
C# 10
Pocket
Reference
Instant Help for
C# 10 Programmers

Joseph Albahari
& Ben Albahari

Joseph Albahari and Ben Albahari

C# 10 Pocket Reference
Instant Help for C# 10

Programmers

978-1-098-12204-1

[LSI]

C# 10 Pocket Reference
by Joseph Albahari and Ben Albahari

Copyright © 2022 Joseph Albahari and Ben Albahari. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebasto‐
pol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promo‐
tional use. Online editions are also available for most titles (http://oreilly.com).
For more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Amanda Quinn
Development Editor: Corbin Collins
Production Editor: Kristen Brown
Copyeditor: Charles Roumeliotis
Proofreader: Piper Editorial Consulting, LLC
Indexer: WordCo Indexing Services, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

January 2022: First Edition

Revision History for the First Edition
2022-01-18: First Release

See https://oreil.ly/c10prERR for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. C# 10
Pocket Reference, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not repre‐
sent the publisher’s views. While the publisher and the authors have used
good faith efforts to ensure that the information and instructions contained
in this work are accurate, the publisher and the authors disclaim all respon‐
sibility for errors or omissions, including without limitation responsibility
for damages resulting from the use of or reliance on this work. Use of the
information and instructions contained in this work is at your own risk.
If any code samples or other technology this work contains or describes is
subject to open source licenses or the intellectual property rights of others,
it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

http://oreilly.com
https://oreil.ly/c10prERR

Table of Contents

C# 10 Pocket Reference 1
A First C# Program 2
Syntax 5
Type Basics 8
Numeric Types 19
Boolean Type and Operators 26
Strings and Characters 28
Arrays 32
Variables and Parameters 38
Expressions and Operators 47
Null Operators 53
Statements 56
Namespaces 65
Classes 70
Inheritance 89
The object Type 99
Structs 103
Access Modifiers 106
Interfaces 108

iii

Enums 113
Nested Types 115
Generics 116
Delegates 125
Events 131
Lambda Expressions 137
Anonymous Methods 142
try Statements and Exceptions 143
Enumeration and Iterators 151
Nullable Value Types 157
Nullable Reference Types 162
Extension Methods 164
Anonymous Types 166
Tuples 167
Records 169
Patterns 176
LINQ 180
Dynamic Binding 207
Operator Overloading 215
Attributes 219
Caller Info Attributes 223
Asynchronous Functions 225
Unsafe Code and Pointers 236
Preprocessor Directives 241
XML Documentation 243

Index 249

iv | Table of Contents

C# 10 Pocket Reference

C# is a general-purpose, type-safe, primarily object-oriented
programming language, the goal of which is programmer pro‐
ductivity. To this end, the language balances simplicity, expres‐
siveness, and performance. C# 10 is designed to work with
the Microsoft .NET 6 runtime (whereas C# 9 targets .NET 5,
C# 8 targets .NET Core 3, and C# 7 targets .NET Core 2 and
Microsoft .NET Framework 4.6/4.7/4.8).

NOTE

The programs and code snippets in this book mirror those
in Chapters 2 through 4 of C# 10 in a Nutshell (O’Reilly)
and are all available as interactive samples in LINQPad.
Working through these samples in conjunction with the
book accelerates learning in that you can edit the samples
and instantly see the results without needing to set up
projects and solutions in Visual Studio.
To download the samples, click the Samples tab in LINQ‐
Pad and then click “Download more samples.” LINQPad is
free—go to www.linqpad.net.

1

https://learning.oreilly.com/library/view/c-10-in/9781098121945/
http://www.linqpad.net
http://www.linqpad.net

A First C# Program
Following is a program that multiplies 12 by 30 and prints the
result, 360, to the screen. The double forward slash indicates
that the remainder of a line is a comment:

int x = 12 * 30; // Statement 1
System.Console.WriteLine (x); // Statement 2

Our program consists of two statements. Statements in C# exe‐
cute sequentially and are terminated by a semicolon. The first
statement computes the expression 12 * 30 and stores the result
in a variable, named x, whose type is a 32-bit integer (int). The
second statement calls the WriteLine method on a class called
Console, which is defined in a namespace called System. This
prints the variable x to a text window on the screen.

A method performs a function; a class groups function mem‐
bers and data members to form an object-oriented build‐
ing block. The Console class groups members that handle
command-line input/output (I/O) functionality, such as the
WriteLine method. A class is a kind of type, which we examine
in “Type Basics” on page 8.

At the outermost level, types are organized into namespaces.
Many commonly used types—including the Console class—
reside in the System namespace. The .NET libraries are organ‐
ized into nested namespaces. For example, the System.Text
namespace contains types for handling text, and System.IO
contains types for input/output.

Qualifying the Console class with the System namespace on
every use adds clutter. The using directive lets you avoid this
clutter by importing a namespace:

using System; // Import the System namespace

int x = 12 * 30;
Console.WriteLine (x); // No need to specify System

A basic form of code reuse is to write higher-level functions
that call lower-level functions. We can refactor our program

2 | C# 10 Pocket Reference

with a reusable method called FeetToInches that multiplies an
integer by 12, as follows:

using System;

Console.WriteLine (FeetToInches (30)); // 360
Console.WriteLine (FeetToInches (100)); // 1200

int FeetToInches (int feet)
{
 int inches = feet * 12;
 return inches;
}

Our method contains a series of statements surrounded by a
pair of braces. This is called a statement block.

A method can receive input data from the caller by specifying
parameters and output data back to the caller by specifying
a return type. Our FeetToInches method has a parameter for
inputting feet, and a return type for outputting inches:

int FeetToInches (int feet)
...

The literals 30 and 100 are the arguments passed to the Feet
ToInches method.

If a method doesn’t receive input, use empty parentheses. If it
doesn’t return anything, use the void keyword:

using System;
SayHello();

void SayHello()
{
 Console.WriteLine ("Hello, world");
}

Methods are one of several kinds of functions in C#. Another
kind of function we used in our example program was the
* operator, which performs multiplication. There are also con‐
structors, properties, events, indexers, and finalizers.

A First C# Program | 3

Compilation
The C# compiler compiles source code (a set of files with the .cs
extension) into an assembly. An assembly is the unit of pack‐
aging and deployment in .NET. An assembly can be either an
application or a library. A normal console or Windows applica‐
tion has an entry point, whereas a library does not. The purpose
of a library is to be called upon (referenced) by an application
or by other libraries. .NET itself is a set of libraries (as well as a
runtime environment).

Each of the programs in the preceding section began directly
with a series of statements (called top-level statements). The
presence of top-level statements implicitly creates an entry
point for a console or Windows application. (Without top-level
statements, a Main method denotes an application’s entry point
—see “Symmetry of predefined types and custom types” on
page 10.)

To invoke the compiler, you can either use an integrated devel‐
opment environment (IDE) such as Visual Studio or Visual
Studio Code, or call it manually from the command line. To
manually compile a console application with .NET, first down‐
load the .NET 6 SDK, and then create a new project, as follows:

dotnet new console -o MyFirstProgram
cd MyFirstProgram

This creates a folder called MyFirstProgram, which contains a
C# file called Program.cs, which you can then edit. To invoke
the compiler, call dotnet build (or dotnet run, which will
compile and then run the program). The output will be writ‐
ten to a subdirectory under bin\debug, which will include
MyFirstProgram.dll (the output assembly) as well as MyFirst‐
Program.exe (which runs the compiled program directly).

4 | C# 10 Pocket Reference

Syntax
C# syntax is inspired by C and C++ syntax. In this section, we
describe C#’s elements of syntax, using the following program:

using System;

int x = 12 * 30;
Console.WriteLine (x);

Identifiers and Keywords
Identifiers are names that programmers choose for their classes,
methods, variables, and so on. Here are the identifiers in our
example program, in the order in which they appear:

System x Console WriteLine

An identifier must be a whole word, essentially made up of
Unicode characters starting with a letter or underscore. C#
identifiers are case sensitive. By convention, parameters, local
variables, and private fields should be in camel case (e.g.,
myVariable), and all other identifiers should be in Pascal case
(e.g., MyMethod).

Keywords are names that mean something special to the com‐
piler. There are two keywords in our example program, using
and int.

Most keywords are reserved, which means that you can’t
use them as identifiers. Here is the full list of C# reserved
keywords:

Syntax | 5

abstract

as

base

bool

break

byte

case

catch

char

checked

class

const

continue

decimal

default

delegate

do

double

else

enum

event

explicit

extern

false

finally

fixed

float

for

foreach

goto

if

implicit

in

int

interface

internal

is

lock

long

namespace

new

null

object

operator

out

override

params

private

protected

public

readonly

record

ref

return

sbyte

sealed

short

sizeof

stackalloc

static

string

struct

switch

this

throw

true

try

typeof

uint

ulong

unchecked

unsafe

ushort

using

virtual

void

volatile

while

Avoiding conflicts
If you really want to use an identifier that clashes with a
reserved keyword, you can do so by qualifying it with the @
prefix. For instance:

class class {...} // Illegal
class @class {...} // Legal

The @ symbol doesn’t form part of the identifier itself. So
@myVariable is the same as myVariable.

Contextual keywords
Some keywords are contextual, meaning they can also be used
as identifiers—without an @ symbol. The contextual keywords
are as follows:

6 | C# 10 Pocket Reference

add

alias

and

ascending

async

await

by

descending

dynamic

equals

from

get

global

group

init

into

join

let

managed

nameof

nint

not

notnull

nuint

on

or

orderby

partial

remove

select

set

unmanaged

value

var

with

when

where

yield

With contextual keywords, ambiguity cannot arise within the
context in which they are used.

Literals, Punctuators, and Operators
Literals are primitive pieces of data lexically embedded into
the program. The literals we used in our example program
are 12 and 30. Punctuators help demarcate the structure of the
program. An example is the semicolon, which terminates a
statement. Statements can wrap multiple lines:

Console.WriteLine
 (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10);

An operator transforms and combines expressions. Most oper‐
ators in C# are denoted with a symbol, such as the multiplica‐
tion operator, *. Here are the operators in our program:

= * . ()

A period denotes a member of something (or a decimal point
with numeric literals). Parentheses are used when declaring or
calling a method; empty parentheses are used when the method
accepts no arguments. The equals sign performs assignment
(the double equals sign, ==, performs equality comparison).

Comments
C# offers two different styles of source code documentation:
single-line comments and multiline comments. A single-line

Syntax | 7

comment begins with a double forward slash and continues
until the end of the line. For example:

int x = 3; // Comment about assigning 3 to x

A multiline comment begins with /* and ends with */. For
example:

int x = 3; /* This is a comment that
 spans two lines */

Comments can embed XML documentation tags (see “XML
Documentation” on page 243).

Type Basics
A type defines the blueprint for a value. In our example, we
used two literals of type int with values 12 and 30. We also
declared a variable of type int whose name was x.

A variable denotes a storage location that can contain different
values over time. In contrast, a constant always represents the
same value (more on this later).

All values in C# are an instance of a specific type. The meaning
of a value, and the set of possible values a variable can have, is
determined by its type.

Predefined Type Examples
Predefined types (also called built-in types) are types that are
specially supported by the compiler. The int type is a prede‐
fined type for representing the set of integers that fit into 32
bits of memory, from −231 to 231−1. We can perform functions
such as arithmetic with instances of the int type as follows:

int x = 12 * 30;

Another predefined C# type is string. The string type rep‐
resents a sequence of characters, such as “.NET” or “http://
oreilly.com”. We can work with strings by calling functions on
them, as follows:

8 | C# 10 Pocket Reference

string message = "Hello world";
string upperMessage = message.ToUpper();
Console.WriteLine (upperMessage); // HELLO WORLD

int x = 2022;
message = message + x.ToString();
Console.WriteLine (message); // Hello world2022

The predefined bool type has exactly two possible values: true
and false. The bool type is commonly used to conditionally
branch execution flow with an if statement. For example:

bool simpleVar = false;
if (simpleVar)
 Console.WriteLine ("This will not print");

int x = 5000;
bool lessThanAMile = x < 5280;
if (lessThanAMile)
 Console.WriteLine ("This will print");

The System namespace in .NET contains many important types
that are not predefined by C# (e.g., DateTime).

Custom Type Examples
Just as you can build complex functions from simple functions,
you can build complex types from primitive types. In this
example, we will define a custom type named UnitConverter—
a class that serves as a blueprint for unit conversions:

UnitConverter feetToInches = new UnitConverter (12);
UnitConverter milesToFeet = new UnitConverter (5280);

Console.WriteLine (feetToInches.Convert(30)); // 360
Console.WriteLine (feetToInches.Convert(100)); // 1200
Console.WriteLine (feetToInches.Convert
 (milesToFeet.Convert(1))); // 63360

public class UnitConverter
{
 int ratio; // Field

 public UnitConverter (int unitRatio) // Constructor

Type Basics | 9

 {
 ratio = unitRatio;
 }

 public int Convert (int unit) // Method
 {
 return unit * ratio;
 }
}

Members of a type
A type contains data members and function members. The data
member of UnitConverter is the field called ratio. The function
members of UnitConverter are the Convert method and the
UnitConverter’s constructor.

Symmetry of predefined types and custom types
A beautiful aspect of C# is that predefined types and custom
types have few differences. The predefined int type serves as
a blueprint for integers. It holds data—32 bits—and provides
function members that use that data, such as ToString. Simi‐
larly, our custom UnitConverter type acts as a blueprint for
unit conversions. It holds data—the ratio—and provides func‐
tion members to use that data.

Constructors and instantiation
Data is created by instantiating a type. You can instantiate pre‐
defined types simply by using a literal such as 12 or "Hello
world".

The new operator creates instances of a custom type. We started
our program by creating two instances of the UnitConverter
type. Immediately after the new operator instantiates an object,
the object’s constructor is called to perform initialization. A
constructor is defined like a method, except that the method
name and return type are reduced to the name of the enclosing
type:

10 | C# 10 Pocket Reference

public UnitConverter (int unitRatio) // Constructor
{
 ratio = unitRatio;
}

Instance versus static members
The data members and function members that operate on
the instance of the type are called instance members. Unit
Converter’s Convert method and int’s ToString method are
examples of instance members. By default, members are
instance members.

Data members and function members that don’t operate on the
instance of the type can be marked as static. To refer to a
static member from outside its type, you specify its type name
rather than an instance. An example is the WriteLine method of
the Console class. Because this is static, we call Console.Write
Line() and not new Console().WriteLine().

In the following code, the instance field Name pertains to an
instance of a particular Panda, whereas Population pertains to
the set of all Panda instances. We create two instances of the
Panda, print their names, and then print the total population:

Panda p1 = new Panda ("Pan Dee");
Panda p2 = new Panda ("Pan Dah");

Console.WriteLine (p1.Name); // Pan Dee
Console.WriteLine (p2.Name); // Pan Dah

Console.WriteLine (Panda.Population); // 2

public class Panda
{
 public string Name; // Instance field
 public static int Population; // Static field

 public Panda (string n) // Constructor
 {
 Name = n; // Instance field
 Population = Population + 1; // Static field
 }
}

Type Basics | 11

Attempting to evaluate p1.Population or Panda.Name will gen‐
erate a compile-time error.

The public keyword

The public keyword exposes members to other classes. In this
example, if the Name field in Panda was not marked as public, it
would be private and could not be accessed from outside the
class. Marking a member public is how a type communicates:
“Here is what I want other types to see—everything else is my
own private implementation details.” In object-oriented terms,
we say that the public members encapsulate the private mem‐
bers of the class.

Creating a namespace
Particularly with larger programs, it makes sense to organize
types into namespaces. Here’s how to define the Panda class
inside a namespace called Animals:

namespace Animals
{
 public class Panda
 {
 ...
 }
}

We cover namespaces in detail in “Namespaces” on page 65.

Defining a Main method
All of our examples so far have used top-level statements, a fea‐
ture that was introduced in C# 9. Without top-level statements,
a simple console or Windows application looks like this:

using System;

class Program
{
 static void Main() // Program entry point
 {
 int x = 12 * 30;
 Console.WriteLine (x);

12 | C# 10 Pocket Reference

 }
}

In the absence of top-level statements, C# looks for a static
method called Main, which becomes the entry point. The Main
method can be defined inside any class (and only one Main
method can exist). Should your Main method need to access
private members of a particular class, defining a Main method
inside that class can be simpler than using top-level statements.

The Main method can optionally return an integer (rather than
void) in order to return a value to the execution environment
(where a nonzero value typically indicates an error). The Main
method can also optionally accept an array of strings as a
parameter (that will be populated with any arguments passed to
the executable); for example:

static int Main (string[] args) {...}

NOTE

An array (such as string[]) represents a fixed number
of elements of a particular type. Arrays are specified by
placing square brackets after the element type. We describe
them in “Arrays” on page 32.

(The Main method can also be declared async and return a Task
or Task<int> in support of asynchronous programming—see
“Asynchronous Functions” on page 225.)

Top-level statements
Top-level statements (from C# 9) let you avoid the baggage of a
static Main method and a containing class. A file with top-level
statements comprises three parts, in this order:

Type Basics | 13

1. (Optionally) using directives1.
2. A series of statements, optionally mixed with method2.

declarations
3. (Optionally) Type and namespace declarations3.

Everything in Part 2 ends up inside a compiler-generated
“main” method, inside a compiler-generated class. This means
that the methods in your top-level statements become local
methods (we describe the subtleties in “Local methods” on page
73). Top-level statements can optionally return an integer value
to the caller, and access a “magic” variable of type string[]
called args, corresponding to command-line arguments passed
by the caller.

As a program can have only one entry point, there can be at
most one file with top-level statements in a C# project.

Types and Conversions
C# can convert between instances of compatible types. A con‐
version always creates a new value from an existing one. Con‐
versions can be either implicit or explicit: implicit conversions
happen automatically, whereas explicit conversions require a
cast. In the following example, we implicitly convert an int to
a long type (which has twice the bit capacity of an int) and
explicitly cast an int to a short type (which has half the bit
capacity of an int):

int x = 12345; // int is a 32-bit integer
long y = x; // Implicit conversion to 64-bit int
short z = (short)x; // Explicit conversion to 16-bit int

In general, implicit conversions are allowed when the compiler
can guarantee that they will always succeed without loss of
information. Otherwise, you must perform an explicit cast to
convert between compatible types.

14 | C# 10 Pocket Reference

Value Types Versus Reference Types
C# types can be divided into value types and reference types.

Value types comprise most built-in types (specifically, all
numeric types, the char type, and the bool type) as well as
custom struct and enum types. Reference types comprise all
class, array, delegate, and interface types.

The fundamental difference between value types and reference
types is how they are handled in memory.

Value types
The content of a value type variable or constant is simply a
value. For example, the content of the built-in value type int is
32 bits of data.

You can define a custom value type with the struct keyword
(see Figure 1):

public struct Point { public int X, Y; }

Figure 1. A value type instance in memory

The assignment of a value type instance always copies the
instance. For example:

Point p1 = new Point();
p1.X = 7;

Point p2 = p1; // Assignment causes copy

Console.WriteLine (p1.X); // 7
Console.WriteLine (p2.X); // 7

p1.X = 9; // Change p1.X
Console.WriteLine (p1.X); // 9
Console.WriteLine (p2.X); // 7

Type Basics | 15

Figure 2 shows that p1 and p2 have independent storage.

Figure 2. Assignment copies a value type instance

Reference types
A reference type is more complex than a value type, having two
parts: an object and the reference to that object. The content
of a reference type variable or constant is a reference to an
object that contains the value. Here is the Point type from our
previous example rewritten as a class (see Figure 3):

public class Point { public int X, Y; }

Figure 3. A reference type instance in memory

Assigning a reference type variable copies the reference, not
the object instance. This allows multiple variables to refer to
the same object—something that’s not ordinarily possible with
value types. If we repeat the previous example, but with Point
now a class, an operation via p1 affects p2:

Point p1 = new Point();
p1.X = 7;

Point p2 = p1; // Copies p1 reference

Console.WriteLine (p1.X); // 7
Console.WriteLine (p2.X); // 7

16 | C# 10 Pocket Reference

p1.X = 9; // Change p1.X
Console.WriteLine (p1.X); // 9
Console.WriteLine (p2.X); // 9

Figure 4 shows that p1 and p2 are two references that point to
the same object.

Figure 4. Assignment copies a reference

Null

A reference can be assigned the literal null, indicating that the
reference points to no object. Assuming Point is a class:

Point p = null;
Console.WriteLine (p == null); // True

Accessing a member of a null reference generates a runtime
error:

Console.WriteLine (p.X); // NullReferenceException

NOTE

In “Nullable Reference Types” on page 162, we describe
a feature of C# that reduces accidental NullReference
Exception errors.

In contrast, a value type cannot ordinarily have a null value:
struct Point {...}
...
Point p = null; // Compile-time error
int x = null; // Compile-time error

Type Basics | 17

To work around this, C# has a special construct for represent‐
ing value-type nulls—see “Nullable Value Types” on page 157.

Predefined Type Taxonomy
The predefined types in C# are:

Value types
• Numeric:•

— Signed integer (sbyte, short, int, long)—
— Unsigned integer (byte, ushort, uint, ulong)—
— Real number (float, double, decimal)—

• Logical (bool)•
• Character (char)•

Reference types
• String (string)•
• Object (object)•

Predefined types in C# alias .NET types in the System name‐
space. There is only a syntactic difference between these two
statements:

int i = 5;
System.Int32 i = 5;

The set of predefined value types excluding decimal are known
as primitive types in the Common Language Runtime (CLR).
Primitive types are so called because they are supported
directly via instructions in compiled code, which usually trans‐
lates to direct support on the underlying processor.

18 | C# 10 Pocket Reference

Numeric Types
C# has the following predefined numeric types:

C# type System type Suffix Size Range

Integral—signed

sbyte SByte 8 bits –27 to 27–1

short Int16 16 bits –215 to 215–1

int Int32 32 bits –231 to 231–1

long Int64 L 64 bits –263 to 263–1

nint IntPtr 32/64 bits

Integral—unsigned

byte Byte 8 bits 0 to 28–1

ushort UInt16 16 bits 0 to 216–1

uint UInt32 U 32 bits 0 to 232–1

ulong UInt64 UL 64 bits 0 to 264–1

unint UIntPtr 32/64 bits

Real

float Single F 32 bits ± (~10–45 to 1038)

double Double D 64 bits ± (~10–324 to 10308)

decimal Decimal M 128 bits ± (~10–28 to 1028)

Of the integral types, int and long are first-class citizens and
are favored by both C# and the runtime. The other integral
types are typically used for interoperability or when space effi‐
ciency is paramount. The nint and nuint native-sized integer
types (introduced in C# 9) are sized to match the address space
of the process at runtime and can be useful in helping with
pointer arithmetic. We describe these in detail in Chapter 4 of
C# 10 in a Nutshell.

Numeric Types | 19

https://learning.oreilly.com/library/view/c-10-in/9781098121945/

Of the real number types, float and double are called floating-
point types and are typically used for scientific and graphical
calculations. The decimal type is typically used for financial
calculations where base-10-accurate arithmetic and high preci‐
sion are required. (Technically, decimal is a floating-point type,
too, although it’s not generally referred to as such.)

Numeric Literals
Integral-type literals can use decimal, hexadecimal, or binary
notation; hexadecimal is denoted with the 0x prefix (e.g., 0x7f
is equivalent to 127), and binary is denoted with the 0b pre‐
fix. Real literals can use decimal or exponential notation such
as 1E06. Underscores may be inserted within (or before) a
numeric literal to improve readability (e.g., 1_000_000).

Numeric literal type inference
By default, the compiler infers a numeric literal to be either
double or an integral type:

• If the literal contains a decimal point or the exponential•
symbol (E), it is a double.

• Otherwise, the literal’s type is the first type in this list that•
can fit the literal’s value: int, uint, long, and ulong.

For example:
Console.Write (1.0.GetType()); // Double (double)
Console.Write (1E06.GetType()); // Double (double)
Console.Write (1.GetType()); // Int32 (int)
Console.Write (0xF0000000.GetType()); // UInt32 (uint)
Console.Write (0x100000000.GetType()); // Int64 (long)

Numeric suffixes
The numeric suffixes listed in the preceding table explicitly
define the type of a literal:

decimal d = 3.5M; // M = decimal (case-insensitive)

20 | C# 10 Pocket Reference

The suffixes U and L are rarely necessary because the uint,
long, and ulong types can nearly always be either inferred or
implicitly converted from int:

long i = 5; // Implicit conversion from int to long

The D suffix is technically redundant in that all literals with a
decimal point are inferred to be double (and you can always
add a decimal point to a numeric literal). The F and M suffixes
are the most useful and are mandatory when you’re specifying
fractional float or decimal literals. Without suffixes, the fol‐
lowing would not compile because 4.5 would be inferred to be
of type double, which has no implicit conversion to float or
decimal:

float f = 4.5F; // Won't compile without suffix
decimal d = -1.23M; // Won't compile without suffix

Numeric Conversions

Integral-to-integral conversions
Integral conversions are implicit when the destination type can
represent every possible value of the source type. Otherwise, an
explicit conversion is required. For example:

int x = 12345; // int is a 32-bit integral type
long y = x; // Implicit conversion to 64-bit int
short z = (short)x; // Explicit conversion to 16-bit int

Real-to-real conversions

A float can be implicitly converted to a double because a
double can represent every possible float value. The reverse
conversion must be explicit.

Conversions between decimal and other real types must be
explicit.

Real-to-integral conversions
Conversions from integral types to real types are implicit,
whereas the reverse must be explicit. Converting from a

Numeric Types | 21

floating-point to an integral type truncates any fractional
portion; to perform rounding conversions, use the static
System.Convert class.

A caveat is that implicitly converting a large integral type to a
floating-point type preserves magnitude but might occasionally
lose precision:

int i1 = 100000001;
float f = i1; // Magnitude preserved, precision lost
int i2 = (int)f; // 100000000

Arithmetic Operators
The arithmetic operators (+, -, *, /, %) are defined for all
numeric types except the 8- and 16-bit integral types. The %
operator evaluates the remainder after division.

Increment and Decrement Operators
The increment and decrement operators (++, --, respectively)
increment and decrement numeric types by 1. The opera‐
tor can either precede or follow the variable, depending on
whether you want the variable to be updated before or after the
expression is evaluated. For example:

int x = 0;
Console.WriteLine (x++); // Outputs 0; x is now 1
Console.WriteLine (++x); // Outputs 2; x is now 2
Console.WriteLine (--x); // Outputs 1; x is now 1

Specialized Integral Operations

Division
Division operations on integral types always eliminate the
remainder (round toward zero). Dividing by a variable whose
value is zero generates a runtime error (a DivideByZeroExcep
tion). Dividing by the literal or constant 0 generates a compile-
time error.

22 | C# 10 Pocket Reference

Overflow
At runtime, arithmetic operations on integral types can over‐
flow. By default, this happens silently—no exception is thrown
and the result exhibits wraparound behavior, as though the
computation were done on a larger integer type and the extra
significant bits discarded. For example, decrementing the mini‐
mum possible int value results in the maximum possible int
value:

int a = int.MinValue; a--;
Console.WriteLine (a == int.MaxValue); // True

The checked and unchecked operators

The checked operator instructs the runtime to generate an
OverflowException rather than overflowing silently when an
integral-typed expression or statement exceeds the arithmetic
limits of that type. The checked operator affects expressions
with the ++, −−, (unary) −, +, −, *, /, and explicit conversion
operators between integral types. Overflow checking incurs a
small performance cost.

You can use checked around either an expression or a statement
block. For example:

int a = 1000000, b = 1000000;

int c = checked (a * b); // Checks just the expression

checked // Checks all expressions
{ // in statement block
 c = a * b;
 ...
}

You can make arithmetic overflow checking the default for
all expressions in a program by compiling with the /checked+
command-line switch (in Visual Studio, go to Advanced Build
Settings). If you then need to disable overflow checking just
for specific expressions or statements, you can do so with the
unchecked operator.

Numeric Types | 23

Bitwise operators
C# supports the following bitwise operators:

Operator Meaning Sample expression Result

~ Complement ~0xfU 0xfffffff0U

& And 0xf0 & 0x33 0x30

| Or 0xf0 | 0x33 0xf3

^ Exclusive Or 0xff00 ^ 0x0ff0 0xf0f0

<< Shift left 0x20 << 2 0x80

>> Shift right 0x20 >> 1 0x10

8- and 16-Bit Integral Types
The 8- and 16-bit integral types are byte, sbyte, short, and
ushort. These types lack their own arithmetic operators, so C#
implicitly converts them to larger types as required. This can
cause a compilation error when trying to assign the result back
to a small integral type:

short x = 1, y = 1;
short z = x + y; // Compile-time error

In this case, x and y are implicitly converted to int so that the
addition can be performed. This means that the result is also an
int, which cannot be implicitly cast back to a short (because it
could cause loss of data). To make this compile, you must add
an explicit cast:

short z = (short) (x + y); // OK

Special Float and Double Values
Unlike integral types, floating-point types have values that cer‐
tain operations treat specially. These special values are NaN
(Not a Number), +∞, −∞, and −0. The float and double classes
have constants for NaN, +∞, and −∞ (as well as other values
including MaxValue, MinValue, and Epsilon).

24 | C# 10 Pocket Reference

For example:
Console.Write (double.NegativeInfinity); // -Infinity

Dividing a nonzero number by zero results in an infinite value:
Console.WriteLine (1.0 / 0.0); // Infinity
Console.WriteLine (−1.0 / 0.0); // -Infinity
Console.WriteLine (1.0 / −0.0); // -Infinity
Console.WriteLine (−1.0 / −0.0); // Infinity

Dividing zero by zero, or subtracting infinity from infinity,
results in a NaN:

Console.Write (0.0 / 0.0); // NaN
Console.Write ((1.0 / 0.0) − (1.0 / 0.0)); // NaN

When you use ==, a NaN value is never equal to another value,
even another NaN value. To test whether a value is NaN, you
must use the float.IsNaN or double.IsNaN method:

Console.WriteLine (0.0 / 0.0 == double.NaN); // False
Console.WriteLine (double.IsNaN (0.0 / 0.0)); // True

When you use object.Equals, however, two NaN values are
equal:

bool isTrue = object.Equals (0.0/0.0, double.NaN);

double Versus decimal
double is useful for scientific computations (such as computing
spatial coordinates). decimal is useful for financial computa‐
tions and values that are “man-made” rather than the result of
real-world measurements.

Here’s a summary of the differences:

Feature double decimal

Internal
representation

Base 2 Base 10

Precision 15–16 significant figures 28–29 significant figures

Range ±(~10−324 to ~10308) ±(~10−28 to ~1028)

Numeric Types | 25

Feature double decimal

Special values +0, −0, +∞, −∞, and
NaN

None

Speed Native to processor Nonnative to processor
(about 10 times slower than
double)

Real Number Rounding Errors
float and double internally represent numbers in base 2. For
this reason, most literals with a fractional component (which
are in base 10) will not be represented precisely, making them
bad for financial calculations. In contrast, decimal works in
base 10 and so can precisely represent fractional numbers such
as 0.1 (whose base-10 representation is nonrecurring).

Boolean Type and Operators
C#’s bool type (aliasing the System.Boolean type) is a logical
value that can be assigned the literal true or false.

Although a Boolean value requires only one bit of storage,
the runtime will use one byte of memory because this is
the minimum chunk that the runtime and processor can effi‐
ciently work with. To avoid space inefficiency in the case of
arrays, .NET provides a BitArray class in the System.Collec
tions namespace that is designed to use just one bit per
Boolean value.

Equality and Comparison Operators
== and != test for equality and inequality, respectively, of any
type, and always return a bool value. Value types typically have
a very simple notion of equality:

int x = 1, y = 2, z = 1;
Console.WriteLine (x == y); // False
Console.WriteLine (x == z); // True

26 | C# 10 Pocket Reference

For reference types, equality, by default, is based on reference,
as opposed to the actual value of the underlying object. There‐
fore, two instances of an object with identical data are not
considered equal unless the == operator for that type is specially
overloaded to that effect (see “The object Type” on page 99 and
“Operator Overloading” on page 215).

The equality and comparison operators, ==, !=, <, >, >=, and
<=, work for all numeric types but should be used with caution
with real numbers (see “Real Number Rounding Errors” on
page 26 in the previous section). The comparison operators
also work on enum type members by comparing their underly‐
ing integral values.

Conditional Operators
The && and || operators test for and and or conditions, respec‐
tively. They are frequently used in conjunction with the !
operator, which expresses not. In the following example, the
UseUmbrella method returns true if it’s rainy or sunny (to pro‐
tect us from the rain or the sun), as long as it’s not also windy
(because umbrellas are useless in the wind):

static bool UseUmbrella (bool rainy, bool sunny,
 bool windy)
{
 return !windy && (rainy || sunny);
}

The && and || operators short-circuit evaluation when possible.
In the preceding example, if it is windy, the expression (rainy
|| sunny) is not even evaluated. Short-circuiting is essential
in allowing expressions such as the following to run without
throwing a NullReferenceException:

if (sb != null && sb.Length > 0) ...

The & and | operators also test for and and or conditions:
return !windy & (rainy | sunny);

Boolean Type and Operators | 27

The difference is that they do not short-circuit. For this reason,
they are rarely used in place of conditional operators.

The ternary conditional operator (simply called the conditional
operator) has the form q ? a : b, where if condition q is true, a
is evaluated, else b is evaluated. For example:

static int Max (int a, int b)
{
 return (a > b) ? a : b;
}

The conditional operator is particularly useful in LINQ queries.

Strings and Characters
C#’s char type (aliasing the System.Char type) represents a Uni‐
code character and occupies two bytes (UTF-16). A char literal
is specified inside single quotes:

char c = 'A'; // Simple character

Escape sequences express characters that cannot be expressed or
interpreted literally. An escape sequence is a backslash followed
by a character with a special meaning. For example:

char newLine = '\n';
char backSlash = '\\';

The escape sequence characters are as follows:

Char Meaning Value

\' Single quote 0x0027

\" Double quote 0x0022

\\ Backslash 0x005C

\0 Null 0x0000

\a Alert 0x0007

\b Backspace 0x0008

\f Form feed 0x000C

28 | C# 10 Pocket Reference

Char Meaning Value

\n New line 0x000A

\r Carriage return 0x000D

\t Horizontal tab 0x0009

\v Vertical tab 0x000B

The \u (or \x) escape sequence lets you specify any Unicode
character via its four-digit hexadecimal code:

char copyrightSymbol = '\u00A9';
char omegaSymbol = '\u03A9';
char newLine = '\u000A';

An implicit conversion from a char to a numeric type works for
the numeric types that can accommodate an unsigned short.
For other numeric types, an explicit conversion is required.

String Type
C#’s string type (aliasing the System.String type) represents
an immutable (unmodifiable) sequence of Unicode characters.
A string literal is specified within double quotes:

string a = "Heat";

NOTE

string is a reference type rather than a value type. Its
equality operators, however, follow value type semantics:

string a = "test", b = "test";
Console.Write (a == b); // True

The escape sequences that are valid for char literals also work
within strings:

string a = "Here's a tab:\t";

Strings and Characters | 29

The cost of this is that whenever you need a literal backslash,
you must write it twice:

string a1 = "\\\\server\\fileshare\\helloworld.cs";

To avoid this problem, C# allows verbatim string literals. A
verbatim string literal is prefixed with @ and does not support
escape sequences. The following verbatim string is identical to
the preceding one:

string a2 = @"\\server\fileshare\helloworld.cs";

A verbatim string literal can also span multiple lines. You can
include the double-quote character in a verbatim literal by
writing it twice.

String concatenation

The + operator concatenates two strings:
string s = "a" + "b";

One of the operands can be a nonstring value, in which case
ToString is called on that value. For example:

string s = "a" + 5; // a5

Using the + operator repeatedly to build up a string can be
inefficient; a better solution is to use the System.Text.String
Builder type—this represents a mutable (editable) string, and
has methods to efficiently Append, Insert, Remove, and Replace
substrings.

String interpolation

A string preceded with the $ character is called an interpola‐
ted string. Interpolated strings can include expressions within
braces:

int x = 4;
Console.Write ($"A square has {x} sides");
// Prints: A square has 4 sides

Any valid C# expression of any type can appear within the
braces, and C# will convert the expression to a string by calling

30 | C# 10 Pocket Reference

its ToString method or equivalent. You can change the format‐
ting by appending the expression with a colon and a format
string (we describe format strings in Chapter 6 of C# 10 in a
Nutshell):

string s = $"15 in hex is {15:X2}";
// Evaluates to "15 in hex is 0F"

Interpolated strings must complete on a single line, unless you
also specify the verbatim string operator:

int x = 2;
string s = $@"this interpolation spans {
x} lines";

To include a brace literal in an interpolated string, repeat the
desired brace character.

String comparisons

string does not support < and > operators for comparisons.
You must instead use string’s CompareTo method, which
returns a positive number, a negative number, or zero, depend‐
ing on whether the first value comes after, before, or alongside
the second value:

Console.Write ("Boston".CompareTo ("Austin")); // 1
Console.Write ("Boston".CompareTo ("Boston")); // 0
Console.Write ("Boston".CompareTo ("Chicago")); // -1

Constant interpolated strings (C# 10)
From C# 10, interpolated strings can be constants, as long as
the interpolated values are constants:

const string greeting = "Hello";
const string message = $"{greeting}, world";

Searching within strings

string’s indexer returns a character at a specified position:
Console.Write ("word"[2]); // r

Strings and Characters | 31

https://learning.oreilly.com/library/view/c-10-in/9781098121945/
https://learning.oreilly.com/library/view/c-10-in/9781098121945/

The IndexOf and LastIndexOf methods search for a character
within the string. The Contains, StartsWith, and EndsWith
methods search for a substring within the string.

Manipulating strings

Because string is immutable, all the methods that “manipulate”
a string return a new one, leaving the original untouched:

• Substring extracts a portion of a string.•
• Insert and Remove insert and remove characters at a speci‐•

fied position.
• PadLeft and PadRight add whitespace.•
• TrimStart, TrimEnd, and Trim remove whitespace.•

The string class also defines ToUpper and ToLower methods for
changing case, a Split method to split a string into substrings
(based on supplied delimiters), and a static Join method to join
substrings back into a string.

Arrays
An array represents a fixed number of elements of a particular
type. The elements in an array are always stored in a contigu‐
ous block of memory, providing highly efficient access.

An array is denoted with square brackets after the element
type. The following declares an array of five characters:

char[] vowels = new char[5];

Square brackets also index the array, accessing a particular
element by position:

vowels[0] = 'a'; vowels[1] = 'e'; vowels[2] = 'i';
vowels[3] = 'o'; vowels[4] = 'u';

Console.WriteLine (vowels [1]); // e

32 | C# 10 Pocket Reference

This prints “e” because array indexes start at 0. You can use a
for loop statement to iterate through each element in the array.
The for loop in this example cycles the integer i from 0 to 4:

for (int i = 0; i < vowels.Length; i++)
 Console.Write (vowels [i]); // aeiou

Arrays also implement IEnumerable<T> (see “Enumeration and
Iterators” on page 151), so you can also enumerate members
with the foreach statement:

foreach (char c in vowels) Console.Write (c); // aeiou

All array indexing is bounds-checked by the runtime. An Index
OutOfRangeException is thrown if you use an invalid index:

vowels[5] = 'y'; // Runtime error

The Length property of an array returns the number of ele‐
ments in the array. After an array has been created, its length
cannot be changed. The System.Collection namespace and
subnamespaces provide higher-level data structures, such as
dynamically sized arrays and dictionaries.

An array initialization expression lets you declare and populate
an array in a single step:

char[] vowels = new char[] {'a','e','i','o','u'};

Or simply:
char[] vowels = {'a','e','i','o','u'};

All arrays inherit from the System.Array class, which defines
common methods and properties for all arrays. This includes
instance properties such as Length and Rank, and static meth‐
ods to do the following:

• Dynamically create an array (CreateInstance)•
• Get and set elements regardless of the array type•

(GetValue/SetValue)
• Search a sorted array (BinarySearch) or an unsorted array•

(IndexOf, LastIndexOf, Find, FindIndex, FindLastIndex)

Arrays | 33

• Sort an array (Sort)•
• Copy an array (Copy)•

Default Element Initialization
Creating an array always preinitializes the elements with
default values. The default value for a type is the result of a
bitwise zeroing of memory. For example, consider creating an
array of integers. Because int is a value type, this allocates 1,000
integers in one contiguous block of memory. The default value
for each element will be 0:

int[] a = new int[1000];
Console.Write (a[123]); // 0

With reference type elements, the default value is null.

An array itself is always a reference type object, regardless of
element type. For instance, the following is legal:

int[] a = null;

Indices and Ranges
Indices and ranges (from C# 8) simplify working with elements
or portions of an array.

NOTE

Indices and ranges also work with the CLR types Span<T>
and ReadOnlySpan<T>, which provide efficient low-level
access to managed or unmanaged memory.
You can also make your own types work with indices and
ranges by defining an indexer of type Index or Range (see
“Indexers” on page 83).

34 | C# 10 Pocket Reference

Indices
Indices let you refer to elements relative to the end of an array,
with the ^ operator. ^1 refers to the last element, ^2 refers to the
second-to-last element, and so on:

char[] vowels = new char[] {'a','e','i','o','u'};
char lastElement = vowels[^1]; // 'u'
char secondToLast = vowels[^2]; // 'o'

(^0 equals the length of the array, so vowels[^0] generates an
error.)

C# implements indices with the help of the Index type, so you
can also do the following:

Index first = 0;
Index last = ^1;
char firstElement = vowels [first]; // 'a'
char lastElement = vowels [last]; // 'u'

Ranges

Ranges let you “slice” an array with the .. operator:
char[] firstTwo = vowels [..2]; // 'a', 'e'
char[] lastThree = vowels [2..]; // 'i', 'o', 'u'
char[] middleOne = vowels [2..3]; // 'i'

The second number in the range is exclusive, so ..2 returns the
elements before vowels[2].

You can also use the ^ symbol in ranges. The following returns
the last two characters:

char[] lastTwo = vowels [^2..^0]; // 'o', 'u'

(^0 is valid here because the second number in the range is
exclusive.)

C# implements ranges with the help of the Range type, so you
can also do the following:

Range firstTwoRange = 0..2;
char[] firstTwo = vowels [firstTwoRange]; // 'a', 'e'

Arrays | 35

Multidimensional Arrays
Multidimensional arrays come in two varieties: rectangular and
jagged. Rectangular arrays represent an n-dimensional block of
memory, and jagged arrays are arrays of arrays.

Rectangular arrays
To declare rectangular arrays, use commas to separate
each dimension. The following declares a rectangular two-
dimensional array, where the dimensions are 3 × 3:

int[,] matrix = new int [3, 3];

The GetLength method of an array returns the length for a
given dimension (starting at 0):

for (int i = 0; i < matrix.GetLength(0); i++)
 for (int j = 0; j < matrix.GetLength(1); j++)
 matrix [i, j] = i * 3 + j;

A rectangular array can be initialized as follows (to create an
array identical to the previous example):

int[,] matrix = new int[,]
{
 {0,1,2},
 {3,4,5},
 {6,7,8}
};

(The code shown in boldface can be omitted in declaration
statements such as this.)

Jagged arrays
To declare jagged arrays, use successive square-bracket pairs
for each dimension. Here is an example of declaring a jagged
two-dimensional array, for which the outermost dimension
is 3:

int[][] matrix = new int[3][];

The inner dimensions aren’t specified in the declaration
because, unlike a rectangular array, each inner array can be an

36 | C# 10 Pocket Reference

arbitrary length. Each inner array is implicitly initialized to null
rather than an empty array. Each inner array must be created
manually:

for (int i = 0; i < matrix.Length; i++)
{
 matrix[i] = new int [3]; // Create inner array
 for (int j = 0; j < matrix[i].Length; j++)
 matrix[i][j] = i * 3 + j;
}

A jagged array can be initialized as follows (to create an array
identical to the previous example, but with an additional ele‐
ment at the end):

int[][] matrix = new int[][]
{
 new int[] {0,1,2},
 new int[] {3,4,5},
 new int[] {6,7,8,9}
};

(The code shown in boldface can be omitted in declaration
statements such as this.)

Simplified Array Initialization Expressions
We’ve already seen how to simplify array initialization expres‐
sions by omitting the new keyword and type declaration:

char[] vowels = new char[] {'a','e','i','o','u'};
char[] vowels = {'a','e','i','o','u'};

Another approach is to omit the type name after the new key‐
word, and have the compiler infer the array type. This is a
useful shortcut when you’re passing arrays as arguments. For
example, consider the following method:

void Foo (char[] data) { ... }

We can call this method with an array that we create on the fly,
as follows:

Foo (new char[] {'a','e','i','o','u'}); // Longhand
Foo (new[] {'a','e','i','o','u'}); // Shortcut

Arrays | 37

This shortcut is essential in creating arrays of anonymous types,
as you’ll see later.

Variables and Parameters
A variable represents a storage location that has a modifiable
value. A variable can be a local variable, parameter (value, ref,
out, or in), field (instance or static), or array element.

The Stack and the Heap
The stack and the heap are the places where variables reside.
Each has very different lifetime semantics.

Stack
The stack is a block of memory for storing local variables
and parameters. The stack logically grows and shrinks as a
method or function is entered and exited. Consider the follow‐
ing method (to avoid distraction, input argument checking is
ignored):

static int Factorial (int x)
{
 if (x == 0) return 1;
 return x * Factorial (x-1);
}

This method is recursive, meaning that it calls itself. Each time
the method is entered, a new int is allocated on the stack, and
each time the method exits, the int is deallocated.

Heap
The heap is the memory in which objects (i.e., reference type
instances) reside. Whenever a new object is created, it is allo‐
cated on the heap, and a reference to that object is returned.
During a program’s execution, the heap starts filling up as new
objects are created. The runtime has a garbage collector that
periodically deallocates objects from the heap so your program

38 | C# 10 Pocket Reference

does not run out of memory. An object is eligible for dealloca‐
tion as soon as it’s not referenced by anything that is itself alive.

Value type instances (and object references) live wherever the
variable was declared. If the instance was declared as a field
within a class type, or as an array element, that instance lives on
the heap.

NOTE

You can’t explicitly delete objects in C# as you can in
C++. An unreferenced object is eventually collected by the
garbage collector.

The heap also stores static fields and constants. Unlike objects
allocated on the heap (which can be garbage-collected), these
live until the application domain is torn down.

Definite Assignment
C# enforces a definite assignment policy. In practice, this
means that outside of an unsafe context, it’s impossible to
access uninitialized memory. Definite assignment has three
implications:

• Local variables must be assigned a value before they can be•
read.

• Function arguments must be supplied when a method•
is called (unless marked optional—see “Optional parame‐
ters” on page 44).

• All other variables (such as fields and array elements) are•
automatically initialized by the runtime.

Variables and Parameters | 39

For example, the following code results in a compile-time
error:

int x; // x is a local variable
Console.WriteLine (x); // Compile-time error

The following, however, outputs 0, because fields are implicitly
assigned a default value (whether instance or static):

Console.WriteLine (Test.X); // 0
class Test { public static int X; } // Field

Default Values
All type instances have a default value. The default value for the
predefined types is the result of a bitwise zeroing of memory,
and is null for reference types, 0 for numeric and enum types,
'\0' for the char type, and false for the bool type.

You can obtain the default value for any type by using the
default keyword (this is particularly useful with generics, as
you’ll see later). The default value in a custom value type (i.e.,
struct) is the same as the default value for each field defined by
the custom type:

Console.WriteLine (default (decimal)); // 0
decimal d = default;

Parameters
A method can have a sequence of parameters. Parameters
define the set of arguments that must be provided for that
method. In this example, the method Foo has a single parame‐
ter named p, of type int:

Foo (8); // 8 is an argument
static void Foo (int p) {...} // p is a parameter

40 | C# 10 Pocket Reference

You can control how parameters are passed with the ref, out,
and in modifiers:

Parameter modifier Passed by Variable must be definitely
assigned

None Value Going in

ref Reference Going in

in Reference (read-only) Going in

out Reference Going out

Passing arguments by value
By default, arguments in C# are passed by value, which is by far
the most common case. This means that a copy of the value is
created when it is passed to the method:

int x = 8;
Foo (x); // Make a copy of x
Console.WriteLine (x); // x will still be 8

static void Foo (int p)
{
 p = p + 1; // Increment p by 1
 Console.WriteLine (p); // Write p to screen
}

Assigning p a new value does not change the contents of x,
because p and x reside in different memory locations.

Passing a reference type argument by value copies the refer‐
ence but not the object. In the following example, Foo sees
the same StringBuilder object we instantiated (sb), but has
an independent reference to it. In other words, sb and fooSB
are separate variables that reference the same StringBuilder
object:

StringBuilder sb = new StringBuilder();
Foo (sb);
Console.WriteLine (sb.ToString()); // test

static void Foo (StringBuilder fooSB)

Variables and Parameters | 41

{
 fooSB.Append ("test");
 fooSB = null;
}

Because fooSB is a copy of a reference, setting it to null doesn’t
make sb null. (If, however, fooSB was declared and called with
the ref modifier, sb would become null.)

The ref modifier

To pass by reference, C# provides the ref parameter modifier.
In the following example, p and x refer to the same memory
locations:

int x = 8;
Foo (ref x); // Ask Foo to deal
 // directly with x
Console.WriteLine (x); // x is now 9

static void Foo (ref int p)
{
 p = p + 1; // Increment p by 1
 Console.WriteLine (p); // Write p to screen
}

Now assigning p a new value changes the contents of x. Notice
how the ref modifier is required both when writing and calling
the method. This makes it very clear what’s going on.

NOTE

A parameter can be passed by reference or by value,
regardless of whether the parameter type is a reference type
or a value type.

42 | C# 10 Pocket Reference

The out modifier

An out argument is like a ref argument, except for the
following:

• It need not be assigned before going into the function.•
• It must be assigned before it comes out of the function.•

The out modifier is most commonly used to get multiple return
values back from a method.

Out variables and discards
From C# 7, you can declare variables on the fly when calling
methods with out parameters:

int.TryParse ("123", out int x);
Console.WriteLine (x);

This is equivalent to:
int x;
int.TryParse ("123", out x);
Console.WriteLine (x);

When calling methods with multiple out parameters, you can
use an underscore to “discard” any in which you’re uninteres‐
ted. Assuming SomeBigMethod has been defined with five out
parameters, you can ignore all but the third, as follows:

SomeBigMethod (out _, out _, out int x, out _, out _);
Console.WriteLine (x);

The in modifier

From C# 7.2, you can prefix a parameter with the in modifier
to prevent it from being modified within the method. This
allows the compiler to avoid the overhead of copying the argu‐
ment prior to passing it in, which can matter in the case of
large custom value types (see “Structs” on page 103).

Variables and Parameters | 43

The params modifier

The params modifier, if applied to the last parameter of a
method, allows the method to accept any number of arguments
of a particular type. The parameter type must be declared as a
(single-dimensional) array. For example:

int Sum (params int[] ints)
{
 int sum = 0;
 for (int i = 0; i < ints.Length; i++) sum += ints[i];
 return sum;
}

You can call this as follows:
Console.WriteLine (Sum (1, 2, 3, 4)); // 10

If there are zero arguments in the params position, a zero-
length array is created.

You can also supply a params argument as an ordinary array.
The preceding call is semantically equivalent to:

Console.WriteLine (Sum (new int[] { 1, 2, 3, 4 }));

Optional parameters
Methods, constructors, and indexers can declare optional
parameters. A parameter is optional if it specifies a default value
in its declaration:

void Foo (int x = 23) { Console.WriteLine (x); }

You can omit optional parameters when calling the method:
Foo(); // 23

The default argument of 23 is actually passed to the optional
parameter x—the compiler bakes the value 23 into the com‐
piled code at the calling side. The preceding call to Foo is
semantically identical to

Foo (23);

because the compiler simply substitutes the default value of an
optional parameter wherever it is used.

44 | C# 10 Pocket Reference

WARNING

Adding an optional parameter to a public method that’s
called from another assembly requires recompilation of
both assemblies—just as though the parameter were
mandatory.

The default value of an optional parameter must be specified
by a constant expression, a parameterless constructor of a
value type, or a default expression. You cannot mark optional
parameters with ref or out.

Mandatory parameters must occur before optional parameters
in both the method declaration and the method call (the excep‐
tion is with params arguments, which still always come last). In
the following example, the explicit value of 1 is passed to x, and
the default value of 0 is passed to y:

Foo(1); // 1, 0

void Foo (int x = 0, int y = 0)
{
 Console.WriteLine (x + ", " + y);
}

You can do the converse (pass a default value to x and an
explicit value to y) by combining optional parameters with
named arguments.

Named arguments
Rather than identifying an argument by position, you can iden‐
tify an argument by name. For example:

Foo (x:1, y:2); // 1, 2

void Foo (int x, int y)
{
 Console.WriteLine (x + ", " + y);
}

Variables and Parameters | 45

Named arguments can occur in any order. The following calls
to Foo are semantically identical:

Foo (x:1, y:2);
Foo (y:2, x:1);

You can mix named and positional arguments, as long as the
named arguments appear last:

Foo (1, y:2);

Named arguments are particularly useful in conjunction with
optional parameters. For instance, consider the following
method:

void Bar (int a=0, int b=0, int c=0, int d=0) { ... }

You can call this, supplying only a value for d, as follows:
Bar (d:3);

This is particularly useful when you’re calling COM APIs.

var—Implicitly Typed Local Variables
It is often the case that you declare and initialize a variable
in one step. If the compiler is able to infer the type from the
initialization expression, you can use the word var in place of
the type declaration. For example:

var x = "hello";
var y = new System.Text.StringBuilder();
var z = (float)Math.PI;

This is precisely equivalent to the following:
string x = "hello";
System.Text.StringBuilder y =
 new System.Text.StringBuilder();
float z = (float)Math.PI;

Because of this direct equivalence, implicitly typed variables
are statically typed. For example, the following generates a
compile-time error:

var x = 5;
x = "hello"; // Compile-time error; x is of type int

46 | C# 10 Pocket Reference

In the section “Anonymous Types” on page 166, we describe a
scenario in which the use of var is mandatory.

Target-Typed new Expressions
Another way to reduce lexical repetition is with target-typed
new expressions (from C# 9):

StringBuilder sb1 = new();
StringBuilder sb2 = new ("Test");

This is precisely equivalent to:
StringBuilder sb1 = new StringBuilder();
StringBuilder sb2 = new StringBuilder ("Test");

The principle is that you can call new without specifying a
type name if the compiler is able to unambiguously infer it.
Target-typed new expressions are particularly useful when the
variable declaration and initialization are in different parts of
your code. A common example is when you want to initialize a
field in a constructor:

class Foo
{
 System.Text.StringBuilder sb;

 public Foo (string initialValue)
 {
 sb = new (initialValue);
 }
}

Target-typed new expressions are also helpful in the following
scenario:

MyMethod (new ("test"));
void MyMethod (System.Text.StringBuilder sb) { ... }

Expressions and Operators
An expression essentially denotes a value. The simplest kinds
of expressions are constants (such as 123) and variables (such
as x). Expressions can be transformed and combined with

Expressions and Operators | 47

operators. An operator takes one or more input operands to
output a new expression:

12 * 30 // * is an operator; 12 and 30 are operands.

Complex expressions can be built because an operand can itself
be an expression, such as the operand (12 * 30) in the follow‐
ing example:

1 + (12 * 30)

Operators in C# can be classed as unary, binary, or ternary,
depending on the number of operands they work on (one, two,
or three). The binary operators always use infix notation, in
which the operator is placed between the two operands.

Operators that are intrinsic to the basic plumbing of the lan‐
guage are called primary; an example is the method call opera‐
tor. An expression that has no value is called a void expression:

Console.WriteLine (1)

Because a void expression has no value, you cannot use it as an
operand to build more complex expressions:

1 + Console.WriteLine (1) // Compile-time error

Assignment Expressions
An assignment expression uses the = operator to assign the
result of another expression to a variable. For example:

x = x * 5

An assignment expression is not a void expression. It actually
carries the assignment value, and so can be incorporated into
another expression. In the following example, the expression
assigns 2 to x and 10 to y:

y = 5 * (x = 2)

This style of expression can be used to initialize multiple
values:

a = b = c = d = 0

48 | C# 10 Pocket Reference

The compound assignment operators are syntactic shortcuts that
combine assignment with another operator. For example:

x *= 2 // equivalent to x = x * 2
x <<= 1 // equivalent to x = x << 1

(A subtle exception to this rule is with events, which we
describe later: the += and -= operators here are treated specially
and map to the event’s add and remove accessors, respectively.)

Operator Precedence and Associativity
When an expression contains multiple operators, precedence
and associativity determine the order of their evaluation. Oper‐
ators with higher precedence execute before operators of lower
precedence. If the operators have the same precedence, the
operator’s associativity determines the order of evaluation.

Precedence

The expression 1 + 2 * 3 is evaluated as 1 + (2 * 3) because
* has a higher precedence than +.

Left-associative operators
Binary operators (except for assignment, lambda, and null-
coalescing operators) are left-associative; in other words, they
are evaluated from left to right. For example, the expression
8/4/2 is evaluated as (8/4)/2 due to left associativity. Of course,
you can insert your own parentheses to change evaluation
order.

Right-associative operators
The assignment and lambda operators, null-coalescing opera‐
tor, and (ternary) conditional operator are right-associative; in
other words, they are evaluated from right to left. Right asso‐
ciativity allows multiple assignments such as x=y=3 to compile:
it works by first assigning 3 to y and then assigning the result of
that expression (3) to x.

Expressions and Operators | 49

Operator Table
The following table lists C#’s operators in order of precedence.
Operators listed under the same subheading have the same
precedence. We explain user-overloadable operators in “Opera‐
tor Overloading” on page 215.

Operator symbol Operator name Example Overloadable

Primary (highest precedence)

. Member access x.y No

?. Null-conditional x?.y No

! (postfix) Null-forgiving x!.y No

-> Pointer to struct
(unsafe)

x->y No

() Function call x() No

[] Array/index a[x] Via indexer

++ Post-increment x++ Yes

-- Post-decrement x-- Yes

new Create instance new Foo() No

stackalloc Stack allocation stackalloc(10) No

typeof Get type from
identifier

typeof(int) No

nameof Get name of
identifier

nameof(x) No

checked Integral overflow
check on

checked(x) No

unchecked Integral overflow
check off

unchecked(x) No

default Default value default(char) No

sizeof Get size of struct sizeof(int) No

50 | C# 10 Pocket Reference

Operator symbol Operator name Example Overloadable

Unary

await Await await myTask No

+ Positive value of +x Yes

- Negative value of -x Yes

! Not !x Yes

~ Bitwise
complement

~x Yes

++ Pre-increment ++x Yes

-- Pre-decrement --x Yes

() Cast (int)x No

^ Index from end array[^1] No

* Value at address
(unsafe)

*x No

& Address of value
(unsafe)

&x No

Range

..

..^

Range of indices x..y

x..^y

No

Switch and with

switch Switch expression num switch {

 1 => true,

 _ => false

}

No

with With expression rec with

{ X = 123 }

No

Multiplicative

* Multiply x * y Yes

/ Divide x / y Yes

Expressions and Operators | 51

Operator symbol Operator name Example Overloadable

% Remainder x % y Yes

Additive

+ Add x + y Yes

- Subtract x - y Yes

Shift

<< Shift left x << 1 Yes

>> Shift right x >> 1 Yes

Relational

< Less than x < y Yes

> Greater than x > y Yes

<= Less than or
equal to

x <= y Yes

>= Greater than or
equal to

x >= y Yes

is Type is or is
subclass of

x is y No

as Type conversion x as y No

Equality

== Equals x == y Yes

!= Not equals x != y Yes

Logical And

& And x & y Yes

Logical Xor

^ Exclusive Or x ^ y Yes

Logical Or

| Or x | y Yes

52 | C# 10 Pocket Reference

Operator symbol Operator name Example Overloadable

Conditional And

&& Conditional And x && y Via &

Conditional Or

|| Conditional Or x || y Via |

Null coalescing

?? Null coalescing x ?? y No

Conditional (Ternary)

? : Conditional isTrue ? then

This : elseThis

No

Assignment and lambda (lowest precedence)

= Assign x = y No

*= Multiply self by x *= 2 Via *

/= Divide self by x /= 2 Via /

+= Add to self x += 2 Via +

-= Subtract from self x -= 2 Via -

<<= Shift self left by x <<= 2 Via <<

>>= Shift self right by x >>= 2 Via >>

&= And self by x &= 2 Via &

^= Exclusive-Or
self by

x ^= 2 Via ^

|= Or self by x |= 2 Via |

=> Lambda x => x + 1 No

Null Operators
C# provides three operators to make it easier to work with
nulls: the null-coalescing operator, the null-conditional operator,
and the null-coalescing assignment operator.

Null Operators | 53

Null-Coalescing Operator
The ?? operator is the null-coalescing operator. It says, “If the
operand to the left is non-null, give it to me; otherwise, give me
another value.” For example:

string s1 = null;
string s2 = s1 ?? "nothing"; // s2 evaluates to "nothing"

If the lefthand expression is non-null, the righthand expression
is never evaluated. The null-coalescing operator also works
with nullable value types (see “Nullable Value Types” on page
157).

Null-Coalescing Assignment Operator
The ??= operator (introduced in C# 8) is the null-coalescing
assignment operator. It says, “If the operand to the left is null,
assign the right operand to the left operand.” Consider the
following:

myVariable ??= someDefault;

This is equivalent to:
if (myVariable == null) myVariable = someDefault;

Null-Conditional Operator
The ?. operator is the null-conditional or “Elvis” operator. It
allows you to call methods and access members just like the
standard dot operator, except that if the operand on the left
is null, the expression evaluates to null instead of throwing a
NullReferenceException:

System.Text.StringBuilder sb = null;
string s = sb?.ToString(); // No error; s is null

The last line is equivalent to this:
string s = (sb == null ? null : sb.ToString());

54 | C# 10 Pocket Reference

Null-conditional expressions also work with indexers:
string foo = null;
char? c = foo?[1]; // c is null

Upon encountering a null, the Elvis operator short-circuits
the remainder of the expression. In the following example, s
evaluates to null, even with a standard dot operator between
ToString() and ToUpper():

System.Text.StringBuilder sb = null;
string s = sb?.ToString().ToUpper(); // No error

Repeated use of Elvis is necessary only if the operand immedi‐
ately to its left might be null. The following expression is robust
to both x being null and x.y being null:

x?.y?.z

This is equivalent to the following (except that x.y is evaluated
only once):

x == null ? null
 : (x.y == null ? null : x.y.z)

The final expression must be capable of accepting a null. The
following is illegal because int cannot accept a null:

System.Text.StringBuilder sb = null;
int length = sb?.ToString().Length; // Illegal

We can fix this with the use of nullable value types (see “Nulla‐
ble Value Types” on page 157):

int? length = sb?.ToString().Length;
// OK : int? can be null

You can also use the null-conditional operator to call a void
method:

someObject?.SomeVoidMethod();

If someObject is null, this becomes a “no-operation” rather than
throwing a NullReferenceException.

The null-conditional operator can be used with the commonly
used type members that we describe in “Classes” on page 70,

Null Operators | 55

including methods, fields, properties, and indexers. It also com‐
bines well with the null-coalescing operator:

System.Text.StringBuilder sb = null;
string s = sb?.ToString() ?? "nothing";
// s evaluates to "nothing"

Statements
Functions comprise statements that execute sequentially in the
textual order in which they appear. A statement block is a series
of statements appearing between braces (the {} tokens).

Declaration Statements
A variable declaration introduces a new variable, optionally
initializing it with an expression. You can declare multiple vari‐
ables of the same type in a comma-separated list. For example:

bool rich = true, famous = false;

A constant declaration is like a variable declaration, except
that it cannot be changed after it has been declared, and the
initialization must occur with the declaration (more on this in
“Constants” on page 72):

const double c = 2.99792458E08;

Local variable scope
The scope of a local variable or local constant variable extends
throughout the current block. You cannot declare another local
variable with the same name in the current block or in any
nested blocks.

Expression Statements
Expression statements are expressions that are also valid state‐
ments. In practice, this means expressions that “do” something;
in other words:

56 | C# 10 Pocket Reference

• Assign or modify a variable•
• Instantiate an object•
• Call a method•

Expressions that do none of these are not valid statements:
string s = "foo";
s.Length; // Illegal statement: does nothing!

When you call a constructor or a method that returns a value,
you’re not obliged to use the result. However, unless the con‐
structor or method changes state, the statement is useless:

new StringBuilder(); // Legal, but useless
x.Equals (y); // Legal, but useless

Selection Statements
Selection statements conditionally control the flow of program
execution.

The if statement

An if statement executes a statement if a bool expression is
true. For example:

if (5 < 2 * 3)
 Console.WriteLine ("true"); // true

The statement can be a code block:
if (5 < 2 * 3)
{
 Console.WriteLine ("true"); // true
 Console.WriteLine ("...")
}

The else clause

An if statement can optionally feature an else clause:
if (2 + 2 == 5)
 Console.WriteLine ("Does not compute");

Statements | 57

else
 Console.WriteLine ("False"); // False

Within an else clause, you can nest another if statement:
if (2 + 2 == 5)
 Console.WriteLine ("Does not compute");
else
 if (2 + 2 == 4)
 Console.WriteLine ("Computes"); // Computes

Changing the flow of execution with braces

An else clause always applies to the immediately preceding if
statement in the statement block. For example:

if (true)
 if (false)
 Console.WriteLine();
 else
 Console.WriteLine ("executes");

This is semantically identical to the following:
if (true)
{
 if (false)
 Console.WriteLine();
 else
 Console.WriteLine ("executes");
}

You can change the execution flow by moving the braces:
if (true)
{
 if (false)
 Console.WriteLine();
}
else
 Console.WriteLine ("does not execute");

C# has no “elseif ” keyword; however, the following pattern
achieves the same result:

if (age >= 35)
 Console.WriteLine ("You can be president!");
else if (age >= 21)

58 | C# 10 Pocket Reference

 Console.WriteLine ("You can drink!");
else if (age >= 18)
 Console.WriteLine ("You can vote!");
else
 Console.WriteLine ("You can wait!");

The switch statement
Switch statements let you branch program execution based
on a selection of possible values that a variable might have.
Switch statements can result in cleaner code than multiple if
statements because switch statements require an expression to
be evaluated only once. For instance:

static void ShowCard (int cardNumber)
{
 switch (cardNumber)
 {
 case 13:
 Console.WriteLine ("King");
 break;
 case 12:
 Console.WriteLine ("Queen");
 break;
 case 11:
 Console.WriteLine ("Jack");
 break;
 default: // Any other cardNumber
 Console.WriteLine (cardNumber);
 break;
 }
}

The values in each case expression must be constants, which
restricts their allowable types to the built-in integral types; the
bool, char, and enum types; and the string type. At the end
of each case clause, you must say explicitly where execution
is to go next with some kind of jump statement. Here are the
options:

• break (jumps to the end of the switch statement)•
• goto case x (jumps to another case clause)•
• goto default (jumps to the default clause)•

Statements | 59

• Any other jump statement—namely, return, throw,•
continue, or goto label

When more than one value should execute the same code, you
can list the common cases sequentially:

switch (cardNumber)
{
 case 13:
 case 12:
 case 11:
 Console.WriteLine ("Face card");
 break;
 default:
 Console.WriteLine ("Plain card");
 break;
}

This feature of a switch statement can be pivotal in terms of
producing cleaner code than multiple if-else statements.

Switching on types
From C# 7, you can switch on type:

static void TellMeTheType (object x)
{
 switch (x)
 {
 case int i:
 Console.WriteLine ("It's an int!");
 break;
 case string s:
 Console.WriteLine (s.Length); // We can use s
 break;
 case bool b when b == true: // Fires when b is true
 Console.WriteLine ("True");
 break;
 case null: // You can also switch on null
 Console.WriteLine ("null");
 break;
 }
}

60 | C# 10 Pocket Reference

(The object type allows for a variable of any type—see “Inheri‐
tance” on page 89 and “The object Type” on page 99.)

Each case clause specifies a type upon which to match, and
a variable upon which to assign the typed value if the match
succeeds. Unlike with constants, there’s no restriction on what
types you can use. The optional when clause specifies a condi‐
tion that must be satisfied for the case to match.

The order of the case clauses is relevant when you’re switch‐
ing on type (unlike when you’re switching on constants). An
exception to this rule is the default clause, which is executed
last, regardless of where it appears.

You can stack multiple case clauses. The Console.WriteLine
in the following code will execute for any floating-point type
greater than 1,000:

 switch (x)
 {
 case float f when f > 1000:
 case double d when d > 1000:
 case decimal m when m > 1000:
 Console.WriteLine ("f, d and m are out of scope");
 break;

In this example, the compiler lets us consume the variables f,
d, and m, only in the when clauses. When we call Console.Write
Line, it’s unknown as to which one of those three variables will
be assigned, so the compiler puts all of them out of scope.

Switch expressions

From C# 8, you can also use switch in the context of an
expression. Assuming cardNumber is of type int, the following
illustrates its use:

string cardName = cardNumber switch
{
 13 => "King",
 12 => "Queen",
 11 => "Jack",
 _ => "Pip card" // equivalent to 'default'
};

Statements | 61

Notice that the switch keyword appears after the variable
name, and that the case clauses are expressions (terminated
by commas) rather than statements. You can also switch on
multiple values (tuples):

int cardNumber = 12; string suite = "spades";
string cardName = (cardNumber, suite) switch
{
 (13, "spades") => "King of spades",
 (13, "clubs") => "King of clubs",
 ...
};

Iteration Statements
C# enables a sequence of statements to execute repeatedly with
the while, do-while, for, and foreach statements.

while and do-while loops

while loops repeatedly execute a body of code while a bool
expression is true. The expression is tested before the body of
the loop is executed. For example, the following writes 012:

int i = 0;
while (i < 3)
{ // Braces here are optional
 Console.Write (i++);
}

do-while loops differ in functionality from while loops only
in that they test the expression after the statement block has
executed (ensuring that the block is always executed at least
once). Here’s the preceding example rewritten with a do-while
loop:

int i = 0;
do
{
 Console.WriteLine (i++);
}
while (i < 3);

62 | C# 10 Pocket Reference

for loops

for loops are like while loops with special clauses for initializa‐
tion and iteration of a loop variable. A for loop contains three
clauses as follows:

for (init-clause; condition-clause; iteration-clause)
 statement-or-statement-block

The init-clause executes before the loop begins, and typically
initializes one or more iteration variables.

The condition-clause is a bool expression that is tested before
each loop iteration. The body executes while this condition is
true.

The iteration-clause is executed after each iteration of the body.
It’s typically used to update the iteration variable.

For example, the following prints the numbers 0 through 2:
for (int i = 0; i < 3; i++)
 Console.WriteLine (i);

The following prints the first 10 Fibonacci numbers (where
each number is the sum of the previous two):

for (int i = 0, prevFib = 1, curFib = 1; i < 10; i++)
{
 Console.WriteLine (prevFib);
 int newFib = prevFib + curFib;
 prevFib = curFib; curFib = newFib;
}

Any of the three parts of the for statement can be omitted. You
can implement an infinite loop such as the following (though
while(true) can be used instead):

for (;;) Console.WriteLine ("interrupt me");

foreach loops

The foreach statement iterates over each element in an enu‐
merable object. Most of the .NET types that represent a set or
list of elements are enumerable. For example, both an array and
a string are enumerable. Here is an example of enumerating

Statements | 63

over the characters in a string, from the first character through
the last:

foreach (char c in "beer")
 Console.Write (c + " "); // b e e r

We define enumerable objects in “Enumeration and Iterators”
on page 151.

Jump Statements
The C# jump statements are break, continue, goto, return, and
throw. We cover the throw keyword in “try Statements and
Exceptions” on page 143.

The break statement

The break statement ends the execution of the body of an
iteration or switch statement:

int x = 0;
while (true)
{
 if (x++ > 5) break; // break from the loop
}
// execution continues here after break
...

The continue statement

The continue statement forgoes the remaining statements in
the loop and makes an early start on the next iteration. The
following loop skips even numbers:

for (int i = 0; i < 10; i++)
{
 if ((i % 2) == 0) continue;
 Console.Write (i + " "); // 1 3 5 7 9
}

64 | C# 10 Pocket Reference

The goto statement

The goto statement transfers execution to a label (denoted with
a colon suffix) within a statement block. The following iterates
the numbers 1 through 5, mimicking a for loop:

int i = 1;
startLoop:
if (i <= 5)
{
 Console.Write (i + " "); // 1 2 3 4 5
 i++;
 goto startLoop;
}

The return statement

The return statement exits the method and must return
an expression of the method’s return type if the method is
nonvoid:

decimal AsPercentage (decimal d)
{
 decimal p = d * 100m;
 return p; // Return to calling method with value
}

A return statement can appear anywhere in a method (except
in a finally block) and can be used more than once.

Namespaces
A namespace is a domain within which type names must be
unique. Types are typically organized into hierarchical name‐
spaces—both to avoid naming conflicts and to make type
names easier to find. For example, the RSA type that han‐
dles public key encryption is defined within the following
namespace:

System.Security.Cryptography

Namespaces | 65

A namespace forms an integral part of a type’s name. The
following code calls RSA’s Create method:

System.Security.Cryptography.RSA rsa =
 System.Security.Cryptography.RSA.Create();

NOTE

Namespaces are independent of assemblies, which are
units of deployment such as an .exe or .dll.
Namespaces also have no impact on member accessibility
—public, internal, private, and so on.

The namespace keyword defines a namespace for types within
that block. For example:

namespace Outer.Middle.Inner
{
 class Class1 {}
 class Class2 {}
}

The dots in the namespace indicate a hierarchy of nested
namespaces. The code that follows is semantically identical to
the preceding example:

namespace Outer
{
 namespace Middle
 {
 namespace Inner
 {
 class Class1 {}
 class Class2 {}
 }
 }
}

You can refer to a type with its fully qualified name, which
includes all namespaces from the outermost to the innermost.

66 | C# 10 Pocket Reference

For example, you could refer to Class1 in the preceding exam‐
ple as Outer.Middle.Inner.Class1.

Types not defined in any namespace are said to reside in the
global namespace. The global namespace also includes top-level
namespaces, such as Outer in our example.

File-Scoped Namespaces (C# 10)
Often, you will want all the types in a file to be defined in one
namespace:

namespace MyNamespace
{
 class Class1 {}
 class Class2 {}
}

From C# 10, you can accomplish this with a file-scoped
namespace:

namespace MyNamespace; // Applies to everything below

class Class1 {} // inside MyNamespace
class Class2 {} // inside MyNamespace

File-scoped namespaces reduce clutter and eliminate an
unnecessary level of indentation.

The using Directive
The using directive imports a namespace and is a convenient
way to refer to types without their fully qualified names. For
example, you can refer to Class1 in the preceding example as
follows:

using Outer.Middle.Inner;

Class1 c; // Don't need fully qualified name

A using directive can be nested within a namespace itself to
limit the scope of the directive.

Namespaces | 67

The global using Directive (C# 10)
From C# 10, if you prefix a using directive with the global
keyword, the directive will apply to all files in the project or
compilation unit:

global using System;
global using System.Collection.Generic;

This lets you centralize common imports and avoid repeating
the same directives in every file.

global using directives must precede nonglobal directives and
cannot appear inside namespace declarations. The global direc‐
tive can be used with using static.

using static
The using static directive imports a type rather than a name‐
space. All static members of that type can then be used without
being qualified with the type name. In the following example,
we call the Console class’s static WriteLine method:

using static System.Console;

WriteLine ("Hello");

The using static directive imports all accessible static mem‐
bers of the type, including fields, properties, and nested types.
You can also apply this directive to enum types (see “Enums”
on page 113), in which case their members are imported.
Should an ambiguity arise between multiple static imports,
the C# compiler is unable to infer the correct type from the
context, and will generate an error.

Rules Within a Namespace

Name scoping
Names declared in outer namespaces can be used unqualified
within inner namespaces. In this example, Class1 does not
need qualification within Inner:

68 | C# 10 Pocket Reference

namespace Outer
{
 class Class1 {}

 namespace Inner
 {
 class Class2 : Class1 {}
 }
}

If you want to refer to a type in a different branch of your
namespace hierarchy, you can use a partially qualified name. In
the following example, we base SalesReport on Common.Report
Base:

namespace MyTradingCompany
{
 namespace Common
 {
 class ReportBase {}
 }
 namespace ManagementReporting
 {
 class SalesReport : Common.ReportBase {}
 }
}

Name hiding
If the same type name appears in both an inner and an outer
namespace, the inner name wins. To refer to the type in the
outer namespace, you must qualify its name.

NOTE

All type names are converted to fully qualified names at
compile time. Intermediate Language (IL) code contains
no unqualified or partially qualified names.

Namespaces | 69

Repeated namespaces
You can repeat a namespace declaration, as long as the type
names within the namespaces don’t conflict:

namespace Outer.Middle.Inner { class Class1 {} }
namespace Outer.Middle.Inner { class Class2 {} }

The classes can even span source files and assemblies.

The global:: qualifier
Occasionally, a fully qualified type name might conflict with an
inner name. You can force C# to use the fully qualified type
name by prefixing it with global::, as follows:

global::System.Text.StringBuilder sb;

Aliasing Types and Namespaces
Importing a namespace can result in type-name collision.
Rather than importing the whole namespace, you can import
just the specific types you need, giving each type an alias. For
example:

using PropertyInfo2 = System.Reflection.PropertyInfo;
class Program { PropertyInfo2 p; }

An entire namespace can be aliased, as follows:
using R = System.Reflection;
class Program { R.PropertyInfo p; }

Classes
A class is the most common kind of reference type. The sim‐
plest possible class declaration is as follows:

class Foo
{
}

70 | C# 10 Pocket Reference

A more complex class optionally has the following:

Preceding the
keyword class

Attributes and class modifiers. The non-nested class modifiers
are public, internal, abstract, sealed, static,
unsafe, and partial.

Following Foo Generic type parameters and constraints, a base class, and
interfaces.

Within the braces Class members (these are methods, properties, indexers,
events, fields, constructors, overloaded operators, nested
types, and a finalizer).

Fields
A field is a variable that is a member of a class or struct. For
example:

class Octopus
{
 string name;
 public int Age = 10;
}

A field can have the readonly modifier to prevent it from
being modified after construction. A read-only field can be
assigned only in its declaration or within the enclosing type’s
constructor.

Field initialization is optional. An uninitialized field has a
default value (0, '\0', null, false). Field initializers run before
constructors in the order in which they appear.

For convenience, you can declare multiple fields of the same
type in a comma-separated list. This is a convenient way for all
the fields to share the same attributes and field modifiers. For
example:

static readonly int legs = 8, eyes = 2;

Classes | 71

Constants
A constant is evaluated statically at compile time and the com‐
piler literally substitutes its value whenever used (rather like a
macro in C++). A constant can be any of the built-in numeric
types: bool, char, string, or an enum type.

A constant is declared with the const keyword and must be
initialized with a value. For example:

public class Test
{
 public const string Message = "Hello World";
}

A constant is much more restrictive than a static readonly
field—both in the types you can use and in field initialization
semantics. A constant also differs from a static readonly field
in that the evaluation of the constant occurs at compile time.
Constants can also be declared local to a method:

static void Main()
{
 const double twoPI = 2 * System.Math.PI;
 ...
}

Methods
A method performs an action in a series of statements. A
method can receive input data from the caller by specifying
parameters, and output data back to the caller by specifying a
return type. A method can specify a void return type, indicating
that it doesn’t return any value to its caller. A method can also
output data back to the caller via ref and out parameters.

A method’s signature must be unique within the type. A meth‐
od’s signature comprises its name and parameter types in order
(but not the parameter names, nor the return type).

72 | C# 10 Pocket Reference

Expression-bodied methods
A method that comprises a single expression, such as the
following:

int Foo (int x) { return x * 2; }

can be written more tersely as an expression-bodied method. A
fat arrow replaces the braces and return keyword:

int Foo (int x) => x * 2;

Expression-bodied functions can also have a void return type:
void Foo (int x) => Console.WriteLine (x);

Local methods
You can define a method within another method:

void WriteCubes()
{
 Console.WriteLine (Cube (3));

 int Cube (int value) => value * value * value;
}

The local method (Cube, in this case) is visible only to the
enclosing method (WriteCubes). This simplifies the containing
type and instantly signals to anyone looking at the code that
Cube is used nowhere else. Local methods can access the local
variables and parameters of the enclosing method. This has
a number of consequences, which we describe in “Capturing
Outer Variables” on page 139.

Local methods can appear within other function kinds, such
as property accessors, constructors, and so on, and even
within other local methods. Local methods can be iterators or
asynchronous.

Methods declared in top-level statements are implicitly local;
we can demonstrate this as follows:

int x = 3; Foo();
void Foo() => Console.WriteLine (x); // We can access x

Classes | 73

Static local methods

Adding the static modifier to a local method (from C# 8) pre‐
vents it from seeing the local variables and parameters of the
enclosing method. This helps to reduce coupling and prevents
the local method from accidentally referring to variables in the
containing method.

Overloading methods

WARNING

Local methods cannot be overloaded. This means that
methods declared in top-level statements (which are
treated as local methods) cannot be overloaded.

A type can overload methods (have multiple methods with the
same name) as long as the parameter types are different. For
example, the following methods can all coexist in the same
type:

void Foo (int x);
void Foo (double x);
void Foo (int x, float y);
void Foo (float x, int y);

Instance Constructors
Constructors run initialization code on a class or struct. A
constructor is defined like a method, except that the method
name and return type are reduced to the name of the enclosing
type:

Panda p = new Panda ("Petey"); // Call constructor

public class Panda
{
 string name; // Define field
 public Panda (string n) // Define constructor
 {

74 | C# 10 Pocket Reference

 name = n; // Initialization code
 }
}

Single-statement constructors can be written as expression-
bodied members:

public Panda (string n) => name = n;

A class or struct can overload constructors. One overload can
call another, using the this keyword:

public class Wine
{
 public Wine (decimal price) {...}

 public Wine (decimal price, int year)
 : this (price) {...}
}

When one constructor calls another, the called constructor exe‐
cutes first.

You can pass an expression into another constructor as follows:
 public Wine (decimal price, DateTime year)
 : this (price, year.Year) {...}

The expression itself cannot make use of the this reference, for
example, to call an instance method. It can, however, call static
methods.

Implicit parameterless constructors
For classes, the C# compiler automatically generates a param‐
eterless public constructor if and only if you do not define
any constructors. However, as soon as you define at least one
constructor, the parameterless constructor is no longer auto‐
matically generated.

Nonpublic constructors
Constructors do not need to be public. A common reason to
have a nonpublic constructor is to control instance creation via
a static method call. The static method could be used to return

Classes | 75

an object from a pool rather than creating a new object or to
return a specialized subclass chosen based on input arguments.

Deconstructors
Whereas a constructor typically takes a set of values (as param‐
eters) and assigns them to fields, a deconstructor (C# 7+) does
the reverse and assigns fields back to a set of variables. A
deconstruction method must be called Deconstruct and have
one or more out parameters:

class Rectangle
{
 public readonly float Width, Height;

 public Rectangle (float width, float height)
 {
 Width = width; Height = height;
 }

 public void Deconstruct (out float width,
 out float height)
 {
 width = Width; height = Height;
 }
}

To call the deconstructor, you use the following special syntax:
var rect = new Rectangle (3, 4);
(float width, float height) = rect;
Console.WriteLine (width + " " + height); // 3 4

The second line is the deconstructing call. It creates two local
variables and then calls the Deconstruct method. Our decon‐
structing call is equivalent to the following:

rect.Deconstruct (out var width, out var height);

Deconstructing calls allow implicit typing, so we could shorten
our call to:

(var width, var height) = rect;

76 | C# 10 Pocket Reference

Or simply:
var (width, height) = rect;

If the variables into which you’re deconstructing are already
defined, omit the types altogether; this is called a deconstructing
assignment:

(width, height) = rect;

You can offer the caller a range of deconstruction options by
overloading the Deconstruct method.

NOTE

The Deconstruct method can be an extension method
(see “Extension Methods” on page 164). This is a useful
trick if you want to deconstruct types that you did not
author.

From C# 10, you can mix and match existing and new variables
when deconstructing:

double x1 = 0;
(x1, double y2) = rect;

Object Initializers
To simplify object initialization, the accessible fields or prop‐
erties of an object can be initialized via an object initializer
directly after construction. For example, consider the following
class:

public class Bunny
{
 public string Name;
 public bool LikesCarrots, LikesHumans;

 public Bunny () {}
 public Bunny (string n) { Name = n; }
}

Classes | 77

Using object initializers, you can instantiate Bunny objects as
follows:

Bunny b1 = new Bunny {
 Name="Bo",
 LikesCarrots = true,
 LikesHumans = false
 };

Bunny b2 = new Bunny ("Bo") {
 LikesCarrots = true,
 LikesHumans = false
 };

The this Reference
The this reference refers to the instance itself. In the following
example, the Marry method uses this to set the partner’s mate
field:

public class Panda
{
 public Panda Mate;

 public void Marry (Panda partner)
 {
 Mate = partner;
 partner.Mate = this;
 }
}

The this reference also disambiguates a local variable or
parameter from a field. For example:

public class Test
{
 string name;
 public Test (string name) { this.name = name; }
}

The this reference is valid only within nonstatic members of a
class or struct.

78 | C# 10 Pocket Reference

Properties
Properties look like fields from the outside, but internally they
contain logic, like methods do. For example, you can’t deter‐
mine by looking at the following code whether CurrentPrice is
a field or a property:

Stock msft = new Stock();
msft.CurrentPrice = 30;
msft.CurrentPrice -= 3;
Console.WriteLine (msft.CurrentPrice);

A property is declared like a field, but with a get/set block
added. Here’s how to implement CurrentPrice as a property:

public class Stock
{
 decimal currentPrice; // The private "backing" field

 public decimal CurrentPrice // The public property
 {
 get { return currentPrice; }
 set { currentPrice = value; }
 }
}

get and set denote property accessors. The get accessor runs
when the property is read. It must return a value of the proper‐
ty’s type. The set accessor runs when the property is assigned.
It has an implicit parameter named value of the property’s
type that you typically assign to a private field (in this case,
currentPrice).

Although properties are accessed in the same way as fields, they
differ in that they give the implementer complete control over
getting and setting its value. This control enables the imple‐
menter to choose whatever internal representation is needed,
without exposing the internal details to the user of the prop‐
erty. In this example, the set method could throw an exception
if value was outside a valid range of values.

Classes | 79

NOTE

Throughout this book, we use public fields to keep the
examples free of distraction. In a real application, you
would typically favor public properties over public fields
to promote encapsulation.

A property is read-only if it specifies only a get accessor, and
it is write-only if it specifies only a set accessor. Write-only
properties are rarely used.

A property typically has a dedicated backing field to store the
underlying data. However, it doesn’t need to; it can instead
return a value computed from other data:

decimal currentPrice, sharesOwned;

public decimal Worth
{
 get { return currentPrice * sharesOwned; }
}

Expression-bodied properties
You can declare a read-only property, such as the preceding
one, more tersely as an expression-bodied property. A fat arrow
replaces all the braces and the get and return keywords:

public decimal Worth => currentPrice * sharesOwned;

From C# 7, set accessors can be expression-bodied too:
public decimal Worth
{
 get => currentPrice * sharesOwned;
 set => sharesOwned = value / currentPrice;
}

Automatic properties
The most common implementation for a property is a get‐
ter and/or setter that simply reads and writes to a private
field of the same type as the property. An automatic property

80 | C# 10 Pocket Reference

declaration instructs the compiler to provide this implemen‐
tation. We can improve the first example in this section by
declaring CurrentPrice as an automatic property:

public class Stock
{
 public decimal CurrentPrice { get; set; }
}

The compiler automatically generates a private backing field of
a compiler-generated name that cannot be referred to. The set
accessor can be marked private or protected if you want to
expose the property as read-only to other types.

Property initializers
You can add a property initializer to automatic properties, just
as with fields:

public decimal CurrentPrice { get; set; } = 123;

This gives CurrentPrice an initial value of 123. Properties with
an initializer can be read-only:

public int Maximum { get; } = 999;

Just as with read-only fields, read-only automatic properties
can also be assigned in the type’s constructor. This is useful in
creating immutable (read-only) types.

get and set accessibility

The get and set accessors can have different access levels. The
typical use case for this is to have a public property with an
internal or private access modifier on the setter:

private decimal x;
public decimal X
{
 get { return x; }
 private set { x = Math.Round (value, 2); }
}

Classes | 81

Notice that you declare the property itself with the more per‐
missive access level (public, in this case), and add the modifier
to the accessor you want to be less accessible.

Init-only setters

From C# 9, you can declare a property accessor with init
instead of set:

public class Note
{
 public int Pitch { get; init; } = 20;
 public int Duration { get; init; } = 100;
}

These init-only properties act like read-only properties, except
that they can also be set via an object initializer:

var note = new Note { Pitch = 50 };

After that, the property cannot be altered:
note.Pitch = 200; // Error – init-only setter!

Init-only properties cannot even be set from inside their class,
except via their property initializer, the constructor, or another
init-only accessor.

The alternative to init-only properties is to have read-only
properties that you populate via a constructor:

 public Note (int pitch = 20, int duration = 100)
 {
 Pitch = pitch; Duration = duration;
 }

Should the class be part of a public library, this approach makes
versioning difficult, in that adding an optional parameter to
the constructor at a later date breaks binary compatibility with
consumers (whereas adding a new init-only property breaks
nothing).

82 | C# 10 Pocket Reference

NOTE

Init-only properties have another significant advantage,
which is that they allow for nondestructive mutation when
used in conjunction with records (see “Records” on page
169).

Just as with ordinary set accessors, init-only accessors can
provide an implementation:

public class Point
{
 readonly int _x;
 public int X { get => _x; init => _x = value; }
 ...

Notice that the _x field is read-only: init-only setters are per‐
mitted to modify readonly fields in their own class. (Without
this feature, _x would need to be writable, and the class would
fail at being internally immutable.)

Indexers
Indexers provide a natural syntax for accessing elements in a
class or struct that encapsulate a list or dictionary of values.
Indexers are similar to properties, but are accessed via an index
argument rather than a property name. The string class has an
indexer that lets you access each of its char values via an int
index:

string s = "hello";
Console.WriteLine (s[0]); // 'h'
Console.WriteLine (s[3]); // 'l'

The syntax for using indexers is like that for using arrays,
except that the index argument(s) can be of any type(s). You
can call indexers null-conditionally by inserting a question
mark before the square bracket (see “Null Operators” on page
53):

Classes | 83

string s = null;
Console.WriteLine (s?[0]); // Writes nothing; no error.

Implementing an indexer

To write an indexer, define a property called this, specifying
the arguments in square brackets. For example:

class Sentence
{
 string[] words = "The quick brown fox".Split();

 public string this [int wordNum] // indexer
 {
 get { return words [wordNum]; }
 set { words [wordNum] = value; }
 }
}

Here’s how we could use this indexer:
Sentence s = new Sentence();
Console.WriteLine (s[3]); // fox
s[3] = "kangaroo";
Console.WriteLine (s[3]); // kangaroo

A type can declare multiple indexers, each with parameters
of different types. An indexer can also take more than one
parameter:

public string this [int arg1, string arg2]
{
 get { ... } set { ... }
}

If you omit the set accessor, an indexer becomes read-only,
and expression-bodied syntax can be used to shorten its
definition:

public string this [int wordNum] => words [wordNum];

84 | C# 10 Pocket Reference

Using indices and ranges with indexers
You can support indices and ranges (see “Indices and Ranges”
on page 34) in your own classes by defining an indexer with
a parameter type of Index or Range. We could extend our previ‐
ous example by adding the following indexers to the Sentence
class:

 public string this [Index index] => words [index];
 public string[] this [Range range] => words [range];

This then enables the following:
Sentence s = new Sentence();
Console.WriteLine (s [^1]); // fox
string[] firstTwoWords = s [..2]; // (The, quick)

Static Constructors
A static constructor executes once per type, rather than once
per instance. A type can define only one static constructor, and
it must be parameterless and have the same name as the type:

class Test
{
 static Test() { Console.Write ("Type Initialized"); }
}

The runtime automatically invokes a static constructor just
prior to the type being used. Two things trigger this: instantiat‐
ing the type, and accessing a static member in the type.

WARNING

If a static constructor throws an unhandled exception, that
type becomes unusable for the life of the application.

Classes | 85

NOTE

From C# 9, you can also define module initializers, which
execute once per assembly (when the assembly is first
loaded). To define a module initializer, write a static
void method and then apply the [ModuleInitializer]
attribute to that method:

[System.Runtime.CompilerServices.ModuleInitializer]
internal static void InitAssembly()
{
 ...
}

Static field initializers run just before the static constructor is
called. If a type has no static constructor, static field initializers
will execute just prior to the type being used—or anytime ear‐
lier at the whim of the runtime.

Static Classes
A class marked as static cannot be instantiated or sub‐
classed, and must be composed solely of static members. The
System.Console and System.Math classes are good examples of
static classes.

Finalizers
Finalizers are class-only methods that execute before the
garbage collector reclaims the memory for an unreferenced
object. The syntax for a finalizer is the name of the class pre‐
fixed with the ~ symbol:

class Class1
{
 ~Class1() { ... }
}

C# translates a finalizer into a method that overrides the
Finalize method in the object class. We discuss garbage col‐
lection and finalizers fully in Chapter 12 of C# 10 in a Nutshell.

86 | C# 10 Pocket Reference

https://learning.oreilly.com/library/view/c-10-in/9781098121945/

Single-statement finalizers can be written with expression-
bodied syntax.

Partial Types and Methods
Partial types allow a type definition to be split—typically across
multiple files. A common scenario is for a partial class to be
autogenerated from some other source (e.g., a Visual Studio
template), and for that class to be augmented with additional
hand-authored methods. For example:

// PaymentFormGen.cs - autogenerated
partial class PaymentForm { ... }

// PaymentForm.cs - hand-authored
partial class PaymentForm { ... }

Each participant must have the partial declaration.

Participants cannot have conflicting members. A constructor
with the same parameters, for instance, cannot be repeated.
Partial types are resolved entirely by the compiler, which means
that each participant must be available at compile time and
must reside in the same assembly.

A base class can be specified on a single participant or on
multiple participants (as long as the base class that you specify
is the same). In addition, each participant can independently
specify interfaces to implement. We cover base classes and
interfaces in “Inheritance” on page 89 and “Interfaces” on page
108.

Partial methods
A partial type can contain partial methods. These let an auto‐
generated partial type provide customizable hooks for manual
authoring. For example:

partial class PaymentForm // In autogenerated file
{
 partial void ValidatePayment (decimal amount);
}

Classes | 87

partial class PaymentForm // In hand-authored file
{
 partial void ValidatePayment (decimal amount)
 {
 if (amount > 100) Console.Write ("Expensive!");
 }
}

A partial method consists of two parts: a definition and an
implementation. The definition is typically written by a code
generator, and the implementation is typically manually auth‐
ored. If an implementation is not provided, the definition of
the partial method is compiled away (as is the code that calls
it). This allows autogenerated code to be liberal in providing
hooks, without having to worry about bloat. Partial methods
must be void and are implicitly private.

Extended partial methods
Extended partial methods (from C# 9) are designed for the
reverse code generation scenario, where a programmer defines
hooks that a code generator implements. An example of where
this might occur is with source generators, a Roslyn feature
that lets you feed the compiler an assembly that automatically
generates portions of your code.

A partial method declaration is extended if it begins with an
accessibility modifier:

public partial class Test
{
 public partial void M1(); // Extended partial method
 private partial void M2(); // Extended partial method
}

The presence of the accessibility modifier doesn’t just affect
accessibility: it tells the compiler to treat the declaration
differently.

Extended partial methods must have implementations; they do
not melt away if unimplemented. In this example, both M1
and M2 must have implementations because they each specify
accessibility modifiers (public and private).

88 | C# 10 Pocket Reference

Because they cannot melt away, extended partial methods can
return any type, and can include out parameters.

The nameof Operator
The nameof operator returns the name of any symbol (type,
member, variable, and so on) as a string:

int count = 123;
string name = nameof (count); // name is "count"

Its advantage over simply specifying a string is that of static
type checking. Tools such as Visual Studio can understand the
symbol reference, so if you rename the symbol in question, all
of its references will be renamed too.

To specify the name of a type member such as a field or prop‐
erty, include the type as well. This works with both static and
instance members:

string name = nameof (StringBuilder.Length);

This evaluates to "Length". To return "StringBuilder.Length",
you would do this:

nameof(StringBuilder)+"."+nameof(StringBuilder.Length);

Inheritance
A class can inherit from another class to extend or customize
the original class. Inheriting from a class lets you reuse the
functionality in that class instead of building it from scratch.
A class can inherit from only a single class, but can itself be
inherited by many classes, thus forming a class hierarchy. In
this example, we begin by defining a class called Asset:

public class Asset { public string Name; }

Next, we define classes called Stock and House, which will
inherit from Asset. Stock and House get everything an Asset
has, plus any additional members that they define:

Inheritance | 89

public class Stock : Asset // inherits from Asset
{
 public long SharesOwned;
}

public class House : Asset // inherits from Asset
{
 public decimal Mortgage;
}

Here’s how we can use these classes:
Stock msft = new Stock { Name="MSFT",
 SharesOwned=1000 };

Console.WriteLine (msft.Name); // MSFT
Console.WriteLine (msft.SharesOwned); // 1000

House mansion = new House { Name="Mansion",
 Mortgage=250000 };

Console.WriteLine (mansion.Name); // Mansion
Console.WriteLine (mansion.Mortgage); // 250000

The subclasses, Stock and House, inherit the Name field from the
base class, Asset.

Subclasses are also called derived classes.

Polymorphism
References are polymorphic. This means a variable of type x can
refer to an object that subclasses x. For instance, consider the
following method:

public static void Display (Asset asset)
{
 System.Console.WriteLine (asset.Name);
}

This method can display both a Stock and a House because
they are both Assets. Polymorphism works on the basis that
subclasses (Stock and House) have all the features of their base
class (Asset). The converse, however, is not true. If Display

90 | C# 10 Pocket Reference

were rewritten to accept a House, you could not pass in an
Asset.

Casting and Reference Conversions
An object reference can be:

• Implicitly upcast to a base class reference•
• Explicitly downcast to a subclass reference•

Upcasting and downcasting between compatible reference
types performs reference conversions: a new reference is created
that points to the same object. An upcast always succeeds; a
downcast succeeds only if the object is suitably typed.

Upcasting
An upcast operation creates a base class reference from a sub‐
class reference. For example:

Stock msft = new Stock(); // From previous example
Asset a = msft; // Upcast

After the upcast, variable a still references the same Stock
object as variable msft. The object being referenced is not itself
altered or converted:

Console.WriteLine (a == msft); // True

Although a and msft refer to the same object, a has a more
restrictive view on that object:

Console.WriteLine (a.Name); // OK
Console.WriteLine (a.SharesOwned); // Compile-time error

The last line generates a compile-time error because the vari‐
able a is of type Asset, even though it refers to an object of type
Stock. To get to its SharesOwned field, you must downcast the
Asset to a Stock.

Inheritance | 91

Downcasting
A downcast operation creates a subclass reference from a base
class reference. For example:

Stock msft = new Stock();
Asset a = msft; // Upcast
Stock s = (Stock)a; // Downcast
Console.WriteLine (s.SharesOwned); // <No error>
Console.WriteLine (s == a); // True
Console.WriteLine (s == msft); // True

As with an upcast, only references are affected—not the under‐
lying object. A downcast requires an explicit cast because it can
potentially fail at runtime:

House h = new House();
Asset a = h; // Upcast always succeeds
Stock s = (Stock)a; // Downcast fails: a is not a Stock

If a downcast fails, an InvalidCastException is thrown. This is
an example of runtime type checking (see “Static and Runtime
Type Checking” on page 101).

The as operator

The as operator performs a downcast that evaluates to null
(rather than throwing an exception) if the downcast fails:

Asset a = new Asset();
Stock s = a as Stock; // s is null; no exception thrown

This is useful when you’re going to subsequently test whether
the result is null:

if (s != null) Console.WriteLine (s.SharesOwned);

The as operator cannot perform custom conversions (see “Oper‐
ator Overloading” on page 215), and it cannot do numeric
conversions.

The is operator

The is operator tests whether a reference conversion would
succeed—in other words, whether an object derives from a

92 | C# 10 Pocket Reference

specified class (or implements an interface). It is often used to
test before downcasting:

if (a is Stock) Console.Write (((Stock)a).SharesOwned);

The is operator also evaluates to true if an unboxing conver‐
sion would succeed (see “The object Type” on page 99). How‐
ever, it does not consider custom or numeric conversions.

From C# 7, you can introduce a variable while using the is
operator:

if (a is Stock s)
 Console.WriteLine (s.SharesOwned);

The variable that you introduce is available for “immediate”
consumption, and remains in scope outside the is expression:

if (a is Stock s && s.SharesOwned > 100000)
 Console.WriteLine ("Wealthy");
else
 s = new Stock(); // s is in scope

Console.WriteLine (s.SharesOwned); // Still in scope

The is operator works with other patterns introduced in recent
versions of C#. For a full discussion, see “Patterns” on page 176.

Virtual Function Members
A function marked as virtual can be overridden by subclasses
wanting to provide a specialized implementation. Methods,
properties, indexers, and events can all be declared virtual:

public class Asset
{
 public string Name;
 public virtual decimal Liability => 0;
}

(Liability => 0 is a shortcut for { get { return 0; } }. See
“Expression-bodied properties” on page 80 for more details on
this syntax.) A subclass overrides a virtual method by applying
the override modifier:

Inheritance | 93

public class House : Asset
{
 public decimal Mortgage;

 public override decimal Liability => Mortgage;
}

By default, the Liability of an Asset is 0. A Stock does not
need to specialize this behavior. However, the House specializes
the Liability property to return the value of the Mortgage:

House mansion = new House { Name="Mansion",
 Mortgage=250000 };
Asset a = mansion;
Console.WriteLine (mansion.Liability); // 250000
Console.WriteLine (a.Liability); // 250000

The signatures, return types, and accessibility of the virtual and
overridden methods must be identical. An overridden method
can call its base class implementation via the base keyword (see
“The base Keyword” on page 96).

Covariant returns

From C# 9, you can override a method (or property get acces‐
sor) such that it returns a more derived (subclassed) type. For
example, you can write a Clone method in the Asset class that
returns an Asset, and override that method in the House class
such that it returns a House.

This is permitted because it does not break the contract that
Clone must return an Asset: it returns a House, which is an
Asset (and more).

Abstract Classes and Abstract Members
A class declared as abstract can never be instantiated. Instead,
only its concrete subclasses can be instantiated.

Abstract classes are able to define abstract members. Abstract
members are like virtual members, except they don’t pro‐
vide a default implementation. That implementation must be

94 | C# 10 Pocket Reference

provided by the subclass, unless that subclass is also declared
abstract:

public abstract class Asset
{
 // Note empty implementation
 public abstract decimal NetValue { get; }
}

Subclasses override abstract members just as though they were
virtual.

Hiding Inherited Members
A base class and a subclass can define identical members. For
example:

public class A { public int Counter = 1; }
public class B : A { public int Counter = 2; }

The Counter field in class B is said to hide the Counter field in
class A. Usually, this happens by accident, when a member is
added to the base type after an identical member was added to
the subtype. For this reason, the compiler generates a warning,
and then resolves the ambiguity as follows:

• References to A (at compile time) bind to A.Counter.•
• References to B (at compile time) bind to B.Counter.•

Occasionally, you want to hide a member deliberately, in which
case you can apply the new modifier to the member in the
subclass. The new modifier does nothing more than suppress
the compiler warning that would otherwise result:

public class A { public int Counter = 1; }
public class B : A { public new int Counter = 2; }

The new modifier communicates your intent to the compiler—
and other programmers—that the duplicate member is not an
accident.

Inheritance | 95

Sealing Functions and Classes
An overridden function member can seal its implementation
with the sealed keyword to prevent it from being overrid‐
den by further subclasses. In our earlier virtual function mem‐
ber example, we could have sealed House’s implementation of
Liability, preventing a class that derives from House from
overriding Liability, as follows:

public sealed override decimal Liability { get { ... } }

You can also apply the sealed modifier to the class itself, to
prevent subclassing.

The base Keyword
The base keyword is similar to the this keyword. It serves two
essential purposes: accessing an overridden function member
from the subclass, and calling a base class constructor (see the
next section).

In this example, House uses the base keyword to access Asset’s
implementation of Liability:

public class House : Asset
{
 ...
 public override decimal Liability
 => base.Liability + Mortgage;
}

With the base keyword, we access Asset’s Liability property
nonvirtually. This means that we will always access Asset’s ver‐
sion of this property, regardless of the instance’s actual runtime
type.

The same approach works if Liability is hidden rather than
overridden. (You can also access hidden members by casting to
the base class before invoking the function.)

96 | C# 10 Pocket Reference

Constructors and Inheritance
A subclass must declare its own constructors. For example,
assume we define Baseclass and Subclass as follows:

public class Baseclass
{
 public int X;
 public Baseclass () { }
 public Baseclass (int x) { this.X = x; }
}
public class Subclass : Baseclass { }

The following is then illegal:
Subclass s = new Subclass (123);

Subclass must “redefine” any constructors that it wants to
expose. In doing so, it can call any of the base class’s construc‐
tors with the base keyword:

public class Subclass : Baseclass
{
 public Subclass (int x) : base (x) { ... }
}

The base keyword works rather like the this keyword, except
that it calls a constructor in the base class. Base class construc‐
tors always execute first; this ensures that base initialization
occurs before specialized initialization.

If a constructor in a subclass omits the base keyword, the base
type’s parameterless constructor is implicitly called (if the base
class has no accessible parameterless constructor, the compiler
generates an error).

Constructor and field initialization order
When an object is instantiated, initialization takes place in the
following order:

Inheritance | 97

1. From subclass to base class:1.
a. Fields are initialized.a.
b. Arguments to base class constructor calls areb.

evaluated.
2. From base class to subclass:2.

c. Constructor bodies execute.c.

Overloading and Resolution
Inheritance has an interesting impact on method overloading.
Consider the following two overloads:

static void Foo (Asset a) { }
static void Foo (House h) { }

When an overload is called, the most specific type has
precedence:

House h = new House (...);
Foo(h); // Calls Foo(House)

The particular overload to call is determined statically (at com‐
pile time) rather than at runtime. The following code calls
Foo(Asset), even though the runtime type of a is House:

Asset a = new House (...);
Foo(a); // Calls Foo(Asset)

NOTE

If you cast Asset to dynamic (see “Dynamic Binding” on
page 207), the decision as to which overload to call is
deferred until runtime and is based on the object’s actual
type.

98 | C# 10 Pocket Reference

The object Type
object (System.Object) is the ultimate base class for all types.
Any type can be implicitly upcast to object.

To illustrate how this is useful, consider a general-purpose
stack. A stack is a data structure based on the principle of
LIFO—“last in, first out.” A stack has two operations: push an
object on the stack, and pop an object off the stack. Here is a
simple implementation that can hold up to 10 objects:

public class Stack
{
 int position;
 object[] data = new object[10];
 public void Push (object o) { data[position++] = o; }
 public object Pop() { return data[--position]; }
}

Because Stack works with the object type, we can Push and Pop
instances of any type to and from the Stack:

Stack stack = new Stack();
stack.Push ("sausage");
string s = (string) stack.Pop(); // Downcast
Console.WriteLine (s); // sausage

object is a reference type, by virtue of being a class. Despite
this, value types, such as int, can also be cast to and from
object. To make this possible, the CLR must perform some
special work to bridge the underlying differences between value
and reference types. This process is called boxing and unboxing.

NOTE

In “Generics” on page 116, we describe how to improve
our Stack class to better handle stacks with same-typed
elements.

The object Type | 99

Boxing and Unboxing
Boxing is the act of casting a value type instance to a reference
type instance. The reference type can be either the object class
or an interface (see “Interfaces” on page 108). In this example,
we box an int into an object:

int x = 9;
object obj = x; // Box the int

Unboxing reverses the operation by casting the object back to
the original value type:

int y = (int)obj; // Unbox the int

Unboxing requires an explicit cast. The runtime checks that
the stated value type matches the actual object type, throwing
an InvalidCastException if the check fails. For instance, the
following throws an exception because long does not exactly
match int:

object obj = 9; // 9 is inferred to be of type int
long x = (long) obj; // InvalidCastException

The following succeeds, however:
object obj = 9;
long x = (int) obj;

As does this:
object obj = 3.5; // 3.5 inferred to be type double
int x = (int) (double) obj; // x is now 3

In the last example, (double) performs an unboxing and then
(int) performs a numeric conversion.

Boxing copies the value type instance into the new object, and
unboxing copies the contents of the object back into a value
type instance:

int i = 3;
object boxed = i;
i = 5;
Console.WriteLine (boxed); // 3

100 | C# 10 Pocket Reference

Static and Runtime Type Checking
C# checks types both statically (at compile time) and at
runtime.

Static type checking enables the compiler to verify the correct‐
ness of your program without running it. The following code
will fail because the compiler enforces static typing:

int x = "5";

Runtime type checking is performed by the CLR when you
downcast via a reference conversion or unboxing:

object y = "5";
int z = (int) y; // Runtime error, downcast failed

Runtime type checking is possible because each object on the
heap internally stores a little type token. You can retrieve this
token by calling the GetType method of object.

The GetType Method and typeof Operator
All types in C# are represented at runtime with an instance
of System.Type. There are two basic ways to get a System.Type
object: call GetType on the instance, or use the typeof operator
on a type name. GetType is evaluated at runtime; typeof is
evaluated statically at compile time.

System.Type has properties for such things as the type’s name,
assembly, base type, and so on. For example:

int x = 3;

Console.Write (x.GetType().Name); // Int32
Console.Write (typeof(int).Name); // Int32
Console.Write (x.GetType().FullName); // System.Int32
Console.Write (x.GetType() == typeof(int)); // True

System.Type also has methods that act as a gateway to the
runtime’s reflection model—we describe this fully in C# 10 in a
Nutshell.

The object Type | 101

https://learning.oreilly.com/library/view/c-10-in/9781098121945/
https://learning.oreilly.com/library/view/c-10-in/9781098121945/

Object Member Listing
Here are all the members of object:

public extern Type GetType();
public virtual bool Equals (object obj);
public static bool Equals (object objA, object objB);
public static bool ReferenceEquals (object objA,
 object objB);
public virtual int GetHashCode();
public virtual string ToString();
protected virtual void Finalize();
protected extern object MemberwiseClone();

Equals, ReferenceEquals, and GetHashCode
The Equals method in the object class is similar to the ==
operator except that Equals is virtual, whereas == is static. The
following example illustrates the difference:

object x = 3;
object y = 3;
Console.WriteLine (x == y); // False
Console.WriteLine (x.Equals (y)); // True

Because x and y have been cast to the object type, the compiler
statically binds to object’s == operator, which uses reference
type semantics to compare two instances. (And because x and y
are boxed, they are represented in separate memory locations,
and so are unequal.) The virtual Equals method, however,
defers to the Int32 type’s Equals method, which uses value type
semantics in comparing two values.

The static object.Equals method simply calls the virtual
Equals method on the first argument—after checking that the
arguments are not null:

object x = null, y = 3;
bool error = x.Equals (y); // Runtime error!
bool ok = object.Equals (x, y); // OK (false)

102 | C# 10 Pocket Reference

ReferenceEquals forces a reference type equality comparison
(this is occasionally useful on reference types for which the ==
operator has been overloaded to do otherwise).

GetHashCode emits a hash code suitable for use with hashtable-
based dictionaries such as System.Collections.Generic.Dictio
nary and System.Collections.Hashtable.

To customize a type’s equality semantics, you must at a mini‐
mum override Equals and GetHashCode. You would also usually
overload the == and != operators. For an example of how to do
both, see “Operator Overloading” on page 215.

The ToString Method
The ToString method returns the default textual representation
of a type instance. The ToString method is overridden by all
built-in types:

string s1 = 1.ToString(); // s1 is "1"
string s2 = true.ToString(); // s2 is "True"

You can override the ToString method on custom types as
follows:

public override string ToString() => "Foo";

Structs
A struct is similar to a class, with the following key differences:

• A struct is a value type, whereas a class is a reference type.•
• A struct does not support inheritance (other than implic‐•

itly deriving from object, or more precisely, System.Value
Type).

A struct can have all the members that a class can, except for a
finalizer, and virtual or protected members.

Structs | 103

WARNING

Prior to C# 10, structs were further prohibited from
defining field initializers and parameterless constructors.
Although this prohibition has now been relaxed—primar‐
ily for the benefit of record structs (see “Records” on page
169)—it’s worth thinking carefully before defining these
constructs, as they can result in confusing behavior that
we’ll describe in “Struct Construction Semantics” on page
105.

A struct is appropriate when value type semantics are desirable.
Good examples are numeric types, where it is more natural for
assignment to copy a value rather than a reference. Because a
struct is a value type, each instance does not require instantia‐
tion of an object on the heap (and subsequent collection); this
can incur useful savings when you’re creating many instances
of a type.

As with any value type, a struct can end up on the heap indi‐
rectly, either through boxing or if it appears as a field in a class.
If we were to instantiate SomeClass in the following example,
field Y would refer to a struct on the heap:

struct SomeStruct { public int X; }
class SomeClass { public SomeStruct Y; }

Similarly, if you were to declare an array of SomeStruct, the
instance would reside on the heap (because arrays are reference
types), although the entire array would require only a single
memory allocation.

From C# 7.2, you can apply the ref modifier to a struct to
ensure that it can be used only in ways that will place it on the
stack. This enables further compiler optimizations as well as
allowing for the Span<T> type.

104 | C# 10 Pocket Reference

https://bit.ly/2LR2ctm

Struct Construction Semantics
Unlike with classes, every field in a struct must be explicitly
assigned in the constructor (or field initializer).

In addition to any constructors that you define, a struct
always has an implicit parameterless constructor that performs
a bitwise-zeroing of its fields (setting them to their default
values):

Point p = new Point(); // p.x and p.y will be 0
struct Point { int x, y; }

Even when you define a parameterless constructor of your
own, the implicit parameterless constructor still exists, and it
can be accessed via the default keyword:

Point p1 = new Point(); // p1.x and p1.y will be 1
Point p2 = default; // p2.x and p2.y will be 0

struct Point
{
 int x = 1; int y;
 public Point() => y = 1;
}

In this example, we initialized x to 1 via a field initializer, and
we initialized y to 1 via the parameterless constructor. And
yet with the default keyword, we were still able to create a
Point that bypassed both initializations. The default construc‐
tor can be accessed other ways, too, as the following example
illustrates:

var points = new Point[10]; // Each point will be (0,0)
var test = new Test(); // test.p will be (0,0)
class Test { Point p; }

A good strategy with structs is to design them such that their
default value is a valid state, thereby making initialization
redundant.

Structs | 105

readonly Structs and Functions
You can apply the readonly modifier to a struct to enforce that
all fields are readonly; this aids in declaring intent as well as
allowing the compiler more optimization freedom:

readonly struct Point
{
 public readonly int X, Y; // X and Y must be readonly
}

If you need to apply readonly at a more granular level, you can
apply the readonly modifier (from C# 8) to a struct’s functions.
This ensures that if the function attempts to modify any field, a
compile-time error is generated:

struct Point
{
 public int X, Y;
 public readonly void ResetX() => X = 0; // Error!
}

If a readonly function calls a non-readonly function, the com‐
piler generates a warning (and defensively copies the struct to
avoid the possibility of a mutation).

Access Modifiers
To promote encapsulation, a type or type member can limit its
accessibility to other types and other assemblies by adding one
of five access modifiers to the declaration:

public

Fully accessible. This is the implicit accessibility for mem‐
bers of an enum or interface.

internal

Accessible only within the containing assembly or friend
assemblies. This is the default accessibility for non-nested
types.

private

Accessible only within the containing type. This is the
default accessibility for members of a class or struct.

106 | C# 10 Pocket Reference

protected

Accessible only within the containing type or subclasses.
protected internal

The union of protected and internal accessibility (this is
more permissive than protected or internal alone in that
it makes a member more accessible in two ways).

private protected (from C# 7.2)
The intersection of protected and internal accessibility
(this is more restrictive than protected or internal alone).

In the following example, Class2 is accessible from outside its
assembly; Class1 is not:

class Class1 {} // Class1 is internal (default)
public class Class2 {}

ClassB exposes field x to other types in the same assembly;
ClassA does not:

class ClassA { int x; } // x is private
class ClassB { internal int x; }

When you’re overriding a base class function, accessibility must
be identical on the overridden function. The compiler prevents
any inconsistent use of access modifiers—for example, a sub‐
class itself can be less accessible than a base class, but not more.

Friend Assemblies
You can expose internal members to other friend assem‐
blies by adding the System.Runtime.CompilerServices.Inter
nalsVisibleTo assembly attribute, specifying the name of the
friend assembly as follows:

[assembly: InternalsVisibleTo ("Friend")]

If the friend assembly is signed with a strong name, you must
specify its full 160-byte public key. You can extract this key via
a Language Integrated Query (LINQ)—an interactive example
is given in LINQPad’s free sample library for C# 10 in a Nut‐
shell, under Chapter 3, “Access Modifiers.”

Access Modifiers | 107

https://learning.oreilly.com/library/view/c-10-in/9781098121945/
https://learning.oreilly.com/library/view/c-10-in/9781098121945/

Accessibility Capping
A type caps the accessibility of its declared members. The most
common example of capping is when you have an internal
type with public members. For example:

class C { public void Foo() {} }

C’s (default) internal accessibility caps Foo’s accessibility, effec‐
tively making Foo internal. A common reason Foo would be
marked public is to make for easier refactoring, should C later
be changed to public.

Interfaces
An interface is similar to a class, but it provides a specification
rather than an implementation for its members (although from
C# 8, an interface can provide a default implementation. See
“Default Interface Members” on page 111). An interface is spe‐
cial in the following ways:

• Interface members are all implicitly abstract. In contrast,•
a class can provide both abstract members and concrete
members with implementations.

• A class (or struct) can implement multiple interfaces. In•
contrast, a class can inherit from only a single class, and
a struct cannot inherit at all (aside from deriving from
System.ValueType).

An interface declaration is like a class declaration, but it
provides no implementation for its members, because all its
members are implicitly abstract. These members will be imple‐
mented by the classes and structs that implement the interface.
An interface can contain only methods, properties, events, and
indexers, which not coincidentally are precisely the members of
a class that can be abstract.

Here is a slightly simplified version of the IEnumerator inter‐
face, defined in System.Collections:

108 | C# 10 Pocket Reference

public interface IEnumerator
{
 bool MoveNext();
 object Current { get; }
 void Reset();
}

Interface members are always implicitly public and cannot
declare an access modifier. Implementing an interface means
providing a public implementation for all of its members:

internal class Countdown : IEnumerator
{
 int count = 6;
 public bool MoveNext() => count-- > 0 ;
 public object Current => count;
 public void Reset() => count = 6;
}

You can implicitly cast an object to any interface that it
implements:

IEnumerator e = new Countdown();
while (e.MoveNext())
 Console.Write (e.Current + " "); // 5 4 3 2 1 0

Extending an Interface
Interfaces can derive from other interfaces. For instance:

public interface IUndoable { void Undo(); }
public interface IRedoable : IUndoable { void Redo(); }

IRedoable “inherits” all the members of IUndoable.

Explicit Interface Implementation
Implementing multiple interfaces can sometimes result in a
collision between member signatures. You can resolve such
collisions by explicitly implementing an interface member. For
example:

interface I1 { void Foo(); }
interface I2 { int Foo(); }

public class Widget : I1, I2

Interfaces | 109

{
 public void Foo() // Implicit implementation
 {
 Console.Write ("Widget's implementation of I1.Foo");
 }

 int I2.Foo() // Explicit implementation of I2.Foo
 {
 Console.Write ("Widget's implementation of I2.Foo");
 return 42;
 }
}

Because both I1 and I2 have conflicting Foo signatures, Widget
explicitly implements I2’s Foo method. This lets the two meth‐
ods coexist in one class. The only way to call an explicitly
implemented member is to cast to its interface:

Widget w = new Widget();
w.Foo(); // Widget's implementation of I1.Foo
((I1)w).Foo(); // Widget's implementation of I1.Foo
((I2)w).Foo(); // Widget's implementation of I2.Foo

Another reason to explicitly implement interface members is to
hide members that are highly specialized and distracting to a
type’s normal use case. For example, a type that implements
ISerializable would typically want to avoid flaunting its
ISerializable members unless explicitly cast to that interface.

Implementing Interface Members Virtually
An implicitly implemented interface member is, by default,
sealed. It must be marked virtual or abstract in the base
class in order to be overridden: calling the interface member
through either the base class or the interface then calls the
subclass’s implementation.

An explicitly implemented interface member cannot be marked
virtual, nor can it be overridden in the usual manner. It can,
however, be reimplemented.

110 | C# 10 Pocket Reference

Reimplementing an Interface in a Subclass
A subclass can reimplement any interface member already
implemented by a base class. Reimplementation hijacks a mem‐
ber implementation (when called through the interface) and
works whether or not the member is virtual in the base class.

In the following example, TextBox implements IUndo.Undo
explicitly, and so it cannot be marked as virtual. To “override”
it, RichTextBox must reimplement IUndoable’s Undo method:

public interface IUndoable { void Undo(); }

public class TextBox : IUndoable
{
 void IUndoable.Undo()
 => Console.WriteLine ("TextBox.Undo");
}

public class RichTextBox : TextBox, IUndoable
{
 public new void Undo()
 => Console.WriteLine ("RichTextBox.Undo");
}

Calling the reimplemented member through the interface calls
the subclass’s implementation:

RichTextBox r = new RichTextBox();
r.Undo(); // RichTextBox.Undo
((IUndoable)r).Undo(); // RichTextBox.Undo

In this case, Undo is implemented explicitly. Implicitly imple‐
mented members can also be reimplemented, but the effect is
nonpervasive in that calling the member through the base class
invokes the base implementation.

Default Interface Members
From C# 8, you can add a default implementation to an inter‐
face member, making it optional to implement:

Interfaces | 111

interface ILogger
{
 void Log (string text) => Console.WriteLine (text);
}

This is advantageous if you wish to add a member to an inter‐
face defined in a popular library without breaking (potentially
thousands of) implementations.

Default implementations are always explicit, so if a class imple‐
menting ILogger fails to define a Log method, the only way to
call it is through the interface:

class Logger : ILogger { }
...
((ILogger)new Logger()).Log ("message");

This prevents a problem of multiple implementation inheri‐
tance: if the same default member is added to two interfaces
that a class implements, there is never an ambiguity as to which
member is called.

Interfaces can also now define static members (including
fields), which can be accessed from code inside default
implementations:

interface ILogger
{
 void Log (string text) =>
 Console.WriteLine (Prefix + text);

 static string Prefix = "";
}

Because interface members are implicitly public, you can also
access static members from the outside:

ILogger.Prefix = "File log: ";

You can restrict this by adding an accessibility modifier to
the static interface member (such as private, protected, or
internal).

Instance fields are (still) prohibited. This is in line with the
principle of interfaces, which is to define behavior, not state.

112 | C# 10 Pocket Reference

Enums
An enum is a special value type that lets you specify a group of
named numeric constants. For example:

public enum BorderSide { Left, Right, Top, Bottom }

We can use this enum type as follows:
BorderSide topSide = BorderSide.Top;
bool isTop = (topSide == BorderSide.Top); // true

Each enum member has an underlying integral-type value. By
default, the underlying values are of type int, and the enum
members are assigned the constants 0, 1, 2... (in their declara‐
tion order). You may specify an alternative integral type, as
follows:

public enum BorderSide : byte { Left,Right,Top,Bottom }

You may also specify an explicit integer value for each member:
public enum BorderSide : byte
 { Left=1, Right=2, Top=10, Bottom=11 }

The compiler also lets you explicitly assign some of the enum
members. The unassigned enum members keep incrementing
from the last explicit value. The preceding example is equiva‐
lent to:

public enum BorderSide : byte
 { Left=1, Right, Top=10, Bottom }

Enum Conversions
You can convert an enum instance to and from its underlying
integral value with an explicit cast:

int i = (int) BorderSide.Left;
BorderSide side = (BorderSide) i;
bool leftOrRight = (int) side <= 2;

You can also explicitly cast one enum type to another; the
translation then uses the members’ underlying integral values.

Enums | 113

The numeric literal 0 is treated specially in that it does not
require an explicit cast:

BorderSide b = 0; // No cast required
if (b == 0) ...

In this particular example, BorderSide has no member with an
integer value of 0. This does not generate an error: a limitation
of enums is that the compiler and CLR do not prevent the
assignment of integrals whose values fall outside the range of
members:

BorderSide b = (BorderSide) 12345;
Console.WriteLine (b); // 12345

Flags Enums
You can combine enum members. To prevent ambiguities,
members of a combinable enum require explicitly assigned
values, typically in powers of two. For example:

[Flags]
public enum BorderSides
 { None=0, Left=1, Right=2, Top=4, Bottom=8 }

By convention, a combinable enum type is given a plural rather
than singular name. To work with combined enum values, you
use bitwise operators, such as | and &. These operate on the
underlying integral values:

BorderSides leftRight =
 BorderSides.Left | BorderSides.Right;

if ((leftRight & BorderSides.Left) != 0)
 Console.WriteLine ("Includes Left"); // Includes Left

string formatted = leftRight.ToString(); // "Left, Right"

BorderSides s = BorderSides.Left;
s |= BorderSides.Right;
Console.WriteLine (s == leftRight); // True

The Flags attribute should be applied to combinable enum
types; if you fail to do this, calling ToString on an enum instance
emits a number rather than a series of names.

114 | C# 10 Pocket Reference

For convenience, you can include combination members
within an enum declaration itself:

[Flags] public enum BorderSides
{
 None=0,
 Left=1, Right=2, Top=4, Bottom=8,
 LeftRight = Left | Right,
 TopBottom = Top | Bottom,
 All = LeftRight | TopBottom
}

Enum Operators
The operators that work with enums are:

= == != < > <= >= + - ^ & | ˜
+= -= ++ - sizeof

The bitwise, arithmetic, and comparison operators return the
result of processing the underlying integral values. Addition
is permitted between an enum and an integral type, but not
between two enums.

Nested Types
A nested type is declared within the scope of another type. For
example:

public class TopLevel
{
 public class Nested { } // Nested class
 public enum Color { Red, Blue, Tan } // Nested enum
}

A nested type has the following features:

• It can access the enclosing type’s private members and•
everything else the enclosing type can access.

• It can be declared with the full range of access modifiers,•
rather than just public and internal.

• The default accessibility for a nested type is private rather•
than internal.

Nested Types | 115

• Accessing a nested type from outside the enclosing type•
requires qualification with the enclosing type’s name (like
when you’re accessing static members).

For example, to access Color.Red from outside our TopLevel
class, you’d need to do this:

TopLevel.Color color = TopLevel.Color.Red;

All types can be nested; however, only classes and structs can
nest.

Generics
C# has two separate mechanisms for writing code that are reus‐
able across different types: inheritance and generics. Whereas
inheritance expresses reusability with a base type, generics
express reusability with a “template” that contains “place‐
holder” types. Generics, when compared to inheritance, can
increase type safety and reduce casting and boxing.

Generic Types
A generic type declares type parameters—placeholder types to
be filled in by the consumer of the generic type, which supplies
the type arguments. Here is a generic type, Stack<T>, designed
to stack instances of type T. Stack<T> declares a single type
parameter T:

public class Stack<T>
{
 int position;
 T[] data = new T[100];
 public void Push (T obj) => data[position++] = obj;
 public T Pop() => data[--position];
}

We can use Stack<T> as follows:
var stack = new Stack<int>();
stack.Push (5);
stack.Push (10);

116 | C# 10 Pocket Reference

int x = stack.Pop(); // x is 10
int y = stack.Pop(); // y is 5

NOTE

Notice that no downcasts are required in the last two lines,
avoiding the possibility of a runtime error and eliminating
the overhead of boxing/unboxing. This makes our generic
stack superior to a nongeneric stack that uses object
in place of T (see “The object Type” on page 99 for an
example).

Stack<int> fills in the type parameter T with the type argument
int, implicitly creating a type on the fly (the synthesis occurs
at runtime). Stack<int> effectively has the following definition
(substitutions appear in bold, with the class name hashed out
to avoid confusion):

public class ###
{
 int position;
 int[] data = new int[100];
 public void Push (int obj) => data[position++] = obj;
 public int Pop() => data[--position];
}

Technically, we say that Stack<T> is an open type, whereas
Stack<int> is a closed type. At runtime, all generic type instan‐
ces are closed—with the placeholder types filled in.

Generic Methods
A generic method declares type parameters within the signature
of a method. With generic methods, many fundamental algo‐
rithms can be implemented in a general-purpose way. Here is a
generic method that swaps the contents of two variables of any
type T:

Generics | 117

static void Swap<T> (ref T a, ref T b)
{
 T temp = a; a = b; b = temp;
}

You can use Swap<T> as follows:
int x = 5, y = 10;
Swap (ref x, ref y);

Generally, there is no need to supply type arguments to a
generic method, because the compiler can implicitly infer the
type. If there is ambiguity, generic methods can be called with
the type arguments as follows:

Swap<int> (ref x, ref y);

Within a generic type, a method is not classed as generic unless
it introduces type parameters (with the angle bracket syntax).
The Pop method in our generic stack merely consumes the
type’s existing type parameter, T, and is not classed as a generic
method.

Methods and types are the only constructs that can introduce
type parameters. Properties, indexers, events, fields, construc‐
tors, operators, and so on cannot declare type parameters,
although they can partake in any type parameters already
declared by their enclosing type. In our generic stack example,
for instance, we could write an indexer that returns a generic
item:

public T this [int index] { get { return data[index]; } }

Similarly, constructors can partake in existing type parameters,
but cannot introduce them.

Declaring Type Parameters
Type parameters can be introduced in the declaration of
classes, structs, interfaces, delegates (see “Delegates” on page
125), and methods. You can specify multiple type parameters
by separating them with commas:

class Dictionary<TKey, TValue> {...}

118 | C# 10 Pocket Reference

To instantiate:
var myDict = new Dictionary<int,string>();

Generic type names and method names can be overloaded as
long as the number of type parameters differs. For example, the
following three type names do not conflict:

class A {}
class A<T> {}
class A<T1,T2> {}

NOTE

By convention, generic types and methods with a single
type parameter name their parameter T, as long as the
intent of the parameter is clear. With multiple type param‐
eters, each parameter has a more descriptive name (pre‐
fixed by T).

typeof and Unbound Generic Types
Open generic types do not exist at runtime: open generic types
are closed as part of compilation. However, it is possible for
an unbound generic type to exist at runtime—purely as a Type
object. The only way to specify an unbound generic type in C#
is with the typeof operator:

class A<T> {}
class A<T1,T2> {}
...

Type a1 = typeof (A<>); // Unbound type
Type a2 = typeof (A<,>); // Indicates 2 type args
Console.Write (a2.GetGenericArguments().Count()); // 2

You can also use the typeof operator to specify a closed type:
Type a3 = typeof (A<int,int>);

It can specify an open type as well (which is closed at runtime):
class B<T> { void X() { Type t = typeof (T); } }

Generics | 119

The default Generic Value
You can use the default keyword to get the default value for a
generic type parameter. The default value for a reference type
is null, and the default value for a value type is the result of
bitwise-zeroing the type’s fields:

static void Zap<T> (T[] array)
{
 for (int i = 0; i < array.Length; i++)
 array[i] = default(T);
}

From C# 7.1, you can omit the type argument for cases in
which the compiler is able to infer it:

 array[i] = default;

Generic Constraints
By default, a type parameter can be substituted with any type
whatsoever. Constraints can be applied to a type parameter to
require more specific type arguments.

There are eight kinds of constraint:
where T : base-class // Base class constraint
where T : interface // Interface constraint
where T : class // Reference type constraint
where T : class? // (See "Nullable Reference Types")
where T : struct // Value type constraint
where T : unmanaged // Unmanaged constraint
where T : new() // Parameterless constructor
 // constraint
where U : T // Naked type constraint
where T : notnull // Non-nullable value type
 // or non-nullable reference type

In the following example, GenericClass<T,U> requires T to
derive from (or be identical to) SomeClass and implement Inter
face1, and requires U to provide a parameterless constructor:

class SomeClass {}
interface Interface1 {}

120 | C# 10 Pocket Reference

class GenericClass<T,U> where T : SomeClass, Interface1
 where U : new()
{ ... }

Constraints can be applied wherever type parameters are
defined, whether in methods or in type definitions.

A base class constraint specifies that the type parameter must
subclass (or match) a particular class; an interface constraint
specifies that the type parameter must implement that inter‐
face. These constraints allow instances of the type parameter to
be implicitly converted to that class or interface.

The class constraint and struct constraint specify that T must
be a reference type or a (non-nullable) value type, respectively.
The unmanaged constraint is a stronger version of a struct
constraint: T must be a simple value type or a struct that is
(recursively) free of any reference types. The parameterless con‐
structor constraint requires T to have a public parameterless
constructor and allows you to call new() on T:

static void Initialize<T> (T[] array) where T : new()
{
 for (int i = 0; i < array.Length; i++)
 array[i] = new T();
}

The naked type constraint requires one type parameter to derive
from (or match) another type parameter.

Subclassing Generic Types
A generic class can be subclassed just like a nongeneric class.
The subclass can leave the base class’s type parameters open, as
in the following example:

class Stack<T> {...}
class SpecialStack<T> : Stack<T> {...}

Or the subclass can close the generic type parameters with a
concrete type:

class IntStack : Stack<int> {...}

Generics | 121

A subtype can also introduce fresh type arguments:
class List<T> {...}
class KeyedList<T,TKey> : List<T> {...}

Self-Referencing Generic Declarations
A type can name itself as the concrete type when closing a type
argument:

public interface IEquatable<T> { bool Equals (T obj); }

public class Balloon : IEquatable<Balloon>
{
 public bool Equals (Balloon b) { ... }
}

The following are also legal:
class Foo<T> where T : IComparable<T> { ... }
class Bar<T> where T : Bar<T> { ... }

Static Data
Static data is unique for each closed type:

Console.WriteLine (++Bob<int>.Count); // 1
Console.WriteLine (++Bob<int>.Count); // 2
Console.WriteLine (++Bob<string>.Count); // 1
Console.WriteLine (++Bob<object>.Count); // 1

class Bob<T> { public static int Count; }

Covariance

NOTE

Covariance and contravariance are advanced concepts. The
motivation behind their introduction into C# was to allow
generic interfaces and generics (in particular, those defined
in .NET, such as IEnumerable<T>) to work more as you’d
expect. You can benefit from this without understanding
the details behind covariance and contravariance.

122 | C# 10 Pocket Reference

Assuming A is convertible to B, X has a covariant type parameter
if X<A> is convertible to X.

(With C#’s notion of variance, “convertible” means convertible
via an implicit reference conversion—such as A subclassing B, or A
implementing B. Numeric conversions, boxing conversions, and
custom conversions are not included.)

For instance, type IFoo<T> has a covariant T if the following is
legal:

IFoo<string> s = ...;
IFoo<object> b = s;

Interfaces (and delegates) permit covariant type parameters. To
illustrate, suppose that the Stack<T> class that we wrote at the
beginning of this section implements the following interface:

public interface IPoppable<out T> { T Pop(); }

The out modifier on T indicates that T is used only in output
positions (e.g., return types for methods) and flags the type
parameter as covariant, permitting the following code:

// Assuming that Bear subclasses Animal:
var bears = new Stack<Bear>();
bears.Push (new Bear());

// Because bears implements IPoppable<Bear>,
// we can convert it to IPoppable<Animal>:
IPoppable<Animal> animals = bears; // Legal
Animal a = animals.Pop();

The cast from bears to animals is permitted by the compiler—
by virtue of the interface’s type parameter being covariant.

NOTE

The IEnumerator<T> and IEnumerable<T> interfaces (see
“Enumeration and Iterators” on page 151) are marked
with a covariant T. This allows you to cast IEnumerable
<string> to IEnumerable<object>, for instance.

Generics | 123

The compiler will generate an error if you use a covariant type
parameter in an input position (e.g., a parameter to a method
or a writable property). The purpose of this limitation is to
guarantee compile-time type safety. For instance, it prevents
us from adding a Push(T) method to that interface, which
consumers could abuse with the seemingly benign operation
of pushing a camel onto an IPoppable<Animal> (remember that
the underlying type in our example is a stack of bears). To
define a Push(T) method, T must in fact be contravariant.

NOTE

C# supports covariance (and contravariance) only for
elements with reference conversions—not boxing conver‐
sions. So, if you wrote a method that accepted a param‐
eter of type IPoppable<object>, you could call it with
IPoppable<string>, but not IPoppable<int>.

Contravariance
We previously saw that, assuming that A allows an implicit ref‐
erence conversion to B, a type X has a covariant type parameter
if X<A> allows a reference conversion to X. A type is contra‐
variant when you can convert in the reverse direction—from
X to X<A>. This is supported on interfaces and delegates
when the type parameter appears only in input positions, desig‐
nated with the in modifier. Extending our previous example, if
the Stack<T> class implements the following interface:

public interface IPushable<in T> { void Push (T obj); }

we can legally do this:
IPushable<Animal> animals = new Stack<Animal>();
IPushable<Bear> bears = animals; // Legal
bears.Push (new Bear());

124 | C# 10 Pocket Reference

Mirroring covariance, the compiler will report an error if you
try to use a contravariant type parameter in an output position
(e.g., as a return value, or in a readable property).

Delegates
A delegate wires up a method caller to its target method at
runtime. There are two aspects to a delegate: type and instance.
A delegate type defines a protocol to which the caller and target
will conform, comprising a list of parameter types and a return
type. A delegate instance is an object that refers to one (or
more) target methods conforming to that protocol.

A delegate instance literally acts as a delegate for the caller: the
caller invokes the delegate, and then the delegate calls the target
method. This indirection decouples the caller from the target
method.

A delegate type declaration is preceded by the keyword
delegate, but otherwise it resembles an (abstract) method dec‐
laration. For example:

delegate int Transformer (int x);

To create a delegate instance, you can assign a method to a
delegate variable:

Transformer t = Square; // Create delegate instance
int result = t(3); // Invoke delegate
Console.Write (result); // 9

int Square (int x) => x * x;

Invoking a delegate is just like invoking a method (because the
delegate’s purpose is merely to provide a level of indirection):

t(3);

The statement Transformer t = Square is shorthand for the
following:

Transformer t = new Transformer (Square);

Delegates | 125

And t(3) is shorthand for this:
t.Invoke (3);

A delegate is similar to a callback, a general term that captures
constructs such as C function pointers.

Writing Plug-In Methods with Delegates
A delegate variable is assigned a method at runtime. This is
useful for writing plug-in methods. In this example, we have
a utility method named Transform that applies a transform to
each element in an integer array. The Transform method has a
delegate parameter for specifying a plug-in transform:

int[] values = { 1, 2, 3 };
Transform (values, Square); // Hook in the Square method

foreach (int i in values)
 Console.Write (i + " "); // 1 4 9

void Transform (int[] values, Transformer t)
{
 for (int i = 0; i < values.Length; i++)
 values[i] = t (values[i]);
}

int Square (int x) => x * x;

delegate int Transformer (int x);

Instance and Static Method Targets
A delegate’s target method can be a local, static, or instance
method.

When an instance method is assigned to a delegate object,
the latter must maintain a reference not only to the method,
but also to the instance to which the method belongs.
The System.Delegate class’s Target property represents this
instance (and will be null for a delegate referencing a static
method).

126 | C# 10 Pocket Reference

Multicast Delegates
All delegate instances have multicast capability. This means
that a delegate instance can reference not just a single target
method, but also a list of target methods. The + and += opera‐
tors combine delegate instances. For example:

SomeDelegate d = SomeMethod1;
d += SomeMethod2;

The last line is functionally the same as this one:
d = d + SomeMethod2;

Invoking d will now call both SomeMethod1 and SomeMethod2.
Delegates are invoked in the order in which they are added.

The - and -= operators remove the right delegate operand from
the left delegate operand. For example:

d -= SomeMethod1;

Invoking d will now cause only SomeMethod2 to be invoked.

Calling + or += on a delegate variable with a null value is legal,
as is calling -= on a delegate variable with a single target (which
will result in the delegate instance being null).

NOTE

Delegates are immutable, so when you call += or -=, you’re
in fact creating a new delegate instance and assigning it to
the existing variable.

If a multicast delegate has a nonvoid return type, the caller
receives the return value from the last method to be invoked.
The preceding methods are still called, but their return values
are discarded. In most scenarios in which multicast delegates
are used, they have void return types, so this subtlety does not
arise.

Delegates | 127

All delegate types implicitly derive from System.Multicast
Delegate, which inherits from System.Delegate. C# compiles
+, -, +=, and -= operations made on a delegate to the static
Combine and Remove methods of the System.Delegate class.

Generic Delegate Types
A delegate type can contain generic type parameters. For
example:

public delegate T Transformer<T> (T arg);

Here’s how we could use this delegate type:
Transformer<double> s = Square;
Console.WriteLine (s (3.3)); // 10.89

double Square (double x) => x * x;

The Func and Action Delegates
With generic delegates, it becomes possible to write a small set
of delegate types that are so general they can work for methods
of any return type and any (reasonable) number of arguments.
These delegates are the Func and Action delegates, defined in
the System namespace (the in and out annotations indicate
variance, which we cover in the context of delegates shortly):

delegate TResult Func <out TResult> ();
delegate TResult Func <in T, out TResult> (T arg);
delegate TResult Func <in T1, in T2, out TResult>
 (T1 arg1, T2 arg2);
... and so on, up to T16

delegate void Action ();
delegate void Action <in T> (T arg);
delegate void Action <in T1, in T2> (T1 arg1, T2 arg2);
... and so on, up to T16

These delegates are extremely general. The Transformer dele‐
gate in our previous example can be replaced with a Func
delegate that takes a single argument of type T and returns a
same-typed value:

128 | C# 10 Pocket Reference

public static void Transform<T> (
 T[] values, Func<T,T> transformer)
{
 for (int i = 0; i < values.Length; i++)
 values[i] = transformer (values[i]);
}

The only practical scenarios not covered by these delegates are
ref/out and pointer parameters.

Delegate Compatibility
Delegate types are all incompatible with one another, even if
their signatures are the same:

delegate void D1(); delegate void D2();
...
D1 d1 = Method1;
D2 d2 = d1; // Compile-time error

The following, however, is permitted:
D2 d2 = new D2 (d1);

Delegate instances are considered equal if they have the same
type and method target(s). For multicast delegates, the order of
the method targets is significant.

Return type variance
When you call a method, you might get back a type that
is more specific than what you asked for. This is ordinary
polymorphic behavior. In keeping with this, a delegate target
method might return a more specific type than described by
the delegate. This is covariance:

ObjectRetriever o = new ObjectRetriever (RetriveString);
object result = o();
Console.WriteLine (result); // hello

string RetrieveString() => "hello";

delegate object ObjectRetriever();

Delegates | 129

The ObjectRetriever expects to get back an object, but an
object subclass will also do because delegate return types are
covariant.

Parameter variance
When you call a method, you can supply arguments that have
more specific types than the parameters of that method. This
is ordinary polymorphic behavior. In keeping with this, a dele‐
gate target method may have less specific parameter types than
described by the delegate. This is called contravariance:

StringAction sa = new StringAction (ActOnObject);
sa ("hello");

void ActOnObject (object o) => Console.WriteLine (o);

delegate void StringAction (string s);

NOTE

The standard event pattern is designed to help you take
advantage of delegate parameter contravariance through
its use of the common EventArgs base class. For example,
you can have a single method invoked by two different
delegates, one passing a MouseEventArgs and the other
passing a KeyEventArgs.

Type parameter variance for generic delegates
We saw in “Generics” on page 116 how type parameters can
be covariant and contravariant for generic interfaces. The same
capability also exists for generic delegates. If you’re defining a
generic delegate type, it’s a good practice to do the following:

130 | C# 10 Pocket Reference

• Mark a type parameter used only on the return value as•
covariant (out)

• Mark any type parameters used only on parameters as•
contravariant (in)

Doing so allows conversions to work naturally by respecting
inheritance relationships between types. The following delegate
(defined in the System namespace) is covariant for TResult:

delegate TResult Func<out TResult>();

This allows:
Func<string> x = ...;
Func<object> y = x;

The following delegate (defined in the System namespace) is
contravariant for T:

delegate void Action<in T> (T arg);

This allows:
Action<object> x = ...;
Action<string> y = x;

Events
When you’re using delegates, two emergent roles commonly
appear: broadcaster and subscriber. The broadcaster is a type
that contains a delegate field. The broadcaster decides when
to broadcast, by invoking the delegate. The subscribers are the
method target recipients. A subscriber decides when to start
and stop listening, by calling += and -= on the broadcaster’s
delegate. A subscriber does not know about, or interfere with,
other subscribers.

Events are a language feature that formalizes this pattern. An
event is a construct that exposes just the subset of delegate
features required for the broadcaster/subscriber model. The
main purpose of events is to prevent subscribers from interfering
with one another.

Events | 131

The easiest way to declare an event is to put the event keyword
in front of a delegate member:

public class Broadcaster
{
 public event ProgressReporter Progress;
}

Code within the Broadcaster type has full access to Progress
and can treat it as a delegate. Code outside of Broadcaster can
perform only += and -= operations on the Progress event.

In the following example, the Stock class fires its PriceChanged
event every time the Price of the Stock changes:

public delegate void PriceChangedHandler
 (decimal oldPrice, decimal newPrice);

public class Stock
{
 string symbol; decimal price;

 public Stock (string symbol) => this.symbol = symbol;

 public event PriceChangedHandler PriceChanged;

 public decimal Price
 {
 get => price;
 set
 {
 if (price == value) return;
 // Fire event if invocation list isn't empty:
 if (PriceChanged != null)
 PriceChanged (price, value);
 price = value;
 }
 }
}

If we remove the event keyword from our example so that
PriceChanged becomes an ordinary delegate field, our example
would give the same results. However, Stock would be less
robust in that subscribers could do the following things to
interfere with one another:

132 | C# 10 Pocket Reference

• Replace other subscribers by reassigning PriceChanged•
(instead of using the += operator)

• Clear all subscribers (by setting PriceChanged to null)•
• Broadcast to other subscribers by invoking the delegate•

Events can be virtual, overridden, abstract, or sealed. They can
also be static.

Standard Event Pattern
In almost all cases in which events are defined in the .NET
library, their definition adheres to a standard pattern designed
to provide consistency across library and user code. Here’s the
preceding example refactored with this pattern:

public class PriceChangedEventArgs : EventArgs
{
 public readonly decimal LastPrice, NewPrice;

 public PriceChangedEventArgs (decimal lastPrice,
 decimal newPrice)
 {
 LastPrice = lastPrice; NewPrice = newPrice;
 }
}

public class Stock
{
 string symbol; decimal price;

 public Stock (string symbol) => this.symbol = symbol;

 public event EventHandler<PriceChangedEventArgs>
 PriceChanged;

 protected virtual void OnPriceChanged
 (PriceChangedEventArgs e) =>
 // Shortcut for invoking PriceChanged if not null:
 PriceChanged?.Invoke (this, e);

 public decimal Price
 {

Events | 133

 get { return price; }
 set
 {
 if (price == value) return;
 OnPriceChanged (new PriceChangedEventArgs (price,
 value));
 price = value;
 }
 }
}

At the core of the standard event pattern is System.EventArgs,
a predefined .NET class with no members (other than the static
Empty field). EventArgs is a base class for conveying informa‐
tion for an event. In this example, we subclass EventArgs to
convey the old and new prices when a PriceChanged event is
fired.

The generic System.EventHandler delegate is also part of .NET
and is defined as follows:

public delegate void EventHandler<TEventArgs>
 (object source, TEventArgs e)

NOTE

Before C# 2.0 (when generics were added to the language),
the solution was to instead write a custom event-handling
delegate for each EventArgs type as follows:

delegate void PriceChangedHandler
 (object sender,
 PriceChangedEventArgs e);

For historical reasons, most events within the .NET libra‐
ries use delegates defined in this way.

A protected virtual method named On-event-name centralizes
firing of the event. This allows subclasses to fire the event
(which is usually desirable) and also allows subclasses to insert
code before and after the event is fired.

134 | C# 10 Pocket Reference

Here’s how we could use our Stock class:
Stock stock = new Stock ("THPW");
stock.Price = 27.10M;

stock.PriceChanged += stock_PriceChanged;
stock.Price = 31.59M;

static void stock_PriceChanged
 (object sender, PriceChangedEventArgs e)
{
 if ((e.NewPrice - e.LastPrice) / e.LastPrice > 0.1M)
 Console.WriteLine ("Alert, 10% price increase!");
}

For events that don’t carry additional information, .NET also
provides a nongeneric EventHandler delegate. We can demon‐
strate this by rewriting our Stock class such that the Price
Changed event fires after the price changes. This means that no
additional information need be transmitted with the event:

public class Stock
{
 string symbol; decimal price;

 public Stock (string symbol) => this.symbol = symbol;

 public event EventHandler PriceChanged;

 protected virtual void OnPriceChanged (EventArgs e) =>
 PriceChanged?.Invoke (this, e);

 public decimal Price
 {
 get => price;
 set
 {
 if (price == value) return;
 price = value;
 OnPriceChanged (EventArgs.Empty);
 }
 }
}

Note that we also used the EventArgs.Empty property—this
saves instantiating an instance of EventArgs.

Events | 135

Event Accessors
An event’s accessors are the implementations of its += and -=
functions. By default, accessors are implemented implicitly by
the compiler. Consider this event declaration:

public event EventHandler PriceChanged;

The compiler converts this to the following:

• A private delegate field•
• A public pair of event accessor functions, whose imple‐•

mentations forward the += and -= operations to the private
delegate field

You can take over this process by defining explicit event acces‐
sors. Here’s a manual implementation of the PriceChanged
event from our previous example:

EventHandler priceChanged; // Private delegate
public event EventHandler PriceChanged
{
 add { priceChanged += value; }
 remove { priceChanged -= value; }
}

This example is functionally identical to C#’s default accessor
implementation (except that C# also ensures thread safety
around updating the delegate). By defining event accessors our‐
selves, we instruct C# not to generate default field and accessor
logic.

With explicit event accessors, you can apply more complex
strategies to the storage and access of the underlying delegate.
This is useful when the event accessors are merely relays for
another class that is broadcasting the event, or when explicitly
implementing an interface that declares an event:

public interface IFoo { event EventHandler Ev; }
class Foo : IFoo
{
 EventHandler ev;
 event EventHandler IFoo.Ev

136 | C# 10 Pocket Reference

 {
 add { ev += value; } remove { ev -= value; }
 }
}

Lambda Expressions
A lambda expression is an unnamed method written in place
of a delegate instance. The compiler immediately converts the
lambda expression to either of the following:

• A delegate instance.•
• An expression tree, of type Expression<TDelegate>, repre‐•

senting the code inside the lambda expression in a travers‐
able object model. This allows the lambda expression to
be interpreted later at runtime (we describe the process in
Chapter 8 of C# 10 in a Nutshell).

In the following example, x => x * x is a lambda expression:
Transformer sqr = x => x * x;
Console.WriteLine (sqr(3)); // 9

delegate int Transformer (int i);

NOTE

Internally, the compiler resolves lambda expressions of this
type by writing a private method and moving the expres‐
sion’s code into that method.

A lambda expression has the following form:
(parameters) => expression-or-statement-block

For convenience, you can omit the parentheses if and only if
there is exactly one parameter of an inferable type.

In our example, there is a single parameter, x, and the expres‐
sion is x * x:

Lambda Expressions | 137

https://learning.oreilly.com/library/view/c-10-in/9781098121945/

x => x * x;

Each parameter of the lambda expression corresponds to a
delegate parameter, and the type of the expression (which can
be void) corresponds to the return type of the delegate.

In our example, x corresponds to parameter i, and the expres‐
sion x * x corresponds to the return type int, therefore being
compatible with the Transformer delegate.

A lambda expression’s code can be a statement block instead of
an expression. We can rewrite our example as follows:

x => { return x * x; };

Lambda expressions are used most commonly with the Func
and Action delegates, so you will most often see our earlier
expression written as follows:

Func<int,int> sqr = x => x * x;

The compiler can usually infer the type of lambda parameters
contextually. When this is not the case, you can specify param‐
eter types explicitly:

Func<int,int> sqr = (int x) => x * x;

Here’s an example of an expression that accepts two
parameters:

Func<string,string,int> totalLength =
 (s1, s2) => s1.Length + s2.Length;

int total = totalLength ("hello", "world"); // total=10;

Assuming Clicked is an event of type EventHandler, the follow‐
ing attaches an event handler via a lambda expression:

obj.Clicked += (sender,args) => Console.Write ("Click");

Here’s an example of an expression that takes zero arguments:
Func<string> greetor = () => "Hello, world";

From C# 10, the compiler permits implicit typing with lambda
expressions that can be resolved via the Func and Action dele‐
gates, so we can shorten this statement to:

138 | C# 10 Pocket Reference

var greeter = () => "Hello, world";

If the lambda expression has arguments, you must specify their
types in order to use var:

var sqr = (int x) => x * x;

The compiler infers sqr to be of type Func<int,int>.

Capturing Outer Variables
A lambda expression can reference any variables that are acces‐
sible where the lambda expression is defined. These are called
outer variables, and can include local variables, parameters, and
fields:

int factor = 2;
Func<int, int> multiplier = n => n * factor;
Console.WriteLine (multiplier (3)); // 6

Outer variables referenced by a lambda expression are called
captured variables. A lambda expression that captures variables
is called a closure. Captured variables are evaluated when
the delegate is actually invoked, not when the variables were
captured:

int factor = 2;
Func<int, int> multiplier = n => n * factor;
factor = 10;
Console.WriteLine (multiplier (3)); // 30

Lambda expressions can themselves update captured variables:
int seed = 0;
Func<int> natural = () => seed++;
Console.WriteLine (natural()); // 0
Console.WriteLine (natural()); // 1
Console.WriteLine (seed); // 2

Captured variables have their lifetimes extended to that of
the delegate. In the following example, the local variable seed
would ordinarily disappear from scope when Natural finished
executing. But because seed has been captured, its lifetime is
extended to that of the capturing delegate, natural:

Lambda Expressions | 139

Func<int> natural = Natural();
Console.WriteLine (natural()); // 0
Console.WriteLine (natural()); // 1

static Func<int> Natural()
{
 int seed = 0;
 return () => seed++; // Returns a closure
}

Variables can also be captured by anonymous methods and
local methods. The rules for captured variables, in these cases,
are the same.

Static lambdas
From C# 9, you can ensure that a lambda expression, local
function, or anonymous method doesn’t capture state by
applying the static keyword. This can be useful in micro-
optimization scenarios to prevent the (potentially uninten‐
tional) memory allocation and cleanup of a closure. For exam‐
ple, we can apply the static modifier to a lambda expression as
follows:

Func<int, int> multiplier = static n => n * 2;

If we later tried to modify the lambda expression such that it
captured a local variable, the compiler will generate an error.
This feature is more useful in local methods (because a lambda
expression itself incurs a memory allocation). In the follow‐
ing example, the Multiply method cannot access the factor
variable:

void Foo()
{
 int factor = 123;
 static int Multiply (int x) => x * 2;
}

Applying static here is also arguably useful as a documenta‐
tion tool, indicating a reduced level of coupling. Static lambdas
can still access static variables and constants (because these do
not require a closure).

140 | C# 10 Pocket Reference

NOTE

The static keyword acts merely as a check; it has no effect
on the IL that the compiler produces. Without the static
keyword, the compiler does not generate a closure unless it
needs to (and even then, it has tricks to mitigate the cost).

Capturing iteration variables

When you capture an iteration variable in a for loop, C# treats
the iteration variable as though it were declared outside the
loop. This means that the same variable is captured in each
iteration. The following program writes 333 instead of 012:

Action[] actions = new Action[3];

for (int i = 0; i < 3; i++)
 actions [i] = () => Console.Write (i);

foreach (Action a in actions) a(); // 333

Each closure (shown in boldface) captures the same variable,
i. (This actually makes sense when you consider that i is a
variable whose value persists between loop iterations; you can
even explicitly change i within the loop body if you want.) The
consequence is that when the delegates are later invoked, each
delegate sees i’s value at the time of invocation—which is 3.
The solution, if we want to write 012, is to assign the iteration
variable to a local variable that is scoped within the loop:

Action[] actions = new Action[3];
for (int i = 0; i < 3; i++)
{
 int loopScopedi = i;
 actions [i] = () => Console.Write (loopScopedi);
}
foreach (Action a in actions) a(); // 012

This causes the closure to capture a different variable on each
iteration.

Lambda Expressions | 141

Note that (from C# 5) the iteration variable in a foreach loop is
implicitly local, so you can safely close over it without needing
a temporary variable.

Lambda Expressions Versus Local Methods
The functionality of local methods (see “Local methods” on
page 73) overlaps with that of lambda expressions. Local meth‐
ods have the advantages of allowing for recursion and avoiding
the clutter of specifying a delegate. Avoiding the indirection
of a delegate also makes them slightly more efficient, and they
can access local variables of the containing method without the
compiler having to “hoist” the captured variables into a hidden
class.

However, in many cases you need a delegate, most commonly
when calling a higher-order function (i.e., a method with a
delegate-typed parameter):

public void Foo (Func<int,bool> predicate) { ... }

In such cases, you need a delegate anyway, and it’s precisely
in these cases that lambda expressions are usually terser and
cleaner.

Anonymous Methods
Anonymous methods are a C# 2.0 feature that has been mostly
subsumed by lambda expressions. An anonymous method is
like a lambda expression except that it lacks implicitly typed
parameters, expression syntax (an anonymous method must
always be a statement block), and the ability to compile to an
expression tree. To write an anonymous method, you include
the delegate keyword followed (optionally) by a parameter
declaration and then a method body. For example:

Transformer sqr = delegate (int x) {return x * x;};
Console.WriteLine (sqr(3)); // 9

delegate int Transformer (int i);

142 | C# 10 Pocket Reference

The first line is semantically equivalent to the following lambda
expression:

Transformer sqr = (int x) => {return x * x;};

Or simply:
Transformer sqr = x => x * x;

A unique feature of anonymous methods is that you can omit
the parameter declaration entirely—even if the delegate expects
it. This can be useful in declaring events with a default empty
handler:

public event EventHandler Clicked = delegate { };

This avoids the need for a null check before firing the event.
The following is also legal (notice the lack of parameters):

Clicked += delegate { Console.Write ("clicked"); };

Anonymous methods capture outer variables in the same way
lambda expressions do.

try Statements and Exceptions
A try statement specifies a code block subject to error-
handling or cleanup code. The try block must be followed by
one or more catch blocks and/or a finally block. The catch
block executes when an error is thrown in the try block. The
finally block executes after execution leaves the try block (or
if present, the catch block) to perform cleanup code, whether
or not an exception was thrown.

A catch block has access to an Exception object that contains
information about the error. You use a catch block to either
compensate for the error or rethrow the exception. You rethrow
an exception if you merely want to log the problem, or if you
want to rethrow a new, higher-level exception type.

A finally block adds determinism to your program by always
executing no matter what. It’s useful for cleanup tasks such as
closing network connections.

try Statements and Exceptions | 143

A try statement looks like this:
try
{
 ... // exception may get thrown within execution of
 // this block
}
catch (ExceptionA ex)
{
 ... // handle exception of type ExceptionA
}
catch (ExceptionB ex)
{
 ... // handle exception of type ExceptionB
}
finally
{
 ... // cleanup code
}

Consider the following code:
int x = 3, y = 0;
Console.WriteLine (x / y);

Because y is zero, the runtime throws a DivideByZeroException
and our program terminates. We can prevent this by catching
the exception as follows:

try
{
 int x = 3, y = 0;
 Console.WriteLine (x / y);
}
catch (DivideByZeroException)
{
 Console.Write ("y cannot be zero. ");
}
// Execution resumes here after exception...

144 | C# 10 Pocket Reference

NOTE

This is a simple example to illustrate exception handling.
We could deal with this particular scenario better in prac‐
tice by checking explicitly for the divisor being zero before
calling Calc.
Exceptions are relatively expensive to handle, taking hun‐
dreds of clock cycles.

When an exception is thrown within a try statement, the CLR
performs a test:

Does the try statement have any compatible catch blocks?

• If so, execution jumps to the compatible catch block, fol‐•
lowed by the finally block (if present), and then execu‐
tion continues normally.

• If not, execution jumps directly to the finally block (if•
present), and then the CLR looks up the call stack for
other try blocks and, if found, repeats the test.

If no function in the call stack takes responsibility for the
exception, an error dialog is displayed to the user, and the
program terminates.

The catch Clause
A catch clause specifies what type of exception to catch. This
must be either System.Exception or a subclass of System.Excep
tion. Catching System.Exception catches all possible errors.
This is useful when:

• Your program can potentially recover regardless of the•
specific exception type.

• You plan to rethrow the exception (perhaps after logging•
it).

try Statements and Exceptions | 145

• Your error handler is the last resort, prior to termination•
of the program.

More typically, though, you catch specific exception types in
order to avoid having to deal with circumstances for which
your handler wasn’t designed (e.g., an OutOfMemoryException).

You can handle multiple exception types with multiple catch
clauses:

try
{
 DoSomething();
}
catch (IndexOutOfRangeException ex) { ... }
catch (FormatException ex) { ... }
catch (OverflowException ex) { ... }

Only one catch clause executes for a given exception. If you
want to include a safety net to catch more general exceptions
(such as System.Exception), you must put the more specific
handlers first.

You can catch an exception without specifying a variable, if you
don’t need to access its properties:

catch (OverflowException) // no variable
{ ... }

Furthermore, you can omit both the variable and the type
(meaning that all exceptions will be caught):

catch { ... }

Exception filters

You can specify an exception filter in a catch clause by adding a
when clause:

catch (WebException ex)
 when (ex.Status == WebExceptionStatus.Timeout)
{
 ...
}

146 | C# 10 Pocket Reference

If a WebException is thrown in this example, the Boolean
expression following the when keyword is then evaluated. If the
result is false, the catch block in question is ignored, and any
subsequent catch clauses are considered. With exception filters,
it can be meaningful to catch the same exception type again:

catch (WebException ex) when (ex.Status == something)
{ ... }
catch (WebException ex) when (ex.Status == somethingelse)
{ ... }

The Boolean expression in the when clause can be side-
effecting, such as a method that logs the exception for diagnos‐
tic purposes.

The finally Block
A finally block always executes—whether or not an exception
is thrown and whether or not the try block runs to completion.
finally blocks are typically used for cleanup code.

A finally block executes either:

• After a catch block finishes•
• After control leaves the try block because of a jump state‐•

ment (e.g., return or goto)
• After the try block ends•

A finally block helps add determinism to a program. In the
following example, the file that we open always gets closed,
regardless of whether:

• The try block finishes normally•
• Execution returns early because the file is empty (EndOf•
Stream)

• An IOException is thrown while the file is being read•

For example:

try Statements and Exceptions | 147

static void ReadFile()
{
 StreamReader reader = null; // In System.IO namespace
 try
 {
 reader = File.OpenText ("file.txt");
 if (reader.EndOfStream) return;
 Console.WriteLine (reader.ReadToEnd());
 }
 finally
 {
 if (reader != null) reader.Dispose();
 }
}

In this example, we closed the file by calling Dispose on the
StreamReader. Calling Dispose on an object, within a finally
block, is a standard convention throughout .NET and is sup‐
ported explicitly in C# through the using statement.

The using statement
Many classes encapsulate unmanaged resources such as file
handles, graphics handles, or database connections. These
classes implement System.IDisposable, which defines a sin‐
gle parameterless method named Dispose to clean up these
resources. The using statement provides an elegant syntax for
calling Dispose on an IDisposable object within a finally
block.

The following
using (StreamReader reader = File.OpenText ("file.txt"))
{
 ...
}

is precisely equivalent to:
{
 StreamReader reader = File.OpenText ("file.txt");
 try
 {
 ...
 }

148 | C# 10 Pocket Reference

 finally
 {
 if (reader != null) ((IDisposable)reader).Dispose();
 }
}

using declarations

If you omit the brackets and statement block following a using
statement, it becomes a using declaration (C# 8+). The resource
is then disposed when execution falls outside the enclosing
statement block:

if (File.Exists ("file.txt"))
{
 using var reader = File.OpenText ("file.txt");
 Console.WriteLine (reader.ReadLine());
 ...
}

In this case, reader will be disposed when execution falls out‐
side the if statement block.

Throwing Exceptions
Exceptions can be thrown either by the runtime or in user
code. In this example, Display throws a System.Argument
NullException:

static void Display (string name)
{
 if (name == null)
 throw new ArgumentNullException (nameof (name));

 Console.WriteLine (name);
}

throw expressions

From C# 7, throw can appear as an expression in expression-
bodied functions:

public string Foo() => throw new NotImplementedException();

try Statements and Exceptions | 149

A throw expression can also appear in a ternary conditional
expression:

string ProperCase (string value) =>
 value == null ? throw new ArgumentException ("value") :
 value == "" ? "" :
 char.ToUpper (value[0]) + value.Substring (1);

Rethrowing an exception
You can capture and rethrow an exception as follows:

try { ... }
catch (Exception ex)
{
 // Log error
 ...
 throw; // Rethrow same exception
}

Rethrowing in this manner lets you log an error without
swallowing it. It also lets you back out of handling an excep‐
tion should circumstances turn out to be outside what you
expected.

NOTE

If we replaced throw with throw ex, the example would
still work, but the StackTrace property of the exception
would no longer reflect the original error.

The other common scenario is to rethrow a more specific or
meaningful exception type:

try
{
 ... // parse a date of birth from XML element data
}
catch (FormatException ex)
{
 throw new XmlException ("Invalid date of birth", ex);
}

150 | C# 10 Pocket Reference

When rethrowing a different exception, you can populate the
InnerException property with the original exception to aid
debugging. Nearly all types of exceptions provide a constructor
for this purpose (such as in our example).

Key Properties of System.Exception
The most important properties of System.Exception are the
following:

StackTrace

A string representing all the methods that are called from
the origin of the exception to the catch block.

Message

A string with a description of the error.
InnerException

The inner exception (if any) that caused the outer excep‐
tion. This, itself, might have another InnerException.

Enumeration and Iterators
Enumeration
An enumerator is a read-only, forward-only cursor over a
sequence of values. C# treats a type as an enumerator if it does
any of the following:

• Has a public parameterless method named MoveNext and•
property called Current

• Implements System.Collections.Generic.IEnumerator<T>•
• Implements System.Collections.IEnumerator•

The foreach statement iterates over an enumerable object. An
enumerable object is the logical representation of a sequence.
It is not itself a cursor, but an object that produces cursors
over itself. C# treats a type as enumerable if it does any of the
following (the check is performed in this order):

Enumeration and Iterators | 151

• Has a public parameterless method named GetEnumerator•
that returns an enumerator

• Implements System.Collections.Generic.IEnumerable<T>•
• Implements System.Collections.IEnumerable•
• (From C# 9) Can bind to an extension method named•
GetEnumerator that returns an enumerator (see “Extension
Methods” on page 164)

The enumeration pattern is as follows:
class Enumerator // Typically implements IEnumerator<T>
{
 public IteratorVariableType Current { get {...} }
 public bool MoveNext() {...}
}
class Enumerable // Typically implements IEnumerable<T>
{
 public Enumerator GetEnumerator() {...}
}

Here is the high-level way to iterate through the characters in
the word beer using a foreach statement:

foreach (char c in "beer") Console.WriteLine (c);

Here is the low-level way to iterate through the characters in
beer without using a foreach statement:

using (var enumerator = "beer".GetEnumerator())
 while (enumerator.MoveNext())
 {
 var element = enumerator.Current;
 Console.WriteLine (element);
 }

If the enumerator implements IDisposable, the foreach state‐
ment also acts as a using statement, implicitly disposing the
enumerator object.

152 | C# 10 Pocket Reference

Collection Initializers
You can instantiate and populate an enumerable object in a
single step. For example:

using System.Collections.Generic;
...

List<int> list = new List<int> {1, 2, 3};

The compiler translates the last line into the following:
List<int> list = new List<int>();
list.Add (1); list.Add (2); list.Add (3);

This requires that the enumerable object implements the
System.Collections.IEnumerable interface and that it has an
Add method that has the appropriate number of parameters
for the call. You can similarly initialize dictionaries (types that
implement System.Collections.IDictionary) as follows:

var dict = new Dictionary<int, string>()
{
 { 5, "five" },
 { 10, "ten" }
};

Or, more succinctly:
var dict = new Dictionary<int, string>()
{
 [5] = "five",
 [10] = "ten"
};

The latter is valid not only with dictionaries, but with any type
for which an indexer exists.

Iterators
Whereas a foreach statement is a consumer of an enumerator,
an iterator is a producer of an enumerator. In this example, we
use an iterator to return a sequence of Fibonacci numbers (for
which each number is the sum of the previous two):

Enumeration and Iterators | 153

foreach (int fib in Fibs (6))
 Console.Write (fib + " ");

IEnumerable<int> Fibs (int fibCount)
{
 for (int i=0, prevFib=1, curFib=1; i<fibCount; i++)
 {
 yield return prevFib;
 int newFib = prevFib+curFib;
 prevFib = curFib;
 curFib = newFib;
 }
}
OUTPUT: 1 1 2 3 5 8

Whereas a return statement expresses, “Here’s the value you
asked me to return from this method,” a yield return state‐
ment expresses, “Here’s the next element you asked me to yield
from this enumerator.” On each yield statement, control is
returned to the caller, but the callee’s state is maintained so
that the method can continue executing as soon as the caller
enumerates the next element. The lifetime of this state is bound
to the enumerator, such that the state can be released when the
caller has finished enumerating.

NOTE

The compiler converts iterator methods into private classes
that implement IEnumerable<T> and/or IEnumerator<T>.
The logic within the iterator block is “inverted” and spliced
into the MoveNext method and the Current property on
the compiler-written enumerator class, which effectively
becomes a state machine. This means that when you call
an iterator method, all you’re doing is instantiating the
compiler-written class; none of your code actually runs!
Your code runs only when you start enumerating over the
resultant sequence, typically with a foreach statement.

154 | C# 10 Pocket Reference

Iterator Semantics
An iterator is a method, property, or indexer that contains one
or more yield statements. An iterator must return one of the
following four interfaces (otherwise, the compiler will generate
an error):

System.Collections.IEnumerable
System.Collections.IEnumerator
System.Collections.Generic.IEnumerable<T>
System.Collections.Generic.IEnumerator<T>

Iterators that return an enumerator interface tend to be used
less often. They’re useful when you’re writing a custom collec‐
tion class: typically, you name the iterator GetEnumerator and
have your class implement IEnumerable<T>.

Iterators that return an enumerable interface are more com‐
mon—and simpler to use because you don’t need to write
a collection class. The compiler, behind the scenes, writes
a private class implementing IEnumerable<T> (as well as
IEnumerator<T>).

Multiple yield statements

An iterator can include multiple yield statements:
foreach (string s in Foo())
 Console.Write (s + " "); // One Two Three

IEnumerable<string> Foo()
{
 yield return "One";
 yield return "Two";
 yield return "Three";
}

yield break

A return statement is illegal in an iterator block; instead, you
must use the yield break statement to indicate that the iterator
block should exit early, without returning more elements. We
can modify Foo as follows to demonstrate:

Enumeration and Iterators | 155

IEnumerable<string> Foo (bool breakEarly)
{
 yield return "One";
 yield return "Two";
 if (breakEarly) yield break;
 yield return "Three";
}

Composing Sequences
Iterators are highly composable. We can extend our Fibonacci
example by adding the following method to the class:

Enumerable<int> EvenNumbersOnly (
 IEnumerable<int> sequence)
 {
 foreach (int x in sequence)
 if ((x % 2) == 0)
 yield return x;
 }
}

We can then output even Fibonacci numbers as follows:
foreach (int fib in EvenNumbersOnly (Fibs (6)))
 Console.Write (fib + " "); // 2 8

Each element is not calculated until the last moment—when
requested by a MoveNext() operation. Figure 5 shows the data
requests and data output over time.

The composability of the iterator pattern is essential in building
LINQ queries.

156 | C# 10 Pocket Reference

Figure 5. Composing sequences

Nullable Value Types
Reference types can represent a nonexistent value with a null
reference. Value types, however, cannot ordinarily represent
null values. For example:

string s = null; // OK - reference type
int i = null; // Compile error - int cannot be null

To represent null in a value type, you must use a special con‐
struct called a nullable type. A nullable type is denoted with a
value type followed by the ? symbol:

int? i = null; // OK - nullable type
Console.WriteLine (i == null); // True

Nullable Value Types | 157

Nullable<T> Struct
T? translates into System.Nullable<T>. Nullable<T> is a light‐
weight immutable structure, having only two fields, to repre‐
sent Value and HasValue. The essence of System.Nullable<T> is
very simple:

public struct Nullable<T> where T : struct
{
 public T Value {get;}
 public bool HasValue {get;}
 public T GetValueOrDefault();
 public T GetValueOrDefault (T defaultValue);
 ...
}

The following code:
int? i = null;
Console.WriteLine (i == null); // True

translates to:
Nullable<int> i = new Nullable<int>();
Console.WriteLine (! i.HasValue); // True

Attempting to retrieve Value when HasValue is false throws
an InvalidOperationException. GetValueOrDefault() returns
Value if HasValue is true; otherwise, it returns new T() or a
specified custom default value.

The default value of T? is null.

Nullable Conversions
The conversion from T to T? is implicit, while from T? to T the
conversion is explicit. For example:

int? x = 5; // implicit
int y = (int)x; // explicit

The explicit cast is directly equivalent to calling the nullable
object’s Value property. Hence, an InvalidOperationException
is thrown if HasValue is false.

158 | C# 10 Pocket Reference

Boxing/Unboxing Nullable Values
When T? is boxed, the boxed value on the heap contains T,
not T?. This optimization is possible because a boxed value is a
reference type that can already express null.

C# also permits the unboxing of nullable types with the as
operator. The result will be null if the cast fails:

object o = "string";
int? x = o as int?;
Console.WriteLine (x.HasValue); // False

Operator Lifting
The Nullable<T> struct does not define operators such as <,
>, or even ==. Despite this, the following code compiles and
executes correctly:

int? x = 5;
int? y = 10;
bool b = x < y; // true

This works because the compiler borrows or “lifts” the less-
than operator from the underlying value type. Semantically, it
translates the preceding comparison expression into this:

bool b = (x.HasValue && y.HasValue)
 ? (x.Value < y.Value)
 : false;

In other words, if both x and y have values, it compares via
int’s less-than operator; otherwise, it returns false.

Operator lifting means that you can implicitly use T’s operators
on T?. You can define operators for T? in order to provide
special-purpose null behavior, but in the vast majority of cases,
it’s best to rely on the compiler automatically applying system‐
atic nullable logic for you.

The compiler performs null logic differently depending on the
category of operator.

Nullable Value Types | 159

Equality operators (==, !=)
Lifted equality operators handle nulls just like reference types
do. This means two null values are equal:

Console.WriteLine (null == null); // True
Console.WriteLine ((bool?)null == (bool?)null); // True

Further:

• If exactly one operand is null, the operands are unequal.•
• If both operands are non-null, their Values are compared.•

Relational operators (<, <=, >=, >)
The relational operators work on the principle that it is mean‐
ingless to compare null operands. This means that comparing a
null value to either a null or a non-null value returns false:

bool b = x < y; // Translation:

bool b = (x == null || y == null)
 ? false
 : (x.Value < y.Value);

// b is false (assuming x is 5 and y is null)

All other operators (+, −, *, /, %, &, |, ^, <<, >>, +, ++, --, !, ~)
These operators return null when any of the operands are null.
This pattern should be familiar to SQL users:

int? c = x + y; // Translation:

int? c = (x == null || y == null)
 ? null
 : (int?) (x.Value + y.Value);

// c is null (assuming x is 5 and y is null)

An exception is when the & and | operators are applied to
bool?, which we will discuss shortly.

160 | C# 10 Pocket Reference

Mixing nullable and non-nullable types
You can mix and match nullable and non-nullable types (this
works because there is an implicit conversion from T to T?):

int? a = null;
int b = 2;
int? c = a + b; // c is null - equivalent to a + (int?)b

bool? with & and | Operators
When supplied operands of type bool?, the & and | operators
treat null as an unknown value. So, null | true is true,
because:

• If the unknown value is false, the result would be true.•
• If the unknown value is true, the result would be true.•

Similarly, null & false is false. This behavior should be famil‐
iar to SQL users. The following example enumerates other
combinations:

bool? n = null, f = false, t = true;
Console.WriteLine (n | n); // (null)
Console.WriteLine (n | f); // (null)
Console.WriteLine (n | t); // True
Console.WriteLine (n & n); // (null)
Console.WriteLine (n & f); // False
Console.WriteLine (n & t); // (null)

Nullable Types and Null Operators
Nullable types work particularly well with the ?? operator (see
“Null-Coalescing Operator” on page 54). For example:

int? x = null;
int y = x ?? 5; // y is 5

int? a = null, b = null, c = 123;
Console.WriteLine (a ?? b ?? c); // 123

Using ?? on a nullable value type is equivalent to calling Get
ValueOrDefault with an explicit default value, except that the

Nullable Value Types | 161

expression for the default value is never evaluated if the vari‐
able is not null.

Nullable types also work well with the null-conditional opera‐
tor (see “Null-Conditional Operator” on page 54). In the fol‐
lowing example, length evaluates to null:

System.Text.StringBuilder sb = null;
int? length = sb?.ToString().Length;

We can combine this with the null-coalescing operator to eval‐
uate to zero instead of null:

int length = sb?.ToString().Length ?? 0;

Nullable Reference Types
Whereas nullable value types bring nullability to value types,
nullable reference types (from C# 8) do the opposite. When
enabled, they bring (a degree of) non-nullability to reference
types, with the purpose of helping to avoid NullReference
Exceptions.

Nullable reference types introduce a level of safety that’s
enforced purely by the compiler in the form of warnings
when it detects code that’s at risk of generating a NullReference
Exception.

To enable nullable reference types, you must either add the
Nullable element to your .csproj project file (if you want to
enable it for the entire project):

<Nullable>enable</Nullable>

Or/and you can use the following directives in your code, in
the places where it should take effect:

#nullable enable // enables NRT from this point on
#nullable disable // disables NRT from this point on
#nullable restore // resets NRT to project setting

After it is enabled, the compiler makes non-nullability the
default: if you want a reference type to accept nulls without
the compiler generating a warning, you must apply the ? suffix

162 | C# 10 Pocket Reference

to indicate a nullable reference type. In the following example,
s1 is non-nullable, whereas s2 is nullable:

#nullable enable // Enable nullable reference types

string s1 = null; // Generates a compiler warning!
string? s2 = null; // OK: s2 is nullable reference type

NOTE

Because nullable reference types are compile-time con‐
structs, there’s no runtime difference between string
and string?. In contrast, nullable value types introduce
something concrete into the type system, namely the
Nullable<T> struct.

The following also generates a warning because x is not
initialized:

class Foo { string x; }

The warning disappears if you initialize x, either via a field
initializer or via code in the constructor.

The compiler also warns you upon dereferencing a nullable ref‐
erence type if it thinks a NullReferenceException might occur.
In the following example, accessing the string’s Length property
generates a warning:

void Foo (string? s) => Console.Write (s.Length);

To remove the warning, you can use the null-forgiving operator
(!):

void Foo (string? s) => Console.Write (s!.Length);

Our use of the null-forgiving operator in this example is
dangerous in that we could end up throwing the very Null
ReferenceException we were trying to avoid in the first place.
We could fix it as follows:

Nullable Reference Types | 163

void Foo (string? s)
{
 if (s != null) Console.Write (s.Length);
}

Notice now that we don’t need the null-forgiving operator. This
is because the compiler performs static analysis and is smart
enough to infer—at least in simple cases—when a dereference
is safe and there’s no chance of a NullReferenceException.

The compiler’s ability to detect and warn is not bulletproof, and
there are also limits to what’s possible in terms of coverage.
For instance, it’s unable to know whether an array’s elements
have been populated, and so the following does not generate a
warning:

var strings = new string[10];
Console.WriteLine (strings[0].Length);

Extension Methods
Extension methods allow an existing type to be extended with
new methods without altering the definition of the original
type. An extension method is a static method of a static class,
where the this modifier is applied to the first parameter. The
type of the first parameter will be the type that is extended. For
example:

public static class StringHelper
{
 public static bool IsCapitalized (this string s)
 {
 if (string.IsNullOrEmpty (s)) return false;
 return char.IsUpper (s[0]);
 }
}

The IsCapitalized extension method can be called as though it
were an instance method on a string, as follows:

Console.Write ("Perth".IsCapitalized());

An extension method call, when compiled, is translated back
into an ordinary static method call:

164 | C# 10 Pocket Reference

Console.Write (StringHelper.IsCapitalized ("Perth"));

Interfaces can be extended too:
public static T First<T> (this IEnumerable<T> sequence)
{
 foreach (T element in sequence)
 return element;
 throw new InvalidOperationException ("No elements!");
}
...
Console.WriteLine ("Seattle".First()); // S

Extension Method Chaining
Extension methods, like instance methods, provide a tidy way
to chain functions. Consider the following two functions:

public static class StringHelper
{
 public static string Pluralize (this string s) {...}
 public static string Capitalize (this string s) {...}
}

x and y are equivalent, and both evaluate to "Sausages", but x
uses extension methods, whereas y uses static methods:

string x = "sausage".Pluralize().Capitalize();

string y = StringHelper.Capitalize
 (StringHelper.Pluralize ("sausage"));

Ambiguity and Resolution
Any compatible instance method will always take precedence
over an extension method—even when the extension method’s
parameters are more specifically type-matched.

If two extension methods have the same signature, the exten‐
sion method must be called as an ordinary static method to
disambiguate the method to call. If one extension method has
more specific arguments, however, the more specific method
takes precedence.

Extension Methods | 165

Anonymous Types
An anonymous type is a simple class created on the fly to store
a set of values. To create an anonymous type, you use the
new keyword followed by an object initializer, specifying the
properties and values the type will contain. For example:

var dude = new { Name = "Bob", Age = 1 };

The compiler resolves this by writing a private nested type with
read-only properties for Name (type string) and Age (type int).
You must use the var keyword to reference an anonymous type,
because the type’s name is compiler-generated.

The property name of an anonymous type can be inferred from
an expression that is itself an identifier; consider, for example:

int Age = 1;
var dude = new { Name = "Bob", Age };

This is equivalent to:
var dude = new { Name = "Bob", Age = Age };

You can create arrays of anonymous types as follows:
var dudes = new[]
{
 new { Name = "Bob", Age = 30 },
 new { Name = "Mary", Age = 40 }
};

Anonymous types are used primarily when you’re writing
LINQ queries.

Anonymous types are immutable, so instances cannot be modi‐
fied after creation. However, from C# 10, you can use the with
keyword to create a copy with variations, as you would with
records. see “Nondestructive Mutation” on page 173 for an
example.

166 | C# 10 Pocket Reference

Tuples
Like anonymous types, tuples (C# 7+) provide a simple way to
store a set of values. The main purpose of tuples is to safely
return multiple values from a method without resorting to
out parameters (something you cannot do with anonymous
types). The simplest way to create a tuple literal is to list
the desired values in parentheses. This creates a tuple with
unnamed elements:

var bob = ("Bob", 23);
Console.WriteLine (bob.Item1); // Bob
Console.WriteLine (bob.Item2); // 23

Unlike with anonymous types, var is optional and you can
specify a tuple type explicitly:

(string,int) bob = ("Bob", 23);

This means that you can usefully return a tuple from a method:
(string,int) person = GetPerson();
Console.WriteLine (person.Item1); // Bob
Console.WriteLine (person.Item2); // 23

(string,int) GetPerson() => ("Bob", 23);

Tuples play well with generics, so the following types are all
legal:

Task<(string,int)>
Dictionary<(string,int),Uri>
IEnumerable<(int ID, string Name)> // See below...

Tuples are value types with mutable (read/write) elements. This
means that you can modify Item1, Item2, and so on, after
creating a tuple.

Naming Tuple Elements
You can optionally give meaningful names to elements when
creating tuple literals:

Tuples | 167

var tuple = (Name:"Bob", Age:23);
Console.WriteLine (tuple.Name); // Bob
Console.WriteLine (tuple.Age); // 23

You can do the same when specifying tuple types:
static (string Name, int Age) GetPerson() => ("Bob",23);

Element names are automatically inferred from property or
field names:

var now = DateTime.Now;
var tuple = (now.Day, now.Month, now.Year);
Console.WriteLine (tuple.Day); // OK

NOTE

Tuples are syntactic sugar for using a family of generic
structs called ValueTuple<T1>, ValueTuple<T1,T2>,
which have fields named Item1, Item2, and so on. Hence
(string,int) is an alias for ValueTuple<string,int>.
This means that “named elements” exist only in the source
code—and the imagination of the compiler—and mostly
disappear at runtime.

Deconstructing Tuples
Tuples implicitly support the deconstruction pattern (see
“Deconstructors” on page 76), so you can easily deconstruct
a tuple into individual variables. Consider the following:

var bob = ("Bob", 23);
string name = bob.Item1;
int age = bob.Item2;

With the tuple’s deconstructor, you can simplify the code to
this:

var bob = ("Bob", 23);
(string name, int age) = bob; // Deconstruct bob into
 // name and age.
Console.WriteLine (name);
Console.WriteLine (age);

168 | C# 10 Pocket Reference

The syntax for deconstruction is confusingly similar to the syn‐
tax for declaring a tuple with named elements! The following
highlights the difference:

(string name, int age) = bob; // Deconstructing
(string name, int age) bob2 = bob; // Declaring tuple

Records
A record (from C# 9) is a special kind of class or struct
that’s designed to work well with immutable (read-only)
data. Its most useful feature is allowing nondestructive muta‐
tion, whereby to “modify” an immutable object, you create
a new one and copy over the data while incorporating your
modifications.

Records are also useful in creating types that just combine
or hold data. In simple cases, they eliminate boilerplate code
while honoring structural equality semantics (two objects are
the same if their data is the same), which is usually what you
want with immutable types.

A record is purely a C# compile-time construct. At runtime,
the CLR sees them just as classes or structs (with a bunch of
extra “synthesized” members added by the compiler).

Defining a Record
A record definition is like a class or struct definition and can
contain the same kinds of members, including fields, proper‐
ties, methods, and so on. Records can implement interfaces and
(class-based) records can subclass other (class-based) records.

By default, the underlying type of a record is a class:
record Point { } // Point is a class

From C# 10, the underlying type of a record can also be a
struct:

record struct Point { } // Point is a struct

Records | 169

(record class is also legal and has the same meaning as
record.)

A simple record might contain just a bunch of init-only prop‐
erties, and perhaps a constructor:

record Point
{
 public Point (double x, double y) => (X, Y) = (x, y);

 public double X { get; init; }
 public double Y { get; init; }
}

Upon compilation, C# transforms the record definition into a
class (or struct) and performs the following additional steps:

• It writes a protected copy constructor (and a hidden Clone•
method) to facilitate nondestructive mutation.

• It overrides/overloads the equality-related functions to•
implement structural equality.

• It overrides the ToString() method (to expand the•
record’s public properties, as with anonymous types).

The preceding record declaration expands into something like
this:

class Point
{
 public Point (double x, double y) => (X, Y) = (x, y);

 public double X { get; init; }
 public double Y { get; init; }

 protected Point (Point original) // “Copy constructor”
 {
 this.X = original.X; this.Y = original.Y
 }

 // This method has a strange compiler-generated name:
 public virtual Point <Clone>$() => new Point (this);

 // Additional code to override Equals, ==, !=,

170 | C# 10 Pocket Reference

 // GetHashCode, ToString()...
}

Parameter lists
A record definition can also include a parameter list:

record Point (double X, double Y)
{
 ...
}

Parameters can include the in and params modifiers, but not
out or ref. If a parameter list is specified, the compiler per‐
forms the following extra steps:

• It writes an init-only property per parameter (or a writable•
property, in the case of record structs).

• It writes a primary constructor to populate the properties.•
• It writes a deconstructor.•

This means that we can declare our Point record simply as
follows:

record Point (double X, double Y);

The compiler will end up generating (almost) exactly what we
listed in the preceding expansion. A minor difference is that
the parameter names in the primary constructor will end up as
X and Y instead of x and y:

 public Point (double X, double Y)
 {
 this.X = X; this.Y = Y;
 }

Records | 171

NOTE

Also, due to being a primary constructor, the parameters X
and Y become magically available to any field or property
initializers in your record. We discuss the subtleties of this
later in “Primary Constructors” on page 174.

Another difference when you define a parameter list is that the
compiler also generates a deconstructor:

 public void Deconstruct (out double X, out double Y)
 {
 X = this.X; Y = this.Y;
 }

Records with parameter lists can be subclassed using the fol‐
lowing syntax:

record Point3D (double X, double Y, double Z)
 : Point (X, Y);

The compiler then emits a primary constructor as follows:
class Point3D : Point
{
 public double Z { get; init; }

 public Point3D (double X, double Y, double Z)
 : base (X, Y)
 => this.Z = Z;
}

NOTE

Parameter lists offer a nice shortcut when you need a
class that simply groups together a bunch of values (a
product type in functional programming), and can also be
useful for prototyping. They’re not so helpful when you
need to add logic to the init accessors (such as argument
validation).

172 | C# 10 Pocket Reference

Nondestructive Mutation
The most important step that the compiler performs with all
records is to write a copy constructor (and a hidden Clone
method). This enables nondestructive mutation via the with
keyword:

Point p1 = new Point (3, 3);
Point p2 = p1 with { Y = 4 };
Console.WriteLine (p2); // Point { X = 3, Y = 4 }

record Point (double X, double Y);

In this example, p2 is a copy of p1, but with its Y property set to
4. The benefit is greater when there are more properties.

Nondestructive mutation occurs in two phases:

1. First, the copy constructor clones the record. By default,1.
it copies each of the record’s underlying fields, creating a
faithful replica while bypassing (the overhead of) any logic
in the init accessors. All fields are included (public and
private, as well as the hidden fields that back automatic
properties).

2. Then, each property in the member initializer list is upda‐2.
ted (this time using the init accessors).

The compiler translates the following:
Test t2 = t1 with { A = 10, C = 30 };

into something functionally equivalent to this:
Test t2 = new Test(t1); // Clone t1
t2.A = 10; // Update property A
t2.C = 30; // Update property C

(The same code would not compile if you wrote it explicitly
because A and C are init-only properties. Furthermore, the copy
constructor is protected; C# works around this by invoking it
via a public hidden method that it writes into the record called
<Clone>$.)

Records | 173

If necessary, you can define your own copy constructor. C# will
then use your definition instead of writing one itself:

protected Point (Point original)
{
 this.X = original.X; this.Y = original.Y;
}

When subclassing another record, the copy constructor is
responsible for copying only its own fields. To copy the base
record’s fields, delegate to the base:

protected Point (Point original) : base (original)
{
 ...
}

Primary Constructors
When you define a record with a parameter list, the compiler
generates property declarations automatically, as well as a pri‐
mary constructor (and a deconstructor). This works well in
simple cases, and in more complex cases you can omit the
parameter list and write the property declarations and con‐
structor manually. C# also offers the mildly useful intermediate
option of defining a parameter list while writing some or all of
the property declarations yourself:

record Student(int ID, string Surname, string FirstName)
{
 public int ID { get; } = ID;
}

In this case, we “took over” the ID property definition, defining
it as read-only (instead of init-only), preventing it from partak‐
ing in nondestructive mutation. If you never need to nondes‐
tructively mutate a particular property, making it read-only lets
you cache computed data in the record without having to code
up a refresh mechanism.

Notice that we needed to include a property initializer (in
boldface):

 public int ID { get; } = ID;

174 | C# 10 Pocket Reference

When you “take over” a property declaration, you become
responsible for initializing its value; the primary constructor
no longer does this automatically. Note that the ID in boldface
refers to the primary constructor parameter, not the ID property.

A unique feature of primary constructors is that its parameters
(ID, Surname, and FirstName in this case) are magically visible to
all field and property initializers.

You can also take over a property definition with explicit
accessors:

int _id = ID;
public int ID { get => _id; init => _id = value; }

Again, the ID in boldface refers to the primary constructor
parameter, not the property. (The reason for there not being
an ambiguity is that it’s illegal to access properties from
initializers.)

The fact that we must initialize the _id property with ID
makes this “takeover” less useful, in that any logic in the init
accessor (such as validation) will get bypassed by the primary
constructor.

Records and Equality Comparison
Just as with structs, anonymous types, and tuples, records
provide structural equality out of the box, meaning that two
records are equal if their fields (and automatic properties) are
equal:

var p1 = new Point (1, 2);
var p2 = new Point (1, 2);
Console.WriteLine (p1.Equals (p2)); // True

record Point (double X, double Y);

The equality operator also works with records (as it does with
tuples):

Console.WriteLine (p1 == p2); // True

Records | 175

Unlike with classes and structs, you do not (and cannot) over‐
ride the object.Equals method if you want to customize equal‐
ity behavior. Instead, you define a public Equals method with
the following signature:

record Point (double X, double Y)
{
 public virtual bool Equals (Point other) =>
 other != null && X == other.X && Y == other.Y;
}

The Equals method must be virtual (not override) and it
must be strongly typed such that it accepts the actual record
type (Point in this case, not object). Once you get the signature
right, the compiler will automatically patch in your method.

As with any type, if you take over equality comparison, you
should also override GetHashCode(). A nice feature of records
is that you don’t overload != or ==; nor do you implement
IEquatable<T>: this is all done for you. We cover this topic fully
in “Equality Comparison” in Chapter 6 of C# 10 in a Nutshell.

Patterns
Earlier, we demonstrated how to use the is operator to test
whether a reference conversion will succeed, and then use its
converted value:

if (obj is string s)
 Console.WriteLine (s.Length);

This employs one kind of pattern called a type pattern. The is
operator also supports other patterns that were introduced in
recent versions of C#. Patterns are supported in the following
contexts:

• After the is operator (variable is pattern)•
• In switch statements•
• In switch expressions•

176 | C# 10 Pocket Reference

https://learning.oreilly.com/library/view/c-10-in/9781098121945/

We’ve already covered the type pattern in “Switching on types”
on page 60 and “The is operator” on page 92. In this section,
we cover more advanced patterns that were introduced in
recent versions of C#.

Some of the more specialized patterns are intended for use
in switch statements/expressions. Here, they reduce the need
for when clauses, and let you use switches where you couldn’t
previously.

var Pattern
The var pattern is a variation of the type pattern whereby you
replace the type name with the var keyword. The conversion
always succeeds, so its purpose is merely to let you reuse the
variable that follows:

bool IsJanetOrJohn (string name) =>
 name.ToUpper() is var upper &&
 (upper == "JANET" || upper == "JOHN");

This is equivalent to:
bool IsJanetOrJohn (string name)
{
 string upper = name.ToUpper();
 return upper == "JANET" || upper == "JOHN";
}

Constant Pattern
The constant pattern lets you match directly to a constant and is
useful when working with the object type:

void Foo (object obj)
{
 if (obj is 3) ...
}

This expression in boldface is equivalent to the following:
obj is int && (int)obj == 3

As we’ll see soon, the constant pattern can become more useful
with pattern combinators.

Patterns | 177

Relational Patterns
From C# 9, you can use the <, >, <=, and >= operators in
patterns:

if (x is > 100) Console.Write ("x is greater than 100");

This becomes meaningfully useful in a switch:
string GetWeightCategory (decimal bmi) => bmi switch
{
 < 18.5m => "underweight",
 < 25m => "normal",
 < 30m => "overweight",
 _ => "obese"
};

Pattern Combinators
From C# 9, you can use the and, or, and not keywords to
combine patterns:

bool IsJanetOrJohn (string name)
 => name.ToUpper() is "JANET" or "JOHN";

bool IsVowel (char c)
 => c is 'a' or 'e' or 'i' or 'o' or 'u';

bool Between1And9 (int n) => n is >= 1 and <= 9;

bool IsLetter (char c) => c is >= 'a' and <= 'z'
 or >= 'A' and <= 'Z';

As with the && and || operators, and has higher precedence
than or. You can override this with parentheses. A nice trick
is to combine the not combinator with the type pattern to test
whether an object is (not) a type:

if (obj is not string) ...

This looks nicer than:
if (!(obj is string)) ...

178 | C# 10 Pocket Reference

Tuple and Positional Patterns
The tuple pattern (introduced in C# 8) matches tuples:

var p = (2, 3);
Console.WriteLine (p is (2, 3)); // True

The tuple pattern can be considered a special case of the posi‐
tional pattern (C# 8+), which matches any type that exposes
a Deconstruct method (see “Deconstructors” on page 76). In
the following example, we leverage the Point record’s compiler-
generated deconstructor:

var p = new Point (2, 2);
Console.WriteLine (p is (2, 2)); // True

record Point (int X, int Y);

You can deconstruct as you match, using the following syntax:
Console.WriteLine (p is (var x, var y) && x == y);

Here’s a switch expression that combines a type pattern with a
positional pattern:

string Print (object obj) => obj switch
{
 Point (0, 0) => "Empty point",
 Point (var x, var y) when x == y => "Diagonal"
 ...
};

Property Patterns
A property pattern (C# 8+) matches on one or more of an
object’s property values:

if (obj is string { Length:4 }) ...

However, this doesn’t save much over the following:
if (obj is string s && s.Length == 4) ...

With switch statements and expressions, property patterns are
more useful. Consider the System.Uri class, which represents
a URI. It has properties that include Scheme, Host, Port, and

Patterns | 179

IsLoopback. In writing a firewall, we could decide whether to
allow or block a URI by employing a switch expression that
uses property patterns:

bool ShouldAllow (Uri uri) => uri switch
{
 { Scheme: "http", Port: 80 } => true,
 { Scheme: "https", Port: 443 } => true,
 { Scheme: "ftp", Port: 21 } => true,
 { IsLoopback: true } => true,
 _ => false
};

You can nest properties, making the following clause legal:
 { Scheme: { Length: 4 }, Port: 80 } => true,

which, from C# 10, can be simplified to:
 { Scheme.Length: 4, Port: 80 } => true,

You can use other patterns inside property patterns, including
the relational pattern:

 { Host: { Length: < 1000 }, Port: > 0 } => true,

You can introduce a variable at the end of a clause and then
consume that variable in a when clause:

 { Scheme: "http", Port: 80 } httpUri
 when httpUri.Host.Length < 1000 => true,

You can also introduce variables at the property level:
 { Scheme: "http", Port: 80, Host: var host }
 when host.Length < 1000 => true,

In this case, however, the following is shorter and simpler:
 { Scheme: "http", Port: 80, Host: { Length: < 1000 } }

LINQ
LINQ, or Language Integrated Query, allows you to write struc‐
tured type-safe queries over local object collections and remote
data sources. LINQ lets you query any collection implementing
IEnumerable<>, whether an array, list, XML DOM, or remote

180 | C# 10 Pocket Reference

data source (such as a table in SQL Server). LINQ offers
the benefits of both compile-time type checking and dynamic
query composition.

NOTE

A good way to experiment with LINQ is to download
LINQPad. LINQPad lets you interactively query local col‐
lections and SQL databases in LINQ without any setup and
is preloaded with numerous examples.

LINQ Fundamentals
The basic units of data in LINQ are sequences and elements. A
sequence is any object that implements the generic IEnumerable
interface, and an element is each item in the sequence. In the
following example, names is a sequence, and Tom, Dick, and
Harry are elements:

string[] names = { "Tom", "Dick", "Harry" };

A sequence such as this we call a local sequence because it
represents a local collection of objects in memory.

A query operator is a method that transforms a sequence. A
typical query operator accepts an input sequence and emits
a transformed output sequence. In the Enumerable class in
System.Linq, there are around 40 query operators, all imple‐
mented as static extension methods. These are called standard
query operators.

LINQ | 181

http://www.linqpad.net
http://www.linqpad.net

NOTE

LINQ also supports sequences that can be dynamically
fed from a remote data source such as SQL Server. These
sequences additionally implement the IQueryable<> inter‐
face and are supported through a matching set of standard
query operators in the Queryable class.

A simple query
A query is an expression that transforms sequences with one
or more query operators. The simplest query comprises one
input sequence and one operator. For instance, we can apply
the Where operator on a simple array to extract those names
whose length is at least four characters, as follows:

string[] names = { "Tom", "Dick", "Harry" };

IEnumerable<string> filteredNames =
 System.Linq.Enumerable.Where (
 names, n => n.Length >= 4);

foreach (string n in filteredNames)
 Console.Write (n + "|"); // Dick|Harry|

Because the standard query operators are implemented as
extension methods, we can call Where directly on names, as
though it were an instance method:

IEnumerable<string> filteredNames =
 names.Where (n => n.Length >= 4);

(For this to compile, you must import the System.Linq

namespace with a using directive.) The Where method in
System.Linq.Enumerable has the following signature:

static IEnumerable<TSource> Where<TSource> (
 this IEnumerable<TSource> source,
 Func<TSource,bool> predicate)

source is the input sequence; predicate is a delegate that is
invoked on each input element. The Where method includes all

182 | C# 10 Pocket Reference

elements in the output sequence for which the delegate returns
true. Internally, it’s implemented with an iterator—here’s its
source code:

foreach (TSource element in source)
 if (predicate (element))
 yield return element;

Projecting

Another fundamental query operator is the Select method.
This transforms (projects) each element in the input sequence
with a given lambda expression:

string[] names = { "Tom", "Dick", "Harry" };

IEnumerable<string> upperNames =
 names.Select (n => n.ToUpper());

foreach (string n in upperNames)
 Console.Write (n + "|"); // TOM|DICK|HARRY|

A query can project into an anonymous type:
var query = names.Select (n => new {
 Name = n,
 Length = n.Length
 });
foreach (var row in query)
 Console.WriteLine (row);

Here’s the result:
{ Name = Tom, Length = 3 }
{ Name = Dick, Length = 4 }
{ Name = Harry, Length = 5 }

Take and Skip
The original ordering of elements within an input sequence is
significant in LINQ. Some query operators rely on this behav‐
ior, such as Take, Skip, and Reverse. The Take operator outputs
the first x elements, discarding the rest:

LINQ | 183

int[] numbers = { 10, 9, 8, 7, 6 };
IEnumerable<int> firstThree = numbers.Take (3);
// firstThree is { 10, 9, 8 }

The Skip operator ignores the first x elements, and outputs the
rest:

IEnumerable<int> lastTwo = numbers.Skip (3);

From .NET 6, there are also TakeLast and SkipLast methods,
which take or skip the last n elements. Additionally, the Take
method has been overloaded to accept a Range variable. This
overload can subsume the functionality of all four methods; for
instance, Take(5..) is equivalent to Skip(5) and Take(..^5) is
equivalent to SkipLast(5).

Element operators
Not all query operators return a sequence. The element opera‐
tors extract one element from the input sequence; examples are
First, Last, Single, and ElementAt:

int[] numbers = { 10, 9, 8, 7, 6 };
int firstNumber = numbers.First(); // 10
int lastNumber = numbers.Last(); // 6
int secondNumber = numbers.ElementAt (2); // 8
int firstOddNum = numbers.First (n => n%2 == 1); // 9

All of these operators throw an exception if no elements are
present. To avoid the exception, use FirstOrDefault, LastOr
Default, SingleOrDefault, or ElementAtOrDefault—these
return null (or the default value for value types) when no
element is found.

The Single and SingleOrDefault methods are equivalent to
First and FirstOrDefault except that they throw an exception
if there’s more than one match. This behavior is useful when
you’re querying a database table for a row by primary key.

From .NET 6, there are also MinBy and MaxBy methods, which
return the element with the lowest or highest value, as deter‐
mined by a key selector:

184 | C# 10 Pocket Reference

string[] names = { "Tom", "Dick", "Harry" };
Console.Write (names.MaxBy (n => n.Length)); // Harry

Aggregation operators
The aggregation operators return a scalar value, usually of
numeric type. The most commonly used aggregation operators
are Count, Min, Max, and Average:

int[] numbers = { 10, 9, 8, 7, 6 };
int count = numbers.Count(); // 5
int min = numbers.Min(); // 6
int max = numbers.Max(); // 10
double avg = numbers.Average(); // 8

Count accepts an optional predicate, which indicates whether
to include a given element. The following counts all even
numbers:

int evenNums = numbers.Count (n => n % 2 == 0); // 3

The Min, Max, and Average operators accept an optional argu‐
ment that transforms each element prior to it being aggregated:

int maxRemainderAfterDivBy5 = numbers.Max
 (n => n % 5); // 4

The following calculates the root mean square of numbers:
double rms = Math.Sqrt (numbers.Average (n => n * n));

Quantifiers

The quantifiers return a bool value. The quantifiers are
Contains, Any, All, and SequenceEquals (which compares two
sequences):

int[] numbers = { 10, 9, 8, 7, 6 };

bool hasTheNumberNine = numbers.Contains (9); // true
bool hasMoreThanZeroElements = numbers.Any(); // true
bool hasOddNum = numbers.Any (n => n % 2 == 1); // true
bool allOddNums = numbers.All (n => n % 2 == 1); // false

LINQ | 185

Set operators
The set operators accept two same-typed input sequences.
Concat appends one sequence to another; Union does the same
but with duplicates removed:

int[] seq1 = { 1, 2, 3 }, seq2 = { 3, 4, 5 };

IEnumerable<int>
 concat = seq1.Concat (seq2), // { 1, 2, 3, 3, 4, 5 }
 union = seq1.Union (seq2), // { 1, 2, 3, 4, 5 }

The other two operators in this category are Intersect and
Except:

IEnumerable<int>
 commonality = seq1.Intersect (seq2), // { 3 }
 difference1 = seq1.Except (seq2), // { 1, 2 }
 difference2 = seq2.Except (seq1); // { 4, 5 }

From .NET 6, there are also set operators that take a key selec‐
tor (UnionBy, ExceptBy, IntersectBy). The key selector is used
in determining whether an element counts as a duplicate:

string[] seq1 = { "A", "b", "C" };
string[] seq2 = { "a", "B", "c" };
var union = seq1.UnionBy (seq2, x => x.ToUpper());
// union is { "A", "b", "C" }

Deferred Execution
An important feature of many query operators is that they
execute not when constructed, but when enumerated (in other
words, when MoveNext is called on its enumerator). Consider
the following query:

var numbers = new List<int> { 1 };

IEnumerable<int> query = numbers.Select (n => n * 10);
numbers.Add (2); // Sneak in an extra element

foreach (int n in query)
 Console.Write (n + "|"); // 10|20|

186 | C# 10 Pocket Reference

The extra number that we sneaked into the list after construct‐
ing the query is included in the result because it’s not until the
foreach statement runs that any filtering or sorting takes place.
This is called deferred or lazy evaluation. Deferred execution
decouples query construction from query execution, allowing
you to construct a query in several steps, as well as making
it possible to query a database without retrieving all the rows
to the client. All standard query operators provide deferred
execution, with the following exceptions:

• Operators that return a single element or scalar value (the•
element operators, aggregation operators, and quantifiers)

• The conversion operators ToArray, ToList, ToDictionary,•
ToLookup, and ToHashSet

The conversion operators are handy, in part because they defeat
lazy evaluation. This can be useful to “freeze” or cache the
results at a certain point in time, to avoid reexecuting a compu‐
tationally intensive or remotely sourced query such as an Entity
Framework table. (A side effect of lazy evaluation is that the
query is reevaluated should you later reenumerate it.)

The following example illustrates the ToList operator:
var numbers = new List<int>() { 1, 2 };

List<int> timesTen = numbers
 .Select (n => n * 10)
 .ToList(); // Executes immediately into a List<int>

numbers.Clear();
Console.WriteLine (timesTen.Count); // Still 2

LINQ | 187

WARNING

Subqueries provide another level of indirection. Everything
in a subquery is subject to deferred execution, includ‐
ing aggregation and conversion methods, because the sub‐
query is itself executed only lazily upon demand. Assuming
names is a string array, a subquery looks like this:

names.Where (
 n => n.Length ==
 names.Min (n2 => n2.Length))

Standard Query Operators
We can divide the standard query operators (as implemented in
the System.Linq.Enumerable class) into 12 categories, as sum‐
marized in Table 1.

Table 1. Query operator categories

Category Description Deferred
execution?

Filtering Returns a subset of elements that satisfy a
given condition

Yes

Projecting Transforms each element with a lambda
function, optionally expanding subsequences

Yes

Joining Meshes elements of one collection with
another, using a time-efficient lookup strategy

Yes

Ordering Returns a reordering of a sequence Yes

Grouping Groups a sequence into subsequences Yes

Set Accepts two same-typed sequences, and
returns their commonality, sum, or difference

Yes

Element Picks a single element from a sequence No

Aggregation Performs a computation over a sequence,
returning a scalar value (typically a number)

No

188 | C# 10 Pocket Reference

Category Description Deferred
execution?

Quantification Performs a computation over a sequence,
returning true or false

No

Conversion:
Import

Converts a nongeneric sequence to a
(queryable) generic sequence

Yes

Conversion:
Export

Converts a sequence to an array, list,
dictionary, or lookup, forcing immediate
evaluation

No

Generation Manufactures a simple sequence Yes

Tables 2 through 13 summarize each query operator. The oper‐
ators shown in bold have special support in C# (see “Query
Expressions” on page 194).

Table 2. Filtering operators

Method Description

Where Returns a subset of elements that satisfy a given condition

Take Returns the first x elements, and discards the rest

Skip Ignores the first x elements, and returns the rest

TakeLast Returns the last x elements, and discards the rest

SkipLast Ignores the last x elements, and returns the rest

TakeWhile Emits elements from the input sequence until the given
predicate is true

SkipWhile Ignores elements from the input sequence until the given
predicate is true and then emits the rest

Distinct,
DistinctBy

Returns a collection that excludes duplicates

LINQ | 189

Table 3. Projection operators

Method Description

Select Transforms each input element with a given lambda expression

SelectMany Transforms each input element and then flattens and
concatenates the resultant subsequences

Table 4. Joining operators

Method Description

Join Applies a lookup strategy to match elements from two collections,
emitting a flat result set

GroupJoin As above, but emits a hierarchical result set

Zip Enumerates two sequences in step, returning a sequence that
applies a function over each element pair

Table 5. Ordering operators

Method Description

OrderBy, ThenBy Returns the elements sorted in ascending order

OrderByDescending,
ThenByDescending

Returns the elements sorted in descending order

Reverse Returns the elements in reverse order

Table 6. Grouping operators

Method Description

GroupBy Groups a sequence into subsequences

Chunk Groups a sequence into chunks of a given size

190 | C# 10 Pocket Reference

Table 7. Set operators

Method Description

Concat Concatenates two sequences

Union, UnionBy Concatenates two sequences, removing duplicates

Intersect,
IntersectBy

Returns elements present in both sequences

Except, ExceptBy Returns elements present in the first sequence, but
not the second

Table 8. Element operators

Method Description

First, FirstOrDefault Returns the first element in the sequence, or the
first element satisfying a given predicate

Last, LastOrDefault Returns the last element in the sequence, or the
last element satisfying a given predicate

Single,
SingleOrDefault

Equivalent to First/FirstOrDefault, but
throws an exception if there is more than one
match

MinBy, MaxBy Returns the element with the smallest or largest
value, as determined by a key selector

ElementAt,
ElementAtOrDefault

Returns the element at the specified position

DefaultIfEmpty Returns a single-value sequence whose value is
null or default(TSource) if the sequence
has no elements

LINQ | 191

Table 9. Aggregation operators

Method Description

Count,
LongCount

Returns the total number of elements in the input
sequence, or the number of elements satisfying a given
predicate

Min, Max Returns the smallest or largest element in the sequence

Sum, Average Calculates a numeric sum or average over elements in the
sequence

Aggregate Performs a custom aggregation

Table 10. Quantifiers

Method Description

Contains Returns true if the input sequence contains the given
element

Any Returns true if any elements satisfy the given predicate

All Returns true if all elements satisfy the given predicate

SequenceEqual Returns true if the second sequence has identical
elements to the input sequence

Table 11. Conversion operators (import)

Method Description

OfType Converts IEnumerable to IEnumerable<T>, discarding wrongly
typed elements

Cast Converts IEnumerable to IEnumerable<T>, throwing an
exception if there are any wrongly typed elements

Table 12. Conversion operators (export)

Method Description

ToArray Converts IEnumerable<T> to T[]

ToList Converts IEnumerable<T> to List<T>

192 | C# 10 Pocket Reference

Method Description

ToDictionary Converts IEnumerable<T> to
Dictionary<TKey,TValue>

ToHashSet Converts IEnumerable<T> to HashSet<T>

ToLookup Converts IEnumerable<T> to
ILookup<TKey,TElement>

AsEnumerable Downcasts to IEnumerable<T>

AsQueryable Casts or converts to IQueryable<T>

Table 13. Generation operators

Method Description

Empty Creates an empty sequence

Repeat Creates a sequence of repeating elements

Range Creates a sequence of integers

Chaining Query Operators
To build more complex queries, you chain query operators
together. For example, the following query extracts all strings
containing the letter a, sorts them by length, and then converts
the results to uppercase:

string[] names = { "Tom","Dick","Harry","Mary","Jay" };

IEnumerable<string> query = names
 .Where (n => n.Contains ("a"))
 .OrderBy (n => n.Length)
 .Select (n => n.ToUpper());

foreach (string name in query)
 Console.Write (name + "|");

// RESULT: JAY|MARY|HARRY|

Where, OrderBy, and Select are all standard query operators
that resolve to extension methods in the Enumerable class. The
Where operator emits a filtered version of the input sequence,

LINQ | 193

OrderBy emits a sorted version of its input sequence, and
Select emits a sequence in which each input element is trans‐
formed or projected with a given lambda expression (n.To
Upper() in this case). Data flows from left to right through
the chain of operators, so the data is first filtered, then sorted,
then projected. The end result resembles a production line of
conveyor belts, as illustrated in Figure 6.

Figure 6. Chaining query operators

Deferred execution is honored throughout with operators, so
no filtering, sorting, or projecting takes place until the query is
actually enumerated.

Query Expressions
So far, we’ve written queries by calling extension methods in
the Enumerable class. In this book, we describe this as fluent
syntax. C# also provides special language support for writing
queries, called query expressions. Here’s the preceding query
expressed as a query expression:

IEnumerable<string> query =
 from n in names
 where n.Contains ("a")
 orderby n.Length
 select n.ToUpper();

A query expression always starts with a from clause, and ends
with either a select or group clause. The from clause declares
a range variable (in this case, n), which you can think of as

194 | C# 10 Pocket Reference

traversing the input collection—rather like foreach. Figure 7
illustrates the complete syntax.

Figure 7. Query expression syntax

NOTE

If you’re familiar with SQL, LINQ’s query expression syn‐
tax—with the from clause first and the select clause last
—might look bizarre. Query expression syntax is actually
more logical because the clauses appear in the order they’re
executed. This allows Visual Studio to prompt you with
IntelliSense as you type and simplifies the scoping rules for
subqueries.

LINQ | 195

The compiler processes query expressions by translating them
to fluent syntax. It does this in a fairly mechanical fashion—
much like it translates foreach statements into calls to Get
Enumerator and MoveNext:

IEnumerable<string> query = names
 .Where (n => n.Contains ("a"))
 .OrderBy (n => n.Length)
 .Select (n => n.ToUpper());

The Where, OrderBy, and Select operators then resolve using
the same rules that would apply if the query were written
in fluent syntax. In this case, they bind to extension meth‐
ods in the Enumerable class (assuming that you’ve impor‐
ted the System.Linq namespace) because names implements
IEnumerable<string>. The compiler doesn’t specifically favor
the Enumerable class, however, when translating query syntax.
You can think of the compiler as mechanically injecting the
words Where, OrderBy, and Select into the statement, and then
compiling it as though you’d typed the method names yourself.
This offers flexibility in how they resolve—the operators in
Entity Framework queries, for instance, bind instead to the
extension methods in the Queryable class.

Query expressions versus fluent queries
Query expressions and fluent queries each have advantages.

Query expressions support only a small subset of query opera‐
tors, namely:

Where, Select, SelectMany
OrderBy, ThenBy, OrderByDescending, ThenByDescending
GroupBy, Join, GroupJoin

For queries that use other operators, you must either write
entirely in fluent syntax or construct mixed-syntax queries; for
example:

string[] names = { "Tom","Dick","Harry","Mary","Jay" };

IEnumerable<string> query =
 from n in names

196 | C# 10 Pocket Reference

 where n.Length == names.Min (n2 => n2.Length)
 select n;

This query returns names whose length matches that of the
shortest (“Tom” and “Jay”). The subquery (in bold) calculates
the minimum length of each name and evaluates to 3. We need
to use fluent syntax for the subquery, because the Min operator
has no support in query expression syntax. We can, however,
still use query syntax for the outer query.

The main advantage of query syntax is that it can radically
simplify queries that involve the following:

• A let clause for introducing a new variable alongside the•
range variable

• Multiple generators (SelectMany) followed by an outer•
range variable reference

• A Join or GroupJoin equivalent followed by an outer range•
variable reference

The let Keyword
The let keyword introduces a new variable alongside the range
variable. For instance, suppose that you want to list all names
whose length, without vowels, is greater than two characters:

string[] names = { "Tom","Dick","Harry","Mary","Jay" };

IEnumerable<string> query =
 from n in names
 let vowelless = Regex.Replace (n, "[aeiou]", "")
 where vowelless.Length > 2
 orderby vowelless
 select n + " - " + vowelless;

The output from enumerating this query is:
Dick - Dck
Harry - Hrry
Mary - Mry

LINQ | 197

The let clause performs a calculation on each element, without
losing the original element. In our query, the subsequent clau‐
ses (where, orderby, and select) have access to both n and
vowelless. A query can include multiple let clauses, and they
can be interspersed with additional where and join clauses.

The compiler translates the let keyword by projecting into a
temporary anonymous type that contains both the original and
transformed elements:

IEnumerable<string> query = names
 .Select (n => new
 {
 n = n,
 vowelless = Regex.Replace (n, "[aeiou]", "")
 }
)
 .Where (temp0 => (temp0.vowelless.Length > 2))
 .OrderBy (temp0 => temp0.vowelless)
 .Select (temp0 => ((temp0.n + " - ") + temp0.vowelless))

Query Continuations
If you want to add clauses after a select or group clause,
you must use the into keyword to “continue” the query. For
instance:

from c in "The quick brown tiger".Split()
select c.ToUpper() into upper
where upper.StartsWith ("T")
select upper

// RESULT: "THE", "TIGER"

Following an into clause, the previous range variable is out of
scope.

The compiler translates queries with an into keyword simply
into a longer chain of operators:

"The quick brown tiger".Split()
 .Select (c => c.ToUpper())
 .Where (upper => upper.StartsWith ("T"))

198 | C# 10 Pocket Reference

(It omits the final Select(upper=>upper) because it’s
redundant.)

Multiple Generators
A query can include multiple generators (from clauses). For
example:

int[] numbers = { 1, 2, 3 };
string[] letters = { "a", "b" };

IEnumerable<string> query = from n in numbers
 from l in letters
 select n.ToString() + l;

The result is a cross product, rather like you’d get with nested
foreach loops:

"1a", "1b", "2a", "2b", "3a", "3b"

When there’s more than one from clause in a query, the com‐
piler emits a call to SelectMany:

IEnumerable<string> query = numbers.SelectMany (
 n => letters,
 (n, l) => (n.ToString() + l));

SelectMany performs nested looping. It enumerates every ele‐
ment in the source collection (numbers), transforming each
element with the first lambda expression (letters). This gener‐
ates a sequence of subsequences, which it then enumerates. The
final output elements are determined by the second lambda
expression (n.ToString()+l).

If you subsequently apply a where clause, you can filter the
cross product and project a result akin to a join:

string[] players = { "Tom", "Jay", "Mary" };

IEnumerable<string> query =
 from name1 in players
 from name2 in players
 where name1.CompareTo (name2) < 0
 orderby name1, name2
 select name1 + " vs " + name2;

LINQ | 199

RESULT: { "Jay vs Mary", "Jay vs Tom", "Mary vs Tom" }

The translation of this query into fluent syntax is more com‐
plex, requiring a temporary anonymous projection. The ability
to perform this translation automatically is one of the key
benefits of query expressions.

The expression in the second generator is allowed to use the
first range variable:

string[] fullNames =
 { "Anne Williams", "John Fred Smith", "Sue Green" };

IEnumerable<string> query =
 from fullName in fullNames
 from name in fullName.Split()
 select name + " came from " + fullName;

Anne came from Anne Williams
Williams came from Anne Williams
John came from John Fred Smith

This works because the expression fullName.Split emits a
sequence (an array of strings).

Multiple generators are used extensively in database queries to
flatten parent–child relationships and to perform manual joins.

Joining
LINQ provides three joining operators, the main ones being
Join and GroupJoin, which perform keyed lookup-based joins.
Join and GroupJoin support only a subset of the functionality
you get with multiple generators/SelectMany, but are more
performant with local queries because they use a hashtable-
based lookup strategy rather than performing nested loops.
(With Entity Framework queries, the joining operators have no
advantage over multiple generators.)

Join and GroupJoin support only equi-joins (i.e., the joining
condition must use the equality operator). There are two

200 | C# 10 Pocket Reference

methods: Join and GroupJoin. Join emits a flat result set,
whereas GroupJoin emits a hierarchical result set.

Following is the query expression syntax for a flat join:
from outer-var in outer-sequence
join inner-var in inner-sequence
 on outer-key-expr equals inner-key-expr

For example, consider the following collections:
var customers = new[]
{
 new { ID = 1, Name = "Tom" },
 new { ID = 2, Name = "Dick" },
 new { ID = 3, Name = "Harry" }
};
var purchases = new[]
{
 new { CustomerID = 1, Product = "House" },
 new { CustomerID = 2, Product = "Boat" },
 new { CustomerID = 2, Product = "Car" },
 new { CustomerID = 3, Product = "Holiday" }
};

We could perform a join as follows:
IEnumerable<string> query =
 from c in customers
 join p in purchases on c.ID equals p.CustomerID
 select c.Name + " bought a " + p.Product;

The compiler translates this to:
customers.Join (// outer collection
 purchases, // inner collection
 c => c.ID, // outer key selector
 p => p.CustomerID, // inner key selector
 (c, p) => // result selector
 c.Name + " bought a " + p.Product
);

Here’s the result:
Tom bought a House
Dick bought a Boat
Dick bought a Car
Harry bought a Holiday

LINQ | 201

With local sequences, Join and GroupJoin are more efficient
at processing large collections than SelectMany because they
first preload the inner sequence into a keyed hashtable-based
lookup. With a database query, however, you could achieve the
same result equally efficiently as follows:

from c in customers
from p in purchases
where c.ID == p.CustomerID
select c.Name + " bought a " + p.Product;

GroupJoin

GroupJoin does the same work as Join, but instead of yielding a
flat result, it yields a hierarchical result, grouped by each outer
element.

The query expression syntax for GroupJoin is the same as for
Join, but is followed by the into keyword. Here’s a basic exam‐
ple, using the customers and purchases collections we set up in
the previous section:

var query =
 from c in customers
 join p in purchases on c.ID equals p.CustomerID
 into custPurchases
 select custPurchases; // custPurchases is a sequence

NOTE

An into clause translates to GroupJoin only when it
appears directly after a join clause. After a select or
group clause it means query continuation. The two uses of
the into keyword are quite different, although they have
one feature in common: they both introduce a new query
variable.

The result is a sequence of sequences—IEnumerable<IEnumera

ble<T>>—which you could enumerate as follows:

202 | C# 10 Pocket Reference

foreach (var purchaseSequence in query)
 foreach (var purchase in purchaseSequence)
 Console.WriteLine (purchase.Product);

This isn’t very useful, however, because outerSeq has no refer‐
ence to the outer customer. More commonly, you’d reference
the outer range variable in the projection:

from c in customers
join p in purchases on c.ID equals p.CustomerID
into custPurchases
select new { CustName = c.Name, custPurchases };

You could obtain the same result (but less efficiently, for local
queries) by projecting into an anonymous type that included a
subquery:

from c in customers
select new
{
 CustName = c.Name,
 custPurchases =
 purchases.Where (p => c.ID == p.CustomerID)
}

Zip

Zip is the simplest joining operator. It enumerates two sequen‐
ces in step (like a zipper), returning a sequence based on apply‐
ing a function over each element pair; thus

int[] numbers = { 3, 5, 7 };
string[] words = { "three", "five", "seven", "ignored" };
IEnumerable<string> zip =
 numbers.Zip (words, (n, w) => n + "=" + w);

produces a sequence with the following elements:
3=three
5=five
7=seven

Extra elements in either input sequence are ignored. Zip is not
supported when you are querying a database.

LINQ | 203

Ordering
The orderby keyword sorts a sequence. You can specify any
number of expressions upon which to sort:

string[] names = { "Tom","Dick","Harry","Mary","Jay" };

IEnumerable<string> query = from n in names
 orderby n.Length, n
 select n;

This sorts first by length and then by name, yielding this result:
Jay, Tom, Dick, Mary, Harry

The compiler translates the first orderby expression to a call to
OrderBy, and subsequent expressions to a call to ThenBy:

IEnumerable<string> query = names
 .OrderBy (n => n.Length)
 .ThenBy (n => n)

The ThenBy operator refines rather than replaces the previous
sorting.

You can include the descending keyword after any of the
orderby expressions:

orderby n.Length descending, n

This translates to the following:
.OrderByDescending (n => n.Length).ThenBy (n => n)

NOTE

The ordering operators return an extended type of
IEnumerable<T> called IOrderedEnumerable<T>. This
interface defines the extra functionality required by the
ThenBy operator.

204 | C# 10 Pocket Reference

Grouping
GroupBy organizes a flat input sequence into sequences of
groups. For example, the following groups a sequence of names
by their length:

string[] names = { "Tom","Dick","Harry","Mary","Jay" };

var query = from name in names
 group name by name.Length;

The compiler translates this query into the following:
IEnumerable<IGrouping<int,string>> query =
 names.GroupBy (name => name.Length);

Here’s how to enumerate the result:
foreach (IGrouping<int,string> grouping in query)
{
 Console.Write ("\r\n Length=" + grouping.Key + ":");
 foreach (string name in grouping)
 Console.Write (" " + name);
}

 Length=3: Tom Jay
 Length=4: Dick Mary
 Length=5: Harry

Enumerable.GroupBy works by reading the input elements into a
temporary dictionary of lists so that all elements with the same
key end up in the same sublist. It then emits a sequence of
groupings. A grouping is a sequence with a Key property:

public interface IGrouping <TKey,TElement>
 : IEnumerable<TElement>, IEnumerable
{
 // Key applies to the subsequence as a whole
 TKey Key { get; }
}

By default, the elements in each grouping are untransformed
input elements, unless you specify an elementSelector argu‐
ment. The following projects each input element to uppercase:

from name in names
group name.ToUpper() by name.Length

LINQ | 205

which translates to:
names.GroupBy (
 name => name.Length,
 name => name.ToUpper())

The subcollections are not emitted in order of key. GroupBy
does no sorting (in fact, it preserves the original ordering). To
sort, you must add an OrderBy operator (which means first
adding an into clause, because group by ordinarily ends a
query):

from name in names
group name.ToUpper() by name.Length into grouping
orderby grouping.Key
select grouping

Query continuations are often used in a group by query. The
next query filters out groups that have exactly two matches in
them:

from name in names
group name.ToUpper() by name.Length into grouping
where grouping.Count() == 2
select grouping

NOTE

A where after a group by is equivalent to HAVING in SQL.
It applies to each subsequence or grouping as a whole
rather than the individual elements.

OfType and Cast
OfType and Cast accept a nongeneric IEnumerable collection
and emit a generic IEnumerable<T> sequence that you can sub‐
sequently query:

var classicList = new System.Collections.ArrayList();
classicList.AddRange (new int[] { 3, 4, 5 });
IEnumerable<int> sequence1 = classicList.Cast<int>();

206 | C# 10 Pocket Reference

This is useful because it allows you to query collections written
prior to C# 2.0 (when IEnumerable<T> was introduced), such as
ControlCollection in System.Windows.Forms.

Cast and OfType differ in their behavior when encountering an
input element that’s of an incompatible type: Cast throws an
exception, whereas OfType ignores the incompatible element.

The rules for element compatibility follow those of C#’s is
operator. Here’s the internal implementation of Cast:

public static IEnumerable<TSource> Cast <TSource>
 (IEnumerable source)
{
 foreach (object element in source)
 yield return (TSource)element;
}

C# supports the Cast operator in query expressions—simply
insert the element type immediately after the from keyword:

from int x in classicList ...

This translates to the following:
from x in classicList.Cast <int>() ...

Dynamic Binding
Dynamic binding defers binding—the process of resolving
types, members, and operators—from compile time to runtime.
Dynamic binding is useful when at compile time you know that
a certain function, member, or operator exists, but the compiler
does not. This commonly occurs when you are interoperating
with dynamic languages (such as IronPython) and COM and
in scenarios when you might otherwise use reflection.

A dynamic type is declared by using the contextual keyword
dynamic:

dynamic d = GetSomeObject();
d.Quack();

Dynamic Binding | 207

A dynamic type instructs the compiler to relax. We expect the
runtime type of d to have a Quack method. We just can’t prove
it statically. Because d is dynamic, the compiler defers bind‐
ing Quack to d until runtime. Understanding what this means
requires distinguishing between static binding and dynamic
binding.

Static Binding Versus Dynamic Binding
The canonical binding example is mapping a name to a specific
function when compiling an expression. To compile the follow‐
ing expression, the compiler needs to find the implementation
of the method named Quack:

d.Quack();

Let’s suppose the static type of d is Duck:
Duck d = ...
d.Quack();

In the simplest case, the compiler does the binding by looking
for a parameterless method named Quack on Duck. Failing that,
the compiler extends its search to methods taking optional
parameters, methods on base classes of Duck, and extension
methods that take Duck as its first parameter. If no match
is found, you’ll get a compilation error. Regardless of what
method is bound, the bottom line is that the binding is done
by the compiler, and the binding utterly depends on statically
knowing the types of the operands (in this case, d). This makes
it static binding.

Now let’s change the static type of d to object:
object d = ...
d.Quack();

Calling Quack gives us a compilation error because although
the value stored in d can contain a method called Quack, the
compiler cannot know it given that the only information it has
is the type of the variable, which in this case is object. But let’s
now change the static type of d to dynamic:

208 | C# 10 Pocket Reference

dynamic d = ...
d.Quack();

A dynamic type is like object—it’s equally nondescriptive about
a type. The difference is that it lets you use it in ways that aren’t
known at compile time. A dynamic object binds at runtime
based on its runtime type, not its compile-time type. When the
compiler sees a dynamically bound expression (which in gen‐
eral is an expression that contains any value of type dynamic), it
merely packages up the expression such that the binding can be
done later at runtime.

At runtime, if a dynamic object implements IDynamicMeta
ObjectProvider, that interface is used to perform the binding.
If not, binding occurs in almost the same way as it would have
had the compiler known the dynamic object’s runtime type.
These two alternatives are called custom binding and language
binding.

Custom Binding
Custom binding occurs when a dynamic object implements
IDynamicMetaObjectProvider (IDMOP). Although you can
implement IDMOP on types that you write in C#, and this
is useful to do, the more common case is that you have
acquired an IDMOP object from a dynamic language that
is implemented in .NET on the Dynamic Language Runtime
(DLR), such as IronPython or IronRuby. Objects from those
languages implicitly implement IDMOP as a means to directly
control the meanings of operations performed on them. Here’s
a simple example:

dynamic d = new Duck();
d.Quack(); // Quack was called
d.Waddle(); // Waddle was called

public class Duck : DynamicObject // in System.Dynamic
{
 public override bool TryInvokeMember (
 InvokeMemberBinder binder, object[] args,
 out object result)

Dynamic Binding | 209

 {
 Console.WriteLine (binder.Name + " was called");
 result = null;
 return true;
 }
}

The Duck class doesn’t actually have a Quack method. Instead, it
uses custom binding to intercept and interpret all method calls.
We discuss custom binders in detail in C# 10 in a Nutshell.

Language Binding
Language binding occurs when a dynamic object does not
implement IDynamicMetaObjectProvider. Language binding is
useful when you are working around imperfectly designed
types or inherent limitations in the .NET type system. For
example, the built-in numeric types are imperfect in that they
have no common interface. We have seen that methods can be
bound dynamically; the same is true for operators:

int x = 3, y = 4;
Console.WriteLine (Mean (x, y));

dynamic Mean (dynamic x, dynamic y) => (x+y) / 2;

The benefit is obvious—you don’t need to duplicate code for
each numeric type. However, you lose static type safety, risking
runtime exceptions rather than compile-time errors.

NOTE

Dynamic binding circumvents static type safety but not
runtime type safety. Unlike with reflection, you cannot cir‐
cumvent member accessibility rules with dynamic binding.

By design, language runtime binding behaves as similarly as
possible to static binding, had the runtime types of the dynamic
objects been known at compile time. In the previous exam‐
ple, the behavior of our program would be identical if we

210 | C# 10 Pocket Reference

https://learning.oreilly.com/library/view/c-10-in/9781098121945/

hardcoded Mean to work with the int type. The most notable
exception in parity between static and dynamic binding is for
extension methods, which we discuss in “Uncallable Functions”
on page 215.

NOTE

Dynamic binding also incurs a performance hit. Because of
the DLR’s caching mechanisms, however, repeated calls to
the same dynamic expression are optimized, allowing you
to efficiently call dynamic expressions in a loop. This opti‐
mization brings the typical overhead for a simple dynamic
expression on today’s hardware down to less than 100 ns.

RuntimeBinderException
If a member fails to bind, a RuntimeBinderException is thrown.
You can think of this like a compile-time error at runtime:

dynamic d = 5;
d.Hello(); // throws RuntimeBinderException

The exception is thrown because the int type has no Hello
method.

Runtime Representation of dynamic
There is a deep equivalence between the dynamic and object
types. The runtime treats the following expression as true:

typeof (dynamic) == typeof (object)

This principle extends to constructed types and array types:
typeof (List<dynamic>) == typeof (List<object>)
typeof (dynamic[]) == typeof (object[])

Like an object reference, a dynamic reference can point to an
object of any type (except pointer types):

Dynamic Binding | 211

dynamic x = "hello";
Console.WriteLine (x.GetType().Name); // String

x = 123; // No error (despite same variable)
Console.WriteLine (x.GetType().Name); // Int32

Structurally, there is no difference between an object reference
and a dynamic reference. A dynamic reference simply enables
dynamic operations on the object it points to. You can convert
from object to dynamic to perform any dynamic operation you
want on an object:

object o = new System.Text.StringBuilder();
dynamic d = o;
d.Append ("hello");
Console.WriteLine (o); // hello

Dynamic Conversions
The dynamic type has implicit conversions to and from all other
types. For a conversion to succeed, the runtime type of the
dynamic object must be implicitly convertible to the target
static type.

The following example throws a RuntimeBinderException

because an int is not implicitly convertible to a short:
int i = 7;
dynamic d = i;
long l = d; // OK - implicit conversion works
short j = d; // throws RuntimeBinderException

var Versus dynamic
The var and dynamic types bear a superficial resemblance, but
the difference is deep:

• var says, “Let the compiler figure out the type.”•
• dynamic says, “Let the runtime figure out the type.”•

To illustrate:

212 | C# 10 Pocket Reference

dynamic x = "hello"; // Static type is dynamic
var y = "hello"; // Static type is string
int i = x; // Runtime error
int j = y; // Compile-time error

Dynamic Expressions
Fields, properties, methods, events, constructors, indexers,
operators, and conversions can all be called dynamically.

Trying to consume the result of a dynamic expression with a
void return type is prohibited—just as with a statically typed
expression. The difference is that the error occurs at runtime.

Expressions involving dynamic operands are typically them‐
selves dynamic, since the effect of absent type information is
cascading:

dynamic x = 2;
var y = x * 3; // Static type of y is dynamic

There are a couple of obvious exceptions to this rule. First,
casting a dynamic expression to a static type yields a static
expression. Second, constructor invocations always yield static
expressions—even when called with dynamic arguments.

In addition, there are a few edge cases for which an expression
containing a dynamic argument is static, including passing an
index to an array and delegate creation expressions.

Dynamic Member Overload Resolution
The canonical use case for dynamic involves a dynamic receiver.
This means that a dynamic object is the receiver of a dynamic
function call:

dynamic x = ...;
x.Foo (123); // x is the receiver

However, dynamic binding is not limited to receivers: the
method arguments are also eligible for dynamic binding. The
effect of calling a function with dynamic arguments is to defer
overload resolution from compile time to runtime:

Dynamic Binding | 213

static void Foo (int x) => Console.WriteLine ("int");
static void Foo (string x) => Console.WriteLine ("str");

static void Main()
{
 dynamic x = 5;
 dynamic y = "watermelon";

 Foo (x); // int
 Foo (y); // str
}

Runtime overload resolution is also called multiple dispatch and
is useful in implementing design patterns such as visitor.

If a dynamic receiver is not involved, the compiler can statically
perform a basic check to see whether the dynamic call will
succeed: it checks that a function with the right name and
number of parameters exists. If no candidate is found, you get a
compile-time error.

If a function is called with a mixture of dynamic and static
arguments, the final choice of method will reflect a mixture of
dynamic and static binding decisions:

static void X(object x, object y) =>Console.Write("oo");
static void X(object x, string y) =>Console.Write("os");
static void X(string x, object y) =>Console.Write("so");
static void X(string x, string y) =>Console.Write("ss");

static void Main()
{
 object o = "hello";
 dynamic d = "goodbye";
 X (o, d); // os
}

The call to X(o,d) is dynamically bound because one of its
arguments, d, is dynamic. But because o is statically known, the
binding—even though it occurs dynamically—will make use
of that. In this case, overload resolution will pick the second
implementation of X due to the static type of o and the runtime
type of d. In other words, the compiler is “as static as it can
possibly be.”

214 | C# 10 Pocket Reference

Uncallable Functions
Some functions cannot be called dynamically. You cannot call
the following:

• Extension methods (via extension method syntax)•
• Any member of an interface (via the interface)•
• Base members hidden by a subclass•

This is because dynamic binding requires two pieces of infor‐
mation: the name of the function to call, and the object upon
which to call the function. However, in each of the three uncal‐
lable scenarios, an additional type is involved, which is known
only at compile time. And there is no way to specify these
additional types dynamically.

When you are calling extension methods, that additional type
is an extension class, chosen implicitly by virtue of using direc‐
tives in your source code (which disappear after compilation).
When calling members via an interface, you communicate the
additional type via an implicit or explicit cast. (With explicit
implementation, it’s in fact impossible to call a member without
casting to the interface.) A similar situation arises when you are
calling a hidden base member: you must specify an additional
type via either a cast or the base keyword—and that additional
type is lost at runtime.

Operator Overloading
You can overload operators to provide more natural syntax for
custom types. Operator overloading is most appropriately used
for implementing custom structs that represent fairly primitive
data types. For example, a custom numeric type is an excellent
candidate for operator overloading.

You can overload the following symbolic operators:
+ - * / ++ -- ! ~ % & | ^
== != < << >> >

Operator Overloading | 215

You can override implicit and explicit conversions (with the
implicit and explicit keywords), as you can the true and
false operators.

The compound assignment operators (e.g., +=, /=) are automat‐
ically overridden when you override the noncompound opera‐
tors (e.g., +, /).

Operator Functions
To overload an operator, you declare an operator function.
An operator function must be static, and at least one of the
operands must be the type in which the operator function is
declared.

In the following example, we define a struct called Note, repre‐
senting a musical note, and then overload the + operator:

public struct Note
{
 int value;

 public Note (int semitonesFromA)
 => value = semitonesFromA;

 public static Note operator + (Note x, int semitones)
 {
 return new Note (x.value + semitones);
 }
}

This overload allows us to add an int to a Note:
Note B = new Note (2);
Note CSharp = B + 2;

Because we overrode +, we can use += too:
CSharp += 2;

Just as with methods and properties, operator functions com‐
prising a single expression can be written more tersely with
expression-bodied syntax:

216 | C# 10 Pocket Reference

public static Note operator + (Note x, int semitones)
 => new Note (x.value + semitones);

Overloading Equality and Comparison Operators
Equality and comparison operators are often overridden when
writing structs, and in rare cases with classes. Special rules and
obligations apply when overloading these operators:

Pairing
The C# compiler enforces that operators that are logical
pairs are both defined. These operators are (== !=), (< >),
and (<= >=).

Equals and GetHashCode
If you overload == and !=, you will usually need to over‐
ride object’s Equals and GetHashCode methods so that col‐
lections and hashtables will work reliably with the type.

IComparable and IComparable<T>
If you overload < and >, you would also typically imple‐
ment IComparable and IComparable<T>.

Extending the previous example, here’s how you could overload
Note’s equality operators:

public static bool operator == (Note n1, Note n2)
 => n1.value == n2.value;

public static bool operator != (Note n1, Note n2)
 => !(n1.value == n2.value);

public override bool Equals (object otherNote)
{
 if (!(otherNote is Note)) return false;
 return this == (Note)otherNote;
}
// value’s hashcode will work for our own hashcode:
public override int GetHashCode() => value.GetHashCode();

Operator Overloading | 217

Custom Implicit and Explicit Conversions
Implicit and explicit conversions are overloadable operators.
These conversions are typically overloaded to make converting
between strongly related types (such as numeric types) concise
and natural.

As explained in the discussion on types, the rationale behind
implicit conversions is that they should always succeed and
not lose information during conversion. Otherwise, explicit
conversions should be defined.

In the following example, we define conversions between our
musical Note type and a double (which represents the frequency
in hertz of that note):

...
// Convert to hertz
public static implicit operator double (Note x)
 => 440 * Math.Pow (2,(double) x.value / 12);

// Convert from hertz (accurate to nearest semitone)
public static explicit operator Note (double x)
 => new Note ((int) (0.5 + 12 * (Math.Log(x/440)
 / Math.Log(2))));
...

Note n =(Note)554.37; // explicit conversion
double x = n; // implicit conversion

NOTE

This example is somewhat contrived: in real life, these con‐
versions might be better implemented with a ToFrequency
method and a (static) FromFrequency method.

Custom conversions are ignored by the as and is operators.

218 | C# 10 Pocket Reference

Attributes
You’re already familiar with the notion of attributing code
elements of a program with modifiers, such as virtual or
ref. These constructs are built into the language. Attributes
are an extensible mechanism for adding custom information
to code elements (assemblies, types, members, return values,
and parameters). This extensibility is useful for services that
integrate deeply into the type system, without requiring special
keywords or constructs in the C# language.

A good scenario for attributes is serialization—the process of
converting arbitrary objects to and from a particular format for
storage or transmission. In this scenario, an attribute on a field
can specify the translation between C#’s representation of the
field and the format’s representation of the field.

Attribute Classes
An attribute is defined by a class that inherits (directly or
indirectly) from the abstract class System.Attribute. To attach
an attribute to a code element, specify the attribute’s type name
in square brackets, before the code element. For example, the
following attaches ObsoleteAttribute to the Foo class:

[ObsoleteAttribute]
public class Foo {...}

This particular attribute is recognized by the compiler and will
cause compiler warnings if a type or member marked obsolete
is referenced. By convention, all attribute types end with the
word Attribute. C# recognizes this and allows you to omit
the suffix when attaching an attribute:

[Obsolete]
public class Foo {...}

ObsoleteAttribute is a type declared in the System namespace
as follows (simplified for brevity):

public sealed class ObsoleteAttribute : Attribute {...}

Attributes | 219

Named and Positional Attribute Parameters
Attributes can have parameters. In the following example, we
apply XmlElementAttribute to a class. This attribute instructs
XmlSerializer (in System.Xml.Serialization) how an object
is represented in XML and accepts several attribute parame‐
ters. The following attribute maps the CustomerEntity class to
an XML element named Customer, belonging to the http://
oreilly.com namespace:

[XmlElement ("Customer", Namespace="http://oreilly.com")]
public class CustomerEntity { ... }

Attribute parameters fall into one of two categories: positional
or named. In the preceding example, the first argument is
a positional parameter; the second is a named parameter. Posi‐
tional parameters correspond to parameters of the attribute
type’s public constructors. Named parameters correspond to
public fields or public properties on the attribute type.

When specifying an attribute, you must include positional
parameters that correspond to one of the attribute’s construc‐
tors. Named parameters are optional.

Attribute Targets
Implicitly, the target of an attribute is the code element it
immediately precedes, which is typically a type or type mem‐
ber. You can also attach attributes, however, to an assembly.
This requires that you explicitly specify the attribute’s target.
Here’s an example of using the CLSCompliant attribute to spec‐
ify Common Language Specification (CLS) compliance for an
entire assembly:

[assembly:CLSCompliant(true)]

From C# 10, you can apply attributes to the method, parame‐
ters, and return value of a lambda expression:

Action<int> a =
 [Description ("Method")]

220 | C# 10 Pocket Reference

 [return: Description ("Return value")]
 ([Description ("Parameter")]int x) => Console.Write (x);

Specifying Multiple Attributes
You can specify multiple attributes for a single code element.
You can list each attribute either within the same pair of
square brackets (separated by a comma) or in separate pairs
of square brackets (or a combination of the two). The following
two examples are semantically identical:

[Serializable, Obsolete, CLSCompliant(false)]
public class Bar {...}

[Serializable] [Obsolete] [CLSCompliant(false)]
public class Bar {...}

Writing Custom Attributes
You can define your own attributes by subclassing System
.Attribute. For example, you could use the following custom
attribute for flagging a method for unit testing:

[AttributeUsage (AttributeTargets.Method)]
public sealed class TestAttribute : Attribute
{
 public int Repetitions;
 public string FailureMessage;

 public TestAttribute () : this (1) { }
 public TestAttribute (int repetitions)
 => Repetitions = repetitions;
}

Here’s how you could apply the attribute:
class Foo
{
 [Test]
 public void Method1() { ... }

 [Test(20)]
 public void Method2() { ... }

 [Test(20, FailureMessage="Debugging Time!")]

Attributes | 221

 public void Method3() { ... }
}

AttributeUsage is itself an attribute that indicates the construct
(or combination of constructs) to which the custom attribute
can be applied. The AttributeTargets enum includes such
members as Class, Method, Parameter, and Constructor (as well
as All, which combines all targets).

Retrieving Attributes at Runtime
There are two standard ways to retrieve attributes at runtime:

• Call GetCustomAttributes on any Type or MemberInfo•
object

• Call Attribute.GetCustomAttribute or Attribute.Get•
CustomAttributes

These latter two methods are overloaded to accept any reflec‐
tion object that corresponds to a valid attribute target (Type,
Assembly, Module, MemberInfo, or ParameterInfo).

Here’s how we can enumerate each method in the preceding
Foo class that has a TestAttribute:

foreach (MethodInfo mi in typeof (Foo).GetMethods())
{
 TestAttribute att = (TestAttribute)
 Attribute.GetCustomAttribute
 (mi, typeof (TestAttribute));

 if (att != null)
 Console.WriteLine (
 "{0} will be tested; reps={1}; msg={2}",
 mi.Name, att.Repetitions, att.FailureMessage);
}

Here’s the output:
Method1 will be tested; reps=1; msg=
Method2 will be tested; reps=20; msg=
Method3 will be tested; reps=20; msg=Debugging Time!

222 | C# 10 Pocket Reference

Caller Info Attributes
From C# 5.0, you can tag optional parameters with one of
three caller info attributes, which instruct the compiler to feed
information obtained from the caller’s source code into the
parameter’s default value:

• [CallerMemberName] applies the caller’s member name.•
• [CallerFilePath] applies the path to the caller’s source•

code file.
• [CallerLineNumber] applies the line number in the caller’s•

source code file.

The Foo method in the following program demonstrates all
three:

using System;
using System.Runtime.CompilerServices;

class Program
{
 static void Main() => Foo();

 static void Foo (
 [CallerMemberName] string memberName = null,
 [CallerFilePath] string filePath = null,
 [CallerLineNumber] int lineNumber = 0)
 {
 Console.WriteLine (memberName);
 Console.WriteLine (filePath);
 Console.WriteLine (lineNumber);
 }
}

Assuming that our program resides in c:\source\test\Pro‐
gram.cs, the output would be:

Main
c:\source\test\Program.cs
6

Caller Info Attributes | 223

As with standard optional parameters, the substitution is done
at the calling site. Hence, our Main method is syntactic sugar for
this:

static void Main()
 => Foo ("Main", @"c:\source\test\Program.cs", 6);

Caller info attributes are useful for writing logging func‐
tions and for implementing change notification patterns. For
instance, we can call a method such as the following from
within a property’s set accessor—without having to specify the
property’s name:

void RaisePropertyChanged (
 [CallerMemberName] string propertyName = null)
 {
 ...
 }

CallerArgumentExpression (C# 10)
A method parameter to which you apply the [CallerArgument
Expression] attribute captures an argument expression from
the call site:

Print (Math.PI * 2);

void Print (double number,
 [CallerArgumentExpression("number")] string expr = null)
 => Console.WriteLine (expr);

// Output: Math.PI * 2

The main application for this feature is when writing validation
and assertion libraries. In the following example, an exception
is thrown, whose message includes the text “2 + 2 == 5”. This
aids in debugging:

Assert (2 + 2 == 5);

void Assert (bool condition,
 [CallerArgumentExpression ("condition")]
 string msg = null)
{
 if (!condition)

224 | C# 10 Pocket Reference

 throw new Exception ("Assert failed: " + msg);
}

You can use [CallerArgumentExpression] multiple times in
order to capture multiple argument expressions.

Asynchronous Functions
The await and async keywords support asynchronous program‐
ming, a style of programming in which long-running functions
do most or all of their work after returning to the caller. This
is in contrast to normal synchronous programming in which
long-running functions block the caller until the operation
is complete. Asynchronous programming implies concurrency
because the long-running operation continues in parallel to the
caller. The implementer of an asynchronous function initiates
this concurrency either through multithreading (for compute-
bound operations) or via a callback mechanism (for I/O-bound
operations).

NOTE

Multithreading, concurrency, and asynchronous program‐
ming are large topics. We dedicate two chapters to them
in C# 10 in a Nutshell, and discuss them online at http://
albahari.com/threading.

For instance, consider the following synchronous method,
which is long-running and compute-bound:

int ComplexCalculation()
{
 double x = 2;
 for (int i = 1; i < 100000000; i++)
 x += Math.Sqrt (x) / i;
 return (int)x;
}

Asynchronous Functions | 225

https://learning.oreilly.com/library/view/c-10-in/9781098121945/
http://albahari.com/threading
http://albahari.com/threading

This method blocks the caller for a few seconds while it runs,
before returning the result of the calculation to the caller:

int result = ComplexCalculation();
// Sometime later:
Console.WriteLine (result); // 116

The CLR defines a class called Task<TResult> (in System
.Threading.Tasks) to encapsulate the concept of an operation
that completes in the future. You can generate a Task<TResult>
for a compute-bound operation by calling Task.Run, which
instructs the CLR to run the specified delegate on a separate
thread that executes in parallel to the caller:

Task<int> ComplexCalculationAsync()
 => Task.Run (() => ComplexCalculation());

This method is asynchronous because it returns immediately
to the caller while it executes concurrently. However, we need
some mechanism to allow the caller to specify what should
happen when the operation finishes and the result becomes
available. Task<TResult> solves this by exposing a GetAwaiter
method that lets the caller attach a continuation:

Task<int> task = ComplexCalculationAsync();
var awaiter = task.GetAwaiter();
awaiter.OnCompleted (() => // Continuation
{
 int result = awaiter.GetResult();
 Console.WriteLine (result); // 116
});

This says to the operation, “When you finish, execute the
specified delegate.” Our continuation first calls GetResult,
which returns the result of the calculation. (Or, if the task
faulted—threw an exception—calling GetResult rethrows that
exception.) Our continuation then writes out the result via
Console.WriteLine.

The await and async Keywords
The await keyword simplifies the attaching of continuations.
Starting with a basic scenario, consider the following:

226 | C# 10 Pocket Reference

var result = await expression;
statement(s);

The compiler expands this into something functionally similar
to the following:

var awaiter = expression.GetAwaiter();
awaiter.OnCompleted (() =>
{
 var result = awaiter.GetResult();
 statement(s);
});

NOTE

The compiler also emits code to optimize the scenario of
the operation completing synchronously (immediately). A
common reason for an asynchronous operation complet‐
ing immediately is if it implements an internal caching
mechanism, and the result is already cached.

Hence, we can call the ComplexCalculationAsync method we
defined previously, like this:

int result = await ComplexCalculationAsync();
Console.WriteLine (result);

To compile, we need to add the async modifier to the contain‐
ing method:

async void Test()
{
 int result = await ComplexCalculationAsync();
 Console.WriteLine (result);
}

The async modifier instructs the compiler to treat await as a
keyword rather than an identifier should an ambiguity arise
within that method (this ensures that code written prior to
C# 5.0 that might use await as an identifier will still compile
without error). The async modifier can be applied only to

Asynchronous Functions | 227

methods (and lambda expressions) that return void or (as
you’ll see later) a Task or Task<TResult>.

NOTE

The async modifier is similar to the unsafe modifier in
that it has no effect on a method’s signature or public
metadata; it affects only what happens within the method.

Methods with the async modifier are called asynchronous func‐
tions because they themselves are typically asynchronous. To
see why, let’s look at how execution proceeds through an asyn‐
chronous function.

Upon encountering an await expression, execution (normally)
returns to the caller—rather like with yield return in an itera‐
tor. But before returning, the runtime attaches a continuation
to the awaited task, ensuring that when the task completes,
execution jumps back into the method and continues where it
left off. If the task faults, its exception is rethrown (by virtue of
calling GetResult); otherwise, its return value is assigned to the
await expression.

NOTE

The CLR’s implementation of a task awaiter’s
OnCompleted method ensures that by default, continua‐
tions are posted through the current synchronization con‐
text, if one is present. In practice, this means that in rich-
client UI scenarios (WPF, UWP, and Windows Forms), if
you await on a UI thread, your code will continue on that
same thread. This simplifies thread safety.

The expression upon which you await is typically a task;
however, any object with a GetAwaiter method that returns

228 | C# 10 Pocket Reference

an awaitable object—implementing INotifyCompletion.OnCom
pleted and with an appropriately typed GetResult method
(and a bool IsCompleted property that tests for synchronous
completion)—will satisfy the compiler.

Notice that our await expression evaluates to an int type; this
is because the expression that we awaited was a Task<int>
(whose GetAwaiter().GetResult() method returns an int).

Awaiting a nongeneric task is legal and generates a void
expression:

await Task.Delay (5000);
Console.WriteLine ("Five seconds passed!");

Task.Delay is a static method that returns a Task that com‐
pletes in the specified number of milliseconds. The synchronous
equivalent of Task.Delay is Thread.Sleep.

Task is the nongeneric base class of Task<TResult> and is
functionally equivalent to Task<TResult> except that it has no
result.

Capturing Local State
The real power of await expressions is that they can appear
almost anywhere in code. Specifically, an await expression can
appear in place of any expression (within an asynchronous
function) except for within a catch or finally block, a lock
expression, or an unsafe context.

In the following example, we await within a loop:
async void Test()
{
 for (int i = 0; i < 10; i++)
 {
 int result = await ComplexCalculationAsync();
 Console.WriteLine (result);
 }
}

Upon first executing ComplexCalculationAsync, execution
returns to the caller by virtue of the await expression. When

Asynchronous Functions | 229

the method completes (or faults), execution resumes where it
left off, with the values of local variables and loop counters
preserved. The compiler achieves this by translating such code
into a state machine, like it does with iterators.

Without the await keyword, the manual use of continuations
means that you must write something equivalent to a state
machine. This is traditionally what makes asynchronous pro‐
gramming difficult.

Writing Asynchronous Functions
With any asynchronous function, you can replace the void
return type with a Task to make the method itself usefully asyn‐
chronous (and awaitable). No further changes are required:

async Task PrintAnswerToLife()
{
 await Task.Delay (5000);
 int answer = 21 * 2;
 Console.WriteLine (answer);
}

Notice that we don’t explicitly return a task in the method body.
The compiler manufactures the task, which it signals upon
completion of the method (or upon an unhandled exception).
This makes it easy to create asynchronous call chains:

async Task Go()
{
 await PrintAnswerToLife();
 Console.WriteLine ("Done");
}

(And because Go returns a Task, Go itself is awaitable.) The
compiler expands asynchronous functions that return tasks
into code that (indirectly) uses TaskCompletionSource to create
a task that it then signals or faults.

230 | C# 10 Pocket Reference

NOTE

TaskCompletionSource is a CLR type that lets you create
tasks that you manually control, signaling them as com‐
plete with a result (or as faulted with an exception). Unlike
Task.Run, TaskCompletionSource doesn’t tie up a thread
for the duration of the operation. It’s also used for writing
I/O-bound task-returning methods (such as Task.Delay).

The aim is to ensure that when a task-returning asynchronous
method finishes, execution can jump back to whoever awaited
it, via a continuation.

Returning Task<TResult>

You can return a Task<TResult> if the method body returns
TResult:

async Task<int> GetAnswerToLife()
{
 await Task.Delay (5000);
 int answer = 21 * 2;
 // answer is int so our method returns Task<int>
 return answer;
}

We can demonstrate GetAnswerToLife by calling it from Print
AnswerToLife (which is, in turn, called from Go):

async Task Go()
{
 await PrintAnswerToLife();
 Console.WriteLine ("Done");
}
async Task PrintAnswerToLife()
{
 int answer = await GetAnswerToLife();
 Console.WriteLine (answer);
}
async Task<int> GetAnswerToLife()
{
 await Task.Delay (5000);
 int answer = 21 * 2;

Asynchronous Functions | 231

 return answer;
}

Asynchronous functions make asynchronous programming
similar to synchronous programming. Here’s the synchronous
equivalent of our call graph, for which calling Go() gives the
same result after blocking for five seconds:

void Go()
{
 PrintAnswerToLife();
 Console.WriteLine ("Done");
}
void PrintAnswerToLife()
{
 int answer = GetAnswerToLife();
 Console.WriteLine (answer);
}
int GetAnswerToLife()
{
 Thread.Sleep (5000);
 int answer = 21 * 2;
 return answer;
}

This also illustrates the basic principle of how to design with
asynchronous functions in C#, which is to write your methods
synchronously, and then replace synchronous method calls with
asynchronous method calls, and await them.

Parallelism
We’ve just demonstrated the most common pattern, which is to
await task-returning functions immediately after calling them.
This results in sequential program flow that’s logically similar
to the synchronous equivalent.

Calling an asynchronous method without awaiting it allows
the code that follows to execute in parallel. For example, the
following executes PrintAnswerToLife twice, concurrently:

var task1 = PrintAnswerToLife();
var task2 = PrintAnswerToLife();
await task1; await task2;

232 | C# 10 Pocket Reference

By awaiting both operations afterward, we “end” the parallel‐
ism at that point (and rethrow any exceptions from those
tasks). The Task class provides a static method called WhenAll
to achieve the same result slightly more efficiently. WhenAll
returns a task that completes when all of the tasks that you pass
to it complete:

await Task.WhenAll (PrintAnswerToLife(),
 PrintAnswerToLife());

WhenAll is called a task combinator. (The Task class also pro‐
vides a task combinator called WhenAny, which completes when
any of the tasks provided to it complete.) We cover the task
combinators in detail in C# 10 in a Nutshell.

Asynchronous Lambda Expressions
We know that ordinary named methods can be asynchronous:

async Task NamedMethod()
{
 await Task.Delay (1000);
 Console.WriteLine ("Foo");
}

So, too, can unnamed methods (lambda expressions and
anonymous methods), if preceded by the async keyword:

Func<Task> unnamed = async () =>
{
 await Task.Delay (1000);
 Console.WriteLine ("Foo");
};

You can call and await these in the same way:
await NamedMethod();
await unnamed();

You can use asynchronous lambda expressions when attaching
event handlers:

myButton.Click += async (sender, args) =>
{
 await Task.Delay (1000);

Asynchronous Functions | 233

https://learning.oreilly.com/library/view/c-10-in/9781098121945/

 myButton.Content = "Done";
};

This is more succinct than the following, which has the same
effect:

myButton.Click += ButtonHandler;
...
async void ButtonHandler (object sender, EventArgs args)
{
 await Task.Delay (1000);
 myButton.Content = "Done";
};

Asynchronous lambda expressions can also return Task

<TResult>:
Func<Task<int>> unnamed = async () =>
{
 await Task.Delay (1000);
 return 123;
};
int answer = await unnamed();

Asynchronous Streams
With yield return, you can write an iterator; with await,
you can write an asynchronous function. Asynchronous streams
(from C# 8) combine these concepts and let you write an itera‐
tor that awaits, yielding elements asynchronously. This support
builds on the following pair of interfaces, which are asynchro‐
nous counterparts to the enumeration interfaces we described
in “Enumeration and Iterators” on page 151:

public interface IAsyncEnumerable<out T>
{
 IAsyncEnumerator<T> GetAsyncEnumerator (...);
}

public interface IAsyncEnumerator<out T>: IAsyncDisposable
{
 T Current { get; }
 ValueTask<bool> MoveNextAsync();
}

234 | C# 10 Pocket Reference

ValueTask<T> is a struct that wraps Task<T>, and is behaviorally
equivalent to Task<T>, except that it enables more efficient
execution when the task completes synchronously (which can
happen often when enumerating a sequence). IAsyncDisposa
ble is an asynchronous version of IDisposable and provides
an opportunity to perform cleanup should you choose to man‐
ually implement the interfaces:

public interface IAsyncDisposable
{
 ValueTask DisposeAsync();
}

NOTE

The act of fetching each element from the sequence (Move
NextAsync) is an asynchronous operation, so asynchro‐
nous streams are suitable when elements arrive in a piece‐
meal fashion (such as when processing data from a video
stream). In contrast, the following type is more suitable
when the sequence as a whole is delayed, but the elements,
when they arrive, arrive all together:

Task<IEnumerable<T>>

To generate an asynchronous stream, you write a method that
combines the principles of iterators and asynchronous meth‐
ods. In other words, your method should include both yield
return and await, and it should return IAsyncEnumerable<T>:

async IAsyncEnumerable<int> RangeAsync (
 int start, int count, int delay)
{
 for (int i = start; i < start + count; i++)
 {
 await Task.Delay (delay);
 yield return i;
 }
}

Asynchronous Functions | 235

To consume an asynchronous stream, use the await foreach
statement:

await foreach (var number in RangeAsync (0, 10, 100))
 Console.WriteLine (number);

Unsafe Code and Pointers
C# supports direct memory manipulation via pointers within
blocks of code marked unsafe and compiled with the /unsafe
compiler option. Pointer types are primarily useful for interop‐
erability with C APIs, but you also can use them for accessing
memory outside the managed heap or for performance-critical
hotspots.

Pointer Basics
For every value type or reference type V, there is a correspond‐
ing pointer type V*. A pointer instance holds the address of
a variable. Pointer types can be (unsafely) cast to any other
pointer type. Following are the main pointer operators:

Operator Meaning

& The address-of operator returns a pointer to the address of a variable.

* The dereference operator returns the variable at the address of a
pointer.

-> The pointer-to-member operator is a syntactic shortcut, in which x->y
is equivalent to (*x).y.

Unsafe Code
By marking a type, type member, or statement block with the
unsafe keyword, you’re permitted to use pointer types and
perform C++-style pointer operations on memory within that
scope. Here is an example of using pointers to quickly process a
bitmap:

unsafe void BlueFilter (int[,] bitmap)
{

236 | C# 10 Pocket Reference

 int length = bitmap.Length;
 fixed (int* b = bitmap)
 {
 int* p = b;
 for (int i = 0; i < length; i++)
 *p++ &= 0xFF;
 }
}

Unsafe code can run faster than a corresponding safe imple‐
mentation. In this case, the code would have required a nested
loop with array indexing and bounds checking. An unsafe C#
method can also be faster than calling an external C function
because there is no overhead associated with leaving the man‐
aged execution environment.

The fixed Statement
The fixed statement is required to pin a managed object such
as the bitmap in the previous example. During the execution of
a program, many objects are allocated and deallocated from the
heap. To avoid unnecessary waste or fragmentation of memory,
the garbage collector moves objects around. Pointing to an
object is futile if its address could change while referencing it,
so the fixed statement instructs the garbage collector to “pin”
the object and not move it around. This can have an impact
on the efficiency of the runtime, so you should use fixed blocks
only briefly, and you should avoid heap allocation within the
fixed block.

Within a fixed statement, you can get a pointer to a value
type, an array of value types, or a string. In the case of arrays
and strings, the pointer will actually point to the first element,
which is a value type.

Value types declared inline within reference types require the
reference type to be pinned, as follows:

Test test = new Test();
unsafe
{
 fixed (int* p = &test.X) // Pins test

Unsafe Code and Pointers | 237

 {
 *p = 9;
 }
 Console.WriteLine (test.X);
}

class Test { public int X; }

The Pointer-to-Member Operator
In addition to the & and * operators, C# also provides the
C++-style -> operator, which you can use on structs:

Test test = new Test();
unsafe
{
 Test* p = &test;
 p->X = 9;
 System.Console.WriteLine (test.X);
}

struct Test { public int X; }

The stackalloc Keyword
You can allocate memory in a block on the stack explicitly with
the stackalloc keyword. Because it is allocated on the stack, its
lifetime is limited to the execution of the method, just as with
any other local variable. The block can use the [] operator to
index into memory:

int* a = stackalloc int [10];
for (int i = 0; i < 10; ++i)
 Console.WriteLine (a[i]); // Print raw memory

Fixed-size buffers
To allocate a block of memory within a struct, use the fixed
keyword:

unsafe struct UnsafeUnicodeString
{
 public short Length;
 public fixed byte Buffer[30];
}

238 | C# 10 Pocket Reference

unsafe class UnsafeClass
{
 UnsafeUnicodeString uus;

 public UnsafeClass (string s)
 {
 uus.Length = (short)s.Length;
 fixed (byte* p = uus.Buffer)
 for (int i = 0; i < s.Length; i++)
 p[i] = (byte) s[i];
 }
}

Fixed-size buffers are not arrays: if Buffer were an array, it
would consist of a reference to an object stored on the (man‐
aged) heap, rather than 30 bytes within the struct itself.

The fixed keyword is also used in this example to pin the
object on the heap that contains the buffer (which will be the
instance of UnsafeClass).

void*
A void pointer (void*) makes no assumptions about the type of
the underlying data and is useful for functions that deal with
raw memory. An implicit conversion exists from any pointer
type to void*. A void* cannot be dereferenced, and arithmetic
operations cannot be performed on void pointers. For example:

short[] a = {1,1,2,3,5,8,13,21,34,55};
fixed (short* p = a)
{
 //sizeof returns size of value-type in bytes
 Zap (p, a.Length * sizeof (short));
}
foreach (short x in a)
 System.Console.WriteLine (x); // Prints all zeros

unsafe void Zap (void* memory, int byteCount)
{
 byte* b = (byte*) memory;
 for (int i = 0; i < byteCount; i++)

Unsafe Code and Pointers | 239

 *b++ = 0;
}

Function Pointers
A function pointer (from C# 9) is like a delegate, but without
the indirection of a delegate instance; instead, it points directly
to a method. A function pointer can point only to static meth‐
ods, lacks multicast capability, and requires an unsafe context
(because it bypasses runtime type safety). Its main purpose is to
simplify and optimize interop with unmanaged APIs (we cover
interop in C# 10 in a Nutshell).

A function pointer type is declared as follows (with the return
type appearing last):

delegate*<int, char, string, void>

This matches a function with this signature:
void SomeFunction (int x, char y, string z)

The & operator creates a function pointer from a method group.
Here’s a complete example:

unsafe
{
 delegate*<string, int> functionPointer = &GetLength;
 int length = functionPointer ("Hello, world");

 static int GetLength (string s) => s.Length;
}

In this example, functionPointer is not an object upon which
you can call a method such as Invoke (or with a reference to a
Target object). Instead, it’s a variable that points directly to the
target method’s address in memory:

Console.WriteLine ((IntPtr)functionPointer);

240 | C# 10 Pocket Reference

https://learning.oreilly.com/library/view/c-10-in/9781098121945/

Preprocessor Directives
Preprocessor directives supply the compiler with additional
information about regions of code. The most common prepro‐
cessor directives are the conditional directives, which provide
a way to include or exclude regions of code from compilation.
For example:

#define DEBUG
class MyClass
{
 int x;
 void Foo()
 {
 #if DEBUG
 Console.WriteLine ("Testing: x = {0}", x);
 #endif
 }
 ...
}

In this class, the statement in Foo is compiled as condition‐
ally dependent upon the presence of the DEBUG symbol. If we
remove the DEBUG symbol, the statement is not compiled. Pre‐
processor symbols can be defined within a source file (as we
have done), or passed to the compiler with the /define:symbol
command-line option, or in the project file if you’re using
Visual Studio or MSBuild.

With the #if and #elif directives, you can use the ||, &&,
and ! operators to perform or, and, and not operations on mul‐
tiple symbols. The following directive instructs the compiler to
include the code that follows if the TESTMODE symbol is defined
and the DEBUG symbol is not defined:

#if TESTMODE && !DEBUG
 ...

Keep in mind, however, that you’re not building an ordinary
C# expression, and the symbols upon which you operate have
absolutely no connection to variables—static or otherwise.

Preprocessor Directives | 241

The #error and #warning symbols prevent accidental misuse of
conditional directives by making the compiler generate a warn‐
ing or error given an undesirable set of compilation symbols.

Table 14 describes the complete list of preprocessor directives.

Table 14. Preprocessor directives

Preprocessor directive Action

#define symbol Defines symbol

#undef symbol Undefines symbol

#if symbol
[operator symbol2]...

Conditional compilation (operators
are ==, !=, &&, and ||)

#else Executes code to subsequent #endif

#elif symbol
[operator symbol2]

Combines #else branch and #if test

#endif Ends conditional directives

#warning text text of the warning to appear in
compiler output

#error text text of the error to appear in compiler
output

#line [number ["file"] |

hidden]

number specifies the line in source
code; file is the filename to appear
in computer output; hidden instructs
debuggers to skip over code from this
point until the next #line directive

#region name Marks the beginning of an outline

#endregion Ends an outline region

#pragma warning See the next section

#nullable option See “Nullable Reference Types” on page
162

242 | C# 10 Pocket Reference

Pragma Warning
The compiler generates a warning when it spots something in
your code that seems unintentional. Unlike errors, warnings
don’t ordinarily prevent your application from compiling.

Compiler warnings can be extremely valuable in spotting bugs.
Their usefulness, however, is undermined when you get false
warnings. In a large application, maintaining a good signal-to-
noise ratio is essential if the “real” warnings are to be noticed.

To this effect, the compiler allows you to selectively suppress
warnings with the #pragma warning directive. In this example,
we instruct the compiler not to warn us about the field Message
not being used:

public class Foo
{
 #pragma warning disable 414
 static string Message = "Hello";
 #pragma warning restore 414
}

Omitting the number in the #pragma warning directive disables
or restores all warning codes.

If you are thorough in applying this directive, you can compile
with the /warnaserror switch—this instructs the compiler to
treat any residual warnings as errors.

XML Documentation
A documentation comment is a piece of embedded XML that
documents a type or member. A documentation comment
comes immediately before a type or member declaration and
starts with three slashes:

/// <summary>Cancels a running query.</summary>
public void Cancel() { ... }

XML Documentation | 243

Multiline comments can be done like this:
/// <summary>
/// Cancels a running query
/// </summary>
public void Cancel() { ... }

Or like this (notice the extra star at the start):
/**
 <summary> Cancels a running query. </summary>
*/
public void Cancel() { ... }

If you compile with the /doc directive (or enable XML docu‐
mentation in the project file), the compiler extracts and collates
documentation comments into a single XML file. This has two
main uses:

• If placed in the same folder as the compiled assembly,•
Visual Studio automatically reads the XML file and uses
the information to provide IntelliSense member listings to
consumers of the assembly of the same name.

• Third-party tools (such as Sandcastle and NDoc) can•
transform the XML file into an HTML help file.

Standard XML Documentation Tags
Here are the standard XML tags that Visual Studio and docu‐
mentation generators recognize:

<summary>

<summary>...</summary>

Indicates the tool tip that IntelliSense should display for
the type or member. Typically, a single phrase or sentence.

244 | C# 10 Pocket Reference

<remarks>

<remarks>...</remarks>

Additional text that describes the type or member. Docu‐
mentation generators pick this up and merge it into the
bulk of a type or member’s description.

<param>

<param name="name">...</param>

Explains a parameter on a method.

<returns>

<returns>...</returns>

Explains the return value for a method.

<exception>

<exception [cref="type"]>...</exception>

Lists an exception that a method might throw (cref refers
to the exception type).

<permission>

<permission [cref="type"]>...</permission>

Indicates an IPermission type required by the docu‐
mented type or member.

<example>

<example>...</example>

Denotes an example (used by documentation generators).
This usually contains both description text and source
code (source code is typically within a <c> or <code> tag).

<c>

<c>...</c>

Indicates an inline code snippet. This tag is usually used
within an <example> block.

XML Documentation | 245

<code>

<code>...</code>

Indicates a multiline code sample. This tag is usually used
within an <example> block.

<see>

<see cref="member">...</see>

Inserts an inline cross-reference to another type or mem‐
ber. HTML documentation generators typically convert
this to a hyperlink. The compiler emits a warning if the
type or member name is invalid.

<seealso>

<seealso cref="member">...</seealso>

Cross-references another type or member. Documentation
generators typically write this into a separate “See Also”
section at the bottom of the page.

<paramref>

<paramref name="name"/>

References a parameter from within a <summary> or
<remarks> tag.

<list>

<list type=[bullet | number | table]>
 <listheader>
 <term>...</term>
 <description>...</description>
 </listheader>
 <item>
 <term>...</term>
 <description>...</description>
 </item>
</list>

Instructs documentation generators to emit a bulleted,
numbered, or table-style list.

246 | C# 10 Pocket Reference

<para>

<para>...</para>

Instructs documentation generators to format the contents
into a separate paragraph.

<include>

<include file='filename' path='tagpath[@name="id"]'>
 ...
</include>

Merges an external XML file that contains documentation.
The path attribute denotes an XPath query to a specific
element in that file.

XML Documentation | 247

Index

Symbols
! (not) operator, 27
! (null-forgiving operator), 163
!= (inequality) operator, 26, 160
" (double quotes), 29
#elif directive, 241
#error symbol, 242
#if directive, 241
#pragma warning directive, 243
#warning symbol, 242
$ (string interpolation) character,

30
% (remainder) operator, 22
& (address-of) operator, 236
& (AND) operator, 27, 114
& operator, 161, 240
&& (conditional and) operator,

27
() (parentheses)

in lambda expressions, 137
method parameters, 7

* (dereference) operator, 236
* (multiplication) operator, 3, 7
+ (concatenation) operator, 30,

216
++ (increment) operator, 22
+= operator

add to self operator, 49
custom event accessor, 136
delegate instances, 127
event subscription, 131

-> (pointer-to-member) operator,
238

. (period), 7

.. operator, 35
/ (division operator), 22
// (double forward slash), 2, 7
/checked+ command-line switch,

23
/doc directive, 244
/unsafe compiler option, 236
; (semicolon), 2, 7
< (less-than) operator, 27, 160
<< (shift left) operator, 24
<= operator, 27, 160
= (assignment) operator, 7
= (equals sign), 7, 48
== (double equals sign), 7, 26
== (equality comparison) opera‐

tor
operator lifting and, 160
overloading, 217
records and, 175
strings and, 29

249

=> (fat arrow) notation
expression-bodied properties,

80
lambda expressions, 137

> (greater-than) operator, 27
>= (greater-than or equal to)

operator, 27, 160
>> (shift right) operator, 24
? (nullable types) symbol, 157
?. (null-conditional) operator, 54
?? (null-coalescing) operator, 54,

161
??= (null-coalescing assignment)

operator, 54
[] (square brackets), 32, 238
\ (backslash), 28
\ (double quote escape sequence),

28
\' (single quote escape sequence),

28
\0 (null escape sequence), 28
\a (alert escape sequence), 28
\b (backspace character), 28
\f (form feed character), 28
\n (newline character), 28
\r (carriage return character), 28
\t (horizontal tab character), 28
\u escape sequence, 28
\v (vertical tab character), 28
\x escape sequence, 28
\\ (backslash escape sequence), 28
^ (exclusive or) operator, 24
^ (xor) operator, 35
{ } (curly braces), 3, 56
| (OR operator), 24, 27, 114, 161
|| (conditional OR) operator, 27
− operator, 22, 127
−= operator

custom event accessor, 136
event subscription, 131
remove delegate instance, 127
subtract from self operator, 49

−− (decrement) operator, 22

∼ (complement) operator, 24
∼ (tilde) symbol, 24
∼ symbol (finalizers), 86

A
abstract classes, 94
abstract members, 94
access modifiers, 106-108

accessibility capping, 108
friend assemblies, 107
types of, 106

accessibility capping, 108
accessors, event, 136
Action delegate, 128
address-of (&) operator, 236
aggregation operators (LINQ),

185
aliasing, 70
AND (&) operator, 27, 114
anonymous methods

lambda expressions versus,
142

parameter declarations and,
142

writing, 142
anonymous types, 166
applications, 4
arguments

basic program operation, 3, 7
CallerArgumentExpression,

224
default arguments, 44
named arguments, 45
out arguments, 43
params argument, 44
passing by reference, 42
passing by value, 41
type arguments, 116

arithmetic operators, 22-24
arithmetic overflow checking, 23
array initialization expression, 33
arrays, 32-38

default initialization, 34

250 | Index

denoting, 32
fixed-size buffers, 238
indexing, 32
initialization expressions, 33
jagged, 36
Length property, 33
multidimensional, 36
rectangular, 36
simplified initialization

expressions, 37
stackalloc keyword, 238
unsafe code and, 237
working with indices, 35

as operator, 92, 159
assemblies, 4
assignment (=) operator, 7, 48
assignment expressions, 48
associativity, 49
async keyword, 227
asynchronous functions, 225-236

await and async keywords,
226

basics of, 225
capturing local state, 229
lambda expressions, 233
parallelism, 232
returning Task<TResult>, 226
streams, 234
writing, 230

attributes, 219-222
attribute classes, 219
attribute targets, 220
basics of, 219
caller info attributes, 223
named and positional param‐

eters, 220
retrieving at runtime, 222
specifying multiple, 221
writing custom, 221

automatic properties, 80
await foreach statement, 236
await keyword, 226

B
backslash (\), 28
backspace (\b) character, 28
base class constraints, 121
base keyword, 96
binary operators, 49
binding

custom, 209
defined, 207
language, 210
static versus dynamic, 208

bitwise operators, 24
bool type, 9, 26
bool? type, 161
Boolean operators

conditional operators, 27
equality and comparison

operators, 26
boxing

defined, 100
of nullable values, 159
reducing with generics, 117

braces
changing the flow of execu‐

tion with, 58
curly ({ }), 3, 56
square ([]), 32, 238

break statement, 64
broadcasters, 131
built-in types, 8
byte type, 24

C
C# (generally)

compiler, 4
sample program, 2-4

callbacks
asynchronous functions and,

225
delegates versus, 126

caller info attributes, 223
CallerArgumentExpression, 224
capping, accessibility, 108

Index | 251

captured variables, 139
carriage return (\r) character, 28
case keyword (see switch state‐

ments)
Cast operator, 206
casting, 91

(see also boxing)
as operator, 92
is operator, 92
reducing with generics, 117
upcasting and downcasting,

91
catch blocks, 143
catch clause, 145
char (character) type, 29
characters (see strings)
checked operator, 23
class constraints, 121
classes, 70-89

abstract, 94
basic program operation, 2
constants in, 72
declaring, 70
deconstructors, 76
fields in, 71
finalizers, 86
indexers, 83
inheritance (see inheritance)
instance constructors, 74
interfaces versus, 108
methods and, 72
nameof operator, 89
object initializers, 77
object type (see object type)
partial types and methods, 87
properties, 79-83
sealing, 96
static classes, 86
static constructors, 85
structs versus, 103
subclassing generic types, 121
this reference, 78

closures, 139

code examples, obtaining and
using, 1

collection initializers, 153
comment notation, 2, 7
comparison operators, 26
comparisons, string, 31
compilation

basics of, 4
pragma warning, 243

complement (∼) operator, 24
compound assignment operators,

49
concatenation (+) operator, 30,

216
conditional and (&&) operator,

27
conditional operators, 27
conditional OR (||) operator, 27
conflicts, avoiding in keywords, 6
const keyword, 72
constant interpolated strings, 31
constant pattern, 177
constants, 8, 72
constraints, 120
constructors

field initialization order and,
97

implicit parameterless, 75
inheritance and, 97
instance constructors, 74
instantiation and, 10
nonpublic constructors, 75
primary, 174
static constructors, 85
type members, 11

contextual keywords, 6
continue statement, 64
contravariance

delegate, 130
generics, 124
type parameter variance for

generic delegates, 130
conversions

252 | Index

casting and reference conver‐
sions, 91

enums, 113
implicit and explicit, 14
implicit reference conversion,

123
nullable, 158
numeric conversions, 100
of numeric types, 21

convertibility, 123
copy constructor, 173
covariance

delegate return type variance,
129

generics, 122
type parameter variance for

generic delegates, 130
covariant returns, 94
.cs files, 4
curly braces ({ }), 3, 56
custom attributes, 221
custom binding, 209
custom types, 9

D
data members, 10
decimal class, double class versus,

25
decimal notation, 21
decimal type, 20, 25
declaration statements, 56
deconstruction, tuple, 168
deconstructors, 76
decrement (−−) operator, 22
default element initialization, 34
default interface members, 111
default keyword, 40, 120
default values

for generic type parameter,
120

initializing arrays with, 34
variables and, 40

deferred execution (LINQ), 186

definite assignment policy, 39
delegate instance, 125
delegate type, 125
delegates, 125-131

aspects of, 125
callbacks versus, 126
delegate compatibility, 129
func and action delegates, 128
generic delegate types, 128
instance and static method

targets, 126
multicast delegates, 127
parameter variance, 129
return type variance, 129
type parameter variance for

generic delegates, 130
writing plug-in methods with,

126
dereference (*) operator, 236
derived classes, 90
discards, 43
division operator (/), 22
.dll files, 66
do-while loops, 62
documentation, 243-247
documentation comments, 243
double class, 25
double equals sign (==), 7, 26

(see also equality comparison
[==] operator)

double forward slash (//), 2, 7
double quotes (), 29
double type, 20, 25
downcasting, 92
dynamic binding, 207-215

basics of, 207
custom binding, 209
dynamic conversions, 212
dynamic expressions, 213
dynamic member overload

resolution, 213
language binding, 210

Index | 253

runtime representation of
dynamic, 211

RuntimeBinderException, 211
static binding versus, 208
uncallable functions, 215
uses for, 207
var versus dynamic types, 212

E
E (exponential symbol), 20
8- and 16-bit integral types, 24
element operators (LINQ), 184
elements (LINQ), 181
else clause, 57
Elvis (null-conditional) operator,

54
encapsulation, 106
enumeration and iterators,

151-156
collection initializers, 153
composing sequences, 156
enumerator basics, 151
iterator basics, 153
iterator semantics, 155

enums, 113-115
combining members, 114
converting, 113
flags, 114
operators for, 115
purpose of, 113

equality comparison (==) opera‐
tor, 7, 26
operator lifting and, 160
overloading, 217
records and, 175
strings and, 29

Equals method, 102
equals sign (=), 7, 48
escape sequences, 28
events, 131-136

broadcasters and subscribers,
131

declaring, 132

event accessors, 136
standard event pattern, 133

exception filters, 146
exception handling (see try state‐

ments and exceptions)
exclusive or (^) operator, 24
.exe files, 66
explicit conversions

between instances of types, 14
integral to integral, 21
overloading, 218

explicit interface implementation,
109

exponential symbol (E), 20
expression statements, 56
expression trees, 137
expression-bodied methods, 73
expression-bodied properties, 80
expressions and operators, 7,

47-50
(see also operators)
assignment expressions, 48
compound assignment opera‐

tors, 49
defined, 47
dynamic, 213
mixing nullable and non-

nullable operators, 161
null operators, 53-56
operator lifting, 159
operator overloading, 215-218
operator precedence and

associativity, 49
operator syntax, 7
operator table, 50
operator types, 48
primary operators, 48
switch keyword in expres‐

sions, 61
target-typed new expressions,

47
void expressions, 48

extended partial methods, 88

254 | Index

extension methods
ambiguity and resolution, 165
basics of, 164
extension method chaining,

165
instance methods versus, 165

F
F suffix, 21
fat arrow (=>) notation

expression-bodied properties,
80

lambda expressions, 137
fields, 10, 71
file-scoped namespaces, 67
finalizers, 86
finally blocks, 143, 147
financial computations, 25
fixed keyword, 238
fixed statement, 237
Flags attribute, 114
flags enums, 114
float class, 24
float type, 20, 24
floating-point types, 20, 24
fluent queries, query expressions

versus, 196
fluent syntax, 194
for loops, 63
foreach loops, 63, 142, 153
form feed (\f) character, 28
format strings, 31
friend assemblies, 107
from clauses, 194
fully qualified names, 66
func delegate, 128
function members, 10
function pointers, 240
functions, basic program opera‐

tion, 2

G
garbage collection, 38, 86
generics, 116-125

contravariance, 124
covariance, 122
declaring type parameters,

118
default generic value, 120
generic constraints, 120
generic delegate types, 128
generic methods, 117
inheritance versus, 116
purpose of generic types, 116
self-referencing generic decla‐

rations, 122
static data, 122
subclassing generic types, 121
type parameter variance, 130
typeof and unbound generic

types, 119
get accessors, 79
get and set accessibility, 81
GetHashCode method, 103
GetType method, 101
global namespaces, 67
global using directive, 68
global:: qualifier, 70
goto statement, 65
greater-than (>) operator, 27
greater-than or equal to (>=)

operator, 27, 160
GroupBy operator, 205
GroupJoin operator, 202

H
heap memory, 38
hexadecimal notation, 20
hiding inherited members, 95
horizontal tab (\t) character, 28

I
identifiers, 5

Index | 255

IDMOP (IDynamicMetaObject‐
Provider), 209

if statements, 9, 57
immutability, 127
implicit conversions, 21, 123

between instances of types, 14
8- and 16-bit integral types,

24
event accessors, 136

implicit parameterless construc‐
tors, 75

implicitly typed local variables, 46
increment (++) operator, 22
index type, 34
indexers

implementing, 84
syntax for using, 83
using indices and ranges with,

85
indexing an array, 35
inequality (!=) operator, 26, 160
inheritance, 89-98

abstract classes and members,
94

base keyword, 96
basics of, 89
casting and reference conver‐

sions, 91
constructors and, 97
generics versus, 116
hiding inherited members, 95
overloading and resolution,

98
polymorphic behavior, 90
sealing functions and classes,

96
virtual function members, 93

init-only accessors, 82-83
initialization

array default elements, 34
constructor and field initiali‐

zation order, 97
fields, 71

simplified expressions for
arrays, 37

initializers
collection, 153
object, 77
property, 81

input sequences, 181
instance constructors, 74
instance members, 11
instance methods, 126, 165
instantiation, 10
int type, 10, 19
integral types

8- and 16-bit, 24
conversions, 21
int and long, 19
overflow, 23

integral-to-integral conversions,
21

interfaces, 108-112
classes versus, 108
declaring, 108
default members, 111
explicit implementation, 109
extending, 109
implementing members virtu‐

ally, 110
reimplementing in subclasses,

111
internal access modifier, 106
interpolated strings, 30
is operator, 92
iteration statements, 62
iteration variables, 141
iterators, 153

(see also enumeration and
iterators)

J
jagged arrays, 36
joining operators (LINQ), 200

GroupJoin, 202
Join, 200

256 | Index

Zip, 203
jump statements, 64

K
keywords

avoiding conflicts with, 6
contextual, 6
defined, 5

L
lambda expressions, 137-138

anonymous methods versus,
142

asynchronous, 233
basics of, 137
capturing iteration variables,

141
capturing outer variables, 139
local methods versus, 142
static lambdas, 140

lambda operator, 49
lazy evaluation, 187
left-associative operators, 49
less-than (<) operator, 27, 160
let keyword, 197
libraries, 4
LINQ (Language Integrated

Query), 180-207
aggregation operators, 185
basics of, 181
chaining query operators, 193
deferred execution, 186
element operators, 184
friend assemblies, 107
grouping, 205
GroupJoin operator, 202
joining operators, 200
let keyword, 197
multiple generators, 199
OfType and Cast, 206
orderby keyword, 204
projecting, 183

quantifiers, 185
query continuations, 198
query expressions, 194
set operators, 186
simple query using, 182
standard query operators, 188
Take and Skip operators, 183

literals, 7
local methods

lambda expressions versus,
142

visibility of, 73
local sequences, 181
local state, capturing, 229
local variables

basic program operation, 5
capturing outer variables, 139
definite assignment policy, 39
implicitly typed, 46
naming, 5
scope of, 56

long type, 19

M
M suffix, 21
manipulating strings, 32
members of a type, 10
method chaining, 165
methods

anonymous, 142
basic program operation, 2
expression-bodied, 73
extended partial methods, 88
extension methods, 164
generic methods, 117
local methods, 73
overloading methods, 74, 98
partial types and methods, 87
purpose of, 72
recursive methods, 38
static local methods, 74

module initializers, 86
multicast delegates, 127

Index | 257

multidimensional arrays, 36
multiline comments (/* */), 8
multiple dispatch, 214
multiple generators, 199
multiple yield statements, 155
multiplication (*) operator, 3, 7
mutation, nondestructive, 173

N
naked type constraint, 121
named arguments, 45
named parameters, 220
nameof operator, 89
namespace keyword, 66
namespaces, 65-70

aliasing types and, 70
basic program operation, 2
defining, 65
file-scoped, 67
fully qualified names, 66
global using directive, 68
global:: qualifier, 70
importing, 70
name hiding, 69
name scoping, 68
using directive, 67
using static directive, 68

NaN (Not a Number), 24
nested types, 115
.NET Framework

assemblies in, 4
libraries in, 4
namespaces in, 2
standard event pattern in, 133
System namespace in, 9, 18

new keyword, 37, 166
new operator, 10
newline (\n) character, 28
non-nullability, 162
nondestructive mutation, 173
nonpublic constructors, 75
not (!) operator, 27
null operators, 53-56, 161

null reference, 17
null-coalescing (??) operator, 54,

161
null-coalescing assignment (??=)

operator, 54
null-conditional operator (?.), 54
null-forgiving operator (!), 163
nullable reference types, 162-164
nullable types (?) symbol, 157
nullable value types, 157-162

basics of, 157
bool? with & and | operators,

161
boxing/unboxing, 159
mixing nullable and non-

nullable operators, 161
nullable conversions, 158
nullable types and null opera‐

tors, 161
Nullable<T> struct, 158
operator lifting, 159

Nullable<T> struct, 158
NullReferenceException errors,

17, 27, 54, 162
numeric conversions, 100
numeric types, 19-26

arithmetic operators, 22-24
available in C#, 19
bitwise operators, 24
conversions, 21
double versus decimal, 25
8- and 16-bit integral types,

24
increment and decrement

operators, 22
numeric conversions, 21
numeric literal type inference,

20
numeric literals, 20
numeric suffixes, 20
real number rounding errors,

26

258 | Index

special float and double val‐
ues, 24

specialized integral opera‐
tions, 22-24

O
object initializers, 77
object type, 99-103

boxing and unboxing, 100
Equals, ReferenceEquals, and

GetHashCode, 102
GetType method and typeof

operator, 101
heap memory and, 38
object initializers, 77
object member listing, 102
static and runtime type check‐

ing, 101
ToString method, 103
typeof operator, 101
uses for, 99

OfType operator, 206
operator lifting, 159
operator overloading, 215-218

basics of, 215
custom conversions, 218
operator functions, 216
overloading equality and

comparison operators,
217

operator precedence, 49
(see also expressions and

operators; individual
operator types)

operators, 7
(see also expressions and

operators; specific opera‐
tors)

defined, 7, 48
in order of precedence, 50
left-associative, 49
null, 161
operator lifting, 159

overloading (see operator
overloading)

precedence and associativity,
49

right-associative, 49
optional parameters, 44
OR operator (|), 24, 27, 114, 161
orderby keyword, 204
out modifier, 43
out parameter modifier, 43
outer variables, 139
overflow, 23
overloading methods, 74, 98

(see also operator overload‐
ing)

P
parallelism, 232
parameter lists, 171
parameter variance, 130
parameterless constructor con‐

straint, 121
parameters

CallerArgumentExpression,
224

delegate parameter variance,
130

named arguments, 45
optional, 44
out modifier, 43
params modifier, 44
passing arguments by value,

41
ref modifier, 42

params modifier, 44
parentheses ()

in lambda expressions, 137
method parameters, 7

partial methods, 87
partial types, 87
passing

by reference, 42
by value, 41

Index | 259

patterns, 176-180
combinators, 178
constant, 177
property, 179
relational, 178
tuple and positional, 179
var, 177

period (.), 7
plug-in methods, 126
pointer-to-member operator (->),

238
pointers, 236

(see also unsafe code and
pointers)

basics of, 236
fixed statement, 237
void*, 239

polymorphic behavior, 90, 129
positional parameters, 220
positional patterns, 179
pragma warning, 243
precedence of operators, 49
predefined types

examples, 8
symmetry with custom types,

10
taxonomy, 18

preprocessor directives, 241
primary constructors, 174
primary operators, 48
private fields, 5
private keyword, 106
private protected access modifier,

107
projecting (LINQ), 183
properties, 79-83

automatic, 80
declaring, 79
expression-bodied, 80
get and set accessibility, 81
init-only accessors, 82-83
property accessors, 79
property initializers, 81

property initializers, 81
property patterns, 179
protected access modifier, 107
public keyword, 12, 106
punctuators, 7

Q
quantifiers (LINQ), 185
query expressions, fluent queries

versus, 196
query operators (LINQ)

basics of, 181
chaining, 193
standard, 188

R
Range type, 35
ranges

using indices and ranges with
indexers, 85

working with, 35
readonly modifier, 106
real literals, 20
real number rounding errors, 26
real number types, 20
real-to-integral conversions, 21
real-to-real conversions, 21
records, 169-176

defining, 169-172
equality comparison, 175
nondestructive mutation, 173
primary constructors, 174

rectangular arrays, 36
recursive methods, 38
ref parameter modifier, 42
reference conversion, 91, 123
reference types

content of, 16
value types versus, 15-18

ReferenceEquals method, 103
referencing, 4
reimplementing an interface, 111

260 | Index

relational operators, 160
relational patterns, 178
remainder (%) operator, 22
reserved keywords, 5
rethrowing an exception, 150
return statement, 65
return type variance, 129
right-associative operators, 49
rounding errors, 26
runtime overload resolution, 213
runtime type checking, 101
RuntimeBinderException, 211

S
sbyte type, 24
sealed keyword, 96
sealing functions and classes, 96
searching within strings, 31
Select method, 183
selection statements

changing the flow of execu‐
tion with braces, 58

else clause, 57
if statement, 57
switch statement, 59

semicolon (;), 2, 7
sequences

composing, 156
in LINQ, 181

serialization, 219
set accessors, 79, 81
set operators (LINQ), 186
shift left (<<) operator, 24
shift right (>>) operator, 24
short type, 24
signature method, 72
simplified array initialization

expressions, 37
single-line comments (//), 7
Skip operator (LINQ), 184
specialized integral operations,

22-24
square brackets ([]), 32, 238

stack memory, 38
stackalloc keyword, 238
standard query operators (LINQ),

181, 188
statements, 56-65

basic program operation, 2
changing flow of, 58
declaration statements, 56
else clause, 57
expression statements, 56
if statement, 9, 57
iteration statements, 62
jump statements, 64
statement blocks, 3, 56, 138
switch expressions, 61
switch statement, 59

static binding, 208
static classes, 86
static constructors, 85
static data, 122
static keyword, 140
static lambdas, 140
static local methods, 74
static members, 11
static type checking, 101
string interpolation ($) character,

30
string type, 8
strings, 28-32

constant interpolation, 31
escape sequences, 28
manipulating, 32
searching within, 31
string comparisons, 31
string concatenation, 30
string interpolation, 30
string type, 29-32
verbatim string literals, 30

structs, 103-106
appropriate use of, 104
classes versus, 103
construction semantics of,

105

Index | 261

default values in, 40
Nullable<T>, 158
readonly structs and func‐

tions, 106
struct constraints, 121

subclasses
constructors, 97
generic types and, 121
inheritance, 90
reimplementing interfaces in,

111
subqueries, 188
subscribers, 131
switch expressions, 61
switch statements, 59
switching on types, 60
symbol

preceding identifiers, 6
verbatim string literals, 30

System namespace, 9, 18, 128
System.Exception, 145, 151
System.Nullable<T>, 158

T
Take operator (LINQ), 183
target-typed new expressions, 47
targets, attribute, 220
Task<TResult>, 226, 231
ternary conditional operator, 28
this keyword, 75
this modifier, 164
this reference, 78
throw expressions, 149
throwing exceptions, 149
tilde (∼) symbol, 24, 86
ToString method, 103
try blocks, 143
try statements and exceptions,

143-151
basics of, 143
catch clause, 145
exception filters, 146
finally blocks, 147

rethrowing exceptions, 150
System.Exception key proper‐

ties, 151
throwing exceptions, 149
using declarations, 149
using statement, 148

tuple patterns, 179
tuples, 167-169

creating, 167
deconstructing, 168
naming tuple elements, 167
purpose of, 167

type arguments, 116
type checking, 101
type inference, 20
type parameters, 116, 118
type safety, increasing with gener‐

ics, 116
typeof operator, 101, 119
types

aliasing, 70
anonymous, 166
arrays and, 32
basics, 8-18
constructors and instantia‐

tion, 10
conversions, 14, 21
custom types, 9
instance versus static mem‐

bers, 11
members of a type, 10
nested, 115
nullable (see nullable value

types)
numeric (see numeric types)
overloading methods, 74
partial, 87
predefined type taxonomy, 18
predefined types, 8
public keyword, 12
switching on, 60
symmetry of predefined and

custom types, 10

262 | Index

value types versus reference
types, 15-18

values, variables, and con‐
stants, 8

U
uint type, 20
ulong type, 20
unbound generic types, 119
unboxing

nullable values, 159
object type, 100

uncallable functions, 215
unchecked operator, 23
unsafe code and pointers, 236-240

fixed statement, 237
fixed-size buffers, 238
marking code unsafe, 236
pointer basics, 236
pointer-to-member operator,

238
stackalloc keyword, 238
unsafe keyword, 236
void pointer (void*), 239

upcasting, 91
ushort type, 24
using declarations, 149
using directive, 2, 67
using statement, 148
using static directive, 68

V
value types

content of, 15
heap memory and, 38
null values and, 17
numeric types, 19-26
reference types versus, 15-18

var keyword, 46, 212
var pattern, 177
variables and parameters, 38-47

basic program operation, 8

capturing iteration variables,
141

capturing outer variables, 139
controlling parameters, 41
default values, 40
definite assignment, 39
implicitly typed local vari‐

ables, 46
named arguments, 45
naming parameters, 5
optional parameters, 44
out modifier, 43
out variables and discards, 43
params modifier, 44
passing arguments by refer‐

ence, 42
passing arguments by value,

41
purpose of variables, 38
stack and heap memory, 38
target-typed new expressions,

47
type parameters, 116
types of variables, 38
variables defined, 8

verbatim string literals, 30
vertical tab (\v) character, 28
virtual function members, 93
void expressions, 48
void pointer (void*), 239

W
when clauses, 61
WhenAll method, 233
Where operator, 182
while loops, 62
with keyword, 166

X
XML documentation, 243-247
xor (^) operator, 35

Index | 263

Y
yield break statements, 155
yield statements, 155

Z
Zip (LINQ joining operator), 203

264 | Index

About the Authors
Joseph Albahari is the author of C# 10 in a Nutshell, C# 9.0
Pocket Reference, and LINQ Pocket Reference (O’Reilly). He
also wrote LINQPad—the popular code scratchpad and LINQ
querying utility.

Ben Albahari is a former Program Manager at Microsoft,
where he worked on Entity Framework and .NET Compact
Framework. He also coauthored C# Essentials (the first C#
book from O’Reilly) and earlier editions of C# in a Nutshell.

Colophon
The animal on the cover of C# 10 Pocket Reference is a gray
crowned crane (Balearica regulorum). This bird’s range extends
from parts of Kenya and Uganda in the north into eastern
South Africa, and they prefer to live in habitats such as open
marshes and grasslands.

Adult birds stand three to four feet tall and weigh about eight
pounds. They are visually striking birds, with a gray body and
pale gray neck, white and gold wings, a white face (with a red
patch above), a black cap, a bright red throat lappet, and blue
eyes. Topping all of this off (and giving them their name) is
the distinctive spray of stiff gold filaments at the back of their
heads.

Crowned cranes can live for up to 20 years in the wild, spend‐
ing most of their waking hours stalking through the grass,
hunting for small animals and insects, as well as seeds and
grains. They are one of only two types of crane to roost at
night in trees, a feat made possible by a prehensile hind toe that
allows them to grip branches. These birds produce clutches
of up to four eggs; a few hours after hatching, the chicks are
able to follow their parents, and the family forages together for
food.

Social and talkative, crowned cranes group together in pairs
or families, which at times combine into flocks of more than
one hundred birds. Like other cranes, they are well-known for
their elaborate mating dance, which includes elements such as
short upward flights, wing flapping, and deep bows.

Despite their wide range, these birds are currently considered
endangered, threatened by habitat loss, egg poaching, and pes‐
ticide use. Many of the animals on O’Reilly covers are endan‐
gered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on
a black-and-white engraving from Cassell’s Natural History
(1896). The cover fonts are Gilroy Semibold and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s
Ubuntu Mono.

Learn from experts.
Become one yourself.
Books | Live online courses
Instant Answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

©
20

22
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

.
 17

5_
4.

25
x7

https://oreilly.com

	Cover
	Copyright
	Table of Contents
	C# 10 Pocket Reference
	A First C# Program
	Compilation

	Syntax
	Identifiers and Keywords
	Literals, Punctuators, and Operators
	Comments

	Type Basics
	Predefined Type Examples
	Custom Type Examples
	Types and Conversions
	Value Types Versus Reference Types
	Predefined Type Taxonomy

	Numeric Types
	Numeric Literals
	Numeric Conversions
	Arithmetic Operators
	Increment and Decrement Operators
	Specialized Integral Operations
	8- and 16-Bit Integral Types
	Special Float and Double Values
	double Versus decimal
	Real Number Rounding Errors

	Boolean Type and Operators
	Equality and Comparison Operators
	Conditional Operators

	Strings and Characters
	String Type

	Arrays
	Default Element Initialization
	Indices and Ranges
	Multidimensional Arrays
	Simplified Array Initialization Expressions

	Variables and Parameters
	The Stack and the Heap
	Definite Assignment
	Default Values
	Parameters
	var—Implicitly Typed Local Variables
	Target-Typed new Expressions

	Expressions and Operators
	Assignment Expressions
	Operator Precedence and Associativity
	Operator Table

	Null Operators
	Null-Coalescing Operator
	Null-Coalescing Assignment Operator
	Null-Conditional Operator

	Statements
	Declaration Statements
	Expression Statements
	Selection Statements
	Iteration Statements
	Jump Statements

	Namespaces
	File-Scoped Namespaces (C# 10)
	The using Directive
	The global using Directive (C# 10)
	using static
	Rules Within a Namespace
	Aliasing Types and Namespaces

	Classes
	Fields
	Constants
	Methods
	Instance Constructors
	Deconstructors
	Object Initializers
	The this Reference
	Properties
	Indexers
	Static Constructors
	Static Classes
	Finalizers
	Partial Types and Methods
	The nameof Operator

	Inheritance
	Polymorphism
	Casting and Reference Conversions
	Virtual Function Members
	Abstract Classes and Abstract Members
	Hiding Inherited Members
	Sealing Functions and Classes
	The base Keyword
	Constructors and Inheritance
	Overloading and Resolution

	The object Type
	Boxing and Unboxing
	Static and Runtime Type Checking
	The GetType Method and typeof Operator
	Object Member Listing
	Equals, ReferenceEquals, and GetHashCode
	The ToString Method

	Structs
	Struct Construction Semantics
	readonly Structs and Functions

	Access Modifiers
	Friend Assemblies
	Accessibility Capping

	Interfaces
	Extending an Interface
	Explicit Interface Implementation
	Implementing Interface Members Virtually
	Reimplementing an Interface in a Subclass
	Default Interface Members

	Enums
	Enum Conversions
	Flags Enums
	Enum Operators

	Nested Types
	Generics
	Generic Types
	Generic Methods
	Declaring Type Parameters
	typeof and Unbound Generic Types
	The default Generic Value
	Generic Constraints
	Subclassing Generic Types
	Self-Referencing Generic Declarations
	Static Data
	Covariance
	Contravariance

	Delegates
	Writing Plug-In Methods with Delegates
	Instance and Static Method Targets
	Multicast Delegates
	Generic Delegate Types
	The Func and Action Delegates
	Delegate Compatibility

	Events
	Standard Event Pattern
	Event Accessors

	Lambda Expressions
	Capturing Outer Variables
	Lambda Expressions Versus Local Methods

	Anonymous Methods
	try Statements and Exceptions
	The catch Clause
	The finally Block
	Throwing Exceptions
	Key Properties of System.Exception

	Enumeration and Iterators
	Enumeration
	Collection Initializers
	Iterators
	Iterator Semantics
	Composing Sequences

	Nullable Value Types
	Nullable<T> Struct
	Nullable Conversions
	Boxing/Unboxing Nullable Values
	Operator Lifting
	bool? with & and | Operators
	Nullable Types and Null Operators

	Nullable Reference Types
	Extension Methods
	Extension Method Chaining
	Ambiguity and Resolution

	Anonymous Types
	Tuples
	Naming Tuple Elements
	Deconstructing Tuples

	Records
	Defining a Record
	Nondestructive Mutation
	Primary Constructors
	Records and Equality Comparison

	Patterns
	var Pattern
	Constant Pattern
	Relational Patterns
	Pattern Combinators
	Tuple and Positional Patterns
	Property Patterns

	LINQ
	LINQ Fundamentals
	Deferred Execution
	Standard Query Operators
	Chaining Query Operators
	Query Expressions
	The let Keyword
	Query Continuations
	Multiple Generators
	Joining
	Ordering
	Grouping
	OfType and Cast

	Dynamic Binding
	Static Binding Versus Dynamic Binding
	Custom Binding
	Language Binding
	RuntimeBinderException
	Runtime Representation of dynamic
	Dynamic Conversions
	var Versus dynamic
	Dynamic Expressions
	Dynamic Member Overload Resolution
	Uncallable Functions

	Operator Overloading
	Operator Functions
	Overloading Equality and Comparison Operators
	Custom Implicit and Explicit Conversions

	Attributes
	Attribute Classes
	Named and Positional Attribute Parameters
	Attribute Targets
	Specifying Multiple Attributes
	Writing Custom Attributes
	Retrieving Attributes at Runtime

	Caller Info Attributes
	CallerArgumentExpression (C# 10)

	Asynchronous Functions
	The await and async Keywords
	Capturing Local State
	Writing Asynchronous Functions
	Parallelism
	Asynchronous Lambda Expressions
	Asynchronous Streams

	Unsafe Code and Pointers
	Pointer Basics
	Unsafe Code
	The fixed Statement
	The Pointer-to-Member Operator
	The stackalloc Keyword
	Fixed-size buffers
	void*
	Function Pointers

	Preprocessor Directives
	Pragma Warning

	XML Documentation
	Standard XML Documentation Tags

	Index
	About the Authors

