

Beginning C++ Compilers

Berik I. Tuleuov • Ademi B. Ospanova

Beginning C++ Compilers
An Introductory Guide to Microsoft
C/C++ and MinGW Compilers

Berik I. Tuleuov
Nur-Sultan, Akmolinskaia, Kazakhstan

Ademi B. Ospanova
Nur-Sułtan, Kazakhstan

ISBN-13 (pbk): 978-1-4842-9562-5 ISBN-13 (electronic): 978-1-4842-9563-2
https://doi.org/10.1007/978-1-4842-9563-2

Copyright © 2024 by Berik I. Tuleuov and Ademi B. Ospanova
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Susan McDermott
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-
ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.
For information on translations, please e-mail booktranslations@springernature.com; for reprint, paper-
back, or audio rights, please e-mail bookpermissions@springernature.com.
Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk
Sales web page at http://www.apress.com/bulk-sales.
Any source code or other supplementary material referenced by the author in this book is available
to readers on the Github repository: https://github.com/Apress/Beginning-CPP-Compilers. For more
detailed information, please visit https://www.apress.com/gp/services/source-code.

Paper in this product is recyclable

https://doi.org/10.1007/978-1-4842-9563-2
https://doi.org/10.1007/978-1-4842-9563-2
https://doi.org/10.1007/978-1-4842-9563-2
https://doi.org/10.1007/978-1-4842-9563-2
https://doi.org/10.1007/978-1-4842-9563-2
https://doi.org/10.1007/978-1-4842-9563-2
https://doi.org/10.1007/978-1-4842-9563-2
https://doi.org/10.1007/978-1-4842-9563-2
https://doi.org/10.1007/978-1-4842-9563-2
https://doi.org/10.1007/978-1-4842-9563-2
www.springeronline.com
www.springeronline.com
www.springeronline.com
http://www.apress.com/bulk-sales
http://www.apress.com/bulk-sales
http://www.apress.com/bulk-sales
http://www.apress.com/bulk-sales
http://www.apress.com/bulk-sales
http://www.apress.com/bulk-sales
https://github.com/Apress/Beginning-CPP-Compilers
https://github.com/Apress/Beginning-CPP-Compilers
https://github.com/Apress/Beginning-CPP-Compilers
https://github.com/Apress/Beginning-CPP-Compilers
https://github.com/Apress/Beginning-CPP-Compilers
https://github.com/Apress/Beginning-CPP-Compilers
https://github.com/Apress/Beginning-CPP-Compilers
https://www.apress.com/gp/services/source-code
https://www.apress.com/gp/services/source-code
https://www.apress.com/gp/services/source-code
https://www.apress.com/gp/services/source-code
https://www.apress.com/gp/services/source-code
https://www.apress.com/gp/services/source-code
https://www.apress.com/gp/services/source-code
https://www.apress.com/gp/services/source-code

Berik dedicates the book to the memory of his
father, Iglik K. Tuleuov. He expresses
gratitude to his family for their endless
patience while working on this book,
colleagues and Apress editors for their
kindness.

Contents

1 Files and Devices . 1
1.1 File Types and Formats . 1
1.2 Executable and Batch Files . 2
1.3 System Commands . 5
1.4 Mounting Devices . 5
1.5 Virtual Devices . 6
1.6 Conclusion . 7

2 Software Installation . 9
2.1 Overview of Installation Methods . 9
2.2 Installation Packages (msi) . 10
2.3 Installing with Archives . 10
2.4 Installing from Sources . 11
2.5 Portable Installation . 11
2.6 Best Software Installation Practices for Windows Systems 11
2.7 Conclusion . 14

3 Programming Languages and Software. 17
3.1 Programming Languages . 17
3.2 C/C++ . 17
3.3 Fortran . 18
3.4 Assembly . 19
3.5 C# . 20
3.6 Conclusion . 22

4 General Build Information . 23
4.1 Unix Systems . 23

4.1.1 GNU Autotools (GNU Build System) . 24
4.2 Windows Systems . 25

4.2.1 nmake Utility . 25
4.2.2 Visual Studio .vcxproj and .sln Files . 26
4.2.3 MSBuild Build System . 27

4.3 Cygwin. 32
4.4 Cross-Platform Topics . 32
4.5 Conclusion . 33

vii

viii Contents

5 Some Useful Open Source Utilities . 35
5.1 Far Manager . 35

5.1.1 Default Installation . 37
5.1.2 Easy Installation . 37
5.1.3 Usage . 38

5.2 7z . 42
5.2.1 Default Installation . 42
5.2.2 Easy Installation . 43
5.2.3 Usage . 43

5.3 Notepad++ . 44
5.3.1 Default Installation . 46
5.3.2 Easy Installation . 46

5.4 lessmsi . 47
5.4.1 Easy Installation . 47
5.4.2 Usage . 47

5.5 WinCDEmu. 49
5.5.1 Easy Installation . 49
5.5.2 Usage . 49

5.6 Conclusion . 49

6 Command-Line Interface . 51
6.1 Command Interpreter . 51

6.1.1 Launching and Executing Commands in the
Command Line (Terminal, Console) . 53

6.1.2 Path Separator . 55
6.1.3 Windows Standard Command Line . 55

6.2 Environment Variables . 57
6.2.1 Modification of the PATH System

Environment Variable . 58
6.3 Access Management . 60
6.4 ConEmu . 61
6.5 Conclusion . 62

7 Integrated Development Environments and Editors 63
7.1 Microsoft Visual Studio . 63
7.2 Qt Creator. 66
7.3 Code::Blocks . 68
7.4 Geany . 71
7.5 Kate . 72
7.6 Conclusion . 74

Contents ix

8 Minimal Systems . 75
8.1 MSYS . 75
8.2 Default Installation . 76
8.3 Easy Installation . 78
8.4 Some Tips. 79
8.5 MSYS2 . 79
8.6 Default Installation . 79
8.7 Easy Installation . 80
8.8 CMake . 81
8.9 Default Installation . 81
8.10 Easy Installation . 82
8.11 Conclusion . 83

9 Compilers . 85
9.1 GCC/MinGW.. 86

9.1.1 Default Installation . 87
9.1.2 Building from the Sources . 87
9.1.3 Easy Installation . 87

9.2 Microsoft C/C++ Optimizing Compiler . 92
9.2.1 Default Installation . 93
9.2.2 Easy Installation (Without Visual Studio)

with EWDK . 95
9.2.3 Using Microsoft C/C++ Compiler with EWDK 101
9.2.4 Microsoft C/C++ Compiler Options . 102
9.2.5 Using MSBuild with EWDK. 104

9.3 Intel C/C++ Optimizing Compiler. 106
9.4 Conclusion . 108

10 Libraries . 109
10.1 Dynamic and Static Libraries . 109
10.2 Building Libraries . 111
10.3 Creating User Libraries . 112
10.4 Conclusion . 118

11 Using Libraries . 119
11.1 Linking with Static Libraries . 119
11.2 Linking with Dynamic Libraries . 120
11.3 Using Libraries from Source Code . 122
11.4 Universal CRT Deployment . 128
11.5 Conclusion . 130

12 GMP (GNU Multiprecision Library) . 131
12.1 Building . 132

12.1.1 GNU MPFR Library. 145
12.2 Example: Computation of 10 000 000!. 146
12.3 Conclusion . 148

x Contents

13 Crypto++ . 149
13.1 Building with MinGW . 151
13.2 Building with Microsoft C/C++ Compiler . 152
13.3 Example: AES Implementation. 153
13.4 Conclusion . 156

14 OpenSSL . 157
14.1 Building with MinGW . 157
14.2 Building with Microsoft C/C++ Compiler . 159
14.3 Conclusion . 163

15 Process Hacker . 165
15.1 Building with Microsoft C/C++ Compiler . 167

15.1.1 Building Driver . 167
15.1.2 Building Utility . 167

15.2 Conclusion . 169

A Appendix . 171

Bibliography . 201

Index . 203

About the Authors

Berik I. Tuleuov is Senior Lecturer at L. N. Gumilyov Eurasian National Univer-
sity, Nur-Sultan, Kazakhstan. He’s a researcher and mathematician using computers
for scientific computations and designing algorithms. He runs a topic on The AIFC
Tech Hub (a meeting point for global startups, entrepreneurs, investors, industry’s
top experts and talent pool) about Microsoft C/C++ compilers. This forum has more
than two million registered participants. He regularly takes part in academic and
industry conferences, mainly on computer science topics. Interests include program-
ming languages, algorithms and data structures, concurrent (parallel) programming,
scientific programming, (La)TeX Typesetting System, and data visualization.

Ademi B. Ospanova is an Associate Professor in the Department of Information
Security at L. N. Gumilyev Eurasian National University. She is the author of many
courses in the field of IT technologies. She is developer of educational programmes
of all levels of the university on information security. In the educational process
and projects she uses her own software and libraries in C/C++, C#, Java, Prolog,
R, Python, Solidity, works in Mathematica, Maple, Sage packages. She also has her
own website, including hosting on her own server.

She manages grant and initiative research projects, and her Masters and PhD
students are winners of national scientific competitions.

She also gives courses and consultations on cryptography and programming to
specialists from various companies.

xi

About the Technical Reviewer

Sedat Akleylek received the B.Sc. degree in mathematics majored in computer
science from Ege University, Izmir, Turkey, in 2004, and the M.Sc. and Ph.D.
degrees in cryptography from Middle East Technical University, Ankara, Turkey, in
2008 and 2010, respectively. He was a Postdoctoral Researcher at the Cryptography
and Computer Algebra Group, TU Darmstadt, Germany, between 2014 and 2015.
He was an Associate Professor at the Department of Computer Engineering,
Ondokuz Mayıs University, Samsun, Turkey, between 2016 and 2022. He has been
Professor at the Department of Computer Engineering, Ondokuz Mayıs University,
Samsun, Turkey, in 2022. He has started to work at the Chair of Security and
Theoretical Computer Science, University of Tartu, Tartu, Estonia since 2022. His
research interests include the areas of post-quantum cryptography, algorithms and
complexity, architectures for computations in finite fields, applied cryptography for
cyber security, malware analysis, IoT security, and avionics cyber security. He is
a member of the Editorial Board of IEEE Access, Turkish Journal of Electrical
Engineering and Computer Sciences, Peerj Computer Science, and International
Journal of Information Security Science.

xiii

Acknowledgments

Ademi would like to dedicate the book to her fragile but strong mother who cares
for her entire family. She provides Ademi with warmth and the opportunity to do
her job.

xv

Introduction

Anyone who wants to start programming in the C/C++ languages needs two things
in general: a computer and two programs called a C/C++ language compiler and a
source code editor (generally speaking, the so-called debugger — a program that
helps find errors in the source code, but still it is not necessary). More, in principle,
nothing is needed.

If any text editor (for example, Notepad on Windows) is in principle suitable as
a source code editor, then the situation with compilers is not simple. On Windows,
they must be installed, and in the vast majority of cases, when it comes to installing
the C/C++ compiler, for some reason it means installing Microsoft Visual Studio,
which requires a lot of computer resources. Meanwhile, Microsoft Visual Studio is
not a compiler, but the so-called Integrated Development Environment (IDE), which
includes, among other components, also a C/C++ language compiler.

As far as we know, there are no books devoted to installing C/C++ compilers1 ,
it is implicitly assumed that the user has the compiler either already installed, or
its installation is standard and does not cause difficulties. However, there are many
pitfalls here, and we will try to briefly describe the motives that prompted us to write
our book.

Under Windows, usually installing a C/C++ compilers, especially Microsoft
ones, takes quite a lot of time, because it comes with Microsoft Visual Studio for
the vast majority of users. Installing Visual Studio requires usually about 40 GB of
disk space and big amount of RAM, so it is impossible to use weak hardware. So
we suggest an easy way to deploy Microsoft C/C++ compiler: no headache with
disk space and hardware resources lack. Additionally, our means saves big amount
of time since one can deploy software on removable devices, such as flash sticks,
and use it easily in a portable way. We achieve this by using Enterprise Windows
Driver Kit (EWDK), a single, large ISO file, which can be mounted as virtual
device and used directly without any installation. EWDK contains everything from
Visual Studio except IDE. EWDK also allows to use MASM64 (Microsoft Macro-
Assembly) and C# compilers. With the aid of MSBuild System one can compile
Visual Studio Projects (.vcxproj) and Solutions (.sln) even without Visual Studio!
Analogously, MinGW compilers can be deployed from 7z/zip archives, simply by

1 There are a lot of books on the C/C++ languages themselves.

xvii

xviii Introduction

unpacking into appropriate location. Briefly, both Microsoft C/C++ and MinGW
compilers can be used as portable software. Notice that such approach does not
require an administrative privileges at all.

It is Create Once, Use Many principle: one can deploy these compilers and
auxiliary software on removable device and use everywhere, or just copy it to hard
disk and use them from local disk. There is no need to re-install.

Also, users can use several versions of these compilers at the same time, they do
not interfere each other. Using MSYS (Minimal SYStem, a port of GNU Autotools)
allows to build under Windows many libraries originally designed for Unix-systems.
These things important because standard installation procedure doesn’t give such a
flexibility: very often various versions of installed software conflict with each other,
or it is impossible to install at all.

Our book is intended primarily for two categories of users:

• beginners to learn the C/C++ language, who don’t want to spend time on the
standard installation of MinGW and Microsoft C/C++ compilers, since in the
first case one has to make a difficult and non-obvious choice between different
builds of this compiler, and in the second — to solve computer resources lack
and installation problems;

• advanced users who, generally speaking, are not professional programmers, but
write small programs in standard C/C++, for, for example, scientific and technical
calculations.

Of course, the approach we propose can also be useful for professional program-
mers, as it saves a lot of time; in addition, the created toolkit can be used in the
future on a variety of computers without special preparation, since this toolkit is
portable.

We describe the MinGW and Microsoft C/C++ compilers, the clang compiler
is not covered (its popularity has not yet reached the level of first two). We set
as our main goal the description of compilers, and not various IDEs, so they are
practically not considered. Various advanced (lightweight) editors that have some
IDE functions are considered as code editors. We do not consider the currently
popular Visual Studio Code due to the fact that it is not lightweight (as we have
already noted, the IDE is an auxiliary tool for us; however, if the user has enough
memory installed on the computer, then nothing prevents using VS Code). We do not
consider code debuggers, an interested reader can later deal with this topic himself.

Also, we do not consider WSL (Windows Subsystem for Linux), since this
subsystem is designed to run Linux applications (and not all of them: for example,
restrictions apply to GUI applications) under Windows, and we are fighting to
build Open Source applications and libraries originally created for Unix systems
for Windows. WSL, although it provides less resource consumption compared to
virtualization, is still an additional layer that negatively affects the performance of
applications running under it. The programs and libraries compiled under Windows
using the tools we describe are native Windows applications and thus provide the
highest performance.

Introduction xix

For completeness of our research, we use a variety of versions of Windows, on
different computers and virtual machines (GNOME Boxes, VMware). The system
configurations on these platforms are different (different versions of Windows,
different amounts of disk space, etc.), which explains why throughout the book
the Programs, Soft, and User directories are located on various partitions of the
computer’s hard drive (and sometimes on removable devices). In part, we did this
intentionally, because we wanted, in accordance with the spirit of our book, in every
possible way to emphasize the flexibility and portability of the approach we use.

For the convenience of the reader, in the Appendixes we provide a number of
tables to facilitate the use of the Microsoft C/C++ compiler. These tables are taken
from the Microsoft website.

1Files and Devices

General information on files and devices is given in this chapter. The concept of a
file is fundamental to computer science, so it’s important to be clear about it. The
issues of effective user interaction with the computer are also discussed.

1.1 File Types and Formats

In general, a file is a piece of information with an assigned name that is stored on
a computer media. The media could be a hard or SSD disk, compact or DVD disk,
magnetic tape, flash sticks and cards, etc.

Most computers have at least one disk drive, HDD or SSD, installed permanently.
Nowadays, laptops have no DVD drives at all. Almost all devices can be connected
to a computer via USB; in this case, a user can use removable media: flash sticks
and cards, external HDD/SSD disks, or CD/DVD media.

By type, computer files are divided into text and binary files. Text files contain
bytes that have a visual representation, as well as bytes that serve to control (line
feed, carriage return, tabulation). Simply put, the contents of a text file can be “read.”

Microsoft Word files, although containing text information for the most part, are
not text files, as they contain information about formatting, sizes and types of fonts
used, and other meta-information, as well as other data, such as pictures. Generally,
binary files can contain human-readable pieces too.

By format, files are divided into graphics, multimedia (video and audio),
executables (programs), objects, archives, CD/DVD images, etc. On Windows, file
formats are recognized by their so-called extension: three or more letters after the
last period in the file name. For example, Adobe Acrobat Portable Document Format
(PDF) files have the extension '.pdf', and Microsoft Office documents have
extensions '.docx', '.xlsx', etc. For many programs, file extensions are

© The Author(s), under exclusive license to APress Media, LLC,
part of Springer Nature 2024
B. I. Tuleuov, A. B. Ospanova, Beginning C++ Compilers,
https://doi.org/10.1007/978-1-4842-9563-2_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4842-9563-2protect T1	extunderscore 1&domain=pdf
https://doi.org/10.1007/978-1-4842-9563-2_1
https://doi.org/10.1007/978-1-4842-9563-2_1
https://doi.org/10.1007/978-1-4842-9563-2_1
https://doi.org/10.1007/978-1-4842-9563-2_1
https://doi.org/10.1007/978-1-4842-9563-2_1
https://doi.org/10.1007/978-1-4842-9563-2_1
https://doi.org/10.1007/978-1-4842-9563-2_1
https://doi.org/10.1007/978-1-4842-9563-2_1
https://doi.org/10.1007/978-1-4842-9563-2_1
https://doi.org/10.1007/978-1-4842-9563-2_1
https://doi.org/10.1007/978-1-4842-9563-2_1

2 1 Files and Devices

not mandatory: for example, text editors can open the text file named “Readme”;
however, some software require strong extensions for their files.

Most file formats are designed to be independent of processor platforms and
operating systems. This means, for example, that the same pdf document can be
opened on Windows, Linux, Mac OS, Android devices, and finally iOS. However,
this is not the case for binary executables, which we will discuss as follows.

Note All files consist of bytes, both text and binary.

1.2 Executable and Batch Files

Before moving on, we need to make some clarifications. Most computer users, are
dealing with a modern and convenient graphical shell that provides ease of work.
The graphical shell of Windows is Explorer. The shell is an intermediary between
the user and the operating system, allowing you to open files, run programs, etc. In
the graphical shell, the mouse plays an important role, with which you can click the
icons of programs and documents to launch and open them.

Note Mouse actions can be duplicated via the keyboard.

However, the graphical shell is not the only one—there is another one, which is
called the command line. In the command line, the main role is played by another
device—the keyboard. The command line is mainly used to run commands by

typing the name of the command in the prompt and pressing the key. The
command can be either a system command (e.g., set or echo) or an executable
program file, and you must specify the exact location (full path to this file) of this
file. If such a file is not found due to nonexistence or an incorrect full path to it, the
system will display a corresponding message:

E:\Test>mycommand
'mycommand' is not recognized as an internal or external command,
operable program or batch file.

E:\Test>

Commands can have parameters called options. Their number depends on the
purpose of the command. As a rule, commands have built-in help, which in
Windows is called like this:

E:\Test>echo /?
Displays messages, or turns command-echoing on or off.

ECHO [ON | OFF]
ECHO [message]

1.2 Executable and Batch Files 3

Type ECHO without parameters to display the current echo setting.

E:\Test>

Conventional notation [option] means that the 'option' parameter in
square brackets [] can be omitted (and the brackets are omitted), and the '|'
in ON | OFF means that one of the two options must be selected (sometimes,
it happens that options can be combined, or, conversely, some options may be
incompatible with some other options; such cases are specifically discussed in the
help of the command).

For open source utilities, help is usually called in the format

E:\Test>command --help

So how to find this command line? Very simple: Press the + keys

and type cmd (cmd.exe is also possible) and press the key. Windows
will bring up a command prompt window.

Note In earlier Windows versions, this file was called COMMAND.COM. In
modern Windows versions, this file is called CMD.EXE and is located in the
C:\Windows\System32 directory.

Although the command line looks inconvenient, it undoubtedly has advantages
over the graphical shell, especially when it comes to automating sequential actions,
that is, for programming a certain sequence of operations. An example from the
practice of one of the authors: It was required to extract all graphic files from a filled
CD while maintaining the directory structure; there were many nested directories on
the disk. In the graphical shell, this task is almost impossible to solve quickly, but
on the command line, this task is solved in a couple of minutes, using the xcopy
utility with the /s key (option).

Executable files contain program code that is executed by the central processor of
a computer. Windows executable file formats include (by file extension) '.exe',
'.com', '.dll', '.sys', '.ocx', etc.

• exe: The main format of Windows executable program files.
• com: This extension belonged a long time ago to 16-bit MS-DOS programs

that were small and could use a small amount of RAM. On purely 32-
bit and 64-bit operating systems, such programs cannot run (they can only
run in compatibility mode or in emulators). Currently, Microsoft has made
a change where the format of binary executable files is determined not by
the extension but by the content of the file, so that any '.exe' file can
be renamed to a '.com' file without breaking functionality. This change
was made for compatibility with older MS-DOS batch files that called older
utilities with '.com' extensions, the newer versions of which are already
larger than the limits of the old '.com' format. Here is a list of these util-

4 1 Files and Devices

ities: chcp.com, diskcomp.com, diskcopy.com, format.com,
mode.com, more.com, and tree.com.

• dll: Dynamic-link libraries; they can contain both reusable executable code and
data. The vast majority of Windows code reside in such libraries.

• sys: Windows device drivers; these files are binaries, and they are created by
compilers from their human-readable source code in high-level programming
languages such as C/C++ and Assembly (parts of drivers).

Windows '.exe' files have so-called “magic bytes”: their first two bytes are
always 'MZ'.

Batch files on Windows have extensions '.bat' and '.cmd'.
Executable files in '.exe' and '.com' formats as well as batch files

('.bat', '.cmd') can be directly launched by the user. This can be done both
in the graphical shell and on the command line. In the graphical shell, open the
Explorer window, find the file to be launched, and double-click it. For the second

method, launch the command prompt, type the full file name, and press the
key.

Notice that for binary executable files and batch files, when they are executed,
their extensions can be omitted on the command line. In this regard, an inter-
esting question arises: If the files test.bat, test.cmd, test.com, and
test.exe are in the same directory, then which one will be executed when the
test command is executed?

Answer: The order of execution is '.com', '.exe', '.bat', '.cmd';
hence, test.com will be executed. To execute any other of them, you need to
write its name in full with the extension, for example, test.exe. In general, the
execution priority is determined by the PATHEXT environment variable and can be
changed, which we will talk about later.

A batch file is a text file, each line of which consists of a single command that
can have parameters. Thus, a batch file can execute several commands sequentially
one after another, that is, by running one command, we actually execute a whole
series of commands! Therefore, such files are sometimes called script files.

It is important to note that binary executables are not only operating sys-
tem dependent but also processor architecture dependent: for example, Windows
'.exe' files do not run on Linux or Mac OS; moreover, '.exe' files created
for 64-bit Windows do not work in 32-bit Windows (the opposite is true: 32-bit
Windows '.exe' files work in 64-bit Windows in compatibility mode). Likewise,
Linux binaries don’t work on Windows.

Batch files are a bit more flexible in this regard: while Windows '.bat' and
'.cmd' files don’t work on Linux, you can create script files on Windows that are
cross-platform with some limitations. We will cover this in later chapters.

Note In Unix systems, every file can be made executable in terms of those systems.

1.4 Mounting Devices 5

1.3 System Commands

System commands are for executing common basic system commands. System
commands are divided into internal and external ones. Internal commands are
implemented in the CMD.EXE file; external commands are implemented as
separate utilities located in the C:\WINDOWS\System32 system directory. An
example of an external command is the abovementioned xcopy (xcopy.exe),
an advanced file and directory copying utility.
Help on these commands, as noted earlier, can be called with the /?.

We briefly describe here some useful commands:

cls clears the console window (clear screen).
set sets a value to an environment variable.
echo echoes its argument value.
cd changes the working directory (change directory).
dir types the content of the current directory.
path displays the value of the PATH environment variable.

echo %PATH% types the value of the PATH environment variable.

1.4 Mounting Devices

Sometimes, in Windows you have to change the letter of the CD/DVD drive or even
the hard disk partition. This can be done through the Computer Management applet,
which is invoked by right-clicking the Computer icon in the Desktop. Note
that this requires administrator rights.

Much more interesting and useful is the subst command, which does not
require administrator rights and allows you to mount a folder as a disk partition,
assigning a given letter to this disk:

E:\Test>subst /?
Associates a path with a drive letter.

SUBST [drive1: [drive2:]path]
SUBST drive1: /D

drive1: Specifies a virtual drive to which you want to
assign a path.c→

[drive2:]path Specifies a physical drive and path you want to
assignc→

to a virtual drive.
/D Deletes a substituted (virtual) drive.

Type SUBST with no parameters to display a list of current
virtual drives.c→

E:\Test>

6 1 Files and Devices

For example, the command

E:\Test>subst X: E:\Test

will create disk X: in the system (if it, of course, did not exist) and mount all the
contents of the E:\Test directory on this disk. We will use this command later
when working with the Microsoft C/C++ compiler.

1.5 Virtual Devices

Some software is shipped in the ISO format. Examples are Linux distributions,
Microsoft Enterprise Windows Driver Kit, and others. As we know, the ISO file
is an image of CD/DVD media, and in the old days, the user had to burn this file to
a blank CD/DVD disk and insert the disk into the drive. In our days, it is much more
easier to handle such files— it suffices to use the so-called virtual devices. The user
just creates such a device and mounts the ISO file on the device.

We work with DVD virtual devices. Virtual devices are created programmati-
cally; no physical device is needed. Such devices can easily be created on Windows
7 with the aid of several software: DAEMON Tools Lite (www.daemon-tools.
cc/products/dtLite), Alcohol 120% Free Edition (http://trial.alcohol-soft.com/en/
downloadtrial.php, all Windows operating systems except 98/ME, for personal use
only), etc. These tools require installation and system reboot.

In our opinion, the best program of this kind is WinCDEmu, an open source
CD/DVD/BD emulator (https://wincdemu.sysprogs.org); this program has a
portable version (https://wincdemu.sysprogs.org/portable/). Portable single exe-
cutable file runs under all versions of Microsoft Windows (10/8.1/8/7/2008/Vista/
2003/XP), on both x86 and x64 platforms. No system reboot is needed.

WinCDEmu is

• Free for any kind of use.
• Lite, about 670KB only.
• Easy to use, just run the downloaded portable exe.

Of course, WinCDEmu requires administrator privilege to create virtual devices
and mount ISO images.

On Windows 10 and up, no additional software of this kind is needed at all. Just
right-click the ISO image on the Explorer window and select the “Mount” menu
item. The system itself will create the device, assign it a letter, and mount the image
there—no matter if the user has administrator privilege or not (no matter if the user
has administrative rights or not).

www.daemon-tools.cc/products/dtLite
www.daemon-tools.cc/products/dtLite
www.daemon-tools.cc/products/dtLite
www.daemon-tools.cc/products/dtLite
www.daemon-tools.cc/products/dtLite
www.daemon-tools.cc/products/dtLite
http://trial.alcohol-soft.com/en/downloadtrial.php
http://trial.alcohol-soft.com/en/downloadtrial.php
http://trial.alcohol-soft.com/en/downloadtrial.php
http://trial.alcohol-soft.com/en/downloadtrial.php
http://trial.alcohol-soft.com/en/downloadtrial.php
http://trial.alcohol-soft.com/en/downloadtrial.php
http://trial.alcohol-soft.com/en/downloadtrial.php
http://trial.alcohol-soft.com/en/downloadtrial.php
https://wincdemu.sysprogs.org
https://wincdemu.sysprogs.org
https://wincdemu.sysprogs.org
https://wincdemu.sysprogs.org
https://wincdemu.sysprogs.org/portable/
https://wincdemu.sysprogs.org/portable/
https://wincdemu.sysprogs.org/portable/
https://wincdemu.sysprogs.org/portable/
https://wincdemu.sysprogs.org/portable/

1.6 Conclusion 7

1.6 Conclusion

In this chapter, we have tried to clearly describe the concept of a file, which is
fundamental for computer sciences, to classify them according to various features
and ways of using them. It is also important to understand what executable and batch
files are and the order in which executable files are launched.

Since we actively use virtual disks in the book, we have given a description of
programs and commands for creating them.

2Software Installation

2.1 Overview of Installation Methods

Every software on the computer should be installed in a certain way, in a certain
location on the user’s hard disk. The vast majority of software under Windows is
installed in the'C:\Program Files' ('C:\Program Files (x86)'
for 32-bit programs) folder.

Usually, every software resides in its own, so-called home folder. The home
folder may contain a folder named bin, which stands for binary, containing the
main executable file of the software. When you click this executable in the Explorer
window or click this program icon in the start menu, the operating system launches
it.

There is one more way to launch a program: from the command line. This way
is the most flexible (but not convenient for simple users) one, and further we will
consider it in detail. For Windows, the most popular (and widely used) way is its
standard one: users should just click the installation file to get started.

In the old days, an installation package contained archived components of
software and driver files designed for the installation of this software on a user’s
computer. An installation package includes also a file called Setup or something
like which launches installation process; this file might be of exe or bat type.

The Setup program does the following:

• Extracts the components of the software being installed form archive into a
temporary folder (usually TEMP)

• Copies extracted files into the appropriate location in the user’s computer
• Modifies the Windows system registry for some parameters
• Carries out system-wide and user-level changes for some parameters such as

PATH
• Creates system menu items and icons and desktop shortcuts for quick launch

© The Author(s), under exclusive license to APress Media, LLC,
part of Springer Nature 2024
B. I. Tuleuov, A. B. Ospanova, Beginning C++ Compilers,
https://doi.org/10.1007/978-1-4842-9563-2_2

9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4842-9563-2protect T1	extunderscore 2&domain=pdf
https://doi.org/10.1007/978-1-4842-9563-2_2
https://doi.org/10.1007/978-1-4842-9563-2_2
https://doi.org/10.1007/978-1-4842-9563-2_2
https://doi.org/10.1007/978-1-4842-9563-2_2
https://doi.org/10.1007/978-1-4842-9563-2_2
https://doi.org/10.1007/978-1-4842-9563-2_2
https://doi.org/10.1007/978-1-4842-9563-2_2
https://doi.org/10.1007/978-1-4842-9563-2_2
https://doi.org/10.1007/978-1-4842-9563-2_2
https://doi.org/10.1007/978-1-4842-9563-2_2
https://doi.org/10.1007/978-1-4842-9563-2_2

10 2 Software Installation

Of course, not every Setup program does have to carry out every step of this
scenario.

Sometimes, on updating, some software requires removing (uninstalling) the old
version in order to proceed. Uninstalling software usually is quite straightforward
but sometimes may cause problems, especially in the case of big packages such as
Visual Studio. Notice that very often some registry items related to software being
uninstalled stay undeleted and may cause errors on reinstalling.

Note It is not a good practice to add the path to the executable file of the software
being installed into the environment variable PATH.

2.2 Installation Packages (msi)

In recent years, an installation package consists of a single file of exe or msi
type. An exe file is a self-extracting archive, and msi is an archive which can be
handled by Windows installation service.

The advantage of this installation way is that the user is supposed to make a
minimal effort on installation: just click the file to start the installation process.

Note This way requires administrative privileges in most circumstances. Simple
users cannot install such kind of software.

2.3 Installing with Archives

The most recent trends should be pointed out about the subject: more and more
software packages are distributed not only in the form of msi but also zip/7z
archives. In our opinion, this method is one of the most flexible and has the following
advantages:

• No (traditional) installation is needed.
• Does not require administrative privileges.
• The Windows system registry is not affected, so several versions of the same

software can be used simultaneously.
• Can easily be removed (uninstalled)—the user just deletes the program’s folder.
• Can easily be relocated—the user just moves the program to another place and

makes minimal change in one driver file.
• Can easily be cloned to another place analogous to the previous item.
• Can easily work from removable devices.

This method is especially suitable for compilers since these kinds of software are
designed to work in the command line. Recall that compilers themselves have no
visual interface; they always work in the command line.

2.6 Best Software Installation Practices for Windows Systems 11

The most popular GCC C/C++ compiler also works under Windows operating
systems, and its port to these systems is called MinGW (Minimalist GNU for
Windows). MinGW can be downloaded as (in the form of) both source code and
zip/7z (sometimes, as self-extracting exe) archive packages.

Warning It is a common mistake to consider Visual Studio as a compiler. Visual
Studio is a so-called IDE (integrated development environment) which includes
compilers, editors, debuggers and other related stuff.

2.4 Installing from Sources

Another installation way is installing from the source code of a software or library.
This way is the most flexible but complicated one.

The vast majority of Linux software are distributed with source code, together
with prebuilt binaries.

However, many libraries are provided only in source code (binaries may cause
compatibility issues on Linux systems), because usually it is easy to build from
sources. These libraries could also be built under Windows, with some additional
efforts.

Source code is written in high-level programming languages and should be
compiled using the compilers of these languages, so users have to have the
corresponding compilers installed in their system. We will discuss these topics
further.

2.5 Portable Installation

Software packages distributed in the form of zip/7z archives can be burned into a
CD/DVD disk after extraction from the archive so that they can work directly from
CD/DVD.

It is even easier to write such programs to flash media and run from there. These
are examples of the so-called portable installation.

2.6 Best Software Installation Practices for Windows Systems

Now let’s talk about one installation method. This way looks somewhat complicated
for normal users since it takes some effort; however, it is done once, and the results
can be used many times afterward. Of course, these are only recommendations, not
strong rules, but they save time and effort in the future.

Our first recommendation is not to install software in system default locations,
such as C:\Program Files, except some software which require reinstalla-
tion after Windows reinstallation, such as Microsoft Office, Microsoft Visual Studio,
Adobe software, etc.

12 2 Software Installation

Here are the reasons for doing so:

• Such kind of software requires fresh installation after Windows crash and
reinstallation.

• It cannot be installed without system administrator privileges.
• It cannot be copied or moved to another place without disruption.
• It cannot be copied or moved to removable media without disruption.

Moreover, we strongly do not recommend installing the software in question on
drive C: disk at all. The user had better divide their HDD, creating a new partition,
and put their software and data there. In modern Windows versions, it is done so
easily—it takes just five minutes to create a new disk partition! In Windows 10,
right-click My Computer, select Manage, and then choose Disk Management from
the window that appears. Select the C: disk in the lower part and right-click it, then
select Shrink (Figure 2-1).

Here are the reasons for doing so:

• System crash does not affect user software and data.
• Software is ready for use after Windows recovery.
• No system administrator privileges are needed.
• Software can be copied or moved to any place.
• Software can be placed to removable media and launched in a portable way in

another computer.
• Several versions of the same software can be used simultaneously.

Figure 2-1 Creating a new partition

2.6 Best Software Installation Practices for Windows Systems 13

It is easy to launch the terminal window from any folder in the Linux graphical
interface without the need to explore using the cd command. For a long time,
this was not possible in Windows systems, but in the seventh version, such an
opportunity appeared. The user just has to right-click a folder icon while holding

the button (Figure 2-1).
However, many users are missing the ''Open command window here'' con-

text menu item in the Explorer window in later Windows versions because Microsoft
replaced it with a PowerShell launching item. PowerShell is too complicated for our
purposes for many reasons; we will not discuss it here.

We strongly advise to do as follows. On the second disk partition, say D:,
create the following folders: Programs, Soft, and User. These folders are to hold
programs, software archives downloaded, and user data, respectively. Why do we
store downloaded software in a place other than the default Downloads folder? The
answer is this: usually, the Downloads folder is cluttered with a bunch of garbage,
and it can be difficult to quickly find something there. In addition, in case of damage
to the C: drive or reinstalling Windows, as we said earlier, this data will remain intact
and can be reused. We will consider fine-tuning issues in the following chapters.

Sometimes, it is useful to change the drive letter assigned to a partition or
CD/DVD device. How to do this using the same Computer Management snap-in
is shown in Figure 2-2.

Figure 2-2 Changing the DVD letter

14 2 Software Installation

Let’s describe in a generalized way our proposed method of installing some
program under a conditional name, say, SomeUtility-vX.Y.Z.7z,
where X.Y.Z means the version number of the program. Such pro-
grams, distributed as archives, have a bin subdirectory inside the archive,
where the program’s executable file (exe file) is located, as well as
the dll dynamic libraries necessary for its operation (sometimes such
libraries are not available). We must unpack the program archive into
the Programs\SomeUtility-X.Y.Z directory. For the program to
work correctly, the system needs to be told where the program’s executable
file is located, as well as the dynamic libraries necessary for its work—this
can be done by adding the Programs\SomeUtility-X.Y.Z\bin
directory to the PATH environment variable. To do this, we will create a batch
file SomeUtility-X.Y.Z.bat:

@echo off

set PATH=%~d0\Programs\SomeUtility-X.Y.Z\bin;%PATH%

and place it in the Programs\bin directory, then add this directory to the
system (if you have administrator access) or user PATH environment variable.
How to do this is described in Section 6.2.1, page 58.

To use, we just invoke the command SomeUtility-X.Y.Z[.bat]
from the command line. Of course, for convenience, you can name your
batch file shorter, for example, suXYZ.bat, and then it can be invoked
as suXYZ.

We demonstrate our approach with the help of a Figure 2-3.

2.7 Conclusion

In this chapter, we have given an overview of the methods for installing software
on the Windows operating system. We looked at four ways to install software and
considered the advantages and disadvantages of each of them. At the end of the
chapter, our recommendations were given with the justification of our proposed
method of installing the software.

In view of their importance, we repeat our recommendations here with somewhat
more detailed justifications:

1. It is undesirable to have only one partition (disk) C: on your hard drive. When
purchasing a computer, you can ask to share your disk. This operation is not
difficult; you can do it yourself, with some experience, but it is better to ask a
guru you know. In any case, it is better to do this when your disk is still slightly
full, in which case the risks are minimal, and the process itself will take a little
time.

2.7 Conclusion 15

Figure 2-3 Disk D directory tree

16 2 Software Installation

For the C: drive, in which the Windows system itself is located, it is enough
to allocate, say, 100 GB of space; the freed space can be allotted to the D: drive,
on which it is advisable to store data. The meaning of these actions is that if the
operating system breaks down (which happens quite often for various reasons:
viruses, illiterate user actions, etc.), your data will most likely remain intact and
will not be affected after the next reinstallation of Windows (recall that often,
when installing Windows, users completely format the C: drive, hoping to get rid
of viruses in this way).

2. Do not store data on the desktop! Do not store them in the so-called standard
folders like My Documents either—these folders are located by default in the
system partition (drive C:), and, if you are not a guru, then with such a breakdown
of Windows, when only the command line is available to you, you will not be able
to copy them. The data in such folders can be encrypted for security purposes,
which also adds to the problems in their recovery.

These problems can be avoided by storing data in the D: partition. Even if
you format the C: drive by mistake when reinstalling the system, your data will
remain intact. As for security, the users themselves can encrypt their data on the
D: drive.

Of course, the desktop is the very first place that comes to hand when you
need to quickly save something; however, as we have already shown, this is not
the best place. On the desktop, you only need to create shortcuts to folders with
data—the loss of shortcuts is not critical compared to the loss of data.

3. When creating directories (folders), avoid using national (and other non-English)
letters, as well as spaces! Until now, there are programs that incorrectly process
such paths. At best, such programs will crash, and at worst, they will behave
unpredictably, and the user risks wasting time looking for an unknown error.

Spaces in directory names are also undesirable because when working in
command-line mode, such paths have to be enclosed in (usually) double quotes,
which is very inconvenient. For this reason, do not install, for example, compilers
in the Program Files directory.

4. You should prefer such programs that do not require standard installation. The
reason is that they do not require installation, which saves time, and when
reinstalling the system, they do not need to be reinstalled. It should be noted that
such programs, as a rule, do not use the Windows system registry. Examples of
such programs are the Far Manager file and archive manager (http://farmanager.
com/), the popular VLC media player (www.videolan.org/vlc/), advanced text
editor Notepad++ (http://notepad-plus-plus.org/), various builds of the MinGW
compiler (porting the GCC compiler to Windows), and there are more and more
of them. Such programs are distributed in the form of an archive (zip, 7z, and
other formats); to install them, it is enough to unpack them into some directory.
There are several ways to customize the application, which are described in the
next sections

For programs that do not require installation, it is better to allocate a separate
directory, for example, D:\Programs.

http://farmanager.com/
http://farmanager.com/
http://farmanager.com/
www.videolan.org/vlc/
www.videolan.org/vlc/
www.videolan.org/vlc/
www.videolan.org/vlc/
http://notepad-plus-plus.org/
http://notepad-plus-plus.org/
http://notepad-plus-plus.org/
http://notepad-plus-plus.org/
http://notepad-plus-plus.org/

3Programming Languages and Software

Currently, there are a large, if not huge, number of high-level languages; however,
when it comes to scientific and engineering computing, the choice narrows sharply,
literally to three (and in fact, to two) languages: C/C++ and good old Fortran.

3.1 Programming Languages

3.2 C/C++

The C language was created in the early 1970s by Dennis Ritchie of AT&T Bell
Laboratories (Bell Labs) to write the Unix operating system. The C language has
had a huge impact on the computer industry: operating systems are written almost
entirely in this language, and many popular modern languages (C++, C#, Java,
JavaScript, and Objective-C) have actually borrowed its syntax.

Due to the presence of pointers in C, it is possible to write almost assembler
programs that are characterized by high execution speed. And at the same time, C is
much easier to write for most programmers than Fortran. Therefore, many modern
libraries for scientific and engineering calculations are already written in C, not in
Fortran.

The C language is standardized. In 1989, ANSI X3.159-1989 (ANSI C or C89)
was adopted. In 1990, the ANSI C standard was adopted, with a few modifications,
by the International Organization for Standardization (ISO) as ISO/IEC 9899:1990.
In 1999, the ISO 9899:1999 (C99) standard was adopted. In March 2000, it was
adopted and adapted by ANSI. On December 8, 2011, the new ISO/IEC 9899:2011
(C11) standard was published.

The canonical reference for the C language is the book by Brian Kernighan and
Dennis Ritchie The C Programming Language often cited as KR or K&R, originally
published in 1978 (by the way, it was in this book that the authors introduced the

© The Author(s), under exclusive license to APress Media, LLC,
part of Springer Nature 2024
B. I. Tuleuov, A. B. Ospanova, Beginning C++ Compilers,
https://doi.org/10.1007/978-1-4842-9563-2_3

17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4842-9563-2protect T1	extunderscore 3&domain=pdf
https://doi.org/10.1007/978-1-4842-9563-2_3
https://doi.org/10.1007/978-1-4842-9563-2_3
https://doi.org/10.1007/978-1-4842-9563-2_3
https://doi.org/10.1007/978-1-4842-9563-2_3
https://doi.org/10.1007/978-1-4842-9563-2_3
https://doi.org/10.1007/978-1-4842-9563-2_3
https://doi.org/10.1007/978-1-4842-9563-2_3
https://doi.org/10.1007/978-1-4842-9563-2_3
https://doi.org/10.1007/978-1-4842-9563-2_3
https://doi.org/10.1007/978-1-4842-9563-2_3
https://doi.org/10.1007/978-1-4842-9563-2_3

18 3 Programming Languages and Software

tradition of writing as the first program in the target language a program that prints
the greeting “hello, world”, since then it has become an unwritten rule). The current
state of the language can be read in Ben Clemens’ book 21st Century C.

The C++ language was also created at AT&T Bell Laboratories, but by another
person—Bjarne Stroustrup, a Dane living and working in the United States. Its
original goal was to expand the C language by adding elements of object-oriented
programming there; for this reason, at first the new language was called C with
classes. In 1983, the language was renamed to C++ because it had grown from being
a simple extension of the C language—there were so many additions. But despite
all the changes, C++ remains compatible with the C language, with rare exceptions.

An important part of the C/C++ languages is the so-called standard library: for
example, C does not have a formatted output operator like write/writeln in
Pascal, but the printf function, which is found in the standard library. To use this
feature, you must include the corresponding header file. Similarly, the C++ standard
library includes not just input/output (I/O) classes and implementation functions
and classes of this kind (e.g., complex for working with complex numbers) but
also entire sublibraries of the STL type (STL, Standard Template Library, written
by Alexander Stepanov and has long become part of the language), including
sorting and searching algorithms. The language also provides work with strings and
regular expressions, with various data structures (dynamic arrays, linked lists, binary
trees, hash tables). In recent language implementations, classes for developing
multithreaded and parallel programs have been added to the standard library, support
for internationalization and classes for working with numbers (random numbers and
distributions, numeric functions) have been improved. In addition, there are a huge
number of utilities (e.g., clocks and timers).

Since 2012, C++ standards have been adopted on a three-year cycle. In 2020, the
ISO/IEC 14882:2020 standard, often referred to as C++20, was adopted, which is
the current one today. The C++23 standard is planned for this year (2023).

We recommend that you often look at https://cppreference.com, where you
can get not only comprehensive reference information but also code examples
illustrating the intricacies of using the element of the C++ language being studied.
We also recommend a number of books ([4] to [10]) on scientific programming that
use C and C++ to varying degrees.

The source code files of C programs have the .c extension, and the header files
have the .h extension. C++ files use .cpp and .cxx extensions, while header
files can have .hpp and .hxx extensions.

3.3 Fortran

Despite the seemingly solid old age (almost 60 years), the Fortran language is
not going to give up its positions at all: in 2010, the next Fortran 2008 language
standard was adopted, and work is actively underway on the next Fortran 2015
standard (a standard for programming languages alike, and for other areas, it is
very important—e.g., the Delphi language was not standardized, and its Pascal

https://cppreference.com
https://cppreference.com
https://cppreference.com

3.4 Assembly 19

prototype has already three standards and even more implementations that are
incompatible between themselves; as a result, these languages are effectively dead).
The Fortran language (FORmula TRANslator) was developed at IBM in 1957 by
a group of specialists led by John Backus and was de facto the first high-level
algorithmic language (the first was the Plankalkul language, in German—calculus
plan, designed by the German engineer Konrad Zuse in 1945, but he did not have the
opportunity to implement his language; implementation completed only in 2000).

The main advantage of Fortran is the presence in the source code of care-
fully written, debugged, very efficient, and well-documented software packages
(libraries) for scientific and engineering calculations. A number of such libraries are
available commercially: NAG Numerical Library from The Numerical Algorithms
Group (NAG), IMSL Numerical Libraries (Rogue Wave Software), etc. These
libraries enjoy well-deserved prestige among specialists.

Another advantage of the Fortran language is the high speed of code execution.
In this parameter, Fortran is close to assembly language. Fortran is perhaps the
most standardized language: FORTRAN IV (FORTRAN 66, 1972), FORTRAN
77 (1980), Fortran 90 (1991), Fortran 95 (1997), Fortran 2003 (ISO/IEC 1539-
1:2004), Fortran 2008 (ISO/IEC 1539-1:2010). The language is actively developing;
for example, the Fortran 90 standard introduced a free format for writing code, as
well as elements of object-oriented programming, which were further developed in
the Fortran 2003 standard (in fact, the list of innovations is huge: actually, this is
like a new language; for those who studied the classical version of the language, the
amount of changes can be assessed only by studying the new standard). In the latest
versions of the standards, a lot of attention is paid to parallel computing.

3.4 Assembly

Assembly language allows you to create the shortest and fastest programs, but the
price of this is the large size of the source code. From this point of view, the use of
this language is inefficient, since it requires a lot of labor. However, this language has
its own niche—where you need a small code size and high speed of its execution.
Therefore, assembly code is used when writing drivers, as well as when writing
some components of the operating system that closely interacts with the hardware,
the so-called HAL (hardware abstraction layer).

One of the most common assemblers for Windows is the Microsoft Macro
Assembler (MASM), which is part of the Microsoft C/C++ compiler. It must be
emphasized that MASM is not supplied separately. We will briefly consider working
with it in subsequent chapters.

Assembly source code files have the extension .asm.

20 3 Programming Languages and Software

3.5 C#

The C# object-oriented language was developed by Microsoft and is intended
primarily for developing business applications. C# source code files have the
extension .cs.

This language has a number of advantages that distinguish it from modern
high-level languages; however, in our opinion, the presence of a couple of other
shortcomings makes it completely unsuitable for use in the field of scientific and
engineering calculations:

• C# is a platform-specific language, that is, only Windows applications can be
written in it. Attempts were made to port the .NET Framework runtime to Linux
(the Mono project), but this project did not gain much popularity for various
reasons.

• Applications written in C# are actually executed on a virtual machine—for this
reason, they are inferior in execution speed to C/C++ applications.

• Poor implementation of real types can lead to cumulative rounding errors!
Because of its importance, we will address this issue in more detail.

Here are some extremely interesting quotes from Joseph Albahari and Ben
Albahari’s book C# 5.0 in a Nutshell, Fifth Edition [3]. They concern the use of
the C# language in calculations. First, let’s clarify some definitions of the basic
types used in calculations. These are quotes from [3, page 24]:

Of the real number types, float and double are called floating-point types and are
typically used for scientific calculations. The decimal type is typically used for financial
calculations, where base-10–accurate arithmetic and high precision are required.

and [3, page 29]:

double is useful for scientific computations (such as computing spatial coordinates).
decimal is useful for financial computations and values that are “man-made” rather than
the result of real-world measurements.

Finally, we will quote in full from the short subsection Real Number Rounding
Errors [3, page 30]:

Real Number Rounding Errors
float anddouble internally represent numbers in base 2. For this reason, only numbers
expressible in base 2 are represented precisely. Practically, this means most literals with a
fractional component (which are in base 10) will not be represented precisely. For example:

float tenth = 0.1f; // Not quite 0.1
float one = 1f;
Console.WriteLine (one - tenth * 10f); // -1.490116E-08

This is why float and double are bad for financial calculations. In contrast,
decimal works in base 10 and so can precisely represent numbers expressible in base 10

3.5 C# 21

Figure 3-1 C# program

(as well as its factors, base 2 and base 5). Since real literals are in base 10, decimal can
precisely represent numbers such as 0.1. However, neither double nor decimal can
precisely represent a fractional number whose base 10 representation is recurring:

decimal m = 1M / 6M; // 0.1666666666666666666666666667M
double d = 1.0 / 6.0; // 0.16666666666666666

This leads to accumulated rounding errors:

decimal notQuiteWholeM = m+m+m+m+m+m; //
↪→ 1.0000000000000000000000000002M
double notQuiteWholeD = d+d+d+d+d+d; // 0.99999999999999989

which breaks equality and comparison operations:

Console.WriteLine (notQuiteWholeM == 1M); // False
Console.WriteLine (notQuiteWholeD < 1.0); // True

As an illustration, we give the texts of the simplest programs in C#1 and C++,
CSharp.cs and CPP.cpp, which implement a simple algorithm: the difference

. 1.0 − 0.1 ∗ 10

is calculated and then the result is displayed on the screen (Figures 3-1 and 3-2).
Note that the rather strange result of this C# program was tested in Windows

7, for the .NET Framework versions 2.0, 3.5 and 4.0. There is no such error in
Windows 10.

1 In order to compile a program in C#, it is not necessary to install Microsoft
Visual Studio; almost every Windows includes the .NET Framework, which
contains the C# language compiler. To build, you need to run the command
C:\Windows\Microsoft.NET\Framework\v3.5\csc.exe CSharp.cs

22 3 Programming Languages and Software

Figure 3-2 C++ program

3.6 Conclusion

In this chapter, we have given a brief overview of the C/C++ and Fortran languages
and also provided important information about the C# language regarding compu-
tational aspects.

We also mentioned assembly language in the Microsoft implementation—
Microsoft Macro Assembler (MASM).

4General Build Information

This chapter describes the process of building software on Unix-like and Windows
systems. A way to port the build process on Unix systems to the Windows platform
is given. New build tools in Windows are also given.

4.1 Unix Systems

The traditional tool for building programs and libraries in the world of Unix-like
systems is the famous make utility. Depending on what the utility is “ordered” to
do, it can do many things: compile files, create object files from them, build a library
from them, or, by linking them with runtime libraries, create an executable file and
place them in the specified directories in the system.

For all these purposes, the make utility calls the appropriate programs: the
compiler is called to compile, the archiver is called to create archived libraries, and
the linker is called for linking. make reads all these instructions from a special file
called Makefile.

Makefile is a text file of a special format; for simple projects, it can be created
manually; for large projects, there are automated tools creating such files.

Note The Makefile must reside in the root directory of the project.

Generally, Makefile contains a set of rules; a rule looks like this:

<targets ...>: <prerequisites ...>
recipe
...
...

© The Author(s), under exclusive license to APress Media, LLC,
part of Springer Nature 2024
B. I. Tuleuov, A. B. Ospanova, Beginning C++ Compilers,
https://doi.org/10.1007/978-1-4842-9563-2_4

23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4842-9563-2protect T1	extunderscore 4&domain=pdf
https://doi.org/10.1007/978-1-4842-9563-2_4
https://doi.org/10.1007/978-1-4842-9563-2_4
https://doi.org/10.1007/978-1-4842-9563-2_4
https://doi.org/10.1007/978-1-4842-9563-2_4
https://doi.org/10.1007/978-1-4842-9563-2_4
https://doi.org/10.1007/978-1-4842-9563-2_4
https://doi.org/10.1007/978-1-4842-9563-2_4
https://doi.org/10.1007/978-1-4842-9563-2_4
https://doi.org/10.1007/978-1-4842-9563-2_4
https://doi.org/10.1007/978-1-4842-9563-2_4
https://doi.org/10.1007/978-1-4842-9563-2_4

24 4 General Build Information

Sometimes, another terminology is used for the rules:

<targets ...>: <dependencies ...>
command
...
...

make is guided by the rule in order to build the target file from the source files of
the project. A target is usually the name of executable or object files; it can also be
the name of an action to carry out. Examples of the latter are 'all', 'clean',
'install', and 'uninstall'; they are called 'Phony Targets' and
are marked by .PHONY in Makefile. Usual targets may depend on several files.

Note Failure to follow the Makefile format (often incorrect indentation at the
beginning of a line in the description of targets) leads to an error in the make utility.

Many parameters contained in the Makefile require clarification when trying
to build on a specific computer. For example, the system may not have installed (or
the wrong version) a required library, a compiler higher than a certain version may
be required, etc. To check all build options, a redistributable program or library
includes a special script called Configure. This script is usually written in
bash, but other languages can also be used, such as Perl.

As a result of the successful operation of the Configure script, a
Makefile is generated that is intended specifically for this computer.

Although some programs and libraries are also supplied in compiled (binary)
form, sometimes it is better to recompile them for a particular machine. The thing
is that the Configure script allows you to take into account, for example, the
parameters of the central processor and, in the case of a latest generation processor,
activates its capabilities.

This note is especially relevant to the GMP library, which is designed to work
with very large numbers.

4.1.1 GNU Autotools (GNU Build System)

The basic sequence of commands for building programs and libraries with some
variations comes down to the following:

$./Configure
$ make
make install

4.2 Windows Systems 25

For some libraries (e.g., for GMP), the stage of checking the built result is desirable,
which is made by the command

$ make check

This step may take a significant amount of time.
Once the project is built, one can delete the object files as they are no longer

needed. For large projects with hundreds of files, this frees up a lot of disk space.
It may also be required when rebuilding the project after some changes in the

source texts of some files. This can be done with the command

$ make clean

There is also a command for uninstalling the software already installed:

$ make uninstall

4.2 Windows Systems

4.2.1 nmakeUtility

The nmake utility supplied with the Microsoft C/C++ compiler is an analog of the
make utility and of course is not compatible with it. We give its parameters:

D:\Users\John>nmake /?

Microsoft (R) Program Maintenance Utility Version 14.31.31107.0
Copyright (C) Microsoft Corporation. All rights reserved.

Usage: NMAKE @commandfile
NMAKE [options] [/f makefile] [/x stderrfile] [macrodefs]

[targets]↪→

Options:

/A Build all evaluated targets
/B Build if time stamps are equal
/C Suppress output messages
/D Display build information
/E Override env-var macros
/ERRORREPORT:{NONE|PROMPT|QUEUE|SEND} Report errors to Microsoft
/G Display !include filenames
/HELP Display brief usage message
/I Ignore exit codes from commands
/K Build unrelated targets on error
/N Display commands but do not execute
/NOLOGO Suppress copyright message
/P Display NMAKE information
/Q Check time stamps but do not build
/R Ignore predefined rules/macros
/S Suppress executed-commands display
/T Change time stamps but do not build

26 4 General Build Information

/U Dump inline files
/Y Disable batch-mode
/? Display brief usage message

D:\Users\John>

4.2.2 Visual Studio .vcxproj and .sln Files

When developing modern software, especially large software, the so-called inte-
grated development environments (IDEs) are used, which include not only high-
level language compilers but also debuggers to facilitate finding errors in programs
and optimizing their work, as well as advanced source code editors with syntax
highlighting and auto-completion functions and an advanced hint system, a system
for working with source code repositories and version control, a designer for
designing a graphical interface. Some environments contain database tools.

Of course, the source code of such applications consists of many files, and they
are usually combined into so-called Projects. The source code of such Projects
consists not only of files in some high-level programming language but also of
resource files (icons, images, audio and video, etc.) and settings files—up to the
cursor position in a specific file opened in the source code editor. Projects are created
in the IDE (of course, very simple Projects can be created by hand, following the
appropriate file formats, but this is usually not necessary), and each IDE has its own
format. Typically, IDE project files are XML files (text files with Unicode support).

Microsoft Visual Studio project files have the .vcxproj extension (for older
versions of Visual Studio, .vcproj). Visual Studio projects can be grouped into
so-called Solutions, which consist of multiple .vcxproj projects. It is interesting
to note that Solutions can combine projects written in different programming
languages. Solutions files have the extension .sln.

To build Visual Studio projects and solutions, MSBuild is a utility that is tightly
integrated into Visual Studio and is currently its native build system. However, we
note that it is not necessary to use MSBuild from the Visual Studio environment to
build projects and solutions—MSBuild can be run from the command line too.

Undoubtedly, projects make life easier when developing complex programs,
especially those with a visual interface. However, in practice, especially in academic
and scientific environments, you have to write programs that consist of a single
file (or a small number of files), and creating a project for such programs does not
make much sense. It is also important to emphasize that projects are generally not
cross-platform—they cannot be ported to another platform or operating system. For
researchers (and not only for them), this situation is not acceptable: for example,
having written an implementation of some algorithm in the standard C++ language,
the author wants to test the program on different platforms and operating systems.

For the preceding reasons, the ability of development environments to compile
individual files is important. As far as we know, in recent years, the developers of
Microsoft Visual Studio have also paid attention to this.

4.2 Windows Systems 27

4.2.3 MSBuild Build System

In the Microsoft paper “Walkthrough: Using MSBuild to Create a Visual C++
Project” [13], the process of MSBuild usage in the command line to build a Visual
Studio C++ project is demonstrated.

This article walks you through creating a .vcxproj project file for a console
C++ application. Along the way, some explanations are given about the structure
of the .vcxproj and .props files, as well as the variables (wildcards) used in
such files.

We don’t recommend going deep into the structure of these files, because these
files are usually generated automatically by Visual Studio, and these XML files are
quite large, although not difficult to understand (in XML files, it’s very easy to get
confused about the start and end tags). You should also be careful when manually
editing such files—due to a slightest mistake, the project or solution will not open
in Visual Studio or will not build at all.

To build the simplest “Hello, from MSBuild!” application, you do not need to
create a project at all, but on the other hand, we want to show the clumsiness of
projects with this simple example.

So create your source code file, main.cpp:

// main.cpp : the application source code.
#include <iostream>
#include "main.h"

int main(){
std::cout << "Hello, from MSBuild!\n";
return 0;

}

and auxiliary main.h header file—additional header files can be included in this
file:

// main.h: the application header code.
/* Additional source code to include. */

Now let’s create a file of our project called MyProject.vcxproj in a text
editor. Recall that a project file is an XML file consisting of elements, which in turn
can contain child elements. The root element of a project is named <Project>,
and this element will contain seven child elements. These child elements are

• Three grouping tags <ItemGroup>, the first of which defines the configura-
tion of the project, and the other two contain the names of the files, source code,
and header.

• Three <Import> import tags define the location of the Microsoft Visual C++
settings files.

• Another grouping tag <PropertyGroup> sets project settings.

28 4 General Build Information

1. Create a root element with a <Project> tag. We will insert child elements
between a pair of opening <Project> and closing </Project> tags:

<Project DefaultTargets="Build" ToolsVersion="16.0"
xmlns="http://schemas.microsoft.com/developer/msbuild/2003">↪→

</Project>

Note the value of the ToolsVersion parameter: “14.0,” “15.0,” “16.0,” and
finally “17.0” mean Visual Studio 2015, Visual Studio 2017, Visual Studio 2019,
and Visual Studio 2022, respectively.

2. Next, let’s add a child <ItemGroup> element, which, in turn, contains two
of its own <ProjectConfiguration> child elements that are similar
to each other. As you can see, the <ItemGroup> tag is used to group
subelements, while the <ProjectConfiguration> elements are used to
define debug and release configurations for a 32-bit Windows:

<ItemGroup>
<ProjectConfiguration Include="Debug|Win32">

<Configuration>Debug</Configuration>
<Platform>Win32</Platform>

</ProjectConfiguration>
<ProjectConfiguration Include="Release|Win32">

<Configuration>Release</Configuration>
<Platform>Win32</Platform>

</ProjectConfiguration>
</ItemGroup>

3. Let’s add an element of type <Import> that sets the default C++ project
settings:

<Import Project="$(VCTargetsPath)\Microsoft.Cpp.default.props"
/>↪→

4. Next, add a <PropertyGroup> grouping element with two subelements
<ConfigurationType> and <PlatformToolset>.

The <PlatformToolset> property value should be set to v140, v141,
v142, and v143 for Visual Studio 2015, Visual Studio 2017, Visual Studio 2019,
and Visual Studio 2022, respectively.

<PropertyGroup>
<ConfigurationType>Application</ConfigurationType>
<PlatformToolset>v142</PlatformToolset>

</PropertyGroup>

The full set of values for this parameter can be found in Table 9-5 in Section 9.2.5.

4.2 Windows Systems 29

5. Add another element of type <Import> that sets the current C++ settings of
the project:

<Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />

6. Insert a grouping <ItemGroup> element with two child <ClCompile>
elements. They define a C/C++ source code and a header file:

<ItemGroup>
<ClCompile Include="main.cpp" />

</ItemGroup>
<ItemGroup>

<ClInclude Include="main.h" />
</ItemGroup>

<ClCompile> defines the build target, such targets are defined in special files.
7. And finally, we add another element of type <Import> that defines the target

for this project:

<Import Project="$(VCTargetsPath)\Microsoft.Cpp.Targets" />

Now we have our project file completed:

<Project DefaultTargets="Build" ToolsVersion="16.0"
xmlns="http://schemas.microsoft.com/developer/msbuild/2003">↪→

<ItemGroup>
<ProjectConfiguration Include="Debug|Win32">

<Configuration>Debug</Configuration>
<Platform>Win32</Platform>

</ProjectConfiguration>
<ProjectConfiguration Include="Release|Win32">

<Configuration>Release</Configuration>
<Platform>Win32</Platform>

</ProjectConfiguration>
</ItemGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.default.props"

/>↪→
<PropertyGroup>

<ConfigurationType>Application</ConfigurationType>
<PlatformToolset>v142</PlatformToolset>

</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />
<ItemGroup>

<ClCompile Include="main.cpp" />
</ItemGroup>
<ItemGroup>

<ClInclude Include="main.h" />
</ItemGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.Targets" />

</Project>

The project can be built by the command

MSBuild MyProject.vcxproj /p:Configuration=Release

30 4 General Build Information

MSBuild Build Targets In Microsoft’s definition, a build target is a named set
of predefined or user-defined commands that can be executed during the build. In
solutions that include many projects, for example, you can specify a single project
as a target, and then this particular project will be built. The clean target clears the
build folder of the corresponding configuration (if Release, then the Release folder
is cleared; if Debug, the Debug folder is cleared), that is, object and other auxiliary
files are deleted, and a new log file is created. To set the build target, use the /t
option:

MSBuild MyProject.vcxproj /t:clean

Note MSBuild has the following syntax: MSBuild.exe [options] [
project file | directory] Note that options can be specified as
follows: "-option", "/option" and "--option"

MSBuild Properties Some properties can be changed on the command line, such
as Configuration and Platform. Configuration can be Debug or
Release, and Platform can be, for example, Win32 or x64 (indicating the
bitness of the operating system for Intel processors).1 You can also change the
PlatformToolset property on the command line. The project file we just
created cannot be built using the Visual Studio 2022 build tools, so this setting can be
changed on the command line by adding the /p:PlatformToolset=v143
option.

Here is the project build log:

G:\Users\MSBuild>MSBuild MyProject.vcxproj
/p:Configuration=Release /p:PlatformToolset=v143↪→

Microsoft (R) Build Engine version 17.1.0+ae57d105c for .NET
Framework↪→

Copyright (C) Microsoft Corporation. All rights reserved.

Build started 4/17/2023 5:18:53 PM.
Project "G:\Users\MSBuild\MyProject.vcxproj" on node 1 (default

targets).↪→
PrepareForBuild:

Creating directory "Release\".
Creating directory "Release\MyProject.tlog\".

InitializeBuildStatus:
Creating "Release\MyProject.tlog\unsuccessfulbuild" because

"AlwaysCreate" was specified.↪→
ClCompile:

1 There may be other platforms.

4.2 Windows Systems 31

X:\Program Files\Microsoft Visual Studio\2022\BuildTools\VC\To �
ols\MSVC\14.31.31103\bin\HostX86\x86\CL.exe /c /Zi /nologo
/W1 /WX- /diagnostics:column /O2 /Oy- /Gm- /EHsc /MD /GS
/fp:precise /Zc:wchar_t /Zc:forScope /Zc:inline
/Fo"Release\\" /Fd"Release\vc143.pdb" /external:W1 /Gd /TP
/analyze- /FC /errorReport:queue main.cpp

↪→
↪→
↪→
↪→
↪→
main.cpp

Link:
X:\Program Files\Microsoft Visual Studio\2022\BuildTools\VC\To �

ols\MSVC\14.31.31103\bin\HostX86\x86\link.exe
/ERRORREPORT:QUEUE
/OUT:"G:\Users\MSBuild\Release\MyProject.exe" /NOLOGO
kernel32.lib user32.lib gdi32.lib winspool.lib
comdlg32.lib advapi32.lib shell32.lib ole32.lib
oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /MANIFEST
/MANIFESTUAC:"level='asInvoker' uiAccess='false'"
/manifest:embed /DEBUG:FULL
/PDB:"G:\Users\MSBuild\Release\MyProject.pdb" /TLBID:1
/DYNAMICBASE /NXCOMPAT
/IMPLIB:"G:\Users\MSBuild\Release\MyProject.lib"
/MACHINE:X86 /SAFESEH Release\main.obj

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
MyProject.vcxproj -> G:\Users\MSBuild\Release\MyProject.exe

FinalizeBuildStatus:
Deleting file "Release\MyProject.tlog\unsuccessfulbuild".
Touching "Release\MyProject.tlog\MyProject.lastbuildstate".

Done Building Project "G:\Users\MSBuild\MyProject.vcxproj"
(default targets).↪→

Build succeeded.
0 Warning(s)
0 Error(s)

Time Elapsed 00:00:15.08

G:\Users\MSBuild>

To be able to build the project for 64-bit Windows, the project file must be
supplemented with the appropriate group of parameters; they are highlighted in bold
in the following listing:

<Project DefaultTargets="Build" ToolsVersion="16.0"
xmlns="http://schemas.microsoft.com/developer/msbuild/2003">↪→

<ItemGroup>
<ProjectConfiguration Include="Debug|Win32">

<Configuration>Debug</Configuration>
<Platform>Win32</Platform>

</ProjectConfiguration>
<ProjectConfiguration Include="Release|Win32">

<Configuration>Release</Configuration>
<Platform>Win32</Platform>

</ProjectConfiguration>
<ProjectConfiguration Include="Debug|x64">

<Configuration>Debug</Configuration>

32 4 General Build Information

<Platform>x64</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Release|x64">

<Configuration>Release</Configuration>
<Platform>x64</Platform>

</ProjectConfiguration>
</ItemGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.default.props"

/>↪→
<PropertyGroup>

<ConfigurationType>Application</ConfigurationType>
<PlatformToolset>v142</PlatformToolset>

</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />
<ItemGroup>

<ClCompile Include="main.cpp" />
</ItemGroup>
<ItemGroup>

<ClInclude Include="main.h" />
</ItemGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.Targets" />

</Project>

Here, we have given a simple example of using the MSBuild utility. For details
on how to run this utility, see Section 9.2.5 (page 104), along with some of the other
parameters of this utility.

4.3 Cygwin

To build under Windows software originally developed for Unix systems, you
can also use the Cygwin platform, but we will not consider this option, since
this approach does not meet the compactness and portability requirements that we
adhere to. These issues are discussed in more detail in Section 8.1, page 75.

4.4 Cross-Platform Topics

The MinGW compilers discussed in this book, like the Microsoft C/C++ compiler,
are cross-compilers, that is, they allow you to create code for different hardware or
software platforms.2 For example, with the help of GCC (remember that MinGW is
a port of GCC to Windows), you can generate code from the Linux operating system
that is designed to run on Windows.

2 A hardware platform refers to the processor architecture for which it is intended the generated
code, and under the program, the operating system on which this code is executed. Naturally, these
two types of platforms can be combined.

4.5 Conclusion 33

The MinGW builds we offer allow you to create code designed for both 32-
bit and 64-bit Windows, and both 32-bit and 64-bit versions of MinGW can do
this. However, one must be careful not to mix libraries for different versions of
Windows platforms; cross-platform issues are not included in our task, and we will
not consider them.

Similarly, the Microsoft C/C++ compiler can create executable files for differ-
ent processors and software platforms: 'x86', 'x86_amd64', 'amd64',
'x86_arm', 'x86_arm64', Arm, Arm64, Arm64ec, and CHPE.

In our book, we focus on the Intel x86_64 processor architecture, often also
referred to as 'amd64', due to their greatest prevalence. 32-bit Windows is
considered obsolete, but it can still be used, and our book can fully help with this.
However, we prefer 64-bit Windows.

Also, note that the techniques for working with the Microsoft C/C++ compiler
that we describe in our book can easily be applied in a similar way to non-Intel
processor architectures.

4.5 Conclusion

In this chapter, we have given general information about the tools for building
programs and libraries in different operating systems. The most important point
is that Unix build tools have been mainly ported to Windows systems, which allows
you to build libraries and programs under Windows that were originally developed
for Unix systems.

5Some Useful Open Source Utilities

This chapter discusses various free programs that improve the efficiency of
advanced users, including a file manager, an advanced text editor, a universal
archiver, a utility for working with msi packages, and a utility for mounting ISO
images.

5.1 Far Manager

Far Manager is a free (shareware) utility. It can be downloaded from the website
https://farmanager.com.

This program is a clone of the once famous program Norton Commander by
Peter Norton and John Socha. It utilizes text mode to work, so it is very fast.

“Far” stands for “File and ARchive,” so it is very convenient to work with files
and archives. The program is highly customizable and allows the use of plug-ins.
Users can view and edit text files in various encodings, including Unicode UTF-8;
moreover, it is possible to convert between these encodings.

It is possible to view an arbitrary file in hexadecimal format. Very useful is the
ability to search for files containing a given word.

Almost every type of archive can easily be unpacked with the aid of this program.

For doing this, select the archive with arrow keys or the mouse and hit , and

select files to extract, then press . The selected content will be extracted to the
place opened in the second panel.

© The Author(s), under exclusive license to APress Media, LLC,
part of Springer Nature 2024
B. I. Tuleuov, A. B. Ospanova, Beginning C++ Compilers,
https://doi.org/10.1007/978-1-4842-9563-2_5

35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4842-9563-2protect T1	extunderscore 5&domain=pdf
https://farmanager.com
https://farmanager.com
https://farmanager.com
https://doi.org/10.1007/978-1-4842-9563-2_5
https://doi.org/10.1007/978-1-4842-9563-2_5
https://doi.org/10.1007/978-1-4842-9563-2_5
https://doi.org/10.1007/978-1-4842-9563-2_5
https://doi.org/10.1007/978-1-4842-9563-2_5
https://doi.org/10.1007/978-1-4842-9563-2_5
https://doi.org/10.1007/978-1-4842-9563-2_5
https://doi.org/10.1007/978-1-4842-9563-2_5
https://doi.org/10.1007/978-1-4842-9563-2_5
https://doi.org/10.1007/978-1-4842-9563-2_5
https://doi.org/10.1007/978-1-4842-9563-2_5

36 5 Some Useful Open Source Utilities

The program is especially useful when you need to select files with a specific
extension in a directory with many files:

• Convenient display of the contents of directories on disks.
• Display a directory tree on a disk with the ability to navigate to the desired

directory directly through this tree, and you can create, rename, and delete
directories here.

• Easily create, edit, copy, rename, move, and delete files.
• Easy creation, renaming, and removal of directories. You can immediately

create a directory with several levels of nesting, just like the mkdir/md
Folder\Subfolder1\Subfolder2\Subfolder3 command.

• View files of various formats: text, Word documents, graphic files, database files,
and archives. Text documents can be viewed in hexadecimal format.

• Run commands through the built-in console, and the command history is
preserved.

• Manipulations with attributes of files and directories.
• Search for files and directories by mask and timestamps, in subdirectories, which

are case-sensitive.
• Search for files by incoming substrings in nested directories.

The interface consists of two panels. Each of the panels displays the contents of a
directory, while these panels are independent in the sense that the users themselves
can choose what to display there. In particular, it is possible to display the contents
of the same directory in both panels. File and archive operations can be performed
from one directory to another.

Each panel is a table that has a top header containing information about the
current directory for that panel. The bottom lines of the table contain information
about the selected object (file or directory): size, if it is a file, modification time, as
well as information about the size of the current partition and free space. The rest
of the panel space is used to list the names of directories and files in the current
directory. Each directory or file occupies a separate line in the list; by default, the
list is displayed in each panel in a two-column format (this format, of course, can
be changed).

The '..' characters at the beginning of the list mean the superdirectory, that

is, the parent directory of the current directory. By pressing the key on this
line, you can go up one level.

Always one of the panels is active. In the active panel, one of the rows is
highlighted in color, except for the case when the current one in the active panel
is the root directory of a disk that does not contain any files. We will call such
a selected line an active line, and such a line should not be confused with a file

selected using the key.
Also, information about the current directory of the active panel is displayed in

the title of the Far window, and the command line at the bottom of the Far window
switches to the current directory of the active panel.

5.1 Far Manager 37

5.1.1 Default Installation

The program can be downloaded from the official site (https://farmanager.com/
download.php?l=en), under the Stable builds tag. Three types of builds are available:
for portable installation as an archive, msi package for standard installation, and
build for developers. The builds cover three Windows platforms—x86, x64, and
ARM64—which correspond to 32-bit and 64-bit Windows and Windows for ARM-
based devices, respectively. For a standard installation, you need to download
the msi package through https://farmanager.com/files/Far30b6116.x64.20230311.
msi and run it with administrator rights.

5.1.2 Easy Installation

For easy installation, download the archive from the official website (https://
farmanager.com/download.php?l=en), selecting the archive button under the Sta-
ble builds tag. Unpack the downloaded archive using the 7z archiver to the
Programs\Far directory.

The sequence of the unpacking process is shown in the figures (Figures 5-1, 5-2,
and 5-3).

Figure 5-1 7z context menu

https://farmanager.com/download.php?l=en
https://farmanager.com/download.php?l=en
https://farmanager.com/download.php?l=en
https://farmanager.com/download.php?l=en
https://farmanager.com/download.php?l=en
https://farmanager.com/download.php?l=en
https://farmanager.com/download.php?l=en
https://farmanager.com/files/Far30b6116.x64.20230311.msi
https://farmanager.com/files/Far30b6116.x64.20230311.msi
https://farmanager.com/files/Far30b6116.x64.20230311.msi
https://farmanager.com/files/Far30b6116.x64.20230311.msi
https://farmanager.com/files/Far30b6116.x64.20230311.msi
https://farmanager.com/files/Far30b6116.x64.20230311.msi
https://farmanager.com/files/Far30b6116.x64.20230311.msi
https://farmanager.com/files/Far30b6116.x64.20230311.msi
https://farmanager.com/download.php?l=en
https://farmanager.com/download.php?l=en
https://farmanager.com/download.php?l=en
https://farmanager.com/download.php?l=en
https://farmanager.com/download.php?l=en
https://farmanager.com/download.php?l=en
https://farmanager.com/download.php?l=en

38 5 Some Useful Open Source Utilities

Figure 5-2 Hit the .. button to select the folder to unpack

On the command line, you can unpack the archive with the following command:

7zr x -oD:\Programs\Far C:\Soft\Far30b6116.x64.20230311.7z

Note that the path Programs\Far doesn’t have to be existing; it will be created
if needed.

5.1.3 Usage

When you hit the key in Far If the command line is not empty when you

press the key in the Far window, then what is there will be executed as a
command.

If the command line is empty, then further actions depend on what is selected in
the active line:

• If a directory name is selected, an entry will be made to that directory. If the
name of this directory is '..', then the current directory will be exited to the
parent directory, one level higher.

• If an archive file name is selected (the file extensions are '.zip', '.7z',
'.rar', '.tar', '.gz', '.tar.gz', '.tar.xz', etc.), the table
of contents of that archive file will be displayed. For files with double extensions

5.1 Far Manager 39

Figure 5-3 Browse for the folder

like '.tar.gz' and '.tar.xz', the internal archive file will be shown;

you can select it and press again on its name to see the contents of the
nested archive. Having selected the entire contents of the archive with the hotkey

+ , you can unpack the archive with the key to the directory
displayed in the inactive panel.

• If a file name is selected whose extension is listed in the PATHEXT environ-
ment variable (these are '.com', '.exe', '.bat', '.cmd', '.vbs',
'.vbe', '.js', '.jse', '.wsf', '.wsh', and '.msc'), then the
operating system will execute this file. For other file name extensions, the
operating system will attempt to open the highlighted file using the application
associated with that extension: for '.txt', it is Notepad; for '.doc' and

40 5 Some Useful Open Source Utilities

'.docx', it is Microsoft Word; for '.xls' and '.xlsx', it is Microsoft
Excel; for extensions like '.jpg', '.jpeg', and '.png', a graphic file
viewer or graphic editor can be called; etc.

C:\Users\User>echo %PATHEXT%
.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH;.MSC

C:\Users\User>

Select files and directories Using Far, you can select a group of directories and
files, and you can perform some operations on this group: copy, move, delete, and
archive. Selected files are marked in yellow by default.

The key is used to select a file or directory. Pressing this key again will
cancel the selection. If the directory contains hundreds or thousands of files, then it
makes no sense to select them individually. In this sense, the selection of files and
directories by mask comes to the rescue.

By pressing in the numeric keypad, you can select all files in the active
panel, while directories are not selected. To select all directories and files at once,

press + on the numeric keypad. If you press + on the
numeric keypad when something is already selected, then the selection is inverted:
the selected files become unselected, and the unselected ones become selected.

If you need to select by mask, you must press the key in the numeric keypad
and set the selection mask. If, among the selected ones, you need to cancel some,

then you need to press in the numeric keypad and set the appropriate mask.

For example, to select all Microsoft Word files, press the key on the numeric
keypad and set the mask to '*.doc*', which will select all files with extensions

'.doc' and '.docx', and press . If now we want to exclude from the
list of selected files all files whose name consists of five characters, then you need

to press in the numeric keypad and set the mask '?????.*', since this
template will select all files whose name length is five (Figure 5-4).

Note We remind you that in the file name and extension, the symbol '*' means
any number of any (allowed) characters, and '?' means any single (allowed)
character or no character.

Selected files can be copied (), moved to another location or renamed

(), deleted (), and archived (+).

5.1 Far Manager 41

Figure 5-4 Selection by mask in Far

Figure 5-5 Quick find file in Far

Quick find file To do this, hit + first file name letters. The search input
form will appear at the bottom of the panel. The desired file or directory will be
highlighted as soon as you enter enough letters to uniquely identify the file or
directory you are looking for (Figure 5-5).

42 5 Some Useful Open Source Utilities

5.2 7z

7-Zip is a file archiver with a high compression ratio. The latest version is 7-Zip
22.01 (2022-07-15) for Windows.

7-Zip is free software with open source. Most of the code is under the GNU
LGPL license. Some parts of the code are under the BSD 3-clause license. Also,
there is unRAR license restriction for some parts of the code. Read 7-Zip License
information.

You can use 7-Zip on any computer, including a computer in a commercial
organization. You don’t need to register or pay for 7-Zip.

The main features of 7-Zip according to the official website (www.7-zip.org)
are

• High compression ratio in 7z format with LZMA and LZMA2 compression.
• Supported formats:

– Packing/unpacking: 7z, XZ, BZIP2, GZIP, TAR, ZIP, and WIM
– Unpacking only: APFS, AR, ARJ, CAB, CHM, CPIO, CramFS, DMG,

EXT, FAT, GPT, HFS, IHEX, ISO, LZH, LZMA, MBR, MSI, NSIS, NTFS,
QCOW2, RAR, RPM, SquashFS, UDF, UEFI, VDI, VHD, VHDX, VMDK,
XAR, and Z

• For ZIP and GZIP formats, 7-Zip provides a compression ratio that is 2–10%
better than the ratio provided by PKZip and WinZip.

• Strong AES-256 encryption in 7z and ZIP formats.
• Self-extracting capability for 7z format.
• Integration with Windows Shell.
• Powerful file manager.
• Powerful command-line version.
• Plug-in for Far Manager.
• Localizations for 87 languages.
• Works in Windows 10/8/7/Vista/XP/2019/2016/2012/2008/2003/2000.

p7zip is the port of the command-line version of 7-Zip to Linux/Posix.
On 7-Zip’s SourceForge Page, you can find a forum, bug reports, and feature

request systems.

5.2.1 Default Installation

For 64-bit Windows, the program can be downloaded from the official website
(www.7-zip.org/download.html); there are choices between .exe, .msi, and
.7z formats.

www.7-zip.org
www.7-zip.org
www.7-zip.org
www.7-zip.org
www.7-zip.org/download.html
www.7-zip.org/download.html
www.7-zip.org/download.html
www.7-zip.org/download.html
www.7-zip.org/download.html
www.7-zip.org/download.html

5.2 7z 43

5.2.2 Easy Installation

7zr.exe, a 32-bit 7-Zip console executable, can be downloaded from the official
website: www.7-zip.org/a/7zr.exe. As we recommended before, it is better to put
this file into the Programs\bin folder to be always accessible in the command
line.

5.2.3 Usage

C:\Users\User>7zr

7-Zip (r) 22.01 (x86) : Igor Pavlov : Public domain : 2022-07-15

Usage: 7zr <command> [<switches>...] <archive_name>
[<file_names>...] [@listfile]↪→

<Commands>
a : Add files to archive
b : Benchmark
d : Delete files from archive
e : Extract files from archive (without using directory names)
h : Calculate hash values for files
i : Show information about supported formats
l : List contents of archive
rn : Rename files in archive
t : Test integrity of archive
u : Update files to archive
x : eXtract files with full paths

<Switches>
-- : Stop switches and @listfile parsing
-ai[r[-|0]]{@listfile|!wildcard} : Include archives
-ax[r[-|0]]{@listfile|!wildcard} : eXclude archives
-ao{a|s|t|u} : set Overwrite mode
-an : disable archive_name field
-bb[0-3] : set output log level
-bd : disable progress indicator
-bs{o|e|p}{0|1|2} : set output stream for output/error/progress

line↪→
-bt : show execution time statistics
-i[r[-|0]]{@listfile|!wildcard} : Include filenames
-m{Parameters} : set compression Method

-mmt[N] : set number of CPU threads
-mx[N] : set compression level: -mx1 (fastest) ... -mx9

(ultra)↪→
-o{Directory} : set Output directory
-p{Password} : set Password
-r[-|0] : Recurse subdirectories for name search
-sa{a|e|s} : set Archive name mode
-scc{UTF-8|WIN|DOS} : set charset for console input/output

www.7-zip.org/a/7zr.exe
www.7-zip.org/a/7zr.exe
www.7-zip.org/a/7zr.exe
www.7-zip.org/a/7zr.exe
www.7-zip.org/a/7zr.exe
www.7-zip.org/a/7zr.exe
www.7-zip.org/a/7zr.exe

44 5 Some Useful Open Source Utilities

-scs{UTF-8|UTF-16LE|UTF-16BE|WIN|DOS|{id}} : set charset for
list files↪→

-scrc[CRC32|CRC64|SHA1|SHA256|*] : set hash function for x, e,
h commands↪→

-sdel : delete files after compression
-seml[.] : send archive by email
-sfx[{name}] : Create SFX archive
-si[{name}] : read data from stdin
-slp : set Large Pages mode
-slt : show technical information for l (List) command
-snh : store hard links as links
-snl : store symbolic links as links
-sni : store NT security information
-sns[-] : store NTFS alternate streams
-so : write data to stdout
-spd : disable wildcard matching for file names
-spe : eliminate duplication of root folder for extract command
-spf : use fully qualified file paths
-ssc[-] : set sensitive case mode
-sse : stop archive creating, if it can't open some input file
-ssp : do not change Last Access Time of source files while

archiving↪→
-ssw : compress shared files
-stl : set archive timestamp from the most recently modified

file↪→
-stm{HexMask} : set CPU thread affinity mask (hexadecimal

number)↪→
-stx{Type} : exclude archive type
-t{Type} : Set type of archive
-u[-][p#][q#][r#][x#][y#][z#][!newArchiveName] : Update options
-v{Size}[b|k|m|g] : Create volumes
-w[{path}] : assign Work directory. Empty path means a

temporary directory↪→
-x[r[-|0]]{@listfile|!wildcard} : eXclude filenames
-y : assume Yes on all queries

C:\Users\User>

5.3 Notepad++

Notepad++ is a free, open source multipurpose editor for Windows operating
systems, so it is not cross-platform. Its official site is https://notepad-plus-plus.org.

Its key features are

• Multitab
• Syntax highlighting

• Column-mode edition: Ability to work with vertical text blocks (“ + mouse

selection” or “ + + ” to switch to column mode)
• Code folding

https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://notepad-plus-plus.org

5.3 Notepad++ 45

Figure 5-6 Notepad++ interface

• Auto-completion (text, parentheses, braces, and brackets)
• Support several text encodings and conversion between them
• Built-in MD5 and SHA256 hash calculation tools
• Bookmarks

Notepad++ supports almost all common programming languages, and the func-
tionality of the editor can be extended using plug-ins (Figure 5-6).

A characteristic feature of the editor is that each group of operations is expanded
in all sorts of ways. Let us discuss this in more detail. In the document, you can
insert, for example, the current date in different formats. ASCII Codes Insertion
Panel is shown in the picture (Figure 5-7).

One can copy to the clipboard Current Full File Path, Current File Name, Current
Directory Path, All File Names, and All File Paths.

Eight options are given for case conversion, in particular, case inversion and
randomizing. Of particular note are line operations: they can be cloned, delete
duplicates, sorted, split, combined, moved up and down, insert/delete empty lines,
reverse order of lines, rearrange lines randomly, and sort them according to different
rules.

Windows, Linux, and Mac OS line endings are supported.
Users can trim leading and trailing spaces (simultaneously or not), convert

EOL to space, and make conversion between and in various

46 5 Some Useful Open Source Utilities

Figure 5-7 Notepad++ ASCII Codes Insertion Panel

combinations. These operations can be selected in the Edit -> Blank menu
item. The file opened can be set to Read-only.

5.3.1 Default Installation

You should download it through https://github.com/notepad-plus-plus/notepad-
plus-plus/releases/download/v8.4.9/npp.8.4.9.Installer.x64.exe for standard instal-
lation.

5.3.2 Easy Installation

Notepad++ suggests several options for easy installation; follow these links:

1. https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.
4.9/npp.8.4.9.portable.x64.zip

2. https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.
4.9/npp.8.4.9.portable.x64.7z

3. https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.
4.9/npp.8.4.9.portable.minimalist.x64.7z

Download the archive of your choice and extract it to the Programs directory. If
necessary, you can make a shortcut for a quick launch on the desktop.

https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.Installer.x64.exe
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.Installer.x64.exe
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.Installer.x64.exe
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.Installer.x64.exe
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.Installer.x64.exe
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.Installer.x64.exe
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.Installer.x64.exe
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.Installer.x64.exe
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.Installer.x64.exe
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.Installer.x64.exe
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.Installer.x64.exe
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.Installer.x64.exe
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.Installer.x64.exe
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.Installer.x64.exe
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.Installer.x64.exe
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.Installer.x64.exe
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.Installer.x64.exe
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.Installer.x64.exe
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.Installer.x64.exe
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.Installer.x64.exe
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.Installer.x64.exe
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.zip
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.zip
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.zip
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.zip
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.zip
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.zip
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.zip
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.zip
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.zip
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.zip
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.zip
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.zip
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.zip
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.zip
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.zip
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.zip
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.zip
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.zip
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.zip
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.zip
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.zip
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.minimalist.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.minimalist.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.minimalist.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.minimalist.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.minimalist.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.minimalist.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.minimalist.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.minimalist.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.minimalist.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.minimalist.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.minimalist.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.minimalist.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.minimalist.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.minimalist.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.minimalist.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.minimalist.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.minimalist.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.minimalist.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.minimalist.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.minimalist.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.minimalist.x64.7z
https://github.com/notepad-plus-plus/notepad-plus-plus/releases/download/v8.4.9/npp.8.4.9.portable.minimalist.x64.7z

5.4 lessmsi 47

5.4 lessmsi

Its official site is https://lessmsi.activescott.com.
It is a small, wonderful open source utility to view and extract the contents of a

Windows Installer (.msi) file. It was also called Less Msiérables as well as lessmsi.
It can be useful when the user needs to work with a program that they cannot install
due to lack of administrator rights.

Often, in such cases, it turns out that the program can actually be extracted from
the msi installation package, and here this program comes to the user’s aid.

This is a utility with a graphical user interface and a command-line interface that
can be used to view and extract the contents of an MSI file.

5.4.1 Easy Installation

Download it through https://github.com/activescott/lessmsi/releases/download/v1.
10.0/lessmsi-v1.10.0.zip. There is also a Chocolatey package available for instal-
lation.

Just unzip the archive into the Programs\lessmsi-1.10.0 directory:

D:\Programs\lessmsi-1.10.0>dir
Volume in drive D is DATA
Volume Serial Number is 0ACA-8C17

Directory of D:\Programs\lessmsi-1.10.0

03/14/2023 11:29 AM <DIR> .
03/14/2023 11:29 AM <DIR> ..
11/04/2021 03:24 AM 8,704

AddWindowsExplorerShortcut.exe↪→
10/10/2020 09:56 AM 19,968 LessIO.dll
11/04/2021 03:24 AM 105,984 lessmsi-gui.exe
11/04/2021 03:23 AM 172 lessmsi-gui.exe.config
11/04/2021 03:24 AM 25,600 lessmsi.core.dll
11/04/2021 03:24 AM 28,672 lessmsi.exe
11/04/2021 03:23 AM 176 lessmsi.exe.config
11/25/2018 02:07 PM 13,312 libmspackn.dll
11/25/2018 02:07 PM 167,936 mspack.dll
11/04/2021 03:23 AM 1,015,808 wix.dll
11/04/2021 03:23 AM 188,416 wixcab.dll

11 File(s) 1,574,748 bytes
2 Dir(s) 503,857,192,960 bytes free

5.4.2 Usage

To use it, after downloading the zip file, double-click lessmsi.exe to run the
application.

https://lessmsi.activescott.com
https://lessmsi.activescott.com
https://lessmsi.activescott.com
https://lessmsi.activescott.com
https://github.com/activescott/lessmsi/releases/download/v1.10.0/lessmsi-v1.10.0.zip
https://github.com/activescott/lessmsi/releases/download/v1.10.0/lessmsi-v1.10.0.zip
https://github.com/activescott/lessmsi/releases/download/v1.10.0/lessmsi-v1.10.0.zip
https://github.com/activescott/lessmsi/releases/download/v1.10.0/lessmsi-v1.10.0.zip
https://github.com/activescott/lessmsi/releases/download/v1.10.0/lessmsi-v1.10.0.zip
https://github.com/activescott/lessmsi/releases/download/v1.10.0/lessmsi-v1.10.0.zip
https://github.com/activescott/lessmsi/releases/download/v1.10.0/lessmsi-v1.10.0.zip
https://github.com/activescott/lessmsi/releases/download/v1.10.0/lessmsi-v1.10.0.zip
https://github.com/activescott/lessmsi/releases/download/v1.10.0/lessmsi-v1.10.0.zip
https://github.com/activescott/lessmsi/releases/download/v1.10.0/lessmsi-v1.10.0.zip
https://github.com/activescott/lessmsi/releases/download/v1.10.0/lessmsi-v1.10.0.zip
https://github.com/activescott/lessmsi/releases/download/v1.10.0/lessmsi-v1.10.0.zip
https://github.com/activescott/lessmsi/releases/download/v1.10.0/lessmsi-v1.10.0.zip
https://github.com/activescott/lessmsi/releases/download/v1.10.0/lessmsi-v1.10.0.zip
https://github.com/activescott/lessmsi/releases/download/v1.10.0/lessmsi-v1.10.0.zip

48 5 Some Useful Open Source Utilities

You can also extract files from the command line. This has been used in
automated scripts to extract files or information from an MSI. To extract from the
command line:

lessmsi x <msiFileName> [<outouptDir>]

Here is an example of unpacking the msi package VCForPython27.msi;
this is Visual C ++ 2009 for Python 2.7 from the official Microsoft website, required
for Python 2.7. If you install this package in the standard way, then it will be
installed somewhere in the wilds of the system user directories, and it will also
not work correctly if the user account name contains Unicode characters, as well
as spaces. Using lessmsi, this product can be simply unpacked and copied to
the Programs\VCForPython27 directory, while the package works without
errors (Figure 5-8).

lessmsi can also integrate itself into Windows Explorer so that the user can
right-click a Windows Installer file (.msi file) and select “Extract Files” to extract
it into a folder right there. Shell integration can be dynamically enabled/disabled via
a menu item Edit -> Preferences.

MSI Table Viewer Windows Installer files (.msi files) are based on an internal
database of tables. lessmsi features a viewer for those tables. This is useful for
people who work a lot with installers.

Figure 5-8 lessmsi

5.6 Conclusion 49

5.5 WinCDEmu

One of the best programs for mounting ISO images is WinCDEmu, which is
an open source CD/DVD/BD emulator (https://wincdemu.sysprogs.org); this
program has a portable version (https://wincdemu.sysprogs.org/portable). A
portable single executable file runs under all versions of Microsoft Windows
(10/8.1/8/7/2008/Vista/2003/XP), on both x86 and x64 platforms. No system reboot
is needed. WinCDEmu is

• Free for any kind of use
• Lite, about 670 KB only
• Easy to use, just run the downloaded portable exe

5.5.1 Easy Installation

The download link for the portable version is https://github.com/sysprogs/
WinCDEmu/releases/download/v4.1/PortableWinCDEmu-4.0.exe. Just put this
single executable file in the folder Programs\bin.

5.5.2 Usage

Of course, WinCDEmu requires administrative privileges to create virtual devices
and mount ISO images. On Windows 10 and up, no additional software of this kind
is needed at all. Just right-click the ISO image on the Explorer window and select
the “Mount” menu item. The system itself will create the device, assign it a letter,
and mount the image there, no matter if the user has administrative privileges or not
(no matter if the user has administrative rights or not).

However, some programs like UltraISO or WinRar may intercept a context menu
item for ISO files and replace it with their own action, like “Extract.” It is just the
case when WinCDEmu comes to the rescue! In this case, just start WinCDEmu and
select the ISO image you want to mount.

5.6 Conclusion

In this chapter, we have discussed several freeware programs that can be very useful.
These include a file and archive manager, a multifunctional (supporting many

formats) archiving utility, a utility for unpacking standard Windows installation
packages (msi), and a small program for mounting ISO images.

All of them, in addition, do not require traditional installation—they can be
downloaded as archives, unpacked, and can start working. Moreover, they are quite
small.

https://wincdemu.sysprogs.org
https://wincdemu.sysprogs.org
https://wincdemu.sysprogs.org
https://wincdemu.sysprogs.org
https://wincdemu.sysprogs.org/portable
https://wincdemu.sysprogs.org/portable
https://wincdemu.sysprogs.org/portable
https://wincdemu.sysprogs.org/portable
https://wincdemu.sysprogs.org/portable
https://github.com/sysprogs/WinCDEmu/releases/download/v4.1/PortableWinCDEmu-4.0.exe
https://github.com/sysprogs/WinCDEmu/releases/download/v4.1/PortableWinCDEmu-4.0.exe
https://github.com/sysprogs/WinCDEmu/releases/download/v4.1/PortableWinCDEmu-4.0.exe
https://github.com/sysprogs/WinCDEmu/releases/download/v4.1/PortableWinCDEmu-4.0.exe
https://github.com/sysprogs/WinCDEmu/releases/download/v4.1/PortableWinCDEmu-4.0.exe
https://github.com/sysprogs/WinCDEmu/releases/download/v4.1/PortableWinCDEmu-4.0.exe
https://github.com/sysprogs/WinCDEmu/releases/download/v4.1/PortableWinCDEmu-4.0.exe
https://github.com/sysprogs/WinCDEmu/releases/download/v4.1/PortableWinCDEmu-4.0.exe
https://github.com/sysprogs/WinCDEmu/releases/download/v4.1/PortableWinCDEmu-4.0.exe
https://github.com/sysprogs/WinCDEmu/releases/download/v4.1/PortableWinCDEmu-4.0.exe
https://github.com/sysprogs/WinCDEmu/releases/download/v4.1/PortableWinCDEmu-4.0.exe
https://github.com/sysprogs/WinCDEmu/releases/download/v4.1/PortableWinCDEmu-4.0.exe
https://github.com/sysprogs/WinCDEmu/releases/download/v4.1/PortableWinCDEmu-4.0.exe

6Command-Line Interface

More or less competent computer users who want to build their own libraries using
compilers, as well as applications that use external libraries, should be able to work
on the command line, understand the types of executable files, and know compilers
well.

About compilers and related tools will be discussed later, but now we will give
some basic concepts about the interfaces of the Windows operating system.

6.1 Command Interpreter

The command-line interface is traditionally thought to be native to Unix systems;
however, this is not the case—the command line is invariably present in all versions
of Windows. The reason is simple—with all the conveniences of a GUI, it has one
important drawback: it is completely unsuitable for automation tasks, that is, for
programming.

A funny and instructive incident happened to one of the authors many years
ago: a user brought in a CD with a bunch of nested directories that, among other
files, had graphic files that needed to be copied. This person did not know how to
solve this problem in Windows, and manually browsing through all the directories,
taking into account the nesting, was tedious and error-prone, as it can be easily
confused. Meanwhile, the task was easily solved in a minute, even in Windows, with
its heavily castrated command line in terms of functionality, using the command
{xcopy} with the /s key.

Any computer can be considered as hardware + software; without software, we
have only a pile of iron, and without iron, we have only programs on some medium.
Both are useless on their own.

The most important program (or rather, a whole software package) that provides
an interface between the hardware and the user is called the operating system. In

© The Author(s), under exclusive license to APress Media, LLC,
part of Springer Nature 2024
B. I. Tuleuov, A. B. Ospanova, Beginning C++ Compilers,
https://doi.org/10.1007/978-1-4842-9563-2_6

51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4842-9563-2protect T1	extunderscore 6&domain=pdf
https://doi.org/10.1007/978-1-4842-9563-2_6
https://doi.org/10.1007/978-1-4842-9563-2_6
https://doi.org/10.1007/978-1-4842-9563-2_6
https://doi.org/10.1007/978-1-4842-9563-2_6
https://doi.org/10.1007/978-1-4842-9563-2_6
https://doi.org/10.1007/978-1-4842-9563-2_6
https://doi.org/10.1007/978-1-4842-9563-2_6
https://doi.org/10.1007/978-1-4842-9563-2_6
https://doi.org/10.1007/978-1-4842-9563-2_6
https://doi.org/10.1007/978-1-4842-9563-2_6
https://doi.org/10.1007/978-1-4842-9563-2_6

52 6 Command-Line Interface

other words, the operating system makes the hardware resources of the computer
available to the user and provides for the installation of other, user programs, the
so-called applications.

In turn, the program that provides the interface between the user and the operating
system is called the shell of the operating system. There is a command-line interface
(CLI) and a graphical user interface (GUI). The shell is used to execute operating
system commands, for user interaction with the operating system.

Instead of the term command-line interface on Windows, it is usually called the
command line or console, and on Unix systems, the terminal. We will also stick to
these names.

The graphical shell of Windows is Explorer. It is important to note that, unlike
Unix systems, the Windows GUI is hardwired into its kernel and cannot be
unloaded. Unix systems can be used in a purely terminal mode, which is especially
effective for web servers and scientific calculations—after all, in these cases, the
graphic subsystem, which is gluttonous to memory and processor resources, is
absolutely not needed! This explains, in particular, the fact that Linux operating
systems are usually installed on supercomputers.

Let us note the main advantages and disadvantages of these shells. The main
advantage of the graphical shell is the ease of operation; even a housewife can
be relatively quickly taught to work more or less tolerably in Windows. The
main disadvantage is that the graphical interface consumes too many computer
resources (memory and processor time), which are especially necessary when
solving scientific and engineering problems (a graphical shell is absolutely not
needed to run and manage such tasks).

Another drawback of the graphical shell is a continuation of its main advantage—
in an effort to simplify the life of the user, Windows Explorer does not allow, for
example, the user to see what kind of file received by email they are going to launch
(there are very common cases when, under the guise of aWord document or pictures,
a Trojan virus is sent, just a file renamed accordingly) on their computer, because
by default Windows Explorer does not display the file extension and does not have
simple file content viewers, such as in Far Manager.

The main disadvantage of the command line for most users is the inconvenience
of work—all commands have to be typed by hand. However, true professionals
(hackers, administrators, developers, etc.) do not think so, since it is in this mode
that the user has the greatest opportunities, and some tasks, in principle, cannot be
effectively solved using the graphical shell.

The command line is also extremely effective at automating routine tasks.
The Windows command line can be invoked in several ways:

(a) Through the Start menu | All programs | Command line
(b) Through the Start menu | Run, then in the input window that appears, type cmd

(recall that the executable file of the command interpreter is called cmd.exe
and is located in the WINDOWS\system32 folder; in earlier versions, it was
called command.com) and click OK.

6.1 Command Interpreter 53

Figure 6-1 Opening the command line from Explorer

(c) By the key combination + , which is equivalent to selecting the
Start menu | Run, then according to point (b).

Also, the command line can be launched from under the Explorer: while holding

the key, just right-click the icon of the folder you want to open in the
command line, or, while in this folder, do the same in an empty space, as shown in
Figure 6-1.1

6.1.1 Launching and Executing Commands in the Command Line
(Terminal, Console)

On Windows, typing at the command line (i.e., typing and pressing the Enter key)
any sequence of characters that does not contain spaces will be treated as a command
and will result in the execution of either an internal (e.g., as copy) command of the
command interpreter or some program or batch file whose name matches the entered
sequence; a command can be used with a parameter. If the user types, say, dosmth

on the command line and presses , then the shell looks for the dosmth
internal command; if there is no such command, then it searches in turn for the

1 This is true for Windows 7; on Windows 10/11, you will be prompted to run PowerShell instead
of the command line. For these systems, this menu item can be reconfigured to launch a normal
command line.

54 6 Command-Line Interface

files dosmth.exe, dosmth.cmd, and dosmth.bat; if found, it launches
such a file for execution. If none of these files is found, a corresponding message is
displayed on the screen. The extensions *.cmd and *.bat refer to the so-called
batch files (on Unix, these kinds of files are usually called shell scripts), sometimes
called shell scripts; each line of such a text file consists of a command (possibly
with parameters); these commands are executed one after another.

By default, these files are looked for in the current directory, and then in
the directories specified in the PATH environment variable. We will talk about
environment variables in the next section.

If the command or executable/batch file name contains spaces, then it should be
enclosed in double quotes (“bad file name”).

However, we strongly discourage the use of spaces in file and folder names, as
well as non-English characters. On Unix, you can use single quotes.

On Windows, a file can be uniquely identified by giving its fully qualified name,
including the drive name and the directory hierarchy that contains it, for example:

[drive:][path]filename

According to accepted conventions, brackets [] denote optional elements, that is,
they can be omitted.

.

For example, the full file name of dosmth.exe for the preceding examples is

D:\Users\John\bin\dosmth.exe
C:\Program Files\SomeSoft\bin\dosmth.exe

To run these programs, you need to type the same lines on the command line, but
in the second case, you need to enclose the line in double quotes due to the presence
of spaces in the path:

C:\Users\John>"C:\Program Files\SomeSoft\bin\dosmth.exe"

Otherwise, the system will try to run the command or program named
'Program' located on the C: disk (C:\Program)—without finding

6.1 Command Interpreter 55

which, it will display a corresponding warning, while the rest of the input string
'Files\SomeSoft\bin\dosmth.exe' will be interpreted as the first
parameter of the command being executed:

C:\Users\John>C:\Program Files\SomeSoft\bin\dosmth.exe
'C:\Program' is not recognized as an internal or external

command,
operable program or batch file.

If the drive is not specified in the full file name, then the current drive is assumed,
and if the path is not specified, then the current directory is assumed. Often, in the
case when the full name of the file is indicated, one speaks of the absolute name of
the file. But when the file name is specified relative to another directory, then they
talk about the relative file name.

Let us explain the latter with examples. Let’s say we are in the John directory,
that is, the current directory is D:\Users\John. Then we can run our program
by executing the command

C:\Users\John>bin\dosmth.exe

and to execute the program D:\Users\Admin\dowork.exe, while still in
the John directory, we can type at the command line

C:\Users\John>..\Admin\dowork.exe

where '..' means the superdirectory, that is, the directory containing the current
directory, in this case D:\Users. Less commonly (in Windows), the notation for
the current directory is '.' (single dot). Both of these designations are widely used
on Unix systems.

6.1.2 Path Separator

The Windows command interpreters command.com and cmd.exe understand both
the default backslash (backward slash, backslash)'\' in file names and the forward
slash (forward slash, slash) '/' (accepted in Unix systems). Although there are tips
to use mostly forward slashes, this should be done carefully—because of the “curve”
implementation of some commands and utilities by Microsoft programmers. For
example, the dir command on the Windows 8 command line confuses forward
slashes with switches: to avoid this, again, you need to enclose the paths in double
quotes.

6.1.3 Windows Standard Command Line

The command line is the standard interface of the Windows command interpreter,
cmd.exe.

56 6 Command-Line Interface

Up until Windows 10, the command line was very inconvenient to use: the user
could not even resize the window, for example. Now let’s talk about some methods
of setting up the command line.

For example, the standard prompt in the form of the current directory and the
'>' sign can be changed with the command

C:\Users\John>set PROMPT=D_$$

to another format consisting of two lines: the first line displays the current date, and
the second line shows the prompt in the form of the '$' sign.

Mon 03/13/2023
$

The parameters of the PROMPT command can be found performing the
PROMPT /?.

When forming a new invitation, you can use ordinary characters and special
codes, the list of which is given as follows:

$A & (Ampersand) $L < (less-than sign)
$B | (pipe) $N Current drive
$C ((Left parenthesis) $P Current drive and path
$D Current date $Q = (equal sign)
$E Escape code (ASCII code 27) $S (space)
$F) (Right parenthesis) $T Current time
$G > (greater-than sign) $V Windows version number
$H Backspace $_ Carriage return and

(erases previous character) linefeed
$$ $ (dollar sign)

One can also set the background and text colors using the COLOR command:

C:\Users\John>COLOR fa

This produces light green on bright white. Color codes are shown as follows:

0 = Black 8 = Gray
1 = Blue 9 = Light Blue
2 = Green A = Light Green
3 = Aqua B = Light Aqua
4 = Red C = Light Red
5 = Purple D = Light Purple
6 = Yellow E = Light Yellow
7 = White F = Bright White

For those users who display messages in national languages, it is useful to
execute the command

C:\Users\John>chcp 65001

which sets the widely accepted UTF-8 variant of the Unicode encoding. In this case,
the user should choose Consolas as the console font.

6.2 Environment Variables 57

6.2 Environment Variables

Environment variables are used to store information that programs need to run.
These are, for example, Windows installation and default application directories,
processor type, etc. One of the important such parameters is PATH, which contains
a list of directories in which programs called to be launched on the command line
are searched, as well as dynamically loaded libraries necessary for the programs to
run. The list of environment variables can be viewed with the set command. On a
more or less clean machine, the result of this command looks like this:

C:\Users\John>set
ALLUSERSPROFILE=C:\ProgramData
APPDATA=C:\Users\John\AppData\Roaming
CommonProgramFiles=C:\Program Files\Common Files
CommonProgramFiles(x86)=C:\Program Files (x86)\Common Files
CommonProgramW6432=C:\Program Files\Common Files
COMPUTERNAME=COMPUTER
ComSpec=C:\Windows\system32\cmd.exe
DriverData=C:\Windows\System32\Drivers\DriverData
FPS_BROWSER_APP_PROFILE_STRING=Internet Explorer
FPS_BROWSER_USER_PROFILE_STRING=Default
HOMEDRIVE=C:
HOMEPATH=\Users\John
LOCALAPPDATA=C:\Users\John\AppData\Local
LOGONSERVER=\\COMPUTER
NUMBER_OF_PROCESSORS=8
OS=Windows_NT
Path=E:\Programs\bin;C:\Programs\bin;C:\Windows\system32;C:\Wind �

ows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowe �
rShell\v1.0\;C:\Windows\System32\OpenSSH\;C:\Users\John\AppD �
ata\Local\Microsoft\WindowsApps;

↪→
↪→
↪→
PATHEXT=.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH;.MSC
PROCESSOR_ARCHITECTURE=AMD64
PROCESSOR_IDENTIFIER=Intel64 Family 6 Model 26 Stepping 5,

GenuineIntel↪→
PROCESSOR_LEVEL=6
PROCESSOR_REVISION=1a05
ProgramData=C:\ProgramData
ProgramFiles=C:\Program Files
ProgramFiles(x86)=C:\Program Files (x86)
ProgramW6432=C:\Program Files
PROMPT=PG
PSModulePath=C:\Program Files\WindowsPowerShell\Modules;C:\Windo �

ws\system32\WindowsPowerShell\v1.0\Modules↪→
PUBLIC=C:\Users\Public
SESSIONNAME=Console
SystemDrive=C:
SystemRoot=C:\Windows
TEMP=C:\Users\John\AppData\Local\Temp
TMP=C:\Users\John\AppData\Local\Temp
USERDOMAIN=COMPUTER
USERDOMAIN_ROAMINGPROFILE=COMPUTER

58 6 Command-Line Interface

USERNAME=John
USERPROFILE=C:\Users\John
windir=C:\Windows

C:\Users\John>

Variables are given in the form VARIABLE=VALUE. As we can see from
here, the PATHEXT variable sets the search order for executable files by their
extensions, which was discussed earlier. This order can be changed if necessary
using the command set.

Environment variables provide a convenient way to tell different programs about
the presence of data or programs that they need to work on the system. For example,
if the PYTHONHOME variable is set, the user program knows where the Python
interpreter is located. To display the value of a variable, say PATH, you need to
issue the command

C:\Users\John>echo %PATH%

The value of this variable is also displayed by the path command.
Environment variables can be modified, and there are two types of such changes:

permanent and temporary. Permanent changes are made through the applet, are
remembered, and will remain in effect even after the computer is restarted. Changes
do not affect programs that were running before these changes and are applicable to
newly launched programs. Sometimes, you need to restart your computer for these
changes to take effect.

Temporary changes are made in the command line and are only effective for this
console and expire after it is closed. Such changes are good because changes are
made as needed, without clogging the system.

Environment variables are divided into system-wide and user variables. Admin-
istrator privileges are required to change system-wide variables.

6.2.1 Modification of the PATH System Environment Variable

It is inconvenient to write the full name of the file all the time (in fact, in
Unix systems, the terminal remembers the entered commands, and on subsequent
launches of the terminal, even after restarting the computer, a user can call them
using the arrow keys; in Windows, Far Manager can do this), especially if it is long;
therefore, the path to the directory where the user’s executable file is located can
be added to the PATH environment variable. Recall that this variable in text format
contains a semicolon-separated list of directories in which to search for commands
(executable files) and dynamic-link libraries.

The PATH variable can be modified by adding the user’s path to it. This is done
in several ways; usually, users do this: through the system applet (by pressing the

+ key combination, call up “System Properties,” then edit
“Environment Variables”) or by editing the corresponding hive of the Windows

6.2 Environment Variables 59

Figure 6-2 Modifying environment variables: System Properties

Figure 6-3 Modifying environment variables: PATH

registry; however, in this case, the system is clogged, since the changes made will
remain, so to speak, forever (many programs, when installed, modify the PATH
variable in this way; while uninstalling, they forget to clean up PATH).2

Now let’s show the modification of environment variables in the graphical
shell. You need to open the System window in the System settings, then click the
Advanced system settings link; in the System Properties applet that opens, click
the Environment Variables button again (Figure 6-2). After that, select the PATH
variable at the bottom of the next window, under the inscription System variables,
and click the Edit button. A new window will open called Edit environment
variable (shown on the right side of Figure 6-3). To add a new directory, say
D:\Some\New\Path\bin, to the PATH variable, click the New button
and enter the string 'D:\Some\New\Path\bin' (you can also use the
clipboard). To move this directory to the top of the list, use the Move Up button.

2 One can often observe that the same path is present in the PATH list twice, in different places.

60 6 Command-Line Interface

Changes will take effect for newly launched programs and consoles. Some
settings (in particular, related to drivers) may require system restart.

More flexible, in our opinion, is another way, when the PATH variable is
modified once, at the time of launch, so to speak, on demand. To do this, the user
needs to give the following command on the command line:3

C:\Users\John>set PATH=D:\Users\John\bin;%PATH%

In this case, the PATH variable changes its value only for the current session; when
the command line is closed, the changes are lost. By the way, we note that the Visual
Studio command lines work exactly according to this principle. We also note that
users can add their path to an arbitrary place in the PATH list; this only affects the
search order—sometimes, there is a need to manipulate this. For example, one can
write like this:

C:\Users\John>set PATH=%PATH%;D:\Users\John\bin

In this case, the D:\Users\John\bin directory will be searched last.

Note You can view the current value of the PATH variable by executing the path
command on the command line.

6.3 Access Management

It is not always possible to change environment variables, especially system
variables. In corporate environments, as well as on public computers, access to
system settings can be severely restricted—changes can only be made by the system
administrator. In such cases, a normal user may not even be allowed to change
user environment variables, but if the user can run the command line, they can also
change user variables like PATH from the command line using the set command.

The user can set up their own, user-defined environment variables, both system-
wide (if they have administrator rights) and user-wide. This is done using the same
set command:

set IS_VARIABLE_SET=YES

You can reset the value of a variable like this:

set IS_VARIABLE_SET=

3 In a way, this is similar to the C++ assignment operator
PATH=D:\Users\John\bin + PATH

but for strings, because string addition is not permutable.

6.4 ConEmu 61

Make sure the variable name you choose, say VARIABLE_NAME, is not occupied
(doesn’t exist on the system). Otherwise, you can mess up its value. To check this,
run the command

echo %VARIABLE_NAME%

If nothing is displayed on the screen, then the variable is free.

6.4 ConEmu

Official website: https://conemu.github.io
Download link:
www.fosshub.com/ConEmu.html?dwl=ConEmuPack.221218.7z

Although the command line has improved in recent versions of Windows, we still
recommend using a different, more advanced Windows console emulator. There are
already many such emulators at the moment; there are very advanced ones, but with
a commercial license. We suggest using open source ConEmu, which is free. The
program is flexibly configured, and it is multitab; other console applications can be
hosted in its windows, for example, Far Manager, cmd, PowerShell, or
Unix PTY (cygwin, MSYS/MSYS2, WSL bash). For example, you can run
ConEmu with several tabs at the same time, each of which runs different commands
with different settings. To do this, you need to create the so-called startup file
startup.txt (we will describe an example later) and run ConEmu with a
command like

C:\Users\John>conemu.exe /cmd @startup.txt

We quote an example of such a file with comments from the official website of the
program:

>E:\Source\FARUnicode\trunk\unicode_far\Debug.32.vc\far.exe

*/BufferHeight 400 cmd
/BufferHeight 1000 powershell

Each line in the file corresponds to a launched command. You may specify the
console buffer height using the /BufferHeight parameter. If the line starts
with '>', this tab will be active on startup. If the line starts with '*', this
command will be run with administrator privileges (Figure 6-4).

https://conemu.github.io
https://conemu.github.io
https://conemu.github.io
https://conemu.github.io
www.fosshub.com/ConEmu.html?dwl=ConEmuPack.221218.7z
www.fosshub.com/ConEmu.html?dwl=ConEmuPack.221218.7z
www.fosshub.com/ConEmu.html?dwl=ConEmuPack.221218.7z
www.fosshub.com/ConEmu.html?dwl=ConEmuPack.221218.7z
www.fosshub.com/ConEmu.html?dwl=ConEmuPack.221218.7z
www.fosshub.com/ConEmu.html?dwl=ConEmuPack.221218.7z
www.fosshub.com/ConEmu.html?dwl=ConEmuPack.221218.7z
www.fosshub.com/ConEmu.html?dwl=ConEmuPack.221218.7z
www.fosshub.com/ConEmu.html?dwl=ConEmuPack.221218.7z

62 6 Command-Line Interface

Figure 6-4 ConEmu with Settings open

6.5 Conclusion

This chapter is important for further understanding of the material presented in the
book, since compilers and related utilities work on the command line. Therefore,
we talked in some detail about the command line, environment variables, and how
to modify them. At the end of the chapter, we talked about a convenient, multitab
command-line emulator that allows flexible settings to suit the user’s taste.

7Integrated Development Environments
and Editors

In this chapter, we describe some of the popular integrated development environ-
ments (IDEs) as well as lightweight advanced editors that provide some of the
features of an IDE.

7.1 Microsoft Visual Studio

Currently, Microsoft Visual Studio is one of the most popular application develop-
ment environments. The first versions of the product, when it was called Visual C++
and then Visual Studio, were very compact—Visual C++ 5.0 could be run directly
from a CD; Visual C++ 6.0 also fit on one CD.

With all the advantages of this product, its exorbitantly increased volume is its
main drawback. The disadvantages are also high demands on computer resources.

If a user has an insufficient powerful computer, then they cannot install Visual
Studio, because it requires a large amount of disk space; also, the user cannot
manage disk space distribution (Visual Studio will always require a large disk space
on C:, as well as on any other disk).

Apart from disk space, Visual Studio needs a lot of RAM amount and good video
support. Table 7-1 from the Microsoft site [14] shows hardware requirements for
Visual Studio 2019. The Visual Studio 2022 Product Family [2] imposes slightly
more requirements on video support.

For Visual Studio 2022, the requirements are about the same. In this case, we
present only the hardware requirements.

Visual Studio 2022 Product Family System Requirements
Hardware

• 1.8GHz or faster 64-bit processor; quad-core or better recommended. ARM
processors are not supported.

© The Author(s), under exclusive license to APress Media, LLC,
part of Springer Nature 2024
B. I. Tuleuov, A. B. Ospanova, Beginning C++ Compilers,
https://doi.org/10.1007/978-1-4842-9563-2_7

63

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4842-9563-2protect T1	extunderscore 7&domain=pdf
https://doi.org/10.1007/978-1-4842-9563-2_7
https://doi.org/10.1007/978-1-4842-9563-2_7
https://doi.org/10.1007/978-1-4842-9563-2_7
https://doi.org/10.1007/978-1-4842-9563-2_7
https://doi.org/10.1007/978-1-4842-9563-2_7
https://doi.org/10.1007/978-1-4842-9563-2_7
https://doi.org/10.1007/978-1-4842-9563-2_7
https://doi.org/10.1007/978-1-4842-9563-2_7
https://doi.org/10.1007/978-1-4842-9563-2_7
https://doi.org/10.1007/978-1-4842-9563-2_7
https://doi.org/10.1007/978-1-4842-9563-2_7

64 7 Integrated Development Environments and Editors

Table 7-1 Visual Studio 2019 system requirements

Supported Operating Systems Visual Studio 2019 will install and run on the following
operating systems (64-bit recommended; ARM is not
supported):

• Windows 10 version 1703 or higher: Home, Professional,
Education, and Enterprise (LTSC and S are not supported).

• Windows Server 2019: Standard and Datacenter.
• Windows Server 2016: Standard and Datacenter.
• Windows 8.1 (with Update 2919355): Core, Professional,

and Enterprise.
• Windows Server 2012 R2 (with Update 2919355): Essen-

tials, Standard, and Datacenter.
• Windows 7 SP1 (with latest Windows Updates): Home

Premium, Professional, Enterprise, and Ultimate.

Hardware

• 1.8GHz or faster processor. Quad-core or better recom-
mended.

• 2 GB of RAM; 8 GB of RAM recommended (2.5GB
minimum if running on a virtual machine).

• Hard disk space: Minimum of 800MB up to 210GB of
available space, depending on features installed; typical
installations require 20–50GB of free space.

• Hard disk speed: To improve performance, install Win-
dows and Visual Studio on a solid-state drive (SSD).

• Video card that supports a minimum display resolution
of 720p (1280 by 720); Visual Studio will work best at
a resolution of WXGA (1366 by 768) or higher.

Supported Languages Visual Studio is available in English, Chinese (Simplified),
Chinese (Traditional), Czech, French, German, Italian,
Japanese, Korean, Polish, Portuguese (Brazil), Russian,
Spanish, and Turkish.

You can select the language of Visual Studio during
installation. The Visual Studio Installer is available in the
same 14 languages and will match the language of Windows,
if available.

Note: Visual Studio Team Foundation Server Office
Integration 2019 is available in the ten languages supported
by Visual Studio Team Foundation Server 2019.

(continued)

7.1 Microsoft Visual Studio 65

Table 7-1 (continued)

Additional Requirements and
Guidance

• Administrator rights are required to install or update
Visual Studio.

• Refer to the Visual Studio Administrator Guide for addi-
tional considerations and guidance for how to install,
deploy, update, and configure Visual Studio across an
organization.

• .NET Framework 4.5.2 or above is required to install
Visual Studio. Visual Studio requires .NET Framework
4.7.2 to run, and this will be installed during setup.

• .NET Core has specific Windows prerequisites for Win-
dows 8.1 and earlier.

• Windows 10 Enterprise LTSC edition, Windows 10 S,
and Windows 10 Team Edition are not supported for
development. You may use Visual Studio 2019 to build
apps that run on Windows 10 LTSC, Windows 10 S, and
Windows 10 Team Edition.

• Internet Explorer 11 or Edge is required for Internet-
related scenarios. Some features might not work unless
these, or a later version, are installed.

• The Server Core and Minimal Server Interface options are
not supported when running Windows Server.

• Visual Studio does not support application virtualization
solutions, such as Microsoft App-V or MSIX for Win-
dows, or third-party app virtualization technologies.

• Running Visual Studio in a virtual machine environment
requires a full Windows operating system. Visual Studio
does not support multiple simultaneous users using the
software on the same machine, including shared virtual
desktop infrastructure machines or a pooled Windows
Virtual Desktop host pool.

• Running Visual Studio 2019 (Professional, Community,
and Enterprise) in Windows containers is not supported.

• For Hyper-V emulator support, a supported 64-bit oper-
ating system is required. A processor that supports Client
Hyper-V and Second Level Address Translation (SLAT) is
also required.

• For Android emulator support, a supported processor and
operating system are required.

• Xamarin.Android requires a 64-bit edition of Windows
and the 64-bit Java Development Kit (JDK).

(continued)

66 7 Integrated Development Environments and Editors

Table 7-1 (continued)

• Universal Windows app development, including design-
ing, editing, and debugging, requires Windows 10. Win-
dows Server 2019, Windows Server 2016, and Windows
Server 2012 R2 may be used to build Universal Windows
apps from the command line.

• Team Foundation Server 2019 Office Integration requires
Office 2016, Office 2013, or Office 2010.

• PowerShell 3.0 or higher is required on Windows 7 SP1 to
install the Mobile Development with C++, JavaScript, or
.NET workloads.

• Minimum of 4 GB of RAM. Many factors impact resources used; we recommend
16GB of RAM for typical professional solutions.

• Windows 365: Minimum 2 vCPU and 8 GB of RAM. 4 vCPU and 16GB of
RAM recommended.

• Hard disk space: Minimum of 850MB up to 210GB of available space,
depending on features installed; typical installations require 20–50GB of free
space. We recommend installing Windows and Visual Studio on a solid-state
drive (SSD) to increase performance.

• Video card that supports a minimum display resolution of WXGA (1366 by 768);
Visual Studio will work best at a resolution of 1920 by 1080 or higher.
– Minimum resolution assumes zoom, DPI settings, and text scaling are set at

100%. If not set to 100%, minimum resolution should be scaled accordingly.
For example, if you set the Windows display “Scale and layout” setting on
your Surface Book, which has a 3000. ×2000 physical display, to 200%, then
Visual Studio would see a logical screen resolution of 1500. ×1000, meeting
the minimum 1366. ×768 requirement.

Visual Studio is a commercial product. For free use, there is Visual Studio
Community Edition, which can be downloaded from the official Microsoft website.

Of course, this product has rich features, especially when working on large
projects. However, for small projects, as well as for building libraries, it is quite
possible to do without it; we will talk about this in the chapter on compilers.

7.2 Qt Creator

Official builds: https://download.qt.io/official_releases/qtcreator
Official mirror of the qt-project.org qt-creator/git repositories: https://github.com/
qt-creator

https://download.qt.io/official_releases/qtcreator
https://download.qt.io/official_releases/qtcreator
https://download.qt.io/official_releases/qtcreator
https://download.qt.io/official_releases/qtcreator
https://download.qt.io/official_releases/qtcreator
https://download.qt.io/official_releases/qtcreator
https://download.qt.io/official_releases/qtcreator
https://github.com/qt-creator
https://github.com/qt-creator
https://github.com/qt-creator
https://github.com/qt-creator
https://github.com/qt-creator

7.2 Qt Creator 67

Qt Creator is a cross-platform IDE designed primarily for C/C++ languages,
but also supports Python, JavaScript, QML, and a number of others. Qt Creator
is closely related to the cross-platform C++ library Qt.

Important information on Qt Creator, including compiling Qt Creator from
sources for various platforms, is available at https://github.com/qt-creator/qt-
creator.

Latest releases can be downloaded from the page: https://github.com/qt-creator/
qt-creator/releases.

There are packages built with both MinGW and Microsoft C/C++ compilers:
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-
windows-x64-mingw-10.0.0.7z,
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-
windows-x64-msvc-10.0.0.7z

qtcreator-windows-x64-mingw-10.0.0.7z 95.3 MB 2023-03-29
qtcreator-windows-x64-msvc-10.0.0.7z 90.6 MB 2023-03-29

We recommend downloading packages built with MinGW (Figure 7-1).
Qt Creator can automatically recognize the C/C++ compilers and versions of

the Qt library installed on the system. However, you can easily connect any
other compiler and, of course, the Microsoft C/C ++ compiler (in the figure,
the abbreviation MSVC corresponds to this compiler; for compilers not listed in
Figure 7-2, select the Custom menu item). For each compiler, you must specify the
directory of that compiler’s executable file, as well as a number of related options.

Figure 7-1 Qt Creator interface

https://github.com/qt-creator/qt-creator
https://github.com/qt-creator/qt-creator
https://github.com/qt-creator/qt-creator
https://github.com/qt-creator/qt-creator
https://github.com/qt-creator/qt-creator
https://github.com/qt-creator/qt-creator
https://github.com/qt-creator/qt-creator
https://github.com/qt-creator/qt-creator/releases
https://github.com/qt-creator/qt-creator/releases
https://github.com/qt-creator/qt-creator/releases
https://github.com/qt-creator/qt-creator/releases
https://github.com/qt-creator/qt-creator/releases
https://github.com/qt-creator/qt-creator/releases
https://github.com/qt-creator/qt-creator/releases
https://github.com/qt-creator/qt-creator/releases
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-mingw-10.0.0.7z
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-mingw-10.0.0.7z
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-mingw-10.0.0.7z
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-mingw-10.0.0.7z
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-mingw-10.0.0.7z
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-mingw-10.0.0.7z
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-mingw-10.0.0.7z
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-mingw-10.0.0.7z
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-mingw-10.0.0.7z
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-mingw-10.0.0.7z
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-mingw-10.0.0.7z
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-mingw-10.0.0.7z
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-mingw-10.0.0.7z
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-mingw-10.0.0.7z
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-mingw-10.0.0.7z
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-mingw-10.0.0.7z
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-mingw-10.0.0.7z
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-mingw-10.0.0.7z
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-mingw-10.0.0.7z
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-mingw-10.0.0.7z
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-msvc-10.0.0.7z
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-msvc-10.0.0.7z
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-msvc-10.0.0.7z
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-msvc-10.0.0.7z
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-msvc-10.0.0.7z
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-msvc-10.0.0.7z
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-msvc-10.0.0.7z
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-msvc-10.0.0.7z
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-msvc-10.0.0.7z
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-msvc-10.0.0.7z
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-msvc-10.0.0.7z
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-msvc-10.0.0.7z
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-msvc-10.0.0.7z
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-msvc-10.0.0.7z
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-msvc-10.0.0.7z
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-msvc-10.0.0.7z
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-msvc-10.0.0.7z
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-msvc-10.0.0.7z
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-msvc-10.0.0.7z
https://github.com/qt-creator/qt-creator/releases/download/v10.0.0/qtcreator-windows-x64-msvc-10.0.0.7z

68 7 Integrated Development Environments and Editors

Figure 7-2 Qt Creator settings

7.3 Code::Blocks

Official website: www.codeblocks.org
Code::Blocks is a cross-platform, lightweight, free, and open source development

environment (IDE) focused on the C/C++ and Fortran programming languages. It is
very flexible and easily configurable. With the help of plug-ins, the functionality of
Code::Blocks can be significantly extended. The list of supported compilers is very
wide, and you can connect even those compilers that are not on the list.

Here is a quote from the official site:

Built around a plugin framework, Code::Blocks can be extended with plugins. Any kind of
functionality can be added by installing/coding a plugin. For instance, event compiling and
debugging functionality is provided by plugins!

Other programming languages may be supported through the plug-in system.
Features such as syntax highlighting and code folding, C++ code completion,

class browser, and a hex editor are naturally supported. It is important to note that
although the environment is oriented toward C++ projects, it is easy to compile and
build single-file programs without any configuration being required.

The IDE includes a complete debugger with rich functionality. It includes in
particular

• Full breakpoint support
• Access to the local function symbol and argument display
• User-defined watches
• Call stack

www.codeblocks.org
www.codeblocks.org
www.codeblocks.org

7.3 Code::Blocks 69

• Disassembly
• Custom memory dump
• Thread switching
• CPU registers
• GNU Debugger Interface

Code::Blocks since version 13.12 includes a GUI designer called wxSmith. To
fully develop applications based on the wxWidgets framework, of course, you need
to install the wxWidgets SDK.

It is interesting to note that Code::Blocks can import Dev-C++ and Microsoft
Visual C++ (MSVC 7 and 10) projects. Interaction with the GNU make and
qmake projects of the Qt library is also provided through external Makefiles.
The Code::Blocks projects themselves, like other IDE projects, use the XML format.

Binaries can be downloaded at www.codeblocks.org/downloads/binaries.
It is interesting to note that until recently Code::Blocks was distributed exclu-

sively as an installable msi package, so administrator rights were required to install
it. However, version 20.03 already offers different installation options, to quote the
official site again:

The codeblocks-20.03-setup.exe file includes Code::Blocks with all plugins.
The codeblocks-20.03-setup-nonadmin.exe file is provided for conve-
nience to users that do not have administrator rights on their machine(s).

The codeblocks-20.03mingw-setup.exe file includes additionally the
GCC/G++/GFortran compiler and GDB debugger from MinGW-W64 project (version
8.1.0, 32/64 bit, SEH).

The codeblocks-20.03(mingw)-nosetup.zip files are provided for
convenience to users that are allergic against installers. However, it will not allow to select
plugins/features to install (it includes everything) and not create any menu shortcuts. For
the “installation” you are on your own.

More detailed information about binaries is given directly at the place where
they are stored: https://sourceforge.net/projects/codeblocks/files/Binaries/20.03/
Windows.

codeblocks-20.03mingw-nosetup.zip 2020-04-03 172.9 MB
codeblocks-20.03mingw-setup.exe 2020-04-03 152.4 MB
codeblocks-20.03-nosetup.zip 2020-04-03 37.2 MB
codeblocks-20.03-setup-nonadmin.exe 2020-04-03 37.5 MB
codeblocks-20.03-setup.exe 2020-04-03 37.5 MB

We offer different flavours of the Windows installer, explained
hereby:

Installers:
- codeblocks-20.03-setup.exe

-> Default installer WITHOUT compiler.
- codeblocks-20.03-setup-nonadmin.exe

-> Default installer WITHOUT compiler but runnable as non-admin,
too.

(But will lack the ability to e.g. create shortcuts for all users
etc...)

- codeblocks-20.03mingw-setup.exe

www.codeblocks.org/downloads/binaries
www.codeblocks.org/downloads/binaries
www.codeblocks.org/downloads/binaries
www.codeblocks.org/downloads/binaries
www.codeblocks.org/downloads/binaries
https://sourceforge.net/projects/codeblocks/files/Binaries/20.03/Windows
https://sourceforge.net/projects/codeblocks/files/Binaries/20.03/Windows
https://sourceforge.net/projects/codeblocks/files/Binaries/20.03/Windows
https://sourceforge.net/projects/codeblocks/files/Binaries/20.03/Windows
https://sourceforge.net/projects/codeblocks/files/Binaries/20.03/Windows
https://sourceforge.net/projects/codeblocks/files/Binaries/20.03/Windows
https://sourceforge.net/projects/codeblocks/files/Binaries/20.03/Windows
https://sourceforge.net/projects/codeblocks/files/Binaries/20.03/Windows
https://sourceforge.net/projects/codeblocks/files/Binaries/20.03/Windows
https://sourceforge.net/projects/codeblocks/files/Binaries/20.03/Windows

70 7 Integrated Development Environments and Editors

-> Default installer WITH G++/GCC and GFortran compiler

Packages
- codeblocks-20.03-nosetup.zip

-> Default package WITHOUT installer
-> Same content as codeblocks-20.03-setup.exe after installation.
(Allows no customisation, use "as-is" if allergic to installers...)

- codeblocks-20.03mingw-nosetup.zip
-> Default package WITH G++/GCC and GFortran compiler but WITHOUT

installer
-> Same content as codeblocks-20.03mingw-setup.exe after

installation.
(Allows no customisation, use "as-is" if allergic to installers...)

32 bit Windows
- While we strongly recommend to install the 64 bit version, we also

offer 32 bit versions esp. for older Windows versions.
- If needed, check the installers/archives in the sub-folder "32bit".
- If a compiler is included, we recommend also using the 32 bit

compiler.
- Please respect that we provide only very limited support for these.

The installers/packages with compiler include the GNU compiler suite
and GNU debugger (GDB) from MinGW-W64 project (x86_64-posix-seh-rev0,
version 8.1.0).

Info to all installations:
-> To make Code::Blocks portable, create an empty
"default.conf" file in the installation directory!

IF UNSURE, USE "codeblocks-20.03mingw-setup.exe"!

Source: readme, updated 2020-12-29

Of course, we recommend to get codeblocks-20.03(mingw)-
nosetup.zip. Just unpack it into Programs\CodeBlocks-20.03.

When Code::Blocks is first launched, it tries to automatically detect the compilers
available on the system (Figure 7-3). As Figure 7-4 shows, the list of compilers
supported by Code::Blocks is quite large.

The list includes Microsoft products that include the Microsoft C/C++ compiler,
but the most recent of these is Microsoft Visual C++ 2010, which is long outdated
and no longer supported. However, this does not mean that the latest Microsoft
compilers cannot be used. In the following series of drawings, we will show an
example of binding the Microsoft C/C ++ compiler from the EWDK package, which
includes the compiler from Visual Studio 2019 (Figure 7-6).

First, you need to specify the path to the compiler executable file, cl.exe.
Next, you need to specify the INCLUDE and LIB directories in the EWDK

directory tree.
Finally, let’s demonstrate an example of a Hello World build and run

(Figure 7-7).

7.4 Geany 71

Figure 7-3 CodeBlocks first start

For the last EWDK package, which includes the compiler from Visual Studio
2022, you should replace the abovementioned folders with the next ones:

Program Files\Microsoft Visual
Studio\2022\BuildTools\VC\Tools\MSVC\14.31.31103\include

Program Files\Windows Kits\10\Include\10.0.22621.0\ucrt
Program Files\Microsoft Visual

Studio\2022\BuildTools\VC\Tools\MSVC\14.31.31103\lib\x64
Program Files\Windows Kits\10\Lib\10.0.22621.0\um\x64
Program Files\Windows Kits\10\Lib\10.0.22621.0\ucrt\x64

7.4 Geany

Geany official website: www.geany.org
As stated on its official website, Geany is a powerful, stable, and lightweight

programmer’s text editor that provides tons of useful features without bogging down
your workflow. It runs on Linux, Windows, and MacOS, that is, cross-platform.

It can be downloaded from https://download.geany.org/geany-1.38_setup.
exe. Unfortunately, portable builds do not yet exist for Geany. However, the
installation file geany-1.38_setup.exe can be unpacked using 7z:

www.geany.org
www.geany.org
www.geany.org
https://download.geany.org/geany-1.38_setup.exe
https://download.geany.org/geany-1.38_setup.exe
https://download.geany.org/geany-1.38_setup.exe
https://download.geany.org/geany-1.38_setup.exe
https://download.geany.org/geany-1.38_setup.exe
https://download.geany.org/geany-1.38_setup.exe
https://download.geany.org/geany-1.38_setup.exe
https://download.geany.org/geany-1.38_setup.exe
https://download.geany.org/geany-1.38_setup.exe

72 7 Integrated Development Environments and Editors

Figure 7-4 CodeBlocks compiler list

to do this, call the context menu in the Explorer window and select the
menu item 7z | Extract files.... After that, rename the unpacked
geany-1.38_setup directory to Geany-1.38 and move it to the
Programs directory.

cmd.exe /Q /C %c

7.5 Kate

Kate is a very convenient, multitab advanced text editor. The Unix version has a
built-in terminal; unfortunately, this feature is not implemented in the Windows
version, which somewhat reduces its attractiveness. It allows split screens both ver-
tically and horizontally. It also implements syntax highlighting for many languages
and code folding (Figure 7-8).

7.5 Kate 73

Figure 7-5 CodeBlocks: using a compiler from EWDK

Figure 7-6 CodeBlocks Include and Lib directories from EWDK

74 7 Integrated Development Environments and Editors

Figure 7-7 Hello World with CodeBlocks and EWDK

Figure 7-8 Kate for Windows

7.6 Conclusion

In this chapter, we have tried to give an overview of some IDEs, as well as advanced
text editors that have some of the features of an IDE. Whenever possible, we
chose free, cross-platform, and non-resource-intensive applications. This choice is
justified by the fact that we mainly focus on users who deal with either small projects
or applications consisting of a small number of files and mostly without the use of
GUIs.

8Minimal Systems

In this chapter, we will describe the MSYS and MSYS2 packages that allow many
programs and libraries originally developed for Unix-like systems to be ported to
Windows.

8.1 MSYS

MSYS stands for Minimal SYStem and is designed to provide a process for building
under Windows programs and libraries that were originally oriented for building
under Unix-like systems.

MSYS includes many GNU utilities such as make, grep, gawk, gzip, tar,
wget, and the bash shell.

Warning: Naturally, we are not talking about full-fledged porting of these
programs, since this is impossible for fundamental reasons.

MSYS doesn’t include any compiler or C/C++ runtime libraries in it, it is part of
the MinGW (Minimalist GNU for Windows) project.

MinGW provides free tools (utilities, WinAPI headers, and object libraries) and
means (compilers, linker, and library archiver) for native Windows application and
library development.

MinGW is based on the well-known Cygwin project (https://cygwin.com)
developed by Red Hat. Cygwin is also intended to provide a means of porting
programs and libraries from Unix-like systems to Windows, as well as a shell
like bash; however, at the same time, it strives to ensure that the software being
ported conforms to POSIX standards more fully. The implementation of such a goal
requires an additional layer in the form of a shared library cygwin1.dll; in
addition, Cygwin can only be used in programs distributed under the GNU GPL
license. Also, making use of additional layer dll makes the programs created with
Cygwin slow.

© The Author(s), under exclusive license to APress Media, LLC,
part of Springer Nature 2024
B. I. Tuleuov, A. B. Ospanova, Beginning C++ Compilers,
https://doi.org/10.1007/978-1-4842-9563-2_8

75

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4842-9563-2protect T1	extunderscore 8&domain=pdf
https://cygwin.com
https://cygwin.com
https://cygwin.com
https://doi.org/10.1007/978-1-4842-9563-2_8
https://doi.org/10.1007/978-1-4842-9563-2_8
https://doi.org/10.1007/978-1-4842-9563-2_8
https://doi.org/10.1007/978-1-4842-9563-2_8
https://doi.org/10.1007/978-1-4842-9563-2_8
https://doi.org/10.1007/978-1-4842-9563-2_8
https://doi.org/10.1007/978-1-4842-9563-2_8
https://doi.org/10.1007/978-1-4842-9563-2_8
https://doi.org/10.1007/978-1-4842-9563-2_8
https://doi.org/10.1007/978-1-4842-9563-2_8
https://doi.org/10.1007/978-1-4842-9563-2_8

76 8 Minimal Systems

As for MSYS, there is no additional dll layer in it; WinAPI calls are used.
Some Unix applications using the POSIX API (such as fork, mmap, or ioctl)
compiled under Cygwin fail to build under MSYS.

Two versions of MSYS (often referred to as MSYS 1) and MSYS2 are currently
supported, each with its own advantages and disadvantages.
MSYS

✓ Takes up little space.
✓ Very compact: The downloadable archive is only 45 MB in size.
✓ Self-contained: The make utility and other necessary programs are already

included; nothing needs to be downloaded.
✓ Supports older versions of Windows.
✓ Easily portable.
✗ Does not support Unicode.
✗ Not frequently updated.
✗ 32-bit only.

MSYS2

✓ Has a package manager.
✓ More convenient console.
✓ Unicode support.
✗ Takes up a lot of space.
✗ Special file system requirements.
✗ Does not work on older versions of Windows.

Note MSYS can be used separately.

MinGW and MSYS provide an independent, highly portable (can be written
to removable media) compact development environment that does not require
installation.

8.2 Default Installation

For default installation, a user should go to the official website of the MinGW
project. Currently, the MinGW project is moving from the old official site www.
mingw.org to the new one located at https://osdn.net/projects/mingw.

www.mingw.org
www.mingw.org
www.mingw.org
https://osdn.net/projects/mingw
https://osdn.net/projects/mingw
https://osdn.net/projects/mingw
https://osdn.net/projects/mingw
https://osdn.net/projects/mingw

8.2 Default Installation 77

Figure 8-1 MSYS installation

The online installer mingw-get-setup.exe (can also be obtained from
the new site) is still available at https://sourceforge.net/projects/mingw, in the
files/Installer folder. Installation is quite straightforward: when you run this file,
the necessary components are downloaded, then the MinGW Installation Manager
(Figure 8-1) is launched in the window of which you can select the installation of
MSYS. Note that as a result, the main utilities will be installed, a total of 152 files:

C:\MinGW\msys\1.0\bin>dir
Volume in drive C has no label.
Volume Serial Number is FAEC-928D

Directory of C:\MinGW\msys\1.0\bin

02/19/2023 01:14 PM <DIR> .
02/19/2023 01:14 PM <DIR> ..
04/17/2010 06:53 AM 307,712 awk.exe
04/28/2010 09:14 AM 20,992 basename.exe
10/19/2014 11:27 PM 564,224 bash.exe
02/19/2023 01:14 PM 6,955 bashbug
. . .
04/17/2010 05:08 AM 109,568 grep.exe
04/17/2010 05:39 AM 65 gunzip
04/17/2010 05:39 AM 5,868 gzexe
04/17/2010 05:39 AM 64,512 gzip.exe
. . .
04/29/2010 09:18 PM 165,888 make.exe
04/18/2010 05:48 AM 245,760 makeinfo.exe
04/28/2010 09:14 AM 39,424 md5sum.exe
04/28/2010 09:13 AM 29,696 mkdir.exe
05/13/2010 04:13 AM 6,321 mount
07/13/2016 08:47 PM 821,248 msys-1.0.dll
. . .

https://sourceforge.net/projects/mingw
https://sourceforge.net/projects/mingw
https://sourceforge.net/projects/mingw
https://sourceforge.net/projects/mingw
https://sourceforge.net/projects/mingw

78 8 Minimal Systems

04/17/2010 05:39 AM 2,418 zmore
04/17/2010 05:39 AM 4,954 znew

152 File(s) 16,337,692 bytes
2 Dir(s) 812,740,608 bytes free

With this installation of MSYS, you can install MinGW in the same way, within
the same process. At the same time, additional settings between these products are
not required. However, in this case, the use of other versions of theMinGW compiler
causes difficulties. Briefly speaking, this case of installation is not flexible.

8.3 Easy Installation

As we discussed in Chapter 2, easy installation means downloading the entire
package as a single archive file and then unpacking it into the Programs
directory. For MSYS, this will be the Programs\msys folder.

One of the places to get an all-in-one package of MSYS is the MinGW-w64
download page (http://sourceforge.net/projects/mingw-w64/files/Externalbinary
packages(Win64hosted)/MSYS(32-bit)). The latest release isMSYS-20111123.
zip, dated 2011-11-23, of size 51.0MB.

A more recent build, supplemented with some useful utilities, can be downloaded
from the MinGW-builds project page (http://sourceforge.net/projects/mingwbuilds/
files/external-binary-packages). Here, one can find as the latest release a 45.1MB
file msys+7za+wget+svn+git+mercurial+cvs-rev13.7z, dated
2013-05-15.

The first archive contains (in the bin subdirectory) 398 files, while the second
contains 545. We recommend taking the second archive which is also more fresh.

Although https://sourceforge.net/p/mingw-w64/wiki2/MSYS suggests to run
Programs\msys\msys.bat and perform the command

sh /postinstall/pi.sh

there is no need in it. Just create a batch file namedmsys1.batwith the following
content:

@echo off
call D:\Programs\msys\msys.bat
exit

and put it in the folder Programs\bin. Lazy readers can download it from the
author’s GitHub folder. Of course, disk letter change may be needed.

There is a trick that excludes the use of a drive letter. To do this, it is needed to
change the preceding batch file like this:

@echo off
set HOME=C:\User\C++
call %~d0\Programs\msys\msys.bat
exit

 6846 22316 a 6846 22316 a

http://sourceforge.net/projects/mingw-w64/files/Externalbinarypackages(Win64hosted)/MSYS(32-bit)
http://sourceforge.net/projects/mingwbuilds/files/external-binary-packages
http://sourceforge.net/projects/mingwbuilds/files/external-binary-packages
http://sourceforge.net/projects/mingwbuilds/files/external-binary-packages
http://sourceforge.net/projects/mingwbuilds/files/external-binary-packages
http://sourceforge.net/projects/mingwbuilds/files/external-binary-packages
http://sourceforge.net/projects/mingwbuilds/files/external-binary-packages
http://sourceforge.net/projects/mingwbuilds/files/external-binary-packages
http://sourceforge.net/projects/mingwbuilds/files/external-binary-packages
http://sourceforge.net/projects/mingwbuilds/files/external-binary-packages
https://sourceforge.net/p/mingw-w64/wiki2/MSYS
https://sourceforge.net/p/mingw-w64/wiki2/MSYS
https://sourceforge.net/p/mingw-w64/wiki2/MSYS
https://sourceforge.net/p/mingw-w64/wiki2/MSYS
https://sourceforge.net/p/mingw-w64/wiki2/MSYS
https://sourceforge.net/p/mingw-w64/wiki2/MSYS
https://sourceforge.net/p/mingw-w64/wiki2/MSYS
https://sourceforge.net/p/mingw-w64/wiki2/MSYS

8.6 Default Installation 79

Here, set HOME=C:\User\C++ means that we set the home directory for
MSYS to C:\User\C++. The home directory can also be set as follows:

set HOME=/C/User/C++

We just write this path in MSYS syntax, with a slash path separator '/' instead of
a backslash '\' on Windows systems. Also, '%~d0' expands to the disk letter
where this batch file is located, so no disk letters are needed to handle.

8.4 Some Tips

On first launching MSYS bash, a file .bash_history will be created in the
MSYS home folder. As we mentioned earlier, this folder can be set in msys.bat.
The file .bash_history holds the history of all commands executed during
every bash session. One can list these commands with arrow keys, instead of
retyping them as in Windows (the Windows command line does not remember
previous session commands executed).

The export command, which is similar to the set command on the Windows
command line, will be very useful. The Windows command

set PATH=E:\Programs\mingw64-8.1.0\bin;%PATH%

in the MSYS system has the following analog:

export PATH=/E/Programs/mingw64-8.1.0/bin:$PATH

Windows drives C:, D:, etc., have /c, /d, etc., mount points in MSYS,
respectively. Pay attention to the path separator and the absence of a colon after
the drive letter.

8.5 MSYS2

The official website of the project is www.msys2.org. Unlike MSYS, MSYS2 is
available for 32-bit and 64-bit Windows and is updated quite often. There’s also a
handy pacman package manager, but we don’t recommend overusing it: packages
can quickly grow to 5 GB or more in total if a user is not careful. As stated on the
official website, its package repository contains almost 3000 prebuilt packages.

It should also be noted that MSYS2 has a very convenient terminal compared to
MSYS.

8.6 Default Installation

Standard installation of MSYS2 uses a big exe-archive which should be down-
loaded from the official website. The installer program requires 64-bit Windows 8.1
or higher (note that this is not the only artificial limitation; we will discuss them

www.msys2.org
www.msys2.org
www.msys2.org

80 8 Minimal Systems

later). For example, a user cannot install MSYS2 on Windows 7 (however, it is
possible to use it on that system; we will consider this case in the next section).

Also, there is another restriction: no FAT volumes, only NTFS ones are allowed
for the installation directory. The default installation folder is C:\msys64. Of
course, administrator rights are required. In the rest, the setup process is pretty
standard.

8.7 Easy Installation

Fortunately, there is another way of MSYS2 installation. With this method, a user
can

✓ Work on older versions of Windows, in particular, under Windows 7
✓ Choose an installation folder even on FAT volumes

Also, no administrator privileges are required at all.
For this case, one should download archived package msys2-base-x86

_64-20230127.tar.xz. It can be downloaded from the following URL:
https://repo.msys2.org/distrib/x86_64/. Note that there is also a slightly bigger self-
extracting package msys2-base-x86_64-20230127.sfx.exe, but we
do not recommend using it, as it will refuse to unpack correctly on non-NTFS
partitions.

On the next step, we should extract archive content into the D:\Programs
\msys64 directory; it is easy to fulfill with the aid of Far Manager. Finally, we
create in the folder Programs\bin a batch file named msys2.bat of the
following content:

@echo off
set HOME=C:\User\C++
%~d0\Programs\msys64\msys2.exe
exit

Note that msys2.exe automatically launches the bash interpreter.
On the first launch of MSYS2, we have

Folders: 1047
Files: 15759
Files size: 279 MB

in the installation folder. After initializing, a caution will appear which suggests
restarting MSYS2 in order to apply necessary actions.

C A U T I O N #

This is first start of MSYS2. #
You MUST restart shell to apply necessary actions.

https://repo.msys2.org/distrib/x86_64/
https://repo.msys2.org/distrib/x86_64/
https://repo.msys2.org/distrib/x86_64/
https://repo.msys2.org/distrib/x86_64/
https://repo.msys2.org/distrib/x86_64/
https://repo.msys2.org/distrib/x86_64/
https://repo.msys2.org/distrib/x86_64/

8.9 Default Installation 81

As a result, several configuration files will be created:

Folders: 1054
Files: 15780
Files size: 279 MB

Unlike MSYS, there is no make utility in the base MSYS2 package, so we must
install it:

$ make
-bash: make: command not found

It is done with the following command:

$ pacman -S make

This completes the MSYS2 installation process for our purposes.

8.8 CMake

CMake stands for cross-platform make and is designed to lighten software building,
testing, and packaging processes. It is open source and consists, in fact, of tools
family, as stated in its official website: https://cmake.org.

The main purpose of CMake is to generate, based on files called CMakeLists
.txt, standard Makefiles for Unix systems, and for Windows—Visual Studio
project/workspace/solution files.

Also, the Qt Creator and Visual Studio development environments natively
support CMake.
Download: https://cmake.org/download/
Windows x64 Installer: cmake-3.25.2-windows-x86_64.msi
Windows x64 ZIP: cmake-3.25.2-windows-x86_64.zip . ∼40 MB,
expands to 98 MB

8.9 Default Installation

The default installation is completely standard and easy: just run the msi file as an
administrator and follow the instructions. As always, we recommend the installation
from the archive file, which is completely simple, as usual, and does not require
administrator rights.

https://cmake.org
https://cmake.org
https://cmake.org
https://cmake.org/download/
https://cmake.org/download/
https://cmake.org/download/
https://cmake.org/download/

82 8 Minimal Systems

8.10 Easy Installation

Just unpack the archive into D:\Programs\cmake-3.25.2-x86_64.
The utility has an implementation for both the graphical shell (cmake-gui.exe,
Figure 8-2) and the command line (cmake.exe), so it is easy to use it in batch
scripts, automating routine tasks.

Folders: 125
Files: 7090
Files size: 98.3 MB

Directory of D:\Programs\cmake-3.25.2-x86_64\bin

01/19/2023 09:26 PM <DIR> .
01/19/2023 09:26 PM <DIR> ..
01/19/2023 09:26 PM 22,228,536 cmake-gui.exe
01/19/2023 09:26 PM 10,627,640 cmake.exe
01/19/2023 09:26 PM 1,911,352 cmcldeps.exe
01/19/2023 09:26 PM 10,700,344 cpack.exe

Figure 8-2 CMake GUI interface

8.11 Conclusion 83

01/19/2023 09:26 PM 11,552,824 ctest.exe
5 File(s) 57,020,696 bytes
2 Dir(s) 504,891,195,392 bytes free

D:\Programs\cmake-3.25.2-x86_64\bin>cmake

Usage

cmake [options] <path-to-source>
cmake [options] <path-to-existing-build>
cmake [options] -S <path-to-source> -B <path-to-build>

Specify a source directory to (re-)generate a build system for it in
the current working directory. Specify an existing build directory
to re-generate its build system.

Run 'cmake --help' for more information.

Much more interesting and useful is the subst command, which does not require
administrator rights and allows you to mount a folder as a disk partition, assigning
a given letter to this disk.

8.11 Conclusion

In this chapter, we have discussed the MSYS and MSYS2 packages. They are
intended, in other words, to generate a Makefile on the target machine and build
a program or library using the MinGW compiler and utilities included in MSYS
(make, ar, etc.). For most cases, the first version of MSYS is sufficient (we only
used MSYS2 to build OpenSSL).

The main advantage of MSYS is its compactness and self-sufficiency. MSYS2
is modern, but much more resource intensive. Both versions work great in portable
mode.

It’s important to note—although these packages can be used on their own as a
set of useful utilities—they are generally not needed once a program or library has
been built. They are needed at the build stage; their further use is optional.

9Compilers

This chapter provides brief descriptions of the widely used compilers for C/C++ and
Fortran and gives practical advice on working with them.

A compiler is a special program designed to translate code written in a high-
level language (Fortran, C/C++, etc.) into a processor “language” consisting of
machine instructions. The input of the compiler is (in the simplest case) a file
with the text of the program, say, in the C/C++ language, and the output of the
compiler generates a binary file containing the object code of the program. Object
code in this form is not suitable for running on a machine, since it does not yet
have an executable file format, and, moreover, it may contain illegal references to
other program units (libraries). Typically, an application consists of several program
units (source code files in a high-level language) and can use an external object
code library. The compiler will create object files from source code files. The linker
links and combines the created object files and external library code into a single
application executable file.

Most of the classical compiling languages are implemented exactly according to
this scheme (a language implementation primarily means the creation of a compiler
of this language). Of course, this does not apply to Java and .NET Framework
technologies, since they use a virtual machine to interpret the code they have created,
that is, they do not compile code that can be executed by the processor, but code that
will be executed on the processor by an intermediate program called an interpreter.1

Let us now give a brief overview of modern C/C++ compilers, limiting ourselves
to considering only those that, firstly, more or less fully cover the existing standard
of C/C++ languages and, secondly, are well-deservedly popular. It is for these

1 Obviously, there is a significant performance penalty, but the advantage of this approach is the
relative ease of implementation of cross-platform (portable) applications.

© The Author(s), under exclusive license to APress Media, LLC,
part of Springer Nature 2024
B. I. Tuleuov, A. B. Ospanova, Beginning C++ Compilers,
https://doi.org/10.1007/978-1-4842-9563-2_9

85

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4842-9563-2protect T1	extunderscore 9&domain=pdf
https://doi.org/10.1007/978-1-4842-9563-2_9
https://doi.org/10.1007/978-1-4842-9563-2_9
https://doi.org/10.1007/978-1-4842-9563-2_9
https://doi.org/10.1007/978-1-4842-9563-2_9
https://doi.org/10.1007/978-1-4842-9563-2_9
https://doi.org/10.1007/978-1-4842-9563-2_9
https://doi.org/10.1007/978-1-4842-9563-2_9
https://doi.org/10.1007/978-1-4842-9563-2_9
https://doi.org/10.1007/978-1-4842-9563-2_9
https://doi.org/10.1007/978-1-4842-9563-2_9
https://doi.org/10.1007/978-1-4842-9563-2_9

86 9 Compilers

reasons that we do not consider the once very popular compiler from Watcom2 and
the equally popular compiler from the famous company Borland.3

9.1 GCC/MinGW

The GNU C/C++ compiler is part of the GNU Compiler Collection (GCC), which
is a set of compilers for C, C++, Objective-C, Fortran, Ada, Java, and Go, as well
as libraries for these languages (libstdc++,). GCC was originally written as a
compiler for GNU operating systems, that is, Unix systems, and only supported
the C language; support for other languages was added later. The GNU Project is
known to be supported by the Free Software Foundation (FSF), which distributes
GCC under the GNU GPL.

As the official compiler of the GNU Project, GCC is the default compiler for
many Unix systems. The latest version at the time of this writing is GCC 7.3,
released on January 25, 2018.

GCC was originally written primarily in C; however, since August 2012,
development is already in C++, and compiler versions above 4.8 require a C++
compiler that supports the ISO/IEC C++03 standard for their assembly.

GCC, perhaps, holds the record for the number of supported processor archi-
tectures (more than 75) and operating systems. Under Windows, GCC has been
ported under the name MinGW (Minimalist GNU for Windows), which we will
now consider.

The GCC interface follows Unix conventions. To compile, users invoke
language-specific control programs (driver program, gcc for C, g++ for C++, etc.)
that parse command-line arguments, call the appropriate compiler, run an assembler
to output the file, and, if required, call the linker, which generates the resulting
executable binary file. Each of the compilers is a separate program that reads
the source code of the compiled program and produces an object file containing
machine code.

MinGW is a port of GCC (GNU Compiler Collection) to the Windows platform.
According to some reports, at present the popularity of MinGW (34%) is almost
equal to that of the Microsoft C/C++ compiler (36%). The reason for this, in our
opinion, is not only the high quality of the compiler and its free usage (the Microsoft
C/C++ compiler is included in some products supplied free of charge) but also its
availability: MinGW is perhaps the only compiler that can be deployed in literally

2 At present, its successor Open Watcom is being developed by the open source community.
3 The Borland C/C++ compiler (as well as other products of this company) was, of course,
a standout product in some ways, with a friendly development environment bundled with an
extended (and non-C++ standard) library. Borland’s mediocre policy ruined this compiler (although
Embarcadero, which owns the rights to this product, continues to release the C++ Builder line,
this environment is not popular). The minimum version of Borland C++ 5.5 after registration can
be downloaded free of charge from the Embarcadero website: www.embarcadero.com/free-tools/
ccompiler/free-download

www.embarcadero.com/free-tools/ccompiler/free-download
www.embarcadero.com/free-tools/ccompiler/free-download
www.embarcadero.com/free-tools/ccompiler/free-download
www.embarcadero.com/free-tools/ccompiler/free-download
www.embarcadero.com/free-tools/ccompiler/free-download
www.embarcadero.com/free-tools/ccompiler/free-download
www.embarcadero.com/free-tools/ccompiler/free-download
www.embarcadero.com/free-tools/ccompiler/free-download

9.1 GCC/MinGW 87

five minutes, and then you can start writing code—all you need to do is download
an archive of about 45 MB (megabytes!), unpack it, and make minimal settings.

It should also be noted that there used to be an opinion that GCC does not
generate the fastest code; however, the latest performance tests show that MinGW is
only slightly inferior to the Intel C/C++ compiler in terms of the execution speed of
the code generated by the compiler, which is quite understandable (it is interesting to
note that at the same time, the speed of these compilers themselves is the lowest, and
the Intel C/C++ compiler is the slowest, and this is also quite understandable). The
authors were pleasantly surprised to find that MinGW handled the combinatorial
task of generating combinations about 10% faster than Microsoft C/C++.

9.1.1 Default Installation

For a traditional installation of the MinGW compiler, download a small web
installer, run it, and follow the instructions.

9.1.2 Building from the Sources

Since its source code is freely distributed, MinGW can be compiled by yourself.
It is important to keep in mind the following circumstance: GCC (and therefore
MinGW) depends on the GMP, MPFR and MPC libraries, and if linked to them
dynamically, then the corresponding dynamic libraries must be in the linker library
search directories, both when MinGW is built and when using the already built
MinGW.

However, it is not our task to teach the user how to build MinGW—excellent
builds made by experienced programmers are available from many links that
we will give later. Those interested can follow the link: https://gcc.gnu.org/wiki/
InstallingGCC.

9.1.3 Easy Installation

As we noted earlier, installing MinGW is extremely easy. The choice is not easy—
which of the many MinGW builds to choose for installation? Official and unofficial4

(the so-called personal builds), there are about a dozen, if not more; it is extremely
difficult for an inexperienced user to understand them.

Also confusing is the fact that the user is given a choice of platform (Windows
32 or 64), threading model (posix or win32), and C++ exception handling model
(dwarf, sjlj, or SEH). Without going into details, we will briefly describe these
technologies in the context of the Windows operating system.

4 In principle, anyone can build MinGW for themselves, since its source code is open.

https://gcc.gnu.org/wiki/InstallingGCC
https://gcc.gnu.org/wiki/InstallingGCC
https://gcc.gnu.org/wiki/InstallingGCC
https://gcc.gnu.org/wiki/InstallingGCC
https://gcc.gnu.org/wiki/InstallingGCC
https://gcc.gnu.org/wiki/InstallingGCC

88 9 Compilers

dwarf (DW2, dwarf-2) is only implemented for 32-bit mode, but it is slightly
faster than sjlj (setjmp/longjmp) in the sense that the sjlj technology slows down the
program a bit, because it adds some additional exception handling code to each user
function, and this code is always executed. However, dwarf injects extra information
into the executable for handling exceptions, so the size of the executable grows
when compared to using sjlj technology. In defense of sjlj, it should be said that this
technology is able to interact to a certain extent with Windows system libraries and
libraries created by the Microsoft C/C++ compiler. sjlj cannot catch an exception
thrown by code generated by the Microsoft C/C++ compiler, but allows the user to
throw their own exceptions through other libraries, as is the case when an exception
is thrown in a Windows API callback and caught (handled) in the WinMain function.
Let’s also add that sjlj is available for both 32-bit and 64-bit mode.

SEH (structured exception handling) is native to Windows, but is only imple-
mented in 64-bit mode due to patent restrictions.

From all of these, we conclude: if possible, use SEH; otherwise, we choose sjlj
and try to avoid dwarf.

As for the threading model, we advise you to choose posix, as in this case the
generated code will be more conforming to the standard (win32 implements the
Windows threading model).

MinGW projects merged into MinGW-W64 after 2013; new builds are available
at https://sourceforge.net/projects/mingw-w64/files/. By opening this page and
scrolling, you can see direct links to different versions of the compiler. In accordance
with the recommendations from Table 9-1, you can select the compiler builds
that the user needs. We only recommend that you do not use the MinGW-W64
Online Installer, since the compiler in the form of an unpacked archive is much
more convenient for both installation and use. Old builds can be downloaded from
https://sourceforge.net/projects/mingwbuilds/files/, the map of which is shown in
Figure 9-1.

Let us remind you once again that you can download the compiler using the
links provided as a separate 7z archive file, the name of which may contain the
'rev' suffix denoting the build number. The higher the build number, the fresher
the compiler.

Setting up the compiler is extremely simple (for the 32-bit version
of the compiler, change 64 to 32): unpack the archive to the directory
D:\Programs\mingw64. The path to the directory with the compiler
executable files, D:\Programs\mingw64\bin, is added to the PATH
system variable (it is better to do this in the console).

Table 9-1 MinGW compiler options

Thread Models Exception Handling Models

Bitness of the Operating System posix win32 dwarf sjlj seh

32: x32, i686 Yes Yes Yes Yes No
64: x64, x86_64 Yes Yes No Yes Yes

https://sourceforge.net/projects/mingw-w64/files/
https://sourceforge.net/projects/mingw-w64/files/
https://sourceforge.net/projects/mingw-w64/files/
https://sourceforge.net/projects/mingw-w64/files/
https://sourceforge.net/projects/mingw-w64/files/
https://sourceforge.net/projects/mingw-w64/files/
https://sourceforge.net/projects/mingw-w64/files/
https://sourceforge.net/projects/mingwbuilds/files/
https://sourceforge.net/projects/mingwbuilds/files/
https://sourceforge.net/projects/mingwbuilds/files/
https://sourceforge.net/projects/mingwbuilds/files/
https://sourceforge.net/projects/mingwbuilds/files/
https://sourceforge.net/projects/mingwbuilds/files/

9.1 GCC/MinGW 89

Figure 9-1 MinGW and MSYS tree

Next, as in the case of MSYS, you need to create a batch file mingw481.bat
to start MinGW:

@echo off

set PATH=%~d0\Programs\mingw64-4.8.1\bin;%PATH%

and place this file in the Programs\bin directory.

Note Since it is often necessary to have different versions of the compiler on hand,
we advise you to unpack archives of different versions of the MinGW compiler into
folders like mingw64-x.x.x, where x.x.x means the compiler version.

90 9 Compilers

For example, for the mingw64-8.1.0 version, we create a batch file
mingw81.bat in the Programs\bin folder:

@echo off

set PATH=%~d0\Programs\mingw64-8.1.0\bin;%PATH%

Note If you try to run an executable file created by the MinGW compiler through
the Windows Explorer, you can get an error message about the absence of some dlls.
This happens when step 2 is omitted. The reason for the error is that these dlls are
located just in the D:\Programs\mingw64\bin directory.

However, even if these libraries are available, it makes no sense to run console
(without a graphical interface) programs from under Explorer—a command-line
window opens to execute the program, the program is executed, and then the
window immediately closes after program termination, so looking and reading
something is practically impossible. Such a peculiar sense of humor among
Windows developers.

There are also great builds of newer versions of MinGW supported by enthusi-
asts. All of them are distributed as archives; they do not require installation.

Builds of new versions of MinGW in various combinations can be downloaded
from https://winlibs.com.

UCRT runtime
GCC 12.2.0 + LLVM/Clang/LLD/LLDB 15.0.7 + MinGW-w64 10.0.0 (UCRT)

- release 4 (LATEST)
Win32: 7-Zip archive* | Zip archive - without

LLVM/Clang/LLD/LLDB: 7-Zip archive* | Zip archive
Win64: 7-Zip archive* | Zip archive - without

LLVM/Clang/LLD/LLDB: 7-Zip archive* | Zip archive

MSVCRT runtime
GCC 12.2.0 + LLVM/Clang/LLD/LLDB 15.0.7 + MinGW-w64 10.0.0 (MSVCRT)

- release 4 (LATEST)
Win32: 7-Zip archive* | Zip archive - without

LLVM/Clang/LLD/LLDB: 7-Zip archive* | Zip archive
Win64: 7-Zip archive* | Zip archive - without

LLVM/Clang/LLD/LLDB: 7-Zip archive* | Zip archive

You can download the new MinGW builds from https://github.com/niXman/
mingw-builds-binaries/releases too.

x86_64-12.2.0-release-posix-seh-msvcrt-rt_v10-rev2.7z 68.1 MB
x86_64-12.2.0-release-posix-seh-ucrt-rt_v10-rev2.7z 68 MB

Stephan T. Lavavej, a Principal Software Development Engineer at Microsoft,
maintaining Visual Studio’s C++ standard library implementation, in his personal
website https://nuwen.net/mingw.html supports his MinGW build which he pro-
nounces as “noo-when”:

My MinGW distribution (“distro”) is x64-native and currently contains GCC 11.2.0
and Boost 1.77.0. mingw-18.0.exe (96.9 MB): This is a self-extracting archive. It’s

https://winlibs.com
https://winlibs.com
https://winlibs.com
https://github.com/niXman/mingw-builds-binaries/releases
https://github.com/niXman/mingw-builds-binaries/releases
https://github.com/niXman/mingw-builds-binaries/releases
https://github.com/niXman/mingw-builds-binaries/releases
https://github.com/niXman/mingw-builds-binaries/releases
https://github.com/niXman/mingw-builds-binaries/releases
https://github.com/niXman/mingw-builds-binaries/releases
https://github.com/niXman/mingw-builds-binaries/releases
https://nuwen.net/mingw.html
https://nuwen.net/mingw.html
https://nuwen.net/mingw.html
https://nuwen.net/mingw.html
https://nuwen.net/mingw.html

9.1 GCC/MinGW 91

incredibly easy to install; see How To Install below.mingw-18.0-without-git.exe
(49.3 MB): This is smaller, if you’ve already installed git. My build scripts are available on
GitHub, and they’re also stored within the distro itself

It is easy to install his build—just unpack it into the Programs\bin
directory.

Finally, here is the mingw_all.bat batch file that will run at once different
versions of the MinGW compiler in several tabs, and the Far file manager in one
of the tabs of the ConEmu command-line emulator at once different versions of the
MinGW compiler and in one of the tabs the file manager Far (Figure 6-4):

@echo off
set "C++FILES=C:\User\C++"

start %~d0\Programs\ConEmu-221218\ConEmu64.exe /cmd
@%~dp0\c++_startfile.txt

REM Switch off the next string for debugging
REM and switch on for release

REM exit

The c++_startfile.txt file, like mingw_all.bat, is located in the
Programs\bin directory and looks like this:

>cmd /k "color 70 && RenameTab 11.2.0/nuwen.net && mingw-nw.bat &&
PROMPT=$E[32mgcc 11.2.0/nuwen.net@$E\$E[92mPE[90m
$_$E[90m$$$E[m && chcp 65001 > nul && cd /d ++FILES%"

cmd /k "color 02 && RenameTab 12.2.0/niXman && mingw12.bat &&
PROMPT=$E[32mgcc 12.2.0/niXman@$E\$E[92m$P$E[90m$_$E[90m$ $$E[m
&& chcp 65001 > nul && cd /d %C++FILES%"

cmd /k "color 0A && RenameTab 12.2.0/winlibs.com &&
mingw12-winlibs.bat && PROMPT=$E[32mgcc
12.2.0/winlibs.com@$E\$E[92mPE[90m$ _$E[90m$$$E[m && chcp 65001
> nul && cd /d %C++FILES%"

cmd /k "color 09 && RenameTab 8.1.0/niXman && mingw81.bat &&
PROMPT=$E[32mgcc 8.1.0/niXman@$E\$E[92m$P$E[90m$_$E[90m$ $$E[m &&
chcp 65001 > nul && cd /d %C++FILES%"

cmd /k "color 00 && RenameTab Far Manager && Far.bat &&
PROMPT=$E[32mFar Manager@$E\$E[92m$P$E[90m$_$E[90m$$$E[m && chcp
65001 > nul && cd /d %C++FILES%"

The Far.bat file (of course, in the folder Programs\bin) is the following:

@echo off

call %~d0\Programs\Far30b5577_x64\Far.exe

exit

92 9 Compilers

9.2 Microsoft C/C++ Optimizing Compiler

The Microsoft C/C++ Optimizing Compiler is one of the most popular compilers
for the Windows operating system, which is not surprising given that Microsoft
itself is the developer of Windows. It is commercial, although it is possible to use it
for free as part of some products with limited functionality (as far as we know, the
functionality of the compiler itself in such products is the same as in commercial
ones).

Note A common misconception about compilers is that users identify the compiler
with the development environment. For example, the question “What compiler do
you use?” is often answered with “Visual Studio,” “Visual C++,” or “Code::Blocks,”
depending on preference. We remind you once again that the compiler is a
command-line utility and does not have a visual interface at all.

Most users deal primarily with the Microsoft C/C++ Optimizing Compiler.
The prototype of this compiler, based on Lattice C, was released under the name
Microsoft C 1.0 back in 1983 and was, of course, 16 bits. Its further evolution,
starting from the hitherto popular 32-bit versions, can be traced from Table A-1 (at
a certain stage, Microsoft released a line of Quick products, as if competing with
Borland’s Turbo products, which included the QuickC integrated environment with
the same Microsoft C compiler in composition; they are all 16 bits).

Note It should be noted some terminological liberty: often, referring to the
Microsoft C/C++ compiler, they say and write “Visual C++ Compiler,” which is
not true. The situation is aggravated when it comes to versions. Microsoft itself
contributes to the confusion with its inconsistency (e.g., experienced developers
remember the situation with the names of WinAPI functions). To avoid confusion,
refer to the compiler version, not the product version.

The Microsoft C/C++ compiler executable is cl.exe. More precisely, this is
not the compiler itself, but a driver utility that controls the compiler and linker. Let’s
quote the official documentation and make some clarifications [12]:

You can start this tool only from a Visual Studio developer command prompt. You cannot
start it from a system command prompt or from File Explorer. For more information, see
Use the MSVC toolset from the command line.

The compilers produce Common Object File Format (COFF) object (.obj) files. The
linker produces executable (.exe) files or dynamic-link libraries (DLLs).

All compiler options are case-sensitive. You may use either a forward slash (/) or a dash
(-) to specify a compiler option.

To compile without linking, use the /c option.

9.2 Microsoft C/C++ Optimizing Compiler 93

Note

• You can start cl.exe not only from a Visual Studio developer command
prompt. You can start it from a system command prompt with EWDK. No Visual
Studio is needed at all, since the MSVC toolset is contained in EWDK.

• The linker produces also driver (.sys) files, not only executable (.exe) files
or dynamic-link libraries (DLLs).

9.2.1 Default Installation

Despite the apparent simplicity (download and install), the process of installing the
Microsoft C/C++ compiler is not easy, as you have to make a choice.

For a long time, the Microsoft compiler could be used by installing one of
three products: Windows SDK, Windows DDK, and Microsoft Visual Studio.
Since in most cases users deal with various editions of the integrated development
environment (IDE) of Microsoft Visual Studio, which includes a compiler, an
advanced code editor, a debugger, and a lot of rubbish unnecessary for the
average user (we are not interested in other languages supported by Visual Studio,
as well as technologies such as database support or .NET Framework),5 then let’s
talk about the first two packages first.

Starting with version 8, the Windows SDK no longer ships with a complete
command-line build environment. The compiler and build environment must be
installed separately.

Recent versions of the Windows DDK, now called the Windows Driver Kit
(WDK), require Visual Studio and the Windows SDK.

Visual Studio is a commercial product and comes in several editions such as
Standard, Professional, and Team System, but Visual Studio Express is free (with
reduced features, but the C/C++ compiler is not limited). Starting with the version
of Visual Studio 2015, there have been changes; now the product comes in three
editions: the free Community Edition, which includes all Express versions, and the
paid Professional Edition for small projects and the Enterprise Edition for large
projects.

Note that the Visual Studio 2015 distribution “weighs” 3.8 GB, and its installa-
tion does not always go smoothly (e.g., even if you install Visual Studio on a drive,
say D:\, the installer will definitely require several gigabytes of free space on drive
C:\). If you have a slow Internet, then the online installation option may be more
suitable for you.

5 We mean the fact that when installing Microsoft Visual Studio, components are installed along
the way that are completely unnecessary for C/C++ programming, and these components are often
uninstallable.

94 9 Compilers

Released in 2017, Visual Studio 2017 already requires about 7.5 GB to install,
and bug fixes are constantly being released (the latest version is 15.6.0, released on
March 5, 2018).

In any case, you have to download several gigabytes of data. A natural question
arises: Why, in fact, in order to install a C++ compiler, is it necessary to make such
sacrifices? Is there a simpler way to install it?

And, in fact, in recent years, the situation has begun to change for the better—
finally, Microsoft realized the inferiority of the situation. In 2015, a new product
called Microsoft Visual C++ Build Tools 2015 was announced, which is a set of
tools (C++ compiler, linker and other auxiliary utilities, libraries and header files,
build scripts, and various versions of the Windows SDK, although the latter can
also be not installed) to build C++ applications and libraries for desktop versions
of Windows, without having to install Visual Studio. This product can already be
downloaded from the company’s website as a 3 MB web installer. Of course, the
online installation option is not suitable for installation on several computers. For
offline installation, the downloaded web installer must be run with the /layout
key—in this case, the installer will download all the necessary components to
the specified directory for subsequent installation in offline mode, but with the
/NoWeb key. The total size of the downloaded files is approximately 1.7 GB.
Note that this product has a command-line interface—it does not include any visual
development environment, not even a simple code editor.

Note We draw readers’ attention to the fact that the Microsoft website actively
advertises the free Visual Studio Code, which is cross-platform—it can be used
on Linux, Mac OS X, or Windows, but this product is just an advanced source
code editor and does not contain C/C++ compiler at all in it! It is also worth noting
that this editor is based on the well-known Atom editor and is not lightweight: its
executable file is about 100 MB in size.

With the release of Visual Studio 2017, one more option to install the C/C++
compiler has been added—now the Visual Studio web installer allows you to choose
a C/C++ compiler for installation in the minimum, so to speak, configuration; the
volume of downloaded files is about 300–400 MB.

When installing Microsoft Visual Studio, groups of command prompt shortcuts
are also installed for compiling and building C/C++ projects from the command
line. Table 9-2 gives a brief description of them for Visual Studio 2010 and Visual
Studio 2015 versions (the item marked with an asterisk only performs compilation).

It should be noted that Microsoft has recently been actively promoting the new
MSBuild build system, trying to replace the traditional nmake build utility.6

6 Recall again that Windows does not have a make utility, and nmake is its counterpart; however,
these utilities are not compatible.

9.2 Microsoft C/C++ Optimizing Compiler 95

Table 9-2 Visual Studio
command prompt shortcuts

Product Command-Line Shortcut Name

V
is

ua
l S

tu
di

o
20

15

Developer Command Prompt for VS2015. ∗

MSBuild Command Prompt for VS2015

VS2015 x86 Native Tools Command Prompt

VS2015 x64 Native Tools Command Prompt

VS2015 x86 x64 Cross Tools Command Prompt

VS2015 x64 x86 Cross Tools Command Prompt

V
S

20
10

 Visual Studio Command Prompt (2010)

Visual Studio x64 Win64 Command Prompt (2010)

9.2.2 Easy Installation (Without Visual Studio) with EWDK

According to the Microsoft website, given the high cost (in terms of labor) of
individual installations of Visual Studio 2015 and WDK for organizations with a
large number of developers, they released a special version of the already mentioned
Windows Driver Kit (WDK) called Enterprise Windows Driver Kit (Enterprise
WDK),7 based on Visual Studio 2015 Enterprise edition, WDK, and Windows SDK.
The Enterprise WDK also does not include a visual development environment—
only a command-line interface is offered. The first version of Enterprise WDK
includes

• Visual Studio Build Tools, C/C++ compiler, linker, and object libraries (lib) from
Visual Studio build 14.00.24720.0 (VS 2015 Update 1)

• Windows SDK build 10586.13
• .NET Framework 4.6 SDK build 10586.13
• Windows Driver Development Kit build 10586.0

Thus, the Enterprise WDK contains everything you need to build drivers and basic
test Win32 applications. The installation of the product is extremely simple—in
accordance with the stated goals, it comes in the form of a single zip file, which
you just need to unzip and run the setup script as an administrator.

Later, the Enterprise WDK has also been significantly updated—starting from
version 1709, this package now comes in the form of a massive ISO file, approxi-
mately 5.4 GB in size, and does not require installation; only easy configuration is
needed. At the time of the release of this product (2018), this package provided the
easiest way to install the described compiler, despite the need to download 5.4 GB
of data; by now, unfortunately, the file size has grown by about three times; we will
describe this method as follows.

7 http://msdn.microsoft.com/windows/hardware/drivers/develop/installing-the-enterprise-wdk

 -1446 58293 a -1446 58293
a

96 9 Compilers

Table 9-3 Enterprise Windows Driver Kit (EWDK) downloads

Visual Studio

Build Tools

OS Version EWDK Version Version Size, GB Format Link

1 Windows 10 1607 VS 2015, 2015 1.8 zip [17]

2 Windows 10 1703 VS 2015, 2015 1.9 zip [17]

3 Windows 10 1709 VS 2017, 15.2 7.3 ISO [18]

4 Windows 10 1709 VS 2017, 15.4 5.3 ISO [18]

5 Windows 10 1709 VS 2017, 15.6 5.5 ISO [18]

6 Windows 10 1803 VS 2017, 15.6 5.6 ISO [18]

7 Windows 10 1803 VS 2017, 15.7 8.4 ISO [18]

8 Windows 10 1809 VS 2017, 15.8 12.7 ISO [18]

9 Windows 10 1809 VS 2017, 15.8.9 12.7 ISO [18]

10 Windows 10 1903 VS 2019, 16.0 12.4 ISO [19]

11 Windows 10 2004 VS 2019, 16.7 12.3 ISO [19]

12 Windows Server 2022 VS 2019, 16.9.2 15.7 ISO [19]

13 Windows 11 21H2 VS 2019, 16.9.2 16.0 ISO [20]

VS 2019, 16.11.10

14 Windows 11 22H2 VS 2022, 17.1.5 15.8 ISO [21]

Enterprise Windows Driver Kit (EWDK) downloads: The current version of
EWDK can be downloaded from the official Microsoft website at [16]. Links to
previous versions are given in Table 9-3.

We recommend unpacking the zip version of EWDK into a folder, say
Programs\EWDK-vxxx. The ISO version of the toolkit should be handled
in a slight different way: this ISO file must be mounted as a virtual DVD disk.
Windows 10 Explorer can mount such files itself, but Windows 7 Explorer cannot.
Sometimes, the context menu item of Explorer for mounting ISO files is intercepted
by another software, for example, archivers or UltraISO, and then it is useful to
use third-party mounting tools. One of the best software of this kind is WinCDEmu
(https://wincdemu.sysprogs.org), an open source CD/DVD/BD emulator which runs
on 32-bit and 64-bit Windows versions from XP to Windows 10.

Mounting the ISO file with the aid of WinCDEmu or such software under
Windows 7 requires an administrator privilege. However, there is workaround here
which doesn’t require such restriction. For this, one should extract the content of
the ISO file into some directory, say, Programs\EWDK-vxxx. Then this folder
should be mounted as a disk with the aid of the subst command:

subst X: D:\Programs\EWDK-vxxx

https://wincdemu.sysprogs.org
https://wincdemu.sysprogs.org
https://wincdemu.sysprogs.org
https://wincdemu.sysprogs.org

9.2 Microsoft C/C++ Optimizing Compiler 97

Note Notice that, in this case, the extracted content can be edited, which gives some
extra flexibility.

Reducing EWDK size: Unfortunately, EWDK is too fat. Besides, if you need
things related only to the C/C++ compiler, then EWDK can be greatly facilitated.
And if you are going to write code that is intended only for one processor platform,
say, Intel, the size of the EWDK can be reduced to 5.5 GB; we will talk about this
in more detail now.

In the following example, the EWDK is mounted on drive F:. Using the ncdu
utility, let’s examine the EWDK directory structure in terms of disk space occupied.

--- /f ---
15.7 GiB [#########################] /Program Files

228.0 KiB [] LICENSE.rtf
12.0 KiB [] /Utilities
10.0 KiB [] /BuildEnv
2.0 KiB [] LaunchBuildEnv.cmd
2.0 KiB [] Version.txt

--- /f/Program Files ---
12.6 GiB [#########################] /Microsoft Visual Studio
3.0 GiB [######] /Windows Kits

45.3 MiB [] /Reference Assemblies
28.2 MiB [] /Microsoft SDKs
2.1 MiB [] ucrtbased.dll

24.0 KiB [] /Microsoft

--- /f/Program Files/Microsoft Visual Studio/2022/BuildTools/VC/Tools
10.8 GiB [#########################] /MSVC

104.9 MiB [] /Llvm

--- /f/Program Files/Microsoft
Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.31.31103 ---------------
6.2 GiB [#########################] /lib
4.1 GiB [################] /atlmfc

388.0 MiB [#] /bin
18.3 MiB [] /include
5.5 MiB [] /crt

90.0 KiB [] /Auxiliary

The acronym atlmfc refers to the Active Template Library (ATL) and
Microsoft Foundation Classes (MFC) packages developed by Microsoft. ATL,
for example, is a set of C++ template classes to make it easier to write COM
components (COM objects, OLE automation servers, and ActiveX controls). MFC
is designed to create Windows GUI applications and consists of many C++ classes.
These packages are traditionally included with Visual Studio.

Both libraries, of course, have nothing to do with the C++ standard and are
intended exclusively for Windows. In addition, these libraries are not very popular—
for example, Microsoft’s own product Microsoft Word, as well as other components
of the Microsoft Office package, is written without using the MFC library at all!

98 9 Compilers

By excluding the atlmfc folder from copying, we can reduce the size of the
copied files by 4.1 GB. Fortunately, the robocopy utility can specify folders that
should not be copied:

robocopy SOURCE DEST /mir /xd path_or_folder_to_exclude

If you want to exclude the folder "F:\Program Files\Microsoft
Visual Studio\2022\BuildTools\VC\Tools\MSVC\14.31
.31103\atlmfc\" from being copied, then you, probably, type

robocopy F:\ J:\Programs\EWDK\ /mir /xd "F:\Program Files\Microsoft
Visual Studio\2022\BuildTools\VC\Tools\MSVC\14.31.31103\atlmfc\"

--

Total Copied Skipped Mismatch FAILED Extras
Dirs : 3903 3902 1 0 0 0

Files : 33737 33737 0 0 0 0
Bytes : 15.636 g 15.636 g 0 0 0 0
Times : 0:06:40 0:05:17 0:00:00 0:01:22

Speed : 52820176 Bytes/sec.
Speed : 3022.394 MegaBytes/min.
Ended : Wednesday, April 5, 2023 11:53:45 AM

D:\Users\John>

As you can see, despite the option not to copy the specified folder, the utility
copied the entire directory tree. robocopy is extremely fast, but unfortunately a
big accuracy is needed when you deal with this utility. Notice the trailing slash in
the exclude path; as soon as we remove it, the utility works as it should:

robocopy F:\ J:\Programs\EWDK\ /mir /xd "F:\Program Files\Microsoft
Visual Studio\2022\BuildTools\VC\Tools\MSVC\14.31.31103\atlmfc\"

--

Total Copied Skipped Mismatch FAILED Extras
Dirs : 3757 3755 2 0 0 0

Files : 32006 32006 0 0 0 0
Bytes : 11.501 g 11.501 g 0 0 0 0
Times : 0:04:31 0:03:20 0:00:00 0:01:10

Speed : 61570838 Bytes/sec.
Speed : 3523.111 MegaBytes/min.
Ended : Wednesday, April 5, 2023 12:36:46 PM

D:\Users\John>

9.2 Microsoft C/C++ Optimizing Compiler 99

To exclude a folder from copying, you can specify only its name, and not the full
path to this folder: instead of F:\Program Files\Microsoft Visual
Studio\2022\BuildTools\VC\Tools\MSVC\14.31.31103\

atlmfc, you can specify atlmfc, and in this case the result will be the same:

robocopy F:\ J:\Programs\EWDK\ /mir /xd atlmfc
--

Total Copied Skipped Mismatch FAILED Extras
Dirs : 3757 3755 2 0 0 0

Files : 32006 32006 0 0 0 0
Bytes : 11.501 g 11.501 g 0 0 0 0
Times : 0:04:30 0:03:17 0:00:00 0:01:12

Speed : 62638208 Bytes/sec.
Speed : 3584.187 MegaBytes/min.
Ended : Wednesday, April 5, 2023 12:26:18 PM

D:\Users\John>

Note It should be remembered that if only the folder name is specified for exclusion
when copying, all folders with the same name in the directory tree of the copied
folder will be excluded from the copy list.

The following are the details of copying to a Flash stick formatted with the NTFS
file system: pay attention to the copying time.

--

Total Copied Skipped Mismatch FAILED Extras
Dirs : 3757 3756 1 0 0 0

Files : 32006 32006 0 0 0 0
Bytes : 11.501 g 11.501 g 0 0 0 0
Times : 1:20:01 1:08:16 0:00:00 0:11:44

Speed : 3015037 Bytes/sec.
Speed : 172.521 MegaBytes/min.
Ended : Friday, April 7, 2023 3:21:43 PM

C:\Users\User>

Now we can mount the directory with the EWDK files as a virtual drive using the
subst utility. Note that this does not require administrator rights at all!

subst X: J:\Programs\EWDK

D:\Users\John>X:

X:\>dir
Volume in drive X is DATA
Volume Serial Number is 5E81-8465

100 9 Compilers

Directory of X:\

04/05/2023 12:36 PM <DIR> .
04/05/2023 12:36 PM <DIR> ..
08/06/2022 04:57 AM <DIR> BuildEnv
08/06/2022 04:52 AM 52 LaunchBuildEnv.cmd
08/06/2022 04:52 AM 231,551 LICENSE.rtf
08/06/2022 04:57 AM <DIR> Program Files
08/06/2022 04:57 AM <DIR> Utilities
08/06/2022 04:52 AM 38 Version.txt

3 File(s) 231,641 bytes
5 Dir(s) 66,801,131,520 bytes free

X:\>

Finally, note that if you develop programs for, say, only Intel processors, then
you can also throw out support for processors of other architectures: Arm, Arm64,
Arm64ec, and CHPE. As a result, the size of the package will be reduced to
5.484 GB, that is, 10 GB can be saved. The corresponding command is given as fol-
lows. We copy the optimized directory tree to thePrograms\EWDK_COMPACT
directory:

D:\Users>robocopy F:\ J:\Programs\EWDK_COMPACT\ /mir /xd atlmfc arm
arm64 arm64ec chpe

--

Total Copied Skipped Mismatch FAILED Extras
Dirs : 3373 3253 120 0 0 0

Files : 27730 27730 0 0 0 0
Bytes : 5.484 g 5.484 g 0 0 0 0
Times : 0:09:55 0:08:36 0:00:00 0:01:19

Speed : 11394562 Bytes/sec.
Speed : 652.002 MegaBytes/min.
Ended : Wednesday, April 12, 2023 11:23:13 AM

D:\Users>

Now here are the details of copying to a Flash card again, this time formatted
with the exFAT file system: copying time has increased, while only about 5.5 GB of
data is copied.

C:\Users\John>robocopy D:\ E:\Programs\EWDK_COMPACT\ /mir /xd atlmfc
arm arm64 arm64ec chpe

--

Total Copied Skipped Mismatch FAILED Extras
Dirs : 3373 3253 120 0 0 0

Files : 27730 27730 0 0 0 0
Bytes : 5.484 g 5.484 g 0 0 0 0
Times : 1:27:25 0:59:21 0:00:00 0:28:04

9.2 Microsoft C/C++ Optimizing Compiler 101

Speed : 1653547 Bytes/sec.
Speed : 94.616 MegaBytes/min.
Ended : Wednesday, April 12, 2023 1:53:45 PM

C:\Users\John>

Again, mount the folder with the optimized EWDK, mount it as a disk, and work:

C:\Users\John>subst X: E:\Programs\EWDK_COMPACT

9.2.3 Using Microsoft C/C++ Compiler with EWDK

Using the Microsoft C/C++ compiler with EWDK is quite straightforward; just
create batch file vc.bat of the following content:

@echo off
set BIT=%1
if "%BIT%" == "32" set VER=86
if "%BIT%" == "64" set VER=64
set "VSROOT=X:\Program Files"
set "WDKVER=10.0.22621.0"
set "BUILDTOOLSPATH=%VSROOT%\Microsoft Visual Studio\2022\BuildTools"
set "WDKROOT=%VSROOT%\Windows Kits\10"
set "WDKLIB=%WDKROOT%\Lib\%WDKVER%"
call "%BUILDTOOLSPATH%\VC\Auxiliary\Build\vcvars%BIT%.bat"
set "INCLUDE=%WDKROOT%\Include\%WDKVER%\ucrt;%INCLUDE%"
set "LIB=%WDKLIB%\ucrt\x%VER%;%WDKLIB%\um\x%VER%;%LIB%"

and put it into the Programs\bin directory. To use, perform the next command
on the command line:

E:\User\C++>Programs\bin\vc[.bat] 32 | 64

Next, you can use the C/C++ compiler:

E:\User\C++>vc 64
**
** Visual Studio 2022 Developer Command Prompt v17.1.5
** Copyright (c) 2022 Microsoft Corporation
**
[vcvarsall.bat] Environment initialized for: 'x64'

E:\User\C++>cl
Microsoft (R) C/C++ Optimizing Compiler Version 19.31.31107 for x64
Copyright (C) Microsoft Corporation. All rights reserved.

usage: cl [option...] filename... [/link linkoption...]

or Microsoft Macro Assembler:

E:\User\Asm>ml | ml64

E:\User\Asm>ml64
Microsoft (R) Macro Assembler (x64) Version 14.31.31107.0
Copyright (C) Microsoft Corporation. All rights reserved.

102 9 Compilers

usage: ML64 [options] filelist [/link linkoptions]
Run "ML64 /help" or "ML64 /?" for more info

9.2.4 Microsoft C/C++ Compiler Options

C/C++ compiler options can be set either through the development environment
(IDE) or on the command line. In the first case, the compiler options are set for each
project, using the Property Pages dialog box. In the left pane, select Configuration
Properties, C/C++, then Compiler Options. Each compiler option has a detailed
usage note (hints). For the command line, the cl.exe compiler options can be
set in three ways:

• Directly on the command line
• Via an auxiliary command file
• Via environment variable CL

The options defined in the CL environment variable are used each time the CL
command is invoked. If a command file is used in the CL environment variable
or directly on the command line, then the options defined in the command file are
used. Unlike the command line or the CL environment variable, a command file can
contain multiple lines of options and file names.

Compiler options are processed in “left-to-right” order, and in the event of a
conflict, the most recent (rightmost) option takes precedence. The CL environment
variable is parsed before command-line options, and in case of conflict, the
command-line options take precedence.

The syntax for calling the CL command is

CL [option...] file... [option | file]... [lib...]
[@command-file] [/link link-opt...]

Table 9-4 describes the CL command options.
You can specify any number of options, file names, and libraries, while the

number of characters on the command line should not exceed 1024—this limit is
imposed by the operating system.

CL command file: A command file is a text file containing many options and
file names that could be set directly on the command line or via the CL environment
variable. The command file specified in the CL environment variable or command
line is treated as an argument. As noted, a command file can contain multiple lines
of options and file names, which is not possible with the command line or the CL
environment variable.

Options and file names in a command file are parsed according to the location of
the command file name in the CL environment variable or command line. However,
if the /link option is encountered in the command file, then all remaining options
on the line are passed to the linker. Options on subsequent lines in the command

9.2 Microsoft C/C++ Optimizing Compiler 103

Table 9-4 CL command-line options

Field Meaning

option One or more CL options. All options apply to all specified source code
files. Options are specified using a forward slash '/' or a hyphen '-'. If
an option has an argument, then you should clarify in the documentation
whether to put a space between the option and the argument. Option
names, with the exception of /HELP, are case-sensitive. You can also
learn about the order of CL options from the documentation.

file The name of one or more source code files, object (.obj) files, or
libraries. CL compiles source code files and passes the names of object
files and libraries to the linker.

lib The name of one or more library files. CL passes these names to the linker.

command-file A file containing many options and file names. Details will be described
later.

link-opt One or more linker options. CL passes these options to the linker.

file and command-line options following the command file are treated as compiler
options.

The command file must not contain the CL command itself. Each option must
be located within one line—you cannot break an option into two lines using the
backslash character '\'.

A command file is recognized by '@' before its name. You can use both absolute
and relative paths.

For example, if the following set of options is contained in the file COMFILE

/Og /link LIBC.LIB

and issues the following command

CL /Ob2 @COMFILE MYAPP.C

then the final form of the CL command will look like this:

CL /Ob2 /Og MYAPP.C /link LIBC.LIB

It should be noted that the command-line options and command file can be
effectively combined.

Environment variables of the CL command: In addition to the well-known
INCLUDE, LIB, and LIBPATH, the CL command also uses the environment
variables CL and _CL_ if they are defined. In this case, during processing,
the options and arguments defined in the CL environment variable are placed in
front, and those defined in the _CL_ environment variable are placed behind the
arguments specified on the command line.

The environment variables CL or _CL_ are set as follows:

SET CL=[[option] ... [file] ...] [/link link-opt ...]
SET _CL_=[[option] ... [file] ...] [/link link-opt ...]

The options and arguments for the CL and _CL_ variables are the same options for
the compiler.

104 9 Compilers

These environment variables can be used to set the most commonly used files
and options. The CL and _CL_ variables are also limited to 1024 characters (the
command-line input limit).

You cannot use the /D option to define a character using the equal sign '='.
The number sign '#' can be used instead of the equal sign. Thus, you can use the
CL or _CL_ environment variables to define preprocessor constants with explicit
values, for example, to define DEBUG=1, use /DDEBUG#1.

Here’s an example of using the CL environment variable:

SET CL=/Zp2 /Ox /I\INCLUDE\MYINCLS \LIB\BINMODE.OBJ

If we now enter the command

CL INPUT.C

on the command line, the resulting command will be

CL /Zp2 /Ox /I\INCLUDE\MYINCLS \LIB\BINMODE.OBJ INPUT.C

In the following example, a simple command CL will compile the source
files FILE1.c and FILE2.c, then link the object files FILE1.obj,
FILE2.obj, and FILE3.obj:

SET CL=FILE1.C FILE2.C
SET_CL_=FILE3.OBJ
CL

The same can be achieved by running the following command on the command
line:

CL FILE1.C FILE2.C FILE3.OBJ

Note There are situations where it is not possible to directly set compiler options on
the command line (e.g., when building drivers or other Visual Studio projects using
the new MSBuild build utility). The only (almost) way out in this situation is to
use the environment variables of the command CL [11].

9.2.5 Using MSBuild with EWDK

On Section 4.2.3 (page 27), we have described MSBuild usage regardless of the
installation method. Now we will clarify the details of using this utility. Those users
who have Visual Studio installed can simply launch the appropriate command line
from the Visual Studio start menu, but here, since we are describing work without
using Visual Studio, we will explain how to use the MSBuild utility using the
EWDK.

After mounting the EWDK ISO disk or folderPrograms\EWDK_COMPACT
(Programs\EWDK) to a virtual disk, say X:, we have two choices:

1. If we want to compile programs in standard C/C++ languages, we run the
vc.bat file we wrote and work.

9.2 Microsoft C/C++ Optimizing Compiler 105

2. If we need to work with the MSBuild utility, then perform the following
instructions.

According to Microsoft, we should run LaunchBuildEnv.cmd in the
root of the disk where EWDK disk or folder is mounted to launch the build
environment (command line) [22]. Internally, LaunchBuildEnv.cmd calls
another batch script, BuildEnv\SetupBuildEnv.cmd, in accordance with
its command-line parameter. It should be noticed that Microsoft says nothing about
the parameter of the command LaunchBuildEnv.cmd: it is merely absent. By default
(without any parameter), a 32-bit build environment is launched; to run a 64-bit one,
you should execute

LaunchBuildEnv.cmd amd64

The parameter set includes the values 'x86', 'x86_amd64', 'amd64',
'x86_arm', and 'x86_arm64' and an empty string which is the default and
coincides with the 'x86', that is, 32-bit environment.

MSBuild can now be run from this build environment; let’s consider using this
utility in more detail. As we already said, the build process is initiated by the
command

Msbuild Project.vcxproj /p:Configuration=[Release | Debug]
/p:Platform=[arm | Win32 | x64]

It sometimes lacks some parameters to build sucsessfully a project. For such
situations, Microsoft suggests to use the so-called .rsp (response) files [23]:

Response (.rsp) files are text files that contain MSBuild.exe command-line switches.
Each switch can be on a separate line or all switches can be on one line. Comment lines
are prefaced with a # symbol. The @ switch is used to pass another response file to
MSBuild.exe.

There is also a so-called Autoresponse file MSBuild.rsp located in the
same directory as MSBuild.exe. One can edit this file to include common (default)
command-line parameters to MSBuild.exe. These parameters will be applied for all
solutions and projects being built.

From version 15.6 and higher, MSBuild searches a project’s parent directories
for a file Directory.Build.rsp. Settings from this file will be applied to
all projects in parent directories.

Note If using these files, MSBuild.rsp and Directory.Build.rsp,
are not desirable for some reasons in some cases of MSBuild invocation, one should
use the noAutoResponse command-line switch. Other response files included
explicitly with the @ sign on the command line are processed in a usual way.

Msbuild Solution.sln /p:Configuration=Release /p:Platform=x64
@File.rsp

106 9 Compilers

Table 9-5 Platform Toolset
values

Visual Studio Version Platform Toolset Value

Visual Studio .NET 2002 Platform Toolset = 'v70'
Visual Studio .NET 2003 Platform Toolset = 'v71'
Visual Studio 2005 Platform Toolset = 'v80'
Visual Studio 2008 Platform Toolset = 'v90'
Visual Studio 2010 Platform Toolset = 'v100'
Visual Studio 2012 Platform Toolset = 'v110'
Visual Studio 2013 Platform Toolset = 'v120'
Visual Studio 2015 Platform Toolset = 'v140'
Visual Studio 2017 Platform Toolset = 'v141'
Visual Studio 2019 Platform Toolset = 'v142'
Visual Studio 2022 Platform Toolset = 'v143'

Sometimes, the PlatformToolset property of the MSBuild utility
is used to set specific libraries and tools, especially for drivers. One can set
PlatformToolset without changing the .vcxproj file. The user should
overwrite the PlatformToolset property with /p:PlatformToolset
=v143 to change the toolset, for example:

Msbuild MyProject.vcxproj /p:PlatformToolset=v143

Platform Toolset values for different versions of Visual Studio are given in Table 9-5.

9.3 Intel C/C++ Optimizing Compiler

The Intel C/C++ compiler, along with the Intel Fortran compiler, is included in
various editions (Cluster Edition, Professional Edition, and Composer Edition) of
Intel Parallel Studio XE, as well as products such as Intel System Studio and Intel
Bi-Endian Compiler (http://software.intel.com/en-us/c-compilers, http://software.
intel.com/en-us/fortran-compilers).

Intel Parallel Studio XE includes a variety of C++/Fortran HPC tools and tools
for Windows, Linux, and Mac OS X platforms.

Intel System Studio is designed for mobile and embedded C++ development on
Windows, Android, and Linux platforms.

Both of these packages additionally include various build tools, such as libraries,
tools for creating and debugging multithreaded code, and performance analysis.

The Intel Bi-Endian Compiler is a C++ compiler that uses a single code base
for both big-endian (which is the standard for TCP/IP protocols, often referred to
as network endian for this reason) and for little-endian (Intel processors usually use
this byte order) architectures.

Except for Intel Bi-Endian C++ Compiler, Intel C/C++ compilers are not
available separately.

The main feature of this compiler is the support of several high-level optimization
methods: Intel is one of the leaders in the processor market, and most IBM

http://software.intel.com/en-us/c-compilers
http://software.intel.com/en-us/c-compilers
http://software.intel.com/en-us/c-compilers
http://software.intel.com/en-us/c-compilers
http://software.intel.com/en-us/c-compilers
http://software.intel.com/en-us/c-compilers
http://software.intel.com/en-us/c-compilers
http://software.intel.com/en-us/c-compilers
http://software.intel.com/en-us/fortran-compilers
http://software.intel.com/en-us/fortran-compilers
http://software.intel.com/en-us/fortran-compilers
http://software.intel.com/en-us/fortran-compilers
http://software.intel.com/en-us/fortran-compilers
http://software.intel.com/en-us/fortran-compilers
http://software.intel.com/en-us/fortran-compilers
http://software.intel.com/en-us/fortran-compilers

9.3 Intel C/C++ Optimizing Compiler 107

PC–compatible computers use Intel processors. Among the accompanying tools
supplied by Intel, we note the Threading Building Blocks (TBB) library, designed
for parallel programming on multicore processors, and the Intel Math Kernel
Library (MKL), which is a highly optimized implementation of mathematical
functions for scientific, engineering, and financial calculations specifically for Intel
processors.

We also mention the IMSL Fortran Numerical Library from Rogue Wave—
the seventh version of this commercial library, which has more than 40 years of
history, comes under Windows with the Fortran version of Intel Parallel Studio XE
Composer Edition or as a separate additional product of Rogue Wave IMSL Fortran
Libraries. AQPlease check if the phrase “additional product of Rogue Wave” is okay
as edited.

As one of the leading vendors, Intel makes sure that its products meet the
ever-increasing demands of the computer industry, so Intel compilers fully support
parallel programming technologies such as MPI and OpenMP.

The Intel C/C++ compiler can be called in the console with the icc or
icl commands; more detailed information can be obtained from the very rich
documentation supplied with the product. Again, the Intel compiler is available for
Windows, Mac OS X, Linux, and Intel-based Android devices.

The Intel C/C++ compiler easily integrates into popular development environ-
ments such as Visual Studio, Eclipse, Xcode, and Android Studio; it is compatible
with popular compilers such as Microsoft C/C++ (Windows) and GCC (Linux, Mac
OS X, and Android)

The Intel Fortran Compiler 16.0 fully supports the Fortran ISO/IEC 1539-
1:2004 (Fortran 2003) language standard and also provides full support for previous
Fortran 95, Fortran 90, Fortran 77, and Fortran IV (Fortran 66) standards for
backward compatibility of programs written in accordance with these versions of
the standards. In some cases, special compiler options may be required to ensure
compatibility with previous versions of the Fortran language standard.

The Intel Fortran Compiler 16.0 also supports many of the innovations of the
current Fortran language standard, Fortran 2008 (ISO/IEC 1539-1:2010). Moreover,
ISO/IEC TS 29113:2012 (further interoperability with C language), which is part of
the future Fortran 2015 standard, is fully supported, and additional innovations of
the Fortran 2008 standard are planned for implementation in future versions of the
compiler.

Under Windows, Intel Fortran 16.0 integrates seamlessly into Microsoft Visual
Studio, and in the console, it can be called with the ifort command. Intel Fortran
Compiler 16.0 is also available for Windows, Linux, and Mac OS X platforms.

The main disadvantage of this compiler is that it is not free. However, special
licenses are offered for students, academic researchers, teachers, and developers
of open source programs (Open Source): http://software.intel.com/en-us/articles/
non-commercial-software-development. Under these licenses, some Intel products,
including compilers, may be used for noncommercial purposes.

http://software.intel.com/en-us/articles/non-commercial-software-development
http://software.intel.com/en-us/articles/non-commercial-software-development
http://software.intel.com/en-us/articles/non-commercial-software-development
http://software.intel.com/en-us/articles/non-commercial-software-development
http://software.intel.com/en-us/articles/non-commercial-software-development
http://software.intel.com/en-us/articles/non-commercial-software-development
http://software.intel.com/en-us/articles/non-commercial-software-development
http://software.intel.com/en-us/articles/non-commercial-software-development
http://software.intel.com/en-us/articles/non-commercial-software-development
http://software.intel.com/en-us/articles/non-commercial-software-development
http://software.intel.com/en-us/articles/non-commercial-software-development

108 9 Compilers

We also note that very often Intel C/C++ and Intel Fortran compilers for Linux
are installed on clusters and supercomputers (usually, these are the leading corporate
distributions of Red Hat Enterprise Linux and SUSE Linux Enterprise Server or
their clones).

9.4 Conclusion

In this chapter, we have described in detail how to quickly install the MinGW and
Microsoft C/C++ compilers. At the same time, we emphasized that the proposed
method of working with the Microsoft C/C++ compiler is described in the technical
literature for the first time (Microsoft itself documents the use of EWDK only
for working with standard Visual Studio projects and solutions using the MSBuild
utility), so the information provided by us are unique.

The technical literature describes the standard installation of MinGW compilers,
which is often associated with version conflicts (with the standard method, it is
not easy for the average user to install several versions of MinGW and use it).
The approach we have taken allows us to use multiple versions of the MinGW and
Microsoft C/C++ compilers without any problems.

It is interesting to note that Visual Studio 2022 cannot be installed on Windows
7 SP1, but the included Microsoft C/C++ compiler can be used on Windows 7 SP1
using our method.

10Libraries

In this chapter, we will talk about static and dynamic-link libraries and how to create
them. We will also show that, contrary to popular belief, you do not need the Visual
Studio compiler to create such libraries using the Microsoft C/C++ compiler.

10.1 Dynamic and Static Libraries

In this subsection, we will describe how to build libraries for different systems and
platforms.

General ways of using libraries: Most of the libraries we are looking at are
free software (open source), which, as a rule, are supplied in source code. To use
such libraries in your applications, the source code of these libraries must be used
in one way or another in your project.1 Three such ways can be specified; note their
advantages and disadvantages:

1. Compiling the source code of the library as a statically linked library: In this case,
the library source code is compiled into object files, which are then archived into
a so-called static library using a special utility. When used, this static library is
linked by a linker with the source code of the application that uses this library into
the resulting executable file. At the same time, the initial library code is compiled
(used) only once; after building a static library and installing it, the source code of
the library can be removed altogether. During the build process of an application
that uses this library, all the code used from the library in binary form is included
in the generated resulting executable file, so after the application is built, the static
library is no longer needed (for the built application!). You only need to distribute
one executable file. However, if the source code of the library changes, if the user

1 Sometimes, the source code of an application, when it consists of several files, is called a project.

© The Author(s), under exclusive license to APress Media, LLC,
part of Springer Nature 2024
B. I. Tuleuov, A. B. Ospanova, Beginning C++ Compilers,
https://doi.org/10.1007/978-1-4842-9563-2_10

109

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4842-9563-2protect T1	extunderscore 10&domain=pdf
https://doi.org/10.1007/978-1-4842-9563-2_10
https://doi.org/10.1007/978-1-4842-9563-2_10
https://doi.org/10.1007/978-1-4842-9563-2_10
https://doi.org/10.1007/978-1-4842-9563-2_10
https://doi.org/10.1007/978-1-4842-9563-2_10
https://doi.org/10.1007/978-1-4842-9563-2_10
https://doi.org/10.1007/978-1-4842-9563-2_10
https://doi.org/10.1007/978-1-4842-9563-2_10
https://doi.org/10.1007/978-1-4842-9563-2_10
https://doi.org/10.1007/978-1-4842-9563-2_10
https://doi.org/10.1007/978-1-4842-9563-2_10

110 10 Libraries

wants to use a new version of it, it may be necessary2 to rebuild both the static
library and the application. Naturally, once a static library is built, it can later be
used to build other applications.
For GCC/MinGW compilers, these libraries have the extension *.a, and for the
Microsoft C/C++ compiler, they have the extension *.lib.

2. Compiling the source code of the library as a dynamically linked library: In
this case, the library source code is compiled into object files, from which the
linker then creates a so-called dynamic library. When you build an application
that uses a library, the library’s code is not included in the application; the
application only “knows” where the required code from the library is located—
in the dynamically linked library. This library is used only at runtime, when the
application starts. In this case, the executable file loader automatically loads the
dynamic-link library file into the address space of the application being launched,
after making the necessary settings. From what has been said, it follows that
along with the application, you should also distribute the dynamic library file.3

However, unlike the previous case, when changing the library source code, as a
rule, there is no need to rebuild the application itself—it is enough just to rebuild
the library source code. Note that many commercial libraries are supplied without
source code, in the built, ready-to-use form of dynamically linked libraries. Such
libraries have the extension *.so on Linux and *.dll on Windows.

3. Inclusion of the source code of the library in the composition of the source code of
the built application: This method is perhaps the most difficult and sophisticated,
but, in our opinion, the most flexible. In this case, there is no need to separately
build the source code of the library—the entire application is built at once; in
addition, the portability (cross-platform) of the code is increased, since the source
code has a high degree of portability. The disadvantage of this method is that
there is no universal, canonical way to implement it; it differs for each library.
Some libraries make this easy: for example, MathGL can be used in this way
by defining the constant MGL_SRC as a compilation flag (parameter). Libraries
from Boost can be used in source code: Boost has a special utility that allows
you to select from many files with complex dependencies the ones necessary for
using one or another library from Boost.

Libraries and object files compiled by different compilers should not be mixed.
The ideal case is when both the library and the application using them are built by
the same compiler (there can only be differences in versions).

Some distributions like TDM-GCC and MinGW builds allow you to choose how
you want to implement the exception handling mechanism. It should be remembered
that both the application itself and the linked (statically and dynamically) libraries
must be built by the same compiler in order to avoid linking errors. If you change the
exception handling mechanism (i.e., if you choose a different compiler distribution

2 For example, the format and signature of a function call from the library may change.
3 There are applications that use dozens of such libraries.

10.2 Building Libraries 111

with a different exception handling mechanism), you must recompile all libraries,
mainly because the libgcc shared library is named differently for different
exception mechanisms.

Building with GCC/MinGW compilers: Perhaps the easiest and most hassle-
free is the case of Unix-like operating systems—as a rule, the entire build process
can literally fit in three lines:

$./configure
$ make
make install

The first command performs preconfiguration before building the application/li-
brary to be built. In case of its successful completion, you can run the second
command for the build itself. After the successful completion of the build phase,
you must run the third command—to install the built application/library to the
installation directory. Usually, this step requires superuser rights (note the # prompt
sign).

Some applications/libraries require another command to be run after the build
step:

$ make check

or

$ make test

responsible for checking or testing the compiled application/library.
Since GCC runs on Unix systems usually in the bash console serving as a

shell, MinGW also requires bash to build many libraries that use GNU utilities.
As we have already described, these utilities, including bash, are available in the
MSYS package. Therefore, after starting the Windows command line, you must
sequentially issue commands

> mingw.bat
> bash

then execute the standard, already mentioned, build commands.
It should be borne in mind that when building using MSYS with the

make install command from under bash, the header files and the
finished built library are copied (installed) to the subdirectories of the MSYS tree
local/include and local/lib, respectively (initially, there is no local
directory in MSYS; it is created after the first make install command).

10.2 Building Libraries

The wonderful book [24, page 72] provides an example of creating static and
dynamic libraries in C using GCC, for only Unix-like systems, but we will take
this example as a basis, and we will create such libraries already in C++ using

112 10 Libraries

both MinGW and Microsoft C/C++ compilers on Windows. Examples of using the
created libraries will be illustrated in the next chapter.

Note MSYS and MSYS2 are optional to compile, build, and archive the object files
for the following examples.

Let there be two files, hellofirst.cpp and hellosecond.cpp:

These two files only contain functions that can be called from another program,
twohellos.cpp:

/* twohellos.cpp */

void hellofirst(void);
void hellosecond(void);

int main(){
hellofirst();
hellosecond();

return(0);
}

10.3 Creating User Libraries

Static libraries: Let’s first look at creating static libraries with MinGW. With the
command4

g++ -c hellofirst.cpp hellosecond.cpp

4 The -c option tells the compiler to create an object file with a .o extension as output.

10.3 Creating User Libraries 113

we compile the files hellofirst.cpp and hellosecond.cpp to create
object files hellofirst.o and hellosecond.o. After that, using the ar
archive utility, we create the libhello.a object library:

ar -r libhello.a hellofirst.o hellosecond.o

In the case of the Microsoft C/C++ compiler, a static library is created in much
the same way; only the compiler and linker call format differs.

Compile the files hellofirst.cpp and hellosecond.cpp to create
object files hellofirst.obj and hellosecond.obj:

cl /c hellofirst.cpp hellosecond.cpp

Now we use the lib utility to combine the created object files into a library
libhello.lib:

lib /out:libhello.lib hellofirst.obj hellosecond.obj

Dynamic libraries: To create dynamic libraries, we slightly modify the files
hellofirst.cpp and hellosecond.cpp, naming the modified files
shellofirst.cpp and shellosecond.cpp, respectively:

We will also make the program that calls the functions from these files by
analogy, calling it stwohellos.cpp:

/* stwohellos.cpp */

void shellofirst(void);
void shellosecond(void);

int main(){
shellofirst();
shellosecond();

return(0);
}

114 10 Libraries

To compile dynamic-link libraries, the compiler must be given one more instruc-
tion to produce relocatable object code, because such libraries can be loaded at
different addresses in the address space of the process using the library. The -fpic
option is used for this; the abbreviation 'pic' means position independent code:

>g++ -c -fpic shellofirst.cpp shellosecond.cpp

Finally, to combine the created object files into a dynamic-link library with a
.dll extension (under Linux, it is .so), the -shared option must be used,
which instructs the linker to create the library file accordingly:

>g++ -shared shellofirst.o shellosecond.o -o hello.dll

Creating dynamic-link libraries with the Microsoft C/C++ compiler is much more
complicated. We have to modify our three *.cpp files to create such a library
using the Microsoft compiler, as well as introduce a new helper file hello.h into
the game:

10.3 Creating User Libraries 115

hello.h contains function declarations from dynamic-link libraries for export
and import according to the rules of the Microsoft C/C++ compiler.

You can also declare functions like this:

extern "C" HELLO_API void shellofirst(void);
extern "C" HELLO_API void shellosecond(void);

Note These files can be processed by both MinGW and Microsoft C/C++ compil-
ers. To do this, we have included conditional compilation directives that allow us
to automatically determine which compiler is used at the time of compilation: for
example, the _MSC_VER constant is defined for the Microsoft C/C ++ compiler.

When compiling with the Microsoft C/C++ compiler, we use option /EHsc to
avoid

warning C4530: C++ exception handler used, but unwind semantics
are not enabled. Specify /EHsc↪→

First, run the command

D:\Users\C++\MSVC>cl /EHsc /c shellofirst.cpp shellosecond.cpp
Microsoft (R) C/C++ Optimizing Compiler Version 19.31.31107 for

x64↪→
Copyright (C) Microsoft Corporation. All rights reserved.

to compile shellofirst.cpp and shellosecond.cpp to get object
files shellofirst.obj and shellosecond.obj, respectively.

116 10 Libraries

Now with the aid of the lib utility with the /DEF option, we will get
hello.lib and object hello.exp:

D:\Users\C++\MSVC>lib /DEF /out:hello.lib shellofirst.obj
shellosecond.obj↪→

Microsoft (R) Library Manager Version 14.31.31107.0
Copyright (C) Microsoft Corporation. All rights reserved.

Creating library hello.lib and object hello.exp

The lib utility with the /DEF option creates an import library with a .lib
extension and an export file with a .exp extension. Further, the link utility uses
the export file to create executable files (usually, a dynamic-link library, dll), and
the import library is used to resolve references when creating programs using the
created dll.

Finally, the link utility with the /DLL switch creates the required
hello.dll library from our object files shellofirst.obj and
shellosecond.obj:

D:\Users\C++\MSVC>link /DLL /out:hello.dll shellofirst.obj
shellosecond.obj↪→

Microsoft (R) Incremental Linker Version 14.31.31107.0
Copyright (C) Microsoft Corporation. All rights reserved.

Creating library hello.lib and object hello.exp

Note that the include file hello.h is involved in compilation and build process
indirectly: in the files shellofirst.cpp and shellosecond.cpp,
hello.h is included through conditional compilation directives:

#ifdef _MSC_VER
#define HELLO_EXPORTS
#include "hello.h"

#endif

Since the _MSC_VER constant is just defined when compiling with the Microsoft
C/C++ compiler, then through the directive

#define HELLO_EXPORTS

the HELLO_EXPORTS constant will also be defined, which in turn will activate
the directive

#define HELLO_API __declspec(dllexport)

in the contents of the hello.h file, being now included in the
shellofirst.cpp and shellosecond.cpp files. Thus, all this
will lead to the fact that when compiling the shellofirst.cpp and
shellosecond.cpp files, the function descriptions

extern "C" {
HELLO_API void shellofirst(void);
HELLO_API void shellosecond(void);

}

10.3 Creating User Libraries 117

turn into

extern "C" {
__declspec(dllexport) void shellofirst(void);
__declspec(dllexport) void shellosecond(void);

}

This means that these functions will be exported from the object library. The
Microsoft C/C++ compiler directive __declspec(dllexport) serves just
to designate exported objects.

Using the dumpbin5 utility with the /EXPORTS switch, we can check
whether the hello.dll library actually exports our functions:

D:\Users\C++\MSVC>dumpbin /EXPORTS hello.dll
Microsoft (R) COFF/PE Dumper Version 14.31.31107.0
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file hello.dll

File Type: DLL

Section contains the following exports for hello.dll

00000000 characteristics
FFFFFFFF time date stamp

0.00 version
1 ordinal base
2 number of functions
2 number of names

ordinal hint RVA name

1 0 00001150 shellofirst
2 1 00003CA0 shellosecond

Summary

3000 .data
3000 .pdata

12000 .rdata
1000 .reloc

23000 .text
1000 _RDATA

5 This utility comes with the Microsoft C/C++ compiler.

118 10 Libraries

10.4 Conclusion

In this chapter, we have shown, using a simple example, the creation of static and
dynamic libraries using each of the MinGW and Microsoft C/C++ compilers. In
the case of the Microsoft C/C++ compiler, the technical literature mainly describes
the creation of libraries using the WinAPI interface. We followed a different, less
commonly used method, described in the Microsoft documentation.

11Using Libraries

In this chapter, we will continue with the example programs of the previous
chapter and demonstrate the use of static and dynamic-link libraries, again using
the MinGW and Microsoft C/C++ compilers.

11.1 Linking with Static Libraries

The library created in Chapter 10 can now be used in different ways, for example:

g++ twohellos.cpp libhello.a -o twohellos

In this case, the name of the linked library is written in full, with the path (in our
case, the library is in the current directory, so there is no need to provide the path).
However, it is common to use the following binding format:

g++ twohellos.cpp -lhello -o twohellos -L./

In this case, '-lhello' expands to 'libhello.a', and this library is
searched for in the directory specified by the '-L' key, that is, in the current
directory './'. If you omit this switch, the libhello.a library file will not be
found! But the slash can be omitted:

g++ twohellos.cpp -lhello -o twohellos -L.

cl twohellos.cpp libhello.lib /link /out:twohellos.exe

cl twohellos.cpp /link libhello.lib /out:twohellos.exe

© The Author(s), under exclusive license to APress Media, LLC,
part of Springer Nature 2024
B. I. Tuleuov, A. B. Ospanova, Beginning C++ Compilers,
https://doi.org/10.1007/978-1-4842-9563-2_11

119

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4842-9563-2protect T1	extunderscore 11&domain=pdf
https://doi.org/10.1007/978-1-4842-9563-2_11
https://doi.org/10.1007/978-1-4842-9563-2_11
https://doi.org/10.1007/978-1-4842-9563-2_11
https://doi.org/10.1007/978-1-4842-9563-2_11
https://doi.org/10.1007/978-1-4842-9563-2_11
https://doi.org/10.1007/978-1-4842-9563-2_11
https://doi.org/10.1007/978-1-4842-9563-2_11
https://doi.org/10.1007/978-1-4842-9563-2_11
https://doi.org/10.1007/978-1-4842-9563-2_11
https://doi.org/10.1007/978-1-4842-9563-2_11
https://doi.org/10.1007/978-1-4842-9563-2_11

120 11 Using Libraries

11.2 Linking with Dynamic Libraries

D:\Users\C++\MinGW>g++ stwohellos.cpp hello.dll -o stwohellos.exe

D:\Users\C++\MinGW>stwohellos.exe
The first hello from a shared library
The second hello from a shared library

D:\Users\C++\MinGW>

D:\Users\C++\MSVC>cl stwohellos.cpp hello.lib
Microsoft (R) C/C++ Optimizing Compiler Version 19.31.31107 for

x64↪→
Copyright (C) Microsoft Corporation. All rights reserved.

stwohellos.cpp
Microsoft (R) Incremental Linker Version 14.31.31107.0
Copyright (C) Microsoft Corporation. All rights reserved.

/out:stwohellos.exe
stwohellos.obj
hello.lib

Now again using dumpbin, but with a different /IMPORTS switch, let’s
see if our program stwohellos.exe imports our functions exported from the
dynamic-link library hello.dll we built in the previous chapter:

C:\User\C++\MSVC>dumpbin /IMPORTS stwohellos.exe
Microsoft (R) COFF/PE Dumper Version 14.31.31107.0
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file stwohellos.exe

File Type: EXECUTABLE IMAGE

Section contains the following imports:

hello.dll
140010250 Import Address Table
140019170 Import Name Table

0 time date stamp
0 Index of first forwarder reference

1 shellosecond
0 shellofirst

KERNEL32.dll
140010000 Import Address Table
140018F20 Import Name Table

0 time date stamp
0 Index of first forwarder reference

64A WriteConsoleW
94 CloseHandle

470 QueryPerformanceCounter

11.2 Linking with Dynamic Libraries 121

233 GetCurrentProcessId
237 GetCurrentThreadId
30A GetSystemTimeAsFileTime
38A InitializeSListHead
4F5 RtlCaptureContext
4FD RtlLookupFunctionEntry
504 RtlVirtualUnwind
3A0 IsDebuggerPresent
5E6 UnhandledExceptionFilter
5A4 SetUnhandledExceptionFilter
2F1 GetStartupInfoW
3A8 IsProcessorFeaturePresent
295 GetModuleHandleW
DA CreateFileW

503 RtlUnwindEx
27D GetLastError
564 SetLastError
149 EnterCriticalSection
3E0 LeaveCriticalSection
123 DeleteCriticalSection
386 InitializeCriticalSectionAndSpinCount
5D6 TlsAlloc
5D8 TlsGetValue
5D9 TlsSetValue
5D7 TlsFree
1C5 FreeLibrary
2CD GetProcAddress
3E6 LoadLibraryExW
145 EncodePointer
487 RaiseException
4FF RtlPcToFileHeader
2F3 GetStdHandle
64B WriteFile
291 GetModuleFileNameW
232 GetCurrentProcess
178 ExitProcess
5C4 TerminateProcess
294 GetModuleHandleExW
1F0 GetCommandLineA
1F1 GetCommandLineW
36C HeapAlloc
370 HeapFree
18F FindClose
195 FindFirstFileExW
1A6 FindNextFileW
3AE IsValidCodePage
1CC GetACP
2B6 GetOEMCP
1DB GetCPInfo
412 MultiByteToWideChar
637 WideCharToMultiByte
253 GetEnvironmentStringsW
1C4 FreeEnvironmentStringsW
546 SetEnvironmentVariableW
57F SetStdHandle
26A GetFileType
2F8 GetStringTypeW
1B4 FlsAlloc

122 11 Using Libraries

1B6 FlsGetValue
1B7 FlsSetValue
1B5 FlsFree
AA CompareStringW

3D4 LCMapStringW
2D4 GetProcessHeap
375 HeapSize
373 HeapReAlloc
1B9 FlushFileBuffers
21A GetConsoleOutputCP
216 GetConsoleMode
555 SetFilePointerEx

Summary

2000 .data
2000 .pdata
A000 .rdata
1000 .reloc
F000 .text
1000 _RDATA

D:\Users\C++\MSVC>stwohellos.exe
The first hello from a shared library
The second hello from a shared library

C:\User\C++\MSVC>

11.3 Using Libraries from Source Code

Naturally, the program can be built directly without creating the libhello.a
library:

g++ twohellos.cpp hellofirst.cpp hellosecond.cpp -o twohellos

but, in general, it does not make sense to compile hellofirst.cpp and
hellosecond.cpp auxiliary files every time the main twohellos.cpp
file is compiled:

cl twohellos.cpp hellofirst.cpp hellosecond.cpp /link
/out:twohellos.exe↪→

C:\User\C++>twohellos.exe
The first hello
The second hello

C:\User\C++>

As an illustrative example, here is an example of an Assembler program that uses
an I/O library written in C++. Recall that the Assembly language does not have a
standard library, but under Windows in this language, you can use the C standard
library or calls to WinAPI functions. The latter provides more options on Windows;

11.3 Using Libraries from Source Code 123

however, the amount of code in this case is significantly larger. In simple cases and
in the case of scientific computing, this is true; standard C library functions (such
as printf) are sufficient, and the code size remains quite moderate. The book on
64-bit Assembly Programming [30] provides many examples of programs that use
I/O functions from the C standard library, called through a C++ helper program. The
build of the program takes place in two stages: each program is compiled separately,
then the object modules are linked to create an executable file. We will do this: we
will remove all unnecessary data from the auxiliary C++ file and build a static library
from it, which we will link with the object module obtained as a result of compiling
the program in the Assembly language.

Let’s take the code from Listing 2–3 [30, page 64] as the Assembly language
program. In the listing2-3.asm program, we make minimal changes: before
the line

option casemap:none

insert the following three lines:

includelib msvcrt.lib
includelib legacy_stdio_definitions.lib
includelibMyLibrary.lib

and all occurrences of the function name 'asmMain' should be replaced by
'main' (there are only three such occurrences).

In the c.cpp helper program (Listing 1–7 [30, page 28]), remove the line

void asmMain(void);

and completely remove the int main(void) function, since the library does
not need it. Save the modified file as MyLibrary.cpp. The texts of the modified
programs are given as follows:

//
// MyLibrary.cpp
// compile with: cl /c /EHsc MyLibrary.cpp
// post-build command: lib MyLibrary.obj
//
//
// Generic C++ driver program to demonstrate returning function
// results from assembly language to C++. Also includes a
// "readLine" function that reads a string from the user and
// passes it on to the assembly language code.
//
// Need to include stdio.h so this program can call "printf"
// and stdio.h so this program can call strlen.

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

// extern "C" namespace prevents "name mangling" by the C++

124 11 Using Libraries

// compiler.

extern "C" {
// getTitle returns a pointer to a string of characters

// from the assembly code that specifies the title of that
// program (that makes this program generic and usable

// with a large number of sample programs in "The Art of
// 64-bit Assembly Language."

char *getTitle(void);

// C++ function that the assembly
// language program can call:

int readLine(char *dest, int maxLen);

};

// readLine reads a line of text from the user (from the
// console device) and stores that string into the destination
// buffer the first argument specifies. Strings are limited in
// length to the value specified by the second argument
// (minus 1).
//
// This function returns the number of characters actually
// read, or -1 if there was an error.
//
// Note that if the user enters too many characters (maxlen or
// more) then this function only returns the first maxlen-1
// characters. This is not considered an error.

int readLine(char *dest, int maxLen){
// Note: fgets returns NULL if there was an error, else

// it returns a pointer to the string data read (which
// will be the value of the dest pointer).

char *result = fgets(dest, maxLen, stdin);
if (result != NULL){

// Wipe out the new line character at the
// end of the string:

int len = strlen(result);
if (len > 0){

dest[len - 1] = 0;
}
return len;

}
return -1; // If there was an error.

}

11.3 Using Libraries from Source Code 125

Here’ the slightly modified listing of the program listing2-3.asm:

; Listing 2-3
;
; Demonstrate two's complement operation and input of numeric

values.↪→
; msvcrt.lib(initializers.obj) : warning LNK4098: defaultlib

'libcmt.lib' conflicts with use of other libs; use
/NODEFAULTLIB:library

↪→
↪→
; ml64 listing2-3.asm /link /NODEFAULTLIB:libcmt.lib

includelib msvcrt.lib
includelib legacy_stdio_definitions.lib
includelib MyLibrary.lib

option casemap:none

nl = 10 ;ASCII code for newline
maxLen = 256

.data
titleStr byte 'Listing 2-3', 0

prompt1 byte "Enter an integer between 0 and 127: ", 0
fmtStr1 byte "Value in hexadecimal: %x", nl, 0
fmtStr2 byte "Invert all the bits (hexadecimal): %x", nl, 0
fmtStr3 byte "Add 1 (hexadecimal): %x", nl, 0
fmtStr4 byte "Output as signed integer: %d", nl, 0
fmtStr5 byte "Using neg instruction: %d", nl, 0

intValue sqword ?
input byte maxLen dup (?)

.code
externdef printf:proc
externdef atoi:proc
externdef readLine:proc

; Return program title to C++ program:

public getTitle
getTitle proc

lea rax, titleStr
ret

getTitle endp

; Here is the "main" function.

public main
main proc

126 11 Using Libraries

; "Magic" instruction offered without explanation at this point:

sub rsp, 56

; Read an unsigned integer from the user: This code will blindly
; assume that the user's input was correct. The atoi function

returns↪→
; zero if there was some sort of error on the user input. Later
; chapters in Ao64A will describe how to check for errors from

the↪→
; user.

lea rcx, prompt1
call printf

lea rcx, input
mov rdx, maxLen
call readLine

; Call C stdlib atoi function.
;
; i = atoi(str)

lea rcx, input
call atoi

; and rax, 0ffh ; Only keep L.O. eight bits
mov intValue, rax

; Print the input value (in decimal) as a hexadecimal number:

lea rcx, fmtStr1
mov rdx, rax
call printf

; Perform the two's complement operation on the input number.
; Begin by inverting all the bits (just work with a byte here).

mov rdx, intValue
not dl ;Only work with 8-bit values!
lea rcx, fmtStr2
call printf

; Invert all the bits and add 1 (still working with just a byte)

mov rdx, intValue
not rdx
add rdx, 1
and rdx, 0ffh ; Only keep L.O. eight bits
lea rcx, fmtStr3
call printf

; Negate the value and print as a signed integer (work with a
full↪→

11.3 Using Libraries from Source Code 127

; integer here, because C++ %d format specifier expects a 32-bit
; integer. H.O. 32 bits of RDX get ignored by C++.

mov rdx, intValue
not rdx
add rdx, 1
lea rcx, fmtStr4
call printf

; Negate the value using the neg instruction.

mov rdx, intValue
neg rdx
lea rcx, fmtStr5
call printf

; Another "magic" instruction that undoes the effect of the
previous↪→

; one before this procedure returns to its caller.

add rsp, 56
ret ;Returns to caller

main endp
end

Compiling MyLibrary.cpp and building the MyLibrary.lib library

>cl /c /EHsc MyLibrary.cpp
>lib MyLibrary.obj

Compiling the assembly program and linking the object file with the static library
MyLibrary.lib

>ml64 listing2-3.asm /link /NODEFAULTLIB:libcmt.lib

The linker parameter /NODEFAULTLIB:libcmt.lib is needed to fix the
warning:

msvcrt.lib(initializers.obj) : warning LNK4098: defaultlib
'libcmt.lib' conflicts with use of other libs; use
/NODEFAULTLIB:library

↪→
↪→

Here’s the result of the program call:

C:\User\C++\Book>listing2-3.exe
Enter an integer between 0 and 127: 117
Value in hexadecimal: 75
Invert all the bits (hexadecimal): 8a
Add 1 (hexadecimal): 8b
Output as signed integer: -117
Using neg instruction: -117

C:\User\C++\Book>

128 11 Using Libraries

11.4 Universal CRT Deployment

As already noted, the C/C++ runtime libraries are part of these languages, and each
implementation of these languages tends to create its own implementation of these
libraries as well. The standard implementation of the C language for older versions
(starting from 4.2 to 6.0 from Visual Studio 98) of the Microsoft C/C++ compiler
was called MSVCRT.DLL. Although this library is old, it is still included to make
old programs run. The corresponding C++ library was named MSVCP*.DLL (the
asterisk denotes the version number of the library).

Library versions before 4.0 and 7.0–13.0 were already marked as MSVCR*.
DLL, again with the library version number instead of an asterisk.

In the future, with each new version of the compiler, the runtime library
was also updated, indicated by the corresponding number. Along with Visual
Studio, Microsoft also distributed these libraries separately under the name
Visual C++ Redistributable Libraries. These libraries are located in the
C:\Windows\System32 folder.

By now, there are so many versions of these libraries that it already creates certain
problems. If the user has many applications installed on the machine, then there
may be many such libraries. Starting with compiler version 12.0 (Visual Studio
2013), each major version of the compiler included its own runtime library, for
example, for version 11 (Visual Studio 2012) it is msvcr110.dll, and for
version 12 (Visual Studio 2013) it is msvcr120.dll. By the time compiler
version 14.0 was released, most of the C/C++ libraries had already been merged
into a new DLL called UCRTBASE.DLL. In fact, when linking from this
DLL, calls were redirected to another new DLL called VCRuntime*.DLL
(VCRUNTIME140.DLL).

So the situation has changed since compiler version 14 (Visual Studio 2015). This
and subsequent versions of the compiler already use the aforementioned one library,
the so-called universal, which is now part of the operating system: this library is
now included in Windows 10 and above and Windows Server 2016 and above. The
Universal CRT (UCRT) is a Microsoft Windows operating system component.

Thus, Visual C++ C Runtime (CRT) now consists of two parts: VCRuntime
and Universal CRT. VCRuntime contains components responsible for
starting processes and handling exceptions, and UCRT is, as it were, an analog
of GNU glibc from Linux for Windows; this part of the library contains the
standard part of the C runtime library that includes POSIX functionality.

This UCRT library can also be installed on older versions of Windows that still
have extended support through Windows Update.

Manual installation of this library (so-called local deployment) is also supported,
with some limitations; however, Microsoft does not recommend this for security and
performance reasons.

11.4 Universal CRT Deployment 129

The DLLs for local deployment are also included in the Windows SDK; they are
located in the directory:

C:\Program Files (x86)\Windows
Kits\10\Redist\%Version%\ucrt\DLLs\%ARCH%↪→

where %ARCH% means computer architecture. The set of DLLs required for
deployment consists, in addition to ucrtbase.dll, also of the so-called APISet
forwarder DLLs under the nameapi-ms-win-*.dll. For local deployment, it
is highly recommended to include all of these DLLs, although the APISet forwarder
DLLs may differ for each operating system.

Two important notes about local deployment: Since the Universal CRT is a
component of the core operating system component starting from Windows 10 and
later, it is the Universal CRT from the system directory that will be used, even if
there is a more recent version of the Universal CRT library in the local application
directory.

On versions of Windows prior to Windows 8 (Windows before Windows 8),
Universal CRTs cannot be used unless they are located in the same directory as the
application that uses them, because in this case APISet forwarder DLLs are unable
to resolve the ucrtbase.dll successfully.

Naturally, with static linking to the Universal CRT, there will be no such problem.
You can also deploy this library centrally through Windows Update and finally place
the library files in the application folder.

Deployment on Microsoft Windows XP: As you know, Visual Studio 2015
and Visual Studio 2017 support development for the Microsoft Windows XP
operating system. The Universal CRT can also be deployed on Microsoft Windows
XP. Since Microsoft Windows XP is no longer officially supported, the deploy-
ment of the Universal CRT onto Microsoft Windows XP is different than the
standard process. When installing the corresponding Visual C++ Redistributable
on Windows XP, the installer directly installs the Universal CRT and related files
in the system directory without using Windows Update. The same applies to
Microsoft_VC<version>_CRT_<target>.msm files and the Redis-
tributable merge modules.

Universal CRT local deployment on Windows XP is carried out in the same way
as described earlier.

Here is a quote from the Microsoft website [27]:

Note Runtime library support for Windows XP is no longer available in the latest
Visual C++ Redistributable for Visual Studio 2015, 2017, 2019 and 2022. The last
redistributable to support Windows XP is version 16.7 (file version 14.27.29114.0).
If your Windows XP apps are deployed with or updated to a later version of the
redistributable, the apps won’t run. For more information, and how to get a version
of the redistributable that supports Windows XP, see Configuring programs for
Windows XP [28].

130 11 Using Libraries

11.5 Conclusion

This chapter is directly related to the previous one, as here we have shown the use
of the libraries created in the previous chapter. We also demonstrated the use of
libraries by directly including their source code in the application.

We also touched on the use of the relatively new runtime library Windows
Universal CRT (UCRT).

12GMP (GNU Multiprecision Library)

GNU Multiprecision Library (GMP) is a free arbitrary-precision arithmetic library
for working with signed integers, rationals, and floating-point numbers. In practice,
the accuracy is limited only by the available memory on the computer where this
library is used.

It has a rich feature set with an intuitive interface, mainly used in cryptographic
applications and research, Internet-related applications, computer algebra systems
(symbol manipulation), and computational algebra research.

The library has been carefully designed to provide maximum performance for
both small and large operands. This is achieved by using full words as the basic
arithmetic type, fast algorithms, and highly optimized assembler codes for the most
common types of inner loops for many types of processors.

GMP is constantly updated and maintained. New issues appear at intervals of
about a year. Its official site is http://gmplib.org. A very detailed online help can be
found at [31]. The current version at the time of this writing is 6.2.1 (March 2023).

The library is intended mainly for Unix-like systems such as GNU/Linux,
Solaris, HP-UX, Mac OS X/Darwin, BSD, AIX, etc. It also works on Windows
systems in both 32-bit and 64-bit modes.

Starting with version 6, GMP is distributed under a dual license: GNU LGPL v3
and GNU GPL v2. This means that the library can be freely used, distributed, and
improved, as well as transferred to third parties, binary codes linked with this library.
Restrictions apply only when used in conjunction with proprietary programs. One of
the best computer algebra systems (math packages), Maple, by Waterloo Maple Inc.,
uses GMP for integer long arithmetic (www.maplesoft.com/support/help/Maple/
view.aspx?path=copyright, www.maplesoft.com/support/downloads/GMP.html).

The library includes several categories of functions:

1. High-level arithmetic functions for working with signed integers, starting with
the prefix mpz_: There are about 150 of them. The corresponding type is
mpz_t.

© The Author(s), under exclusive license to APress Media, LLC,
part of Springer Nature 2024
B. I. Tuleuov, A. B. Ospanova, Beginning C++ Compilers,
https://doi.org/10.1007/978-1-4842-9563-2_12

131

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4842-9563-2protect T1	extunderscore 12&domain=pdf
http://gmplib.org
http://gmplib.org
http://gmplib.org
www.maplesoft.com/support/help/Maple/view.aspx?path=copyright
www.maplesoft.com/support/help/Maple/view.aspx?path=copyright
www.maplesoft.com/support/help/Maple/view.aspx?path=copyright
www.maplesoft.com/support/help/Maple/view.aspx?path=copyright
www.maplesoft.com/support/help/Maple/view.aspx?path=copyright
www.maplesoft.com/support/help/Maple/view.aspx?path=copyright
www.maplesoft.com/support/help/Maple/view.aspx?path=copyright
www.maplesoft.com/support/help/Maple/view.aspx?path=copyright
www.maplesoft.com/support/help/Maple/view.aspx?path=copyright
www.maplesoft.com/support/help/Maple/view.aspx?path=copyright
www.maplesoft.com/support/downloads/GMP.html
www.maplesoft.com/support/downloads/GMP.html
www.maplesoft.com/support/downloads/GMP.html
www.maplesoft.com/support/downloads/GMP.html
www.maplesoft.com/support/downloads/GMP.html
www.maplesoft.com/support/downloads/GMP.html
www.maplesoft.com/support/downloads/GMP.html
https://doi.org/10.1007/978-1-4842-9563-2_12
https://doi.org/10.1007/978-1-4842-9563-2_12
https://doi.org/10.1007/978-1-4842-9563-2_12
https://doi.org/10.1007/978-1-4842-9563-2_12
https://doi.org/10.1007/978-1-4842-9563-2_12
https://doi.org/10.1007/978-1-4842-9563-2_12
https://doi.org/10.1007/978-1-4842-9563-2_12
https://doi.org/10.1007/978-1-4842-9563-2_12
https://doi.org/10.1007/978-1-4842-9563-2_12
https://doi.org/10.1007/978-1-4842-9563-2_12
https://doi.org/10.1007/978-1-4842-9563-2_12

132 12 GMP (GNUMultiprecision Library)

2. High-level rational arithmetic functions starting with the mpq_ prefix: The
corresponding type is mpq_t. There are about 35 such functions, but signed
integer arithmetic functions can also be used separately in the numerator and
denominator.

3. High-level floating-point arithmetic functions starting with the mpf_ prefix: The
corresponding type is mpf_t. This category includes about 70 functions. This
category of GMP functions should be used if the standard C/C++ double type
precision is not sufficient. It is highly recommended for new projects to use the
MPFR library, which is an essential extension of GMP toward mpf.

4. C++ class-based interface for all of the preceding function categories: Naturally,
functions and types in C can be used directly from C++.

5. Fast low-level functions for working with natural numbers, starting with the
prefix mpn_: The corresponding type is an array of values like mp_limb_t.
These functions are used by the functions of the previous categories, but they can
also be used directly in time-critical user applications. They are not so easy to
use; memory management is not implemented—the side calling these functions
itself must take care of allocating sufficient memory for the returned values.
Such functions take input arguments as a pair consisting of a pointer to the least
significant word and an integer indicating how many words the argument consists
of (its size). There are about 60 functions in this category.

6. Various auxiliary functions: Functions for preparing the workspace, for generat-
ing random numbers.

The functions of the GMP library, with some exceptions, have the reentrant
property and are thread-safe, which allows it to be used in multithreaded (parallel)
applications. For details, please refer to section 3.7 of the user manual for this
library.

12.1 Building

Since the library actively uses assembler inserts for the most critical operations
in terms of efficiency, the GMP library should be compiled on the target (i.e.,
where it is intended to be used) machine to achieve the best performance, since
the assembly language is highly dependent on the specific platform. In particular,
building and running the tuneup utility from the tune directory can be very
useful for applications that take a long time to run or use extremely large numbers.
For example, the command sequence

cd tune
make tuneup
./tuneup

generates a parameter header file gmp-mparam.h that is more specific to the
local machine. After that, the library code must be recompiled. tuneup has one

12.1 Building 133

useful option '-f NNN' which can be used when dealing with extremely large
numbers, in which case tuneup should be run with a large NNN value.

Under Windows, GMP can be built using several ports of GCC and the GNU
build tools. These are Cygwin, DJGPP, and MinGW. We do not consider Cygwin
due to its massiveness and extra layer, and DJGPP is too outdated, as it only supports
MS-DOS and 32-bit Windows.

Build with MinGW
E:\Users>mingw81

E:\Users>set PATH=E:\Programs\msys\bin;%PATH%

or

E:\Users>msys[.bat]

E:\Users>bash

bash-3.1$ cd G:\Users

bash-3.1$ ls
gmp-6.2.1.tar.xz

Unpack the archive gmp-6.2.1.tar.xz and change to newly created direc-
tory gmp-6.2.1:

bash-3.1$ tar xJf gmp-6.2.1.tar.xz && cd gmp-6.2.1

Now run the configure script with the '--enable-cxx' option in order
to support the C++ interface:

bash-3.1$./configure --enable-cxx
. . .
configure: summary of build options:

Version: GNU MP 6.2.1
Host type: nehalem-pc-mingw32
ABI: 64
Install prefix: /usr/local
Compiler: gcc
Static libraries: yes
Shared libraries: no

Now it is time to launch the build process:

bash-3.1$ make

After the successful completion of the build process, the GMP developers strongly
recommend that you run the command

bash-3.1$ make check

134 12 GMP (GNUMultiprecision Library)

If that fails, or you care about the performance of GMP, you need to read the full
instructions in the chapter “Installing GMP” in the manual.

You should not skip the “make check” part; the risk that the GMP sources are
miscompiled is unfortunately quite high. And if they indeed are, “make check” is
very likely to trigger the compiler-introduced bug.

. . .
make check-TESTS
make[4]: Entering directory `/g/Users/gmp-6.2.1/tests'
make[5]: Entering directory `/g/Users/gmp-6.2.1/tests'
PASS: t-bswap.exe PASS: t-modlinv.exe
PASS: t-constants.exe PASS: t-popc.exe
PASS: t-count_zeros.exe PASS: t-parity.exe
PASS: t-hightomask.exe PASS: t-sub.exe
===
Testsuite summary for GNU MP 6.2.1
===
TOTAL: 8
PASS: 8
SKIP: 0
XFAIL: 0
FAIL: 0
XPASS: 0
ERROR: 0
===
. . .

make check-TESTS
make[4]: Entering directory `/g/Users/gmp-6.2.1/tests/mpn'
make[5]: Entering directory `/g/Users/gmp-6.2.1/tests/mpn'
PASS: t-asmtype.exe PASS: t-toom2-sqr.exe
PASS: t-aors_1.exe PASS: t-toom3-sqr.exe
PASS: t-divrem_1.exe PASS: t-toom4-sqr.exe
PASS: t-mod_1.exe PASS: t-toom6-sqr.exe
PASS: t-fat.exe PASS: t-toom8-sqr.exe
PASS: t-get_d.exe PASS: t-div.exe
PASS: t-instrument.exe PASS: t-mul.exe
PASS: t-iord_u.exe PASS: t-mullo.exe
PASS: t-mp_bases.exe PASS: t-sqrlo.exe
PASS: t-perfsqr.exe PASS: t-mulmod_bnm1.exe
PASS: t-scan.exe PASS: t-sqrmod_bnm1.exe
PASS: logic.exe PASS: t-mulmid.exe
PASS: t-toom22.exe PASS: t-hgcd.exe
PASS: t-toom32.exe PASS: t-hgcd_appr.exe
PASS: t-toom33.exe PASS: t-matrix22.exe
PASS: t-toom42.exe PASS: t-invert.exe
PASS: t-toom43.exe PASS: t-bdiv.exe
PASS: t-toom44.exe PASS: t-fib2m.exe
PASS: t-toom52.exe PASS: t-broot.exe
PASS: t-toom53.exe PASS: t-brootinv.exe
PASS: t-toom54.exe PASS: t-minvert.exe
PASS: t-toom62.exe PASS: t-sizeinbase.exe

12.1 Building 135

PASS: t-toom63.exe PASS: t-gcd_11.exe
PASS: t-toom6h.exe PASS: t-gcd_22.exe
PASS: t-toom8h.exe PASS: t-gcdext_1.exe
===
Testsuite summary for GNU MP 6.2.1
===
TOTAL: 50
PASS: 50
SKIP: 0
XFAIL: 0
FAIL: 0
XPASS: 0
ERROR: 0
===
. . .

make check-TESTS
make[4]: Entering directory `/g/Users/gmp-6.2.1/tests/mpz'
make[5]: Entering directory `/g/Users/gmp-6.2.1/tests/mpz'
PASS: reuse.exe PASS: t-get_d_2exp.exe
PASS: t-addsub.exe PASS: t-get_si.exe
PASS: t-cmp.exe PASS: t-set_d.exe
PASS: t-mul.exe PASS: t-set_si.exe
PASS: t-mul_i.exe PASS: t-lucm.exe
PASS: t-tdiv.exe PASS: t-fac_ui.exe
PASS: t-tdiv_ui.exe PASS: t-mfac_uiui.exe
PASS: t-fdiv.exe PASS: t-primorial_ui.exe
PASS: t-fdiv_ui.exe PASS: t-fib_ui.exe
PASS: t-cdiv_ui.exe PASS: t-lucnum_ui.exe
PASS: t-gcd.exe PASS: t-scan.exe
PASS: t-gcd_ui.exe PASS: t-fits.exe
PASS: t-lcm.exe PASS: t-divis.exe
PASS: t-invert.exe PASS: t-divis_2exp.exe
PASS: dive.exe PASS: t-cong.exe
PASS: dive_ui.exe PASS: t-cong_2exp.exe
PASS: t-sqrtrem.exe PASS: t-sizeinbase.exe
PASS: convert.exe PASS: t-set_str.exe
PASS: io.exe PASS: t-aorsmul.exe
PASS: t-inp_str.exe PASS: t-cmp_d.exe
PASS: logic.exe PASS: t-cmp_si.exe
PASS: t-bit.exe PASS: t-hamdist.exe
PASS: t-powm.exe PASS: t-oddeven.exe
PASS: t-powm_ui.exe PASS: t-popcount.exe
PASS: t-pow.exe PASS: t-set_f.exe
PASS: t-div_2exp.exe PASS: t-io_raw.exe
PASS: t-root.exe PASS: t-import.exe
PASS: t-perfsqr.exe PASS: t-export.exe
PASS: t-perfpow.exe PASS: t-pprime_p.exe
PASS: t-jac.exe PASS: t-nextprime.exe
PASS: t-bin.exe PASS: t-remove.exe
PASS: t-get_d.exe PASS: t-limbs.exe
===
Testsuite summary for GNU MP 6.2.1

136 12 GMP (GNUMultiprecision Library)

===
TOTAL: 64
PASS: 64
SKIP: 0
XFAIL: 0
FAIL: 0
XPASS: 0
ERROR: 0
===
. . .

make check-TESTS
make[4]: Entering directory `/g/Users/gmp-6.2.1/tests/mpq'
make[5]: Entering directory `/g/Users/gmp-6.2.1/tests/mpq'
PASS: t-aors.exe PASS: t-inv.exe
PASS: t-cmp.exe PASS: t-md_2exp.exe
PASS: t-cmp_ui.exe PASS: t-set_f.exe
PASS: t-cmp_si.exe PASS: t-set_str.exe
PASS: t-equal.exe PASS: io.exe
PASS: t-get_d.exe PASS: reuse.exe
PASS: t-get_str.exe PASS: t-cmp_z.exe
PASS: t-inp_str.exe
===
Testsuite summary for GNU MP 6.2.1
===
TOTAL: 15
PASS: 15
SKIP: 0
XFAIL: 0
FAIL: 0
XPASS: 0
ERROR: 0
===
. . .

make check-TESTS
make[4]: Entering directory `/g/Users/gmp-6.2.1/tests/mpf'
make[5]: Entering directory `/g/Users/gmp-6.2.1/tests/mpf'
PASS: t-dm2exp.exe PASS: t-get_si.exe
PASS: t-conv.exe PASS: t-get_ui.exe
PASS: t-add.exe PASS: t-gsprec.exe
PASS: t-sub.exe PASS: t-inp_str.exe
PASS: t-sqrt.exe PASS: t-int_p.exe
PASS: t-sqrt_ui.exe PASS: t-mul_ui.exe
PASS: t-muldiv.exe PASS: t-set.exe
PASS: reuse.exe PASS: t-set_q.exe
PASS: t-cmp_d.exe PASS: t-set_si.exe
PASS: t-cmp_si.exe PASS: t-set_ui.exe
PASS: t-div.exe PASS: t-trunc.exe
PASS: t-fits.exe PASS: t-ui_div.exe
PASS: t-get_d.exe PASS: t-eq.exe
PASS: t-get_d_2exp.exe PASS: t-pow_ui.exe
===

12.1 Building 137

Testsuite summary for GNU MP 6.2.1
===
TOTAL: 28
PASS: 28
SKIP: 0
XFAIL: 0
FAIL: 0
XPASS: 0
ERROR: 0
===
. . .

make check-TESTS
make[4]: Entering directory `/g/Users/gmp-6.2.1/tests/rand'
make[5]: Entering directory `/g/Users/gmp-6.2.1/tests/rand'
PASS: t-iset.exe PASS: t-urbui.exe
PASS: t-lc2exp.exe PASS: t-urmui.exe
PASS: t-mt.exe PASS: t-urndmm.exe
PASS: t-rand.exe
===
Testsuite summary for GNU MP 6.2.1
===
TOTAL: 7
PASS: 7
SKIP: 0
XFAIL: 0
FAIL: 0
XPASS: 0
ERROR: 0
===
. . .

make check-TESTS
make[4]: Entering directory `/g/Users/gmp-6.2.1/tests/misc'
make[5]: Entering directory `/g/Users/gmp-6.2.1/tests/misc'
PASS: t-printf.exe
PASS: t-scanf.exe
PASS: t-locale.exe
===
Testsuite summary for GNU MP 6.2.1
===
TOTAL: 3
PASS: 3
SKIP: 0
XFAIL: 0
FAIL: 0
XPASS: 0
ERROR: 0
===
. . .

make check-TESTS
make[4]: Entering directory `/g/Users/gmp-6.2.1/tests/cxx'

138 12 GMP (GNUMultiprecision Library)

make[5]: Entering directory `/g/Users/gmp-6.2.1/tests/cxx'
PASS: t-binary.exe PASS: t-ops2f.exe
PASS: t-cast.exe PASS: t-ops3.exe
PASS: t-cxx11.exe PASS: t-ostream.exe
PASS: t-headers.exe PASS: t-prec.exe
PASS: t-iostream.exe PASS: t-ternary.exe
PASS: t-istream.exe PASS: t-unary.exe
PASS: t-locale.exe PASS: t-ops2z.exe
PASS: t-misc.exe PASS: t-assign.exe
PASS: t-mix.exe PASS: t-constr.exe
PASS: t-ops.exe PASS: t-rand.exe
PASS: t-ops2qf.exe
PASS: t-do-exceptions-work-at-all-with-this-compiler.exe
===
Testsuite summary for GNU MP 6.2.1
===
TOTAL: 22
PASS: 22
SKIP: 0
XFAIL: 0
FAIL: 0
XPASS: 0
ERROR: 0
===

Finally, install the built library:

bash-3.1$ make install

. . .
make[2]: Entering directory `/g/Users/gmp-6.2.1'
make[3]: Entering directory `/g/Users/gmp-6.2.1'
/usr/bin/mkdir -p '/usr/local/lib'
/bin/sh ./libtool --mode=install /usr/bin/install -c

libgmp.la libgmpxx.la '/usr/local/lib'↪→
libtool: install: /usr/bin/install -c .libs/libgmp.lai

/usr/local/lib/libgmp.la↪→
libtool: install: /usr/bin/install -c .libs/libgmpxx.lai

/usr/local/lib/libgmpxx.la↪→
libtool: install: /usr/bin/install -c .libs/libgmp.a

/usr/local/lib/libgmp.a↪→
libtool: install: chmod 644 /usr/local/lib/libgmp.a
libtool: install: ranlib /usr/local/lib/libgmp.a
libtool: install: /usr/bin/install -c .libs/libgmpxx.a

/usr/local/lib/libgmpxx.a↪→
libtool: install: chmod 644 /usr/local/lib/libgmpxx.a
libtool: install: ranlib /usr/local/lib/libgmpxx.a
/usr/bin/mkdir -p '/usr/local/include'
/usr/bin/install -c -m 644 gmp.h '/usr/local/include'
/usr/bin/mkdir -p '/usr/local/include'
/usr/bin/install -c -m 644 gmpxx.h '/usr/local/include'
/usr/bin/mkdir -p '/usr/local/lib/pkgconfig'
/usr/bin/install -c -m 644 gmp.pc gmpxx.pc

'/usr/local/lib/pkgconfig'↪→

12.1 Building 139

make install-data-hook
make[4]: Entering directory `/g/Users/gmp-6.2.1'

+---+
| CAUTION: |
| |
| If you have not already run "make check", then we strongly |
| recommend you do so. |
| |
| GMP has been carefully tested by its authors, but compilers |
| are all too often released with serious bugs. GMP tends to |
| explore interesting corners in compilers and has hit bugs |
| on quite a few occasions. |
| |
+---+

make[4]: Leaving directory `/g/Users/gmp-6.2.1'
make[3]: Leaving directory `/g/Users/gmp-6.2.1'
make[2]: Leaving directory `/g/Users/gmp-6.2.1'
make[1]: Leaving directory `/g/Users/gmp-6.2.1'
bash-3.1$

140 12 GMP (GNUMultiprecision Library)

On Windows, by default, GMP can only be built as a static library, but a DLL
can be built by running the configure script with the following options:

./configure --disable-static --enable-shared

That is, the Windows static and dynamic-link libraries cannot be built at the same
time because some of the export directives in the gmp.h header file must be
different.

Now let’s show how to build GMP as a dynamic-link library:

./configure --enable-cxx --disable-static --enable-shared

. . .
configure: summary of build options:

Version: GNU MP 6.2.1
Host type: nehalem-pc-mingw32
ABI: 64
Install prefix: /usr/local
Compiler: gcc
Static libraries: no
Shared libraries: yes

bash-3.1$

Finally, install the built DLL library:

bash-3.1$ make install

. . .
make[2]: Entering directory `/g/Users/gmp-6.2.1'
make[3]: Entering directory `/g/Users/gmp-6.2.1'
/usr/bin/mkdir -p '/usr/local/lib'
/bin/sh ./libtool --mode=install /usr/bin/install -c

libgmp.la libgmpxx.la '/usr/local/lib'↪→
libtool: install: /usr/bin/install -c .libs/libgmp.dll.a

/usr/local/lib/libgmp.dll.a↪→
libtool: install: base_file=`basename libgmp.la`
libtool: install: dlpath=`/bin/sh 2>&1 -c '. .libs/'libgmp.la'i;

echo libgmp-10.dll'`↪→
libtool: install: dldir=/usr/local/lib/`dirname

../bin/libgmp-10.dll`↪→
libtool: install: test -d /usr/local/lib/../bin || mkdir -p

/usr/local/lib/../bin↪→
libtool: install: /usr/bin/install -c .libs/libgmp-10.dll

/usr/local/lib/../bin/libgmp-10.dll↪→
libtool: install: chmod a+x /usr/local/lib/../bin/libgmp-10.dll
libtool: install: if test -n '' && test -n 'strip

--strip-unneeded'; then eval 'strip --strip-unneeded
/usr/local/lib/../bin/libgmp-10.dll' || exit 0; fi

↪→
↪→
libtool: install: /usr/bin/install -c .libs/libgmp.lai

/usr/local/lib/libgmp.la↪→
libtool: install: /usr/bin/install -c .libs/libgmpxx.dll.a

/usr/local/lib/libgmpxx.dll.a↪→

12.1 Building 141

libtool: install: base_file=`basename libgmpxx.la`
libtool: install: dlpath=`/bin/sh 2>&1 -c '.

.libs/'libgmpxx.la'i; echo libgmpxx-4.dll'`↪→
libtool: install: dldir=/usr/local/lib/`dirname

../bin/libgmpxx-4.dll`↪→
libtool: install: test -d /usr/local/lib/../bin || mkdir -p

/usr/local/lib/../bin↪→
libtool: install: /usr/bin/install -c .libs/libgmpxx-4.dll

/usr/local/lib/../bin/libgmpxx-4.dll↪→
libtool: install: chmod a+x /usr/local/lib/../bin/libgmpxx-4.dll
libtool: install: if test -n '' && test -n 'strip

--strip-unneeded'; then eval 'strip --strip-unneeded
/usr/local/lib/../bin/libgmpxx-4.dll' || exit 0; fi

↪→
↪→
libtool: install: /usr/bin/install -c .libs/libgmpxx.lai

/usr/local/lib/libgmpxx.la↪→
/usr/bin/mkdir -p '/usr/local/include'
/usr/bin/install -c -m 644 gmp.h '/usr/local/include'
/usr/bin/mkdir -p '/usr/local/include'
/usr/bin/install -c -m 644 gmpxx.h '/usr/local/include'
/usr/bin/mkdir -p '/usr/local/lib/pkgconfig'
/usr/bin/install -c -m 644 gmp.pc gmpxx.pc

'/usr/local/lib/pkgconfig'↪→
make install-data-hook
make[4]: Entering directory `/g/Users/gmp-6.2.1'

+---+
| CAUTION: |
| |
| If you have not already run "make check", then we strongly |
| recommend you do so. |
| |
| GMP has been carefully tested by its authors, but compilers |
| are all too often released with serious bugs. GMP tends to |
| explore interesting corners in compilers and has hit bugs |
| on quite a few occasions. |
| |
+---+

make[4]: Leaving directory `/g/Users/gmp-6.2.1'
make[3]: Leaving directory `/g/Users/gmp-6.2.1'
make[2]: Leaving directory `/g/Users/gmp-6.2.1'
make[1]: Leaving directory `/g/Users/gmp-6.2.1'
bash-3.1$

142 12 GMP (GNUMultiprecision Library)

A DLL compiled by the MinGW compiler can be used with the Microsoft C/C++
compiler. The Libtool library tool does not create a .lib format library, but it can
be created using Microsoft’s lib tool:

cd .libs
lib /def:libgmp-3.dll.def /out:libgmp-3.lib

You can do the same with libgmpxx.
Run the command line and initialize the Microsoft C/C++ compiler:

C:\Users\User>vc 64

** Visual Studio 2022 Developer Command Prompt v17.1.5

** Copyright (c) 2022 Microsoft Corporation

[vcvarsall.bat] Environment initialized for: 'x64'

12.1 Building 143

Change to the gmp-6.2.1\.libs subdirectory where the object files that
make up the dynamic-link library are located:

C:\Users\User>cd /d G:\Users\gmp-6.2.1\.libs

G:\Users\gmp-6.2.1\.libs>

Let’s look at the contents of this directory:

G:\Users\gmp-6.2.1\.libs>dir
Volume in drive G has no label.
Volume Serial Number is FAEC-928D

Directory of G:\Users\gmp-6.2.1\.libs

04/08/2023 01:10 AM <DIR> .
04/08/2023 01:10 AM <DIR> ..
04/08/2023 01:08 AM 1,384 assert.o
04/08/2023 01:08 AM 1,100 compat.o
04/08/2023 01:08 AM 1,240 errno.o
04/08/2023 01:08 AM 1,123 extract-dbl.o
04/08/2023 01:08 AM 912 invalid.o
04/08/2023 01:10 AM 671,944 libgmp-10.dll
04/08/2023 01:10 AM 16,660 libgmp-3.dll.def
04/08/2023 01:10 AM 385,280 libgmp.dll.a
04/08/2023 01:10 AM 878 libgmp.la
04/08/2023 01:10 AM 886 libgmp.lai
04/08/2023 01:10 AM 6,538 libgmpxx-3.dll.def
04/08/2023 01:10 AM 81,492 libgmpxx-4.dll
04/08/2023 01:10 AM 71,872 libgmpxx.dll.a
04/08/2023 01:10 AM 914 libgmpxx.la
04/08/2023 01:10 AM 918 libgmpxx.lai
04/08/2023 01:08 AM 1,929 memory.o
04/08/2023 01:08 AM 815 mp_bpl.o
04/08/2023 01:08 AM 450 mp_clz_tab.o
04/08/2023 01:08 AM 1,162 mp_dv_tab.o
04/08/2023 01:09 AM 1,681 mp_get_fns.o
04/08/2023 01:08 AM 813 mp_minv_tab.o
04/08/2023 01:09 AM 2,523 mp_set_fns.o
04/08/2023 01:09 AM 1,714 nextprime.o
04/08/2023 01:09 AM 3,160 primesieve.o
04/08/2023 01:09 AM 1,591 tal-reent.o
04/08/2023 01:09 AM 692 version.o

26 File(s) 1,259,671 bytes
2 Dir(s) 3,459,497,984 bytes free

G:\Users\gmp-6.2.1\.libs>

Now let’s call the lib utility to generate .lib files:

G:\Users\gmp-6.2.1\.libs>lib /def:libgmp-3.dll.def
/out:libgmp-3.lib↪→

Microsoft (R) Library Manager Version 14.31.31107.0
Copyright (C) Microsoft Corporation. All rights reserved.

144 12 GMP (GNUMultiprecision Library)

LINK : warning LNK4068: /MACHINE not specified; defaulting to X64
Creating library libgmp-3.lib and object libgmp-3.exp

G:\Users\gmp-6.2.1\.libs>lib /def:libgmpxx-3.dll.def
/out:libgmpxx-3.lib↪→

Microsoft (R) Library Manager Version 14.31.31107.0
Copyright (C) Microsoft Corporation. All rights reserved.

LINK : warning LNK4068: /MACHINE not specified; defaulting to X64
Creating library libgmpxx-3.lib and object libgmpxx-3.exp

Once again looking at the contents of the directory, make sure that the required
files have appeared:

G:\Users\gmp-6.2.1\.libs>dir
Volume in drive G has no label.
Volume Serial Number is FAEC-928D

Directory of G:\Users\gmp-6.2.1\.libs

04/08/2023 02:43 AM <DIR> .
04/08/2023 02:43 AM <DIR> ..
04/08/2023 01:08 AM 1,384 assert.o
04/08/2023 01:08 AM 1,100 compat.o
04/08/2023 01:08 AM 1,240 errno.o
04/08/2023 01:08 AM 1,123 extract-dbl.o
04/08/2023 01:08 AM 912 invalid.o
04/08/2023 01:10 AM 671,944 libgmp-10.dll
04/08/2023 01:10 AM 16,660 libgmp-3.dll.def
04/08/2023 02:41 AM 77,641 libgmp-3.exp
04/08/2023 02:41 AM 130,122 libgmp-3.lib
04/08/2023 01:10 AM 385,280 libgmp.dll.a
04/08/2023 01:10 AM 878 libgmp.la
04/08/2023 01:10 AM 886 libgmp.lai
04/08/2023 01:10 AM 6,538 libgmpxx-3.dll.def
04/08/2023 02:43 AM 23,097 libgmpxx-3.exp
04/08/2023 02:43 AM 29,040 libgmpxx-3.lib
04/08/2023 01:10 AM 81,492 libgmpxx-4.dll
04/08/2023 01:10 AM 71,872 libgmpxx.dll.a
04/08/2023 01:10 AM 914 libgmpxx.la
04/08/2023 01:10 AM 918 libgmpxx.lai
04/08/2023 01:08 AM 1,929 memory.o
04/08/2023 01:08 AM 815 mp_bpl.o
04/08/2023 01:08 AM 450 mp_clz_tab.o
04/08/2023 01:08 AM 1,162 mp_dv_tab.o
04/08/2023 01:09 AM 1,681 mp_get_fns.o
04/08/2023 01:08 AM 813 mp_minv_tab.o
04/08/2023 01:09 AM 2,523 mp_set_fns.o
04/08/2023 01:09 AM 1,714 nextprime.o
04/08/2023 01:09 AM 3,160 primesieve.o
04/08/2023 01:09 AM 1,591 tal-reent.o
04/08/2023 01:09 AM 692 version.o

30 File(s) 1,519,571 bytes

12.1 Building 145

2 Dir(s) 3,459,022,848 bytes free

G:\Users\gmp-6.2.1\.libs>

The files libgmp-3.lib and libgmpxx-3.lib should be copied to the
directory Programs\msys\local\lib.

There is also the so-called mini-gmp, a compact implementation of the mpn
and mpz GMP interfaces. It can be used when you need to work with numbers
that do not fit into the machine word, but there is no need for highly efficient
work with very large numbers. Applications can use mini-gmp, which has a
GMP-compliant interface, with minimal effort. You can also link the application
conditionally with GMP and use mini-gmp as a fallback option—for the case
when, for some reason, GMP is not available or is undesirable as a dependency. The
performance of mini-gmp is at least ten times slower than GMP when dealing
with numbers represented by a few hundred bits. There are no asymptotically fast
algorithms in mini-gmp, so when dealing with very large numbers, mini-gmp
is many orders of magnitude slower than GMP.

The supported subset of GMP interfaces is declared in the mini-gmp.h
header file. Function implementations are fully compatible with the corresponding
GMP functions, with a few exceptions:

mpz_set_str, mpz_init_set_str, mpz_get_str, mpz_out_
str, andmpz_sizeinbase only support|base| <= 36;mpz_export
and mpz_import only support NAILS=0.

The REALLOC_FUNC and FREE_FUNC functions registered by the
mp_set_memory_functions function do not receive the correct allocated
memory block size in the corresponding argument. mini-gmp always sends null
for these rarely used arguments.

The mini-gmp implementation consists of a single mini-gmp.c file and
does not need to be installed. You can use the #include mini-gmp.c direc-
tive (some problems with macro and function definitions may occur), or you can
include the #include mini-gmp.h header file and include mini-gmp.c
in the list of separately compiled units.

12.1.1 GNU MPFR Library

The GNU MPFR Library (MPFR) is a library written in C for arbitrary-precision
floating-point calculations with round-correct. MPFR is based on the GMP library
and is maintained on a permanent basis by the INRIA resource (www.inria.fr); the
current main developers are in the Caramel and AriC projects from the LORIA
(Nancy, France) and LIP (Lyon, France) laboratories, respectively.

The main goal of this library is to provide an efficient library for high-precision
floating-point calculations with a user-friendly interface. The library uses the useful
ideas of the ANSI/IEEE-754 standard for double-precision floating-point arithmetic
with 53 significant bits.

www.inria.fr
www.inria.fr
www.inria.fr

146 12 GMP (GNUMultiprecision Library)

MPFR is a free library distributed under the GNU Lesser General Public License
(GNU Lesser GPL, GNU LGPL, www.gnu.org/copyleft/lesser.html), version 3 or
higher (2.1 or higher for MPFR versions prior to 2.4.x). This license guarantees
the freedom to distribute and modify the MPFR library and is freely available
to everyone. Unlike the General Public License, the LGPL allows commercial
application developers to use the MPFR library.

The library is widely used by a number of free and commercial software,
including GCC (GNU Compiler Collection), FLINT (Fast Library for Number
Theory), Multiprecision Computing Toolbox for MATLAB, as well as one of
the leading mathematical packages Waterloo Maple since version 11 (via the RS
library).

There are a number of C++ interfaces for MPFR: MPFRCPP, MPFR C++
wrapper, mpfr::real class, and gmpfrxx C++ for both GMP and MPFR.
The well-known Boost library includes an interface to MPFR as part of its arbitrary-
precision library. Note also the RandomLib MPFR interface (C++ classes).

There are also interfaces for Eiffel, R, Perl (Math::MPFR), Python, and LISP
languages. The functional programming language Ursala and the Racket language
also have MPFR interfaces.

In addition, bindings are available from Python for GMP, MPFR, and MPC
(gmpy2), Haskell for MPFR (hmpfr), Ruby for GMP and MPFR, Ada for GMP
and MPFR, and Java for MPFR.

Links to these resources can be found on the library’s website. Library documen-
tation can be found at [32].

The official website is www.mpfr.org. The building of the library is carried out
according to the standard scheme, like GMP.

12.2 Example: Computation of 10 000 000!

As an example of using the GMP library, let’s take the simplest program for
calculating 10000000! in a direct (non-recursive) way: sequentially multiplying by
the next integer up to 10000000.

. 10000000! = 1 · 2 · 3 · · · 10000000.

Note Once again, we strongly recommend that you rebuild the GMP library on
the same machine that will be used for computing to achieve maximum computing
performance.

By including the<chrono> header file, we enable time manipulation facilities.
Of undoubted interest is the calculation time of 10000000! The following code
fragment

steady_clock::time_point start = steady_clock::now();
for (int i=2; i<=N; ++i)

www.gnu.org/copyleft/lesser.html
www.gnu.org/copyleft/lesser.html
www.gnu.org/copyleft/lesser.html
www.gnu.org/copyleft/lesser.html
www.gnu.org/copyleft/lesser.html
www.gnu.org/copyleft/lesser.html
www.mpfr.org
www.mpfr.org
www.mpfr.org

12.2 Example: Computation of 10 000 000! 147

fact *= i;
steady_clock::time_point end = steady_clock::now();

fixes the start and end points of the calculations. Further, their difference is given
in a suitable format; in this case, the result is in seconds. To get the result in
microseconds or nanoseconds, you can include the following lines in your code:

cout << duration_cast<microseconds>(end - start).count() <<
"mcs\n";↪→

and

cout << duration_cast<nanoseconds>(end - start).count() <<
"ns\n";↪→

Here is the complete program code:

/*
g++ '10000000!.cpp' -I/local/include -L/local/lib -o

'10000000!.exe' -lgmp -lgmpxx -std=c++11↪→
Put libgmp-10.dll and libgmpxx-4.dll in the folder where

10000000!.exe is located↪→

*/

#include <iostream>
#include <chrono>
#include <gmpxx.h>

using namespace std;
using namespace std::chrono;

const int N = 10000000;

int main(){

mpz_class fact = 1;

steady_clock::time_point start = steady_clock::now();
for (int i=2; i<=N; ++i)

fact *= i;
steady_clock::time_point end = steady_clock::now();
cout << "Calculated in: " << endl;
cout << duration_cast<seconds>(end - start).count() << "s\n";

cout << N << "! = " << fact.get_str(10) << "\n";
return 0;

}

In our case, we compiled the code with the MinGW compiler version 4.8.1 (to
emphasize the relevance of even not the latest versions of this compiler), so we
used the -std=c++11 option. With more recent versions of this compiler, this
option is generally not needed and can be omitted:

148 12 GMP (GNUMultiprecision Library)

$ g++ '10000000!.cpp' -I/local/include -L/local/lib -o
'10000000!.exe' -lgmp -lgmpxx -std=c++11↪→

The program will require dynamic libraries libgmp-10.dll and
libgmpxx-4.dll to run. Either add the directory where these files are located
to your PATH variable or place these files next to your executable.

Since 10,000,000! is a very large number, we do not recommend running the
program in the usual way, displaying the result directly on the screen. Instead, it’s
better to redirect the output to a file with the command

$./'10000000!.exe' > '10000000!.txt'

After some time, which depends on the power of your computer, a file 10000000!.txt
with a size of about 64MB will be created in the current directory. The first four
lines of our file contain lines with calculation times in seconds, microseconds, and
nanoseconds (we added output in microseconds and nanoseconds). To display only
them, you need to give the command

$ head -4 '10000000!.txt'
Calculated in:
14990s
14990356164mcs
14990356164858ns

Such a long (almost 4 h) computation time is explained by the fact that we performed
the calculations on an Asus N56VJ laptop (Intel64 Family 6 Model 58 Stepping 9
GenuineIntel 2401Mhz, 16GB RAM) with a 64-bit Windows 8 operating system.
On more modern machines, computation time is significantly lower.

12.3 Conclusion

In this chapter, we showed how to build the very popular GNU Multiprecision
Library (GMP) for working with very large numbers using MSYS and MinGW
and gave recommendations on how to use it. Once again, we emphasized that we
recommend building this library on the target machine whenever you are going to
perform calculations on this particular machine. As an example of using this library,
we have given the source code of a C++ program that calculates 10,000,000! (ten
million factorial).

13Crypto++

Crypto++ (also called CryptoPP, libcrypto++, and libcryptopp) is a cross-platform,
free, and open source cryptographic C++ library written by Wei Dai.

The official website is www.cryptopp.com, and the latest version at the time of
this writing is Crypto++ Library 8.7 (www.cryptopp.com/cryptopp870.zip).

The library is widely used in academic, student, commercial, noncommercial,
and open source projects. First released in 1995, the library fully supports 32-bit and
64-bit architectures for most common operating systems and platforms, including
Android, Apple (Mac OS X and iOS), BSD, Cygwin, IBM AIX, and S/390, Linux,
MinGW, Solaris, Windows, Windows Phone and Windows RT.

Compilation according to C++03, C++11, and C++17 standards is supported;
many compilers and IDEs, including Borland Turbo C++, Borland C++ Builder,
Clang, CodeWarrior Pro, GCC (including Apple’s GCC), Intel C++ Compiler (ICC),
Microsoft C/C++ Compiler, and Sun Studio, are supported. In particular, the current
version of Crypto++ supports the following compilers and IDEs:

Visual Studio 2003–2022

GCC 3.3–7.2

Apple Clang 4.3–8.3

LLVM Clang 2.9–4.0

C++Builder 2010

Intel C++ Compiler 9–16.0

Sun Studio 12u1–12.5

IBM XL C/C++ 10.0–13.1

© The Author(s), under exclusive license to APress Media, LLC,
part of Springer Nature 2024
B. I. Tuleuov, A. B. Ospanova, Beginning C++ Compilers,
https://doi.org/10.1007/978-1-4842-9563-2_13

149

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4842-9563-2protect T1	extunderscore 13&domain=pdf
www.cryptopp.com
www.cryptopp.com
www.cryptopp.com
www.cryptopp.com/cryptopp870.zip
www.cryptopp.com/cryptopp870.zip
www.cryptopp.com/cryptopp870.zip
www.cryptopp.com/cryptopp870.zip
www.cryptopp.com/cryptopp870.zip
https://doi.org/10.1007/978-1-4842-9563-2_13
https://doi.org/10.1007/978-1-4842-9563-2_13
https://doi.org/10.1007/978-1-4842-9563-2_13
https://doi.org/10.1007/978-1-4842-9563-2_13
https://doi.org/10.1007/978-1-4842-9563-2_13
https://doi.org/10.1007/978-1-4842-9563-2_13
https://doi.org/10.1007/978-1-4842-9563-2_13
https://doi.org/10.1007/978-1-4842-9563-2_13
https://doi.org/10.1007/978-1-4842-9563-2_13
https://doi.org/10.1007/978-1-4842-9563-2_13
https://doi.org/10.1007/978-1-4842-9563-2_13

150 13 Crypto++

According to the documentation, the library covers the following algorithms:

Algorithm Name
Authenticated encryption schemes GCM, CCM, EAX

High-speed stream ciphers ChaCha (8/12/20), Panama, Sosemanuk, Salsa20
(8/12/20), XSalsa20

AES and AES candidates AES (Rijndael), RC6, MARS, Twofish, Serpent,
CAST-256

Other block ciphers ARIA, IDEA, Blowfish, Triple-DES (DES-
EDE2 and DES-EDE3), Camellia, SEED,
Kalyna (128/256/512), RC5, SIMON-64 and
SIMON-128, SPECK-64 and SPECK-128,
SM4, Threefish (256/512/1024), Skipjack,
SHACAL-2, TEA, XTEA

Block cipher modes ECB, CBC, CBC ciphertext stealing (CTS), CFB,
OFB, counter mode (CTR)

Message authentication codes BLAKE2b and BLAKE2s, CMAC, CBC-MAC,
DMAC, GMAC (GCM), HMAC, Poly1305,
SipHash, Two-Track-MAC, VMAC

Hash functions BLAKE2b and BLAKE2s, Keccak (F1600),
SHA-1, SHA-2, SHA-3, Poly1305, SipHash,
Tiger, RIPEMD (128, 256, 160, 320), SM3,
WHIRLPOOL

Public key cryptography RSA, DSA, Deterministic DSA (RFC 6979),
ElGamal, Nyberg-Rueppel (NR), Rabin-
Williams (RW), EC-based German Digital
Signature (ECGDSA), LUC, LUCELG, DLIES
(DHAES variants), ESIGN

Padding schemes for public key sys-
tems

PKCS#1 v2.0, OAEP, PSS, PSSR, IEEE P1363
EMSA2 and EMSA5

Key agreement schemes Diffie-Hellman (DH), Unified Diffie-Hellman
(DH2), Menezes-Qu-Vanstone (MQV), Hashed
MQV (HMQV), Fully Hashed MQV (FHMQV),
LUCDIF, XTR- DH

Elliptic-curve cryptography ECDSA, Deterministic ECDSA (RFC 6979),
ECGDSA, ECNR, ECIES, ECDH, ECMQV

Insecure or obsolete algorithms left for
backward compatibility and historical
significance

MD2, MD4, MD5, Panama Hash, DES, ARC4,
SEAL 3.0, WAKE-OFB, DESX (DES-XEX3),
RC2, SAFER, 3-WAY , GOST, SHARK, CAST-
128, Square

The library also includes
Pseudo random number generators (PRNGs): ANSI X9.17 Appendix C, Ran-

domPool, VIA Padlock, RDRAND, RDSEED, NIST Hash, and HMAC DRBGs
Password-based key derivation functions: PBKDF1 and PBKDF2 from PKCS#5,

PBKDF from PKCS#12 Appendix B, HKDF from RFC 5869
Shamir’s Secret Information Sharing Scheme and Rabin’s Information Dispersal

Algorithm (IDA)

13.1 Building with MinGW 151

Fast arbitrary-precision integer arithmetic (bignum) and polynomial operations
Finite field arithmetic, including .GF(p) and . GF(2n)

Generating and testing prime numbers
Useful non-cryptographic algorithms
Compression/decompression of information according to the DEFLATE specifi-

cation (RFC 1951) with support for gzip (RFC 1952) and zlib (RFC 1950) formats
Hexadecimal, base-32, base-64, and URL-safe base-64 encoding and decoding
Algorithm checksums 32-bit CRC, CRC-C, and Adler32
Wrapper classes for specific components of the following operating systems

(optional):
High-resolution timers for Windows, Unix, and Mac OS
Berkeley and Windows sockets
Windows Named Pipes
/dev/random, /dev/urandom, /dev/srandom
Microsoft’s CryptGenRandom and BCryptGenRandom for Windows
x86, x64 (x86-64), x32 (ILP32), ARM-32, Aarch32, Aarch64, and Power8 in-

core code for the commonly used algorithms
Dynamic detection of processor properties and code selection
Support for GCC- and MSVC-style inline assembly, as well as MASM x64
x86, x64 (x86-64), and x32 platforms implement MMX, SSE2, and SSE4

technologies
ARM-32, Aarch32, and Aarch64 platforms implement NEON, ASIMD, and

ARMv8 technologies
Power8 provides in-core AES using NX Crypto Acceleration
High-level interface to most of the above, using the filter/pipe metaphor
Performance tests and validations

13.1 Building with MinGW

The library is easily built following the instructions from the documentation:

In general, all you should have to do is open a terminal, cd to the cryptopp directory, and
then:

make
make test
sudo make install

The command above builds the static library and cryptest.exe program. It also uses a
sane default flags, which are usually "-DNDEBUG -g2 -O3 -fPIC". If you want
to build the shared object, then issue:

make static dynamic cryptest.exe
Or:

make libcryptopp.a libcryptopp.so cryptest.exe

152 13 Crypto++

With the following three commands, we sequentially set the path to the exe-
cutable files of the MinGW 8.1 compiler, MSYS, and launch the bash shell from
MSYS, respectively:

G:\>mingw81
G:\>msys
G:\>bash

To build the library with the MinGW compiler, create the
G:\Users\MinGW\cryptopp870 folder and unpack the archive into this
directory:

bash-3.1$ cd /G/Users/MinGW/cryptopp870

bash-3.1$ make static dynamic cryptest.exe

bash-3.1$ make test
. . .
passed crypto_box_keypair pairwise consistency
passed crypto_sign, crypto_sign_open, crypto_sign_keypair
passed crypto_sign_keypair pairwise consistency

All tests passed!

Seed used was 1681125972
Test started at Mon Apr 10 14:26:12 2023
Test ended at Mon Apr 10 14:26:48 2023
bash-3.1$

bash-3.1$ make install
cp *.h /usr/local/include/cryptopp
chmod u=rw,go=r /usr/local/include/cryptopp/*.h
cp libcryptopp.a /usr/local/lib
chmod u=rw,go=r /usr/local/lib/libcryptopp.a
cp libcryptopp.so /usr/local/lib
chmod u=rwx,go=rx /usr/local/lib/libcryptopp.so
cp cryptest.exe /usr/local/bin
chmod u=rwx,go=rx /usr/local/bin/cryptest.exe
cp TestData/*.dat /usr/local/share/cryptopp/TestData
chmod u=rw,go=r /usr/local/share/cryptopp/TestData/*.dat
cp TestVectors/*.txt /usr/local/share/cryptopp/TestVectors
chmod u=rw,go=r /usr/local/share/cryptopp/TestVectors/*.txt
bash-3.1$

13.2 Building with Microsoft C/C++ Compiler

Now, to build the library with the Microsoft C/C++ compiler, create the
G:\Users\MSVC\cryptopp870 directory and extract the archive there:

C:\Users\User>X:

13.3 Example: AES Implementation 153

X:\>LaunchBuildEnv.cmd amd64

** Enterprise Windows Driver Kit (WDK) build environment

** Version ni_release_svc_prod1.22621.382

** Visual Studio 2022 Developer Command Prompt v17.1.5

** Copyright (c) 2022 Microsoft Corporation

X:\>

X:\>cd /d G:\Users\MSVC\cryptopp870

G:\Users\MSVC\cryptopp870>MSBuild cryptest.sln
/p:Configuration=release /p:Platform=x64↪→

. . .
Build succeeded.

0 Warning(s)
0 Error(s)

Time Elapsed 00:04:05.19

G:\Users\MSVC\cryptopp870>

13.3 Example: AES Implementation

Implementation of the AES symmetric encryption algorithm in CBC mode

/*
Crypto++AES.cpp

*/

#include <iostream>
#include <iomanip>
#include "cryptopp/modes.h"
#include "cryptopp/aes.h"
#include "cryptopp/filters.h"

int main(int argc, char* argv[]){
//Key and IV setup
//AES encryption uses a secret key of a variable length

(128-bit,↪→
//196-bit or 256-bit). This key is secretly exchanged between

two↪→
//parties before communication begins. DEFAULT_KEYLENGTH= 16

bytes↪→
CryptoPP::byte key[CryptoPP::AES::DEFAULT_KEYLENGTH],

iv[CryptoPP::AES::BLOCKSIZE];
memset(key, 0x00, CryptoPP::AES::DEFAULT_KEYLENGTH);
memset(iv, 0x00, CryptoPP::AES::BLOCKSIZE);
//
// String and Sink setup
//

154 13 Crypto++

std::string plaintext = "Now is the time for all good men to
come to the aide...";↪→

std::string ciphertext;
std::string decryptedtext;
//
// Dump Plain Text
//
std::cout << "Plain Text (" << plaintext.size() << " bytes)"

<< std::endl;↪→
std::cout << plaintext;
std::cout << std::endl << std::endl;
//
// Create Cipher Text
//
CryptoPP::AES::Encryption aesEncryption(key,

CryptoPP::AES::DEFAULT_KEYLENGTH);
CryptoPP::CBC_Mode_ExternalCipher::Encryption

cbcEncryption(aesEncryption, iv);

CryptoPP::StreamTransformationFilter
stfEncryptor(cbcEncryption,↪→

new CryptoPP::StringSink(ciphertext));
stfEncryptor.Put(reinterpret_cast<const unsigned

char*>(plaintext.c_str()), plaintext.length() + 1);↪→
stfEncryptor.MessageEnd();
//
// Dump Cipher Text
//
std::cout << "Cipher Text (" << ciphertext.size() << "

bytes)" << std::endl;↪→

for (int i = 0; i < ciphertext.size(); i++){
std::cout << "0x" << std::hex << (0xFF &

static_cast<CryptoPP::byte>(ciphertext[i])) << " ";↪→
}

std::cout << std::endl << std::endl;
//
// Decrypt
//
CryptoPP::AES::Decryption aesDecryption(key,

CryptoPP::AES::DEFAULT_KEYLENGTH);
CryptoPP::CBC_Mode_ExternalCipher::Decryption

cbcDecryption(aesDecryption, iv);

CryptoPP::StreamTransformationFilter
stfDecryptor(cbcDecryption,↪→

new CryptoPP::StringSink(decryptedtext));
stfDecryptor.Put(reinterpret_cast<const unsigned

char*>(ciphertext.c_str()), ciphertext.size());↪→
stfDecryptor.MessageEnd();
//
// Dump Decrypted Text

13.3 Example: AES Implementation 155

//
std::cout << "Decrypted Text: " << std::endl;
std::cout << decryptedtext;
std::cout << std::endl << std::endl;

return 0;
}

We now give commands for building this program for a different set of tools.

Using the MinGW compiler and MSYS package We remind you that when
building with MSYS using the make install command from under bash,
the header files and the finished built library are copied (installed) to the
local/include and local/lib subdirectories of the MSYS tree,
respectively:

G:\>mingw81
G:\>msys
G:\>bash
bash-3.1$ g++ Crypto++AES.cpp -I/local/include -L/local/lib

-lcryptopp -o Crypto++AES.exe↪→

With the MinGW compiler and without the MSYS package If MSYS is
installed in, say, E:\Programs\MSYS, and we are not running a bash shell
emulator, then the aforementioned header files and compiled library directories must
already be set in Windows format:

G:\>mingw81
> g++ Crypto++AES.cpp -I"E:\Programs\MSYS\local\include"

-L"E:\Programs\MSYS\local\lib" -lcryptopp -o Crypto++AES.exe↪→

Using the Microsoft C/C++ compiler, assuming that the header files are in
the E:\Programs\Include directory and the compiled cryptlib.lib
library is in the same directory as the Crypto++AES.cpp source code file:

>LaunchBuildEnv.cmd
>vc.bat 64
> set INCLUDE=E:\Programs\Include;%INCLUDE%
> cl Crypto++AES.cpp cryptlib.lib

Now let’s run the compiled program:

bash-3.1$ Crypto++AES.exe
Plain Text (55 bytes)
Now is the time for all good men to come to the aide...

Cipher Text (64 bytes)

156 13 Crypto++

0x7f 0xf8 0xb3 0xea 0x8a 0x2 0xb3 0x7a 0x3d 0x28 0x66
0x9c 0x97 0x13 0xa7 0xb3 0xf 0xa2 0x50 0x25 0x80
0xd5 0xd2 0x32 0xce 0xe8 0xa 0x57 0x33 0xef 0x70
0xff 0x48 0xe9 0xe8 0x4 0x98 0xa9 0x4 0xc2 0x5e
0xa7 0xb0 0x40 0x43 0xa1 0xfc 0x23 0xb1 0xa1 0xeb
0x1e 0xb2 0xf6 0x97 0x62 0x70 0xa1 0x81 0xca 0x6e
0x78 0x80 0x90

↪→
↪→
↪→
↪→
↪→
↪→

Decrypted Text:
Now is the time for all good men to come to the aide...

bash-3.1$

13.4 Conclusion

In this chapter, we have shown how to compile the well-known cryptographic library
Crypto++ using the MinGW and Microsoft C/C++ compilers.

As a demonstration of the use of the library, an example of a program that
implements the AES encryption algorithm was given.

14OpenSSL

OpenSSL is a popular open source cross-platform cryptographic library. In addition
to well-known cryptographic algorithms and hash functions, the library also imple-
ments the SSL and TLS protocols; many sites on the Internet that use the HTTPS
protocol use this library.

The library can be downloaded from the official website (www.openssl.org) in
source code. Version 3.1.0 can be downloaded through www.openssl.org/source/
openssl-3.1.0.tar.gz.

OpenSSL can be built under Windows with both the Microsoft C/C++ and
MinGW compilers, and the build process is not very time consuming, contrary to
popular belief.

14.1 Building with MinGW

Building the library with the MinGW compiler naturally requires MSYS. The first
version of MSYS, unfortunately, is not suitable due to the version of the Perl
interpreter included in it:

bash-3.1$./Configure mingw64
Perl v5.10.0 required--this is only v5.8.8, stopped at

./Configure line 12.↪→
BEGIN failed--compilation aborted at ./Configure line 12.

The situation is not saved by another free implementation of the Perl
interpreter—Strawberry Perl:

This perl implementation doesn't produce Unix like paths
(with forward slash directory separators). Please use an
implementation that matches your building platform.

This Perl version: 5.32.1 for MSWin32-x64-multi-thread

© The Author(s), under exclusive license to APress Media, LLC,
part of Springer Nature 2024
B. I. Tuleuov, A. B. Ospanova, Beginning C++ Compilers,
https://doi.org/10.1007/978-1-4842-9563-2_14

157

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4842-9563-2protect T1	extunderscore 14&domain=pdf
www.openssl.org
www.openssl.org
www.openssl.org
www.openssl.org/source/openssl-3.1.0.tar.gz
www.openssl.org/source/openssl-3.1.0.tar.gz
www.openssl.org/source/openssl-3.1.0.tar.gz
www.openssl.org/source/openssl-3.1.0.tar.gz
www.openssl.org/source/openssl-3.1.0.tar.gz
www.openssl.org/source/openssl-3.1.0.tar.gz
www.openssl.org/source/openssl-3.1.0.tar.gz
www.openssl.org/source/openssl-3.1.0.tar.gz
www.openssl.org/source/openssl-3.1.0.tar.gz
www.openssl.org/source/openssl-3.1.0.tar.gz
https://doi.org/10.1007/978-1-4842-9563-2_14
https://doi.org/10.1007/978-1-4842-9563-2_14
https://doi.org/10.1007/978-1-4842-9563-2_14
https://doi.org/10.1007/978-1-4842-9563-2_14
https://doi.org/10.1007/978-1-4842-9563-2_14
https://doi.org/10.1007/978-1-4842-9563-2_14
https://doi.org/10.1007/978-1-4842-9563-2_14
https://doi.org/10.1007/978-1-4842-9563-2_14
https://doi.org/10.1007/978-1-4842-9563-2_14
https://doi.org/10.1007/978-1-4842-9563-2_14
https://doi.org/10.1007/978-1-4842-9563-2_14

158 14 OpenSSL

This is where MSYS2 comes to the rescue. We remind you that this environment
has its own package manager, which allows you to install the missing packages
(programs) on the fly. In the MSYS2 environment, building the library is extremely
simple; we will describe this process step by step. Copy the downloaded archive
of the openssl-3.1.0.tar.gz library, for example, to the E:\Users
directory and start the MSYS2 environment with our msys2[.bat] command
and go to this directory in the MSYS2 environment (pay attention to the path entry
format):

Berik@Berik-Mobile MSYS ~
$ cd /e/Users

Berik@Berik-Mobile MSYS /e/Users
$ls
openssl-3.1.0.tar.gz

Now unpack the archive and go to the directory with the source code of the
library:

Berik@Berik-Mobile MSYS /e/Users
$ tar zxf openssl-3.1.0.tar.gz && cd openssl-3.1.0

Let’s select the version of the MinGW compiler. Note: 'f' stands for the drive
letter where our Programs directory is located; you must replace it with the drive
letter of your Programs directory!

Berik@Berik-Mobile MSYS /e/Users/openssl-3.1.0
$ export PATH=/f/Programs/mingw64-8.1.0/bin:$PATH

In the files INSTALL.md, NOTES-UNIX.md, NOTES-WINDOWS.md,
and README.md, you can find information on building and using the library; for
further work, we will run the Configure script:

Berik@Berik-Mobile MSYS /e/Users/openssl-3.1.0
$./Configure mingw64
Configuring OpenSSL version 3.1.0 for target mingw64
Using os-specific seed configuration
Created configdata.pm
Running configdata.pm
Created Makefile.in
Created Makefile
Created include/openssl/configuration.h

** ***
** OpenSSL has been successfully configured ***
** ***
** If you encounter a problem while building, please open an ***
** issue on GitHub <https://github.com/openssl/openssl/issues> ***
** and include the output from the following command: ***
** ***
** perl configdata.pm --dump ***
** ***
** (If you are new to OpenSSL, you might want to consult the ***
** 'Troubleshooting' section in the INSTALL.md file first) ***

14.2 Building with Microsoft C/C++ Compiler 159

** ***

Further commands are completely straightforward, these are building, testing and
installation of the library with sequential commands:

Berik@Berik-Mobile MSYS /e/Users/openssl-3.1.0
$ make

Berik@Berik-Mobile MSYS /e/Users/openssl-3.1.0
$ make test

Berik@Berik-Mobile MSYS /e/Users/openssl-3.1.0
$ make install

The library can be built by different versions of the MinGW compiler: for
example, we also used MinGW version 4.8.1. Whenever building a library with
a different compiler version, remember that the previous version will be overwritten
by the new version.

14.2 Building with Microsoft C/C++ Compiler

To build the library, we need the Netwide Assembler and some implementations of
the Perl interpreter, preferably free, and we suggest Strawberry Perl as such. Note
that both of these packages work on older versions of Windows as well (we tested
on Windows 7 SP1).

According to the official website (www.nasm.us) of the product:

Netwide Assembler (NASM), an assembler for the x86 CPU architecture portable to nearly
every modern platform, and with code generation for many platforms old and new

We can choose to download fromwww.nasm.us/pub/nasm/releasebuilds/2.16.01/
win64:

nasm-2.16.01-installer-x64.exe 2022-12-21 1.0M Installable
package↪→

nasm-2.16.01-win64.zip 2022-12-21 494K Executable only

We, according to our settings, will choose the portable version: www.nasm.us/
pub/nasm/releasebuilds/2.16.01/win64/nasm-2.16.01-win64.zip.

Unpack this archive into the Programs\nasm-2.16.01 directory and
create a batch file nasm.bat to quickly launch the NASM environment, and,
as always, place this file in the Programs\bin directory:

@echo off

set PATH=%~d0\Programs\nasm-2.16.01;%PATH%

www.nasm.us
www.nasm.us
www.nasm.us
www.nasm.us/pub/nasm/releasebuilds/2.16.01/win64
www.nasm.us/pub/nasm/releasebuilds/2.16.01/win64
www.nasm.us/pub/nasm/releasebuilds/2.16.01/win64
www.nasm.us/pub/nasm/releasebuilds/2.16.01/win64
www.nasm.us/pub/nasm/releasebuilds/2.16.01/win64
www.nasm.us/pub/nasm/releasebuilds/2.16.01/win64
www.nasm.us/pub/nasm/releasebuilds/2.16.01/win64
www.nasm.us/pub/nasm/releasebuilds/2.16.01/win64
www.nasm.us/pub/nasm/releasebuilds/2.16.01/win64
www.nasm.us/pub/nasm/releasebuilds/2.16.01/win64
www.nasm.us/pub/nasm/releasebuilds/2.16.01/win64/nasm-2.16.01-win64.zip
www.nasm.us/pub/nasm/releasebuilds/2.16.01/win64/nasm-2.16.01-win64.zip
www.nasm.us/pub/nasm/releasebuilds/2.16.01/win64/nasm-2.16.01-win64.zip
www.nasm.us/pub/nasm/releasebuilds/2.16.01/win64/nasm-2.16.01-win64.zip
www.nasm.us/pub/nasm/releasebuilds/2.16.01/win64/nasm-2.16.01-win64.zip
www.nasm.us/pub/nasm/releasebuilds/2.16.01/win64/nasm-2.16.01-win64.zip
www.nasm.us/pub/nasm/releasebuilds/2.16.01/win64/nasm-2.16.01-win64.zip
www.nasm.us/pub/nasm/releasebuilds/2.16.01/win64/nasm-2.16.01-win64.zip
www.nasm.us/pub/nasm/releasebuilds/2.16.01/win64/nasm-2.16.01-win64.zip
www.nasm.us/pub/nasm/releasebuilds/2.16.01/win64/nasm-2.16.01-win64.zip
www.nasm.us/pub/nasm/releasebuilds/2.16.01/win64/nasm-2.16.01-win64.zip
www.nasm.us/pub/nasm/releasebuilds/2.16.01/win64/nasm-2.16.01-win64.zip
www.nasm.us/pub/nasm/releasebuilds/2.16.01/win64/nasm-2.16.01-win64.zip
www.nasm.us/pub/nasm/releasebuilds/2.16.01/win64/nasm-2.16.01-win64.zip
www.nasm.us/pub/nasm/releasebuilds/2.16.01/win64/nasm-2.16.01-win64.zip
www.nasm.us/pub/nasm/releasebuilds/2.16.01/win64/nasm-2.16.01-win64.zip

160 14 OpenSSL

Strawberry Perl, a free implementation of the Perl interpreter, is advertised by
the creators on the product’s official website (https://strawberryperl.com) as

Strawberry Perl is a perl environment for MS Windows containing all you need to run and
develop perl applications. It is designed to be as close as possible to perl environment on
UNIX systems

Strawberry Perl comes in different flavors, which can be found at https://
strawberryperl.com/releases.html. Again, we offer a portable version: https://
strawberryperl.com/download/5.32.1.1/strawberry-perl-5.32.1.1-64bit-portable.
zip.

Unpack this archive into thePrograms\Strawberry-Perl-5.32.1.1
directory, and in thePrograms\bin directory, create a batch filesperl.bat
to quickly launch the Perl environment:

@echo off
set "PerlDir=Programs\Strawberry-Perl-5.32.1.1"

set PATH=%~d0\%PerlDir%\perl\bin;%~d0\%PerlDir%\c\bin;%PATH%
set PATH=%~d0\%PerlDir%\perl\site\bin;%PATH%

We will place the downloaded openssl-3.1.0.tar.gz library archive, for
example, in the E:\Users directory and run the msys[.bat] command and
go to this directory:

C:\Users>msys

C:\Users>cd /d E:\Users

Now unpack the archive and go to the directory with the source code of the
library:

E:\Users>tar zxf openssl-3.1.0.tar.gz && cd openssl-3.1.0

E:\Users\openssl-3.1.0>

Note We only need MSYS to unpack the .tar.gz archive. You can also use Far
for this.

Now we sequentially run the batch files nasm[.bat] and sperl[.bat]
to activate the Netwide Assembler environment and Strawberry Perl

E:\Users\openssl-3.1.0>nasm
E:\Users\openssl-3.1.0>sperl

Finally, we activate the EWDK environment with the command

E:\Users\openssl-3.1.0>vc 64

Here, we make an important remark. Our batch file vc.bat initializes the
command line for compiling and building standard C/C++ programs. The OpenSSL

https://strawberryperl.com
https://strawberryperl.com
https://strawberryperl.com
https://strawberryperl.com/releases.html
https://strawberryperl.com/releases.html
https://strawberryperl.com/releases.html
https://strawberryperl.com/releases.html
https://strawberryperl.com/releases.html
https://strawberryperl.com/download/5.32.1.1/strawberry-perl-5.32.1.1-64bit-portable.zip
https://strawberryperl.com/download/5.32.1.1/strawberry-perl-5.32.1.1-64bit-portable.zip
https://strawberryperl.com/download/5.32.1.1/strawberry-perl-5.32.1.1-64bit-portable.zip
https://strawberryperl.com/download/5.32.1.1/strawberry-perl-5.32.1.1-64bit-portable.zip
https://strawberryperl.com/download/5.32.1.1/strawberry-perl-5.32.1.1-64bit-portable.zip
https://strawberryperl.com/download/5.32.1.1/strawberry-perl-5.32.1.1-64bit-portable.zip
https://strawberryperl.com/download/5.32.1.1/strawberry-perl-5.32.1.1-64bit-portable.zip
https://strawberryperl.com/download/5.32.1.1/strawberry-perl-5.32.1.1-64bit-portable.zip
https://strawberryperl.com/download/5.32.1.1/strawberry-perl-5.32.1.1-64bit-portable.zip
https://strawberryperl.com/download/5.32.1.1/strawberry-perl-5.32.1.1-64bit-portable.zip
https://strawberryperl.com/download/5.32.1.1/strawberry-perl-5.32.1.1-64bit-portable.zip
https://strawberryperl.com/download/5.32.1.1/strawberry-perl-5.32.1.1-64bit-portable.zip
https://strawberryperl.com/download/5.32.1.1/strawberry-perl-5.32.1.1-64bit-portable.zip
https://strawberryperl.com/download/5.32.1.1/strawberry-perl-5.32.1.1-64bit-portable.zip
https://strawberryperl.com/download/5.32.1.1/strawberry-perl-5.32.1.1-64bit-portable.zip
https://strawberryperl.com/download/5.32.1.1/strawberry-perl-5.32.1.1-64bit-portable.zip
https://strawberryperl.com/download/5.32.1.1/strawberry-perl-5.32.1.1-64bit-portable.zip

14.2 Building with Microsoft C/C++ Compiler 161

library, when built under Windows, uses the Windows API and Windows Sockets
functions, so we need to run the command

set INCLUDE=X:\Program Files\Windows
Kits\10\Include\10.0.22621.0\um;X:\Program Files\Windows
Kits\10\Include\10.0.22621.0\shared;%INCLUDE%

↪→
↪→

to avoid error messages about winsock2.h and winapifamily.h not
being found. You also need to run the command

set PATH=X:\Program Files\Windows
Kits\10\bin\10.0.22621.0\x64;%PATH%↪→

to avoid the message that the resource compiler rc.exe was not found. Note that
the drive letter 'X:' means the drive letter where the ISO file or EWDK folder is
mounted.

After all this, you can run the configure script:

E:\Users\openssl-3.1.0>perl Configure VC-WIN64A

which will generate a makefile to build the library and install it in the default
directories. These directories are described in the documentation; here is a fragment
of the INSTALL.md file:

openssldir

--openssldir=DIR

Directory for OpenSSL configuration files, and also the default
certificate and key store. Defaults are:

Unix: /usr/local/ssl
Windows: C:\Program Files\Common Files\SSL
OpenVMS: SYS$COMMON:[OPENSSL-COMMON]

For 32bit Windows applications on Windows 64bit (WOW64), always
replace `C:\Program Files` by `C:\Program Files (x86)`.

prefix

--prefix=DIR

The top of the installation directory tree. Defaults are:

Unix: /usr/local
Windows: C:\Program Files\OpenSSL

The directories are nested by default in the C:\Program Files direc-
tory, which is write-protected and requires you to run a command prompt with
administrative privileges. For this reason, we will choose a different directory for
installing the library: for the library itself, the Programs\OpenSSL folder and

162 14 OpenSSL

Programs\OpenSSL\SSL for the configuration files. Therefore, we will call
the Configure script with the following parameters:

E:\Users\openssl-3.1.0>perl Configure --prefix=G:\Programs\OpenSSL
--openssldir=G:\Programs\OpenSSL\SSL VC-WIN64A↪→

Configuring OpenSSL version 3.1.0 for target VC-WIN64A
Using os-specific seed configuration
Created configdata.pm
Running configdata.pm
Created makefile.in
Created makefile
Created include\openssl\configuration.h

**
* ***
* OpenSSL has been successfully configured ***
* ***
* If you encounter a problem while building, please open an ***
* issue on GitHub <https://github.com/openssl/openssl/issues> ***
* and include the output from the following command: ***
* ***
* perl configdata.pm --dump ***
* ***
* (If you are new to OpenSSL, you might want to consult the ***
* 'Troubleshooting' section in the INSTALL.md file first) ***
* ***
**

E:\Users\openssl-3.1.0>

Now just start building the library:

E:\Users\openssl-3.1.0>nmake

After the build is completed, we start testing the library:

E:\Users\openssl-3.1.0>nmake test
. . .
All tests successful.
Files=250, Tests=3168, 1521 wallclock secs (14.56 usr + 2.28 sys

= 16.84 CPU)↪→
Result: PASS

Finally, install the library with the command

E:\Users\openssl-3.1.0>nmake install

The library has now been successfully built and is ready to be used.

14.3 Conclusion 163

Possible pitfalls We note here a couple of non-obvious errors associated with the
Microsoft C/C ++ compiler.

• If somehow the TMP environment variable is not set on your system, then the
following error is possible:

cl : Command line error D8050 : cannot execute 'X:\Program
Files\Microsoft Visual Studio\2019\BuildTools\VC\Tools\MS �
VC\14.31.31103\bin\HostX64\x64\c1.dll': failed to get
command line into debug records

↪→
↪→
↪→
NMAKE : fatal error U1077: '"X:\Program Files\Microsoft

Visual Studio\2019\BuildTools\VC\Tools\MSVC\14.31.31103\b �
in\HostX64\x64\cl.EXE"' : return code
'0x2'

↪→
↪→
↪→
Stop.
NMAKE : fatal error U1077: '"X:\Program Files\Microsoft

Visual Studio\2019\BuildTools\VC\Tools\MSVC\14.31.31103\b �
in\HostX64\x64\nmake.exe"' : return code
'0x2'

↪→
↪→
↪→
Stop.

• Run the command

E:\Users\openssl-3.1.0>vc 64

prior to the

E:\Users\openssl-3.1.0>perl Configure . . .

command; otherwise, it is possible to get the following error message, for
example, under Windows 7 SP1:

The program can’t start because mspdb100.dll is missing from your computer.
Try reinstalling the program to fix this problem

14.3 Conclusion

This chapter was about building with the MinGW and Microsoft C/C++ compilers
another popular OpenSSL cryptographic library. Building with the Microsoft C/C++
compiler has some pitfalls; building with MinGW is extremely easy; however, this
is the only case where we used MSYS2 and not MSYS.

15Process Hacker

Process Hacker is a free and open source multipurpose utility created by enthusiasts.
It is very useful for specialists in the field of system programming and computer and
network security, developers when debugging software up to drivers, and just users,
not necessarily even advanced ones.

For example, sometimes you need to find out which open file or resource does
not allow you to delete a folder or close a window—Process Hacker will help you
quickly find out.

The utility is designed to work in Windows 7 and higher; 32-bit and 64-bit
versions are supported. The official website is https://processhacker.sourceforge.io.

Here are the key features of the utility, taken from the old official site:

• A detailed overview of system activity with highlighting.
• Graphs and statistics allow you to quickly track down resource hogs and runaway

processes.
• Can’t edit or delete a file? Discover which processes are using that file.
• See what programs have active network connections, and close them if necessary.
• Get real-time information on disk access.
• View detailed stack traces with kernel-mode, WOW64 and .NET support.
• Go beyond services.msc: create, edit, and control services.
• Small, portable, and no installation required.
• 100% free software (GPL v3).

Of course, such impressive functionality cannot be provided without the use of a
kernel-mode driver, and Process Hacker includes a similar driver, KProcessHacker,
whose source code is also freely available. As part of the source code of the utility,

© The Author(s), under exclusive license to APress Media, LLC,
part of Springer Nature 2024
B. I. Tuleuov, A. B. Ospanova, Beginning C++ Compilers,
https://doi.org/10.1007/978-1-4842-9563-2_15

165

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4842-9563-2protect T1	extunderscore 15&domain=pdf
https://processhacker.sourceforge.io
https://processhacker.sourceforge.io
https://processhacker.sourceforge.io
https://processhacker.sourceforge.io
https://doi.org/10.1007/978-1-4842-9563-2_15
https://doi.org/10.1007/978-1-4842-9563-2_15
https://doi.org/10.1007/978-1-4842-9563-2_15
https://doi.org/10.1007/978-1-4842-9563-2_15
https://doi.org/10.1007/978-1-4842-9563-2_15
https://doi.org/10.1007/978-1-4842-9563-2_15
https://doi.org/10.1007/978-1-4842-9563-2_15
https://doi.org/10.1007/978-1-4842-9563-2_15
https://doi.org/10.1007/978-1-4842-9563-2_15
https://doi.org/10.1007/978-1-4842-9563-2_15
https://doi.org/10.1007/978-1-4842-9563-2_15

166 15 Process Hacker

this driver is supplied already built with a certificate, due to the fact that, at the
request of Microsoft, kernel-mode drivers must have a digitally signed certificate.1

The kernel-mode driver, according to the documentation, provides additional
functionality, including

• Capturing kernel-mode stack traces
• More efficiently enumerating process handles
• Retrieving names for file handles
• Retrieving names for EtwRegistration objects
• Setting handle attributes

Since June 2022, the Process Hacker utility has been developed by Winsiderss
and renamed to System Informer; Microsoft employees have appeared among the
utility developers. One of the Process Hacker developers posted the following post
(https://github.com/winsiderss/systeminformer/issues/1286):

The project is under maintenance while we migrate from Process Hacker to System
Informer.
We ask the community to have patience while we migrate.

• Process Hacker is being renamed to System Informer. The project is now under
Winsiderss. We are grateful for @ionescu007’s and @yardenshafir’s support.

• During this time, the master will be unstable. Please think carefully before opening new
issues. Please try not to open issues related to the migration. The team may be slow to
respond. We are not ignoring you.

• During this time, we ask that any feature requests, enhancements, or pull requests be
held until after the migration. If you do create a feature request, we are likely “close as
not planned,” and we ask you to reopen it after the migration.

We are just as excited as you are to get an official 3.x release out.
There have been a number of opened issues for feature requests and/or bugs that are directly
related to the instability of master due to migration effort or general issues opened asking,
“What’s going on?” We want to keep the discussion here open, but we will lock the project
during the migration if it’s necessary for us to focus.
We are doing our best to complete this by the end of the month.
Again, thank you for your patience. We’ll be sure to provide updates as we can.

However, the source code for Process Hacker is available here: https://
sourceforge.net/projects/processhacker. All versions, including the latest, can
also be downloaded from https://sourceforge.net/projects/processhacker/files/
processhacker2. As for System Informer, we believe that its functionality will
be greatly reduced, and the functionality of Process Hacker is very rich; in addition,
the utility has a rich set of plug-ins that can also be downloaded and built from
source code.

1 Of course, you can build this driver yourself, but you can use it without a signature, only putting
Windows into test mode.

https://github.com/winsiderss/systeminformer/issues/1286
https://github.com/winsiderss/systeminformer/issues/1286
https://github.com/winsiderss/systeminformer/issues/1286
https://github.com/winsiderss/systeminformer/issues/1286
https://github.com/winsiderss/systeminformer/issues/1286
https://github.com/winsiderss/systeminformer/issues/1286
https://github.com/winsiderss/systeminformer/issues/1286
https://sourceforge.net/projects/processhacker
https://sourceforge.net/projects/processhacker
https://sourceforge.net/projects/processhacker
https://sourceforge.net/projects/processhacker
https://sourceforge.net/projects/processhacker
https://sourceforge.net/projects/processhacker/files/processhacker2
https://sourceforge.net/projects/processhacker/files/processhacker2
https://sourceforge.net/projects/processhacker/files/processhacker2
https://sourceforge.net/projects/processhacker/files/processhacker2
https://sourceforge.net/projects/processhacker/files/processhacker2
https://sourceforge.net/projects/processhacker/files/processhacker2
https://sourceforge.net/projects/processhacker/files/processhacker2

15.1 Building with Microsoft C/C++ Compiler 167

15.1 Building with Microsoft C/C++ Compiler

To build Process Hacker, you need Visual Studio version 2019 or later. For this, you
need to run the build_release.cmd batch file from the build folder in the
project root or open the ProcessHacker.sln files for the utility itself and
Plugins.sln for plug-ins from the Visual Studio environment.

15.1.1 Building Driver

As we already mentioned, this step can be skipped. If necessary, the building of the
driver is approximately the same as the utility itself.

15.1.2 Building Utility

We will build using MSBuild and EWDK. First, unzip the sources to a folder,
say J:\Users\processhacker-2.39-src. At the root of this folder,
there is a solution file ProcessHacker.sln, which we will process using the
MSBuild. Mount EWDK on disk X: (see pages 96, 99, and 101) and activate the
build environment:

X:\LaunchBuildEnv.cmd amd64

and change directory to

cd /d J:\Users\processhacker-2.39-src

If we immediately give the build command in this form

MSBuild ProcessHacker.sln /p:Configuration=Release
/p:Platform=x64↪→

then we get an error, because the default solution is configured to build with Visual
Studio 2019 (Platform Toolset = v142), and in the EWDK we use, the
value of this property is 143 (see Table 9-5). We will not fix the solution file, but
set the property value on the command line:

MSBuild ProcessHacker.sln /p:Configuration=Release
/p:Platform=x64 /p:PlatformToolset=v143↪→

Next, the compiler will complain about missing files windows.h,
winapifamily.h, and ctype.h. These files are located in directories

(they can be easily found using Far Manager by going to drive X: and pressing

+ keys):

X:\Program Files\Windows
Kits\10\Include\10.0.22621.0\um\windows.h↪→

X:\Program Files\Windows
Kits\10\Include\10.0.22621.0\shared\winapifamily.h↪→

168 15 Process Hacker

and ctype.h can be found in two places at once:

X:\Program Files\Windows Kits\10\Include\10.0.22621.0\km\crt
X:\Program Files\Windows Kits\10\Include\10.0.22621.0\ucrt

These paths can again be passed through the command line by setting the
property

/p:IncludePath="X:\Program Files\Windows
Kits\10\Include\10.0.22621.0\um"↪→

However, adding long paths to the command line is quite tedious, and you have to
do it every time you build. Here, we will use the responce files (see page 105) and
make this file called ph.rsp:

ph.rsp responce file
Not final version

/p:IncludePath="X:\Program Files\Windows
Kits\10\Include\10.0.22621.0\um;X:\Program Files\Windows
Kits\10\Include\10.0.22621.0\ucrt;X:\Program Files\ Windows
Kits\10\Include\10.0.22621.0\shared;$(IncludePath)"

↪→
↪→
↪→

This file can be placed in the root folder next to the solution file.
Now we are ready to use this file:

MSBuild ProcessHacker.sln /p:Configuration=Release
/p:Platform=x64 /p:PlatformToolset=v143 @ph.rsp↪→

In the next step, we you will get compiler errors like

J:\Users\processhacker-2.39-src\phnt\include\ntpsapi.h(58,1):
error C2220: the following warning is treated as an error↪→

J:\Users\processhacker-2.39-src\phnt\include\ntpsapi.h(58,1):
warning C4005: 'FLS_MAXIMUM_AVAILABLE': macro redefinition↪→

The reason is the FLS_MAXIMUM_AVAILABLE macro is defined in both
winnt.h (EWDK) and ntpsapi.h (Process Hacker). Generally, it is not
an error, and it can be suppressed by setting compiler option (see page 186)
TreatWarningAsError to False. However, MSBuild does not allow this
option in the command line: neither /p:TreatWarningAsError=False
nor /p:DisableSpecificWarnings=C4005 property does not work!

However, there is a simple workaround here—setting the CL environment
variable from the command line comes to the rescue here (see page 103)! Just run
the command

set CL=/WX-

Note Next time, perform this prior to the
LaunchBuildEnv.cmd amd64 command.

15.2 Conclusion 169

After rerunning the command to build the solution, we now get linker errors
for the absence of object library files ntdll.lib, LIBCMT.lib, and
libucrt.lib. These files are located in the following folders:

X:\Program Files\Windows Kits\10\Lib\10.0.22621.0\um\x64
X:\Program Files\Microsoft Visual

Studio\2022\BuildTools\VC\Tools\MSVC\14.31.31103\lib\x64↪→
X:\Program Files\Windows Kits\10\Lib\10.0.22621.0\ucrt\x64

Again, these paths could be passed through the command line by defining the
property

/p:LibraryPath="X:\Program Files\Windows
Kits\10\Lib\10.0.22621.0\um\x64"↪→

but we will do as we did with IncludePath by simply adding them to the
ph.rsp responce file:

ph.rsp responce file
Final version

/p:IncludePath="X:\Program Files\Windows
Kits\10\Include\10.0.22621.0\um;X:\Program Files\Windows
Kits\10\Include\10.0.22621.0\ucrt;X:\Program Files\ Windows
Kits\10\Include\10.0.22621.0\shared;$(IncludePath)"

↪→
↪→
↪→
/p:LibraryPath="X:\Program Files\Windows

Kits\10\Lib\10.0.22621.0\um\x64;X:\Program Files\Microsoft
Visual Studio\2022\BuildTools\VC\Tools\MSVC\14.31.31103
\lib\x64;X:\Program Files\Windows
Kits\10\Lib\10.0.22621.0\ucrt\x64;$(LibraryPath)"

↪→
↪→
↪→
↪→

Further, the Process Hacker build process does not cause problems.

Note If your EWDK is mounted on a different drive, change the drive letter X: in
the ph.rsp responce file to yours.

15.2 Conclusion

In this chapter, we have shown in detail how to build the well-known Process Hacker
utility with a kernel-mode driver using the EWDK. The source code of the utility
is a set of Visual Studio projects combined into a solution; to build, we used the
MSBuild build system. We have shown how to avoid possible errors that may occur
when using the default EWDK environment settings.

AAppendix

Visual Studio Version and Discrimination Macros

The material in this section is based on data from the site [29].

CL Task

This wraps the Microsoft C++ compiler tool, cl.exe. The compiler produces
executable (.exe) files, dynamic-link library (.dll) files, or code module (.netmodule)
files. For more information, see Compiler options and Use MSBuild from the
command line and Use the Microsoft C++ toolset from the command line.

Parameters

The following list describes the parameters of the CL task. Most task parameters,
and a few sets of parameters, correspond to a command-line option:

• AdditionalIncludeDirectories
Optional String[] parameter.
Adds a directory to the list of directories that are searched for include files.
For more information, see /I (additional include directories).

© The Author(s), under exclusive license to APress Media, LLC,
part of Springer Nature 2024
B. I. Tuleuov, A. B. Ospanova, Beginning C++ Compilers,
https://doi.org/10.1007/978-1-4842-9563-2

171

https://doi.org/10.1007/978-1-4842-9563-2
https://doi.org/10.1007/978-1-4842-9563-2
https://doi.org/10.1007/978-1-4842-9563-2
https://doi.org/10.1007/978-1-4842-9563-2
https://doi.org/10.1007/978-1-4842-9563-2
https://doi.org/10.1007/978-1-4842-9563-2
https://doi.org/10.1007/978-1-4842-9563-2
https://doi.org/10.1007/978-1-4842-9563-2
https://doi.org/10.1007/978-1-4842-9563-2
https://doi.org/10.1007/978-1-4842-9563-2

172 A Appendix

Table A-1 Visual Studio and Microsoft C/C++ compiler versions

Abbreviation Product VC++ Version _MSC_VER _MSC_FULL_VER

2022 Visual Studio 2022
version 17.3.4

14.30 1933 193331630

2022 Visual Studio 2022
version 17.2.2

14.30 1932 193231329

2022 EWDK with Visual
Studio Build Tools
17.1.5

14.30 1931 193131107

2022 Visual Studio 2022
version 17.0.2

14.30 1930 193030706

2022 Visual Studio 2022
version 17.0.1

14.30 1930 193030705

2019 Update 11 Visual Studio 2019
version 16.11.2

14.28 1929 192930133

2019 EWDK with Visual
Studio Build Tools
16.9.2

14.28 1928 192829913

2019 Update 9 Visual Studio 2019
version 16.9.2

14.28 1928 192829913

2019 Update 8 Visual Studio 2019
version 16.8.2

14.28 1928 192829334

2019 Update 8 Visual Studio 2019
version 16.8.1

14.28 1928 192829333

2019 Update 7 Visual Studio 2019
version 16.7

14.27 1927 192729112

2019 Update 6 Visual Studio 2019
version 16.6.2

14.26 1926 192628806

2019 Update 5 Visual Studio 2019
version 16.5.1

14.25 1925 192528611

2019 Update 4 Visual Studio 2019
version 16.4.0

14.24 1924 192428314

2019 Update 3 Visual Studio 2019
version 16.3.2

14.21 1923 192328105

2019 EWDK for Windows
10, version 2004 with
Visual Studio Build
Tools 16.3

14.21 1923 1923281054

2019 Update 2 Visual Studio 2019
version 16.2.3

14.21 1922 192227905

2019 Update 1 Visual Studio 2019
version 16.1.2

14.21 1921 192127702

2019 Visual Studio 2019
version 16.0.0

14.20 1920 192027508

2017 Update 9 Visual Studio 2017
version 15.9.11

14.16 1916 191627030

(continued)

A Appendix 173

Table A-1 (continued)

Abbreviation Product VC++ Version _MSC_VER _MSC_FULL_VER

2017 Update 9 Visual Studio 2017
version 15.9.7

14.16 1916 191627027

2017 Update 9 Visual Studio 2017
version 15.9.5

14.16 1916 191627026

2017 Update 9 Visual Studio 2017
version 15.9.4

14.16 1916 191627025

2017 Update 9 Visual Studio 2017
version 15.9.1

14.16 1916 191627023

2017 Update 9 Visual Studio 2017
version 15.9.0

14.16 1916

2017 Update 8 Visual Studio 2017
version 15.8.0

14.15 1915

2017 Update 7 Visual Studio 2017
version 15.7.5

14.14 1914 191426433

2017 Update 7 Visual Studio 2017
version 15.7.3

14.14 1914 191426430

2017 Update 7 Visual Studio 2017
version 15.7.2

14.14 1914 191426429

2017 Update 7 Visual Studio 2017
version 15.7.1

14.14 1914 191426428

2017 Update 6 Visual Studio 2017
version 15.6.7

14.13 1913 191326132

2017 Update 6 Visual Studio 2017
version 15.6.6

14.13 1913 191326131

2017 Update 6 Visual Studio 2017
version 15.6.4

14.13 1913 191326129

2017 Update 6 Visual Studio 2017
version 15.6.3

14.13 1913 191326129

2017 Update 6 Visual Studio 2017
version 15.6.2

14.13 1913 191326128

2017 Update 6 Visual Studio 2017
version 15.6.1

14.13 1913 191326128

2017 Update 6 Visual Studio 2017
version 15.6.0

14.13 1913 191326128

2017 Update 5 Visual Studio 2017
version 15.5.7

14.12 1912 191225835

2017 Update 5 Visual Studio 2017
version 15.5.6

14.12 1912 191225835

2017 Update 5 Visual Studio 2017
version 15.5.4

14.12 1912 191225834

2017 Update 5 Visual Studio 2017
version 15.5.3

14.12 1912 191225834

(continued)

174 A Appendix

Table A-1 (continued)

Abbreviation Product VC++ Version _MSC_VER _MSC_FULL_VER

2017 Update 5 Visual Studio 2017
version 15.5.2

14.12 1912 191225831

2017 Update 4 Visual Studio 2017
version 15.4.5

14.11 1911 191125547

2017 Update 4 Visual Studio 2017
version 15.4.4

14.11 1911 191125542

2017 Update 3 Visual Studio 2017
version 15.3.3

14.11 1911 191125507

2017 Update 2.a Visual Studio 2017
version 15.2

14.10 1910 191025017

2017 Update 1.b Visual Studio 2017
version 15.1

14.10 1910 191025017

2017 Visual Studio 2017
version 15.0

14.10.c 1910 191025017

2015 Update 3 Visual Studio 2015
Update 3 [14.0]

14.0 1900 190024210

2015 Update 2 Visual Studio 2015
Update 2 [14.0]

14.0 1900 190023918

2015 Update 1 Visual Studio 2015
Update 1 [14.0]

14.0 1900 190023506

2015 Visual Studio 2015
[14.0]

14.0 1900 190023026

2013 November CTP Visual Studio 2013
November CTP
[12.0]

12.0 1800 180021114

2013 Update 5 Visual Studio 2013
Update 5 [12.0]

12.0 1800 180040629

2013 Update 4 Visual Studio 2013
Update 4 [12.0]

12.0 1800 180031101

2013 Update 3 Visual Studio 2013
Update 3 [12.0]

12.0 1800 180030723

2013 Update 2 Visual Studio 2013
Update 2 [12.0]

12.0 1800 180030501

2013 Update2 RC Visual Studio 2013
Update2 RC [12.0]

12.0 1800 180030324

2013 Update 1.d Visual Studio 2013
Update 1 [12.0]

12.0 1800 180021005

2013 Visual Studio 2013
[12.0]

12.0 1800 180021005

2013 RC Visual Studio 2013
RC [12.0]

12.0 1800 180020827

2013 Preview Visual Studio 2013
Preview [12.0]

12.0 1800 180020617

2012 November CTP Visual Studio 2012
November CTP
[11.0]

11.0 1700 170051025

(continued)

A Appendix 175

Table A-1 (continued)

Abbreviation Product VC++ Version _MSC_VER _MSC_FULL_VER

2012 Update 4 Visual Studio 2012
Update 4 [11.0]

11.0 1700 170061030

2012 Update 3 Visual Studio 2012
Update 3 [11.0]

11.0 1700 170060610

2012 Update 2 Visual Studio 2012
Update 2 [11.0]

11.0 1700 170060315

2012 Update 1 Visual Studio 2012
Update 1 [11.0]

11.0 1700 170051106

2012 Visual Studio 2012
[11.0]

11.0 1700 170050727

2010 SP1 Visual Studio 2010 SP1
[10.0] Visual C++ 2010
SP1 [10.0]

10.0 1600 160040219

2010 Visual Studio 2010
[10.0] Visual C++ 2010
[10.0]

10.0 1600 160030319

2010 Beta 2 Visual Studio 2010 Beta
2 [10.0]

10.0 1600 160021003

2010 Beta 1 Visual Studio 2010 Beta
1 [10.0]

10.0 1600 160020506

2008 SP1 Visual Studio 2008 SP1
[9.0] Visual C++ 2008
SP1 [9.0]

9.0 1500 150030729

2008 Visual Studio 2008 [9.0]
Visual C++ 2008 [9.0]

9.0 1500 150021022

2008 Beta 2 Visual Studio 2008 Beta
2 [9.0]

9.0 1500 150020706

2005 SP1 Visual Studio 2005 SP1
[8.0] Visual C++ 2005
SP1 [8.0]

8.0 1400 140050727

2005 Visual Studio 2005 [8.0]
Visual C++ 2005 [8.0]

8.0 1400 140050320

2005 Beta 2 Visual Studio 2005 Beta
2 [8.0]

8.0 1400 140050215

2005 Beta 1 Visual Studio 2005 Beta
1 [8.0]

8.0 1400 140040607

— Windows Server 2003
SP1 DDK (for AMD64)

1400 140040310

2003 SP1 Visual Studio .NET
2003 SP1 [7.1] Visual
C++ .NET 2003 SP1
[7.1]

7.1 1310 13106030

— Windows Server 2003
SP1 DDK

1310 13104035

(continued)

176 A Appendix

Table A-1 (continued)

Abbreviation Product VC++ Version _MSC_VER _MSC_FULL_VER

2003 Visual Studio .NET 2003
[7.1] Visual C++ .NET
2003 [7.1]

7.1 1310 13103077

— Visual Studio Toolkit
2003 [7.1]

7.1 1310 13103052

2003 Beta Visual Studio .NET 2003
Beta [7.1]

7.1 1310 13102292

— Windows Server 2003
DDK

1310 13102179

2002 Visual Studio .NET 2002
[7.0] Visual C++ .NET
2002 [7.0]

7.0 1300 13009466

— Windows XP SP1 DDK 1300 13009176

6.0 SP6 Visual Studio 6.0 SP6
Visual C++ 6.0 SP6

6.0 1200 12008804

6.0 SP5 Visual Studio 6.0 SP5
Visual C++ 6.0 SP5

6.0 1200 12008804

— Visual Studio 97 [5.0]
Visual C++ 5.0

5.0 1100

— Visual C++ 4.2 4.2 1020

— Visual C++ 4.1 4.1 1010

— Visual C++ 4.0 4.0 1000

— Visual C++ 2.0 2.0 900

— Visual C++ 1.0 1.0 800

— Microsoft C/C++ 7.0 700

— Microsoft C 6.0 600

. aOnly IDE has been modified and compiler, The library etc was not changed

. bOnly IDE has been modified and compiler, The library etc was not changed

. cSince 2017 is binary compatible with 2015, 2017 is not a major upgrade. As a result, the product
version and Visual C++ version has been no longer matched
. dOnly IDE has been modified and compiler, The library etc was not changed

• AdditionalOptions
Optional String parameter.
A list of command-line options. For example, “/. <option1. > /. <option2. >
/. <option#. >”. Use this parameter to specify command-line options that are
not represented by any other task parameter.
For more information, see Compiler options.

• AdditionalUsingDirectories
Optional String[] parameter.
Specifies a directory that the compiler will search to resolve file references passed
to the #using directive.
For more information, see /AI (specify metadata directories).

A Appendix 177

• AlwaysAppend
Optional String parameter.
A string that always gets emitted on the command line. Its default value is “/c”.

• AssemblerListingLocation
Creates a listing file that contains assembly code.
For more information, see the /Fa option in /FA, /Fa (listing file).

• AssemblerOutput
Optional String parameter.
Creates a listing file that contains assembly code.
Specify one of the following values, each of which corresponds to a command-
line option:
. ◦ NoListing: . < none >
. ◦ AssemblyCode: /FA
. ◦ AssemblyAndMachineCode: /FAc
. ◦ AssemblyAndSourceCode: /FAs
. ◦ All: /FAcs

For more information, see the /FA, /FAc, /FAs, and /FAcs options in /FA, /Fa
(listing file).

• BasicRuntimeChecks
Optional String parameter.
Enables and disables the runtime error checks feature, in conjunction with the
runtime_checks pragma.
Specify one of the following values, each of which corresponds to a command-
line option:
. ◦ Default: . < none >
. ◦ StackFrameRuntimeCheck: /RTCs
. ◦ UninitializedLocalUsageCheck: /RTCu
. ◦ EnableFastChecks: /RTC1

For more information, see /RTC (runtime error checks).

• BrowseInformation
Optional Boolean parameter.
If true, creates a browse information file.
For more information, see the /FR option in /FR, /Fr (create .sbr file).

• BrowseInformationFile
Optional String parameter.
Specifies a file name for the browse information file.
For more information, see the BrowseInformation parameter in this list, and
also see /FR, /Fr (create .sbr file).

178 A Appendix

• BufferSecurityCheck
Optional Boolean parameter.
If true, detects some buffer overruns that overwrite the return address, a common
technique for exploiting code that does not enforce buffer size restrictions.
For more information, see /GS (buffer security check).

• BuildingInIDE
Optional Boolean parameter.
If true, indicates that MSBuild is invoked by the IDE. Otherwise, MSBuild is
invoked on the command line.

• CallingConvention
Optional String parameter.
Specifies the calling convention, which determines the order in which function
arguments are pushed onto the stack, whether the caller function or called
function removes the arguments from the stack at the end of the call, and
the name-decorating convention that the compiler uses to identify individual
functions.
Specify one of the following values, each of which corresponds to a command-
line option:
. ◦ Cdecl: /Gd
. ◦ FastCall: /Gr
. ◦ StdCall: /Gz

For more information, see /Gd, /Gr, /Gv, /Gz (calling convention).

• CompileAs
Optional String parameter.
Specifies whether to compile the input file as a C or C++ source file.
Specify one of the following values, each of which corresponds to a command-
line option:
. ◦ Default: . < none >
. ◦ CompileAsC: /TC
. ◦ CompileAsCpp: /TP

For more information, see /Tc, /Tp, /TC, /TP (specify source file type).

• CompileAsManaged
Optional String parameter.
Enables applications and components to use features from the common language
runtime (CLR).
Specify one of the following values, each of which corresponds to a command-
line option:
. ◦ false: . < none >
. ◦ true: /clr
. ◦ Pure: /clr:pure
. ◦ Safe: /clr:safe

A Appendix 179

. ◦ OldSyntax: /clr:oldSyntax
For more information, see /clr (common language runtime compilation).

• CreateHotpatchableImage
Optional Boolean parameter.
If true, tells the compiler to prepare an image for hot patching. This parameter
ensures that the first instruction of each function is two bytes, which is required
for hot patching.
For more information, see /hotpatch (create hotpatchable image).

• DebugInformationFormat
Optional String parameter.
Selects the type of debugging information created for your program and whether
this information is kept in object (.obj) files or in a program database (PDB).
Specify one of the following values, each of which corresponds to a command-
line option:
. ◦ OldStyle: /Z7
. ◦ ProgramDatabase: /Zi
. ◦ EditAndContinue: /ZI

For more information, see /Z7, /Zi, /ZI (debug information format).

• DisableLanguageExtensions
Optional Boolean parameter.
If true, tells the compiler to emit an error for language constructs that are not
compatible with either ANSI C or ANSI C++.
For more information, see the /Za option in /Za, /Ze (disable language exten-
sions).

• DisableSpecificWarnings
Optional String[] parameter.
Disables the warning numbers that are specified in a semicolon-delimited list.
For more information, see the /wd option in /w, /W0, /W1, /W2, /W3, /W4, /w1,
/w2, /w3, /w4, /Wall, /wd, /we, /wo, /Wv, /WX (warning level).

• EnableEnhancedInstructionSet
Optional String parameter.
Specifies the architecture for code generation that uses the Streaming SIMD
Extensions (SSE) and Streaming SIMD Extensions 2 (SSE2) instructions.
Specify one of the following values, each of which corresponds to a command-
line option:
. ◦ StreamingSIMDExtensions: /arch:SSE
. ◦ StreamingSIMDExtensions2: /arch:SSE2

For more information, see /arch (x86).

180 A Appendix

• EnableFiberSafeOptimizations
Optional Boolean parameter.
If true, supports fiber safety for data allocated by using static thread-local storage,
that is, data allocated by using __declspec(thread).
For more information, see /GT (support fiber-safe thread-local storage).

• EnablePREfast
Optional Boolean parameter.
If true, enables code analysis.
For more information, see /analyze (code analysis).

• ErrorReporting
Optional String parameter.
Lets you provide internal compiler error (ICE) information directly to Microsoft.
By default, the setting in IDE builds is Prompt, and the setting in command-line
builds is Queue.
Specify one of the following values, each of which corresponds to a command-
line option:
. ◦ None: /errorReport:none
. ◦ Prompt: /errorReport:prompt
. ◦ Queue: /errorReport:queue
. ◦ Send: /errorReport:send

For more information, see /errorReport (report internal compiler errors).

• ExceptionHandling
Optional String parameter.
Specifies the model of exception handling to be used by the compiler.
Specify one of the following values, each of which corresponds to a command-
line option:
. ◦ false: . < none >
. ◦ Async: /EHa
. ◦ Sync: /EHsc
. ◦ SyncCThrow: /EHs

For more information, see /EH (exception handling model).

• ExpandAttributedSource
Optional Boolean parameter.
If true, creates a listing file that has expanded attributes injected into the source
file.
For more information, see /Fx (merge injected code).

• FavorSizeOrSpeed
Optional String parameter.
Specifies whether to favor code size or code speed.

A Appendix 181

Specify one of the following values, each of which corresponds to a command-
line option:
. ◦ Neither: . < none >
. ◦ Size: /Os
. ◦ Speed: /Ot

For more information, see /Os, /Ot (favor small code, favor fast code).

• FloatingPointExceptions
Optional Boolean parameter.
If true, enables the reliable floating-point exception model. Exceptions will be
raised immediately after they are triggered.
For more information, see the /fp:except option in /fp (specify floating-point
behavior).

• FloatingPointModel
Optional String parameter.
Sets the floating-point model.
Specify one of the following values, each of which corresponds to a command-
line option:
. ◦ Precise: /fp:precise
. ◦ Strict: /fp:strict
. ◦ Fast: /fp:fast

For more information, see /fp (specify floating-point behavior).

• ForceConformanceInForLoopScope
Optional Boolean parameter.
If true, implements standard C++ behavior in for loops that use Microsoft
extensions (/Ze).
For more information, see /Zc:forScope (force conformance in for loop scope).

• ForcedIncludeFiles
Optional String[] parameter.
Causes the preprocessor to process one or more specified header files.
For more information, see /FI (name forced include file).

• ForcedUsingFiles
Optional String[] parameter.
Causes the preprocessor to process one or more specified #using files.
For more information, see /FU (name forced #using file).

• FunctionLevelLinking
Optional Boolean parameter.
If true, enables the compiler to package individual functions in the form of
packaged functions (COMDATs).
For more information, see /Gy (enable function-level linking).

182 A Appendix

• GenerateXMLDocumentationFiles
Optional Boolean parameter.
If true, causes the compiler to process documentation comments in source code
files and to create an .xdc file for each source code file that has documentation
comments.
For more information, see /doc (process documentation comments) (C/C++).
Also, see the XMLDocumentationFileName parameter in this list.

• IgnoreStandardIncludePath
Optional Boolean parameter.
If true, prevents the compiler from searching for include files in directories
specified in the PATH and INCLUDE environment variables.
For more information, see /X (ignore standard include paths).

• InlineFunctionExpansion
Optional String parameter.
Specifies the level of inline function expansion for the build.
Specify one of the following values, each of which corresponds to a command-
line option:
. ◦ Default: . < none >
. ◦ Disabled: /Ob0
. ◦ OnlyExplicitInline: /Ob1
. ◦ AnySuitable: /Ob2

For more information, see /Ob (inline function expansion).

• IntrinsicFunctions
Optional Boolean parameter.
If true, replaces some function calls with intrinsic or otherwise special forms of
the function that help your application run faster.
For more information, see /Oi (generate intrinsic functions).

• MinimalRebuild
Optional Boolean parameter. This option is deprecated.
If true, enables minimal rebuild, which determines whether C++ source files
that include changed C++ class definitions (stored in header (.h) files) must be
recompiled.
For more information, see /Gm (enable minimal rebuild).

• MultiProcessorCompilation
Optional Boolean parameter.
If true, uses multiple processors to compile. This parameter creates a process for
each effective processor on your computer.
For more information, see /MP (build with multiple processes). Also, see the
ProcessorNumber parameter in this list.

A Appendix 183

• ObjectFileName
Optional String parameter.
Specifies an object (.obj) file name or directory to be used instead of the default.
For more information, see /Fo (object file name).

• ObjectFiles
Optional String[] parameter.
A list of object files.

• OmitDefaultLibName
Optional Boolean parameter.
If true, omits the default C runtime library name from the object (.obj) file. By
default, the compiler puts the name of the library into the .obj file to direct the
linker to the correct library.
For more information, see /Zl (omit default library name).

• OmitFramePointers
Optional Boolean parameter.
If true, suppresses creation of frame pointers on the call stack.
For more information, see /Oy (frame-pointer omission).

• OpenMPSupport
Optional Boolean parameter.
If true, causes the compiler to process OpenMP clauses and directives.
For more information, see /openmp (enable OpenMP 2.0 support).

• Optimization
Optional String parameter.
Specifies various code optimizations for speed and size.
Specify one of the following values, each of which corresponds to a command-
line option:
. ◦ Disabled: /Od
. ◦ MinSpace: /O1
. ◦ MaxSpeed: /O2
. ◦ Full: /Ox

For more information, see /O options (optimize code).

• PrecompiledHeader
Optional String parameter.
Create or use a precompiled header (.pch) file during the build.
Specify one of the following values, each of which corresponds to a command-
line option:
. ◦ NotUsing: . < none >
. ◦ Create: /Yc
. ◦ Use: /Yu

184 A Appendix

For more information, see /Yc (create precompiled header file) and /Yu
(use precompiled header file). Also, see the PrecompiledHeaderFile and
PrecompiledHeaderOutputFile parameters in this list.

• PrecompiledHeaderFile
Optional String parameter.
Specifies a precompiled header file name to create or use.
For more information, see /Yc (create precompiled header file) and /Yu (use
precompiled header file).

• PrecompiledHeaderOutputFile
Optional String parameter.
Specifies a path name for a precompiled header instead of using the default path
name.
For more information, see /Fp (name .pch file).

• PreprocessKeepComments
Optional Boolean parameter.
If true, preserves comments during preprocessing.
For more information, see /C (preserve comments during preprocessing).

• PreprocessorDefinitions
Optional String[] parameter.
Defines a preprocessing symbol for your source file.
For more information, see /D (preprocessor definitions).

• PreprocessOutput
Optional ITaskItem[] parameter.
Defines an array of preprocessor output items that can be consumed and emitted
by tasks.

• PreprocessOutputPath
Optional String parameter.
Specifies the name of the output file to which the PreprocessToFile parameter
writes preprocessed output.
For more information, see /Fi (preprocess output file name).

• PreprocessSuppressLineNumbers
Optional Boolean parameter.
If true, preprocesses C and C++ source files and copies the preprocessed files to
the standard output device.
For more information, see /EP (preprocess to stdout without #line directives).

A Appendix 185

• PreprocessToFile
Optional Boolean parameter.
If true, preprocesses C and C++ source files and writes the preprocessed output
to a file.
For more information, see /P (preprocess to a file).

• ProcessorNumber
Optional Integer parameter.
Specifies the maximum number of processors to use in a multiprocessor compi-
lation. Use this parameter in combination with the MultiProcessorCompilation
parameter.

• ProgramDataBaseFileName
Optional String parameter.
Specifies a file name for the program database (PDB) file.
For more information, see /Fd (program database file name).

• RuntimeLibrary
Optional String parameter.
Indicates whether a multithreaded module is a DLL and selects retail or debug
versions of the runtime library.
Specify one of the following values, each of which corresponds to a command-
line option:
. ◦ MultiThreaded: /MT
. ◦ MultiThreadedDebug: /MTd
. ◦ MultiThreadedDLL: /MD
. ◦ MultiThreadedDebugDLL: /MDd

For more information, see /MD, /MT, /LD (use runtime library).

• RuntimeTypeInfo
Optional Boolean parameter.
If true, adds code to check C++ object types at runtime (runtime type informa-
tion).
For more information, see /GR (enable runtime type information).

• ShowIncludes
Optional Boolean parameter.
If true, causes the compiler to output a list of the include files.
For more information, see /showIncludes (list include files).

• SmallerTypeCheck
Optional Boolean parameter.
If true, reports a runtime error if a value is assigned to a smaller data type and
causes a data loss.
For more information, see the /RTCc option in /RTC (runtime error checks).

186 A Appendix

• Sources
Required ITaskItem[] parameter.
Specifies a list of source files separated by spaces.

• StringPooling
Optional Boolean parameter.
If true, enables the compiler to create one copy of identical strings in the program
image.
For more information, see /GF (eliminate duplicate strings).

• StructMemberAlignment
Optional String parameter.
Specifies the byte alignment for all members in a structure.
Specify one of the following values, each of which corresponds to a command-
line option:
. ◦ Default: /Zp1
. ◦ 1Byte: /Zp1
. ◦ 2Bytes: /Zp2
. ◦ 4Bytes: /Zp4
. ◦ 8Bytes: /Zp8
. ◦ 16Bytes: /Zp16

For more information, see /Zp (struct member alignment).

• SuppressStartupBanner
Optional Boolean parameter.
If true, prevents the display of the copyright and version number message when
the task starts.
For more information, see /nologo (suppress startup banner) (C/C++).

• TrackerLogDirectory
Optional String parameter.
Specifies the intermediate directory where tracking logs for this task are stored.
For more information, see the TLogReadFiles and TLogWriteFiles parameters
in this list.

• TreatSpecificWarningsAsErrors
Optional String[] parameter.
Treats the specified list of compiler warnings as errors.
For more information, see the /wen option in /w, /W0, /W1, /W2, /W3, /W4, /w1,
/w2, /w3, /w4, /Wall, /wd, /we, /wo, /Wv, /WX (warning level).

• TreatWarningAsError
Optional Boolean parameter.
If true, treats all compiler warnings as errors.

A Appendix 187

For more information, see the /WX option in /w, /W0, /W1, /W2, /W3, /W4, /w1,
/w2, /w3, /w4, /Wall, /wd, /we, /wo, /Wv, /WX (warning level).

• TreatWChar_tAsBuiltInType
Optional Boolean parameter.
If true, treats the wchar_t type as a native type.
For more information, see /Zc:wchar_t (wchar_t is a native type).

• UndefineAllPreprocessorDefinitions
Optional Boolean parameter.
If true, undefines the Microsoft-specific symbols that the compiler defines.
For more information, see the /u option in /U, /u (undefine symbols).

• UndefinePreprocessorDefinitions
Optional String[] parameter.
Specifies a list of one or more preprocessor symbols to undefine.
For more information, see the /U option in /U, /u (undefine symbols).

• UseFullPaths
Optional Boolean parameter.
If true, displays the full path of source code files passed to the compiler in
diagnostics.
For more information, see /FC (full path of source code file in diagnostics).

• UseUnicodeForAssemblerListing
Optional Boolean parameter.
If true, causes the output file to be created in UTF-8 format.
For more information, see the /FAu option in /FA, /Fa (listing file).

• WarningLevel
Optional String parameter.
Specifies the highest level of warning that is to be generated by the compiler.
Specify one of the following values, each of which corresponds to a command-
line option:
. ◦ TurnOffAllWarnings: /W0
. ◦ Level1: /W1
. ◦ Level2: /W2
. ◦ Level3: /W3
. ◦ Level4: /W4
. ◦ EnableAllWarnings: /Wall

For more information, see the /Wn option in /w, /W0, /W1, /W2, /W3, /W4,
/w1, /w2, /w3, /w4, /Wall, /wd, /we, /wo, /Wv, /WX (warning level).

188 A Appendix

• WholeProgramOptimization
Optional Boolean parameter.
If true, enables whole program optimization.
For more information, see /GL (whole program optimization).

• XMLDocumentationFileName
Optional String parameter.
Specifies the name of the generated XML documentation files. This parameter
can be a file or directory name.
For more information, see the name argument in /doc (process documentation
comments) (C/C++). Also, see the GenerateXMLDocumentationFiles param-
eter in this list.

• MinimalRebuildFromTracking
Optional Boolean parameter.
If true, a tracked incremental build is performed; if false, a rebuild is performed.

• TLogReadFiles
Optional ITaskItem[] parameter.
Specifies an array of items that represent the read file tracking logs.
A read file tracking log (.tlog) contains the names of the input files that are read
by a task and is used by the project build system to support incremental builds.
For more information, see the TrackerLogDirectory and TrackFileAccess
parameters in this list.

• TLogWriteFiles
Optional ITaskItem[] parameter.
Specifies an array of items that represent the write file tracking logs.
A write file tracking log (.tlog) contains the names of the output files that
are written by a task and is used by the project build system to support
incremental builds. For more information, see the TrackerLogDirectory and
TrackFileAccess parameters in this list.

• TrackFileAccess
Optional Boolean parameter.
If true, tracks file access patterns.
For more information, see the TLogReadFiles and TLogWriteFiles parameters
in this list.

A Appendix 189

Microsoft C/C++ Compiler Options Listed by Category

The material in this section is based on data from the site [12].
This section contains a categorical list of compiler options. For an alphabetical

list, see Compiler Options Listed Alphabetically from the site [12].

Optimization

Table A-2 Microsoft C/C++ compiler options: Optimization

Option Purpose

/favor:<blend|AMD64|INTEL64|ATOM> Produces code that is optimized for a specified
architecture or for a range of architectures.

/O1 Creates small code.

/O2 Creates fast code.

/Ob<n> Controls inline expansion.

/Od Disables optimization.

/Og Deprecated. Uses global optimizations.

/Oi[-] Generates intrinsic functions.

/Os Favors small code.

/Ot Favors fast code.

/Ox A subset of /O2 that doesn’t include /GF or /Gy.

/Oy Omits frame pointer (x86 only).

Code Generation

Table A-3 Microsoft C/C++ compiler options: Code generation

Option Purpose
/arch:<IA32|SSE|SSE2|AVX|AVX2|AVX512> Minimum CPU architecture requirements.

IA32, SSE, and SSE2 are x86 only.

/clr Produces an output file to run on the common
language runtime.

/clr:implicitKeepAlive- Turns off implicit emission of
System::GC::KeepAlive(this).

/clr:initialAppDomain Enables initial AppDomain behavior of Visual
C++ 2002.

/clr:netcore Produces assemblies targeting .NET Core
runtime.

/clr:noAssembly Doesn’t produce an assembly.

/clr:nostdimport Doesn’t import any required assemblies
implicitly.

(continued)

190 A Appendix

Table A-3 (continued)

Option Purpose

/clr:nostdlib Ignores the system .NET framework directory
when searching for assemblies.

/clr:pure Produces an IL-only output file (no native
executable code).

/clr:safe Produces an IL-only verifiable output file.

/EHa Enables C++ exception handling (with SEH
exceptions).

/EHc extern “C” defaults to nothrow.

/EHr Always generates noexcept runtime
termination checks.

/EHs Enables C++ exception handling (no SEH
exceptions).

/fp:contract Considers floating-point contractions when
generating code.

/fp:except[-] Considers floating-point exceptions when
generating code.

/fp:fast “fast” floating-point model; results are less
predictable.

/fp:precise “precise” floating-point model; results are
predictable.

/fp:strict “strict” floating-point model (implies
/fp:except).

/fpcvt:BC Backward-compatible floating-point to
unsigned integer conversions.

/fpcvt:IA Intel native floating-point to unsigned integer
conversion behavior.

/fsanitize Enables compilation of sanitizer
instrumentation such as AddressSanitizer.

/fsanitize-coverage Enables compilation of code coverage
instrumentation for libraries such as
LibFuzzer.

/GA Optimizes for Windows applications.

/Gd Uses the __cdecl calling convention (x86
only).

/Ge Deprecated. Activates stack probes.

/GF Enables string pooling.

/Gh Calls hook function _penter.

/GH Calls hook function _pexit.

/GL[-] Enables whole program optimization.

/Gm[-] Deprecated. Enables minimal rebuild.

/Gr Uses the __fastcall calling convention (x86
only).

/GR[-] Enables runtime type information (RTTI).

/GS[-] Checks buffer security.

(continued)

A Appendix 191

Table A-3 (continued)

Option Purpose

/Gs[n] Controls stack probes.

/GT Supports fiber safety for data allocated by
using static thread-local storage.

/Gu[-] Ensures distinct functions have distinct
addresses.

/guard:cf[-] Adds control flow guard security checks.

/guard:ehcont[-] Enables EH continuation metadata.

/Gv Uses the __vectorcall calling convention (x86
and x64 only).

/Gw[-] Enables whole-program global data
optimization.

/GX[-] Deprecated. Enables synchronous exception
handling. Use /EH instead.

/Gy[-] Enables function-level linking.

/Gz Uses the __stdcall calling convention (x86
only).

/GZ Deprecated. Enables fast checks (same as
/RTC1).

/homeparams Forces parameters passed in registers to be
written to their locations on the stack upon
function entry. This compiler option is only
for the x64 compilers (native and cross
compile).

/hotpatch Creates a hotpatchable image.

/Qfast_transcendentals Generates fast transcendentals.

/QIfist Deprecated. Suppresses the call of the helper
function _ftol when a conversion from a
floating-point type to an integral type is
required (x86 only).

/Qimprecise_fwaits Removes fwait commands inside try blocks.
/QIntel-jcc-erratum Mitigates the performance impact of the Intel

JCC erratum microcode update.

/Qpar Enables automatic parallelization of loops.

/Qpar-report:n Enables reporting levels for automatic
parallelization.

/Qsafe_fp_loads Uses integer move instructions for
floating-point values and disables certain
floating-point load optimizations.

/Qspectre[-] Enables mitigations for CVE 2017-5753, for a
class of Spectre attacks.

/Qspectre-load Generates serializing instructions for every
load instruction.

/Qspectre-load-cf Generates serializing instructions for every
control flow instruction that loads memory.

(continued)

192 A Appendix

Table A-3 (continued)

Option Purpose

/Qvec-report:n Enables reporting levels for automatic
vectorization.

/RTC1 Enables fast runtime checks (equivalent to
/RTCsu).

/RTCc Converts to smaller type checks at runtime.

/RTCs Enables stack frame runtime checks.

/RTCu Enables uninitialized local usage checks.

/volatile:iso Acquires/releases semantics not guaranteed on
volatile accesses.

/volatile:ms Acquires/releases semantics guaranteed on
volatile accesses.

Output Files

Table A-4 Microsoft C/C++ compiler options: Output files

Option Purpose

/doc Processes documentation comments to an XML file.

/FA Configures an assembly listing file.

/Fa Creates an assembly listing file.

/Fd Renames the program database file.

/Fe Renames the executable file.

/Fi Specifies the preprocessed output file name.

/Fm Creates a mapfile.

/Fo Creates an object file.

/Fp Specifies a precompiled header file name.

/FR, /Fr Name generated .sbr browser files. /Fr is deprecated.
/Ft<dir> Location of the header files generated for #import.

A Appendix 193

Preprocessor

Table A-5 Microsoft C/C++ compiler options: Preprocessor

Option Purpose

/AI<dir> Specifies a directory to search to resolve file references passed to
the #using directive.

/C Preserves comments during preprocessing.

/D<name>{=|#}<text> Defines constants and macros.

/E Copies preprocessor output to standard output.

/EP Copies preprocessor output to standard output.

/FI<file> Preprocesses the specified include file.

/FU<file> Forces the use of a file name, as if it had been passed to the #using
directive.

/Fx Merges injected code with the source file.

/I<dir> Searches a directory for include files.

/P Writes preprocessor output to a file.

/PD Prints all macro definitions.

/PH Generates #pragma file_hash when preprocessing.

/U<name> Removes a predefined macro.

/u Removes all predefined macros.

/X Ignores the standard include directory.

Header Units/Modules

Table A-6 Microsoft C/C++ compiler options: Header units/modules

Option Purpose

/exportHeader Creates the header unit files (.ifc) specified by the input
arguments.

/headerUnit Specifies where to find the header unit file (.ifc) for the
specified header.

/headerName Builds a header unit from the specified header.

/ifcOutput Specifies the output file name or directory for built .ifc
files.

/interface Treats the input file as a module interface unit.

/internalPartition Treats the input file as an internal partition unit.

/reference Uses named module IFC.

/scanDependencies Lists module and header unit dependencies in C++
Standard JSON form.

/sourceDependencies Lists all source-level dependencies.

/sourceDependencies:directives Lists module and header unit dependencies.

/translateInclude Treats #include as import.

194 A Appendix

Language

Table A-7 Microsoft C/C++ compiler options: Language

Option Purpose

/await Enables coroutine (resumable function) extensions.

/await:strict Enables standard C++20 coroutine support with earlier
language versions.

/constexpr:backtrace<N> Shows N constexpr evaluations in diagnostics (default: 10).

/constexpr:depth<N> Recursion depth limit for constexpr evaluation (default: 512).

/constexpr:steps<N> Terminates constexpr evaluation after N steps (default:
100000)

/openmp Enables #pragma omp in source code.

/openmp:experimental Enables OpenMP 2.0 language extensions plus select
OpenMP 3.0+ language extensions.

/openmp:llvm OpenMP language extensions using LLVM runtime.

/permissive[-] Sets the standard-conformance mode.

/std:c++14 C++14 standard ISO/IEC 14882:2014 (default).

/std:c++17 C++17 standard ISO/IEC 14882:2017.

/std:c++20 C++20 standard ISO/IEC 14882:2020.

/std:c++latest The latest draft C++ standard preview features.

/std:c11 C11 standard ISO/IEC 9899:2011.

/std:c17 C17 standard ISO/IEC 9899:2018.

/vd{0|1|2} Suppresses or enables hidden vtordisp class members.

/vmb Uses the best base for pointers to members.

/vmg Uses full generality for pointers to members.

/vmm Declares multiple inheritance.

/vms Declares single inheritance.

/vmv Declares virtual inheritance.

/Z7 Generates C 7.0–compatible debugging information.

/Za Disables some C89 language extensions in C code.

/Zc:__cplusplus[-] Enables the __cplusplus macro to report the supported
standard (off by default).

/Zc:__STDC__ Enables the __STDC__ macro to report the C standard is
supported (off by default).

/Zc:alignedNew[-] Enables C++17 over-aligned dynamic allocation (on by
default in C++17).

/Zc:auto[-] Enforces the new Standard C++ meaning for auto (on by
default).

/Zc:char8_t[-] Enables or disables C++20 native u8 literal support as const
char8_t (off by default, except under /std:c++20).

/Zc:enumTypes[-] Enables Standard C++ rules for inferred enum base types (off
by default, not implied by /permissive-).

(continued)

A Appendix 195

Table A-7 (continued)

Option Purpose

/Zc:externC[-] Enforces Standard C++ rules for extern “C” functions
(implied by /permissive-).

/Zc:externConstexpr[-] Enables external linkage for constexpr variables (off by
default).

/Zc:forScope[-] Enforces Standard C++ for scoping rules (on by default).
/Zc:gotoScope Enforces Standard C++ goto rules around local variable

initialization (implied by /permissive-).

/Zc:hiddenFriend[-] Enforces Standard C++ hidden friend rules (implied by
/permissive-).

/Zc:implicitNoexcept[-] Enables implicit noexcept on required functions (on by
default).

/Zc:inline[-] Removes unreferenced functions or data if they’re COMDAT
or have internal linkage only (off by default).

/Zc:lambda[-] Enables new lambda processor for conformance-mode
syntactic checks in generic lambdas.

/Zc:noexceptTypes[-] Enforces C++17 noexcept rules (on by default in C++17 or
later).

/Zc:nrvo[-] Enables optional copy and move elisions (on by default under
/O2, /permissive-, or /std:c++20 or later).

/Zc:preprocessor[-] Uses the new conforming preprocessor (off by default, except
in C11/C17).

/Zc:referenceBinding[-] A UDT temporary won’t bind to a non-const lvalue reference
(off by default).

/Zc:rvalueCast[-] Enforces Standard C++ explicit type conversion rules (off by
default).

/Zc:sizedDealloc[-] Enables C++14 global sized deallocation functions (on by
default).

/Zc:strictStrings[-] Disables string literal to char* or wchar_t* conversion (off by
default).

/Zc:templateScope[-] Enforces Standard C++ template parameter shadowing rules
(off by default).

/Zc:ternary[-] Enforces conditional operator rules on operand types (off by
default).

/Zc:threadSafeInit[-] Enables thread-safe local static initialization (on by default).

/Zc:throwingNew[-] Assumes operator new throws on failure (off by default).
/Zc:tlsGuards[-] Generates runtime checks for TLS variable initialization (on

by default).

/Zc:trigraphs Enables trigraphs (obsolete, off by default).

/Zc:twoPhase[-] Uses nonconforming template parsing behavior (conforming
by default).

/Zc:wchar_t[-] wchar_t is a native type, not a typedef (on by default).
/Zc:zeroSizeArrayNew[-] Calls member new/delete for 0-size arrays of objects (on by

default).

(continued)

196 A Appendix

Table A-7 (continued)

Option Purpose

/Ze Deprecated. Enables C89 language extensions.

/Zf Improves PDB generation time in parallel builds.

/ZH:[MD5|SHA1|SHA_256] Specifies MD5, SHA-1, or SHA-256 for checksums in debug
info.

/ZI Includes debug information in a program database compatible
with Edit and Continue (x86 only).

/Zi Generates complete debugging information.

/Zl Removes the default library name from the .obj file.

/Zo[-] Generates richer debugging information for optimized code.

/Zp[n] Packs structure members.

/Zs Checks syntax only.

/ZW Produces an output file to run on the Windows Runtime.

Linking

Table A-8 Microsoft C/C++ compiler options: Linking

Option Purpose

/F Sets stack size.

/LD Creates a dynamic-link library.

/LDd Creates a debug dynamic-link library.

/link Passes the specified option to LINK.

/LN Creates an MSIL .netmodule.

/MD Compiles to create a multithreaded DLL, by using MSVCRT.lib.

/MDd Compiles to create a debug multithreaded DLL, by using MSVCRTD.lib.

/MT Compiles to create a multithreaded executable file, by using LIBCMT.lib.

/MTd Compiles to create a debug multithreaded executable file, by using
LIBCMTD.lib.

A Appendix 197

Miscellaneous

Table A-9 Microsoft C/C++ compiler options: Miscellaneous

Option Purpose

/? Lists the compiler options.

@ Specifies a response file.

/analyze Enables code analysis.

/bigobj Increases the number of addressable sections in an .obj file.

/c Compiles without linking.

/cgthreads Specifies the number of cl.exe threads to use for optimization and code
generation.

/errorReport Deprecated. Error reporting is controlled by Windows Error Reporting
(WER) settings.

/execution-charset Sets the execution character set.

/fastfail Enables fast-fail mode.

/FC Displays the full path of source code files passed to cl.exe in diagnostic
text.

/FS Forces writes to the PDB file to be serialized through MSPDBSRV.EXE.

/H Deprecated. Restricts the length of external (public) names.

/HELP Lists the compiler options.

/J Changes the default char type.
/JMC Supports native C++ Just My Code debugging.

/kernel The compiler and linker will create a binary that can be executed in the
Windows kernel.

/MP Builds multiple source files concurrently.

/nologo Suppresses display of sign-on banner.

/presetPadding Zero-initializes padding for stack-based class types.

/showIncludes Displays a list of all include files during compilation.

/source-charset Sets the source character set.

/Tc Specifies a C source file.

/TC Specifies all source files are C.

/Tp Specifies a C++ source file.

/TP Specifies all source files are C++.

/utf-8 Sets source and execution character sets to UTF-8.

/V Deprecated. Sets the version string.

/validate-charset Validates UTF-8 files for only compatible characters.

/volatileMetadata Generates metadata on volatile memory accesses.

/Yc Creates a .PCH file.

/Yd Deprecated. Places complete debugging information in all object files.
Use /Zi instead.

/Yl Injects a PCH reference when creating a debug library.

/Yu Uses a precompiled header file during build.

/Y- Ignores all other precompiled header compiler options in the current
build.

/Zm Specifies the precompiled header memory allocation limit.

198 A Appendix

Diagnostics

Table A-10 Microsoft C/C++ compiler options: Diagnostics

Option Purpose

/diagnostics:caret[-] Diagnostics format: prints column and the indicated line of
source.

/diagnostics:classic Uses legacy diagnostics format.

/diagnostics Diagnostics format: prints column information.

/external:anglebrackets Treats all headers included via < > as external.
/external:env:<var> Specifies an environment variable with locations of external

headers.

/external:I <path> Specifies location of external headers.

/external:templates[-] Evaluates warning level across template instantiation chain.

/external:W<n> Sets the warning level for external headers.

/options:strict Unrecognized compiler options are errors.

/sdl Enables more security features and warnings.

/w Disables all warnings.

/W0, /W1, /W2, /W3, /W4 Sets the output warning level.

/w1<n>, /w2<n>, /w3<n>,
/w4<n>

Sets the warning level for the specified warning.

/Wall Enables all warnings, including warnings that are disabled by
default.

/wd<n> Disables the specified warning.

/we<n> Treats the specified warning as an error.

/WL Enables one-line diagnostics for error and warning messages
when compiling C++ source code from the command line.

/wo<n> Displays the specified warning only once.

/Wv:xx[.yy[.zzzzz]] Disables warnings introduced after the specified version of the
compiler.

/WX Treats warnings as errors.

Experimental Options

Experimental options may only be supported by certain versions of the compiler.
They may also behave differently in different compiler versions. Often the best, or
only, documentation for experimental options is in the Microsoft C++ Team Blog.

Table A-11 Microsoft C/C++ compiler options: Experimental options

Option Purpose

/experimental:module Enables experimental module support.

A Appendix 199

Deprecated and Removed Compiler Options

Table A-12 Microsoft C/C++ compiler options: Deprecated and removed compiler options

Option Purpose

/clr:noAssembly Deprecated. Use /LN (Create MSIL Module) instead.

/errorReport Deprecated. Error reporting is controlled by Windows Error
Reporting (WER) settings.

/experimental:preprocessor Deprecated. Enables experimental conforming preprocessor
support. Use /Zc:preprocessor

/Fr Deprecated. Creates a browse information file without local
variables.

/Ge Deprecated. Activates stack probes. On by default.

/Gm Deprecated. Enables minimal rebuild.

/GX Deprecated. Enables synchronous exception handling. Use
/EH instead.

/GZ Deprecated. Enables fast checks. Use /RTC1 instead.

/H Deprecated. Restricts the length of external (public) names.

/Og Deprecated. Uses global optimizations.

/QIfist Deprecated. Once used to specify how to convert from a
floating-point type to an integral type.

/V Deprecated. Sets the .obj file version string.

/Wp64 Obsolete. Detects 64-bit portability problems.

/Yd Deprecated. Places complete debugging information in all
object files. Use /Zi instead.

/Zc:forScope- Deprecated. Disables conformance in for loop scope.

/Ze Deprecated. Enables language extensions.

/Zg Removed in Visual Studio 2015. Generates function
prototypes.

Bibliography

[1] American National Standard INCITS-ISO-IEC 9899-2011. 2012. Information technology:
Programming languages – C, 702. ANSI. May 23.

[2] International Standard ISO-IEC 14882-2014. 2014. Information technology: Programming
languages – C++, 4th ed., 1358. ISO Office. December 15.

[3] Albahari, Joseph, and Ben Albahari. 2012. C# 5.0 in a Nutshell, 5th ed. O’Reilly.
[4] Scheinerman, Edward. 2006. C++ for Mathematicians. An Introduction for Students and

Professionals, 521. Chapman & Hall-CRC.
[5] Press, William H., Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. 2007.

Numerical Recipes. The Art of Scientific Computing, 3rd ed., 1235. Cambridge University
Press.

[6] Barone, Luciano Maria et al. 2013. Scientific Programming: C-Language, Algorithms and
Models in Science, 718. World Scientific.

[7] Garrido, Jose M. 2013. Introduction to Computational Modeling Using C and Open-Source
Tools, 461. Chapman & Hall-CRC.

[8] Solomon, Justin. 2015. Numerical Algorithms: Methods for Computer Vision, Machine
Learning, and Graphics, 400. CRC Press.

[9] Kneusel, Ronald T. 2015. Numbers and Computers, 231. Springer.
[10] Yan, Song Y. 2013. Computational Number Theory and Modern Cryptography, 425. Wiley.
[11] CL task. Available online: https://learn.microsoft.com/en-us/visualstudio/msbuild/cl-task?

view=vs-2022
[12] Compiler Options. Available online: https://learn.microsoft.com/en-us/cpp/build/reference/

compiler-options?view=msvc-170
[13] Walkthrough: Using MSBuild to Create a Visual C++ Project. Available online: https://learn.

microsoft.com/en-us/cpp/build/walkthrough-using-msbuild-to-create-a-visual-cpp-project?
redirectedfrom=MSDN&view=msvc-170

[14] Visual Studio 2019 System Requirements. Available online: https://docs.microsoft.com/en-
us/visualstudio/releases/2019/system-requirements

[15] Visual Studio 2022 Product Family System Requirements. Available online: https://docs.
microsoft.com/en-us/visualstudio/releases/2022/system-requirements

[16] Download the Windows Driver Kit (WDK). Available online: https://docs.microsoft.com/en-
us/windows-hardware/drivers/download-the-wdk

[17] Microsoft Enterprise WDK License for VS 2015. Available online: https://docs.microsoft.
com/en-us/legal/windows/hardware/enterprise-wdk-license-2015

[18] Microsoft Enterprise WDK License for VS 2017. Available online: https://docs.microsoft.
com/en-us/legal/windows/hardware/enterprise-wdk-license-2017

[19] Microsoft Enterprise WDK License for VS 2019. Available online: https://docs.microsoft.
com/en-us/legal/windows/hardware/enterprise-wdk-license-2019

© The Author(s), under exclusive license to APress Media, LLC,
part of Springer Nature 2024
B. I. Tuleuov, A. B. Ospanova, Beginning C++ Compilers,
https://doi.org/10.1007/978-1-4842-9563-2

201

https://learn.microsoft.com/en-us/visualstudio/msbuild/cl-task?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/msbuild/cl-task?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/msbuild/cl-task?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/msbuild/cl-task?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/msbuild/cl-task?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/msbuild/cl-task?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/msbuild/cl-task?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/msbuild/cl-task?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/msbuild/cl-task?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/msbuild/cl-task?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/msbuild/cl-task?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/msbuild/cl-task?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/msbuild/cl-task?view=vs-2022
https://learn.microsoft.com/en-us/cpp/build/reference/compiler-options?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/reference/compiler-options?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/reference/compiler-options?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/reference/compiler-options?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/reference/compiler-options?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/reference/compiler-options?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/reference/compiler-options?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/reference/compiler-options?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/reference/compiler-options?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/reference/compiler-options?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/reference/compiler-options?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/reference/compiler-options?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/reference/compiler-options?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/reference/compiler-options?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-using-msbuild-to-create-a-visual-cpp-project?redirectedfrom=MSDN&view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-using-msbuild-to-create-a-visual-cpp-project?redirectedfrom=MSDN&view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-using-msbuild-to-create-a-visual-cpp-project?redirectedfrom=MSDN&view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-using-msbuild-to-create-a-visual-cpp-project?redirectedfrom=MSDN&view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-using-msbuild-to-create-a-visual-cpp-project?redirectedfrom=MSDN&view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-using-msbuild-to-create-a-visual-cpp-project?redirectedfrom=MSDN&view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-using-msbuild-to-create-a-visual-cpp-project?redirectedfrom=MSDN&view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-using-msbuild-to-create-a-visual-cpp-project?redirectedfrom=MSDN&view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-using-msbuild-to-create-a-visual-cpp-project?redirectedfrom=MSDN&view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-using-msbuild-to-create-a-visual-cpp-project?redirectedfrom=MSDN&view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-using-msbuild-to-create-a-visual-cpp-project?redirectedfrom=MSDN&view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-using-msbuild-to-create-a-visual-cpp-project?redirectedfrom=MSDN&view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-using-msbuild-to-create-a-visual-cpp-project?redirectedfrom=MSDN&view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-using-msbuild-to-create-a-visual-cpp-project?redirectedfrom=MSDN&view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-using-msbuild-to-create-a-visual-cpp-project?redirectedfrom=MSDN&view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-using-msbuild-to-create-a-visual-cpp-project?redirectedfrom=MSDN&view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-using-msbuild-to-create-a-visual-cpp-project?redirectedfrom=MSDN&view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-using-msbuild-to-create-a-visual-cpp-project?redirectedfrom=MSDN&view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-using-msbuild-to-create-a-visual-cpp-project?redirectedfrom=MSDN&view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-using-msbuild-to-create-a-visual-cpp-project?redirectedfrom=MSDN&view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-using-msbuild-to-create-a-visual-cpp-project?redirectedfrom=MSDN&view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-using-msbuild-to-create-a-visual-cpp-project?redirectedfrom=MSDN&view=msvc-170
https://docs.microsoft.com/en-us/visualstudio/releases/2019/system-requirements
https://docs.microsoft.com/en-us/visualstudio/releases/2019/system-requirements
https://docs.microsoft.com/en-us/visualstudio/releases/2019/system-requirements
https://docs.microsoft.com/en-us/visualstudio/releases/2019/system-requirements
https://docs.microsoft.com/en-us/visualstudio/releases/2019/system-requirements
https://docs.microsoft.com/en-us/visualstudio/releases/2019/system-requirements
https://docs.microsoft.com/en-us/visualstudio/releases/2019/system-requirements
https://docs.microsoft.com/en-us/visualstudio/releases/2019/system-requirements
https://docs.microsoft.com/en-us/visualstudio/releases/2019/system-requirements
https://docs.microsoft.com/en-us/visualstudio/releases/2019/system-requirements
https://docs.microsoft.com/en-us/visualstudio/releases/2019/system-requirements
https://docs.microsoft.com/en-us/visualstudio/releases/2022/system-requirements
https://docs.microsoft.com/en-us/visualstudio/releases/2022/system-requirements
https://docs.microsoft.com/en-us/visualstudio/releases/2022/system-requirements
https://docs.microsoft.com/en-us/visualstudio/releases/2022/system-requirements
https://docs.microsoft.com/en-us/visualstudio/releases/2022/system-requirements
https://docs.microsoft.com/en-us/visualstudio/releases/2022/system-requirements
https://docs.microsoft.com/en-us/visualstudio/releases/2022/system-requirements
https://docs.microsoft.com/en-us/visualstudio/releases/2022/system-requirements
https://docs.microsoft.com/en-us/visualstudio/releases/2022/system-requirements
https://docs.microsoft.com/en-us/visualstudio/releases/2022/system-requirements
https://docs.microsoft.com/en-us/visualstudio/releases/2022/system-requirements
https://docs.microsoft.com/en-us/windows-hardware/drivers/download-the-wdk
https://docs.microsoft.com/en-us/windows-hardware/drivers/download-the-wdk
https://docs.microsoft.com/en-us/windows-hardware/drivers/download-the-wdk
https://docs.microsoft.com/en-us/windows-hardware/drivers/download-the-wdk
https://docs.microsoft.com/en-us/windows-hardware/drivers/download-the-wdk
https://docs.microsoft.com/en-us/windows-hardware/drivers/download-the-wdk
https://docs.microsoft.com/en-us/windows-hardware/drivers/download-the-wdk
https://docs.microsoft.com/en-us/windows-hardware/drivers/download-the-wdk
https://docs.microsoft.com/en-us/windows-hardware/drivers/download-the-wdk
https://docs.microsoft.com/en-us/windows-hardware/drivers/download-the-wdk
https://docs.microsoft.com/en-us/windows-hardware/drivers/download-the-wdk
https://docs.microsoft.com/en-us/windows-hardware/drivers/download-the-wdk
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2015
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2015
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2015
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2015
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2015
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2015
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2015
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2015
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2015
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2015
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2015
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2015
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2015
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2017
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2017
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2017
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2017
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2017
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2017
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2017
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2017
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2017
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2017
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2017
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2017
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2017
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2019
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2019
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2019
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2019
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2019
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2019
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2019
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2019
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2019
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2019
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2019
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2019
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2019
https://doi.org/10.1007/978-1-4842-9563-2
https://doi.org/10.1007/978-1-4842-9563-2
https://doi.org/10.1007/978-1-4842-9563-2
https://doi.org/10.1007/978-1-4842-9563-2
https://doi.org/10.1007/978-1-4842-9563-2
https://doi.org/10.1007/978-1-4842-9563-2
https://doi.org/10.1007/978-1-4842-9563-2
https://doi.org/10.1007/978-1-4842-9563-2
https://doi.org/10.1007/978-1-4842-9563-2
https://doi.org/10.1007/978-1-4842-9563-2

202 Bibliography

[20] Microsoft Enterprise WDK License for VS 2019. Available online: https://docs.microsoft.
com/en-us/legal/windows/hardware/enterprise-wdk-license-2019-New

[21] Microsoft Enterprise WDK License for VS 2022. Available online: https://docs.microsoft.
com/en-us/legal/windows/hardware/enterprise-wdk-license-2022

[22] Using the Enterprise WDK. Available online: https://docs.microsoft.com/en-us/windows-
hardware/drivers/develop/using-the-enterprise-wdk

[23] MSBuild response files. Available online: https://learn.microsoft.com/en-us/visualstudio/
msbuild/msbuild-response-files?view=vs-2022

[24] Griffith, Arthur. GCC: The Complete Reference. McGraw-Hill, 2002.
[25] Walkthrough: Create and use a static library. Available online: https://learn.microsoft.com/en-

us/cpp/build/walkthrough-creating-and-using-a-static-library-cpp?view=msvc-170
[26] Walkthrough: Create and use your own Dynamic Link Library (C++). Available online:

https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-dynamic-
link-library-cpp?view=msvc-170

[27] Universal CRT deployment. Available online: https://learn.microsoft.com/en-us/cpp/
windows/universal-crt-deployment?view=msvc-170

[28] Configuring programs for Windows XP. Available online: https://learn.microsoft.com/en-us/
cpp/build/configuring-programs-for-windows-xp?view=msvc-170

[29] List of _MSC_VER and _MSC_FULL_VER. Available online: https://dev.to/yumetodo/list-
of-mscver-and-mscfullver-8nd

[30] Hyde, Randall. 2022. The Art of 64-Bit Assembly. Volume 1, x86-64 Machine Organization
and Programming, 1001. San Francisco: No Starch Press Inc.

[31] GNU MP Manual. Available online: http://gmplib.org/manual/, http://gmplib.org/gmp-man-
6.0.0a.pdf

[32] MPFR Reference Manual. Available online: www.mpfr.org/mpfr-current/mpfr.html, www.
mpfr.org/mpfr-current/mpfr.pdf

https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2019-New
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2019-New
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2019-New
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2019-New
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2019-New
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2019-New
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2019-New
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2019-New
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2019-New
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2019-New
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2019-New
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2019-New
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2019-New
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2019-New
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2022
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2022
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2022
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2022
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2022
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2022
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2022
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2022
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2022
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2022
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2022
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2022
https://docs.microsoft.com/en-us/legal/windows/hardware/enterprise-wdk-license-2022
https://docs.microsoft.com/en-us/windows-hardware/drivers/develop/using-the-enterprise-wdk
https://docs.microsoft.com/en-us/windows-hardware/drivers/develop/using-the-enterprise-wdk
https://docs.microsoft.com/en-us/windows-hardware/drivers/develop/using-the-enterprise-wdk
https://docs.microsoft.com/en-us/windows-hardware/drivers/develop/using-the-enterprise-wdk
https://docs.microsoft.com/en-us/windows-hardware/drivers/develop/using-the-enterprise-wdk
https://docs.microsoft.com/en-us/windows-hardware/drivers/develop/using-the-enterprise-wdk
https://docs.microsoft.com/en-us/windows-hardware/drivers/develop/using-the-enterprise-wdk
https://docs.microsoft.com/en-us/windows-hardware/drivers/develop/using-the-enterprise-wdk
https://docs.microsoft.com/en-us/windows-hardware/drivers/develop/using-the-enterprise-wdk
https://docs.microsoft.com/en-us/windows-hardware/drivers/develop/using-the-enterprise-wdk
https://docs.microsoft.com/en-us/windows-hardware/drivers/develop/using-the-enterprise-wdk
https://docs.microsoft.com/en-us/windows-hardware/drivers/develop/using-the-enterprise-wdk
https://docs.microsoft.com/en-us/windows-hardware/drivers/develop/using-the-enterprise-wdk
https://docs.microsoft.com/en-us/windows-hardware/drivers/develop/using-the-enterprise-wdk
https://learn.microsoft.com/en-us/visualstudio/msbuild/msbuild-response-files?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/msbuild/msbuild-response-files?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/msbuild/msbuild-response-files?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/msbuild/msbuild-response-files?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/msbuild/msbuild-response-files?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/msbuild/msbuild-response-files?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/msbuild/msbuild-response-files?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/msbuild/msbuild-response-files?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/msbuild/msbuild-response-files?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/msbuild/msbuild-response-files?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/msbuild/msbuild-response-files?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/msbuild/msbuild-response-files?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/msbuild/msbuild-response-files?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/msbuild/msbuild-response-files?view=vs-2022
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-static-library-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-static-library-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-static-library-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-static-library-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-static-library-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-static-library-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-static-library-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-static-library-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-static-library-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-static-library-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-static-library-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-static-library-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-static-library-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-static-library-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-static-library-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-static-library-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-static-library-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-static-library-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-static-library-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-dynamic-link-library-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-dynamic-link-library-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-dynamic-link-library-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-dynamic-link-library-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-dynamic-link-library-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-dynamic-link-library-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-dynamic-link-library-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-dynamic-link-library-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-dynamic-link-library-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-dynamic-link-library-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-dynamic-link-library-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-dynamic-link-library-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-dynamic-link-library-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-dynamic-link-library-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-dynamic-link-library-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-dynamic-link-library-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-dynamic-link-library-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-dynamic-link-library-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-dynamic-link-library-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-dynamic-link-library-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/windows/universal-crt-deployment?view=msvc-170
https://learn.microsoft.com/en-us/cpp/windows/universal-crt-deployment?view=msvc-170
https://learn.microsoft.com/en-us/cpp/windows/universal-crt-deployment?view=msvc-170
https://learn.microsoft.com/en-us/cpp/windows/universal-crt-deployment?view=msvc-170
https://learn.microsoft.com/en-us/cpp/windows/universal-crt-deployment?view=msvc-170
https://learn.microsoft.com/en-us/cpp/windows/universal-crt-deployment?view=msvc-170
https://learn.microsoft.com/en-us/cpp/windows/universal-crt-deployment?view=msvc-170
https://learn.microsoft.com/en-us/cpp/windows/universal-crt-deployment?view=msvc-170
https://learn.microsoft.com/en-us/cpp/windows/universal-crt-deployment?view=msvc-170
https://learn.microsoft.com/en-us/cpp/windows/universal-crt-deployment?view=msvc-170
https://learn.microsoft.com/en-us/cpp/windows/universal-crt-deployment?view=msvc-170
https://learn.microsoft.com/en-us/cpp/windows/universal-crt-deployment?view=msvc-170
https://learn.microsoft.com/en-us/cpp/windows/universal-crt-deployment?view=msvc-170
https://learn.microsoft.com/en-us/cpp/windows/universal-crt-deployment?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/configuring-programs-for-windows-xp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/configuring-programs-for-windows-xp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/configuring-programs-for-windows-xp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/configuring-programs-for-windows-xp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/configuring-programs-for-windows-xp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/configuring-programs-for-windows-xp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/configuring-programs-for-windows-xp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/configuring-programs-for-windows-xp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/configuring-programs-for-windows-xp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/configuring-programs-for-windows-xp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/configuring-programs-for-windows-xp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/configuring-programs-for-windows-xp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/configuring-programs-for-windows-xp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/configuring-programs-for-windows-xp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/configuring-programs-for-windows-xp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/configuring-programs-for-windows-xp?view=msvc-170
https://dev.to/yumetodo/list-of-mscver-and-mscfullver-8nd
https://dev.to/yumetodo/list-of-mscver-and-mscfullver-8nd
https://dev.to/yumetodo/list-of-mscver-and-mscfullver-8nd
https://dev.to/yumetodo/list-of-mscver-and-mscfullver-8nd
https://dev.to/yumetodo/list-of-mscver-and-mscfullver-8nd
https://dev.to/yumetodo/list-of-mscver-and-mscfullver-8nd
https://dev.to/yumetodo/list-of-mscver-and-mscfullver-8nd
https://dev.to/yumetodo/list-of-mscver-and-mscfullver-8nd
https://dev.to/yumetodo/list-of-mscver-and-mscfullver-8nd
https://dev.to/yumetodo/list-of-mscver-and-mscfullver-8nd
http://gmplib.org/manual/
http://gmplib.org/manual/
http://gmplib.org/manual/
http://gmplib.org/manual/
http://gmplib.org/gmp-man-6.0.0a.pdf
http://gmplib.org/gmp-man-6.0.0a.pdf
http://gmplib.org/gmp-man-6.0.0a.pdf
http://gmplib.org/gmp-man-6.0.0a.pdf
http://gmplib.org/gmp-man-6.0.0a.pdf
http://gmplib.org/gmp-man-6.0.0a.pdf
http://gmplib.org/gmp-man-6.0.0a.pdf
http://gmplib.org/gmp-man-6.0.0a.pdf
http://gmplib.org/gmp-man-6.0.0a.pdf
www.mpfr.org/mpfr-current/mpfr.html
www.mpfr.org/mpfr-current/mpfr.html
www.mpfr.org/mpfr-current/mpfr.html
www.mpfr.org/mpfr-current/mpfr.html
www.mpfr.org/mpfr-current/mpfr.html
www.mpfr.org/mpfr-current/mpfr.html
www.mpfr.org/mpfr-current/mpfr.html
www.mpfr.org/mpfr-current/mpfr.pdf
www.mpfr.org/mpfr-current/mpfr.pdf
www.mpfr.org/mpfr-current/mpfr.pdf
www.mpfr.org/mpfr-current/mpfr.pdf
www.mpfr.org/mpfr-current/mpfr.pdf
www.mpfr.org/mpfr-current/mpfr.pdf
www.mpfr.org/mpfr-current/mpfr.pdf

Index

A
AES symmetric encryption algorithm

implementation, 153–155
APISet forwarder DLLs, 129
Archive

extensions
.gz, 38
.rar, 38
.tar, 38
.tar.gz, 38
.tar.xz, 38
.7z, 38
.zip, 38

formats, 88
APFS, 42
AR, 42
ARJ, 42
BZIP2, 42
CAB, 42
CHM, 42
CPIO, 42
CramFS, 42
DMG, 42
EXT, 42
FAT, 42
GPT, 42
GZIP, 42
HFS, 42
IHEX, 42
ISO, 42, 96
LZH, 42
LZMA, 42
LZMA2, 42
MBR, 42
MSI, 42
NSIS, 42
NTFS, 42, 99

QCOW2, 42
RAR, 42
RPM, 42
7z, 42
SquashFS, 42
TAR, 42
UDF, 42
UEFI, 42
VDI, 42
VHD, 42
VHDX, 42
VMDK, 42
WIM, 42
XAR, 42
XZ, 42
Z, 42
ZIP, 42, 96

Assembly language, 19, 123, 125

B
bash shell, 155
BCryptGenRandom, 151
Boost library, 146
Borland C/C.++ compiler, 86
Building software

cross-platform, 32–33
Cygwin, 32
process on Unix systems (see Unix

systems)
process on Windows Systems (see

Windows Systems)

C
C/C.++ language, 17–18
c.cpp helper program, 123

© The Author(s), under exclusive license to APress Media, LLC,
part of Springer Nature 2024
B. I. Tuleuov, A. B. Ospanova, Beginning C++ Compilers,
https://doi.org/10.1007/978-1-4842-9563-2

203

https://doi.org/10.1007/978-1-4842-9563-2
https://doi.org/10.1007/978-1-4842-9563-2
https://doi.org/10.1007/978-1-4842-9563-2
https://doi.org/10.1007/978-1-4842-9563-2
https://doi.org/10.1007/978-1-4842-9563-2
https://doi.org/10.1007/978-1-4842-9563-2
https://doi.org/10.1007/978-1-4842-9563-2
https://doi.org/10.1007/978-1-4842-9563-2
https://doi.org/10.1007/978-1-4842-9563-2
https://doi.org/10.1007/978-1-4842-9563-2

204 Index

Classical compiling languages, 85
CL task

parameters
AdditionalIncludeDirectories, 171
AdditionalOptions, 176
AdditionalUsingDirectories, 176
AlwaysAppend, 177
AssemblerListingLocation, 177
AssemblerOutput, 177
BasicRuntimeChecks, 177
BrowseInformation, 177
BrowseInformationFile, 177
BufferSecurityCheck, 178
BuildingInIDE, 178
CallingConvention, 178
CompileAs, 178
CompileAsManaged, 178
CreateHotpatchableImage, 179
DebugInformationFormat, 179
DisableLanguageExtensions, 179
DisableSpecificWarnings, 179
EnableEnhancedInstructionSet, 179
EnableFiberSafeOptimizations, 180
EnablePREfast, 180
ErrorReporting, 180
ExceptionHandling, 180
ExpandAttributedSource, 180
FavorSizeOrSpeed, 180–181
FloatingPointExceptions, 181
FloatingPointModel, 181
ForceConformanceInForLoopScope,

181
ForcedIncludeFiles, 181
ForcedUsingFiles, 181
FunctionLevelLinking, 181
GenerateXMLDocumentationFiles, 182
IgnoreStandardIncludePath, 182
InlineFunctionExpansion, 182
IntrinsicFunctions, 182
MinimalRebuild, 182
MinimalRebuildFromTracking, 188
MultiProcessorCompilation, 182
ObjectFileName, 183
ObjectFiles, 183
OmitDefaultLibName, 183
OmitFramePointers, 183
OpenMPSupport, 183
Optimization, 183
PrecompiledHeader, 183–184
PrecompiledHeaderFile, 184
PrecompiledHeaderOutputFile, 184
PreprocessKeepComments, 184
PreprocessorDefinitions, 184
PreprocessOutput, 184

PreprocessOutputPath, 184
PreprocessSuppressLineNumbers, 184
PreprocessToFile, 185
ProcessorNumber, 185
ProgramDataBaseFileName, 185
RuntimeLibrary, 185
RuntimeTypeInfo, 185
ShowIncludes, 185
SmallerTypeCheck, 185
Sources, 186
StringPooling, 186
StructMemberAlignment, 186
SuppressStartupBanner, 186
TLogReadFiles, 188
TLogWriteFiles, 188
TrackerLogDirectory, 186
TrackFileAccess, 188
TreatSpecificWarningsAsErrors, 186
TreatWarningAsError, 186–187
TreatWChar_tAsBuiltInType, 187
UndefineAllPreprocessorDefinitions,

187
UndefinePreprocessorDefinitions, 187
UseFullPaths, 187
UseUnicodeForAssemblerListing, 187
WarningLevel, 187
WholeProgramOptimization, 188
XMLDocumentationFileName, 188

Visual Studio and Microsoft C/C. ++
compiler versions, 171–176

CMake
CMakeLists.txt and standard

Makefiles, 81
default installation, 81
easy installation, 82–83
function, 81
GUI interface, 82

C# object-oriented language, 20–22
Code::Blocks

binaries, 69
compiler list, 70, 72
Dev-C.++ project, 69
features, 68
first launched, 70, 71
Hello World, 70, 74
IDE, 68–69
INCLUDE and LIB directories from

EWDK, 70, 73
Microsoft Visual C.++ project, 69
open source development environment, 68
using compiler from EWDK, 70, 73

Command line, 2–4
Command-line interface (CLI)

access management, 60–61

Index 205

advantages, shells, 52
command line from Explorer, 53
ConEmu, 61–62
disadvantages, shells, 52
environment variable (see Environment

variable)
Explorer, 52
graphical shell, 52
launching and executing commands, 53–55
nested directories, 51
operating system, 51–52
path separator, 55
shell of operating system, 52
Unix systems, 52
Windows GUI, 52
windows standard command line, 55–56

Commands
getting help, 5
system

cd, 5
cls, 5
dir, 5
echo, 2, 5
external, 5
internal, 5
path, 5
set, 2, 5

xcopy, 3, 5
Common Object File Format (COFF), 92
Compiler

definition, 85
Fortran, 85, 86, 106–108
GNU C/C. ++, 85
input/output, 85
Intel C/C. ++, 106–108
interpreter, 85
Microsoft C/C. ++, 128, 142
Microsoft C/C. ++, Optimizing

default installation, 93–94
easy installation with EWDK, 95
executable, 92, 93
options, 102
using with EWDK, 101
see also Microsoft C/C.++ Optimizing

Compiler
MinGW, 86, 142, 147 (see also Minimalist

GNU for Windows (MinGW))
misconception, 92
object code, 85
object files, 85
program units, 85

ConEmu, 61–62
cryptlib.lib library, 155

Crypto. ++
AES Implementation, 153–155
algorithms, 150
definition, 149
history, 149
information compression/decompression,

151
Microsoft C/C.++ compiler, 152–153
MinGW compiler

commands, 152
default flags, 151
folder creation, 152
instructions, 151

password-based key derivation functions,
150

PRNGs, 150
supported compilers and IDEs, 149
wrapper classes, 151

Crypto. ++AES.cpp source code file, 155
C standard library, 122, 123

D
DAEMON Tools Lite, 6
Devices

mounting, 5–6
virtual, 6

dosmth internal command, 53, 54
dumpbin, 120
Dynamic library, 110, 120–122

creating with, Microsoft C/C. ++, 114–115
creating with, MinGW, 112–113
.dll, 114
dumpbin utility/EXPORTS option, 117
/EHsc option, 115
-fpic option, 114
hello.h, 115, 116
link utility/DLL option, 116
modified files, 113
_MSC_VER constant, 116
object files, 115
-shared option, 114
shellofirst.cpp and

shellosecond.cpp,
116–117

.so, 114
stwohellos.cpp, 113

Dynamic-link libraries (DLLs), 92, 93, 109,
110, 114–116, 128, 140, 143

dumpbin, 120
hello.dll, 120
libgmp-10.dll, 148
libgmpxx-4.dll, 148

206 Index

E
Editor

Geany, 71–72
hex editor, 68
Kate, 72–74

Enterprise WDK (EWDK)
downloads, 96
first version, 95
installation, 95
Microsoft Macro Assembler, 101–102
MSBuild, 104–106
Programsbin directory, 101
size, reducing, 95

atlmfc folder, 97, 98
copying details, 99, 100
folder name, 99
Intel processors, 100
libraries, 97
mounting, directory/folder, 99, 101
ncdu utility, 97
robocopy, 98
subst utility, 99

vc.bat file, 101
Environment variable

CL, _CL_, 102–104
setting, 103

PATH, 54, 57, 58, 88
change, 58
flexible change, 60
search order, 60

PATHEXT, 58, 192
user-defined, 60

Exception handling model
dwarf, 87, 88
SEH, 87, 88
sjlj, 87, 88

F
Far Manager

default installation, 37
easy installation, 37–38
“File and ARchive,” 35
free (shareware) utility, 35
panels, 36
7z context menu, 37
usage, 36

command line, 38–40
quick find file, 41
select files and directories, 40, 41

Fast Library for Number Theory (FLINT),
146

Files
archive, 1, 88

batch, 2–4, 89–91, 101
binary, 1, 4, 85, 86
C. ++, 123
cl.exe, 92, 93, 102
cmd.exe, 3
COMMAND.COM, 3
command line, 2–4
computer, 1
executable, 1–4, 85, 88, 90, 94, 109, 110,

116
extensions

.a, 110

.asm, 19

.bat, 4, 39

.c, 18

.cmd, 4, 39

.com, 3, 39

.cpp, 18

.cs, 20

.cxx, 18

.dll, 3, 114

.docx, 1

.exe, 3, 39

.exp, 116

.h, 18

.hpp, 18

.hxx, 18

.js, 39

.jse, 39

.lib, 116

.msc, 39

.o, 112

.obj, 92

.ocx, 3

.pdf, 1

.rsp, 105

.so, 114

.sys, 3, 93

.vbe, 39

.vbs, 39

.wsf, 39

.wsh, 39

.xlsx, 1
formats, 1–2
Microsoft Word, 1
ml64.exe

invocation, 101
object, 1
response, 105
system commands, 5
text, 1
types, 1
vc.bat, 101

Fortran language, 18–19

Index 207

G
Geany, 71–72
GNU Compiler Collection (GCC), 86, 87, 90,

110, 111, 146
See also Minimalist GNU for Windows

(MinGW)
GNU MPFR Library (MPFR)

bindings, 146
C.++ interfaces, 146
free and commercial software, 146
GMP library, 145
GNU Lesser General Public License, 146
goal, 145

GNU Multiprecision Library (GMP)
auxiliary functions, 132
built DLL library, installation, 140–142
C.++ class-based interface, 132
computation of .10000000!, 146–148
cryptographic applications, 131
DLL library, 140
dynamic-link library, 140, 143
fast low-level functions, natural numbers,

132
gmp-mparam.h, 132
GNU build tools, 133
GNU GPL v2, 131
GNU LGPL v3, 131
high-level arithmetic functions, 131
high-level floating-point arithmetic

functions, 132
high-level rational arithmetic functions,

132
install built library, 138–139
lib utility, 143
“make check” part, 134
MinGW, 148
mini-gmp, 145
MPFR, 145–146
MSYS, 148
restrictions, 131
static library, 140
tuneup utility, 132
Unix-like systems, 131

GNU operating systems, 86

H
Hardware abstraction layer (HAL), 19
hello.dll, 120
High-level arithmetic functions, 131
High-level floating-point arithmetic functions,

132
High-level rational arithmetic functions, 132

I
INSTALL.md file, 161
Integrated development environments (IDEs),

11, 26, 93, 102
Code::Blocks, 68–71
Geany, 71–72
Kate, 72–74
Microsoft Visual Studio, 63–66
Qt Creator, 66–68

Intel Bi-Endian Compiler, 106
Intel Fortran Compiler 16.0, 107
Intel Parallel Studio, 106, 107
Intel System Studio, 106
Interpreter

command
cmd, 3
CMD.EXE, 3, 55
COMMAND.COM, 3

K
Kate, 72, 74
Kernel-mode driver, 165, 166
KProcessHacker, 165

L
Languages

Assembly, 19, 122, 123
C#, 20–22
C/C. ++, 17–18, 85, 86, 104
Fortran, 18–19, 85, 86, 107, 108
MicrosoftMacro Assembler, 101

lessmsi
easy installation, 47
open source utility, 47
usage, 47–48

libhello.a libraries, 122
Library, 109

advantages, 109–110
Assembler program, 122
64-bit Assembly Program, I/O functions,

123
Boost, 90, 146
creation, 111–112
Crypto. ++, 149
C standard, 122, 123
disadvantages, 109–110
distributions, 110
dynamic, 120–122 (see also Dynamic

library)
dynamic-link, 110, 114–116
extensions

.a, 110

208 Index

.dll, 114

.exp, 116

.lib, 116

.so, 114
GCC, 111
GNU Multiprecision Library, GMP, 131
libhello.a, 122
linker, 87, 95, 103, 109, 110
MathGL, 110
MinGW, 111
MPC, 87
MyLibrary.cpp., 123, 127
MyLibrary.lib, 127
/NODEFAULTLIB:libcmt.lib, 127
OpenSSL, 157
static, 109, 119

creating with, Microsoft C/C. ++, 113
creating with, MinGW, 112–113

universal CRT deployment, 128–129
Libtool library tool, 142
Linker, 85
Local deployment, Universal CRT

DLLs, 128
manual installation, 128
Universal CRT, 129
Windows XP, 129

M
Makefile, 23, 24, 81, 83
make install command, 155
Math Kernel Library (MKL), 107
Microsoft C/C.++ compiler, OpenSSL

building library, 162
configuration files, 162
directories, 161
EWDK environment, 160
installing library, 162
INSTALL.md file, 161
MSYS, 160
msys[.bat] command, 160
NASM, 159
non-obvious errors, 163
resource compiler rc.exe, 161
running command, 163
Strawberry Perl, 160
testing library, 162
Windows API and Windows Sockets,

161
Microsoft C/C.++ compiler options

deprecated and removed compiler options,
199

diagnostics, 198
experimental options, 198

header units/modules, 193
language, 194–196
linking, 196
miscellaneous, 197
optimization, 189
output files, 192
code generation, 189–192
preprocessor, 193

Microsoft C/C.++ compiler, process hacker
CL environment variable, 168
EWDK, 167
Far Manager, 167
FLS_MAXIMUM_AVAILABLE macro, 168
IncludePath, 169
MSBuild, 167
object library files, 169
paths, 168, 169
root folder, 168

Microsoft C/C.++ Optimizing Compiler, 92
CL command

environment variables, 103–104
options, 102–103
syntax, 102

cl.exe, 92, 93, 102
documentation/clarifications, 92
dynamic libraries, 114–115
EWDK (see Enterprise WDK (EWDK))
MSBuild

Directory.Build.rsp. file, 105
disks, 104
LaunchBuildEnv.cmd, 105
MSBuild.exe, 105
parameter set, 105
PlatformToolset property, 106
.rsp files, 105
Visual Studio, 104

Property Pages dialog box, 102
Microsoft Foundation Classes (MFC), 97
Microsoft’s CryptGenRandom, 151
Microsoft’s lib tool, 142
Microsoft Visual C.++ Build Tools 2015, 94
Microsoft Visual Studio

system requirements, Visual Studio 2019,
63–66

Visual C.++ 10, 63
Visual Studio, 63

Microsoft Windows XP, 129
MinGW Installation Manager, 77
mini-gmp, 145
Minimalist GNU for Windows (MinGW), 11

availability, 86
build sources, 87
default installation, 87
distribution, 90

Index 209

easy installation, 87
compiler, 88, 89
c. ++_startfile.txt file, 91
dwarf, 88
Far.bat file, 91
libraries, 90
mingw_all.bat batch file, 91
personal builds, 87
SEH, 88
threading model, 88

and Intel C/C.++ compiler, 87
libraries, 110
MinGW-W64, 88
MSYS, 86
popularity, 86
source code, 87
technical literature, 108
versions, 90

Minimal systems
CMake

CMakeLists.txt and standard
Makefiles, 81

default installation, 81
easy installation, 82–83
function, 81
GUI interface, 82

MSYS, 75–76
.bash_history, 79
default installation, 76–78
easy installation, 78–79
export and set command, 79

MSYS2
32-bit and 64-bit Windows, 79–80
default installation, 80
easy installation, 80–81
standard installation, 80

Mounting devices, 5–6
mpf_t, 132
mp_limb_t, 132
mpq_t, 132
MSVCP*.DLL, 128
msvcr110.dll, 128
msvcr120.dll, 128
MSVCRT.DLL, 128
MSYS (Minimal SYStem)

advantages and disadvantages, 76
Cygwin project, 75
default installation, 76–78
easy installation, 78–79
GNU utilities, 75
Unix applications, 76
warning, 75

MyLibrary.cpp, 127
MyLibrary.lib library, 127

N
Netwide Assembler (NASM), 159, 160
Notepad. ++

ASCII Codes Insertion Panel, 45, 46
characteristic feature of editor, 45
default installation, 46
easy installation, 46
features, 44–45
interface, 45
line operations, 45
open source multipurpose editor, 44

O
OpenSSL

definition, 157
Microsoft C/C.++ compiler (see Microsoft

C/C.++ compiler, OpenSSL)
MinGW compiler

Configure script, 158
MSYS, 157
MSYS2, 158
Perl interpreter implementation, 157
Programs directory, 158
sequential commands, 159

official website, 157
openssl-3.1.0.tar.gz library, 158

P
path

absolute, 55
relative, 55

ph.rsp response file, 168, 169
Platforms

Cygwin, 32, 61, 75, 133, 149
Portable installation, 11
Power8, 151
printf, 123
Process Hacker

definition, 165
drivers, 165
key features, 165
Microsoft C/C.++ compiler (see Microsoft

C/C.++ compiler, process hacker)
System Informer, 166
utility, 166

ProcessHacker.sln files, 167
Programming languages, see Languages
ProgramsOpenSSL folder, 161
Pseudo random number generators (PRNGs),

150

210 Index

Q
Qt Creator

C/C.++ compilers, 67
interface, 67
platforms, 67
settings, 68

R
Rabin’s Information Dispersal Algorithm

(IDA), 150
rc.exe commands, 161
Real number rounding errors, 20

S
Sequential commands, 159
7-Zip

default installation, 42
easy installation, 43
features, 42
file archiver, 42
latest version, 7-Zip 22.01, 42
usage, 43–44

Shamir’s Secret Information Sharing Scheme,
150

Software installation
bin, 9
change DVD letter, 13
create new partition, 12
‘C:Program Files’ folder, 9
Disk D directory tree, 14, 15
exe or bat type, 9
exe or msi type, 10
home folder, 9
installation method, 11
justifications, 14, 16
MinGW, 11
portable, 11
ProgramsSomeUtility-X.Y.Z

directory, 14
setup program, 9
from source code, 11
Visual Studio, 10
Windows reinstallation, 11–13
zip/7z archive, 10, 11

Static library, 109, 110, 112–113, 119, 140
Strawberry Perl, 157, 160
Structured exception handling (SEH), 87, 88
System commands

cd, 5
cls, 5

dir, 5
echo, 2, 5
external, 5
internal, 5
path, 5
set, 2, 5

System Informer, 166

T
TCP/IP protocols, 106
Threading Building Blocks (TBB), 107
TMP environment variable, 163
TreatWarningAsError file, 168

U
ucrtbase.dll, 128, 129
Universal CRT (UCRT), 128–129

See also Local deployment, Universal CRT
Unix systems, 131

Configure script, 24
GNU autotools, 24–25
Makefile utility, 23, 24
make utility, 23, 24
Phony Targets, 24

Utility
ar, 113
chcp.com, 4
diskcomp.com, 4
diskcopy.com, 4
dumpbin, 117
format.com, 4
lessmsi, 47
lib, 113, 116, 143
link, 116
make, 23, 94
mode.com, 4
more.com, 4
MSBuild

using with EWDK, 104–106
nmake, 25, 94
Process Hacker, 165
robocopy, 98
7z, 42

command-line, 43
tree.com, 4
tuneup, 132
WinCDEmu, 6, 49, 96
xcopy, 51
xcopy.exe, 5

Index 211

V
VCRuntime*.DLL

(VCRUNTIME140.DLL),
128

Virtual devices, 6
Virtual machine, 85
Visual C.++ C Runtime (CRT)

Universal CRT. VCRuntime, 128
VCRuntime, 128

Visual C.++ Redistributable Libraries, 128,
129

Visual Studio, 90, 92–94, 97, 104, 106–108
Visual Studio command prompt shortcuts, 95
Visual Studio 2019 system requirements

additional requirements and guidance,
65–66

hardware, 64
supported languages, 64
supported operating systems, 64

W
Watcom, 86
WinCDEmu, 6

easy installation, 49
open source CD/DVD/BD emulator, 6, 49,

96
portable version, 49
usage, 49

Windows Driver Kit (WDK), 93, 95
Windows Systems

MSBuild build system
build target, 30
child elements, 27–29
MyProject.vcxproj, 27
properties, 30–32
.vcxproj and .props files, 27

nmake utility, 25–26
Projects, 26
.sln extension, 26
.vcxproj extension, 26

	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	1 Files and Devices
	1.1 File Types and Formats
	1.2 Executable and Batch Files
	1.3 System Commands
	1.4 Mounting Devices
	1.5 Virtual Devices
	1.6 Conclusion

	2 Software Installation
	2.1 Overview of Installation Methods
	2.2 Installation Packages (msi)
	2.3 Installing with Archives
	2.4 Installing from Sources
	2.5 Portable Installation
	2.6 Best Software Installation Practices for Windows Systems
	2.7 Conclusion

	3 Programming Languages and Software
	3.1 Programming Languages
	3.2 C/C++
	3.3 Fortran
	3.4 Assembly
	3.5 C#
	3.6 Conclusion

	4 General Build Information
	4.1 Unix Systems
	4.1.1 GNU Autotools (GNU Build System)

	4.2 Windows Systems
	4.2.1 nmake Utility
	4.2.2 Visual Studio .vcxproj and .sln Files
	4.2.3 MSBuild Build System

	4.3 Cygwin
	4.4 Cross-Platform Topics
	4.5 Conclusion

	5 Some Useful Open Source Utilities
	5.1 Far Manager
	5.1.1 Default Installation
	5.1.2 Easy Installation
	5.1.3 Usage

	5.2 7z
	5.2.1 Default Installation
	5.2.2 Easy Installation
	5.2.3 Usage

	5.3 Notepad++
	5.3.1 Default Installation
	5.3.2 Easy Installation

	5.4 lessmsi
	5.4.1 Easy Installation
	5.4.2 Usage

	5.5 WinCDEmu
	5.5.1 Easy Installation
	5.5.2 Usage

	5.6 Conclusion

	6 Command-Line Interface
	6.1 Command Interpreter
	6.1.1 Launching and Executing Commands in the Command Line (Terminal, Console)
	6.1.2 Path Separator
	6.1.3 Windows Standard Command Line

	6.2 Environment Variables
	6.2.1 Modification of the 1.10plus1.10minus1.10101.10!PATH! SystemEnvironment Variable

	6.3 Access Management
	6.4 ConEmu
	6.5 Conclusion

	7 Integrated Development Environments and Editors
	7.1 Microsoft Visual Studio
	7.2 Qt Creator
	7.3 Code::Blocks
	7.4 Geany
	7.5 Kate
	7.6 Conclusion

	8 Minimal Systems
	8.1 MSYS
	8.2 Default Installation
	8.3 Easy Installation
	8.4 Some Tips
	8.5 MSYS2
	8.6 Default Installation
	8.7 Easy Installation
	8.8 CMake
	8.9 Default Installation
	8.10 Easy Installation
	8.11 Conclusion

	9 Compilers
	9.1 GCC/MinGW
	9.1.1 Default Installation
	9.1.2 Building from the Sources
	9.1.3 Easy Installation

	9.2 Microsoft C/C++ Optimizing Compiler
	9.2.1 Default Installation
	9.2.2 Easy Installation (Without Visual Studio)with EWDK
	9.2.3 Using Microsoft C/C++ Compiler with EWDK
	9.2.4 Microsoft C/C++ Compiler Options
	9.2.5 Using MSBuild with EWDK

	9.3 Intel C/C++ Optimizing Compiler
	9.4 Conclusion

	10 Libraries
	10.1 Dynamic and Static Libraries
	10.2 Building Libraries
	10.3 Creating User Libraries
	10.4 Conclusion

	11 Using Libraries
	11.1 Linking with Static Libraries
	11.2 Linking with Dynamic Libraries
	11.3 Using Libraries from Source Code
	11.4 Universal CRT Deployment
	11.5 Conclusion

	12 GMP (GNU Multiprecision Library)
	12.1 Building
	12.1.1 GNU MPFR Library

	12.2 Example: Computation of 10 000 000!
	12.3 Conclusion

	13 Crypto++
	13.1 Building with MinGW
	13.2 Building with Microsoft C/C++ Compiler
	13.3 Example: AES Implementation
	13.4 Conclusion

	14 OpenSSL
	14.1 Building with MinGW
	14.2 Building with Microsoft C/C++ Compiler
	14.3 Conclusion

	15 Process Hacker
	15.1 Building with Microsoft C/C++ Compiler
	15.1.1 Building Driver
	15.1.2 Building Utility

	15.2 Conclusion

	A Appendix
	Visual Studio Version and Discrimination Macros
	CL Task
	Parameters

	Microsoft C/C++ Compiler Options Listed by Category
	Optimization
	Code Generation
	Output Files
	Preprocessor
	Header Units/Modules
	Language
	Linking
	Miscellaneous
	Diagnostics
	Experimental Options
	Deprecated and Removed Compiler Options

	Bibliography
	Index

