);

// Create a couple of pickups

Pickup healthPickup(1);

Pickup ammoPickup(2);

// The main game loop

while (window.isOpen())

In the LEVELING_UP state of the keyboard handling, add the following highlighted lines within

the nested PLAYING code block:

if (state == State::PLAYING)

{

 // Prepare the level

 // We will modify the next two lines later

 arena.width = 500;

 arena.height = 500;

 arena.left = 0;

 arena.top = 0;

 // Pass the vertex array by reference

 // to the createBackground function

 int tileSize = createBackground(background, arena);

Collision Detection, Pickups, and Bullets362

 // Spawn the player in the middle of the arena

 player.spawn(arena, resolution, tileSize);

 // Configure the pick-ups

 healthPickup.setArena(arena);

 ammoPickup.setArena(arena);

 // Create a horde of zombies

 numZombies = 10;

 // Delete the previously allocated memory (if it exists)

 delete[] zombies;

 zombies = createHorde(numZombies, arena);

 numZombiesAlive = numZombies;

 // Reset the clock so there isn't a frame jump

 clock.restart();

}

The preceding code simply passes arena into the setArena function of each pickup. The pickups

now know where they can spawn. This code executes for each new wave, so, as the arena’s size

grows, the Pickup objects will get updated.

The following code simply calls the update function for each Pickup object on each frame:

// Loop through each Zombie and update them

 for (int i = 0; i < numZombies; i++)

 {

 if (zombies[i].isAlive())

 {

 zombies[i].update(dt.asSeconds(), playerPosition);

 }

 }

 // Update any bullets that are in-flight

 for (int i = 0; i < 100; i++)

 {

 if (bullets[i].isInFlight())

 {

 bullets[i].update(dtAsSeconds);

 }

 }

 // Update the pickups

 healthPickup.update(dtAsSeconds);

Chapter 12 363

 ammoPickup.update(dtAsSeconds);

}// End updating the scene

The following code in the draw part of the game loop checks whether the pickup is currently

spawned and, if it is, draws it. Let’s add it:

 // Draw the player

 window.draw(player.getSprite());

 // Draw the pick-ups, if currently spawned

 if (ammoPickup.isSpawned())

 {

 window.draw(ammoPickup.getSprite());

 }

 if (healthPickup.isSpawned())

 {

 window.draw(healthPickup.getSprite());

 }

 //Draw the crosshair

 window.draw(spriteCrosshair);

}

Now, you can run the game and see the pickups spawn and de-spawn. You can’t, however, ac-

tually pick them up yet:

Figure 12.2: Pickups spawn and de-spawn

Collision Detection, Pickups, and Bullets364

Now that we have all the objects in our game, it is a good time to make them interact (collide)

with each other.

Detecting collisions
We just need to know when certain objects from our game touch certain other objects. We can then

respond to that event in an appropriate manner. In our classes, we have already added functions

that will be called when our objects collide. They are as follows:

•	 The Player class has a hit function. We will call it when a zombie collides with the player.

•	 The Zombie class has a hit function. We will call it when a bullet collides with a zombie.

•	 The Pickup class has a gotIt function. We will call it when the player collides with a pickup.

If necessary, look back to refresh your memory regarding how each of those functions works. All

we need to do now is detect the collisions and call the appropriate functions.

We will use rectangle intersection to detect collisions. This type of collision detection is straight-

forward (especially with SFML). We will use the same technique that we used in the Pong game.

The following image shows how a rectangle can reasonably accurately represent the zombies

and the player:

Figure 12.3 Rectangle representing the zombies and the player

We will deal with this in three sections of code that will all follow on from one another. They will

all go at the end of the update part of our game engine.

We need to know the answers to the following three questions for each frame:

1.	 Has a zombie been shot?

2.	 Has the player been touched by a zombie?

3.	 Has the player touched a pickup?

Chapter 12 365

First, let’s add a couple more variables for score and hiscore. We can then change them when

a zombie is killed. Add the following code:

// Create a couple of pickups

Pickup healthPickup(1);

Pickup ammoPickup(2);

// About the game

int score = 0;

int hiScore = 0;

// The main game loop

while (window.isOpen())

Now, let’s start by detecting whether a zombie is colliding with a bullet.

Has a zombie been shot?
The following code might look complicated but, when we step through it, we will see it is nothing

we haven’t seen before. Add the following code just after the call to update the pickups for each

frame. Then, we can go through it:

// Update the pickups

healthPickup.update(dtAsSeconds);

ammoPickup.update(dtAsSeconds);

// Collision detection

// Have any zombies been shot?

for (int i = 0; i < 100; i++)

{

 for (int j = 0; j < numZombies; j++)

 {

 if (bullets[i].isInFlight() &&

 zombies[j].isAlive())

 {

 if (bullets[i].getPosition().intersects

 (zombies[j].getPosition()))

 {

 // Stop the bullet

 bullets[i].stop();

 // Register the hit and see if it was a kill

 if (zombies[j].hit())

Collision Detection, Pickups, and Bullets366

 {

 // Not just a hit but a kill too

 score += 10;

 if (score >= hiScore)

 {

 hiScore = score;

 }

 numZombiesAlive--;

 // When all the zombies are dead (again)

 if (numZombiesAlive == 0) {

 state = State::LEVELING_UP;

 }

 }

 }

 }

 }

}// End zombie being shot

In the next section, we will see all the zombie and bullet collision detection code again. We will

do so a bit at a time so that we can discuss it. First, notice the structure of the nested for loops

in the preceding code (with some code stripped out), as shown again here:

// Collision detection

// Have any zombies been shot?

for (int i = 0; i < 100; i++)

{

 for (int j = 0; j < numZombies; j++)

 {

 ...

 ...

 ...

 }

}

The code loops through every bullet (0 to 99) for every zombie (0 to less than numZombies.).

Within the nested for loops, we do the following:

Chapter 12 367

1.	 We check whether the current bullet is in flight and the current zombie is still alive with

the following code:

if (bullets[i].isInFlight() && zombies[j].isAlive())

2.	 Provided the zombie is alive and the bullet is in flight, we test for a rectangle intersection

with the following code:

if (bullets[i].getPosition().intersects(zombies[j].getPosition()))

3.	 If the current bullet and zombie have collided, then we take a number of steps, as detailed

next.Stop the bullet with the following code:

// Stop the bullet

bullets[i].stop();

4.	 Register a hit with the current zombie by calling its hit function. Note that the hit function

returns a Boolean that lets the calling code know whether the zombie is dead yet. This is

shown in the following line of code:

// Register the hit and see if it was a kill

if (zombies[j].hit()) {

5.	 Inside this if block, which detects when the zombie is dead and hasn’t just wounded us,

do the following:

•	 Add 10 to score.

•	 Change hiScore if the score the player has achieved or exceeded (beaten) score.

•	 Reduce numZombiesAlive by one.

•	 Check whether all the zombies are dead with (numZombiesAlive == 0) and, if so,

change state to LEVELING_UP.

Here is the block of code inside if(zombies[j].hit()) that we have just discussed:

// Not just a hit but a kill too

score += 10;

if (score >= hiScore)

{

 hiScore = score;

}

numZombiesAlive--;

// When all the zombies are dead (again)

Collision Detection, Pickups, and Bullets368

if (numZombiesAlive == 0)

{

 state = State::LEVELING_UP;

}

That’s the zombies and the bullets taken care of. You can now run the game and see the blood. Of

course, you won’t see the score until we implement the HUD in the next chapter.

Has the player been touched by a zombie?
This code is much shorter and simpler than the zombie and bullet collision detection code. Add

the following highlighted code just after the previous code we wrote:

}// End zombie being shot

// Have any zombies touched the player

for (int i = 0; i < numZombies; i++)

{

 if (player.getPosition().intersects

 (zombies[i].getPosition()) && zombies[i].isAlive())

 {

 if (player.hit(gameTimeTotal))

 {

 // More here later

 }

 if (player.getHealth() <= 0)

 {

 state = State::GAME_OVER;

 }

 }

}// End player touched

Here, we detect whether a zombie has collided with the player by using a for loop to go through

all the zombies. For each zombie that is alive, the code uses the intersects function to test for

a collision with the player. When a collision has occurred, we call player.hit. Then, we check

whether the player is dead by calling player.getHealth. If the player’s health is equal to or less

than zero, we change state to GAME_OVER.

You can run the game and collisions will be detected. However, as there is no HUD or sound effects

yet, it is not clear that this is happening. In addition, we need to do some more work resetting

the game when the player has died and a new game is starting.

Chapter 12 369

So, although the game runs, the results are not especially satisfying right now. We will improve

this over the next two chapters.

Has the player touched a pickup?
The collision detection code between the player and each of the two pickups is shown here. Add

the following highlighted code just after the previous code that we added:

 }// End player touched

 // Has the player touched health pickup

 if (player.getPosition().intersects

 (healthPickup.getPosition()) && healthPickup.isSpawned())

 {

 player.increaseHealthLevel(healthPickup.gotIt());

 }

 // Has the player touched ammo pickup

 if (player.getPosition().intersects

 (ammoPickup.getPosition()) && ammoPickup.isSpawned())

 {

 bulletsSpare += ammoPickup.gotIt();

 }

}// End updating the scene

The preceding code uses two simple if statements to see whether either healthPickup or

ammoPickup has been touched by the player.

If a health pickup has been collected, then the player.increaseHealthLevel function uses the

value returned from the healthPickup.gotIt function to increase the player’s health.

If an ammo pickup has been collected, then bulletsSpare is increased by the value that’s returned

from ammoPickup.gotIt.

You can now run the game, kill zombies, and collect pickups! Note that, when your

health equals zero, the game will enter the GAME_OVER state and pause. To restart

it, you will need to press Enter, followed by a number between 1 and 6. When we

implement the HUD, the home screen, and the leveling-up screen, these steps will

be intuitive and straightforward for the player. We will do so in the next chapter.

Collision Detection, Pickups, and Bullets370

Summary
This was a busy chapter, but we achieved a lot. Not only did we add bullets and pickups to the

game through two new classes but we also made all the objects interact as they should by de-

tecting when they collide with each other.

Despite these achievements, we need to do more work to set up each new game and to give the

player feedback through a HUD. In the next chapter, we will build the HUD.

Frequently asked questions
Here is a question that might be on your mind:

Q1) Are there any better ways of doing collision detection?

A) Yes. There are lots more ways to do collision detection, including but not limited to the following:

•	 You can divide objects up into multiple rectangles that fit the shape of the sprite better. It

is perfectly manageable for C++ to check on thousands of rectangles in each frame. This

is especially the case when you use techniques such as neighbor checking to reduce the

number of tests that are necessary for each frame.

•	 For circular objects, you can use the radius overlap method.

•	 For irregular polygons, you can use the passing number algorithm.

You can review all of these techniques, if you wish, by taking a look at the following links:

•	 Neighbor checking: http://gamecodeschool.com/essentials/collision-detection-

neighbor-checking/

•	 Radius overlap method: http://gamecodeschool.com/essentials/collision-

detection-radius-overlap/

•	 Crossing number algorithm: http://gamecodeschool.com/essentials/collision-
detection-crossing-number/

http://gamecodeschool.com/essentials/collision-detection-neighbor-checking/
http://gamecodeschool.com/essentials/collision-detection-neighbor-checking/
http://gamecodeschool.com/essentials/collision-detection-radius-overlap/
http://gamecodeschool.com/essentials/collision-detection-radius-overlap/
http://gamecodeschool.com/essentials/collision-detection-crossing-number/
http://gamecodeschool.com/essentials/collision-detection-crossing-number/

13
Layering Views and
Implementing the HUD

In this chapter, we will get to see the real value of SFML Views. We will add a selection of SFML

Text objects and manipulate them as we did before in the Timber!!! project and the Pong project.

What’s new is that we will draw the HUD using a second View instance. This way, the HUD will

stay neatly positioned over the top of the main game action, regardless of what the background,

player, zombies, and other game objects are doing.

Here is what we will do in this chapter:

•	 Adding all the Text and HUD objects

•	 Updating the HUD

•	 Drawing the HUD, home, and level-up screens

Adding all the Text and HUD objects
We will be manipulating a few strings in this chapter. We are doing this so that we can format

the HUD and the level-up screen with the necessary text.

Add the extra include directive to the ZombieArena.cpp file as highlighted in the following code

so that we can make some sstream objects to achieve this:

#include <sstream>

#include <SFML/Graphics.hpp>

#include "ZombieArena.h"

#include "Player.h"

Layering Views and Implementing the HUD372

#include "TextureHolder.h"

#include "Bullet.h"

#include "Pickup.h"

using namespace sf;

Next, add this rather lengthy, but easily explainable, piece of code. To help identify where you

should add the code, the new code is highlighted, and the existing code is not:

int score = 0;

int hiScore = 0;

// For the home/game over screen

Sprite spriteGameOver;

Texture textureGameOver = TextureHolder::GetTexture("graphics/background.
png");

spriteGameOver.setTexture(textureGameOver);

spriteGameOver.setPosition(0, 0);

// Create a view for the HUD

View hudView(sf::FloatRect(0, 0, 1920,1080));

// Create a sprite for the ammo icon

Sprite spriteAmmoIcon;

Texture textureAmmoIcon = TextureHolder::GetTexture(

 "graphics/ammo_icon.png");

spriteAmmoIcon.setTexture(textureAmmoIcon);

spriteAmmoIcon.setPosition(20, 980);

// Load the font

Font font;

font.loadFromFile("fonts/zombiecontrol.ttf");

// Paused

Text pausedText;

pausedText.setFont(font);

pausedText.setCharacterSize(155);

pausedText.setFillColor(Color::White);

pausedText.setPosition(400, 400);

pausedText.setString("Press Enter \nto continue");

// Game Over

Text gameOverText;

gameOverText.setFont(font);

gameOverText.setCharacterSize(125);

Chapter 13 373

gameOverText.setFillColor(Color::White);

gameOverText.setPosition(250, 850);

gameOverText.setString("Press Enter to play");

// LEVELING up

Text levelUpText;

levelUpText.setFont(font);

levelUpText.setCharacterSize(80);

levelUpText.setFillColor(Color::White);

levelUpText.setPosition(150, 250);

std::stringstream levelUpStream;

levelUpStream <<

 "1- Increased rate of fire" <<

 "\n2- Increased clip size(next reload)" <<

 "\n3- Increased max health" <<

 "\n4- Increased run speed" <<

 "\n5- More and better health pickups" <<

 "\n6- More and better ammo pickups";

levelUpText.setString(levelUpStream.str());

// Ammo

Text ammoText;

ammoText.setFont(font);

ammoText.setCharacterSize(55);

ammoText.setFillColor(Color::White);

ammoText.setPosition(200, 980);

// Score

Text scoreText;

scoreText.setFont(font);

scoreText.setCharacterSize(55);

scoreText.setFillColor(Color::White);

scoreText.setPosition(20, 0);

// Hi Score

Text hiScoreText;

hiScoreText.setFont(font);

hiScoreText.setCharacterSize(55);

hiScoreText.setFillColor(Color::White);

hiScoreText.setPosition(1400, 0);

std::stringstream s;

Layering Views and Implementing the HUD374

s << "Hi Score:" << hiScore;

hiScoreText.setString(s.str());

// Zombies remaining

Text zombiesRemainingText;

zombiesRemainingText.setFont(font);

zombiesRemainingText.setCharacterSize(55);

zombiesRemainingText.setFillColor(Color::White);

zombiesRemainingText.setPosition(1500, 980);

zombiesRemainingText.setString("Zombies: 100");

// Wave number

int wave = 0;

Text waveNumberText;

waveNumberText.setFont(font);

waveNumberText.setCharacterSize(55);

waveNumberText.setFillColor(Color::White);

waveNumberText.setPosition(1250, 980);

waveNumberText.setString("Wave: 0");

// Health bar

RectangleShape healthBar;

healthBar.setFillColor(Color::Red);

healthBar.setPosition(450, 980);

// The main game loop

while (window.isOpen())

The previous code is very simple and nothing new. It basically creates a whole bunch of SFML

Text objects. It assigns their colors and sizes and then formats their positions using functions

we have seen before.

The most important thing to note is that we create another View object called hudView and ini-

tialize it to fit the resolution of the screen.

As we have seen, the main View object scrolls around as it follows the player. In contrast, we will

never move hudView. The result of this is that if we switch to this view before we draw the ele-

ments of the HUD, we will create the effect of allowing the game world to scroll by underneath

while the player’s HUD remains stationary.

Chapter 13 375

The next thing to notice, however, is that the hi-score is not set in any meaningful way. We will

need to wait until the next chapter, when we investigate file I/O, to save and retrieve the high score.

Another point worth noting is that we declare and initialize a RectangleShape called healthBar,

which will be a visual representation of the player’s remaining health. This will work in almost

the same way that the time-bar worked in the Timber!!! project, except it will represent health

instead of time.

In the previous code, there is a new Sprite instance called ammoIcon that gives context to the

bullet and clip statistics that we will draw next to it, at the bottom left of the screen.

Although there is nothing new or technical about the large amount of code that we just added,

be sure to familiarize yourself with the details – especially the variable names – to make the rest

of this chapter easier to follow.

Now let’s get introduced to updating the HUD variables.

Updating the HUD
As you might expect, we will update the HUD variables in the updated section of our code. How-

ever, we will not do so at every frame. The reason for this is that it is unnecessary, and it also

slows our game loop down.

As an example, consider the scenario when the player kills a zombie and gets some more points.

It doesn’t matter whether the Text object that holds the score is updated in one-thousandth,

one-hundredth, or even one-tenth of a second. The player will discern no difference. This means

there is no point rebuilding strings that we set for the Text objects every frame.

As an analogy, you can think of laying a transparent sheet of plastic with some writ-

ing on it over a TV screen. The TV will carry on as normal with moving pictures, and

the text on the plastic sheet will stay in the same place, regardless of what goes on

underneath it. We will take this concept a step further in the next project when we

create a platform game with moving views of the game world.

Layering Views and Implementing the HUD376

Therefore, we can time when and how often we update the HUD. Add the following highlighted

variables:

// Health bar

RectangleShape healthBar;

healthBar.setFillColor(Color::Red);

healthBar.setPosition(450, 980);

// When did we last update the HUD?

int framesSinceLastHUDUpdate = 0;

// How often (in frames) should we update the HUD

int fpsMeasurementFrameInterval = 1000;

// The main game loop

while (window.isOpen())

In the previous code, we have variables to track how many frames it has been since the last time

the HUD was updated, and the interval, measured in frames, we would like to wait between

HUD updates.

Now, we can use these new variables and update the HUD for each frame. We won’t see all the

HUD elements change, however, until we begin to manipulate the final variables, such as wave,

in the next chapter.

Add the following highlighted code in the updated section of the game loop, as follows:

 // Has the player touched ammo pickup

 if (player.getPosition().intersects

 (ammoPickup.getPosition()) && ammoPickup.isSpawned())

 {

 bulletsSpare += ammoPickup.gotIt();

 }

 // size up the health bar

 healthBar.setSize(Vector2f(player.getHealth() * 3, 50));

 // Increment the number of frames since the previous update

 framesSinceLastHUDUpdate++;

 // re-calculate every fpsMeasurementFrameInterval frames

 if (framesSinceLastHUDUpdate > fpsMeasurementFrameInterval)

 {

Chapter 13 377

 // Update game HUD text

 std::stringstream ssAmmo;

 std::stringstream ssScore;

 std::stringstream ssHiScore;

 std::stringstream ssWave;

 std::stringstream ssZombiesAlive;

 // Update the ammo text

 ssAmmo << bulletsInClip << "/" << bulletsSpare;

 ammoText.setString(ssAmmo.str());

 // Update the score text

 ssScore << "Score:" << score;

 scoreText.setString(ssScore.str());

 // Update the high score text

 ssHiScore << "Hi Score:" << hiScore;

 hiScoreText.setString(ssHiScore.str());

 // Update the wave

 ssWave << "Wave:" << wave;

 waveNumberText.setString(ssWave.str());

 // Update the high score text

 ssZombiesAlive << "Zombies:" << numZombiesAlive;

 zombiesRemainingText.setString(ssZombiesAlive.str());

 framesSinceLastHUDUpdate = 0;

 }// End HUD update

}// End updating the scene

In the new code, we update the size of the healthBar sprite and then increment the

framesSinceLastHUDUpdate variable.

Next, we start an if block that tests whether framesSinceLastHUDUpdate is greater than our

preferred interval, which is stored in fpsMeasurementFrameInterval.

Inside this if block is where all the action takes place. First, we declare a stringstream object

for each string that we need to set to a Text object.

Then, we use each of those stringstream objects in turn and use the setString function to set

the result to the appropriate Text object.

Finally, before the if block is exited, framesSinceLastHUDUpdate is set back to 0 so that the count

can begin again.

Layering Views and Implementing the HUD378

Now, when we redraw the scene, the new values will appear in the player’s HUD.

Drawing the HUD, home, and level-up screens
All the code in the following three code blocks goes in the drawing phase of our game loop. All

we need to do is draw the appropriate Text objects during the appropriate states, in the draw

section of the main game loop.

In the PLAYING state, add the following highlighted code:

 //Draw the crosshair

 window.draw(spriteCrosshair);

 // Draw the player

 window.draw(player.getSprite());

 // Switch to the HUD view

 window.setView(hudView);

 // Draw all the HUD elements

 window.draw(spriteAmmoIcon);

 window.draw(ammoText);

 window.draw(scoreText);

 window.draw(hiScoreText);

 window.draw(healthBar);

 window.draw(waveNumberText);

 window.draw(zombiesRemainingText);

}

if (state == State::LEVELING_UP)

{

}

The vital thing to notice in the preceding block of code is that we switch views to the HUD view.

This causes everything to be drawn at the precise screen positions we gave each of the elements

of the HUD. They will never move because we never change the HUD view.

In the LEVELING_UP state, add the following highlighted code:

if (state == State::LEVELING_UP)

{

 window.draw(spriteGameOver);

Chapter 13 379

 window.draw(levelUpText);

}

In the PAUSED state, add the following highlighted code:

if (state == State::PAUSED)

{

 window.draw(pausedText);

}

In the GAME_OVER state, add the following highlighted code:

if (state == State::GAME_OVER)

{

 window.draw(spriteGameOver);

 window.draw(gameOverText);

 window.draw(scoreText);

 window.draw(hiScoreText);

}

Now, we can run the game and see our HUD update during gameplay:

Figure 13.1: HUD update during gameplay

Layering Views and Implementing the HUD380

The following screenshot shows the high score and score on the home/game over screen:

Figure 13.2: High score and score on the home/game over screen

Next, we see text that tells the player what their level-up options are, although these options

don’t do anything yet:

Figure 13.3: Text telling the player what their level-up options are

Chapter 13 381

Here, we can see a helpful message on the pause screen prompting the player to start a new game:

Figure 13.4: Message on the pause screen prompting the player to start a new game

It is hopefully satisfying to see our game taking shape. The menus are like the glue that holds all the

other parts together and make the game playable. But we still have more to do, so let’s keep going.

Summary
This was a quick and simple chapter. We looked at how to display the values that are held by

variables of different types using sstream and then learned how to draw them over the top of

the main game action using a second SFML View object.

We are nearly done with Zombie Arena now. We have added and seen how to update the HUD

including a level-up and a home screen. All the screenshots in this chapter show a small arena

that doesn’t take advantage of the full monitor.

SFML Views are more powerful than this simple HUD can demonstrate. For an insight

into the potential of the SFML View class and how easy they are to use, look at the

SFML website’s tutorial on View at https://www.sfml-dev.org/tutorials/2.5/

graphics-view.php. Furthermore, in the final project, we will use multiple View

instances to create a mini-map feature.

https://www.sfml-dev.org/tutorials/2.5/graphics-view.php
https://www.sfml-dev.org/tutorials/2.5/graphics-view.php

Layering Views and Implementing the HUD382

In the next chapter, the final one for this project, we will put in some finishing touches, such as

leveling up, sound effects, and saving the high score. The arena can then grow to the same size

as the monitor and far beyond.

14
Sound Effects, File I/O, and
Finishing the Game

We are nearly done with this project. This short chapter will demonstrate how we can easily

manipulate files stored on the hard drive using the C++ Standard Library, and we will also add

sound effects. Of course, we know how to add sound effects, but we will discuss exactly where

the calls to the play function will go in the code. We will also tie up a few loose ends to make

the game complete.

In this chapter, we will cover the following topics:

•	 Saving and loading the high score

•	 Preparing sound effects

•	 Allowing the player to level up and spawning a new wave

•	 Restarting the game

•	 Playing the rest of the sounds

Saving and loading the high score
File I/O or input/output is a fairly technical subject. Fortunately for us, as it is such a common

requirement in programming, there is a library that handles all this complexity for us. Like con-

catenating strings for our HUD, it is the C++ Standard Library that provides the necessary func-

tionality through fstream.

First, we include fstream in the same way we included sstream:

#include <sstream>

Sound Effects, File I/O, and Finishing the Game384

#include <fstream>

#include <SFML/Graphics.hpp>

#include "ZombieArena.h"

#include "Player.h"

#include "TextureHolder.h"

#include "Bullet.h"

#include "Pickup.h"

using namespace sf;

Now, add a new folder to the ZombieArena folder called gamedata. Next, right-click in this folder

and create a new file called scores.txt. It is in this file that we will save the player’s high score.

You can easily open the file and add a score to it. If you do, make sure it is quite a low score so

that we can easily test whether beating that score results in the new score being added. Be sure

to close the file once you are done with it or the game will not be able to access it.

In the following code, we will create an ifstream object called inputFile and pass the folder and

file we just created as a parameter to its constructor.

if(inputFile.is_open()) checks that the file exists and is ready to read from. We then put the

contents of the file into hiScore and close the file. Add the following highlighted code:

// Score

Text scoreText;

scoreText.setFont(font);

scoreText.setCharacterSize(55);

scoreText.setColor(Color::White);

scoreText.setPosition(20, 0);

// Load the high score from a text file

std::ifstream inputFile("gamedata/scores.txt");

if (inputFile.is_open())

{

 // >> Reads the data

 inputFile >> hiScore;

 inputFile.close();

}

// Hi Score

Text hiScoreText;

Chapter 14 385

hiScoreText.setFont(font);

hiScoreText.setCharacterSize(55);

hiScoreText.setColor(Color::White);

hiScoreText.setPosition(1400, 0);

std::stringstream s;

s << "Hi Score:" << hiScore;

hiScoreText.setString(s.str());

Now, we can handle saving a potentially new high score. Within the block that handles the player’s

health being less than or equal to zero, we need to create an ofstream object called outputFile,

write the value of hiScore to the text file, and then close the file, like so:

// Have any zombies touched the player

for (int i = 0; i < numZombies; i++)

{

 if (player.getPosition().intersects

 (zombies[i].getPosition()) && zombies[i].isAlive())

 {

 if (player.hit(gameTimeTotal))

 {

 // More here later

 }

 if (player.getHealth() <= 0)

 {

 state = State::GAME_OVER;

 std::ofstream outputFile("gamedata/scores.txt");

 // << writes the data

 outputFile << hiScore;

 outputFile.close();

 }

 }

}// End player touched

You can play the game and your high score will be saved. Quit the game and notice that your high

score is still there if you play it again.

In the next section, we will make some noise.

Sound Effects, File I/O, and Finishing the Game386

Preparing sound effects
In this section, we will create all the SoundBuffer and Sound objects that we need to add a range

of sound effects to the game.

Start by adding the required SFML #include statements:

#include <sstream>

#include <fstream>

#include <SFML/Graphics.hpp>

#include <SFML/Audio.hpp>

#include "ZombieArena.h"

#include "Player.h"

#include "TextureHolder.h"

#include "Bullet.h"

#include "Pickup.h"

Now, go ahead and add the seven SoundBuffer and Sound objects that load and prepare the seven

sound files that we prepared in Chapter 8, SFML Views – Starting the Zombie Shooter Game:

// When did we last update the HUD?

int framesSinceLastHUDUpdate = 0;

// What time was the last update

Time timeSinceLastUpdate;

// How often (in frames) should we update the HUD

int fpsMeasurementFrameInterval = 1000;

// Prepare the hit sound

SoundBuffer hitBuffer;

hitBuffer.loadFromFile("sound/hit.wav");

Sound hit;

hit.setBuffer(hitBuffer);

// Prepare the splat sound

SoundBuffer splatBuffer;

splatBuffer.loadFromFile("sound/splat.wav");

Sound splat;

splat.setBuffer(splatBuffer);

// Prepare the shoot sound

SoundBuffer shootBuffer;

shootBuffer.loadFromFile("sound/shoot.wav");

Sound shoot;

Chapter 14 387

shoot.setBuffer(shootBuffer);

// Prepare the reload sound

SoundBuffer reloadBuffer;

reloadBuffer.loadFromFile("sound/reload.wav");

Sound reload;

reload.setBuffer(reloadBuffer);

// Prepare the failed sound

SoundBuffer reloadFailedBuffer;

reloadFailedBuffer.loadFromFile("sound/reload_failed.wav");

Sound reloadFailed;

reloadFailed.setBuffer(reloadFailedBuffer);

// Prepare the powerup sound

SoundBuffer powerupBuffer;

powerupBuffer.loadFromFile("sound/powerup.wav");

Sound powerup;

powerup.setBuffer(powerupBuffer);

// Prepare the pickup sound

SoundBuffer pickupBuffer;

pickupBuffer.loadFromFile("sound/pickup.wav");

Sound pickup;

pickup.setBuffer(pickupBuffer);

// The main game loop

while (window.isOpen())

Now, the seven sound effects are ready to play. We just need to work out where in our code each

of the calls to the play function will go.

Allowing the player to level up and spawning a new
wave
In the following code, we allow the player to level up between waves. Because of the work we

have already done, this is straightforward to achieve.

Add the following highlighted code to the LEVELING_UP state where we handle player input:

// Handle the LEVELING up state

if (state == State::LEVELING_UP)

{

 // Handle the player LEVELING up

Sound Effects, File I/O, and Finishing the Game388

 if (event.key.code == Keyboard::Num1)

 {

 // Increase fire rate

 fireRate++;

 state = State::PLAYING;

 }

 if (event.key.code == Keyboard::Num2)

 {

 // Increase clip size

 clipSize += clipSize;

 state = State::PLAYING;

 }

 if (event.key.code == Keyboard::Num3)

 {

 // Increase health

 player.upgradeHealth();

 state = State::PLAYING;

 }

 if (event.key.code == Keyboard::Num4)

 {

 // Increase speed

 player.upgradeSpeed();

 state = State::PLAYING;

 }

 if (event.key.code == Keyboard::Num5)

 {

 // Upgrade pickup

 healthPickup.upgrade();

 state = State::PLAYING;

 }

 if (event.key.code == Keyboard::Num6)

 {

 // Upgrade pickup

 ammoPickup.upgrade();

 state = State::PLAYING;

 }

 if (state == State::PLAYING)

 {

Chapter 14 389

The player can now level up each time a wave of zombies is cleared. We can’t, however, increase

the number of zombies or the size of the level just yet.

In the next part of the LEVELING_UP state, right after the code we have just added, amend the code

that runs when the state changes from LEVELING_UP to PLAYING.

The following is the code in full. I have highlighted the lines that are either new or have been

slightly amended. Add or amend the following highlighted code:

 if (event.key.code == Keyboard::Num6)

 {

 ammoPickup.upgrade();

 state = State::PLAYING;

 }

 if (state == State::PLAYING)

 {

 // Increase the wave number

 wave++;

 // Prepare the level

 // We will modify the next two lines later

 arena.width = 500 * wave;

 arena.height = 500 * wave;

 arena.left = 0;

 arena.top = 0;

 // Pass the vertex array by reference

 // to the createBackground function

 int tileSize = createBackground(background, arena);

 // Spawn the player in the middle of the arena

 player.spawn(arena, resolution, tileSize);

 // Configure the pick-ups

 healthPickup.setArena(arena);

 ammoPickup.setArena(arena);

 // Create a horde of zombies

 numZombies = 5 * wave;

 // Delete the previously allocated memory (if it exists)

 delete[] zombies;

 zombies = createHorde(numZombies, arena);

 numZombiesAlive = numZombies;

 // Play the powerup sound

Sound Effects, File I/O, and Finishing the Game390

 powerup.play();

 // Reset the clock so there isn't a frame jump

 clock.restart();

 }

}// End LEVELING up

The previous code starts by incrementing the wave variable. Then the code is amended to make

the number of zombies and size of the arena relative to the new value of wave. This is also useful

because the game probably was a bit hard with 10 zombies in a small area. Now it will start with

5. Finally, we add the call to powerup.play() to play the “leveling up” sound effect.

Restarting the game
We have already determined the size of the arena and the number of zombies by the value of the

wave variable. We must also reset the ammo and gun-related variables, and set wave and score

to zero at the start of each new game.

Find the following code in the event-handling section of the game loop and add the highlighted

code, as shown here:

// Start a new game while in GAME_OVER state

else if (event.key.code == Keyboard::Return &&

 state == State::GAME_OVER)

{

 state = State::LEVELING_UP;

 wave = 0;

 score = 0;

 // Prepare the gun and ammo for next game

 currentBullet = 0;

 bulletsSpare = 24;

 bulletsInClip = 6;

 clipSize = 6;

 fireRate = 1;

 // Reset the player's stats

 player.resetPlayerStats();

}

Now, players can engage in the game, becoming increasingly powerful as the number of zombies

grows within an ever-expanding arena. The game continues until the player dies, after which it

starts over again.

Chapter 14 391

Playing the rest of the sounds
Now, we will add the rest of the calls to the play function. We will address each of them individu-

ally, as pinpointing exactly where they go in the code is crucial to using them at the right moment.

Adding sound effects while the player is reloading
Add the following highlighted code in three specific locations to trigger the appropriate reload or

reloadFailed sound when the player presses the R key to attempt reloading their gun:

Tif (state == State::PLAYING)

{

 // Reloading

 if (event.key.code == Keyboard::R)

 {

 if (bulletsSpare >= clipSize)

 {

 // Plenty of bullets. Reload.

 bulletsInClip = clipSize;

 bulletsSpare -= clipSize;

 reload.play();

 }

 else if (bulletsSpare > 0)

 {

 // Only few bullets left

 bulletsInClip = bulletsSpare;

 bulletsSpare = 0;

 reload.play();

 }

 else

 {

 // More here soon?!

 reloadFailed.play();

 }

 }

}

The player will now get an audible response when they reload or attempt to reload the gun. Let’s

move on to playing a shooting sound.

Sound Effects, File I/O, and Finishing the Game392

Making a shooting sound
Add the following highlighted call to shoot.play() near the end of the code that handles the

player clicking the left mouse button:

// Fire a bullet

if (sf::Mouse::isButtonPressed(sf::Mouse::Left))

{

 if (gameTimeTotal.asMilliseconds()

 - lastPressed.asMilliseconds()

 > 1000 / fireRate && bulletsInClip > 0)

 {

 // Pass the centre of the player and crosshair

 // to the shoot function

 bullets[currentBullet].shoot(

 player.getCenter().x, player.getCenter().y,

 mouseWorldPosition.x, mouseWorldPosition.y);

 currentBullet++;

 if (currentBullet > 99)

 {

 currentBullet = 0;

 }

 lastPressed = gameTimeTotal;

 shoot.play();

 bulletsInClip--;

 }

}// End fire a bullet

The game will now play a satisfying shooting sound. Next, we will play a sound when the player

is hit by a zombie.

Playing a sound when the player is hit
In this following code, we wrap the call to hit.play in a test to see if the player.hit function

returns true. Remember that the player.hit function tests to see if a hit has been recorded in

the previous 100 milliseconds. This will have the effect of playing a fast-repeating thud sound,

but not so fast that the sound blurs into a single noise.

Chapter 14 393

Add the call to hit.play, as highlighted in the following code:

// Have any zombies touched the player

for (int i = 0; i < numZombies; i++)

{

 if (player.getPosition().intersects

 (zombies[i].getPosition()) && zombies[i].isAlive())

 {

 if (player.hit(gameTimeTotal))

 {

 // More here later

 hit.play();

 }

 if (player.getHealth() <= 0)

 {

 state = State::GAME_OVER;

 std::ofstream OutputFile("gamedata/scores.txt");

 OutputFile << hiScore;

 OutputFile.close();

 }

 }

}// End player touched

The player will hear an ominous thudding sound when a zombie touches them, and this sound

will repeat around five times per second if the zombie continues touching them. The logic for this

is contained in the hit function of the Player class.

Playing a sound when getting a pickup
When the player picks up a health pickup, we will play the regular pickup sound. However, when

the player gets an ammo pickup, we will play the reload sound effect.

Add the two calls to play sounds within the appropriate collision detection code:

// Has the player touched health pickup

if (player.getPosition().intersects

 (healthPickup.getPosition()) && healthPickup.isSpawned())

Sound Effects, File I/O, and Finishing the Game394

{

 player.increaseHealthLevel(healthPickup.gotIt());

 // Play a sound

 pickup.play();

}

// Has the player touched ammo pickup

if (player.getPosition().intersects

 (ammoPickup.getPosition()) && ammoPickup.isSpawned())

{

 bulletsSpare += ammoPickup.gotIt();

 // Play a sound

 reload.play();

}

Making a splat sound when a zombie is shot
Add a call to splat.play at the end of the section of code that detects a bullet colliding with a

zombie:

// Have any zombies been shot?

for (int i = 0; i < 100; i++)

{

 for (int j = 0; j < numZombies; j++)

 {

 if (bullets[i].isInFlight() &&

 zombies[j].isAlive())

 {

 if (bullets[i].getPosition().intersects

 (zombies[j].getPosition()))

 {

 // Stop the bullet

 bullets[i].stop();

 // Register the hit and see if it was a kill

 if (zombies[j].hit()) {

 // Not just a hit but a kill too

 score += 10;

 if (score >= hiScore)

Chapter 14 395

 {

 hiScore = score;

 }

 numZombiesAlive--;

 // When all the zombies are dead (again)

 if (numZombiesAlive == 0) {

 state = State::LEVELING_UP;

 }

 }

 // Make a splat sound

 splat.play();

 }

 }

 }

}// End zombie being shot

You can now play the completed game and watch the number of zombies and the arena increase

with each wave. Remember to choose your level-ups carefully.

Congratulations!

Summary
We’ve finished the Zombie Arena game. It has been quite a journey. We have learned a whole bunch

of C++ fundamentals, such as references, pointers, OOP, and classes. In addition, we have used

SFML to manage cameras (views), vertex arrays, and collision detection. We learned how to use

sprite sheets to reduce the number of calls to window.draw and speed up the frame rate. By using

C++ pointers, the STL, and a little bit of OOP, we built a singleton class to manage our textures.

Frequently asked questions
Here are some problems that might be on your mind:

Q1) Despite using classes, I am finding that the code is getting very long and unmanageable again.

A) One of the biggest issues is the structure of our code. As we learn more C++, we will also learn

ways to make the code more manageable and generally less lengthy. We will do so in the next

and final project too. By the end of this book, you will know about a number of strategies that

you can use to manage your code.

Sound Effects, File I/O, and Finishing the Game396

Q2). The sound effects seem a bit flat and unrealistic. How can they be improved?

A) One way to significantly improve the feeling the player gets from sound is to make the sound

directional. You can also change the volume based on the distance from the sound source to the

player character. We will use SFML’s advanced sound features in the next project. Another com-

mon trick is to vary the pitch of the gunshot each time as this makes the sound more realistic

and less monotonous.

15
Run!

Welcome to the final project: Run! Run is an endless runner where the objective of the player is to

stay ahead of the disappearing platforms that are catching them up from behind. In this project,

we will learn loads of new game programming techniques and even more C++ topics to implement

those techniques. Perhaps the best improvement this game will have over the previous games is

that it will be way more object oriented than any of the others. There will be many more classes

than any of the preceding projects but most of the code files for these classes will be short and

uncomplicated. Furthermore, we will build a game where the functionality and appearance of all

the in-game objects are pushed out to classes, leaving the main game loop unchanged regardless

of what the game objects do. This is powerful because it means you can make a hugely varied

game just by designing new stand-alone components (classes) that describe the behavior and

appearance of the required game entity. This means you can use the same code structure for a

completely different game of your own design. But there is way more to come than just this. Read

on for the details.

The completed code for this chapter can be found in the Run folder.

Here is what we will cover in this chapter:

•	 Describing exactly what the game is and how it will be played.

•	 Creating the project in the usual way and coding the simplest main function of the entire

book!

•	 Discussing and coding the new way we will handle the player’s input by delegating specific

responsibilities to individual game entities/objects and having them listen for messages

from a new InputDispatcher class.

Run!398

•	 Coding a class called Factory, which will be responsible for “knowing” how to assemble

all the different components we will build into usable GameObject instances.

•	 Learning about C++ inheritance and polymorphism is not as hard as it sounds.

•	 Learning about C++ smart pointers for passing responsibility for memory management

to the compiler.

•	 Coding the key GameObject class; you won’t believe how short and simple this is.

•	 Coding the Component class, which the GameObject instances will hold. Again, this is

short and simple.

•	 Coding the Graphics and Update classes, which will be types of Component. This will make

more sense when we learn about inheritance and polymorphism.

•	 Finally, to end the chapter, we will have a functioning game loop that listens for player

input and draws a blank screen so it is ready for all the parts we will code for the remain-

der of the book.

First, we need to know what we are going to build. At the same time, I will introduce all the new

game programming concepts we will learn.

You will find this chapter’s source code in the GitHub repository: https://github.com/

PacktPublishing/Beginning-C-Game-Programming-Third-Edition/tree/main/Run

About the game
Run! is a very simple game. In fact, it is the fewest number of game entities I could think of that

could be considered a playable game. I designed the game around demonstrating a reusable

system for game development rather than compelling gameplay. This makes the project ideal

for you to add new behavior, rules, and gameplay to your own design. Or, even better, once you

have learned how it works, design a completely new game of your own using the system as well

as improve and add features to the system.

The system we will build is a version of the entity component programming pattern. A pattern

is a way to do things. We will discuss the entity component pattern some more once we have

discussed inheritance and polymorphism. For now, let’s see the game. The following screenshots

show most of the entities that make up our game:

https://github.com/PacktPublishing/Beginning-C-Game-Programming-Third-Edition/tree/main/Run
https://github.com/PacktPublishing/Beginning-C-Game-Programming-Third-Edition/tree/main/Run

Chapter 15 399

Figure 15.1: The game menu

In the preceding image, you can see a simple game menu. The player can press the Esc key to start

or pause the game and the F1 key to quit. When the game is started, a timer in the top left of the

screen is started and the objective of the game is to last as long as possible by running to the right

and keeping up with new platforms that are constantly spawning on the right and keeping away

from the constantly disappearing platforms on the left. When the disappearing platforms catch

up with the player, the game ends and the menu will be shown again. Look at the next image:

Figure 15.2: Game rain

Run!400

In the preceding image, you can see the player character in the center of the screen. Fire appears

to be coming out of her boots. This is the effect that shows that the player is boosting. If the player

falls off the platforms, they can press the W key to boost upwards. Additionally, the player can

travel left and right while boosting by pressing the A and D keys respectively. Be aware that while

boosting, horizontal movement is slow, and the disappearing platforms will catch up much faster

than while running and jumping. Running is also achieved with the A and D keys. Note that you

will almost always be running to the right with the D key. The spacebar is the key used to jump

between platforms. Boosting is a short-term emergency measure to correct a missed jump, not

a strategy for beating the game. Running and jumping are fast and lead to survival: boosting is

slow and leads to death.

In the preceding screenshot, you can also see that the fireball is directly to the left of the player.

Fireballs knock the player downward, usually causing the player to fall below the platform they

are on and forcing them to boost to survive. Fireballs are spawned randomly throughout the game

and can come from the left or right. As fireballs are fast, the player will get two advanced warn-

ings of an incoming fireball. First, as a fireball is fired at the player, a roaring sound will be played

from either the right or the left using spatialized/directional sound effects. Secondly, notice the

minimap in the bottom center of the screen, which shows an area of the world much wider than

the main screen. The player will be able to glance at this radar-like minimap and see whether the

incoming fireball is on a collision path and take early evasive action if required.

Also, in the preceding image, you can see that there is a simple rain effect. Look at this next image

to see some more features of the game. This might be unclear if you are looking at a black-and-

white image in the paperback edition:

Figure 15.3: Game parallax

Chapter 15 401

In the preceding image, there is a kind of night-time cityscape background. The background will

scroll left and right with the player’s movement, but it will move more slowly than the platforms

in the foreground. This will create a parallax effect, giving the impression the city is in the distance.

Figure 15.4: Game shader

In the preceding image, we see a complete change in the appearance of the background. By using

OpenGL shaders, we can achieve an almost photographic 3D rolling countryside effect. Amaz-

ingly, we will add this effect with only a few lines of C++ code, but the shader program itself is

quite a complicated program we will obtain from a website that specializes in cool shaders. We

will explore how shaders work, how to use them, and what they are, but we won’t explore how

to code them for ourselves.

Creating the project
We need to create a new project. To get started, create a new project, put it in the VS Projects

folder, call it Run, and copy the fonts, graphics, music, shaders, sound folders and their contents

into the project folder. We will discuss the folder contents as we proceed. There are some signif-

icant differences in the assets compared to previous projects: the shaders, for one, the music, for

another, and the fact that there is just a single image file in the graphics folder that contains all

the visuals for the entire game. The files in the shaders folder are empty placeholder files ready

to have some publicly available code copied and pasted into them later in the project.

I have created a working project for each chapter so you can refer to what the code should look

like at the end of each chapter. You will see the project folders called Run, Run2, Run3, and so on.

You can therefore see the completed code for this chapter in the Run project folder.

Run!402

You do not need to go to the trouble of creating a new project for each chapter! The instructions

for each chapter flow neatly from the preceding chapter.

Configure the project properties as we have done for all the previous projects. What follows is

an abbreviated reminder of how to do this. For images and more details, refer to Chapter 1. Now,

complete the following steps:

1.	 We will now configure the project to use the SFML files that we put in the SFML folder.

From the main menu, select Project | Properties…. At this stage, you should have the Run

Property Pages window open.

2.	 In the Run Property Pages window, take the following steps. Select All Configurations

from the Configuration: drop-down menu and make sure the drop-down menu to the

right is set to Win32, not x64.

3.	 Now, select C/C++ and then General from the left-hand menu.

4.	 Next, locate the Additional Include Directories edit box and type the drive letter where

your SFML folder is located, followed by \SFML\include. The full path to type, if you lo-

cated your SFML folder on your D drive, will be D:\SFML\include. Vary your path if you

installed SFML on a different drive.

5.	 Now, still in the same window, perform these next steps. From the left-hand menu, select

Linker and then General.

6.	 Now, find the Additional Library Directories edit box and type the drive letter where

your SFML folder is, followed by \SFML\lib. So, the full path to type, if you located your

SFML folder on your D drive, will be D:\SFML\lib. Change your path if you installed SFML

on a different drive.

7.	 Select Linker and then Input.

8.	 Find the Additional Dependencies edit box and click on it on the far left-hand side. Now,

copy and paste or type the following: sfml-graphics-d.lib;sfml-window-d.lib;sfml-

system-d.lib;sfml-network-d.lib;sfml-audio-d.lib;. Be extra careful to place the

cursor exactly at the start of the edit box’s current content so as not to overwrite any of

the text that is already there.

9.	 Click on OK.

10.	 Click on Apply and then OK.

11.	 Back in the main Visual Studio screen, check that the main menu toolbar is set to Debug

and x86, not x64.

Chapter 15 403

12.	 Finally, copy all of the sfml-…-d-2.dll files into the project directory where … refers to

audio, graphics, network, system, and window.

Now, we will move on to the C++ code.

Coding the main function
What follows is all the code for the main function. It is also the entire game loop. There is no

collision detection, no pause, start, or stop logic, no sprites or textures, no fonts or sounds, and

only one line relates to handling input. In this project, everything, or almost everything, will be

a game object. Cameras, fireballs, platforms, the player character, the menu, and even the game

logic and the rain will be game objects. Exactly how this is achieved is explained over the course

of the project, but a good overview will be given in the Entity Component System pattern section

later in this chapter. For now, let’s make some progress with the code.

Add the following code to the run.cpp file in your project and we will then go through it one

section at a time:

#pragma once

#include "SFML/Graphics.hpp"

#include <vector>

#include "GameObject.h"

#include "Factory.h"

#include "InputDispatcher.h"

using namespace std;

using namespace sf;

int main()

{

 // Create a fullscreen window.

 RenderWindow window(

 VideoMode::getDesktopMode(),

 "Booster", Style::Fullscreen);

 // A VertexArray to hold all our graphics.

 VertexArray canvas(Quads, 0);

 // This can dispatch events to any object.

Run!404

 InputDispatcher inputDispatcher(&window);

 // Everything will be a game object.

 // This vector will hold them all.

 vector <GameObject> gameObjects;

 // This class has all the knowledge

 // to construct game objects that do

 // many different things.

 Factory factory(&window);

 // This call will send the vector of game objects

 // the canvas to draw on and the input dispatcher

 // to the factory to set up the game.

 factory.loadLevel(gameObjects,

 canvas,

 inputDispatcher);

 // A clock for timing.

 Clock clock;

 // The color we use for the background

 const Color BACKGROUND_COLOR(100, 100, 100, 255);

 // This is the game loop.

 // We do not need to add to it.

 // Look how short and simple it is!

 while (window.isOpen())

 {

 // Measure the time taken this frame.

 float timeTakenInSeconds =

 clock.restart().asSeconds();

 // Handle the player input.

 inputDispatcher.dispatchInputEvents();

 // Clear the previous frame.

 window.clear(BACKGROUND_COLOR);

Chapter 15 405

 // Update all the game objects.

 for (auto& gameObject : gameObjects)

 {

 gameObject.update(timeTakenInSeconds);

 }

 // Draw all the game objects to the canvas.

 for (auto& gameObject : gameObjects)

 {

 gameObject.draw(canvas);

 }

 // Show the new frame.

 window.display();

 }

 return 0;

}

First, note that there are three errors showing in Visual Studio. This is because we are referencing

three classes that don’t exist yet. The missing classes are InputDispatcher, GameObject, and

Factory. We will code these classes soon, but first, let’s discuss the code, or, compared to previous

projects, the lack of code. The code starts with this:

#pragma once

#include "SFML/Graphics.hpp"

#include <vector>

#include "GameObject.h"

#include "Factory.h"

#include "InputDispatcher.h"

using namespace std;

using namespace sf;

The preceding code has the usual SFML include directive and another one for the vector class.

This implies we will have a vector in our code. We will use a vector to hold all our game objects.

Furthermore, we have three includes for GameObject, Factory, and InputDispatcher, which will

have errors until we code them later in the chapter.

Run!406

Observe the first part of the main function:

int main()

{

 // Create a fullscreen window.

 RenderWindow window(

 VideoMode::getDesktopMode(),

 "Booster", Style::Fullscreen);

 // A VertexArray to hold all our graphics.

 VertexArray canvas(Quads, 0);

 // This can dispatch events to any object.

 InputDispatcher inputDispatcher(&window);

 // Everything will be a game object.

 // This vector will hold them all.

 vector <GameObject> gameObjects;

 // This class has all the knowledge

 // to construct game objects that do

 // many different things.

 Factory factory(&window);

// This call will send the vector of game objects

 // the canvas to draw on and the input dispatcher

 // to the factory to set up the game.

 factory.loadLevel(gameObjects,

 canvas,

 inputDispatcher);

 // A clock for timing.

 Clock clock;

 // The color we use for the background

 const Color BACKGROUND_COLOR(100, 100, 100, 255);

Chapter 15 407

In the preceding code, we created a RenderWindow instance as we have for all our games. We create

an SFML VertexArray instance called canvas. We call the VertexArray canvas because it will

literally be the canvas for the entire game. All the game objects will be added to the VertexArray

each frame of the game and then canvas will be used to draw to the window. Next up, we de-

clare an instance of our forthcoming InputDispatcher class. We will see how that gets used in

the main game loop soon. For now, just notice that we send the address of RenderWindow to its

constructor. Next, we declare a vector of the GameObject instances. As already stated, every

entity in our game will be contained in a GameObject instance. Exactly how this is possible will

be revealed as we proceed. The next two lines of code declare an instance of our soon-to-be-

coded Factory class (which also gets a pointer to the RenderWindow) and then we call factory.

loadLevel. The loadLevel function requires the vector of game objects, the canvas to draw on,

and the InputDispatcher instance. The Factory class will be the part of our game engine that

assembles the wide array of GameObject instances in the correct manner and the correct order

and then places them in the vector ready for use in the game loop.

Lastly in the code we are currently discussing, we declare a clock to handle the timing of updates

and a color to draw as a temporary background.

Look at the main loop in the following code again and we will then go through it:

while (window.isOpen())

{

 // Measure the time taken this frame.

 float timeTakenInSeconds =

 clock.restart().asSeconds();

 // Handle the player input.

 inputDispatcher.dispatchInputEvents();

// Clear the previous frame.

 window.clear(BACKGROUND_COLOR);

 // Update all the game objects.

 for (auto& gameObject : gameObjects)

 {

 gameObject.update(timeTakenInSeconds);

 }

Run!408

 // Draw all the game objects to the canvas.

 for (auto& gameObject : gameObjects)

 {

 gameObject.draw(canvas);

 }

 // Show the new frame.

 window.display();

}

In the preceding code, we have the usual while loop to constantly loop through updating and

drawing the game objects until the window is closed. The duration of the loop is captured in the

timeTakenInSeconds variable and then we see something new.

The inputDispatcher instance calls the dispatchInputEvents function. Inside this function,

which we will code shortly, all of the input events are shared with any game object that has pre-

viously declared an interest. The Factory class takes care of allowing game objects to connect

with the inputDispatcher and then each game object handles the inputs that it cares about. So,

the player character will handle movement, the menu will handle pausing, starting, and quitting,

and we will even have a camera game object that handles scrolling the mouse wheel to zoom in

and out of the minimap.

Next, we have two for loops that loop through all the game objects in the vector, first calling

update and then calling draw. Once the canvas is updated, window.display() shows the entire

game in its current state.

The main function then ends as follows:

 return 0;

}

Now that we have seen what we are aiming for, we will write two new classes to make the new,

more flexible input system work.

Handling input
In the preceding code, you will notice a distinct lack of input handling code. This is because each

game object will be responsible for handling its own input events. Most notable is the player-re-

lated game object that will handle movement input from the player.

Chapter 15 409

There will also be a menu-related game object that will handle starting, pausing, and quitting

the game and a camera-related object that will represent the minimap/radar that the player will

be able to zoom in and out of. The point is that each object will handle its own input events. This

next image illustrates this setup:

Figure 15.5: Handling input diagram

To achieve this, we will code an InputDispatcher class of which, as we have seen in the main

function, there will be a single instance that will receive all the input events from the operating

system and then dispatch them to several InputReceiver class instances, which will have previ-

ously made themselves known (registered) to the InputDispatcher instance during the loadLevel

function execution in the Factory class, before the main game loop. All the InputReceiver in-

stances will be inside an appropriate game object that will know what input events to watch out

for and how to handle them.

Let’s code the InputDispatcher class. Create a new class called InputDispatcher. First, add the

following code to InputDispatcher.h:

#pragma once

#include "SFML/Graphics.hpp"

#include "InputReceiver.h"

Run!410

using namespace sf;

class InputDispatcher

{

private:

 RenderWindow* m_Window;

 vector <InputReceiver*> m_InputReceivers;

public:

 InputDispatcher(RenderWindow* window);

 void dispatchInputEvents();

 void registerNewInputReceiver(InputReceiver* ir);

};

First, note there is an error because we reference the InputReceiver class that we haven’t coded

yet. No problem; we will get to that as soon as we finish this class.

In the preceding code, we declare a pointer to a RenderWindow instance and a vector of InputReceiver

pointers. Each frame this vector will be iterated, and the inputs received by the window will be

shared. We have three functions: the constructor that will set the class up, the dispatchEvents

function that is called from the game loop each frame, and the registerNewInputReceiver func-

tion that will add InputReceiver instances to the vector of InputReceiver pointers.

Of course, seeing the implementation of these functions will make things much clearer. Next, add

the following code to InputDispatcher.cpp:

#include "InputDispatcher.h"

InputDispatcher::InputDispatcher(RenderWindow* window)

{

 m_Window = window;

}

void InputDispatcher::dispatchInputEvents()

{

 sf::Event event;

 while (m_Window->pollEvent(event))

 {

Chapter 15 411

 //if (event.type == Event::KeyPressed &&

 // event.key.code == Keyboard::Escape)

 //{

 // m_Window->close();

 //}

 for (const auto& ir : m_InputReceivers)

 {

 ir->addEvent(event);

 }

 }

}

void InputDispatcher::registerNewInputReceiver(InputReceiver* ir)

{

 m_InputReceivers.push_back(ir);

}

Again, there are a few errors in the class that are due to the absence of the InputReceiver class.

In the preceding code, the constructor initializes the pointer to RenderWindow. In the

dispatchInputEvents function, the RenderWindow instance is used to poll all the events in the

same way we have done in every project so far. Then, all of the InputDispatcher instances in the

vector are iterated and their addEvent functions are called with the latest event. There is some

commented-out code in this function that we will uncomment temporarily later in the chapter.

The registerNewInputReceiver function allows the code that calls it to pass in a pointer to an

InputReceiver and therefore receive all the updates. Remember that the Factory class receives

the InputDispatcher instance when its loadLevel function is called. The loadLevel function

will create all the InputReceiver instances, register them with the register… function, and place

the InputReceiver instances inside the appropriate GameObject instances.

Let’s code InputReceiver to see the other side of this system. Create a new class called

InputReceiver. In the InputReceiver.h code file, add the following code:

#pragma once

#include <SFML/Graphics.hpp>

using namespace sf;

Run!412

using namespace std;

class InputReceiver

{

private:

 vector<Event> mEvents;

public:

 void addEvent(Event event);

 vector<Event>& getEvents();

 void clearEvents();

};

Notice that all the errors in the InputDispatcher class are gone.

The preceding code has a vector of SFML events ready to receive the input events each frame from

the input dispatcher. There are three functions: the addEvent function receives a new event, the

getEvents function returns the entire vector full of events, and the clearEvents function empties

the vector so that events from previous iterations do not build up over time and only the latest

events from the current loop are present.

Coding these functions will help us understand all this. Add the following code to the

InputReceiver.cpp file:

#include "InputReceiver.h"

void InputReceiver::addEvent(Event event)

{

 mEvents.push_back(event);

}

vector<Event>& InputReceiver::getEvents()

{

 return mEvents;

}

void InputReceiver::clearEvents()

{

 mEvents.clear();

}

Chapter 15 413

In the preceding code, the addEvent function uses pushback to add an Event instance to the vector.

The getEvents function returns the entire vector to the calling code. Finally, the clearEvents func-

tion empties the vector so it is ready to receive more events in the next iteration of the game loop.

We will see in a later chapter that the appropriate classes will hold an instance of InputReceiver

and call each of these functions in turn.

Next, let’s code the first iteration of the Factory class.

Coding the Factory class
Create a new class called Factory. In the Factory.h file, add the following code.

#pragma once

#include <vector>

#include "GameObject.h"

#include "SFML/Graphics.hpp"

using namespace sf;

using namespace std;

class InputDispatcher;

class Factory

{

private:

 RenderWindow* m_Window;

public:

 Factory(RenderWindow* window);

 void loadLevel(

 vector <GameObject>& gameObjects,

 VertexArray& canvas,

 InputDispatcher& inputDispatcher);

 Texture* m_Texture;

};

In the preceding code, the Factory class is declared and a private RenderWindow pointer is as well.

Run!414

Note this will be initialized to point to the same RenderWindow instance from the main function

and the same RenderWindow instance from the InputDispatcher class. There are three functions:

the constructor that receives the RenderWindow address, the loadLevel function that receives

the vector of GameObject instances, the VertexArray for drawing, and the InputDispatcher

instance pointer. We also declare an instance of an SFML Texture. Look at the next two lines

of code. They are from the main function and are shown here as a reminder of how we call the

Factory constructor and loadLevel functions.

Factory factory(&window);

factory.loadLevel(gameObjects,

canvas,

inputDispatcher);

After that quick reminder, let’s code the Factory class functions. In the Factory.cpp file, add

the following code:

#include "Factory.h"

#include <iostream>

using namespace std;

Factory::Factory(RenderWindow* window)

{

 m_Window = window;

 m_Texture = new Texture();

 if (!m_Texture->loadFromFile("graphics/texture.png"))

 {

 cout << "Texture not loaded";

 return;

 }

}

void Factory::loadLevel(

 vector<GameObject>& gameObjects,

 VertexArray& canvas,

 InputDispatcher& inputDispatcher)

Chapter 15 415

{

}

In the preceding constructor, we initialize the RenderWindow pointer so we always have access

to it from this class, specifically from the loadLevel function. Furthermore, we load a .png file

into the texture instance. The file loaded is the one that contains all the graphics for all the game

objects. In the next chapter, we will discuss why we do this and how we will make this significant

change from previous projects work. The quick explanation is that it is much faster to draw one

VertexArray compared to the dozens of SFML Sprite instances we have drawn previously.

The loadLevel function is left empty for now. We just want to get our code error free by the end of

the chapter so we can start achieving significant steps forward with each of the following chapters.

There are still several errors throughout our code, but they are all due to the absence of the

GameObject class. To fix that, we need to learn some more C++. Next, we will discuss the mod-

ern way to handle pointers as well as some more advanced knowledge about OOP. The next two

sections will prepare us to code our GameObject class and get the preceding code to run error free.

Advanced OOP: inheritance and polymorphism
In this section, we will further extend our knowledge of OOP by looking at the slightly more

advanced concepts of inheritance and polymorphism. We will then be able to use this new

knowledge to implement the game objects and components of our game.

Inheritance
We have already seen how we can use other people’s hard work by instantiating objects from the

classes of the SFML library. But this whole OOP thing goes even further than that.

What if there is a class that has loads of useful functionality in it, but is not quite what we want?

In this situation, we can inherit from the other class. Just like it sounds, inheritance means we

can harness all the features and benefits of other people’s classes, including the encapsulation,

while further refining or extending the code specifically to our situation. In this project, we will

inherit from and extend some of our own classes.

Let’s look at some code that uses inheritance.

Run!416

Extending a class
With all this in mind, let’s look at an example class and see how we can extend it, just to see the

syntax and as a first step.

First, we define a class to inherit from. This is no different from how we created any of our other

classes. Take a look at this hypothetical Soldier class declaration:

class Soldier

{

 private:

 // How much damage can the soldier take

 int m_Health;

 int m_Armour;

 int m_Range;

 int m_ShotPower;

 Public:

 void setHealth(int h);

 void setArmour(int a);

 void setRange(int r);

 void setShotPower(int p);

};

In the previous code, we defined a Soldier class. It has four private variables: m_Health, m_Armour,

m_Range, and m_ShotPower. It has also four public functions: setHealth, setArmour, setRange, and

setShotPower. We don’t need to see the definitions of these functions; they will simply initialize

the appropriate variable that their name makes obvious.

We can also imagine that a fully implemented Soldier class would be much more in depth than

this. It would probably have functions such as shoot and goProne. If we implemented a Soldier

class in an SFML project, it might have a Sprite object, as well as an update and a getPostion

function.

The simple scenario that we’ve presented here is suitable if we wish to learn about inheritance.

Now, let’s look at something new: inheriting from the Soldier class. Look at the following code,

especially the highlighted part:

class Sniper : public Soldier

Chapter 15 417

{

public:

 // A constructor specific to Sniper

 Sniper::Sniper();

};

By adding : public Soldier to the Sniper class declaration, Sniper inherits from Soldier.

But what does this mean, exactly? Sniper is a Soldier. It has all the variables and functions of

Soldier. Inheritance is even more than this, however.

Also note that, in the previous code, we declare a Sniper constructor. This constructor is unique

to Sniper. We have not only inherited from Soldier; we have extended Soldier. All the function-

ality (definitions) of the Soldier class would be handled by the Soldier class, but the definition

of the Sniper constructor must be handled by the Sniper class.

Here is what the hypothetical Sniper constructor definition might look like:

// In Sniper.cpp

Sniper::Sniper()

{

 setHealth(10);

 setArmour(10);

 setRange(1000);

 setShotPower(100);

}

We could go ahead and write a bunch of other classes that are extensions of the Soldier class,

perhaps Commando and Infantryman. Each would have the exact same variables and functions,

but each could also have a unique constructor that initializes those variables appropriate to the

specific type of Soldier. Commando might have very high m_Health and m_ShotPower but really

puny m_Range. Infantryman might be in between Commando and Sniper with mediocre values

for each variable.

As if OOP wasn’t useful enough already, we can now model real-world objects, including their

hierarchies. We can achieve this by subclassing/extending/inheriting from other classes.

The terminology we might like to learn here is that the class that is extended from is the su-

per-class, and the class that inherits from the super-class is the subclass. We can also say parent

and child class.

Run!418

Did you say protected? Yes. There is an access specifier for class variables and functions called

protected. You can think of protected variables as being somewhere between public and private.

Here is a quick summary of access specifiers, along with more details about the protected specifier:

•	 Public variables and functions can be accessed and used by anyone with an instance of

the class.

•	 Private variables and functions can only be accessed/used by the internal code of the class,

and not directly from an instance. This is good for encapsulation and when we need to

access/change private variables, since we can provide public getter and setter functions

(such as getSprite). If we extend a class that has private variables and functions, that

child class cannot directly access the private data of its parent.

•	 Protected variables and functions are almost the same as private ones. They cannot be

accessed/used directly by an instance of the class. However, they can be used directly by

any class that extends the class they are declared in. So, it is like they are private, except

for child classes.

To fully understand what protected variables and functions are and how they can be useful, let’s

look at another OOP topic first. Then, we will see them in action.

Polymorphism
Polymorphism allows us to write code that is less dependent on the types we are trying to ma-

nipulate. This can make our code clearer and more efficient. Polymorphism means many forms.

If the objects that we code can be more than one type of thing, then we can take advantage of this.

You might find yourself asking this question about inheritance: why? The reason is

something like this: we can write common code once; in the parent class, we can

update that common code, and all the classes that inherit from it are also updated.

Furthermore, a subclass only gets to use public and protected instance variables

and functions. So, designed properly, this also enhances the goals of encapsulation.

But what does polymorphism mean to us? Boiled down to its simplest definition,

polymorphism means the following: any subclass can be used as part of the code

that uses the superclass. This means we can write code that is simpler and easier

to understand and also easier to modify or change. Also, we can write code for the

super-class and rely on the fact that no matter how many times it is subclassed,

within certain parameters, the code will still work.

Chapter 15 419

Let’s discuss an example.

Suppose we want to use polymorphism to help write a zoo management game where we must

feed and tend to the needs of animals. We will probably want to have a function such as feed.

We will also probably want to pass an instance of the animal to be fed into the feed function.

A zoo, of course, has lots of animals, such as lions, elephants, and three-toed sloths. With our new

knowledge of C++ inheritance, it makes sense to code an Animal class and have all the different

types of animals inherit from it.

If we want to write a function (feed) that we can pass Lion, Elephant, and ThreeToedSloth

into as a parameter, it might seem like we need to write a feed function for each type of Animal.

However, we can write polymorphic functions with polymorphic return types and arguments.

Take a look at the following definition of the hypothetical feed function:

void feed(Animal& a)

{

 a.decreaseHunger();

}

The preceding function has an Animal reference as a parameter, meaning that any object that is

built from a class that extends Animal can be passed into it.

This means you can write code today and make another subclass in a week, month, or year, and

the very same functions and data structures will still work. Also, we can enforce a set of rules

upon our subclasses regarding what they can and cannot do, as well as how they do it. So, good

design in one stage can influence it at other stages.

But will we ever really want to instantiate an actual animal?

Abstract classes: virtual and pure virtual functions
An abstract class is a class that cannot be instantiated and therefore cannot be made into an object.

So, it’s code that will never be used, then? But that’s like paying an architect to design your home

and then never building it!

Some terminology we might like to learn about here is a concrete class. A concrete

class is any class that isn’t abstract. In other words, all the classes we have written

so far have been concrete classes and can be instantiated into usable objects.

Run!420

If we, or the designer of a class, want to force its users to inherit from it before using their class,

they can make a class abstract. If this happens, we cannot make an object from it; therefore, we

must inherit from it first and make an object from the subclass.

To do so, we can make a function pure virtual and not provide any definition. Then, that function

must be overridden (rewritten) in any class that inherits from it.

Let’s look at an example; it will help. We can make a class abstract by adding a pure virtual func-

tion such as the abstract Animal class, which can only perform the generic action of makeNoise:

Class Animal

 private:

 // Private stuff here

 public:

 void virtual makeNoise() = 0;

 // More public stuff here

};

As you can see, we add the C++ keyword virtual before and = 0 after the function declaration.

Now, any class that extends/inherits from Animal must override the makeNoise function. This

might make sense since different types of animals make very different types of noise. We could

have assumed that anybody who extends the Animal class is smart enough to notice that the

Animal class cannot make a noise and that they will need to handle it, but what if they don’t

notice? The point is that by making a pure virtual function, we guarantee that they will because

they must, or the code won’t compile.

Abstract classes are also useful because, sometimes, we want a class that can be used as a poly-

morphic type, but we need to guarantee it can never be used as an object. For example, Animal

doesn’t really make sense on its own. We don’t talk about animals; we talk about types of animals.

We don’t say, “Ooh, look at that lovely, fluffy, white animal!” or, “Yesterday, we went to the pet

shop and got an animal and an animal bed.” It’s just too, well, abstract.

So, an abstract class is kind of like a template to be used by any class that extends it (inherits from

it). If we were building an Industrial-Empire-type game where the player manages businesses

and their employees, we might want a Worker class, for example, and extend it to make Miner,

Steelworker, OfficeWorker, and, of course, Programmer. But what exactly does a plain Worker

do? Why would we ever want to instantiate one?

Chapter 15 421

The answer is we wouldn’t want to instantiate one, but we might want to use it as a polymorphic

type so that we can pass multiple Worker subclasses between functions and have data structures

that can hold all types of workers.

All pure virtual functions must be overridden by any class that extends the parent class that

contains the pure virtual function. This means that the abstract class can provide some of the

common functionality that would be available in all its subclasses. For example, the Worker class

might have the m_AnnualSalary, m_Productivity, and m_Age member variables. It might also

have the getPayCheck function, which is not pure virtual and is the same in all the subclasses,

while a doWork function is pure virtual and must be overridden, because all the different types of

Worker will doWork very differently.

If any of this virtual, pure virtual, or abstract stuff is unclear, using it is probably the best way to

understand it. We will do so soon. First, let’s learn about design patterns and the entity compo-

nent design pattern.

Design patterns
It is my guess that if you are going to make deep, large-scale games in C++, then design patterns

are going to be a big part of your learning agenda in the months and years ahead. What follows

will only introduce this vital topic.

A design pattern is a reusable solution to a coding problem. In fact, most games (including Run)

will use multiple design patterns. The key point about design patterns is this: they are already

proven to provide a good solution to a common problem. We are not going to invent any design

patterns: we are just going to use some that already exist to solve the problem of our ever-ex-

panding code.

Many design patterns are quite complicated and require further study beyond the level of this

book if you want to learn them. What follows is a simplification of a key game development-re-

lated pattern. You’re urged to continue your study to implement patterns more comprehensively.

By the way, virtual as opposed to pure virtual is a function that can be optionally

overridden. You declare a virtual function the same way as a pure virtual function

but leave the = 0 off to the end. In the current game project, we will use several

pure virtual functions.

Run!422

Entity Component System pattern
We will now spend five minutes wallowing in the misery of an apparently unsolvable muddle.

Then, we will see how the entity-component pattern comes to the rescue.

Why lots of diverse object types are hard to manage
In the previous projects, we coded a class for each object. We had classes such as Bat, Ball, Crawler,

and Zombie. Then, in the update function, we would update them, and in the draw function, we

would draw them. Each object decides how updating and drawing take place.

We could just get started and use this same structure for Run. It would work, but we are trying

to learn something more manageable so that our games can grow in complexity.

Another problem with this approach is that we cannot take advantage of inheritance. For example,

all the zombies, the bullets, and the player character from the zombie game draw themselves in an

identical way, but unless we change how we do things, we will end up with three draw functions

with nearly identical code. In the future, if we make a change to how we call the draw function or

the way we handle graphics, we will need to update all three classes.

There must be a better way.

Using a generic GameObject for better code structure
If every object, player, zombie, and all the bullets were one generic type, then we could pack them

away in a vector instance and loop through each of their update functions, followed by each of

their draw functions. This is what the main function in the Run project is doing.

We have just learned one way of doing this: inheritance. At first glance, inheritance might seem

like a perfect solution. We could create an abstract GameObject class and then extend it with the

Player, Zombie, and Bullet classes.

The draw function, which is identical in all three classes, could remain in the parent class, and

we won’t have the problem of all that wasted duplicate code. Great!

The problem with this approach is how varied, in some respects, the game objects are. For example,

all the object types move differently. The bullets go in a fixed direction, the zombies home in on

the player, and the player character responds to keyboard inputs.

How would we put this kind of diversity into the update function so that it could control this

movement? Maybe we could use something like this:

update(){

Chapter 15 423

 switch(objectType){

 case 1:

 // All the player's logic

 break;

 case 2:

 // All the zombie's logic here

 Break;

 case 3:

 // All the bullet's logic here

 break;

 }

}

The update function alone would be bigger than the whole GameEngine class!

As you may remember from the Advanced OOP: inheritance and polymorphism section, when we

inherit from a class, we can also override specific functions. This means we could have a differ-

ent version of the update function for each object type. Unfortunately, however, there is also a

problem with this approach as well.

The GameEngine engine would have to “know” which type of object it was updating or, at the

very least, be able to query the GameObject instance it was updating in order to call the correct

version of the update function. What is really needed is for the GameObject to somehow internally

choose which version of the update function is required.

Unfortunately, even the part of the solution that seemed to work falls apart on closer inspection.

I said that the code in the draw function was the same for all three of the objects, and therefore

the draw function could be part of the parent class and used by all the subclasses, instead of us

having to code three separate draw functions. Well, what happens when we introduce a new

object that needs to be drawn differently, such as an animated wasp zombie that flies across the

top of the screen? In this scenario, the draw solution falls apart too.

Now that we have seen the problems that occur when objects are different from each other and

yet cry out to be from the same parent class, it is time to look at the solution we will use in the

Run project.

What we need is a new way of thinking about constructing all our game objects.

Run!424

Prefer composition over inheritance
Preferring composition over inheritance refers to the idea of composing objects with other objects.

This concept was first suggested in the following publication:

What if we could code an entire class (as opposed to a function) that handled how an object was

drawn? Then, for all the classes that draw themselves in the same way, we could instantiate one

of these special drawing classes within the GameObject, and any objects that need to be drawn

differently could have a different drawing object. Then, when a GameObject does something dif-

ferently, we simply compose it with a different drawing or update related classes to suit it. All the

similarities in all our objects can benefit from using the same code, while all the differences can

benefit from not only being encapsulated but also abstracted from (taken out of) the base class.

Note that the heading of this section is composition over inheritance, not composition instead of

inheritance. Composition doesn’t replace inheritance and everything you learned in the Advanced

OOP: inheritance and polymorphism section, still holds true. However, where possible, compose

instead of inheriting. In the Run project, we will do both.

The GameObject class is the entity, while the classes it will be composed of that do things such

as update its position and draw it to the screen are the components, which is why it’s called the

Entity-Component pattern.

Have a look at the following diagram, which represents the Entity-Component pattern in the

form we will implement it in this project:

Design Patterns: Elements of Reusable Object-Oriented Software

—by Erich Gamma, Richard Helm, et al.

Chapter 15 425

Figure 15.6: Entity component code

In the preceding image, the code on the left is the code from our main function that loops over

the GameObject vector, first calling update and then calling draw on each instance in turn. In the

preceding diagram, we can see that a GameObject instance is composed of multiple Component

instances. There will be multiple different classes derived from the Component class, including

UpdateComponent and GraphicsComponent. Furthermore, there could be further specific class-

es derived from them. For example, the BulletUpdateComponent and ZombieUpdateComponent

classes could be derived from the UpdateComponent class. These classes will handle how an object

updates itself in each frame of the game. This is great for encapsulation because we don’t need

any more big switch blocks to distinguish between different objects.

When we use composition over inheritance to create a group of classes that represent behavior/

algorithms, as we will here, this is known as the Strategy pattern. You could use everything you

have learned here and refer to it as the Strategy pattern. Entity-Component is a lesser-known but

more specific implementation, and that is why we call it this. The difference is academic, but feel

free to turn to ChatGPT if you want to explore things further. A good resource for further game

programming pattern exploration is https://gameprogrammingpatterns.com.

The Entity-Component pattern, along with using composition in preference to inheritance,

sounds great at first glance but brings with it some problems of its own. It would mean that our

new GameObject class would need to “know” about all the different types of components and

every single type of object in the game. How would it add all the correct components to itself?

https://gameprogrammingpatterns.com

Run!426

Let’s have a look at the solution.

Factory pattern
It is true that if we are to have this universal GameObject class that can be anything we want it

to be, whether that be a bullet, player, invader, or whatever else, then we are going to have to

code some logic that “knows” about constructing these super-flexible GameObject instances

and composes them with the correct components. But adding all this code into the GameObject

class itself would make it exceptionally unwieldy and defeat the entire reason for using the En-

tity-Component pattern in the first place.

We would need a constructor that did something like this hypothetical GameObject code:

class GameObject

{

 UpdateComponent* m_UpdateComponent;

 GraphicsComponent* m_GraphicsComponent;

 // More components

 // The constructor

 GameObject(string type){

 if(type == "invader")

 {

 m_UpdateComp = new InvaderUpdateComponent();

 m_GraphicsComponent = new StdGraphicsComponent();

 }

 else if(type =="ufo")

 {

 m_UpdateComponent = new

 UFOUpdateComponentComponent();

 m_GraphicsComponent = new AnimGraphicsComponent();

 }

 // etc.

 …

 }

};

The GameObject class would need to know not just which components go with which GameObject

instance, but also which didn’t need certain components, such as input-related components for

controlling the player.

Chapter 15 427

For the Run project, we could do this and just about survive the complexity, but for a more com-

plex game, we would likely drown in the code and fail.

The GameObject class would also need to understand all this logic. Any benefit or efficiency gained

from using composition over inheritance with the Entity-Component pattern would be lost.

Furthermore, what if we decide we want a new type of object, perhaps a new enemy that tele-

ports near to the player, takes a shot, and then teleports away again? It is fine to code a new

GraphicsComponent class, perhaps a TeleportGraphicsComponent that “knows” when it is visible

and invisible, along with a new UpdateComponent, perhaps a TeleportUpdateComponent that

teleports instead of moving in a conventional manner, but what is not fine is that we are going

to have to add a whole bunch of new if statements to the GameObject class constructor.

In fact, the situation is even worse than this. What if we decide that regular objects can now

teleport? All GameObjects now need more than just a different type of GraphicsComponent class.

We would have to go back into the GameObject class to edit all of those if statements again.

In fact, there are even more scenarios that can be imagined, and they all end up with a bigger and

bigger GameObject class. The Factory pattern is the solution to these GameObject class-related

woes and the perfect partner to the Entity-Component pattern.

The game designer will provide a specification for each and every type of object in the game, and

the programmer will provide a factory class that builds GameObject instances from the game

designer’s specifications. When the game designer comes up with new ideas for entities, then all

we need to do is ask for a new specification. Sometimes, that will involve adding a new produc-

tion line to the factory that uses existing components and, sometimes, it will mean coding new

components or perhaps updating existing components. The point is that it won’t matter how

inventive the game designer is: the GameObject and main function remain unchanged.

In its simplest form (like our Factory class), the Factory class has the knowledge to prepare the

game objects and their appropriate components for the game loop.

In the Factory code, the current object type is instantiated and the appropriate components

(classes) are added to it. The fireball, player, platform, and the rest have combinations of different

and the same components.

This implementation of the Factory pattern is a big simplification as a way to begin

to learn about the Factory pattern. Why not do a web search for the Factory pattern

once you have completed this project and see how it can be improved?

Run!428

Some game objects will only have graphics like rain and some will only have updates like the level

manager, which controls the game’s logic.

When we use composition, it can be less clear which class is responsible for the memory. Is it the

class that creates it, the class that uses it, or some other class? Let’s learn some more C++ to help

us manage memory a little more simply.

C++ smart pointers
Smart pointers are classes that we can use to get the same functionality as a regular pointer but

with an extra feature: the feature being that they take care of their own deletion. In the limited

way we have used pointers so far, it has not been a problem for us to delete our own memory, but

as your code becomes more complex, and when you are allocating the new memory in one class

but using it in another class, it becomes much less clear which class is responsible for deleting

the memory when we are done with it. How can a class or function know whether a different

class or function has finished with some allocated memory?

The solution is smart pointers. There are a few types of smart pointers; we will look at two of the

most used ones here. The key to success with smart pointers is using the correct type.

The first type we will consider is shared pointers.

Shared pointers
The way that a shared pointer can safely delete the memory it points to is by keeping a count of

the number of different references there are to an area of memory. If you pass a pointer to a func-

tion, the count is increased by one. If you pack a pointer into a vector, the count is increased by

one. If the function returns, the count is decreased by one. If the vector goes out of scope or has

the clear function called on it, the smart pointer will reduce the reference count by one. When

the reference count is zero, nothing points to the area of memory anymore and the smart pointer

class calls delete. All the smart pointer classes are implemented using regular pointers behind

the scenes. We just get the benefit of not having to concern ourselves about where or when to

call delete. Let’s look at the code for using a shared smart pointer.

The following code creates a new shared smart pointer called myPointer that will point to an

instance of MyClass:

shared_ptr<MyClass> myPointer;

Chapter 15 429

shared_ptr<MyClass> is the type while myPointer is its name. The following code is how we

might initialize myPointer:

myPointer = make_shared<MyClass>();

The call to make_shared internally calls new to allocate the memory. The parentheses () is the

constructor parentheses. If the MyClass class constructor took an int parameter, for example,

the preceding code might look like this:

myPointer = make_shared<MyClass>(3);

The 3 in the preceding code is an arbitrary example.

Of course, you can declare and initialize your shared smart pointers in a single line of code if

required, as shown in the following code:

shared_ptr<MyClass> myPointer = make_shared<MyClass>();

It is because myPointer is a shared_ptr that it has an internal reference count that keeps track

of how many references point to the area of memory it created. If we make a copy of the pointer,

that reference count is increased.

Making a copy of the pointer includes passing the pointer to another function, placing it in a

vector, map, or other structure, or simply copying it.

We can use a smart pointer using the same syntax as a regular pointer. It is quite easy to forget

sometimes that it isn’t a regular pointer. The following code calls the myFunction function on

myPointer:

myPointer->myFunction();

By using a shared smart pointer, there is some performance and memory overhead. By overhead,

I mean that our code runs slower and uses more memory. After all, the smart pointer needs a

variable to keep track of the reference count, and it must check the value of the reference count

every time a reference goes out of scope. However, this overhead is tiny and only an issue in the

most extreme situations since most of the overhead happens while the smart pointers are being

created. Typically, we will create smart pointers outside of the game loop. Calling a function on

a smart pointer is as efficient as a regular pointer.

Sometimes, we know that we will only ever want one reference to a smart pointer, and in this

situation, unique pointers are the best option.

Run!430

Unique pointers
When we know that we only want a single reference to an area of memory, we can use a unique

smart pointer. Unique pointers lose much of the overhead that I mentioned shared pointers have.

In addition, if you try and make a copy of a unique pointer, the compiler will warn us, and the

code will either not compile or it will crash, giving us a clear error. This is a very useful feature that

can prevent us from accidentally copying a pointer that was not meant to be copied. You might

be wondering if this no-copying rule means we can never pass it to a function or even put it in

a data structure such as a vector. To find out, let’s look at some code for unique smart pointers

and explore how they work.

The following code creates a unique smart pointer called myPointer that points to an instance

of MyClass:

unique_ptr<MyClass> myPointer = make_unique<MyClass>();

Now, let’s suppose we want to add a unique_ptr to a vector. The first thing to note is that vector

must be of the correct type. The following code declares a vector that holds unique pointers to

MyClass instances:

vector<unique_ptr<MyClass>> myVector;

The vector is called myVector and anything you put into it must be of the unique pointer type

to MyClass. But didn’t I say that unique pointers can’t be copied? When we know that we will

only ever want a single reference to an area of memory, we should use unique_ptr. This doesn’t

mean, however, that the reference can’t be moved. Here is an example:

// Use move() because otherwise

// the vector has a COPY which is not allowed

mVector.push_back(move(myPointer));

// mVector.push_back(myPointer); // Won't compile!

In the preceding code, we can see that the move function can be used to put a unique smart

pointer into a vector. Note that when you use the move function, you are not giving the compil-

er permission to break the rules and copy a unique pointer: you are moving responsibility from

the myPointer variable to the myVector instance. If you attempt to use the myPointer variable

after this point, the code will execute and the game will crash, giving you a Null pointer access

violation error message. The following code will cause a crash:

unique_ptr<MyClass> myPointer = make_unique<MyClass>();

vector<unique_ptr<MyClass>> myVector;

Chapter 15 431

// Use move() because otherwise

// the vector has a COPY which is not allowed

mVector.push_back(move(myPointer));

// mVector.push_back(myPointer); // Won't compile!

myPointer->myFunction();// CRASH!!

The exact same rules apply when passing a unique pointer to a function; use the move function to

pass responsibility on. We will look at some of these scenarios again, as well as some more when

we get back to the Run project in a while.

Casting smart pointers
We will often want to pack the smart pointers of derived classes into data structures or function

parameters of the base class such as all the different derived Component classes. This is the essence

of polymorphism. Smart pointers can achieve this using casting. But what happens when we later

need to access the functionality or data of the derived class?

A good example of where this will regularly be necessary is when we deal with components inside

our game objects. There will be an abstract Component class and derived from that there will be

GraphicsComponent, UpdateComponent, and more.

As an example, we will want to pass generic component-based classes to functions and yet use

the functions of the derived classes. But if all the components are stored as base class Component

instances, then it might seem that we can’t do this. Casting from the base class to a derived class

solves this problem.

The following code casts myComponent, which is a base class Component instance, to an

UpdateComponent class instance, which we can then call the update function on:

shared_ptr<UpdateComponent> myUpdateComponent =

 static_pointer_cast<UpdateComponent>

(MyComponent);

Before the equals sign, a new shared_ptr to an UpdateComponent instance is declared. After the

equals sign, the static_pointer_cast function specifies the type to cast to in the angle brackets,

<UpdateComponent>, and the instance to cast from in parentheses, (MyComponent).

We can now use all the functions of the UpdateComponent class, which in our project includes the

update function. We would call the update function as follows:

myUpdateComponent->update(fps);

Run!432

There are two ways we can cast a class smart pointer to another class smart pointer. One is by

using static_pointer_cast, as we have just seen, and the other is to use dynamic_pointer_cast.

The difference is that dynamic_pointer_cast can be used if you are uncertain whether the cast

will work. When you use dynamic_pointer_cast, you can then check to see whether it worked by

testing whether the result is a null pointer. You use static_pointer_class when you are certain

the result is the type you are casting to. We will use static_pointer_cast in a couple of places

in the Run project. Let’s get back to building our game.

Coding the GameObject class
The GameObject class depends on the Component class and the Component class depends on the

Graphics and Update classes, so, let’s code all four.

Remember that in our discussion about the entity component system, we talked about Component

classes and that GraphicsComponent, UpdateComponent, and so on would derive from Component.

For the purposes of presenting the code, we will shorten GraphicsComponent to just Graphics

and UpdateComponent to just Update.

Create a class called GameObject. In GameObject.h, add the following code:

#pragma once

#include "SFML/Graphics.hpp"

#include "Component.h"

#include <vector>

using namespace sf;

using namespace std;

class GameObject

{

private:

 vector <shared_ptr<Component>> m_Components;

public:

 void addComponent(shared_ptr<Component> newComponent);

 void update(float elapsedTime);

 void draw(VertexArray& canvas);

};

Chapter 15 433

In the code, there are errors because we are missing our Component class. As you have probably

come to expect, we will code that shortly.

In the preceding code, we have a vector for holding Component instances. We will not add any

abstract Component instances into the vector but derived Graphics and Update instances. To

facilitate this, we have the addComponent function.

We also have an update and a draw function. We have already seen these two functions being

called from the main game loop. Here is the code from the game loop in the main function as a

refresher. You do not need to add this code again:

// Update all the game objects.

for (auto& gameObject : gameObjects)

{

 gameObject.update(timeTakenInSeconds);

}

// Draw all the game objects to the canvas.

for (auto& gameObject : gameObjects)

{

 gameObject.draw(canvas);

}

Hopefully, you can see how this whole system is coming together.

Let’s code the three functions of the GameObject class. In GameObject.cpp add the following code:

#include "GameObject.h"

#include "SFML/Graphics.hpp"

#include <iostream>

#include "Update.h"

#include "Graphics.h"

using namespace std;

using namespace sf;

void GameObject::addComponent(

 shared_ptr<Component> newComponent)

{

 m_Components.push_back(newComponent);

Run!434

}

void GameObject::update(float elapsedTime)

{

 for (auto component : m_Components)

 {

 if (component->m_IsUpdate)

 {

 static_pointer_cast<Update>

 (component)->update(elapsedTime);

 }

 }

}

void GameObject::draw(VertexArray& canvas)

{

 for (auto component : m_Components)

 {

 if (component->m_IsGraphics)

 {

 static_pointer_cast<Graphics>

 (component)->draw(canvas);

 }

 }

}

In this file, there are three missing classes that are causing errors. They are Component, Update,

and Graphics. Update and Graphics will be derived from Component and we will code them all

after we have discussed the code we have just added.

In the preceding code, the addComponent function has just one line of code that uses the push_back

function of vector to add a new instance of a derived component into the m_Components vector.

The update function is short and simple, too. First, the code loops through all the components

like this:

for (auto component : m_Components)

{

Chapter 15 435

Then, it checks whether the current component is an update component like this:

if (component->m_IsUpdate)

 {

Finally, if the preceding test is true, the update function is called, and the instance will execute

its own version of the update function. Remember that this could be anything from our game:

the player, a fireball, a menu, and so on: anything.

The draw function does exactly the same as the update function, except that it looks for a graphics

component and calls the draw function.

The preceding code implies that the Component class will have the Boolean variables m_IsUpdate

and m_IsGraphics. Let’s code the Component class next.

Coding the Component class
The Component class is the shortest class in the book. It has no functions. It just exists to be ex-

tended. In fact, we will leave the Component.cpp file empty. Note, however, that we are expanding

very slightly upon the simple entity component example from earlier. Graphics and Update will

extend Component. Component will be the polymorphic type, but Graphics and Update will be the

abstract classes (with pure virtual functions) that all the useable classes of our game will extend.

Create a class called Component and in Component.h, add the following code:

#pragma once

#include <iostream>

using namespace std;

class Component

{

public:

 bool m_IsGraphics = false;

 bool m_IsUpdate = false;

};

In the preceding code, we create a class called Component and add two public member variables.

The m_IsGraphics and m_IsUpdate Booleans will be set when a new component is added and

tested before updating or drawing. That’s it.

Run!436

Component.cpp will remain empty because there is no functionality. You could delete Component.

cpp if you wish.

There is, however, much more to the classes that extend Component. Let’s code the Graphics class

first and then we will move on to the Update class.

Coding the Graphics class
We will call this class, which derives from Component, Graphics. The next class, which also de-

rives from Component, we will call Update. It would be more apparent and clearer if we called

them GraphicsComponent and UpdateComponent but component is a long word. Therefore, I

opted simply for Graphics and Update. I may from time to time refer to Graphics and Update as

components because they are, even if not by name.

Create a class called Graphics that has Component as its base class. You could add Component in

the Base class field of the New class dialog box and a little bit more code will be auto-generated

for you. But simply coding the following to Graphics.h will also have the exact same effect.

In Graphics.h, add the following code:

#pragma once

#include "Component.h"

#include <SFML/Graphics.hpp>

using namespace sf;

class Update;

class Graphics :

 public Component

{

private:

public:

 Graphics();

 virtual void assemble(

 VertexArray& canvas,

 shared_ptr<Update> genericUpdate,

 IntRect texCoords) = 0;

Chapter 15 437

 virtual void draw(VertexArray& canvas) = 0;

};

In the preceding code, there are no variables and just two public functions. Look carefully at the

functions; they have the tell-tale virtual at the start and = 0 at the end of the declarations. Any

class that extends this class must implement (provide a definition for) the two functions. The

first pure virtual function of the Graphics interface is the assemble function. As we proceed, we

will write a whole bunch of classes that extend the Graphics class, including PlayerGraphics,

RainGraphics, and PlatformGraphics. Each will provide its own specific implementation of

the assemble function. This is useful because they will all need to be assembled in a slightly

different way.

Before we move on, note the signature of the assemble function. First, there is a VertexArray

reference, which will allow the addition of texture coordinates for the required graphic. There is

a shared pointer to an Update instance. We will see how we can use this to get the required data

from the Update instance, which corresponds to this current Graphics instance. We will use

static casting, as discussed in the Casting smart pointers section, to access the functions of the

appropriate child class.

Finally, we have an SFML IntRect instance, which will contain the texture coordinates for this

object. The assemble function will be called in the loadLevel function of the Factory class.

The draw function receives the VertexArray during iteration through the main game loop, al-

lowing it to update its position.

In Graphics.cpp, add the following code:

#include "Graphics.h"

Graphics::Graphics()

{

 m_IsGraphics = true;

}

In the preceding code, the constructor does just one thing. It sets the m_IsGraphics Boolean to

true. When any instance that derives from Graphics is created, the compiler will always call

this constructor, which guarantees that the public variable declared in the Component class is set

appropriately. Remember that this value is checked in the GameObject code before attempting

to call the draw function.

Run!438

Coding the Update class
Create a class called Update that has Component as its base class. Use the Base class field if you

prefer, or don’t: either way is fine.

In Update.h, add the following code:

#pragma once

#include "Component.h"

#include "SFML/Graphics.hpp"

class LevelUpdate;

class PlayerUpdate;

class Update :

 public Component

{

private:

public:

 Update();

 virtual void assemble(

 shared_ptr<LevelUpdate> levelUpdate,

 shared_ptr<PlayerUpdate> playerUpdate) = 0;

 virtual void update(float timeSinceLastUpdate) = 0;

};

In the preceding code, we have two pure virtual functions: they are assemble and update. The

assemble function will be used by the Factory class in the loadLevel function. We can see from the

signature that the assemble function uses two shared pointers: one is a LevelUpdate instance and

the other is a PlayerUpdate instance. We haven’t coded these yet, but all Update-derived instances

will need to keep track of the game state, which will be controlled by the LevelUpdate class (also

an Update-derived class) and also the state of the player controlled by the PlayerUpdate class.

We get away with referring to these two classes that don’t exist yet by adding the forward dec-

larations near the start of Update.h, as shown again next:

class LevelUpdate;

class PlayerUpdate;

Chapter 15 439

If we attempted to use either of those shared pointers before the classes are implemented, the

code wouldn’t work, but just adding them in a function signature works fine because of the

forward declarations.

In Update.cpp, add the following code:

#include "Update.h"

Update::Update()

{

 m_IsUpdate = true;

}

In the preceding code, we use the same technique as in the Graphics class to make sure the par-

ent Component class sets the appropriate Boolean so the GameObject class can know what type

of component (Graphics or Update) it is currently using.

Running the code
Now that all the code is error free, we can run it, but we just get a grey screen. Furthermore, we

can’t easily stop the program. Use the Ctrl + Alt + Delete keyboard combination, select Run.exe,

and then press End Task to force stop the program.

To add some temporary code to fix this inconvenience, find this code in InputDispatcher.cpp:

//if (event.type == Event::KeyPressed &&

// event.key.code == Keyboard::Escape)

//{

// m_Window->close();

//}

Uncomment the preceding code and it will allow the InputDispatcher instance to handle when

the Esc key is pressed. The InputDispatcher class should only handle dispatching input messages,

but we will cheat until we implement our menu-related classes later in the project. You can now

run the program, admire the grey screen, and conveniently press Esc to quit.

What next?
We need to talk about the new way graphics will work in this project and we will do so in detail

in Chapter 17. When I say new, I mean new to this book, as it is a technique that goes back to the

beginning years of game development.

Run!440

If you look in the graphics folder, there is just one graphic. Furthermore, we have not called the

window.draw function at any point in our code so far. We will discuss why draw calls should be

kept to a minimum as well as implement our camera-related classes that will handle this for us.

The reason we will defer this discussion is it helps to have some working code to discuss. Of course,

vertex arrays and texture coordinates are not new to us as we used them for the background in

the zombie project. Therefore, in the next chapter, we will begin to implement the game logic

and the first part of the player-related classes. Furthermore, as it will be easy because we have

handled sound before, we will implement a SoundManager class with the added ability to play a

short tune on a loop.

Now, let’s have a refresher on everything we have done and learned in this chapter.

Summary
First, we looked at exactly what the new game is and how it will be played. Then, we made the

project in the usual way and coded the shortest main function (main game loop) of the entire book!

Next, we began coding the new way we will handle the player’s input by delegating specific

responsibilities to individual game entities/objects and having them listen for messages from a

new InputDispatcher class.

We coded a class called Factory that will be responsible for “knowing” how to assemble all the

different components we will build into usable derived types before being placed/composed

inside GameObject instances.

We learned about C++ inheritance, polymorphism, and C++ smart pointers for passing respon-

sibility for memory management to the compiler.

Then, we coded the key GameObject class. The Component class, which is the parent class for al-

most every other class, we will code in the rest of the book and which the GameObject instances

will hold. Next, we coded the Graphics and Update classes, which will be derived/extended from/

children of Component.

We are all set to add sound and game logic and learn about inter-object communication in the

next chapter.

16
Sound, Game Logic, Inter-
Object Communication, and the
Player

In this chapter, we will quickly implement our game’s sound. We have done this before, so it won’t

be hard. In fact, in just half a dozen lines of code, we will also add music playing to our sound

features. Later in the project (but not in this chapter), we will add directional (spatialized) sound.

This time, however, we will wrap all our sound-related code into a single class called SoundEngine.

Once we have some noise, we will then move on to get started on the player. We will achieve the

entire player character functionality just by adding two classes: one that extends Update and one

that extends Graphics. This creation of new game objects by extending these two classes will

be how we do almost everything else for the entire game. We will also see the simple way that

objects communicate with each other using pointers. The completed code for this chapter can

be found in the Run2 folder.

In a nutshell, in this chapter, we will:

•	 Code the SoundEngine class: Code a sound-related class that also plays music in a loop

•	 Code the Game logic: Code a class that handles all the game logic and learn how it will

communicate with all the other game objects.

•	 Coding the player: Code the first part of our player using a graphics component and an

update component.

Sound, Game Logic, Inter Object Communication, and the Player442

•	 Coding the factory to use all our new classes: Code some more of the factory, which knows

how to assemble different game objects and share the appropriate data between them.

•	 Running the game.

We’ll start by adding a sound class.

Coding the SoundEngine class
You might recall from the previous project that all the sound code took up quite a few lines. Now,

consider that we will need even more code when we add spatialization in Chapter 20; it’s going

to get even longer. To keep our code manageable, we will code a class to manage all our sound

effects and music being played.

All this code will be very familiar. Even the new feature of playing some music should seem quite

intuitive because of what we did in the other games. Create a new class called SoundEngine. In

the SoundEngine.h file, add the following code:

#pragma once

#include <SFML/Audio.hpp>

using namespace sf;

class SoundEngine

{

private:

 static Music music;

 static SoundBuffer m_ClickBuffer;

 static Sound m_ClickSound;

 static SoundBuffer m_JumpBuffer;

 static Sound m_JumpSound;

public:

 SoundEngine();

 static SoundEngine* m_s_Instance;

 static bool mMusicIsPlaying;

Chapter 16 443

 static void startMusic();

 static void pauseMusic();

 static void resumeMusic();

 static void stopMusic();

 static void playClick();

 static void playJump();

};

In the preceding code, we have an SFML Music object, SoundBuffer, and a Sound object for each

sound effect we are going to play. In the public section of the class, we have functions to start,

pause, stop, and resume the music, along with two functions to play each of the sound effects. It

should be trivial to add as many sound effects as you like to the game once we see how this works.

In the SoundEngine.cpp class, add the following code:

#include "SoundEngine.h"

#include <assert.h>

SoundEngine* SoundEngine::m_s_Instance = nullptr;

bool SoundEngine::mMusicIsPlaying = false;

Music SoundEngine::music;

SoundBuffer SoundEngine::m_ClickBuffer;

Sound SoundEngine::m_ClickSound;

SoundBuffer SoundEngine::m_JumpBuffer;

Sound SoundEngine::m_JumpSound;

SoundEngine::SoundEngine()

{

 assert(m_s_Instance == nullptr);

 m_s_Instance = this;

 m_ClickBuffer.loadFromFile("sound/click.wav");

 m_ClickSound.setBuffer(m_ClickBuffer);

 m_JumpBuffer.loadFromFile("sound/jump.wav");

 m_JumpSound.setBuffer(m_JumpBuffer);

}

Sound, Game Logic, Inter Object Communication, and the Player444

void SoundEngine::playClick()

{

 m_ClickSound.play();

}

void SoundEngine::playJump()

{

 m_JumpSound.play();

}

void SoundEngine::startMusic()

{

 music.openFromFile("music/music.wav");

 m_s_Instance->music.play();

 m_s_Instance->music.setLoop(true);

 mMusicIsPlaying = true;

}

void SoundEngine::pauseMusic()

{

 m_s_Instance->music.pause();

 mMusicIsPlaying = false;

}

void SoundEngine::resumeMusic()

{

 m_s_Instance->music.play();

 mMusicIsPlaying = true;

}

void SoundEngine::stopMusic()

{

 m_s_Instance->music.stop();

 mMusicIsPlaying = false;

}

Chapter 16 445

The sound effects are implemented as we did in the previous projects except, now, we have en-

capsulated them in a class. The buffers and sounds are loaded and associated in the constructor

and the related function calls play on the appropriate Sound instance.

Let’s explore how the music works. Music instances do not have buffers. Technically speaking,

you could load a music file in a regular Sound object, but as music is usually much longer than a

sound effect, this wouldn’t give good results. Therefore, SFML provides the Music class. In the

startMusic function, you can see that we use the openFromFile function. This prepares the file to

be streamed rather than loaded all at once. Then, we call the music.play function, which begins

streaming and plays the music. Next, we call music.setLoop and pass in true. This makes the

music repeat over and over.

In the pauseMusic, resumeMusic, and stopMusic functions, we call the SFML-provided pause, play,

and stop functions, respectively. Notice we also set the m_MusicIsPLaying Boolean appropriately

so we can keep track of the state of the music.

We have some more code to add to the sound manager toward the end of the project when we

add directional sound, so we can hear if the fireballs are coming from the left or the right.

Code the Game logic
To control the game logic, we will encapsulate it in a game object right in the thick of the game

and provide the necessary communication connections out to other game objects and inward

from other game objects. This communication will be in the form of pointers to key values. For

example, all objects will have a pointer to the logic-related game object to know such things as

when the game is paused, among other things.

The idea of putting the game logic in a separate class is interesting. Consider a scenario if your

game should have three different game modes. Imagine the confusing mess of if, else, and else

if statements that would be required if we incorporated all that logic into the main function.

This way, the factory can simply pick a game object based on the game mode the player chooses.

While this game will only have a single game mode, once you see the code, creating a different

set of logic in a different class will be trivial.

Note that there won’t be a LevelGraphics class because we don’t need one. Later in the project,

when we create a rain effect game object, we will see there will be a RainGraphics class that ex-

tends Graphics but there will be no requirement for an Update derived object. Most game objects

we create will have an update and a graphics-based component. The point is it is a flexible system.

Sound, Game Logic, Inter Object Communication, and the Player446

Coding the LevelUpdate class
Create a new class called LevelUpdate that uses Update as a base class. Add the following code

to LevelUpdate.h:

#pragma once

#include "Update.h"

using namespace sf;

using namespace std;

class LevelUpdate : public Update

{

private:

 bool m_IsPaused = true;

 vector <FloatRect*> m_PlatformPositions;

 float* m_CameraTime = new float;

 FloatRect* m_PlayerPosition;

 float m_PlatformCreationInterval = 0;

 float m_TimeSinceLastPlatform = 0;

 int m_NextPlatformToMove = 0;

 int m_NumberOfPlatforms = 0;

 int m_MoveRelativeToPlatform = 0;

 bool m_GameOver = true;

 void positionLevelAtStart();

public:

 void addPlatformPosition(FloatRect* newPosition);

 void connectToCameraTime(float* cameraTime);

 bool* getIsPausedPointer();

 int getRandomNumber(int minHeight, int maxHeight);

 // From Update : Component

 void update(float fps) override;

 void assemble(

Chapter 16 447

 shared_ptr<LevelUpdate> levelUpdate,

 shared_ptr<PlayerUpdate> playerUpdate)

 override;

};

In the preceding code, there are a lot of member variables, as follows:

•	 The m_IsPaused Boolean simply keeps track of whether the game is paused or not. Any

game object that needs to know this will obtain a pointer to this value.

•	 The m_PlatformPositions variable is a vector that holds pointers to FloatRect instances.

As the name suggests, these instances will hold the position and size of all the platforms

in the game. It is important to know that the pointers, once initialized, will point directly

to the values within the platform-related game objects. This means that this class can

directly manipulate the platforms. We will see how this is achieved when we code the

platforms. We will see how we manipulate these platform positions when we code the

functions of this class.

•	 The m_CameraTime variable is a simple float. It holds the number of seconds, including

fractions of a second, that the current attempt at the game has been running for. This is

the key benchmark of success for the player. Soon, we will display this on the screen in

the top-left corner.

•	 The m_PlayerPosition pointer is a pointer to a FloatRect instance that holds the position

of the player. As it will point directly into the player-related class, the LevelUpdate class

will be able to make decisions based on the current location of the player, like whether

the player has fallen too far behind and the game is over.

•	 The m_PlatformCreationInterval float variable will hold the amount of time to wait

between creating new platforms. As we will soon see, we don’t create new platforms, we

just reuse a set of platforms. The interval will be based on the length of the previously

reused/new platform. This makes sense because the player will have further to run on

some platforms, and making the time interval relative to the platform length seems fair.

•	 The m_TimeSinceLastPlatform float variable works in conjunction with m_

PlatformCreationInterval. When m_TimeSinceLastPlatform is equal to or greater

than m_PlatformCreationInterval, then it is time to create/reuse another platform in

front of the preceding platform.

•	 The m_NextPlatformToMove int variable will represent the position in the vector of plat-

form positions of the next platform that will be reused.

Sound, Game Logic, Inter Object Communication, and the Player448

•	 The m_NumberOfPlatforms int variable is the number of platforms that have been created.

The code works with a very low number, such as 5, or a much higher number, such as 500.

The main difference is that the smallest, most efficient number that makes the game play-

able and the code efficient is what we will use in the Factory class’s loadLevel function.

•	 The m_MoveRelativeToPlatform int variable is the position in the vector of platform

positions that the next platform will be moved relative to. Think about running along

the newest platform with nowhere left to go and then the next platform spawns just in

time. That next platform needs to be in an accessible position relative to the previous one.

•	 The m_GameOver Boolean keeps track of whether the game has ended or, when the pro-

gram is first executed, that the game has not started yet. This is distinct from m_IsPaused.

Now let’s learn about the functions:

•	 The first is a private function called positionLevelAtStart, which sets up the initial

position of all the game objects at the start of each game.

•	 The addPlatformPosition function receives a FloatRect pointer called newPosition and

will position individual platforms.

•	 The connectToCameraTime function receives a float pointer that can be kept in synchro-

nization with m_CameraTime. It is through this mechanism that we will update the text

on the screen that displays the time to the player. The text will be drawn using an SFML

Text instance in the CameraGraphics class, which we will code in the next chapter.

•	 The getIsPausedPointer function returns a pointer to a Boolean. Specifically, it returns

a pointer to the m_IsPaused variable. This allows access to whether the game is paused

to any part of our code that needs it. We will see this in action throughout the rest of the

project, as multiple game objects need to know if the game is paused.

•	 The getRandomNumber function takes two values and returns a random number in between.

We will see code like this throughout the project. The most common use for this function

in this class is determining where to position platforms when they are reused.

Finally, we have the two overridden functions that are inherited from the Update class:

•	 The update function receives the time duration that the last loop of the game took to

execute. Just as with our other games, this will be crucial for timing all the actions in the

update function.

Chapter 16 449

•	 The assemble function, as previously described, will be used in the factory for preparing

the component for use. Once we have finished coding the LevelUpdate class, we will code

some player-related classes. Then, we will get to see how we use assemble from within

the Factory class.

Next, we will add the code to the LevelUpdate.cpp file. As we saw from the LevelUpdate.h file,

there are quite a few functions. Therefore, we will add and explain the functions in a few parts.

Add the following code to the LevelUpdate.cpp file to get started:

#include "LevelUpdate.h"

#include<Random>

#include "SoundEngine.h"

#include "PlayerUpdate.h"

using namespace std;

void LevelUpdate::assemble(

 shared_ptr<LevelUpdate> levelUpdate,

 shared_ptr<PlayerUpdate> playerUpdate)

{

 m_PlayerPosition = playerUpdate->getPositionPointer();

 //temp

 SoundEngine::startMusic();

}

void LevelUpdate::connectToCameraTime(float* cameraTime)

{

 m_CameraTime = cameraTime;

}

void LevelUpdate::addPlatformPosition(FloatRect* newPosition)

{

 m_PlatformPositions.push_back(newPosition);

 m_NumberOfPlatforms++;

}

Sound, Game Logic, Inter Object Communication, and the Player450

bool* LevelUpdate::getIsPausedPointer()

{

 return &m_IsPaused;

}

In the preceding code, we add the required include directives. Notice there are errors among the

include directives and the functions because we haven’t coded the player yet.

In the assemble function, we call playerUpdate->getPositionPointer. This implies that when

we create the PlayerUpdate class, we will also create a function called getPositionPointer.

We will do this soon, but the point to note now is that the LevelUpdate instance will always be

able to see the position of the player. Next, as a temporary measure, we call startMusic so we

can hear music for the first time. Eventually, a menu-related game object will control starting,

stopping, and pausing the music.

In the connectToCameraTime function, we initialize m_CameraTime with the memory address

contained in cameraTime. We won’t actually call this function for a while, but it is ready for when

we need it.

The addPlatformPosition function uses push_back to add the passed-in platform position into

the vector. Each time we create a new platform in the factory, we will call this function. We also

increment the m_NumberOfPlatforms variable to keep track of how many platforms we have.

The getPausedPointer function returns the address of the m_IsPaused Boolean providing per-

manent access to the game’s state to anything that requests and keeps the returned address.

Next, add the positionLevelAtStart function to the LevelUpdate.cpp file:

Void LevelUpdate::positionLevelAtStart()

{

 float startOffset = m_PlatformPositions[0]->left;

 for (int I = 0; i < m_NumberOfPlatforms; ++i)

 {

 m_PlatformPositions[i]->left = i * 100 + startOffset;

 m_PlatformPositions[i]->top = 0;

 m_PlatformPositions[i]->width = 100;

 m_PlatformPositions[i]->height = 20;

 }

Chapter 16 451

 m_PlayerPosition->left =

 m_PlatformPositions[m_NumberOfPlatforms / 2]->left + 2;

 m_PlayerPosition->top =

 m_PlatformPositions[m_NumberOfPlatforms / 2]->top–- 22;

 m_MoveRelativeToPlatform = m_NumberOfPlatforms–- 1;

 m_NextPlatformToMove = 0;

}

In the positionLevelAtStart function, the first line of code initializes a float variable called

startOffset by getting the left-hand coordinate of the first platform in the vector. Next, the code

loops through all the platforms in the vector from zero through m_NumberOfPlatforms. Each it-

eration of the loop positions a platform at i * 100 hundred units + start offset horizontally, zero

units vertically, 100 units in width, and 20 units in height. This could have been done in the factory

but when the player started the second playthrough, the platforms will likely be all over the place.

The result is that all the platforms are lined up end to end in a straight line with no variation in

size or height. This is like an easy start for the player before positions start to get randomized.

Outside the for loop, using the next two lines, the player is positioned to the left-hand edge of the

approximately middle platform in the vector by using [m_NumberOfPlatforms / 2]. The magic

numbers +2 horizontally and – 22 vertically are used to make sure the player’s feet are firmly on this

platform. You are invited to improve this code once you have seen how we code the Factory class.

The next line of code initializes the m_MoveRelativeToPlatform to the final platform in the vector.

This makes sense because we want to keep placing new platforms beyond the right-hand edge of

the farthest right platform. The final line of code sets the first platform in the vector as the next

candidate to be moved. This means that the platform on the farthest left will be moved to the

farthest right and the player will spawn in the middle.

Next, add the getRandomNumber function. This function does exactly as the name suggests and

we will use it in a few places throughout the code when we want to generate a random value be-

tween the two values that we pass into it. Add the code that follows to the LevelUpdate.cpp file:

int LevelUpdate::getRandomNumber(int minHeight, int maxHeight)

{

#include <random>

 // Seed the random number generator with current time

Sound, Game Logic, Inter Object Communication, and the Player452

 random_device rd;

 mt19937 gen(rd());

 // Define a uniform distribution for the desired range

 uniform_int_distribution<int>

 distribution(minHeight, maxHeight);

 // Generate a random height within the specified range

 int randomHeight = distribution(gen);

 return randomHeight;

}

This function is a more modern way to generate a random number than we used in the previous

games.

The first line creates a random device object rd, which is used to seed the random number gen-

erator. The random_device is a source of non-deterministic random numbers, often based on

hardware values. This is much more reliable than the previous methods we used.

Next, a Mersenne Twister pseudo-random number generator (mt19937) is initialized with the

random device’s seed (rd). The Mersenne Twister is a widely used algorithm for generating very

high-quality random numbers.

Next, a uniform_int_distribution instance called distribution creates a uniform distribution

object for generating integers in the specified range (minHeight to maxHeight, inclusive). The

uniform_int_distribution class ensures that each integer in the range has an equal probability

of being selected.

The distribution(gen) code generates a random integer using the previously defined distri-

bution and the Mersenne Twister generator. The result is stored in the randomHeight variable.

Finally, the randomly generated number is returned to the calling code. All you need to remember

is that if you call this function, you will get a genuinely random value somewhere in between the

two values passed in.

The last function for the LevelUpdate class is the update function. Recall that the update function

is called every frame by the GameObject class, which, in turn, is called every frame by the game

loop. This is a relatively complex function that handles the entire game logic. Try and study the

structure as you add it, and we will then discuss how it works.

Chapter 16 453

Add the update function to the LevelUpdate class. We will break this code down and talk about

it, but I recommend copying and pasting or coding the entire function in one go as it would be

very easy to get the structure mixed up when coding it in sections:

void LevelUpdate::update(float timeSinceLastUpdate)

{

 if (!m_IsPaused)

 {

 if (m_GameOver)

 {

 m_GameOver = false;

 *m_CameraTime = 0;

 m_TimeSinceLastPlatform = 0;

 int platformToPlacePlayerOn;

 positionLevelAtStart();

 }

 *m_CameraTime += timeSinceLastUpdate;

 m_TimeSinceLastPlatform += timeSinceLastUpdate;

 if (m_TimeSinceLastPlatform > m_PlatformCreationInterval)

 {

 m_PlatformPositions[m_NextPlatformToMove]->top =

 m_PlatformPositions[m_MoveRelativeToPlatform]->top +

 getRandomNumber(-40, 40);

 // How far away to create the next platform

 // Bigger gap if lower than previous

 if (m_PlatformPositions[m_MoveRelativeToPlatform]->top

 < m_PlatformPositions[m_NextPlatformToMove]->top)

 {

 m_PlatformPositions[m_NextPlatformToMove]->left =

 m_PlatformPositions[m_MoveRelativeToPlatform]-

>left +

 m_PlatformPositions[m_MoveRelativeToPlatform]-

>width +

 getRandomNumber(20, 40);

 }

Sound, Game Logic, Inter Object Communication, and the Player454

 else

 {

 m_PlatformPositions[m_NextPlatformToMove]->left =

 m_PlatformPositions[m_MoveRelativeToPlatform]-

>left +

 m_PlatformPositions[m_MoveRelativeToPlatform]-

>width +

 getRandomNumber(0, 20);

 }

 m_PlatformPositions[m_NextPlatformToMove]->width =

 getRandomNumber(20, 200);

 m_PlatformPositions[m_NextPlatformToMove]->height =

 getRandomNumber(10, 20);

 // Base the time to create the next platform

 // on the width of the one just created

 m_PlatformCreationInterval =

 m_PlatformPositions[m_NextPlatformToMove]->width

 / 90;

 m_MoveRelativeToPlatform = m_NextPlatformToMove;

 m_NextPlatformToMove++;

 if (m_NextPlatformToMove == m_NumberOfPlatforms)

 {

 m_NextPlatformToMove = 0;

 }

 m_TimeSinceLastPlatform = 0;

 }

 // Has the player lagged behind the furthest back platform

Chapter 16 455

 bool laggingBehind = true;

 for (auto platformPosition : m_PlatformPositions)

 {

 if (platformPosition->left < m_PlayerPosition->left)

 {

 laggingBehind = false;

 break;// At least one platform is behind the player

 }

 else

 {

 laggingBehind = true;

 }

 }

 if (laggingBehind)

 {

 m_IsPaused = true;

 m_GameOver = true;

 SoundEngine::pauseMusic();

 }

 }

}

We will break this lengthy code into a few sections, but please be sure to study it in its entirety,

especially observing its structure of if statements and loops, to make the following discussion

easier to understand. The update function receives the time that the previous iteration of the

main game loop took to execute in the timeSinceLastUpdate variable.

The first part of the update function sets the following structure, which only runs when the game

is not paused. Everything else we discuss happens inside this if statement, meaning that nothing

happens when the game is paused:

if (!m_IsPaused)

 {

Sound, Game Logic, Inter Object Communication, and the Player456

Next in the update function is the following code, which only runs when the game is over – in

other words, when the player has either just run the app or has just died and not restarted yet:

if (m_GameOver)

{

 m_GameOver = false;

 *m_CameraTime = 0;

 m_TimeSinceLastPlatform = 0;

 positionLevelAtStart();

}

The preceding code sets m_GameOver to false, resets the timer, resets the time since the previous

platform was spawned, and calls the positionLevelAtStart function, which we have already

discussed. The net effect of this is that this block of code will only run once, and it does everything

necessary to set a new game running (once the rest of the code is done).

Next in the update function, there is an if statement, as follows:

*m_CameraTime += timeSinceLastUpdate;

m_TimeSinceLastPlatform += timeSinceLastUpdate;

if (m_TimeSinceLastPlatform > m_PlatformCreationInterval)

 {

m_PlatformPositions[m_NextPlatformToMove]->top =

 m_PlatformPositions[m_MoveRelativeToPlatform]->top

+ getRandomNumber(-40, 40);

 …

In the preceding code, the m_CameraTime variable is incremented by the time that has passed

since the last time update executed. This is the time that will eventually be displayed to the player.

The m_TimeSinceLastPlatform is also incremented in the same way.

Next, there is an if statement that executes when m_TimeSinceLastPlatform exceeds m_

PlatformCreationInterval. In other words, it’s time to move a platform from behind the player to

in front of the player. Then, the platform farthest behind the player (m_NextPlatformToMove) is ran-

domly positioned relative to the platform furthest ahead of the player (m_MoveRelativeToPlatform)

but only the height is adjusted at this point.

Also, within the preceding if statement, there is an if-else structure that will take care of hor-

izontal positioning. Let’s look at it again:

Chapter 16 457

// How far away to create the next platform

// Bigger gap if lower than previous

if (m_PlatformPositions[m_MoveRelativeToPlatform]->top

< m_PlatformPositions[m_NextPlatformToMove]->top)

{

m_PlatformPositions[m_NextPlatformToMove]->left =

 m_PlatformPositions[m_MoveRelativeToPlatform]->left

+ m_PlatformPositions[m_MoveRelativeToPlatform]

->width + getRandomNumber(20, 40);

}

else

{

m_PlatformPositions[m_NextPlatformToMove]->left =

 m_PlatformPositions[m_MoveRelativeToPlatform]

->left +

 m_PlatformPositions[m_MoveRelativeToPlatform]

->width + getRandomNumber(0, 20);

}

In the preceding if-else statements, the if part checks how far away vertically the previous

line of code has positioned the next platform. If it is lower, then the if-related code executes,

and if it is higher, then the else-related code executes. The else-related code uses lower values

for spacing the platforms horizontally, which makes sense because, if the platform is above the

platform the player is on, the jumpable distance will be smaller.

Next, the following code executes:

m_PlatformPositions[m_NextPlatformToMove]->width =

getRandomNumber(20, 200);

m_PlatformPositions[m_NextPlatformToMove]->height =

getRandomNumber(10, 20);

// Base the time to create the next platform

// on the width of the one just created

m_PlatformCreationInterval =

 m_PlatformPositions[m_NextPlatformToMove]->width

/ 90;

Sound, Game Logic, Inter Object Communication, and the Player458

m_MoveRelativeToPlatform = m_NextPlatformToMove;

m_NextPlatformToMove++;

if (m_NextPlatformToMove == m_NumberOfPlatforms)

{

m_NextPlatformToMove = 0;

}

m_TimeSinceLastPlatform = 0;

In the preceding code, a random width for the new platform is chosen, then a random height

is chosen, and then an amount of time based on the randomly chosen width is initialized to

m_PlatformCreationInterval. The next line increments the position in the vector for the next

platform to be moved and the if statement that follows checks whether that value is beyond

the last position in the vector and changes the value to zero (the first entry in the vector) if it is.

The final line of code above sets m_TimeSinceLastPlatform to zero so we can keep adding the time

the loop took for each iteration until we eventually get to move another platform and do it all again.

At this point, we close the curly bracket of the if (m_TimeSinceLastPlatform > m_

PlatformCreationInterval) block.

Following on and completing the if(!m_Paused) code and the entire update function, the fol-

lowing code checks to see if the disappearing platforms have caught up with the player (and

therefore that they have failed the game):

// Has the player lagged behind the furthest back platform

bool laggingBehind = true;

for (auto platformPosition : m_PlatformPositions)

{

if (platformPosition->left < m_PlayerPosition->left)

{

laggingBehind = false;

 break;// At least one platform is behind the player

}

 else

 {

 laggingBehind = true;

Chapter 16 459

 }

}

if (laggingBehind)

{

 m_IsPaused = true;

 m_GameOver = true;

 SoundEngine::pauseMusic();

}

In the preceding code, a laggingBehind Boolean is set to true. Next, the for loop goes through

each of the platform positions checking if any of the platform’s left-hand coordinates is less than

(and, therefore, behind) the player. If any of them are, then the player still has a chance, and the

laggingBehind Boolean is set to false.

If the laggingBehind variable remains set to true, then it means that all the platforms are in front,

and the game is over. If laggingBehind is set to true, then the game is paused, the m_GameOver

variable is set to true, and the music is paused.

Soon, we will code a menu that will allow the player to restart the game after they lose.

Finally, in the update function, we close the remaining curly braces of the decision structure (not

shown again).

We are done explaining and coding the update function, but we are not quite ready to run our

code because we have errors that refer to the PlayerUpdate class. Furthermore, we haven’t built

any instances of the LevelUpdate class.

Next, we will code the basics of a player character by deriving an object from Update called

PlayerUpdate and an object from Graphics called PlayerGraphics. Then, to finish the code for

this chapter, we will add code to the factory that assembles all these different components and

places them into GameObject instances that we can loop through each frame of the game. Fur-

thermore, we will get to use the InputReceiver class with the PlayerwUpdate class and see how

the responsibility for controlling the player is handled by the player-related classes.

Coding the player: Part 1
In this section, we will begin to create the controllable player character. We will make the char-

acter visible on the screen but will return to the PlayerUpdate and PlayerGraphics classes and

add keyboard controls and animations.

Sound, Game Logic, Inter Object Communication, and the Player460

Create two new classes: PlayerUpdate, which uses Update as the base class, and PlayerGraphics,

which uses Graphics as the base class. After the next two sections, we will have a visible but not

fully functioning player character.

Coding the PlayerUpdate class
Let’s start with the PlayerUpdate class definition. Add the following code to PlayerUpdate.h:

#pragma once

#include "Update.h"

#include "InputReceiver.h"

#include <SFML/Graphics.hpp>

using namespace sf;

class PlayerUpdate :

 public Update

{

private:

 const float PLAYER_WIDTH = 20.f;

 const float PLAYER_HEIGHT = 16.f;

 FloatRect m_Position;

 bool* m_IsPaused = nullptr;

 float m_Gravity = 165;

 float m_RunSpeed = 150;

 float m_BoostSpeed = 250;

 InputReceiver m_InputReceiver;

 Clock m_JumpClock;

 bool m_SpaceHeldDown = false;

 float m_JumpDuration = .50;

 float m_JumpSpeed = 400;

public:

 bool m_RightIsHeldDown = false;

 bool m_LeftIsHeldDown = false;

 bool m_BoostIsHeldDown = false;

Chapter 16 461

 bool m_IsGrounded;

 bool m_InJump = false;

 FloatRect* getPositionPointer();

 bool* getGroundedPointer();

 void handleInput();

 InputReceiver* getInputReceiver();

 // From Update : Component

 void assemble(

 shared_ptr<LevelUpdate> levelUpdate,

 shared_ptr<PlayerUpdate> playerUpdate)

 override;

 void update(float fps) override;

};

In the preceding code, we have many variables and five functions. Let’s run through them all:

•	 The constant float called PLAYER_WIDTH defines how wide the player will be in game

units, and the constant float variable PLAYER_HEIGHT defines how high the player will

be in game units.

•	 The FloatRect instance called m_Position will hold the player’s location. We will soon

see that this instance will be shared with any game entity that wants it. Platforms will

use it for collision, and we saw in the previous section that the LevelUpdate class uses

it for determining if the player has lagged behind the platforms to an extent that means

the game is over.

•	 The Boolean pointer m_IsPaused will be used to connect to the LevelUpdate class variable,

which pauses the game.

•	 The float variable m_Gravity is a value for pushing the player downward when not

standing on a platform and moderating the upward force of boosting. The float variable

m_RunSpeed is the speed at which the player can move left or right when grounded on a

platform. The float m_BoostSpeed is the rate at which the player can move upward while

boosting.

Sound, Game Logic, Inter Object Communication, and the Player462

•	 The InputReceiver instance called m_InputReceiver is an instance of the InputReceiver

class. Soon we will see how the Factory class connects m_InputReceiver to the

InputDispatcher and, therefore, enables the PlayerUpdate class to access all the events

of the keyboard and mouse.

•	 The Clock instance m_JumpClock, the Boolean m_SpaceHeldDown, the float variable m_

JumpDuration, and the float variable m_JumpSpeed are all values that we will use to mod-

erate how far and for how long the player jumps.

•	 The first variable in the private section is the Boolean m_RightIsHeldDown, followed by

more Booleans, m_LeftIsHeldDown, m_BoostIsHeldDown, m_IsGrounded, and m_InJump. All

these values can be set and unset according to how the player interacts with the keyboard.

They can then be responded to in the update function.

•	 The getPositionPointer function returns a FloatRect pointer that provides access to

m_Position for any other class that wants it. This function will be called in the factory by

the classes that need to.

•	 The getGroundedPointer function returns a pointer to a Boolean that shares whether the

player is currently grounded as determined by the m_IsGrounded Boolean variable.

•	 The handleInput function will use the InputReceiver instance to handle all the input

data received in each frame from the InputDispatcher instance in the main game loop.

•	 The getInputReceiver function returns a pointer to an InputReceiver instance. Just one

line of code will be required to implement this, but it will crucially allow the InputDispatcher

instance in the main function to share all the events with the PlayerUpdate class.

•	 The assemble function is our implementation of the pure virtual function from the

Update class. The parameters are shared_ptr<LevelUpdate> levelUpdate and shared_

ptr<PlayerUpdate> playerUpdate. This means we can prepare the PlayerUpdate class

for action by calling any public functions of the LevelUpdate class. Of course, passing

PlayerUpdate to itself is unnecessary but is a symptom of implementing the simplest

possible version of the Entity Component system.

•	 The update function is our implementation of the pure virtual function from the Update

class and simply receives the time the game loop took to execute. What we do with this

time in the function implementation will be more interesting.

As we have quite a lot of code to add to PlayerUpdate.cpp, we will do it in three steps. First, add

the following code to PlayerUpdate.cpp:

#include "PlayerUpdate.h"

#include "SoundEngine.h"

Chapter 16 463

#include "LevelUpdate.h"

FloatRect* PlayerUpdate::getPositionPointer()

{

 return &m_Position;

}

bool* PlayerUpdate::getGroundedPointer()

{

 return &m_IsGrounded;

}

InputReceiver* PlayerUpdate::getInputReceiver()

{

 return &m_InputReceiver;

}

In the first part of the PlayerUpdate code, we add the required include directives. The

getPositionPointer function returns the address of the FloatRect instance that holds the po-

sition of the player. The getGroundedPointer function returns the address of the Boolean that

detects whether the player is currently standing on a platform. Interestingly, the platforms will

determine and set the value of this Boolean (using this pointer) and the PlayerGraphics class will

use the value to make decisions about animations (using this pointer). The getInputReceiver

function returns a pointer to the InputReceiver instance allowing the InputDispatcher to con-

nect to and send all the required event data.

For step 2, add the following code:

void PlayerUpdate::assemble(

 shared_ptr<LevelUpdate> levelUpdate,

 shared_ptr<PlayerUpdate> playerUpdate)

{

 SoundEngine::SoundEngine();

 m_Position.width = PLAYER_WIDTH;

 m_Position.height = PLAYER_HEIGHT;

 m_IsPaused = levelUpdate->getIsPausedPointer();

}

Sound, Game Logic, Inter Object Communication, and the Player464

In the second part of the PlayerUpdate code, we coded the assemble function. Notice, as men-

tioned previously, that the PlayerUpdate parameter is unused. The SoundEngine class is initialized

and ready to play some sounds, the position and height are initialized, and, most interestingly,

the LevelUpdate shared pointer is used to call the getIsPausedPointer function and initialize

m_IsPaused. Now the PlayerUdate class can always check if the game is ever paused.

Next, you will need to add the third and final piece of code (in this chapter) for PlayerUpdate.cpp:

void PlayerUpdate::handleInput()

{

 m_InputReceiver.clearEvents();

}

void PlayerUpdate::update(float timeTakenThisFrame)

{

 handleInput();

}

In the third and final part of the PlayerUpdate.cpp code that we added, the handleInput func-

tion calls the clearEvents function on the m_InputReceiver instance. This clears the events

ready for the next iteration of the loop. This doesn’t achieve anything because we haven’t read

any events yet, but we will get to that in Chapter 18. Finally, we added the update function. All it

does is call the function we just coded; however, in Chapter 18, we will code a fully functioning

and responsive player character.

Coding the PlayerGraphics class
We have put in the bare bones of behavior for our player character. Next, we will begin to code

the appearance by extending the Graphics class with a PlayerGraphics class. As with the

PlayerUpdate class, we will just start with the basics and build on it as the project progresses.

Add the following code to PlayerGraphics.h:

#pragma once

#include "Graphics.h"

// We will come back to this soon

//class Animator;

class PlayerUpdate;

Chapter 16 465

class PlayerGraphics : public Graphics

{

private:

 FloatRect* m_Position = nullptr;

 int m_VertexStartIndex = -999;

 // We will come back to this soon

 //Animator* m_Animator;

 IntRect* m_SectionToDraw = new IntRect;

 IntRect* m_StandingStillSectionToDraw = new IntRect;

 std::shared_ptr<PlayerUpdate> m_PlayerUpdate;

 const int BOOST_TEX_LEFT = 536;

 const int BOOST_TEX_TOP = 0;

 const int BOOST_TEX_WIDTH = 69;

 const int BOOST_TEX_HEIGHT = 100;

 bool m_LastFacingRight = true;

public:

 //From Component : Graphics

 void assemble(VertexArray& canvas,

 shared_ptr<Update> genericUpdate,

 IntRect texCoords) override;

 void draw(VertexArray& canvas) override;

};

Notice a couple of commented-out references to an Animator class. Later, in Chapter 18, we will

animate the player to make it look like it is running. We will also animate the flames on the fire-

balls. To be able to run the code without errors as soon as possible, the preceding code has the

Animator class commented out.

Sound, Game Logic, Inter Object Communication, and the Player466

In the preceding code, we have the following variables and function declarations. Let’s go through

them one at a time:

•	 The FloatRect variable m_Position is set to nullptr. This will represent the position of

the player. The int variable m_VertexStartIndex will hold the position in the VertexArray

where the quad representing the player will start. So, when it comes to moving the play-

er, we will know that the vertices we are interested in will be m_VertexStartIndex, m_

VertexStartIndex+1, m_VertexStartIndex+2, and m_VertexStartIndex+3.

•	 The m_SectionToDraw variable is an IntRect pointer. It will hold the integer texture co-

ordinates within the texture atlas of the current frame of animation for the player. The

Animate class will manipulate these values as required. We will code the Animate class

in Chapter 18.

•	 The IntRect pointer m_StandingStillSectionToDraw will hold the texture coordinates

for when the player is not running.

•	 The shared_ptr<PlayerUpdate> m_PlayerUpdate variable is a pointer to the PlayerUpdate

instance. Holding a pointer to the PlayerUpdate instance will allow this class to call all

the public functions and read all the public variables of the PlayerUpdate class.

•	 The const int BOOST_TEX_LEFT, BOOST_TEX_TOP, BOOST_TEX_WIDTH, and BOOST_TEX_

HEIGHT are initialized with the coordinates of the frame of animation representing the

player boosting, within the texture atlas.

•	 The Boolean m_LastFacingRight is initialized to true and will keep track of the player

switching the direction they face. This will be needed when animating.

•	 The assemble function is the overridden implementation from the Graphics class.

The assemble function receives a VertexArray reference called canvas, and a shared_

ptr<Update> called genericUpdate. It will be interesting to see what we do with

genericUpdate. In each different Update derived class, we will see how we convert it to

the specific Update variant required and, therefore, provide access to its public functions.

The assemble function also receives an IntRect instance called texCoords that will hold

the texture coordinates for the graphic in the texture atlas.

•	 The draw function receives the VertexArray as a reference and is called each frame. This

enables the draw function to handle moving vertex or texture coordinates as required in

each frame of the game.

Let’s code all these functions and begin to use the variables we have been discussing. Add the

following code to PlayerGraphics.cpp:

Chapter 16 467

#include "PlayerGraphics.h"

#include "PlayerUpdate.h"

void PlayerGraphics::assemble(

 VertexArray& canvas,

 shared_ptr<Update> genericUpdate,

 IntRect texCoords)

{

 m_PlayerUpdate =

 static_pointer_cast<PlayerUpdate>(genericUpdate);

 m_Position =

 m_PlayerUpdate->getPositionPointer();

 m_VertexStartIndex = canvas.getVertexCount();

 canvas.resize(canvas.getVertexCount() + 4);

 canvas[m_VertexStartIndex].texCoords.x =

 texCoords.left;

 canvas[m_VertexStartIndex].texCoords.y =

 texCoords.top;

 canvas[m_VertexStartIndex + 1].texCoords.x =

 texCoords.left + texCoords.width;

 canvas[m_VertexStartIndex + 1].texCoords.y =

 texCoords.top;

 canvas[m_VertexStartIndex + 2].texCoords.x =

 texCoords.left + texCoords.width;

 canvas[m_VertexStartIndex + 2].texCoords.y =

 texCoords.top + texCoords.height;

 canvas[m_VertexStartIndex + 3].texCoords.x =

 texCoords.left;

 canvas[m_VertexStartIndex + 3].texCoords.y =

 texCoords.top + texCoords.height;

}

void PlayerGraphics::draw(VertexArray& canvas)

{

 const Vector2f& position =

Sound, Game Logic, Inter Object Communication, and the Player468

 m_Position->getPosition();

 const Vector2f& scale =

 m_Position->getSize();

 canvas[m_VertexStartIndex].position =

 position;

 canvas[m_VertexStartIndex + 1].position =

 position + Vector2f(scale.x, 0);

 canvas[m_VertexStartIndex + 2].position =

 position + scale;

 canvas[m_VertexStartIndex + 3].position =

 position + Vector2f(0, scale.y);

}

Some of the preceding code might look familiar because we are assigning vertex and texture

coordinates to an SFML VertexArray instance, just like we did for the background in the zombie

game. We will be doing this or something similar in every Graphics derived class.

Here, though, we are working in a different context to the zombie game, so let’s run through how

all the code we have just added works by splitting it up into four parts.

First, we have this function signature:

void PlayerGraphics::assemble(

 VertexArray& canvas,

 shared_ptr<Update> genericUpdate,

 IntRect texCoords)

{

 …

…

}

The first part of the PlayerGraphics.cpp we are looking at is the signature for the assemble

function. As a reminder, the assemble function as already discussed is the overridden implemen-

tation from the Graphics class. The assemble function receives a VertexArray reference called

canvas and a shared_ptr<Update> called genericUpdate. The assemble function also receives

an IntRect instance called texCoords that will hold the texture coordinates for the graphic in

the texture atlas.

Chapter 16 469

Second, inside the curly braces of the assemble function, we have this:

m_PlayerUpdate =

static_pointer_cast<PlayerUpdate>(genericUpdate);

m_Position =

m_PlayerUpdate->getPositionPointer();

m_VertexStartIndex = canvas.getVertexCount();

canvas.resize(canvas.getVertexCount() + 4);

canvas[m_VertexStartIndex].texCoords.x =

texCoords.left;

canvas[m_VertexStartIndex].texCoords.y =

texCoords.top;

canvas[m_VertexStartIndex + 1].texCoords.x =

texCoords.left + texCoords.width;

canvas[m_VertexStartIndex + 1].texCoords.y =

texCoords.top;

canvas[m_VertexStartIndex + 2].texCoords.x =

texCoords.left + texCoords.width;

canvas[m_VertexStartIndex + 2].texCoords.y =

texCoords.top + texCoords.height;

canvas[m_VertexStartIndex + 3].texCoords.x =

texCoords.left;

canvas[m_VertexStartIndex + 3].texCoords.y =

texCoords.top + texCoords.height;

The second part of the PlayerGraphics.cpp file (above) in the code for the assemble function

uses the static_pointer_cast function to turn the base class Update instance into a child class

PlayerUpdate instance and then saves the result into m_PlayerUpdate.

Next, we initialize m_VertexStartIndex by calling canvas.getVertexCount, then add enough

space for another quad to the vertex array by calling canvas.resize. Following on, in the next

eight lines of code, we initialize all the player character’s texture coordinates in the VertexArray

using the IntRect texCoords that was passed in as a parameter.

Third and finally, we have this code:

void PlayerGraphics::draw(VertexArray& canvas)

{

Sound, Game Logic, Inter Object Communication, and the Player470

const Vector2f& position =

 m_Position->getPosition();

const Vector2f& scale =

 m_Position->getSize();

canvas[m_VertexStartIndex].position =

 position;

canvas[m_VertexStartIndex + 1].position =

 position + Vector2f(scale.x, 0);

canvas[m_VertexStartIndex + 2].position =

 position + scale;

canvas[m_VertexStartIndex + 3].position =

 position + Vector2f(0, scale.y);

}

The third and final part of the PlayerGraphics.cpp file is the draw function. For now, we just use

the m_Position.getPosition function to initialize a Vector2f instance called position and the

getSize function to initialize Vector2f called scale. We then use position and scale to set the

positions of the player character’s vertices in the VertexArray.

We will complete the updating and input handling of the PlayerUpdate class as well as the

animation and the Animator class for the PlayerGraphics class once we have added some cam-

era-related classes to see the player properly as well as platforms for the player to run upon.

Coding the factory to use all our new classes
The Factory is an important class. It will be where we create all our smart pointers to derived

Update and Graphics instances. We will call all the constructors and assemble function imple-

mentations while sharing the various required pointers that we have been coding. For example,

the Factory is where we will share the pointer to the player and the position of the platforms

with the LevelUpdate instance.

Remembering the texture coordinates
First of all, we will add code to the Factory.h file. In the Factory.h file, add the following vari-

ables to the private section:

 const int PLAYER_TEX_LEFT = 0;

 const int PLAYER_TEX_TOP = 0;

Chapter 16 471

 const int PLAYER_TEX_WIDTH = 80;

 const int PLAYER_TEX_HEIGHT = 96;

 const float CAM_VIEW_WIDTH = 300.f;

 const float CAM_SCREEN_RATIO_LEFT = 0.f;

 const float CAM_SCREEN_RATIO_TOP = 0.f;

 const float CAM_SCREEN_RATIO_WIDTH = 1.f;

 const float CAM_SCREEN_RATIO_HEIGHT = 1.f;

 const int CAM_TEX_LEFT = 610;

 const int CAM_TEX_TOP = 36;

 const int CAM_TEX_WIDTH = 40;

 const int CAM_TEX_HEIGHT = 30;

 const float MAP_CAM_SCREEN_RATIO_LEFT = 0.3f;

 const float MAP_CAM_SCREEN_RATIO_TOP = 0.84f;

 const float MAP_CAM_SCREEN_RATIO_WIDTH = 0.4f;

 const float MAP_CAM_SCREEN_RATIO_HEIGHT = 0.15f;

 const float MAP_CAM_VIEW_WIDTH = 800.f;

 const float MAP_CAM_VIEW_HEIGHT = MAP_CAM_VIEW_WIDTH / 2;

 const int MAP_CAM_TEX_LEFT = 665;

 const int MAP_CAM_TEX_TOP = 0;

 const int MAP_CAM_TEX_WIDTH = 100;

 const int MAP_CAM_TEX_HEIGHT = 70;

 const int PLATFORM_TEX_LEFT = 607;

 const int PLATFORM_TEX_TOP = 0;

 const int PLATFORM_TEX_WIDTH = 10;

 const int PLATFORM_TEX_HEIGHT = 10;

 const int TOP_MENU_TEX_LEFT = 770;

 const int TOP_MENU_TEX_TOP = 0;

 const int TOP_MENU_TEX_WIDTH = 100;

 const int TOP_MENU_TEX_HEIGHT = 100;

Sound, Game Logic, Inter Object Communication, and the Player472

 const int RAIN_TEX_LEFT = 0;

 const int RAIN_TEX_TOP = 100;

 const int RAIN_TEX_WIDTH = 100;

 const int RAIN_TEX_HEIGHT = 100;

We will use all the new constant values as we proceed through the rest of the project. The vari-

ables represent the texture coordinates of all the images in the texture atlas. Often, you would

load these values from a file, but this suits our purposes fine.

Finally, to use these new classes, we will instantiate and configure them in our Factory.

Add these additional highlighted directives to the Factory.cpp, so we can use our newly created

classes:

#include "Factory.h"

#include "LevelUpdate.h"

#include "PlayerGraphics.h"

#include "PlayerUpdate.h"

#include "InputDispatcher.h"

Add this code to the loadLevel function to instantiate a LevelUpdate instance inside a GameObject

instance into the Factory.cpp file:

// Build a level game object

GameObject level;

shared_ptr<LevelUpdate> levelUpdate =

 make_shared<LevelUpdate>();

level.addComponent(levelUpdate);

gameObjects.push_back(level);

There is quite a lot to discuss in the preceding snippet of code but, as we will see, it is not as

complicated as it might first appear.

The code creates a new GameObject instance called level. Next, we create a shared pointer of the

LevelUpdate type. Following on, we call the addComponent function on level and pass in the

LevelUpdate instance, level. Finally, we call the push_back function on our gameObjects vector.

This is a significant step because it means we finally have a functioning GameObject instance that

will be looped over for each frame of the game loop. Astute readers might have noticed that we

didn’t call the assemble function yet. We will get to that soon.

Chapter 16 473

Next, add this code to instantiate a PlayerGraphics and a PlayerUpdate instance inside a

GameObject instance to the loadLevel function:

// Build a player object

GameObject player;

shared_ptr<PlayerUpdate> playerUpdate =

 make_shared<PlayerUpdate>();

playerUpdate->assemble(levelUpdate, nullptr);

player.addComponent(playerUpdate);

inputDispatcher.registerNewInputReceiver(

 playerUpdate->getInputReceiver());

shared_ptr<PlayerGraphics> playerGraphics =

 make_shared<PlayerGraphics>();

playerGraphics->assemble(canvas, playerUpdate,

 IntRect(PLAYER_TEX_LEFT, PLAYER_TEX_TOP,

 PLAYER_TEX_WIDTH, PLAYER_TEX_HEIGHT));

player.addComponent(playerGraphics);

gameObjects.push_back(player);

// Make the LevelUpdate aware of the player

levelUpdate->assemble(nullptr, playerUpdate);

In the preceding code, we create another GameObject instance called player and a PlayerUpdate

shared pointer called playerUpdate. We call the assemble function on playerUpdate and pass

in the required parameters. These required parameters are the LevelUpdate shared pointer, but

we pass nullptr where we should pass a PlayerUpdate pointer. This is, as mentioned previously,

because of the simplification of the Entity Component system we are using. The PlayerUpdate

class obviously does not need a copy of itself.

Then, we call the addComponent function on player and call registerNewInputReceiver on the

InputDispatcher instance. Notice that we pass in the required value by calling getInputReceiver

on the PlayerUpdate instance. At this point, not only do we have another GameObject instance

almost ready to be iterated in the game loop in the gameObjects vector but we have also estab-

lished a connection to all the operating system events provided by SFML. Now we can move on

to the PlayerGraphics class instance.

Sound, Game Logic, Inter Object Communication, and the Player474

Next, we instantiate an instance of PlayerGraphics and call the assemble function, passing

in the VertexArray, the LevelUpdate instance, and the texture coordinates. Now we add the

GraphicsComponent instance into the GameObject instance with the addComponent function and

call push_back to add the player character’s GameObject into the gameObjects vector.

The final line of code calls the assemble function on levelUpdate because we couldn’t do so

previously as the PlayerUpdate instance didn’t exist yet. This is the kind of knowledge that the

Factory class is expected to have.

Running the game
If we run the game at this point, we still get the blank gray screen. This is because we are not

drawing our VertexArray. In the next chapter, we will see how to draw the VertexArray twice

to create a regular view as well as a mini map. We will achieve this by coding some classes to

represent cameras or views of our game. For now, just add this highlighted line of code to the

main function in Run.cpp just before the call to window.display:

// Temporary code until next chapter

window.draw(canvas, factory.m_Texture);

// Show the new frame.

window.display();

Now, if you run the game and look closely, very closely, in the top-left corner of the screen, you

can just about see a tiny, static player graphic. I haven’t provided a screenshot because it is so tiny.

Read on for a solution. You will also have noticed the short piece of music playing on a loop. If you

prefer to work in silence while you test your code going forward, just delete these two lines of code

from the LevelUpdate assemble function as they were just there for testing purposes anyway:

 //temp

 SoundEngine::startMusic();

We will handle starting and stopping the music properly when we code a menu for our game.

If you want to get a closer look at the player graphic, temporarily edit the assemble function in

the PlayerUpdate.cpp file to increase the size of the player, as shown with these two highlighted

lines of code:

Chapter 16 475

void PlayerUpdate::assemble(

 shared_ptr<LevelUpdate> levelUpdate,

 shared_ptr<PlayerUpdate> playerUpdate)

{

 SoundEngine::SoundEngine();

 m_Position.width = PLAYER_WIDTH * 10;

 m_Position.height = PLAYER_HEIGHT * 10;

 m_IsPaused = levelUpdate->getIsPausedPointer();

}

Run the game and you can clearly see the player in the top-left corner of the screen, as shown next:

Figure 16.1: Enlarged player image

Be sure to remove the * 10 from the two previously edited lines of code.

We could have fairly easily added some code to make the player character controllable, but the

chapter was getting a bit long, and we will do so in a couple of chapters’ time when we have our

camera game objects working and we can see the player better.

Summary
In this chapter, we have achieved a lot. We have coded a sound-related class that also plays mu-

sic in a loop, and we have coded a class that handles all the game logic and encapsulated it in a

GameObject that runs once per loop of the game loop.

We have coded the beginning of a playable character using a graphics component and an update

component composed within a game object. This is the essence of the Entity Component system.

This process will be repeated for every type of entity in our game.

Sound, Game Logic, Inter Object Communication, and the Player476

We have continued coding the factory, which is responsible for assembling all the different game

objects and sharing the appropriate data between them.

In the next chapter, we will focus on graphics and drawing by coding CameraGraphics and

CameraUpdate classes that are also derived from Graphics and Update.

17
Graphics, Cameras, Action

We need to talk in depth about the way the graphics will work in this project. As we will be coding

the cameras that do the drawing in this chapter, now seems like a good time to talk about the

graphics too. If you look in the graphics folder, there is just one graphic. Furthermore, we are not

calling window.draw at any point in our code so far. We will discuss why draw calls should be kept

to a minimum, as well as implement our Camera classes that will handle this for us. Finally, by

the end of this chapter, we will be able to run the game and see the cameras in action, including

the main view, the radar view, and the timer text.

The completed code for this chapter is in the Run3 folder.

Here is what is coming up in this chapter:

•	 Cameras, draw calls, and SFML View

•	 Coding the camera classes

•	 Adding camera instances to the game

•	 Running the game

The code for this chapter is in the Run3 folder.

Cameras, draw calls, and SFML View
In all our previous projects, all the entities in our games (with one exception) were graphically

represented with a sprite. This is fine when there are only a few, a few dozen, or even a few hun-

dred entities being drawn. It is important because the speed that SFML can draw each frame of

our game has a direct relationship to the number of times we call window.draw. This is not an

SFML flaw but is directly connected to how OpenGL uses the graphics card.

Graphics, Cameras, Action478

The reason is that each time we call draw, quite a lot happens behind the scenes to set up OpenGL

so that it is ready to draw. To quote the SFML website,

So, using a vertex array and rendering multiple images with one draw call to do our drawing,

whenever possible, is a very good idea. This means we need to change how we deal with graphics

in general. Instead of having a sprite for every game object, we will now have a starting index in

a vertex array, and instead of hundreds of sprites and many textures, we will have a single vertex

array and one texture containing all the graphics. Furthermore, consider that every time we have

drawn the score, the time, or any other text to the screen, we have also made a draw call. The

SFML text-related classes are so useful that we will not try and stop using them, and we only

have one place in this project where we will use SFML Text anyway. I am referring to the time in

the top-left corner of the screen.

The menu-related text is static and does not need to be computed so it is drawn from images

within the texture atlas. If you are wondering how you would keep your draw calls to a minimum

if you had lots of text to display, the answer is that you would treat your text in the same way

you do regular graphics and provide a texture atlas of the alphabet, numbers 0 through 9, and

any punctuation you require. This is way more complex than using the SFML Text class but not

too complex.

All it requires is that each character (number, letter, etc.) being drawn in the current frame has

an index in the vertex array (and related coordinates) and you would then parse the strings you

want to draw to the screen and layer the appropriate vertex positions with the appropriate texture

coordinates. By the time you complete this project, you will have done this half a dozen times

or more and it won’t be a mystery. Of course, we used a vertex array for the background of the

zombie game and we have already used texture coordinates combined with a vertex array index

for the player graphic in the preceding chapter.

We will now code the cameras. The cameras will handle the calling of the draw function whenever

required. There will be two cameras. The regular camera will call draw twice: once for the vertex

array and once for the timer in the top-left corner. The mini-map camera will call draw once for

a differently oriented view of the world showing a radar-like view to the player.

 “…each call [to draw] involves setting a set of OpenGL states, resetting matrices,

changing textures, etc. All of this is required even when simply drawing two tri-

angles (a sprite).”

Chapter 17 479

To achieve this, each camera will need access to the same RenderWindow instance and will need

to adjust the settings to the SFML View instance, which defines the camera’s position on screen,

the length-to-width ratio, and the zoom level for the intended purpose.

Coding the camera classes
We will have two cameras in our game, and each will have an Update derived class and a Graphics

derived class. The CameraUpdate class will handle movement to follow the player and interaction

with the operating system via an InputReceiver instance. The CameraGraphics class will handle

all the drawing by referring to the data in CameraUpdate and holding a copy of the texture atlas,

the RenderWindow instance, and an SFML Text object. Later, in Chapter 21, we will introduce

a couple more features (and draw calls) to add a parallax background and a neat shader effect.

Coding the CameraUpdate class
Create two new classes to represent the cameras: CameraUpdate, which has a base class of Update,

and CameraGraphics, which has a base class of Graphics. As we are coming to expect, these classes

will be wrapped/composed in a GameObject instance for use in our game loop.

Add the following code to the CameraUpdate.h file:

#pragma once

#include "Update.h"

#include "InputReceiver.h"

#include <SFML/Graphics.hpp>

using namespace sf;

class CameraUpdate :

 public Update

{

private:

 FloatRect m_Position;

 FloatRect* m_PlayerPosition;

 bool m_ReceivesInput = false;

 InputReceiver* m_InputReceiver = nullptr;

Graphics, Cameras, Action480

public:

 FloatRect* getPositionPointer();

 void handleInput();

 InputReceiver* getInputReceiver();

 //From Update : Component

 void assemble(shared_ptr<LevelUpdate> levelUpdate,

 shared_ptr<PlayerUpdate> playerUpdate) override;

 void update(float fps) override;

};

In the preceding code, the FloatRect named m_Position is declared ready to hold the position

of the camera. A floating-point rectangle is perfect for holding the top, left, length, and width of

a camera view in world space as opposed to integer pixel positions.

The FloatRect named m_PlayerPosition is a pointer and will be initialized to the address of the

FloatRect instance in the PlayerUpdate class. This will make it possible for the CameraUpdate

class to follow the player around the world wherever it goes.

The bool variable m_ReceivesInput is useful because only one of our cameras will receive input.

We don’t need to bother with the extra overhead of receiving and handling input in the main

camera, just in the mini-map camera. This is because the main camera just follows the player

character around and is not controlled by the player. By default, this Boolean is initialized to false.

The InputReceiver pointer m_InputReceiver is for registering with the InputDispatcher. By

default, it is set to nullptr because, as mentioned previously, only one of our two cameras will

need it.

The getPositionPointer function will enable the CameraGraphics class to track the CameraUpdate

class by returning the address of the FloatRect instance, which defines the view of the camera.

So, in summary, this class (CameraUpdate) will track the player and the CameraGraphics class

will track this class.

The handleInput function will be called once each iteration of the game loop from the update

function but only in the camera that needs it.

Chapter 17 481

The getInputReceiver function is called from the factory by the InputDispatcher class. It can

then access and store a pointer to the InputReceiver in CameraUpdate.

The assemble function will prepare this class for action. As a reminder, the parameters are a

shared_ptr<LevelUpdate> called levelUpdate, and a shared_ptr<PlayerUpdate> called

playerUpdate. This is the first function we override from the Update class. Exactly how we use

these parameters we will see very soon.

The update function is called once each frame and it receives the duration of the main game

loop. We can now move on to see how we implement these functions and use all these variables.

Let’s code the implementations of the functions in a couple of parts. To get started, add the fol-

lowing to the CameraUpdate.cpp file.

#include "CameraUpdate.h"

#include "PlayerUpdate.h"

FloatRect* CameraUpdate::getPositionPointer()

{

 return &m_Position;

}

void CameraUpdate::assemble(

 shared_ptr<LevelUpdate> levelUpdate,

 shared_ptr<PlayerUpdate> playerUpdate)

{

 m_PlayerPosition =

 playerUpdate->getPositionPointer();

}

InputReceiver* CameraUpdate::getInputReceiver()

{

 m_InputReceiver = new InputReceiver;

 m_ReceivesInput = true;

 return m_InputReceiver;

}

The getPositionPointer function simply returns the address of the m_Position variable. The

assemble function simply stores the address of the player’s position in m_PlayerPosition so it

can always be referred to.

Graphics, Cameras, Action482

The getInputReceiver function initializes a new InputReceiver instance, sets the m_

ReceivesInput variable to true, and then returns the address of the newly created instance. The

effect of this function is that our code will only initialize and share an InputReceiver instance if

we call it. Therefore, in the Factory class, we can easily pick and choose which cameras handle

input and which don’t. By setting the m_ReceivesInput variable to true and because the default

value is false, each instance of the class will know whether it handles input or not. In short,

each class will be told and prepared to handle input or not; the class itself doesn’t have to choose.

For the next part of the CameraUpdate class, add the following to CameraUpdate.cpp right after

the previous code.

void CameraUpdate::handleInput()

{

 m_Position.width = 1.0f;

 for (const Event& event : m_InputReceiver->getEvents())

 {

 // Handle mouse wheel event for zooming

 if (event.type == sf::Event::MouseWheelScrolled)

 {

 if (event.mouseWheelScroll.wheel ==

 sf::Mouse::VerticalWheel)

 {

 // Accumulate the zoom factor based on delta

 m_Position.width *=

 (event.mouseWheelScroll.delta > 0)

 ? 0.95f : 1.05f;

 }

 }

 m_InputReceiver->clearEvents();

 }

}

Chapter 17 483

In the preceding code, the handleInput function listens for the mouse wheel being scrolled. The

m_Position.width value is set to 1 and we will see why in a moment. The code shown next loops

through all the events, just as we have in every game so far, with the only difference being that

we capture the events by calling the m_InputReceiver->getEvents function.

Inside the event loop, we care about just one event. That event is sf::Event::MouseWheelScrolled.

When that event is detected, this if statement is executed:

if (event.mouseWheelScroll.wheel ==

 sf::Mouse::VerticalWheel)

The preceding statement checks if the mouse wheel was scrolled, and if it was, this next line of

code is executed.

m_Position.width *=

(event.mouseWheelScroll.delta > 0)

 ? 0.95f : 1.05f;

This line of code modifies the m_Position.width value based on the direction of mouse wheel

scrolling.

The value held in event.mouseWheelScroll.delta is a value that describes the amount by which

the mouse wheel was scrolled. If the value is positive, it means the wheel was scrolled upward,

and if it’s negative, it means the wheel was scrolled downward.

The expression (event.mouseWheelScroll.delta > 0) is a ternary conditional operator. It checks

if the value is greater than 0. If it is, the expression evaluates to true; otherwise, it evaluates false.

Depending on the result of the operator, one of two values is chosen:

•	 If delta > 0, meaning the mouse wheel was scrolled upward, then 0.95f is chosen.

•	 If delta <= 0, meaning the mouse wheel was scrolled downward, then 1.05f is chosen.

The chosen value (0.95f or 1.05f) is then multiplied by m_Position.width, which we previously

initialized to 1. If the result is greater than 0, it decreases m_Position.width by 5%, and if the

result is less than 0, it increases m_Position.width by 5%. If the scroll wheel was not touched,

the value remains at exactly 1. We will see what we do with this value in the update function

very soon. The final line of code in the handleInput function clears all the events ready for the

next frame of the game.

Graphics, Cameras, Action484

Finally, for the CameraUpdate class, add the update function to CameraUpdate.cpp.

void CameraUpdate::update(float fps)

{

 if (m_ReceivesInput)

 {

 handleInput();

 m_Position.left = m_PlayerPosition->left;

 m_Position.top = m_PlayerPosition->top;

 }

 else

 {

 m_Position.left = m_PlayerPosition->left;

 m_Position.top = m_PlayerPosition->top;

 m_Position.width = 1;

 }

}

The update function checks if this instance receives input. If it does, it calls handleInput. This

means that any CameraUpdate instances that we call getInputReceiver on will execute this

code. In the if block m_Position, left and top variable values are set to the same position as

the player’s. Note that the key part of the code is what is missing. We do not set the width. This

means whatever value we set for m_Position.width back in the handleInput function remains.

When the CameraGraphics class sets the parameters on the SFML View instance at each frame,

this will have the effect of zooming in and out in sync with the mouse scroll wheel.

In the else block, we do the same as in the if block but additionally set m_Position.width to

1. When the else block executes, the CameraGraphics class will not cause any zoom. Let’s move

on to the CameraGraphics class now.

Coding the CameraGraphics class part 1
We have seen how the CameraUpdate class works, how it conditionally responds to scrolling the

mouse wheel, and that it stores that movement in its width. We have also seen how it stores

the player’s position in its left and top variables. Furthermore, we learned that this class

(CameraGraphics) will use all these values. Let’s see how all this comes together. Add the fol-

lowing to CameraGraphics.h.

#pragma once

Chapter 17 485

#include "SFML/Graphics.hpp"

#include "Graphics.h"

using namespace sf;

class CameraGraphics :

public Graphics

{

private:

RenderWindow* m_Window;

View m_View;

int m_VertexStartIndex = -999;

Texture* m_Texture = nullptr;

FloatRect* m_Position = nullptr;

bool m_IsMiniMap = false;

// For zooming the mini map

const float MIN_WIDTH = 640.0f;

const float MAX_WIDTH = 2000.0f;

// For the Time UI

Text m_Text;

Font m_Font;

int m_TimeAtEndOfGame = 0;

float m_Time = 0;

public:

CameraGraphics(RenderWindow* window,

Texture* texture,

Vector2f viewSize,

FloatRect viewport);

float* getTimeConnection();

// From Component : Graphics

Graphics, Cameras, Action486

void assemble(VertexArray& canvas,

shared_ptr<Update> genericUpdate,

IntRect texCoords) override;

void draw(VertexArray& canvas) override;

};

That’s quite a lot of code, so let’s go through it. In the private section of the CameraGraphics.h file,

we declare a pointer to a RenderWindow called m_Window, and a View instance called m_View; these

are not normally present in our Graphics derived classes. The reason the CameraGraphics class

needs them is it will be responsible for drawing the VertexArray that will contain the updated

vertex positions and texture coordinates in each frame. This makes sense because the camera can

control moving and zooming and then drawing. We can have as many cameras as we like. We

could make a four-player game with the screen divided into four, a two-player split-screen game,

or, as we are going to do, a full-screen camera and a mini-map/radar-like view.

The integer m_VertexStartIndex will hold the starting index within the vertex array of the quad

for the camera. You might be thinking that the camera just draws the vertex array, so why should

it need its own quad? You would be quite right to wonder why as often the camera will not have

its own quad and texture coordinates, but our camera will have an almost fully transparent rect-

angle to create the border between the mini map and the main screen.

The Texture pointer m_Texture is the texture that holds our image with everything in it. The

m_Position variable is a FloatRect that holds the size and coordinates of the camera’s view of

the world.

The Boolean m_IsMiniMap will help us write code that varies slightly between the main view and

the mini-map view. You could easily build two separate classes, say MainCameraGraphics and

RadarCameraGraphics, and avoid a few if statements in the code if you wish.

The constants MIN_WIDTH and MAX_WIDTH lock the minimum and maximum sizes for the view of

the world, and this is necessary because we will be writing code that allows the mini map to be

zoomed in and out.

The Text, Font, and float m_Time members are for displaying the time in the top-left corner of

the screen. There will be three draw calls in each frame of the game, one for each camera and one

for the text, but we will only call draw for the text in the main camera. Later, in Chapter 21, we

will add a fourth draw call when we add a parallax background.

Chapter 17 487

The integer m_TimeAtEndOfGame helps us show the time after the game has ended.

In the public section of the CameraGraphics.h file, we have the constructor function declaration.

The constructor takes parameters for initializing the RenderWindow pointer and the Texture

pointer and variables for the size of the camera’s view and viewport. The viewport is the SFML

concept, which defines the area of the screen the view will be displayed over. This will make full

sense when we code the .cpp file in a moment. And to really make sure you grasp the concept of a

viewport and how it is distinct from the view, we will discuss it in depth in the section The SFML

View class, but let’s add the code first, so we have more context for our discussion.

The getTimeConnection function returns a pointer to the m_Time variable, which will be called

by the LevelUpdate class. This gives the LevelUpdate class the ability to change the m_Time vari-

ables value – which, as we will see, will then change the text in the top-left corner of the screen.

The assemble function is our usual overridden function that takes a VertexArray, a shared pointer

to a generic Update instance, and the texture coordinates. The draw function is also overridden

from the Graphics class and just needs the VertexArray to do its work.

Now, let’s code all those functions to begin to understand them fully. Then we will dive a bit

deeper into the SFML View class, as promised. Add the following to the CameraGraphics.cpp file.

#include "CameraGraphics.h"

#include "CameraUpdate.h"

CameraGraphics::CameraGraphics(

 RenderWindow* window, Texture* texture,

 Vector2f viewSize, FloatRect viewport)

{

 m_Window = window;

 m_Texture = texture;

 m_View.setSize(viewSize);

 m_View.setViewport(viewport);

 // The mini map viewport is less than 1

 if (viewport.width < 1)

 {

 m_IsMiniMap = true;

 }

Graphics, Cameras, Action488

 else

 {

 // Only the full screen camera has the time text

 m_Font.loadFromFile("fonts/KOMIKAP_.ttf");

 m_Text.setFont(m_Font);

 m_Text.setFillColor(Color(255, 0, 0, 255));

 m_Text.setScale(0.2f, 0.2f);

 }

}

We just added the constructor for the CameraGraphics class. In this code, we begin by initializing

the RenderWindow pointer and the Texture pointer. The view size is set by calling setSize and

passing in the viewSize parameter, and the viewport is set by calling setViewport and passing

in viewport. Let’s leave the CameraGraphics class for a few pages and take a closer look at the

SFML View class.

The SFML View class
To expand a little on exactly what the viewport is, take a look at the next image, which contains

a few examples.

Figure 17.1: Viewports explained

Chapter 17 489

In the preceding image, we see some examples of ways we can arrange the viewport of a View

instance to control where and how much of the screen the call to draw will occupy. In all our

previous projects, we have used the default values, which is the whole screen.

A viewport is defined by an SFML FloatRect with a left and top value defining the top-left

corner and a width and height value defining how wide and high it is. The difference between

the viewport and the viewsize (as set by the setSize function) is important.

The setSize function determines how many world units the view will show. Hoever, the viewport

height and width determine what proportion of screen real estate that view will use. You could

show a lot of the world in a very small viewport or a small amount of the world in a very large

viewport depending on what suits the game. The viewports are defined in normalized coordinates.

This means that the smallest possible value is 0 and the biggest is 1.

Therefore, the default viewport that covers the entire screen has top and left values of 0 and

height and width values of 1. More examples will help clarify this.

Refer to Screen example 1 in the preceding image. The viewport labeled a would have the fol-

lowing values: left = 0, top = 0, width = 0.5, and height = 1. This is because the viewport starts

at the far left and top (0) and goes for half the width of the screen (0.5) and the full height (1).

Viewport b has values as follows: left = 0.5, top = 0, width = 0.5, and height = 1. This is because

it starts horizontally in the middle of the screen (0.5), vertically at the top (0), and is half the

width (0.5) and the full height (1).

Look at Screen example 2 and spend a moment reconciling these values for viewports a, b, c, and d:

•	 Viewport a: left = 0, top = 0, width = 0.5, height = 0.5

•	 Viewport b: left = 0.5, top = 0, width = 0.5, height = 0.5

•	 Viewport c: left = 0, top = 0.5, width = 0.5, height = 0.5

•	 Viewport d: left = 0.5, top = 0.5, width = 0.5, height = 0.5

All the viewports have widths and heights of 0.5 because they all use half the height and half the

width. The two viewports on the left of the screen have left values of 0, the two viewports that

start in the center of the screen have left values of 0.5, etc.

Here are the values for the viewports in Screen example 3. I won’t describe them all; just take the

time to reconcile them based on what we have just discussed:

Viewport a: left = 0, top = 0, width = 1, height = 0.33

Graphics, Cameras, Action490

Viewport b: left = 0, top = 0.33, width = 1, height = 0.33

Viewport c: left = 0, top = 0.66, width = 1, height = 0.33

The final example, Screen example 4, is an approximate representation of the viewports in our

game. Viewport a is the full screen starting in the top-left corner the same as the default: left = 0,

top = 0, width = 1, and height = 1. Viewport b is the mini map/radar and has the following val-

ues: left = 0.2, top = 0.8, width = 0.6, and height = 0.19. We will see, when we add code to the

Factory class that when we pass values for the viewport, we also take into account the screen

resolution and the ratio of the horizontal-to-vertical resolution. Furthermore, because viewport

b overlaps the real estate of viewport a, we must make sure the camera that uses viewport b is

drawn second; otherwise, it will be covered by the camera that uses viewport a.

Let’s get back to the code.

Coding the CameraGraphics class part 2
With all that, we have just learned that if the viewport is any less than 1 in either direction (in our

game), it is not the full-screen camera. Therefore, if the code if(viewport.width<1) is true, then

this is going to be the mini-map camera. Of course, we could pass the wrong values by accident,

but the code assumes we get it right and, therefore, any width less than 1 is the mini map. Inside

the if statement, m_IsMiniMap is set to true.

Inside the else statement that executes when it is the main camera, we load the font, set the

font, color the font, and scale the font, just as we have done in all our other projects, albeit in a

different part of the code. As mentioned previously, the mini map will not use or display the time

and therefore doesn’t need the Font or the Text instance.

Next, add this code, which is the assemble function, also into CameraGraphics.cpp.

void CameraGraphics::assemble(

 VertexArray& canvas,

 shared_ptr<Update> genericUpdate,

 IntRect texCoords)

{

 shared_ptr<CameraUpdate> cameraUpdate =

 static_pointer_cast<CameraUpdate>(genericUpdate);

 m_Position = cameraUpdate->getPositionPointer();

 m_VertexStartIndex = canvas.getVertexCount();

Chapter 17 491

 canvas.resize(canvas.getVertexCount() + 4);

 const int uPos = texCoords.left;

 const int vPos = texCoords.top;

 const int texWidth = texCoords.width;

 const int texHeight = texCoords.height;

 canvas[m_VertexStartIndex].texCoords.x = uPos;

 canvas[m_VertexStartIndex].texCoords.y = vPos;

 canvas[m_VertexStartIndex + 1].texCoords.x =

 uPos + texWidth;

 canvas[m_VertexStartIndex + 1].texCoords.y =

 vPos;

 canvas[m_VertexStartIndex + 2].texCoords.x =

 uPos + texWidth;

 canvas[m_VertexStartIndex + 2].texCoords.y =

 vPos + texHeight;

 canvas[m_VertexStartIndex + 3].texCoords.x =

 uPos;

 canvas[m_VertexStartIndex + 3].texCoords.y =

 vPos + texHeight;

}

In the assemble function that we just added, in the first line of code, we use static_pointer_

cast to transform the generic Update shared pointer into a CameraUpdate shared pointer. Now

the CameraGraphics class can call all the public functions of the CameraUpdate class. And the

second line of code uses this possibility to initialize the m_Position pointer by calling the

getPositionPointer function on the CameraUpdate class. Now we can always track where the

camera should be drawn.

All the rest of the code in the assemble function saves the index of the quad for the camera and

initializes all the texture coordinates related to that quad into the VertexArray. The texture co-

ordinates all reconcile to a very light transparent rectangle to create a visual separation between

the main camera and the mini-map camera.

Next, add this code, which is the getTimeConnection function, also into the CameraGraphics.

cpp file.

float* CameraGraphics::getTimeConnection()

Graphics, Cameras, Action492

{

 return &m_Time;

}

This function, getTimeConnection, is short and sweet as it just returns the address of the m_Time

variable. Once the LevelUpdate class has called this function and stored the result, it will be able

to update the m_Time variable, which can then be updated at each frame in the draw function.

Speaking of the draw function, we will code that next.

Finally, for the CameraGraphics class, also add this code into CameraGraphics.cpp.

void CameraGraphics::draw(VertexArray& canvas)

{

 m_View.setCenter(m_Position->getPosition());

 Vector2f startPosition;

 startPosition.x = m_View.getCenter().x -

 m_View.getSize().x / 2;

 startPosition.y = m_View.getCenter().y -

 m_View.getSize().y / 2;

 Vector2f scale;

 scale.x = m_View.getSize().x;

 scale.y = m_View.getSize().y;

 canvas[m_VertexStartIndex].position = startPosition;

 canvas[m_VertexStartIndex + 1].position =

 startPosition + Vector2f(scale.x, 0);

 canvas[m_VertexStartIndex + 2].position =

 startPosition + scale;

 canvas[m_VertexStartIndex + 3].position =

 startPosition + Vector2f(0, scale.y);

 if (m_IsMiniMap)

 {

 if (m_View.getSize().x <

 MAX_WIDTH && m_Position->width > 1)

 {

Chapter 17 493

 m_View.zoom(m_Position->width);

 }

 else if (m_View.getSize().x >

 MIN_WIDTH && m_Position->width < 1)

 {

 m_View.zoom(m_Position->width);

 }

 }

 m_Window->setView(m_View);

 // Draw the time UI but only in the main camera

 if (!m_IsMiniMap)

 {

 m_Text.setString(std::to_string(m_Time));

 m_Text.setPosition(

 m_Window->mapPixelToCoords(Vector2i(5, 5)));

 m_Window->draw(m_Text);

 }

 // Draw the main canvas

 m_Window->draw(canvas, m_Texture);

}

In the draw function above, we have some code that all cameras will use, some code that only

the mini-map camera will use (if (m_IsMiniMap)), and some code that only the regular camera

will use (if (!m_IsMiniMap)).

The start of the function has most of the code that both cameras will use. Here is a reminder.

m_View.setCenter(m_Position->getPosition());

Vector2f startPosition;

startPosition.x = m_View.getCenter().x -

m_View.getSize().x / 2;

 startPosition.y = m_View.getCenter().y -

 m_View.getSize().y / 2;

 Vector2f scale;

Graphics, Cameras, Action494

 scale.x = m_View.getSize().x;

 scale.y = m_View.getSize().y;

 canvas[m_VertexStartIndex].position = startPosition;

 canvas[m_VertexStartIndex + 1].position =

 startPosition + Vector2f(scale.x, 0);

 canvas[m_VertexStartIndex + 2].position =

 startPosition + scale;

 canvas[m_VertexStartIndex + 3].position =

 startPosition + Vector2f(0, scale.y);

In the preceding code, which both camera instances will use, the startPosition Vector2f vari-

able is initialized using the View instances’ size and center. Next, the scale Vector2f variable is

initialized using the size of the View instance.

Finally (in the code above), the relevant vertices in the VertexArray are positioned using

startPosition and scale.

The code that the mini map only uses is shown again next for clarity.

 if (m_IsMiniMap)

 {

 if (m_View.getSize().x <

 MAX_WIDTH && m_Position->width > 1)

 {

 m_View.zoom(m_Position->width);

 }

 else if (m_View.getSize().x >

 MIN_WIDTH && m_Position->width < 1)

 {

 m_View.zoom(m_Position->width);

 }

 }

In the code that only the mini map uses, shown above, there is an if section which wraps an

if-else if structure. In the if section, which executes when m_IsMiniMap is true, the outer

if section is entered. When the size of the View instance is less than the maximum allowed size

and m_Position.width is less than 1, the view is zoomed. Remember from the CameraUpdate class

that the amount of required zoom is stored in m_Position.width.

Chapter 17 495

The inner else-if section executes when the minimum allowed zoom is exceeded and m_Position.

width is less than 1. Inside the else-if structure, the view is zoomed in.

Note that after this code, the view is set to the appropriate instance for both cameras. The default

is always set to 1 at the start of the update function in the CameraUpdate class, which means the

regular camera will never zoom, and if the scroll wheel is not used, neither camera will zoom.

m_Window->setView(m_View);

The next code is only used by the regular camera and is shown again here for clarity.

if (!m_IsMiniMap)

{

m_Text.setString(std::to_string(m_Time));

 m_Text.setPosition(

 m_Window->mapPixelToCoords(Vector2i(5, 5)));

 m_Window->draw(m_Text);

}

In the code that the regular camera uses shown above, the text in the top-left corner of the screen is

configured with setString and setPosition. Finally, we call draw using the RenderWindow pointer.

The draw function is called once for every instance of the CameraGraphics class as opposed to

dozens of times in our zombie game. This is because all the game objects are in the vertex array.

This is much more efficient, which means our game would run on lower-spec PCs or we could

add extra game objects before performance became an issue.

For completeness, here is the draw call again.

m_Window->draw(canvas, m_Texture);

To see our two new camera-related classes in action, we need to instantiate them in the Factory

class, wrap them in GameObject instances, and add them to our vector that we iterate through

in our game loop.

Adding camera instances to the game
We will have two cameras, one for the main view of the game and one for our mini map.

Open the Factory.cpp file. Add the following two highlighted include directives to the top of

the file.

#include "Factory.h"

Graphics, Cameras, Action496

#include "LevelUpdate.h"

#include "PlayerGraphics.h"

#include "PlayerUpdate.h"

#include "InputDispatcher.h"

#include "CameraUpdate.h"

#include "CameraGraphics.h"

Now add the following code for the first camera. Add all the camera code after the code that han-

dles the player, at the very end (but inside) of the loadLevel function. Note that the first couple of

lines are for both cameras; we will get to the second camera next. The regular full-screen camera

is added first; otherwise, it would hide the mini-map camera.

// For both the cameras

const float width = float(VideoMode::getDesktopMode().width);

const float height = float(VideoMode::getDesktopMode().height);

const float ratio = width / height;

// Main camera

GameObject camera;

shared_ptr<CameraUpdate> cameraUpdate =

make_shared<CameraUpdate>();

cameraUpdate->assemble(nullptr, playerUpdate);

camera.addComponent(cameraUpdate);

shared_ptr<CameraGraphics> cameraGraphics =

make_shared<CameraGraphics>(

m_Window, m_Texture,

Vector2f(CAM_VIEW_WIDTH, CAM_VIEW_WIDTH / ratio),

FloatRect(CAM_SCREEN_RATIO_LEFT, CAM_SCREEN_RATIO_TOP,

CAM_SCREEN_RATIO_WIDTH, CAM_SCREEN_RATIO_HEIGHT));

cameraGraphics->assemble(

canvas,

cameraUpdate,

IntRect(CAM_TEX_LEFT, CAM_TEX_TOP,

Chapter 17 497

CAM_TEX_WIDTH, CAM_TEX_HEIGHT));

camera.addComponent(cameraGraphics);

gameObjects.push_back(camera);

levelUpdate->connectToCameraTime(

cameraGraphics->getTimeConnection());

// End Camera

In the preceding code, which is probably starting to feel familiar, first we add some code for the

benefit of both instances. The width, height, and ratio variables are initialized based on the

resolution of the screen that the game is running on. We will use these values on both cameras.

Then we get to the code for the main camera.

First, we create a GameObject instance called camera. Next, we make a shared pointer CameraUpdate

instance. Then we call the assemble function and pass in the playerUpdate shared pointer. Next,

we add cameraUpdate to camera using the addComponent function.

Next up, we create a CameraGraphics shared pointer and call the constructor passing in the

RenderWindow, the Texture, our constants for the camera size, and the viewport size. Next, we call

the assemble function, passing in the VertexArray, the cameraUpdate instance (in its parent form

Update), and texture coordinates. We then add the CameraGraphics instance to the GameObject

instance and add the GameObject instance to the gameObjects vector.

Next, we make the connection between the LevelUpdate instance and CameraGraphics in-

stance by calling connectToCameraTime on levelUpdate and passing in the result from calling

getTimeConnection on cameraGraphics.

Next, add the code for the camera that will be the mini map.

// MapCamera

GameObject mapCamera;

shared_ptr<CameraUpdate> mapCameraUpdate =

make_shared<CameraUpdate>();

mapCameraUpdate->assemble(nullptr, playerUpdate);

mapCamera.addComponent(mapCameraUpdate);

inputDispatcher.registerNewInputReceiver(

Graphics, Cameras, Action498

mapCameraUpdate->getInputReceiver());

shared_ptr<CameraGraphics> mapCameraGraphics =

make_shared<CameraGraphics>(

m_Window, m_Texture,

Vector2f(MAP_CAM_VIEW_WIDTH,

MAP_CAM_VIEW_HEIGHT / ratio),

FloatRect(MAP_CAM_SCREEN_RATIO_LEFT,

MAP_CAM_SCREEN_RATIO_TOP,

MAP_CAM_SCREEN_RATIO_WIDTH,

MAP_CAM_SCREEN_RATIO_HEIGHT));

mapCameraGraphics->assemble(canvas,

mapCameraUpdate,

IntRect(MAP_CAM_TEX_LEFT, MAP_CAM_TEX_TOP,

MAP_CAM_TEX_WIDTH, MAP_CAM_TEX_HEIGHT));

mapCamera.addComponent(mapCameraGraphics);

gameObjects.push_back(mapCamera);

// End Map Camera

In the preceding code, we use exactly the same techniques and code as we did for the first camera

except the size and viewport are different. The size is bigger on the mini map because it shows

a wider area, but the viewport is smaller because it is squished into a smaller area. This will be

more-evident once we have more graphics in the game.

Running the game
Now our cameras are drawing the VertexArray to the screen and we can delete the extra line of

code we added temporarily in the main function. Delete the following code from Run.cpp:

…

// Temporary code until next chapter

window.draw(canvas, factory.m_Texture);

…

Now we can run the game and see the cameras in action.

Chapter 17 499

Figure 17.2: Cameras in action

In the preceding image, you can see the player correctly positioned and scaled.

Also, if you scroll the mouse wheel, you can see the mini map zooming in and out, although there

isn’t much to see in it yet.

In the next chapter, we will add the platforms, and then after that, in the same chapter, we can

add animation and keyboard controls to the player. Remember, the InputReceiver instance in

the PlayerUpdate class is already receiving all the events; we just need to respond to them.

Summary
In this chapter, we learned that it is much more efficient to minimize the number of draw calls and

that we can achieve this by using a single VertexArray for all the entities in our game, although

we did also have a separate SFML Text instance on which we also called draw. Also, in this chapter,

we coded our two cameras using our Entity Component pattern of an Update derived class and

a Graphics derived class. Furthermore, we saw that these classes share data with each other to

work effectively and that they also share data with the player-related classes.

We saw how we can add cameras in the factory, and by passing the required parameters like the

appropriate Update and Graphics derived instances of other classes to the assemble functions,

we can configure the cameras to behave as we like.

Graphics, Cameras, Action500

Now that our cameras are up and running, as well as our game logic that we added through the

LevelUpdate class in Chapter 16, anything we add to the game now will bring instant gratification

as we will be able to see it in action without delay. In the next chapter, we will be adding platforms

to the game and animating and responding to keyboard inputs for the player.

18
Coding the Platforms, Player
Animations, and Controls

In this chapter, we will code the platforms, player animations, and controls. In my opinion, we

have done the hard work already and most of what follows has a much higher reward-to-effort

ratio. Hopefully, this chapter will be interesting as we will see how the platforms will ground the

player and enable them to run as well as see how we loop through the frames of animation to

create a smooth running effect for the player.

We will do the following:

•	 Coding the platforms: You guessed it. Two classes are needed – one derived from Update

and one from Graphics.

•	 Adding functionality to the player.

•	 Coding the Animator class.

•	 Coding the player animations: Add a smooth-running animation to the player.

The completed code for this chapter is in the Run4 folder.

Coding the platforms
To get started, create the two classes we will need first in this chapter. They are PlatformUpdate,

which extends Update, and PlatformGraphics, which extends Graphics. We already have the

player-related classes, and we will add more code to them once we are done with the platforms.

We will, however, need an Animator class that will control the animations of the player, and lat-

er in the project, it will also control the animations of the fireballs. Feel free to create an empty

Animator class now or wait until we code it.

Coding the Platforms, Player animations, and Controls502

Coding the PlatformUpdate class
Most of what the platform will do is handle collisions with the player. If the player’s feet are

touching the top of the platform, then they should not be able to pass through. If the right side of

the player touches the left side of the platform, then it should not pass through, and so on. This

next image shows a representation of what the PlatformUpdate class will achieve.

Figure 18.1: Platform colliding with the player

In the preceding image, the red lines indicate where the PlatformUpdate class will check for

overlap and the position of each of the player images indicates the edge of the player involved

in that intersection. When an intersection is detected, the player will be moved to the closest

non-intersecting point (the lines), creating the effect of a solid object for the platforms.

Add the following into PlatformUpdate.h:

#pragma once

#include "Update.h"

#include "SFML/Graphics.hpp"

using namespace sf;

Chapter 18 503

class PlatformUpdate :

public Update

{

private:

 FloatRect m_Position;

 FloatRect* m_PlayerPosition = nullptr;

 bool* m_PlayerIsGrounded = nullptr;

public:

 FloatRect* getPositionPointer();

 // From Update : Component

 void update(float fps) override;

 void assemble(shared_ptr<LevelUpdate> levelUpdate,

 shared_ptr<PlayerUpdate> playerUpdate)

 override;

};

In the preceding code, we declare variables for position, a pointer for the player position, and a

Boolean for whether or not the player is grounded. If the player is not grounded, it shouldn’t be able

to run. Also, where better to calculate whether the player is grounded than in the platform class?

In the public section, we have the getPositionPointer function, which returns the address of

a FloatRect instance that will hold the position of the platform. This is how we will pass in the

required manipulatable position to the LevelUpdate instance that we coded in Chapter 15.

Following on, we have the obligatory update and assemble functions. We have seen these defi-

nitions often. How we code them next will be most interesting.

Add the following code into PlatformUpdate.cpp.

#include "PlatformUpdate.h"

#include "PlayerUpdate.h"

FloatRect* PlatformUpdate::getPositionPointer()

{

 return &m_Position;

}

void PlatformUpdate::assemble(

 shared_ptr<LevelUpdate> levelUpdate,

Coding the Platforms, Player animations, and Controls504

 shared_ptr<PlayerUpdate> playerUpdate)

{

 //mPosition = position;

 m_PlayerPosition = playerUpdate->getPositionPointer();

 m_PlayerIsGrounded = playerUpdate->getGroundedPointer();

}

In the getPositionPointer function, we return the address of the m_Position variable.

Next, we code the assemble function that initializes m_PlayerPosition with the address of the

player’s position, which we obtain by using the playerUpdate shared pointer and calling the

getPositionPointer function.

We then initialize the m_PlayerIsGrounded pointer with the address of the variable obtained from

the PlayerUpdate class’ getGroundedPointer function. Now, anything we do to m_PlayerPosition

or m_PLayerIsGrounded will be instantly reflected directly back in the player-related classes.

Next, we will code the update function that executes once each iteration of the game loop.

Coding the update function for the PlatformUpdate class
To finish the PlatformUpdate class, add this code to PlatformUpdate.cpp:

void PlatformUpdate::update(float fps)

{

 if (m_Position.intersects(*m_PlayerPosition))

 {

 Vector2f playerFeet(m_PlayerPosition->left +

 m_PlayerPosition->width / 2,

 m_PlayerPosition->top +

 m_PlayerPosition->height);

 Vector2f playerRight(m_PlayerPosition->left +

 m_PlayerPosition->width,

 m_PlayerPosition->top +

 m_PlayerPosition->height / 2);

 Vector2f playerLeft(m_PlayerPosition->left,

 m_PlayerPosition->top +

 m_PlayerPosition->height / 2);

Chapter 18 505

 Vector2f playerHead(m_PlayerPosition->left +

 m_PlayerPosition->width / 2,

 m_PlayerPosition->top);

 if (m_Position.contains(playerFeet))

 {

 if (playerFeet.y > m_Position.top)

 {

 m_PlayerPosition->top =

 m_Position.top -

 m_PlayerPosition->height;

 *m_PlayerIsGrounded = true;

 }

 }

 else if (m_Position.contains(playerRight))

 {

 m_PlayerPosition->left =

 m_Position.left - m_PlayerPosition->width;

 }

 else if (m_Position.contains(playerLeft))

 {

 m_PlayerPosition->left =

 m_Position.left + m_Position.width;

 }

 else if (m_Position.contains(playerHead))

 {

 m_PlayerPosition->top =

 m_Position.top + m_Position.height;

 }

 }

}

Coding the Platforms, Player animations, and Controls506

The update function is the one that does most of the work so let’s break it down. All the code

detects whether the player is colliding with the platform, which part of the player is colliding

with the platform, and which part of the platform is colliding with the player. The first all-en-

compassing if statement detects whether there is any intersection whatsoever between the

player and the platform.

if (m_Position.intersects(*m_PlayerPosition))

In the preceding code, an initial check is done. If there is an intersection anywhere between the

player and the platform, then we need to do further tests to determine exactly what collision

has occurred. If there is no intersection at all, then we can skip the rest of the code in the update

function.

If there is some kind of intersection, then the next code defines the body parts of the player that

we will test for to get the precise collision to handle:

Vector2f playerFeet(m_PlayerPosition->left +

m_PlayerPosition->width / 2,

 m_PlayerPosition->top +

 m_PlayerPosition->height);

Vector2f playerRight(m_PlayerPosition->left +

 m_PlayerPosition->width,

 m_PlayerPosition->top +

 m_PlayerPosition->height / 2);

Vector2f playerLeft(m_PlayerPosition->left,

 m_PlayerPosition->top +

 m_PlayerPosition->height / 2);

Vector2f playerHead(m_PlayerPosition->left +

 m_PlayerPosition->width / 2,

 m_PlayerPosition->top);

In the preceding code, four Vector2f instances are created: playerFeet, playerRight, playerLeft,

and playerHead. The instances are initialized by calling the Vector2f constructor and passing

in the appropriate values from the m_PlayerPosition pointer, which points to the m_Position

variable in the PlayerUpdate class.

Chapter 18 507

The next if and three else-if statements handle what to do in each collision case; head, left,

right, and feet respectively:

if (m_Position.contains(playerFeet))

{

if (playerFeet.y > m_Position.top)

 {

 m_PlayerPosition->top =

 m_Position.top -

 m_PlayerPosition->height;

 *m_PlayerIsGrounded = true;

 }

}

 else if (m_Position.contains(playerRight))

 {

 m_PlayerPosition->left =

 m_Position.left - m_PlayerPosition->width;

 }

 else if (m_Position.contains(playerLeft))

 {

 m_PlayerPosition->left =

 m_Position.left + m_Position.width;

 }

 else if (m_Position.contains(playerHead))

 {

 m_PlayerPosition->top =

 m_Position.top + m_Position.height;

 }

In the preceding code, when the feet intersect, they are realigned with the top of the platform;

when the right intersects, it is realigned with the left of the platform; when the left intersects, it

is realigned with the right of the platform; and when the head intersects, it is realigned with the

underside of the platform. Check back to the preceding image to get a visual representation of

how this makes a platform into a solid impenetrable object to the player.

Coding the Platforms, Player animations, and Controls508

Other game entities like fireballs will pass through platforms because this is fine for our game,

but it would be trivial to get pointers to all the fireballs and handle collision for them or any other

entity in the game should we wish to.

Now, we just need to give our platforms their appearance.

Coding the PlatformGraphics class
Next, we can code the PlatformGraphics class, which will represent the data in the PlatformUpdate

class visually. Add the following into PlatformGraphics.h:

#pragma once

#include "Graphics.h"

#include "SFML/Graphics.hpp"

using namespace sf;

class PlatformGraphics : public Graphics

{

private:

 FloatRect* m_Position = nullptr;

 int m_VertexStartIndex = -1;

public:

 //From Graphics : Component

 void draw(VertexArray& canvas) override;

 void assemble(VertexArray& canvas,

 shared_ptr<Update> genericUpdate,

 IntRect texCoords) override;

};

In the preceding code, in the private section, there is a FloatRect pointer called m_Position, which

will point to the PlatformUpdate class and hold the current position of the platform. Remember

that the platforms will be regularly repositioned by the LevelUpdate class, which holds a vector

of all the platform positions.

Chapter 18 509

The m_VertexStartIndex integer fulfills the usual role of remembering the position in the

VertexArray that the quad for this entity begins.

In the public section, we just have the usual two functions for classes that extend the Graphics

class. They are draw, which takes a reference to the VertexArray, and assemble, which is used

to prepare each platform and is called from the factory for each platform instance. We will code

this factory-related code once we have completed this class.

Now, we can code the definitions of our two overridden functions. Add the following into

PlatformGraphics.cpp:

#include "PlatformGraphics.h"

#include "PlatformUpdate.h"

void PlatformGraphics::draw(VertexArray& canvas)

{

 const Vector2f& position = m_Position->getPosition();

 const Vector2f& scale = m_Position->getSize();

 canvas[m_VertexStartIndex].position = position;

 canvas[m_VertexStartIndex + 1].position =

 position + Vector2f(scale.x, 0);

 canvas[m_VertexStartIndex + 2].position =

 position + scale;

 canvas[m_VertexStartIndex + 3].position =

 position + Vector2f(0, scale.y);

}

In the draw function we just coded, all we need to do is initialize the appropriate indexes of the

VertexArray with the values pointed to by m_Position. Although in most frames of the game,

the platform will not move, we initialize the VertexArray because eventually, it will move.

If we had thousands of platforms, we could optimize this by adding a Boolean to the

PlatformUpdate class, which indicates whether the platform has moved this frame,

and only execute the preceding code when it has moved. This optimization won’t be

necessary in our game. I just thought you might like to be aware of the possibility.

Coding the Platforms, Player animations, and Controls510

To finish the PlatformGraphics class, also add the assemble function into PlatformGraphics.cpp:

void PlatformGraphics::assemble(VertexArray& canvas,

 shared_ptr<Update> genericUpdate,

 IntRect texCoords)

{

 shared_ptr<PlatformUpdate> platformUpdate =

 static_pointer_cast<PlatformUpdate>(genericUpdate);

 m_Position = platformUpdate->getPositionPointer();

 m_VertexStartIndex = canvas.getVertexCount();

 canvas.resize(canvas.getVertexCount() + 4);

 const int uPos = texCoords.left;

 const int vPos = texCoords.top;

 const int texWidth = texCoords.width;

 const int texHeight = texCoords.height;

 canvas[m_VertexStartIndex].texCoords.x = uPos;

 canvas[m_VertexStartIndex].texCoords.y = vPos;

 canvas[m_VertexStartIndex + 1].texCoords.x =

 uPos + texWidth;

 canvas[m_VertexStartIndex + 1].texCoords.y =

 vPos;

 canvas[m_VertexStartIndex + 2].texCoords.x =

 uPos + texWidth;

 canvas[m_VertexStartIndex + 2].texCoords.y =

 vPos + texHeight;

 canvas[m_VertexStartIndex + 3].texCoords.x =

 uPos;

 canvas[m_VertexStartIndex + 3].texCoords.y =

 vPos + texHeight;

}

Chapter 18 511

In the preceding assemble function, the generic Update instance passed in as a parameter is

cast to be a PlatformUpdate instance. Now, the m_Position pointer can be initialized by calling

platformUpdate->getPositionPointer().

Moving on, the start index of the quad is ascertained and stored and the VertexArray is resized

by adding four more vertices.

Finally, the texture coordinates are initialized into the appropriate positions of the VertexArray.

Now, our class is ready to use.

Building some platforms in the factory
Add the following into Factory.cpp to spawn some platforms. First, add two new include di-

rectives, as shown next:

#include "PlatformUpdate.h"

#include "PlatformGraphics.h"

Now, add this code before the code we added for the cameras but after the code for the player, as

shown by the highlighted code that follows (the preexisting line of code is highlighted):

// Make the LevelUpdate aware of the player

levelUpdate->assemble(nullptr, playerUpdate);

// For the platforms

for (int i = 0; i < 8; ++i)

{

 GameObject platform;

 shared_ptr<PlatformUpdate> platformUpdate =

 make_shared<PlatformUpdate>();

 platformUpdate->assemble(nullptr, playerUpdate);

 platform.addComponent(platformUpdate);

 shared_ptr<PlatformGraphics> platformGraphics =

 make_shared<PlatformGraphics>();

 platformGraphics->assemble(

 canvas, platformUpdate,

 IntRect(PLATFORM_TEX_LEFT, PLATFORM_TEX_TOP,

 PLATFORM_TEX_WIDTH, PLATFORM_TEX_HEIGHT));

Coding the Platforms, Player animations, and Controls512

 platform.addComponent(platformGraphics);

 gameObjects.push_back(platform);

 levelUpdate->addPlatformPosition(

 platformUpdate->getPositionPointer());

}

// End platforms

In the preceding code that we added to Factory.cpp, the code is wrapped in a for loop that

executes eight times. You can experiment with more or fewer platforms but eight seems to work

quite nicely. What follows happens each iteration through the for loop.

First, we create a new GameObject instance called platform and a PlatformUpdate instance

shared pointer called platformUpdate. We then call assemble on platformUpdate and pass in

the playerUpdate instance. Next, we call addComponent to add platformUpdate to platform.

Moving on, we make a PlatformGraphics shared pointer instance. Then, as with all our Graphics

derived classes, we call assemble and pass in the VertexArray, the platformUpdate instance (as

a generic Update instance), and the texture coordinates.

Now, we add the platformGraphics instance to the GameObject (platform) and call push_back

on gameObjects to add platform to the vector of GameObject instances.

Finally, we use levelUpdate and call addPlatformPosition and pass in the result of calling

platformUpdate->getPositionPointer(), which has the effect of allowing the LevelUpdate

class to manipulate the position of the platform we just created. The for loop ensures this is

repeated a further seven times.

Let’s see how we have progressed by running the game.

Running the game
Temporarily change one line of code in the LevelUpdate.h file as shown next:

bool m_IsPaused = false;

Chapter 18 513

Changing m_isPaused to false will let the platforms spawn. Now, run the game.

Figure 18.2: See the platforms

Notice that the timer in the top left is running and that you can see the platforms disappearing

behind the player as they reappear in front.

Change m_IsPaused back to true. Let’s bring the player character to life.

Adding functionality to the player
Of course, the player can’t do anything yet. We will change that in two ways.

We will respond to the keyboard inputs read by our InputReceiver. This will take place in the

handleInput function. At this point, the player will be able to move. Once we have done this, we

will move on to animating the movement.

Coding the Platforms, Player animations, and Controls514

Coding the player controls
PlayerUpdate.h already has all the variables we need; we just need to utilize them in the

PlayerUpdate.cpp file. Add the full code of the handleInput function to PlayerUpdate.cpp.

Here is the function in its entirety:

void PlayerUpdate::handleInput()

{

 if (event.type == Event::KeyPressed)

 {

 if (event.key.code == Keyboard::D)

 {

 m_RightIsHeldDown = true;

 }

 if (event.key.code == Keyboard::A)

 {

 m_LeftIsHeldDown = true;

 }

 if (event.key.code == Keyboard::W)

 {

 m_BoostIsHeldDown = true;

 }

 if (event.key.code == Keyboard::Space)

 {

 m_SpaceHeldDown = true;

 }

 }

 if (event.type == Event::KeyReleased)

 {

 if (event.key.code == Keyboard::D)

 {

 m_RightIsHeldDown = false;

 }

Chapter 18 515

 if (event.key.code == Keyboard::A)

 {

 m_LeftIsHeldDown = false;

 }

 if (event.key.code == Keyboard::W)

 {

 m_BoostIsHeldDown = false;

 }

 if (event.key.code == Keyboard::Space)

 {

 m_SpaceHeldDown = false;

 }

 }

 }

 m_InputReceiver.clearEvents();

}

In the preceding code, there are two if statements. The first executes when a keyboard key has

been pressed and the other executes when a keyboard key has been released. For each of these

possibilities, we respond to the W, A, and D keys and the spacebar. For each combination of key

and movement (up and down), we set a Boolean variable. It will now be possible to respond to

the state of all the keys from within the update function. Remember that the update function

was where this handleInput function was called from. Therefore, we will respond to the Boolean

variables we have just set after the call to handleInput.

Next, we will add the code for the update function to PlayerUpdate.cpp but we will do so in small

sections. Here is the update function broken into manageable pieces. Notice the one existing line

of code moves. It will be simplest to start this function from scratch, as shown next. It is a long

function but I have broken it into sections to code and explain. It might be worth adding all the

sections first and then coming back to examine each in turn – whatever you are most comfortable

doing. If there is any doubt about the order or position of the code in the update function, refer

to the code file in the PlayerUpdate.cpp file in the Run4 folder.

Coding the Platforms, Player animations, and Controls516

All the code takes place inside this structure. Add the following code first:

void PlayerUpdate::update(float timeTakenThisFrame)

{

 if (!*m_IsPaused)

 {

 // All the rest of the code

 }

}

In the preceding code, we first test whether the game is paused. If the game is paused, none of

the code in the update function will execute.

All the rest of the code goes under this comment: // All the rest of the code.

Next, add this code:

m_Position.top += m_Gravity *

 timeTakenThisFrame;

handleInput();

if (m_IsGrounded)

{

 if (m_RightIsHeldDown)

 {

 m_Position.left +=

 timeTakenThisFrame * m_RunSpeed;

 }

 if (m_LeftIsHeldDown)

 {

 m_Position.left -=

 timeTakenThisFrame * m_RunSpeed;

 }

}

Notice in the preceding code that we are testing, for the values of the Boolean variables we have

previously set in the handleInput function and responding to the changing the values held in

m_Position.

Chapter 18 517

The first line of code always executes (apart from when the game is paused) and pushes the player

down in the world by the strength of gravity (m_Gravity) multiplied by how long the main game

loop took to execute (m_TimeTakenThisFrame).

Now, the handleInput function is called to set all the Booleans. The next if statement checks

whether the player is grounded. The reason for this is that we only want to respond to the player

running left or right if they are grounded because you can’t run in mid-air. If the player is grounded

and the player is holding left or right (A or D), then m_Position is moved left or right accordingly

based on the time taken by the game loop and the speed of the player (m_RunSpeed).

To handle some more movement, add the following code next:

if (m_BoostIsHeldDown)

 {

 m_Position.top -=

 timeTakenThisFrame * m_BoostSpeed;

 if (m_RightIsHeldDown)

 {

 m_Position.left +=

 timeTakenThisFrame * m_RunSpeed / 4;

 }

 if (m_LeftIsHeldDown)

 {

 m_Position.left -=

 timeTakenThisFrame * m_RunSpeed / 4;

 }

 }

The preceding code only executes when the boost button (W) is held down. If the boost button

is held down, the player is moved up in the world based on the boost power (m_BoostSpeed)

and the time the frame took to execute. In addition to moving up in the world, if A or D is held

down, the player moves left and right as if the player is grounded and running. However, notice

that the movement amount is divided by 4. This is to make moving left and right while boosting

slow and inconvenient. This is so that simply boosting away to the right as a method of getting a

good score will not work. Boosting is just for emergencies, like falling off a platform and hovering

above an incoming fireball.

Coding the Platforms, Player animations, and Controls518

Next, add this code:

// Handle Jumping

if (m_SpaceHeldDown && !m_InJump && m_IsGrounded)

{

SoundEngine::playJump();

m_InJump = true;

m_JumpClock.restart();

}

if (!m_SpaceHeldDown)

{

//mInJump = false;

}

The preceding code handles whether the player is trying to jump by testing to see whether the

player has pressed the spacebar at the same time as being grounded. If they have, the jump sound

is played, m_InJump is set to true, and the clock (m_JumpClock) is restarted to begin measuring

how long the player has been in the jump.

Moving to the final part of the update function, add this code:

if (m_InJump)

{

if (m_JumpClock.getElapsedTime().asSeconds() <

m_JumpDuration / 2)

{

 // Going up

m_Position.top -= m_JumpSpeed *

 timeTakenThisFrame;

 }

else

 {

// Going down

 m_Position.top +=

m_JumpSpeed * timeTakenThisFrame;

}

Chapter 18 519

if (m_JumpClock.getElapsedTime().asSeconds() >

 m_JumpDuration)

 {

m_InJump = false;

 }

if (m_RightIsHeldDown)

 {

 m_Position.left +=

 timeTakenThisFrame * m_RunSpeed;

 }

 if (m_LeftIsHeldDown)

 {

 m_Position.left -=

 timeTakenThisFrame * m_RunSpeed;

 }

}// End if(m_InJump)

 m_IsGrounded = false;

All the preceding code controls what happens when the player is in the jumping state, as deter-

mined by the Boolean m_InJump. The first if statement after it has been determined that the

player is jumping detects whether the jump phase has passed the midway point with this code:

if (m_JumpClock.getElapsedTime().asSeconds() <

 m_JumpDuration / 2)

If it hasn’t passed the midway point, the player is moved upwards (in the if block); if it has passed

the midway point, the code in the else block moves the player downwards.

Next, the following code decides whether it is time to end the jump. Here it is again:

if (m_JumpClock.getElapsedTime().asSeconds() >

 m_JumpDuration)

{

m_InJump = false;

}

Coding the Platforms, Player animations, and Controls520

Finally, for the jump part of the code, the left and right keys are tested and the player is moved left

or right if the appropriate key is held down. Notice the player moves at the same speed while in

a jump as they do while running. This is almost scientifically accurate, but the main point is it is

always preferable to run and jump rather than boost whenever possible.

Running the game
At this point, you could change one line of code in the LevelUpdate.h (if it isn’t already changed)

file as shown next:

bool m_IsPaused = false;

This would enable you to see the player skating across the level, jumping and boosting but with-

out any animations.

Figure 18.3: Unanimated player moving

Next, we will animate the player because this isn’t a skating game. We will do this in two stages.

First, we will create a class that picks a frame of animation (a set of texture coordinates) from the

texture atlas and then we will add code to the PlayerGraphics class that will use an instance of

our Animator class as well as some more code.

Chapter 18 521

Coding the Animator class
First, let’s get the Animator class up and running. The Animator class will also be used by the

FireballGraphics class and the RainGraphics class. It could be used by any class that wants to

loop through set frames of animations. It can be configured for any set of animations as long as

they are evenly sized, evenly spaced, and have the same vertical coordinates. The Animator class

can be configured by the code that uses it to reverse the animation order, which is useful when

the player runs in the opposite direction as we will soon see. Reversing the animation can also

produce a moon-walking effect but I will leave the reader to explore this possibility. The frame

rate per second and the number of frames can also be determined at run time.

Create a class called Animator (if you haven’t already).

Add this code to Animator.h:

#pragma once

#include<SFML/Graphics.hpp>

using namespace sf;

class Animator

{

private:

 IntRect m_SourceRect;

 int m_LeftOffset;

 int m_FrameCount;

 int m_CurrentFrame;

 int m_FramePeriod;

 int m_FrameWidth;

 int m_FPS = 12;

 Clock m_Clock;

public:

 Animator(

 int leftOffset, int topOffset,

 int frameCount,

Coding the Platforms, Player animations, and Controls522

 int textureWidth,

 int textureHeight,

 int fps);

 IntRect* getCurrentFrame(bool reversed);

};

Let’s step through the Animator.h file we have just coded. The IntRect instance called m_

SourceRect will hold the integer coordinates of the current frame of animation in the texture atlas.

The m_LeftOffset variable is used to keep track of the horizontal value that defines the left-hand

side of the current frame of animation. We will soon see in our code that we add m_FrameWidth

to this value to move to the next set of texture coordinates.

The integer called m_FrameCount stores the number of frames that the animation sequence has.

The m_CurrentFrame variable is the frame number of the current frame to be drawn.

The integer called m_FramePeriod is the duration of each frame of animation. This is calculated

with 1 divided by the number of frames.

The integer m_FrameWidth holds the width of a frame of animation. This never changes for a

given animation set.

The m_FPS variable will hold the number of frames that will be animated in each second. The

Clock instance m_Clock keeps the time for the animation frame rate.

The Animator constructor has the following parameters: int leftOffset, int topOffset, int

frameCount, int textureWidth, int textureHeight, and int fps. These all correspond to one

of the member variables and will be assigned accordingly.

The getCurrentFrame function is the function that will do the work of calculating the current

frame to draw and return the coordinates of the texture in the texture atlas in an IntRect pointer.

The Boolean reversed parameter tells the function to calculate the frames moving right to left

in the texture atlas when reversed is set to true.

Let’s code the implementations in Animator.cpp. First, add the constructor implementation code

as follows to Animator.cpp:

#include "Animator.h"

Animator::Animator(

 int leftOffset, int topOffset,

Chapter 18 523

 int frameCount,

 int textureWidth,

 int textureHeight,

 int fps)

{

 m_LeftOffset = leftOffset;

 m_CurrentFrame = 0;

 m_FrameCount = frameCount;

 m_FrameWidth = (float)textureWidth

 / m_FrameCount;

 m_SourceRect.left = leftOffset;

 m_SourceRect.top = topOffset;

 m_SourceRect.width = m_FrameWidth;

 m_SourceRect.height = textureHeight;

 m_FPS = fps;

 m_FramePeriod = 1000 / m_FPS;

 m_Clock.restart();

}

In the preceding code for the Animator constructor, the values for leftOffset, currentFrame,

and frameCount are initialized. The frame width is calculated by dividing the texture width by the

frame count. The starting value for the IntRect (m_SourceRect), which holds the current texture

coordinates, is initialized using left offset, top offset, frame width, and texture height. This makes

sense when you consider that we know all the frames of animation are in an equally spaced row.

Next, add the getCurrentFrame function to Animator.cpp:

IntRect* Animator::getCurrentFrame(bool reversed)

{

 // Reversed adds 1 to the frame number

 // when drawing the texture reversed.

 // This works because reversed

 // (flipped horizontally) textures

 // are drawn pixels right to left

 if (m_Clock.getElapsedTime().asMilliseconds()

Coding the Platforms, Player animations, and Controls524

 > m_FramePeriod)

 {

 m_CurrentFrame++;

 if (m_CurrentFrame >= m_FrameCount + reversed)

 {

 m_CurrentFrame = 0 + reversed;

 }

 m_Clock.restart();

 }

 m_SourceRect.left = m_LeftOffset + m_CurrentFrame

 * m_FrameWidth;

 return &m_SourceRect;

}

In the getCurrentFrame function, the first if statement checks whether it is time to advance to the

next frame. If it is m_CurrentFrame is incremented. The next if statement makes sure we haven’t

gone past the last frame. If we have the frame, it is set to zero inside the if block. The penultimate

line of code initializes the texture coordinates inside m_SourceRect and then m_SourceRect is

returned to the calling code. We will now move on to coding the PlayerGraphics class that calls

the functions we have just coded.

Coding the player animations
In this section, we will get to use the Animator class we have just coded. We will obviously be

using the getCurrentFrame function but additionally, we will be referring to the individual frames

in the texture atlas like the player boosting, shown again next.

Figure 18.4: Player boosting

Chapter 18 525

Furthermore, we have seen that our Animator class can reverse the order the frames are animated,

but we also need to flip the textures horizontally whenever the player is facing to the left. In this

code, we will see how to detect that they need to be flipped as well as flipping them. For example,

the preceding image will sometimes need to be drawn like this:

Figure 18.5: Player boosting flipped

Achieving this is very quick and easy and we will see it in action for all player images soon. The

PlayerGraphics.h file has everything we need in it; just uncomment the following code:

// We will come back to this soon

class Animator;

And the following code:

// We will come back to this soon

Animator* m_Animator;

What we have just done is added an Animator instance and a forward declaration for the Animator

class.

Now, we just need to add some code to PlayerGraphics.cpp. First, add an include directive to

PlayerGraphics.cpp:

#include "Animator.h"

Much of the original code we put in the assemble function is no longer needed now we have our

Animator, so you can replace the PlayerGraphics assemble function as follows:

void PlayerGraphics::assemble(VertexArray& canvas,

 shared_ptr<Update> genericUpdate,

 IntRect texCoords)

{

 m_PlayerUpdate = static_pointer_cast<PlayerUpdate>(genericUpdate);

 m_Position = m_PlayerUpdate->getPositionPointer();

Coding the Platforms, Player animations, and Controls526

 m_Animator = new Animator(

 texCoords.left,

 texCoords.top,

 6,// 6 frames

 texCoords.width * 6,

 texCoords.height,

 12);// FPS

 // Get the first frame of animation

 m_SectionToDraw = m_Animator->getCurrentFrame(false);

 m_StandingStillSectionToDraw = m_Animator->getCurrentFrame(false);

 m_VertexStartIndex = canvas.getVertexCount();

 canvas.resize(canvas.getVertexCount() + 4);

}

In the updated assemble function, we get a pointer to the position of the player in the

PlayerUpdate class by casting the Update instance to a PlayerUpdate instance and calling the

getPositionPointer function.

Next, we call new to initialize our Animator instance and pass in the required parameters, which

include specifying the left and top texture coordinates, 6 frames in total, the total width and height,

and the rate at 12 frames per second. The Animator class we coded previously will use this data

to supply the correct frame of animation whenever we call the getCurrentFrame function. We

could have made getCurrentFrame a function of the PlayerGraphics class but then we wouldn’t

be able to use it so easily on our fireballs and rain effects. As we have an Animator class, we can

reuse it as often as we like and will do so for our fireballs and rain effects.

The next line of code initializes the m_SectionToDraw IntRect by calling the getCurrentFrame

function. We then initialize m_StandingStillSectionToDraw by calling the same function again.

This first frame is the one we will use when the player is static.

Finally, in the assemble function, the starting vertex of the quad is saved by calling canvas.

getVertexCount and subtracting 1 from the returned value. Then, we can expand the VertexArray

by calling canvas.resize.

The draw function is totally transformed, so we will replace it entirely with the following code

into PlayerGraphics.cpp.

Chapter 18 527

The draw function is long but it is not particularly helpful to break it up into more functions so

I will just break it into sections to explain it. I recommend copying and pasting the entire draw

function from the PlayerGraphics.cpp file in the Run4 folder if you have any trouble interpreting

the position or structure of any of the code that follows. The code isn’t especially complex but

there are just a lot of possibilities that we need to consider for the player to be drawn. For example:

is the player moving, jumping, boosting, standing still, or facing left or right? All these options

and different combinations of the options change how we want to draw the player. Get the code

working, run it, play with it, and then come back here to learn how it works.

The first part of the draw function is as follows:

void PlayerGraphics::draw(VertexArray& canvas)

{

 const Vector2f& position =

 m_Position->getPosition();

 const Vector2f& scale =

 m_Position->getSize();

 canvas[m_VertexStartIndex].position =

 position;

 canvas[m_VertexStartIndex + 1].position =

 position + Vector2f(scale.x, 0);

 canvas[m_VertexStartIndex + 2].position =

 position + scale;

 canvas[m_VertexStartIndex + 3].position =

 position + Vector2f(0, scale.y);

 if (m_PlayerUpdate->m_RightIsHeldDown &&

 !m_PlayerUpdate->m_InJump &&

 !m_PlayerUpdate->m_BoostIsHeldDown &&

 m_PlayerUpdate->m_IsGrounded)

 {

 m_SectionToDraw = m_Animator->getCurrentFrame(false);

 }

 if (m_PlayerUpdate->m_LeftIsHeldDown &&

 !m_PlayerUpdate->m_InJump &&

 !m_PlayerUpdate->m_BoostIsHeldDown &&

Coding the Platforms, Player animations, and Controls528

 m_PlayerUpdate->m_IsGrounded)

 {

 m_SectionToDraw = m_Animator->getCurrentFrame(true);

// reversed

 }

 else

 {

 // Test the players facing position

 // in case it changed while jumping or boosting

 // This value is used in the final animation option

 if (m_PlayerUpdate->m_LeftIsHeldDown)

 {

 m_LastFacingRight = false;

 }

 else

 {

 m_LastFacingRight = true;

 }

 }

In the preceding section, we position the vertices, decide whether to get the frame to the left or

right of the previous frame, and set the m_LastFacingRight variable. In the next few sections, we

will use the appropriate frame and position it on the VertexArray instance.

Add the following to the draw function:

 const int uPos = m_SectionToDraw->left;

 const int vPos = m_SectionToDraw->top;

 const int texWidth = m_SectionToDraw->width;

 const int texHeight = m_SectionToDraw->height;

 if (m_PlayerUpdate->m_RightIsHeldDown &&

 !m_PlayerUpdate->m_InJump &&

 !m_PlayerUpdate->m_BoostIsHeldDown)

 {

 canvas[m_VertexStartIndex].texCoords.x

 = uPos;

 canvas[m_VertexStartIndex].texCoords.y

 = vPos;

Chapter 18 529

 canvas[m_VertexStartIndex + 1].texCoords.x

 = uPos + texWidth;

 canvas[m_VertexStartIndex + 1].texCoords.y

 = vPos;

 canvas[m_VertexStartIndex + 2].texCoords.x

 = uPos + texWidth;

 canvas[m_VertexStartIndex + 2].texCoords.y

 = vPos + texHeight;

 canvas[m_VertexStartIndex + 3].texCoords.x

 = uPos;

 canvas[m_VertexStartIndex + 3].texCoords.y

 = vPos + texHeight;

 }

In the preceding draw code section, we test whether the player is holding right down, not jumping,

and not boosting; in other words, just running right. If this is the case, we just want to keep looping

through our frames of animation facing the normal direction. The code in the if statement sets the

texture coordinates in the VertexArray using the coordinates returned from the getCurrentFrame

function placed in m_SectionToDraw and then copied into uPos, vPos, texWidth, and texHeight.

Add this next code to the draw function:

 else if (m_PlayerUpdate->m_LeftIsHeldDown &&

 !m_PlayerUpdate->m_InJump &&

 !m_PlayerUpdate->m_BoostIsHeldDown)

 {

 canvas[m_VertexStartIndex].texCoords.x

 = uPos;

 canvas[m_VertexStartIndex].texCoords.y

 = vPos;

 canvas[m_VertexStartIndex + 1].texCoords.x

 = uPos - texWidth;

 canvas[m_VertexStartIndex + 1].texCoords.y

 = vPos;

 canvas[m_VertexStartIndex + 2].texCoords.x

 = uPos - texWidth;

 canvas[m_VertexStartIndex + 2].texCoords.y

 = vPos + texHeight;

 canvas[m_VertexStartIndex + 3].texCoords.x

Coding the Platforms, Player animations, and Controls530

 = uPos;

 canvas[m_VertexStartIndex + 3].texCoords.y

 = vPos + texHeight;

 }

In the preceding section of the draw function, the if statement executes when the player is holding

left down, not jumping, and not boosting. This is the exact opposite of the previous if statement

and covers when the player is running left. At first glance, the code might look the same but there

is one small change to the way the width of the horizontal coordinates of the textures are handled.

The second and third vertices have their x coordinates calculated like this:

= uPos - texWidth;

The first and third coordinates are calculated like this:

= uPos;

This has the effect of using the pixels on the right of the image in the texture on the left-hand

side of the quad and moving right to left through the texture’s pixels and left to right on the quad.

Basically, this has horizontally flipped the image. This is just what we need when the player is

facing left.

Add the following to the draw function:

 else if (m_PlayerUpdate->m_RightIsHeldDown &&

 m_PlayerUpdate->m_BoostIsHeldDown)

 {

 canvas[m_VertexStartIndex].texCoords.x =

 BOOST_TEX_LEFT;

 canvas[m_VertexStartIndex].texCoords.y =

 BOOST_TEX_TOP;

 canvas[m_VertexStartIndex + 1].texCoords.x =

 BOOST_TEX_LEFT + BOOST_TEX_WIDTH;

 canvas[m_VertexStartIndex + 1].texCoords.y =

 BOOST_TEX_TOP;

 canvas[m_VertexStartIndex + 2].texCoords.x =

 BOOST_TEX_LEFT + BOOST_TEX_WIDTH;

 canvas[m_VertexStartIndex + 2].texCoords.y =

 BOOST_TEX_TOP + BOOST_TEX_HEIGHT;

 canvas[m_VertexStartIndex + 3].texCoords.x =

Chapter 18 531

 BOOST_TEX_LEFT;

 canvas[m_VertexStartIndex + 3].texCoords.y =

 BOOST_TEX_TOP + BOOST_TEX_HEIGHT;

 }

In the preceding section, the if statement executes when the player is holding right and boosting.

The texture coordinates in the if statement are set using the integer constants that represent

the boosting graphic from the texture atlas. These are BOOST_TEX_LEFT, BOOST_TEX_TOP, BOOST_

TEX_WIDTH, and BOOST_TEX_HEIGHT.

Add the following to the draw function:

 else if (m_PlayerUpdate->m_LeftIsHeldDown &&

 m_PlayerUpdate->m_BoostIsHeldDown)

 {

 canvas[m_VertexStartIndex].texCoords.x =

 BOOST_TEX_LEFT + BOOST_TEX_WIDTH;

 canvas[m_VertexStartIndex].texCoords.y = 0;

 canvas[m_VertexStartIndex + 1].texCoords.x =

 BOOST_TEX_LEFT;

 canvas[m_VertexStartIndex + 1].texCoords.y = 0;

 canvas[m_VertexStartIndex + 2].texCoords.x =

 BOOST_TEX_LEFT;

 canvas[m_VertexStartIndex + 2].texCoords.y = 100;

 canvas[m_VertexStartIndex + 3].texCoords.x =

 BOOST_TEX_LEFT + BOOST_TEX_WIDTH;

 canvas[m_VertexStartIndex + 3].texCoords.y = 100;

 }

In the preceding if statement, the code executes when the player is boosting to the left. Again, we

use the constants that represent the boosting image and, as with when the player was running

to the left, we flip the horizontal coordinates and read the pixels right to left to make the player

graphic face left when drawn to the screen.

Add the following to the draw function:

 else if (m_PlayerUpdate->m_BoostIsHeldDown)

 {

 canvas[m_VertexStartIndex].texCoords.x

 = BOOST_TEX_LEFT;

Coding the Platforms, Player animations, and Controls532

 canvas[m_VertexStartIndex].texCoords.y

 = BOOST_TEX_TOP;

 canvas[m_VertexStartIndex + 1].texCoords.x

 = BOOST_TEX_LEFT + BOOST_TEX_WIDTH;

 canvas[m_VertexStartIndex + 1].texCoords.y

 = BOOST_TEX_TOP;

 canvas[m_VertexStartIndex + 2].texCoords.x

 = BOOST_TEX_LEFT + BOOST_TEX_WIDTH;

 canvas[m_VertexStartIndex + 2].texCoords.y

 = BOOST_TEX_TOP + BOOST_TEX_HEIGHT;

 canvas[m_VertexStartIndex + 3].texCoords.x

 = BOOST_TEX_LEFT;

 canvas[m_VertexStartIndex + 3].texCoords.y

 = BOOST_TEX_TOP + BOOST_TEX_HEIGHT }

In the preceding section, the else if statement executes when only the boost button is held. The

same constants are used when boosting and holding right.

Add the following to the draw function:

 else

 {

 if (m_LastFacingRight)

 {

 canvas[m_VertexStartIndex].texCoords.x =

 m_StandingStillSectionToDraw->left;

 canvas[m_VertexStartIndex].texCoords.y =

 m_StandingStillSectionToDraw->top;

 canvas[m_VertexStartIndex + 1].texCoords.x =

 m_StandingStillSectionToDraw->left + texWidth;

 canvas[m_VertexStartIndex + 1].texCoords.y =

 m_StandingStillSectionToDraw->top;

 canvas[m_VertexStartIndex + 2].texCoords.x =

 m_StandingStillSectionToDraw->left + texWidth;

 canvas[m_VertexStartIndex + 2].texCoords.y =

 m_StandingStillSectionToDraw->top + texHeight;

 canvas[m_VertexStartIndex + 3].texCoords.x =

 m_StandingStillSectionToDraw->left;

 canvas[m_VertexStartIndex + 3].texCoords.y =

Chapter 18 533

 m_StandingStillSectionToDraw->top + texHeight;

 }

 else

 {

 canvas[m_VertexStartIndex].texCoords.x =

 m_StandingStillSectionToDraw->left + texWidth;

 canvas[m_VertexStartIndex].texCoords.y =

 m_StandingStillSectionToDraw->top;

 canvas[m_VertexStartIndex + 1].texCoords.x =

 m_StandingStillSectionToDraw->left;

 canvas[m_VertexStartIndex + 1].texCoords.y =

 m_StandingStillSectionToDraw->top;

 canvas[m_VertexStartIndex + 2].texCoords.x =

 m_StandingStillSectionToDraw->left;

 canvas[m_VertexStartIndex + 2].texCoords.y =

 m_StandingStillSectionToDraw->top + texHeight;

 canvas[m_VertexStartIndex + 3].texCoords.x =

 m_StandingStillSectionToDraw->left + texWidth;

 canvas[m_VertexStartIndex + 3].texCoords.y =

 m_StandingStillSectionToDraw->top + texHeight;

 }

 }

}

In the preceding and final part of the draw function, there is a final else clause to all the other if

and else-if statements. It is the last possibility that executes when nothing else does. It handles

the case when the player is standing still. Within the else block is an if statement that executes

when m_LastFacingRight is true and an else statement that executes when m_LastFacingRight

is false. In both cases, the coordinates that were saved into m_StandingStillSectionToDraw are

used to set the texture coordinates. In the else statement, however, the horizontal coordinates

are flipped so the player character faces left.

Now, we can enjoy the fruits of our work and run the game.

Running the game
Temporarily change one line of code in the LevelUpdate.h file as shown here:

bool m_IsPaused = false;

Coding the Platforms, Player animations, and Controls534

Changing m_isPaused to false will let the platforms spawn.

Now, run the code.

Figure 18.6: See animations

You can now run, boost, and jump until your heart is content. Be sure to test running to the left

and you can see that it still looks decent because the animations are reversed.

Change m_IsPaused back to true because we will soon code a menu that handles this.

Summary
In this chapter, we coded the platforms. As expected, two classes were needed: one derived from

Update and one from Graphics. We have added controls to the player, coded an Animator class,

and put it to work in the PlayerGraphics class to make the player run smoothly left and right. In

the next chapter, we will first build a menu to control pausing, resuming, and quitting, and then

we will make it rain on the player.

19
Building the Menu and Making
It Rain

In this chapter, we will implement two significant features. One of them is a menu screen to keep

the player informed of their options for starting, pausing, restarting, and quitting the game. The

other job will be to create a simple rain effect. You could argue that the rain effect isn’t necessary,

or even that it doesn’t fit the game, but it is easy, fun, and a good trick to learn. What you should

expect by now, and yet is still perhaps the most interesting aspect of this chapter, is how we will

achieve both these objectives by coding classes derived from Graphics and Update, composing

them in GameObject instances, and they will just work alongside all our other game entities.

This is what’s coming up in this chapter:

•	 Building an interactive menu

•	 Coding the MenuUpdate class

•	 Coding the MenuGraphics class

•	 Building a menu in the factory

•	 Making it rain

•	 Coding the RainGraphics class

•	 Making it rain in the factory

The code in the Run5 folder shows the completed state at the end of this chapter.

Building the Menu and Making It Rain536

Building an interactive menu
To get started, let’s see what the menu will look like to the player in its two possible states.

Figure 19.1: Two menu states

We can see the two possibilities in the previous image. On the left, the player is informed that

they can press Esc to start or F1 to quit, and on the right, the player can see that they can press

Esc to continue or F1 to quit. The reason for the subtle difference is that while the game is playing,

they will also be able to pause by pressing Esc. When on either of the menu screens, F1 will always

quit, but while the game is being played, F1 has no effect.

Coding the MenuUpdate class
Now, we will create a new class that will control our in-game menu. Create a new class called

MenuUpdate derived from Update and a new class called MenuGraphics derived from Graphics.

Now, we can start coding. Add the following code to MenuUpdate.h:

#pragma once

#include "Update.h"

#include "InputReceiver.h"

#include <SFML/Graphics.hpp>

using namespace sf;

using namespace std;

class MenuUpdate :

 public Update

{

private:

 FloatRect m_Position;

 InputReceiver m_InputReceiver;

 FloatRect* m_PlayerPosition = nullptr;

Chapter 19 537

 bool m_IsVisible = false;

 bool* m_IsPaused;

 bool m_GameOver;

 RenderWindow* m_Window;

public:

 MenuUpdate(RenderWindow* window);

 void handleInput();

 FloatRect* getPositionPointer();

 bool* getGameOverPointer();

 InputReceiver* getInputReceiver();

 //From Update : Component

 void update(float fps) override;

 void assemble(

 shared_ptr<LevelUpdate> levelUpdate,

 shared_ptr<PlayerUpdate> playerUpdate)

 override;

};

What follows is an introduction to all the member variables and functions in the preceding code:

•	 The FloatRect variable called m_Position will hold the horizontal and vertical positions

and size.

•	 The InputReceiver instance called m_InputReceiver will play the exact same role as the

variable with the same name in PlayerUpdate and CameraUpdate with the exception that

it will respond to the Esc and F1 keys as we would expect, having just discussed the menu.

•	 The FloatRect pointer m_PlayerPosition will track the player’s position and then the

menu can position itself relative to the player when it needs to be seen.

•	 The Boolean m_IsVisible variable lets the menu know when to show itself and when

to hide itself.

•	 The Boolean pointer m_IsPaused will hold the address of the variable in the LevelUpdate

class, which defines whether the game is paused. Then, in conjunction with m_IsVisible

and m_GameOver, the menu will know when to show itself and which image to use. The

Boolean m_GameOver works in conjunction with the two preceding variables.

Building the Menu and Making It Rain538

•	 The RenderWindow pointer m_Window will give the menu the power to close the app window

and end the app execution.

•	 The MenuUpdate constructor will be used to prepare the MenuUpdate class to do its job. It

will handle details that the assemble function cannot.

•	 The handleInput function is called once each frame from the update function to handle

the operating system events sent from the InputDispatcher in the main game loop.

•	 The getPositionPointer function returns a FloatRect pointer to the position and scale

of the menu.

•	 The getGameOverPointer function returns the address of a Boolean that indicates when

the game has ended because the player lost.

•	 The getInputReceiver function returns the address of the InputReceiver instance to

the InputDispatcher.

•	 The overridden update function executes each iteration of the game loop. Soon, we will

see the code that we put in it.

•	 The overridden assemble function, as we have come to expect, returns void and has

the following parameters: shared_ptr<LevelUpdate> levelUpdate and shared_

ptr<PlayerUpdate> playerUpdate. The function will be coded shortly to show the spe-

cific but similar way that this class uses it.

We can now move on to the implementation of the MenuUpdate class. We will add the code for

MenuUpdate.cpp in four main sections. To make these sections work, we will first need to add the

following include directives:

#include "MenuUpdate.h"

#include "LevelUpdate.h"

#include "PlayerUpdate.h"

#include "SoundEngine.h"

Add the first main section for MenuUpdate.cpp:

MenuUpdate::MenuUpdate(RenderWindow* window)

{

 m_Window = window;

}

FloatRect* MenuUpdate::getPositionPointer()

{

 return &m_Position;

Chapter 19 539

}

bool* MenuUpdate::getGameOverPointer()

{

 return &m_GameOver;

}

InputReceiver* MenuUpdate::getInputReceiver()

{

 return &m_InputReceiver;

}

In the first section of the MenuUpdate.cpp code above, we have the constructor where the pointer to

the RenderWindow is initialized. We will use the pointer to a RenderWindow when the player presses

F1 to shut down the game. The getPositionPointer function returns a pointer to m_Position.

The other class that cares about the position of the menu is, of course, the MenuGraphics class,

which will need to draw the menu.

The getGameOverPointer function returns the address of the m_GameOver Boolean. The

getInputReceiver function is used (as with PlayerUpdate and CameraUpdate) to get a pointer

to the InputReceiver instance. Again, this is used by the InputDispatcher so it knows where to

send all the operating system events in each frame.

Next, add the assemble function to MenuUpdate.cpp:

void MenuUpdate::assemble(

 shared_ptr<LevelUpdate> levelUpdate,

 shared_ptr<PlayerUpdate> playerUpdate)

{

 m_PlayerPosition =

 playerUpdate->getPositionPointer();

 m_IsPaused =

 levelUpdate->getIsPausedPointer();

 m_Position.height = 75;

 m_Position.width = 75;

 SoundEngine::startMusic();

Building the Menu and Making It Rain540

 SoundEngine::pauseMusic();

}

In the second section of the MenuUpdate.cpp code above, the assemble function prepares the class

to be used. First, the address of the player’s position is initialized to m_PlayerPosition, and the

address of the Boolean indicating the paused state from the LevelUpdate instance is copied to

m_IsPaused. Second, the width and height of the menu are defined by the magic number, which is

75 in this case. Finally, the music starts and is then immediately paused. The music is now ready

to be resumed and paused whenever the player resumes or pauses the game.

Now, add the third section for MenuUpdate.cpp. The handleInput function will be shown next:

void MenuUpdate::handleInput()

{

 for (const Event& event :

 m_InputReceiver.getEvents())

 {

 if (event.type ==

 Event::KeyPressed)

 {

 if (event.key.code ==

 Keyboard::F1 && m_IsVisible)

 {

 if (SoundEngine::mMusicIsPlaying)

 {

 SoundEngine::stopMusic();

 }

 m_Window->close();

 }

 }

 if (event.type == Event::KeyReleased)

 {

 if (event.key.code ==

 Keyboard::Escape)

 {

 m_IsVisible = !m_IsVisible;

 *m_IsPaused = !*m_IsPaused;

Chapter 19 541

 if (m_GameOver)

 {

 m_GameOver = false;

 }

 if (!*m_IsPaused)

 {

 SoundEngine::resumeMusic();

 SoundEngine::playClick();

 }

 if (*m_IsPaused)

 {

 SoundEngine::pauseMusic();

 SoundEngine::playClick();

 }

 }

 }

 }

 m_InputReceiver.clearEvents();

}

In the third section, the handleInputFunction should look familiar to all the event loops we have

created in the previous projects and this project. The for loop, which loops through all the input

events for the current frame of the game, wraps two if statements.

The first if statement tests for the combination of F1 being pressed and the menu being visible. If

the music is playing, it is stopped and then the RenderWindow pointer is used to close the window

and shut the game down.

The second if statement and the further nested if statement test for the release of the Esc key.

First, m_IsVisible is switched to its opposite value. If it is true, it becomes false, and if it is

false, it becomes true. This is just what we need. Every time the player taps the Esc key, the

game state will flip between paused and playing. The exact same flip is done with m_IsVisible

to show and hide the menu.

Building the Menu and Making It Rain542

At this point, the Boolean states have been set correctly and the code takes the required action

based on the current state. If the game is over (m_GameOver is true), m_GameOver is set to false.

If the game is not paused, then the music is resumed and a click sound is played, and finally, if

the game is paused, the music is paused and a click sound is played.

Outside of the event for loop, all the events are cleared from the m_InputReceiver instance ready

for the next iteration of the main game loop by calling clearEvents.

Finally, for MenuUpdate.cpp, add the following code for the update function:

void MenuUpdate::update(float fps)

{

 handleInput();

 if (*m_IsPaused && !m_IsVisible)// Game over 1

 {

 m_IsVisible = true;

 m_GameOver = true;

 }

 if (m_IsVisible)

 {

 // Follow the player

 m_Position.left =

 m_PlayerPosition->getPosition()–x -

 m_Position.width / 2;

 m_Position.top =

 m_PlayerPosition->getPosition()–y -

 m_Position.height / 2;

 }

 else

 {

 m_Position.left = -999;

 m_Position.top = -999;

 }

}

Chapter 19 543

In the preceding final section, the update function of the MenuUpdate class starts by calling the

handleInput function that we coded previously. The first if statement executes when the game

is paused, and the menu is not visible. The code in the if statement sets paused to true and

m_GameOver to true.

The second if statement in the update function executes when the menu is visible. When the

menu is visible, it makes sense that we need to make sure the menu is actually visible. To this

end, m_Position.left and m_Position.top are initialized to the left and top positions of the

player, respectively, minus the width and height of the player. This has the effect of positioning

the menu in the center of the screen, over the player.

In the final else clause, which executes when the game is not paused, we initialize m_Position.

left and m_Position.top to -999, which has the effect of hiding the menu.

Now, we can move on to the MenuGraphics class and see how MenuUpdate and MenuGraphics

complement each other.

Coding the MenuGraphics class
To get started, add the following code to the MenuGraphics.h file:

#pragma once

#include "Graphics.h"

#include "SFML/Graphics.hpp"

class MenuGraphics :

 public Graphics

{

private:

 FloatRect* m_MenuPosition = nullptr;

 int m_VertexStartIndex;

 bool* m_GameOver;

 bool m_CurrentStatus = false;

 int uPos;

 int vPos;

 int texWidth;

 int texHeight;

public:

Building the Menu and Making It Rain544

 // From Graphics : Component

 void draw(VertexArray& canvas) override;

 void assemble(VertexArray& canvas,

 shared_ptr<Update> genericUpdate,

 IntRect texCoords) override;

};

In the preceding code, the FloatRect pointer m_MenuPosition is initialized to nullptr. This vari-

able will soon be initialized to track the m_Position FloatRect instance from the MenuUpdate class.

The integer m_VertexStartIndex variable will be initialized to remember the starting index of

the quad of vertices that represent the menu in the VertexArray that is drawn for each frame

of the game.

The Boolean pointer m_GameOver will be initialized to track the m_GameOver variable from the

MenuUpdate class.

The Boolean m_CurrentStatus will be used to make decisions and remember them by initializing

to m_GameOver and then testing for changes. It will make more sense when we see the code in

MenuGraphics.cpp.

The integer uPos will hold the horizontal texture coordinate, vPos will hold the vertical texture

coordinate, texWidth the texture width, and texHeight the texture height.

The first public function is the overridden draw function, and we are more than familiar with its

signature; we will see how to code it soon.

The assemble function has the usual suspects as parameters and we have seen it multiple times.

We will code it very soon to see how we assemble the MenuGraphics class.

For the MenuGraphics.cpp file, we will code this in two sections: the assemble function and the

draw function.

Add the following assemble function to MenuGraphics.cpp:

#include "MenuGraphics.h"

#include "MenuUpdate.h"

void MenuGraphics::assemble(

 VertexArray& canvas,

 shared_ptr<Update> genericUpdate,

 IntRect texCoords)

Chapter 19 545

{

 m_MenuPosition = static_pointer_cast<MenuUpdate>(

 genericUpdate)->getPositionPointer();

 m_GameOver = static_pointer_cast<MenuUpdate>(

 genericUpdate)->getGameOverPointer();

 m_CurrentStatus = *m_GameOver;

 m_VertexStartIndex = canvas.getVertexCount();

 canvas.resize(canvas.getVertexCount() + 4);

 // Remember the UV coordinates

 // because we manipulate them later

 uPos = texCoords.left;

 vPos = texCoords.top;

 texWidth = texCoords.width;

 texHeight = texCoords.height;

 canvas[m_VertexStartIndex].texCoords.x = uPos;

 canvas[m_VertexStartIndex].texCoords.y =

 vPos + texHeight;

 canvas[m_VertexStartIndex + 1].texCoords.x =

 uPos + texWidth;

 canvas[m_VertexStartIndex + 1].texCoords.y =

 vPos + texHeight;

 canvas[m_VertexStartIndex + 2].texCoords.x =

 uPos + texWidth;

 canvas[m_VertexStartIndex + 2].texCoords.y =

 vPos + texHeight + texHeight;

 canvas[m_VertexStartIndex + 3].texCoords.x =

 uPos;

 canvas[m_VertexStartIndex + 3].texCoords.y =

 vPos + texHeight + texHeight;

}

The preceding assemble function code starts with this line:

 m_MenuPosition = static_pointer_cast<MenuUpdate>(

 genericUpdate)->getPositionPointer();

Building the Menu and Making It Rain546

The static_pointer_cast function is casting a genericUpdate instance, which is currently of

type Update, into a specific MenuUpdate shared_ptr instance. In the same line of code after the

conversion, the getPositionPointer function is called on the MenuUpdate instance. The returned

result of this function call is stored in m_MenuPosition.

The next line of code uses the same casting technique but, instead, calls the getGameOverPointer

function and stores the result in m_GameOver.

Next, m_GameOver is dereferenced, and the integer value is stored in m_CurrentStatus.

Following on, the m_StartIndex variable is initialized by getting the current size of VertexArray,

and the VertexArray size is then increased to fit another quad by calling canvas.resize.

Next, we remember the texture coordinates by initializing uPos, vPos, texWidth, and texHeight

from the passed-in texture coordinates. Remember, these are stored and will soon be passed in

from the Factory class.

The next eight lines of code initialize the texture coordinates directly into VertexArray. The rea-

son we need to store the original texture coordinates separate from the VertexArray is that we

will soon add code in the update function that manipulates the texture coordinates to show the

different versions of our menu for when the game is paused (as opposed to the game being over).

Finally, for MenuGraphics.cpp and the MenuGraphics class, add the following draw function to

MenuGraphics.cpp:

void MenuGraphics::draw(VertexArray& canvas)

{

 if (*m_GameOver && !m_CurrentStatus)

 // current status has just switched to game over

 {

 // Each v coordinate is doubled to

 // reference the texture below

 m_CurrentStatus = *m_GameOver;

 canvas[m_VertexStartIndex].texCoords.x =

 uPos;

 canvas[m_VertexStartIndex].texCoords.y =

 vPos + texHeight;

 canvas[m_VertexStartIndex + 1].texCoords.x =

 uPos + texWidth;

Chapter 19 547

 canvas[m_VertexStartIndex + 1].texCoords.y =

 vPos + texHeight;

 canvas[m_VertexStartIndex + 2].texCoords.x =

 uPos + texWidth;

 canvas[m_VertexStartIndex + 2].texCoords.y =

 vPos + texHeight + texHeight;

 canvas[m_VertexStartIndex + 3].texCoords.x =

 uPos;

 canvas[m_VertexStartIndex + 3].texCoords.y =

 vPos + texHeight + texHeight;

 }

 else if (!*m_GameOver && m_CurrentStatus)

 {

 m_CurrentStatus = *m_GameOver;

 canvas[m_VertexStartIndex].texCoords.x =

 uPos;

 canvas[m_VertexStartIndex].texCoords.y =

 vPos;

 canvas[m_VertexStartIndex + 1].texCoords.x =

 uPos + texWidth;

 canvas[m_VertexStartIndex + 1].texCoords.y =

 vPos;

 canvas[m_VertexStartIndex + 2].texCoords.x =

 uPos + texWidth;

 canvas[m_VertexStartIndex + 2].texCoords.y =

 vPos + texHeight;

 canvas[m_VertexStartIndex + 3].texCoords.x =

 uPos;

 canvas[m_VertexStartIndex + 3].texCoords.y =

 vPos + texHeight;

 }

 const Vector2f& position =

 m_MenuPosition->getPosition();

 canvas[m_VertexStartIndex].position =

 position;

Building the Menu and Making It Rain548

 canvas[m_VertexStartIndex + 1].position =

 position + Vector2f(m_MenuPosition->getSize().x, 0);

 canvas[m_VertexStartIndex + 2].position =

 position + m_MenuPosition->getSize();

 canvas[m_VertexStartIndex + 3].position =

 position + Vector2f(0, m_MenuPosition->getSize().y);

}

In the preceding draw function, there is an if branch and an else if branch to the code. The if

branch executes when m_GameOver is true and m_CurrentStatus is false. The else if branch

executes when m_GameOver is false and m_CurrentStatus is false.

First, let’s look at what happens in the if branch. In the if branch, m_CurrentStatus is set to the

dereferenced value of m_GameOver and then all of the texture coordinates in the VertexArray are

set. The way they are set is with the same values we used in the assemble function. These values

map to the lower version of the menu in the texture atlas.

Next, let’s look at what happens in the else if branch. In the else if branch, the m_CurrentStatus

is synchronized with m_GameOver again, and all of the texture coordinates in the VertexArray

are set. However, look at the code for all of the vertical coordinates. They all lack an additional

+texHeight. This means the coordinates now map to the upper version of the menu graphic in

the texture atlas. The texture coordinates will be flipped every time the player loses a game and

every time the player pauses a game after restarting. Therefore, the texture coordinates will always

map to either the paused menu or the game over menu.

Of course, we haven’t positioned the vertices yet. We must do so because these positions will be

regularly changing in the MenuUpdate class as the menu is shown and hidden. What happens after

the if-else-if structure we have just discussed is that the vertex positions in the VertexArray

are positioned using the values in m_MenuPosition, which points to the FloatRect in MenuUpdate.

To make the code less verbose, we first initialize a constant Vector2f by calling m_MenuPosition-

>getPosition.

Building a menu in the factory
Now we can instantiate a working menu by composing a GameObject instance with our two new

classes. Add the include directives for our two menu-related classes:

#include "MenuUpdate.h"

#include "MenuGraphics.h"

Chapter 19 549

Next, add the following code just before the closing curly brace of the loadLevel function in the

Factory.cpp file:

// Menu

GameObject menu;

shared_ptr<MenuUpdate> menuUpdate =

 make_shared<MenuUpdate>(m_Window);

menuUpdate->assemble(levelUpdate,

 playerUpdate);

inputDispatcher.registerNewInputReceiver(

 menuUpdate->getInputReceiver());

menu.addComponent(menuUpdate);

shared_ptr<MenuGraphics>menuGraphics =

 make_shared<MenuGraphics>();

menuGraphics->assemble(canvas, menuUpdate,

 IntRect(TOP_MENU_TEX_LEFT, TOP_MENU_TEX_TOP,

 TOP_MENU_TEX_WIDTH, TOP_MENU_TEX_HEIGHT));

menu.addComponent(menuGraphics);

gameObjects.push_back(menu);

// End menu

The preceding code should feel familiar. In the following order, we do this:

1.	 Create a new GameObject instance called menu.

2.	 Create a shared pointer to a MenuUpdate instance called menuUpdate.

3.	 Call the assemble function on menuUpdate passing in the levelUpdate and playerUpdate

shared pointers.

4.	 Prepare the menu to receive updates by calling registerNewInputReceiver on

inputDispatcher and passing in the returned result from menuUpdate->getInputReceiver.

5.	 Add menuUpdate to the menu GameObject instance.

Building the Menu and Making It Rain550

6.	 Create a shared pointer of the MenuGraphics type.

7.	 Call the menuGraphics assemble function and pass in the VertexArray, the LevelUpdate

instance, and all the required texture coordinates.

8.	 Add/compose the MenuGraphics instance to the GameObject instance.

9.	 Finally, add the GameObject instance, which represents our menu, to the gameObjects

vector.

That’s it. Our menu is done.

Running the game
Now you can run the game. You will see the menu shown next if you press Esc:

Figure 19.2: Menu

You will be able to press F1 to quit, as suggested on the menu. However, if you try and press Esc

to start, it will also quit the game. This is not the behavior we want. We need to make two quick

changes.

We need to delete the temporary code we added to the InputDispatcher.cpp class back when

we first started the project. Locate the following lines of code and delete them:

if (event.type == Event::KeyPressed &&

 event.key.code == Keyboard::Escape)

Chapter 19 551

{

 m_Window->close();

}

You can now run the game, start and pause with Esc, and quit with F1 when the menu is visible. The

InputDispatcher class no longer handles any events; it just dispatches them to the InputReceiver

instances in the menu, the player, and the mini-map camera.

We also need to stop the game from starting automatically. We do this in the LevelUpdate.h class.

Find this next line of code:

bool m_IsPaused = false;

Now change it to this:

bool m_IsPaused = true;

Now our pausing, starting, and quitting works as expected.

Making it rain
We only need a graphics component. This is fine, just as it was OK to only have an update compo-

nent for the level logic. While the RainGraphics state will change, it is not dependent in any way

on the timing of the main game loop or the player’s input. All the changes in state are controlled

by the Animator class instance inside the RainGraphics class, which has its own internal clock.

We will spawn multiple instances of the RainGraphics class because each instance will cover a

small section of the screen. Each RainGraphics instance will position itself relative to the player

and follow the player through the world, giving the impression that it is raining everywhere.

Coding the RainGraphics class
The graphics in the texture atlas look like the following image:

Figure 19.3: Rain From Atlas

Building the Menu and Making It Rain552

I have drawn frames in red around each frame of animation and changed the background from

transparent to white. Each frame of animation is 100 pixels by 100 pixels. Therefore, overall, the

rain sprite sheet is 400 by 100 pixels. All the frames are lined up neatly ready to be looped through

by our Animator class, which we also used to animate the player.

Create a new class called RainGraphics and, in the RainGraphics.h file, add this code:

#pragma once

#include "Graphics.h"

class Animator;

class RainGraphics :

 public Graphics

{

private:

 FloatRect* m_PlayerPosition;

 int m_VertexStartIndex;

 Vector2f m_Scale;

 float m_HorizontalOffset;

 float m_VerticalOffset;

 Animator* m_Animator;

 IntRect* m_SectionToDraw;

public:

 RainGraphics(FloatRect* playerPosition,

 float horizontalOffset,

 float verticalOffset,

 int rainCoveragePerObject);

 // From Graphics : Component

 void draw(VertexArray& canvas) override;

 void assemble(VertexArray& canvas,

 shared_ptr<Update> genericUpdate,

Chapter 19 553

 IntRect texCoords) override;

};

In the preceding RainGraphics.h code, the FloatRect pointer m_PlayerPosition will track the

player’s position so the rain can follow the player around like an unlucky character being followed

by a gray cloud in a cartoon.

The m_VertexStartIndex remembers the starting index of the vertices in the VertexArray.

The m_Scale variable remembers the size of a frame of animation. The float variable m_

HorizontalOffset is the starting horizontal value for the graphics in the texture atlas, and the

float variable m_VerticalOffset is the vertical equivalent.

The m_Animator instance is our Animator and the IntRect pointer m_SectionToDraw will hold

the texture coordinates of the current frame of animation.

The RainGraphics constructor receives and initializes some of the variables we have just discussed

as well as an integer called rainCoveragePerObject, which helps us scale each rain instance.

The draw and assemble functions are the usual overridden functions that have identical decla-

rations as before, but their implementations will be interesting and we will discuss them soon.

Next, for the RainGraphics.cpp file, let’s code this in two sections, first the constructor and then

the assemble function. Add the following code to RainGraphics.cpp:

#include "RainGraphics.h"

#include "RainGraphics.h"

#include "Animator.h"

RainGraphics::RainGraphics(

 FloatRect* playerPosition,

 float horizontalOffset,

 float verticalOffset,

 int rainCoveragePerObject)

{

 m_PlayerPosition = playerPosition;

 m_HorizontalOffset = horizontalOffset;

 m_VerticalOffset = verticalOffset;

 m_Scale.x = rainCoveragePerObject;

 m_Scale.y = rainCoveragePerObject;

}

Building the Menu and Making It Rain554

In the constructor, we initialize the player’s position pointer, the horizontal and vertical offset

for the animator, and m_Scale, which is an IntRect, using the same value for x and y. We will

see this in use soon.

Next, add the assemble function, as shown:

void RainGraphics::assemble(VertexArray& canvas,

 shared_ptr<Update> genericUpdate,

 IntRect texCoords)

{

 m_Animator = new Animator(

 texCoords.left,

 texCoords.top,

 4,// Frames

 texCoords.width * 4,

 texCoords.height,

 8);// FPS

 m_VertexStartIndex = canvas.getVertexCount();

 canvas.resize(canvas.getVertexCount() + 4);

}

In the assemble function, we initialize our Animator instance by calling new and passing in the

required parameters. Notice there are four frames as expected and we have specified eight frames

per second.

The start index is remembered and the VertexArray has four spaces added to it for the quad that

represents this block of rain, just as we have done so many times before. However, remember

there will be multiple instances of the RainGraphics class.

Finally, add the draw function to RainGraphics.cpp, as shown next:

void RainGraphics::draw(VertexArray& canvas)

{

 const Vector2f& position =

 m_PlayerPosition->getPosition()

 - Vector2f(m_Scale.x / 2 + m_HorizontalOffset,

 m_Scale.y / 2 + m_VerticalOffset);

Chapter 19 555

 // Move the rain to keep up with the player

 canvas[m_VertexStartIndex].position = position;

 canvas[m_VertexStartIndex + 1].position =

 position + Vector2f(m_Scale.x, 0);

 canvas[m_VertexStartIndex + 2].position =

 position + m_Scale;

 canvas[m_VertexStartIndex + 3].position =

 position + Vector2f(0, m_Scale.y);

 //Cycle trough the frames

 m_SectionToDraw =

 m_Animator->getCurrentFrame(false);

 // Remember the section of the texture to draw

 const int uPos = m_SectionToDraw->left;

 const int vPos = m_SectionToDraw->top;

 const int texWidth = m_SectionToDraw->width;

 const int texHeight = m_SectionToDraw->height;

 canvas[m_VertexStartIndex].texCoords.x =

 uPos;

 canvas[m_VertexStartIndex].texCoords.y =

 vPos;

 canvas[m_VertexStartIndex + 1].texCoords.x =

 uPos + texWidth;

 canvas[m_VertexStartIndex + 1].texCoords.y =

 vPos;

 canvas[m_VertexStartIndex + 2].texCoords.x =

 uPos + texWidth;

 canvas[m_VertexStartIndex + 2].texCoords.y =

 vPos + texHeight;

 canvas[m_VertexStartIndex + 3].texCoords.x =

 uPos;

 canvas[m_VertexStartIndex + 3].texCoords.y =

 vPos + texHeight;

}

Building the Menu and Making It Rain556

In the draw function, the first section of code uses the player’s position to move the rain to

keep up with the player wherever it may have moved. Notice that in the first line of code, the

m_HorizontalOffset and m_VerticalOffset values are used to make sure the instance is posi-

tioned in its correct place relative to all the other RainGraphics instances. These offset values,

you may remember, were passed into the constructor that we coded previously. As you might

have come to expect, the multiple RainGraphics instances and their offsets will be coordinated

when they are created in the Factory class.

Next, the getCurrentFrame function of the Animator class is called to get the current texture

coordinates and the usual eight lines of code assign the appropriate x and y coordinates to the

four vertices of the quad.

Making it rain in the factory
To get started, add the following include directive to Factory.cpp:

#include "RainGraphics.h"

Add the following code to create multiple RainGraphics instances just after the platform code

and before the camera code:

 // Rain

 int rainCoveragePerObject = 25;

 int areaToCover = 350;

 for (int h = -areaToCover / 2;

 h < areaToCover / 2;

 h += rainCoveragePerObject)

 {

 for (int v = -areaToCover / 2;

 v < areaToCover / 2;

 v += rainCoveragePerObject)

 {

 GameObject rain;

 shared_ptr<RainGraphics> rainGraphics =

 make_shared<RainGraphics>(

 playerUpdate->getPositionPointer(),

 h, v, rainCoveragePerObject);

Chapter 19 557

 rainGraphics->assemble(

 canvas, nullptr,

 IntRect(RAIN_TEX_LEFT, RAIN_TEX_TOP,

 RAIN_TEX_WIDTH, RAIN_TEX_HEIGHT));

 rain.addComponent(rainGraphics);

 gameObjects.push_back(rain);

 }

 }

 //End rain

In the preceding code, we do the usual things: make a GameObject instance, make a RainGraphics

instance, add the RainGraphics instance to the GameObject, and add the GameObject to the vector

of GameObjects. Why not spend a moment identifying these parts that have become familiar by

now? Then, I will describe what is new.

What is new is that we first declare some extra variables to control the position and size of mul-

tiple RainGraphics instances, as follows:

int rainCoveragePerObject = 25;

int areaToCover = 350;

Next, note the structure of the for loop that iterates and creates multiple instances. Here it is again:

for (int h = -areaToCover / 2;

 h < areaToCover / 2;

 h += rainCoveragePerObject)

The condition of the for loop means that h will go from -175 to 175 and that it will do so in in-

crements of 25. Inside the RainGraphics instances, all these values are world units, not pixels.

The inner for loop that initializes the v parameter uses the same formula as the outer for loop.

Finally, note the call to the constructor of the RainGraphics class:

shared_ptr<RainGraphics> rainGraphics =

 make_shared<RainGraphics>(

 playerUpdate->getPositionPointer(),

 h, v, rainCoveragePerObject);

Overall, this has the effect of looping a 14 x 14 block (196) of RainGraphics instances around the

player.

Building the Menu and Making It Rain558

Running the game
Now we can see the fruits of our work and run the game.

Figure 19.4: Rain

That’s it for rain!

Summary
In this chapter, we have created an interactive menu with two possible appearances by coding

the MenuUpdate class and the MenuGraphics class. Afterward, we created a menu in the factory

in the exact same way we have been adding features to our game over the previous few chapters.

To finish, we created a new Graphics-derived class called RainGraphics, which creates a simple

and effective rain effect. As usual, we wrapped this class in a GameObject instance in the factory,

popped it in the gameObjects vector, and hey presto, it just works.

In the next chapter, we will add fireballs to the game that fly in from the left or right to disrupt

the player’s progress.

20
Fireballs and Spatialization

In this chapter, we will be adding all the sound effects and the HUD. We did this in two of the

previous projects, but we will do things a bit differently this time. We will explore the concept of

sound spatialization and how SFML makes this complicated concept nice and easy. In addition,

we will build a HUD class to encapsulate our code that draws information to the screen.

We will cover the following topics in this chapter:

•	 What is spatialization?

•	 Handling spatialization using SFML

•	 Upgrading the SoundEngine class

•	 Coding the fireball-related classes (derived from Graphics and Update) that make spa-

tialized sounds

•	 Building some fireballs in the factory

•	 Running the code

The complete code for this chapter can be found in the Run6 folder.

What is spatialization?
Spatialization is the act of making something relative to the space it is a part of, or within. In

our daily lives, everything in the natural world, by default, is spatialized. If a motorbike whizzes

past from left to right, we will hear the sound grow from faint to loud, from one side to the other.

As it passes by, it will become more prominent in the other ear, before fading into the distance

once more. If we were to wake up one morning and the world was no longer spatialized, it would

be exceptionally weird.

Fireballs and Spatialization560

If we can make our video games a little bit more like the real world, our players will become more

immersed. Our zombie game would have been a lot more fun if the players could have heard the

zombies faintly in the distance and more loudly as they drew closer, from one direction or another.

It is probably obvious that the mathematics of spatialization is complex. How do we calculate

how loud a given sound will be in a specific speaker, based on the distance and direction from the

player (the hearer of the sound) to the object that is making the sound (the emitter)?

Fortunately, SFML does all the complicated processes for us. All we need to do is get familiar with

a few technical terms and then we can start using SFML to spatialize our sound effects.

Emitters, attenuation, and listeners
We will need to be aware of a few pieces of information to give SFML what it needs to do its work.

We will need to be aware of where the sound is coming from in our game world. This source of

the sound is called an emitter. In a game, the emitter could be a zombie, a vehicle, or, in the case

of our current project, a fire tile. We have already been keeping track of the position of the objects

in our game, so giving SFML the emitter’s location will be quite straightforward.

The next factor we need to be aware of is attenuation. Attenuation is the rate at which a wave

deteriorates. You could simplify that statement and make it specific to sound and say that atten-

uation is how quickly the sound reduces in volume. It isn’t technically accurate, but it is a good

enough description for this chapter and our game.

The final factor that we need to consider is the listener. When SFML spatializes the sound, where

is it spatializing it relative to; where are the “ears” of the game? In most games, the logical thing

to do is to use the player character as the “ears” of the game.

Let’s look at some hypothetical code before we see the code for real.

Handling spatialization using SFML
SFML has several functions that allow us to handle emitters, attenuation, and listeners. Let’s

take a look at them hypothetically, and then we will write some code to add spatialized sound

to our project for real.

We can set up a sound effect that is ready to be played, as we have already done so often, like this:

// Declare SoundBuffer in the usual way

SoundBuffer zombieBuffer;

Chapter 20 561

// Declare a Sound object as-per-usual

Sound zombieSound;

// Load the sound from a file like we have done so often

zombieBuffer.loadFromFile("sound/zombie_growl.wav");

// Associate the Sound object with the Buffer

zombieSound.setBuffer(zombieBuffer);

We can set the position of the emitter using the setPosition function shown in the following code:

// Set the horizontal and vertical positions of the emitter

// In this case the emitter is a zombie

// In the Zombie Arena project we could have used

// getPosition().x and getPosition().y

// These values are arbitrary

float x = 500;

float y = 500;

zombieSound.setPosition(x, y, 0.0f);

As suggested in the comments of the previous code, how exactly we can obtain the coordinates of

the emitter will probably be dependent on the type of game. As shown in the previous code, this

would be quite simple in the Zombie Arena project. We will have a few challenges to overcome

when we set the position in this project.

We can set the attenuation level as follows:

zombieSound.setAttenuation(15);

The actual attenuation level can be a little ambiguous. The effect that we want the player to get

might be different from the accurate scientific formula that is used to reduce the volume over

distance based on attenuation. Getting the right attenuation level is usually achieved by experi-

menting. The higher the level of attenuation, the quicker the sound level reduces to silence.

Also, we might want to set a zone around the emitter where the volume is not attenuated at all.

We might do this if the feature isn’t appropriate beyond a certain range or if we have many sound

sources and don’t want to overdo the feature. To do so, we can use the setMinimumDistance

function, as shown here:

zombieSound.setMinDistance(150);

With the previous line of code, attenuation would not be calculated until the listener is 150 pixels/

unit away from the emitter.

Fireballs and Spatialization562

Some other useful functions from the SFML library include the setLoop function. This function

will tell SFML to keep playing the sound over and over when true is passed in as a parameter,

like in the following code:

zombieSound.setLoop(true);

The sound will continue to play until we end it with the following code:

zombieSound.stop();

From time to time, we want to know the status of a sound (playing or stopped). We can achieve

this with the getStatus function, as demonstrated in the following code:

if (zombieSound.getStatus() == Sound::Status::Stopped)

{

 // The sound is NOT playing

 // Take whatever action here

}

if (zombieSound.getStatus() == Sound::Status::Playing)

{

 // The sound IS playing

 // Take whatever action here

}

There is just one more aspect of using sound spatialization with SFML that we need to cover, the

listener. Where is the listener? We can set the position of the listener with the following code:

// Where is the listener?

// How we get the values of x and y varies depending upon the game

// In the Zombie Arena game or the Thomas Was Late game

// We can use getPosition()

Listener::setPosition(m_Thomas.getPosition().x,

 m_Thomas.getPosition().y, 0.0f);

The preceding code will make all the sounds play relative to that location. This is just what we

need for the distant roar of a fire tile or incoming zombie, but for regular sound effects like jump-

ing, this is a problem. We could start handling an emitter for the location of the player, but

SFML makes things simple for us. Whenever we want to play a “normal” sound, we simply call

setRelativeToListener, as shown in the following code, and then play the sound in the exact

same way as we have done so far.

Chapter 20 563

Here is how we might play a “normal” unspatialized jump sound effect:

jumpSound.setRelativeToListener(true);

jumpSound.play();

All we need to do is call Listener::setPosition again before we play any spatialized sounds

and this will set the “ears” for the current sound.

We now have a wide repertoire of SFML sound functions, and we are ready to make some spati-

alized noise for real.

Upgrading the SoundEngine class
Let’s add some new functionality to the SoundEngine class and start adding the spatialization

features for real.

The first addition to the SoundEngine class is some new member variables. In SoundEngine.h

add these two members to the private section:

 static SoundBuffer mFireballLaunchBuffer;

 static Sound mFireballLaunchSound;

We now have a new SoundBuffer to load a sound into and a new Sound instance to associate with

the SoundBuffer instance and play the sound. There is nothing new here except to remember that

the sound we load into mFireballLaunchBuffer must be mono for the spatialization to work.

Next, add the following function declaration to the public section of SoundEngine.h:

static void playFireballLaunch(

Vector2f playerPosition,

Vector2f soundLocation);

The preceding code playFireballLaunch function declaration takes a Vector2f for the player’s

location and a Vector2f for the location where we want to simulate the sound coming from.

In SoundEngine.cpp add the following highlighted declarations before the SoundEngine con-

structor as shown and highlighted below:

SoundBuffer SoundEngine::m_ClickBuffer;

Sound SoundEngine::m_ClickSound;

SoundBuffer SoundEngine::m_JumpBuffer;

Sound SoundEngine::m_JumpSound;

Fireballs and Spatialization564

SoundBuffer SoundEngine::mFireballLaunchBuffer;

Sound SoundEngine::mFireballLaunchSound;

The preceding code makes the static variables from SoundEngine.h available in SoundEngine.

cpp. Static variables are class-owned variables and are not unique to each instance. This is just

what we want because we don’t want different parts of the rest of our code using different Sound

or Music instances.

Now add the following initializations before the closing curly brace of the constructor in the

SoundEngine.cpp file:

Listener::setDirection(1.f, 0.f, 0.f);

Listener::setUpVector(1.f, 1.f, 0.f);

Listener::setGlobalVolume(100.f);

mFireballLaunchBuffer.loadFromFile(

"sound/fireballLaunch.wav");

mFireballLaunchSound.setBuffer(

mFireballLaunchBuffer);

In the preceding code, we set up the Listener instance values for direction, set up the vector

vector, and the global volume. These values are global and affect all sounds.

Add the playFireballLaunch function, as shown next, to the SoundEngine.cpp file:

void SoundEngine::playFireballLaunch(

 Vector2f playerPosition,

 Vector2f soundLocation)

{

 mFireballLaunchSound.setRelativeToListener(true);

 if (playerPosition.x > soundLocation.x)

 // coming from the left

 {

 Listener::setPosition(0, 0, 0.f);

 mFireballLaunchSound.setPosition(-100, 0, 0.f);

 mFireballLaunchSound.setMinDistance(100);

 mFireballLaunchSound.setAttenuation(0);

 }

Chapter 20 565

 else// coming from the right

 {

 Listener::setPosition(0, 0, 0.f);

 mFireballLaunchSound.setPosition(100, 0, 0.f);

 mFireballLaunchSound.setMinDistance(100);

 mFireballLaunchSound.setAttenuation(0);

 }

 mFireballLaunchSound.play();

}

In the preceding code, we call setRelativeToListner and pass in true. This is required for the

spatialized sound to work. Next, we have an if-else structure. The condition of the if block de-

termines whether or not the sound should come from the left by seeing if the player’s horizontal

coordinate is greater than the horizontal coordinate of the fireball that has called the function.

In both the if and else blocks, the player’s horizontal position is set to 0, the minimum distance is

set to 100, and the attenuation to 0. What is different between the blocks is that the setPosition

function is called with a horizontal value of 100 if the sound must come from the left, and -100

if the sound must come from the right.

After the if-else structure, we finally call the play function on mFireballLaunchSound. We will

call this playFireballLaunch function soon.

Now we have added a spatialized sound, we can code a couple of classes to represent the fireballs

in our game that will use the new sound.

Fireballs
Now let’s use our new function by coding the fireballs. To get started with creating our fireballs,

we need some new classes. Create two new classes, FireballUpdate and FireballGraphics, and

derive them from Update and Graphics respectively.

Coding the FireballUpdate class
To begin the process of coding the FireballUpdate class, in FireballUpdate.h add the following

code:

#pragma once

#include "Update.h"

#include <SFML/Graphics.hpp>

Fireballs and Spatialization566

using namespace sf;

class FireballUpdate :

 public Update

{

private:

 FloatRect m_Position;

 FloatRect* m_PlayerPosition;

 bool* m_GameIsPaused = nullptr;

 float m_Speed = 250;

 float m_Range = 900;

 int m_MaxSpawnDistanceFromPlayer = 250;

 bool m_MovementPaused = true;

 Clock m_PauseClock;

 float m_PauseDurationTarget = 0;

 float m_MaxPause = 6;

 float m_MinPause = 1;

 //float mTimePaused = 0;

 bool m_LeftToRight = true;

public:

 FireballUpdate(bool* pausedPointer);

 bool* getFacingRightPointer();

 FloatRect* getPositionPointer();

 int getRandomNumber(int minHeight,

 int maxHeight);

 // From Update : Component

 void update(float fps) override;

 void assemble(shared_ptr<LevelUpdate> levelUpdate,

 shared_ptr<PlayerUpdate> playerUpdate)

 override;

};

Chapter 20 567

In the private section of the FireBallUpdate header file, we declare m_Position, m_PlayerPosition,

and m_GameIsPaused, which are for the position of the fireball, a pointer to the player position,

and a pointer to the LevelUpdate Boolean, which controls if the game is paused.

The floating-point m_Speed and m_Range variables will be initialized with random values to de-

termine how fast the fireball will travel and how far away the fireball will begin its journey.

The m_MaxSpawnDistanceFromPlayer integer is set to 250 as the upper limit for how far away the

fireball can spawn from the player.

The Boolean m_MovementPaused will work in conjunction with m_GameIsPaused to stop and restart

the fireball in sync with the game pausing, resuming, starting, and ending.

The Clock instance, m_PauseClock, counts the time before a fireball is launched based on the

random value assigned to the float m_PauseDurationTarget. This adds extra randomness and

variation between all the fireball instances.

The float m_MaxPause and the float m_MinPause variables are fixed values in between which

the random pause time will be generated, in seconds.

The Boolean m_LeftToRight will be flipped between true and false and will determine if the

fireball comes from the left of the player or the right.

In the public section, we have the following variables and functions:

•	 The constructor receives a Boolean pointer that allows the fireball to track when the

game is paused.

•	 The getFacingRightPointer function returns a pointer to track which way the fireball

is heading. This will be shared with the FireballGraphics class so that it can draw the

flames with the correct heading.

•	 The getPositionPointer function returns a pointer to the position of the fireball. This will

be shared with the FireballGraphics class so it can draw the flames in the correct position.

•	 The getRandomNumber function takes two integer values and returns a random number

somewhere in between.

•	 And, as usual, we have our two overridden functions from the Update class, which are

update and assemble.

We will break FireballUpdate.cpp it into a few parts because it is quite long. For the first part

add the following to FireballUpdate.cpp:

#include "FireballUpdate.h"

Fireballs and Spatialization568

#include <random>

#include "SoundEngine.h"

#include "FireballUpdate.h"

#include "PlayerUpdate.h"

FireballUpdate::FireballUpdate(bool* pausedPointer)

{

 m_GameIsPaused = pausedPointer;

 m_PauseDurationTarget = getRandomNumber(m_MinPause,

m_MaxPause);

}

bool* FireballUpdate::getFacingRightPointer()

{

 return &m_LeftToRight;

}

FloatRect* FireballUpdate::getPositionPointer()

{

 return &m_Position;

}

void FireballUpdate::assemble(

 shared_ptr<LevelUpdate> levelUpdate,

 shared_ptr<PlayerUpdate> playerUpdate)

{

 m_PlayerPosition =

 playerUpdate->getPositionPointer();

 m_Position.top = getRandomNumber(

 m_PlayerPosition->top - m_MaxSpawnDistanceFromPlayer,

 m_PlayerPosition->top + m_MaxSpawnDistanceFromPlayer);

 m_Position.left =

 m_PlayerPosition->left - getRandomNumber(200, 400);

Chapter 20 569

 m_Position.width = 10;

 m_Position.height = 10;

}

In the preceding code for the FireballUpdate constructor, m_GameIsPaused is synchronized to

the variable that determines whether the game is paused within the LevelUpdate class and the

m_PauseDurationTarget variable is randomly initialized. As each instance is initialized randomly,

the fireballs will be at different times and won’t fire at the player in one deadly wall of fireballs.

In the getFacingRightPointer function, the address of the m_LeftToRight variable is returned.

The FireBallGraphics class will use this function to keep track of which way around they should

draw the fireball texture.

In the getPositionPointer function, the address of m_Position FloatRect is returned. The

FireballGraphics class will use this function to keep track of where the fireball is and make sure

to initialize the vertices of the VertexArray in the correct place in the world.

In the assemble function, the player position address is initialized because the fireball will detect

when it has hit a player and move the player accordingly. The top and left positions of the fireball

are initialized using the current position of the player (for fairness) and the getRandomNumber

function (for variety within a range).

The width and height of a fireball (10 by 10 world units) are initialized in the final two lines of

code in the assemble function.

For the second part of the FireBallUpdate class’ implementation, add the following code to

FireballUpdate.cpp:

int FireballUpdate::getRandomNumber(int minHeight, int maxHeight)

{

 // Seed the random number generator with current time

 std::random_device rd;

 std::mt19937 gen(rd());

 // Define a uniform distribution for the desired range

 std::uniform_int_distribution<int>

 distribution(minHeight, maxHeight);

 // Generate a random height within the specified range

 int randomHeight = distribution(gen);

Fireballs and Spatialization570

 return randomHeight;

}

In the preceding getRandomNumber function code, we have the same code that we implemented

for our LevelUpdate class’s random function. It returns a random number between the two values

passed in.

Finally, for the FireballUpdate class, we will code the update function. Add the following code

to FireballUpdate.cpp:

void FireballUpdate::update(float fps)

{

 if (!*m_GameIsPaused)

 {

 if (!m_MovementPaused)

 {

 if (m_LeftToRight)

 {

 m_Position.left += m_Speed * fps;

 if (m_Position.left –

 m_PlayerPosition->left > m_Range)

 {

 m_MovementPaused = true;

 m_PauseClock.restart();

 m_LeftToRight = !m_LeftToRight;

 m_Position.top = getRandomNumber(

 m_PlayerPosition->top –

 m_MaxSpawnDistanceFromPlayer,

 m_PlayerPosition->top +

 m_MaxSpawnDistanceFromPlayer);

 m_PauseDurationTarget =

 getRandomNumber(m_MinPause, m_MaxPause);

 }

 }

 else

 {

Chapter 20 571

 m_Position.left -= m_Speed * fps;

 if (m_PlayerPosition->left –

 m_Position.left > m_Range)

 {

 m_MovementPaused = true;

 m_PauseClock.restart();

 m_LeftToRight = !m_LeftToRight;

 m_Position.top = getRandomNumber(

 m_PlayerPosition->top –

 m_MaxSpawnDistanceFromPlayer,

 m_PlayerPosition->top +

 m_MaxSpawnDistanceFromPlayer);

 m_PauseDurationTarget =

 getRandomNumber(m_MinPause, m_MaxPause);

 }

 }

 // Has it hit the player

 if (m_PlayerPosition->intersects(m_Position))

 {

 // Knock the player down

 m_PlayerPosition->top =

 m_PlayerPosition->top +

 m_PlayerPosition->height * 2;

 }

 }

 else

 {

 if (m_PauseClock.getElapsedTime().asSeconds() >

 m_PauseDurationTarget)

 {

 m_MovementPaused = false;

 SoundEngine::playFireballLaunch(

 m_PlayerPosition->getPosition(),

 m_Position.getPosition());

Fireballs and Spatialization572

 }

 }

 }

}

The preceding code is long, so let’s split it up into five sections and go through it a bit at a time.

In the first section, we see the following code:

if (!*m_GameIsPaused)

 {

 if (!m_MovementPaused)

 {

In the code immediately above, we check that the game is not paused and that the fireball is not

pausing before it sets off on a new run.

In the second section, we see the following code:

if (m_LeftToRight)

{

 m_Position.left += m_Speed * fps;

 if (m_Position.left -

 m_PlayerPosition->left > m_Range)

 {

 m_MovementPaused = true;

 m_PauseClock.restart();

 m_LeftToRight = !m_LeftToRight;

 m_Position.top = getRandomNumber(

 m_PlayerPosition->top -

 m_MaxSpawnDistanceFromPlayer,

 m_PlayerPosition->top +

 m_MaxSpawnDistanceFromPlayer);

 m_PauseDurationTarget =

 getRandomNumber(m_MinPause, m_MaxPause);

 }

}

Chapter 20 573

In the second section above, all the code is wrapped in an if statement that checks that the

fireball is traveling from left to right. If the fireball is traveling to the right, the fireball’s position

is updated according to the speed and the time elapsed since the previous update. The next if

statement (inside the one that checked the direction of travel) checks if the fireball is in excess of

m_Range away from the player. If it is, then it is time to pause the fireball, restart the clock, switch

the direction of travel, and choose a new random height and a new random pause duration. Now

the fireball is primed to fly back in the opposite direction after the m_PauseDuration has elapsed.

In the third section, we see the following code:

else

{

m_Position.left -= m_Speed * fps;

 if (m_PlayerPosition->left -

 m_Position.left > m_Range)

 {

 m_MovementPaused = true;

 m_PauseClock.restart();

 m_LeftToRight = !m_LeftToRight;

 m_Position.top = getRandomNumber(

 m_PlayerPosition->top -

 m_MaxSpawnDistanceFromPlayer,

 m_PlayerPosition->top +

 m_MaxSpawnDistanceFromPlayer);

 m_PauseDurationTarget =

 getRandomNumber(m_MinPause, m_MaxPause);

 }

}

In the third section above, almost the exact same thing happens as in the preceding if statement.

The only difference is that the fireball is moved from left to right, and when it is far enough away

from the player, it is prepared to once again fly from right to left.

In the fourth section, we see the following code:

// Has it hit the player

if (m_PlayerPosition->intersects(m_Position))

Fireballs and Spatialization574

{

// Knock the player down

 m_PlayerPosition->top =

 m_PlayerPosition->top +

 m_PlayerPosition->height * 2;

}

In the fourth section above, the code tests whether the fireball has hit the player. If it has hit the

player, the player is knocked downwards by twice the height of the player. This is likely to cause

the player to have to boost to get back on the platforms and thus let the disappearing platforms

catch up a bit.

In the fifth section, we see the following code:

else

{

if (m_PauseClock.getElapsedTime().asSeconds() >

 m_PauseDurationTarget)

 {

 m_MovementPaused = false;

 SoundEngine::playFireballLaunch(

 m_PlayerPosition->getPosition(),

 m_Position.getPosition());

 }

}

In the fifth section above, the else block only executes when the preceding if section does not.

Within the else section, another if statement checks whether the elapsed time of m_PausedClock

is greater than the randomly generated m_PauseDuration. If it is, then m_MovementPaused is set

to false, and the fireball will be ready for a new run at the player. As a warning to the player, the

playFireBallLaunch function is called, passing in the necessary parameters for the SoundEngine

class to play a sound coming from the appropriate direction.

Coding the FireballGraphics class
In this section, we will code the FireballGraphics class. To understand the code that follows it,

will help to see the graphics from the texture atlas again:

Chapter 20 575

Figure 20.1: Three fireball frames

We can see that there are three frames of animation from left to right. This is perfect for use with

our already coded Animator class. Also, as with the PlayerGraphics class, we will need to flip the

pixels in the textures so that they face the other way when the fireball is heading from right to left.

Technically speaking, we should also reverse the animations as well, but this doesn’t make much

difference with fire animations, although it did make a difference with the character animations

and prevented the Michael Jackson effect.

Coding FireballGraphics.h
In FireballGraphics.h, add the following code:

#pragma once

#include "Graphics.h"

class Animator;

class PlayerUpdate;

class FireballGraphics :

 public Graphics

{

private:

 FloatRect* m_Position;

 int m_VertexStartIndex;

 bool* m_FacingRight = nullptr;

 Animator* m_Animator;

 IntRect* m_SectionToDraw;

 std::shared_ptr<PlayerUpdate> m_PlayerUpdate;

Fireballs and Spatialization576

public:

 // From Graphics : Component

 void draw(VertexArray& canvas) override;

 void assemble(VertexArray& canvas,

 shared_ptr<Update> genericUpdate,

 IntRect texCoords) override;

};

To begin, we added the necessary include directives and forward declarations for the Animator

and PlayerUpdate classes so that we can refer to them in this code file. Next, we have all the

private declarations.

The FloatRect pointer called m_Position holds the position. The integer m_VertexStartIndex, as

with all our Graphics derived classes, will hold the position of the first vertex in the VertexArray.

The Boolean pointer m_FacingRight will hold the address of the Boolean from the FireballUpdate

class that determines which direction the fireball is heading.

The Animator instance will handle looping through the three frames of animation associated

with the fireball, and IntRect. m_SectionToDraw will hold the texture coordinates of the current

frame of animation.

The shared_ptr<PlayerUpdate> called m_PlayerUpdate will allow the FireballGraphics class

to call all the public functions of the FireballUpdate class.

Next, we have all the public declarations, but we only need the two overridden functions of

assemble and draw. I won’t waste time going through the parameters again; it is much more

interesting to see what happens inside these functions.

Coding FireballGraphics.cpp
We will code FireballGraphics.cpp it in a couple of stages. First, add the code for the include

directives and the assemble function:

#include "FireballGraphics.h"

#include "Animator.h"

#include "FireballUpdate.h"

void FireballGraphics::assemble(

 VertexArray& canvas,

Chapter 20 577

 shared_ptr<Update> genericUpdate,

 IntRect texCoords)

{

 shared_ptr<FireballUpdate> fu =

 static_pointer_cast

 <FireballUpdate>(genericUpdate);

 m_Position = fu->getPositionPointer();

 m_FacingRight = fu->getFacingRightPointer();

 m_Animator = new Animator(

 texCoords.left,

 texCoords.top,

 3,// 6 frames

 texCoords.width * 3,

 texCoords.height,

 6);// FPS

 // Get the first frame of animation

 m_SectionToDraw =

 m_Animator->getCurrentFrame(false);

 m_VertexStartIndex =

 canvas.getVertexCount();

 canvas.resize(canvas.getVertexCount() + 4);

 const int uPos = texCoords.left;

 const int vPos = texCoords.top;

 const int texWidth = texCoords.width;

 const int texHeight = texCoords.height;

 canvas[m_VertexStartIndex].texCoords.x =

 uPos;

 canvas[m_VertexStartIndex].texCoords.y =

 vPos;

 canvas[m_VertexStartIndex + 1].texCoords.x =

 uPos + texWidth;

 canvas[m_VertexStartIndex + 1].texCoords.y =

 vPos;

 canvas[m_VertexStartIndex + 2].texCoords.x =

Fireballs and Spatialization578

 uPos + texWidth;

 canvas[m_VertexStartIndex + 2].texCoords.y =

 vPos + texHeight;

 canvas[m_VertexStartIndex + 3].texCoords.x =

 uPos;

 canvas[m_VertexStartIndex + 3].texCoords.y =

 vPos + texHeight;

}

In the preceding code, we start by casting an Update instance into a FireballUpdate instance

and calling the getPositionPointer and getFacingRightPointer functions so that we can track

where the fireball is in the world and which direction it is facing.

Next, we initialize the Animator instance and initialize the starting frame’s texture coordinates by

calling getCurrentFrame. The rest of the code is as we have seen in all the other Graphics derived

classes. We save the starting index of the quad, expand the VertexArray to hold the quad, and

initialize the starting texture coordinates of all the vertices in the VertexArray.

Finally, add the draw function:

void FireballGraphics::draw(VertexArray& canvas)

{

 const Vector2f& position =

 m_Position->getPosition();

 const Vector2f& scale =

 m_Position->getSize();

 canvas[m_VertexStartIndex].position =

 position;

 canvas[m_VertexStartIndex + 1].position =

 position + Vector2f(scale.x, 0);

 canvas[m_VertexStartIndex + 2].position =

 position + scale;

 canvas[m_VertexStartIndex + 3].position =

 position + Vector2f(0, scale.y);

 if (*m_FacingRight)

 {

 m_SectionToDraw =

Chapter 20 579

 m_Animator->getCurrentFrame(false);

 const int uPos = m_SectionToDraw->left;

 const int vPos = m_SectionToDraw->top;

 const int texWidth = m_SectionToDraw->width;

 const int texHeight = m_SectionToDraw->height;

 canvas[m_VertexStartIndex].texCoords.x =

 uPos;

 canvas[m_VertexStartIndex].texCoords.y =

 vPos;

 canvas[m_VertexStartIndex + 1].texCoords.x =

 uPos + texWidth;

 canvas[m_VertexStartIndex + 1].texCoords.y =

 vPos;

 canvas[m_VertexStartIndex + 2].texCoords.x =

 uPos + texWidth;

 canvas[m_VertexStartIndex + 2].texCoords.y =

 vPos + texHeight;

 canvas[m_VertexStartIndex + 3].texCoords.x =

 uPos;

 canvas[m_VertexStartIndex + 3].texCoords.y =

 vPos + texHeight;

 }

 else

 {

 // Doesn't make much difference to

 // fire which order the frames are drawn

 // But front must be at front duh!!!!

 m_SectionToDraw = m_Animator->getCurrentFrame(true);

 // reversed

 const int uPos = m_SectionToDraw->left;

 const int vPos = m_SectionToDraw->top;

 const int texWidth = m_SectionToDraw->width;

 const int texHeight = m_SectionToDraw->height;

 canvas[m_VertexStartIndex].texCoords.x =

 uPos;

Fireballs and Spatialization580

 canvas[m_VertexStartIndex].texCoords.y =

 vPos;

 canvas[m_VertexStartIndex + 1].texCoords.x =

 uPos - texWidth;

 canvas[m_VertexStartIndex + 1].texCoords.y =

 vPos;

 canvas[m_VertexStartIndex + 2].texCoords.x =

 uPos - texWidth;

 canvas[m_VertexStartIndex + 2].texCoords.y =

 vPos + texHeight;

 canvas[m_VertexStartIndex + 3].texCoords.x =

 uPos;

 canvas[m_VertexStartIndex + 3].texCoords.y =

 vPos + texHeight;

 }

}

We can break the preceding code into three simple sections: the starting section, the if block

section, and the else block section.

In the starting section, the vertex positions are updated. They will be moving in most frames of

the game except when the game is paused, or when the fireball is waiting for the random interval

to end before zooming off again.

The if section tests if the fireball is facing right. If it is, the texture coordinates are assigned to

the appropriate vertices. If the else section executes the texture coordinates are assigned to the

vertices and horizontally flipped so the fireball is facing to the left.

Next, we will use our two new classes.

Building some fireballs in the factory
In this section, we will add code to the Factory class to instantiate some fireballs in the game.

Add two new include directives to Factory.cpp:

#include "FireballGraphics.h"

#include "FireballUpdate.h"

Chapter 20 581

Add more code to the factory after the platforms but before the rain-related code as shown next:

// Fireballs

for (int i = 0; i < 12; i++)

{

 GameObject fireball;

 shared_ptr<FireballUpdate> fireballUpdate =

 make_shared<FireballUpdate>(

 levelUpdate->getIsPausedPointer());

 fireballUpdate->assemble(levelUpdate, playerUpdate);

 fireball.addComponent(fireballUpdate);

 shared_ptr<FireballGraphics> fireballGraphics =

 make_shared<FireballGraphics>();

 fireballGraphics->assemble(canvas,

 fireballUpdate,

 IntRect(870, 0, 32, 32));

 fireball.addComponent(fireballGraphics);

 gameObjects.push_back(fireball);

}

//end fireballs

In the preceding code, a for loop iterates 12 times. Each time through the loop a fireball is created

and a GameObject is added to the gameObjects vector.

The usual procedure for creating each instance is followed:

1.	 Create a GameObject instance.

2.	 Create an Update derived shared pointer adding any required constructor parameters to

the call to new.

3.	 Call the assemble function.

4.	 Add the Update derived instance to the GameObject with the addComponent function.

5.	 Repeat for the Graphics derived shared pointer.

We are ready to see our fireballs in action!

Fireballs and Spatialization582

Running the code
Now our fireballs are ready! Run the game and gaze in awe (but not forgetting to use the radar

and the spatialized sound to keep out the way) at the fireballs we have coded.

Figure 20.2: Fireballs

We can also hear the directional sound. The sound tells you where a fireball is coming from, and

the minimap warns you in advance if you need to get out of the way.

Summary
In this chapter, we have learned what spatialization is and that it enables us to add direction to

sound in our games. We went on to learn the theory of how SFML handles spatialization. We then

upgraded the SoundEngine class to make spatialized noises and finally coded the fireball-related

classes (Graphics and Update derived) that make spatialized sounds and launch some fireballs in

the game. In the next chapter, we will add a cool parallax background and a somewhat stunning

shader effect.

21
Parallax Backgrounds and
Shaders

This is the last chapter where we will be working on our game. It will be fully playable with all

the features by the end. Here is what we will do to wrap up the Run game:

•	 Learn about OpenGL, shaders, and the Graphics Library Shading Language (GLSL)

•	 Finish the CameraGraphics class by implementing a scrolling background and a shader

•	 Code a shader for the game by using someone else’s code

•	 Run the completed game

The code for the completion of this chapter can be found in the Run7 folder. Let’s get started by

learning about the OpenGL, shaders and GLSL.

Learning about OpenGL, shaders, and GLSL
The Open Graphics Library (OpenGL) is a programming library that handles 2D as well as 3D

graphics. OpenGL works on all major desktop operating systems, and there is also a version that

works on mobile devices, known as OpenGL ES.

OpenGL was originally released in 1992. It has been refined and improved over more than twenty

years. Furthermore, graphics card manufacturers design their hardware to make it work well with

OpenGL. The point of mentioning this is not to give you a history lesson but to explain that it

would be a fool’s errand to try and improve upon OpenGL and use it in 2D (and 3D games) on the

desktop, especially if we want our game to run on more than just Windows, which is the obvious

choice. We are already using OpenGL because SFML uses OpenGL.

Parallax Backgrounds and Shaders584

Shaders are programs that run on the GPU itself. We’ll find out more about them in the following

section.

The programmable pipeline and shaders
Through OpenGL, we have access to what is called a programmable pipeline. The program-

mable pipeline enables us to send our shader programs off to be drawn, each frame, with the

RenderWindow instance’s draw function. We can also write code that runs on the GPU that can

manipulate every pixel independently, after the call to draw. This is a very powerful feature.

This extra code that runs on the GPU is called a shader program. We can write code to manipulate

the geometry (position) of our graphics in a vertex shader. We can also write code that manipu-

lates the appearance of every pixel individually in code. This is known as a fragment shader. In

addition, there are other shaders, such as compute and geometry shaders, which we will leave

out for this discussion.

Although we will not be exploring shaders in great depth, we will explore some relatively simple

shader code using the GL Shader Language (GLSL), which is the language you need to use in

this context. In our Run project, we will utilize someone else’s quite complex GLSL shader code

for impressive effects.

In OpenGL, everything is a point, a line, or a triangle. In addition, we can attach colors and textures

to this basic geometry and combine these elements to make the complex graphics that we see in

today’s modern games. These are collectively known as primitives. We have access to the OpenGL

primitives through the SFML primitives and VertexArray, as well as the Sprite and Shape classes.

In addition to primitives, OpenGL uses matrices. Matrices are a method and structure for perform-

ing arithmetic. This arithmetic can range from extremely simple high-school-level calculations,

such as moving (translating) a coordinate, to quite complex, such as performing more advanced

mathematics, for example, to convert our game world coordinates into OpenGL screen coordi-

nates that the GPU can use. Fortunately, it is this complexity that SFML handles for us behind

the scenes. SFML also allows us to handle OpenGL directly.

If you want to find out more about OpenGL, you can get started here: http://

learnopengl.com/#!Introduction. If you want to use OpenGL directly, along-

side SFML, you can read this article to find out more: https://www.sfml-dev.org/

tutorials/2.5/window-opengl.php.

http://learnopengl.com/#!Introduction
http://learnopengl.com/#!Introduction
https://www.sfml-dev.org/tutorials/2.5/window-opengl.php
https://www.sfml-dev.org/tutorials/2.5/window-opengl.php

Chapter 21 585

A game can have many shaders. We can then attach different shaders to different game objects

to create the desired effects. We will only have one vertex shader in this game, and we will apply

it to the background of our game in every frame using a separate draw call. In SFML, you attach

a shader to a draw call, and it affects everything in the draw call.

However, when you see how to attach a shader to a draw call, it will be plain that it is trivial to

have more shaders.

We will follow these steps:

1.	 First, we need the code for the shader that will be executed on the GPU. We will acquire

that in the Coding a shader for the game section.

2.	 Then, we need to compile that code using SFML C++ code. Visual Studio does not compile

shaders for us.

3.	 Finally, we need to attach the shader to the appropriate draw function call in the draw

function of our game.

GLSL is a language and it also has its own types, and variables of those types, which can be declared

and utilized. Furthermore, we can interact with the shader program’s variables from our C++ code.

As we will see, GLSL has some syntax similarities to C++.

Coding a hypothetical fragment shader
In this section, we will explore some simple, hypothetical code. We will not add this code to our

Run project. Here is the code from a relatively simple shader called fragShader.frag:

// attributes from vertShader.vert

varying vec4 vColor;

varying vec2 vTexCoord;

// uniforms

uniform sampler2D uTexture;

uniform float uTime;

void main() {

 float coef = sin(gl_FragCoord.y * 0.1 + 1 * uTime);

 vTexCoord.y += coef * 0.03;

 gl_FragColor = vColor * texture2D(uTexture, vTexCoord);

}

Parallax Backgrounds and Shaders586

The first four lines (excluding comments) are the variables that the fragment shader will use,

but they are not ordinary variables. The first type we can see is varying. varying is for variables

that are in scope between both shaders. Next, we have the uniform variables. These variables

can be manipulated directly from our C++ code. We will see how we do this soon but on a more

complex shader.

In addition to the varying and uniform types, each of the variables also has a more conventional

type that defines the actual data, as follows:

•	 vec4 is a vector with four values.

•	 vec2 is a vector with two values.

•	 sampler2d will hold a texture.

•	 float is just like a float data type in C++.

The code inside the main function is executed. If we look closely at the code in main, we will

see each of the variables in use. Exactly what this code does is beyond the scope of the book. In

summary, however, the texture coordinates (vTexCoord) and the color of the pixels/fragments

(glFragColor) are manipulated by several mathematical functions and operations. Remember

that this executes for each pixel involved in the draw function, which is called on each frame of

our game. Furthermore, be aware that uTime is passed in as a different value for each frame. The

result would be to make the graphics exhibit a rippled effect.

Coding a hypothetical vertex shader
In this section, we will see some simple hypothetical code for a vertex shader. We will not use

this code in the Run project. Here is the code from the hypothetical vertShader.vert file. You

don’t need to code this:

//varying "out" variables to be used in the fragment shader

varying vec4 vColor;

varying vec2 vTexCoord;

void main() {

 vColor = gl_Color;

 vTexCoord = (gl_TextureMatrix[0] * gl_MultiTexCoord0).xy;

 gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

}

Chapter 21 587

First of all, notice the two varying variables, the ones that begin with v. These are the very same

variables that we manipulated back in the fragment shader. In the main function, the code ma-

nipulates the position of each and every vertex. How the code works is beyond the scope of this

book, but there is some quite in-depth mathematics going on behind the scenes. If it interests

you, then exploring GLSL further will be fascinating.

In the next section, we will see how to prepare and load a real shader program as well as pass

values (varyings) to each frame. We will use a shader program way in advance of the hypothetical

shaders that we have just looked at.

Finishing the CameraGraphics class
In this section, we will revisit, amend, and add to our CameraGraphics class. First, we will add

some background and shader-related variables to our CameraGraphics.h file. At the end of the

private section of CameraGraphics.h, add the following variables:

//For the shaders and parallax background

Shader m_Shader;

bool m_ShowShader = false;

bool m_BackgrounsAreFlipped = false;

Clock m_ShaderClock;

Vector2f m_PlayersPreviousPosition;

Texture m_BackgroundTexture;

Sprite m_BackgroundSprite;

Sprite m_BackgroundSprite2;

In the preceding code we have an SFML Shader called m_Shader and a Boolean called m_ShowShader,

which we can use to track when to show the shader or not. For this game, we will flip between

ten seconds of showing the shader and ten seconds of showing the parallax background.

The Boolean m_BackgroundsAreFlipped will be used to determine whether the texture that rep-

resents the background is horizontally reversed. We do this to seamlessly join one background

image to multiple instances of itself to create a smooth scrolling effect.

Clock m_ShaderClock is interesting as it will be the input value for one of the shader’s varying

values.

The Vector2f called m_PlayersPreviousPosition will allow us to know where the player was be-

fore the last update. We will see how this is useful when we add more code to the CameraGraphics.

cpp file.

Parallax Backgrounds and Shaders588

The Texture instance called m_BackgroundTexture is a separate texture for the background image.

This is entirely separate from the texture atlas that holds everything else.

The Sprite called m_BackgroundSprite is for the background image. The Sprite m_

BackgroundSprite2 is to show the reversed copy of the background.

Now in the CameraGraphics constructor in CameraGraphics.cpp, just before the end of the closing

curly brace, add this new code:

// Initialize the background sprites

m_BackgroundTexture.loadFromFile(

 "graphics/backgroundTexture.png");

m_BackgroundSprite.setTexture(m_BackgroundTexture);

m_BackgroundSprite2.setTexture(m_BackgroundTexture);

m_BackgroundSprite.setPosition(0, -200);

// Initialize the shader

m_Shader.loadFromFile(

 "shaders/glslsandbox109644", sf::Shader::Fragment);

if (!m_Shader.isAvailable())

{

 std::cout << "The shader is not available\n";

}

m_Shader.setUniform(

 "resolution", sf::Vector2f(2500, 2500));

m_ShaderClock.restart();

The preceding code loads the background texture and attaches it to both of our new sprites. The

first of the background sprites is positioned to fill the screen behind the player.

Next, we load the shader using the loadFromFile function, check that the shader is available by

calling the isAvailable function, and set the value of the uniform variable in the shader code

with the setUniform function. The value resolution corresponds to a uniform variable declared

within the shader code itself; the Vector2f is assigned to it and used within the shader code.

Lastly, we call restart on m_ShaderClock to set it to ticking.

Chapter 21 589

Finally, in the draw function, just after the function call shown next:

m_Window->setView(m_View);

And just before the code shown next:

// Draw the time UI but only in the main camera

if (!m_IsMiniMap)

{

Add the code that does the drawing. I have left in the above two lines and highlighted them. All

the regular formatted code in between is the new code. Add it all at once to avoid mixing up

the multitude of if, else, and curly brackets, and then we will break it up and go through it in

smaller chunks:

 m_Window->setView(m_View);

 /// Background stuff

 Vector2f movement;

 movement.x = m_Position->left -

 m_PlayersPreviousPosition.x;

 movement.y = m_Position->top -

 m_PlayersPreviousPosition.y;

 if (m_BackgrounsAreFlipped)

 {

 m_BackgroundSprite2.setPosition(

 m_BackgroundSprite2.getPosition().x

 + movement.x / 6,

 m_BackgroundSprite2.getPosition().y

 + movement.y / 6);

 m_BackgroundSprite.setPosition(

 m_BackgroundSprite2.getPosition().x

 + m_BackgroundSprite2.getTextureRect().getSize().x,

 m_BackgroundSprite2.getPosition().y);

 if (m_Position->left >

 m_BackgroundSprite.getPosition().x +

 (m_BackgroundSprite.getTextureRect().getSize().x / 2))

Parallax Backgrounds and Shaders590

 {

 m_BackgrounsAreFlipped = !m_BackgrounsAreFlipped;

 m_BackgroundSprite2.setPosition(

 m_BackgroundSprite.getPosition());

 }

 }

 else

 {

 //cout << mBackgrounsAreFlipped << endl;

 m_BackgroundSprite.setPosition(

 m_BackgroundSprite.getPosition().x - movement.x /

 6, m_BackgroundSprite.getPosition().y + movement.y / 6);

 m_BackgroundSprite2.setPosition(

 m_BackgroundSprite.getPosition().x +

 m_BackgroundSprite.getTextureRect().getSize().x,

 m_BackgroundSprite.getPosition().y);

 if (m_Position->left >

 m_BackgroundSprite2.getPosition().x +

 (m_BackgroundSprite2.getTextureRect().getSize().x / 2))

 {

 m_BackgrounsAreFlipped = !m_BackgrounsAreFlipped;

 m_BackgroundSprite.setPosition(

 m_BackgroundSprite2.getPosition());

 }

 }

 m_PlayersPreviousPosition.x = m_Position->left;

 m_PlayersPreviousPosition.y = m_Position->top;

 // Set the others parameters who

 //need to be updated every frame

 m_Shader.setUniform("time",

Chapter 21 591

 m_ShaderClock.getElapsedTime().asSeconds());

 sf::Vector2i mousePos =

 m_Window->mapCoordsToPixel(m_Position->getPosition());

 m_Shader.setUniform("mouse",

 sf::Vector2f(mousePos.x, mousePos.y + 1000));

 if (m_ShaderClock.getElapsedTime().asSeconds() > 10)

 {

 m_ShaderClock.restart();

 m_ShowShader = !m_ShowShader;

 }

 if (!m_ShowShader)

 {

 m_Window->draw(m_BackgroundSprite, &m_Shader);

 m_Window->draw(m_BackgroundSprite2, &m_Shader);

 }

 else// Show the parallax background

 {

 m_Window->draw(m_BackgroundSprite);

 m_Window->draw(m_BackgroundSprite2);

 }

 // Draw the time UI but only in the main camera

 if (!m_IsMiniMap)

We will now break up that large expanse of code in the upcoming section to understand it better.

Breaking up the new draw code
In breaking up the preceding code, first, we see this:

/// Background stuff

Vector2f movement;

movement.x = m_Position->left -

m_PlayersPreviousPosition.x;

movement.y = m_Position->top -

 m_PlayersPreviousPosition.y;

Parallax Backgrounds and Shaders592

The preceding code declares a Vector2f called movement and sets x and y values using the last

position of the player in the previous frame.

Next up, we have this code:

if (m_BackgrounsAreFlipped)

{

 m_BackgroundSprite2.setPosition(

 m_BackgroundSprite2.getPosition().x

 + movement.x / 6,

 m_BackgroundSprite2.getPosition().y

 + movement.y / 6);

 m_BackgroundSprite.setPosition(

 m_BackgroundSprite2.getPosition().x

 + m_BackgroundSprite2.getTextureRect().getSize().x,

 m_BackgroundSprite2.getPosition().y);

 if (m_Position->left >

 m_BackgroundSprite.getPosition().x +

 (m_BackgroundSprite.getTextureRect().getSize().x / 2))

 {

 m_BackgrounsAreFlipped = !m_BackgrounsAreFlipped;

 m_BackgroundSprite2.setPosition(

 m_BackgroundSprite.getPosition());

 }

}

The preceding code executes when m_BackgroundsAreFlipped is true. We will see that the next

block executes when m_BackgroundsAreFlipped is false. In the block above, m_BackgroundSprite2

is positioned before m_BackgroundSprite. Here, m_BackgroundSprite2 has its position set based

on the change in the player’s position from the last frame but divided by 6. The number 6 is a

“magic” number that looks nice. If you increase the number 6, the background will scroll slower,

and if you decrease 6, the background will scroll faster. mBackgroundSprite has its position set

relative to the right-hand edge of m_BackgroundSprite2. Finally, in the preceding code, there

is an if statement that executes when the position of the camera exceeds the left-hand edge

of m_BackgroundSprite added to half the texture size.

Chapter 21 593

This would mean that the camera is focussing on the center of m_BackgroundSprite, and

mBackgroundSprite2 is not “in shot” at all. This is the perfect time to switch which background

is drawn first. Then, as the camera proceeds to the right, it will appear that the city is endless.

Inside the if statement, the m_BackgroundsAreFlipped Boolean is flipped, as are the positions

of the backgrounds.

Next up, we have the other part of the code that we have just discussed:

 else

 {

 //cout << mBackgrounsAreFlipped << endl;

 m_BackgroundSprite.setPosition(

 m_BackgroundSprite.getPosition().x - movement.x /

 6, m_BackgroundSprite.getPosition().y + movement.y / 6);

 m_BackgroundSprite2.setPosition(

 m_BackgroundSprite.getPosition().x +

 m_BackgroundSprite.getTextureRect().getSize().x,

 m_BackgroundSprite.getPosition().y);

 if (m_Position->left >

 m_BackgroundSprite2.getPosition().x +

 (m_BackgroundSprite2.getTextureRect().getSize().x / 2))

 {

 m_BackgrounsAreFlipped = !m_BackgrounsAreFlipped;

 m_BackgroundSprite.setPosition(

 m_BackgroundSprite2.getPosition());

 }

 }

The preceding code completes the logic of the flipping background by drawing the first back-

ground before the second background until the camera is focused on the second background

and it is all flipped again.

Next, we have this code:

 m_PlayersPreviousPosition.x = m_Position->left;

Parallax Backgrounds and Shaders594

 m_PlayersPreviousPosition.y = m_Position->top;

 // Set the others parameters who need

 //to be updated every frame

 m_Shader. setUniform ("time",

 m_ShaderClock.getElapsedTime().asSeconds());

 sf::Vector2i mousePos =

 m_Window->mapCoordsToPixel(m_Position->getPosition());

 m_Shader.setUniform("mouse",

 sf::Vector2f(mousePos.x, mousePos.y + 1000));

In the preceding code, first, we see where we save the player’s position to m_PlayersPreviousPosition.

Remember that this is how we determine the movement of the background at the start of the draw

function. Next, we call the setUniform function on our Shader instance and pass in the name of

the uniform variable to change and the current time in seconds from our Clock instance. Next,

we get the pixel coordinates of the mouse and pass that in to set the mouse uniform in the shader.

Next up is this code:

 if (m_ShaderClock.getElapsedTime().asSeconds() > 10)

 {

 m_ShaderClock.restart();

 m_ShowShader = !m_ShowShader;

 }

In the preceding code, we test if ten seconds have elapsed since the clock was previously reset,

and if so, then we reset the clock to zero and flip the value of m_ShowShader to alternate between

showing the shader and showing the parallax background.

Finally, for what was the biggest block of code in the game:

 if (!m_ShowShader)

 {

 m_Window->draw(m_BackgroundSprite, &m_Shader);

 m_Window->draw(m_BackgroundSprite2, &m_Shader);

 }

 else// Show the parallax background

Chapter 21 595

 {

 m_Window->draw(m_BackgroundSprite);

 m_Window->draw(m_BackgroundSprite2);

 }

In the preceding code, if we are not showing the shader, we will draw the background with and

without the shader.

Coding a shader for the game
The only remaining task is that the file that the shader code is attempting to load is empty. The

code is publicly available, but I didn’t write the code and am likely not permitted to distribute

it. Visit https://glslsandbox.com/e#109644.0 and click on the show code. Copy and paste all

the nearly 400 lines of code into the file shaders/glsldandbox109644. Be sure to leave a friendly

comment or thank you to the talented shader programmer who published the code. Save the file

and we are ready to go. The shader code is beyond the scope of the book.

In the next section, we will see the shader in all its glory.

Running the completed game
Run the game and enjoy the new background and fire rolling countryside effect shader, which is

alternated every ten seconds.

Figure 21.1: Shader

https://glslsandbox.com/e#109644.0

Parallax Backgrounds and Shaders596

Wow! You probably agree that the capabilities of shaders and shader programmes are quite

impressive.

Survive for ten seconds and the image will switch to our scrolling background, as shown in the

next figure.

Figure 21.2: Background

That’s it. Our game is completed.

Summary
When you first opened this big doorstop of a book, the back page probably seemed a long way

off. But it wasn’t too tough, I hope.

The point is you are here now and, hopefully, you have good insights into how to build games

using C++.

The point of this section is to congratulate you on a fine achievement but also to point out that this

page probably shouldn’t be the end of your journey. If, like me, you get a bit of a buzz whenever

you make a new game feature come to life, then you probably want to learn more.

Chapter 21 597

Further reading
It might surprise you to hear that, even after all these hundreds of pages, we have only dipped

our toes into C++. Even the topics we did cover could be covered in more depth, and there are

numerous – some quite significant – topics that we haven’t even mentioned. With this in mind,

let’s take a look at what might be next.

If you absolutely must have a formal qualification, then the only way to proceed is with a formal

education. This, of course, is expensive and time-consuming, and I can’t really help any further.

On the other hand, if you want to learn on the job, perhaps while starting work on a game you

will eventually release, then what follows is a discussion of what you might like to do next.

Possibly the toughest decision we face with each project is how to structure our code. In my opin-

ion, the absolute best source of information on how to structure your C++ game code is http://

gameprogrammingpatterns.com/. Some of the discussion is around concepts that aren’t covered

in this book, but much of it will be completely accessible. If you understand classes, encapsulation,

pure virtual functions, and singletons, dive into this website.

Shaders are a bigger part of game development than we have seen in this brief introduction. If

you want to become an expert on shaders, I recommend reading Anton’s OpenGL 4 Tutorials Kin-

dle Edition available from Amazon. For some reason, the book seems suppressed slightly in the

search results, and so typing the entire title into the Amazon search box might be required. It is

cheaper and more comprehensive than most of the other books on the topic. It is also important

to know that the way that SFML deals with shaders is different to using shaders in pure OpenGL.

It would be an excellent idea to read a little bit of OpenGL (see below) or if you are sticking with

SFML (a perfectly viable strategy), read how SFML abstracts shaders here: https://www.sfml-

dev.org/tutorials/2.6/graphics-shader.php.

Regarding OpenGL, there is a mountain of textbooks available. If you like videos, I can recom-

mend Computer Graphics with Modern OpenGL and C++ on Udemy. If you want a textbook, try

OpenGL Programming Guide or Learn OpenGL: Learn modern OpenGL graphics programming in a

step-by-step fashion.

Of course, you may want to branch out and do something completely different, especially if you

want to make a state-of-the-art 3D game. In this case, you should investigate something like

Unreal Engine, which also uses C++; for 2D (perhaps with a bit of 3D), try the Godot engine.

I have already pointed out the SFML website throughout this book. If you haven’t visited it yet,

please take a look at it: http://www.sfml-dev.org/.

http://gameprogrammingpatterns.com/
http://gameprogrammingpatterns.com/
https://www.sfml-dev.org/tutorials/2.6/graphics-shader.php
https://www.sfml-dev.org/tutorials/2.6/graphics-shader.php
http://www.sfml-dev.org/

Parallax Backgrounds and Shaders598

When you come across C++ topics you don’t understand (or have never even heard of), the most

concise and organized C++ tutorials can be found at http://www.cplusplus.com/doc/tutorial/.

The alternative is ChatGPT. ChatGPT is great for asking things like, “Explain this code,” or, “How

can I make this code better/faster?”

In addition to this, there are four more SFML books you might like to look into. They are all good

books but they vary greatly in who they are suitable for. Note these books are a little out of date

but I think still useful. Here is a list of the books in ascending order, from most beginner-focused

to most technical:

•	 SFML Blueprints by Maxime Barbier: https://www.packtpub.com/game-development/

sfml-blueprints

•	 SFML Game Development By Example by Raimondas Pupius: https://www.packtpub.com/

game-development/sfml-game-development-example

•	 SFML Game Development by Jan Haller, Henrik Vogelius Hansson, and Artur Moreira:

https://www.packtpub.com/game-development/sfml-game-development

You also might like to consider adding life-like 2D physics to your game. SFML works perfectly

with the Box2d physics engine. This URL is for the official website: http://box2d.org/. The fol-

lowing URL takes you to probably the best guide to using it with C++: http://www.iforce2d.net/.

If you feel like you are late to the C++ game programming party, don’t worry. I thought I was late

twenty-five years ago, but more C++ games are being made today than ever before. If you want

to be really cutting edge, consider investigating blockchain. Blockchain enables Web3 gaming, a

new type of gaming that uses blockchain technology to create a more immersive and rewarding

experience for players. In Web3 games, players own their in-game assets, which can be traded or

used in other games. This creates a more open and compelling gaming ecosystem. Imagine that

someone plays a Pokemon game and wins a digital Pokemon card in a digital wallet app. They

can then trade that card, which might be rare or even unique, with other people online or in the

school playground. This is the promise of blockchain gaming. Unfortunately, most attempts so

far have resulted in mediocre games and even financial scams. I bet that whoever gets this right

will create an explosion of interest in the genre. My point is that you are not late to C++ game

programming. Things are only just getting started.

Most importantly, thanks very much for buying this book, and keep making games!

http://www.cplusplus.com/doc/tutorial/
https://www.packtpub.com/game-development/sfml-blueprints
https://www.packtpub.com/game-development/sfml-blueprints
https://www.packtpub.com/game-development/sfml-game-development-example
https://www.packtpub.com/game-development/sfml-game-development-example
https://www.packtpub.com/game-development/sfml-game-development
http://box2d.org/
http://www.iforce2d.net/

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as

industry leading tools to help you plan your personal development and advance your career. For

more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from

over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of

free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packt.com
http://www.packt.com

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

C++ Game Animation Programming – Second Edition

Michael Dunsky

Mr. Gabor Szauer

ISBN: 978-1-80324-652-9

•	 Create simple OpenGL and Vulkan applications and work with shaders

•	 Explore the glTF file format, including its design and data structures

•	 Design an animation system with poses, clips, and skinned meshes

•	 Find out how vectors, matrices, quaternions, and splines are used in game development

https://www.packtpub.com/product/c-game-animation-programming-second-edition/9781803246529

Other Books You May Enjoy602

•	 Discover and implement ways to seamlessly blend character animations

•	 Implement inverse kinematics for your characters using CCD and FABRIK solvers

•	 Understand how to render large, animated crowds efficiently

•	 Identify and resolve performance issues

Other Books You May Enjoy 603

Hands-On Unity Game Development – Fourth Edition

Nicolas Alejandro Borromeo

Juan Gabriel Gomila Salas

ISBN: 978-1-83508-571-4

•	 Build a game that includes gameplay, player and non-player characters, assets, anima-

tions, and more

•	 Learn C# and Visual Scripting to customize player movements, the UI, and game physics

•	 Implement Game AI to build a fully functional enemy capable of detecting and attacking

•	 Use Universal Render Pipeline (URP) to create high-quality visuals with Unity

•	 Create win-lose conditions using design patterns such as Singleton and Event Listeners

•	 Implement realistic and dynamic physics simulations with the new Physics System

https://www.packtpub.com/product/hands-on-unity-game-development-fourth-edition/9781835085714

Other Books You May Enjoy604

Unreal Engine 5 Game Development with C++ Scripting

Zhenyu George Li

ISBN: 978-1-80461-393-1

•	 Develop coding skills in Microsoft Visual Studio and the Unreal Engine editor

•	 Discover C++ programming for Unreal Engine C++ scripting

•	 Understand object-oriented programming concepts and C++-specific syntax

•	 Explore NPC controls, collisions, interactions, navigation, UI, and the multiplayer mech-

anism

•	 Use the predefined Unreal Engine classes and the programming mechanism

•	 Write code to solve practical problems and accomplish tasks

•	 Implement solutions and methods used in game development

https://www.packtpub.com/product/unreal-engine-5-game-development-with-c-scripting/9781804613931

Other Books You May Enjoy 605

Data Structures and Algorithms with the C++ STL

John Farrier

ISBN: 978-1-83546-855-5

•	 Streamline data handling using the std::vector

•	 Master advanced usage of STL iterators

•	 Optimize memory in STL containers

•	 Implement custom STL allocators

•	 Apply sorting and searching with STL algorithms

•	 Craft STL-compatible custom types

•	 Manage concurrency and ensure thread safety in STL

•	 Harness the power of parallel algorithms in STL

https://www.packtpub.com/product/data-structures-and-algorithms-with-the-c-stl/9781835468555

Other Books You May Enjoy606

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and

apply today. We have worked with thousands of developers and tech professionals, just like you,

to help them share their insight with the global tech community. You can make a general appli-

cation, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished Beginning C++ Game Programming, Third Edition, we’d love to hear your

thoughts! If you purchased the book from Amazon, please click here to go straight to the

Amazon review page for this book and share your feedback or leave a review on the site that you

purchased it from.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

http://authors.packtpub.com

Index

A
abstract class 419, 420
address of operator 286-289
advanced OOP

inheritance 415
polymorphism 418, 419

algorithms 66
Animator class

coding 521-524
arithmetic operators 54, 55
array notation 122
arrays 121, 295

declaring 121, 122
elements, initializing 122
for games 123

arrow operator 295
assignment operators 54, 55
attenuation 560
auto keyword 303
axe

animating 165-167
axis-aligned bounding box (AABB) collision

detection 212

B
background

randomly generated scrolling background,
creating 273-279

using 280-282
background sprite

double buffering 42, 43
Ball class

coding 206-209
using 209, 210

Bat class
Bat.cpp, coding 195-197
Bat.h 194
Bat.h, coding 192, 193
coding 192
constructor functions 193, 194
main function, coding 198-202
using 198-202

bee
drawing 64, 65
moving 76-79
preparing 61, 62

BFXR
URL 24

Bloater 311

Index608

block 30
Boolean 333
branches 142

drawing 146
growing 142
moving 147-150
preparing 143, 144
sprites, updating in each frame 144-146

bugs 45
Bullet class

coding 332
getPosition function 340
getShape function 340
header file, coding 332-335
shoot function, coding 335-337
source file, coding 335
stop function 340
update function 340, 341

bullets
bullet array 342, 343
Bullet class, including 342
control variables 342
drawing, in each frame 347, 348
gun, reloading to shoot 343-345
making fly 341
shooting 345-347
updating, in each frame 347

C
C# 7
C++20 55, 215
C++ programming language 52
C++ game development 6
C++ references 263-267
C++ spaceship operator 215, 216

C++ standard library 383
header files 32

C++ strings 93
declaring 93
manipulating, another way with

StringStream 95, 96
SFML Text and Font 96, 97
string concatenation 94
string length 94, 95
value, assigning 93

C++ variables 48
camera classes

coding 479
CameraGraphics class

draw code, breaking up 591-594
finishing 587-591

CameraGraphics class part 1
coding 484-488

CameraGraphics class part 2
coding 490-495

camera instances
adding, to game 495-498

cameras 478, 479
CameraUpdate class

coding 479-484
Chaser 311
child class 417
chopped logs

animating 165-167
class 32-34, 180-183

extending 416-418
class enumerations 126

declaring 127-129
clock.restart() function 74

Index 609

clouds
adding 59
blowing 80-86
drawing 64, 65
preparing 62-64

code
creating, with comments 28
improving 175
main function 28, 29
presentation 29
syntax 29

code base 4
code files

managing 249-251
collision detection 205, 211-214, 364, 365

player and pickup collision detection 369
rectangle intersection, using 364
scoring 211-214
zombie and bullet collision

detection 365-367
zombie and player collision detection 368

compile errors 44
Component polymorphic type 435
compound assignment operators 55
concrete class 419
configuration errors 44
constants 52
constructor function 192
control flow statements 129
coordinates 25
Crawler 311
crosshair

adding, for player 348-351
C-style code comments 38
C-style comment 28, 38

D
dangling pointer 294
data structures 121
death

handling 167-170
decision making

else keyword, using 69, 70
if keyword, using 69
reader challenge 71
with if and else keywords 67

decrement operator 58, 59
definition 130
delta time 74
dereference operator 286, 290
design pattern 182, 421
directive 32
double buffering 39

background sprite 42, 43
draw calls 478

E
emitter 560
encapsulation 181
entity component programming pattern 398
entity-component system pattern 422

code, running 439
Component class, coding 435
composition, preferring over

inheritance 424, 425
factory pattern 426, 427
GameObject class, coding 432-434
generic GameObject, using 422, 423
Graphics class, coding 436, 437
smart pointers 428

Index610

smart pointers, casting 431
Update class, coding 438, 439

errors
bugs 45
compile errors 44
configuration errors 44
handling 44
link errors 45

expressions 55
assignment 55-57

extended Soldier class 417
extraction operator 119

F
factory class

coding, to use new classes 470
texture coordinates 470-474

factory pattern 426
FireballGraphics class

coding 574, 575
FireballGraphics.cpp

coding 578-580
FireballGraphics.h

coding 575, 576
fireballs

building, in factory 580, 581
code, running 582
coding 565

FireballUpdate class
coding 565-574

font 23
for loops 119, 120
fragment shader 584
frame rate problem 72, 73

Freesound
URL 24

function epilogue 132
function prologue 131
functions 29, 129-131, 183

function body 139
function names 137, 138
function parameters 138
function prototypes 139, 140
function return types 133-137
function scope 140
organizing 140
stack frame 131
values, returning from 30

fundamental types 50

G
game

background, drawing 40
camera instances, adding to 495-498
coding, working with 28
improving 175-177
pausing 89-92
restarting 89-92, 390
running 31, 35, 40, 214, 474, 498, 499, 512,

520, 533, 534
score and message, adding 97-103
setup handling 158, 159
time-bar, adding 104-110

game development 1, 6, 598

game logic
coding 445

game loop 36, 37
coding 251-260
input, obtaining 38

Index 611

scene, drawing 38
scene, updating 38

game programming, with C++
learning, reasons 5-7

Git 9
global scope 143
GL Shader Language (GLSL) 584, 585
graphics module 193
graphics processing unit (GPU) 40

H
header file 18, 32
heads-up display (HUD) 97, 191, 219

drawing 378-381
home screen 378-381
level-up screen 378-381
objects, adding 371-375
Text objects, adding 371-375
updating 375-377

heap 292
high score

loading 383-385
saving 383-385

horde 310, 318-322
hypothetical fragment shader

coding 585, 586
hypothetical vertex shader

coding 586, 587

I
increment operator 57, 58
inheritance 181, 398, 415
initializer list 195

instance 180
integer 29
Integrated Development

Environment (IDE) 8
IntelliSense 9
interactive menu

building 536
MenuGraphics class, coding 543-548
MenuUpdate class, coding 536-543

internal coordinates 25, 27

K
keyboard handling 156
key press

detecting 39
key release

detecting 163, 164
Komika Poster font 24

L
Last In, First Out (LIFO) order 132
LevelUpdate class

coding 446-459
link errors 45
Linux 10
listener 560
local coordinates 27
local variables 132, 141, 185
logical operators 67, 68
loops 114

breaking out 117-119
for loops 119, 120
while loops 114-117

Index612

M
Mac 10
main function 28, 29
map 300

data, adding 301
data, finding 301
data, removing 301
declaring 300
keys, checking 302
key-value pairs, iterating through 302, 303
key-value pairs, looping through 302, 303
size, checking 301

mechanics of game 20
member access operator 295
member variables 185
memory access violation error 294
menu

building, in factory 548-550
game, running 550, 551

MenuGraphics class
coding 543-548

MenuUpdate class
coding 536-543

Mersenne Twister pseudo-random number
generator 452

method 183
multi-line comments 28

N
namespace sf

using 34
non-player characters (NPCs) 33

O
object-oriented programming

(OOP) 6, 32, 34, 180
class 183
need for 182
principles 180
tasks 180

object-oriented programming, principles
encapsulation 181
inheritance 181
polymorphism 181

objects 32, 34
OpenGL ES 97, 583
Open Graphics Library (OpenGL) 583

shaders 401
organizing functions 140

P
parameters 131, 185
parent class 417
Pickup class

coding 352
function definitions, coding 355-360
header file, coding 352-355
using 360-363

pixels 25
platform game 4
PlatformGraphics class

coding 508-511
platforms

building, in factory 511, 512
coding 501

PlatformUpdate class
coding 502, 504
update function, coding 504-507

Index 613

player
allowing, to level up 387-390
drawing 155, 156
preparing 153-155

player animations
coding 524-533

player character
functionality, adding 513

player chopping
detecting 159-163

Player class, Zombie Arena game
building 226
function definitions, coding 233-242
header file, coding 227-232

player controls
coding 514-519

PlayerGraphics class
coding 464-469

player input
handling 156, 157

PlayerUpdate class
coding 460-464

pointers 285, 286
and arrays 295
declaring 287, 288
declaring, to object 295
dereferencing 290, 291
dynamically allocated memory 292-294
initializing 288, 289
passing, to function 294, 295
reinitializing 289, 290
syntax 286, 287

polymorphism 181, 398, 418, 419
Pong 3, 4

reference link 4

Pong bat
class, declaring 183-187
class function definitions 187, 188
functions, declaring 183-187
instance of class, using 189
reference link 184
theory 183
variables, declaring 183-187

Pong project
creating 190, 191

preprocessing 32
preprocessor 32
primitives 584

types 270
private variables 418
programmable pipeline 584
project

creating, in Visual Studio 2022 14-17
project assets 23, 223

adding 24
exploring 24, 25
sound FX, creating 24

project properties
configuring 18-20

protected specifier 418
protected variables 418
public variables 418
Python 7

R
rain

creating 551
creating, in factory 556, 557
game, running 558

Index614

RainGraphics class
coding 551-556

randomly generated scrolling background
creating 273-279
using 280-283

random number generator 66
random numbers 65

generating, in C++ 66
real game

running 43
reference variable 264
RenderWindow 34, 35
Run 4
Run project 397, 398

creating 401-403
Factory class, coding 413-415
game menu 399
game parallax 401
game rain 400
game shader 401
input handling 408-413
main function, coding 403-408

S
scope 77
scope resolution operator 188
score

adding, to game 97-103
scorekeeping 205
screen coordinates 25, 27
SFML features

including 32
SFML frame rate solution 73-76
SFML (Simple and Fast Multimedia

library) 153

SFML sound
playing 171
sound code, adding 171-175
working 170

SFML vertex arrays 267
SFML VideoMode 34, 35
SFML View class 243, 478, 488, 489, 490

game camera, controlling with 243-245
reference link 381

shader 584
coding 595

shader program 584
shared smart pointers 428, 429
shoot function

coding 335-337
explanation 339
gradient, calculating 338
gradient, making positive 338
X and Y ratio, calculating 338, 339

signature 129
Simple Fast Media Library (SFML) 7

download link 12
setting up 12-14
window, opening with 31

singleton 306
smart pointers 428

casting 431
shared pointers 428, 429
unique pointers 430

Soldier class declaration 416
sound effects 23

preparing 386, 387
SoundEngine class

coding 442-445
upgrading 563-565

Index 615

sounds
playing 391
shooting sound, playing 392
sound effects, adding while

player reload 391
sound, playing when getting pickup 393
sound, playing when player is hit 392, 393
splat sound, playing when zombie

is shot 394
spaceship operator 7, 215
spatialization 559, 560

attenuation 560
emitter 560
handling, with SFML 560-562
listener 560

sprite 27, 477
drawing 155, 156
preparing, with texture 40-42

sprite sheet 268-270
stack 132, 292
Standard Template Library

(STL) 6, 285, 297, 305
auto keyword 303
list 297
map 297, 300
set 298
vector 297, 298

static class 306
static function 305
string concatenation 94
StringStream 95
strong_ordering 216
subclassed 418
superclass 417, 418
switch

decisions making with 124, 125

T
tearing 39
texture 23

used, for preparing sprite 40-42
texture coordinates 270
TextureHolder class

background texture 327, 328
function definitions, coding 307-309
header file, coding 306, 307
implementing 305, 306
Player class texture 328, 329
using 310
using, for textures 327

Texture Management 285
Timber 2

features 21
project, planning 20-23

Timberman 2
reference link 3

time-bar
adding, to game 104-110

timing 72
frame rate problem 72, 73
SFML frame rate solution 73-76

tree
drawing 64, 65
preparing 59-61

type 29, 183

U
Unified Modeling Language (UML)

URL 187
unique smart pointer 430
user-defined types 50

Index616

V
values

returning, from function 30
variables 35, 48, 183

constants 52
declaration and initialization, combining 51
declaring 50, 51
initializing 51
manipulating 54
types 48, 49
uniform initialization 52
user-defined types 50
user-defined types, declaring 53
user-defined types, initializing 53

variable scope 140
vector 298

data, accessing 299
data, adding 298
data, removing 299
declaring 298
elements, iterating through 299
elements, looping through 300
size, checking 299

version control systems (VCSs) 9
vertex 270
vertex array 270

building 271, 272
using, to draw 272, 273

vertex shader 584
View class 219
Visual Studio 8, 9
Visual Studio 2022

installing 10, 11
project, creating 14-17

W
while loops 37, 114-117
wild pointer 294

Z
Zombie Arena game 4

assets, adding to project 225
background building, from tiles 270
camera, controlling with

SFML View 243, 245
engine, starting 245-249
graphical assets 224, 225
OOP skills, using 225
planning 220
Player class, building 226
project assets 223
project, creating 221-223
reference link 4
starting 220, 221

Zombie class
using, to create horde 318-322

Zombie.cpp file
coding 313-318

Zombie.h file
coding 310-312

zombies
bringing, to life 322-327
horde, building 310

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily.

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781835081747

2.	 Submit your proof of purchase.

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly.

https://packt.link/free-ebook/9781835081747

	Cover
	Copyright
	Contributors
	Preface
	Chapter 1: Welcome to Beginning C++ Game Programming Third Edition!
	The games we will build
	Timber!!!
	Pong
	Zombie Arena
	Platform game

	Why you should learn game programming using C++ in 2024
	SFML
	Microsoft Visual Studio
	What about Mac and Linux?
	Installing Visual Studio 2022

	Setting up SFML
	Creating a new project in Visual Studio 2022
	Configuring the project properties

	Planning Timber!!!
	The project assets
	Making your own sound FX
	Adding the assets to the project
	Exploring the assets

	Understanding screen and internal coordinates
	Getting started with coding the game
	Making code clearer with comments
	The main function
	Presentation and syntax
	Returning values from a function
	Running the game

	Opening a window using SFML
	Including SFML features
	OOP, classes, and objects
	Using namespace sf
	SFML VideoMode and RenderWindow
	Running the game

	The game loop
	while loops
	C-style code comments
	Input, update, draw, repeat
	Detecting a key press
	Clearing and drawing the scene
	Running the game

	Drawing the game’s background
	Preparing the sprite using a texture
	Double buffering the background sprite
	Running the game

	Handling errors
	Configuration errors
	Compile errors
	Link errors
	Bugs

	Summary
	Frequently asked questions

	Chapter 2: Variables, Operators, and Decisions: Animating Sprites
	Learning all about C++ variables
	Types of variables
	User-defined types

	Declaring and initializing variables
	Declaring variables
	Initializing variables
	Declaring and initializing in one step
	Constants
	Uniform initialization
	Declaring and initializing user-defined types

	Seeing how to manipulate the variables
	C++ arithmetic and assignment operators
	Getting things done with expressions
	Assignment
	Increment and decrement

	Adding clouds, a buzzing bee, and a tree
	Preparing the tree
	Preparing the bee
	Preparing the clouds
	Drawing the tree, the bee, and the clouds

	Random numbers
	Generating random numbers in C++

	Making decisions with if and else
	Logical operators
	C++ if and else
	If they come over the bridge, shoot them!
	Else do this instead
	Reader challenge

	Timing
	The frame rate problem
	The SFML frame rate solution

	Moving the clouds and the bee
	Giving life to the bee
	Blowing the clouds

	Summary
	Frequently Asked Questions

	Chapter 3: C++ Strings, SFML Time: Player Input and HUD
	Pausing and restarting the game
	C++ strings
	Declaring strings
	Assigning a value to strings
	String Concatenation
	Getting the string length
	Manipulating strings another way with StringStream
	SFML Text and SFML Font

	Adding a score and a message
	Adding a time-bar
	Summary
	Frequently asked questions

	Chapter 4: Loops, Arrays, Switch Conditions, Enumerations, and Functions: Implementing Game Mechanics
	Loops
	while loops
	Breaking out of a loop
	for loops

	Arrays
	Declaring an array
	Initializing the elements of an array
	Quickly initializing the elements of an array

	What do these arrays really do for our games?

	Making decisions with switch
	Class enumerations
	Getting started with functions
	Who designed all this weird and frustrating syntax and why is it the way it is?
	Function return types
	Function names
	Function parameters
	The function body
	Function prototypes
	Organizing functions
	Function scope
	A final word on functions – for now

	Growing the branches
	Preparing the branches
	Updating the branch sprites in each frame
	Drawing the branches
	Moving the branches

	Summary
	Frequently asked questions

	Chapter 5: Collisions, Sound, and End Conditions: Making the Game Playable
	Preparing the player (and other sprites)
	Drawing the player and other sprites
	Handling the player’s input
	Handling setting up a new game
	Detecting the player chopping
	Detecting a key being released
	Animating the chopped logs and the axe

	Handling death
	Simple sound effects
	How SFML sound works
	When to play the sounds
	Adding the sound code

	Improving the game and code
	Summary
	Frequently asked questions

	Chapter 6: Object-Oriented Programming – Starting the Pong Game
	Object-oriented programming
	Encapsulation
	Polymorphism
	Inheritance
	Why use OOP?
	What exactly is a class?

	The theory of a Pong bat
	Declaring the class, variables, and functions
	The class function definitions
	Using an instance of a class

	Creating the Pong project
	Coding the Bat class
	Coding Bat.h
	Constructor functions
	Continuing with the Bat.h explanation
	Coding Bat.cpp

	Using the Bat class and coding the main function
	Summary
	Frequently asked questions

	Chapter 7: AABB Collision Detection and Physics – Finishing the Pong Game
	Coding the Ball class
	Using the Ball class
	Collision detection and scoring
	Running the game
	Learning about the C++ spaceship operator
	Summary
	Frequently asked questions

	Chapter 8: SFML Views – Starting the Zombie Shooter Game
	Planning and starting the Zombie Arena game
	Creating a new project
	The project assets
	Exploring the assets
	Adding the assets to the project

	OOP and the Zombie Arena project
	Building the player – the first class
	Coding the Player class header file
	Coding the Player class function definitions

	Controlling the game camera with SFML View
	Starting the Zombie Arena game engine
	Managing the code files
	Starting to code the main game loop
	Summary
	Frequently asked questions

	Chapter 9: C++ References, Sprite Sheets, and Vertex Arrays
	Understanding C++ references
	Summarizing references

	SFML vertex arrays and sprite sheets
	What is a sprite sheet?

	What is a vertex array?
	Building a background from tiles
	Building a vertex array
	Using the vertex array to draw

	Creating a randomly generated scrolling background
	Using the background
	Summary
	Frequently asked questions

	Chapter 10: Pointers, the Standard Template Library, and Texture Management
	Learning about pointers
	Pointer syntax
	Declaring a pointer
	Initializing a pointer
	Reinitializing pointers
	Dereferencing a pointer
	Pointers are versatile and powerful
	Dynamically allocated memory
	Passing a pointer to a function
	Declaring and using a pointer to an object

	Pointers and arrays
	Summary of pointers

	Learning about the Standard Template Library
	What is a vector?
	Declaring a vector
	Adding data to a vector
	Accessing data in a vector
	Removing data from a vector
	Checking the size of a vector
	Looping/iterating through the elements of a vector

	What is a map?
	Declaring a map
	Adding data to a map
	Finding data in a map
	Removing data from a map
	Checking the size of a map
	Checking for keys in a map
	Looping/iterating through the key-value pairs of a map

	The auto keyword
	STL summary

	Summary
	Frequently asked questions

	Chapter 11: Coding the TextureHolder Class and Building a Horde of Zombies
	Implementing the TextureHolder class
	Coding the TextureHolder header file
	Coding the TextureHolder function definitions
	What have we achieved with TextureHolder?

	Building a horde of zombies
	Coding the Zombie.h file
	Coding the Zombie.cpp file
	Using the Zombie class to create a horde
	Bringing the horde to life (or back to life)

	Using the TextureHolder class for all textures
	Changing the way the background gets its textures
	Changing the way the Player class gets its texture

	Summary
	Frequently asked questions

	Chapter 12: Collision Detection, Pickups, and Bullets
	Coding the Bullet class
	Coding the Bullet header file
	Coding the Bullet source file
	Coding the shoot function
	Calculating the gradient in the shoot function
	Making the gradient positive in the shoot function
	Calculating the ratio between X and Y in the shoot function
	Finishing the shoot function explanation

	More bullet functions
	The Bullet class’s update function

	Making the bullets fly
	Including the Bullet class
	Control variables and the bullet array
	Reloading the gun
	Shooting a bullet
	Updating the bullets in each frame
	Drawing the bullets in each frame
	Giving the player a crosshair

	Coding a class for pickups
	Coding the Pickup header file
	Coding the Pickup class function definitions

	Using the Pickup class
	Detecting collisions
	Has a zombie been shot?
	Has the player been touched by a zombie?
	Has the player touched a pickup?

	Summary
	Frequently asked questions

	Chapter 13: Layering Views and Implementing the HUD
	Adding all the Text and HUD objects
	Updating the HUD
	Drawing the HUD, home, and level-up screens
	Summary

	Chapter 14: Sound Effects, File I/O, and Finishing the Game
	Saving and loading the high score
	Preparing sound effects
	Allowing the player to level up and spawning a new wave
	Restarting the game
	Playing the rest of the sounds
	Adding sound effects while the player is reloading
	Making a shooting sound
	Playing a sound when the player is hit
	Playing a sound when getting a pickup
	Making a splat sound when a zombie is shot

	Summary
	Frequently asked questions

	Chapter 15: Run!
	About the game
	Creating the project
	Coding the main function
	Handling input
	Coding the Factory class
	Advanced OOP: inheritance and polymorphism
	Inheritance
	Extending a class
	Polymorphism
	Abstract classes: virtual and pure virtual functions

	Design patterns
	Entity Component System pattern
	Why lots of diverse object types are hard to manage
	Using a generic GameObject for better code structure
	Prefer composition over inheritance
	Factory pattern
	C++ smart pointers
	Shared pointers
	Unique pointers

	Casting smart pointers
	Coding the GameObject class
	Coding the Component class
	Coding the Graphics class
	Coding the Update class
	Running the code
	What next?

	Summary

	Chapter 16: Sound, Game Logic, Inter-Object Communication, and the Player
	Coding the SoundEngine class
	Code the Game logic
	Coding the LevelUpdate class

	Coding the player: Part 1
	Coding the PlayerUpdate class
	Coding the PlayerGraphics class

	Coding the factory to use all our new classes
	Remembering the texture coordinates

	Running the game
	Summary

	Chapter 17: Graphics, Cameras, Action
	Cameras, draw calls, and SFML View
	Coding the camera classes
	Coding the CameraUpdate class
	Coding the CameraGraphics class part 1
	The SFML View class
	Coding the CameraGraphics class part 2

	Adding camera instances to the game
	Running the game
	Summary

	Chapter 18: Coding the Platforms, Player Animations, and Controls
	Coding the platforms
	Coding the PlatformUpdate class
	Coding the update function for the PlatformUpdate class

	Coding the PlatformGraphics class
	Building some platforms in the factory

	Running the game
	Adding functionality to the player
	Coding the player controls

	Running the game
	Coding the Animator class
	Coding the player animations
	Running the game
	Summary

	Chapter 19: Building the Menu and Making It Rain
	Building an interactive menu
	Coding the MenuUpdate class
	Coding the MenuGraphics class
	Building a menu in the factory

	Running the game
	Making it rain
	Coding the RainGraphics class
	Making it rain in the factory

	Running the game
	Summary

	Chapter 20: Fireballs and Spatialization
	What is spatialization?
	Emitters, attenuation, and listeners

	Handling spatialization using SFML
	Upgrading the SoundEngine class
	Fireballs
	Coding the FireballUpdate class
	Coding the FireballGraphics class
	Coding FireballGraphics.h
	Coding FireballGraphics.cpp

	Building some fireballs in the factory

	Running the code
	Summary

	Chapter 21: Parallax Backgrounds and Shaders
	Learning about OpenGL, shaders, and GLSL
	The programmable pipeline and shaders
	Coding a hypothetical fragment shader
	Coding a hypothetical vertex shader

	Finishing the CameraGraphics class
	Breaking up the new draw code

	Coding a shader for the game
	Running the completed game
	Summary
	Further reading
	Why subscribe?

	Other Books You May Enjoy
	Packt
	Index

