
Carl Albing & JP Vossen

bash Idioms
Write Powerful, Flexible, Readable Shell Scripts

Carl Albing and JP Vossen

bash Idioms
Write Powerful, Flexible, Readable Shell Scripts

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-09475-3

[LSI]

bash Idioms
by Carl Albing and JP Vossen

Copyright © 2022 Carl Albing and JP Vossen. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (https://oreilly.com). For more information, contact our corporate/institu‐
tional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Suzanne McQuade
Development Editor: Nicole Taché
Production Editor: Kristen Brown
Copyeditor: Piper Editorial Consulting, LLC

Proofreader: Liz Wheeler
Indexer: nSight, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery

March 2022: First Edition

Revision History for the First Edition
2022-03-16: First Release

See https://oreilly.com/catalog/errata.csp?isbn=9781492094753 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. bash Idioms, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

https://oreilly.com
https://oreilly.com/catalog/errata.csp?isbn=9781492094753

Table of Contents

Preface. vii

1. A Big “if” Idiom. 1
The Big “if ” 1
Or ELSE… 3
More than One 3
More than One Again 4
Don’t Do This 5
Style and Readability: Recap 7

2. Looping Lingo. 9
Looping Constructs 9
Explicit Values 11
Similar to Python 13
Quotes and Spaces 14
Developing and Testing for Loops 15
while and until 16
Style and Readability: Recap 17

3. Just in CASE. 19
Make Your Case 19
A Realistic Use Case 21

Motivation 21
Our Script 21

Wrapper Scripts 23
One More Twist 28
Style and Readability: Recap 29

iii

4. Variable Vernacular. 31
Variable Reference 31
Parameter Expansion 32

Shorthand for basename 32
Path or Prefix Removal 33
Shorthand for dirname or Suffix Removal 34
Other Modifiers 34

Conditional Substitutions 38
Default Values 38
Comma-Separated Lists 38
Modified Value 39

$RANDOM 39
Command Substitution 40
Style and Readability: Recap 41

5. Expressions and Arithmetic. 43
Arithmetic 44

No Parentheses Needed 46
Compound Commands 47
Style and Readability: Recap 49

6. Functional Framework. 51
Calling Functions 51
Defining Functions 52

Function Parameters 52
Function Return Values 53
Local Variables 54
Function Special Cases 55

Time for printf 55
POSIX Output 56
Getting or Using the Date and Time 57
printf for Reuse or Debugging 58

Style and Readability: Recap 58

7. List and Hash Handling. 59
Commonalities 60
Lists 61
Hashes 65
A Simple Word Count Example 69
Style and Readability: Recap 72

iv | Table of Contents

8. Arguing. 73
Your First Argument 73
Having Options 74

Parsing Options 75
Long Arguments 76
HELP! 79
Debug and Verbose 82
Version 83
Style and Readability: Recap 83

9. Files and More. 85
Reading Files 85

read 85
mapfile 86
Brute Force 89

Fiddling with $IFS for Fun and Profit, to Read Files 89
Pretend Files 92
Drop-in Directories 93
Using a Library 94
Shebang! 94
Unofficial bash Strict Mode 96
Exit Codes 96
It’s a Trap! 97
Here-Documents and Here-Strings 98
Are We Interactive? 99
Summary 100

10. Beyond Idioms: Working with bash. 101
Prompts 102

bash Time Zone 104
Getting User Input 104

read 104
pause 106
select 107

Aliases 108
Functions 109
Local Variables 110
Readline Hacks 110
Using logger from bash 111
Handling JSON with jq 112
Grepping the Process List 113
Rotating Old Files 114

Table of Contents | v

Embedded Documentation 115
bash Debugging 120
bash Unit Testing 122
Summary 122

11. Developing Your Style Guide. 123
Readability 124
Comments 126
Names 127
Functions 128
Quoting 129
Layout 130
Syntax 131
Other 132
Script Template 132
Other Style Guides 133
bash Linter 134
Summary 135

Appendix. The bash Idioms Style Guide. 137

Index. 145

vi | Table of Contents

1 See https://oreil.ly/pgx8b, as viewed on 2022-03-07.
2 If you are new to programming or bash, you may want to start with Learning the bash Shell or the bash

Cookbook (both O’Reilly) and come back to this book later.

Preface

Webster’s Dictionary defines idiom as:1

1: an expression in the usage of a language that is peculiar to itself either in having
a meaning that cannot be derived from the conjoined meanings of its elements (such
as up in the air for “undecided”) or in its grammatically atypical use of words (such as
give way)
2a: the language peculiar to a people or to a district, community, or class: dialect
2b: the syntactical, grammatical, or structural form peculiar to a language
3: a style or form of artistic expression that is characteristic of an individual, a period
or movement, or a medium or instrument

Why bash Idioms? One word—readability. Or perhaps a different word—understand‐
ability. In this book, those words mean the same thing. We don’t have to convince you
that readability is critically important; unless this is the first book about program‐
ming you are reading,2 you already get it. Readability means being able to read and
understand code, especially code that someone else wrote, but it also means being
able to write code that you, or someone else, can later read and understand. Clearly
these aspects are different sides of the same coin, so we’ll explore both the clear
idioms to use and the obscure ones to avoid.

We think of bash, informally, as a language to use to “run things.” If you need to do
a lot of heavy data processing, bash may not be the first choice. You can do it, but it
might not be pretty. Of course, if you already have the data processing tools you need
and you just have to “glue” them together, well, then bash is great. But if all we do is
run things, why do we care about the idioms of the language or its “structural form”?
Programs grow, features creep, things change, and there is nothing more permanent

vii

https://oreil.ly/pgx8b
https://learning.oreilly.com/library/view/learning-the-bash/0596009658/
https://learning.oreilly.com/library/view/bash-cookbook-2nd/9781491975329/
https://learning.oreilly.com/library/view/bash-cookbook-2nd/9781491975329/

than a “temporary solution.” Sooner or later someone is going to have to read the
code, understand it, and make changes. If it’s written using an obscure idiom, the job
is that much harder.

In a lot of ways, bash doesn’t look like other languages. It has a lot of history (some
may say “baggage”), and there are reasons it looks and works the way it does. We’re
not going to talk about that very much, because we cover a lot of that in the bash
Cookbook. Shell scripts arguably “run the world,” at least in the Unix and Linux
worlds (and Linux pretty much runs the cloud world), and a huge majority of those
scripts are interpreted by bash. Maintaining backward compatibility back to the very
first Unix shells is critically important, but it imposes some…restrictions.

Then there are the dialects. The big one, especially for backward compatibility, is
POSIX. We won’t talk too much about that either—after all, this is bash Idioms, not
POSIX Idioms. Other dialects may appear when programmers write bash code in a
style that is more characteristic of another language they know. A flow that makes
sense in C may feel clumsy or disjointed in bash, though. So with this book, we
intend to demonstrate a “style or form of…expression that is characteristic” of bash
(in the spirit of the third definition in Webster’s Dictionary). Python programmers
talk about their style as “pythonic.” We’d like this book to illustrate and illuminate
code that is “bashy.”

By the end of this book the reader will be able to do the following:

• Write useful, flexible, and readable bash code…with style•
• Decode bash idioms such as ${MAKEMELC,,} and ${PATHNAME##*/}•
• Save time and ensure consistency when automating tasks•
• Amaze and impress colleagues with bash idioms•
• Discover how bash idioms can make your code clean and concise•

Running bash
We’re going to assume you are already programming in bash, and therefore you don’t
need to learn where to find or install it. Of course, bash is just there in almost all
Linux distributions, and already there by default or installable on virtually any other
operating system. You can get it in Windows using “Git for Windows”, Windows
Subsystem for Linux (WSL), or various other options we cover in the bash Cookbook.

viii | Preface

https://learning.oreilly.com/library/view/bash-cookbook-2nd/9781491975329/
https://learning.oreilly.com/library/view/bash-cookbook-2nd/9781491975329/
https://oreil.ly/jWTKj
https://gitforwindows.org
https://oreil.ly/8ijiP
https://oreil.ly/8ijiP
https://learning.oreilly.com/library/view/bash-cookbook-2nd/9781491975329/

bash on Mac
That said, watch out for stock bash on a Mac; it’s quite old, and many newer idioms
(v4+) won’t work. You can obtain a newer version by installing MacPorts, Homebrew,
or Fink and looking for bash. According to Apple, the issue is that newer versions of
bash use GPLv3, which is a problem for Apple.

On a related note, Apple also says that macOS Catalina and newer will use Zsh as
the default login and interactive shell. Zsh is mostly compatible with bash, but some
code in this book won’t work unmodified. On Macs, bash isn’t going away (yet, at
least), and having Zsh as your default shell will not affect a bash “shebang” line
(see “Shebang!” on page 94), but again, unless you upgrade, you’ll be stuck with
stone-age bash.

We’ve tagged example scripts “Does not work on Zsh 5.4.2” as a best-effort clue for
Mac users, but this is a book about bash, so we’re going to stay focused.

bash in Containers
Be careful in Docker or other containers where /bin/sh is not bash and /bin/bash
may not even exist! This applies to Internet of Things and other constrained environ‐
ments such as industrial controllers.

/bin/sh may be bash in “POSIX” mode, but it may also be Ash or Dash, or BusyBox
(which is probably actually Dash), or maybe even something else. You’ll need to be
specific (see also “Shebang!” on page 94) and possibly either ensure that bash is
actually installed or stick to POSIX and avoid “bashisms.”

Revision Control
We sincerely hope you are already using some kind of revision control system, so if
you are, you can skip this paragraph. If you are not, you should start immediately.
We cover all of that in an entire appendix in the bash Cookbook, but there are huge
amounts of information about that on the internet, including one author’s thoughts
on the subject. Go figure something out; we’ll wait.

Hello World
In many other resources, you have to wait until the end of chapter 1 or maybe even
chapter 2 or 3 before you get to “Hello World,” but we’re going to jump right in! Since
you are already writing bash code and keeping it in revision control (right?), talking
about echo 'Hello, World' would be pretty silly, so we won’t. Oops.

Preface | ix

https://oreil.ly/2PZRm
https://oreil.ly/PyKl4
https://oreil.ly/CUwhu
https://github.com/vossenjp/bashidioms-examples/blob/main/bcb2-appd.pdf
https://oreil.ly/fPHy8
https://oreil.ly/fPHy8

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/vossenjp/bashidioms-examples.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You

x | Preface

https://github.com/vossenjp/bashidioms-examples
mailto:bookquestions@oreilly.com

do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing examples from
O’Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “bash Idioms by Carl
Albing and JP Vossen (O’Reilly). Copyright 2022 Carl Albing and JP Vossen,
978-1-492-09475-3.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/bashIdioms.

Preface | xi

mailto:permissions@oreilly.com
https://oreilly.com
https://oreilly.com
https://oreil.ly/bashIdioms

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For more information about our books, courses, conferences, and news, see our
website at https://www.oreilly.com.

Find us on Facebook: https://facebook.com/oreilly.

Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: https://www.youtube.com/oreillymedia.

Acknowledgments
bash
Thank you to the GNU Software Foundation and Brian Fox for writing bash. And a
very big thank-you to Chet Ramey, who has been maintaining and improving bash
since around version 1.14 in the early to mid-1990s. You (plural) have given us a great
tool that has helped in so many ways.

Reviewers
Many thanks to our reviewers, Doug McIlroy, Ian Miell, Curtis Old, and Paul Tron‐
cone! They all provided valuable feedback, suggestions, and in some cases alternate
solutions, pointed out issues we had overlooked, and in general greatly improved the
book. Any errors or omissions in this text are ours and not theirs.

O’Reilly
Thanks to the entire team at O’Reilly, without whom this book would not exist (for
many reasons)—and if it did, the content wouldn’t be or look nearly as good!

Thanks to Mike Loukides for the original idea and for asking us and trusting us to
run with it. Thanks to Suzanne “Zan” McQuade for helping to flesh it out. Many
thanks to Nicole Taché for editing, sanity checks, and generally putting up with
us during the long writing process and to Kristen Brown for all the same things
during the production process. Special thanks to Nick Adams in Tools for fixing
our many (egregious) AsciiDoc bugs, and other above and beyond tool-chain help.
Thank you also to Kim Sandoval (copyeditor), Cheryl Lenser (indexer), Liz Wheeler
(proofreader), David Futato (interior design), Karen Montgomery (cover design), and
the rest of the great team at O’Reilly.

xii | Preface

mailto:bookquestions@oreilly.com
https://www.oreilly.com
https://facebook.com/oreilly
https://twitter.com/oreillymedia
https://www.youtube.com/oreillymedia

From Carl
Thanks to JP for all his work on this, his thoroughness, his attention to detail, and his
willingness to put up with me. Thanks to all the O’Reilly people for helping to bring
this to realization.

My work on this book is dedicated to my wife, Cynthia, who puts up with my strange
hours when I’m writing and pretends, convincingly, to be interested in what I’m
writing about. My work on this book is meant, as we say at Bethel University, for
God’s glory and my neighbor’s good.

From JP
Thanks to Carl for all his work; we seem to have managed complementary schedules
again. Thanks to Mike for getting the ball rolling (again) and to Nicole for keeping it
rolling and her patience with our work, life, and time management issues.

This book is dedicated to my wife, Karen, who is the executive vice president in
charge of all the things, without whom my life would not function. Thanks for your
incredible support, patience, and understanding. Finally, thanks to Kate and Sam, for
taking “unless you’re bleeding or on fire, I’ve got book stuff to do” for an answer.

Preface | xiii

CHAPTER 1

A Big “if” Idiom

To get you started in understanding bash idioms, we’ll look at a bash construct that
allows you to do what you might normally do with an if/then/else construct but
with sparser syntax. The idiomatic expression we’ll show you in this chapter has some
real advantages—mostly terseness—and some pitfalls to avoid. But if you don’t know
bash idioms, you might not recognize or realize what is going on.

Take a look at this piece of code:

[[-n "$DIR"]] && cd "$DIR"

Do you think that looks like an if statement? If you’re conversant in bash, you’ll rec‐
ognize that it is functionally the same thing; you’ll understand it as an if statement
even though the if keyword doesn’t appear in the code.

What’s going on?

The Big “if”
To explain this idiom, let’s first look at a similar but simpler example:

cd tmp && rm scratchfile

This too, is, in effect, an if statement. If the cd command succeeds, then (and only
then) execute the rm command. The “idiom” here is the use of the double ampersand
(&&), typically read as “and,” to separate the two commands.

Logic or philosophy classes teach the rule: the expression “A AND B” is true if and
only if both A and B are each true. Therefore if A is false, there is no need to even
consider the value of B. For example, consider “I own a dog AND I own a cat.” If I do
not own a dog, then this compound expression is false for me, regardless of my cat
situation.

1

Let’s apply this to bash. Remember that the basic function of bash is to execute
programs. The first part of this statement has the cd command execute. Similar to
the logic of the AND, if this first command fails, bash will not bother to execute the
second part, the rm command.

The use of the && is meant to remind you of the AND behavior. Bash isn’t actually
performing an “AND” operation on these two results. (If this were C/C++, that would
be a different story, though the conditional execution is the same.) However, this bash
idiom does provide the conditional execution of the second command—it isn’t run if
the first command fails.

Let’s go back and look at the original example we gave, namely this expression:

[[-n "$DIR"]] && cd "$DIR"

Do you think you “get it” now? The first expression tests to see if the length of the
value of the variable called DIR is nonzero. If it has a value, that is, if its length is
nonzero—and only if it’s nonzero—the cd command will attempt to change into a
directory named by the value of DIR.

We could have written this as an explicit if statement:

if [[-n "$DIR"]]; then
 cd "$DIR"
fi

To someone less familiar with bash, this latter format is certainly more readable and
easily understood. But there isn’t much going on inside the then clause, just the cd
command, so it seems a bit “bulky” in its syntax. You’ll have to decide which to use
based on who your readers will likely be and how likely other commands would be
added inside the then clause. We’ll offer more opinions on this topic in the sections
that follow.

bash Help

The bash help command is great for any builtin command, but
help test provides especially helpful clues about the test expres‐
sion, like -n. You might also check man bash, but if you do, you’ll
want to search for “conditional expressions.” The bash man page is
very long; help thing has much shorter, focused topics. If you are
not sure if the command in question is a bash builtin, just try it
with the help command, or use type -a thing to find out.
Admittedly, knowing that help test will tell you what -n means is
tricky, but then, you were smart enough to buy this book, so now
you know. Here is another subtle little tidbit; go try this: help [.
You’re welcome.

2 | Chapter 1: A Big “if” Idiom

https://oreil.ly/NQAaZ

Or ELSE…
A similar idiom is available using the || characters to separate two items in a bash
list. Pronounced “or,” the second part will execute only if the first part fails. This is
meant to remind you of the logic rule for “OR,” as in: A OR B. The whole expression
is true if either A is true or B is true. Put another way, if A is true, it doesn’t matter if B
is true or false. For example, consider the phrase “I own a dog OR I own a cat.” If I do,
in fact, own a dog, then this expression is true for me regardless of my cat situation.

Applying this to bash:

[[-z "$DIR"]] || cd "$DIR"

Do you think you can explain this one? If the variable is of length zero, then the first
part is “true,” so there is no need to execute the second half; no cd command will be
run. But if the length of $DIR is nonzero, the test would return “false,” so only then
would we run the cd command.

You might read the line of bash as “Either $DIR is zero length, OR we attempt to cd
into that directory.”

To write that as an explicit if statement is a bit odd, as there is no then action to be
taken. The code after the || is like the else clause:

if [[-z "$DIR"]]; then
 :
else
 cd "$DIR"
fi

The ":" is a null statement in shell—so it does nothing in that case.

In summary: two commands separated by an && are like an if and its then clause;
two commands separated by a || are like an if and its else clause.

More than One
You might want to do more than one thing in this else-like clause after the || (or in
a then-like clause after an &&) and therein lies a danger. It might be tempting to write
something like this:

Caution: not what you might think!
cd /tmp || echo "cd to /tmp failed." ; exit

The “or” connection tells us that if the cd fails we will execute the echo command,
telling the user that the cd failed. But here’s the catch: the exit will happen regardless.
Not what you expected, right?

Or ELSE… | 3

Think of the semicolon as equivalent to a newline, and it all becomes much clearer
(and more obviously not what you wanted):

cd /tmp || echo "cd to /tmp failed."
exit

How can we get the behavior we want? We can group the echo and exit together so
that they are, taken together, the clause on the righthand side of the “or,” like this:

Succeed with the cd or bail with a message
cd /tmp || { echo "cd to /tmp failed." ; exit ; }

The braces are bash syntax for a compound command, i.e., grouping statements
together. You may have seen something similar using parentheses, but using paren‐
theses executes the statements in a subshell, also referred to as a child process. That
would incur an overhead we don’t need, and the exit occurring from within a subshell
wouldn’t accomplish much either.

Closing Compound Commands

A quirk of bash requires a specific syntax for how you close the
compound command. It must end with either a semicolon or a
newline before the closing brace. If you use a semicolon, there
needs to be whitespace before the brace so that the brace can be
recognized as a reserved word (otherwise it gets confused with the
closing brace of shell variable syntax, as in ${VAR}, for example).
That is why the preceding example ends with what looks to be an
extraneous semicolon: { echo "…" ; exit ; }. Using a newline,
that final semicolon isn’t needed:

Succeed with the cd or bail with a message
cd /tmp || { echo "cd to /tmp failed." ; exit
 }

but that might not read as cleanly. At the left edge, it seems oddly
placed; indented with whitespace, it groups more logically but
seems bare.
We recommend you stick with the extra semicolon, and don’t for‐
get the space between it and the closing brace.

More than One Again
What if you need more complex logic? What about multiple AND and OR con‐
structs? How are they handled? What do you think the following line of code will do?

[-n "$DIR"] && [-d "$DIR"] && cd "$DIR" || exit 4

If the DIR variable is not empty and the file named by the DIR variable is a directory,
then it will cd to that directory; otherwise it will exit from the script, returning a 4.

4 | Chapter 1: A Big “if” Idiom

https://oreil.ly/lZnvi

That does what you might have expected—but maybe not for the reason you think.
You might, from this example, be tempted to think that the && has higher precedence
than the || operator, but it doesn’t. They’re just grouping from left to right. The
syntax for bash says that the && and || operators are of equal precedence and are left
associative. Need convincing? Look at these examples:

$ echo 1 && echo 2 || echo 3
1
2
$

but also:

$ echo 1 || echo 2 && echo 3
1
3
$

Notice that it always evaluates the leftmost operator regardless of whether it’s AND
or OR; it’s not operator precedence but simple left associativity that determines the
order of evaluation.

Don’t Do This
While we’re on the subject of if statements (or how not to use them), here’s an
example of an explicit if that you may see quite often in older scripts. We show it to
you here so that we can explain the idiom but also to urge you never to imitate this
style. Here’s the code:

Don't write your if statements to check like this
if [$VAR"X" = X]; then
 echo empty
fi

Or this
if ["x$VAR" == x]; then
 echo empty
fi

Or other variations on this theme

Don’t do this. What are they doing in this code? They’re checking to see if the variable
VAR is empty. They do that by appending the value of VAR with some character (here
X). If the resulting string matches just the letter itself, then the variable was empty.
Don’t do this.

Don’t Do This | 5

There are better ways to make this check. Here’s a simple alternative:

Is the length of the variable zero? i.e., empty or null
if [[-z "$VAR"]]; then
 echo empty
fi

Single Versus Double Brackets

This example of what not to do uses the single brackets, [and],
to surround the condition that they are testing. That’s not what
we’re asking you to avoid. We want you to avoid the string append
and comparison; instead, use the -z or -n to make these tests. So
why have our examples all used double brackets, [[and]], for our
if (and non-if) statements? They are an addition to bash (not in
the original sh command), and they avoid some confusing edge
case behaviors that single brackets exhibit (variable inside quotes
or not). We showed this example with single brackets as this type
of comparison is often seen in older scripts. You may need to
stay with single brackets, if your goal is portability across various
platforms and/or to non-bash platforms (e.g., dash). As a side note,
the double brackets are keywords, whereas the left single bracket
is a builtin, a difference that may explain some subtle differences
in behaviors. Our advice remains to use the double-bracket syntax
except when unavoidable.

You can check for the opposite case, checking to see if the length of the string is
nonzero, by using the -n option or by just referencing the variable:

This checks for a nonzero length, i.e., not empty, not null
if [[-n "$VAR"]]; then
 echo "VAR has a value:" $VAR
fi

Same here
if [["$VAR"]]; then
 echo even easier this way
fi

So you see there is no need to use that other approach, which was necessary in legacy
versions of the test command (“[”) that are rarely used anymore. We thought you
ought to see it, though, so you’ll recognize it in older scripts. Now you also know a
better way to write it.

6 | Chapter 1: A Big “if” Idiom

Style and Readability: Recap
In this chapter we took a look at a particular bash idiom—the “no-if ” if statement. It
doesn’t look like a traditional if/then/else, but it can behave exactly like one. Unless
this is something you recognize, some scripts that you read might remain obscure.
This idiom is also worth using to check that any necessary preconditions are in place
before executing a command, or to make a short error check without disrupting the
flow of the main logic of the script.

By using && and || operators, you can write if/then/else logic without the use of
those familiar keywords. But bash does have if, then, and else as keywords. So when
do you use them, and when do you use the shorthand? The answer comes down to
readability.

For complex logic, it makes the most sense to use the familiar keywords. But, for
simple test and check situations with single actions, using the && and || operators can
be very convenient and will not distract from the main flow of logic. Use help test
to remind you which tests you can use, like -n -r, and consider copying the help text
into a comment for the future.

In either case, for familiar if statements or idiomatic “no-if ” statements, we encour‐
age the use of the double-bracket syntax.

Now that you’ve seen one bash idiom in depth, let’s take a look at others and really up
your bash game.

Style and Readability: Recap | 7

CHAPTER 2

Looping Lingo

It’s not just C-style for loops—bash includes other syntaxes and styles; some are
more familiar to Python programmers, but each has its place. There is a for loop
with no apparent arguments, useful in both scripts and inside functions. There’s also
an iterator-like for loop with explicit values and values that can come from other
commands.

Looping Constructs
Looping constructs are common in programming languages. Since the invention of
the C language, many programming languages have adopted the C-style for loop.
It’s such a powerful, readable construct because it groups the initialization code, the
termination condition, and the iteration code all into one place. For example, in C (or
Java, or…):

/* NOT bash */
for (i=0; i<10; i++) {
 printf("%d\n", i);
}

With just a few minor syntax differences, bash follows much the same approach:

for ((i=0; i<10; i++)); do
 printf '%d\n' "$i"
done

Note, especially, the use of double parentheses. Rather than braces, bash uses do and
done to enclose the statements of the loop. As with C/C++, an idiomatic use of the
for loop is the empty for loop, giving a deliberate infinite loop (you’ll also see while
true; do):

9

for ((;;)); do
 printf 'forever'
done

But that’s not the only kind of for loop in bash. Here’s a common idiom in shell
scripts:

for value; do
 echo "$value"
 # Do more stuff with $value...
done

This looks like something is missing, doesn’t it? Where does value get its values? This
won’t do anything for you on the command line, but if you use this in a shell script,
then the for loop will iterate over the parameters to the script. That is, it will use $1,
then $2, then $3, and so on, as the values for value.

Put that for loop in a file called myloop.sh, then you can run it like this and see the
three arguments (“-c”, “17”, and “core”) printed out:

$ bash myloop.sh -c 17 core
-c
17
core
$

This abbreviated for loop is also very often found in function definitions:

function Listem {
 for arg; do
 echo "arg to func: '$arg'"
 done
 echo "Inside func: \$0 is still: '$0'"
}

Inside a function definition, the parameters $1, $2, etc., are the parameters to the
function and not parameters to the enclosing shell script. Therefore, inside the func‐
tion definition, the for loop will iterate over the parameters passed to the function.

This minimalist for loop iterates over an implied list of values—the parameters
passed either to the script or the function. When used in the main body of a script,
it iterates over the parameters that were passed to the script; when used inside a shell
function, it iterates over the parameters that were passed to that function.

This is definitely one of the obscure bash idioms. You need to know how to read
it, but we’ll circle back to debate how to write it in a later section (spoiler alert: like
Python says, explicit is better than implicit).

We might like a similarly simple loop but one with explicit values of our own
choosing not limited to the parameters—bash has just the thing.

10 | Chapter 2: Looping Lingo

Explicit Values
In bash, the for loop can be given a list of values to loop over, like this:

for num in 1 2 3 4 5; do
 echo "$num"
done

Since bash is dealing with strings, we aren’t restricted to numbers:

for person in Sue Neil Pat Harry; do
 echo $person
done

Of course, the list of values can include variables as well as literals:

for person in $ME $3 Pat ${RA[2]} Sue; do
 echo $person
done

Another source of values for the for loop can come from other commands, either a
single command or a pipeline of commands:

for arg in $(some cmd or other | sort -u)

Examples of this kind are:

for arg in $(cat /some/file)
for arg in $(< /some/file) # Faster than shelling out to cat
for pic in $(find . -name '*.jpg')
for val in $(find . -type d | LC_ALL=C sort)

A common use, especially in older scripts, is something like this:

for i in $(seq 1 10)

because the seq command will generate a sequence of numbers. This case could be
considered equivalent to:

for ((i = 1; i <= 10; i++))

This latter for is more efficient and probably more readable. (Note that after the loop
terminates, however, the value of i will differ between those two forms [10 versus 11],
though generally one doesn’t use the value outside of the loop.)

There’s also this variation, but it has bash version portability issues because the brace
expansion was introduced in v3.0 and zero-padding of expanded numeric values was
introduced in v4.0:

for i in {01..10}; do echo "$i"; done

Explicit Values | 11

Leading Zeros

When either of the first two terms starts with a zero in a
{start..end..inc} brace expansion, it will force each output value
to be the same width—using zeros to pad them on the left side
in bash v4.0 or newer. So {098..100} will result in: 098 099 100,
whereas {98..0100} will pad to four characters, resulting in: 0098
0099 0100.

This brace expansion construct can be especially useful when you want the numbers
that are being generated to be part of a larger string. You simply put the brace
construct as part of the string. For example, if you want to generate five filenames like
log01.txt through log05.txt, you could write:

for filename in log{01..5}.txt ; do
 # Do something with the filenames here
 echo $filename
done

Braces Versus printf -v

You could also do this with a numeric for loop and then a printf
-v to construct the filename from the numbers, but the brace
expansion seems a bit simpler. Use the numeric for loop and
printf when you need the numeric values for something else in
addition to the filenames.

The seq command, though, can still be very useful for generating a sequence of
floating-point style numbers. You specify an increment between the starting and
ending values:

for value in $(seq 2.1 0.3 3.2); do
 echo $value
done

would yield:

2.1
2.4
2.7
3.0

Just remember that bash doesn’t do floating point arithmetic. You may want to
generate these values to pass to some other program from within your script.

12 | Chapter 2: Looping Lingo

Similar to Python
Here’s another common phrase seen in for loops in bash:

for person in ${name_list[@]}; do
 echo $person
done

which might produce output like this:

Arthur
Ann
Henry
John

Looking at that example, you might be tempted to think that this bash for loop is like
Python, where it can iterate over values returned by an iterator object. Well, bash is
iterating over a series of values in this example, but those values don’t come from an
iterator object. Instead the names are all spelled out before the looping begins.

The construct ${name_list[@]} is bash syntax for listing all the values of a bash
array, henceforth called a list. (See the terminology discussion in the introduction to
Chapter 7. In this example, the list is called name_list.) A substitution is made by
bash as it prepares the command to be run. So the for loop doesn’t see the list syntax;
the substitution happens first. What the for loop gets looks just as if we typed the
values explicitly:

for person in Arthur Ann Henry John

What about dictionaries? What Python calls “dictionaries,” bash refers to as “asso‐
ciative arrays” and what others call “key/value pairs” or “hashes” (again, see the
introduction to Chapter 7). The construct ${hash[@]} works fine for the values of the
key/value pairs. To loop over the keys (i.e., indices) of the hash, add an exclamation
point. The construct ${!hash[@]} can be used, as shown in this code snippet:

We want a hash (i.e., key/value pairs)
declare -A hash
Read in our data
while read key value; do
 hash[$key]="$value"
done
Show us what we've got, though they won't
likely be in the same order as read
for key in "${!hash[@]}"; do
 echo "key $key ==> value ${hash[$key]}"
done

Similar to Python | 13

Here’s an alternate example:

We want a hash (i.e., key/value pairs)
declare -A hash
Read in our data: word and # of occurrences
while read word count; do
 let hash[$word]+="$count"
done
Show us what we've got, though the order
is based on the hash, i.e., we don't control it
for key in "${!hash[@]}";do
 echo "word $key count = ${hash[$key]}"
done

This chapter is more about looping constructs like for, but if you want more details
and examples about lists and hashes, see Chapter 7.

Quotes and Spaces
There is one more important aspect to consider about this for loop. Did you catch
our inconsistent use of quotes in the preceding example? If the values in the list
have spaces in them (for example, if each entry had a first and last name), then our
example for loop:

for person in ${namelist[@]}; do
 echo $person
done

might produce output like this:

Art
Smith
Ann
Arundel
Hank
Till
John
Jakes

The for loop prints out eight different values for the four names in our list. Why?
How? The answer lies in the substitution that bash makes for ${namelist[@]}. It just
puts those names in place of the variable expression. That leaves eight words in the
list, like this:

for person in Art Smith Ann Arundel Hank Till John Jakes

The for loop is just given a list of words. It doesn’t know where they came from.

There is bash syntax to solve this dilemma: put quotes around the list expression and
each value will be quoted.

for person in "${namelist[@]}"

14 | Chapter 2: Looping Lingo

will be translated to:

for person in "Art Smith" "Ann Arundel" "Hank Till" "John Jakes"

and that will yield the desired result:

Art Smith
Ann Arundel
Hank Till
John Jakes

If your for loop is going to iterate over a list of filenames, then you should be sure to
use the quotation marks, since filenames might have a space in them.

There is one last twist to all this. The list syntax can use either * or @ to list all
the elements of the list: ${namelist[*]} works just as well…except when put inside
quotes. The expression:

"${namelist[*]}"

will be evaluated with all of the values inside of a single string. In this example:

for person in "${namelist[*]}"; do
 echo $person
done

would result in a single line of output, like this:

Art Smith Ann Arundel Hank Till John Jakes

Though a single string might be useful in some contexts, it is especially pointless in a
for loop—there would be only one iteration. We recommend using @ unless you are
positive that you need *.

See also “Quoting” on page 129.

Developing and Testing for Loops
It turns out that “for list do something” loops are extremely useful in all kinds of
ways. Let’s take two simple examples: running SSH commands on a list of servers
and renaming files, like for file in *.JPEG; do mv -v $file ${file/JPEG/jpg};
done. But how do you develop and test a script or even a simple for command? The
same way you develop anything else: start simple and go one step at a time. But in
particular, you use echo (see Example 2-1). Note that the bash builtin echo has a
number of interesting options, but is not POSIX (see “POSIX Output” on page 56).
The most interesting and often used are -e (to enable interpretation of backslash
escapes) and -n (to suppress the automatic trailing newline).

Developing and Testing for Loops | 15

Example 2-1. File rename—test version

Building and testing a rename command, note the echo
for file in *.JPEG; do echo mv -v $file ${file/JPEG/jpg}; done

Simple multi-node SSH, note the 1st echo (can do on 1 line, broken for book)
for node in web-server{00..09}; do
 echo ssh $node 'echo -e "$HOSTNAME\t$(date "+%F") $(uptime)"';
done

Once it’s working as expected, remove that leading echo and go. Of course, if you are
using redirection in the block, you have to be careful about that, perhaps changing |
to .p., > to .gt., and so on until you get each stage working.

Execute the Same Command Across Multiple Hosts

This is way out of scope for this book, but if you need to run
the same command on many hosts, you should probably be using
Ansible, Chef, Puppet, or a similar tool. Sometimes you have a
really quick and dirty need, and one of these tools might be useful:

clusterssh
Written in Perl, it opens a bunch of unmanaged terminals in
windows.

mssh (MultiSSH)
GTK+–based multi-SSH client in a single GUI window.

mussh
MUltihost SSH Wrapper shell script.

pconsole
Intended for tiling window managers, spawns a terminal per
host.

multixterm
Written in Expect & Tk, drives multiple xterms.

PAC Manager
A Perl SecureCRT-like GUI on Linux.

while and until
We mentioned while in passing previously, and it works as you’d expect—“execute
block while criteria exit status is zero”:

while <CRITERIA>; do <BLOCK>; done

16 | Chapter 2: Looping Lingo

It’s often used in reading files; see several examples in Chapter 9. For argument
parsing, see “Parsing Options” on page 75.

Unlike other languages, in bash until is just ! while, or “execute block while criteria
exit status is not zero”:

until <CRITERIA>; do <BLOCK>; done
Same:
! while <CRITERIA>; do <BLOCK>; done

This is really handy for something like waiting for a node to be created or rebooted
(Example 2-2).

Example 2-2. Wait for reboot

until ssh user@10.10.10.10; do sleep 3; done

Style and Readability: Recap
In this chapter, we first took a quick look at the C/C++ style numerical for loop.
Then we went further. Bash is very string oriented and has some other styles of
for loops worth knowing. Its minimalist loop for variable provides implicit (and
arguably obscure) iteration over the arguments to a script or a function. An explicit
list of values, string or otherwise, provided to the for loop also gives us the perfect
mechanism for iterating over all the elements of a list or over all keys in a hash.

We now know that both ${namelist[@]} and ${namelist[*]} show all the values
of the list, but if they are enclosed in double quotes, the result is different: separate
strings versus one large string. The same is true for the special shell variables $@ and
$*. They both represent the list of all the arguments to the script (i.e., $1, $2, etc.).
When enclosed in double quotes, though, they also result in either multiple strings or
a single string. Why bring that up now? Only to circle back to our simplest for loop:

for param

and say that this is equivalent to:

for param in "$@"

We argue that the second form is better because it shows more explicitly which values
are being iterated over. However, there is a counterargument that the $@ variable
name itself and the necessity of the quotes are both specialized knowledge that is no
more obvious to the naive reader than just the first, simple form. If you really prefer
the first form, simply add a comment:

for param # Iterate over all the script arguments

Style and Readability: Recap | 17

When looping over a sequence of integer values, the C-style for loop with double
parentheses is probably the most readable as well as the most efficient. (If efficiency is
a big concern, be sure to use declare -i i early in your script to make your variable
"i" an explicit integer, avoiding conversion to/from a string.)

Knowing that you have all these values readily available, what might you do with
them? What goes on inside the loop, making use of these values? Decisions must
be made about the values encountered, and decision-making brings us to another
important feature in bash: its supercharged and superflexible case statement, the
topic of the next chapter.

for commands are extremely useful but can be tricky to develop. Start simple and
use echo until you’re sure your command is working as intended. And remember the
“syntactic sugar” while and until commands for readability where useful.

18 | Chapter 2: Looping Lingo

CHAPTER 3

Just in CASE

Many programming languages provide a “switch” or “match” statement, an n-way
branch, used as an alternative to a string of if/then/else clauses. There is a similar
construct in bash: the case statement. It comes with powerful pattern matching and is
very useful in scripting.

Make Your Case
The keywords case and in delineate the value you want to compare against various
patterns. Here’s a simple example:

case "$var" in
 yes) echo "glad you agreed" ;;
 no)
 echo "sorry; good bye"
 exit
 ;;
 *) echo "invalid answer. try again" ;;
esac

…which you can probably figure out. It checks to see if the value in $var is “yes” or
“no” and executes the corresponding statement(s). It even has a default action. The
end of the case statement is marked by esac, which is case spelled backward. This
example is pretty readable, but it just scratches the surface. You’ll also note that you
used two different block styles, a “one-liner” for yes and a more typical block (closed
by ;;…more on that later) for no. Which you use depends on what you are doing and
how the code lines up for readability.

19

(in case

The syntax for the case statement includes an optional “(” to
match the “)” in the example. For example, we could have written
("yes") instead of just "yes") and similarly for the other items.
We’ve rarely seen this used, though. After all, who wants to type an
extra character?

The real power of the case statement, and the most idiomatic appearance, comes
from using the shell’s pattern matching for the various possible value comparisons:

case "$var" in

 [Nn][Oo]*)
 echo "Fine. Leave then."
 exit
 ;;
 [Yy]?? | [Ss]ure | [Oo][Kk]*)
 echo "OK. Glad we agree."
 ;;
 *) echo 'Try again.'
 continue
 ;;
esac

Here is a quick review of bash pattern matching, which you are probably familiar
with as command line wildcards (or globs). There are three special characters to watch
for: ? matches a single character, * matches any number of characters (including
none), and brackets, [], match any of the characters included between the brackets.

In our example, the construct [Yy] matches either uppercase Y or lowercase y. The
construct [Nn][Oo]* matches either upper- or lowercase N, followed by either upper-
or lowercase O, followed by any number of any other characters. The pattern matches
the following words (and others, too): no, No, nO, NO, noway, Not Ever, and nope. It
will not be a match if the value of $var is the word never.

Can you guess some possible values for the affirmative case? The vertical bar sepa‐
rates different patterns that would all lead to the same result. (Think “OR” but not
the || or.) The words Yes, yes, YES, yEs, yES, yup, Sure, sure, OK, ok, and OKfine and
“OK why not” would all work. But these words would not: ya, SURE, oook, and many
more.

The default case isn’t special syntax—it’s just a pattern—but this pattern would match
anything. If no other previous pattern has produced a match, then we know that this
one will—it matches any number of any characters. Therefore, bash script writers put
this one last in the list if they want to catch a default case.

20 | Chapter 3: Just in CASE

https://oreil.ly/AtYU1

Not RegEx

The pattern matching used in the case statement is not regular
expressions. There is only one place in bash where regular expres‐
sions (regex or regexp) are allowed, and that’s in the if statement
using the =~ comparison operator. If you really need to use regex,
then you need to use a series of if/then/else statements instead of
case.

A Realistic Use Case
Code that parses command line options is a common place to find a case statement.
Let’s look at a simple but somewhat realistic script that makes good use of a case
statement.

Motivation
If you’ve ever used Linux or Unix, you’ve likely made extensive use of the ls com‐
mand to list out filenames and related information. Some options to ls are quite
handy at giving more information or sorting it in certain ways. You might develop
certain habits of how you use ls or the options you use most frequently. As a result,
you might create some aliases or even entire scripts to make it easier to use your
favorite combinations. But then you end up with several distinct scripts. They’re all
related in functionality but all distinct. How might we combine them all into one
script?

Consider a familiar example, the popular source control software called Git. It has
several related but distinct functions, all invoked with the one command name git
but each distinguished by a separate second keyword, for example, git clone, git
add, git commit, git push, and so forth.

Our Script
We can apply this “subcommand” approach to our situation. Let’s consider a few
ls-related functions that we’d like to use: listing the files in order of filename length
(along with the length), listing just the longest filename, listing the last few most
recently modified files, and listing filenames with color coding indicating file type—a
standard feature of ls but one that requires a few hard-to-remember options.

Our script will be named list, but there will be a second word to specify one of these
functions. That word could be color, last, length, or long. Example 3-1 contains a
script that does that.

A Realistic Use Case | 21

Example 3-1. Simple wrapper script using case

#!/usr/bin/env bash
list.sh: A wrapper script for ls-related tools & simple `case..esac` demo
Original Author & date: _bash Idioms_ 2022
bash Idioms filename: examples/ch03/list.sh
#___
VERSION='v1.2b'

function Usage_Exit {
 echo "$0 [color|last|len|long]"
 exit
}

Show each filename preceded by the length of its name, sorted by filename
length. Note '-' is valid but uncommon in function names, but it is not
valid in variable names. We don't usually use it, but you can.
function Ls-Length {
 ls -1 "$@" | while read fn; do
 printf '%3d %s\n' ${#fn} ${fn}
 done | sort -n
}

(($# < 1)) && Usage_Exit
sub=$1
shift

case $sub in
 color) # Colorized ls
 ls -N --color=tty -T 0 "$@"
 ;;

 last | latest) # Latest files
 ls -lrt | tail "-n${1:-5}"
 ;;

 len*) # Files with name lengths
 Ls-Length "$@"
 ;;

 long) # File with longest name
 Ls-Length "$@" | tail -1
 ;;

 *) # Default
 echo "unknown command: $sub"
 Usage_Exit
 ;;
esac

22 | Chapter 3: Just in CASE

We won’t explain all the parts of this script here, though by the end of this book, you
will have learned about all the features used. We want to focus mainly on the case
statement:

Do you recognize the non-if if logic? If not, (re)read Chapter 1.

This is a simple “or” choice between two words.

Use tail -n5 as the default if a value is not given in $1; see “Default Values” on
page 38.

This pattern will match any word that begins with “len,” so either “len” or
“length” with match, but so will “lenny” and “lens.” It then calls the Ls-Length
function (which we defined in the script), passing it all the command line argu‐
ments (if any) supplied to this script.

Wrapper Scripts
Everyone has a lot going on, and a lot to remember, so when you can automate or
write a script to remember details for you, that’s a win. We showed one way to do a
“wrapper script” in Example 3-1, but there are a number of interesting variations and
tricks that you can use depending on the complexity of the problem you are solving
or details you are “remembering.” In Example 3-1, we called a function or just put
the code inline. That works best with very short code blocks, which in our experience
are quite common in these kinds of wrapper scripts. If you have a more complicated
solution, or you are working with existing tools, you can call those or a sub-script
instead, though you need to tweak the error-checking and possibly usage options.
You can also combine that with “Drop-in Directories” on page 93 and source all the
“modules” from a directory, perhaps to delegate maintenance of parts of the code to
other people or teams.

This larger example is actually a simplified and excerpted version of a script we used
while writing this book. AsciiDoc is cool, but we work with a lot of markup languages
and they all blur together, so we can write a tool to remember things for us, shown in
Example 3-2.

Example 3-2. Complex wrapper script using case

#!/usr/bin/env bash
wrapper.sh: Simple "wrapper" script demo
Original Author & date: _bash Idioms_ 2022
bash Idioms filename: examples/ch03/wrapper.sh
#___

Trivial Sanity Checks

Wrapper Scripts | 23

[-n "$BOOK_ASC"] || {
 echo "FATAL: export \$BOOK_ASC to the location of the Asciidoc files!"
 exit 1
}
\cd "$BOOK_ASC" || {
 echo "FATAL: can't cd to '$BOOK_ASC'!"
 exit 2
}

SELF="$0"

action="$1"
shift
[-x /usr/bin/xsel -a $# -lt 1] && {
 # Read/write the clipboard on Linux
 text=$(xsel -b)
 function Output {
 echo -en "$*" | xsel -bi
 }
} || {
 # Read/write STDIN/STDOUT
 text=$*
 function Output {
 echo -en "$*"
 }
}

case "$action" in

 ###
 # Content/Markup

 ### Headers
 h1) # Inside chapter heading 1 (really AsciiDoc h3)
 Output "[[$($SELF id $text)]]\n=== $text"
 ;;
 h2) # Inside chapter heading 2 (really AsciiDoc h4)
 Output "[[$($SELF id $text)]]\n==== $text"
 ;;
 h3) # Inside chapter heading 3 (really AsciiDoc h5)
 Output "[[$($SELF id $text)]]\n===== $text"
 ;;

 ### Lists
 bul|bullet) # Bullet list (** = level 2, + = multiline element)
 Output "* $text"
 ;;
 nul|number|order*) # Numbered/ordered list (.. = level 2, + = multiline)
 Output ". $text"
 ;;
 term) # Terms
 Output "term_here::\n $text"

24 | Chapter 3: Just in CASE

 ;;

 ### Inline
 bold) # Inline bold (O'Reilly prefers italics to bold)
 Output "*$text*"
 ;;
 i|italic*|itl) # Inline italics (O'Reilly prefers italics to bold)
 Output "_${text}_"
 ;;
 c|constant|cons) # Inline constant width (command, code, keywords, more)
 Output "+$text+"
 ;;
 type|constantbold) # Inline bold constant width (user types literally)
 Output "*+$text+*"
 ;;
 var|constantitalic) # Inline italic constant width (user-supplied values)
 Output "_++$text++_"
 ;;
 sub|subscript) # Inline subscript
 Output "~$text~"
 ;;
 sup|superscript) # Inline superscript
 Output "^$text^"
 ;;
 foot) # Create a footnote
 Output "footnote:[$text]"
 ;;
 url|link) # Create a URL with alternate text
 Output "link:\$\$$text\$\$[]" # URL[link shows as]
 ;;
 esc|escape) # Escape a character (esp. *)
 Output "\$\$$text\$\$" # $$*$$
 ;;

 ###
 # Tools

 id) ## Convert a hack/recipe name to an ID
 #us_text=${text// /_} # Space to '_'
 #lc_text=${us_text,,} # Lowercase; bash 4+ only!
 # Initial `tr -s '_' ' '` to preserve _ in case we process an ID
 # twice (like from "xref")
 # Also note you can break long lines with a trailing \
 Output $(echo $text | tr -s '_' ' ' | tr '[:upper:]' '[:lower:]' \
 | tr -d '[:punct:]' | tr -s ' ' '_')
 ;;

 index) ## Creates 'index.txt' in AsciiDoc dir
 # Like:
 # ch02.asciidoc:== The Text Utils
 # ch02.asciidoc:=== Common Text Utils and similar tools

Wrapper Scripts | 25

 # ch02.asciidoc:=== Finding data
 egrep '^=== ' ch*.asciidoc | egrep -v '^ch00.asciidoc' \
 > $BOOK_ASC/index.txt && {
 echo "Updated: $BOOK_ASC/index.txt"
 exit 0
 } || {
 echo "FAILED to update: $BOOK_ASC/index.txt"
 exit 1
 }
 ;;

 rerun) ## Run examples to re-create (existing!) output files
 # Only re-run for code that ALREADY HAS a *.out file...not ALL *.sh code
 for output in examples/*/*.out; do
 code=${output/out/sh}
 echo "Re-running code for: $code > $output"
 $code > $output
 done
 ;;

 cleanup) ## Clean up all the xHTML/XML/PDF cruft
 rm -fv {ch??,app?}.{pdf,xml,html} book.{xml,html} docbook-xsl.css
 ;;

 *)
 \cd - # UGLY cheat to revert the 'cd' above...
 (echo "Usage:"
 egrep '\)[[:space:]]+# ' $0
 echo ''
 egrep '\)[[:space:]]+## ' $0
 echo ''
 egrep '\)[[:space:]]+### ' $0) | grep "${1:-.}" | more
 ;;

esac

We’ve got a lot going on in there, so let’s unpack it all:

The real script does a lot of operations on the AsciiDoc source code for this book,
so it’s just easier to make sure we’re in the right place and that we have a handy
environment variable set.

We usually use $PROGRAM to hold a bash basename, but in this case we’re going to
be calling this script recursively a lot, so $SELF just seemed more intuitive.

As we’ll discuss more in Chapter 11, using meaningful variable names instead of
positional arguments is a good idea, so let’s do that.

26 | Chapter 3: Just in CASE

And once we’ve captured the action, we don’t need the old $1 anymore, but there
might be more options, so shift $1 away.

If /usr/bin/xsel exists and is executable, and if there are no more options, we
know we’re reading and writing from the X Window clipboard, otherwise we’re
getting text from the arguments and sending output to STDOUT. In practice, we
copy from an editor, switch to the command line, run the tool, switch back, and
paste.

This is where we start actually doing something—that is, figuring out what our
“action” is.

For code organization and readability, break actions up into sections; see also .

Let’s start with markup for headers.

This line is both code and documentation. The $action is that we want
a top-level (for the book code) header, h1. We’ll see later how that is also
documentation.

Do the work. First, call ourselves to get an AsciiDoc “ID” for the text, then output
that ID in double square brackets, followed by a newline, then have the text
indented with === for the header level, then, finally, call the Output function.
Hopefully the rest of the code is easy to understand.

For code organization and readability, break actions up into sections; see also .

You can break long lines with a trailing \; see also “Layout” on page 130.

Things get interesting again in the catch-all, which combines help or usage with
unknown argument handing and a great “search in help” feature.

We wrap whatever output we have into a subshell we pipe into more in case it’s
long.

Here’s the “line of code as documentation” we talked about in callout . We grep
for the closing paren,), from our case statement, followed by spaces, followed by
a single comment marker, #. That gives us our level 1 “Content/Markup” actions.
That pulls out the actual lines of code that make the case statement work, but it
also shows you what it does because of how we’ve added the comments.

This does the same for the level 2 “Tools” section.

Wrapper Scripts | 27

This would do the same for level 3, which handles Git operations, but we’ve
omitted that code for simplicity here. But it also uses grep with ${1:-.} to show
us help on either something we asked for, like wrapper.sh help heading, or
everything (grep "."). With a script this short, that may not seem like a big deal,
but when it grows over time (and it will), that becomes really handy!

The result of the grep commands and the “levels” noted previously is to display a help
message that is sorted but grouped into “level 1” and “level 2” sections:

$ examples/ch03/wrapper.sh help
Usage:
 h1) # Inside chapter heading 1 (really AsciiDoc h3)
 h2) # Inside chapter heading 2 (really AsciiDoc h4)
 h3) # Inside chapter heading 3 (really AsciiDoc h5)
 bul|bullet) # Bullet list (** = level 2, + = multiline element)
 nul|number|order*) # Numbered/ordered list (.. = level 2, + = multiline)
 term) # Terms
 bold) # Inline bold (ORA prefers italics to bold)
 i|italic*|itl) # Inline italics (ORA prefers italics to bold)
 c|constant|cons) # Inline constant width (command, code, keywords, more)
 type|constantbold) # Inline bold constant width (user types literally)
 var|constantitalic) # Inline italic constant width (user-supplied values)
 sub|subscript) # Inline subscript
 sup|superscript) # Inline superscript
 foot) # Create a footnote
 url|link) # Create a URL with alternate text
 esc|escape) # Escape a character (esp. *)
 id) ## Convert a hack/recipe name to an ID
 index) ## Creates 'index.txt' in AsciiDoc dir
 rerun) ## Run examples to re-create (existing!) output files
 cleanup) ## Clean up all the xHTML/XML/PDF cruft

$ examples/ch03/wrapper.sh help heading
 h1) # Inside chapter heading 1 (really AsciiDoc h3)
 h2) # Inside chapter heading 2 (really AsciiDoc h4)
 h3) # Inside chapter heading 3 (really AsciiDoc h5)

One More Twist
At the end of each bit of code associated with a pattern, we ended with a double
semicolon. In our first example at the start of this chapter, we wrote:

 "yes") echo "glad you agreed" ;;

After the echo command, we put a ;;, which indicates that no further action should
be taken. Execution will continue after the esac keyword.

But sometimes you don’t want that behavior. In some situations, you might want
other patterns in the case statement to be checked, or other actions taken. The syntax
in bash allows for this, with ;;& and ;& used to indicate these variations.

28 | Chapter 3: Just in CASE

Here’s an example of that behavior that provides details about the path in $filename:

case $filename in
 ./*) echo -n "local " # Begins with ./
 ;& # Fall through!
 [^/]*) echo -n "relative " # Starts w/ anything but a slash
 ;;& # Look for other matches
 /*) echo -n "absolute " # Begins with a slash
 ;& # Fall through
 /) echo "pathname" # A slash anywhere
 ;; # Done
 *) echo "filename" # All other
 ;; # Done
esac

The patterns will be compared, in order, to the value in $filename. The first pattern
is two literal characters—a period and a slash—followed by any characters. If that
matches (e.g., if the value of $filename was ./this/file), then the script will print
“local” but without the newline at the end. The next line is ;&, which tells bash to “fall
through” and execute the command(s) associated with the next pattern (without even
checking for a match). So it will also print “relative.” Unlike the previous pattern, this
section of code ends with ;;&, which tells bash to try other patterns (going forward,
in order) for a match, too.

So now it will check the next pattern, looking for a leading slash. If that doesn’t
match, the next one might. It looks for a slash anywhere in the string (any—zero or
more—characters, then a slash, then any characters). If that matches (and it would in
our example), it will print the word pathname. The ;; indicates that no more patterns
need to be examined, and it would be done.

Style and Readability: Recap
In this chapter, we described the case statement, an n-way branch in the flow of
execution. Its pattern-matching feature makes it very useful in scripting, though a
common use is a simple, literal match of particular words.

The variations ;;, ;;&, and ;& provide some useful functionality but can be tricky.
It might be better to structure such logic using if/then/else rather than a case
statement.

These symbols are so subtly different that it can be easy to overlook what happens
at each step. The control flow after a match is made can be different for each case:
to fall through executing more code, to try to match another pattern, or to be done.
Therefore we strongly encourage you to comment on your choices in your scripts to
avoid confusion or misunderstanding.

Style and Readability: Recap | 29

CHAPTER 4

Variable Vernacular

It is not uncommon to see an error message or an assignment statement that contains
the idiom ${0##*/}, which looks to be some sort of reference to $0, but something
more is going on. Let’s take a closer look at variable references and what some of
these extra characters do for us. What we’ll find is a whole array of string manipula‐
tions that give you quite a bit of power in a few special characters.

Variable Reference
Referencing a variable’s value is very straightforward in most programming lan‐
guages. You either just use the name of the variable or add a character to the name
to explicitly say that you want to retrieve the value. That’s true with bash: you assign
to the variable by name, VAR=something, and you retrieve the value with a dollar-sign
prefix: $VAR. If you’re wondering why we need the dollar sign, consider that bash
deals largely with strings, so:

MSG="Error: FILE not found"

will give you a simple literal string of the four words shown, whereas:

MSG="Error: $FILE not found"

will replace the $FILE with the value of that variable (which, presumably, would hold
the name of the file that it was looking for).

Variable Interpolation

Be sure to use double quotes if you want this string substitution
to occur. Using single quotes takes all characters literally, and no
substitutions happen.

31

To avoid confusion over where the variable name ends (the spaces make it easy in
this example), a more complete syntax for variable reference uses braces around the
variable name ${FILE}, and could have been used in our example.

This syntax, with the braces, is the foundation for much special syntax around
variable references. For example, we can put a hash sign in front of a variable name
${#VAR}, to return not its value but the string length of the value.

${VAR} ${#VAR}

oneword 7

/usr/bin/longpath.txt 21

many words in one string 24

3 1

2356 4

1427685 7

But bash can do more than simply retrieve the value or its length.

Parameter Expansion
When retrieving the value of a variable, certain substitutions or edits can be specified,
affecting the value that is returned (though not the value in the variable—except in
one case). The syntax involves special sequences of characters inside the braces used
to delineate the variable’s name, like the characters inside these braces: ${VAR##*/}.
Here are a few such expansions worth knowing.

Shorthand for basename
When you invoke a script, you might use just its filename as the command to
invoke the script, but that assumes that the script has execute permissions and is
in a directory located in one of the directories in your PATH variable. You might
invoke the script with ./scriptname if the script is in your current directory. You
might invoke it with a full pathname, /home/smith/utilities/scriptname, or even
a relative pathname if your current working directory is nearby.

Whichever way you invoke the script, $0 will contain the sequence of characters that
you used to invoke the script—relative path or absolute path, however you expressed
it.

When you want to print that script’s name out in a usage message, you likely want
just the basename, the name of the file itself, not any of the path that got you there:

echo "usage: ${0##*/} namesfile datafile"

32 | Chapter 4: Variable Vernacular

You might see it in a usage message, telling the user the correct syntax for running the
script, or it might be the righthand side of an assignment to a variable. In that later
case, we hope that the variable is called something like PROGRAM or SCRIPT because
that’s what this expression returns—the name of the script that is executing.

Let’s take a closer look at this particular parameter expansion on $0, one that you can
use to get just the basename without all the other parts of the path.

Path or Prefix Removal
You can remove characters from the front (prefix or lefthand side) or the tail (suffix
or righthand side) of that value. To remove a certain set of characters from the left
side of a string, you add a # and a shell pattern onto the parameter reference, a
pattern that matches those characters that you want to remove.

The expression ${MYVAL#img_} would remove the characters img_ if they were the
first characters of the string in the MYVAL variable. Using a more complex pattern, we
could write ${MYVAL#*_}. This would remove any sequence of characters up to, and
including, an underscore. (If there was no such pattern that matched, its full value is
returned unaltered.)

A single # says that it will use the shortest match possible (nongreedy). A double ##
says to use the longest match possible (greedy).

Now, perhaps, can you see what the expression ${0##*/} will do?

It will start with the value in $0, the pathname used to invoke the script. Then, from
the lefthand side of the value, it will remove the longest match of any number of
characters ending in a slash. Thus, it is removing all the parts of the path used in
invoking the script, leaving just the name of the script itself.

Here are some possible values for $0 and this pattern we’ve discussed, to see how both
the short (#) and long (##) match might differ in results:

Value in $0 Expression Result returned

./ascript ${0#*/} ascript

./ascript ${0##*/} ascript

../bin/ascript ${0#*/} bin/ascript

../bin/ascript ${0##*/} ascript

/home/guy/bin/ascript ${0#*/} home/guy/bin/ascript

/home/guy/bin/ascript ${0##*/} ascript

Notice that the shortest matching pattern for */ can match just the slash by itself.

Parameter Expansion | 33

Shell Patterns, Not Regular Expressions

The patterns used in parameter expansion are not regular expres‐
sions. They are only shell pattern matching, where * matches 0
or more characters, ? matches a single character, and [chars]
matches any one of the characters inside the braces.

Shorthand for dirname or Suffix Removal
Similar to how # will remove a prefix, that is, remove from the lefthand side, we can
remove a suffix, that is, from the righthand side, by using %. A double percent sign
indicates removing the longest possible match. Here are some examples that show
how to remove a suffix. The first examples show a variable $FN, which holds the
name of an image file. It might end in .jpg or .jpeg or .png or .gif. See how the
different patterns remove various parts of the righthand side of the string. The last
few examples show how to get something similar to dirname from the $0 parameter:

Value in shell variable Expression Result returned

img.1231.jpg ${FN%.*} img.1234

img.1231.jpg ${FN%%.*} img

./ascript ${0%/*} .

./ascript ${0%%/*} .

/home/guy/bin/ascript ${0%/*} /home/guy/bin

/home/guy/bin/ascript ${0%%/*}

This parameter substitution for dirname isn’t an exact replica of the output from
the command. It differs in the case where the path is /file because dirname would
return just a slash, whereas our parameter substitution would remove it all. You can
check for this if you want with some additional logic in your script, you could ignore
this case if you don’t expect to see it, or you can just add a slash to the end of the
parameter, as in ${0%/*}/, so that all results would end in a slash.

Prefix and Suffix Removal

You can remember that # removes the left part and % the right part
because, at least on a standard US keyboard, # is shift-3, which is to
the left of % at shift-5.

Other Modifiers
More than just # and %, there are a few other modifiers that can alter a value via
parameter expansion. You can convert either the first character or all characters in a

34 | Chapter 4: Variable Vernacular

string to uppercase via ^ or ^^, respectively, or to lowercase via , or ,, as shown in
these examples:

Value in shell variable TXT Expression Result returned

message to send ${TXT^} Message to send

message to send ${TXT^^} MESSAGE TO SEND

Some Words ${TXT,} some Words

Do Not YELL ${TXT,,} do not yell

You might also consider declare -u UPPER and declare -l lower, which declare
these shell variables to have their content converted to upper- or lowercase, respec‐
tively, for any text assigned to those variables.

The most flexible modifier is the one that does a substitution anywhere in the string,
not just at the front or tail of the string. Similar to the sed command, it uses the
slash, /, to indicate what pattern to match and what value to replace it with. A single
slash means a single substitution (of the first occurrence). Using two slashes means to
replace every occurrence. Here are a few examples:

Value in shell variable FN Expression Result returned

FN="my filename with spaces.txt” ${FN/ /_} my_filename with spaces.txt

FN="my filename with spaces.txt” ${FN// /_} my_filename_with_spaces.txt

FN="my filename with spaces.txt” ${FN// /} myfilenamewithspaces.txt

FN="/usr/bin/filename” ${FN//\// } usr bin filename

FN="/usr/bin/filename” ${FN/\// } usr/bin/filename

No Trailing Slash

Note that there is no trailing slash like you would find in other
similar commands like sed or vi. The closing brace ends the sub‐
stitution.

Why not always use this substitution mechanism? Why bother with # or % substitu‐
tion from the ends of the string? Consider this filename: frank.gifford.gif, and
suppose you wanted to change this filename to a jpg file using Image Magick’s
convert command (that’s another story). The substitute using / doesn’t have a way
to anchor the search to one end of the string or the other. If you had read in the
filename and tried to replace the .gif with .jpg, what you would end up with is
frank.jpgford.gif. For situations like this, the % substitution, which takes from the
end of the string, works much better.

Another useful modifier will extract a substring of the variable. After the variable
name, put a colon, then the offset to the first character of the substring that you

Parameter Expansion | 35

want to extract. Since this is an offset, start at 0 for the first character of the string.
Next, put another colon and the length of the substring you want. If you leave off this
second colon and a length, then you get the whole rest of the string. Here are a few
examples:

Value in shell variable FN Expression Result returned

/home/bin/util.sh ${FN:0:1} /

/home/bin/util.sh ${FN:1:1} h

/home/bin/util.sh ${FN:3:2} me

/home/bin/util.sh ${FN:10:4} util

/home/bin/util.sh ${FN:10} util.sh

Example 4-1 shows the use of parameter expansion to parse data out of some input to
create and process specific fields to use when automatically creating a configuration
for firewall rules. We’ve also included a larger table of bash parameter expansions in
the code, as we do a lot in this book, as a “real code readability” example. The output
follows in Example 4-2.

Example 4-1. Parsing using parameter expansions: code

#!/usr/bin/env bash
parameter-expansion.sh: parameter expansion for parsing, and a big list
Original Author & date: _bash Idioms_ 2022
bash Idioms filename: examples/ch04/parameter-expansion.sh
#___
Does not work on Zsh 5.4.2!

customer_subnet_name='Acme Inc subnet 10.11.12.13/24'

echo ''
echo "Say we have this string: $customer_subnet_name"

customer_name=${customer_subnet_name%subnet*} # Trim from 'subnet' to end
subnet=${customer_subnet_name##* } # Remove leading 'space*'
ipa=${subnet%/*} # Remove trailing '/*'
cidr=${subnet#*/} # Remove up to '/*'
fw_object_name=${customer_subnet_name// /_} # Replace space with '_-
fw_object_name=${fw_object_name////-} # Replace '/' with '-'
fw_object_name=${fw_object_name,,} # Lowercase

echo ''
echo 'When the code runs we get:'
echo ''
echo "Customer name: $customer_name"
echo "Subnet: $subnet"
echo "IPA $ipa"
echo "CIDR mask: $cidr"

36 | Chapter 4: Variable Vernacular

echo "FW Object: $fw_object_name"

bash Shell Parameter Expansion: https://oreil.ly/Af8lw

${var#pattern} Remove shortest (nongreedy) leading pattern
${var##pattern} Remove longest (greedy) leading pattern
${var%pattern} Remove shortest (nongreedy) trailing pattern
${var%%pattern} Remove longest (greedy) trailing pattern

${var/pattern/replacement} Replace first +pattern+ with +replacement+
${var//pattern/replacement} Replace all +pattern+ with +replacement+

${var^pattern} Uppercase first matching optional pattern
${var^^pattern} Uppercase all matching optional pattern
${var,pattern} Lowercase first matching optional pattern
${var,,pattern} Lowercase all matching optional pattern

${var:offset} Substring starting at +offset+
${var:offset:length} Substring starting at +offset+ for +length+

${var:-default} Var if set, otherwise +default+
${var:-default} Assign +default+ to +var+ if +var+ not already set
${var:?error_message} Barf with +error_message+ if +var+ not set
${var:+replaced} Expand to +replaced+ if +var+ _is_ set

${#var} Length of var
${!var[*]} Expand to indexes or keys
${!var[@]} Expand to indexes or keys, quoted

${!prefix*} Expand to variable names starting with +prefix+
${!prefix@} Expand to variable names starting with +prefix+, quoted

${var@Q} Quoted
${var@E} Expanded (better than `eval`!)
${var@P} Expanded as prompt
${var@A} Assign or declare
${var@a} Return attributes

Example 4-2. Parsing using parameter expansions: output

Say we have this string: Acme Inc subnet 10.11.12.13/24

When the code runs we get:

Customer name: Acme Inc
Subnet: 10.11.12.13/24
IPA 10.11.12.13
CIDR mask: 24
FW Object: acme_inc_subnet_10.11.12.13-24

Parameter Expansion | 37

Conditional Substitutions
Some of these variable substitutions are conditional, that is, they happen only if
certain conditions are met. You could accomplish the same thing using if statements
around the assignments, but these idioms make for shorter code for certain common
cases. These conditional substitutions are shown here with a colon and then another
special character: a minus, plus, or equal sign. The condition that they check for is
this: is the variable null or unset? A null variable is a variable whose value is the null
string. An unset variable is one that hasn’t yet been assigned or was explicitly unset
(think “discarded”) with the unset command. With positional parameters (like $1,
$2, etc.), they are unset if the user doesn’t supply a parameter in that position.

If you don’t include the colon in these conditional substitutions, then they only
consider the case of an unset variable; null values are returned as is.

Default Values
A common scenario is a script with a single, optional parameter. If the parameter isn’t
supplied when the script is invoked, then a default value should be used. In bash, we
might write something like this:

LEN=${1:-5}

This will set the variable LEN either to the value of the first parameter ($1)—if one was
supplied—or else to the value 5. Here is an example script:

LEN="${1:-5}"
cut -d',' -f2-3 /tmp/megaraid.out | sort | uniq -c | sort -rn | head -n "$LEN"

It takes the second and third fields from a comma-separated values file called /tmp/
megaraid.out, sorts those values, provides a count of the number of occurrences of
each value pair, then shows the top 5 from the list. You can override the default value
of 5 and show the top 3 or 10 (or however many you want) simply by specifying that
count as the sole parameter to the script.

Comma-Separated Lists
Another conditional substitution, using the plus sign, also checks to see if the variable
has a value and if so, if it will return a different value. That is, it returns the specified
different value only if the variable is not null. Yes, that does sound strange; if it has a
value, why return a different value?

A handy use for this seemingly odd logic is to construct a comma-separated list. You
typically construct such a list by repeatedly appending “,value” or “value,” for every
value. When doing so, you usually need an if statement to avoid having an extra
comma on the front or end of this list—but not when you use this join idiom:

38 | Chapter 4: Variable Vernacular

for fn in * ; do
 S=${LIST:+,} # S for separator
 LIST="${LIST}${S}${fn}"
done

See also Example 7-1.

Modified Value
Up to now, none of these substitutions have modified the underlying value of the
variable. There is, however, one that does. If we write ${VAR:=value}, it will act much
like our preceding default value idiom, but with one big exception. If VAR is empty or
unset, it will assign that value to the variable (hence, the equal sign) and return that
value. (If VAR is already set, it will simply return its existing value.) Note, however,
that this assigning of a value does not work for positional parameters (like $1), which
is why you don’t see it used nearly as often.

$RANDOM
Bash has a very handy $RANDOM variable. As the “Bash Variables” section in the Bash
Reference Manual says:

Each time this parameter is referenced, a random integer between 0 and 32767 is
generated. Assigning a value to this variable seeds the random number generator.

While this is not suitable for cryptographic functions, it’s useful for rolling the dice or
adding a bit of noise into otherwise too-predictable operations. We use this later in “A
Simple Word Count Example” on page 69.

As shown in Example 4-3, you can pick a random element out of a list.

Example 4-3. Pick a random list element

declare -a mylist
mylist=(foo bar baz one two "three four")

range=${#mylist[@]}
random=$(($RANDOM % $range)) # 0 to list length count

echo "range = $range, random = $random, choice = ${mylist[$random]}"

Shorter but less readable 6 months from now:
echo "choice = ${mylist[$(($RANDOM % ${#mylist[@]}))]}"

You may also see something like this:

TEMP_DIR="$TMP/myscript.$RANDOM"
[-d "$TEMP_DIR"] || mkdir "$TEMP_DIR"

$RANDOM | 39

https://oreil.ly/aQSXr
https://oreil.ly/aQSXr

However, that is subject to race conditions, and is obviously a simple pattern. It is
also partly predictable, but sometimes you want to have a clue as to what code is
cluttering up $TMP. Don’t forget to set a trap (see “It’s a Trap!” on page 97) to clean
up after yourself. We recommend you consider using mktemp, though that’s a large
issue outside the scope of bash idioms.

$RANDOM and dash

$RANDOM is not available in dash, which is /bin/sh in some Linux
distributions. Notably, current versions of Debian and Ubuntu use
dash because it is smaller and faster than bash and thus helps to
boot faster. But that means that /bin/sh, which used to be a symlink
to bash, is now a symlink to dash instead, and various bash-specific
features will not work. It does work in Zsh though.

Command Substitution
We’ve already used command substitution quite a bit in Chapter 2, but we haven’t
talked about it. The old Bourne way to do it is `` (backticks/backquotes), but we
prefer the more readable POSIX $() instead. You will see a lot of both forms, because
it’s how you pull output into a variable; for example:

unique_lines_in_file="$(sort -u "$my_file" | wc -l)"

Note that these are the same, but the second one is internal and faster:

for arg in $(cat /some/file)
for arg in $(< /some/file) # Faster than shelling out to cat

Command Substitution

Command substitution is critical to cloud and other DevOps auto‐
mation because it allows you to gather and use all the IDs and
details that only exist at runtime; for example:

instance_id=$(aws ec2 run-instances --image $base_ami_id ... \
 --output text --query 'Instances[*].InstanceId')

state=$(aws ec2 describe-instances --instance-ids $instance_id \
 --output text --query 'Reservations[*].Instances[*].State.Name')

40 | Chapter 4: Variable Vernacular

https://oreil.ly/Z5P8d
https://oreil.ly/eRXrr

Nesting Command Substitution

Nesting command substitution using `` gets very ugly, very fast,
because you must escape the inner backticks in each nesting layer.
It’s much easier to use $() if you can, as shown:

Just Works
$ echo $(echo $(echo $(echo inside)))
inside

Broken
$ echo `echo `echo `echo inside```
echo inside

"Works" but very ugly
$ echo `echo \`echo \\\`echo inside\\\`\``
inside

Thanks to our reviewer Ian Miell for pointing this out and provid‐
ing the example.

Style and Readability: Recap
When referencing a variable in bash, you have the opportunity to edit the value as
you set or retrieve it. A few special characters at the end of the variable reference
can remove characters from the front or end of the string value, alter its characters
to upper- or lowercase, substitute characters, or give you just a substring of the
original value. Common use of these handy features results in idioms for default
values, basename and dirname substitutes, and the creation of a comma-separated list
without using an explicit if statement.

Variable substitutions are a great feature in bash, and we recommend making good
use of them. However, we also strongly recommend that you comment those state‐
ments to make it clear what sort of substitution you are attempting. The next reader
of your code will thank you.

Style and Readability: Recap | 41

CHAPTER 5

Expressions and Arithmetic

Bash offers many different ways to do the same thing—and some almost-identical
syntax to do very different things. Often, it’s just the difference of a few special
characters. We’ve already seen ${VAR} and ${#VAR}, where the first expression returns
the value of the variable but the second returns its string length (“Variable Reference”
on page 31). Or ${VAR[@]} and ${VAR[*]} with their quoting differences (“Quotes
and Spaces” on page 14).

Other bash idioms might make you wonder: when should you use two or just one set
of square brackets? Or even none? What, if any, is the difference between ((...))
and $((...)) ? Usually there is some common meaning in the symbols across their
various uses that hints at some semblance of reason behind the syntax. Sometimes the
choice of expression was more for historical reasons. Let’s take a look and see if we
can explain some of these idiomatic pattern and arithmetic expressions.

43

Integer Only

The bash shell uses only integer arithmetic. Its main purpose is for
counting things: iterations, numbers of files, sizes in bytes. What if
you want or need a floating point calculation? After all, the sleep
command now allows a fractional value: sleep 0.25 will sleep for
a quarter of a second. What if you want to sleep multiples of a
quarter of a second? You’d like to write sleep $((6 * 0.25)),
but that won’t work.
The easiest solution is to do the calculation using another program
like bc or awk. For example, here’s a script called fp that you could
put in your ~/bin directory or somewhere else on your PATH (and
give it execute permissions):

/bin/bash -
fp - provide floating point, via awk
usage: fp "expression"

awk "BEGIN { print $* }"

With that in place, you could then write sleep $(fp "6 * 0.25")
to get the desired floating point calculation. It may not be bash
doing the calculation, but it is bash helping you get the calculation
done.

Arithmetic
Although bash is largely a string-oriented language, whenever you see double paren‐
theses in bash, it means that arithmetic evaluation is going on—arithmetic with
integers, not strings. This is familiar to you from the for loop variation that uses
double parens:

for ((i=0; i<size; i++))

Notice that we don’t have to use the $ in front of variable names inside the double
parens. That is true whenever we use double parens in bash. So where else do we find
double parens in use?

First, we can use a dollar sign and double parens to do an arithmetic calculation to
create a value for a shell variable, like these:

max=$((intro + body + outro - 1))
median_loc=$((len / 2))

Again, notice that the variables don’t need the dollar sign reference in front of them
when they are used inside of double parens.

44 | Chapter 5: Expressions and Arithmetic

Second, consider this use of double parens:

if ((max - 3 > x * 4)) ; then
 # Do something here
fi

This time we are using double parens without a leading dollar sign. Why? What’s
different?

In the first case, for variable assignments, we want the value of the expression, so
just like with variables, the dollar sign indicates that we want the value. In the second
case, an if statement, we don’t use the dollar sign because we only need the true/
false Boolean value to make our decision. If the expression inside the double parens
(without a dollar sign) is a nonzero value, then the return status of the parenthesized
expression is 0—which is considered “true” in bash. Otherwise, the return status is 1
(which, in bash, is “false”).

Notice that we said “return status?” That’s because the double parens with no dollar
sign is used, syntactically, as if you were executing one or more commands. It doesn’t
return a value that you could use to assign to a variable. However, you can use
it to assign a new value to a variable in certain cases since bash supports some
C language-style assignment operators. Here are a few examples. These are complete
bash statements, one per line:

((step++))
((median_loc = len / 2))
((dist *= 4))

Each statement is performing an arithmetic evaluation, but in each case, there is an
assignment of a value that also occurs as part of that evaluation. No value is returned
from the expression, only the return status—which you could examine in the $?
variable after each statement executes.

Could you write those three calculations from the preceding example using the
dollar-sign-double-paren syntax? It may look more familiar to write:

step=$((step + 1))
median_loc=$((len / 2))
dist=$((dist * 4))

We don’t want to write $((step++)) on a line by itself because that expression will
return a numeric value—which the shell will then take as the name of a command
to be executed. If step++ evaluated to 3, the shell would subsequently look for a
command named 3.

Arithmetic | 45

A Reminder About Spaces

In a bash variable assignment, no spaces are allowed around the
equals sign. For variable assignment, syntactically, it all must be
one “word” of text. However, inside the parentheses, spaces are OK
since the parens define the boundary for that “word.”

Now there is just one more arithmetic variation—probably for historical reasons. You
can use the shell builtin let to act like the double parens without the dollar sign. So
compare these equivalent statements:

((step++)) # Is the same as:
let "step++"

((median_loc = len / 2)) # Is the same as:
let "median_loc = len / 2"

((dist *= 4)) # Is the same as:
let "dist*=4"

But be careful—if you don’t use quotes (single or double) around the let expression,
then you better not have any spaces in that expression at all. (The first let in our
example doesn’t need the quotes, but it’s a good habit to always use them.) Spaces will
divide your command into separate words, and let only takes a single word, so you’ll
get a syntax error if there is more than one word.

No Parentheses Needed
We said that bash is a string-oriented language, but there is a way to make an
exception. You can declare a variable as an integer like this: declare -i MYVAR, and
having done so, you can do arithmetic to assign it a value without using double
parentheses and without the $ in front of variable names. Here’s an example, a script
seesaw.sh:

declare -i SEE
X=9
Y=3
SEE=X+Y # Only this one will be arithmetic
SAW=X+Y # This is just a literal string
SUM=$X+$Y # This is string concatenation
echo "SEE = $SEE"
echo "SAW = $SAW"
echo "SUM = $SUM"

What you get if you run these statements shows how bash is mostly string oriented.
The values of SAW and SUM are formed by string operations. Only SEE is given its
value by doing arithmetic:

46 | Chapter 5: Expressions and Arithmetic

$ bash seesaw.sh
SEE = 12
SAW = X+Y
SUM = 9+3
$

This shows that you can do arithmetic without the need for double parentheses—but
we usually avoid this, as it requires that you declare as an integer the variable to
which you are assigning things. If you forget the declare statement or if you assign
such an expression to a variable not so declared, you won’t get any error message—
just an unwanted result.

Compound Commands
You are probably very familiar with seeing a single command on a line by itself in
a script. You may also be familiar with using a single command in an if statement’s
condition to see if the command succeeded, and taking action depending on the
result. If you’ve read Chapter 1, you’ve seen the “no-if ” if statement idiom, too. Now
let’s take a look at the simple one-command if statement, one that looks like this:

if cd $DIR ; then # Do something ...

But what about these:

if [$DIR]; then # Do something ...
if [[$DIR]]; then # Do something ...

Why the brackets in these two lines and not in the first example? Is there a difference?
What about one versus two brackets; which should you use and when/why?

Without any brackets, what is happening is the execution of a command (cd in our
example). The success or failure of that command is returned as, in effect, a true or
false for the if to use in its decision branching between the then or the else (should
there be one). In bash, you can put an entire pipeline of commands (e.g., cmd | sort
| wc) in an if statement. It is the return status of the last command in the pipeline
that determines whether the if statement is true or false. (And that can mask errors
that are very hard to find; see set -o pipefail in “Unofficial bash Strict Mode” on
page 96.)

The single bracket syntax is actually also running a command, the shell builtin test
command. The single left bracket is a shell builtin for the same thing, the test com‐
mand, but with one difference: a required final argument of]. The double-bracket
syntax is, technically, a bash keyword, one that indicates a compound command,
whose behavior is very similar, though not identical, to the single bracket and test
command.

Compound Commands | 47

We use either single- or double-bracket syntax to do some logic and comparisons,
that is, conditional expressions. We use them for checking the state of things, like if a
file exists or has certain permissions, or if a shell variable has a value or not. See the
bash man page under “Conditional Expressions” for a full list of the tests and checks
you can make, and help test for quick reminders.

Our preceding example is checking to see if the DIR variable has a non-null value.
Another way to write this would be:

if [[-n "$DIR"]]; then ...

to see if the value is not null, that is, has a nonzero length. Conversely, to see if the
variable’s value is zero length, i.e., unset or null, use:

if [[-z "$DIR"]]; then ...

So are there differences between the single- and double-bracket tests? Just a few, but
they can be significant.

Perhaps the biggest difference is that the double-bracket syntax supports an addi‐
tional comparison operator, =~, which allows the use of regular expressions:

if [["$FILE_NAME" =~ .*xyzz*.*jpg]]; then ...

Regular Expressions

This is the one and only place in bash where you will find regular
expressions! And remember: do not put your regular expression in
quotes or you will be matching those characters verbatim and not
as a regular expression.

Another difference between single and double brackets is more stylistic, but one that
will affect portability. These two forms do the same thing:

if [[$VAR == "literal"]]; then ...

if [$VAR = "literal"]; then ...

The use of the single equals sign for comparison may seem unnatural for C and Java
programmers, but when used in bash conditional expressions, both = and == mean
the same thing. The single equals sign is preferred in the single bracket syntax for
POSIX compliance (so says the bash man page).

48 | Chapter 5: Expressions and Arithmetic

https://oreil.ly/Bn5gv

A Subtle Sort of Difference

Within the double square brackets, the < and > operators compare
“lexicographically using the current locale,” whereas test (and [)
compare using simple ASCII ordering.
You will also likely need to escape these operators (like this:
if [$x \> $y]) when using single brackets, otherwise they will
be taken to mean redirection. Why? Because the single bracket,
like the test command, is a builtin command not a keyword, so
bash sees it as running a command—and you can redirect I/O
when running a command. However, when bash sees the double
brackets, a keyword, it knows to expect such operators and doesn’t
treat them as redirection. Therefore, of the two syntax forms, we
much prefer the double-bracket syntax.

Both single- and double-bracket expressions can use an older, more Fortran-like
syntax for their numeric comparisons. For example, they use -le for less-than-or-
equal-to comparison. Here’s where another difference between the two arises. The
arguments to either side of this operator must be simple integers in the single bracket
expression. Using double brackets, each operand can be a larger arithmetic expres‐
sion, though without spaces unless quoted. For example:

if [[$OTHERVAL*10 -le $VAL/5]] ; then ...

A better choice if you’re doing arithmetic expressions and comparisons is to use
the double-parentheses syntax. That gives you the more familiar C/Java/Python-like
comparison operators and more freedom regarding spacing:

if ((OTHERVAL * 10 <= VAL / 5)) ; then ...

Style and Readability: Recap
With so many variations to choose from, which if statement style do you choose? We
choose the style that best fits the calculation under consideration.

When it is a mathematical expression, we use the double parentheses. As a rule, in
bash, double parens indicate arithmetic is going on. The dollar sign indicates that you
want the value of the expression returned, otherwise you just get a success/fail result
status. But operator-rich bash makes it possible to do similar things using either the
double-paren syntax or the let builtin. Since the $ isn’t needed on variables to get
their values inside double parentheses, we try to omit them consistently.

For arithmetic expressions, some people may prefer the double parentheses around
the expression, consistent with the if statements. However, for others the simple let
builtin command reads cleanly and simply. You can live dangerously and skip the
double parens by declaring your variables as integers, but we cannot recommend

Style and Readability: Recap | 49

that. It is too easy to mix and match variables, some of which may not have been
declared as integers. Confusion ensues. Putting the expression in double parentheses
(or using let) guarantees that it will remain an arithmetic evaluation.

For text-heavy comparisons, we use the double brackets, especially because that lets
us use regular expressions.

For conditionals, the newer syntax of [[is much preferred over [. However, if your
conditional is arithmetic comparisons, an even better choice is the ((syntax.

50 | Chapter 5: Expressions and Arithmetic

CHAPTER 6

Functional Framework

The two preceding chapters have described the bash idioms in using variables and
then combining those variables into expressions. The next level up is grouping those
expressions and statements into functions that can be called from various locations
within a bash shell script. Even though bash does support the useful construct of
functions, it does so in a very bashy way. Let’s see how it differs from what you know
from other languages.

Calling Functions
Here are three statements that are examples of calling bash functions (which we are
making up for this example):

Do_Something
Find_File 25 $MPATH $ECODE
Show_All $*

Those don’t look like function calls, you might be thinking. They look just like any
command line invocation of a command.

Exactly.

In other languages, you might say something like Find_File(25, MPATH, ECODE),
but that is not bash. In bash, a function is called much like any command; you invoke
it like you would invoke a command or a shell script. As with a bash keyword or
builtin, the shell doesn’t need to create a separate process to run the function. That
makes a function more efficient than calling a separate command binary or shell
script.

51

You might also notice that these function calls are not returning a value that can be
assigned to another variable. More on that in the following sections. First, let’s look at
how we define functions and their parameters.

Defining Functions
The syntax for bash includes some optional elements. Let’s say, for example, that you
want to define a function called helper. Here are three different ways to begin that
definition:

function Helper ()
function Helper
Helper ()

All three are equivalent. The reserved word function is optional, but if you do use
it, then the parentheses are optional. We prefer to use the simple two-word version:
function and then the name of our function. Not only does it clearly state what we’re
doing, but it reminds us that, unlike other languages, our functions parameters are
not put in parentheses. And it’s quite easy to grep for.

The body of the function follows this defining of the function’s name, usually
enclosed in braces:

function Say_So {
 echo 'Here we are in the function named Say_So'
}

Function Parameters
How are parameters defined for a bash function? They are not. Instead, when you
call a bash function (described in the following paragraphs), you can supply as many
parameters as you want. Typically you have a certain fixed set of parameters in mind
and will write your function accordingly, but there’s nothing special that you would
need to do to have a variable number of arguments.

The arguments, however many are provided, are available to the function as $1 , $2,
$3, and so forth, using the same syntax used for parameters to the bash script itself.
Since these parameters don’t have names but only their order number, it is a very
good idea to put a comment at the head of the function to document what parameters
the function expects and in what order. It is also quite common to see, in the first few
lines of a script, that these positional parameters are assigned to variables with more
descriptive names.

Since the function’s parameters are using the $1, etc., names, you may be wonder‐
ing what happens to the shell script’s parameters that are referenced using that
same syntax. Calling the function doesn’t change the script’s parameters; the script’s

52 | Chapter 6: Functional Framework

parameters simply are not visible inside the function (unless, of course, you send
them in as parameters to the function).

There is one exception, however. The $0 parameter, the one that holds the name of
the script, is still there and still holds the name of the script, however it was invoked.
You can still find the name of the function, though. There is an array variable named
FUNCNAME that holds the call stack of the functions that have been invoked. Element
0 is always the current function, so just use $FUNCNAME (since using the array name
without an index always returns the first element, i.e., the one at index zero). That’s
useful in a debugging prompt; see Example 10-3.

The following function will echo out the two parameters passed in to the function:

function See2it {
 echo "First arg: $1"
 echo "Second arg: $2"
}

If insufficient arguments are supplied in calling the function, the corresponding
parameters are null.

This is a simple example of echoing the parameters with which the function is called:

function Tell_All {
 echo "You called $FUNCNAME"
 echo "The $# args supplied are:"
 for arg in "$@"; do
 echo "$arg"
 done
}

Tell_All 47 tree /tmp

When that script is run, here is what the output looks like:

You called Tell_All
The 3 args supplied are:
47
tree
/tmp

Function Return Values
Here, too, bash functions are more like scripts than they are like your typical com‐
puter language functions. The return value from bash functions is really just an exit
status, the value that you can check using $? after calling the function. Just as you
might check $? after calling another script or an executable, so, too, does a bash
function indicate the success or failure of the function. It actually returns the exit
status of the last command executed in the function.

Defining Functions | 53

So how is the script writer supposed to get any useful results back from a bash
function? There are two typical approaches. One way is to treat the function just like
you would any shell script—have its output be the return values. You might pipe that
output into the next part of your script that needs the results from the function, or
you might capture that output using $() notation. The $() will run the function in a
subshell and you can assign the result (the function’s output) to a variable, and then
use that variable on another command line.

Another way to return results from a function in a shell script is to use something not
available to an external script—global variables.

Local Variables
Consider a function that has some looping inside it, done by using a for loop, and
that for loop uses an index variable i to count the iterations. Now consider what
would happen if the function itself were called from within the body of a for loop,
a loop that also happened to be controlled using i as an index variable. Since bash
variables are global, then the (inner) function will affect the outer loop index. Not
good. What to do?

Bash provides a syntax to let you declare variables as “local” so that they are not
seen outside the function. Variables like i in a for loop should be declared as local
variables:

function Summer {
 local i
 SUM=0
 for((i=0; i<$1; i++)) {
 let SUM+=i;
 }
}

Problem solved. It might be even better to use local -i i or declare -i i to
declare i as an integer value, avoiding conversions to/from string. The declare inside
a function acts just like the local in hiding any global variable by that name. The
use of the -i option (in either case) allows you to specify the integer aspect of the
variable.

The variable SUM in this example is not declared local because that is how the result
of the function call is being returned to the caller. Should all variables in a function
be declared local unless they are needed outside the script? Quite possibly, but since
there is no way to enforce it, few programmers are that thorough. If you are writing
functions that you expect to be shared and portable, then it is well worth the effort
and will avoid unexpected side effects.

54 | Chapter 6: Functional Framework

Dynamic Scoping

If you declare a local variable in a function and then that function
calls another function, the second function will see the first func‐
tion’s local variable and not the global variable of the same name.
If you call that second function from the main part of your script,
it will see (and use) the global variable. Welcome to the dangers of
dynamic scoping, another reason to keep your scripts simple and
well documented.

Function Special Cases
Remember that the function definition must occur before it is called.

If you use parentheses in your function definition (unlike our preferred style), then
you can enclose your function body in any of the compound statement syntax
choices. You can use double parens for an arithmetic evaluation or double brackets if
you want your function to do just a conditional expression evaluation. But these uses
are highly unlikely.

You can put an I/O redirection on your function definition. It takes effect when you
call that function. Here’s a common use of that feature to easily redirect the entire
usage message to STDERR (via 1>&2):

function Usage_Message {
 echo "usage: $0 value pathname"
 echo "where value must be positive"
 echo "and pathname must be an existing file"
 echo "for example: $0 25 /tmp/scratch.csv"
} 1>&2

This function might be called when the script checks and finds that the correct
number of arguments have not been supplied or that the supplied filename doesn’t
exist (we’ll talk about that more in “HELP!” on page 79). The important thing to
note is that the output gets redirected to STDERR, but the redirection doesn’t have to
be put on every line of the script—only once, outside the enclosing braces. That can
save you a lot of typing, and you don’t need to remember to add another redirect to
any lines when you revise the script.

Note that for the sake of clarity and easing into it, we’ve broken down some of our
style recommendations for functions; see “Functions” on page 128 for details.

Time for printf
If you know printf from languages like C and Java, you’ve got a head start. We
thought we’d cover it in this chapter on functions because, while not a function in
bash but a builtin, it feels familiar enough to treat it like one.

Time for printf | 55

Print formatted, or printf, is underutilized in bash since most people just use echo,
but the bash builtin has a few idiomatic extensions that you’ll want to be able to read
and write. It is also defined in POSIX, unlike the bash builtin version of echo, so it is
more portable if your script runs on non-Linux systems.

We’re only going to talk about the bash builtin version, but you probably have an
external binary that is not connected to bash and will not have the same options:

$ type -a printf
printf is a shell builtin
printf is /usr/bin/printf

The bash printf will be used unless you use the full path (/usr/bin/printf) or
prefix it with env. Compare printf --help and env printf --help to see the
differences.

We’re also not going to go into a long list of standard printf formats; those are
covered in many other places, including Appendix A of bash Cookbook.

For more details on your printf versions, see:

• help printf or printf --help•
• man 1 printf•
• Possibly /usr/bin/printf --help or env printf --help•

POSIX Output
If your script will run on operating systems other than Linux, you should consider
using printf instead of echo for consistency. It’s simple but involves more typing
than using echo, and unlike echo, does not automatically include a trailing newline:

printf '%s\n' # Simple string, newline NOT automatically included
printf '%b\n' # Also expand escape characters

You can use either single or double quotes around the printf format, and those
quotes will follow the usual variable interpolation rules (single will not interpolate;
double will), but escapes like \n will work inside both types of quotes. As we discuss
elsewhere, we prefer single quotes to show programmer intent and prevent interpola‐
tion, unless you need to interpolate a variable inside the format, which may indicate
you are doing something wrong.

For much more on this topic, see:

• https://unix.stackexchange.com/a/65819•
• https://www.in-ulm.de/~mascheck/various/echo+printf•

56 | Chapter 6: Functional Framework

https://learning.oreilly.com/library/view/bash-cookbook-2nd/9781491975329/
https://unix.stackexchange.com/a/65819
https://www.in-ulm.de/~mascheck/various/echo+printf

1 GNU is a recursive acronym that stands for “GNU’s Not Unix.”

Getting or Using the Date and Time
Bash 4.2 added printf %(datefmt)T, but the default output was the Unix Epoch
(1970-01-01 00:00:00 -0000), which is probably not what you wanted. The default
changed to “now” in bash 4.3, which makes more sense. There are two special
arguments, -1, which means “now,” and “-2,” which means “the time the shell was
invoked.” You can provide an optional Epoch seconds time integer to display some
other time, which is handy for translating Epoch seconds to human-readable time.
We recommend using -1 for consistency and clarity of intent if you mean “now”:

Set a $today variable using -v
$ printf -v today '%(%F)T' '-1'
$ echo $today
2021-08-13

Trivial logging (these are the same)
$ printf '%(%Y-%m-%d %H:%M:%S %z)T: %s\n' '-1' 'Your log message here'
$ printf '%(%F %T %z)T: %s\n' '-1' 'Your log message here'
2021-08-13 12:48:33 -0400: Your log message here

When was 1628873101?
$ printf '%(%F %T)T = %s\n' '1628873101' 'Epoch 1628873101 to human readable'
2021-08-13 12:45:01 = Epoch 1628873101 to human readable

printf into a Variable

If you looked at help printf you may have noticed the -v var
option, which assigns the output into a variable rather than dis‐
playing it, similar to sprintf in C. We’ll see a use for that next.

For more details on this topic, see “Using logger from bash” on page 111.

We much prefer the bash builtin printf, but one thing the GNU1 version of date still
does better than printf %(datefmt)T is showing dates for other times, like date -d
'2 months ago' '+%B', which tells us the name of the month from two months ago,
like:

$ date -d '2 months ago' '+%B'
August

Default bash on Mac Is Too Old

Note that printf %(datefmt)T requires at least bash 4.2, 4.3+ pre‐
ferred, so this won’t work in the older, but otherwise quite useful,
default bash 3.2 on a Mac! See “bash on Mac” on page ix.

Time for printf | 57

https://oreil.ly/eG6nV
https://oreil.ly/gF7tQ

printf for Reuse or Debugging
Bash help says “%q quote the argument in a way that can be reused as shell input,”
and we will use that in Chapter 7 to show “shell quoted” strings, but here’s a simple
example:

$ printf '%q' "This example is from $today\n"
This\ example\ is\ from\ 2021-08-13\\n

This can be useful for reusing output elsewhere, creating formatted output (see also
“Comma-Separated Lists” on page 38), and debugging where you need to be able to
see hidden or control characters or fields. See also “bash Debugging” on page 120.

Style and Readability: Recap
Functions in bash are very much like internal shell scripts. Their invocation is very
much like running any command, and their parameters are referenced like any shell
script’s parameters ($1, $2, etc.) You will need to put your functions at the front
of the script so that their definition is seen before any call to the function. As in
any language, functions should be kept short and be largely single-purpose. Using
a single I/O redirection on a function can help you avoid repetitive redirections.
Perhaps the biggest danger with functions is the variable references. Functions can
return values via variables or by writing to STDOUT and having the caller pipe
the function’s output into some next command. You may need to refer to (global)
variables to return values from a function, but there are some variables you want to
avoid altering. Using local can help with that, but beware of dynamic typing—those
local variables don’t stay local if you call another function. Be sure to document this
sort of thing in the function’s opening comments.

The printf builtin behaves much like the familiar function from other languages. In
addition to the standard formats, bash’s printf has some useful idiomatic extensions.
We especially appreciate not having to create a subshell to run the date command
just to find out what time it is, especially if you are calling it frequently for logging.

58 | Chapter 6: Functional Framework

CHAPTER 7

List and Hash Handling

Computers, as we know, are very good at counting and organizing data. We can use
code to count and organize data by using a data structure, and the building blocks
for those are arrays. Bash has had arrays since the beginning and added associative
arrays in version 4.0. You will run into hard-to-read code for bash arrays out there,
partly because bash has a lot of history and backward compatibility to maintain, as we
mentioned earlier, but also because some developers tend to overcomplicate things.
Arrays are actually not that hard to implement, and you can write about them clearly
with a little thought.

As a refresher, in computer science and programming, arrays are variables containing
multiple elements that are indexed or referred to by an integer. Or in other words, an
array is a variable containing a list instead of a scalar or single value. An associative
array is a type of list that is indexed by a string instead of an integer. So it’s a list of
key-value pairs, that basically forms a dictionary or look-up table, where internally
the key is hashed to form a memory location. More or less.

The bash documentation uses the terms array and associative arrays, but depending
on your background, lists and hashes, or possibly dictionaries or dicts, may be more
familiar, and they are certainly easier to type and say. The bash documentation also
uses subscript where other people might say index. We usually follow the bash docs
for consistency, but for these we’re going to use the more common and understanda‐
ble list, hash, and subscript terms.

Even though lists (arrays) came first, hashes (associative arrays) are slightly simpler
because there is never any question about supplying the index (subscript), because
it’s required. The integer index of a list may be implied, and while it’s not really
complicated, there are operations that work for them that make no sense for a hash.

59

As the bash reference says, “Bash provides one-dimensional indexed and associative
array variables.” While it’s possible to create really ugly multidimensional structures,
doing so in bash will probably end in tears. If you really need to do that, consider
doing it in a different language.

Watch Out for bash Versions with Hashes

You really need to be careful about your bash version here. As
we just said, bash didn’t get hashes (i.e., associative arrays) until
version 4.0, and it took a couple of versions to sort out some
details, like allowing $list[-1] to refer to the last integer element
(v4.3), instead of needing $mylist[${#mylist[*]}-1] (where $
{#mylist[*]} is the element count). Ouch.
As we said in “bash on Mac” on page ix, watch out for stock bash
on a Mac; it’s quite old. You’ll find newer versions in MacPorts,
Homebrew, or Fink.

Not POSIX

Also, arrays (lists and hashes) are not specified by POSIX, so if
portability beyond bash is a concern, you’ll need to be very careful
using them because they might not work. For example, the Zsh
syntax is a bit different, so these examples won’t work on that on a
Mac either.

Commonalities
Lists and hashes are very similar in bash, so we’re going to start with what they have
in common, then get to where they are different. In fact, you can treat lists as a subset
of hashes that simply happen to have ordered integer indexes. We don’t think you
should do that, but you can.

Lists are inherently ordered, whereas hashes are inherently unordered, so there are
operations like shift or push that only make sense for an ordered list. On the other
hand, you would never need to sort the keys in an ordered list, but you might for a
hash.

Accidental Assignment

An accidental assignment without a subscript will affect element
zero, so myarray=foo results in creating or overwriting $myar
ray[0] with foo, even if it’s a hash!

60 | Chapter 7: List and Hash Handling

From the bash docs:

If the subscript is @ or *, the word expands to all members of the array name. These
subscripts differ only when the word appears within double quotes. If the word is
double-quoted, "${name[*]}" expands to a single word with the value of each array
member separated by the first character of the IFS variable (see “Fiddling with $IFS
for Fun and Profit, to Read Files” on page 89), whereas "${name[@]}" expands each
element of name to a separate word.

That’s a mouthful isn’t it? We’ve already talked about that in “Quotes and Spaces” on
page 14, but it’s important because, as we’ll show, if you get it wrong you can hurt
yourself. We’ve used printf "%q" with a pipe (|) delimiter in Example 7-1 to show
“shell quoted” strings (technically “words”) in a way that is visible in the output on
the screen or on this page. The quoting rules are actually the same as we cover in
Chapter 2, just in the context of a list or hash.

Lists
As we said, arrays, also known as lists, are variables containing multiple elements that
are indexed or referred to by an integer.

In bash they start from zero and may be declared using declare -a, local
-a, readonly -a, or by just assigning to a new variable like mylist[0]=foo or
mylist=() (empty list). Once a variable is declared as a list, a simple assignment like
mylist+=(bar) is the same as a push, which adds an item to the end of the list, but
note the + and (), both of which are critical. See Table 7-1 for an example.

Table 7-1. Sample bash list

Element Value
mylist[0] foo

mylist[1] bar

mylist[2] baz

The common operations on an array or list are:

• Declare a variable as a list•
• Assign one or more values to it•
• If treating it as a stack (think plates in a cafeteria; FIFO: first on, first off, or first•

in, first out):
— push—
— pop—

• Display (dump) all values for debugging or reuse•

Lists | 61

• Reference one or all values (for, or for each)•
• Reference a subset (slice) of values•
• Delete one or more values•
• Delete the entire list•

Rather than talk about all of that, we’re going to show you instead, and you can just
pick out the idioms you need when you need them (Example 7-1).

Example 7-1. bash list example: code

#!/usr/bin/env bash
lists.sh: bash list example code
Original Author & date: _bash Idioms_ 2022
bash Idioms filename: examples/ch07/lists.sh
#___
Does not work on Zsh 5.4.2!

Books are not as wide as some screens!
FORMAT='fmt --width 70 --split-only'

Declare a list
declare -a mylist # Can do this, or `local -a` or `readonly -a` or:
mylist[0]='foo' # This both declares and assigns to mylist[0]

OR Both declares & assigns:
#mylist=(foo bar baz three four "five by five" six)

Push or assign, note the += and ()
###mylist=(bar) # Would overwrite mylist[0]
mylist+=(bar) # mylist[1]
mylist+=(baz) # mylist[2]
mylist+=(three four) # mylist[3] AND mylist[4]
mylist+=("five by five") # mylist[5] Note spaces and quotes
mylist+=("six") # mylist[6]

OR APPEND, note the "+" and we're assuming foo was already assigned
#mylist+=(bar baz three four "five by five" six)

Display or dump the values
echo -e "\nThe element count is: ${#mylist[@]} or ${#mylist[*]}"

echo -e "\nThe length of element [4] is: ${#mylist[4]}"

echo -e "\nDump or list:"
declare -p mylist | $FORMAT
echo -n "\${mylist[@]} = " ; printf "%q|" ${mylist[@]}
echo -en "\n\${mylist[*]} = " ; printf "%q|" ${mylist[*]}
echo -en "\n\"\${mylist[@]}\" = " ; printf "%q|" "${mylist[@]}"
echo -en "\n\"\${mylist[*]}\" = " ; printf "%q|" "${mylist[*]}"

62 | Chapter 7: List and Hash Handling

echo -e " # Broken!" # Previous line is bad and no newline
See `help printf` or chapter 6 "printf for reuse or debugging", we need
this to show the correct words:
%q quote the argument in a way that can be reused as shell input

"Join" the values
function Join { local IFS="$1"; shift; echo "$*"; } # One character delimiter!
Note that the Join above requires "$*" and not "$@"!
echo -en "\nJoin ',' \${mylist[@]} = "; Join ',' "${mylist[@]}"
function String_Join {
 local delimiter="$1"
 local first_element="$2"
 shift 2
 printf '%s' "$first_element" "${@/#/$delimiter}"
 # Print first element, then reuse the '%s' format to display the rest of
 # the elements (from the function args $@), but add a prefix of $delimiter
 # by "replacing" the leading empty pattern (/#) with $delimiter.
}
echo -n "String_Join '<>' \${mylist[@]} = " ; String_Join '<>' "${mylist[@]}"

Iterate over the values
echo -e "\nforeach \"\${!mylist[@]}\":"
for element in "${!mylist[@]}"; do
 echo -e "\tElement: $element; value: ${mylist[$element]}"
done

echo -e "\nBut don't do this: \${mylist[*]}"
for element in ${mylist[*]}; do
 echo -e "\tElement: $element; value: ${mylist[$element]}"
done

Handle slices (subsets) of the list, shift and pop
echo -e "\nStart from element 5 and show a slice of 2 elements:"
printf "%q|" "${mylist[@]:5:2}"
echo '' # No newline in above

echo -e "\nShift FIRST element [0] (dumped before and after):"
declare -p mylist | $FORMAT # Display before
mylist=("${mylist[@]:1}") # First element, needs quotes
#mylist=("${mylist[@]:$count}") # First #count elements
declare -p mylist | $FORMAT # Display after

echo -e "\nPop LAST element (dumped before and after):"
declare -p mylist | $FORMAT
unset -v 'mylist[-1]' # bash v4.3+
#unset -v "mylist[${#mylist[*]}-1]" # Older
declare -p mylist

Delete slices
echo -e "\nDelete element 2 using unset (dumped before and after):"
declare -p mylist
unset -v 'mylist[2]'

Lists | 63

1 Interpolating and expanding wildcard patterns; see https://oreil.ly/0gNay.
2 Accidentally overwriting; see https://oreil.ly/xEZhz.

declare -p mylist

Delete the entire list
unset -v mylist

Declare a variable as an array (we say that instead of list here because the flag is
-a).

Assign one or more values to it.

Display (dump) all values for debugging or reuse; see Example 4-1.

Two different join functions; see also “Comma-Separated Lists” on page 38.

Iterate over the values; see Example 4-1.

Handle slices (subsets) of the list, shift and pop.

Delete slices.

Delete the entire list. Beware of unset because there’s a subtle catch. If you
happen to have a file with the same name as a variable, globbing1 can hurt
you, and you can clobber2 unexpected things. To avoid that, it’s best to quote
your variable. It’s even safer to use -v to force unset to treat your argument as a
shell variable, like unset -v 'list'.

It looks like Example 7-2 when you run it.

Example 7-2. bash list example: output

The element count is: 7 or 7

The length of element [4] is: 4

Dump or list:
declare -a mylist=([0]="foo" [1]="bar" [2]="baz" [3]="three"
[4]="four" [5]="five by five" [6]="six")
${mylist[@]} = foo|bar|baz|three|four|five|by|five|six|
${mylist[*]} = foo|bar|baz|three|four|five|by|five|six|
"${mylist[@]}" = foo|bar|baz|three|four|five\ by\ five|six|
"${mylist[*]}" = foo\ bar\ baz\ three\ four\ five\ by\ five\ six| # Broken!

Join ',' ${mylist[@]} = foo,bar,baz,three,four,five by five,six

64 | Chapter 7: List and Hash Handling

https://oreil.ly/0gNay
https://oreil.ly/xEZhz

String_Join '<>' ${mylist[@]} = foo<>bar<>baz<>three<>four<>five by five<>six
foreach "${!mylist[@]}":

Element: 0; value: foo
Element: 1; value: bar
Element: 2; value: baz
Element: 3; value: three
Element: 4; value: four
Element: 5; value: five by five
Element: 6; value: six

But don't do this: ${mylist[*]}
Element: foo; value: foo
Element: bar; value: foo
Element: baz; value: foo
Element: three; value: foo
Element: four; value: foo
Element: five; value: foo
Element: by; value: foo
Element: five; value: foo
Element: six; value: foo

Start from element 5 and show a slice of 2 elements:
five\ by\ five|six|

Shift FIRST element [0] (dumped before and after):
declare -a mylist=([0]="foo" [1]="bar" [2]="baz" [3]="three"
[4]="four" [5]="five by five" [6]="six")
declare -a mylist=([0]="bar" [1]="baz" [2]="three" [3]="four"
[4]="five by five" [5]="six")

Pop LAST element (dumped before and after):
declare -a mylist=([0]="bar" [1]="baz" [2]="three" [3]="four"
[4]="five by five" [5]="six")
declare -a mylist=([0]="bar" [1]="baz" [2]="three" [3]="four" [4]="five by five")

Delete element 2 using unset (dumped before and after):
declare -a mylist=([0]="bar" [1]="baz" [2]="three" [3]="four" [4]="five by five")
declare -a mylist=([0]="bar" [1]="baz" [3]="four" [4]="five by five")

Hashes
Also known as hashes, dictionaries, or dicts, associative arrays are lists where the
index is an arbitrary string instead of an integer. They are amazingly handy for
counting or “uniqueing” (that is, ignoring or removing duplicate) strings, among
other things.

Unlike lists, these must be declared using declare -A, local -A, or readonly -A,
and the subscript is always required; see Table 7-2 for an example.

Hashes | 65

Table 7-2. Sample bash hash

Element Value
myhash[oof] foo

myhash[rab] bar

myhash[zab] baz

The common operations on an associative array or hash or dict are:

• Declare a variable as an associative array (we say that instead of “hash” here•
because the flag is -A)

• Assign one or more values to it•
• Display (dump) all values for debugging or reuse•
• Reference one or all values (for, or for each)•
• Reference a specific value (lookup)•
• Delete one or more values•
• Delete the entire hash•

Again, rather than talk about all of that, we’re just going to show you in Example 7-3,
so pick out the idioms you need.

Example 7-3. bash hash example: code

#!/usr/bin/env bash
hashes.sh: bash Hash example code
Original Author & date: _bash Idioms_ 2022
bash Idioms filename: examples/ch07/hashes.sh
#___
Does not work on Zsh 5.4.2!

Books are not as wide as some screens!
FORMAT='fmt --width 70 --split-only'

Declare a hash
declare -A myhash # MUST do this, or `local -A` or `readonly -A`

Assign to it, note no "+"
###myhash=(bar) # Error: needs subscript when assigning associative array
myhash[a]='foo' # Insertion 1, not 0...sort of
myhash[b]='bar' # Insertion 2
myhash[c]='baz' # Insertion 3
myhash[d]='three' # 4 Different than our list example
myhash[e]='four' # Insertion 5, note, not 4
myhash[f]='five by five' # 6 Note spaces
myhash[g]='six' # Insertion 7

66 | Chapter 7: List and Hash Handling

OR
#myhash=([a]=foo [b]=bar [c]=baz [d]="three" [e]="four" [f]="five by five" [g]="six")

Display or dump the details and values
echo -e "\nThe key count is: ${#myhash[@]} or ${#myhash[*]}"

echo -e "\nThe length of the value of key [e] is: ${#myhash[e]}"

echo -e "\nDump or list:"
declare -p myhash | $FORMAT
echo -n "\${myhash[@]} = " ; printf "%q|" ${myhash[@]}
echo -en "\n\${myhash[*]} = " ; printf "%q|" ${myhash[*]}
echo -en "\n\"\${myhash[@]}\" = " ; printf "%q|" "${myhash[@]}"
echo -en "\n\"\${myhash[*]}\" = " ; printf "%q|" "${myhash[*]}"
echo -e " # Broken!" # Previous line is bad and no newline
See `help printf` or chapter 6 "printf for reuse or debugging", we need
this to show the correct words:
%q quote the argument in a way that can be reused as shell input

"Join" the values
function Join { local IFS="$1"; shift; echo "$*"; } # One character delimiter!
Note the Join above requires "$*" and not "$@"!
echo -en "\nJoin ',' \${myhash[@]} = " ; Join ',' "${myhash[@]}"
function String_Join {
 local delimiter="$1"
 local first_element="$2"
 shift 2
 printf '%s' "$first_element" "${@/#/$delimiter}"
 # Print first element, then reuse the '%s' format to display the rest of
 # the elements (from the function args $@), but add a prefix of $delimiter
 # by "replacing" the leading empty pattern (/#) with $delimiter.
}
echo -n "String_Join '<>' \${myhash[@]} = " ; String_Join '<>' "${myhash[@]}"

Iterate over the keys and values
echo -e "\nforeach \"\${!myhash[@]}\":"
for key in "${!myhash[@]}"; do
 echo -e "\tKey: $key; value: ${myhash[$key]}"
done

echo -e "\nBut don't do this: \${myhash[*]}"
for key in ${myhash[*]}; do
 echo -e "\tKey: $key; value: ${myhash[$key]}"
done

Handle slices (subsets) of the hash
echo -e "\nStart from hash insertion element 5 and show a slice of 2 elements:"
printf "%q|" "${myhash[@]:5:2}"
echo '' # No newline in above
echo -e "\nStart from hash insertion element 0 (huh?) and show a slice of 3 elements:"
printf "%q|" "${myhash[@]:0:3}"

Hashes | 67

echo '' # No newline in above
echo -e "\nStart from hash insertion element 1 and show a slice of 3 elements:"
printf "%q|" "${myhash[@]:1:3}"
echo '' # No newline in above

#echo -e "\nShift FIRST key [0]:" = makes no sense in a hash!
#echo -e "\nPop LAST key:" = makes no sense in a hash!

Delete keys
echo -e "\nDelete key c using unset (dumped before and after):"
declare -p myhash | $FORMAT
unset -v 'myhash[c]'
declare -p myhash | $FORMAT

Delete the entire hash
unset -v myhash

Declare a hash (required).

Assign to a hash.

Display or dump the details and values; see Example 4-1.

Two different join functions; see also “Comma-Separated Lists” on page 38.

Iterate over the keys and values; see also “Comma-Separated Lists” on page 38.

Handle slices (subsets) of the hash, which is rather odd, since the subscript is not
an ordered integer list.

Delete keys.

Delete the entire hash. Beware of unset because there’s a subtle catch. If you
happen to have a file with the same name as a variable, globbing can hurt
you, and you can clobber unexpected things. To avoid that, it’s best to quote
your variable. It’s even safer to use -v to force unset to treat your argument as a
shell variable, like unset -v 'list'.

That looks like Example 7-4 when you run it.

Example 7-4. bash hash example: output

The key count is: 7 or 7

The length of the value of key [e] is: 4

Dump or list:
declare -A myhash=([a]="foo" [b]="bar" [c]="baz" [d]="three"

68 | Chapter 7: List and Hash Handling

[e]="four" [f]="five by five" [g]="six")
${myhash[@]} = foo|bar|baz|three|four|five|by|five|six|
${myhash[*]} = foo|bar|baz|three|four|five|by|five|six|
"${myhash[@]}" = foo|bar|baz|three|four|five\ by\ five|six|
"${myhash[*]}" = foo\ bar\ baz\ three\ four\ five\ by\ five\ six| # Broken!

Join ',' ${myhash[@]} = foo,bar,baz,three,four,five by five,six
String_Join '<>' ${myhash[@]} = foo<>bar<>baz<>three<>four<>five by five<>six
foreach "${!myhash[@]}":

Key: a; value: foo
Key: b; value: bar
Key: c; value: baz
Key: d; value: three
Key: e; value: four
Key: f; value: five by five
Key: g; value: six

But don't do this: ${myhash[*]}
Key: foo; value:
Key: bar; value:
Key: baz; value:
Key: three; value:
Key: four; value:
Key: five; value:
Key: by; value:
Key: five; value:
Key: six; value:

Start from hash insertion element 5 and show a slice of 2 elements:
four|five\ by\ five|

Start from hash insertion element 0 (huh?) and show a slice of 3 elements:
foo|bar|baz|

Start from hash insertion element 1 and show a slice of 3 elements:
foo|bar|baz|

Delete key c using unset (dumped before and after):
declare -A myhash=([a]="foo" [b]="bar" [c]="baz" [d]="three"
[e]="four" [f]="five by five" [g]="six")
declare -A myhash=([a]="foo" [b]="bar" [d]="three" [e]="four"
[f]="five by five" [g]="six")

A Simple Word Count Example
As we said, one of the most common uses of a hash is to count and/or “uniq” items,
so Example 7-5 is a simple but concrete example.

A Simple Word Count Example | 69

Example 7-5. bash word count example: code

#!/usr/bin/env bash
word-count-example.sh: More examples for bash lists and hashes, and $RANDOM
Original Author & date: _bash Idioms_ 2022
bash Idioms filename: examples/ch07/word-count-example.sh
#___
Does not work on Zsh 5.4.2!
See also: `man uniq`

WORD_FILE='/tmp/words.txt'
> $WORD_FILE
trap "rm -f $WORD_FILE" ABRT EXIT HUP INT QUIT TERM

declare -A myhash

echo "Creating & reading random word list in: $WORD_FILE"

Create a list of words to use for the hash example
mylist=(foo bar baz one two three four)

Loop, and randomly pick elements out of the list
range="${#mylist[@]}"
for ((i=0; i<35; i++)); do
 random_element="$(($RANDOM % $range))"
 echo "${mylist[$random_element]}" >> $WORD_FILE
done

Read the word list into a hash
while read line; do
 ((myhash[$line]++))
done < $WORD_FILE

echo -e "\nUnique words from: $WORD_FILE"
for key in "${!myhash[@]}"; do
 echo "$key"
done | sort

echo -e "\nWord counts, ordered by word, from: $WORD_FILE"
for key in "${!myhash[@]}"; do
 printf "%s\t%d\n" $key ${myhash[$key]}
done | sort

echo -e "\nWord counts, ordered by count, from: $WORD_FILE"
for key in "${!myhash[@]}"; do
 printf "%s\t%d\n" $key ${myhash[$key]}
done | sort -k2,2n

We’ll create a temporary file and set a trap (“It’s a Trap!” on page 97) to clean
it up.

70 | Chapter 7: List and Hash Handling

We have to declare -A the hash as a bash associative array (again, we say that
instead of “hash” here because of the flag).

Get the count of elements, or the range for the random number we want.

Use the bash $RANDOM variable to pick a random list element (Example 4-3).

Echo the random word into the temp file. We used three lines (callouts , ,
and) to do something we could do in one line, like echo "${mylist[$$RANDOM
% ${#mylist[@]}]}" >> $WORD_FILE, but we think that one line would be a lot
harder to reread six months from now.

Read the file we just created. Note the location of the file name after the done
keyword in .

Increment the “key” value in hash for the word we saw in the line in the file.

Note the location of the file name after the done keyword, from the loop in .

Iterate over the keys to display a list of the words, without duplicates, and
without using the uniq external command. Note the sort command we did use
after the done keyword.

Iterate over the keys again, but this time display the “value” of the count as well.

Iterate over the keys one last time to display the count again, but this time sort
the second field as a number (sort -k2,2n).

Example 7-6 contains the output.

Example 7-6. bash word count example: output

Creating & reading random word list in: /tmp/words.txt

Unique words from: /tmp/words.txt
bar
baz
foo
four
one
three
two

Word counts, ordered by word, from: /tmp/words.txt
bar 7
baz 6

A Simple Word Count Example | 71

foo 4
four 3
one 5
three 4
two 6

Word counts, ordered by count, from: /tmp/words.txt
four 3
foo 4
three 4
one 5
baz 6
two 6
bar 7

Style and Readability: Recap
In this chapter, we’ve demystified bash array (list and hash) handling and showed
idiomatic solutions for the common use cases. While outside the scope of this book,
there’s much more to say about lists and hashes in bash. To learn more, see the
following resources:

• https://www.gnu.org/software/bash/manual/html_node/Arrays.html#Arrays•
• http://wiki.bash-hackers.org/syntax/arrays•
• http://tldp.org/LDP/Bash-Beginners-Guide/html/sect_10_02.html•
• https://learning.oreilly.com/library/view/bash-cookbook-2nd/9781491975329•
• man uniq•
• man sort•

When you get the data structure correct, the rest of the code practically writes
itself. When you get the data structure wrong, everything is a struggle. Bash has the
building blocks for simple data structures, and once you get used to a little extra
punctuation, they’re not that hard to use and read. Just remember: you almost always
want [@] and not [*], and refer back to our cheat sheet examples in this chapter
when you need to.

72 | Chapter 7: List and Hash Handling

https://www.gnu.org/software/bash/manual/html_node/Arrays.html#Arrays
http://wiki.bash-hackers.org/syntax/arrays
http://tldp.org/LDP/Bash-Beginners-Guide/html/sect_10_02.html
https://learning.oreilly.com/library/view/bash-cookbook-2nd/9781491975329

CHAPTER 8

Arguing

Some scripts are meant to do a single task; they need no variations. Many others,
though, take arguments: one or more filenames, or options to provide variations on
their behavior. Once you have more than a single option (or maybe two), you need
to parse those arguments in an orderly fashion to be sure that you’ve covered all the
possible ways that a user of that script might order those arguments. And come to
think of it, even that single task script probably wants -h (or even --help). Let’s take a
look at how to parse those arguments and still have a readable, maintainable script.

Your First Argument
If your script just wants a single parameter, you can reference that in your script as
$1. You might have statements like echo $1 or cat $1 as part of your script. We don’t
recommend using $1 throughout your script as it doesn’t tell the reader anything
about this parameter. It’s better, for readability’s sake, if you assign this parameter to
a variable with an informative name. If the parameter is meant to be a filename, then
choose a variable name like in_file or pathname or similar and assign it right away,
early in the script. As we saw in “Default Values” on page 38, we can even supply a
default value:

filename=${1:-favorite.txt} # Or maybe use /dev/null as the default?

If the user doesn’t supply any parameter when invoking your script, $1 will be unset.
In the preceding example, the shell will assign favorite.txt as the value when
parameter one is unset.

Need a second or third parameter or more? As you might have guessed, those would
be $2, $3, and so on. They would be unset if no such parameter is supplied when
invoking the script.

73

But what if you don’t have good default values? Or what if you don’t want to proceed
when the user doesn’t supply the correct number of arguments? Your script can check
to make sure that the user has supplied the correct number of arguments by checking
the $# variable. It holds the number of arguments supplied. If $# is 0, then the user
invoked the script with no arguments. If $# is 1 but you wanted two arguments, then
don’t proceed. Issue an error message and exit (see “Exit Codes” on page 96):

if (($# != 2)); then
 echo "usage: $0 file1 file2" # $0 is the script's name, as invoked
 exit
fi

We’re only looking here at how to know that you’ve got the right number of argu‐
ments to your script. How you use all these arguments within the script is quite
varied. We looked at some of those in Chapter 2.

Traditionally, when you wanted a list of all the arguments, you might have used $*
to write something like echo $*, which works fine for this simple output. But once
spaces were allowed as part of a filename, a slightly different syntax became the better
choice.

Quotes are needed around a filename with embedded spaces in the name (e.g., “my
file”), otherwise the shell sees that as two separate words. To refer to all the arguments
to a script and have each one quoted, we use "$@" (string) or "${@}" (list). If we
use "$*", that will give us one large quoted string containing all the arguments. For
example, if we invoke a script like this:

myscript file1.dat "alt data" "local data" summary.txt

then "$*" would result in the single value “file1.dat alt data local data summary.txt,”
whereas "$@" would result in four separate words: file1.dat "alt data" "local
data" summary.txt.

Yes, we know we talked about this in “Quotes and Spaces” on page 14 and then kept
harping on it again in Chapter 7. It’s just tricky and bears repeating.

Having Options
Options are ways to vary (slightly?) the behavior of a command. The classic
(idiomatic?) way to specify options to a Unix or Linux command is with a single
letter preceded by a -, called a minus, a dash, or a tack. For example, to have a
command produce its long-form output, you might specify that with -l. Similarly, to
have a command run in a more quiet mode (less output), you might specify -q right
after the command name.

Not every command or script has these options, and not every command or script
that has, for example, a -q option uses that option to specify a “quiet” output format.

74 | Chapter 8: Arguing

It may mean “quick” in another command. It may not be a valid option at all in
another command. These are conventions based on existing commands—tradition,
so to speak.

It is worthwhile adhering to tradition, absent a compelling reason to abandon it.
Among other reasons, it reduces the learning curve. What you learn about running
some commands or scripts carries over into other commands. It also means that you
can use the same technique for parsing options that others use.

Parsing Options
Use the getopts builtin command to parse the options to your shell script. It is called
repeatedly (usually via a while loop) until all the options have been found. It assumes
that all the options appear before any other arguments. It can recognize separate
options (-a -v) as well as options that are bunched together (-av). You can specify
that an option must provide an additional parameter. For example, you may want a
-o option to specify an output file, so the user would invoke it with -o filename or
-ofilename, both of which are supported by getopts.

Let’s take a look at Example 8-1, which handles these kind of options.

Example 8-1. getopts argument parsing: simple

#!/usr/bin/env bash
parseit.sh: Use getopts to parse these arguments
Original Author & date: _bash Idioms_ 2022
bash Idioms filename: examples/ch08/parseit.sh
#___

while getopts ':ao:v' VAL ; do
 case $VAL in
 a) AMODE=1 ;;
 o) OFILE="$OPTARG" ;;
 v) VERBOSE=1 ;;
 :) echo "error: no arg supplied to $OPTARG option" ;;
 *)
 echo "error: unknown option $OPTARG"
 echo " valid options are: aov"
 ;;
 esac
done
shift $((OPTIND -1))

We wrote while getopts because we want to call getopts repeatedly, and the
getopts command will return true when it finds an option (a dash followed by
any letter, valid or not) and false when it reaches the end of the options. The
getopts builtin needs to be given two words. The first is the list of options, and

Having Options | 75

the second is the name of the variable into which it will put the option that it
finds when parsing the command line. It will find only one option each time it
is invoked, so we call it repeatedly via the while loop. In our example (':ao:v'),
we want to support options a, o, and v. The leading colon tells getopts not to
report error messages but rather to leave that to our script. The colon after the o
character indicates that the o option has an argument that goes with it. VAL is the
name of the variable that will be assigned if an option is found.

Once getopts has been called, we can use the case statement to see which option
was found. (See Chapter 3 for more about the case statement.)

As for error handling, since we’ve asked getopts not to issue error messages,
we need two cases to handle the errors. The first occurs if there is no argument
supplied with the -o option. We have told getopts to expect an argument by
putting the “:” after the o in ':ao:v'. If no argument is given when the script is
invoked, then bash will set $VAL to be a colon, and it will set $OPTARG to be the
character whose argument we couldn’t find (in this situation, an o).

Second, if the user supplies an option not in our list of valid options, then $VAL
will be assigned the value of '?' (a question mark character), and it sets the shell
variable $OPTARG to the option character it didn’t recognize. We handle this with
the wildcard pattern (*) in the case statement.

There’s one more important step to take when getopts is done and the while
loop exits. The getopts builtin keeps track of its location in the command line
arguments as it parses its way along, looking for options. $OPTIND is where
it keeps the index of the next argument to be considered. Now that all those
arguments have been parsed, we add a shift $OPTIND -1 to remove all the
option-related arguments from further consideration.

Whether you invoke a script with myscript -a -o xout.txt -v file1 or just
myscript file1, after the shift has done its work, $1 will thereafter refer to file1
because the intervening option arguments have been removed. The script’s arguments
are now just the remaining (nonoption) arguments.

Long Arguments
For some folks, a single letter isn’t enough. They want full words or even phrases to
describe the option they are invoking. The getopts builtin supports these, too.

We need to distinguish a long option from several single-letter options strung
together (e.g., does -last mean -l -a -s -t, or is it a long option, the word last?).

76 | Chapter 8: Arguing

The convention is that the long options begin with two dashes. (In this example, we
would write --last to specify the long option.)

To use getopts to parse long options, we add a minus sign and colon to the option
list, then add another case statement to recognize each of the long arguments. We
include the colon even if our long option takes no arguments. (We’ll explain that in the
sections that follow.)

Example 8-2 shows the previous example, which parsed a set of options, expanded
to include a couple of long arguments. The two long arguments that this will handle
are --amode, which will be the same as the shorter -a option; and --outfile, which,
like -o, takes an argument. For long options, the option and its corresponding
argument can be provided one of two ways: as a single word using the equals
sign or as two words. For example, when invoking the script, you can write either
outfile=file.txt or outfile file.txt to specify the output file option. getopts
and this second case statement can handle either format.

Example 8-2. getopts argument parsing: long

#!/usr/bin/env bash
parselong.sh: Use getopts to parse these arguments, including long ones
Original Author & date: _bash Idioms_ 2022
bash Idioms filename: examples/ch08/parselong.sh
#___
Long arguments: --amode
and --outfile filename or --outfile=filename

VERBOSE=':' # Default is off (no-op)

while getopts ':-:ao:v' VAL ; do
 case $VAL in
 a) AMODE=1 ;;
 o) OFILE="$OPTARG" ;;
 v) VERBOSE='echo' ;;
#--
 -) # This section added to support long arguments
 case $OPTARG in
 amode) AMODE=1 ;;
 outfile=*) OFILE="${OPTARG#*=}" ;;
 outfile)
 OFILE="${!OPTIND}"
 let OPTIND++
 ;;
 verbose) VERBOSE='echo' ;;
 *)
 echo "unknown long argument: $OPTARG"
 exit
 ;;
 esac

Long Arguments | 77

 ;;
#--
 :) echo "error: no argument supplied" ;;
 *)
 echo "error: unknown option $OPTARG"
 echo " valid options are: aov"
 ;;
 esac
done
shift $((OPTIND -1))

How does this support long-format options? What’s really going on here?

Consider that getopts was designed to handle single-character options (e.g., -a).
Adding the minus sign to the option list means that -- will be recognized as a
valid option.

Any remaining characters after the two minus signs are considered the “argu‐
ment” to the -- option and are put in the $OPTARG variable. We can use our inner
case statement to match the value of $OPTARG to the long option names that we
want to implement.

What happens, then, for the options, like --outfile, that need a user-supplied
argument? If the argument is supplied with the equals sign syntax (e.g., --
outfile=my.txt), then getopts assigns that entire string (after the --) to OPTARG.
We can extract the argument from the option string using bash’s parameter
expansion string manipulation (see “Parameter Expansion” on page 32), remov‐
ing (\#) all of the characters (*) up to, and including, the equals sign (=) via the
expression that uses all of these symbols. That leaves us with just the characters
after the equals sign, which would be the argument that we’re after. We might also
have coded it to be more literal with the string we want to remove by coding it as
OFILE="${OPTARG#outfile=}" to remove that text from the front of OPTARG.

When the argument is supplied as a separate word, the second outfile pattern
in our case statement will be taken. Here we make use of a variable, $OPTIND,
that getopts uses to keep track of its parsing. The filename argument is retrieved
indirectly using ${!OPTIND}. How does that work?

When using getopts, the shell variable $OPTIND holds the index of the next argu‐
ment to be processed by getopts. The ! says to use indirection—take the value
of $OPTIND and use that as the name of the variable to retrieve. For example, if
--output was the third argument encountered by getopts, then, at that point,
$OPTIND would have the value 4, and, therefore, ${!OPTIND} would return the
value of ${4}, which would be the next argument, the filename.

78 | Chapter 8: Arguing

Then we also need to “shift” $OPTIND since we’ve now handled it.

The rest of the script is as we’ve covered previously.

HELP!
There is a glaring omission in the preceding examples; do you need help to spot it?
(That’s a hint.) Right, -h and/or --help are missing. We strongly encourage emitting
some kind of usage or help message on demand; it’s discoverable and consistent with
how most other tools work, and it’s easy once you know how.

If you have a very simple script, Example 8-3 shows a quick-and-dirty solution.

Example 8-3. Quick-and-dirty help

PROGRAM=${0##*/} # bash version of `basename`
if [$# -lt 2 -o "$1" = '-h' -o "$1" = '--help']; then
 # Tab indents below, starting after the EoH (End-of-Help) line!
 cat <<-EoH

This script does nothing but show help; a real script should be more exciting.
 usage: $0 <foo> <bar> (<baz>)

As you can see, there are two required arguments, +foo+ and +bar+, and one
optional argument, +baz+.
e.g.
 usage: $PROGRAM foo bar
 usage: $PROGRAM foo bar baz

You can put more detail here if you need to.
EoH

 # Tab indents above!
 exit 1
fi

We talked about this in “Shorthand for basename” on page 32.

If the $# (argument count) is -lt (less than) 2, or the first argument is -h, or the
first argument is --help, then use a here-document to display a help and usage
message. (We discuss these in “Here-Documents and Here-Strings” on page 98.)

Start a << (here-document) until we get to the EoH, which is end-of-help but
could be EOF or anything else you prefer. It contains a -, so strip leading tabs
(but not spaces) from the block, which allows you to indent in the code without
indenting in the output.

HELP! | 79

The end-of-help marker is also indented with a tab to match the rest of the
contents.

We can debate if exit code (“Exit Codes” on page 96) exit 0 for success or exit
1 (really anything greater than zero) for failure is correct there. If we asked for
help, then we just got it, and it worked, so exit 0. But if we failed to provide the
correct arguments, then we failed, so exit 1. Also, the script failed to actually do
anything useful beyond showing a message, so that’s arguably an exit 1 fail. Pick
a standard and go with it, but exit 1 is a better fail-safe.

We’ve also inlined the help/usage message here, but it sometimes makes sense for that
to be its own function so you can call it from other places if needed, as we’ll see in
Example 8-4.

Example 8-4. getopts argument parsing: long with help

#!/usr/bin/env bash
parselonghelp.sh: Use getopts to parse these arguments, including long & help
Original Author & date: _bash Idioms_ 2022
bash Idioms filename: examples/ch08/parselonghelp.sh
#___
Long arguments: --amode and --help
and --outfile filename or --outfile=filename

PROGRAM=${0##*/} # bash version of `basename`
VERSION="$PROGRAM v1.2.3"

VERBOSE=':' # Default is off (no-op)
DEBUG=':' # Default is off (no-op)

function Display_Help {
 # Tab indents below, starting after the EoN (End-of-Note) line!
 cat <<-EoN

This script does nothing but show help; a real script should be
 more exciting.

 usage: $PROGRAM (options)

Options:
 -a | --amode = Enable "amode", default is off
 -d | --debug = Include debug output, default is off
 -h | --help = Show this help message and exit
 -o | --outfile = Send output to file instead of STDOUT
 -v | --verbose = Include verbose output, default is off
 -V | --version = Show the version and exit

You can put more detail here if you need to.
EoN

 # Tab indents above!
 # If we have this next line, the script will always exit after calling

80 | Chapter 8: Arguing

 # Display_Help. You may or may not want that...you decide.
 # exit 1 # If you use this, remove the other exits after the call!
} # end of function Display_Help

while getopts ':-:adho:vV' VAL ; do
 case $VAL in
 # If you keep options in lexical order, they are easier to find and
 # you reduce the chances of a collision
 a) AMODE=1 ;;
 d) DEBUG='echo' ;;
 h) Display_Help ; exit 1 ;; # We violated our style here
 o) OFILE="$OPTARG" ;;
 v) VERBOSE='echo' ;;
 V) echo "$VERSION" && exit 0 ;; # We violated our style here too
#--
 -) # This section added to support long arguments
 case $OPTARG in
 amode) AMODE=1 ;;
 debug) DEBUG='echo' ;;
 help)
 Display_Help
 exit 1
 ;;
 outfile=*) OFILE="${OPTARG#*=}" ;;
 outfile)
 OFILE="${!OPTIND}"
 let OPTIND++
 ;;
 verbose) VERBOSE='echo' ;;
 version)
 echo "$VERSION"
 exit 0
 ;;
 *)
 echo "unknown long argument: $OPTARG"
 exit
 ;;
 esac
 ;;
#--
 :) echo "error: no argument supplied" ;;
 *)
 echo "error: unknown option $OPTARG"
 echo " valid options are: aov"
 ;;
 esac
done
shift $((OPTIND -1))

echo "Code for $0 goes here."

$VERBOSE 'Example verbose message...'

HELP! | 81

$DEBUG 'Example DEBUG message...'

echo "End of $PROGRAM run."

We’ve packed a lot into this example, but you’ve already seen most of it. We’ve built
on the long arguments example to add help, but we also added a simple way to
have debug and verbose flags and output. We now have a function for Display_Help
because we need to call it from at least two places: short- and long-option handling.
That should be pretty clear.

We also violated our case..esac style guideline for “one-liners” since the exit com‐
mand makes it a multiline block. We could just as easily have expanded it (as we did
in the long options section), but we’ve gone from one line to four lines for…no gain
in clarity and a loss of three vertical lines on your screen that might better display
more important code:

 h) Display_Help ; exit 1 ;;
Versus
 h)
 Display_Help
 exit 1
 ;;

Debug and Verbose
In Example 8-4, we set a colon as the default value for the variable VERBOSE. That may
seem an odd value, but consider the example use of that variable later in the script:

$VERBOSE 'Example verbose message...'

In the default case (if the user does not specify verbose mode), then, to execute that
line, $VERBOSE is replaced by a :, the no-op (no operation) or null command (which
does nothing, ignores its arguments, and is always true). Thus no message would be
printed. But if the user invokes the script with a -v or --verbose, then $VERBOSE is
replaced with an echo, and the line to be executed would now, in effect, be this:

echo 'Example verbose message...'

and the message will be printed for the user to see.

This idiom for conditional messages is simple code that’s easy to write, easy to read,
and even easy to grep for when writing documentation. You can use the same thing
for DEBUG as needed.

82 | Chapter 8: Arguing

Version
Just like -h and/or --help, a version command can be useful. First, though, is -v
version or verbose? We prefer -V for version and -v for verbose (if applicable).
Second, do you need a version? Not as much as you need help, so it really depends.
The gen2 version-control systems like CVS and SVN made version easy—just use
keyword expansion like VERSION=Id. But the gen3 systems like Git don’t support
that, so you’re back to a manually updated variable, or some kind of build-time or CI
(continuous integration) incrementer. For larger or public scripts, it makes sense; for
smaller personal scripts, it might not. Your call.

You implement version by VERSION=something and display it the same way as help.
Choosing the exit code (“Exit Codes” on page 96) of this is easier since you get the
version output only if you asked for it, so exit 0 clearly makes sense.

What you set $VERSION to is up to you:

• VERSION=Id for CVS or SVN•
• VERSION=v1.2.3•
• VERSION="$PROGRAM v1.2.3"•
• VERSION="$0 v1.2.3" # Probably not, since $0 varies•
• VERSION=12•

Style and Readability: Recap
In this chapter, we discussed CLI options, arguments, and usage. We showed a simple
way to parse a single argument and how not to proceed with insufficient arguments
by checking $#. We then described the bash builtin getopts as a good way to parse
both short- and long-format options.

A script that has any significant amount of argument parsing should make an effort
to keep that code separate from the core function of the script. That is often best
accomplished by setting flag variables in the case statement(s) that can be referenced
later in the script where the functionality is implemented. You can make a big
improvement in readability for your script by making the parsing of arguments a
separate function in your script. Wrap Example 8-4 in a function definition:

Called like: parseargs "${@}"
function parseargs {
 ...
}

then call it with parseargs "${@}", and the remainder of your script can follow,
using the flags set in the parseargs function.

Version | 83

Adding lots of conditional debug information or expanded (verbose) output can
detract from terseness and overall readability when those statements are wrapped in
if statements. They clutter and complicate the logic of the code. We showed an idiom
that provides the same output choices but obviates the need for the if statements,
making for a simpler coding style and easier readability.

84 | Chapter 8: Arguing

CHAPTER 9

Files and More

What makes a plain old file a shell script, and how do you emit exit codes? How do
you read files? We’ll talk about all that—and more—in this chapter.

Reading Files
There are three main idiomatic ways to read files into a bash script. Some of them
“slurp” the entire file into memory, and others work one line at a time.

read
We’ve already used read for processing key/value pairs in Chapter 2, and we’ll see it
again in “Getting User Input” on page 104, but the other major use is reading files and
parsing input one line at a time:

$ grep '^nobody' /etc/passwd | read -d':' user shadow uid gid gecos home shell

$ echo "$user | $shadow | $uid | $gid | $gecos | $home | $shell"
 | | | | | |

Wait, what happened? Where’s my data? Well, that’s a gotcha—it went into the
subshell created by the pipe (|), and it never came out. What about this?

$ grep '^nobody' /etc/passwd | { \
 read -d':' user shadow uid gid gecos home shell; \
 echo "$user | $shadow | $uid | $gid | $gecos | $home | $shell" \
 }
nobody | | | | | |

85

That’s slightly better, but where’s the rest of it? Well, -d is the end-of-line delimiter,
not the field separator ($IFS). One more try:

$ grep '^nobody' /etc/passwd | { \
 read -d':' user shadow uid gid gecos home shell; \
 echo "$user | $shadow | $uid | $gid | $gecos | $home | $shell" \
 }
nobody | x | 65534 | 65534 | nobody | /nonexistent | /usr/sbin/nologin

See also “Fiddling with $IFS for Fun and Profit, to Read Files” on page 89.

lastpipe

If you are running bash 4+, you can set shopt -s lastpipe, which
will run the last command of a pipeline in the current shell so your
script can see the environment. Note that this only works if job con‐
trol is disabled, which is the default in scripts but not in interactive
sessions. You can disable job control using set +m, but that disables
CTRL-C, CTRL-Z, fg, and bg, so we don’t recommend doing that.

mapfile
mapfile is also known as readarray, but they are the same command. Added in bash
v4, mapfile reads a file into an array (list) and has options to read only -n count
lines at a time, skip -s count lines, display a progress indicator (-c/-C), and more.
This is much easier to use than other methods.

The simple use is, well, simple, and it “slurps” the entire file into memory, as shown in
Example 9-1.

Example 9-1. Simple mapfile

mapfile -t nodes < /path/to/list/of/hosts # -t removes newlines

Loop around the nodes
for node in ${nodes[@]}; do
 ssh $node 'echo -e "$HOSTNAME:\t$(uptime)"'
done

Using -n is a bit more complicated, because while mapfile will continue to read
nothing, so you have to check to see if it actually got data (${#nodes[@]} is nonzero)
or you’ll create an infinite loop (Example 9-2).

86 | Chapter 9: Files and More

Example 9-2. Batch mapfile example

BATCH=10
While we're reading data... && there is still data there!
while mapfile -t -n $BATCH nodes && ((${#nodes[@]})); do
 for node in ${nodes[@]}; do
 ssh $node 'echo -e "$HOSTNAME:\t$(uptime)"'
 done
done < /path/to/list/of/hosts

Of course, you can get fancier, and add some runtime user feedback. You might also
need to throttle your process for various reasons, so you can do something like the
code in Example 9-3.

Example 9-3. Fancy mapfile example: code

#!/usr/bin/env bash
fancy_mapfile.sh: Fancy `mapfile` example
Original Author & date: _bash Idioms_ 2022
bash Idioms filename: examples/ch09/fancy_mapfile.sh
#___
Does not work on Zsh 5.4.2!

HOSTS_FILE='/tmp/nodes.txt'

Create test file
> $HOSTS_FILE
for n in node{0..9}; do echo "$n" >> $HOSTS_FILE; done

ADJUSTABLE VARIABLES
#BATCH_SIZE=0 # Do the entire file at once (default); watch out for memory
BATCH_SIZE=4
SLEEP_SECS_PER_NODE=1 # Can set to 0
SLEEP_SECS_PER_BATCH=1 # Set to zero if `BATCH_SIZE=0`!

Display runtime feedback to STDERR (so STDOUT can go into `tee` or a file)
node_count="$(cat $HOSTS_FILE | wc -l)"
batch_count="$((node_count / BATCH_SIZE))"
echo '' 1>&2
echo "Nodes to process: $node_count" 1>&2
echo "Batch size and count: $BATCH_SIZE / $batch_count" 1>&2
echo "Sleep seconds per node: $SLEEP_SECS_PER_NODE" 1>&2
echo "Sleep seconds per batch: $SLEEP_SECS_PER_BATCH" 1>&2
echo '' 1>&2

node_counter=0
batch_counter=0
While we're reading data... && there is still data in $HOSTS_FILE
while mapfile -t -n $BATCH_SIZE nodes && ((${#nodes[@]})); do
 for node in ${nodes[@]}; do
 echo "node $((node_counter++)): $node"

Reading Files | 87

 sleep $SLEEP_SECS_PER_NODE
 done
 ((batch_counter++))
 # Don't get stuck here AFTER the last (partial) batch...
 ["$node_counter" -lt "$node_count"] && {
 # You can also use `mapfile -C Call_Back -c $BATCH_SIZE` for feedback but
 # it runs the callback up front too, so if you have a delay you'll
 # have to wait for that
 echo "Completed $node_counter of $node_count nodes;" \
 "batch $batch_counter of $batch_count;" \
 "sleeping for $SLEEP_SECS_PER_BATCH seconds..." 1>&2
 sleep $SLEEP_SECS_PER_BATCH
 }
done < $HOSTS_FILE

Create a trivial test file for this example.

This is not a “useless use of cat.” Normally wc -l output is <line count> <file
name>", but we want only the <line count>, and there is no option for that.
When reading from STDIN, however, wc will not display a file name, which is
what we want.

Remember, bash does integer arithmetic only, so the batch count might have
truncation errors.

Integer arithmetic only; see previous callout.

Did you notice we were lazy and did not put quotes around ${nodes[@]} in the
for loop? We can get away with that because we’re reading hostnames, and they
do not allow spaces. But it would be better to build a consistent habit and use
quotes.

The output is shown in Example 9-4.

Example 9-4. Fancy mapfile example: output

Nodes to process: 10
Batch size and count: 4 / 2
Sleep seconds per node: 1
Sleep seconds per batch: 1

node 0: node0
node 1: node1
node 2: node2
node 3: node3
Completed 4 of 10 nodes; batch 1 of 2; sleeping for 1 seconds...
node 4: node4
node 5: node5

88 | Chapter 9: Files and More

node 6: node6
node 7: node7
Completed 8 of 10 nodes; batch 2 of 2; sleeping for 1 seconds...
node 8: node8
node 9: node9

See also:

• help mapfile.•
• Or help readarray, but that will just point you to mapfile.•
• For a nice use of mapfile for cleaning up an AWS S3 bucket, see https://oreil.ly/•

xie4t.

Brute Force
Example 9-5 shows how the entire file is “slurped” into memory.

Example 9-5. Brute force file reading examples

for word in $(cat file); do
 echo "word: $word"
done

Or, remove the "useless use of cat"
for word in $(< file); do
 echo "word: $word"
done

Fiddling with $IFS for Fun and Profit, to Read Files
$IFS is the “internal field separator,” used in all word splitting. The default is
<space><tab><newline>, or IFS=$' \t\n’ using the $'' ANSI C quoting mecha‐
nism, and this is fundamental to bash idioms. If you change $IFS without really
understanding what you’re doing, odd things may happen. In particular, the first
character of $IFS, which is space by default, is also used in word expansion, and if
you change that, chaos may ensue. If you really think you need to change the value of
$IFS, either do it in a function using local or do it local to the command (see “Local
Variables” on page 110). Example 9-6 illustrates this.

Example 9-6. Changing IFS for read example: code

#!/usr/bin/env bash
fiddle-ifs.sh: Fiddling with $IFS for fun and profit, to read files
Original Author & date: _bash Idioms_ 2022
bash Idioms filename: examples/ch09/fiddle-ifs.sh
#___

Fiddling with $IFS for Fun and Profit, to Read Files | 89

https://oreil.ly/xie4t
https://oreil.ly/xie4t
https://oreil.ly/00l9N

Create test file (not spelling out "word" to keep output < 80 columns)
IFS_TEST_FILE='/tmp/ifs-test.txt'
cat <<'EoF' > $IFS_TEST_FILE
line1 wd1 wd2 wd3
line2 wd1 wd2 wd3
line3 wd1 wd2 wd3
EoF

#--
echo 'Normal $IFS and `read` operation; split into words:'
printf '$IFS before: %q\n' "$IFS"
while read line w1 w2 w3; do
 printf 'IFS during: %q\tline = %q, w1 = %q, w2 = %q, w3 = %q\n' \
 "$IFS" "$line" "$w1" "$w2" "$w3"
done < $IFS_TEST_FILE
printf 'IFS after: %q\n' "$IFS"

#--
echo ''
echo 'Temporary $IFS change for `read` inline:'
echo 'Words are NOT split, yet $IFS appears unchanged, because only the read'
echo 'line has the changed $IFS. We also shortened "line" to "ln" to make'
echo 'it fit a book page.'
printf 'IFS before: %q\n' "$IFS"
while IFS='' read line w1 w2 w3; do
 printf 'IFS during: %q\tln = %q, w1 = %q, w2 = %q, w3 = %q\n' \
 "$IFS" "$line" "$w1" "$w2" "$w3"
done < $IFS_TEST_FILE
printf 'IFS after: %q\n' "$IFS"

#--
function Read_A_File {
 local file="$1"
 local IFS=''

 while read line w1 w2 w3; do
 printf 'IFS during: %q\tline = %q, w1 = %q, w2 = %q, w3 = %q\n' \
 "$IFS" "$line" "$w1" "$w2" "$w3"
 done < $IFS_TEST_FILE
}

echo ''
echo 'Temporary $IFS change for `read` in a function; NOT split, $IFS changed:'
printf 'IFS before: %q\n' "$IFS"
Read_A_File
printf 'IFS after: %q\n' "$IFS"

90 | Chapter 9: Files and More

#--
echo ''
echo 'But you may not need to change $IFS at all... See `help read` and'
echo 'note the parts about:'
echo ' ...leftover words assigned to the last NAME'
echo ' ...[read line until] DELIM is read, rather than newline'
echo 'Normal $IFS and `read` operation using only 1 variable:'
printf 'IFS before: %q\n' "$IFS"
while read line; do
 printf 'IFS during: %q\tline = %q\n' "$IFS" "$line"
done < $IFS_TEST_FILE
printf 'IFS after: %q\n' "$IFS"

The output is shown in Example 9-7.

Example 9-7. Changing IFS for read example: output

Normal $IFS and `read` operation; split into words:
$IFS before: $' \t\n'
IFS during: $' \t\n' line = line1, w1 = wd1, w2 = wd2, w3 = wd3
IFS during: $' \t\n' line = line2, w1 = wd1, w2 = wd2, w3 = wd3
IFS during: $' \t\n' line = line3, w1 = wd1, w2 = wd2, w3 = wd3
IFS after: $' \t\n'

Temporary $IFS change for `read` inline:
Words are NOT split, yet $IFS appears unchanged, because only the read
line has the changed $IFS. We also shortened "line" to "ln" to make
it fit a book page.
IFS before: $' \t\n'
IFS during: $' \t\n' ln = line1\ wd1\ wd2\ wd3, w1 = '', w2 = '', w3 = ''
IFS during: $' \t\n' ln = line2\ wd1\ wd2\ wd3, w1 = '', w2 = '', w3 = ''
IFS during: $' \t\n' ln = line3\ wd1\ wd2\ wd3, w1 = '', w2 = '', w3 = ''
IFS after: $' \t\n'

Temporary $IFS change for `read` in a function; NOT split, $IFS changed:
IFS before: $' \t\n'
IFS during: '' line = line1\ wd1\ wd2\ wd3, w1 = '', w2 = '', w3 = ''
IFS during: '' line = line2\ wd1\ wd2\ wd3, w1 = '', w2 = '', w3 = ''
IFS during: '' line = line3\ wd1\ wd2\ wd3, w1 = '', w2 = '', w3 = ''
IFS after: $' \t\n'

But you may not need to change $IFS at all... See `help read` and
note the parts about:
 ...leftover words assigned to the last NAME
 ...[read line until] DELIM is read, rather than newline
Normal $IFS and `read` operation using only 1 variable:
IFS before: $' \t\n'
IFS during: $' \t\n' line = line1\ wd1\ wd2\ wd3
IFS during: $' \t\n' line = line2\ wd1\ wd2\ wd3
IFS during: $' \t\n' line = line3\ wd1\ wd2\ wd3
IFS after: $' \t\n'

Fiddling with $IFS for Fun and Profit, to Read Files | 91

See also:

• “Local Variables” on page 110•
• “Reading Files” on page 85•
• “ANSI-C Quoting” on the bash man page•

Pretend Files
We all know that UNIX, Linux, and (of course) bash expect everything to be a file,
right? Everything is a file. That is The Way. But what happens if you need to process
only part of the file? Perhaps you have a number of nodes that report statistics
every time period, and you want to diff them to see if any nodes have appeared or
dropped. Let’s assume the files are tab delimited and have multiple records from each
node with the node name as the first field, but you aggregate them over an hour, or
day, or whatever.

You could use temp files, though that is pretty tedious:

cut -f1 /path/to/previous-report.log | sort -u > /tmp/previous-report.log
cut -f1 /path/to/current-report.log | sort -u > /tmp/current-report.log
diff /tmp/previous-report.log /tmp/current-report.log
rm /tmp/previous-report.log /tmp/current-report.log

Instead you can use these “pretend files” to do the same thing:

diff <(cut -f1 /path/to/previous-report.log | sort -u) \
 <(cut -f1 /path/to/current-report.log | sort -u)

OK, it’s really called process substitution (illustrated in Example 9-8), but we thought
pretend files sounded like more fun.

Example 9-8. Simple process substitution example

$ head *report.log
==> current-report.log <==
always-talking
always-talking
always-talking
always-talking

==> previous-report.log <==
always-talking
going-away
always-talking
going-away
always-talking
going-away
always-talking
going-away

92 | Chapter 9: Files and More

https://oreil.ly/DFkqR

$ diff -u <(cut -f1 previous-report.log | sort -u) \
 <(cut -f1 current-report.log | sort -u)
--- /dev/fd/63 2022-01-09 20:01:37.857658587 -0500
+++ /dev/fd/62 2022-01-09 20:01:37.857658587 -0500
@@ -1,2 +1 @@
 always-talking
-going-away

Drop-in Directories
An idiom that you see in a lot of different contexts is a directory into which you can
add or remove a file to achieve some effect. This is very handy for Linux distributions
that use package management systems like RPM (Red Hat Package Manager) or
Debian APT (Advanced Package Tool) because a package can add a file on install
or remove a file on uninstall without having to programmatically edit files. /etc/
cron.d/ is a perfect example; packages can easily add cron jobs when installed and
remove those jobs when uninstalled and not affect anything else.

We’re big fans of this technique for configuration files, if supported. For exam‐
ple, you can have an /etc/syslog-ng/syslog-ng.conf file containing @include
"/etc/syslog-ng/syslog-ng.local.d", then you can drop files into /etc/syslog-
ng/syslog-ng.local.d/ to adjust the configuration as needed for a particular node.

It’s very easy to do that in your bash code as well (Example 9-9).

Example 9-9. Include drop-in files

Source local overrides IF any exist AND are executable
for config in /etc/myscript.cfg.d/*; do
 # Override files MUST be EXECUTABLE or they will be ignored, which makes
 # it easy to disable them.
 [-x "$config"] && source "$config"
 # Or change `-x` to `-r` to use readable instead of executable
done

This idea builds on the “Wrapper Scripts” on page 23, so you can build simple,
extensible, and yet powerful tools for yourself or your users. You write a simple
skeleton script with some logic to look an “action” command up in a directory, and
some glue code to pull those commands together and provide usage or help. You then
add a “template” for new modules or actions, and you or your users just copy the
template and fill in the details to easily add a new feature.

Drop-in Directories | 93

1 WET: We Enjoy Typing, the opposite of DRY: Don’t Repeat Yourself.

Using a Library
If you have a lot of code you use frequently, perhaps a Log function using printf
%(datefmt)T (see “Getting or Using the Date and Time” on page 57), it can make
sense to put it in a library to reduce “WET”1 code and maintenance. Of course, as
soon as you do, you run into the usual library issues: deployment and calling it.
Deployment is up to you and your general process and practices, but we can help
with calling it.

Ironically, you will have duplicate “boilerplate” code to call your library, and you can’t
extract that into a library or the import process becomes circular. But since you have
a template for header comments and such (right?), you can just add the code shown
in Example 9-10.

Example 9-10. Sourcing a bash library

Source our library
source /path/to/global/bash-library.lib || {
 echo "FATAL: $0 can't source '/path/to/global/bash-library.lib'"
 exit 1
}

We could have defined GLOBAL_LIBRARY=/path/to/global/bash-library.lib, but
for two uses in boilerplate code, it didn’t seem worth it. If you’re really clever, you’ll
build a global configuration of variables into that library, and you’ll allow overrides
for variables and maybe library functions using node-local drop-in directories (see
“Drop-in Directories” on page 93).

Shebang!
What makes a plain old file a shell script? Shebang!

We think “shebang” sounds like a spell, and it is, in fact, a magical incantation to
tell the kernel (not the daemons) what to do with your code. We’re taking about that
#!/bin/bash or possibly #!/bin/sh first line of your script, of course. #! cleverly acts
as both a comment and a magic number to tell the kernel to look for an interpreter, in
this case bash.

The most common bash shebang on Linux is #!/bin/bash, but you will often
see #!/bin/sh and #!/bin/bash -, and you may see #!/usr/bin/env bash,
#!/usr/bin/bash, or other paths.

94 | Chapter 9: Files and More

We recommend either #!/bin/bash - or #!/usr/bin/env bash. We strongly dis‐
courage #!/bin/sh unless you are deliberately restricting your code to Bourne shell
compatibility, in other words not using “bashisms.” You used to be able to get away
with that on Linux, but many Linux distributions switched to using the Debian
Almquist shell or dash for /bin/sh because it was much smaller and faster than bash
for running scripts, like all the scripts used to boot the system. But it’s a bad idea to
use sh when you really mean bash because, as we just noted, it’s fragile and obscures
programmer intent.

#!/usr/bin/env bash is much more portable, because as long as bash is in the
$PATH, it will go find it. That’s great when bash is not in /bin/, which is the case on
BSD, Solaris, and other non-Linux systems. The only problem is that the overhead
of spawning env, then searching the $PATH, then replacing itself with bash is slower.
With the resources in modern computers, that almost never matters, but if you are
developing on a constrained system or running a lot of scripts or instances in a short
time, that overhead adds up (Example 9-11).

Example 9-11. Shebang speed test

$ head examples/ch09/shebang*
==> examples/ch09/shebang-bash.sh <==
#!/bin/bash -
:

==> examples/ch09/shebang-env.sh <==
#!/usr/bin/env bash
:

$ time for ((i=0; i<1000; i++)); do examples/ch09/shebang-bash.sh; done
real 0m3.279s
user 0m1.273s
sys 0m0.915s

$ time for ((i=0; i<1000; i++)); do examples/ch09/shebang-env.sh; done
real 0m4.291s
user 0m1.313s
sys 0m1.425s

The other detail to mention is the trailing - we’ve shown. That’s there to prevent a
very old interpreter spoofing attack; see section 4.7 of the Unix FAQs for details. The
Linux kernel (but not other kernels!) treats everything after the first “word” (in this
case /bin/bash) as a single argument, so we “use up” that argument with the “end of
arguments” dash. Note that this is not needed in #!/usr/bin/env bash because the
bash part itself is the argument.

Shebang! | 95

http://bit.ly/2fdmYSl

Unofficial bash Strict Mode
Perl has a use strict pragma to “restrict unsafe constructs” that causes a syntax
check or run time error if you do not declare and initialize variables before using
them, among other things. The unofficial bash strict mode article makes the argu‐
ment that the following does the same (in spirit) in bash:

set -euo pipefail
IFS=$'\n\t'

We don’t quite agree on changing $IFS like that because that will break a lot of bash
idioms (see “Fiddling with $IFS for Fun and Profit, to Read Files” on page 89). The
author makes a good argument, but it might be a large effort to migrate legacy code
for that. The set commands are great, though:

• -e will exit the entire script at the first error.•
• -u will exit the entire script if you use an unset variable.•
• -o pipefail will fail pipelines if any command, not just the last one, exits with•

nonzero.

Adding -u will break a lot of existing scripts, but the fixes will be pretty easy, and
you may find some variable name typos you didn’t know you had, which is the whole
point. -eo pipefail will probably break less up front, and when that does “break” a
script, it was probably already broken, but the error was masked and these options
just unmasked the problem.

This is definitely worth considering and perhaps adding to your templates and style
guide.

See also:

• http://redsymbol.net/articles/unofficial-bash-strict-mode•
• help set•
• https://perldoc.perl.org/strict•

Exit Codes
Unless told otherwise, your bash script will exit with the exit (or return) code of
the last command run. Sometimes that’s fine, and other times you may need to exit
earlier after failing a sanity check or for some other condition.

96 | Chapter 9: Files and More

https://oreil.ly/mZX7f
http://redsymbol.net/articles/unofficial-bash-strict-mode
https://perldoc.perl.org/strict

In bash, zero means success and nonzero means failure. This is the opposite of many
other languages, but it’s this way because there is only one way to succeed but many
ways to fail, and you might need to represent which way you failed, like:

if grep --quiet "$HOSTNAME" /etc/hosts; then ...

The bash exit code is only eight bits, so the maximum value is 255, but you want your
return code values to stay at or below 125 because 126 and above are taken, as shown
in Table 9-1.

Table 9-1. bash exit/return codes

Exit/return code Use/description
0 Success

1–125 User-defined failure

2 bash builtins incorrect usage

126 Command found but not executable

127 Command not found

128–255 Command exited with signal N-128

See also the GNU documentation about exit status.

The command to exit the entire script with an “exit code” is, wait for it, exit n. The
command to return from a function is, again, wait for it, return n, where “n” is an
optional argument as defined previously. Remember that return returns an exit code,
not values. The “n” can be any shell expression like 5 or $val or something more
complex. Remember if “n” is not given, status is that of the last command run.

See also our discussion about exit 0 or exit 1 for help and usage in “HELP!” on
page 79.

It’s a Trap!
The trap builtin (help trap) allows you to execute code when the script receives a
signal, which includes when it exits. That is a great place to have “cleanup” code that
will work even if someone CTRL-Cs (but not if they kill -9) the script. You can
also use it to run debugging code, but for this simple case, just use set -x or run
under bash -x. Run trap -l to list all the signals your system supports or trap -p
<signal> to show the trap commands associated with that signal.

The typical use of trap is to clean up after your script, as noted. The syntax is trap
[-lp] [[arg] signal_spec …], and while that arg can be self-contained code, it’s
probably cleaner to just define and then call a function instead. That looks something
like Example 9-12 (output shown in Example 9-13).

It’s a Trap! | 97

https://oreil.ly/jkAnE

Example 9-12. Trivial trap example: code

#!/usr/bin/env bash
trivial_trap.sh: Trivial bash trap example
Original Author & date: _bash Idioms_ 2022
bash Idioms filename: examples/ch09/trivial_trap.sh
#___
Does not work on Zsh 5.4.2!

function Cleanup {
 echo "$FUNCNAME was triggered! Cleaning up..."
}

echo "Starting script $0..."

echo 'Setting the trap...'
Will call Cleanup on any of these 6 signals
trap Cleanup ABRT EXIT HUP INT QUIT TERM

echo 'About to exit...'

Example 9-13. Trivial trap example: output

Starting script examples/ch09/trivial_trap.sh...
Setting the trap...
About to exit...
Cleanup was triggered! Cleaning up...

See also the GNU documentation about trap and “bash Debugging” on page 120.

Here-Documents and Here-Strings
Other languages have similar constructs, like C’s /* ... */, and Python’s ''' ...
''', but bash has some interesting idiomatic features for here-documents and here-
strings. We used a here-document in Example 8-3, but there is more to talk about and
decode.

Here-documents are used to contain and often display blocks of text without needing
a lot of delimiters and commands.

Here-document syntax is [fd]<<[-]["']word["'], where “fd” is an optional (and
rarely used) file descriptor, - is a flag that means “strip leading tabs but not spaces,”
and optional quotes mean “do not interpolate the contents.” The word itself is not
subject to parameter, variable, arithmetic, or filename expansion, or command sub‐
stitution. Among other things, that means it can’t be a variable. If any part of word is
quoted, interpolation is not performed on the document. We recommend using only
single quotes since they prevent interpolation elsewhere in bash so the meaning is
consistent, unlike using double quotes.

98 | Chapter 9: Files and More

https://oreil.ly/KDuFJ

In practice, using - means you can indent the here-document in your code (but
only using tabs) while not having that indent present in the document itself later,
and not quoting means you can use variables in it. As we saw in Example 8-3, that’s
great for displaying a usage message that includes the name and path of the script,
without a lot of echo or printf lines and quotes. We also use it later for “Embedded
Documentation” on page 115.

Here-strings look like [fd]<<<word, which seems similar, but in this case the word
itself is subject to parameter, variable, and arithmetic expansion; command substitu‐
tion; and quote removal. They are essentially a simpler here-document without a
delimiter that results in a string, with a newline appended.

See the GNU documentation on here-documents and here-strings.

Are We Interactive?
Sometimes your code needs to know whether or not it is running in an interactive
session. It may need to know because it will change behavior, like asking for input, or
perhaps you only want to set certain configuration options for interactive shells.

The GNU documentation on interactive shells says to use one of the following, so you
will see these or variations a lot:

case "$-" in
 i) echo This shell is interactive ;;
 *) echo This shell is not interactive ;;
esac

or:

if [-z "$PS1"]; then
 echo This shell is not interactive
else
 echo This shell is interactive
fi

You can also consider the -t FD test, which is true if the file descriptor is opened on a
terminal. If you do not specify a file descriptor, 0 (STDIN) is used. You can combine
that with another test, say for bash itself, such as:

Only if bash in a terminal!
if [-t 1 -a -n "$BASH_VERSION"]; then
 echo 'bash in a terminal'
else
 echo 'NOT bash in a terminal'
fi

Are We Interactive? | 99

https://oreil.ly/CsUWq
https://oreil.ly/ujM8B
https://oreil.ly/kbZE2

or:

Only if *interactive* bash in a terminal!
if [-t 1 -a -n "$PS1" -a -n "$BASH_VERSION"]; then
 echo 'Interactive bash in a terminal'
else
 echo 'NOT interactive bash in a terminal'
fi

Note that we deliberately used [] (test) instead of the [[]] (bash conditional) because
part of the point is that this code might run on something that is not bash and thus
does not support [[]] (e.g., dash).

Summary
This chapter is about the idioms that sometimes aren’t pretty that you need to know
anyway. There are a lot of ways to work with files in bash, often involving redirection
and/or pipelines, so we’ve shown some typical bashy patterns. Bash scripts are also
files, so we talked about the magic incantation to make the file into an executable
script or library, how to exit out and clean up, and other useful idioms. And while
“here-documents” aren’t exactly files, they often take the place of a separate file of
text, or a files-within-a-file, and we’ve used them elsewhere, so here they are.

100 | Chapter 9: Files and More

1 See the xkcd comic “Automation”.

CHAPTER 10

Beyond Idioms: Working with bash

Code tends to grow. Complexity tends to grow. Say it with us now, “There is nothing
more permanent than a ‘temporary’ solution!” Etch that in stone and keep it in mind
when you write code, when you think about writing code, and when you go, “Hey, I
bet I could automate that.”1 Plan ahead. Be flexible. Keep it simple. And make it easy,
for yourself and others.

OK, but…what?

This chapter is a collection of additional useful material we wanted to talk about that
just didn’t fit in anywhere else. We may arguably stray out of pure “idiom” territory
here, but this is all about getting work done at a bash prompt every day.

When you write that “one-off,” take a few extra minutes to use good names and add
comments. At the end, take a few more minutes to think about how the environment
and code might evolve and what changes or exceptions might be needed. It’s a lot
easier to add features and flexibility now, while all the details are clear in your head,
versus six months from now. Is this code really “one size fits all” (ha!), or might there
be exceptions? Can a case statement handle some tweaks based on $HOSTNAME or
might you have to ask the user a question? Does your script need arguments, or temp
files? Maybe it needs to make some $RANDOM choices? Keep reading.

Life these days is pretty busy, and work even more so. What can you do to make it
simpler? Can you structure your source repository to match deployment targets, to
make it easier to map what is going where? Can you write new commands (scripts)
to remember options and details for you? Can you automate an otherwise tedious
manual task? Probably. We hope we’ve given you a lot of tools to do all that in the

101

https://xkcd.com/1319

previous chapters, but we have a few more ideas to enhance flexibility and quality of
life to talk about before we’re finished.

Prompts
There aren’t really any idioms for the bash prompt. The prompt you get by default
depends on where your bash came from and how the configuration files have been
tweaked, and every user likes different prompt settings. But there are some things to
be aware of.

We’re not going to go into a lot of detail about how you control the prompt—that’s
covered in the bash documentation, the bash Cookbook (recipe 16.2 and elsewhere),
and all over the web. See the following:

• https://www.gnu.org/software/bash/manual/html_node/Controlling-the-•
Prompt.html

• http://www.bashcookbook.com/bashinfo/source/bash-4.2/examples/scripts.noah/•
prompt.bash

• https://www.tldp.org/HOWTO/Bash-Prompt-HOWTO/index.html•
• https://sourceforge.net/projects/bashish•

We will briefly cover the different prompts, because there are some new and little-
known features, as shown in Table 10-1.

Table 10-1. bash prompts

Prompt Use Default
PS0 bash v4.4+ pre-execution prompt None

PS1 Bourne/bash primary prompt '\s-\v\$ '

PS2 Bourne/bash secondary prompt '> '

PS3 bash select prompt '#? '

PS4 bash debug parameter '+ '

PROMPT_COMMAND command before $PS1 None

PS0

This prompt is displayed by interactive shells after you hit enter on a command
but before the command runs. It can be useful to display a “start time” or other
marker just before a command runs (see Example 10-1).

102 | Chapter 10: Beyond Idioms: Working with bash

https://learning.oreilly.com/library/view/bash-cookbook-2nd/9781491975329/
https://www.gnu.org/software/bash/manual/html_node/Controlling-the-Prompt.html
https://www.gnu.org/software/bash/manual/html_node/Controlling-the-Prompt.html
http://www.bashcookbook.com/bashinfo/source/bash-4.2/examples/scripts.noah/prompt.bash
http://www.bashcookbook.com/bashinfo/source/bash-4.2/examples/scripts.noah/prompt.bash
https://www.tldp.org/HOWTO/Bash-Prompt-HOWTO/index.html
https://sourceforge.net/projects/bashish

Example 10-1. Example bash pre-execution prompt

PS0='Start: \D{%Y-%m-%d_%H:%M:%S_%Z}\n'

Note the difference between the prompt time and the start time
[user@hostname:T2:L1:C5289:J0:2021-08-27_17:46:04_EDT]
/home/user/bash-idioms$ ls -1 ch*
Start: 2021-08-27_18:47:37_EDT
ch01.asciidoc
...

PS1

This is the main bash prompt, inherited from the Bourne shell, and it’s where you
spend almost all your interactive time with bash, so it’s well worth understanding
and tweaking. The prompt shown in Example 10-2 drives some people crazy, but
it’s useful because it gives you all the information you can possibly need, making
it great to copy and paste into documentation or trouble tickets. There is one
catch, though. The date/time are displayed when the prompt is displayed, and
if that was hours or days ago, that can be confusing. You can hack around that
problem by just being aware of it and hitting enter a time or two before you
start a new command or session. Or, if you have bash v4.4+, you can use PS0, as
in the previous example. Note that the C5275 command history number is great
when you fat-finger a password into your bash history. Just history -d 5275
and you’re all set. (See help history, and bonus points for omitting the history
command itself with a leading space, per Example 10-13.)

Example 10-2. Example bash primary prompt

export PS1='\n[\u@\h:T\l:L$SHLVL:C\!:J\j:\D{%Y-%m-%d_%H:%M:%S_%Z}]\n$PWD\$ '

[user@hostname:T2:L1:C5275:J0:2021-08-27_16:51:20_EDT]
/home/user/bash-idioms$

PS2

This is the prompt you see when you hit enter but have not completed the
command, possibly because you have not closed a quote or here-document.

PS3

The prompt used by the select builtin; see “select” on page 107.

PS4

This is the debug prompt, or maybe prefix is a better word, for when set -x is
active. Note that the first character is duplicated as necessary to show the shell
nesting level, so you want that to be clear. + is a good choice; see also “bash
Debugging” on page 120. Example 10-3 is arguably busy, but it’s informative.

Prompts | 103

Example 10-3. Example bash debug prompt

export PS4='+xtrace $BASH_SOURCE:$LINENO:$FUNCNAME: '

PROMPT_COMMAND

Example 10-4 shows a command to run just before $PS1 is evaluated and dis‐
played. It’s used for all kinds of things like updating the window title for GUI
terminals; displaying dynamic details about your environment, like what Git
branch you’re in; or even doing some very primitive and insecure logging.

Example 10-4. Example bash PROMPT_COMMAND for logging

This should be one line; it is broken to fit the page
export PROMPT_COMMAND='logger -p local1.notice -t "bashlog[$$];" \
 "SSH=$SSH_CONNECTION; USER=$USER; PATH=$PWD; COMMAND=$(fc -ln -1)"'

bash Time Zone
This isn’t really a bash idiom, but it’s a neat prompt hack. The bash prompt defaults
to displaying the date and time in the system time zone, but you can export TZ=UTC
or some other time zone to change that. That’s useful if you prefer to keep your GUI
in your local time zone but would rather have bash display UTC for documentation
purposes, or to have local bash time displays match server displays. Note that the
prompt TZ will not change until after you run an external command; just hitting enter
or running a bash builtin will not cause it to update.

See also “Time for printf ” on page 55 for more date and time handling.

Getting User Input
Most of the time, bash scripts get user input via command line arguments, but
sometimes you might need to ask for input as well. The two common ways to do that
are the read and select builtins.

See also:

• help read•
• help select•

read
read reads a line from STDIN or a file descriptor and assigns the words to a list of
variables, or into an array (list) variable, and it has a number of really useful options
(shown in Example 10-5).

104 | Chapter 10: Beyond Idioms: Working with bash

Example 10-5. bash help for read

$ bash --version
GNU bash, version 4.4.20(1)-release (x86_64-pc-linux-gnu)
...

$ help read
read: read [-ers] [-a array] [-d delim] [-i text] [-n nchars] [-N nchars]
 [-p prompt] [-t timeout] [-u fd] [name ...]
 Read a line from the standard input and split it into fields.

 Reads a single line from the standard input, or from file descriptor FD
 if the -u option is supplied. The line is split into fields as with word
 splitting, and the first word is assigned to the first NAME, the second
 word to the second NAME, and so on, with any leftover words assigned to
 the last NAME. Only the characters found in $IFS are recognized as word
 delimiters.

 If no NAMEs are supplied, the line read is stored in the REPLY variable.

 Options:
 -a array assign the words read to sequential indices of the array
 variable ARRAY, starting at zero
 -d delim continue until the first character of DELIM is read, rather
 than newline
 -e use Readline to obtain the line in an interactive shell
 -i text use TEXT as the initial text for Readline
 -n nchars return after reading NCHARS characters rather than waiting
 for a newline, but honor a delimiter if fewer than
 NCHARS characters are read before the delimiter
 -N nchars return only after reading exactly NCHARS characters, unless
 EOF is encountered or read times out, ignoring any
 delimiter
 -p prompt output the string PROMPT without a trailing newline before
 attempting to read
 -r do not allow backslashes to escape any characters
 -s do not echo input coming from a terminal
 -t timeout time out and return failure if a complete line of
 input is not read within TIMEOUT seconds. The value of the
 TMOUT variable is the default timeout. TIMEOUT may be a
 fractional number. If TIMEOUT is 0, read returns
 immediately, without trying to read any data, returning
 success only if input is available on the specified
 file descriptor. The exit status is greater than 128
 if the timeout is exceeded
 -u fd read from file descriptor FD instead of the standard input

 Exit Status:
 The return code is zero, unless end-of-file is encountered, read times out
 (in which case it's greater than 128), a variable assignment error occurs,
 or an invalid file descriptor is supplied as the argument to -u.

Getting User Input | 105

One really useful set of options is -eip, which allows you to prompt (-p) for data but
provides a prefilled default value (-i) and allows using Readline features (like arrow
keys; see Example 10-13) to edit the default before accepting it (see Example 10-6).

Example 10-6. Providing an editable default value for user input

$ read -ei 'default value' -p 'Enter something: '
Enter something: default value
Then we use readline features, like arrow keys, to change it
Enter something: changed: default value

$ echo $REPLY
changed: default value

Another handy option is -s for asking for passwords without showing the password
as you type it (Example 10-7).

Example 10-7. Prompting for a password

$ read -sp 'Enter the secret password: ' ; \
 echo -e "\n\nShhhh, the password is: ~$REPLY~"
Enter the secret password:

Shhhh, the password is: ~super secret~

For your quick-and-dirty script, you can also do something like this, but remember
that there is nothing more permanent than a “temporary” solution:

read -n1 -p 'CTRL-C to abort or any other key to continue...'

The timeout feature is also great for asking for optional input but not totally hanging
the script if no one is there (see Example 10-8).

Example 10-8. Prompt for input with a timeout

$ time read -t 4 -p "Are you there?"
Are you there?
real 0m4.000s
user 0m0.000s
sys 0m0.000s

read is also used to read files and parse input, as we discussed in “read” on page 85.

pause
This one is mostly for fun, but if you remember the old DOS/Windows pause
command, in bash you do:

106 | Chapter 10: Beyond Idioms: Working with bash

$ read -n1 -p 'Press any key to continue...'
Press any key to continue...

select
As its name implies, select creates a simple menu and allows you to select a choice.
It’s up to you to remember to create exit or abort options, if you want them. A similar
tool with much more power is dialog, but that’s not a bash idiom, so we’re not going
to cover it.

A simple example:

#!/usr/bin/env bash
select-ssh.sh: Create a menu from ~/.ssh/config to set ssh_target,
then SSH to it
Original Author & date: _bash Idioms_ 2022
bash Idioms filename: examples/ch10/select-ssh.sh
#___

#ssh_config="$HOME/.ssh/config" # Real one
Replace the trailing 'select-ssh.sh' with 'ssh_config'
ssh_config="${0%/*}/ssh_config" # Idioms test file

PS3='SSH to> '
select ssh_target in Exit \
 $(egrep -i '^Host \w+' "$ssh_config" | cut -d' ' -f2-); do
 case $REPLY in
 1|q|x|quit|exit) exit 0
 ;;
 *) break
 ;;
 esac
done

This is only an example, so echo what we would have done
echo ssh $ssh_target

At runtime, it looks like this:

$ examples/ch10/select-ssh.sh
1) Exit 3) gitlab.com 5) mythtv-be01
2) git.atlas.oreilly.com 4) github.com 6) kitchen
SSH to> 1

$ examples/ch10/select-ssh.sh
1) Exit 3) gitlab.com 5) mythtv-be01
2) git.atlas.oreilly.com 4) github.com 6) kitchen
SSH to> 6
ssh kitchen

Getting User Input | 107

Aliases
Since you are reading this book, you probably already know about the alias and
unalias command, but we want to cover a few important points. First, best security
practice is to use \unalias when you need to remove an alias. The leading \ inhibits
alias expansion, thus preventing a malicious unalias alias from causing havoc.

Second, some Linux distributions like to set “helpful” aliases for root or all users,
so you’ll want to explore the defaults in your distribution(s) and environment(s). In
particular, you will see alias rm=rm -i and similar aliases for cp and mv, which you
may or may not find desirable.

Examples 10-9 and 10-10 show two sets of aliases that you might consider using,
perhaps in your ~/.bashrc file. Put some or all of them in your .bashrc file in your
home directory.

Example 10-9. Trivial DOS/Windows “compatibility”

alias cls='clear' # DOS-ish for clear
alias copy='cp' # DOS-ish for cp
alias del='rm' # DOS-ish for rm
alias dir='ls' # DOS-ish for ls
alias ipconfig='ifconfig' # Windows-ish for ifconfig
alias md='mkdir' # DOS-ish for mkdir
alias move='mv' # DOS-ish for mv
alias rd='rmdir' # DOS-ish for rmdir
alias ren='mv' # DOS-ish for mv/rename
alias tracert='traceroute' # DOS-ish for traceroute

Example 10-10. Example aliases

Install `xclip` or `xsel` for Linux copy and paste
alias gc='xsel -b' # "GetClip" get stuff from right "X" clipboard
alias pc='xsel -bi' # "PutClip" put stuff to right "X" clipboard
Or Mac: pbcopy/pbpaste
Or Windows: gclip.exe/pclip.exe or getclip.exe/putclip.exe

Cleaner `df`
alias df='df --print-type --exclude-type=tmpfs --exclude-type=devtmpfs'
alias diff='diff -u' # Make unified diffs the default
alias locate='locate -i' # Case-insensitive locate
alias ping='ping -c4' # Only 4 pings by default
alias vzip='unzip -lvM' # View contents of ZIP file
alias lst='ls -lrt | tail -5' # Show this dir's 5 most recently modified files

Tweaked from
https://oreil.ly/1SUg7

108 | Chapter 10: Beyond Idioms: Working with bash

alias randomwords="shuf -n102 /usr/share/dict/words | perl -ne 'print qq(\u\$_);' \
 | column"

Sometimes it’s useful to have the same command work differently on different hosts.
You can easily do that with a case statement (Example 10-11).

Example 10-11. Different aliases for different hosts

case "$HOSTNAME" in
 host1*) # Linux, but only has `xclip`
 alias gc='xclip -out' # Send X selection to STDOUT
 alias pc='xclip -in' # Send STDIN to X selection
 ;;

 host2*) # Mac
 alias gc='pbpaste' # Send Paste Buffer to STDOUT
 alias pc='pbcopy' # Send STDIN to Paste Buffer
 ;;

 *) # Linux default
 alias gc='xsel -b' # Send X clipboard to STDOUT
 alias pc='xsel -bi' # Send STDIN to X clipboard
 ;;
esac

Functions
One thing you can’t do with aliases is pass arguments into the middle of the alias,
but you can do that with functions, as we covered in Chapter 6. We’re starting to get
out of idioms and more into recipes here, but we can’t resist the handy little function
shown in Example 10-12.

Example 10-12. function mcd

function mcd {
 \mkdir -p "\$1"
 \cd "\$1"
}

Of course, that’s very trivial, and doesn’t do sanity or error checking, and doesn’t
allow for setting permissions (-m mode), but even this version is a great time-saver if
you make a lot of directories. Note the leading \ inhibits alias expansion so we’re sure
to get the plain bash builtin. We’ll leave expanding it as an exercise for the reader.

Functions | 109

Local Variables
We talked about this in “Local Variables” on page 54, but to recap, the local com‐
mand may only be used inside a function to declare a variable local to that function.
That’s a good programming practice, but if you need a “local” scope outside of a
function, there is a way to do that, and a common variable to work with is the
internal field separator $IFS. Normally you don’t want to change $IFS, because if
you do, all kinds of expected behaviors fail. But every once in a while, you do want
to change it, usually only locally, and you can do that (even outside a function) by
prefixing a variable assignment before a command, like this read command we’ll talk
about next:

IFS=':' read ...

See also “Fiddling with $IFS for Fun and Profit, to Read Files” on page 89.

Readline Hacks
Readline is the library bash uses to read and edit command lines. It may be used by
other programs, but you can easily access it using read -e in your scripts. It has a
lot of options you can change to tweak its behavior, and it seems many users are not
aware of them.

You can explore creating a ~/.inputrc file (see the bind -f command), but just to
play, you can add these to a ~/.bashrc file (Example 10-13).

Example 10-13. Readline tweaks

bind '"\e[A": history-search-backward' # Like CTRL-R but right on the CLI
bind '"\e[B": history-search-forward' # Same except forward
bind '"\C-i": menu-complete' # Cycle through possible completions
bind 'set completion-ignore-case on' # Ignore case in completions

These are bash, but feel related to "CLI behavior tweaks"
export HISTCONTROL='erasedups:ignoredups:ignorespace'+
export HISTIGNORE='&:[]*' # bash >= 3, omit dups & lines starting w/ space+

Binds the “up arrow” to history-search-backward, which means if you start
typing a command, then hit “up arrow,” it will search for that string in your
history. You can do something similar with CTRL-R, but “up arrow” is faster
and more intuitive. However, CTRL-R will find strings in the middle of the
command, whereas this feature is limited to the beginning of the line.

Binds the “down arrow” to history-search-forward, which is the same as item
1 except forward in your history.

110 | Chapter 10: Beyond Idioms: Working with bash

Instead of beeping and just sitting there when you hit TAB and the completion is
ambiguous, start cycling through the options to complete.

Ignore case in completions for filenames and commands.

In saving your history, erasedups removes all previous lines matching your
current line before saving history. ignoredups prevents saving previous duplicate
lines, and ignorespace prevents commands that start with a leading space from
being saved in your history. The end result of this is your history is much cleaner,
because you don’t have duplication, but you also lose any sense of the order
and sequence of commands, since duplicate commands are removed or never
saved. You can also omit commands from being saved in your history, say if they
contain sensitive data, but note that they will still be visible in the process list!

The same as previous, for backward compatibility with really old bash, just in
case.

Using logger from bash
The logger tool (man logger) is great for sending logs right into syslog, but we
would argue that it has a bug, in that the -t or --tag argument is not mandatory, and
the default is just the username. We recommend what is shown in Example 10-14.

Example 10-14. logger tags

logger --tag "$0[$$]" <msg>
logger --tag "$PROGRAM[$$]" <msg>
logger --tag "${0##*/}[$$]" <msg>

The simplest case is using $0 for the name of the script and $$ for its PID. The
problem with $0 is that it will vary depending on how the script was called, and
that’s both noisy and inconsistent. We’d rather use the basename.

If you are already using something like $PROGRAM to get the basename (Exam‐
ple 8-3), then use that with logger also.

If you have not set something like $PROGRAM to the basename of your script, you
can do it right in the logger tag. That’s starting to get a little obscure, but it will
work. Try echo "${0##*/}[$$]" to see, but it’s a bit less interesting from the
command line.

If you are doing your own logging, see printf and time in “Getting or Using the Date
and Time” on page 57.

Using logger from bash | 111

Handling JSON with jq
jq is not bash, but we want to cover this because JSON is very common, especially
when working with cloud infrastructure, and we’ve seen some awful code out there
using tools like awk, grep, and sed to try to handle parsing JSON. Use jq instead, if
possible.

jq Is Not Always There

Unfortunately, despite how common JSON has become, jq is not
always installed by default the way awk, grep, and sed are. It is not
included with Git Bash for Windows either, which does include
awk, sed, cut, grep, tr, etc.
Sometimes you can dodge the bullet. For example, for AWS you
can use --output=text, then use the usual tools. Otherwise, you
can install jq in your default builds or find hack-arounds using
Python or other tools, which is outside the scope of this book.

The source code for this book includes an atlas.json file, so we can use that for
some examples. If we’d like to find the title of this book, we can do that:

$ jq '.title' atlas.json
"bash Idioms"
$ jq -r '.title' atlas.json # "Raw" mode, without the quotes
bash Idioms

But `grep` also works...sort of
$ grep 'title' atlas.json
 "titlepage.html",
 "title": "bash Idioms",

What if we want to know if syntax highlighting is enabled in various output formats?
That’s trickier with grep but simple with jq:

What do we have?
$ jq '.formats | keys' atlas.json
[
 "epub",
 "html",
 "mobi",
 "pdf"
]

Bad; this has no context and is useless
$ grep 'syntaxhighlighting' atlas.json
 "syntaxhighlighting": true,
 "syntaxhighlighting": true,
 "syntaxhighlighting": true,
 "syntaxhighlighting": true,

112 | Chapter 10: Beyond Idioms: Working with bash

Good; this tells us that PDF output does have syntax highlighting
$ jq '.formats.pdf.syntaxhighlighting' atlas.json
true

Better, but very confusing, show formats and syntax value, see jq docs
$ jq -r '.formats | keys[] as $k | "\($k), \(.[$k] \
 | .syntaxhighlighting)"' atlas.json
epub, true
html, true
mobi, true
pdf, true

Read JSON in Firefox

Firefox has an awesome built-in JSON viewer that can really help
you get a handle on what you are looking at and how to get jq to
cough it up. Simply save your JSON output as myfile.json, then
open file:///path/to/myfile.json in Firefox.

Grepping the Process List
When you grep the process list, one of the processes in that list is your grep
command, but that’s not what you are looking for, so you’ll see the idiom in Exam‐
ple 10-15 to remove the grep line.

Example 10-15. Don’t do this

ps auwx | grep 'proggy' | grep -v 'grep'

We think that solution is just ugly and inefficient, and we like Example 10-16 better.

Example 10-16. Do this

ps auwx | grep '[p]roggy'

This works because the string “[p]roggy” in the process list does not match the regu‐
lar expression /[p]roggy/ that really means “proggy”. In other words, “[p]roggy” !=
“proggy”.

Or, you can just use pgrep -fl, or worst case, the old pidof.

Grepping the Process List | 113

Rotating Old Files
Logging is good, and archives are good, but at some point you need to “rotate” or
delete old files. There are many idiomatic ways to do that, so we’ll talk about a few
and make some suggestions.

Many approaches to rotating old files involve the excellent find utility, but a large
number of those also use -exec and/or xargs, and with modern versions of GNU
find, those are unnecessary. The old idioms are:

find /path/to/files -name 'some-pattern' -a -mtime 5 -exec rm -f \{\}\;
find /path/to/files -name 'some-pattern' -a -mtime 5 | xargs rm -f
find /path/to/files -name 'some-pattern' -a -mtime 5 -print0 | xargs -0 rm -f

This is extremely inefficient because it calls a new instance of rm for each file.

This is more efficient because it will batch up files (xargs), but it will break and
do unexpected things if filenames contain spaces.

This can also handle spaces, but it’s still more complicated than you need.

It’s much simpler, if you are using GNU find and do not have portability concerns, to
use the code in Example 10-17.

Example 10-17. Delete old files using find

find /path/to/files \(-type f -a -name 'some-pattern' -a -mtime 5 \) -delete

Here are some things to keep in mind:

• See man find and search for atime and mtime. -mtime +5 means the file was last•
modified at least five days ago, but the “five” is not exact; see the man page for a
discussion of the details.

• For testing, use -ls or -print instead of -delete! But don’t forget to change it•
when done.

• Be aware that find will recurse into any/all subdirs under the path, unless you•
limit that using -maxdepth.

• You want to use the () for grouping (find just these things that match all•
criteria…then delete them), but you have to escape them to prevent the shell
from interpreting them itself.

• An -a “and” operator is assumed between options in the expression; you can also•
use -o for “or” if needed. We like adding the -a anyway, because explicit is better
than implicit.

114 | Chapter 10: Beyond Idioms: Working with bash

• -type f means type of ordinary file, so it will ignore directories, links, etc.•
• -name is obvious but case sensitive. You can use -iname for case insensitive if•

needed.

Embedded Documentation
Programmers have a reputation for not liking to write or update documentation.
Sometimes that’s true, and sometimes you have programmers like, well, us. But
clearly, the more friction involved in writing or updating documentation, the less
likely it is to happen. Your team’s definition of friction and how to reduce it will vary,
but one possible way to help is to embed the documentation in the code. Various
languages have found different ways to do that, and you can do it in bash too.

You can always have comments, and we’ve shown some ways to use comments as
part of usage or help documentation (see “HELP!” on page 79). And it’s easy enough
to have documentation next to your code, say myscript.sh and myscript.asciidoc.
But you can embed real documentation, in wiki or markup language, inside the same
file as your code, as shown in Example 10-18.

Note that this example is a mishmash of Perl POD (Plain Old Documentation) and
generic markup; you should normally pick just one. POD is old and feels very clunky
compared to Markdown, Textile, etc., but it has some nice conversion tools, especially
for man pages, and may still be a good fit if you use Perl and/or those tools. For
other markup, Pandoc is a great converter—for example, pandoc README.md > /tmp/
README.html && firefox file:///tmp/README.html.

Be sure to read the example or output because we’ve, well, embedded some more
discussion and tips. Also, the callouts will look off and out of order in the source
code, because they only make sense in the final output. Just keep reading.

Example 10-18. bash embedded documentation example: code

#!/usr/bin/env bash
embedded-docs.sh: Example of bash code with various kinds of embedded docs
Original Author & date: _bash Idioms_ 2022
bash Idioms filename: examples/ch10/embedded-docs.sh
#___
Does not work on Zsh 5.4.2!

[["$1" == '--emit-docs']] && {
 # Use the Perl "range" operator to print only the lines BETWEEN the bash
 # here-document "DOCS" markers, excluding when we talk about this code
 # below in the docs themselves. See the output for more.
 perl -ne "s/^\t+//; print if m/DOCS'?\$/ .. m/^\s*'?DOCS'?\$/ \
 and not m/DOCS'?$/;" $0
 exit 0

Embedded Documentation | 115

}

echo 'Code, code, code... <2>'
echo 'Code, code, code...'
: << 'DOCS'
=== Docs for My Script

Ignore the callout in this title; it only makes sense in the output later.

Docs can be Markdown, AsciiDoc, Textile, whatever. This block is generic markup.

We've wrapped them using the no-op ':' operator and a here-doc, but you
have to remember, it's not bash that's processing the here-docs, so using
<<-DOC for indenting will not work. Not quoting your marker will not allow
variable interpolation either, or rather, it will, but that won't affect your
documentation output. So always quote your here-doc marker so your docs do
not interfere with your script (e.g., via the backticks we'll use below).

All of your docs could be grouped near the top of the file, like this,
for discoverability. Or they could all be at the bottom, to stay grouped
but out of the way of the code. Or they could be interspersed to stay near
the relevant code. Do whatever makes sense to you and your team.

DOCS
echo 'More code, code, code... <3>'
echo 'More code, code, code...'
: << 'DOCS'
=head1 POD Example

Ignore the callout in this title; it only makes sense in the output later.

This block is Perl POD (Plain Old Documentation).

If you use POD, you can then use `perldoc` and the various `pod2*` tools,
like `pod2html`, that handle that. But you can't indent if using POD, or
Perl won't see the markup, unless you preprocess the indent away before
feeding the POD tools.

And don't forget the `=cut` line!

=cut

DOCS
echo 'Still more code, code, code... <4>'
echo 'Still more code, code, code...'
: << 'DOCS'

Emitting Documentation

Ignore the callout in this title; it only makes sense in the output later.

This could be POD or markup, whatever.

116 | Chapter 10: Beyond Idioms: Working with bash

This section uses a TAB indented here-doc, just because we can, but we
handle that in the Perl post processor, not via bash. :-/

You should add a "handler" to your argument processing/help options to emit
your docs. If you use POD, use those tools, but make sure they are installed!
If you use some other markup, you have to extract it yourself somehow.

We know this is a bash book, but this Perl one-liner using regular
expressions and the range operator is really handy:
 perl -ne "s/^\t+//; print if m/DOCS'?\$/ .. m/^\s*'?DOCS'?\$/ \
 and not m/DOCS'?$/;" $0

That will start printing lines when it matches the regular expression
m/DOCS'?$/, and stop printing when it matches m/^\s*'?DOCS'?\$/, except that
it won't print the actual line containing m/DOCS/ at all.

Add that to your argument processing as "emit documentation."

DOCS

echo 'End of code... <5>'

exit 0 # Unless we already exited >0 above

: << 'DOCS'
h2. More Docs AFTER the code

Ignore the callout in this title; it only makes sense in the output later.

This block is back to generic markup. We do *not* recommend mixing and
matching like we've done here! Pick a markup and some tools and stick to
them. If in doubt, GitHub has made Markdown _very_ popular.

Docs can just go *after* the end of the code. There's an argument for putting
all the docs together in one place at the top or bottom of the script. This
makes the bottom easy. On the other hand, there's an argument for keeping
the docs _close_ to the relevant code, especially for functions. So...your call.

But if this section only has an `exit 0` above it and is not wrapped in a
bogo-here-doc, this might cause some syntax highlighters to be unhappy, and our
Perl doc emitter will miss it, so you have to find a different way to
display the docs.
DOCS

And that looks like Example 10-19.

Example 10-19. bash embedded documentation example: output

Running looks like this (`./embedded-docs.sh`):
Code, code, code...

Embedded Documentation | 117

Code, code, code...
More code, code, code...
More code, code, code...
Still more code, code, code...
Still more code, code, code...
End of code...

Emitting (un-rendered) docs looks like this (`./embedded-docs.sh --emit-docs`):
=== Docs for My Script

Ignore the callout in this title; it only makes sense in the output later.

Docs can be Markdown, AsciiDoc, Textile, whatever. This block is generic markup.

We've wrapped them using the no-op ':' operator and a here-doc, but you
have to remember, it's not bash that's processing the here-docs, so using
<<-DOC for indenting will not work. Not quoting your marker will not allow
variable interpolation either, or rather, it will, but that won't affect your
documentation output. So always quote your here-doc marker so your docs do
not interfere with your script (e.g., via the backticks we'll use below).

All of your docs could be grouped near the top of the file, like this,
for discoverability. Or they could all be at the bottom, to stay grouped
but out of the way of the code. Or they could be interspersed to stay near
the relevant code. Do whatever makes sense to you and your team.

=head1 POD Example

Ignore the callout in this title; it only makes sense in the output later.

This block is Perl POD (Plain Old Documentation).

If you use POD, you can then use `perldoc` and the various `pod2*` tools,
like `pod2html`, that handle that. But you can't indent if using POD, or
Perl won't see the markup, unless you preprocess the indent away before
feeding the POD tools.

And don't forget the `=cut` line!

=cut

Emitting Documentation

Ignore the callout in this title; it only makes sense in the output later.

This could be POD or markup, whatever.

This section uses a TAB indented here-doc, just because we can, but we
handle that in the Perl post processor, not via bash. :-/

118 | Chapter 10: Beyond Idioms: Working with bash

You should add a "handler" to your argument processing/help options to emit
your docs. If you use POD, use those tools, but make sure they are installed!
If you use some other markup, you have to extract it yourself somehow.

We know this is a bash book, but this Perl one-liner using regular
expressions and the range operator is really handy:
 perl -ne "s/^\t+//; print if m/DOCS'?\$/ .. m/^\s*'?DOCS'?\$/ \
 and not m/DOCS'?$/;" $0

That will start printing lines when it matches the regular expression
m/DOCS'?$/, and stop printing when it matches m/^\s*'?DOCS'?\$/, except that
it won't print the actual line containing m/DOCS/ at all.

Add that to your argument processing as "emit documentation."

h2. More Docs AFTER the code

Ignore the callout in this title; it only makes sense in the output later.

This block is back to generic markup. We do *not* recommend mixing and
matching like we've done here! Pick a markup and some tools and stick to
them. If in doubt, GitHub has made Markdown _very_ popular.

Docs can just go *after* the end of the code. There's an argument for putting
all the docs together in one place at the top or bottom of the script. This
makes the bottom easy. On the other hand, there's an argument for keeping
the docs _close_ to the relevant code, especially for functions. So...your call.

But if this section only has an `exit 0` above it and is not wrapped in a
bogo-here-doc, this might cause some syntax highlighters to be unhappy, and our
Perl doc emitter will miss it, so you have to find a different way to
display the docs.

When we run the script with embedded documentation normally, it’s just the
code that runs, as we expect and desire.

This represents a block of code that would be run. Note that the embedded
documentation following the block is ignored.

Another block of code; embedded documentation preceding and following the
block is ignored.

Can you guess?

This is the end of the code, preceding embedded documentation ignored as
above, but we exit the script now, so docs below this point technically do not
need a here-document, but it’s still best to use one for consistency and to make
syntax highlighters happy.

Embedded Documentation | 119

Now we’re emitting the documentation! In this case, we have an --emit-docs
option, but you could use other tools to extract and process the docs.

This is generic markup. It could be Markdown, Textile, whatever.

This is Perl POD and is processed via the various pod2* tools.

This block could be POD or generic; the point is that we indented it, so we need
to handle that in our processing tool.

As we discussed in , this is after the end of the code.

See the following:

• https://en.wikipedia.org/wiki/Pandoc•
• https://en.wikipedia.org/wiki/Plain_Old_Documentation•
• https://en.wikipedia.org/wiki/Markdown•
• https://en.wikipedia.org/wiki/Textile_(markup_language)•
• https://en.wikipedia.org/wiki/Asciidoc•
• https://en.wikipedia.org/wiki/Comparison_of_document_markup_languages•
• https://en.wikipedia.org/wiki/Lightweight_markup_language•

bash Debugging
We’ve talked about adding debugging statements to your code in “Debug and Ver‐
bose” on page 82, displaying values for debugging in “printf for Reuse or Debugging”
on page 58 and in Example 10-3, but we haven’t talked about interpreter-level debug‐
ging until now.

First, you can get a gross syntax check by running bash -n /path/to/script. Tech‐
nically, bash -n means “read commands but do not execute them” (see help set),
and it’s similar to perl -c. This will not tell you about runtime errors, incorrect
logic, incorrect options to external commands, and such. But it will tell you about
unbalanced quotes, parentheses, and brackets; invalid syntax for bash builtins; and so
on. This is a great command to run early and often when writing or changing your
script.

There’s a similar bash -v or set -v command that is “print shell input lines as they
are read,” but in practice that’s not as useful as it sounds because it displays before
shell interpolation, so you just get your source code spit back at you.

120 | Chapter 10: Beyond Idioms: Working with bash

https://en.wikipedia.org/wiki/Pandoc
https://en.wikipedia.org/wiki/Plain_Old_Documentation
https://en.wikipedia.org/wiki/Markdown
https://en.wikipedia.org/wiki/Textile_(markup_language)
https://en.wikipedia.org/wiki/Asciidoc
https://en.wikipedia.org/wiki/Comparison_of_document_markup_languages
https://en.wikipedia.org/wiki/Lightweight_markup_language

bash -x (xtrace), on the other hand, to “print commands and their arguments as
they are executed,” is very useful, and that’s the next step in debugging. Run bash
-x /path/to/script, and be prepared for a lot of output. See Example 10-3 for one
way to make that output more useful. You can also turn xtrace on in the middle of
your code with set -x and then later turn it off with set +x (yeah, that hurts our
heads a little too, but once you turn it on using -, turning it off with + is at least
memorable). Example 10-20 illustrates this.

Example 10-20. Simple debug example

Without debugging
$ examples/ch10/select-ssh.sh
1) Exit 3) gitlab.com 5) mythtv-be01
2) git.atlas.oreilly.com 4) github.com 6) kitchen
SSH to> 1

With debugging (2 lone lines broken to fit)
$ bash -x examples/ch10/select-ssh.sh
+xtrace examples/ch10/select-ssh.sh:9:: ssh_config=examples/ch10/ssh_config
+xtrace examples/ch10/select-ssh.sh:11:: PS3='SSH to> '
+xtrace examples/ch10/select-ssh.sh:12:: select ssh_target in Exit $(egrep \
 -i '^Host \w+' "$ssh_config" | cut -d' ' -f2-)
++xtrace examples/ch10/select-ssh.sh:12:: egrep -i '^Host \w+' \
 examples/ch10/ssh_config
++xtrace examples/ch10/select-ssh.sh:12:: cut '-d ' -f2-
1) Exit 3) gitlab.com 5) mythtv-be01
2) git.atlas.oreilly.com 4) github.com 6) kitchen
SSH to> 1
+xtrace examples/ch10/select-ssh.sh:13:: case $REPLY in
+xtrace examples/ch10/select-ssh.sh:14:: exit 0

You might want to take a look at “Unofficial bash Strict Mode” on page 96, which
could unmask subtle problems when added later or prevent them when added at
write time.

Dumping Your Environment

It is often helpful to log or dump your environment when running
from cron, continuous integration, or other circumstances where
the environment may change or differ from what you expect.
You will see the external env or printenv used for this, but the
bash internal set command will give you much more information,
including functions. On the other hand, it’s a lot noisier, so check
them all out and decide which is best for you.

bash Debugging | 121

Environment Information Leaks

If you log or dump your environment, be aware that it will often
contain sensitive information such as user names, passwords, API
keys, and so on! You may want to modify your dump command to
redact data, perhaps using sed or Perl one-liners:

set | perl -pe 's/^(SECRET=).*/\1<REDACTED>/g;'

As of bash v3.0, there is a --debugger flag and shopts extdebug option, but here
we have to be honest and say we never use those options; set -x has always been
enough. Running bash --debugger — /path/to/script is likely to result in:

/path/to/script: /usr/share/bashdb/bashdb-main.inc: No such file or directory
/path/to/script: warning: cannot start debugger; debugging mode disabled

If you see that, you’ll need to check out the Bash Debugger Project, which is “a
source-code debugger for bash that follows the gdb command syntax.” That is bash
version-dependent, so be sure to get the right one for your system.

See also:

• http://bashdb.sourceforge.net•
• Example 10-3•
• “bash Linter” on page 134•
• “Debug and Verbose” on page 82•
• “printf for Reuse or Debugging” on page 58•
• “Unofficial bash Strict Mode” on page 96•

bash Unit Testing
On GitHub, there is a “unit test framework for Bourne-based shell scripts, and it is
designed to work in a similar manner to JUnit, PyUnit, etc."…that and “bash Linter”
on page 134, which we’ll talk about in Chapter 11, are pretty interesting.

Summary
Hopefully, these hints and tips will be useful in your day-to-day work with bash and
in planning ahead to allow for future growth while staying as simple and flexible
as possible. If you liked this chapter, you will also probably like the bash Cookbook,
which has over 600 more pages of, well, useful recipes like this.

122 | Chapter 10: Beyond Idioms: Working with bash

http://bashdb.sourceforge.net
http://bashdb.sourceforge.net
https://github.com/kward/shunit2
https://learning.oreilly.com/library/view/bash-cookbook-2nd/9781491975329/

1 Really: “Complexity is the worst enemy of security” (see https://oreil.ly/zMJLF).

CHAPTER 11

Developing Your Style Guide

The overarching theme of this book is writing idiomatic, yet readable, bash code in
a consistent style, and we hope we’ve provided the tools you need to do that. Style is
just another way to say “how we write things.” Find some style guidelines, write ’em
down, and stick to ’em. We’ve covered a number of important style considerations in
this book, and there are some other guidelines we’d like to mention as well, things
to keep in mind when designing systems and writing code. You can use this chapter
as a starting point for your own style guide or just adopt it as is if you like it. The
Appendix is the same material without the talking points, to use as a “cheat sheet,”
and you can get the Markdown or HTML code from this book’s GitHub page.

Keep the following high-level principles in mind:

• Above all: KISS—Keep It Simple, Stupid! Complexity is the enemy of security,1•
but it’s also the enemy of readability and understanding. Sure, modern systems
and circumstances are complex, so try hard not to make it any worse than it
already is.

• The corollary, as Brian Kernighan famously said, is that debugging is twice as•
hard as writing the code in the first place, so if your code is as clever as you can
make it, you are—by definition—not smart enough to debug it.

• Try not to reinvent the wheel. Whatever you are trying to do has probably been•
done before, and there’s likely a tool or library for it. If that tool is already
installed, just use it. No matter how hard you try, you are never going to be able
to match the effort and testing that went into rsync, so just use it. If you find
random code on the internet…well, think about that one for a bit.

123

https://oreil.ly/zMJLF
https://github.com/vossenjp/bashidioms-examples/tree/master/appa

• Plan ahead for special cases or overrides, since they will happen. Take a page out•
of Linux distribution packaging systems and provide an /etc/thing/global.cfg
for defaults that you can blindly overwrite, then allow for overrides in /etc/
thing/config.d/ or similar. See “Drop-in Directories” on page 93.

• If it’s not in revision control, it doesn’t exist! (And sooner or later, it will be lost•
and then really won’t exist.)

• Document everything. (But you don’t have to write a book about it…oh wait…)•
Write your code, your comments, and your docs for the new person who will join
the team a year from now, when you’ve forgotten why you did it that way. Docu‐
ment what didn’t work, and maybe why, and cross-reference things, especially
things that you can predict can hurt you. (Yes, rm -rf /$undefined_variable
turned out to be a really bad idea!)

• Keep your code and documentation DRY: Don’t Repeat Yourself. As soon as you•
end up with more than one copy, it’s guaranteed they will get out of sync sooner
or later—the only question is when. Use functions and libraries; don’t be WET
(We Enjoy Typing).

“The Zen of Python” mostly applies to bash as well, and it’s not a bad place to start.
Try python -c "import this" or see the Python documentation.

The bash Idioms Style Guide Is Not Portable

This bash Idioms style guide is specifically for bash, so it is not
portable to POSIX, Bourne, Dash, or other shells. If you need to
write for those shells, you will need to test and tweak this guide to
account for the supported syntax and feature of those shells.
Be especially careful in Docker or other containers where /bin/sh
is not bash and /bin/bash may not even exist! This applies to
Internet of Things and other constrained environments such as
industrial controllers. See “bash in Containers” on page ix and
“Shebang!” on page 94.

Getting down into more detail, what types of things should be captured in your style
guide? We’ll cover some of them in the following sections.

Readability
Readability of your code is important! Or as Python says, readability counts. You only
write it once, but you (and others) will probably read it many times. Spend the extra
few seconds or minutes thinking about the poor clueless person trying to read the
code next year…it’s very likely to be you. There’s a balance and a tension between
abstraction (Don’t Repeat Yourself) and readability:

124 | Chapter 11: Developing Your Style Guide

https://oreil.ly/O2nYx

• KISS (Keep It Simple, Stupid!).•
• Readability: don’t be “clever,” be clear.•
• Good names are critical!•
• Always use a header.•
• If at all possible, emit something useful for -h, --help, and incorrect arguments!•

— Prefer using a “here” document (with leading tabs) rather than a bunch of—
echo lines because there’s less friction when you need to update and probably
rewrap it later.

• Use source (instead of ., which is easy to miss seeing and harder to search for)•
to include config files, which should end in .cfg (or .conf or whatever your
standard is).

• If at all possible, use ISO-8601 dates for everything.•
• If at all possible, keep lists of things in alphabetical order; this prevents duplica‐•

tion and makes it easier to add or remove items. Examples include IP addresses
(use GNU sort -V), hostnames, packages to install, case statements, and con‐
tents of variables or arrays/lists.

• If possible, use long arguments to commands for readability, e.g., use diff•
--quiet instead of diff -q, though watch out for portability to non-GNU/Linux
systems.
— If any options are short or obscure, add comments.—
— Strongly consider documenting why you chose or needed the options you—

chose, and even options you considered but didn’t use for some reason.
— Definitely document any options that might seem like a good idea but that—

actually can cause problems, especially if you commonly use them elsewhere.

For variable naming, watch out for generic variable names like:

`${GREP} ${pattern} ${file}`

That’s very abstracted out, and maybe reusable, but it’s also pretty context free. We’ve
replaced the older `` with newer and more readable (we think), and definitely more
nestable $(), but more importantly, the variables are less noisy because we omitted
unnecessary ${} and have meaningful names:

$($GREP "$re_process_errors" $critical_process_daily_log_file)

After a while, you’ll see that you and your team find certain (dare we say it) idiomatic
ways to express concepts and operations you often face. That’s when it’s time to write
a style guide, if you don’t already have one.

Readability | 125

https://oreil.ly/6QyeH

On the other hand, if you are submitting a patch or maintaining code, it’s best
to follow the conventions of that code unless you’re going to restyle and possibly
refactor the whole thing.

Comments
A lot has been written about comments: what, when, where, and so on. Following are
style guidelines related to comments:

• Always use a header.•
• Write your comments for the new person on the team a year from now.•
• Comment your functions.•
• Do not comment on what you did. Comment on why you did, or did not do,•

something.
— Exception: comment on what you did when bash itself is obscure.—

• Consider adding comments about external program options, especially if they are•
short or obscure.

• Use an initial capital on the first word of the comment, but omit ending punctua‐•
tion unless the comment is more than one sentence.

Add useful comments that explain why you did something and your intent! For
example:

continue # To the next file in for loop

In theory it should not be necessary to explain what something does if you write
clear code. But sometimes bash itself is just convoluted or obscure, e.g., variable
substitution (see “Path or Prefix Removal” on page 33), like:

PROGRAM=${0##*/} # Basename in bash

Separators are often useful for delimited logical blocks of code. But don’t add a
closing separator at the bottom to “box” it out; that just adds clutter and reduces your
on-screen lines of code by 1. Whatever you do, do not build boxes with characters
on the righthand side! It’s totally unnecessary, and you’ll waste a lot of time getting
it to “look right” up front. What’s worse is that it’s a strong disincentive to fixing or
updating comments later, because then you have to go fix the box again.

Don’t do this:

126 | Chapter 11: Developing Your Style Guide

###
Please don't build boxes like this!
#
They make it VERY painful to edit the comments later, because
now you have to worry about the closing character on the
righthand side. This example isn't too bad, but it gets
out of hand quickly.
###

Do this:

###
Please DO build boxes like this!
#
This one is easier to edit, because while you still have to
worry about text wrapping, it's just a simple leading "#" when
you do rewrap.

Names
Naming is important. We can’t stress that enough. The difference between $file and
$critical_process_daily_log_file doesn’t seem like anything except some extra
typing now, when all the details are in your head. But we guarantee if you take the
extra time to really think about what you are naming and how it will read in the code,
that will pay off soon, by reducing coding errors, and in the future when rereading,
debugging, and enhancing. Following are style guidelines related to names:

• Good names are critical!•
• Global variables and constants are in UPPER case.•

— Prefer not to make changes to global variables, but sometimes that’s just much—
simpler (KISS).

— Use readonly or declare -r for constants.—
• Other variables are in lowercase.•
• Functions are in Mixed_Case.•
• Use “_”, not CamelCase, in place of space (remember, “-” is not allowed in•

variable names).
• Use bash arrays carefully; they can be hard to read (see Chapter 7). for var in•
$regular_var often works as well.

• Replace $1, $2, .. $N with readable names ASAP.•
— That makes everything much more debuggable and readable, but it also—

makes it easy to have defaults and add or rearrange arguments.
• Distinguish between types of referents, like $input_file versus $input_dir.•

Names | 127

• Use consistent “FIXME” and “TODO” labels, with names and ticket numbers if•
appropriate.

Consider how easy it would be to confuse these and use (or make an off-by-one typo)
the wrong one:

file1='/path/to/input'
file2='/path/to/output'

This is much more intuitive to read and harder to type wrong:

input_file='/path/to/input'
output_file='/path/to/output'

Also, don’t leave out two characters to save typing; just spell out $filename so you
don’t get it wrong later. Was it $filenm or $flname or $flnm or what?

Functions
Following are style guidelines related to functions:

• Always use a header.•
• Good names are critical!•
• Functions must be defined before they are used.•

— Group them at the top, and use two blank lines and a function separator—
between each function.

— Do not intersperse code between functions!—
• Use Camel_Case and “_” to make function names stand out from variable names.•
• Use function My_Func_Name { instead of My_Func_Name() { because it’s clearer•

and easier to grep -P '^\s*function '.
• Each function should have comments defining what it does, inputs (including•

GLOBALS), and outputs.
• When you have useful, standalone pieces of code, or any time you use the•

same (or substantially similar) block of code more than once, make them into
functions. If they are very common, like logging or emailing, consider creating a
“library,” that is, a single common file you can source as needed.
— Prefix “library” functions with “_”, like _Log or some other prefix.—

• Consider using “filler” words for readability in arguments if it makes sense, then•
define them as local junk1="$2" # Unused filler, e.g.:
— _Create_File_If_Needed "/path/to/$file" containing important—

value

128 | Chapter 11: Developing Your Style Guide

• Do use the local builtin when setting variables in functions.•
— But be aware that successfully being “local,” it will mask a failed return code,—

so declare and assign it on separate lines if using command substitution, like
local my_input and then my_input="$(some-command)".

• For any function longer than about 25 lines, close it with } # End of function•
MyFuncName to make it easier to track where you are in the code on your screen.
For functions shorter than 25 lines, this is optional but encouraged unless it gets
too cluttered.

• Don’t use a main function; it’s almost always just an unnecessary layer.•
— That said, using “main” makes sense to Python and C programmers, or if the—

code is also used as a library, and it may be required if you do a lot of unit
testing.

• Consider using two blank lines and a main separator above the main section,•
especially when you have a lot of functions and definitions at the top.

Also, define a single logging function in your library (e.g., _Log), and use it! Other‐
wise you’ll end up with a wild mix of logging functions, styles, and destinations.
Ideally, as we said previously, log to syslog and let the OS worry about final destina‐
tion(s), log rotation, etc.

Quoting
Quoting is pretty simple, until it’s not, and then you get a headache. We know how
this works, and we still end up doing trial-and-error sometimes, especially when
trying to create a one-liner to run as another user via sudo or on another node via
ssh. Add some echo lines, and be careful. Following are style guidelines related to
quoting:

• Do put quotes around variables and strings because it makes them stand out a•
little and clarifies your intent.
— Unless it gets too cluttered.—
— Or they need to be unquoted for expansion.—

• Don’t quote integers.•
• Use single quotes unless interpolation is required.•
• Don’t use ${var} unless needed; it’s too cluttered.•

— But that is needed sometimes, like ${variable}_suffix or $—
{being_lower_cased,,}.

• Do quote command substitutions, like var="$(command)".•

Quoting | 129

• Always quote both sides of any test statement, like [["$foo" == 'bar']].•
— Unless one side is an integer.—
— And unless you are using ~=, in which case you can’t quote the regular—

expression!
• Consider single-quoting variables inside echo statements, like echo "cd to•
'$DIR' failed." because it’s visible when a variable is unexpectedly undefined
or empty.
— Or echo "cd to [$DIR] failed." as you like.—
— If using set -u, you will get an error if the variable is not defined—but not if—

it is defined but is just unexpectedly empty.
• Prefer single quotes around printf formats (see “POSIX Output” on page 56 and•

the rest of “Time for printf ” on page 55).

Layout
Following are style guidelines related to layout:

• Line things up! Multiple spaces almost never matter in bash (except around =),•
and lining up similar commands makes it easier to read and to see both the
similarities and differences.

• Do not allow trailing white space! This will later cause noise in the VCS (version•
control system) when removed.

• Indent using four spaces, but use TAB with here-documents as needed.•
• Break long lines at around 78 columns, indent line continuations two spaces, and•

break just before | or > so those parts jump out as you scan down the code.
• The code to open a block goes on one line, like:•

— if expression; then—
— for expression; do—

• List elements in case..esac are indented four spaces, and closing ;; are at that•
same indent level. Blocks for each item are also indented four spaces.
— One-line elements should be closed with ;; on the same line.—
— Prefer lining up the) in each element, unless it gets cluttered or out of hand.—
— See the example code in Example 8-4.—

There’s an argument about not bothering to break lines at 70–80 columns that
assumes everyone is using a wide graphical terminal and an IDE. First, depending on
the team and person, that may not be true, and second, even if it is, when it really

130 | Chapter 11: Developing Your Style Guide

breaks and you end up debugging under fire in vi on an 80 × 24 console, you will not
appreciate 200+ column code.

Break your lines.

Break them just before the important part, so when you scan down the left side of
the column, the continuations jump out. We also like to use half the usual indent for
broken lines. We can’t do a good (bad?) long line here in this book because it will
just break in odd places anyway. But we can provide a simple, and we think readable,
example:

... Lots of code, indented a ways...
 /long/path/to/some/interesting/command \
 | grep "$re_stuff_we_care_about" \
 | grep -v "$re_stuff_to_ignore" \
 | /path/to/email_or_log_command ...
...more code

Syntax
Following are style guidelines related to syntax:

• Use #!/bin/bash - or #!/usr/bin/env bash when writing bash code, not•
#!/bin/sh.

• Use $@ unless you are really sure you need $*.•
• Use == instead of = for equality, to reduce confusion with assignment.•
• Use $() instead of `` backticks/backquotes.•
• Use [[instead of [(unless you need [for portability, e.g., dash).•
• Use (()) and $(()) as needed for integer arithmetic; avoid let and expr.•
• Use [[expression]] && block or [[expression]] || block when it is•

simple and readable to do so. Do not use [[expression]] && block ||
block because that doesn’t do what you think it does; use if .. then ..

(elif ..) else .. fi for that.
• Consider using “Unofficial bash Strict Mode” (see “Unofficial bash Strict Mode”•

on page 96).
— set -euo pipefail will prevent or unmask many simple errors.—
— Watch out for this one, and use it carefully (if you use it at all): IFS=$'\n\t'.—

Syntax | 131

Other
Other guidelines:

• For “system” scripts, log to syslog and let the OS worry about final destination(s),•
log rotation, etc.

• Error messages should go to STDERR, like echo 'A Bad Thing happened'•
1>&2.

• Sanity-check that external tools are available using [-x /path/to/tool] ||•
{ …error code block… }.

• Provide useful messages when things fail.•
• Set exit codes, especially when you fail.•

Script Template
This is a sample skeleton or template script you can copy as a reminder and to save
some (OK, maybe quite a lot of) typing when you create a new script:

#!/bin/bash -
Or possibly: #!/usr/bin/env bash
<Name>: <description>
Original Author & date:
Current maintainer?
Copyright/License?
Where this code belongs? (Hosts, paths, etc.)
Project/repo?
Caveats/gotchas?
Usage? (Better to have `-h` and/or `--help` options!)
URL # If using SVN
ID='' # If using SVN
#___
PROGRAM=${0##*/} # bash version of `basename`

Unofficial bash Strict Mode?
#set -euo pipefail
CAREFUL: IFS=$'\n\t'

GLOBAL and constant variables are in UPPER case
LOG_DIR='/path/to/log/dir'

Consider adding argument handling to YOUR template; see:
examples/ch08/parseit.sh
examples/ch08/parselong.sh
examples/ch08/parselonghelp.sh

Functions are in Mixed Case
###

132 | Chapter 11: Developing Your Style Guide

Define functions

#--
Example function
Globals: none
Input: nothing
Output: nothing
function Foo {
 local var1="$1"
 ...
} # End of function foo

#--
Another example function
Globals: none
Input: nothing
Output: nothing
function Bar {
 local var1="$1"
 ...
} # End of function bar

###
Main

Code...

Other Style Guides
We strongly suggest you have a style guide and use it! If you don’t like ours, and you
don’t want to tweak it yourself, you can go steal one from someplace else:

• The Google Shell Style Guide•
While we have a few quibbles and disagreements with this, it’s very good and
quite extensive. At best, you can just use it, and at worst, it’s a place to start. There
is a lot to like, and you could do worse (like not having anything), and a lot of
other projects have adopted it, so…
Among other things, we don’t agree with:
— The hundred-line limit. We see the point, especially for an environment like—

Google’s, but we’ve got lots of scripts over that limit that are “mostly calling
other utilities and are doing relatively little data manipulation.”

— “Indent two spaces” is a bit shallow for us; we like two spaces for continued—
lines and four spaces otherwise.

— "${var}" is too busy. We prefer "$var" when possible.—

Other Style Guides | 133

https://oreil.ly/HWaSV

— function cleanup() {? Ouch, no.—
— ;; closes the case..esac block and belongs at the same indent as the block—

opener, not at the indent of the code in the block.
• The following are other guides you can look at:•

— https://linuxcommand.org/lc3_adv_standards.php—
— https://www.ovirt.org/develop/infra/infra-bash-style-guide.html—
— https://wiki.bash-hackers.org/scripting/style—
— http://mywiki.wooledge.org/BashGuide/Practices—

— Great info: http://mywiki.wooledge.org/BashPitfalls—
• Or do a web search for:•

— "Shell Style Guide"—
— "Bash Style Guide"—
— "Shell script coding standards"—

bash Linter
Using a linter instead of or in addition to a style guide can also be handy. To be
honest, we don’t use one, but we thought we should cover it. The one we know
about is shellcheck, and we have mixed feelings about the results; it’s especially
picky about quoting, and we don’t always agree with its suggestions on quoting or in
general, but those things are somewhat adjustable. That said, it’s still very cool, and
worth checking out.

• bash linter: https://www.shellcheck.net•
— https://github.com/koalaman/shellcheck (Haskell)—
— History: https://www.vidarholen.net/contents/blog/?p=859—
— Checks: https://github.com/koalaman/shellcheck/wiki/Checks—
— Tweaking: https://github.com/koalaman/shellcheck/wiki/Directive—
— Ignoring errors: https://github.com/koalaman/shellcheck/wiki/Ignore—
— Note, Eol (2020) CentOS-6 is too old: https://github.com/koalaman/shell—

check/wiki/CentOS6

If you install through your package system, remember that the version may be quite
old. The Linux version is a tarball containing a single compiled binary, though, so it’s
easy to drop a current version in your path somewhere.

134 | Chapter 11: Developing Your Style Guide

https://linuxcommand.org/lc3_adv_standards.php
https://www.ovirt.org/develop/infra/infra-bash-style-guide.html
https://wiki.bash-hackers.org/scripting/style
http://mywiki.wooledge.org/BashGuide/Practices
http://mywiki.wooledge.org/BashPitfalls
https://www.shellcheck.net
https://github.com/koalaman/shellcheck
https://www.vidarholen.net/contents/blog/?p=859
https://github.com/koalaman/shellcheck/wiki/Checks
https://github.com/koalaman/shellcheck/wiki/Directive
https://github.com/koalaman/shellcheck/wiki/Ignore
https://github.com/koalaman/shellcheck/wiki/CentOS6
https://github.com/koalaman/shellcheck/wiki/CentOS6

Summary
Hopefully, this book has given you a better understanding of how to read and write
“bashy” code, and this chapter has provided a place to get started on defining a style
(and guide) that will work for you.

Happy bashing!

Summary | 135

APPENDIX

The bash Idioms Style Guide

This is a copy of the points in Chapter 11 but without the commentary and examples.
There’s also a Markdown file in the examples directory so you can download and
tweak it as desired, then render or include it as needed using pandoc or some other
tool. Get the code from the book’s GitHub page.

The bash Idioms Style Guide Is Not Portable

This bash Idioms style guide is specifically for bash, so it is not
portable to POSIX, Bourne, Dash, or other shells. If you need to
write for those shells, you will need to test and tweak this guide to
account for the supported syntax and feature of those shells.
Be especially careful in Docker or other containers where /bin/sh
is not bash and /bin/bash may not even exist! This applies to
Internet of Things and other constrained environments such as
industrial controllers. See “bash in Containers” on page ix and
“Shebang!” on page 94.

Readability
Readability of your code is important! Or as Python says, readability counts. You only
write it once, but you (and others) will probably read it many times. Spend the extra
few seconds or minutes thinking about the poor clueless person trying to read the
code next year…it’s very likely to be you. There’s a balance and a tension between
abstraction (Don’t Repeat Yourself) and readability:

• KISS (Keep It Simple, Stupid!).•
• Readability: don’t be “clever,” be clear.•

137

https://github.com/vossenjp/bashidioms-examples/tree/master/appa

• Good names are critical!•
• Always use a header.•
• If at all possible, emit something useful for -h, --help, and incorrect arguments!•

— Prefer using a “here” document (with leading tabs) rather than a bunch of—
echo lines because there’s less friction when you need to update and probably
rewrap it later.

• Use source (instead of ., which is easy to miss seeing and harder to search for)•
to include config files, which should end in .cfg (or .conf or whatever your
standard is).

• If at all possible, use ISO-8601 dates for everything.•
• If at all possible, keep lists of things in alphabetical order; this prevents duplica‐•

tion and makes it easier to add or remove items. Examples include IP addresses
(use GNU sort -V), hostnames, packages to install, case statements, and con‐
tents of variables or arrays/lists.

• If possible, use long arguments to commands for readability, e.g., use diff•
--quiet instead of diff -q, though watch out for portability to non-GNU/Linux
systems.
— If any options are short or obscure, add comments.—
— Strongly consider documenting why you chose or needed the options you—

chose, and even options you considered but didn’t use for some reason.
— Definitely document any options that might seem like a good idea but that—

actually can cause problems, especially if you commonly use them elsewhere.

Comments
• Always use a header.•
• Write your comments for the new person on the team a year from now.•
• Comment your functions.•
• Do not comment on what you did. Comment on why you did, or did not do,•

something.
— Exception: comment on what you did when bash itself is obscure.—

• Consider adding comments about external program options, especially if they are•
short or obscure.

• Use an initial capital on the first word of the comment, but omit ending punctua‐•
tion unless the comment is more than one sentence.

138 | Appendix: The bash Idioms Style Guide

https://oreil.ly/6QyeH

Names
• Good names are critical!•
• Global variables and constants are in UPPER case.•

— Prefer not to make changes to global variables, but sometimes that’s just much—
simpler (KISS).

— Use readonly or declare -r for constants.—
• Other variables are in lowercase.•
• Functions are in Mixed_Case.•
• Use “_”, not CamelCase, in place of space (remember, “-” is not allowed in•

variable names).
• Use bash arrays carefully; they can be hard to read (see Chapter 7). for var in•
$regular_var often works as well.

• Replace $1, $2, .. $N with readable names ASAP.•
— That makes everything much more debuggable and readable, but it also—

makes it easy to have defaults and add or rearrange arguments.
• Distinguish between types of referents, like $input_file versus $input_dir.•
• Use consistent “FIXME” and “TODO” labels, with names and ticket numbers if•

appropriate.

Functions
• Always use a header.•
• Good names are critical!•
• Functions must be defined before they are used.•

— Group them at the top, and use two blank lines and a function separator—
between each function.

— Do not intersperse code between functions!—
• Use Camel_Case and “_” to make function names stand out from variable names.•
• Use function My_Func_Name { instead of My_Func_Name() { because it’s clearer•

and easier to grep -P '^\s*function '.
• Each function should have comments defining what it does, inputs (including•

GLOBALS), and outputs.
• When you have useful, standalone pieces of code, or any time you use the•

same (or substantially similar) block of code more than once, make them into

The bash Idioms Style Guide | 139

functions. If they are very common, like logging or emailing, consider creating a
“library,” that is, a single common file you can source as needed.
— Prefix “library” functions with “_”, like _Log or some other prefix.—

• Consider using “filler” words for readability in arguments if it makes sense, then•
define them as local junk1="$2" # Unused filler, e.g.:
— _Create_File_If_Needed "/path/to/$file" containing important—

value

• Do use the local builtin when setting variables in functions.•
— But be aware that successfully being “local,” it will mask a failed return code,—

so declare and assign it on separate lines if using command substitution, like
local my_input and then my_input="$(some-command)".

• For any function longer than about 25 lines, close it with } # End of function•
MyFuncName to make it easier to track where you are in the code on your screen.
For functions shorter than 25 lines, this is optional but encouraged unless it gets
too cluttered.

• Don’t use a main function; it’s almost always just an unnecessary layer.•
— That said, using “main” makes sense to Python and C programmers, or if the—

code is also used as a library, and it may be required if you do a lot of unit
testing.

• Consider using two blank lines and a main separator above the main section,•
especially when you have a lot of functions and definitions at the top.

Quoting
• Do put quotes around variables and strings because it makes them stand out a•

little and clarifies your intent.
— Unless it gets too cluttered.—
— Or they need to be unquoted for expansion.—

• Don’t quote integers.•
• Use single quotes unless interpolation is required.•
• Don’t use ${var} unless needed; it’s too cluttered.•

— But that is needed sometimes, like ${variable}_suffix or $—
{being_lower_cased,,}.

• Do quote command substitutions, like var="$(command)".•
• Always quote both sides of any test statement, like [["$foo" == 'bar']].•

— Unless one side is an integer.—

140 | Appendix: The bash Idioms Style Guide

— And unless you are using ~=, in which case you can’t quote the regular—
expression!

• Consider single-quoting variables inside echo statements, like echo "cd to•
'$DIR' failed." because it’s visible when a variable is unexpectedly undefined
or empty.
— Or echo "cd to [$DIR] failed." as you like.—
— If using set -u, you will get an error if the variable is not defined—but not if—

it is defined but is just unexpectedly empty.
• Prefer single quotes around printf formats (see “POSIX Output” on page 56 and•

the rest of “Time for printf ” on page 55).

Layout
• Line things up! Multiple spaces almost never matter in bash (except around =),•

and lining up similar commands makes it easier to read and to see both the
similarities and differences.

• Do not allow trailing white space! This will later cause noise in the VCS (version•
control system) when removed.

• Indent using four spaces, but use TAB with here-documents as needed.•
• Break long lines at around 78 columns, indent line continuations two spaces, and•

break just before | or > so those parts jump out as you scan down the code.
• The code to open a block goes on one line, like:•

— if expression; then—
— for expression; do—

• List elements in case..esac are indented four spaces, and closing ;; are at that•
same indent level. Blocks for each item are also indented four spaces.
— One-line elements should be closed with ;; on the same line.—
— Prefer lining up the) in each element, unless it gets cluttered or out of hand.—
— See the example code in Example 8-4.—

Syntax
• Use #!/bin/bash - or #!/usr/bin/env bash when writing bash code, not•
#!/bin/sh.

• Use $@ unless you are really sure you need $*.•
• Use == instead of = for equality, to reduce confusion with assignment.•

The bash Idioms Style Guide | 141

• Use $() instead of `` backticks/backquotes.•
• Use [[instead of [(unless you need [for portability, e.g., dash).•
• Use (()) and $(()) as needed for integer arithmetic; avoid let and expr.•
• Use [[expression]] && block or [[expression]] || block when it is•

simple and readable to do so. Do not use [[expression]] && block ||
block because that doesn’t do what you think it does; use if .. then ..

(elif ..) else .. fi for that.
• Consider using “Unofficial bash Strict Mode” (see “Unofficial bash Strict Mode”•

on page 96).
— set -euo pipefail will prevent or unmask many simple errors.—
— Watch out for this one, and use it carefully (if you use it at all): IFS=$'\n\t'.—

Other
• For “system” scripts, log to syslog and let the OS worry about final destination(s),•

log rotation, etc.
• Error messages should go to STDERR, like echo 'A Bad Thing happened'•
1>&2.

• Sanity-check that external tools are available using [-x /path/to/tool] ||•
{ …error code block… }.

• Provide useful messages when things fail.•
• Set exit codes, especially when you fail.•

Script Template
#!/bin/bash -
Or possibly: #!/usr/bin/env bash
<Name>: <description>
Original Author & date:
Current maintainer?
Copyright/License?
Where this code belongs? (Hosts, paths, etc.)
Project/repo?
Caveats/gotchas?
Usage? (Better to have `-h` and/or `--help` options!)
URL # If using SVN
ID='' # If using SVN
#___
PROGRAM=${0##*/} # bash version of `basename`

Unofficial bash Strict Mode?

142 | Appendix: The bash Idioms Style Guide

#set -euo pipefail
CAREFUL: IFS=$'\n\t'

GLOBAL and constant variables are in UPPER case
LOG_DIR='/path/to/log/dir'

Consider adding argument handling to YOUR template; see:
examples/ch08/parseit.sh
examples/ch08/parselong.sh
examples/ch08/parselonghelp.sh

Functions are in Mixed Case
###
Define functions

#--
Example function
Globals: none
Input: nothing
Output: nothing
function Foo {
 local var1="$1"
 ...
} # End of function foo

#--
Another example function
Globals: none
Input: nothing
Output: nothing
function Bar {
 local var1="$1"
 ...
} # End of function bar

###
Main

Code...

The bash Idioms Style Guide | 143

Index

Symbols
! (exclamation point) in for loops, 13
"" (quotation marks)

in arguments, 74
in for loops, 14-15
style guidelines for, 129-130, 140
variable interpolation, 31

(hashtag) in variable references, 33
#! (shebang), 94-95
$ (dollar sign)

in arithmetic, 44-46
retrieving variable values, 31

$# variable, checking numbers of arguments, 74
$() notation, capturing function output, 54

(see also backticks; command substitution)
$* variable, listing all arguments, 74
$0 parameter, 53
$1 parameter, 73
$? function exit status, 53
$IFS (internal field separator)

with local variables, 110
reading files, 89-92

$RANDOM, 39-40
% (percent sign) in variable references, 34
&& (AND)

as if statement, 1-2
operator precedence, 4-5

' ' (single quotation marks)
avoiding variable interpolation, 31
style guidelines for, 129-130, 140

(()) (double parentheses)
in arithmetic, 44-46
in loops, 9

() (parentheses)

in arithmetic, 44-46
in case statement, 20
in function definition, 55
in loops, 9
subshells in, 4
when not needed, 46-47

* (asterisk)
in for loops, 15
in pattern matching, 20

+ (plus sign) in conditional substitutions, 38
, (comma) in variable references, 34
- (minus sign)

in conditional substitutions, 38
in here-documents, 98-99
for options, 74
with shebang, 95

-- (two dashes), long options, 77
/ (slash) in variable references, 35
1>&2, STDERR redirection, 55
: (colon)

as null statement, 3
in variable references, 35

; (semicolon) in compound commands, 4
;& in case statement, 28
;; (double semicolon) in case statement, 28-29
;;& in case statement, 28
< (left angle bracket) in single/double brackets,

49
= (equal sign)

for comparison, 48
in conditional substitutions, 39

== (double equal sign), for equality test, 48
> (right angle bracket) in single/double brack‐

ets, 49

145

? (question mark) in pattern matching, 20
@ (at sign) in for loops, 15
[[]] (double brackets), 6, 47-49
[] (single brackets)

in pattern matching, 20
[[]] (double brackets) vs., 6, 47-49

\ (backslash)
line continuation character, 27, 130-131
with unalias command, 108

^ (caret), in variable references, 34
` ` (backticks), command substitution, 40

(see also $() notation)
{} (braces)

brace expansion, 11-12
for compound commands, 3-4
for variable references, 32

| (vertical bar) in pattern matching, 20
|| (OR)

as else statement, 3
operator precedence, 4-5

A
adding files to directories, 93
aliases, 108-109
AND (&&)

as if statement, 1-2
operator precedence, 4-5

arguments, 73
(see also options)
checking number of, 74
listing all, 74
parsing, 83
referencing, 73-74

arithmetic
double parentheses in, 44-46
floating point calculations, 44
let command, 46
variables as integers, 46-47

arrays, 59, 61
(see also lists)

associative arrays, 13, 59
(see also hashes)

asterisk (*)
in for loops, 15
in pattern matching, 20

at sign (@) in for loops, 15

B
backslash (\)

line continuation character, 27, 130-131
with unalias command, 108

backticks (` `), command substitution, 40
(see also $() notation)

basename, shorthand for, 32-33
bash

backward compatibility in, viii
in containers, ix
dialects, viii
on Macs, ix-ix
purpose of, vii
revision control, ix
version compatibility, 60
on Windows, viii

Bash Debugger Project, 122
bash Idioms style guide, 137-142
blank spaces in for loops, 14-15
brace expansion, 11-12
braces ({})

brace expansion, 11-12
for compound commands, 3-4
for variable references, 32

breaking code lines, 130-131

C
calling

functions, 51
libraries, 94

caret (^), in variable references, 34
case statement

consecutive pattern matching in, 28-29
parentheses in, 20
parsing command-line options, 21-23
pattern matching in, 20-21
syntax, 19

clobbering, 64
closing compound commands, 4
clusterssh, 16
colon (:)

as null statement, 3
in variable references, 35

comma (,) in variable references, 34
comma-separated lists, conditional substitu‐

tions for, 38
command history number, 103
command options (see options)
command substitution, 40

(see also $() notation)
command-line history, navigating, 110-111

146 | Index

command-line options, parsing with case state‐
ment, 21-23

commands, executing across hosts, 16
comments, style guidelines for, 126-127, 138
compound commands, 3-4, 47-49
conditional substitutions, 38-39

for comma-separated lists, 38
default values and, 38
for modified values, 39

conditionals
&& (AND), 1-2
compound commands, 3-4
legacy test conditions, 5-6
operator precedence, 4-5
|| (OR), 3

consecutive pattern matching in case statement,
28-29

containers, bash in, ix
convert command (Image Magick), 35

D
dash, $RANDOM variable and, 40
dashes (--), long options, 77
data structures, 59
date

with printf function, 57
in prompt, 104

date command (GNU), 57
DEBUG variable, 82
debugging

at interpreter level, 120-122
with printf function, 58
PS4 prompt, 103

declaring
hashes, 65
lists, 61

default values
in conditional substitutions, 38
for parameters, 73

defining functions, 52
deleting (see removing)
developing for loops, 15
dialects of bash, viii
dictionaries (see hashes)
directories

creating, 109
drop-in, 93

dirname in variable references, removing, 34
disabling job control, 86

documentation
embedded, 115-120
importance of, 124

dollar sign ($)
in arithmetic, 44-46
retrieving variable values, 31

double brackets ([[]]), 6, 47-49
double equal sign (==), 48
double parentheses (())

in arithmetic, 44-46
in loops, 9

double quotation marks ("")
in arguments, 74
in for loops, 14-15
style guidelines for, 129-130, 140
variable interpolation, 31

double semicolon (;;) in case statement, 28-29
drop-in directories, 93
dumping environment, 121
dynamic scoping, 55

E
echo command, 15
else statements, || (OR) as, 3
embedded documentation, 115-120
env command, 121
environment, dumping, 121
equal sign (=)

for comparison, 48
in conditional substitutions, 39

equality test, == (double equal sign), 48
exclamation point (!) in for loops, 13
executing

commands across hosts, 16
scripts on signals, 97-98

exit codes, 96
exit command, 97
explicit values in for loops, 11-12
extracting substrings from variable references,

35

F
files

adding/removing in directories, 93
reading

$IFS (internal field separator), 89-92
via brute force, 89
with mapfile command, 86-89
with process substitution, 92

Index | 147

with read command, 85-86
rotating old files, 114-115
as shell scripts, 94-95

find command, rotating old files, 114-115
Firefox, viewing JSON in, 113
floating point calculations, 44
for loops

developing and testing, 15
explicit values in, 11-12
hashes in, 13-14
implicit values, 10
lists in, 13-14
quotation marks and blank spaces in, 14-15
types of, 9-10

FUNCNAME array variable, 53
functions

calling, 51
for creating directories, 109
defining, 52
dynamic scoping, 55
for loops in, 10
I/O redirection in, 55
local variables in, 54
parameters, 52-53
parentheses in, 55
printf, 55-58

date and time with, 57
debugging with, 58
POSIX output, 56
reusing output, 58

return values, 53-54
style guidelines for, 128-129, 139

G
getopts command, 75-79
globbing, 64
grep command on process list, 113

H
hashes, 65-69

accidental assignment in, 60
bash version compatibility, 60
common operations, 66
declaring, 65
example code, 66-68
in for loops, 13-14
lists vs., 60-61
resources for information, 72
terminology, 59

word count example, 69-71
hashtag (#) in variable references, 33
"Hello World" program, ix
help option, 79-82
help test command, 2
here-documents, 98-99
here-strings, 99
history command, 103
history on command-line, navigating, 110-111
hosts, executing commands across, 16

I
I/O redirection, in function definition, 55
idioms, definition of, vii
if statements

&& as, 1-2
compound commands, 3-4
legacy test conditions, 5-6

implicit values in for loops, 10
indexes, 59
infinite loops, 9
integer arithmetic, 44
integers, variables as, 46-47
interactive shells, 99
internal field separator ($IFS)

with local variables, 110
reading files, 89-92

interpreter-level debugging, 120-122

J
job control, disabling, 86
join functions, 64, 68
jq command, 112-113
JSON

parsing, 112-113
viewing in Firefox, 113

K
key/value pairs (see hashes)

L
lastpipe option, 86
layout of code, style guidelines for, 130-131,

141
left angle bracket (<) in single/double brackets,

49
legacy test conditions, 5-6
let command, 46

148 | Index

libraries, 94
line continuation character, 27, 130-131
linters, 134
listing arguments, 74
lists, 61-65

accidental assignment in, 60
common operations, 61
declaring, 61
example code, 62-64
in for loops, 13-14
hashes vs., 60-61
resources for information, 72
terminology, 59

local variables, 54, 110
logger tool, 111
logging, style guidelines for, 129
long options, 76-79
loops

for loops
developing and testing, 15
explicit values in, 11-12
hashes in, 13-14
implicit values, 10
lists in, 13-14
quotation marks and blank spaces in,

14-15
types of, 9-10

infinite loops, 9
until loops, 17
while loops, 16

ls command, parsing options, 21-23

M
Macs, bash on, ix-ix
man page, 2
mapfile command, 86-89
mcd function, 109
minus sign (-)

in conditional substitutions, 38
in here-documents, 98-99
for options, 74
with shebang, 95

modified values, conditional substitutions for,
39

mssh (MultiSSH), 16
multiple hosts, executing commands across, 16
multixterm, 16
mussh, 16

N
naming conventions, 127-128, 139
navigating command-line history, 110-111
null statement, : (colon) as, 3
null variables, 38

O
old files, rotating, 114-115
operator precedence for conditionals, 4-5
OPTIND -1, 76
options, 73

(see also arguments)
DEBUG variable, 82
help, 79-82
lastpipe, 86
long options, 76-79
parsing, 75-76
syntax, 74-75
VERBOSE variable, 82
version, 83

OR (||)
as else statement, 3
operator precedence, 4-5

overrides in style guide, 124

P
PAC Manager, 16
parameter expansion, 32-36

additional modifiers for, 34-36
basename shorthand, 32-33
dirname/suffix removal, 34
path/prefix removal, 33

parameters, 52-53
parentheses ()

in arithmetic, 44-46
in case statement, 20
in function definition, 55
in loops, 9
subshells in, 4
when not needed, 46-47

parsing
arguments, 83
command-line options with case statement,

21-23
JSON, 112-113
options, 75-76

pathname in variable references, removing, 33
pattern matching

Index | 149

in case statement, 20-21
consecutive patterns, 28-29
regular expressions, 21

pause command, 106
pconsole, 16
percent sign (%) in variable references, 34
Perl POD, 115
plus sign (+) in conditional substitutions, 38
POSIX, viii, ix

arrays in, 60
output with printf function, 56

prefixes in variable references, removing, 33
printenv command, 121
printf -v command, 12
printf function, 55-58

date and time with, 57
debugging with, 58
POSIX output, 56
reusing output, 58

process list, grepping, 113
process substitution, 92
prompts, 102-104
PROMPT_COMMAND, 104
PS0 prompt, 102
PS1 prompt, 103
PS2 prompt, 103
PS3 prompt, 103
PS4 prompt, 103
push, 61

Q
question mark (?) in pattern matching, 20
quotation marks ("")

in arguments, 74
in for loops, 14-15
style guidelines for, 129-130, 140
variable interpolation, 31

R
random variables, 39-40
read command, 85-86, 104-106
readability

definition of, vii
of style guide, 124-126, 137

reading files
$IFS (internal field separator), 89-92
via brute force, 89
with mapfile command, 86-89
with process substitution, 92

with read command, 85-86
readline library, 110-111
redirection in function definition, 55
redirection operators, 49
referencing

arguments, 73-74
variables (see variable references)

regular expressions, 21, 34, 48
removing

dirname/suffix in variable references, 34
files from directories, 93
old files, 114-115
path/prefix in variable references, 33

return status, 45
return values, 53-54
reusing printf output, 58
revision control, ix, 124
right angle bracket (>) in single/double brack‐

ets, 49
rotating old files, 114-115

S
select command, 107
semicolon (;) in compound commands, 4
seq command, 11-12
set commands, 96, 121
shebang (#!), 94-95
shell patterns in variable references, 34
shell scripts

executing on signal, 97-98
exit codes, 96
files as, 94-95
for loops in, 10
interactive shells, 99
strict mode, 96
template for, 132-133, 142

Shell Style Guide, 133
shellcheck, 134
signals, executing scripts on, 97-98
simplicity in style guide, 123
single brackets ([])

double brackets ([[]]) vs., 6, 47-49
in pattern matching, 20

single quotation marks (' ')
avoiding variable interpolation, 31
style guidelines for, 129-130, 140

slash (/) in variable references, 35
sleep command, 44
sort command, 71

150 | Index

spaces, variable assignments and, 46
STDERR, redirection to, 55
strict mode, 96
string length of the value, 32
style guidelines, 123-124

bash Idioms style guide, 137-142
for comments, 126-127, 138
for functions, 128-129, 139
for layout of code, 130-131, 141
linters with, 134
list of alternative style guides, 133-134
for logging, 129
miscellaneous guidelines, 132, 142
for naming, 127-128, 139
for quotation marks, 129-130, 140
readability of, 124-126, 137
script template, 132-133, 142
for syntax, 131, 141

subscripts, 59-60
subshells, 4
substrings, extracting from variable references,

35
suffixes in variable references, removing, 34
syntax, style guidelines for, 131, 141

T
template for scripts, 132-133, 142
test command, 47
testing for loops, 15
time

with printf function, 57
in prompt, 104

time zones in prompt, 104
trailing dash (-), with shebang, 95
trap command, 97-98
two dashes (--), long options, 77

U
unalias command, 108
unit testing, 122
unset command, 64
unset variables, 38
until loops, 17
user input, 104

pause command, 106
read command, 104-106

select command, 107

V
variable interpolation, 56
variable references

$RANDOM, 39-40
command substitution, 40
conditional substitutions, 38-39

for comma-separated lists, 38
default values and, 38
for modified values, 39

dynamic scoping, 55
integers in, 46-47
local variables, 54, 110
null variables, 38
parameter expansion, 32-36

additional modifiers for, 34-36
basename shorthand, 32-33
dirname/suffix removal, 34
path/prefix removal, 33

readability of, 124
spaces and, 46
syntax, 31-32
unset variables, 38

VERBOSE variable, 82
version compatibility, 60
version option, 83
vertical bar (|) in pattern matching, 20
viewing JSON in Firefox, 113

W
while loops, 16
wildcards, 20
Windows, bash on, viii
word count example (hashes), 69-71
word splitting, 89
wrapper scripts, example of, 23-28

X
xtrace, 121

Z
zero-padding of expanded numeric values,

11-12
Zsh, ix, 40, 60

Index | 151

About the Authors
Carl Albing is a professor, researcher, and software engineer with a breadth of
industry experience. A coauthor of O’Reilly’s bash Cookbook and Cybersecurity Ops
with bash, as well as the author of O’Reilly’s “Great bash” video, Carl has worked
in software (using bash and many other languages) for companies large and small,
across a variety of industries. He has a BA in mathematics, a master’s in international
management (MIM), and a PhD in computer science.

JP Vossen has been working with computers since the early 80s and has been in the
IT industry since the early 90s, specializing in information security since the late 90s.
He’s been fascinated with scripting and automation since he first understood what an
autoexec.bat was, and was delighted to discover the power and flexibility of bash and
GNU on Linux in the mid-90s. He has previously written for Information Security
Magazine and SearchSecurity, among other publications. On those few occasions
when he’s not in front of a computer, he is usually taking something apart, putting
something together, or both.

Colophon
The animal on the cover of bash Idioms is a harp shell (Harpa articularis). Commonly
known as the articulate harp shell, it is a species of sea snail in the family Harpidae.
The Harpidae family consists of about 55 species, the majority of which are found
in the Indo-Pacific region, with only two of the species found in the coastal waters
along the Baja Peninsula. This particular species, Harpa articularis, is found in shal‐
low waters in the Indian Ocean and South Pacific, including as far as Fiji and the
Australian coast. This species is known for the intricate scalloped patterns and colors
of its shells, which range between 50 to 110 mm in size.

The Harpidae family can be identified by their smooth polished exterior. There are
strong ribs running along the length of the shell, and the aperture is large and flared
with a notch at the bottom. They do not have an operculum (a sheet-like structure
that acts as a trapdoor for the snail inside, preventing the animal from drying up).
Instead, the animal’s large foot extends well beyond the edge of the shell.

Harp shells are nocturnal predators. They bury themselves in sand during the day
and emerge at night to feed on crabs and shrimp. They feed by covering their prey
with their foot and enveloping it in mucus. In turn, they can fall prey to larger crabs,
fish, and predatory mollusks. In order to defend themselves, the harp shell uses a very
interesting defense technique: it has the ability to amputate a rear portion of its foot,
which continues to wiggle and distract the predator while the harp shell itself crawls
away.

https://learning.oreilly.com/library/view/bash-cookbook-2nd/9781491975329
https://learning.oreilly.com/library/view/cybersecurity-ops-with/9781492041306
https://learning.oreilly.com/library/view/cybersecurity-ops-with/9781492041306
https://learning.oreilly.com/videos/great-bash/9781449307769

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by Karen Montgomery, based on an antique engraving from
Pictorial Museum of Animated Nature. The cover fonts are Gilroy Semibold and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

Learn from experts.
Become one yourself.
Books | Live online courses
Instant Answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

©
20

22
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	Running bash
	bash on Mac
	bash in Containers

	Revision Control
	Hello World
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments
	bash
	Reviewers
	O’Reilly
	From Carl
	From JP

	Chapter 1. A Big “if” Idiom
	The Big “if”
	Or ELSE…
	More than One
	More than One Again
	Don’t Do This
	Style and Readability: Recap

	Chapter 2. Looping Lingo
	Looping Constructs
	Explicit Values
	Similar to Python
	Quotes and Spaces
	Developing and Testing for Loops
	while and until
	Style and Readability: Recap

	Chapter 3. Just in CASE
	Make Your Case
	A Realistic Use Case
	Motivation
	Our Script

	Wrapper Scripts
	One More Twist
	Style and Readability: Recap

	Chapter 4. Variable Vernacular
	Variable Reference
	Parameter Expansion
	Shorthand for basename
	Path or Prefix Removal
	Shorthand for dirname or Suffix Removal
	Other Modifiers

	Conditional Substitutions
	Default Values
	Comma-Separated Lists
	Modified Value

	$RANDOM
	Command Substitution
	Style and Readability: Recap

	Chapter 5. Expressions and Arithmetic
	Arithmetic
	No Parentheses Needed

	Compound Commands
	Style and Readability: Recap

	Chapter 6. Functional Framework
	Calling Functions
	Defining Functions
	Function Parameters
	Function Return Values
	Local Variables
	Function Special Cases

	Time for printf
	POSIX Output
	Getting or Using the Date and Time
	printf for Reuse or Debugging

	Style and Readability: Recap

	Chapter 7. List and Hash Handling
	Commonalities
	Lists
	Hashes
	A Simple Word Count Example
	Style and Readability: Recap

	Chapter 8. Arguing
	Your First Argument
	Having Options
	Parsing Options

	Long Arguments
	HELP!
	Debug and Verbose
	Version
	Style and Readability: Recap

	Chapter 9. Files and More
	Reading Files
	read
	mapfile
	Brute Force

	Fiddling with $IFS for Fun and Profit, to Read Files
	Pretend Files
	Drop-in Directories
	Using a Library
	Shebang!
	Unofficial bash Strict Mode
	Exit Codes
	It’s a Trap!
	Here-Documents and Here-Strings
	Are We Interactive?
	Summary

	Chapter 10. Beyond Idioms: Working with bash
	Prompts
	bash Time Zone

	Getting User Input
	read
	pause
	select

	Aliases
	Functions
	Local Variables
	Readline Hacks
	Using logger from bash
	Handling JSON with jq
	Grepping the Process List
	Rotating Old Files
	Embedded Documentation
	bash Debugging
	bash Unit Testing
	Summary

	Chapter 11. Developing Your Style Guide
	Readability
	Comments
	Names
	Functions
	Quoting
	Layout
	Syntax
	Other
	Script Template
	Other Style Guides
	bash Linter
	Summary

	Appendix A. The bash Idioms Style Guide
	Readability
	Comments
	Names
	Functions
	Quoting
	Layout
	Syntax
	Other
	Script Template

	Index
	About the Authors
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

