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● 13

Chapter 1 • Introduction

Introducing.... RISC-V!

With the availability of free and open-source C/C++ compilers today, you might wonder 
why someone would be interested in assembler language. What is so compelling about the 
RISC-V Instruction Set Architecture (ISA)? How does RISC-V differ from existing architec-
tures? And most importantly, how do we gain experience with the RISC-V without a major 
investment? Is there affordable hobbyist hardware available?

The availability of the Espressif ESP32-C3 chip provides a student with one affordable way 
to get hands-on experience with RISC-V. The open-sourced QEMU emulator adds a 64-bit 
experience in RISC-V under Linux. These are just two ways for the student and enthusiast 
alike to explore RISC-V in this book.

1.1. The Joy of the Machine
In the earliest days of computing, there was great enthusiasm in working out the mechani-
cal steps required to perform some computation or algorithm. The programmer was aware 
of every machine cycle, status bit and register available to him as resources to be exploited. 
In those early times debugging was often performed on a console decorated with lamps, 
buttons and switches. There was always great satisfaction in getting it right and making it 
run even faster than before.

I fear that today, we've lost some of that passion for exploiting the machine. Our CPU 
tower might possess only a power-on button and LED. But if we're lucky, it might provide 
a disk activity LED as well. Embedded systems are better, sporting multiple LEDs that can 
be utilized. Whether desktop or embedded device, we still program in high-level languages 
like C/C++. While there is still joy in that, the thrill of the hunt may be lacking for those 
thirsting for more. Getting that algorithm to execute even faster or more efficiently is not 
just a badge of honor, but a matter of pride.
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One deterrent to assembly language has been the extremely cluttered instruction sets of 
today's architectures. The Intel and AMD instructions sets, for example, have been horri-
bly extended in the name of compatibility. RISC-V allows the enthusiast to sweep all that 
clutter aside and start over with a clean slate. This makes things so much easier because 
there is less to be learned.

Getting back to assembler language will bring back that thrill of the hunt that you may be 
pining for. At the assembly level, the programmer directs every step of the machine. You 
decide how the registers are allocated and apply every binary trick in your toolbox to make 
that process slick. While we don't have hardware debug consoles anymore, we do have 
powerful debugging tools like the GNU gdb debugger. There's never been a better time to 
do assembly language than today.

1.2. Assembler Language
It might seem counterproductive to program in assembly language. While C/C++ languag-
es will continue to be used for productive development, there frequently remain opportu-
nities for optimizing code at the machine level. In these areas, you will be empowered to 
exploit the machine in otherwise difficult ways.

One attractive area is writing custom floating-point algorithms in assembly language. For 
each calculation, you can carefully evaluate which rounding method to use and check for 
special exception cases at strategic places in the code. In C/C++, the tendency is to simply 
code the formula.

Even if you decide that you have no need to write assembly language code, being able to 
read it can be extremely helpful when debugging. Compilers, often at higher optimization 
levels, can generate incorrect code (this happens more often than you think). Being able to 
verify that the generated code is correct can save you from a great deal of guessing when 
debugging. With a working knowledge, you can step through the code one instruction at a 
time in a debugger and pinpoint the problem. Once the problem is revealed, you can then 
decide on a work-around for the compiler or replace the errant code directly with some 
assembler language code.

In microcomputer solutions, performance is often paramount. Assembler language pro-
gramming provides more options for meeting those performance goals. Finally, it is possi-
ble that one day RISC-V may become one of the few standard instruction sets in general 
use.

1.3. Why RISC-V?
Probably its most attractive feature is that it is designed to be free and open so that it is not 
hindered by restrictive licensing. This permits any manufacturer to create a RISC-V product 
without purchasing an expensive or restrictive license.

The RISC-V instruction set is also designed to be clean, unlike many existing architectures. 
Today's Intel ISA is a bewildering mess of adapted and extended instructions. To be fair, 
this was done to maintain code compatibility, but what a bewildering mess it has become. 
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Now that security is more important than ever, there is a pressing need for a simpler de-
sign.

Reduced Instruction Set Computer (RISC) architecture had its beginnings in research pro-
jects conducted by John L. Hennessy at Stanford University between 1981 and 1984. MIPS 
(Microprocessor without Interlocked Pipeline Stages) was developed with the IBM 801 and 
the Berkeley RISC projects. The Berkeley RISC project was led by David Patterson who 
coined the term RISC. The thrust of these efforts was to develop a design that was simpler 
and potentially faster than the CISC (Complex Instruction Set Computers) of that time.

Today, simplicity benefits the chip manufacturer in lowering the cost of chip development 
and verification. Simplicity means fewer transistors, which leads to lower power require-
ments. A simple instruction set also reduces the complexity that the software developers 
must face. Finally, the RISC-V ISA has provision to include vendor extensions, without 
requiring any special approval. This can lead to surprising innovations.

1.4. Base Instruction Sets Covered
RISC-V is now a large body of work. In chapter 4, Architecture, I'll discuss base instruc-
tion sets and extensions to RISC-V. The focus of this book, however, will be on the RV32 
and RV64 subsets of RISC-V. This permits an ample study of the ESP32-C3 device (RV32) 
as well as Fedora Linux under QEMU (RV64). These two environments should provide the 
reader with a well-rounded tutorial.

1.5. Projects in this Book
In many books applying MCU (Microprocessor Computing Units) concepts, the project 
builds are the focus. In them, the emphasis is placed on using GPIO (General Purpose In-
put/Output), I2C, SPI and other built-in peripherals to build something fun.

This book has a different focus, but it is still fun! The projects in this book are boiled down 
to the barest essentials to keep the assembly language concepts clear and simple. In this 
manner, you will have "aha!" moments rather than puzzling about something difficult. The 
focus of this book is on learning how to write RISC-V assembly language code without get-
ting bogged down. As you work your way through this tutorial, you'll build up small demon-
stration programs to be run and tested. Often the result is some simple printed messages 
to prove a concept. Once you've mastered these basic concepts, you will be well equipped 
to apply assembly language in larger projects.

1.6. What do you need?
This book uses the Espressif ESP32-C3 dev kit device for hardware. You will also emulate 
RISC-V in 64-bit mode using the QEMU emulator on your desktop computer. The emulator 
requires that you have at least 20 GB of free disk space available. For both of the ESP-IDF 
(ESP Integrated Development Framework) and QEMU instances, an internet connection for 
downloading is assumed.
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A suitably modern desktop computer is required to program the ESP32-C3 and to run the 
QEMU emulator, running Fedora Linux. If you lack 20 GB of free disk space, then that can 
be remedied by plugging in a USB hard drive to add some disk space.

1.6.1. ESP32-C3 Hardware
When purchasing hardware for use with this book, be sure to acquire the correct device 
type. The original ESP32 devices used the Xtensa processor and are not RISC-V devices. At 
the time of writing there are several types of ESP32:

• ESP32 (Xtensa dual-core and single-core 32-bit LX6 microprocessor)
• ESP32-S2 (Single-core Xtensa LX7 CPU)
• ESP32-S3 (Dual-core Xtensa LX7 CPU)
• ESP32-C3 Single-core 32-bit RISC-V (WiFi 2.4 Ghz IEEE 802.11b/g/n)
• ESP32-C6 Single-core 32-bit RISC-V

This book was developed specifically with the Espressif ESP32-C3 device (emphasis on the 
"C3").

When purchasing, don't make the mistake of just buying just a chip. Be sure to purchase a 
"devkit" that consists of a PCB with the GPIO breakouts, USB interface and the ESP32-C3 
chip soldered onto it. You might also find it listed as "ESP-C3", but be careful. Make sure 
this refers to the ESP32-C3, and not some other ESP32 variants (using the Xtensa CPU). 
You'll also need an appropriate USB cable to flash and communicate with the devkit. The 
projects in this book can run off of the power from the USB cable.

Figure 1.1 illustrates an early ESP32-C3 dev board purchased from AliExpress. This ver-
sion 1 dev board cannot support JTAG. Notice that these use a USB to serial interface chip 
(CH340C), which can be seen in the photo. If you aren't concerned about JTAG support, 
then these are otherwise suitable to use.
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Figure 1.1: An early version 1 dev board.  
Note the USB to serial chip just right of the micro USB connector.

As time went on, Espressif came out with ESP32-C3 devices with JTAG support (version 3 or 
later). Since these connect directly from the ESP32-C3 chip to the USB port, they don't use 
a serial to USB converter chip. This makes it easy to identify the boards that support JTAG. 
With a direct connection to the USB bus, the ESP32-C3 can perform JTAG functions over 
the USB bus, as well as the usual serial communications. These are the preferred ESP32-C3 
devkits to obtain. Figure 1.2 illustrates a JTAG-capable ESP32-C3 dev board sitting on a 
breadboard.

Figure 1.2: A revision 3 ESP32-C3 dev board supporting JTAG access.
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1.7. Assumptions About the Reader
The reader is assumed to have a basic understanding of what a CPU is, what registers 
are and the rudiments of computer memory. Assembler language and debugging require 
knowledge of number systems, specifically binary and hexadecimal. The reader should also 
be familiar with endianness. Knowing how big-endian ordering differs from little-endian will 
be helpful.

The reader is expected to be familiar with basic file system navigation: changing directo-
ries, creating directories and copying files. In some cases, the editing of a script file may 
be necessary. The Windows user should also be familiar with the Linux file system in this 
regard when using QEMU (emulating Fedora Linux).

Knowledge of the C language is assumed. Code examples will consist of a C language main 
program calling an assembly language function.

The QEMU examples use a RISC-V version of downloadable Fedora Linux. Consequent-
ly, some familiarity with the Linux command line is an asset even for Windows users. 
The ESP32-C3 examples will use your native desktop environment for ESP development, 
whether Linux, MacOS or Windows. In all cases, simple commands are issued to build and 
run the test programs.

Finally, the reader is expected to do some software downloading and installation. Unfor-
tunately, there is a fair amount of this initially, but the good news is that it is all free and 
open software. Once installed, the reader can then focus on the RISC-V concepts presented 
in this book.

1.8. Summary
The next pair of chapters deal with installing your ESP-IDF (ESP Integrated Development 
Framework) and the QEMU emulation software. This bit of work is necessary to let the good 
times roll. So gather your disk space and enable your internet access and begin!

Bibliography
[1]  The_RISC-V_Reader_An_Open_Architecture_Atlas_by_David_Patterson_Andrew_

Waterman.pdf
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Chapter 2 • ESP32-C3 Installation

ESP32-C3 celebrates RISC-V

This chapter illustrates the steps necessary to get you up and running using the ESP32-C3 
device. The first part of this chapter focuses on Linux and MacOS software installations. 
This is what Espressif calls "Manual Installation". Espressif also supports IDE installations 
for Eclipse or VSCode if you prefer. See their online documentation for that.

Windows users will want to skip to the later part of this chapter starting with the section 
heading "Windows Install". This will guide you through the use of the downloaded Espressif 
windows installer.

For either installation, you will need to plan for ample disk space and be connected to your 
internet. The ESP-IDF on the Mac (for device ESP32-C3 only) requires about 1.5 GB of 
disk. But the compilers and other tools will also require additional disk space as they are 
installed. I recommend that you allocate a minimum of 10 GB of free disk space before you 
proceed. The downloads are rather large and will take some time to complete. Choose a 
time to install where you are not rushed.

2.1. ESP32-C3 Device
Espressif markets and sells several devices under the ESP32 moniker, so make sure you 
purchase the correct device in order to enjoy RISC-V adventures. If your part says ESP32 
but not C3, it is not the RISC-V version of the CPU. These devices are also sold as bare 
modules. So be sure to get a "dev kit" form of the product. One product that I am using is 
a ESP32-C3-DevKitM-1 clone. By the time you read this there may be newer versions of the 
ESP32-C3-DevKit and those are likely your best option.

Dev kits may include a USB to serial chip (USB-UART bridge) like the CP2102. My devices 
used the CHG340 chip. Either bridge chip is ok, since we are only interested in the RISC-V 
CPU in this book. Now you can purchase dev kits with JTAG support. These devices with 
revision 3 or later use the USB facilities directly. Figure 2.1 illustrates two early examples 
of revision 1 dev boards. The CH340C USB to serial converter chip is very conspicuous.
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Figure 2.1: Two ESP32-C3 devices with revision 1 PCBs (using USB to serial converters).

2.2. Manual Installation (Linux and MacOS)
Locate the Espressif "Get Started" web page. If the website doesn't change too much, you 
should be able to arrive there directly using the following url:

https://docs.espressif.com/projects/esp-idf/en/latest/esp32c3/get-started/index.html

Otherwise search for "ESP-IDF Programming Guide" with your browser.

Once you arrive at that page, don't forget to choose the product type ESP32-C3 in the 
upper left. Espressif supports multiple device types, and we are primarily interested in the 
ESP32-C3 with RISC-V support. It should look something like Figure 2.2.

Figure 2.2: Set the device selection as ESP32-C3.

Scroll down the page until you see the link "Linux and MacOS". Click on the link to open a 
new page of instructions.

Chapter 2 • ESP32-C3 Installation
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Linux and MacOS
On this page you will be guided through the following basic steps:

1. Install Prerequisites.
2. Get ESP-IDF.
3. Setup the tools.
4. Set up the environment variables.
5. First Steps for ESP-IDF.

Note: If the instructions differ at all from this text, do follow the instructions found on 
the website instead. Espressif may have made changes to the installation procedure by 
the time you read this.

Install Prerequisites
The prerequisites will vary somewhat with the Linux distribution you're using. Check the 
Espressif website for the latest updates by distro.

Ubuntu and Debian
For these distributions, the following packages should be installed (some may already be 
installed):

$ sudo apt install git wget flex bison gperf python3 python3-pip \
  python3-setuptools cmake ninja-build ccache libffi-dev libssl-dev \
  dfu-util libusb-1.0-0

You might wish to split these up into smaller steps, like the following:

$ sudo apt install git wget
$ sudo apt flex bison
$ sudo apt gperf python3
$ sudo apt python3-pip python3-setuptools
$ sudo apt cmake ninja-build
$ sudo apt ccache libffi-dev
$ sudo apt libssl-dev dfu-util libusb-1.0-0

CentOS 7 & 8
CentOS uses the yum installer, and the dependencies are listed as follows:

$ sudo yum -y update && sudo yum install git wget flex bison gperf \
  python3 python3-pip python3-setuptools cmake ninja-build ccache \
  dfu-util libusbx
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Arch
Espressif has documented the following dependencies for the Arch distro:

$ sudo pacman -S --needed gcc git make flex bison gperf python-pip \
  cmake ninja ccache dfu-util libusb

Espressif notes that CMake version 3.5 or newer is required. If you're running an older 
distribution, you may need to update your system packages. For other Linux distributions 
not listed here, use the above as a hint to the package names that you may need to add 
or update.

MacOS
MacOS users usually install HomeBrew (recommended) or the MacPorts open-source pro-
jects to add functionality to their Mac. If you've not done that yet, you need to do that now. 
Refer to the following sites for more information about this:

https://brew.sh/ (HomeBrew)
https://www.macports.org/install.php (MacPorts)

Whether you use HomeBrew or MacPorts, you must install pip:

$ sudo easy_install pip

Next, CMake and Ninja are installed.  For HomeBrew install:

$ brew install cmake ninja dfu-util

For MacPorts users, use:

$ sudo port install cmake ninja dfu-util

Espressif recommends that you also install ccache for faster build times. For HomeBrew, 
use:

$ brew install ccache

For MacPorts use:

$ sudo port install ccache

Note: Espressif indicates that if during the installation you encounter an error like the 
following:
xcrun: error: invalid active developer path (/Library/Developer/Command-
LineTools), missing xcrun at: /Library/Developer/CommandLineTools/usr/bin/xcrun 
Then you will need to install the Apple XCode command line tools in order to continue. 
Install these with:
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$ xcode-select --install

MacOS Python 3
Check the version of python you have installed with:

$ python --version

If it is a version older than 3, or is not present, then check the following (notice that the 
command name is python3 this time):

$ python3 --version

If that fails, then you need to install it. For HomeBrew:

$ brew install python3

For MacPorts:

$ sudo port install python38

Get ESP-IDF
At this point, you need to decide where to place your ESP-IDF software (not as root). I'm 
going to assume in this book, that the directory will be named ~/espc3, where the tilda 
(~) represents your home directory. You can choose a different directory name, by simply 
substituting ~/espc3 for the name you prefer.

First, create the subdirectory to house your files in (starting from your home directory):

$ mkdir -p ~/espc3

and then change to it:

$ cd ~/espc3

Now access the files from GitHub by performing:

$ git clone --recursive https://github.com/espressif/esp-idf.git

This git operation downloads several files and will take some time to complete. It is also a 
good opportunity to take a break for your favourite beverage.

When the git operation completes, you will have the Espressif software downloaded into the 
subdirectory ~/espc3/esp-idf.
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Set up the Tools
Now we need to install some tools used by the ESP-IDF framework, like the compiler and 
Python packages.

$ cd ~/espc3/esp-idf
$ ./install.sh esp32c3

Performing this step will result in more files being downloaded and installed. This step 
progresses much faster than the GitHub clone operation but can still require some time. 
Perhaps your beverage needs a refill?

At the end of this installation, you might encounter a message like:

WARNING: You are using pip version 21.2.1; however, version 22.0.3 is available.

You should consider upgrading via the

'~/.espressif/python_env/idf5.0_py3.9_env/bin/python -m pip install --upgrade 
pip' command.

This is optional, but I chose to do it.

At the end of the installation, your session should have completed with the message:

All done! You can now run:

  $ . ./export.sh

At this point, you should run this script and watch for any error messages. Some errors you 
might see may include:

ERROR: tool xtensa-esp32-elf has no installed versions. Please run '/Users/joe/
espc3/esp-idf/install.sh' to install it.
ERROR: tool xtensa-esp32s2-elf has no installed versions. Please run '/Users/joe/
espc3/esp-idf/install.sh' to install it.
ERROR: tool xtensa-esp32s3-elf has no installed versions. Please run '/Users/joe/
espc3/esp-idf/install.sh' to install it.

In other words, these messages complain about missing support for:

• xtensa-esp32-elf
• xtensa-esp32s2-elf
• xtensa-esp32s3-elf

If you're only concerned about our ESP32-C3 device, which was not listed in error, you can 
ignore these messages. If you also want to support these other devices (regular ESP32, 
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ESP32-S2 and ESP32-S3), you can follow the Espressif advice and run the installation 
scripts suggested.

Set up Environment Variables
To run the Espressif tools to build your projects some environment changes must be applied 
each time you log in. In a fresh terminal session, you would need to do the following. Make 
sure that you type a space between the dot and the rest of the pathname:

$ . ~/espc3/esp-idf/export.sh

Assuming that no critical error messages are reported, this sets up your terminal session to 
build your ESP projects. Some users may wish to create a shorter way to do this. Espressif 
recommends creating an alias like get_idf as follows:

$ alias get_idf='. $HOME/espc3/esp-idf/export.sh'

Once that alias is defined, you can just type:

$ get_idf

to establish your build environment. Depending upon the shell you use for your terminal 
session, you might want to set the get_idf alias up in your ~/.profile or ~/.bashrc file, so 
that it is automatically defined each time you log in.

Once that export.sh script has run, your environment will have the variable IDF_PATH set. 
In this chapter, it would have the value "~/espc3/esp-idf". This allows you to use the shell 
value $IDF_PATH in commands and scripts if you like.

First Steps for ESP-IDF
The installation procedure has covered a lot of ground so let's test it. Change to the exam-
ple subdirectory shown:

$ cd $IDF_PATH/examples/get-started/hello_world

(or)

$ cd ~/espc3/esp-idf/examples/get-started/hello_world

Configure the Target Device
In order to build for the ESP32-C3 device, we need to tell the build framework about it:

$ idf.py set-target esp32c3

Build Example hello_world
This step adjusts the environment so that it knows that it is compiling for our RISC-V device 
(ESP32-C3). Now test the build process:
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$ idf.py build

The first time this runs for a given project, it will compile a lot, but don't be concerned. 
Subsequent builds will not take so long. When it succeeds, the process should end with a 
message:

Project build complete. To flash, run this command:
....snip....
or run 'idf.py -p (PORT) flash'

Flash the Device
Before we can flash your RISC-V (ESP32-C3), we need to find out what port it appears on 
when you plug its cable into a USB port. But before you plug in your device's USB cable, list 
the cu devices under /dev as follows:

$ ls /dev/cu*
/dev/cu.Bluetooth-Incoming-Port /dev/cu.usbserial-0001

This will list some that are already present. Don't be concerned if no devices show up. Now 
plug in your RISC-V device's USB cable and list the files again:

$ ls /dev/cu*
/dev/cu.Bluetooth-Incoming-Port /dev/cu.usbserial-0001 /dev/cu.usbserial-1430

In this example, the device /dev/cu.usbserial-1430 was added. This is the device name we 
need for flashing our device. Define it in the shell variable named PORT, so that you won't 
have to type it each time:

$ PORT=/dev/cu.usbserial-1430
$ export PORT

To flash the example program to your device, try it now (the example output has been 
abbreviated somewhat):

$ idf.py flash
Executing action: flash
Serial port /dev/cu.usbserial-1430
Connecting....
Detecting chip type... ESP32-C3
Running ninja in directory /Users/joe/espc3/esp-idf/examples/get-started/
hello_world/build
Executing "ninja flash"...
...
Chip is ESP32-C3 (revision 3)
Features: Wi-Fi
Crystal is 40MHz
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MAC: 7c:df:a1:b4:44:94
Uploading stub...
Running stub...
Stub running...
Changing baud rate to 460800
Changed.
Configuring flash size...
Flash will be erased from 0x00000000 to 0x00004fff...
Flash will be erased from 0x00010000 to 0x00034fff...
Flash will be erased from 0x00008000 to 0x00008fff...
Compressed 19984 bytes to 12116...
Writing at 0x00000000... (100 %)
Wrote 19984 bytes (12116 compressed) at 0x00000000 in 0.7 seconds (effective 
221.1 kbit/s)...
Hash of data verified.
Compressed 151072 bytes to 81515...
Writing at 0x00010000... (20 %)
Writing at 0x00019a2e... (40 %)
Writing at 0x00020360... (60 %)
Writing at 0x00027602... (80 %)
Writing at 0x0002dada... (100 %)
Wrote 151072 bytes (81515 compressed) at 0x00010000 in 2.7 seconds (effective 
443.9 kbit/s)...
Hash of data verified.
Compressed 3072 bytes to 103...
Writing at 0x00008000... (100 %)
Wrote 3072 bytes (103 compressed) at 0x00008000 in 0.1 seconds (effective 262.5 
kbit/s)...
Hash of data verified.

Leaving...
Hard resetting via RTS pin...
Done

If your session appeared similar to this, then congratulations are in order. You have flashed 
your first RISC-V program to the device.

Running hello_world
To see the hello_world program run, we monitor it as follows:

$ idf.py monitor
$ idf.py monitor
Executing action: monitor
Serial port /dev/cu.usbserial-1430
Connecting....
Detecting chip type... ESP32-C3
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Running idf_monitor in directory /Users/joe/espc3/esp-idf/examples/get-started/
hello_world
...
--- idf_monitor on /dev/cu.usbserial-1430 115200 ---
--- Quit: Ctrl+] | Menu: Ctrl+T | Help: Ctrl+T followed by Ctrl+H ---
ESP-ROM:esp32c3-api1-20210207
Build:Feb  7 2021
rst:0x1 (POWERON),boot:0xc (SPI_FAST_FLASH_BOOT)
SPIWP:0xee
mode:DIO, clock div:1
load:0x3fcd6100,len:0x1750
load:0x403ce000,len:0x930
load:0x403d0000,len:0x2d3c
entry 0x403ce000
I (30) boot: ESP-IDF v5.0-dev-1730-g229ed08484 2nd stage bootloader
I (30) boot: compile time 19:50:12
I (30) boot: chip revision: 3
I (33) boot.esp32c3: SPI Speed      : 80MHz
I (38) boot.esp32c3: SPI Mode       : DIO
I (43) boot.esp32c3: SPI Flash Size : 2MB
I (48) boot: Enabling RNG early entropy source...
I (53) boot: Partition Table:
I (57) boot: ## Label            Usage          Type ST Offset   Length
I (64) boot:  0 nvs              WiFi data        01 02 00009000 00006000
I (71) boot:  1 phy_init         RF data          01 01 0000f000 00001000
I (79) boot:  2 factory          factory app      00 00 00010000 00100000
I (86) boot: End of partition table
...
I (145) boot: Loaded app from partition at offset 0x10000
I (148) boot: Disabling RNG early entropy source...
I (165) cpu_start: Pro cpu up.
I (173) cpu_start: Pro cpu start user code
I (173) cpu_start: cpu freq: 160000000 Hz
I (173) cpu_start: Application information:
I (176) cpu_start: Project name:     hello_world
I (182) cpu_start: App version:      v5.0-dev-1730-g229ed08484
I (188) cpu_start: Compile time:     Mar  1 2022 19:50:05
I (194) cpu_start: ELF file SHA256:  d4ad172e8078f033...
I (200) cpu_start: ESP-IDF:          v5.0-dev-1730-g229ed08484
I (207) heap_init: Initializing. RAM available for dynamic allocation:
I (214) heap_init: At 3FC8C540 len 00033AC0 (206 KiB): DRAM
I (220) heap_init: At 3FCC0000 len 0001F060 (124 KiB): STACK/DRAM
I (227) heap_init: At 50000020 len 00001FE0 (7 KiB): RTCRAM
I (234) spi_flash: detected chip: generic
I (238) spi_flash: flash io: dio
I (242) sleep: Configure to isolate all GPIO pins in sleep state
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I (249) sleep: Enable automatic switching of GPIO sleep configuration
I (256) cpu_start: Starting scheduler.
Hello world!
This is esp32c3 chip with 1 CPU core(s), WiFi/BLE, silicon revision 3, 2MB 
external flash
Minimum free heap size: 328924 bytes
Restarting in 10 seconds...
Restarting in 9 seconds...
Restarting in 8 seconds...
Restarting in 7 seconds...

After the device boots up, you will see the message "Starting scheduler". The next message 
shown is the "Hello world!" that we were waiting for. Then the program counts down and 
will reboot again until you terminate it. To stop monitoring, type Control-] (control plus the 
right square bracket) and you should be returned to your shell. Congratulations, you ran 
your first RISC-V program!

2.3. Windows Install
While it is possible to install the Windows Subsystem for Linux (WSL and WSL2) on Win-
dows 10 and later, you may not be able to get the Linux USB access to work with the 
ESP32-C3 device. For this reason, I'll document the native Windows install procedure as 
provided by Espressif. Espressif provides the install documentation here:

https://docs.espressif.com/projects/esp-idf/en/latest/esp32c3/get-started/
windows-setup.html

Limitations
Espressif lists the following limitations:

• The installation path of ESP-IDF and ESP-IDF Tools must not be longer than 90 
characters. 

From their web page:

[Installation paths that are too long] might result in a failed build. The installation 
path of Python or ESP-IDF must not contain white spaces or parentheses. The in-
stallation path of Python or ESP-IDF should not contain special characters (non-AS-
CII) unless the operating system is configured with "Unicode UTF-8" support.

System Administrator can enable the support via Control Panel. Change date, time, 
or number formats - Administrative tab - Change system locale - check the option 
"Beta: Use Unicode UTF-8 for worldwide language support" - Ok and reboot the 
computer.
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ESP-IDF Tools Installer
Look for and click on the link "Windows Installer Download" provided on their website". 
Make certain that you have selected ESP32-C3 from the top left drop down of the ESP-IDF 
Programming Guide web page. At the time of writing, this downloads from:

https://dl.espressif.com/dl/esp-idf/?idf=4.4

They provide several different installers, which at the time of writing include:

• Universal Online Installer 2.13 for Windows 10, 11, size 4 MB
• Espressif-IDE 2.4.2 with ESP-IDF v4.4 for Windows 10, 11, size 1 GB
• ESP-IDF v4.4 Offline Installer for Windows 10, 11, size 600 MB
• ESP-IDF v4.3.2 Offline Installer for Windows 10, 11, size 570 MB
• ESP-IDF v4.2.2 Offline Installer for Windows 10, 11, size 376 MB
• ESP-IDF v4.1.2 Offline Installer for Windows 10, 11, size 353 MB

In this guide, I've chosen the Universal Online Installer. Once the installer has been down-
loaded and launched, you'll be prompted to "Select Setup Language", which will be "En-
glish" by default.

Next is the "License Agreement", where you want to click "I accept the agreement" and 
then click the "Next" button.

The installer does a "Pre-installation system check". If there were any warnings, click the 
"Apply Fixes" button. Likely it will complain that you need Administrator access, which the 
"Apply Fixes" button will correct. Once all is good, click on the "Next" button.

The next dialog "Download or use ESP-IDF" asks you to choose one of:

• Download ESP-IDF.
• Use an existing ESP-IDF directory.

Choose "Download ESP-IDF" and click the "Next" button.

In the "Version of ESP-IDF" dialog, choose the version of the software to download. At the 
time of writing, the most current version was v4.4 (release version). It is probably best to 
choose the latest version available. Click the "Next" button.

In the "Select Destination Location" dialog, you are asked where you want the software to 
be installed. By default, the text "C:\Espressif" is used. If you need it on another drive or a 
different directory, this is where you can choose it. Click the "Next" button.

In the "Select Components" dialog, you are presented with a tree of checkboxes. The one 
area that you might want to deliberate is the "Chip Targets", where it lists the following 
choices:
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• ESP32 (optional)
• ESP32-C3 (make sure this remains checked for RISC-V)
• ESP32-S Series:

 - ESP32-S2 (optional)
 - ESP32-S3 (optional)

If you need to save disk space, then unselect the optional items listed above. Make certain 
however that ESP32-C3 remains checked. Click the "Next" button.

At this point, the "Ready to Install" dialog box appears with a summary of your choices so 
far. If the summary appears okay, then click the "Install" button.

If any prompt presents a "Do you want to allow this app to make changes to your device?" 
question, then answer with a click on the "Yes" button.

You will also get prompts from "Windows Security" to the effect "Would you like to install 
this device software?". Click on the "Install" button.

The software will then download and install for a considerable amount of time. Later on, 
the "Installing ESP-IDF tools" dialog will appear towards the end. If you're feeling a craving 
for coffee or tea, this would be a great time to make it. The download and installation may 
take about 45 minutes depending upon your system and internet.

After the above is completed, you are presented with a "Completing the ESP-IDF Tools Set-
up Wizard" dialog. I suggest you leave all the options checked and click the "Finish" button. 
Click on "Yes" if you are prompted with "Do you want to allow this app to make changes to 
your device?".

Once all that has been completed, you should have two more start menu options:

• ESP-IDF 4.4 CMD
• ESP-IDF 4.4 PowerShell

as shown in Figure 2.3 (yours may differ slightly).

Figure 2.3: The created ESP-IDF startup links in the start menu.
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Now it is time to test your installed ESP-IDF on a provided example program.

Windows First Steps on ESP-IDF
Using the ESP-IDF PowerShell (or CMD), let's use a test project to test the software with. 
When you start your shell, it will place you into a directory that depends upon your install 
choices. The prompt that I got was:

PS C:\Espressif\frameworks\esp-idf-v4.4>

In the text that follows, I will just show "PS C:>" as the prompt. Now change to the hel-
lo_world subdirectory:

PS C:> cd examples
PS C:> cd get-started
PS C:> cd hello_world

Choose your target device type by executing the following command:

PS C:> idf.py set-target esp32c3

This configures the build for this project to compile for your RISC-V device. Once that com-
pletes, you can build your hello_world software:

PS C:> idf.py build

The first time you build your project a lot of compiling of dependencies will occur. On suc-
cessive builds however, the process only rebuilds what is needed and is much faster. If all 
went well, the command should complete with the message:

Project build complete. To flash, run this command:
...
or run 'idf.py -p (PORT) flash'

Now we must discover the name of your USB device when the ESP32-C3 is plugged in. 
Open the Device Manager and expand the "Ports (COM & LPT)" after plugging in your 
ESP32-C3 device. See Figure 2.4 for an example:
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Figure 2.4: Locating the COM port for the ESP32-C3 plugged into the serial port.

In this example, we see that Windows has registered the ESP32-C3 as the device name 
COM3. Your device may use a different name depending on the device hardware. My device 
used a CH340 USB serial interface chip, and so the "CH340" shows up in the name.

Once you know the device name, you can flash it:

PS C:> idf.py -p COM3 flash

If all went well, you will see that it recognizes the device and uploads the compiled software 
to it. In order to see hello_world run, we monitor it with:

PS C:> idf.py -p COM3 monitor

Several message lines will appear, but eventually you will see some output similar to the 
following:

--- idf_monitor on com3 115200 ---
--- Quit: Ctrl+] | Menu: Ctrl+T | Help: Ctrl+T followed by Ctrl+H ---
ESP-ROM:esp32c3-api1-20210207
Build:Feb  7 2021
rst:0x1 (POWERON),boot:0xc (SPI_FAST_FLASH_BOOT)
SPIWP:0xee
mode:DIO, clock div:1
load:0x3fcd6100,len:0x16bc
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load:0x403ce000,len:0x930
load:0x403d0000,len:0x2d40
entry 0x403ce000
I (30) boot: ESP-IDF v4.4 2nd stage bootloader
I (30) boot: compile time 15:55:20
I (30) boot: chip revision: 3
I (32) boot.esp32c3: SPI Speed      : 80MHz
I (36) boot.esp32c3: SPI Mode       : DIO
I (41) boot.esp32c3: SPI Flash Size : 2MB
I (46) boot: Enabling RNG early entropy source...
...
I (228) spi_flash: detected chip: generic
I (232) spi_flash: flash io: dio
I (236) sleep: Configure to isolate all GPIO pins in sleep state
I (243) sleep: Enable automatic switching of GPIO sleep configuration
I (250) cpu_start: Starting scheduler.
Hello world!
This is esp32c3 chip with 1 CPU core(s), WiFi/BLE, silicon revision 3, 2MB 
external flash
Minimum free heap size: 329676 bytes
Restarting in 10 seconds...
Restarting in 9 seconds...
Restarting in 8 seconds...
Restarting in 7 seconds...
Restarting in 6 seconds...

After booting up, it will eventually reboot and display "Hello world!" as often as you allow it 
to continue. To exit monitor mode, type Control-] (control key plus the right square brack-
et). Congratulations, you have successfully compiled, flashed and ran your first RISC-V 
program!

2.4. Summary
This may have been a tedious chapter for getting your Espressif software ready. The good 
news is that the difficult part is over and that your ESP32-C3 is now at your beckon call.
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Chapter 3 • Installation and Setup of QEMU

QEMU speaks RISC-V!

In this chapter, instructions are provided for installing QEMU for the RISC-V emulator. Run-
ning the QEMU emulator allows us to explore the 64-bit RISC-V machine without having 
actual hardware for it. Additionally, it provides us debugger access to the machine in a 
friendly Linux environment.

When there is no QEMU binary install package available for your Linux desktop, it can be 
compiled from source code. The procedure for that is provided in this chapter. Otherwise, 
Windows and MacOS users can download and use prebuilt binary installs instead. Windows 
users should skip down to the section "Installing QEMU on Windows" near the end of this 
chapter.

Book Source Code
All users should check out the source code available for this book somewhere convenient. 
How and where you can download it will vary according to whether you are using Windows 
or not.

3.1. Linux/MacOS Platforms:
Throughout this book, I'll assume that the directory used for the checked-out code is under 
~/riscv/repo. Be sure to use the -b master option to checkout the correct branch.

$ git clone https://github.com/ve3wwg/risc-v.git -b master ~/riscv/repo

Copy the file:

$ cp ~/riscv/repo/boot.sh ~/riscv/boot.sh

This provides a copy of the checked-out file at the top of your ~/riscv tree.
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3.2. Windows
Windows makes the process a little more difficult, so follow these recommended steps:

1. Double-click your desktop ESP-IDF 4.4 CMD icon that was installed when you in-
stalled the ESP-IDF framework. Using this environment will give you instant access 
to the ESP-IDF installed git command.

2. Change to the C:\riscv after you create the directory.
3. Type the following git command using forward slashes to clone the repository. 

C:> git clone https://github.com/ve3wwg/risc-v.git -b master /riscv/repo

After this is done, there should be files populated in your C:\riscv\repo subdirectory.

Basic Steps
There are two basic steps required to get our RISC-V system environment setup:

1. Install the QEMU RISC-V 64-bit emulator.
2. Install the Fedora Linux for RISC-V 64-bit (within the emulator).

In order to complete both of these steps, you need to determine if you have sufficient disk 
space. You will need at least 10 GB of space for the Fedora Linux system image file. But 
since it downloads as a compressed file, you need additional space to uncompress it. Plan 
on about 20 GB (some of this space is only temporarily needed). You will also need about 
500 MB for the installed QEMU software. If you plan to build QEMU from source code on Li-
nux, you will need about another 1 GB of disk space. These are rough estimates that should 
provide you with minimum guidelines.

3.3. Installing QEMU on MacOS
Detailed instructions for a MacOS binary installation can be found here:

https://www.qemu.org/download/#macos

These installations use the Homebrew or the MacPorts collections. If you don't use either of 
these yet, then you will need to install Homebrew or MacPorts first. I prefer the HomeBrew 
(https://brew.sh) collection myself.

3.4. Install QEMU on Devuan Linux
If you prefer to have a systemd free version of Linux and run the Devuan Chimaera release 
(https://www.devuan.org), then you can simply install QEMU from a binary package (as 
root):

# apt install qemu-system-misc
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This installs all QEMU emulators, but check that the riscv64 version is the one installed 
with:

$ qemu-system-riscv64 --version
QEMU emulator version 5.2.0 (Debian 1:5.2+dfsg-11+deb11u1)
Copyright (c) 2003-2020 Fabrice Bellard and the QEMU Project developers

you should get a version confirmation for riscv64.

3.5. QEMU Package Search
Other Linux distros likely offer QEMU installable packages. Be sure to look for riscv64 
when searching (unless it is bundled in qemu-system-misc). Package management varies 
depending upon the distro used. Many Debian based distros use the "apt" command for 
package management, for example. You can test for package availability with:

# apt search qemu

At the time of writing, for example, an old Devuan 32-bit Linux system supported only the 
following QEMU packages:

qemu-system/stable,stable-security 1:5.2+dfsg-11+deb11u1 i386
qemu-system-arm/stable,stable-security 1:5.2+dfsg-11+deb11u1 i386
qemu-system-mips/stable,stable-security 1:5.2+dfsg-11+deb11u1 i386
qemu-system-ppc/stable,stable-security 1:5.2+dfsg-11+deb11u1 i386
qemu-system-sparc/stable,stable-security 1:5.2+dfsg-11+deb11u1 i386

 qemu-system-x86/stable,stable-security,now 1:5.2+dfsg-11+deb11u1 i386

In this example platform, there is no qemu-system-riscv64 listed. If your Linux also lacks a 
package for riscv64, then don't despair. It can be compiled and installed from source code.

If you now have QEMU support for riscv64 installed, then skip the build instructions and 
resume at the section "Setup of Fedora Linux".

3.5.1. Building QEMU on Linux
In the Linux command examples shown later, command lines using a "$" prompt are per-
formed from your own developer account (not as root). Where the prompt is shown as "#", 
these commands must be executed from the root account or using the sudo command.

On the command lines shown, any text following the "#" character indicates a comment, 
which is ignored by the shell (from the point of the "#" character to the end of the line). 
These are comments about why the command is necessary etc. Don't type those in.
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3.5.2. Basic Build Steps
When building QEMU from sources on Linux, we will perform the following steps:

1. Create a working directory with sufficient disk space.
2. Check out the QEMU source code from gitlab.com.
3. Configure it (and check for prerequisites).
4. Build (compile) it.
5. Install it.

The entire process is relatively painless but may require considerable time on slower plat-
forms. Let your computer perform most of the work!

Create a Working Directory
For the purpose of building QEMU from source code, you need to create a working directory 
on a file system with at least 2 GB of storage. I'll assume that it is called "~/work" but you 
can choose any location you prefer.

$ mkdir ~/work
$ cd ~/work

Clone from gitlab.com
Check the source code out from can be checked out from gitlab.com as follows:

$ git clone https://gitlab.com/qemu-project/qemu.git

Depending upon your internet download speed, this might take a while. Once it has been 
completed, change to the checked-out source code directory:

$ cd ~/work/qemu

Open-source projects often experience significant changes. So that you can follow this text 
with fewer speed bumps, I strongly recommend that you use the same version as used in 
the book. To do this, change the version of the checked-out source code as shown:

$ git checkout v6.0.0-rc5 # Checkout this specific version

This will modify the source files to build the exact same version of QEMU that was used by 
the author here.

Configuration
The configuration and build are performed in a subdirectory named "build" that you must 
create. Create the subdirectory and then change to it:

$ mkdir -p ~/work/qemu/build
$ cd ~/work/qemu/build
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If you ever need to start over because of problems, remove the build directory and recreate 
it.

Next, configure the build using the supplied configure script. Be sure to supply the "--target-
list" option as shown because we only want the riscv64 version of the emulator. Otherwise, 
you will end up building many emulators, which can take a very long time.

$ cd ~/work/qemu/build
$ ../configure --target-list=riscv64-softmmu
...
                libdaxctl support: NO
                          libudev: NO
                       FUSE lseek: NO

  Subprojects
                    libvhost-user: YES

Found ninja-1.10.2.git.kitware.jobserver-1 at /usr/local/bin/ninja

If you don't have ninja installed, you may need to do so now (as root). For Devuan Linux 
for example, the following is installed:

# apt install ninja-build

There may be other dependency packages needed like:

# apt install pkg-config
# apt install libglib2.0-dev
# apt install libpixman-1-dev

The package names often vary by Linux distro. Always choose a "dev" (or devel) version 
of the package when it is available since it includes the header files needed for compiling. 
If these package names don't work for you, then copy the error message to your browser 
and find out what others used to solve the dependency.

After installing the missing dependencies, simply repeat the configure script as shown 
above. If all goes well, you should get to the end of the configure script successfully.

Build QEMU
After the configure step ends successfully, QEMU can be compiled from the build directory 
that you created.

$ cd ~/work/qemu/build
$ make
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This build process can take a long time depending upon your Linux system. The compile can 
proceed without further user involvement so take a moment to make a coffee or tea or take 
your faithful dog for a walk in the park. At the end of the build, you should see messages 
similar to these:

[2137/2137] Linking target tests/qtest/qos-test
  AS      multiboot.o
  BUILD   multiboot.img
  BUILD   multiboot.raw
  SIGN    multiboot.bin
  AS      linuxboot.o
  BUILD   linuxboot.img
  BUILD   linuxboot.raw
  SIGN    linuxboot.bin
  CC      linuxboot_dma.o
  BUILD   linuxboot_dma.img
  BUILD   linuxboot_dma.raw
  SIGN    linuxboot_dma.bin
  AS      kvmvapic.o
  BUILD   kvmvapic.img
  BUILD   kvmvapic.raw
  SIGN    kvmvapic.bin
  AS      pvh.o
  CC      pvh_main.o
  BUILD   pvh.img
  BUILD   pvh.raw
  SIGN    pvh.bin
$

Install QEMU
Once QEMU has been successfully compiled, you can install its components as follows:

$ cd ~/work/qemu/build
$ sudo make install

Congratulations! You have installed QEMU! Now verify that the emulator is available from 
the command line:

$ qemu-system-riscv64 --version
QEMU emulator version 5.2.95 (v6.0.0-rc5)
Copyright (c) 2003-2021 Fabrice Bellard and the QEMU Project developers
$

If that fails, check your PATH variable. Because you built QEMU from a specific version of 
the software, you should see the version number "v6.0.0-rc5".
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Reclaiming Disk Space
If you're short of disk space and you were able to display the emulator version successfully 
after installation, then you can release the downloaded QEMU source code.

$ cd ~/work     # change to your work directory
$ rm -fr ./qemu # release all of the gitlab source code for QEMU

3.5.3. Linux/MacOS Setup of Fedora Linux
In this section, I assume that you've successfully installed QEMU for RISC-V 64-bit, either 
from a binary package or from the source code. With that out of the way, let's turn our 
attention to downloading and setting up the RISC-V 64-bit version of Fedora Linux. Here, 
I'll assume that your working directory is ~/riscv:

$ mkdir ~/riscv
$ cd ~/riscv

Disk Space Requirements
In this section, we'll be downloading file system images for RISC-V Fedora Linux. For this, 
you're going to need a minimum of about 20 GB by the time the downloaded image is de-
compressed. Some of that space will be reclaimed.

Download Image Files
The Fedora Linux for RISC-V file system images that we're going to work with are available 
for download from this site:

https://dl.fedoraproject.org/pub/alt/risc-v/repo/virt-builder-images/images/

At the time of writing, the following files of interest are available:

Fedora-Developer-Rawhide-20200108.n.0-fw_payload-uboot-qemu-virt-smode.elf          
2020-01-13 16:48  592K  
Fedora-Developer-Rawhide-20200108.n.0-fw_payload-uboot-qemu-virt-smode.elf.
CHECKSUM 2020-01-13 16:48  151   
Fedora-Developer-Rawhide-20200108.n.0-sda.raw.xz                                    
2020-01-13 16:55  1.4G  
Fedora-Developer-Rawhide-20200108.n.0-sda.raw.xz.CHECKSUM 2020-01-13 16:58  125    

If these particular files are no longer available when you read this, then choose the newer 
versions of these files. Keep in mind that disk space requirements may differ slightly.

Download Files
Download the .elf file required as shown below. On MacOS or Linux use the convenient wget 
command while in the ~/riscv directory:
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$ wget 'https://dl.fedoraproject.org/pub/alt/risc-v/repo/virt-builder-images/
images/Fedora-Developer-Rawhide-20200108.n.0-fw_payload-uboot-qemu-virt-smode.
elf'

You should also download the CHECKSUM file for verification, to make sure it has not been 
tampered with:

$ wget 'https://dl.fedoraproject.org/pub/alt/risc-v/repo/virt-builder-images/
images/Fedora-Developer-Rawhide-20200108.n.0-fw_payload-uboot-qemu-virt-smode.
elf.CHECKSUM'

Now verify the downloads with the sha256sum command. Note the checksums reported, 
shown underlined here:

$ sha256sum 'Fedora-Developer-Rawhide-20200108.n.0-fw_payload-uboot-qemu-virt-
smode.elf'
5ebc762df148511e2485b99c0bcf8728768c951680bc97bc959cae4c1ad8b053  Fedora-
Developer-Rawhide-20200108.n.0-fw_payload-uboot-qemu-virt-smode.elf
$ cat 'Fedora-Developer-Rawhide-20200108.n.0-fw_payload-uboot-qemu-virt-smode.
elf.CHECKSUM'
SHA256 (Fedora-Developer-Rawhide-20200108.n.0-fw_payload-uboot-qemu-virt-smode.
elf) = 5ebc762df148511e2485b99c0bcf8728768c951680bc97bc959cae4c1ad8b053

Because the checksums match, we have confidence that the file has not been tampered 
with. You can now discard the CHECKSUM file if you wish.

We want the "developer" images of Fedora Linux to save us the trouble of installing compil-
ers and other build tools. It also gives us an image with enough disk space to work in. So, 
download the following Fedora disk image file:

$ wget 'https://dl.fedoraproject.org/pub/alt/risc-v/repo/virt-builder-images/
images/Fedora-Developer-Rawhide-20200108.n.0-sda.raw.xz'

and its matching CHECKSUM file. Once again, verify the checksum on the compressed file. 
When the checksums agree, decompress the file system image:

$ unxz Fedora-Developer-Rawhide-20200108.n.0-sda.raw.xz
$ ls -l Fedora-Developer-Rawhide-20200108.n.0-sda.raw

With the .elf and .raw files available, it is now time to boot into Fedora Linux using QEMU.

3.5.4. Linux/MacOS Boot Fedora Linux
There are a number of command line options needed by QEMU to successfully boot Linux. 
For this reason, we'll use a shell script so that you don't need to type them out. When you 
checked out the source code, you should already have copied this script:
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$ cp ~/riscv/repo/boot.sh ~/riscv/boot.sh

The local copy of this script is available for your own customization.  Review the section 
Book Source Code earlier, if necessary, if you've not yet checked out the source code.

The contents of the ~/riscv/boot.sh script file should resemble this:

#!/bin/bash

exec qemu-system-riscv64 \
   -nographic \
   -machine virt \
   -smp 2 \
   -m 2G \
   -kernel Fedora-Developer-Rawhide-20200108.n.0-fw_payload-uboot-qemu-virt-
smode.elf \
   -bios none \
   -object rng-random,filename=/dev/urandom,id=rng0 \
   -device virtio-rng-device,rng=rng0 \
   -device virtio-blk-device,drive=hd0 \
   -drive file=Fedora-Developer-Rawhide-20200108.n.0-sda.raw,format=raw,id=hd0 \
   -device virtio-net-device,netdev=usernet \
   -netdev user,id=usernet,hostfwd=tcp::10000-:22

Give the script file the appropriate execution permissions now:

$ chmod ug+rx ~/riscv/boot.sh

If your system fails to find the qemu-system-riscv64 command, then its directory needs to 
be added to your PATH environment variable. MacOS for example, may have the emulator 
installed in /usr/local/bin when using HomeBrew. If this directory is not in your PATH, then 
add it now:

$ PATH="/usr/local/bin:$PATH"

Now it is time to test the boot into Fedora Linux.

3.5.5. Linux/MacOS Boot Test
Start the boot by invoking the script:

$ cd ~/riscv
$ ./boot.sh

The boot process may seem to hang when coming up:

[    0.000000] printk: bootconsole [ns16550a0] enabled
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But be patient and with time, it will progress beyond that point. The entire process can 
be quite lengthy on a little 32-bit Linux with one CPU. Modern systems should manage it 
better. Once Fedora comes up, you should be greeted with the following information:

Welcome to the Fedora/RISC-V disk image
https://fedoraproject.org/wiki/Architectures/RISC-V

Build date: Wed Jan  8 10:28:16 UTC 2020

Kernel 5.5.0-0.rc5.git0.1.1.riscv64.fc32.riscv64 on an riscv64 (ttyS0)

The root password is 'fedora_rocks!'.
root password logins are disabled in SSH starting Fedora 31.
User 'riscv' with password 'fedora_rocks!' in 'wheel' group is provided.

To install new packages use 'dnf install ...'

To upgrade disk image use 'dnf upgrade --best'

If DNS isn't working, try editing '/etc/yum.repos.d/fedora-riscv.repo'.

For updates and latest information read:
https://fedoraproject.org/wiki/Architectures/RISC-V

Fedora/RISC-V
-------------
Koji:               http://fedora.riscv.rocks/koji/
SCM:                http://fedora.riscv.rocks:3000/
Distribution rep.:  http://fedora.riscv.rocks/repos-dist/
Koji internal rep.: http://fedora.riscv.rocks/repos/
fedora-riscv login:

It is important to note the account and password provided in the greeting:

After the boot process is completed, you can log in using riscv as login and fedora_
rocks! as the password.

You can log in at the console, but you may prefer to login using ssh instead (note that the 
account name is riscv):

SSH is enabled so you can ssh into the VM through port 10000 using the following 
command.

ssh -p 10000 -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no 
-o PreferredAuthentications=password -o PubkeyAuthentication=no riscv@
localhost
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You may find that a simple ssh command as follows is good enough:

ssh -p 10000 riscv@localhost

Root Access
You will need root access to administer your Fedora Linux system from time to time. To 
change to root from the riscv account, use sudo using the pasword fedora_rocks!:

[riscv@fedora-riscv ~]$ sudo -i

We trust you have received the usual lecture from the local System
Administrator. It usually boils down to these three things:

    #1) Respect the privacy of others.
    #2) Think before you type.
    #3) With great power comes great responsibility.

[sudo] password for riscv:
[root@fedora-riscv ~]#

Check Disk Space
If you downloaded the suggested Fedora image file, you should have enough disk space 
available within this Fedora image to work on the projects for this book:

[riscv@fedora-riscv ~]$ df -k .
Filesystem     1K-blocks    Used Available Use% Mounted on
/dev/vda4        9539456 5345064   4080428  57% /
[riscv@fedora-riscv ~]$ bc -l <<<'4080428/1024/1024'
3.89139938354492187500

From the example shown, there are nearly 4 GB of free space. When you boot up a new 
instance of Linux there is a strong urge to perform system updates. Resist that temptation 
because by doing so, you could end up running out of space once the updates are applied.

SSH Authentication
Unfortunately, Fedora Linux requires a long password, which is very annoying in a hosted 
environment like this. If you want easier SSH access, follow the optional instructions found 
at https://kb.iu.edu/d/aews to set up public key authentication. This will allow you to log 
in without a password. Otherwise, simply choose a password of the required length that is 
easy enough for you to use.

Source Code Checkout for Fedora
Once you have logged into Fedora's riscv account, you'll want to check out the book's 
source code for use within Fedora Linux. After you log in, you will be in your home directory 
as shown:
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[riscv@fedora-riscv ~]$ pwd
/home/riscv

While it's a little confusing, create a subdirectory named riscv:

[riscv@fedora-riscv ~]$ mkdir riscv

This creates ~/riscv/riscv (or /home/riscv/riscv). Then check out the book source code 
using (don't forget the -b master option to check out the main branch):

$ git clone https://github.com/ve3wwg/risc-v.git -b master ~/riscv/repo

This places the book's source code in the directory ~/riscv/repo (which is /home/riscv/
riscv/repo in Fedora Linux). If you check it out exactly like this, the text references in the 
book will match.

Fedora Shutdown
Now that your RISC-V instance of Fedora Linux is running, let's review how to shut it down. 
If things go terribly wrong, like hanging at boot time, it is usually possible to ̂ C (Control-C) 
out of it in the session where you launched ~/riscv/boot.sh. If that fails, you can kill the 
process using the kill command.

A normal shutdown is performed in Fedora Linux from the root in the usual way:

# sudo /sbin/shutdown -h now

On the console session, you will eventually see the message:

[ 2425.326258] reboot: Power down

3.6. Installing QEMU on Windows
Installable QEMU executables are available from the following site for 32- or 64-bit versions 
of Windows:

https://www.qemu.org/download/#windows

First click on "Windows" and then you will see the text below:

Stefan Weil provides binaries and installers for both 32-bit and 64-bit.

Click on the appropriate link for your version of Windows. Navigate through the directory of 
offered versions and then download and run the installer chosen. The download is approx-
imately 192 MB in size.
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QEMU Install
Once you have downloaded the installer, launched it, and answer Yes to the prompt "Do you 
want to allow this app from an unknown publisher to make changes to your device?" Select 
your language (English by default) and click OK.

In the "Welcome to QEMU Setup" dialog, click "Next". Agree to the license by clicking "I 
Agree".  In the "Choose Components" dialog, leave everything checked that is checked 
and click "Next". Next, you will choose a folder into which you place the installed files. By 
default, it will be "C:\Program Files\qemu" (a recommended choice for this book). Change 
it or leave it as you wish and click "Install". Then click "Finish" when it completes the in-
stallation. Figure 3.1 illustrates the contrast in physical sizes of the two systems: ESP32-C3 
sitting on top to the Dell Windows 10 tower below.

Figure 3.1: Size contrast of the ESP32-C3 dev board with a typical Windows-10 tower.

Download Fedora Linux
With the emulator installed we must now download Fedora Linux to run within it. Make a 
convenient directory named C:\riscv:

PS C:> mkdir \riscv
PS C:> cd \riscv
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Now you can download the .elf file needed and the .raw image files:

PS C:> wget 'https://dl.fedoraproject.org/pub/alt/risc-v/repo/virt-builder-
images/images/Fedora-Developer-Rawhide-20200108.n.0-fw_payload-uboot-qemu-virt-
smode.elf'

After the .elf file is downloaded, download the raw image file.

PS C:> wget 'https://dl.fedoraproject.org/pub/alt/risc-v/repo/virt-builder-
images/images/Fedora-Developer-Rawhide-20200108.n.0-sda.raw.xz'

Note: If you don't have the wget command, use your browser to download the image 
files and move them into the C:\riscv directory.

If you want to verify the checksums, see the Linux section about using sha256sum. You'll 
likely also need to install the sha256sum command under Windows. This step is optional.

The image file needs to be decompressed. There are freely downloadable apps like the 
ones at https://tukaani.org/xz/, or if you have PKZIP already installed, that will be able to 
uncompress it. After uncompressing the file, you should have the following two files ready 
for use:

C:\riscv\Fedora-Developer-Rawhide-20200108.n.0-fw_payload-uboot-qemu-virt-smode.elf

C:\riscv\Fedora-Developer-Rawhide-20200108.n.0-sda.raw

With the .elf and .raw files ready, it is time to boot into Fedora Linux using QEMU.

The boot.bat script
The options necessary to boot Fedora Linux under Windows differs somewhat from the Li-
nux/MacOS version of QEMU. The file C:\riscv\boot.bat is a local copy from C:\riscv\repo\
boot.bat/ This is available for you to customize, if necessary. The content of that file should 
resemble this:

@REM boot.bat

PATH="C:\Program Files\qemu:%PATH%"

cd C:\Program Files\qemu
qemu-system-riscv64 -nographic -machine virt -smp 2 -m 2G ^
-kernel \riscv\Fedora-Developer-Rawhide-20200108.n.0-fw_payload-uboot-qemu-virt-
smode.elf ^
-bios none ^
-device virtio-blk-device,drive=hd0 ^
-drive file=\riscv\Fedora-Developer-Rawhide-20200108.n.0-sda.raw,format=raw,id=hd0 
^
-device virtio-net-device,netdev=usernet ^
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-netdev user,id=usernet,hostfwd=tcp::10000-:22

@REM end boot.bat

The very long command line is broken into segments using the caret (^) character. Edit this 
file if you have different drive letters, directory, or file names. Once your .bat file is ready, 
launch QEMU to boot up Fedora Linux:

PC C:> cd \riscv

PC C:> .\boot.bat

If this fails to launch, check for spelling errors in the file names in the boot.bat file and cor-
rect them. The boot process may seem to hang when coming up but don't despair:

[    0.000000] printk: bootconsole [ns16550a0] enabled

With time, it will progress beyond that point. Once it comes up, you should be greeted with 
the following information:

Welcome to the Fedora/RISC-V disk image
https://fedoraproject.org/wiki/Architectures/RISC-V

Build date: Wed Jan  8 10:28:16 UTC 2020

Kernel 5.5.0-0.rc5.git0.1.1.riscv64.fc32.riscv64 on an riscv64 (ttyS0)

The root password is 'fedora_rocks!'.
root password logins are disabled in SSH starting Fedora 31.
User 'riscv' with password 'fedora_rocks!' in 'wheel' group is provided.

To install new packages use 'dnf install ...'

To upgrade disk image use 'dnf upgrade --best'

If DNS isn't working, try editing '/etc/yum.repos.d/fedora-riscv.repo'.

For updates and latest information read:
https://fedoraproject.org/wiki/Architectures/RISC-V

Fedora/RISC-V
-------------
Koji:               http://fedora.riscv.rocks/koji/
SCM:                http://fedora.riscv.rocks:3000/
Distribution rep.:  http://fedora.riscv.rocks/repos-dist/
Koji internal rep.: http://fedora.riscv.rocks/repos/
fedora-riscv login:
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See the prior section "Linux/MacOS Boot Test". For more information about logging into 
Fedora Linux:

• Root Access
• Check Disk Space
• SSH Authentication
• Source Code Checkout for Fedora
• Fedora Shutdown

Related to this, I found that the Windows version of QEMU may sometimes stall at shut-
down. Pressing RETURN at the console got it going again. Note also that the console may 
not be the best place to login since the terminal support may not support ANSI escape se-
quences, affecting its display. Use SSH for login, perhaps from PuTTY (https://www.putty.
org) or from a Linux or MacOS machine. Use the ipconfig command in the PowerShell to list 
your network address, if necessary. Once you know that, you can log in with SSH from any 
network connected machine using ssh:

$ ssh -p 10000 riscv@192.168.1.44  # Example IP number

Make sure that you specify the port as ten thousand and not as one thousand, as the author 
is prone to do. If you still run into trouble, try the verbose version of the command below:

$ ssh -p 10000 -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no -o 
PreferredAuthentications=password -o PubkeyAuthentication=no riscv@192.168.1.44

3.7. Summary
This chapter has been an intense software setup chapter. But having this out of the way 
and the QEMU emulator running RISC-V in 64-bit mode under Linux, MacOS or Windows 
opens many doors for our exploration in the remainder of the book. Fasten your seat belt.
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Chapter 4 • Architecture

 
A CPU is known by its architecture

Before a programmer can program in assembly language, he/she needs to know something 
about the machine's architecture. What registers are available? What flag bits are evaluat-
ed? How is memory accessed? What are the available opcodes? In short, we need to know 
how the machine is organized.

Welcome to the Machine!
The best part of assembly language is the fact that you have full control over "the machine". 
You're not specifying C language code that is indirectly re-interpreted by the compiler into 
the machine's native language. No, you're specifying to the machine exactly what you want 
it to do. But to do that, you need to know about the resources that you have available.

In the following sections, the RISC-V value of XLEN is the number of bits for the corre-
sponding architecture. For the ESP32-C3 for example, XLEN is 32 (for 32 bits). For the 
QEMU emulated RISC-V 64-bit CPU, XLEN is 64 bits. So let's start with the program counter 
register.

4.1. Program Counter Register
Every CPU includes a program counter (PC) register. Unless an instruction is branching, 
this counter increments to form the address of the next instruction to perform. Standard 
RISC-V instructions have a 32-bit word length and must be aligned on 32-bit boundaries. 
There is provision for extending the instruction set to include variable length instructions 
based upon parcels of half-words (16-bits), which then must be half-word aligned. This 
allows for compressed instructions.

4.2. Endianness
The RISC-V memory architecture is little endian based and is byte addressable. Little endi-
an means that a word (of 4 bytes) orders the bytes with least significant bytes first (lowest 
addressable unit). The last (highest addressed) byte of the word is the most significant 
byte. Figure 4.1 illustrates two 32-bit words with byte addresses and their word values at 
right.
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Byte
Adress

Byte
Adress

0     1    2     3

32-bit word 32-bit value

1 2 3 4 5 6 7 8

4     5    6     7

9 A B C D E F 0

78563412

F0DEBC9A

(all numbers are hexidecimal)

➔

➔

Figure 4.1: RISC-V Byte Order (Little Endian). All numbers expressed in hexadecimal.

Given that the word length is 4 bytes, a normal instruction word fetch will increment the 
program counter by 4.  For compressed instructions consisting of 2-byte parcels an instruc-
tion fetch will increment the program counter by some multiple of 2, depending upon the 
instruction's length.

4.3. General Purpose Registers
Most Central Processing Units (CPU) designs today include one or more operation registers. 
The operations occur between registers or between registers and memory. Registers are 
similar to memory words except that they are instantly available to the CPU and fast. Mem-
ory fetches or stores by contrast require more time to complete.

The width of the register is defined by constant XLEN in the given architecture. So, reg-
isters are 32-bits wide for the ESP32-C3 where XLEN=32. Registers are 64-bits wide for 
the QEMU emulated CPU where XLEN=64. For most architectural subsets (discussed in the 
next section) have 32 general purpose registers available. These are known as registers 
X0 through X31. We shall see that they can also be referred to by different names and that 
register X0 has a special talent.

4.4. Introducing Subsets
The RISC-V design breaks the architecture design into subsets with names like RV32I. 
Subsets allow manufacturers to implement only the portion of the architecture that they 
need, while leaving out other aspects of the design. An small embedded processor, for ex-
ample, may implement the minimal RISC-V design to reduce component complexity, power 
consumption and overall cost. Alternatively, a general-purpose server design for Linux may 
implement most or all of the defined architecture subsets for maximum flexibility.

The most basic architectural subset is RV32I. This defines the most basic opcodes, register 
set and memory operations as a "base architecture". The "32" indicates that the architec-
tural width, is 32 bits (XLEN=32). So, in RV32I we know that the register size is 32 bits 
wide.
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A minimal RISC-V 64-bit implementation is defined as the RV64I subset. This expands upon 
RV32I by widening the registers to 64 bits (XLEN=64). A few additional operations are add-
ed to allow for loading and storing of 64-bit register values.

There also exists the RV32E subset for use in embedded processors where minimum cost 
and low power are the focus. In this unusual subset, with the number of registers reduced 
to 16 but keeping with the register width of 32 bits (XLEN=32). The reasoning for this sub-
set is explained in [1]:

We have found that in the small RV32I core designs, the upper 16 registers consume 
around one quarter of the total area of the core excluding memories, thus their removal 
saves around 25% core area with a corresponding core power reduction.

There are other basic subsets such as the RV128I, which widens XLEN to 128. But we'll 
focus mainly on RV32I and RV64I in this book. It is easiest to learn when the abstract is 
replaced with the concrete.

There are other capabilities described by RISC-V such as RV32M for example, which defines 
the operations necessary for integer multiply and divide. RV32C describes the provision for 
compressed instruction opcodes, allowing for greater code density. The ESP32-C3 device 
implements RV32IMC, which indicates that the basic subset RV32I, multiply and divide 
RV32M and compressed opcodes RV32C subsets are supported (XLEN=32). We'll review 
the features of the QEMU 64-bit CPU later in this book.

4.5. Register Specifics
There are 32 basic registers provided by RV32I and RV64I. These are known by symbolic 
names x0 to x31. Because of the number of registers involved and their varied usage, the 
Application Binary Interface (ABI) names are preferred instead. For example, register a0 is 
often used as the first calling argument or return value rather than x10. The code used in 
this book will prefer the ABI register names shown in Table 4.1. The usage described in that 
table are according to the GNU compiler convention for RISC-V.
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Register ABI Name Description Saver

x0 zero Hardwired to return zero -

x1 ra Return Address Caller

x2 sp Stack Pointer Callee

x3 gp Global Pointer -

x4 tp Thread Pointer -

x5-x7 t0-t2 Temporary Registers Caller

x8 s0/fp Saved register / Frame Pointer Callee

x9 s1 Saved Register Callee

x10-x11 a0-a1 Function arguments / return value Caller

x12-x17 a2-a7 Function arguments (continued) Caller

x18-x27 s2-s11 Saved registers Callee

x28-x31 t3-t6 Temporary registers Caller

Table 4.1: RISC-V Basic Registers, of XLEN bits.

The register x0 (zero) is special to RISC-V in that it always returns the value zero when 
used as a source register or discards a value when it is used as a destination. This permits 
some creativity in the opcode's effect. It is specified as x0 or simply as zero.

The remainder of registers, from x1 to x32 are each XLEN bits wide and can be used as 
source or destination. Each register has an ABI name assigned to make it easier to write 
code that uses the registers in a consistent way. For example, there are temporary registers 
that are named t0 through t6.

The rightmost column of Table 4.1 indicates who saves the register when saving is required, 
according to the GNU calling convention. Either the calling code (caller) or the called code 
(callee) must save the register, if it is modified. Registers marked with "-" like registers gp 
or tp, have no requirement for being preserved. The description field indicates how these 
registers are typically used.

4.5.1. No Flag Bits
One unique characteristic of the RISC-V architecture is that it does not define a status reg-
ister containing any "flag bits". Many architectures like Intel, define a Z (zero), C (carry) 
and other flag bits that are updated during the execution of some opcodes. The benefit 
of flag bits is that a ready computed state is made available. But a disadvantage is that 
flag bits (in a status register) must be saved and restored when interrupts occur or across 
function calls. The RISC-V designers have decided that flag bits are a complication to be 
avoided. Some RISC-V instructions do, however, store a flag bit in the destination register 
when it is needed.

You might wonder how to handle multi-precision unsigned integers without a Carry flag bit, 
for example. This and similar problems will be solved later in this book.
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4.5.2. Register x0 / Zero
The x0 or zero register is special in RISC-V. When used as a source register, it always sup-
plies a binary value of zero. When used as a destination register, it discards the result. This 
is a hard-wired feature of the CPU and cannot be changed. This special talent of x0 will 
frequently allow creativity in the computed results.

4.5.3. Register x1 / ra
The x1 or ra register is traditionally used as the return address register. This is by GNU 
calling convention and is not hard-wired. When a function is called, traditionally the return 
address is put into register ra. There are opcodes used by the calling code that arrange this.

4.5.4. Register x2 / sp
According to the GNU calling convention, the x2 or sp register is used as the stack pointer. 
This is by convention only. The code that is called (callee) is responsible for establishing 
this value. The called code normally adds a value to the current stack pointer to adjust the 
stack.

4.5.5. Register x3 / gp
According to the GNU calling convention for RISC-V, this register serves as a global pointer. 
This is by convention only. The use of this value may vary according to the platform.

4.5.6. Register x4 / tp
By GNU convention, this register is used for thread local storage access. The establishment 
of this value may vary by the platform supported.

4.5.7. Registers x5-x7 / t0-t2
These are temporary registers. When calling other functions and subroutines, the caller is 
responsible for saving these values if they need to be preserved across the call.

4.5.8. Register x8 / s0 / fp
The x8 register, has two basic purposes: s0 is the first saved register value, while fp rep-
resents a stack frame pointer. This value must be saved and restored by the called (callee) 
code if the register value is modified.

4.5.9. Register x9 / s1
Register x9 or s1, is similar to register s0. It is a second saved register value. The called 
(callee) code must save and restore this value when it is modified.

4.5.10. Registers x10-x11 / a0-a1
When a function call has an argument, the first argument goes into register x10 / a0. For 
RV32 (RISC-V 32-bit) this means that arguments up to the size of 32-bits are placed into 
a0. A 64-bit argument would have the least significant 32 bits placed in a0, while the most 
significant 32 bits get placed into a1. For RV64, where the register width is 64-bits, the first 
argument goes into entirely into register a0 (argument sizes of up to 64-bits) and the next 
argument into a1. This applies to integers and pointers. When there is no hardware floating 
point (i.e. soft-float), this also applies to floating point values according to their size.
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4.5.11. Registers x12-x17 / a2-a7
Additional arguments are passed in registers a2 to a7, depending upon their size like reg-
isters a0 and a1.

4.5.12. Registers x17-x27 / s2-s11
These registers must be preserved by the called function (callee) if the register's content is 
modified in any way. These registers can be used for various purposes.

4.5.13. Registers x28-x31 / t3-t6
Additional temporary registers t3 through t6 are available for temporary use. The caller is 
responsible for saving these registers if the values must be preserved through a function 
call.

4.5.14. Register Summary
With the names and functions of each register out of the way, it might seem to the read-
er that they must be used in a rather rigid scheme. For RISC-V, the only register with a 
hardwired talent is register x0. It can supply zero or discard a value. All other registers are 
general purpose and used as described only by convention. In other words, all remaining 
registers can be used any way you choose. However, using the GNU calling convention 
makes for safer, consistent and readable code.

4.6. Instruction Set Base Subsets/Extensions
RISC-V defines several instruction subsets and extensions. The most basic set of base 
instructions is the "I" Base Integer subset. This defines the most basic integer-type op-
erations that a programmer must have. Two examples include the RV32I (XLEN=32) and 
RV64I (XLEN=64) subsets. The instructions are normally fixed in size at 32-bits. The in-
struction formats are described by the document "Volume I: RISC-V User-Level ISA V2.2". 
There is, however, provision for extending that format with the "C" extension to allow com-
pressed instructions in 16-bit half words. This can apply to RV32, RV64 and RV128 ISA's, 
and thus that extension is often referred to as "RVC".

The Espressif ESP32-C3 device, for example supports the RV32IMC ISA. This indicates 
that the base integer subset "I", and the "C" compressed extensions apply. The "M" in the 
RC32IMC indicates that the "M" extension is also supported, providing hardware multiply 
and divide instructions. The "32" by way of review means that the registers are 32-bits 
wide (XLEN=32).

There is another subset designated as the RV32E, intended for small embedded systems. 
This is a reduced version of RV32I so that instead of 32 registers, only the first 16 registers 
are available. This reduces the number of transistors required and also reduces the power 
requirements. In chapter 3 of "The RISC-V Instruction Set Manual", it is stated that:
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RV32E was designed to provide an even smaller base core for embedded microcontrol-
lers. ... However, given the demand for the smallest possible 32-bit microcontroller, and 
in the interests of preempting fragmentation in this space, we have now defined RV32E 
as a fourth standard base ISA in addition to RV32I, RV64I, and RV128I. The E variant is 
only standardized for the 32-bit address space width.

They also warn that:

This change requires a different calling convention and ABI. In particular, RV32E is only 
used with a soft-float calling convention. Systems with hardware floating-point must use 
an I base.

Table 4.2 provides a list of most of the RISC-V base subsets and extensions. This list is 
incomplete because some standards are still evolving.

Base

RV32I Base Integer Instruction Set, 32-bit

RV32E Base Integer Instruction Set (embedded), 32-bit, 16 registers

RV64I Base Integer Instruction Set, 64-bit

RV128I Base Integer Instruction Set, 128-bit

Extension

M Standard Extension for Integer Multiplication and Division

A Standard Extension for Atomic Instructions

F Standard Extension for Single-Precision Floating-Point

D Standard Extension for Double-Precision Floating-Point

G
Shorthand for the IMAFDZicsr Zifencei base and extensions, intended 
to represent a standard general-purpose ISA

Q Standard Extension for Quad-Precision Floating-Point

L Standard Extension for Decimal Floating-Point

C Standard Extension for Compressed Instructions

B Standard Extension for Bit Manipulation

J Standard Extension for Dynamically Translated Languages

T Standard Extension for Transactional Memory

P Standard Extension for Packed-SIMD Instructions

V Standard Extension for Vector Operations

K Standard Extension for Scalar Cryptography

N Standard Extension for User-Level Interrupts

H Standard Extension for Hypervisor

S Standard Extension for Supervisor-level Instructions

Table 4.2: Partial list of base subsets and extensions of the RISC-V ISA.
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4.7. ESP32-C3 Hardware:
Focusing on the CPU resource, Espressif states that the ESP32-C3 device supports the 
RV32IMC ISA. Therefore, the following base and extensions are supported:

• I - Base Integer Instruction Set, 32-bit
• M - Standard Extension for Integer Multiplication and Division
• C - Standard Extension for Compressed Instructions

4.8. QEMU RISC-V 64 Bit Emulator
What base and extensions are supported by the QEMU emulator installed in the last chap-
ter? When you boot Fedora Linux under the emulator, you can discover the level of support 
by listing the special kernel file /proc/cpuinfo:

[root@fedora-riscv ~]# cat /proc/cpuinfo
processor : 0
hart  : 0
isa  : rv64imafdcsu
mmu  : sv48

processor : 1
hart  : 1
isa  : rv64imafdcsu
mmu  : sv48

processor : 2
hart  : 2
isa  : rv64imafdcsu
mmu  : sv48

processor : 3
hart  : 3
isa  : rv64imafdcsu
mmu  : sv48

From this list, it is apparent that the following RISC-V base and extensions are supported:

• I - Base Integer Instruction Set, 64-bit
• M - Standard Extension for Integer Multiplication and Division
• A - Standard Extension for Atomic Instructions
• F - Standard Extension for Single-Precision Floating-Point
• D - Standard Extension for Double-Precision Floating-Point
• C - Standard Extension for Compressed Instructions
• S - Standard Extension for Supervisor-level Instructions
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Finally, the "u" that is listed just means that "user mode" (vs "supervisor mode") is sup-
ported. The "S" extension is necessary for Unix/Linux/*BSD systems that protect inde-
pendent processes from corrupting each other's memory.

The A extension is important to multi-threaded applications where it is necessary to read/
update memory from multiple threads (CPU cores) in a safe manner. If you have full hard-
ware support for floating point calculations, then you want both of the "F" and "D" exten-
sions.

 4.9. RISC-V Privilege Levels
The RISC-V specification identifies four classes of privilege levels for a CPU, which are listed 
in Table 4.3. The most basic of these privilege modes is the "m" for machine mode. This is 
what is used on the ESP32-C3 device, where all executing code has full access to the "ma-
chine". Machine mode is the only mandatory privilege mode for RISC-V implementations. 
This mode is normally used on embedded systems with unrestricted access to all resources. 
Some implementations may also support "u" mode in addition to "m" to provide a secured 
embedded solution.

The "m", "s" and "u" modes together will be used by hardware (and emulators) that sup-
port Unix/Linux/*BSD type systems. The supervisor mode separates the execution of spe-
cialized kernel code (mode "s") from the unprivileged user code ("u" mode). This protects 
one process from another and provides strict access to shared resources like memory and 
peripherals.

The column labeled MISA in Table 4.3 refers to a special register with bits that define the 
ISA and extensions supported.

ID Mode MISA

m machine

s supervisor Bit: 18, 0x00040000

u user Bit: 20, 0x00100000

d debug

Table 4.3: RISC-V Privilege Levels.

What does all of this mean for you? On the ESP32-C3, you will strictly operate in machine 
mode. Whatever is supported by that hardware will be open to you to use and abuse. Thus 
for the ESP32-C3, for example, you will be able to inquire of the MISA special register to 
determine the level of support available, among other things.

Under Fedora Linux using the QEMU emulator, however, you will be running code in the 
"u" user mode. This means that your code will be restricted in what it can do, including 
the reading of the MISA register. If you try to read the MISA register, your code will fail. 
To determine the level of support available, you must rely on the Linux kernel's special file 
/proc/cpuinfo.
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4.10. RISC-V is Huge
There has been an incredible amount of effort put into the RISC-V specification and it con-
tinues to evolve. For this reason, we will be focusing on writing assembly language code 
for the machine and user modes for this book. This will keep the level of detail to an easi-
ly-managed tutorial.

4.11. Summary
By this point in this chapter, I hope you are chomping at the bit to do some assembly-level 
code. With the basics of RISC-V out of the way, you are ready to write some code. So, let's 
get started!

Bibliography
[1]  The RISC-V Instruction Set Manual.  

https://riscv.org/wp-content/uploads/2019/06/riscv-spec.pdf.
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Chapter 5 • Getting Started

At the starting line

You've been introduced to the RISC-V ISA. You've installed the software. Now it is time to 
play! So let's get started with assembly language programming. To do that, we'll embark 
on a very small but digestible project. This will introduce several concepts without too much 
detail. When you complete this chapter, you will be ready to take on more advanced topics 
in assembly language programming.

5.1. Memory Models & Data Types
To begin our first assembler project, let's first discuss the different memory models used in 
our two RISC-V platforms. Recall that we're working with:

• ESP32-C3 device, which is an RV32 (32-bit) device
• qemu-system-riscv64 (QEMU), a 64-bit emulator for RV64

For the remainder of this book, I will simply use QEMU to refer to the qemu-system-riscv64 
emulator. Now let's examine how the memory models differ between these two machine 
architectures in C language terms.

5.1.1. RV32 Model
If we were to write a short program to print out the C data type sizes in the RV32 model, 
we would get the following information:

sizeof(int) = 4
sizeof(long) = 4
sizeof(long long) = 8
sizeof(void*) = 4

These sizes are in bytes. We could summarize that the int, long integers and pointers 
share the same bit width of 32-bits (4 bytes). This fits the RV32I architecture where the 
registers are 32-bits in width. C programmers might be more familiar with the equivalent 
ILP32 model, which originates from the Solaris C language data model (Integers, Long and 
Pointers are 32-bits). While we didn't report it above, the sizeof(short) is 16-bits and the 
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character (byte) is 8-bits in size. The C/C++ compiler will also support the long long data 
type but multi-precision arithmetic is used on 32-bit platforms to achieve it.

5.1.2. RV64 Model
QEMU is fun to experiment with because it uses the RV64 architecture, which is a superset 
of RV32. The registers in this architecture are widened to 64-bits. When we use the same C 
program in QEMU to report the data type sizes, we would obtain the following:

sizeof(int)   = 4
sizeof(long)  = 8
sizeof(long long) = 8
sizeof(void*) = 8

In other words, long integers and pointers are 64 bits wide (8 bytes), while sizeof(int) 
remains at 32 bits. This is equivalent to the LP64 Solaris model (Long and Pointers are 64-
bit, while Integers are assumed to be 32 bits). Again, the sizeof(short) is 16 bits and the 
character 8 bits as before. The long long integer data type is also 64 bits, as it was for RV32 
(or ILP32). However, the RV64 platform can naturally compute in 64 bits. Clint Eastwood 
in the movie Dirty Harry says that "a man's gotta know his limitations". Now that we are 
familiar with the two memory models, we know our data type limitations.

Table 5.1 summarizes the data type characteristics for the two different RISC-V profiles 
that we'll use.

C Type ILP32 / RV32 (Bits) LP64 / RV64 (Bits)

char 8 8

short 16 16

int 32 32

long 32 64

long long 64 64

pointer 32 64

Table 5.1: Memory Models.

5.2. The Impact of XLEN
Since we will be programming for both platforms, it is important to keep in mind how this 
impacts your code. It is critical when programming in assembler language because, unlike 
the C compiler, the assembler is not going to do automatic conversions between the two 
memory models.

While the register widths differ in these two models, the instruction set remains largely 
the same. When a 32-bit value is loaded into a 64-bit register, the value is automatical-
ly sign-extended into the 64-bit register. When the same register is stored into a 32-bit 
memory location, only the low order 32-bits are saved. In other words, the main impact of 
different register sizes will occur in the loading from and storing to memory. To accomplish 
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64-bit loads and stores, additional opcodes were added to RV64I. For now, just be aware of 
this and keep it in the back of your mind.

5.3. First Exercise
The work to be accomplished by this first exercise is trivial. We're going to simply add three 
32-bit integer numbers in assembly language. This is something routinely performed in C/
C++ but we're going to do this in assembly language to learn the ropes. This will bring 
together some concepts for calling assembler subroutines from C/C++.

5.3.1. The Main Program
Using the familiar C main program, an assembler program will be called upon to perform 
the actual addition. This will demonstrate three things:

• How to call an assembler function, instead of a C function.
• How to pass integer argument values to the assembler routine.
• How to return an integer result.

The main program is written as if it were calling another C function. The C compiler doesn't 
even know that the function add3() in this example is written in assembler language. The 
main program for this example is illustrated in Listing 5.1 and will be run from Fedora Linux 
under QEMU. Throughout this book, I'll use line numbers at the left of each listing for ease 
of reference. They are not part of the source file.

     1 // main.c
     2 
     3 #include <stdio.h>
     4 
     5 extern int add3(int arg1,int arg2,int arg3);
     6 
     7 int
     8 main(int argc,char **argv) {
     9  int a=23, b=24, c=25;
    10  int r = 0;
    11 
    12  r = add3(a,b,c);
    13  printf("r = %d\n",r);
    14  return 0;
    15 }

Listing 5.1: Program ~/riscv/repo/05/add3/qemu64/main.c.

RISC-V Assembly Language Programming - UK.indd   63RISC-V Assembly Language Programming - UK.indd   63 04/10/2022   11:0204/10/2022   11:02



RISC-V Assembly Language Programming

● 64

Let's cover the highlights of the program:

• Line 3 is used to bring in support for the printf() function used in line 13.

• Line 5 is a declaration of our assembler subroutine, but in C language terms, 
where:

 - The function's (symbol) name is add3. The function is expecting three 
integer arguments of type int. The function will return an integer value.

 - The extern keyword informs the C compiler that the function add3 is 
external to the current source file.

• Line 9 declares three integers a, b and c and initializes them with values.

• The function add3 is invoked in line 12, with the result assigned to the variable 
r (declared in line 10).

• Line 13 reports the sum returned in r. And finally, line 14 just returns an exit 
code that Linux expects from the main program.

Keep in mind that the data type int is 32 bits in size. This applies to variables a, b, c and r.

5.3.2. Assembler Routine add3
The assembler routine is found in file ~/riscv/repo/05/add3/qemu64/add3.S, which is 
illustrated in Listing 5.2.

     1  .global add3
     2  .text
     3 add3: add  a0,a0,a1 # a0 = a0 + a1
     4  add  a0,a0,a2 # a0 = a0 + a2
     5  ret    # return value in a0

Listing 5.2: File ~/riscv/repo/05/ADD3/qemu64/add3.S.

Now that you've seen the assembly language source file, let's discuss the general format 
used.

5.3.3. Assembly Language Format
The assembly language source file follows a general convention. Each source line consists 
of four fields, where fields 1, 3 and 4 are optional. All lines, except for comment only lines 
must contain an opcode or pseudo-op.

Field1 Field2  Field3  Field4
label: opcode  operands # comments...
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Labels are optional but when used, start in the first column, followed by a colon. The label 
"add3:" is an example of a label found in line 3 of Listing 5.2.

The second field is the operation code (opcode), which can be an actual instruction opcode 
like "add" (see lines 3 and 4) or a pseudo operation like .global or .text. Pseudo opcodes 
influence the working of the assembler as it progresses from the start of the source file to 
its end.

Many opcodes require operands. These are listed in the third field and have subfields sep-
arated by commas.

Optionally, a fourth field starting with '#' marks the start of a comment on the line. A '#' 
in the first column indicates that the entire line is a comment. These lines are ignored by 
the assembler.

While the above represents the general convention for an assembler source line, GNU's 
assembler is somewhat forgiving. For example, you could have spaces preceding the label 
or spaces between the label and the colon character. I have used tab characters to separate 
the fields, but you can use spaces instead.

5.3.4. Pseudo Opcode .global
In Listing 5.2, line 1 indicates that there is a global symbol reference by the name of "add3". 
The GNU assembler also accepts the pseudo opcode .globl for historical reasons. This in-
struction to the assembler is important because it indicates that the symbol "add3" will be 
made known to the linker as an external symbol. The linker will link the main program's 
reference to add3 to a symbol defined in this assembly source file. The symbol add3 itself 
is defined by the label in line 3. That line defines the starting address for the add3 function.

If the assembler source file was to call a function like printf() for example, the symbol printf 
should also be listed as a .global (there will be examples of this later in the book). Refer-
ences and defined symbols can be listed in the .global operands field. Multiple symbols can 
be given on one line, for example:

 .global add3, printf

By default, all undefined symbols are assumed by the assembler to be external. However, it 
is best practice to list all global symbols defined or referenced in the program. As a result, 
it is easier to distinguish between an error of omission and an actual external symbol. This 
becomes critical in larger projects.

5.3.5. Pseudo Opcode .text
Line 2 of the assembler listing uses the .text pseudo code to indicate that the following 
code belongs to an object code section named ".text". This is the section normally used for 
executable code. The linker uses sections to group code and data into memory regions. An 
alternative way to indicate this is to use the .section pseudo code:
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 .section .text

The .text section is assumed by default at the start of the assembly, but it is best to be 
specific. If nothing else, it helps the reader of your code know where the instructions are 
going to be assembled.

5.3.6. The add Opcode
Lines 3 and 4 of the listing use the RISC-V opcode add. This is an actual RISC-V instruction, 
which has three register operands: a destination register, followed by two source registers:

add3: add a0,a0,a1

The label "add3" is defined as a global symbol because it was listed as a .global reference. 
The RISC-V instruction set architecture consists mainly of register-to-register and register 
load/store operations. The "add" instruction is a register-to-register operation that has 
three operands. Two registers are source registers (shown underlined) and one destination 
register. With the shown add instruction, register a0 is added to a1 with the result replacing 
the contents of register a0.

5.3.7. Calling add3
The C language compiler will arrange the call to our routine add3 (review main.c line 12), 
with three arguments to be loaded:

1. Argument one is loaded into register a0 (x10).
2. Argument two is loaded into register a1 (x11).
3. Argument three is loaded into register a2 (x12).

In this RV64I code, the int variables are still 32-bits in size (review Table 5.1). However, 
as these values are loaded into 64-bit registers, the values are sign extended to 64 bits.

The C language compiler will expect the 32-bit integer result to be returned in register a0 
(x10).

Note: Throughout this book, the friendly (ABI) register names are used. For example, 
we will refer to the register a0 instead of x10. Either is legal in the source code but the 
friendly names are easier to work with. It is also kinder to the reader.

In line 3 (Listing 5.2), the value of the first argument arrives in register a0, with the second 
argument in a1. These two registers are added together, and the result replaces the value 
in a0. In C language terms, it amounts to:

 a0 += a1;

Line 4 repeats the "add" instruction but this time referencing the third argument in register 
a2:
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 add  a0,a0,a2

This time the result of a0 + a2 replaces a0. In C language terms, the pair of instructions 
can be summarized as:

 a0 += a1;
 a0 += a2;

The calculated result is left in register a0 prior to the return to main. The opcode "ret" in line 
5 causes the assembler routine to return to the caller. This works because the caller's re-
turn address has been placed in register ra (or x1 – think "return address") when our add3 
routine was called. The ret instruction will be examined in more detail later in the book.

5.3.8. RV64I Consideration
While we declared the arguments and the return value as int type (32-bits) in the C pro-
gram, everything works as expected, even for 64-bit RISC-V. This is because when the 
32-bit values were loaded into registers a0, a1 and a2 by the calling C program, they were 
automatically sign extended to 64 bits to match the register size. The additions were also 
performed as 64-bit integers. While there is a 64-bit result produced in a0, the return value 
will be taken from the lowest 32-bits because the C program is expecting a 32-bit integer 
result.

5.3.9. Running the Demonstration
To run the demonstration (in QEMU), we must compile it first. Logged into your QEMU in-
stance of Fedora Linux (see chapter 3 about running QEMU), compile this demonstration 
using the following command line:

$ cd ~/riscv/repo/05/add3/qemu64
$ gcc -O0 -g main.c add3.S
$ ls -l a.out
-rwxrwxr-x. 1 riscv riscv 13560 Apr 19 21:13 a.out

The compiled result is in file a.out, which can now be executed. Option -O0 (dash capital oh 
zero) should be used to prevent any compiler optimization. Compilers today are very good 
at optimizing and might precompute the result without even calling the assembler routine 
at all. So we disable optimization to prevent that. The -g option is optional here, but I en-
courage you to use it in case you want to step through the code using a debugger like gdb. 
We'll make use of the debugger later.

The C compiler will compile main.c as a C program and add3.S as an assembler source 
module. After those successfully produce object modules, they are linked into a final exe-
cutable named a.out. To execute our program under Linux use:

$ ./a.out
r = 72
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This is the correct reported value for the sum.

Note: It is also possible to place assembly language into file add3.s (lowercase 's') but 
this causes the assembly to proceed without the benefit of the C preprocessor. Later in 
this book, we will want to use the macro capabilities of the preprocessor to make the 
assembly code portable. It is, therefore, recommended that you get used to using the 
capitalized suffix .S instead.

At this point, you can shut down your Fedora Linux instance (QEMU). We're now going to 
exercise the same code on the ESP32-C3 device.

5.4. First Exercise on ESP32-C3
In this exercise, we're going to apply the same exercise to the ESP32-C3. Recall that this 
device is a 32-bit platform. Use a separate terminal window because you'll need to initialize 
your ESP32 IDF to use the code specific to that MCU. Change to the subdirectory 05/add3. 
The ESP32 source files are located in subdirectory ./main but remain at this level for the 
build.

Note: Linux and MacOS users will want to initialize their ESP-IDF in a new terminal win-
dow with the alias established in chapter 2, or to do so manually as follows:

     $ . ~/espc3/esp-idf/export.sh

Windows users can start a session just by double-clicking their ESP-IDF 4.4 CMD icon.

The ESP32 main program is somewhat different than what is used on Linux. Listing 5.3 
illustrates:

     1 #include <stdio.h>
     2 
     3 extern int add3(int one,int two,int three);
     4 
     5 void
     6 app_main(void) {
     7  int a=23, b=24, c=25;
     8  int r = 0;
     9  
    10  r = add3(a,b,c);
    11  printf("r = %d\n",r);
    12 }

Listing 5.3: ESP32-C3 main program ~/riscv/repo/05/add3/main/main.c.

The main difference for ESP32 is that the main program is named app_main, taking no 
arguments and returning no value. The assembler file ~/riscv/repo/05/add3/main/add3.S 
is otherwise identical to the file used for QEMU before.
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It's always a good idea to start with a clean slate, so let's clean the project directory using 
the ESP-IDF:

$ cd ~/riscv/repo/05/add3
$ idf.py fullclean
Executing action: fullclean
Done

This guarantees that any partially built objects from experiments and failed compiles are 
removed so that your build will be done from scratch.

Now build your ESP32-C3 version of the add3 program. The first time you build after a 
fullclean, it can take a long time. But later builds will be swifter due to cached compiles:

$ idf.py build
Executing action: all (aliases: build)
Running cmake in directory /Users/ve3wwg/riscv/repo/05/add3/build
Executing "cmake -G Ninja -DPYTHON_DEPS_CHECKED=1 -DESP_PLATFORM=1 -DIDF_
TARGET=esp32c3 -DCCACHE_ENABLE=0 /Users/ve3wwg/riscv/repo/05/add3"...
...
Executing "ninja all"...
[10/955] Generating ../../partition_table/partition-table.bin
Partition table binary generated. Contents:
*******************************************************************************
# ESP-IDF Partition Table
# Name, Type, SubType, Offset, Size, Flags
nvs,data,nvs,0x9000,24K,
phy_init,data,phy,0xf000,4K,
factory,app,factory,0x10000,1M,
*******************************************************************************
[502/955] Performing configure step for 'bootloader'
...
Bootloader binary size 0x4500 bytes. 0x3b00 bytes (86%) free.
[954/955] Generating binary image from built executable
esptool.py v3.2-dev
Merged 1 ELF section
...

Project build complete. To flash, run this command:
/Users/ve3wwg/.espressif/python_env/idf4.4_py3.9_env/bin/python ../../../../
esp32c3/esp-idf/components/esptool_py/esptool/esptool.py -p (PORT) -b 460800 
--before default_reset --after hard_reset --chip esp32c3  write_flash --flash_
mode dio --flash_size detect --flash_freq 80m 0x0 build/bootloader/bootloader.bin 
0x8000 build/partition_table/partition-table.bin 0x10000 build/add3.bin
or run 'idf.py -p (PORT) flash'
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Now flash the device and monitor its output. In the example below, your path for the device 
will likely differ from the path /dev/cu.usbserial-1430 shown (underlined). Windows users 
will specify a COM port instead.

idf.py -p /dev/cu.usbserial-1430 flash monitor
Executing action: flash
...
Hash of data verified.

Leaving...
Hard resetting via RTS pin...
Executing action: monitor
Running idf_monitor in directory /Users/ve3wwg/riscv/repo/05/add3
...
ESP-ROM:esp32c3-api1-20210207
Build:Feb  7 2021
rst:0x1 (POWERON),boot:0xc (SPI_FAST_FLASH_BOOT)
SPIWP:0xee
mode:DIO, clock div:1
load:0x3fcd6100,len:0x15cc
load:0x403ce000,len:0x8ec
load:0x403d0000,len:0x25e8
entry 0x403ce000
I (30) boot: ESP-IDF v4.4-dev-2359-g58022f8599 2nd stage bootloader
I (30) boot: compile time 16:00:41
I (30) boot: chip revision: 3
...
I (256) cpu_start: Starting scheduler.
R = 72

When the program exits app_main, it just stalls within the ESP32 framework. Press Con-
trol-] (Control right square bracket) to exit the monitor process. Notice that the sum is 
reported correctly as 72. Congratulations, you have executed your first RISC-V instructions 
on the ESP32-C3!

Figures 5.1 and 5.2 illustrate a typical dev board PCB offering that includes a tiny OLED 
display purchased from AliExpress.
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Figure 5.1: An ESP32-C3 device that includes an OLED (bottom side).

Figure 5.2: The topside of ESP32-C3 with OLED.
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5.5. Assembler Listings
It might be an old-school thing, but I like to examine assembler language listings. There 
was a time when programmers printed assembler listings out and sat at a desk to check 
them. This practice has long fallen out of favour since computer time is now cheap, and tree 
huggers protest. Nevertheless, let's explore the assembler language listing for nuggets of 
useful information to view on a monitor.

5.5.1. ESP32-C3 Assembler Listing
Unfortunately, the way the listing is produced depends upon your environment. So, let's 
first examine a listing for the ESP32-C3 device using the provided script. Listing 5.4 illus-
trates how to generate a listing for the add3.S program in Linux/MacOS. Windows users will 
use the batch file C:\riscv\repo\listesp.bat instead.

$ cd ~/riscv/repo/05/add3
$ ~/riscv/repo/listesp main/add3.S
GAS LISTING /var/folders/jp/_ktfnf412kvbdznr4m9769tr0000gn/T//cc8FupVj.s   
 page 1

   1               # 1 "main/add3.S"
   1                .global add3
   0               
   0               
   2                .text
   3 0000 2E95      add3: add a0,a0,a1 # a0 = a0 + a1
   4 0002 3295       add a0,a0,a2 # a0 = a0 + a2
   5 0004 8280       ret   # return value in a0

GAS LISTING /var/folders/jp/_ktfnf412kvbdznr4m9769tr0000gn/T//cc8FupVj.s   
 page 2

DEFINED SYMBOLS
         main/add3.S:3      .text:0000000000000000 add3

NO UNDEFINED SYMBOLS

Listing 5.4: Assembler Listing of add3.S.

The invoked script merely invokes gcc to produce an assembler listing using:

gcc -c -Wa,-a,-ad $*

The option -Wa indicates the further options are to be passed to the assembler, providing 
assembler options -a (high-level listing) and -ad (drop debug information from the listing). 
The $* is replaced with the name of the assembler source file.
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The source line number is reported at the extreme left of the listing. These are useful ref-
erences for error and informational messages. Lines starting with zero have no source file 
line.

The first listing line shows "# 1 "main/add3.S", indicating the source file that was assem-
bled. Opcodes and pseudo-ops are shown in the center of each line. Line 3 shows the first 
assembled line of code:

3 0000 2E95      add3: add a0,a0,a1 # a0 = a0 + a1
4 0002 3295       add a0,a0,a2 # a0 = a0 + a2

The four hex digits after the line number indicate the relative address of the assembled 
instruction. Notice how line 4 shows the relative address 0002, indicating that the add in-
struction in line 3 was only two bytes in length. Recall that the ESP32-C3 supports RV32IMC, 
with the "C" indicating support for compressed instructions of 16 bits instead of 32. We'll 
revisit this idea shortly.

The next four hex digits show the assembled instruction. For example, line 4 shows the in-
struction as 3295 in hexadecimal. In some cases, as we will see, the instruction length may 
be longer. There will also be times that the assembler will truncate what is shown there, 
because of the limits of the line length. In some cases, the assembler will show a temporary 
instruction code because of relocation performed by the linker.

The assembler listing will also show defined symbols. The following shows that line 3 of 
main/add3.S defines a symbol named add3, which is located in the .text section of mem-
ory. The value of the symbol will be a relative value in the listing since this is adjusted at 
link time by the linker.

DEFINED SYMBOLS
         main/add3.S:3      .text:0000000000000000 add3

The next section will list any undefined symbols, if there are any. It's a good practice to 
quickly scan this looking for symbols that should not be undefined.

NO UNDEFINED SYMBOLS

5.5.2. Influencing Assembly Code
In Listing 5.4, it was shown that the compressed version of the add instructions was assem-
bled because they were only 16 bits in length. The ESP32-C3 device does support RV32IMC 
base and extensions. The "C" indicates that compressed instructions are supported. What 
if we didn't want any compressed instructions to be used? The gcc compiler can be told 
not to:
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Listing 5.5 shows the result of adding -march=rv32im to the listesp script. The option 
-march=rv32im is passed to gcc, which informs the assembler to support only the RV32IM 
base and extension, omitting the "C" extension.

Note: For Fedora Linux, change to ~/riscv/repo/05/add3/qemu64, and then use the 
script at ~/riscv/repo/list.

$ cd ~/riscv/repo/05/add3
$ ~/riscv/repo/listesp -march=rv32im main/add3.S
GAS LISTING /var/folders/jp/_ktfnf412kvbdznr4m9769tr0000gn/T//cct6UCZb.s   
 page 1

   1               # 1 "main/add3.S"
   1                .global add3
   0               
   0               
   2                .text
   3 0000 3305B500  add3: add a0,a0,a1 # a0 = a0 + a1
   4 0004 3305C500   add a0,a0,a2 # a0 = a0 + a2
   5 0008 67800000   ret   # return value in a0

GAS LISTING /var/folders/jp/_ktfnf412kvbdznr4m9769tr0000gn/T//cct6UCZb.s   
 page 2

DEFINED SYMBOLS
         main/add3.S:3      .text:0000000000000000 add3

NO UNDEFINED SYMBOLS

Listing 5.5: Assembler Listing of add3.S, with -march=rv32im.

The following assembly has changed in that listing:

   3 0000  add3:  add a0,a0,a1 # a0 = a0 + a1
   4 0004 3305C500   add a0,a0,a2 # a0 = a0 + a2

Here we see that both add instructions are now 4 bytes in length. The address of the second 
add instruction is now 0004, rather than 0002, since the first instruction is now 3305B500 
in hex. So, no compressed instructions were generated. Even the ret instruction (return) is 
now 4 bytes in length.
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Note: To perform the same listing in Windows, type: 

\riscv\repo\listesp.bat "-march=rv32im" main/add3.S 

Be sure to place the -march=rv32im option in quotes for the batch file processor.

5.4.3. Objdump
Sometimes as a developer, you want to disassemble the contents of a compiled or assem-
bled object file. Other times, you may not have the source file for the object. The objdump 
takes many options, but in the ESP32-C3 environment, we can dump out the generated 
add3.o (this file was generated as part of producing the listing file) as follows:

$ riscv32-esp-elf-objdump -d add3.o

add3.o:     file format elf32-littleriscv

Disassembly of section .text:

00000000 <add3>:
   0: 00b50533           add a0,a0,a1
   4: 00c50533           add a0,a0,a2
   8: 00008067           ret

Here we see that the object file is reverse engineered by the objdump command, in a 
format similar to the listing file (this one used -march=rv32im). We are reminded by the 
output, that the format is little endian by the line:

add3.o:     file format elf32-littleriscv

This is an important thing to remember since RISC-V machines are byte-addressable, and 
the word format is little endian. The objdump command simply lists the bytes 00b50533, 
as the bytes increase in address. The assembler listing displays the word value 3305B500 
instead. But with little endian addressing, byte 00 would be the lowest addressed byte, and 
byte 33 would be placed at the highest of the 4-byte sequence.

Note: For Fedora Linux, use objdump as the command name. In Windows you would use 
the riscv32-esp-elf-objdump command.

5.6. Summary
You've succeeded in assembling RISC-V code for the RV64 and RV32 platforms. You've 
linked your assembly code with a C main program and run it successfully. Knowing the 
organization of the assembly language source file and the optional listing report puts power 
into your hands. Finally, you've experienced the first instance of how the C program calls 
your assembly language code. In the next chapter, we'll examine the instructions needed 
to load from and store to memory.
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Chapter 6 • Load and Store Memory

A pigion hole is like a memory cell.

In the last chapter, we applied the "add" instruction to sum two registers and place the 
result into a third register. This is a register-to-register operation. But how do we get val-
ues into a register and how do we save them back to memory? This chapter examines the 
RISC-V operations used for loading and storing.

6.1. A Word About Word Sizes
The smallest addressable memory unit in RISC-V is the 8-bit byte. Integers, whether short, 
regular, or long are then multiples of bytes. Here's a list of the different word sizes:

• byte (1 byte, 8-bits, smallest addressable memory unit)
• half-word (2 bytes, 16-bits)
• word (4 bytes, 32-bits)
• double word (8 bytes, 64-bits)

Because RV32 is a 32-bit (XLEN-32) platform with 32-bit registers, the ESP32-C3 does 
not have instructions for loading or storing double words. The RV64 ISA (XLEN=64) does, 
however.

6.2. Load Instructions
A value is loaded into memory with the "load" instruction. But when we ask for a value to 
be loaded into a register, we need to specify the following:

• Destination register name (rd)
• The address (usually by assembler symbol)
• The word (unit) size

From this we can list the following basic assembler instructions for loading values:

  lb     rd, symbol  # Load signed byte
  lh   rd, symbol  # Load signed half word
  lw   rd, symbol  # Load signed word
  ld   rd, symbol  # Load signed double word: RV64I only
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6.3. Load Program Example
Now let's demonstrate this. Change to the directory containing the 06/loads example:

$ cd ~/riscv/repo/06/loads

Windows users, use:

C:> cd \riscv\repo\06\loads

The example is illustrated in Listing 6.1, defining four assembler routines: loadb(), loadh(), 
loadw() and loadd(). This source file demonstrates how to provide multiple functions in 
one assembly file. Each of the symbols loadb, loadh, loadw and loadd can be thought of as 
multiple "entry points".

     1   .global loadb,loadh,loadw,loadd
     2 
     3   .text
     4 loadb:   lb a0,byte  # Load a byte
     5   ret
     6 loadh:   lh a0,hword # Load half word
     7   ret
     8 loadw:   lw a0,word  # Load a word
     9   ret
    10 loadd:   lw a0,dword # Load lower word of dword
    11   lw a1,dword+4 # Load upper word of dword
    12   ret   # return value in a0
    13 
    14   .data
    15 byte:  .byte 1
    16 hword:   .half 0xF509
    17 word:  .word 0x0708090A
    18 dword:   .dword 0xCCBBAA99887766

Listing 6.1: The ~/riscv/repo/06/loads/main/loads.S source program.

The functions are defined in C language terms in Listing 6.2. There we see that function 
loadb(), loadh() and loadw() all return a 32-bit integer value. The last function, loadd() will 
return a 64-bit long long integer type, even on the RV32 platform.

#include <stdio.h>

extern int loadb(), loadh(), loadw();
extern long long loadd();

void
app_main(void) {

RISC-V Assembly Language Programming - UK.indd   77RISC-V Assembly Language Programming - UK.indd   77 04/10/2022   11:0204/10/2022   11:02



RISC-V Assembly Language Programming

● 78

 printf("loadb() = %08X\n",loadb());
 printf("loadh() = %08X\n",loadh());
 printf("loadw() = %08X\n",loadw());
 printf("loadd() = %016llX\n",loadd());
}

Listing 6.2: Program ~/riscv/repo/06/loads/main/main.c.

The RISC-V 32-bit integer is always returned in register a0. So line 4 of Listing 6.1 loads a 
byte into the 32-bit register a0 and returns to the caller in line 5. The byte value loaded is 
1 (defined in line 15). The half-word value is defined as the value 0xF509 in line 16. Think 
about what you expect that return value will be in the C program (and hold that thought). 
Finally, the entry point loadw loads the 32-bit integer value defined in line 17.

Notice that in the entry point loadd we had to perform two-word loads. This is because the 
registers are only 32 bits in size for the ESP32-C3, so that the upper half of the double word 
has to be returned in register a1 instead for XLEN=32 platforms.

Build, flash and execute this program on the ESP32-C3. Specify your device port (under-
lined) after the -p option according to the device port that it appears on (or Windows COM 
port).

$ idf.py build
...
$ idf.py -p <<<your-port>>> flash monitor
...
--- idf_monitor on /dev/cu.usbserial-146410 115200 ---
--- Quit: Ctrl+] | Menu: Ctrl+T | Help: Ctrl+T followed by Ctrl+H ---
...
I (256) cpu_start: Starting scheduler.
loadb() = 00000001
loadh() = FFFFF509
loadw() = 0708090A
loadd() = 00CCBBAA99887766
(Type Control-] to exit)

What did you observe by running the program? The loadb() function reported as 00000001 
as expected. So we know that the byte loaded into the 32-bit register as expected. The 
loadh() function however reported FFFFF509 rather than 0000F509 as you might have 
expected. If this surprises you, recall that the values are sign extended to the width of the 
register. Since the high order bit of the half-word was a 1-bit (line 16), that sign bit was 
extended to the full width of the register. Figure 6.1 illustrates the sign extension process. 
Finally function loadw() loaded and returned a 32-bit value just fine.
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0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15

1  1  1  1  0  1  0  1  0  0  0  0  1  0  0  1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1 1 1 1 1 1 1 1 1 1  1  1  1  1  1  1  1  1  1  1  0  1  0  1  0  0  0  0  1  0  0  1 

sign extend

Figure 6.1: Sign extension of a half-word to a 32-bit register.

The loadd() function was designed to return a long long integer which is 64-bits in length. 
Since the registers are only 32-bits in size, the value was returned in the a0 and a1 register 
pair. The low order word in a0, and the high order word in a1.

Let's now examine the assembler listing for the program you just ran:

$ ~/riscv/repo/listesp main/loads.S

Windows users use:

C:> \riscv\repo\listesp.bat main/load.S

   1                    # 1 "main/loads.S"
   1                            .global loadb,loadh,loadw,loadd
   0                    
   0                    
   2                    
   3                            .text
   4 0000 17050000      loadb:  lb      a0,byte         # Load a byte
   4      03050500
   5 0008 8280                  ret
   6 000a 17050000      loadh:  lh      a0,hword        # Load half word
   6      03150500
   7 0012 8280                  ret
   8 0014 17050000      loadw:  lw      a0,word         # Load a word
   8      03250500
   9 001c 8280                  ret
  10 001e 17050000      loadd:  lw      a0,dword        # Load lower word of dword
  10      03250500
  11 0026 97050000              lw      a1,dword+4      # Load upper word of dword
  11      83A50500
  12 002e 8280                  ret                     # return value in a0
  13                    
  14                            .data
  15 0000 01            byte:   .byte   1
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  16 0001 09F5          hword:  .half   0xF509
  17 0003 0A090807      word:   .word   0x0708090A
  18 0007 66778899      dword:  .dword  0xCCBBAA99887766
  18      AABBCC00

DEFINED SYMBOLS
        main/loads.S:4      .text:0000000000000000 loadb
        main/loads.S:6      .text:000000000000000a loadh
        main/loads.S:8      .text:0000000000000014 loadw
        main/loads.S:10     .text:000000000000001e loadd
        main/loads.S:15     .data:0000000000000000 byte
        main/loads.S:16     .data:0000000000000001 hword
        main/loads.S:17     .data:0000000000000003 word
        main/loads.S:18     .data:0000000000000007 dword
        main/loads.S:4      .text:0000000000000000 .L0
        main/loads.S:6      .text:000000000000000a .L0
        main/loads.S:8      .text:0000000000000014 .L0
        main/loads.S:10     .text:000000000000001e .L0
        main/loads.S:11     .text:0000000000000026 .L0

NO UNDEFINED SYMBOLS

Listing 6.3: Listing for ~/riscv/repo/06/main/loads.S.

Notice the addresses shown left of the .byte, .half etc. data definitions. They increase start-
ing from zero because they assemble in their own .data section (not .text, which is normally 
reserved for code). The defined symbols reported at the bottom also reflect this:

        main/loads.S:15     .data:0000000000000000 byte
        main/loads.S:16     .data:0000000000000001 hword
        main/loads.S:17     .data:0000000000000003 word
        main/loads.S:18     .data:0000000000000007 dword

Notice how the assembler has indicated that these are defined in the .data section.

6.4. The .data Section
I glossed over the .data pseudo-op earlier. As you've probably guessed, this places the data 
values in a different memory section belonging to data. Placing our data values in .data, 
was almost equivalent to declaring the following in C/C++:

static char byte = 1;
static short hword = 0xF509;
static int word = 0x0708090A;
static long long dword = 0xCCBBAA99887766;
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All of these values would wind up in SRAM on the ESP32-C3. Under Fedora Linux (QEMU), 
they are collected into .data virtual memory pages, that are read/write capable. The GNU 
C compiler prefers to gather these into the .sdata section, rather than .data. But the effect 
is the same.

We could have defined these particular values in .text since these values are never modi-
fied. These values would be protected as read-only. In C/C++ terms, defining those values 
in .text is almost equivalent to:

static char const byte = 1;
static short const hword = 0xF509;
static int const word = 0x0708090A;
static long long const dword = 0xCCBBAA99887766;

The ESP32-C3 device keeps the .text values in flash. Fedora Linux (QEMU) places .text into 
virtual memory pages that permit only read and execute permissions. The C/C++ state-
ments shown above actually get placed into the section named ".srodata". The name of 
this section suggests Static Read-Only Data. This is preferred over the section .text since it 
indicates that no execute permission should be provided.

Note: The GNU compiler places C/C++ static const values into the section named 
.srodata  for RV32I and RV64I. Non-const static C/C++ values likewise go into the .sda-
ta section instead.

If you comment out the line containing the .data pseudo-op, the values will be defined in 
the .text section instead. Let's try it for fun. After you comment the .data line out, repeat 
the build, flash and run of the program. Does it still work? Now examine the listing for it, 
shown in Listing 6.4.

   1                    # 1 "main/loads.S"
   1                            .global loadb,loadh,loadw,loadd
   0                    
   0                    
   2                    
   3                            .text
   4 0000 17050000      loadb:  lb      a0,byte         # Load a byte
   4      03050500
   5 0008 8280                  ret
   6 000a 17050000      loadh:  lh      a0,hword        # Load half word
   6      03150500
   7 0012 8280                  ret
   8 0014 17050000      loadw:  lw      a0,word         # Load a word
   8      03250500
   9 001c 8280                  ret
  10 001e 17050000      loadd:  lw      a0,dword        # Load lower word of dword
  10      03250500
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  11 0026 97050000              lw      a1,dword+4      # Load upper word of dword
  11      83A50500
  12 002e 8280                  ret                     # return value in a0
  13                    
  14                    #       .data
  15 0030 01            byte:   .byte   1
  16 0031 09F5          hword:  .half   0xF509
  17 0033 0A090807      word:   .word   0x0708090A
  18 0037 66778899      dword:  .dword  0xCCBBAA99887766
  18      AABBCC00
  18      00   

DEFINED SYMBOLS
        main/loads.S:4      .text:0000000000000000 loadb
        main/loads.S:6      .text:000000000000000a loadh
        main/loads.S:8      .text:0000000000000014 loadw
        main/loads.S:10     .text:000000000000001e loadd
        main/loads.S:15     .text:0000000000000030 byte
        main/loads.S:16     .text:0000000000000031 hword
        main/loads.S:17     .text:0000000000000033 word
        main/loads.S:18     .text:0000000000000037 dword
        main/loads.S:4      .text:0000000000000000 .L0
        main/loads.S:6      .text:000000000000000a .L0
        main/loads.S:8      .text:0000000000000014 .L0
        main/loads.S:10     .text:000000000000001e .L0
        main/loads.S:11     .text:0000000000000026 .L0

NO UNDEFINED SYMBOLS

Listing 6.4: the loads.S listing with the .data pseudo-op commented out.

Now notice the relative addresses of the data values. They all have addresses after your 
code and in the .text section. The last ret instruction in line 12 has a reported address of 
002E, so the byte that follows in .text has an address of 0030.

        main/loads.S:15     .text:0000000000000030 byte
        main/loads.S:16     .text:0000000000000031 hword
        main/loads.S:17     .text:0000000000000033 word
        main/loads.S:18     .text:0000000000000037 dword

Isn't this fun?
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6.5. Unsigned Values
You saw how the half-word value of F509 was sign extended to FFFFF509 when it was 
loaded into a 32-bit register. But what if you didn't want the value to be sign extended? To 
address that need, some unsigned load instructions can be used instead (rd represents the 
destination register):

  lbu   rd, symbol  # Load unsigned byte
  lhu   rd, symbol  # Load unsigned half word
  lwu   rd, symbol  # Load unsigned word: RV64I only
  ldu   rd, symbol  # Load unsigned double word: RV128I only

Figure 6.2 illustrates the operation of an unsigned load of a half-word into a 32-bit register.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0 0 0 0 0 0 0 0 0  0  0  0  0  0  0  1  1  1  1  0  1  0  1  0  0  0  0  1  0  0  1 

zeros

0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15

1  1  1  1  0  1  0  1  0  0  0  0  1  0  0  1 

Figure 6.2: the process of loading an unsigned half-word into a 32-bit register.

Notice that RV32I does not have a "lwu" instruction because there is no need for it. The 
register is only 32-bits in size so there is no sign extension involved. But for RV64I, there 
is indeed a need because its registers are 64 bits wide. Loading a 32-bit value can be sign 
extended (lw) or not (lwu) for RV64I.

There is also an RV128I specification where registers are 128-bits wide, which needs the 
"ldu" instruction but we won't be concerned with RV128 in this book. If you learn RV32I and 
RV64I, then you will be well prepared for larger architectures.

6.6. Memory Alignment
The RISC-V specification makes a statement about memory alignment:

For best performance, the effective address for all loads and stores should be nat-
urally aligned for each data type (i.e., on a four-byte boundary for 32-bit accesses, 
and a two-byte boundary for 16-bit accesses). The base ISA supports misaligned 
accesses, but these might run extremely slowly depending on the implementation. 
Furthermore, naturally aligned loads and stores are guaranteed to execute atomi-
cally, whereas misaligned loads and stores might not, and hence require additional 
synchronization to ensure atomicity

From this, we can conclude that if performance isn't an issue, misaligned data loads and 
stores are supported. But if you are concerned about the best possible performance, then 
your data should be aligned. Further, if you are performing advanced programming where 
atomic values are needed, then you must align your data to guarantee that the operation 
is indeed atomic.
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To assemble with aligned data, use the .balign pseudo-op:

 .balign n, [fill], [max]

where n is 1, 2, 4 or 8 (or more). The optional fill parameter specifies what to fill each byte 
with and defaults to zero. The third optional parameter specifies the maximum number of 
bytes to pad with when specified. The location is padded with fill bytes until it is aligned 
to the value of n, or the maximum (when given) is reached. For example, to align a 32-bit 
value, use n=4 (4-byte entity). To align a half-word, use 2, and for a 64-bit double-word 
use 8. When using .balign in the .text section, the fill parameter defaults to the noop in-
struction.

Change to the directory ~/riscv/repo/06/aligned. This project is otherwise identical to the 
previous loads.S file, except for the added alignment directives in main/aligned.S:

    14          .data
    15  byte:   .byte   1
    16          .balign 2
    17  hword:  .half   0xF509
    18          .balign 4
    19  word:   .word   0x0708090A
    20          .balign 8
    21  dword:  .dword  0xCCBBAA99887766

Let's check the assembler listing now. The changes to the listing shown below:

  14                            .data
  15 0000 01            byte:   .byte   1
  16 0001 00                    .balign 2
  17 0002 09F5          hword:  .half   0xF509
  18                            .balign 4
  19 0004 0A090807      word:   .word   0x0708090A
  20                            .balign 8
  21 0008 66778899      dword:  .dword  0xCCBBAA99887766
  21      AABBCC00

From this, it is evident that the alignment directives had their desired effect. For example, 
the location was 0001 after the declaration of "byte". But after the ".balign 2" directive, 
a pad byte was added to bring the location of "hword" to 0002. Similar alignments were 
unnecessary for the others, since they already had locations suitably aligned.

We can also see the effect in objdump, as shown below (after using the listesp script to 
generate a listing and object file):
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$ riscv32-esp-elf-objdump -sj .data aligned.o

aligned.o:     file format elf32-littleriscv

Contents of section .data:
 0000 010009f5 0a090807 66778899 aabbcc00  ........fw......

Notice that, before the F509 (in little endian format) is defined, the byte value 01 is fol-
lowed by a 00 byte, to align it on a half word.

6.7. Experiment
Return and edit the program in ~/riscv/repo/06/main/loads.S, so that instead of the "lh" 
instruction, it uses the "lhu" instruction instead. The affected loadh code should look like 
this after the edit:

loadh:  lhu     a0,hword        # Load half word
        ret

Then rebuild, flash, and run the program again. You should get the following results:

loadb() = 00000001
loadh() = 0000F509
loadw() = 0708090A
loadd() = 00CCBBAA99887766

This time, the loadh() value was reported as 0000F509, without the sign extension. This is 
the special talent of the "lhu" opcode.

6.8. Immediate Values
Often a small constant is needed, and it is considered tedious and inefficient to have to 
reach out to memory to fetch it. If instead, that small constant could be embedded inside 
the instruction word itself, the CPU would already have the data it needed when the instruc-
tion is decoded. This concept is known as "immediate data".

Imagine that at some point in your algorithm, all you need to do is to increment the value 
of register a1 by 1. To do so without immediate data requires that you code something like 
this:

        lb      t1,one          # t1 = 1
        add     a1,t1,zero      # a1 += t1
        ...

        .section .srodata
one:    .byte   1
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6.9. The li Pseudo-Op
Immediate data allows us to eliminate the need to define the data value of "one". For this, 
we use the assembler pseudo-op "li" as follows:

        li      t1,1            # t1 = 1
        add     a1,t1,zero      # a1 += t1 + zero

The assembler listing might look a little confused for pseudo-ops like "li". For example, 
assembling just the above code, produces a listing:

   1                    # 1 "t.S"
   1                            li      t1,1            # t1 = 1
   0                    
   0                    
   2 0002 B3050300              add     a1,t1,zero      # a1 += t1

But the assembler listing did not report any code for line 1. Code was however, reserved by 
the evidence of the address of line 2 (the address is 0002, indicating that the prior instruc-
tion was two bytes in length). If we ask objdump about what was produced in the object 
file we get:

00000000 <.text>:
   0: 4305                 li t1,1
   2: 000305b3           add a1,t1,zero

There is positive proof that the first instruction was 2 bytes, followed by a 4-byte instruc-
tion. You might be wondering why all the smoke and mirrors for the "li" opcode? It turns 
out that the assembler has to jump some hurdles for certain constants. For small constants 
like the number 1, the constant can be embedded into a compressed instruction (the keen 
student is encouraged to examine the RISC-V instruction formats in [1]).  For larger con-
stants, the pseudo-op is expanded by the assembler into multiple instructions as neces-
sary. Consider the following code:

        li      t1,0xFEEDBEEF   # t1 = 0xFEEDBEEF
        add     a1,t1,zero      # a1 += t1

The assembler in this case expands the "li" pseudo-op into two RISC-V opcodes:

00000000 <.text>:
   0: feedc337           lui t1,0xfeedc
   4: eef30313           addi t1,t1,-273 # 0xfeedbeef
   8: 000305b3           add a1,t1,zero

The first is generated as a "lui" opcode, with the upper portion of the constant (0xFEEDC). 
This new instruction is the "Load Upper Immediate" opcode. This immediate data is placed 
into the upper 20 bits of the destination register t1 so that the value becomes 0xFEEDC000 
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(the lower 12 bits are zeroed). The second generated instruction uses an "addi" (add im-
mediate) instruction to add the signed value -273 to t1 (effectively subtracting 273). When 
that instruction completes, t1 will hold the value 0xFEEDBEEF as intended.

Let's check this in the gdb debugger. Tool gdb is a very useful for developers. It not only 
debugs but allows you to perform hexadecimal calculations. Try typing the underlined text 
into gdb as follows and type q to quit:

$ gdb
GNU gdb (GDB) 11.2
Copyright (C) 2022 Free Software Foundation, Inc.
...
(gdb) p /x 0xFEEDC000 - 273
$1 = 0xfeedbeef
(gdb) q

Note: Windows users must use the command name “riscv32-esp-elf-gdb” instead of 
“gdb”.

Here we use the gdb "p" (print) command, "/x" to print the result in hexadecimal, subtract-
ing 273 (decimal) from FEEDBEEF (in hexadecimal). The result is displayed as 0xfeedbeef. 
The printed result confirms the computation is indeed correct. This also proves that gdb is 
indeed your friend. We'll see more of gdb later in this book.

Notice that the "addi" instruction is an add instruction with some "immediate data" capa-
bility. Many of the basic RV32I and RV64I instructions have an immediate data version to 
allow a signed constant to be applied instead of a second source register.

6.10. The addi Opcode
As previously introduced, many instructions of the RV32I/RV64I have an immediate data 
counterpart. The example that we began with for immediate data can now be boiled down 
to just one instruction for incrementing a1 by 1:

        addi    a1,a1,1         # a1 += 1

This is far more convenient and efficient than the earlier attempts. What is assembled, 
however, is going to depend upon the size of the constant used. In some cases, the assem-
bler may report an error for cases that cannot be directly encoded.

6.11. Pseudo-Op mv
Register values sometimes need to be copied or moved from one register to another. The 
general form of this opcode is this:

        mv      rd, rs
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The source register rs is copied to the destination register rd, where the destination reg-
ister is not x0 (zero). When, however, the destination register is x0 (zero), that operation 
performs as a "noop" (no operation).

The "mv" is a pseudo-op because, with a small trick, it is possible to do this without creating 
a new instruction. The pseudo-op also permits the assembler to optimize the move request. 
The following two instructions are equivalent, except for their size:

        add     t0,t1,x0 # t0 = t1 + x0 (effectively copies t1 to t0)
        mv      t0,t1  # better (compressed opcode when RV*C)

The effect of moving register t1 to t0 can be achieved by adding t1 to zero (x0) and placing 
the result in t0, in the first example. However, if you use the "mv" pseudo-op, the assem-
bler can substitute a compressed opcode (16 bits) in place of a 32-bit opcode, when it is 
permitted to do so.

6.12. Loads under RV64I
If you're interested in the RV64I experience, start up your QEMU emulator and log in to 
your Fedora Linux instance. Change to the following directory and compile the loads.S as-
sembler program:

$ cd ~/riscv/repo/06/loads/qemu64
$ gcc -O0 -g loads.S main.c
$ ./a.out
loadb() = 00000001
loadh() = FFFFF509
loadw() = 0708090A
loadd() = FFFFFFFF99887766

The loads.S program for RV64I is illustrated in Listing 6.4. This program is identical to the 
ESP32-C3 version except that line 10 uses the 64-bit opcode "ld" to load the double word 
into the 64-bit register a0, where the value is returned.

     1          .global loadb,loadh,loadw,loadd
     2  
     3          .text
     4  loadb:  lb      a0,byte         # Load a byte
     5          ret
     6  loadh:  lh      a0,hword        # Load half word
     7          ret
     8  loadw:  lw      a0,word         # Load a word
     9          ret
    10  loadd:  ld      a0,dword        # Load lower word of dword
    11          ret                     # return value in a0
    12  
    13          .data
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    14  byte:   .byte   1
    15  hword:  .half   0xF509
    16  word:   .word   0x0708090A
    17  dword:  .dword  0xCCBBAA99887766

Listing 6.4: the RV64I version of the loads.S program.

Run the program to satisfy yourself that it worked.

For testing alignment, perform the following:

$ cd ~/riscv/repo/06/aligned/qemu64
$ gcc -O0 -g aligned.S main.c
$ ./a.out

In Fedora Linux, produce a listing with the ~/riscv/repo/list script. Use command name 
"objdump" to dump an object file.

6.1.3 The .section Pseudo-Op
Before we discuss storing data, let's revisit the .section pseudo-op and fully explore the 
.section directive. The attributes of a section will determine whether or not you can store a 
value in that memory region. The full format for the pseudo-op is:

        .section  name[, "flags"[, @type] ]

The name, as we've seen before is a section name like .data, .sdata or .srodata etc. Pre-
defined sections with these names have default attributes associated with them. The flags 
argument, when present, must be enclosed in double-quotes and consist of one or more of 
the following flag characters:

• "a" – the section is allocatable
• "w" – the section is writable
• "x" – the section is executable

The allocatable attribute (a) means that space can be reserved but is not otherwise initial-
ized. This means that the region is not necessarily zeroed or otherwise initialized (some 
platforms may zero this before calling the main entry point however). The writable attribute 
(w) is used for data areas that may be updated, like static data variables in a C program. 
Finally, the execute attribute (x) is used to indicate executable code. Under Linux, this 
permits the execution of code in the region and the lack of this permission prevents the 
execution of data.

Once a section has its flags defined (with some very special exceptions), they cannot be 
changed. It is thus very important that sections be defined consistently.
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The @type argument, when present, may be one of the following values:

• @progbits – the section contains data
• @nobits – the section only occupies space and does not contain data

We can create our own section like .srodata, and name it .precious as follows:

        .section  .precious, "a", @progbits 

This declares a memory section that can be allocated, but lacks write and execute permis-
sion. Because of the "@progbits" type, there can be initialized data within it, resulting in a 
section of read-only data.

Table 6.1 contains the most commonly encountered predefined section names. There are 
other specialized names used by C++ that are not shown for use in constructors and de-
structors, for example. You as the application developer are free to create section names 
of your own.

Section Name Flags Type Usage

.text "ax" @progbits Read-only executable object code

.bss "wa" @nobits Read/Write uninitialized data

.data "wa" @progbits Read/Write initialized data

.sdata "wa" @progbits Read/Write initialized short data

.srodata "a" @progbits Read-only data

.rodata "a" @progbits Read-only data (literals)

.comment " " @progbits Comments embedded in the object file

Table 6.1: Common predefined section names and their attributes.

Notice that the ".bss" section just allocates space for data, but does not define or initialize 
any data values for it. Some platforms may zero these sections prior to invoking the main 
function.

6.14. Storing Data
After a calculation or register manipulation is performed, there is normally a need to save 
that result into memory for later use or reference. This is done with the corresponding sb, 
sh, sw or sd opcode. The register "rs" below is the source register in this case because the 
memory is the destination. However, the store address is somewhat complicated, which will 
be explained shortly. The opcode defines the unit size of the store. For example, the "sb" 
instruction only updates a single byte in memory. Alignment is also important for perfor-
mance reasons and is critical for atomic operations. There is no unsigned counterpart to 
these since sign extension never applies to storing in memory. In the following list, rx refers 
to a base or index register, while the offset is a fixed offset from the value in rx.
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  sb   rs, offset(rx) # Store byte
  sh   rs, offset(rx) # Store half-word
  sw   rs, offset(rx) # Store word
  sd   rs, offset(rx) # Store double word: RV64I only

Since global addresses can be large, a store is usually performed in reference to a base reg-
ister and a fixed offset. To help us in this regard, the assembler (and indirectly the linker) 
provides the use two special functions:

• %hi(symbol) – returns the high order 20 bits for absolute symbol
• %lo(symbol) – returns the low order 12 bits for the absolute symbol

Consequently, for global memory store operations, the following pattern is often used:

        lui     t0,%hi(symbol)       # t0 = high order 20 bits of symbol
        sw      a0,%lo(symbol)(t0)   # address = t0 + low order 20 bits

The "lui" operation loads the high order 20 bits of the address symbol into t0 in this ex-
ample, setting the lower 12 bits to zero. Then the "sw" opcode stores register a0 into 
the address computed by t0 plus the 12-bit offset returned from the assembler function 
%lo(symbol).

We're now equipped for an example program. Change to the directory:

 $ cd ~/riscv/repo/06/celcuius

Listing 6.5 illustrates the main program that is going to call upon our Fahrenheit to Cel-
sius assembler conversion using integer arithmetic. In this example, we are using global 
integers to pass and return the values to illustrate the load and store operations in the 
assembler. The calculations are performed in an integer, so the input value temp_f10 (line 
5) is the temperature in Fahrenheit multiplied by 10. The resulting value temp_c10 (line 6) 
is likewise the integer result times ten. The printf() statement (lines 13 to 17) reports the 
values with the necessary format adjustments.

     1  #include <stdio.h>
     2  
     3  extern void convtemp();
     4  
     5  int temp_f10 = 400;     // Fahrenheit degrees * 10
     6  int temp_c10 = 0;       // Computed result: Celsius * 10
     7  
     8  void
     9  app_main(void) {
    10  
    11          convtemp();     // Convert temp_f10 to temp_c10
    12  
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    13          printf("%d.%d F -> %d.%d C\n",
    14                  temp_f10 / 10,
    15                  temp_f10 % 10,
    16                  temp_c10 / 10,
    17                  temp_c10 % 10);
    18  }

Listing 6.5: The main program ~/riscv/repo/06/celsius/main/main.c  
for converting Fahrenheit to Celsius. 

The assembler routine is shown in Listing 6.6.

     1          .global convtemp,temp_f10,temp_c10
     2  
     3          .text
     4  convtemp:
     5          lw      t0,temp_f10             # t0 = F * 10
     6          addi    t0,t0,-320              # t0 = (F * 10) - (32 * 10)
     7          li      t1,10                   # t1 = 10
     8          mul     t0,t0,t1                # t0 *= 10
     9          li      t1,18                   # t1 = 1.8 * 10
    10          div     t0,t0,t1                # t0 = F * 100 / 1.8 * 10
    11          lui     t1,%hi(temp_c10)
    12          sw      t0,%lo(temp_c10)(t1)    # t0 = Celsius * 10
    13          ret                             

Listing 6.6: Assembly language routine ~/riscv/repo/06/celsius/main/celsius.S.

This function does not return a value, so our calculation is performed in temporary register 
t0. Line 5 loads the global int value temp_f10. The signed immediate value -320 is added 
to t0 before it is multiplied by 10 in lines 7 and 8. We've not looked at "mul" and "div" yet, 
but they take two source operands and produce a result in the destination register. These 
are both signed integer computations.

Once the temp result in t0 is multiplied by 10, the value is divided by 18 (1.8 times 10), to 
produce a result in t0 (line 10). This will be in degrees Celsius times 10. Then temporary t1 
is loaded with the high order 20 bits of the global integer temp_c10 (line 11). Finally, in line 
12, we can store the register t0 into the global variable using the offset of %lo(temp_c10) 
added to t1. After the routine returns in line 13, the C program reports the answer:

40.0 F -> 4.4 C

Now let's re-examine the "lw" opcode in line 5 of Listing 6.6. The objdump utility will report 
something like the following:
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   0: 00000297           auipc t0,0x0
   4: 0002a283           lw t0,0(t0) # 0 <convtemp>

The value is not known until the link step is performed, so the immediate constant shown 
is simple 0x0, which is fixed up later by the linker. By dumping out build/celsius.elf for the 
ESP32-C3 device, we see that the instruction gets converted to the following instruction:

420051d2:       8341a283      lw      t0,-1996(gp) # 3fc89834 <temp_f10>
420051d6:       ec028293      addi    t0,t0,-320

In other words, the ESP32-C3 linker script has established a global pointer in register gp, 
and the word is loaded using an offset of -1996 from it.  If your brain is feeling a little bit of 
hurt right now, don't dispair. We can use a more friendly bit of code to do the same thing.
Listing 6.7 contains the source code for celsius2.S.

     1          .global convtemp,temp_f10,temp_c10
     2  
     3          .text
     4  convtemp:
     5          lui     t0,%hi(temp_f10)
     6          lw      t0,%lo(temp_f10)(t0)    # t0 = F * 10
     7          addi    t0,t0,-320              # t0 = (F * 10) - (32 * 10)
     8          li      t1,10                   # t1 = 10
     9          mul     t0,t0,t1                # t0 *= 10
    10          li      t1,18                   # t1 = 1.8 * 10
    11          div     t0,t0,t1                # t0 = F * 100 / 1.8 * 10
    12          lui     t1,%hi(temp_c10)
    13          sw      t0,%lo(temp_c10)(t1)    # t0 = Celsius * 10
    14          ret                        

Listing 6.7. program ~/riscv/repo/06/celsius2/main/celsius2.S.

The cryptic load is now replaced with the more familiar "lui" and "lw" instructions in lines 
5 and 6. Line 5 loads the high order 20 bits of the absolute address for global temp_f10 
into t0. Then the low order 12 bits are added to that to form an address of the word to be 
loaded. That word replaces t0 with the contents of the memory word that we were after. 
If you build and flash that project, then running it on your ESP32-C3 will confirm that this 
still works.

RV64I Run
Start up your Fedora Linux instance in QEMU, and perform the following:

$ cd ~/riscv/repo/06/celsius2/qemu64
$ gcc -O0 -g celsius2.S main.c
$ ./a.out
40.0 F -> 4.4 C
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Your result should match what you got for the ESP32-C3 run.

6.15. Review
We've covered a lot of ground in this chapter, wading into the various options for loading 
from and storing to global memory, immediate values, moving register values, memory 
alignment and section attributes. Let's summarize this and review the instructions that 
you've learned in this chapter.

To load values from memory, you can use the following opcodes using a memory offset and 
base register rx, to load into the destination register rd:

  lb   rd, offset(rx) # Load signed byte
  lbu   rd, offset(rx) # Load unsigned byte
  lh   rd, offset(rx) # Load signed half-word
  lhu   rd, offset(rx) # Load unsigned half-word
  lw   rd, offset(rx) # Load signed word
  lwu   rd, offset(rx) # Load unsigned word: RV64I
  ld   rd, offset(rx) # Load signed double word: RV64I
  ldu   rd, offset(rx) # Load unsigned double word: RV128I only

Likewise, the following opcodes may be used to store register rs into memory using a mem-
ory offset and base register rx:

  sb   rs, offset(rx) # Store byte
  sh   rs, offset(rx) # Store half-word
  sw   rs, offset(rx) # Store word
  sd   rs, offset(rx) # Store double word: RV64I only

The assembler also supports the load immediate form, for loading constants:

  li   rd, immediate

Register contents can be copied to another register using the mv pseudo-opcode:

  mv   rd, rs

Additionally, several instructions like add also have an immediate form:

  addi   rd, rs, immediate

We also saw the use of the special "lui" and "auipc" instructions:

  lui    rd, immediate   # Loads 20-bits of immediate data to upper rd
  auipc  rd, immediate   # Loads rd with the current PC + signed immediate 12-bits
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Note that some of these instructions like "li" and "mv" for example, are adjusted according 
to the assembler based upon the size of the address/immediate data involved. Finally, we 
briefly saw and used the multiply and divide instructions, which will be explored later in 
the book.

It might at first appear that the load and store opcodes are rather clumsy because of the 
need to prepare a base register and then use an offset from that. This is true perhaps for 
global memory locations. Most memory accesses today, however, are relative to a stack 
frame, for which an offset and a stack frame pointer are ideal. We'll explore stacks and 
stack frames later in this book.

6.16. RISC-V Assembler Modifiers
In connection with memory accesses, the need frequently occurs for the evaluation of the 
20-bit upper portion of a constant or address and the lower 12-bits of the same. We've 
already seen these two assembler functions used in this chapter:

• %hi(symbol) – provides high order 20 bits of the symbol
• %lo(symbol) – provides the low order 12 bits of the symbol

There are two more useful functions for the programmer. They are:

• %pcrel_hi(symbol) – the high 20 bits of relative address between pc and 
symbol

• %pcrel_lo(symbol) – the low 12 bits of relative address between pc and symbol

These functions are used to provide a relative address constant. When we examine 
branches, we will see more relative addresses from the current instruction counter (PC).

6.17. Summary
This chapter has introduced you to the critical operations of loading from and storing to 
memory. It was shown that immediate data can provide for more optimal code. Mastering 
these approaches is an essential start to successful RISC-V assembly language program-
ming. The next chapter will take a detailed look at the essentials of the GNU calling con-
vention.
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Chapter 7 • Calling Convention

Standing is a calling convention

In order for compilers, assemblers and linkers to produce a final working executable, an 
agreement must exist between them on the use of the stack and the registers used. Since 
we're using the GNU compiler collection in this book, let's discuss the GNU calling conven-
tion.

7.1. Register Usage
One of the first considerations of the convention is the use of available registers and who's 
responsible for saving and restoring them. Registers are limited in number and sometimes 
have architectural limitations. RISC-V restricts us to using registers x1 to x31, since x0 has 
a hardwired zero or discard talent. The remaining registers are fully general purpose. Table 
7.1 lists the registers that are available, their intended function and who saves them when 
necessary.

Register ABI Name Description Saver

x1 ra Return Address Caller

x2 sp Stack Pointer Callee

x3 gp Global Pointer -

x4 tp Thread Pointer -

x5-x7 t0-t2 Temporary Registers Caller

x8 s0/fp Saved register / Frame Pointer Callee

x9 s1 Saved Register Callee

x10-x11 a0-a1 Function arguments / return value Caller

x12-x17 a2-a7 Function arguments (continued) Caller

x18-x27 s2-s11 Saved registers Callee

x28-x31 t3-t6 Temporary registers Caller

Table 7.1: Registers for the GNU calling convention.
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In chapter 4, Architecture, the function of these registers has already been described. In 
this chapter, we'll focus on the call and return.

7.2. Call Procedure
In order for a subroutine to return to the caller where it left off, a return address must be 
provided as part of the call. In RISC-V this is performed by the Jump and Link "jal" or the 
Jump and Link Register "jalr" instructions:

        jal     rd,offset          # rd = PC + n, PC = PC + n + offset
        jalr    rd,offset(rx)      # rd = PC + n, PC = rx + offset

The value of n is 2 when the instruction is compressed as a half-word, or else it is 4 for a 
word. The value of PC + n is the address of the instruction following the current one.

7.2.1. Opcode jal
The "jal" instruction permits the programmer to code a "call" to a subroutine. It performs 
two things when it executes:

1. Copies the current PC + n, which is the address following the current instruction, 
to the destination register rd.

2. Adds the relative offset to the address PC + n to begin execution at the called 
location.

Normally the destination register is ra (x1), but any other register can be used, including 
x0. When x0 is specified, the return address is discarded, and the operation becomes a 
jump instead. When rd is not x0, the return address is saved there, and execution resumes 
at the call address.

 jal rd,symbol

The destination register rd can be omitted, if you're using the standard ra (x1) register for 
this call:

 jal symbol

In both cases, the symbol is converted by the assembler into a half-word offset from the 
current instruction address. This offset is used to jump to the new routine address as part 
of the call.

7.2.2. Pseudo Opcode jr
In order to return from the call, the "jr" pseudo-opcode can be used to return to the address 
found in the specified register.

        jr     rs
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The operation of this instruction sets the PC to the value in register rs. In effect, it is a jump 
through register operation. This causes execution to resume after the point of the call. Why 
is "jr" a pseudo-instruction? The assembler expands this to the instruction:

        jalr   x0,rs,0

Effectively this instruction sets the PC to the value of rs + 0 and, because no return value 
is saved, it simply becomes a jump.

7.2.3. Pseudo Opcode ret
We've seen the "ret" opcode before in the previous chapters. It was simply coded as:

 ret

But how does that differ from the operations we've just reviewed? The "ret" is a pseudo-op-
code that is expanded by the assembler into:

      jalr   x0,ra,0

By the GNU calling convention, the return address is saved in register ra (x1). This allows 
us to return to the caller by jumping to the address in ra (x1).

7.2.4. General Call Procedure
Let's now review the general call procedure:

1. The caller performs a "jal" or "jalr", causing the return address to be placed in rd, 
which is normally ra (x1).

2. The PC jumps to the offset + rs to start executing the called code.
3. The called code, returns by "ret", or "jr ra", or "jalr x0,ra,0".

Unless you're using a different register than ra (x1), the "ret" pseudo-opcode is recom-
mended since this is easily understood and clear. We'll see later that there are sometimes 
reasons to use a different register.

7.2.5. Call to 32-bit Absolute Address
When using the "jal" opcode, the half-word offset is computed by the assembler to be rel-
ative to the current instruction. But when the target symbol is too far away for a relative 
branch, another approach must be used. The "call" pseudo-op comes to the rescue for 
calling, for example, a function named foo:

        call    rd, foo        # specified rd register, or...
        call    foo            # ra (x1) is assumed

This pseudo-op is expanded into a pair of instructions "auipc" and "jalr" to accomplish the 
far call. The expansion of the normal case of "call foo", would be:
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1:      auipc   ra,%pcrel_hi(foo)
        jalr    ra,ra,%pcrel_lo(1b)

Recall that the assembler function %pcrel_hi(symbol) returns the high order 20 bits of the 
symbol and %pcrel_low(symbol) returns the lower 12 bits. The "auipc" step loads the high 
order 20 bits of the foo address into ra (x1) temporarily, which is the word offset from the 
current address in PC. The "jalr" instruction then branches to the temporary value in x1 
plus the low order 12 bits of foo's address provided by %pcrel_low(1b). This arrives at the 
PC for the far away subroutine. Upon completion of the "jalr" opcode, the return address 
(of PC) is saved in ra (x1).

Numeric Labels
Before we can fully explain the "%pcrel_lo(1b)" part of this code, we need to explain the 
numeric label of "1" and the reference to it as "1b". GNU assembler permits numeric labels 
like "1" and references to these are either "1b" or "1f", indicating the first "1" back, or the 
first "1" forward. This clever system permits labels to be reused without having to invent 
unique names. This is especially useful in assembler macros. These numeric labels never 
register as external symbols.

Returning to the "auipc" instruction, we can see that it loads the high order 20 bits of foo's 
address into register ra (x1), with the PC added to it. The x1 register is used temporarily 
for this. The "jalr" instruction which follows then adds the low order 12 bits of foo's address 
to ra (x1) to compute the target subroutine address. The assembler function %pcrel_lo(1b) 
must reference the address of the "auipc" instruction where %pcrel_hi(foo) was used. Oth-
erwise, there is a chance that the calculation might be incorrect.

This might seem like a lot to digest right now. The important concept here is to understand 
that a "call" is expanded into a pair of instructions to make a relative far call possible, when 
necessary.

7.2.6. Revised Call Procedure
With the vulgarities of near and far symbols out of the way, the procedure call can now be 
summarized as:

1. The caller performs a "call", causing the return address to be placed in rd, which 
is normally ra (x1).

2. The PC jumps to the subroutine address to start executing the called code.
3. The called code, eventually returns by "ret" (or "jr rs", when a different register 

is used).

7.2.7. Concrete Call Example
Sometimes the technical details are mind-numbing in the abstract. So let's review a long 
call with actual addresses to visualize how this works. In this example, we're going to call 
function foo(), which is assumed to be far away from the caller's current PC. In the fol-
lowing, the PC for the "auipc" instruction is 0x42005e16 (this information comes from an 
actual debug session):
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#                     call foo           # located at 0x427F0000

42005e16  007ea097    auipc   ra,0x7ea   # ra = 0x42005e16 + 0x7ea000
42005e1a  1ea080e7    jalr    490(ra)    # ra = 0x42005e1a + 4, PC = 0x427f0000

Now verify this calculation using gdb:

(gdb) p /x 0x42005e16 + 0x7ea000 + 490   # Remember 0x7ea is shifted up 12 bits
$2 = 0x427f0000

The current address of the "auipc" instruction 0x42005e16 is added to the constant 
0x7EA000 (which is derived from 0x7EA placed in the upper 20 bits) and the result is tem-
porarily stored into ra (x1). Then the "jalr" instruction adds the constant 490 (decimal) to 
ra (x1), to arrive at 0x427F0000 for foo(). As part of the "jalr" instruction, the return ad-
dress of 42005E1A + 4 is now stored into ra (x1), while the PC register is set to foo's entry 
point address of 0x427F0000.

The good news is that the programmer doesn't need to worry about this much. The assem-
bler and the linker do all the dirty work to make a long or short call as necessary.

7.2.8. Simple Call Experiment
Before we dig deeper into the calling convention, let's just prove to ourselves that the call 
and return mechanism works as advertised. The assembler routine in Listing 7.1 illustrates 
a simple function named "callme" for ESP32-C3 that performs the following:

1. Loads the value of 1 into the register a0 (x10) in line 4.
2. Calls an internal subroutine named "intern" from line 5, using temporary register 

t0 (x5).
3. Adds the value 2 to the value in a0 in line 8.
4. Returns to the caller from line 9, via register t0 (x5), to line 6.
5. Control returns to app_main() from line 6, using register ra (x1).

Part of the calling convention is that the return address is saved into register ra (x1). If, 
however, you need to call some mini-routine(s), the convention is that t0 (x5) is used. This 
avoids having to save and restore ra (x1) from memory.

     1          .global callme
     2  
     3          .text
     4  callme: li      a0,1            # a0 = 1
     5          call    t0,intern       # Call internal
     6          ret
     7  
     8  intern: addi    a0,a0,2         # a0 += 2
     9          jr      t0              # Return to retn

Listing 7.1: An inner call example,  ~/riscv/repo/07/jal/main/jal.S.
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Listing 7.2 illustrates the ESP32-C3 main program used for this experiment. When the 
function callme() is called the register a0 is loaded with the value of 1 (line 4). After the 
internal function intern() is called (at line 8) the value of 2 is added resulting in a0 holding 
the value of 3.

     1  #include <stdio.h>
     2  
     3  extern int callme();
     4  
     5  void
     6  app_main(void) {
     7  
     8          printf("callme() returned %d\n",callme());
     9  }

Listing 7.2: Main program for jal.S ,~/riscv/repo/07/jal/main/main.c.

When you build and flash this code, the run output should report the following (substitute 
the appropriate path for your USB device):

$ idf.py build
...
$ idf.py idf.py -p <<<your-port>>> flash monitor
...
callme() returned 3

This is the expected return value (1 + 2).

The same program exists for QEMU. You can build and run it as follows:

$ cd ~/riscv/repo/07/jal/qemu64
$ gcc -O0 -g jal.S main.c
$ ./a.out
callme() returned 3

7.2.9. Running in gdb
To get introduced to gdb, let's walk through the program in QEMU. Start the gdb session 
as follows:

$ gdb ./a.out
GNU gdb (GDB) Fedora 9.0.50.20191119-2.0.riscv64.fc32
Copyright (C) 2019 Free Software Foundation, Inc.
...
Reading symbols from ./a.out...
(gdb)
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This prepares to debug the program executable a.out and pauses for your next command. 
As long as you compiled the code with the -g option, you should be able to list your code 
with the "list" command:

(gdb) list
1 #include <stdio.h>
2 
3 extern int callme();
4 
5 int
6 main(int argc,char **argv) {
7 
8  printf("callme() returned %d\n",callme());
9  return 0;
10 }
(gdb)

Now let's set a "breakpoint" for the function callme():

(gdb) b callme
Breakpoint 1 at 0x1048e: file jal.S, line 4.
(gdb)

Now when the program is running, it will stop when callme() is invoked. Since the program 
is not running yet, let's start it:

(gdb) r
Starting program: /home/riscv/riscv/repo/07/jal/qemu64/a.out
 glibc-2.30.9000-29.fc32.riscv64
Breakpoint 1, callme () at jal.S:4
4 callme: li a0,1  # a0 = 1
(gdb)

Because we have the breakpoint set, the execution paused as soon as it entered the as-
sembler routine callme().  So far, so good. Now we can trace one instruction at a time. Let's 
"step" one instruction:

(gdb) s
5  call t0,intern # Call internal
(gdb)

We see the execution has performed the assembler statement of line 4. But let's examine 
the register contents of a0:
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(gdb) info reg a0
a0             0x1 1
(gdb)

If we leave the register name out, all registers would be reported. We see that the register 
a0 has been loaded with the value 1, as coded. Let's step one more instruction:

(gdb) s
intern () at jal.S:8
8 intern: addi a0,a0,2  # a0 += 2
(gdb)

Now we've called the intern() function by use of t0. Step once again and display registers:

(gdb) s
9  jr t0  # Return to retn
(gdb) info reg t0 a0
t0             0x10494 66708
a0             0x3 3
(gdb)

The register a0 now has the value 3, and the register t0 has the return address from the 
call in line 5. Let's step from line 9:

(gdb) s
callme () at jal.S:6
6  ret
(gdb)

From this, we see the control has returned to after the point of the call in line 6. Stepping 
once again should get us back to the main() program, which called us:

(gdb) s
callme() returned 3
main (argc=1, argv=0x3ffffff2a8) at main.c:9
9  return 0;
(gdb)

From this session, we see that the printf() call was also completed as part of the return, so 
that gdb could return a complete statement executed, returning to the statement following 
in line 9. Since we don't care about tracing the rest of the program you can just "continue" 
it as follows:
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(gdb) c
Continuing.
[Inferior 1 (process 843) exited normally]
(gdb) q

The program then exits in the normal way. You could just "quit" at that point also.

What did we learn?  Using the gdb debugger (under QEMU), we were able to trace the code 
from main(), to callme(), and step through each assembler instruction until we returned 
to the main program. Along the way we, were able to report register contents. This is de-
bugging in luxury!

7.3. Argument Passing in Registers
We've already seen that arguments are passed in registers starting with a0 (with excep-
tions for hardware floating point). And that return values are returned starting with a0. 
Arguments and return values less than or equal to XLEN bits in size are sign-extended into 
the register for signed types. Otherwise, the register is zero-filled in the high order bits for 
unsigned types.

When a value like a 64-bit integer must be passed or returned on an XLEN=32-bit platform, 
the low-order XLEN bits are loaded into a0 (or even numbered argument register). The 
high-order bits are then passed into the next odd-numbered register depending. Figure 7.1 
illustrates how a long long int is passed or returned for the ESP32-C3.

1 2 3 4 5 6 7 8 9 A B C D E F 0

long long int (64-bits)

9 A B C D E F 0 1 2 3 4 5 6 7 8

XLEN=32
Figure 7.1: How a long long int is loaded into two 32-bit registers on ESP32-C3.

When an int followed by a long long is passed, the int goes into register a0 (the int fits the 
register). However, the long long argument has its low order word in a2 (the even-num-
bered register), and the high order word is passed in a3. Very large arguments (more than 
twice the size of a pointer) are passed by reference!

This convention is used for all arguments until all eight of the argument registers are used 
up. When registers a0 through a7 are allocated, what happens to the remaining argu-
ments? These are placed on the stack. After the prologue executes, the stack pointer sp 
(x2) points to the first argument that was not passed in a register.
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7.4. The Stack
I've avoided discussing the stack until this point. It is most efficient to pass and return 
values by registers alone when that is possible. However, when arguments that exceed 
registers or local variables are necessary, then the stack is needed.

The stack pointer value is found in register sp (x2) and is set to the high address of the 
stack and grows downward. The stack pointer is maintained at an alignment boundary, 
which for ESP32-C3 (where XLEN=32) is a double word address (modulo 8 bytes). For 
XLEN=64 platforms (QEMU), this is modulo 16 bytes.

7.4.1. Prologue
At the start of the function, the prologue serves to perform any functions necessary to 
preserve the integrity of the call. This involves adjusting the stack pointer and saving to the 
stack as needed. The general procedure is:

1. Decrement sp by the stack frame size for register saves, including any local vari-
able space (the size is round up to mod 8 for XLEN=32, or mod 16 for XLEN=64).

2. Store registers to be saved in the allocated stack frame (this optionally includes 
the s0/fp (x8) register).

3. Save register ra (x1) when the called routine calls or reuses register ra.

The fp/s0 (x8) register is often setup by the C compiler so that negative offsets refer to 
values saved on the stack. By doing that, the stack can grow or shrink without losing track 
of local variable addresses or saved register values. For example:

     4          addi    sp,sp,-32    # Allocate 32 bytes of stack space
     5          sd      s0,24(sp)    # Save s0/fp at 24(sp)
     6          addi    s0,sp,32     # Set s0/fp to original sp value

Then, to save one byte to a local stack byte variable, it might use:

     8          sb      a5,-17(s0)    # Store byte at -17(s0)

Note: It is important to adjust the sp (x2) as the first step. This keeps your stack frame 
from being corrupted by intervening interrupts should they occur.

When the function is first called, the sp (x2) points to the first overflow argument (the 
calling program arranges this). After the function prologue completes, register s0/fp (x8) 
points to that first overflow argument instead. Positive offsets from s0/fp point to excess 
calling arguments. Since the caller arranges these arguments, the called function never 
needs to worry about releasing them.
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Reviewing the prologue steps:

1. Allocate space on the stack by subtracting from the current sp (x2) and maintain 
stack alignment (this keeps the stack frame interrupt safe).

2. Optionally save the current s0/fp (x8) and other registers as necessary.
3. Optionally save register ra (x1), when necessary.
4. Optionally setup stack frame register s0/fp (x8) when required. This is normally 

required when all of the arguments did not fit into the available registers.

While the C compiler might use negative offsets from register fp/s0 to access local varia-
bles, it does not have to be done that way. The same access to local variables can be had 
with positive offsets from the stack pointer register sp.

7.4.2. Epilogue
When it is time to return to the caller, the stack changes must be undone, and the neces-
sary registers restored. This procedure consists of:

1. Reload saved registers (including optional s0/fp).
2. Reload ra (if necessary).
3. Increment sp by the amount it was subtracted in the prologue.
4. Return to the caller's address in register ra.

Note that the called function does not concern itself with freeing excess arguments that 
were passed on the stack. The calling program takes care of that for us.

7.4.3. Floating Point Arguments
When floating-point hardware is supported, they are passed in floating-point registers fa0 
to fa7 similar to the way that integer values are passed. Returned floating-point values are 
returned in fa0.

When the floating-point data type is handled by software, those values are passed in the 
usual integer registers instead.

7.4.4. A Big Call Experiment
To practice our knowledge of the calling convention, let's exercise a C main program calling 
the assembler routine bigcall(), with nine arguments of type int32_t and int64_t using the 
ESP32-C3. Since this is an XLEN=32 platform, any int64_t values will be split across two 
registers. The simple main program is illustrated in Listing 7.3. The routine bigcall() will 
return a simple sum of the arguments, with the limitation that only the lower 32 bits of each 
argument will be summed. 

The pragma was added to optimize the C code to make examining its main program listing 
less confusing. Sometimes in unoptimized code, values are copied from register to register 
in a confusing and unnecessary manner.
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     1  #include <stdio.h>
     2  #include <stdint.h>
     3  
     4  #pragma GCC optimize("-O3")
     5  
     6  extern int bigcall(
     7          int32_t one,
     8          int64_t two,
     9          int32_t three,
    10          int64_t four,
    11          int32_t five,
    12          int64_t six,
    13          int32_t seven,
    14          int64_t eight,
    15          int32_t nine
    16  );
    17  
    18  void
    19  app_main(void) {
    20          int rc = bigcall(101,102,103,104,105,106,107,108,109);
    21  
    22          printf("bigcall() returned %d\n",rc);
    23  }

Listing 7.3: Main C Program, ~/riscv/repo/07/call/main/main.c.

The code of interest is found in Listing 7.4, for the assembler routine bigcall().

     1          .global bigcall
     2  
     3          .struct 0
     4  svfp:   .space  4               # Save register fp/s0
     5  svra:   .space  4               # Save register ra
     6  var1:   .space  4               # Sample stack variable
     7          .balign 8               # Make sz mod 8
     8  sz      =       . - svfp
     9  
    10          .struct 0
    11  sixpt2: .space  4               # High order arg 6 (int64)
    12  seven:  .space  4               # Arg 7 (int32)
    13  eight:  .space  8               # Arg 8 (int64)
    14  nine:   .space  4               # Arg 9 (int32)
    15  
    16          .text
    17  bigcall:
    18          addi    sp,sp,-sz       # Set sp for stack frame
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    19          sw      fp,svfp(sp)     # Save fp/s0
    20          sw      ra,svra(sp)     # Save ra
    21          addi    fp,sp,+sz       # Set fp = original sp
    22  
    23          add     a0,a0,a1        # Add low order arg2 (int64) to arg1
    24          add     a0,a0,a3        # Add arg3 to arg1
    25          add     a0,a0,a4        # Add low order arg4 (int64) to arg1
    26          add     a0,a0,a6        # Add arg5 to arg1
    27          add     a0,a0,a7        # Add low order arg6 (int64) to arg1
    28  
    29          lw      t0,seven(fp)    # Load arg7
    30          add     a0,a0,t0        # Add arg7 to arg1
    31  
    32          lw      t0,eight(fp)    # Load arg8 (low order of int64)
    33          add     a0,a0,t0        # a0 += arg8
    34  
    35          lw      t0,nine(fp)     # Load arg8
    36          add     a0,a0,t0        # Sum is return value
    37  
    38          sw      x0,var1(sp)     # Zero sample stack variable
    39  
    40          lw      ra,svra(sp)     # Restore ra
    41          lw      fp,svfp(sp)     # Restore fp/s0
    42          addi    sp,sp,+sz       # Restore sp
    43          ret

Listing 7.4: ~/riscv/repo/07/call/main/bigcall.S, assembler module for bigcall().

This source file introduces a few new concepts. We could hard code the stack offsets for the 
overflow arguments and the saved register storage. But this is tedious and error-prone. So 
we make use of the ".struct" pseudo-op in lines 3 and 10. Focusing on the group starting on 
line 3, this starts an absolute definition, starting at address 0. This is different than defining 
a memory section because it is not actually allocated to any memory. These definitions ap-
pear in the listing as a section named "*ABS*", which is not an actual section. For example, 
a listing of bigcall.S would report:

DEFINED SYMBOLS
      main/bigcall.S:17     .text:0000000000000000 bigcall
                            *ABS*:0000000000000000 svfp
                            *ABS*:0000000000000004 svra
                            *ABS*:0000000000000008 var1
      main/bigcall.S:3      *ABS*:0000000000000010 sz
                            *ABS*:0000000000000000 sixpt2
                            *ABS*:0000000000000004 seven
                            *ABS*:0000000000000008 eight
                            *ABS*:0000000000000010 nine
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Unlike the symbol bigcall, which is the name of our global entry point in the .text section, 
the symbol svfp is registered to an absolute area starting at absolute offset 0. References to 
memory section symbols get relocated by the linker, while these absolute symbols do not. 
This is important since we want the offsets to be computed but not relocated.

Looking at the structure definition:

     3          .struct 0
     4  svfp:   .space  4               # Save register fp/s0
     5  svra:   .space  4               # Save register ra
     6  var1:   .space  4               # Sample stack variable
     7          .balign 8               # Make sz mod 8
     8  sz      =       . - svfp

we see that the symbol svfp is assigned an address (offset) of 0. The ".space" pseudo-op in 
line 4 tells the assembler to reserve 4 more bytes before looking at line 5. This effectively 
moves the current location without defining any content.

Line 5 defines the symbol svra as offset 4, while line 6 defines var1 as offset 12. Before we 
compute the size of the stack frame in line 8, we apply the ".balign" pseudo-op to make 
the stack frame size aligned to an 8-byte boundary (for XLEN=32). For RV64, we would 
use 16 instead. Finally, sz is computed in line 8, which is the current location minus the 
start (svfp).

Figure 7.2 illustrates the layout of the saved registers and the excess arguments that are 
passed in the call after the function prologue has completed.

stack

nine (hi)
nine (lo)

eight
seven
six (hi)
filler
var1
svra
svfp

grows

 

14
12
8
4
0

12
8
4
0

➔

➔

fp

sp

Figure 7.2: Diagram of stack layout for bigcall.S.
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The saved word svfp is at offset 0 from the stack pointer (address 0(sp)). The next word 
for saving ra at offset svra is at address 4(sp). Our example stack variable var1 is at 8(sp), 
which we will later just zero to demonstrate accessing local variables. The saved calling 
arguments are available as offset from fp/s0. For example, argument seven is available as 
4(fp) (or 4(s0)).

With these save offsets symbolically defined by the assembler, we can use them in the 
following prologue code:

    18          addi    sp,sp,-sz       # Set sp for stack frame
    19          sw      fp,svfp(sp)     # Save fp/s0
    20          sw      ra,svra(sp)     # Save ra
    21          addi    fp,sp,+sz       # Set fp = original sp

Line 18 adjusts the stack pointer by the size of the stack frame (16 bytes in this case). This 
maintains the alignment of the stack pointer. Lines 19 and 20 save registers fp/s0 and ra 
to the stack. In this example, I am assuming that ra is going to be modified (perhaps by 
another call) so it must be saved. We modify the value of fp/s0 in line 21, so it too must be 
saved. We don't have to initialize var1, so that isn't done in this prologue.

The first group of arguments that fit into the registers a0 to a7, can be accessed directly:

    23          add     a0,a0,a1        # Add low order arg2 (int64) to arg1
    24          add     a0,a0,a3        # Add arg3 to arg1
    25          add     a0,a0,a4        # Add low order arg4 (int64) to arg1
    26          add     a0,a0,a6        # Add arg5 to arg1
    27          add     a0,a0,a7        # Add low order arg6 (int64) to arg1

This code sums those arguments into a0 (our return register) for arguments one through 
six. It's a little confusing with a7 representing argument six but keep in mind that some of 
the arguments were 64 bits in size and required the use of a register pair.

The remaining arguments were placed on the stack by the calling C program. Review Figure 
7.2 again. We use the frame pointer (fp/s0) register to access these arguments according 
to the offset symbols we defined in the structure starting in line 10. Since temporary reg-
isters like t0 don't need to be preserved, we use it temporarily to load and sum the extra 
argument values:

    29          lw      t0,seven(fp)    # Load arg7
    30          add     a0,a0,t0        # Add arg7 to arg1
    31  
    32          lw      t0,eight(fp)    # Load arg8 (low order of int64)
    33          add     a0,a0,t0        # a0 += arg8
    34  
    35          lw      t0,nine(fp)     # Load arg9
    36          add     a0,a0,t0        # Sum is return value
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The argument seven word is loaded into temporary register t0 (x5) and then added to reg-
ister a0. The same is done for arguments eight and nine.

Just for fun, we zero our stack variable var1 in line 38. This example demonstrates how you 
might allocate and use stack variables when required.

    38          sw      x0,var1(sp)     # Zero sample stack variable

After the sum is computed and var1 is zeroed, we are ready to return to the calling pro-
gram. This is where the epilogue is applied:

    40          lw      ra,svra(sp)     # Restore ra
    41          lw      fp,svfp(sp)     # Restore fp/s0
    42          addi    sp,sp,+sz       # Restore sp
    43          ret

The offsets svra and svfp are relative to the current stack pointer (sp). These offsets are 
used with the stack pointer to restore values for register ra and fp. After that, we must 
also restore the sp itself by adding to it the same offset that was subtracted from it upon 
entry (line 18). The last step in this epilogue is to "ret", which returns control to the caller 
(register ra (x1) is assumed by the pseudo-op by default).

When the program is flashed and executed, you should see the sum printed:

$ idf.py build
…
$ idf.py -p <<<your-port>>> flash monitor
...
bigcall() returned 945

Success!  

This may seem like a lot of effort to orchestrate this function call and indeed it was. But do 
keep in mind that most functions do not have so many arguments, which force the overflow 
onto the stack. When the C code is calling, you only have to worry about where to find the 
arguments. They are placed on the stack for you by the C compiler before the call is made 
and automatically released after the return.

7.5. Calling printf()
So far, we have relied upon the C code to do the reporting through printf(). Our last ex-
ample can be amended slightly to perform the printf call from within the function instead 
as an example. Our function prologue already saves and restores the fp/s0 and the ra reg-
isters, so we can simply add a call to printf from within the assembler module. Listing 7.5 
illustrates our usual main program, except that it only invokes bigcall2(), without saving a 
return value this time (declared to return void). Our new example code is found in the ~/
riscv/repo/07/bigcall2 directory.
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     1  #include <stdio.h>
     2  #include <stdint.h>
     3  
     4  #pragma GCC optimize("-O3")
     5  
     6  extern void bigcall2(
     7          int32_t one,
     8          int64_t two,
     9          int32_t three,
    10          int64_t four,
    11          int32_t five,
    12          int64_t six,
    13          int32_t seven,
    14          int64_t eight,
    15          int32_t nine
    16  );
    17  
    18  void
    19  app_main(void) {
    20  
    21          bigcall2(101,102,103,104,105,106,107,108,109);
    22  }

Listing 7.5: Main program, ~/riscv/repo/07/bigcall2/main/main.c ESP32-C3.

The program illustrated in Listing 7.6 is much the same as before with the following chang-
es:

1. Line 36 moves the sum to register a1, to act as a second int argument to the 
printf() call.

2. Line 40 uses the pseudo-op "la" to load an address into a0. This is the pointer to 
the format string to be passed to printf().

3. Line 42 calls printf(), with the arguments in registers a0 and a1. Recall that the call 
(by default) clobbers register ra (x1) with the printf() return address, which is why 
the register was saved in the function prologue.

4. Line 43 handles the value returned by printf(), and saves it in our stack variable 
var1. We don't actually use it here but it demonstrates the use of a stack-based 
variable.

5. Lines 52 and 53 defi ne the printf() format string in a read-only section used for 
literals.

     1          .global bigcall2, printf
     2  
     3          .struct 0
     4  svfp:   .space  4               # Save register fp
     5  svra:   .space  4               # Save register ra
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     6  var1:   .space  4               # Example stack variable
     7          .balign 8               # Keep stack size mod 8
     8  sz      =       . - svfp
     9  
    10          .struct 0
    11  sixpt2: .space  4               # High order arg 6 (int64)
    12  seven:  .space  4               # Arg 7 (int32)
    13  eight:  .space  8               # Arg 8 (int64)
    14  nine:   .space  4               # Arg 9 (int32)
    15  
    16          .text
    17  bigcall2:
    18          addi    sp,sp,-sz       # Set sp for stack frame
    19          sw      fp,svfp(sp)     # Save fp/s0
    20          sw      ra,svra(sp)     # Save ra
    21          addi    fp,sp,+sz       # Set fp = original sp
    22  
    23          add     a0,a0,a1        # Add low order arg2 (int64) to arg1
    24          add     a0,a0,a3        # Add arg3 to arg1
    25          add     a0,a0,a4        # Add low order arg4 (int64) to arg1
    26          add     a0,a0,a6        # Add arg5 to arg1
    27          add     a0,a0,a7        # Add low order arg6 (int64) to arg1
    28  
    29          lw      t0,seven(fp)    # Load arg7
    30          add     a0,a0,t0        # Add arg7 to arg1
    31  
    32          lw      t0,eight(fp)    # Load arg8 (low order of int64)
    33          add     a0,a0,t0        # a0 += arg8
    34  
    35          lw      t0,nine(fp)     # Load arg8
    36          add     a1,a0,t0        # Sum to be printed
    37  
    38  #       Print the result
    39  
    40          la      a0, fmt         # Pointer address to format string
    41                                  # a1 already has the int to print
    42          call    printf  
    43          sw      a0,var1(sp)     # Save return value to var1 from print
    44  
    45  #       Epilogue
    46  
    47          lw      ra,svra(sp)     # Restore ra
    48          lw      fp,svfp(sp)     # Restore fp/s0
    49          addi    sp,sp,+sz       # Restore sp
    50          ret
    51  
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    52          .section .rodata
    53  fmt:    .string "bigcall2() computed a sum of %d\n"

Listing 7.6: Assembler routine, ~/riscv/repo/07/bigcall2/main/bigcall2.S.

The "la" opcode in line 40 is a pseudo-op that results in the destination register receiving 
the desired address (not its value). Like the "call" pseudo-op, "la" can result in one or two 
actual opcodes to accomplish this. The printf() call needs a pointer to a format string in a0, 
so the "la" opcode accomplishes this for us.  If you were to objdump the build/bigcall2.elf 
executable that was linked, you would fi nd that it does indeed turn into two opcodes.

42005e62:       fa01f517       auipc   a0,0xfa01f
42005e66:       9df50513       addi    a0,a0,-1569 # 3c024841 <fmt>

When you fl ash and run the program, you should get the message:

bigcall2() computed a sum of 945

indicating success. The format of the message was deliberately changed so that you can be 
assured that it was the assembler program printing the message this time.

7.6. Summary
I hope you are feeling confi dent now about one of the more diffi  cult aspects of RISC-V 
assembly language. It is vital that the register convention be understood for saving and 
restoring registers. You witnessed how the register passing works including those that were 
passed on the stack itself. The presented example programs illustrate the function prologue 
and epilogue.

Using the assembler ".struct" pseudo-op, you learned how to defi ne symbolic off sets to 
stack frame components. This is an important tool because it saves you from having to use 
the brittle hard coding of off sets. Allow the assembler to do the mental arithmetic for you. 
It is also more amenable to changes later on.

The new opcode "la" for load address was introduced without much fanfare. But its useful-
ness for loading a pointer value into a register will become more relevant in the chapters 
ahead.

There will sometimes exist a temptation to violate the call convention in the name of effi  -
ciency. Some advocate "just don't".[1] Certainly recognize that there is a risk when you do. 
Accept that it is probably ill-advised for medical or safety-critical systems. Be aware that 
interrupts will also use the stack while your code executes so your abnormal convention 
must be able to tolerate that. If you are stuck debugging something weird, this is probably 
one of the fi rst things to be checked.
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Chapter 8 • Flow Control

CPU jumping a over a hopscotch court

To this point we haven't explored branching other than calling and returning from a sub-
routine call. This chapter examines some fun programs to exercise branching instructions. 
Branching is a fundamental part of a loop, which allows repeated operations.

8.1. Branching Instructions
The RISC-V documents like to refer to these as control transfer instructions. Of these, there 
are two basic categories:

• Unconditional transfers
• Conditional branches

8.1.1. Unconditional Transfers
We've already seen the "jal" and "jalr" opcodes for calling a subroutine. When the desti-
nation register is set to zero/x0, either explicitly or by a pseudo-op like "j", they become 
simple unconditional transfers because there is no return address produced. The "jal" and 
"j" opcodes have the ability to jump +/- 1 MB from the current program counter (pc) since 
the offset is encoded as a signed half-word offset. The "jalr" opcode on the other hand en-
codes the offset as a 12-bit signed byte offset and therefore has a more restricted range.

The following are variations of the unconditional transfer. For easy-to-read code, the "j" or 
"jr" pseudo-opcodes are recommended:

        jal    x0,offset          # pc += offset
        j      offset             # same as jal x0,offset
        jr     offset(rs)         # rd is assumed to be x0, pc += rs + offset
        jr     rs                 # same as jr 0(rs)
        jalr   x0,offset(rs)      # same as jr offset(rs)

When coding these transfers, there is no need to compute word or byte offsets. The as-
sembler knows which offset to provide when you provide a branch label. However, if you 
provide numeric offsets, you will need to use the correct form.
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8.1.2. Conditional Branches
With conditional branches, the comparison and the branch are combined into one opera-
tion. The following are signed comparison branches (the operation in C language terms is 
provided in the comment):

  beq    rs1,rs2,offset       # branch when rs1 == rs2
  bne    rs1,rs2,offset      # branch when rs1 != rs2
  blt    rs1,rs2,offset        # branch when rs1 < rs2
  bge    rs1,rs2,offset        # branch when rs1 >= rs2

Depending upon the result of the comparison between registers rs1 and rs2, the branch is 
made by modifying register pc, or allowing the execution to resume at the next instruction. 
There are no status flags saved from the comparison in RISC-V.

Since the comparison to zero comes up frequently, the following pseudo-ops are also avail-
able:

  beqz   rs,offset             # branch when rs == 0
  bnez   rs,offset             # branch when rs != 0
  bltz   rs,offset             # branch when rs < 0
  bgez   rs,offset             # branch when rs >= 0

These are just encodings of the previous opcodes. For example, "bnez" is the same as:

  bne    rs1,x0,offset         # branch when rs1 != x0

If you need unsigned comparisons, then the following additional opcodes are available:

  bltu   rs1,rs2,offset        # branch when rs1 < rs2
  bgeu   rs1,rs2,offset        # branch when rs1 >= rs2

Branch instructions make a CPU smarter than a simple calculator, by giving it the ability to 
make decisions.

8.2. Shift Opcodes
So far, we've exercised a restricted set of opcodes for computing values. Let's expand that 
with the addition of shift operators before we embrace the exercises in branching. The fol-
lowing opcodes are available in RV32I and RV64I:

  sll   rd,rs1,rs2        # rd = rs1 << rs2 (shift left logical)
  slli   rd,rs1,imm        # rd = rs1 << imm (shift left logical immediate)
  srl   rd,rs1,rs2        # rd = rs1 >> rs1 (shift right logical)
  srli   rd,rs1,imm        # rd = rs1 >> imm (shift right logical immediate)
  sra   rd,rs1,rs2        # rd = rs1 >> rs2 (shift right arithmetic)
  srai   rd,rs1,rs2        # rd = rs1 >> imm (shift right arithmetic)
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In all of the above, the result goes into the destination register rd. The value that is shifted 
originates in register rs1. The shift count originates from either source register rs2 or from 
an immediate constant. Finally, the opcode determines the type of shift – its direction and 
whether it is logical or an arithmetic shift.  The following is an example:

  slli    a0,a1,1         # a0 = a1 << 1 (shift a1 logically left 1 bit)

In the C language, you often don't consider whether it involves a logical or arithmetic shift 
operation. That is because it is determined by the data type. When unsigned, it requires 
a logical shift. When signed, it requires an arithmetic shift, when shifting right. The arith-
metic right shift preserves the sign while the remaining bits are shifted right. All shift-left 
operations are logical shifts, which is why you don't see a "sla" opcode. Logical shifts always 
populate the shifted-out bit position with a zero.

RV64I Shift Opcodes
In addition to the above, RV64I adds these:

  slliw    rd,rs1,imm    # rd = rs1 << imm (shift left logical immediate)
  srliw    rd,rs1,imm    # rd = rs1 >> imm (shift right logical immediate)
  sraiw    rd,rs1,rs2    # rd = rs1 >> imm (shift right arithmetic)

These shift operations take the lower 32-bit value in rs1, perform the shift and then sign 
extend the 32-bit result into the destination register for 64 bits. For example, if register a0 
holds the value:

a0      0x7ffffffffffffffc

After the instruction:

        sraiw a0,a0,1      # a0 = a0 << 1 (32-bits)

executes, a0 would hold the result value:

a0      0xfffffffffffffffe

In other words, the sign was taken from bit 31 after the shift was performed and then ex-
tended out to the full 64 bits in the destination register. This permits an easy interchange 
of signed 32-bit values into the 64-bit environment.

8.3. ESP32-C3 Project
We now have enough resources available to test our knowledge of conditional branches. In 
this project, we'll write both an optimized C language program and an assembler language 
equivalent to count the number of 1-bits in a 32-bit integer, for the ESP32-C3. Let's then 
compare the two routines in this bake-off to see if the compiler can out-perform our as-
sembly language code.
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8.3.1. Function c_ones()
Listing 8.1 illustrates our test C language program, optimized at GCC level -O3 for good 
performance (line 4). Our assembler routine has the function prototype defined in line 6. 
The C version of the same routine is defined in lines 8 to 16. In it we start out with a ze-
roed count (line 9) and keep testing for the int (32-bits) value of bits to be less than zero, 
indicating a 1-bit in bit 31, the sign bit (line 12). If the value is negative, we increment the 
count (line 13). At the end of each loop, we shift the value of bits left by one bit (line 11). If 
along the way, the value of bits becomes zero, we exit the loop and return the accumulated 
count (line 15).

8.3.2. Main Test Program
The main program first invokes the assembler routine ones() in line 27 and saves the bit 
count in variable bcount. Then the C language function is called in line 31 with the returned 
value saved in variable ccount. If there is any discrepancy between these two results, the 
discrepancy is reported in lines 33 and 34. Otherwise, we repeat the test with different test 
values from the static array defined in lines 20 to 22.

     1  #include <stdio.h>
     2  #include <stdint.h>
     3  
     4  #pragma GCC optimize("-O3")
     5  
     6  extern int ones(int bits);      // Assembler routine
     7  
     8  static int c_ones(int bits) {
     9          int count = 0;
    10  
    11          for ( ; bits != 0; bits <<= 1 ) {
    12                  if ( bits < 0 )
    13                          ++count;
    14          }
    15          return count;
    16  }
    17  
    18  void
    19  app_main(void) {
    20          static int tests[] = { 0, 1, 2, 3, 5, 7, 9, 15,
    21                  31, 63, 64, 127, 1023, 1024, 2047, 2048,
    22                  9999 };
    23          int bcount, ccount, bits;
    24                  
    25          for ( unsigned ux=0; tests[ux] < 9999; ++ux ) {
    26                  bits = tests[ux];
    27                  bcount = ones(bits);
    28                  printf("ones(%4d) (0x%04X) returned %d\n",
    29                          bits, bits,
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    30                          bcount);
    31                  ccount = c_ones(bits);
    32                  if ( ccount != bcount )
    33                          printf("c_ones(%4d) did not agree with %d!\n",
    34                                  ccount,bcount);
    35          }
    36          printf("Done.\n");
    37  }

Listing 8.1: Main program with c_ones() function, ~/riscv/repo/08/ones/main/main.c.

8.3.3. Assembler Function ones()
Our assembly language function ones() is illustrated in Listing 8.2. In this routine we ini-
tialize temporary register t0 with zero (line 3) then we drop into the loop starting at line 5. 
There we test if the argument in a0 is already zero or has become zero. If so, we branch 
to the label done.

When the value a0 is non-zero, we continue in line 6, testing if the sign bit is positive using 
"bge". If it is positive, we skip over the instruction in line 7. Otherwise, we continue execu-
tion in line 7 and increment the count in t0 (line 7). Execution continues in line 8 where the 
value of a0 is locally shifted left 1 bit. At the end of the loop in line 9, we unconditionally 
branch back to the top of the loop at line 5.

When the branch is finally taken to the label done (line 11), the count in register t0 is 
moved to a0 in order to return the bit count. Finally, we return to the caller in line 12.

     1          .global ones
     2          .text
     3  ones:   mv      t0,zero         # t0 = 0
     4  
     5  loop:   beq     a0,zero,done    # Branch if a0 == 0
     6          bge     a0,zero,shift   # Skip next if sign is positive
     7          addi    t0,t0,1         # t0 += 1
     8  shift:  slli    a0,a0,1         # a0 <<= 1
     9          j       loop            # Repeat loop
    10  
    11  done:   mv      a0,t0           # a0 = count in t0
    12          ret

Listing 8.2: Assembly language function ones(), ~/riscv/repo/08/ones/main/ones.S.
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Run it
Build, flash and monitor the result from the ESP32-C3 device:

$ cd ~/riscv/repo/08/ones
$ idf.py build
...
idf.py -p <<<your-port>>> flash monitor
...
ones(   0) (0x0000) returned 0
ones(   1) (0x0001) returned 1
ones(   2) (0x0002) returned 1
ones(   3) (0x0003) returned 2
ones(   5) (0x0005) returned 2
ones(   7) (0x0007) returned 3
ones(   9) (0x0009) returned 2
ones(  15) (0x000F) returned 4
ones(  31) (0x001F) returned 5
ones(  63) (0x003F) returned 6
ones(  64) (0x0040) returned 1
ones( 127) (0x007F) returned 7
ones(1023) (0x03FF) returned 10
ones(1024) (0x0400) returned 1
ones(2047) (0x07FF) returned
ones(2048) (0x0800) returned 1
Done.

How did we do? No complaints were issued, so this confirms that both the assembly lan-
guage function and the C language functions agreed. Examination of the return values 
indicates that the results are correct.

Routines Compared
Was our assembler routine better than the C language one?  Let's first examine the C lan-
guage listing in assembly language:

$ ~/riscv/repo/listesp main/main.c

The extract of the portion of the listing for the c_ones() function is shown in Listing 8.3.

   6               c_ones:
   7 0000 AA87       mv a5,a0
   8 0002 0145       li a0,0
   9 0004 99C7       beqz a5,.L5
  10               .L4:
  11 0006 13A70700   slti a4,a5,0
  12 000a 8607       slli a5,a5,1
  13 000c 3A95       add a0,a0,a4
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  14 000e E5FF       bnez a5,.L4
  15 0010 8280       ret
  16               .L5:
  17 0012 8280       ret

Listing 8.3: Extract of the C Language c_ones() function listing.   

It's clear from this listing that the C compiler chose to generate this function a little diff er-
ently than our own assembler routine. Let's break it down and compare.

Line 7 moves the argument value "bits" to a5 as its fi rst step. Then it sets a0 to zero in line 
8. If the value of a5 is already zero, control passes to .L5 (line 16) where the routine returns 
to the caller (with zero held in a0).

Otherwise, the top of the loop in lines 10 and 11 is entered. Line 11 uses an opcode "slti" 
that we've not yet covered. When the value in a5 is less than 0 (the immediate value), then 
the value placed into a4 is the value 1. Otherwise, a4 receives the value zero (line 11). 
After that, it shifts the bits in a5 left 1 bit (line 12). Line 13 adds the value of a4 to a0. We 
know that a4 will be the value 0 or 1 from line 11. Finally, if a5 is not equal to zero in line 
14, execution resumes at the top of the loop at .L4. Otherwise, the execution falls through 
to line 15, returning the bit count in a0.

   3 0000 93020000      ones:   mv      t0,zero         # t0 = 0
   4                    
   5 0004 11C5          loop:   beq     a0,zero,done    # Branch if a0 == 0
   6 0006 63530500              bge     a0,zero,shift   # Skip next if sign is +
   7 000a 8502                  addi    t0,t0,1         # t0 += 1
   8 000c 0605          shift:  slli    a0,a0,1         # a0 <<= 1
   9 000e DDBF                  j       loop            # Repeat loop
  10                    
  11 0010 1685          done:   mv      a0,t0           # a0 = count in t0
  12 0012 8280                  ret

Listing 8.4: Extract listing of main/ones.S.

It is readily apparent that both functions are the same number of bytes of object code (20 
bytes). So which routine is faster? The c_ones() routine must execute the "addi" instruction 
even when the register a4 is zero:

  13 000c 3A95       add a0,a0,a4

In this routine's favour however, there is one less branch involved in each loop. The ones.S 
program has a "bge" branch in line 6, whereas the c_ones() function uses the "slti" in line 
11 instead. The practical diff erence is going to boil down to the silicon used.
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Because of pipelining and potential branch prediction, it is best to avoid unnecessary 
branches. With that in mind, the optimized GCC code is an improvement over our assem-
bly code. Espressif states that the ESP32-C3 has a "4-stage, in-order, scalar pipeline" but 
nothing is said about branch prediction. On the ESP32-C3 therefore, there might not be any 
difference between these. On more advanced silicon however, branches are best avoided 
where possible.

8.4. Compare and Set
As reviewed in the examination of the c_ones() function, the C compiler used the "slti" 
opcode to set the destination register to a 1 or a 0 based upon the result of a comparison. 
There are other compare and set opcodes similar to it. These are listed with their C lan-
guage equivalent expression in the comments:

  slt     rd,rs1,rs2   # rd = rs1 < rs2 ? 1 : 0
  slti    rd,rs1,imm   # rd = rs1 < imm ? 1 : 0
  sltu    rd,rs1,rs2   # rd = (unsigned)rs1 < (unsigned)rs2 ? 1 : 0
  sltiu   rd,rs1,imm   # rd = (unsigned)rs1 < (unsigned)imm ? 1 : 0

  seqz    rd,rs    # rd = rs == 0 ? 1 : 0

  snez    rd,rs    # rd = rs != 0 ? 1 : 0
  sltz    rd,rs    # rd = rs < 0 ? 1 : 0
  sgtz    rd,rs    # rd = rs > 0 ? 1 : 0

It should be clear that these operations have direct application for C/C++.  Consider the 
C++ code:

      bool zflag;
      int x;

      …
      zflag = !x;            // Set zflag true if x == 0 else false

In this example, if register t0 holds the value of zflag and a0 holds the value of x, then the 
C compiler could simply emit:

      seqz    t0,a0          // Set t0=1 if x in a0 is zero else t0=0

8.5. Odd Parity Example
Let's try another example, that is perhaps a little more practical. Our assembler routine 
named odd_parity() will determine if there is an odd or even number of 1 bits. The return 
value will be 1 if the parity is odd, else it returns 0 for even parity.
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     1 .global odd_parity
     2          .text
     3  odd_parity:
     4          li      t0,0            # t0 = 0
     5  
     6  loop:   beq     a0,zero,done    # Branch if a0 == 0
     7          sltz    t1,a0           # t1 = a0 < 0 ? 1 : 0
     8          xor     t0,t0,t1        # t0 = t0 ^ t1
     9          slli    a0,a0,1         # a0 <<= 1
    10          j       loop            # Repeat loop
    11  
    12  done:   mv      a0,t0           # a0 = count in t0
    13          ret

Listing 8.5: The odd_parity() function, ~/riscv/repo/08/parity/main/parity.S

In this program, we chose to use "li" in line 4 this time to initialize t0 to zero just for fun. 
The execution continues to the top of the loop in line 6, where a0 is tested for the value of 
zero. If it is zero, control moves to line 12, where the parity value is placed in a0, and then 
returned to the caller (line 13).

Otherwise, when line 6 fails to branch, it means we still have 1 bits to test for parity. Line 7 
sets the temporary register t1 to a 1 if the value is less than zero (indicating that the sign 
bit is true), else t1 is cleared to zero. The "xor" opcode in line 8 applies an exclusive-or be-
tween the value in t0 and t1. Since either register only has the low order bit set (or not), the 
end result is a 1 or a 0, indicating the current parity value. Recall that an exclusive-or oper-
ation flips bits when one or the other bit is a 1-bit, but not if both are the same. So, every 
time through the loop, as we encounter more 1-bits, the value of t0 (parity) is inverted.

At the end of the loop in lines 9 and 10, we shift the value in a0 logically left by the 1-bit 
position, populating a new bit in the sign bit (bit 31 for the ESP32-C3) and repeat the loop.

Listing 8.6 illustrates the main program for driving the test, which is much the same as 
before. The function odd_parity() is called with various values from the array tests[] and 
reported in the printf() call in lines 18 and 19.

     1  #include <stdio.h>
     2  #include <stdint.h>
     3  
     4  #pragma GCC optimize("-O3")
     5  
     6  extern int odd_parity(int bits); // Assembler routine
     7  
     8  void
     9  app_main(void) {
    10          static int tests[] = { 0, 1, 2, 3, 5, 7, 9, 15,
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    11                  31, 63, 64, 127, 1023, 1024, 2047, 2048,
    12                  9999 };
    13          int oddpar, bits;
    14                  
    15          for ( unsigned ux=0; tests[ux] < 9999; ++ux ) {
    16                  bits = tests[ux];
    17                  oddpar = odd_parity(bits);
    18                  printf("odd_parity(%4d) (0x%04X) returned %d\n",
    19                          bits, bits, oddpar);
    20          }
    21          printf("Done.\n");
    22  }

Listing 8.6: The main test program, ~/riscv/repo/08/parity/main/main.c.     

Build, fl ash and monitor this ESP32-C3 project as follows:

$ cd ~/riscv/repo/08/parity
$ idf.py build
...
$ idf.py -p <yourport> flash monitor
...
odd_parity(   0) (0x0000) returned 0
odd_parity(   1) (0x0001) returned 1
odd_parity(   2) (0x0002) returned 1
odd_parity(   3) (0x0003) returned 0
odd_parity(   5) (0x0005) returned 0
odd_parity(   7) (0x0007) returned 1
odd_parity(   9) (0x0009) returned 0
odd_parity(  15) (0x000F) returned 0
odd_parity(  31) (0x001F) returned 1
odd_parity(  63) (0x003F) returned 0
odd_parity(  64) (0x0040) returned 1
odd_parity( 127) (0x007F) returned 1
odd_parity(1023) (0x03FF) returned 0
odd_parity(1024) (0x0400) returned 1
odd_parity(2047) (0x07FF) returned 1
odd_parity(2048) (0x0800) returned 1

Checking the results, you can verify that the odd parity was computed for each test value.

8.6. RV64I Odd Parity
For those itching to put Fedora Linux to work, let's do a 64-bit version of the odd_parity() 
function. Listing 8.7 lists the main program that drives this test. In this example, notice that 
odd_parity() now accepts a 64-bit integer argument for parity tests. The main program has 
added a few more test values but is otherwise is the same as before:
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     1  #include <stdio.h>
     2  #include <stdint.h>
     3  
     4  #pragma GCC optimize("-O3")
     5  
     6  extern int odd_parity(int64_t bits); // Assembler routine
     7  
     8  int
     9  main(int argc,char **argv) {
    10          static int64_t tests[] = { 0, 1, 2, 3, 5, 7, 9, 15,
    11                  31, 63, 64, 127, 1023, 1024, 2047, 2048,
    12                  65535, 65536, 0xF0F0900000000001ll, 999999 };
    13          int64_t bits;
    14          int oddpar;
    15                  
    16          for ( unsigned ux=0; tests[ux] != 999999ll; ++ux ) {
    17                  bits = tests[ux];
    18                  oddpar = odd_parity(bits);
    19                  printf("odd_parity(%20lld) (0x%016llX) returned %d\n",
    20                          bits, bits, oddpar);
    21          }
    22          printf("Done.\n");
    23  }

Listing 8.7: Main program listing, ~/riscv/repo/08/parity/qemu64/main.c.

The parity.S assembly language program shown in Listing 8.8 is exactly the same program 
that we used on the ESP32-C3. The difference in this instance, however, is that the regis-
ters are 64 bits in width (XLEN=64). So, the 64-bit argument is received in register a0 (line 
6). The 64 bits are shifted left (logically) in line 9 (vs 32 bits as it was on the ESP32-C3).

     1          .global odd_parity
     2          .text
     3  odd_parity:
     4          li      t0,0            # t0 = 0
     5  
     6  loop:   beq     a0,zero,done    # Branch if a0 == 0
     7          sltz    t1,a0           # t1 = a0 < 0 ? 1 : 0
     8          xor     t0,t0,t1        # t0 = t0 ^ t1
     9          slli    a0,a0,1         # a0 <<= 1
    10          j       loop            # Repeat loop
    11  
    12  done:   mv      a0,t0           # a0 = count in t0
    13          ret
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Build and execute the program as follows:

$ cd ~/riscv/repo/08/parity/qemu64
$ gcc -g parity.S main.c
$ ./a.out
odd_parity(    0) (0x000000) returned 0
odd_parity(    1) (0x000001) returned 1
odd_parity(    2) (0x000002) returned 1
odd_parity(    3) (0x000003) returned 0
odd_parity(    5) (0x000005) returned 0
odd_parity(    7) (0x000007) returned 1
odd_parity(    9) (0x000009) returned 0
odd_parity(   15) (0x00000F) returned 0
odd_parity(   31) (0x00001F) returned 1
odd_parity(   63) (0x00003F) returned 0
odd_parity(   64) (0x000040) returned 1
odd_parity(  127) (0x00007F) returned 1
odd_parity( 1023) (0x0003FF) returned 0
odd_parity( 1024) (0x000400) returned 1
odd_parity( 2047) (0x0007FF) returned 1
odd_parity( 2048) (0x000800) returned 1
odd_parity(65535) (0x00FFFF) returned 0
odd_parity(65536) (0x010000) returned 1
Done.

Listing 8.8: Assembly language routine, ~/riscv/repo/08/parity/qemu64/parity.S. 

This parity function worked on 64 bits, just as it did with 32 for the ESP device. But there 
is a new effi  ciency concern. The loop iterations may run up to 64 times before returning to 
this platform. For XLEN=32-bit platforms, the maximum loop count was half of that. If you 
were computing parity on byte values that were loaded into an int64_t argument, the loop 
would be idle for 87.5% of the bits processed. Perhaps this can be improved upon.

Listing 8.9 shows a somewhat improved version of odd_parity() in fi le parity2.S. What is 
new is that we preload register t2 with a mask value of 32 1-bits in the upper half of the 
register. Line 5 places all 1 bits into t2, while line 6 shifts it left logically 32 bits. Recall that 
the immediate constant is sign-extended when loaded. This mask value permits us to check 
if the upper 32-bits of a0 are all zeros or not (lines 11 and 12). If they are zero, we branch 
to line 9 to simply shift the a0 register left by 32 bits, to avoid iterating 32 more times to 
get to that point. Note that no parity adjustment is required for this.

     1          .global odd_parity
     2          .text
     3  odd_parity:
     4          li      t0,0            # t0 = 0
     5          li      t2,-1           # t2 = 0xFFFFFFFFFFFFFFFF
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     6          slli    t2,t2,32        # t2 = 0xFFFFFFFF00000000
     7          j       loop
     8  
     9  bump32: slli    a0,a0,32
    10  loop:   beq     a0,zero,done    # Branch if a0 == 0
    11          and     a1,a0,t2        # a1 = upper 32 bits of a0
    12          beqz    a1,bump32       # Branch if a1 is zeros
    13          sltz    t1,a0           # t1 = a0 < 0 ? 1 : 0
    14          xor     t0,t0,t1        # t0 = t0 ^ t1
    15          slli    a0,a0,1         # a0 <<= 1
    16          j       loop            # Repeat loop
    17  
    18  done:   mv      a0,t0           # a0 = count in t0
    19          ret

Listing 8.9: A, ~/riscv/repo/08/parity/qemu64/parity2.S. 

There is more that could be done to improve the efficiency, but each addition has its trade-
offs. I'll leave that to you to experiment further.

Tip: To load a register with all 1 bits, take advantage of the sign extension of the imme-
diate data. For example "li t2,-1" sign extends the 12-bit value of -1 (0xFFF) to the full 
XLEN width of the register.
This can also apply to other special mask values. For example, to create a mask for all 
but the low order byte, the instruction "li t2,-256" can be used. This sets all bits to 1 in 
t2, except for the low order byte because -256 (0xF00) is sign extended.

8.7. Position Independent Code
One advanced area that I've avoided talking about is position-independent code. Let's 
mention it here briefly so that those of you who jump into doing the difficult can be aware 
of the pitfalls.

Normally we write code to execute at one fixed address. But what happens if the code 
needs to be copied to a different address and executed there? Traditionally, this requires 
fixing up addresses of referenced routines that didn't move. Under Fedora Linux, for ex-
ample, shared libraries need to be able to run in the shared memory segments, which are 
dynamically allocated. This creates two problems:

1. Labels of instructions that move with the code, need to be relative to the pc. In 
this way, moving the code does not upset branch references because they remain 
relative to the current address.

2. Fixed labels of routines or global data that do not move, require some special 
treatment in order to remain valid after the move.
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Recall from the last chapter when we examined the far call to a function foo() at address 
0x427F0000:

#                     call foo           # located at 0x427F0000

42005e16  007ea097    auipc   ra,0x7ea   # ra = 0x42005e16 + 0x7ea000
42005e1a  1ea080e7    jalr    490(ra)    # ra = 0x42005e1a + 4, PC = 0x427f0000

That code relied on the fact that the "auipc" opcode does a calculation relative to the pc.

If we were to move this code to a new location and keep foo where it is, the value computed 
for the call to foo() would now be incorrect. This is due to the relative "auipc" calculation. 
To fix this as an absolute reference to foo, we can substitute the "auipc" opcode with "lui" 
(load upper immediate) instead. Instead of computing a relative result, the absolute value 
of %hi(foo) is placed in ra instead. Then when we call lo%(foo) plus ra, we arrive at the 
fixed address of foo (0x427F0000).

#                     call foo           # located at 0x427F0000
  1048e:  62c1        lui     ra,hi%(foo)
  10490:  496282e7    jalr    lo%(foo)(ra)

For beginners, this kind of stuff might bother the brain. The good news is that, for the av-
erage routine, you can glibly use the "call" and otherwise ignore the issue.  But those who 
write code that must be position independent will have to assume more responsibility.

8.8. Summary
This chapter covered unconditional jumps and conditional branches. You witnessed how 
RISC-V is able to function without condition flags. You've worked with the shift instructions 
and the compare and set operations. We compared an optimized C function against our 
own assembly language routine and found that it is not always trivial to beat the compiler. 
We even snuck in the use of the "xor" opcode. This and other opcodes are the subjects of 
the next chapter.
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Chapter 9 • Basic Opcodes

Understanding the basics

Up to this point in this tutorial, things have been kept simple to avoid overwhelming the 
reader with details. But with the framework out of the way, you're at the point now where 
more functionality would be welcomed. This chapter introduces a number of additional 
opcodes, which are the essential building blocks for most RISC-V assembly language pro-
grams.

9.1. Arithmetic Opcodes
While we have used "add" before, let's list the arithmetic opcodes that RISC-V provides (all 
immediate values are signed):

  add    rd,rs1,rs2 # rd = rs1 + rs2
  addi   rd,rs1,imm # rd = rs1 + imm
  sub    rd,rs1,rs2 # rd = rs1 - rs2
  lui    rd,imm # rd = imm << 12
  uipc   rd,imm # rd = pc + (imm << 12)

9.1.1. add, addi and sub
You've already used "add" and "addi", which simply add two values. Notice that there is 
no "subi" (subtract immediate) opcode. The same effect can be accomplished by adding a 
negative immediate constant.

9.1.2. lui
The "lui" opcode provides a way to load 20 bits of unsigned data, into the high order 32 
bits of a 32-bit register. We've discussed this one before. When registers are larger than 32 
bits, the same applies except that bit 31 is sign-extended to the full XLEN bits for RV64 and 
larger. For example, the instruction:

      lui  a0,0xEEEEE

results in a0 receiving the value of 0xFFFFFFFFEEEEE000 for RV64.
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9.1.3. auipc
We've also seen this opcode before when it was used to do a relative address calculation. It 
adds the current location (register pc before it is incremented) to the unsigned immediate 
data (shifted up 20 bits). Like the "lui" opcode, bit 31 is sign-extended to the full register 
width for RV64 and larger platforms.

9.1.4. RV64 Arithmetic
In addition to the arithmetic opcodes just covered, RV64I includes the following additional 
opcodes:

  addw    rd,rs1,rs2          # rd = rs1 + rs2
  addiw   rd,rs1,imm          # rd = rs1 + imm
  subw    rd,rs1,rs2          # rd = rs1 – rs2

These all behave as if the register result were only 32 bits in size. But once the result is 
computed, bit 31 is then sign-extended to the full width of the register. You might think of 
these as working on a word (32-bits) and then sign-extended.

9.2. Logical Opcodes
The logical opcodes permit the programmer to perform bit-wise logical operations. RISC-V 
provides the following operations (the C language equivalent expressions are shown in the 
comments):

  and    rd,rs1,rs2  # rd = rs1 & rs2
  andi   rd,rs1,imm  # rd = rs1 & signed(imm)
  or     rd,rs1,rs2  # rd = rs1 | rs2
  or     rd,rs1,imm  # rd = rs1 | signed(imm)
  xor    rd,rs1,rs2  # rd = rs1 ^ rs2
  xori   rd,rs1,imm  # rd = rs1 ^ signed(imm)

The operations of "and", "or" and "xor" should be familiar to the C/C++ language program-
mer. These boolean operations are summarized in Table 9.1. Remember that the immedi-
ate data constants are sign-extended to the full register width, even though the immediate 
constant itself is only 12-bits wide within the opcode.

Tip: To load a register with all 1-bits, load an immediate data value of -1, as in "li t0,-1". 
In this example, t0 is set to all 1-bits due to the sign extension of the constant -1.

Bit 1 Bit 2 Operation Result

And Or Xor

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

Table 9.1: Basic logic operations.
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9.3. ESP32-C3 Rotate Left
Time to exercise some code! Many microcomputer architectures support some kind of a ro-
tate left or right instruction, which is noticeably absent in RISC-V. But the example program 
in Listing 9.1 demonstrates that this really is no hardship. Function rotate_left() rotates an 
uint32_t integer left one bit, placing the shifted out bit into bit position 0.

     1          .global rotate_left
     2          .text
     3  
     4  rotate_left:
     5          sltz    t0,a0           # t0=1 if bit 32=1
     6          slli    a0,a0,1         # a0 <<= 1
     7          or      a0,a0,t0        # Or in shifted out bit
     8          ret

Listing 9.1: Rotate left assembler function, ~/riscv/repo/09/rol/rol.S.    

The 32-bit unsigned value is passed in register a0 (line 5). The "set less than zero" opcode 
then sets register t0 to the value of 1 or 0 based upon the sign bit (bit 31) of a0. Line 6 then 
shifts that value in a0 left one bit (this fi lls bit 0 with a zero). Finally, line 7 does a logical 
"or" of the bit in t0, which adds a 1-bit or leaves the register a0 as it is, if t0 happens to be 
zero. Finally, the value is returned in register a0 (line 8).

The main driver program is shown in Listing 9.2. It simply iterates 32 times, rotating the 
value of 0xBEEF, initialized in line 10. After iterating the full 32 times, the value should 
return to 0xBEEF.

     1  #include <stdio.h>
     2  #include <stdint.h>
     3  
     4  #pragma GCC optimize("-O3")
     5  
     6  extern uint32_t rotate_left(uint32_t bits); // Assembler routine
     7  
     8  void
     9  app_main(void) {
    10          uint32_t bits = 0xBEEF, rol;
    11                  
    12          for ( unsigned ux=0; ux<32; ++ux, bits = rol ) {
    13                  rol = rotate_left(bits);
    14                  printf("rotate_left(0x%08X) returned 0x%08X\n",
    15                          bits,rol);
    16          }
    17          printf("Done.\n");
    18  }

Listing 9.2: Main program from ~/riscv/repo/09/rol/main/main.c.
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Build, flash and monitor the program as follows:

$ cd ~/riscv/repo/09/rol
$ idf.py build
...
$ idf.py -p <<<yourport>>> flash monitor
...
I (257) cpu_start: Starting scheduler.
rotate_left(0x0000BEEF) returned 0x00017DDE
rotate_left(0x00017DDE) returned 0x0002FBBC
rotate_left(0x0002FBBC) returned 0x0005F778
rotate_left(0x0005F778) returned 0x000BEEF0
rotate_left(0x000BEEF0) returned 0x0017DDE0
rotate_left(0x0017DDE0) returned 0x002FBBC0
rotate_left(0x002FBBC0) returned 0x005F7780
rotate_left(0x005F7780) returned 0x00BEEF00
rotate_left(0x00BEEF00) returned 0x017DDE00
rotate_left(0x017DDE00) returned 0x02FBBC00
rotate_left(0x02FBBC00) returned 0x05F77800
rotate_left(0x05F77800) returned 0x0BEEF000
rotate_left(0x0BEEF000) returned 0x17DDE000
rotate_left(0x17DDE000) returned 0x2FBBC000
rotate_left(0x2FBBC000) returned 0x5F778000
rotate_left(0x5F778000) returned 0xBEEF0000
rotate_left(0xBEEF0000) returned 0x7DDE0001
rotate_left(0x7DDE0001) returned 0xFBBC0002
rotate_left(0xFBBC0002) returned 0xF7780005
rotate_left(0xF7780005) returned 0xEEF0000B
rotate_left(0xEEF0000B) returned 0xDDE00017
rotate_left(0xDDE00017) returned 0xBBC0002F
rotate_left(0xBBC0002F) returned 0x7780005F
rotate_left(0x7780005F) returned 0xEF0000BE
rotate_left(0xEF0000BE) returned 0xDE00017D
rotate_left(0xDE00017D) returned 0xBC0002FB
rotate_left(0xBC0002FB) returned 0x780005F7
rotate_left(0x780005F7) returned 0xF0000BEE
rotate_left(0xF0000BEE) returned 0xE00017DD
rotate_left(0xE00017DD) returned 0xC0002FBB
rotate_left(0xC0002FBB) returned 0x80005F77
rotate_left(0x80005F77) returned 0x0000BEEF
Done.

At the end of the test run, the returned value is indeed 0xBEEF, which is the value that it 
started with. Success!
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9.4. RV64 Rotate Left
Under RV64, we have 64-bit registers to work with and Listing 9.3 illustrates a version of 
the same for running under QEMU. The only diff erence is the comment in line 5 is modifi ed 
to refl ect 64 bits.

     1          .global rotate_left
     2          .text
     3  
     4  rotate_left:
     5          sltz    t0,a0           # t0=1 if bit 63=1
     6          slli    a0,a0,1         # a0 <<= 1
     7          or      a0,a0,t0        # Or in shifted out bit
     8          ret

Listing 9.3: Program for rotate_left() function, ~/riscv/repo/09/rol/qemu64/rol.S.    

The main program diff ers slightly in Listing 9.4. This time the test iterates 64 times, to 
arrive at the original value, due to the increase in register width.

     1  #include <stdio.h>
     2  #include <stdint.h>
     3  
     4  #pragma GCC optimize("-O3")
     5  
     6  extern uint64_t rotate_left(uint64_t bits); // Assembler routine
     7  
     8  int
     9  main(int argc,char **argv) {
    10          uint64_t bits = 0xBEEF, rol;
    11                  
    12          for ( unsigned ux=0; ux<64; ++ux, bits = rol ) {
    13                  rol = rotate_left(bits);
    14                  printf("rotate_left(0x%016llX) returned 0x%016llX\n",
    15                          bits,rol);
    16          }
    17          return 0;
    18  }

Listing 9.4: The main program in ~/riscv/repo/09/rol/qemu64/main.c. 

Compile and run this program as follows:

$ gcc -g rol.S main.c
$ ./a.out
rotate_left(0x000000000000BEEF) returned 0x0000000000017DDE

RISC-V Assembly Language Programming - UK.indd   134RISC-V Assembly Language Programming - UK.indd   134 04/10/2022   11:0204/10/2022   11:02



Chapter 9 • Basic Opcodes

● 135

rotate_left(0x0000000000017DDE) returned 0x000000000002FBBC
rotate_left(0x000000000002FBBC) returned 0x000000000005F778
rotate_left(0x000000000005F778) returned 0x00000000000BEEF0
rotate_left(0x00000000000BEEF0) returned 0x000000000017DDE0
rotate_left(0x000000000017DDE0) returned 0x00000000002FBBC0
rotate_left(0x00000000002FBBC0) returned 0x00000000005F7780
rotate_left(0x00000000005F7780) returned 0x0000000000BEEF00
rotate_left(0x0000000000BEEF00) returned 0x00000000017DDE00
rotate_left(0x00000000017DDE00) returned 0x0000000002FBBC00
rotate_left(0x0000000002FBBC00) returned 0x0000000005F77800
rotate_left(0x0000000005F77800) returned 0x000000000BEEF000
rotate_left(0x000000000BEEF000) returned 0x0000000017DDE000
rotate_left(0x0000000017DDE000) returned 0x000000002FBBC000
rotate_left(0x000000002FBBC000) returned 0x000000005F778000
rotate_left(0x000000005F778000) returned 0x00000000BEEF0000
rotate_left(0x00000000BEEF0000) returned 0x000000017DDE0000
rotate_left(0x000000017DDE0000) returned 0x00000002FBBC0000
rotate_left(0x00000002FBBC0000) returned 0x00000005F7780000
rotate_left(0x00000005F7780000) returned 0x0000000BEEF00000
rotate_left(0x0000000BEEF00000) returned 0x00000017DDE00000
rotate_left(0x00000017DDE00000) returned 0x0000002FBBC00000
rotate_left(0x0000002FBBC00000) returned 0x0000005F77800000
rotate_left(0x0000005F77800000) returned 0x000000BEEF000000
rotate_left(0x000000BEEF000000) returned 0x0000017DDE000000
rotate_left(0x0000017DDE000000) returned 0x000002FBBC000000
rotate_left(0x000002FBBC000000) returned 0x000005F778000000
rotate_left(0x000005F778000000) returned 0x00000BEEF0000000
rotate_left(0x00000BEEF0000000) returned 0x000017DDE0000000
rotate_left(0x000017DDE0000000) returned 0x00002FBBC0000000
rotate_left(0x00002FBBC0000000) returned 0x00005F7780000000
rotate_left(0x00005F7780000000) returned 0x0000BEEF00000000
rotate_left(0x0000BEEF00000000) returned 0x00017DDE00000000
rotate_left(0x00017DDE00000000) returned 0x0002FBBC00000000
rotate_left(0x0002FBBC00000000) returned 0x0005F77800000000
rotate_left(0x0005F77800000000) returned 0x000BEEF000000000
rotate_left(0x000BEEF000000000) returned 0x0017DDE000000000
rotate_left(0x0017DDE000000000) returned 0x002FBBC000000000
rotate_left(0x002FBBC000000000) returned 0x005F778000000000
rotate_left(0x005F778000000000) returned 0x00BEEF0000000000
rotate_left(0x00BEEF0000000000) returned 0x017DDE0000000000
rotate_left(0x017DDE0000000000) returned 0x02FBBC0000000000
rotate_left(0x02FBBC0000000000) returned 0x05F7780000000000
rotate_left(0x05F7780000000000) returned 0x0BEEF00000000000
rotate_left(0x0BEEF00000000000) returned 0x17DDE00000000000
rotate_left(0x17DDE00000000000) returned 0x2FBBC00000000000
rotate_left(0x2FBBC00000000000) returned 0x5F77800000000000
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rotate_left(0x5F77800000000000) returned 0xBEEF000000000000
rotate_left(0xBEEF000000000000) returned 0x7DDE000000000001
rotate_left(0x7DDE000000000001) returned 0xFBBC000000000002
rotate_left(0xFBBC000000000002) returned 0xF778000000000005
rotate_left(0xF778000000000005) returned 0xEEF000000000000B
rotate_left(0xEEF000000000000B) returned 0xDDE0000000000017
rotate_left(0xDDE0000000000017) returned 0xBBC000000000002F
rotate_left(0xBBC000000000002F) returned 0x778000000000005F
rotate_left(0x778000000000005F) returned 0xEF000000000000BE
rotate_left(0xEF000000000000BE) returned 0xDE0000000000017D
rotate_left(0xDE0000000000017D) returned 0xBC000000000002FB
rotate_left(0xBC000000000002FB) returned 0x78000000000005F7
rotate_left(0x78000000000005F7) returned 0xF000000000000BEE
rotate_left(0xF000000000000BEE) returned 0xE0000000000017DD
rotate_left(0xE0000000000017DD) returned 0xC000000000002FBB
rotate_left(0xC000000000002FBB) returned 0x8000000000005F77
rotate_left(0x8000000000005F77) returned 0x000000000000BEEF
$

The result shows proof positive that the rotate left was correct because the original value 
returned after 64 iterations.

9.5. ESP32-C3 Rotate Right
Rotating the bits to the right requires an extra step, as shown in Listing 9.5. Line 5 performs 
an "and immediate" operation placing a 1 or 0 into register a1. This example also illustrates 
that you can work with unused argument registers as temporary registers. Line 6 shifts 
that result in a1 up to bit 31. Then the argument value in a0 is shifted right (logical) one 
bit in line 7. Finally, the bit saved in a1 is or-ed into register a0 (line 8) and then returned.

Tip: When using unused argument registers as temporaries, it is recommended that 
you start with a7 and work downward. The reason is that if more arguments are later 
needed, you won't have to modify your code to reassign the registers that were in use.

    
     1          .global rotate_right
     2          .text
     3  
     4  rotate_right:
     5          andi    a1,a0,1         # a1=1 if bit 0 of a0 is true
     6          slli    a1,a1,31        # Set bit 31 of a1 if bit=1
     7          srli    a0,a0,1         # a0 >>= 1 (logical)
     8          or      a0,a0,a1        # or in sign bit        
     9          ret

Listing 9.5: Program for rotate_right() function, ~/riscv/repo/09/ror/main/ror.S.
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The main program is illustrated in Listing 9.6 and is otherwise much the same as before.

     1 #include <stdio.h>
     2 #include <stdint.h>
     3 
     4 #pragma GCC optimize("-O3")
     5 
     6 extern uint32_t rotate_right(uint32_t bits); // Assembler routine
     7 
     8 void
     9 app_main(void) {
    10  uint32_t bits = 0xBEEF, ror;
    11   
    12  for ( unsigned ux=0; ux<32; ++ux, bits = ror ) {
    13   ror = rotate_right(bits);
    14   printf("rotate_right(0x%08X) returned 0x%08X\n",
    15    bits,ror);
    16  }
    17  printf("Done.\n");
    18 }

Listing 9.6: The main program to test rotate_right(), ~/riscv/repo/09/ror/main/main.c.     

Build, fl ash and monitor the program as usual:

$ cd /riscv/repo/09/ror
$ idf.py build
...
$ idf.py -p $PORT flash monitor
...
I (257) cpu_start: Starting scheduler.
rotate_right(0x0000BEEF) returned 0x80005F77
rotate_right(0x80005F77) returned 0xC0002FBB
rotate_right(0xC0002FBB) returned 0xE00017DD
rotate_right(0xE00017DD) returned 0xF0000BEE
rotate_right(0xF0000BEE) returned 0x780005F7
rotate_right(0x780005F7) returned 0xBC0002FB
rotate_right(0xBC0002FB) returned 0xDE00017D
rotate_right(0xDE00017D) returned 0xEF0000BE
rotate_right(0xEF0000BE) returned 0x7780005F
rotate_right(0x7780005F) returned 0xBBC0002F
rotate_right(0xBBC0002F) returned 0xDDE00017
rotate_right(0xDDE00017) returned 0xEEF0000B
rotate_right(0xEEF0000B) returned 0xF7780005
rotate_right(0xF7780005) returned 0xFBBC0002
rotate_right(0xFBBC0002) returned 0x7DDE0001
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rotate_right(0x7DDE0001) returned 0xBEEF0000
rotate_right(0xBEEF0000) returned 0x5F778000
rotate_right(0x5F778000) returned 0x2FBBC000
rotate_right(0x2FBBC000) returned 0x17DDE000
rotate_right(0x17DDE000) returned 0x0BEEF000
rotate_right(0x0BEEF000) returned 0x05F77800
rotate_right(0x05F77800) returned 0x02FBBC00
rotate_right(0x02FBBC00) returned 0x017DDE00
rotate_right(0x017DDE00) returned 0x00BEEF00
rotate_right(0x00BEEF00) returned 0x005F7780
rotate_right(0x005F7780) returned 0x002FBBC0
rotate_right(0x002FBBC0) returned 0x0017DDE0
rotate_right(0x0017DDE0) returned 0x000BEEF0
rotate_right(0x000BEEF0) returned 0x0005F778
rotate_right(0x0005F778) returned 0x0002FBBC
rotate_right(0x0002FBBC) returned 0x00017DDE
rotate_right(0x00017DDE) returned 0x0000BEEF
Done.

As an exercise, create a RV64 version of the same to be run under QEMU. There is one 
minor change needed for ror.S. Can you spot it?

9.6. Pseudo Opcodes
Some additional pseudo-opcodes are available that make writing your RISC-V assembly 
language code easier and at the same time, easier to read.

  nop # no operation (addi x0,x0,0)
  not    rd,rs # one's complement (xori rd,rs,-1)
  neg    rd,rs # two's complement (sub rd,x0,rs)
  negw   rd,rs # two's complement, word (subw rd,x0,rs RV64)

The "not" opcode is the same as the familiar one's complement (~) operator in C. The "neg" 
opcode produces a two's complement value by subtracting rs from zero. The "negw" is for 
the RV64 and larger platforms to treat a 64-bit value initially as a 32-bit value and then 
sign extend the result.

9.7. Unsigned Multi-precision Arithmetic
How is the data type uint64_t supported by the C/C++ compiler on the ESP32-C3, which 
is RV32-based? Since there are no 64-bit register operations available, it must be done 
32 bits at a time. As you know from before, there are no flag register bits like Carry. So, we 
must explore the RISC-V solution to these types of problems.

For unsigned data types, this proves to be straightforward. Listing 9.7 demonstrates how 
it is done. The low order words are added together in line 11, with the result replacing a0, 
where the low order 32 bit result is returned. Line 12 then tests if the unsigned result in a0 
is less than a2 (operand 2), and if so, places a 1 in a7, else zero. This value is essentially the 
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carry bit. In other words, if the unsigned sum of the low order words is less than either of 
the low order operands, then there is a carry of 1. The program continues in line 13 to add 
the high order 32-bit words, replacing a1 with the result. Finally, the carry (if any) is added 
to the high order word in line 14. The 64-bit result is then returned in a0 and a1 at line 15.

     1          .global add64
     2          .text
     3  
     4  # ARGUMENTS:
     5  #       a0, a1  uint64_t operand 1
     6  #       a2, a3  uint64_t operand 2
     7  #
     8  # RETURNS:
     9  #       a0, a1  uint64_t sum
    10  #
    11  add64:  add     a0,a0,a2        # Add low order 32 bits
    12          sltu    a7,a0,a2        # a7 = a0 < a2 ? 1 : 0
    13          add     a1,a1,a3        # Add high order 32 bits
    14          add     a1,a1,a7        # Add carry
    15          ret

Listing 9.7: Multi-precision unsigned program ~/riscv/repo/09/multipu/main/multipu.S. 

The main driver program for this test is shown in Listing 9.8. The variables x, y and z are 
marked volatile in this program to prevent the optimizing C compiler from pre-calculating 
the result.

     1  #include <stdio.h>
     2  #include <stdint.h>
     3  
     4  #pragma GCC optimize("-O3")
     5  
     6  extern uint64_t add64(uint64_t op1,uint64_t op2);
     7  
     8  void
     9  app_main(void) {
    10          volatile uint64_t x=0x7FFFFFFFF, y=0x3000011115, z;
    11  
    12          z = add64(x,y);
    13          printf("0x%016llX + 0x%016llX = 0x%016llX\n",x,y,z);
    14  }

Listing 9.8: Main driver program ~/riscv/repo/09/multipu/main.c. 
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Build, flash and monitor the program to see the results:

$ cd ~/riscv/repo/09/multipu
$ idf.py build
...
$ idf.py -p <<<yourport>>> flash monitor
...
I (257) cpu_start: Starting scheduler.
0x00000007FFFFFFFF + 0x0000003000011115 = 0x0000003800011114

If you plug those values into gdb, you can verify the result:

$ gdb
GNU gdb (GDB) 12.1
Copyright (C) 2022 Free Software Foundation, Inc.
...
(gdb) p /x 0x7FFFFFFFFll + 0x3000011115ll
$1 = 0x3800011114
(gdb)

Unsigned Overflow
Testing for unsigned overflow is equally simple, since all that is required is to see if a carry 
occurred out of the high order word.

9.8. Signed Multi-precision Arithmetic
Signed arithmetic handles the carry precisely the same way. When adding the low order 
words, simply test if the result of the sum is less than either of the operand words. If so, 
then a carry is needed.

9.8.1. Signed Overflow
Testing for overflow of a signed value is a little more involved than a carry. Listing 9.9 illus-
trates an example function testing for overflow after addition. The general function s32ovf 
returns 1 if the addition of two int32_t values results in an overflow, else a zero.

     1          .global s32ovf
     2          .text
     3  
     4  # ARGUMENTS:
     5  #       a0      int32_t operand 1
     6  #       a1      int32_t operand 2
     7  #
     8  # RETURNS:
     9  #       a0      flag:
    10  #               0 = no overflow
    11  #               1 = overflow
    12  #
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    13  s32ovf: slti    t1,a0,0         # t1 = a0 < 0 ? 1 : 0
    14          slti    t2,a1,0         # t2 = a1 < 0 ? 1 : 0
    15          bne     t1,t2,noovfl    # Signs differ: no overflow
    16  
    17  #       Signs equal
    18  
    19          add     t0,a0,a1        # t0 = a0 + a1 (sum)
    20          slti    t0,t0,0         # t0 = t0 < 0 ? 1 : 0
    21          bne     t0,t1,ovfl      # Branch if overflowed
    22  
    23  noovfl: li      a0,0            # No overflow
    24          ret
    25  
    26  ovfl:   li      a0,1            # Overflow
    27          ret

Listing 9.9: Program ~/riscv/repo/09/multips/main/ovflow.S. 

The overflow test procedure is summarized as follows:

1. The input values to be summed are passed into the function in registers a0 and a1 
according to the GNU calling convention.

2. Line 13 sets t1 to 1 if the first operand is negative, else zero.
3. Line 14 sets t2 to 1 if the second operand is negative, else zero.
4. A branch to noovfl is taken in line 15 if the signs differ (no overflow is possible 

when the signs differ).
5. A trial sum is made of the two operands into t0 to determine the sign of the result 

(line 19).
6. Register t0 is set to 1 if the trial sum is negative, else zero (line 20).
7. If t0 from step 6 does not match t1 from step 2, then the result's sign has changed, 

indicating an overflow. In the overflow case, a branch is made to label ovfl (line 
21).

8. When there is no overflow from step 7, fall through and return zero (line 23).

In this example, we only return the overflow status of the sum. An improved approach 
would be to return both the sum and the status together, but that would be getting ahead 
of ourselves.

The main driver program is provided in Listing 9.10. Four tests are performed by calling 
the static function report() (lines 8 to 15). Each test is invoked with different test values in 
lines 20 to 23. The assembly language function is invoked from line 12, and the results are 
reported in lines 13 and 14.

     1  #include <stdio.h>
     2  #include <stdint.h>
     3  
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     4  #pragma GCC optimize("-O3")
     5  
     6  extern int32_t s32ovf(int32_t op1,int32_t op2);
     7  
     8  static void
     9  report(int32_t x,int32_t y) {
    10          int z;
    11  
    12          z = s32ovf(x,y);
    13          printf("0x%08X (%d) + 0x%08X (%d) = 0x%08X (%d): %soverflow\n",
    14                  x,x,y,y,x+y,x+y,z?"":"no ");
    15  }
    16  
    17  void
    18  app_main(void) {
    19  
    20          report(0x7FFFFFFE,1);
    21          report(0x7FFFFFFE,46);
    22          report(-3,46);
    23          report(-3,0x80000000);
    24  }

Listing 9.10: Main driver program ~/riscv/repo/09/ovflow/main/main.c. 

Build, flash and monitor the run as follows:

$ cd ~/riscv/repo/09/ovflow
$ idf.py build
...
$ idf.py -p <<<yourport>>> flash monitor
...
I (258) cpu_start: Starting scheduler.
0x7FFFFFFE (2147483646) + 0x00000001 (1) = 0x7FFFFFFF (2147483647): no overflow
0x7FFFFFFE (2147483646) + 0x0000002E (46) = 0x8000002C (-2147483604): overflow
0xFFFFFFFD (-3) + 0x0000002E (46) = 0x0000002B (43): no overflow
0xFFFFFFFD (-3) + 0x80000000 (-2147483648) = 0x7FFFFFFD (2147483645): overflow

In the output, the first example retains the original sign after the sum (result 0x7FFFFFFF). 
However, in the second sum, we see that the sign changed (result 0x8000002C) and the 
function s32ovf() correctly identifies it as an overflow. The third test had inputs of different 
signs and the result remains ok. The final test results in an overflow, which is correctly 
identified.

RV64 Signed Overflow
Let's improve our assembly language function s32ovf() as function addi64() for RV64 and 
return the sum and the overflow indication together. In addition, let's also provide function 
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neg64() since negating a value can also lead to overflow. For example, a 16-bit signed in-
teger has a maximum range of -32768 to +32767. When the value -32768 is negated, the 
+32768 value cannot be represented. This counts as an overflow.

The function prototypes for addi64() and neg64() are as follows:

extern int64_t addi64(int64_t op1,int64_t op2,bool *pbool);
extern int64_t neg64(int64_t op1,bool *pbool);

In these versions of the functions, we return an overflow indication by use of the pointer 
argument pbool. When the operation for addi64() or neg64() results in an overflow, the 
bool value pointed to by the pbool pointer argument is set to true. When no overflow oc-
curs, the value is set to false.

Let's examine the addi64() function first:

1. Register t5 is initialized to zero in line 15. This register is assuming the role of the 
overflow indicator.

2. Register t2 is set to 1 if the first argument (in a0) is negative (line 16).
3. Register t3 is set to 1 if the second argument (in a1) is negative (line 17).
4. Register a0 is set to the result of adding the arguments (a0 + a1, in line 18).
5. If the signs of the arguments differ in line 19, the branch to "doret" is taken, since 

no overflow is possible when the signs differ.
6. Otherwise, control continues to line 23 where t3 is set to the sign of the result (in 

a0). Register t3 assumes the value 1, if the result is negative else is zero.
7. If the sign of the result (t3) matches the sign of the first argument (originally in 

a0), then no overflow has occurred, and the branch to "doret" is taken.
8. Otherwise, control passes to line 28 where t5 is set to 1 (true).
9. Control then passes to the label of "doret", where the current boolean value in 

register t5 is then stored to the caller's bool, by means of the pointer in register 
a2 (argument 3).

10. Finally, control returns to the caller in line 30.

An important feature of this calling convention is that it is thread-safe. The caller supplies 
its own bool variable to be updated, which is local to the calling thread. This allows several 
threads to be simultaneously calling addi64() and yet each caller receives its own private 
flag value for overflow.

     1          .global addi64,neg64
     2          .text
     3  
     4  # ARGUMENTS:
     5  #       a0      int64_t operand 1
     6  #       a1      int64_t operand 2
     7  #       a2      ptr to bool_t
     8  # RETURNS:
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     9  #       a0      int64_t sum
    10  #       bool_t return values:
    11  #               0       no overflow
    12  #               1       overflow
    13  
    14  addi64:
    15          li      t5,0            # Flag = false
    16          slti    t2,a0,0         # t2 = a0 < 0 ? 1 : 0 (sign 1)
    17          slti    t3,a1,0         # t3 = a1 < 0 ? 1 : 0 (sign 2)
    18          add     a0,a0,a1        # Sum opr 1 + opr 2
    19          bne     t2,t3,doret     # No overflow possible: signs differ
    20  
    21  #       Signs equal: test result sign
    22  
    23          slti    t3,a0,0         # t3 = sum < 0 ? 1 : 0
    24          beq     t3,t2,doret     # Signs equal: no overflow
    25  
    26  #       Overflowed
    27  
    28          li      t5,1            # flag = true
    29  doret:  sb      t5,0(a2)        # Update bool value by ptr
    30          ret
    31  
    32  # ARGUMENTS:
    33  #       a0      int64_t operand 1
    34  #       a1      ptr to bool_t
    35  # RETURNS:
    36  #       a0      int64_t sum
    37  #       bool_t return values:
    38  #               0       no overflow
    39  #               1       overflow
    40  
    41  neg64:  li      t5,0            # Flag = false
    42          li      t4,1            # t4 = 1
    43          slli    t3,t4,63        # t3 = max negative value
    44          bne     a0,t3,noprob    # Branch if arg is not maximally negative
    45          sb      t4,0(a1)        # *ptr = true (overflow)        
    46          ret                     # a0 remains the same value
    47  
    48  noprob: neg     a0,a0           # Negate argument (a0)
    49          sb      t5,0(a1)        # *ptr = false (no overflow)
    50          ret

Listing 9.11: Assembler functions addi64() and neg64() in  
~/riscv/repo/09/ovf64/qemu64/addi64.S. 
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The neg64() function works on a similar principle:

1. Register t5 assumes the role of the overflow flag and is initialized false (line 41).
2. Register t4 is loaded with the immediate constant of 1 (line 42).
3. Register t3 is then set to the most negative number possible by shifting the value 

of 1 (in t4) up by 63 bits.
4. The argument (a0) is then compared to t3 and if not equal control transfers to "no-

prob". Argument values other than the most negative value can be safely negated 
without an overflow (at step 6).

5. When the branch is not taken in step 4, the value of t4 (still holding the value 1/
True) is then saved by pointer (in a1) to the caller's bool variable, and control re-
turns to the caller (line 46).

6. Otherwise, at line 48 (label "noprob"), the argument is safely negated (in a0), and 
the value 0/False (in t5) is stored by pointer argument (a1) in the caller's bool 
variable, prior to returning in line 50.

The main driver program is shown in Listing 9.12. Static functions report() and negtest() 
test out the assembly language routines addi64() and neg64() respectively. Lines 34 and 
35 test out the addi64() routine, which uses the thread-safe calling format. The addi64() 
call is made in line 13, passing in the two operands and a pointer to the bool variable 
declared in line 10. It is best practice to initialize values like "overflow", but the function 
addi64() was designed to set the variable regardless of the overflow result. The overflow 
value is reported by printf() in lines 14 and 15.

Likewise, the neg64() function is invoked at line 23, returning the overflow status declared 
at line 20, by a pointer in the call. Lines 24 and 25 report the result of the call.

     1  #include <stdio.h>
     2  #include <stdint.h>
     3  #include <stdbool.h>
     4  
     5  extern int64_t addi64(int64_t op1,int64_t op2,bool *pbool);
     6  extern int64_t neg64(int64_t op1,bool *pbool);
     7  
     8  static void
     9  report(int64_t op1,int64_t op2) {
    10          bool overflow;
    11          int64_t r;
    12  
    13          r = addi64(op1,op2,&overflow);
    14          printf("0x%016llX + 0x%016llX = 0x%016llX, overflow=%d\n",
    15                  op1,op2,r,overflow);
    16  }
    17  
    18  void
    19  negtest(int64_t op) {
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    20          bool overflow;
    21          int64_t r;
    22  
    23          r = neg64(op,&overflow);
    24          printf("- 0x%016llX = 0x%016llX, overflow=%d\n",
    25                  op,r,overflow);
    26          
    27  }
    28  
    29  int
    30  main(int argc,char **argv) {
    31          int64_t x, y;
    32          int64_t r;
    33  
    34          report(0x4EEEEEEE99999999ll,0x2AAAAAAAABBBBBBBll);
    35          report(0x4EEEEEEE99999999ll,0x7AAAAAAAABBBBBBBll);
    36  
    37          negtest(-45609);
    38          negtest(45609);
    39          negtest((1ll << 63) + 1);
    40          negtest(1ll << 63);
    41  
    42          return 0;
    43  }

Listing 9.12: Main driver program ~/riscv/repo/09/ovf64/qemu64/main.c.

Compile and run the program in Fedora Linux as follows:

$ cd ~/riscv/repo/09/ovf64/qemu64
$ gcc -g addi64.S main.c
$ ./a.out
0x4EEEEEEE99999999 + 0x2AAAAAAAABBBBBBB = 0x7999999945555554, overflow=0
0x4EEEEEEE99999999 + 0x7AAAAAAAABBBBBBB = 0xC999999945555554, overflow=1
- 0xFFFFFFFFFFFF4DD7 = 0x000000000000B229, overflow=0
- 0x000000000000B229 = 0xFFFFFFFFFFFF4DD7, overflow=0
- 0x8000000000000001 = 0x7FFFFFFFFFFFFFFF, overflow=0
- 0x8000000000000000 = 0x8000000000000000, overflow=1
$

We see that the addi64() function performs the 64-bit addition and returns the correct 
overflow status for the two tests (first two lines of output). The last four lines of output are 
the result of testing neg64(). From the output shown, it is evident that the results of these 
tests are correct and that the one overflow case was identified.

RISC-V Assembly Language Programming - UK.indd   146RISC-V Assembly Language Programming - UK.indd   146 04/10/2022   11:0204/10/2022   11:02



Chapter 9 • Basic Opcodes

● 147

Questions emerge when designing functions like addi64() and neg64(). When the overflow 
occurs for neg64() in this program, we chose to return the input argument unchanged. 
Some applications might prefer to return the value 0x7FFFFFFFFFFFFFFF instead, which is 
only off by one. On the other hand, this is still not a correct result.

For addi64(), the incomplete sum was returned instead when an overflow occurred. If the 
application can tolerate the overflow (as wraparound), then perhaps this is acceptable. 
Here, it is assumed that the caller will take the appropriate action when the overflow indi-
cator is set to true.

9.9. Summary
At this point in the book, you should feel good about your progress in the RISC-V assembly 
language. You have covered most of the RISC-V instruction set opcodes that you'll normally 
use. There are some others that are privileged or used in special situations, which will be 
left for the advanced students to study on their own.

The next chapter covers multiply and divide opcodes. These are available when extension 
M for RISC-V is provided. This M extension is included for the ESP32C3 device (RV32) and 
for QEMU (RV64I) used by our Fedora Linux. With the exception of floating point and mul-
tiply/divide our treatment of opcodes is complete. The beauty of RISC-V is not having to 
memorize volumes of opcodes!
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Chapter 10 • Multiply / Divide

 
Multiply like a rabbit with extension M

Integer multiplication and division are essential mathematic operations. Yet RISC-V defines 
these as an extension M, which permits vendors to create CPUs without this capability to 
save on cost. These operations can, of course, be performed in software but at the expense 
of CPU time. Given the clear advantages of these hardware operations, devices like the 
ESP32-C3 do, however, provide for extension M. These added opcodes boost the overall 
performance of the CPU.

10.1. Multiplication Operations
When you multiply a 32-bit value (multiplier) by another 32-bit value (multiplicand), you 
obtain a result (product) that is represented by up to 32+32 bits in length. Because of this, 
some architectures provide one opcode for producing a product in a register pair. RISC-V 
takes a different approach. It defines opcodes to produce only the low order word, or an-
other to return the high order product word. However, as will be revealed, RISC-V does 
permit an optimization that exploits the hardware to avoid having to perform the multipli-
cation operation twice.

Signed Multiplication
Multiplication can be performed as unsigned or signed integer operations. Unsigned mul-
tiplication is often used for C language subscripting operations within an array or matrix, 
where the first element is at subscript 0. Other languages such as Ada permit subscripts to 
use negative numbers, and thus must use signed multiplication.

When multiplying signed numbers, the product's sign obeys the following relationships:

• a positive ⅹ positive → positive
• a positive ⅹ negative → negative
• a negative ⅹ positive → negative
• a negative ⅹ negative → positive
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10.2. Division Operations
When dividing a 32-bit number (dividend) by another 32-bit number (divisor), it produces 
a result (quotient) up to 32 bits in length. Dividing by 1 will do, this for example.  Addition-
ally, when dividing integers, you may need the remainder. So, a division may be expected 
to produce both the quotient and remainder. Some architectures provide one opcode that 
produces the result in a pair of registers. Like multiplication, RISC-V takes a different ap-
proach, providing for an optimization that silicon can exploit.

In addition to the above characteristics, one has to be careful about the semantics of a 
divide by zero and the possibility of overflow.

Signed Division
When dividing signed numbers, the quotient's and remainder's sign obeys the following 
rules:

• a positive ÷ positive → positive quotient, positive remainder
• a positive ÷ negative → negative quotient, positive remainder
• a negative ÷ positive → negative quotient, positive remainder
• a negative ÷ negative → positive quotient, negative remainder

It should be noted that the C language compiler "/" and "%" operators follow these con-
ventions.

10.3. Opcode mul/mulu
The RISC-V integer multiplication opcode is "mul" or "mulu" for signed and unsigned re-
spectively:

  mul    rd,rs1,rs2 # rd = lower(rs1 x rs2), signed
  mulu   rd,rs1,rs2 # rd = lower(rs1 x rs2), unsigned

The destination register receives the lower XLEN bits of the product. To obtain the upper 
XLEN bits of the product, the "mulhs" (signed) or "mulhu" (unsigned) opcodes are available.

10.4. Opcode mulhs/mulhu
To obtain the upper XLEN bits of the product, use the "mulh" or "mulhu" opcodes for signed 
and unsigned respectively:

  mulhs   rd,rs1,rs2 # rd = upper(rs1 x rs2), signed
  mulhu   rd,rs1,rs2 # rd = upper(rs1 x rs2), unsigned

10.5. Optimized Multiply
Now let's reveal the RISC-V trick for using the optimized full multiply. To get the full 
XLEN+XLEN bit product, use the following back-to-back instructions for signed multiply, in 
this specific sequence:
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  mulhs   rdh,rs1,rs2       # rdh = high order product word
  mul     rdl,rs1,rs2       # rdl = low order product word

The destination register rdh receives the high order product word while rdl receives the 
low order product word. Register rdh cannot be the same as rs1 or rs2 for the optimized 
operation. For unsigned products use the following sequence instead:

  mulhu   rdh,rs1,rs2       # rdh = high order product word
  mulu    rdl,rs1,rs2       # rdl = low order product word

For the multiply to function optimally, the following rules must be observed:

1. The mulhs or mulhu opcode must occur first.
2. The mul or mulu opcode must immediately follow.
3. Source registers rs1 and rs2 must be provided in the same order for both 

instructions.
4. And the destination register rdh cannot be rs1 or rs2.

Multiplication is a relatively expensive operation. When the silicon is designed for it, the first 
of the pair of opcodes can evaluate the XLEN-bit+XLEN-bit product internally but stores 
only the high order half of the product in the destination register rdh. When the second 
opcode of the pair is processed and the rules above are obeyed, then the CPU can store 
the lower half of the precomputed product in the current destination register. In this opti-
mization, the only added overhead is the fetch and decode of the second instruction in the 
sequence. A failure to observe the above rules results in two completely separate multipli-
cation operations being computed, along with added execution time. Figure 10.1 shows a 
creature that simply loves to multiply.

Figure 10.1 Canadian rabbits love to multiply.
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10.6. Unsigned Factorial
As a fun little exercise for the ESP32-C3 device, let's compute an unsigned factorial value 
of x! The ufact32() function computes the factorial without checking for overflow but is 
otherwise, designed to be as frugal as possible. The program is illustrated in Listing 10.1.

     1          .global ufact32
     2          .text
     3  
     4  # ARGUMENTS:
     5  #       a0      uint32_t x
     6  #
     7  # RETURNS:
     8  #       a0      uint32_t factorial x!
     9  #
    10  
    11  ufact32:li      t1,1            # t1 = 1
    12          mv      t0,a0
    13  
    14  1:      addi    t0,t0,-1        # t0 = a0 - 1
    15          ble     t0,t1,2f        # Branch if t0 <= 1
    16          mul     a0,a0,t0        # a0 *= t0
    17          j       1b              # Loop until t1 <= 1
    18  
    19  2:      ret

Listing 10.1: Unsigned factorial in ~/riscv/repo/10/factorial/main/factorial.S.

The function operates as follows:

1. Upon entry to the function, the constant 1 is loaded into temporary register 1, for 
use in comparisons (line 11).

2. The argument x is copied to temporary register t0 (line 12).
3. At the top of the loop in line 14, the value in t0 is decremented.
4. A branch is taken from line 15 if the value of t0 is less than or equal to 1. The 

branch when taken, passes control to the return instruction in line 19.
5. The value that's currently in a0 (initially x) is multiplied by register t0 (initially x-1) 

at line 16. The result replaces a0.
6. The control then passes from line 17 to the top of the loop at line 14.

The main program to test this function is illustrated in Listing 10.2.

     1  #include <stdio.h>
     2  #include <stdint.h>
     3  
     4  extern uint32_t ufact32(uint32_t x);
     5  
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     6  void
     7  app_main(void) {
     8                  
     9          for ( unsigned ux=0; ux<=12; ++ux ) {
    10                  uint32_t f = ufact32(ux);
    11  
    12                  printf("%2u ! => %u 0x%08X\n",ux,f,f);
    13          }
    14          printf("Done.\n");
    15  }

Listing 10.2: Main program for ufact32() in file ~/riscv/repo/10/factorial/main/main.c.

Build and exercise the program as follows:

$ cd ~/riscv/repo/10/factorial
$ idf.py build
...
$ idf.py -p <<<yourport>>> flash monitor
...
I (257) cpu_start: Starting scheduler.
 0 ! => 0 0x00000000
 1 ! => 1 0x00000001
 2 ! => 2 0x00000002
 3 ! => 6 0x00000006
 4 ! => 24 0x00000018
 5 ! => 120 0x00000078
 6 ! => 720 0x000002D0
 7 ! => 5040 0x000013B0
 8 ! => 40320 0x00009D80
 9 ! => 362880 0x00058980
10 ! => 3628800 0x00375F00
11 ! => 39916800 0x02611500
12 ! => 479001600 0x1C8CFC00
Done.

The hexadecimal value was printed on the right so that you can visualize the limit of this 
calculation (eight hexadecimal digits). If you were to continue further, the result would 
overflow and be incorrect. Under Linux/Mac, you can check this using the Linux bc com-
mand:

$ bc
bc 1.06
Copyright 1991-1994, 1997, 1998, 2000 Free Software Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type `warranty'.
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39916800 * 12
479001600
479001600 * 13
6227020800

The 12! result is indeed 479001600, but 13! overflows 32-bits to the value 6227020800 
(0x17328CC00).

10.7. Opcode div/divu
Division is even more costly to evaluate than multiplication. It is therefore beneficial to 
have it included in the M extension. The following opcodes provide an operation that divides 
an XLEN-bit dividend value by an XLEN-bit divisor. Two opcodes provide for signed and 
unsigned division:

  div     rd,rs1,rs2   # rd = rs1 / rs2 (signed)
  divu    rd,rs1,rs2   # rd = rs1 / rs2 (unsigned)

Notice that even though a product can be XLEN+XLEN bits in size, there is no provision 
to divide an integer of that size. Only XLEN-bits can be hardware divided by extension M.

Opcode rem/remu
In addition to division, a remainder is often required. The "rem" and "remu" opcodes pro-
vide the remainder after dividing an XLEN-bit dividend value by an XLEN-bit divisor, for 
signed and unsigned numbers respectively:

  rem     rd,rs1,rs2   # rd = rs1 % rs2 (signed)
  remu    rd,rs1,rs2   # rd = rs1 % rs2 (unsigned)

10.8. Optimized Divide
Algorithms frequently require both the quotient and the remainder in a calculation. So why 
expend extra time performing the operation twice? Like the optimized multiply operation, 
RISC-V permits an optimized divide if the programmer issues the instructions as a se-
quence in a specific order. The followings provide for signed division and remainder as one 
hardware operation:

  div     rdq,rs1,rs2   # rdq = rs1 / rs2
  rem     rdr,rs1,rs2   # rdr = rs1 % rs2

For unsigned use:

  divu    rdq,rs1,rs2   # rdq = rs1 / rs2
  remu    rdr,rs1,rs2   # rdr = rs1 % rs2
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For the division operation to function optimally, the following rules must be observed:

1. The div or divu opcode must occur first.
2. The rem or remu opcode must immediately follow.
3. Source registers rs1 and rs2 must be provided in the same order for both instruc-

tions.
4. And the destination register rdq cannot be the same as rs1 or rs2.

10.9 Division By Zero
Division by zero has that mathematical quirk that there is no defined answer. Some archi-
tectures raise an exception when this is attempted. The designers of RISC-V felt it best to 
simply specify the result of such an operation instead since it is easy to test for this condi-
tion. For signed division by zero, the following results apply:

•  x÷0→-1
•  x% 0→0  

For unsigned division, the following results apply:

•  x÷0→2XLEN-1
•  x% 0→x

If there is a possibility of dividing by zero, it is best to test the divisor prior to performing 
the division or remainder.

10.10 Divide Overflow
Division of signed integer numbers also has the quirk that an overflow is possible in one 
specific case. Like the negate operation, the signed divide overflows when the most nega-
tive number of XLEN bits is divided by a negative one. RISC-V defines the following results 
for overflow:

•  2XLEN/-1→2XLEN-1

•  2XLEN-1mod-1→0

In other words, dividing the most negative number by a negative one produces a quotient 
that cannot be represented as a positive number, with a remainder of zero. If this is a 
possibility, an extra test should be included when dividing it by a negative one. Then if the 
dividend is the most negative number, you know that you have an overflow on your hands.

10.11 Safe Division
Now let's put in code what you've learned so far about division. Listing 10.3 illustrates the 
function safediv(), which returns both quotient and remainder, as well as flags indicating a 
divide-by-zero and overflow conditions.
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     1          .global safediv
     2          .text
     3  
     4  # ARGUMENTS:
     5  #       a0      signed dividend
     6  #       a1      signed divisor
     7  #       a2      pointer to remainder
     8  #       a3      pointer to bool (div by zero)
     9  #       a4      pointer to bool (overflow)
    10  #
    11  # RETURNS:
    12  #       a0      quotient
    13  #       remainder by pointer
    14  #       div by zero flag by pointer
    15  #       overflow flag by pointer
    16  #
    17  
    18  safediv:
    19          mv      t3,a0           # t3 = dividend
    20          mv      t4,a1           # t4 = divisor
    21  
    22          li      t5,0            # t5 = true when overflow
    23          li      t6,0            # t6 = true if divisor zero
    24          bnez    t4,nzero
    25          li      t6,1            # t6 = true (div by zero)
    26  
    27  nzero:  div     a0,t3,t4        # a0 = dividend / divisor
    28          rem     a1,t3,t4        # a1 = dividend % divisor
    29          sw      a1,0(a2)        # Return remainder
    30  
    31          li      t2,-1
    32          bne     t4,t2,noovf     # Divisor != -1 => no overflow
    33  
    34          slli    t2,t2,31        # t2 now maximally -ve
    35          bne     t2,t3,noovf     # Branch if dividend not max -ve
    36          li      t5,1            # Else set overflow t5 = true
    37  
    38  noovf:  sb      t5,0(a4)        # Return overflow flag
    39          sb      t6,0(a3)        # Return div by zero flag
    40          ret

Listing 10.3: The safediv() function in file ~/riscv/repo/10/safediv/main/safediv.S.
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The operation of this function breaks down as follows:

1. The dividend and divisor arguments are copied to temporary registers t3 and t4 
respectively (lines 19 and 20).

2. The temporary register t5 is initialized false as the flag for overflow (line 22).
3. Temporary register t6 is initialized false as the flag for divide-by-zero (line 23).
4. The divisor is tested for zero in line 24. If it is not zero, a branch is taken to nzero 

(step 6).
5. Otherwise, the flag in t6 is set to true (line 25) to indicate divide-by-zero.
6. The division is performed in line 27, placing the result into register a0, which is the 

return value (line 27). The values divided are in temporaries t3 and t4.
7. The remainder, which is computed at step 6, is placed into register a1 at line 28. 

This is an optimized operation since it obeys the optimized operation rules.
8. The remainder is stored by pointer back to the caller's variable in line 29 (the 

pointer is in register a2).
9. Temporary register t2 is loaded with a value of -1 (line 31).
10. In line 32, if the divisor (in t4) is not equal to -1 (in t2), then a branch is made to 

label "noovf", since no overflow is possible.
11. Otherwise, in line 34, the value in t2 is shifted left logical for 31 bits, creating the 

most negative 32-bit value in t2.
12. If the dividend (in t3) is not equal to the most negative number (in t2), a branch 

is made to label "noovf" (line 35).
13. Otherwise, we set temporary register t5, holding the overflow flag to true (line 36).
14. At the label "noovf", we store both flags – register t5 to the caller's overflow flag 

(pointer in a4), and register t6 to the caller's divide-by-zero flag (pointer in a3), 
in lines 38 and 39.

15. Return to the caller in line 40.

The driver program main.c, is provided in Listing 10.4. The loop in lines 30 to 45 call the 
function safediv() with six test cases, while reporting the results.

     1  #include <stdio.h>
     2  #include <stdint.h>
     3  #include <stdbool.h>
     4  
     5  extern int32_t safediv(
     6          int32_t divident,
     7          int32_t divisor,
     8          int32_t *remainder,
     9          bool *divbyzero,
    10          bool *overflow
    11  );
    12  
    13  struct s_div {
    14          int32_t dividend;
    15          int32_t divisor;
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    16  };
    17  
    18  void
    19  app_main(void) {
    20          static struct s_div const tests[] = {
    21                  { 23, 3 },
    22                  { -23, 3 },
    23                  { 46, 0 },
    24                  { 0x80000000, -2 },
    25                  { 0x80000000, -1 },
    26                  { 0x80000000, 15 },
    27                  { 0, 0 }
    28          };
    29                  
    30          for ( unsigned ux=0;
    31            tests[ux].dividend || tests[ux].divisor;
    32            ++ux ) {
    33                  int32_t dividend = tests[ux].dividend;
    34                  int32_t divisor = tests[ux].divisor;
    35                  int32_t quotient, remainder;
    36                  bool divbyzero, overflow;
    37  
    38                  quotient = safediv(dividend,divisor,
    39                          &remainder,&divbyzero,&overflow);
    40  
    41                  printf("%d / %d => %d remainder %d; "
    42                          "divbyzero=%d, overflow=%d\n",
    43                          dividend, divisor, quotient, remainder,
    44                          divbyzero, overflow);
    45          }
    46          printf("Done.\n");
    47  }

Listing 10.4: Main program ~/riscv/repo/10/safediv/main/main.c.

Build, flash and run the program on your ESP32-C3 as follows:

$ cd ~/riscv/repo/10/safediv
$ idf.py build
...
$ idf.py -p <<<yourport>>> flash monitor
...
I (257) cpu_start: Starting scheduler.
23 / 3 => 7 remainder 2; divbyzero=0, overflow=0
-23 / 3 => -7 remainder -2; divbyzero=0, overflow=0
46 / 0 => -1 remainder 46; divbyzero=1, overflow=0
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-2147483648 / -2 => 1073741824 remainder 0; divbyzero=0, overflow=0
-2147483648 / -1 => -2147483648 remainder 0; divbyzero=0, overflow=1
-2147483648 / 15 => -143165576 remainder -8; divbyzero=0, overflow=0
Done.

In the resulting output, the first two lines report valid quotient and remainders with no 
divide-by-zero or overflow flags set. The third line does, however, report a divide-by-zero 
failure (and also confirms the quotient result of -1 and a remainder of 46, which was the 
dividend).

The second to last line reported an overflow. This is correct because a maximally negative 
32-bit number (-2147483648) divided by -1, should be the positive value +2147483648, 
which cannot be represented by a signed 32-bit number.

10.12. Greatest Common Divisor
To further test our knowledge of division, let's implement a function named gcd64(), which 
will calculate the greatest common divisor between two integers. Listing 10.5 contains the 
function for use under Fedora Linux (QEMU).

The function is based upon the following algorithm:

1. If a = 0 in GCD(a,b) then return b (GCD(0,b) = b).
2. If b = 0 in GCD(a,b) then return a (GCD(a,0) = a).
3. If b > a then swap a and b.
4. Otherwise, we compute r = a % b, to satisfy the equation a = b × q + r.
5. Set a = b and b = r to effectively call GCD(b,r).
6. Repeat from step 1.

     1          .global gcd64
     2          .text
     3  
     4  # ARGUMENTS:
     5  #       a0      Number a
     6  #       a1      Number b
     7  #
     8  # RETURNS:
     9  #       a0      Returned GCD(a,b)
    10  
    11  gcd64:  bge     a0,a1,1f        # Branch if a >= b
    12  
    13  #       swap a0 and a1
    14  
    15          mv      t0,a0
    16          mv      a0,a1
    17          mv      a1,t0
    18  
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    19  1:      beqz    a0,retb         # If a == 0 return b
    20          beqz    a1,reta         # If b == 0 return a
    21  
    22  #       Compute r such that a = b x q + r
    23  
    24          rem     t1,a0,a1        # t1 (r) = a % b
    25  
    26  #       GCD(b,r)
    27  
    28          mv      a0,a1           # a = b
    29          mv      a1,t1           # b = r
    30          j       gcd64
    31  
    32  retb:   mv a0,a1                # Return b
    33  reta:   ret

Listing 10.5: The gcd64() function in ~/riscv/repo/10/gcd/qemu64/gcd64.S. 

Now let's see how that mapped out to RISC-V in the program gcd64.S:

1. Make sure a >= b in line 11, branching to 1f when true.
2. Otherwise, swap arguments a and b on lines 15 to 17.
3. If a in a0 equals zero, branch to retb at line 19 (step 8).
4. if b in a1 equals zero, branch to rega at line 20 (step 9).
5. Compute the remainder by dividing a0 (a) by a1 (b), with the result going to tem-

porary register t0 (line 24).
6. Set a0 (a) to the value b in register a1 (line 28) and then set a1 (b) to the value r 

in register t1 (line 29).
7. Repeat step 1 (line 30).
8. Label "retb" (line 32) returns the value of b (in register a0).
9. Label "reta" (line 33) returns the value of a (in register a0) when branched to from 

line 20. Otherwise, when execution continues from line 32, then the value of b is 
returned instead.

The main program for this test harness is provided in Listing 10.6.

     1  #include <stdio.h>
     2  #include <stdint.h>
     3  
     4  extern int64_t gcd64(int64_t a,int64_t b);
     5  
     6  struct s_test {
     7          int64_t a;
     8          int64_t b;
     9  };
    10  
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    11  int
    12  main(int argc,char **argv) {
    13          static struct s_test const tests[] = {
    14                  { 12, 10 },
    15                  { 51, 21 },
    16                  { 31 * 3, 31 * 7 },
    17                  { 211*5, 211 },
    18                  { 0, 0 }
    19          };
    20  
    21          for ( unsigned ux=0; tests[ux].a && tests[ux].b; ++ux ) {
    22                  int64_t g = gcd64(tests[ux].a,tests[ux].b);
    23                  printf("gcd(%d,%d) => %d\n",
    24                          tests[ux].a,tests[ux].b,g);
    25          }
    26          return 0;
    27  }

Listing 10.6: Main driver program ~/riscv/repo/10/qemu64/main.c.

The loop on lines 21 to 25 uses the function with different test values. The result is printed 
on lines 23 and 24. Compile and run this program under Fedora Linux as follows:

$ cd ~/riscv/repo/10/gcd/qemu64
$ gcc -g gcd64.S main.c
$ ./a.out
gcd(12,10) => 2
gcd(51,21) => 3
gcd(93,217) => 31
gcd(1055,211) => 211

10.13. Combinations
To capitalize on the many things we've learned so far in this book, let's try our hand on 
an RV64 project that is a little more involved. Let's compute a combination C(n,r) function 
such that out of n objects, determine how many unique samples of size r, can be obtained. 
This is calculated with the formula:

The listing for the assembly language nCr() function is provided in Listing 10.7.

     1          .global nCr     # C(n,r) calculation
     2          .text
     3  
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     4  # ARGUMENTS:
     5  #       a0      uint64_t n of C(n,r)
     6  #       a1      uint64_t r of C(n,r)
     7  #
     8  # RETURNS:
     9  #       a0      uint64_t C(n,r) = n! / (r! * (n - r)!)
    10  
    11  nCr:    mv      t5,a0           # Save t5 = n
    12          mv      t4,a1           # Save t4 = r
    13          sub     t6,t5,t4        # Save t6 = (n - r)
    14  
    15          jal     t0,fact         # n! (in a0)
    16          mv      t5,a0           # t5 = n!
    17  
    18          mv      a0,t4           # a0 = r
    19          jal     t0,fact         # r!
    20          mv      t4,a0           # t4 = r!
    21  
    22          mv      a0,t6           # a0 = (n - r)
    23          jal     t0,fact         # (n - r)!
    24          mv      t6,a0           # t6 = (n - r)!
    25  
    26          mul     t3,t4,t6        # t3 = r! * (n-r)!
    27          div     a0,t5,t3        # a0 = n! / t3
    28          ret
    29  
    30  #
    31  #       Internal factorial routine
    32  #
    33  fact:   li      t1,1            # t1 = 1
    34          mv      t2,a0           # t2 = n
    35  
    36  1:      addi    t2,t2,-1        # t2 = a0 - 1
    37          ble     t2,t1,2f        # Branch if t2 <= 1
    38          mul     a0,a0,t2        # a0 *= t2
    39          j       1b              # Loop until t1 <= 1
    40  
    41  2:      jr      t0              # Internal return via t0

Listing 10.7: The nCr() function found in file ~/riscv/repo/10/nCr/qemu64/ncr.S.

From the formula, it is seen that the factorial is needed in three places. Rather than in-
voking the overhead of saving and restoring to/from the stack, the internal function fact(), 
starting in line 33, uses temporary register t0 as the linkage register (the return occurs 
in line 41, through t0). Otherwise, this internal routine is much the same as the factorial 
function that we've seen before.
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Let's break the rest of this procedure down:

1. Argument n, arriving in a0, is copied to temporary register t5 (line 11).
2. Argument r, arriving in a1, is copied to temporary register t4 (line 12).
3. The difference (n – r) is computed into temporary register t6 to be used later (line 

13).
4. Next, n! is computed in lines 15 and 16 (n is still in register a0).
5. Lines 18 to 20 compute r! in the register t4.
6. Lines 22 to 24 compute (n – r)! in the register t6.
7. Register t3 receives the multiplication result of the denominator at line 26.
8. Finally, register a0 receives the quotient from dividing the numerator and the de-

nominator in line (28), prior to returning to the caller.

It is possible to optimize this further, to reduce the number of registers needed. But, unless 
you can reduce the number of steps involved, it may not be worth it. I'll leave that exercise 
for the reader.

The main driver for the test is provided in Listing 10.8. It is like many test harness pro-
grams that we've seen before, testing the nCr() function with different values.    

     1  #include <stdio.h>
     2  #include <stdint.h>
     3  
     4  extern uint64_t nCr(int64_t n,int64_t r);
     5  
     6  struct s_test {
     7          uint64_t        n;
     8          uint64_t        r;
     9  };
    10  
    11  int
    12  main(int argc,char **argv) {
    13          static struct s_test const tests[] = {
    14                  { 3, 2 },       // 3
    15                  { 4, 3 },       // 4
    16                  { 9, 3 },       // 84
    17                  { 13, 7 },      // 1716
    18                  { 0, 0 }
    19          };
    20          
    21          for ( unsigned ux=0; tests[ux].n != 0; ++ux ) {
    22                  uint64_t ncr = nCr(tests[ux].n,tests[ux].r);
    23                  printf("C(n=%lu,r=%lu) => %lu\n",
    24                          tests[ux].n,
    25                          tests[ux].r,
    26                          ncr);
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    27          }
    28  
    29          return 0;
    30  }

Listing 10.8: The nCr() function with diff erent values.

Compile and run the test under Fedora Linux as follows:

$ gcc -g ncr.S main.c
$ ./a.out
C(n=3,r=2) => 3
C(n=4,r=3) => 4
C(n=9,r=3) => 84
C(n=13,r=7) => 1716

There are online combination calculators available where you can verify these results.[1] 
What was interesting about this assignment was that an internal function call was made 
through the temporary register t0 to calculate the factorials. Since we didn't need to save 
any registers or use any stack-based variables, the entire calculation was register-based 
for the ultimate effi  ciency. With the use of the RISC-V M extension, the entire computation 
was performed in hardware. The number of registers available in a RISC CPU often permits 
optimal execution.

10.14. Summary
This chapter has shown the utility and use of the multiply and division operations provided 
by the RISC-V extension M. When this extension is not provided, execution time suff ers 
considerably because these operations must be performed in software.

The next chapter will change gears somewhat and use what you've learned and apply it to 
addressing, indexing and array subscripting.

Bibliography
[1]  CalculatorSoup, L. L. C. (n.d.). Combinations calculator (NCR). CalculatorSoup. 

Retrieved May 31, 2022, from https://www.calculatorsoup.com/calculators/
discretemathematics/combinations.php
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Chapter 11 • Addressing, Subscripting and Strings

 
There's no place like your home address

Many times, you'll need to access an array or matrix from within an assembler routine to 
achieve some performance goal. This chapter introduces some of the finer points of work-
ing with pointers and subscripts within the assembler function. Within C/C++, you can 
increment a pointer without giving it much thought. But in assembler language, there are 
some traps to watch out for. Additionally in this chapter, we'll examine some string-related 
examples.

11.1. Testing for Null Pointers
In the C language, you are often testing for the NULL pointer (or nullptr in C++). On most 
platforms today, this is a pointer with an address of zero. So, testing for a null pointer in 
assembly language is straightforward. If the pointer address is in register t0, then:

    beqz  t0,gotnull     # Branch if t0 holds a nullptr

Testing the address for zero will branch when the pointer is NULL/nullptr.

11.2. Sizeof Type for Pointers
In C/C++, each pointer has an associated data type and size for that type. On the ESP32-C3 
for example, where the "int" type is 32 bits in size, a pointer to an int also has an associated 
data size of 4 bytes. So, when you increment an int pointer in C/C++, the address is actu-
ally incremented by 4. This is easy to forget when you are programming at the assembly 
language level.

11.3. Matrix Memory Layout
The C/C++ compilers use a particular matrix organization, which affects how you subscript 
to the correct element address. If subscripts x and y are used to access an element in the 
matrix m, then how is the matrix organized? Figure 11.1 illustrates how the subscripts map 
to rows and columns. This is known as row-major order, where each row element resides 
in sequential memory locations.
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Figure 11.1: The subscript organization of a 3×3 C/C++ matrix.

Row-major order has the column number incrementing fi rst, followed by the row number. 
A 3x3 matrix is implemented in memory storage as a linear array of 9 elements. The very 
fi rst matrix element [0][0] is the fi rst member of the array at index 0. The second row 
[1][0] starts at index 1*3 + 0, or index 3. The same matrix is shown in Figure 11.2 with 
linear array index numbers.

Figure 11.2: The mapping of a matrix to a 1-dimensional array.

There is one more important aspect to this matrix business to remember. Each element 
may be composed of multiple bytes, such as a matrix of "int" types. This must be taken into 
account when computing the byte address of a particular element.

11.3.1. Subscript Calculation
In memory, all matrices are linear arrays in the end. As Figure 11.2 illustrated, row-major 
order is used and from this, we can derive a formula for a linear array index. For any matrix 
m of r rows and c columns, the linear array index x for an element can be computed for 
subscripts i and j as:

 x = i * c + j

For example, if you have a 5×7 matrix, then the index to the m[3][2] element, is computed as:

 23 = 3 * 7 + 2

Since a 5×7 matrix occupies the same storage as a 35-element linear array a, the index of 
m[3][2] is equivalent to accessing a[23].

11.4. Identity Matrix Example
To receive some hands-on experience in these matters but keeping things simple, let's 
examine an assembly language function identm() that effi  ciently initializes an integer iden-
tity matrix. An identity matrix contains all zero elements except for those on the diagonal. 
Figure 11.3 illustrates a 3×3 identity matrix.

Figure 11.3: A 3×3 identity matrix.

This time let's examine the main program fi rst so that we're clear about the program ele-
ments being operated upon. Listing 11.1 illustrates the C main program that defi nes two 
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matrices and initializes each of them according to their size using our assembly language 
routine identm().

     1  #include <stdio.h>
     2  #include <stdint.h>
     3  
     4  extern void identm(void *matrix,unsigned n);
     5  
     6  void
     7  app_main(void) {
     8          {
     9                  unsigned const n=3;
    10                  int matrix[n][n];
    11  
    12                  identm(&matrix,n);
    13  
    14                  printf("%u x %u identity matrix:\n",n,n);
    15                  for ( unsigned ux=0; ux<n; ++ux ) {
    16                          putchar('[');
    17                          for ( unsigned uy=0; uy<n; ++uy ) {
    18                                  printf("%3d ",matrix[ux][uy]);
    19                          }
    20                          puts("]");
    21                  }
    22          }
    23          {
    24                  unsigned const n=6;
    25                  int matrix[n][n];
    26  
    27                  identm(&matrix,n);
    28  
    29                  printf("%u x %u identity matrix:\n",n,n);
    30                  for ( unsigned ux=0; ux<n; ++ux ) {
    31                          putchar('[');
    32                          for ( unsigned uy=0; uy<n; ++uy ) {
    33                                  printf("%3d ",matrix[ux][uy]);
    34                          }
    35                          puts("]");
    36                  }
    37          }
    38  
    39          puts("Done");
    40          fflush(stdout);
    41  }

Listing 11.1: Main program ~/riscv/repo/11/identm/main/main.c.
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This program defines a 3×3 matrix in line 10 and a 6×6 matrix in line 25. The matrix ele-
ments are of type "int", which are 32 bits for the ESP32-C3. As created these matrices are 
uninitialized. The calls to identm() in lines 12 and 27 will, however, initialize them according 
to their dimensions.

Line 4 declares the function prototype for our assembly language routine:

    4  extern void identm(void *matrix,unsigned n);

The first argument is declared as a void pointer to avoid limitations of the C language. We 
might be tempted to write:

    4  extern void identm(int matrix[][],unsigned n);

but the compiler will only accept "[]" for the last dimension of the matrix.  To avoid this 
problem, we define that argument to be a byte address of the matrix, without any type 
checking by the compiler. The second parameter declares the dimension of the square 
matrix n.

The assembler language routine is illustrated in Listing 11.2. Let's break down its operation:

1. The pointer argument arrives in register a0, as a pointer to the first byte of the 
matrix.

2. The dimension n arrives in register a1.
3. Line 10 multiplies n times n to arrive at the total number of elements of the matrix. 

This is placed in temporary register t1.
4. Temporary register t0 is loaded with the constant 4 (line 11). This corresponds to 

the sizeof(int).
5. Finally, t1 is multiplied by t0 (with the sizeof(int)) so that t1 becomes the total 

number of bytes that the matrix occupies (line 12).
6. The pointer to the matrix (in a0) is added to t1 (total # of bytes) with the result 

placed into temporary register t2 (line 13). This is the pointer to the last byte after 
the end of the matrix storage. This simplifies the end of the loop handling later.

7. Temporary register t5 is loaded with the constant 1, to be stored on the diagonal 
elements (line 14).

8. At the top of the outer loop at label "put1", we store the value of 1 (in t5) at the 
current pointer in a0 (line 16). Note that we are storing a "word" or 4 bytes.

9. Now the pointer in a0 is incremented by 4 (sizeof(int)) in line 17.
10. The temporary register t3 is loaded with n (in a1) at line 19. This will control the 

number of zeros that will be stored.
11. The loop in lines 20 to 24 will then store n zeros. There are n zeros between each 

1 value on the diagonal.
12. A test is made at the top of the inner loop at line 20 to see if we have reached the 

end of the matrix. If so, the branch is taken to label "end" to return to the caller.
13. Otherwise, a zero is stored from line 21.
14. The pointer is incremented by sizeof(int) at line 22.
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15. The counter in t3 is decremented (line 23) and branches back to "loop" (line 20) if 
the counter is non-zero (from line 24).

16. Otherwise, control falls through to line 25. As long as the pointer is still within the 
matrix we loop back to the outer loop label "put1" at line 16.

17. Eventually, line 20 will branch to "end" and return to the caller.

     1          .global identm
     2          .text
     3  
     4  #       extern void identm(void *matrix,unsigned n)
     5  #
     6  # ARGUMENTS:
     7  #       a0      Pointer to int matrix[n][n]
     8  #       a1      unsigned n
     9  
    10  identm: mul     t1,a1,a1        # t1 = total elements
    11          li      t0,4            # sizeof(int) = 4
    12          mul     t1,t1,t0        # t1 *= sizeof(int)
    13          add     t2,a0,t1        # Ptr of end of matrix
    14          li      t5,1            # t5 = 1
    15  
    16  put1:   sw      t5,0(a0)        # *ptr = 1
    17          addi    a0,a0,4         # ptr += 4
    18  
    19          mv      t3,a1           # t3 = n
    20  loop:   bge     a0,t2,end       # At end of matrix?
    21          sw      x0,0(a0)        # *matrix + ptr = 0
    22          addi    a0,a0,4         # ptr += 4
    23          addi    t3,t3,-1        # --t3
    24          bnez    t3,loop
    25          blt     a0,t2,put1      # Loop again if not at  end
    26  
    27  end:    ret

Listing 11.2: The identm() function in file ~/riscv/repo/11/identm/main/identm.S.

The main lesson in this example is the need to be aware of the size of the matrix element. 
When I initially wrote this routine it failed because I was incrementing the pointer (in a0) 
by 1, rather than by the sizeof(int), which is 4. This is a very easy mistake to make, so 
please take note.

Build, flash and monitor this program on the ESP32-C3 as follows:

$ cd ~/riscv/repo/11/identm
$ idf.py build
...
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$ idf.py -p <<<yourport>>> flash monitor
...
I (258) cpu_start: Starting scheduler.
3 x 3 identity matrix:
[  1   0   0 ]
[  0   1   0 ]
[  0   0   1 ]
6 x 6 identity matrix:
[  1   0   0   0   0   0 ]
[  0   1   0   0   0   0 ]
[  0   0   1   0   0   0 ]
[  0   0   0   1   0   0 ]
[  0   0   0   0   1   0 ]
[  0   0   0   0   0   1 ]
Done

From the displayed output, it is verified that the initialization was correctly done.

Tip: The observant reader will notice that the RISC-V opcodes for compare and set only 
includes "slt", "sltu" and the immediate constant forms. But what if you wanted to test 
for greater-than-or-equal-to for example? This can be done by reversing the operands of 
the comparison. If you want to test a>=b, then use:

slt   rd,b,a # Test a>=b by testing b<a

11.5. String Functions
One area where assembly language may be of great service is in the special handling of 
string data. So, let's examine some common functions as well as some string conversions.

11.5.1. Function strlen()
The strlen() function is pretty basic to the C language support, and there is no need to 
replace it. But it is instructive to write one to see how much code it would require. Listing 
11.3 illustrates our assembly language version of strlen32(). It is pretty basic:

1. The pointer to the first byte of the string is passed as an argument in register a0. 
This pointer is copied to temporary register t0 at line 13, since we need a0 to re-
turn the result.

2. The register a0 is zeroed at line 14. This will be the byte count.
3. The loop starts at line 16, loading into register t1 the byte at the pointer (in t0). 

Be aware that this is a signed character load (with sign extended) but that doesn't 
affect this algorithm.

4. A branch is taken from line 17 to label "end" (step 7), if the byte we just loaded 
from memory was zero (i.e. a null byte).

5. If control continues to line 18, we then increment a0, which holds the current 
string length.
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6. The pointer value in t0 is incremented in line 19, before looping back to line 16.
7. The register a0 already has the accumulated string length to return, so the control 

returns to the caller in line 22.

     1          .global strlen32
     2          .text
     3  
     4  #       extern int strlen(char const *s)
     5  #
     6  # ARGUMENTS:
     7  #       a0      Pointer to string
     8  #
     9  # RETURNS:
    10  #       a0 (int) string length
    11  
    12  strlen32:
    13          mv      t0,a0           # t0 = char const *ptr
    14          li      a0,0            # Zero strlen
    15  
    16  loop:   lb      t1,0(t0)        # t1 = *ptr
    17          beqz    t1,end          # Branch if Null byte
    18          addi    a0,a0,1         # Increment strlen
    19          addi    t0,t0,1         # ++ptr
    20          j       loop
    21  
    22  end:    ret

Listing 11.3: Function strlen32() file ~/riscv/repo/11/strlen/main/strlen.S.

The main program is shown in Listing 11.4, which calls strlen32() with a few different 
strings and prints the results.

     1  #include <stdio.h>
     2  #include <stdint.h>
     3  
     4  extern int strlen32(char const *s);
     5  
     6  void
     7  app_main(void) {
     8          static char const *tests[] = {
     9                  "One",
    10                  "Three",
    11                  "Ten four",
    12                  "",
    13                  "This is the end!",
    14                  NULL
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    15          };
    16  
    17          for ( unsigned ux=0; tests[ux] != NULL; ++ux ) {
    18                  printf("strlen32('%s') => %d\n",
    19                          tests[ux],strlen32(tests[ux]));
    20          }
    21  
    22          puts("Done");
    23          fflush(stdout);
    24  }

Listing 11.4: The main program for testing strlen32() in file  
~/riscv/repo/11/strlen/main/main.c. 

Build, flash and monitor the program as follows:

$ cd ~/riscv/repo/11/strlen
$ idf.py build
...
$ idf.py -p <<<yourport>>> flash monitor
I (257) cpu_start: Starting scheduler.
strlen32('One') => 3
strlen32('Three') => 5
strlen32('Ten four') => 8
strlen32('') => 0
strlen32('This is the end!') => 16
Done

From these results, we can see that the function() produced the correct results.

11.5.2. Function strncpy32()
One standard function that has always bugged me is the function strncpy(). Its function 
prototype is as follows:

char *strncpy(char *dest, const char *src, size_t n);

This function copies characters from pointer src to pointer dest, until a null byte is encoun-
tered in the source string or n characters have been copied, whichever occurs first. When 
the src string is less than n characters, null bytes are appended until n characters have 
been placed into the destination buffer. Note that if the src string is greater or equal to n 
in length, there is no null byte placed into the destination buffer. This is often the source of 
many a C language program bug!

My complaint about this function is about efficiency. If you have a large receiving buffer, say 
1024 bytes in length, and you happen to have a short string to copy into it, then the call is 
wasteful. For example, assume the following:
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char buf[1024];
...
strncpy(buf,"abc",sizeof buf);

The strncpy() function will copy the three characters "abc" and then fill the remaining 1021 
bytes of buf with null bytes. This results in a nice and clean buf array but is wasteful of CPU 
cycles. Cost-wise, it would be best if strncpy() copied the three characters "abc" and only 
one null byte. So let's implement our own strncpy32() function to do exactly that.

Listing 11.5 illustrates our more efficient strncpy() function, named strncpy32() to avoid 
affecting other functions that may depend upon the original behaviour. Let's explain its 
operation:

1. Registers a0, a1 and a2 receive the calling arguments. Note that we return the 
argument dest, so it remains left alone in register a0 during this call.

2. Register t6 has the dest pointer copied into it in line 15. We will be incrementing 
this pointer as the execution proceeds.

3. Register t5 receives the calculated end of the buffer pointer in line 16. This is the 
original dest argument plus the value n.

4. The top of the loop begins in line 18. The branch to label "end" is taken if our work-
ing dest pointer in t6 has gone past the end of the buffer.

5. Otherwise, we do an unsigned byte load in line 19, from the src pointer.
6. The src pointer is incremented by 1 (line 20).
7. If the byte loaded into t4 at line 19 is a null byte, then branch to label "nul" (line 

21).
8. Otherwise, store the byte in t4 at the destination buffer using the working pointer 

in t6 (line 22).
9. The dest pointer is incremented in line 23, and the loop repeats starting again at 

line 18.
10. If a null byte is encountered at line 21, we arrive at line 26. Here one null byte is 

stuffed into the dest buffer using working pointer t6.
11. Arriving at label "end" from line 26 or line 18, causes execution to return to the 

caller. The unmodified dest pointer in a0 is returned.

     1          .global strncpy32
     2          .text
     3  
     4  #       extern char *strncpy32(char *dest,char const *src,size_t n);
     5  #
     6  # ARGUMENTS:
     7  #       a0      char *dest (also returned)
     8  #       a1      char const *src
     9  #       a2      size_t n
    10  #
    11  # RETURNS:
    12  #       a0      char *dest
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    13  
    14  strncpy32:
    15          mv      t6,a0           # t6 = dest ptr
    16          add     t5,a0,a2        # Points past end of dest buf
    17  
    18  loop:   bge     t6,t5,end       # Branch if we passed dest buf end
    19          lbu     t4,0(a1)        # Load byte from source
    20          addi    a1,a1,1         # ++src
    21          beqz    t4,nul          # Branch if null byte
    22          sb      t4,0(t6)        # Copy byte to dest
    23          addi    t6,t6,1         # ++dest
    24          j       loop
    25  
    26  nul:    sb      x0,0(t6)        # Store null byte
    27  end:    ret

Listing 11.5: The strncpy32() function in file  
~/riscv/repo/11/strncpy32/main/strncpy32.S.

The main program to test our strncpy32() function is provided in Listing 11.6. The dest 
buffer is declared in line 16 to hold 8 characters. Various tests from the for loop in line 19. 
To validate our test, we fill the array buf with 8 character 'X' bytes in line 20. Then we call 
our assembler routine strncpy32() at line 21, taking note of the returned pointer in variable 
rp. This is checked in the assertion at line 23. Lines 24 to 32 then report the results of what 
the array buf contains.

     1  #include <stdio.h>
     2  #include <string.h>
     3  #include <assert.h>
     4  
     5  extern char *strncpy32(char *dest,char const *src,size_t n);
     6  
     7  void
     8  app_main(void) {
     9          static char const *tests[] = {
    10                  "abc",
    11                  "Main",
    12                  "",
    13                  "1234567890",
    14                  NULL
    15          };
    16          char buf[8], *rp;
    17          char const *src;
    18  
    19          for ( unsigned ux=0; (src = tests[ux]) != NULL; ++ux ) {
    20                  memset(buf,'X',sizeof buf);
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    21                  rp = strncpy32(buf,src,sizeof buf);
    22  
    23                  assert(rp == buf);
    24                  printf("src='%s', n=%u, buf[] = ",src,sizeof buf);
    25                  for ( unsigned u=0; u<sizeof buf; ++u ) {
    26                          if ( buf[u] )
    27                                  printf("'%c'%c",
    28                                          buf[u],
    29                                          u+1<sizeof buf?',':'\n');
    30                          else    printf("NUL%c",
    31                                          u+1<sizeof buf?',':'\n');
    32                  }
    33          }
    34  
    35          puts("Done");
    36          fflush(stdout);
    37  }

Listing 11.6: Main program to test strncpy32() in file  
~/riscv/repo/11/strncpy32/main/main.c. 

Build, flash and execute the project as follows:

$ cd ~/riscv/repo/11/strncpy32
$ idf.py build
...
idf.py -p <<<yourport>>> flash monitor
...
I (257) cpu_start: Starting scheduler.
src='abc', n=8, buf[] = 'a','b','c',NUL,'X','X','X','X'
src='Main', n=8, buf[] = 'M','a','i','n',NUL,'X','X','X'
src='', n=8, buf[] = NUL,'X','X','X','X','X','X','X'
src='1234567890', n=8, buf[] = '1','2','3','4','5','6','7','8'
Done

How did we do? When the short string "abc" was copied, the destination buffer (buf) re-
ceived only the letters 'a', 'b', 'c' and the one null byte at the end, as expected. The library 
strncpy() routine would have filled the entire buffer with null bytes. In the third test, an 
empty source string was tested, but passed with just one null byte. In the last case, we 
supplied a longer source string than the destination buffer could hold. This too passed, but 
be careful in this case, since there is no terminating null byte.

11.5.3. String to Integer Conversion
Data arrives by different means but often in the form of character text. In order to perform 
a computation, that text must be converted into a numeric data type. Let's write a simple 
assembly language function to accept an unsigned number in text form and produce an 
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unsigned int value. This function will also return a boolean indicating whether or not the 
conversion was successful.

Listing 11.7 illustrates the function struint(). This function will skip all space characters but 
will fail if any other non-digit character is encountered.

     1          .global struint
     2          .text
     3  
     4  #       extern unsigned struint(char const *text,bool *ok)
     5  #
     6  # ARGUMENTS:
     7  #       a0      char const *text (text to convert)
     8  #       a1      pointer to bool
     9  #
    10  # RETURNS:
    11  #       a0      unsigned value (when ok is true)
    12  #       ok:
    13  #               true, conversion successful
    14  #               false, conversion failed
    15  
    16  struint:
    17          mv      t6,a0           # t6 = ptr to test
    18          li      a0,0            # Accumulator for uint
    19          li      t2,0            # Digit count
    20          li      t4,'0'
    21          li      t3,'9'
    22          li      t1,' ‚
    23          li      t0,10
    24  
    25  loop:   lbu     t5,0(t6)        # Load text char
    26          beqz    t5,nulbyt       # Branch if null byte
    27          beq     t5,t1,skip      # Skip white space
    28          bgt     t5,t3,fail      # char > '9'?
    29          blt     t5,t4,fail      # char < '0'?   
    30          andi    t5,t5,0x0F      # Mask out 0x00 to 0x09
    31          mul     a0,a0,t0        # a0 *= 10
    32          add     a0,a0,t5        # a0 += t5
    33          addi    t2,t2,1         # Bump digit count
    34  skip:   addi    t6,t6,1         # ++text ptr
    35          j       loop
    36  
    37  nulbyt: beqz    t2,fail         # Fail if no digits
    38          li      t0,1
    39          sb      t0,0(a1)        # ok = true
    40          ret
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    41  
    42  fail:   li      t0,0
    43  exit:   sb      t0,0(a1)        # ok = false
    44          ret

Listing 11.7: Routine struint() in file ~/riscv/repo/11/struint/main/struint.S.

The breakdown of struint() is as follows:

1. The pointer to the input text arrives in register a0, and a1 is a pointer to the bool 
that will receive a pass (1) or fail (0) status.

2. Register t6 receives a working copy of the input text address from a0 (line 17).
3. Register a0 is the value to be returned. It is initialized to zero in line 18.
4. The digit count in t2 is initialized to zero (line 19).
5. Registers t4 and t3 are loaded with the ASCII characters '0' and '9' respectively, to 

be used for comparison purposes (lines 20, 21).
6. Register t1 loads a space character, for comparison purposes (line 22).
7. Temporary register t0 loads the value 10, to be used for multiplication (line 23).
8. The loop begins at line 25 by loading a text character into t5.
9. A branch is taken to "nulbyt" if the loaded character is 0x00 (line 26).
10. A branch to "skip" is taken if the character loaded was a space (line 27).
11. Lines 28 and 29 test if the character is a digit. If not, a branch is made to "fail".
12. The last 4 bits of the digit are masked out in line 30.
13. Line 31 multiplies the accumulated unsigned value in register a0, by 10.
14. Then the isolated digit from step 12 is added to a0 (line 32).
15. Line 33 increments the digit count (for validating results).
16. Line 34 increments the text byte pointer, before returning to the top of the loop 

(at step 8).
17. If execution lands at "nulbyt", the digit count in t2 is checked. If there are no digits, 

the branch to "fail" is taken (line 37).
18. Otherwise, ok is set to true, and control returns to the caller.
19. If execution lands at "fail", the value of "ok" is set to false.

There is considerable room for improvement in the error checking in this routine, but it was 
kept simple to highlight the important concepts. The main driver program is illustrated in 
Listing 11.8, calling struint() with various strings and reporting the results.

     1  #include <stdio.h>
     2  #include <stdbool.h>
     3  
     4  extern unsigned struint(char const *text,bool *ok);
     5  
     6  void
     7  app_main(void) {
     8          static char const *tests[] = {
     9                  "  123",
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    10                  "0234",
    11                  "0",
    12                  "905",
    13                  "9_05",
    14                  " 907, ",
    15                  NULL
    16          };
    17          bool ok;
    18          unsigned v;
    19  
    20          for ( unsigned ux=0; tests[ux] != NULL; ++ux ) {
    21                  ok = 0;
    22                  v = struint(tests[ux],&ok);
    23  
    24                  printf("struint('%s') => %u, ok=%d\n",
    25                          tests[ux],v,ok);
    26          }
    27  
    28          puts("Done");
    29          fflush(stdout);
    30  }

Listing 11.8: Main program for struint() in file ~/riscv/repo/11/struint/main/struint.S.

Build, flash and monitor the program as follows:

$ cd ~/riscv/repo/11/struint
$ idf.py build
...
$ idf.py -p <<<yourport>>> flash monitor
...
I (257) cpu_start: Starting scheduler.
struint('  123') => 123, ok=1
struint('0234') => 234, ok=1
struint('0') => 0, ok=1
struint('905') => 905, ok=1
struint('9_05') => 9, ok=0
struint(' 907, ') => 907, ok=0
Done

From the test run output, all of the input texts converted ok except for the last two. The 
failures were due to the underscore (_) and comma (,) characters that were encountered 
in the input string.
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11.5.4. What if there is no Multiply?
While we live in relative luxury on the ESP32-C3, what do you do on embedded platforms 
that do not provide for hardware multiplication? It turns out that the multiplication can be 
done inline when we only have to multiply by ten.
Replace line 31 in struint.S (where the multiply is performed) with the following:

     sll     a6,a0,3 # a6 = a0 * 8
     sll     a0,a0,1 # a0 *= 2
     add     a0,a0,a6 # a0 += a6

And retry the build, flash and run. If you made the change correctly, the execution results 
will be identical. These three instructions perform the multiplication of a0 by 10 as follows:

1. Shift a0 left 3 bits, which effectively multiplies the value by 8 and save this in a6.
2. Shift a0 left 1 bit, which effectively multiples the value by 2.
3. Add these two and the result is the original value multiplied by 10.

Is this faster than using the hardware multiply? Without timing information or doing a 
benchmark on the ESP32-C3, it is difficult to know.

Tip: When processing with a character pointer, it is often convenient to look at the next 
or previous character without changing the pointer.
If the pointer variable in C is cp, then *cp or cp[0] returns the current character while 
cp[1] and cp[-1] return the next and prior characters respectively.  In RISC-V assembly, 
if the pointer is held in register t3, then "0(t3)" references the current character, while 
expressions "1(t3)" and "-1(t3)" access the next and prior characters respectively.

11.5.5. Integer to String Conversion
We've examined the conversion from an ASCII string, so now let's perform the reverse. 
Converting an unsigned integer into printable text, the assembly language program for 
function uintstr() is shown in Listing 11.9.

     1          .global uintstr
     2          .text
     3  
     4  #       extern char *uintstr(unsigned u,char const *buf,unsigned buflen)
     5  #
     6  # ARGUMENTS:
     7  #       a0      unsigned value to convert to text
     8  #       a1      pointer to buf
     9  #       a2      max length for buf
    10  #
    11  # RETURNS:
    12  #       a0      pointer to buf
    13  
    14  uintstr:
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    15          add     t5,a1,a2        # ptr past end of buffer
    16          beqz    a2,smlbuf       # Branch if zero length buffer
    17          sb      x0,-1(t5)       # Put nul byte
    18          addi    t5,t5,-1        # --ep
    19          li      t1,10           # t1 = 10
    20  
    21  loop:   div     t4,a0,t1        # t4 = a0 / 10
    22          rem     t3,a0,t1        # t3 = a0 % 10
    23          mv      a0,t4           # now a0 /= 10
    24          addi    t3,t3,'0'       # Make ascii digit
    25          ble     t5,a1,smlbuf    # Branch if past start of buf
    26          addi    t5,t5,-1        # --ep
    27          sb      t3,0(t5)        # *ep = char
    28          bnez    a0,loop
    29  
    30  smlbuf: mv      a0,t5           # Return addr of first char
    31          ret

Listing 11.9: The uintstr() function from file ~/riscv/repo/11/uintstr/main/uintstr.S.

The uintstr() function uses the quotient and remainder from a division, to convert an un-
signed value into a text string, one digit at a time. When the function is called register a0 
contains the value to be converted, a1 points to the receiving character buffer, and a1 is the 
maximum length for that buffer. The steps for conversion are as follows:

1. Register t5 is set to the pointer of the buffer + its maximum length. This points 
one byte past the end of the passed buffer (line 15). This is done because we must 
fill the buffer in reverse order. This is because each division will determine the low 
order decimal digits first.

2. Line 16 tests for a zero-length buffer, and if so, just returns at line 30, returning 
the buffer pointer.

3. A null byte is stored at the very end of the caller's buffer in line 17.
4. Then the pointer in t5 is decremented towards the start of the buffer by one (line 

18).
5. The unsigned integer 10 is loaded into t1 (line 19). This will be the divisor used in 

the loop.
6. The loop begins in line 21. Here the value of a0 (the unsigned integer) is divided 

by 10 and the result is placed in t4.
7. Line 22 also fetches the remainder into register t3 (Line 24).
8. The ASCII value for '0' is added to the remainder in t3, to form a digit character, 

and this replaces t3 (Line 24).
9. The pointer in t5 is tested against the one in a1, to see if we have gone past the 

start of the buffer. If so, the branch is taken to "smlbuf" to exit safely (line 25).
10. Otherwise, pointer register t5 is decremented once more (line 26) and then the 

character is stored in the buffer at line 27.
11. If the division did not end in a quotient of zero, we loop back to step 6.
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The main driver program for this test is provided in Listing 11.10. Of particular note, notice 
that the pointer returned by uintstr() is saved in pointer variable cp in line 16. This is done 
because the start of the converted number is not necessarily going to be at the start of the 
array buf when function uintstr() returns. This is due to the fact that function works from 
the tail end of the buffer and works backwards.

     1  #include <stdio.h>
     2  
     3  extern char *uintstr(unsigned v,char *buf,unsigned buflen);
     4  
     5  void
     6  app_main(void) {
     7          static unsigned const tests[] = {
     8                  1023, 32, 96001, 10045, 90999, 1770771,
     9                  0, 0xFFFFFF
    10          };
    11          char buf[7];
    12          char const *cp;
    13          unsigned v;
    14  
    15          for ( unsigned ux=0; (v = tests[ux]) != 0xFFFFFF; ++ux ) {
    16                  cp = uintstr(v,buf,sizeof buf);
    17  
    18                  printf("uintstr(%u,buf,%u) => '%s' %s\n",
    19                          v,(unsigned)sizeof buf,cp,
    20                          cp <= buf ? "!!" : "");
    21          }
    22  
    23          puts("Done");
    24          fflush(stdout);
    25  }

Listing 11.10: Main driver program to test uintstr() in file  
~/riscv/repo/11/uintstr/main/uintstr.S.

Build, flash and monitor the program as follows:

$ cd ~/riscv/repo/11/uintstr
$ idf.py build
...
$ idf.py -p <<<yourport>>> flash monitor
...
I (257) cpu_start: Starting scheduler.
uintstr(1023,buf,7) => '1023'
uintstr(32,buf,7) => '32'
uintstr(96001,buf,7) => '96001'
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uintstr(10045,buf,7) => '10045'
uintstr(90999,buf,7) => '90999'
uintstr(1770771,buf,7) => '770771' !!
uintstr(0,buf,7) => '0'
Done

All conversions worked except for the one identified with "!!". The buffer was not large 
enough to support writing the text to buf, to contain the value 1770771. This was inten-
tionally done to test the safety of the function.

11.6. Indexed Branching
Rather than have a long list of if-then-branch statements in C or assembler language, it is 
sometimes more efficient to have a "computed goto", when it can be arranged. In other 
words, use an index to select a jump or call based upon an index value. Let's first examine 
the main driver program in Listing 11.11.

Lines 3 to 10 define an enumerated value for each function we want to execute (the excep-
tion is func_bad, which is used to test the handling of a bad index). The values start at zero 
for func_add, with a value of 1 for func_sub, etc.

Our assembly language function cgoto() will execute an arithmetic function based upon the 
first argument "fun" (line 12). Line 16 defines an array for six returned results that will be 
reported once the testing is completed. Lines 18 through 23 test the function with different 
arguments and requested functions.

     1  #include <stdio.h>
     2  
     3  typedef enum {
     4          func_add=0,
     5          func_sub,
     6          func_mul,
     7          func_div,
     8          func_rem,
     9          func_bad
    10  } func_t;
    11  
    12  extern int cgoto(func_t fun,int a,int b);
    13  
    14  void
    15  app_main(void) {
    16          int r[6];
    17  
    18          r[0] = cgoto(func_add,1,2);
    19          r[1] = cgoto(func_sub,5,2);
    20          r[2] = cgoto(func_mul,6,5);
    21          r[3] = cgoto(func_div,35,6);
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    22          r[4] = cgoto(func_rem,13,5);
    23          r[5] = cgoto(func_bad,9,99);
    24  
    25          for ( unsigned ux=0; ux<6; ++ux ) {
    26                  printf("r[%u] = %d\n",ux,r[ux]);
    27          }
    28          puts("Done");
    29          fflush(stdout);
    30  }

Listing 11.11: Main driver function for testing cgoto() in file  
~/riscv/repo/11/cgoto/main/main.c. 

Now let's examine Listing 11.12, which illustrates the assembly language code. When cgo-
to() is called, register a0 contains the function number, and registers a1 and a2 have the 
integer operands to compute with.

1. Lines 15 and 16 do a range check on the function requested. If the value is out of 
range, then control passes to label "null" (at line 34), which then returns the result 
-1 in protest.

2. Line 17 multiplies the function index by 4 (by shifting left 2), to change the func-
tion index into a byte offset (we need to address the table entries (line 37) by byte 
address. Since our table need not change, it is kept in .text and remains read-only.

3. The address of "table" is loaded into temporary register t5 (line 18).
4. The byte offset is added to the address in t5, to address the required word in "ta-

ble". The result of that is placed in register t4 (line 19).
5. The address of the starting code required replaces t4 by loading the word from the 

table (line 20).
6. In line 21, we finally jump to the required code using register t4. Depending upon 

the calculation, the code will jump to "add", "sub", "mul", "div" or "rem".

     1          .global cgoto
     2          .text
     3  
     4  #       Computed goto example:
     5  #       extern int cgoto(unsigned func,int a,int b);
     6  #
     7  # ARGUMENTS:
     8  #       a0      function
     9  #       a1      int a
    10  #       a2      int b
    11  #
    12  # RETURNS:
    13  #       a0      result
    14  
    15  cgoto:  li      t6,4
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    16          bgt     a0,t6,null      # Branch and return if > 4
    17          sll     a0,a0,2         # Turn into a byte address
    18          la      t5,table        # Establish t5 as table address
    19          add     t4,a0,t5        # Address table entry
    20          lw      t4,0(t4)        # Load routine address
    21          jr      t4              # Jump to code
    22  
    23  add:    add     a0,a1,a2
    24          ret
    25  sub:    sub     a0,a1,a2
    26          ret
    27  mul:    mul     a0,a1,a2
    28          ret
    29  div:    div     a0,a1,a2
    30          ret
    31  rem:    rem     a0,a1,a2
    32          ret
    33  
    34  null:   li      a0,-1           # Bad function
    35          ret
    36  
    37  table:  .word   add
    38          .word   sub
    39          .word   mul
    40          .word   div
    41          .word   rem

Listing 11.12: The cgoto() function in file ~/riscv/repo/11/cgoto/main/cgoto.S.

Build, flash and run the code as follows:

$ cd ~/riscv/repo/11/cgoto
$ idf.py build
...
$ idf.py -p <<<yourport>>> flash monitor
...
I (257) cpu_start: Starting scheduler.
r[0] = 3
r[1] = 3
r[2] = 30
r[3] = 5
r[4] = 3
r[5] = -1
Done
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Checking with the main program, the reported results are correct. The sixth result of -1 is 
due to requesting an out-of-range function index, which the routine anticipated.

11.7. Summary
This chapter began with a focus on matrix and array subscripting. From there, a matrix 
identity function and some string functions were developed. The last example demonstrat-
ed how to compute a branch based upon an index value for efficiently selecting the desired 
code to run. At this point, you should be well equipped for programming RISC-V for inte-
ger-based data. In the next chapter, we will explore the hardware floating point.
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Chapter 12 • Floating Point

A Floating Point

In chapter 6, Load and Store, we managed to convert a temperature in Fahrenheit to de-
grees Celsius using only integers. Managing more complicated computations in integers is 
inconvenient and error-prone. Even when there is no hardware floating-point capability, it 
is often preferred to use software floating-point routines to make the calculations easier. 
The floating-point data format provides for fractional values and a greater range by use of 
exponents.

In this chapter, we'll explore the hardware support of floating-point for RISC-V. The 
ESP32-C3 does not have this facility so it manages by using compiler-supplied software li-
braries. The QEMU emulated Fedora Linux, however, does emulate hardware floating-point, 
giving us the opportunity to exercise the floating-point opcodes.

There is considerable theory surrounding floating-point data formats. Since this is a tu-
torial book, I will assume that you are familiar with that material or will research it when 
necessary. So, without further delay, let's examine the RISC-V hardware registers and 
instructions available.

12.1. Floating Point Registers
There are 32 floating point registers of FLEN bits, named f0 to f31 (the embedded E variant 
will only have 16 registers). The value of FLEN is 32 for the RISC-V standard extension 
"F" for Single-Precision Floating-Point values. RISC-V extension "D" adds the capability for 
Double-Precision Floating-Point values, where FLEN is 64.  There are also extensions "Q" 
and "V" that we will not be covering here.

When extension "D" is supported, the floating-point registers are capable of holding 32-bit 
single-precision or 64-bit double-precision values. Most of the floating-point instructions 
work upon the floating-point register file. There are, however, some that transfer values 
to or from an integer register. Finally, there are also opcodes, which load or store float-
ing-point values from or to memory.

Unlike the integer register x0, the floating-point register f0 has no special function and may 
be used in general calculations.
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12.2. GNU Calling Convention
Like the integer registers, the GNU calling convention assigns ABI Names, uses and respon-
sibilities for saving them. Using the ABI register names helps maintain the correct GNU 
register conventions. Table 12.1 lists the hardware floating-point register names, the ABI 
name and responsibilities (saver).

Register ABI Name Description Saver

f0-f7 ft0-ft7 Floating-point temporaries Caller

f8-f9 fs0-fs1 Floating-point saved registers Callee

f10-f11 fa0-fa1 Floating-point arguments/return values Caller

f12-f17 fa2-fa7 Floating-point arguments Caller

f18-f27 fs2-fs11 Floating-point saved registers Callee

f28-f31 ft8-ft11 Floating-point temporaries Caller

 Table 12.1: Floating-point registers and their ABI names and savers.

12.3. Floating-Point Control and Status Register (fcsr)
In addition to the floating-point register file, there is a 32-bit status register named fcsr. 
This register contains a mode and accrued exception flags (fflags). We have not yet exam-
ined the Control and Status Register (CSR), shown in Figure 12.1.

24 3 1 1 1 1 1
NV DZ OF UF NX

31 8 7 5 4 3 2 1 0
Reserved Rounding Mode (frm) Accrued Exception (fflags)

Figure 12.1 The Floating-Point Control and Status Register.

The fcsr.frm field establishes a default rounding mode to be used or when the opcodes 
specify "dyn".  The accrued exceptions field fcsr.fflags, remain set until they are cleared. In 
this manner, the programmer has the option of testing these flags after each opcode or at 
the end of a calculation.

The values for fcsr can be loaded and modified using the following pseudo-ops:

  frcsr    rd           # rd = fcsrr
  fscsr    rd,rs1        # rd = original fcsr, fscr = rs1

The "frcsr" simply reads fcsr into the destination register. The "fscsr" replaces the fcsr with 
the value in integer register rs1, after loading the destination register with the original fcsr 
value.

The reserved field is for use with other standard extensions. For example, extension L pro-
vides for decimal floating-point. The RISC-V standards document has this to say about the 
reserved field:[1]
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If these extensions are not present, implementations shall ignore writes to these bits 
and supply a zero value when read. Standard software should preserve the contents of 
these bits.

12.3.1. Rounding Modes fcsr.frm
The floating-point rounding mode can be controlled by the fcsr.frm field or from the instruc-
tion opcode itself. The enumerated list of rounding modes is provided in Table 12.2.

Rounding Mode Mnemonic Meaning

000 rne Round to Nearest, ties to Even

001 rtz Round towards Zero

010 rdn Round Down (towards -∞)

011 rup Round Up (towards +∞)

100 rmm Round to Nearest, ties to Max Magnitude

101 Reserved for future use

110 Reserved for future use

111 dyn Dynamic rounding mode: use instruction's rm field 
to select rounding mode

Table 12.2: Floating-point rounding mode encoding.

Note: The GNU assembler recognizes the mnemonics of Table 12.2 for the optional 
rounding mode parameter of an opcode. However, if you want to load a rounding mode 
as immediate data in fsrmi for example, then you must either specify the immediate 
data as a numeric constant or declare a symbol with the correct value. For example, you 
might declare a symbol .equ rmm,4, and then use fsrmi x0,rmm.

The following pseudo-opcodes are available for working with the fcsr.frm field directly.

  frrm     rd # rd = fcsr.frm
fsrm     rd,rs1 # rd = fcsr.frm, fcsr.frm=rs1
fsrmi    rd,imm # rd = fcsr.frm, fcsr.frm=imm

The opcode "frrm" simply copies the fcsr.frm into the destination integer register (bit posi-
tions left of the loaded value are set to zero). The "fsrm" opcode likewise loads the destina-
tion integer register with the original fcsr.frm and sets fcsr.frm from rs1. The "fsrmi" opcode 
is similar, except that fcsr.frm is set from the immediate data.

The following is an instruction that loads register a2 with the current copy of fcsr.frm, while 
setting the fcsr.frm from the current value of t3:

fsrm     a2,t3 # a2 = fcsr.frm, fcsr.frm=t3
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12.3.2. Accrued Exception Flags fcsr.fflags
The meanings of the accrued exception flags are listed in Table 12.3. The following pseu-
do-opcodes are available for your convenience:

frflags  rd # rd = fcsr.fflags
fsflags  rd,rs1 # rd = fcsr.fflags, fcsr.fflags = rs1
fsflagsi rd,imm # rd = fcsr.fflags, fcsr.fflags = imm

The "frflags" pseudo-opcode conveniently loads the flags into the destination integer reg-
ister (bits left of the flags are all set to zero). Opcode "fsflags" likewise loads the flags into 
the destination register, but also sets the flags from integer register rs1. Finally, "fsflagsi" 
performs the same except that the fcsr.fflags are set from immediate data instead.

Flag Mnemonic Flag Meaning

NV Invalid operation

DZ Divide by Zero

OF Overflow

UF Underflow

NX Inexact

Table 12.3: Floating-point accrued exception flag encoding.

12.4. NaN Generation and Propagation
Floating-point handling is somewhat complex and messy. A number of mathematical oper-
ations results is NaN (Not a Number) and infinite values (positive and negative). For more 
information about the rules pertaining to this, see both the RISC-V standards documents 
and the IEEE Floating-Point Formats. For now, it is enough just to be aware of these special 
values.

12.5. Opcodes and Data Formats
Floating-point opcodes work with different floating data formats. These formats are listed 
in Table 12.4. In this chapter, we will focus on the S and D formats.

fmt Field Mnemonic Meaning Bits Extension

00 S Single-precision 32 F

01 D Double-precision 64 D

10 H Half-precision 16 V

11 Q Quad-precision, requires RV64IFD 128 Q

Table 12.4: Floating-Point Formats.

The general format for many of the floating-point opcodes is as follows:

fopcode.{S|D|H|Q} rd,rs1,rs2[,rm]
fopcode.{S|D|H|Q} rd,rs1[,rm]
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The braces show a choice for format (Table 12.4), while the square brackets show an op-
tional rounding mode (Table 12.2). For example:

  fadd.s  fa0,ft1,ft2,rmm  # add single-precision, round nearest
  fsqrt.d ft1,fa0,rup # sqrt double-precision, round up

When the rounding mode is unspecified or given as "dyn", the rounding mode used is de-
termined by fcsr.frm.

12.6. Load and Store
In order to load floating-point values directly from memory, or to store the same, the fol-
lowing opcodes are used. X must be one of W, D or Q from Table 12.4:

flX     rd,imm(rs1)     # rd = load imm(rs1)
fsX     rs1,imm(rs2)   # store imm(rs2) = rs1

For example, if register a1 contains the pointer to a double-precision value, then register 
fa2 can be loaded as follows:

fld     fa2,0(a1)   # fa2 = load @ a1

12.7. Floating Computation
In the following basic floating-point opcodes, the format "F" is chosen to be one of the val-
ues S, D, H or Q (Table 12.4). For these opcodes, an optional rounding mode can be added 
as the last parameter (Table 12.2):

fadd.F    rd,rs1,rs2   # rd = rs1 + rs2
fsub.F    rd,rs1,rs2   # rd = rs1 – rs2
fmul.F    rd,rs1,rs2   # rd = rs1 * rs2
fdiv.F    rd,rs1,rs2   # rd = rs1 / rs2
fmin.F    rd,rs1,rs2   # rd = min(rs1,rs2)
fmax.F    rd,rs1,rs2   # rd = max(rs1,rs2)
fsqrt.F   rd,rs1   # rd = square root of rs1

For example, the following divides fa0 by ft0 using rounding mode rmm, placing the result 
into fa2:

  fdiv.d    fa2,fa0,ft0,rmm

In addition to these, RISC-V provides "fused multiply-add" operations, which require a third 
operand rs3 (an optional rounding mode may be added from Table 12.2):

fmuladd.F    rd,rs1,rs2,rs3   # rd = rs1 * rs2 + rs3
fmulsub.F    rd,rs1,rs2,rs3   # rd = rs1 * rs2 – rs3
fnmulsub.F   rd,rs1,rs2,rs3   # rd = -rs1 * rs2 + rs3
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fnmuladd.F   rd,rs1,rs2,rs3        # rd = -rs1 * rs2 – rs3

For example, rounding towards zero:

fmuladd.s    ft2,fa0,fa1,ft3,rtz    # ft2 = fa0 * fa1 + ft3

12.8. Conversion Operations
Opcodes for hardware conversions to and from floating-point values are also provided. The 
integer format must be one of W, WU, L or LU, as listed in Table 12.5.

Mnemonic Meaning

W 32-bit signed word

WU 32-bit unsigned word

L 64-bit signed word

LU 64-bit unsigned word

Table 12.5: Integer Formats.

The general format of the "fcvt" opcode is as follows, where F is one of H, S, D, or Q (Table 
12.4), and "int" is from Table 12.5. An optional rounding mode may also be added from 
Table 12.2:

fcvt.int.F   rd,rs1[,rm]     # Convert from integer -> float
fcvt.F.int   rd,rs1[,rm]     # Convert from float -> integer

For example, convert from unsigned integer register a0 to a single-precision floating-point 
value in ft0:

  fcvt.wu.s    ft0,a0          # ft0 = float(a0), single-precision from 32-bit a0

Another example converting from a single-precision floating-point value in ft4 to a 32-bit 
signed word in integer a0:

  fcvt.s.w     a0,ft4          # a0 = int32(ft4), from single-precision ft4

12.8.1. Floating-Point Zero
Unlike the integer register x0, there is no dedicated zero register for floating point. To cre-
ate a zero in a floating-point register, simply use: one of the following:

  fcvt.s.w    rd,x0           # Set single-precision fp register rd to 0.0
  fcvt.d.l    rd,x0           # Set double-precision fp register rd to 0.0

These two examples of producing a floating-point zero will never raise an exception.
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12.8.2. Conversion Failures
Conversions from floating-point to integer formats are prone to problems because of the 
data type's limitations. If after rounding, the value cannot be represented in the destina-
tion's format, it is clipped to the nearest value and the NV flag ("invalid" from Table 12.3) 
is set. This affects opcodes like the following example:

fcvt.lu.d   t2,fa3 # Convert from float fa3 -> integer t2

Table 12.6 lists the possible results for a failed conversion.

Description fcvt.w.s fcvt.wu.s fcvt.l.s fcvt..lu.s

Minimum valid input after rounding –231 0 –263 0

Maximum valid input after rounding 231–1 232–1 263–1 264–1

Output for out-of-range negative 
input

–231 0 –263 0

Output for negative infinity –231 0 –263 0

Output for out-of-range positive 
input

232–1 232–1 263–1 264–1

Output for positive infinity or NaN 232–1 232–1 263–1 264–1

Table 12.6: Behaviour for invalid inputs to float-to-integer conversions.

12.9. Floating-Point Signs
To ease the programmer's efforts in working with floating-point signs, the following sign 
injection opcodes are available, where F is one of S, D or Q (Table 12.4):

fsgnj.F    rd,rs1,rs2   # rd = |rs1| with sign(rs2)  
fsgnjn.F   rd,rs1,rs2   # rd = |rs1| with opposite_sign(rs2)
fsgnjx.F   rd,rs1,rs2   # rd = |rs1| with sign(rs1) xor sign(rs2)

The following is an example that loads fa0 with the double-precision value of |ft0| but using 
the sign of ft1:

  fsgnj.d    fa0,ft0,ft1

There are no exception flags raised by these opcodes.

The pair of pseudo-opcodes "fneg" and "fabs" take advantage of the sign injection opcodes, 
where F is one of S, D or Q (Table 12.4):

fneg.F     rx,ry   # equivalent: fsgnjn.F rx,ry,ry
fabs.F     rx,ry   # equivalent: fsgnjx.F rx,ry,ry

RISC-V Assembly Language Programming - UK.indd   191RISC-V Assembly Language Programming - UK.indd   191 04/10/2022   11:0204/10/2022   11:02



RISC-V Assembly Language Programming

● 192

12.10. Floating-Point Move
If the data value is already in IEEE 754-2008 floating-point format it can be copied as is 
from an integer register to a floating-point register or vice versa. To move these values 
from a floating-point register (rs1) to an integer register (rd), use one of these opcodes:

mv.x.w rd,rs1 # rd = rs1 single-precision
fmv.x.d rd,rs1 # rd = rs1 double-precision (RV64)

To move floating-point representation data from an integer register (rs1) to a floating-point 
register (rd), use one of these:

fmv.w.x rd,rs1 # rd = rs1 single-precision
fmv.d.x rd,rs1 # rd = rs1 double-precision (RV64)

Note that the "d" opcode versions are supported by extension RV64 (or larger).  These 
require an integer register width of 64 bits.

Note: The RISC-V specification notes that: "The FMV.W.X and FMV.X.W instructions were 
previously called FMV.S.X and FMV.X.S. The use of W is more consistent with their se-
mantics as an instruction that moves 32 bits without interpreting them. This became 
clearer after defining NaN-boxing. To avoid disturbing existing code, both the W and S 
versions will be supported by tools."[1]

12.11. Floating-Point Compare
Provision was made for comparing floating-point values by placing the boolean result of 
the comparison in the destination integer register.  In the following, F must be S, D, or Q 
(Table 12.4):

feq.F    rd,rs1,rs2 # rd = rs1 == rs2
flt.F    rd,rs1,rs2 # rd = rs1 < rs2
fle.F    rd,rs1,rs2 # rd = rs1 <= rs2

In the "flt" and "fle" opcodes, be aware that Invalid Operation (NV) is raised when either 
input is NaN (since no proper comparison can be made). For "feq", only the signaling NaN 
(sNaN) causes an Invalid Operation (NV) to be raised. All three opcodes return boolean 
false (zero) when either operand is a NaN value.

Note: The purpose of a Signaling NaN (sNaN) is to cause an exception for debugging 
(perhaps because of an uninitialized value). A sNaN is never produced as the result of 
arithmetic. Arithmetic may, however, produce a quiet NaN value.

12.12. Classify Operation
The floating-point classify operation provides a quick and easy way to classify a floating val-
ue in one operation. Replace "F" below with the precision specifier S, D or Q (Table 12.4):

fclass.F   rd,rs1 # rd = classify(rs1)
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The destination register rd is an integer register, which receives the 8 bits illustrated in 
Table 12.7.

Note: A subnormal number is a non-zero number that is smaller than the smallest num-
ber that can be represented in the given precision.

rd Bit Meaning

0 rs1 is -∞

1 rs1 is a negative normal number

2 rs1 is a negative subnormal number

3 rs1 is -0

4 rs1 is +0

5 rs1 is a positive subnormal number

6 rs1 is a positive normal number

7 rs1 is +∞

8 rs1 is a signaling NaN (sNaN)

9 rs1 is a quiet NaN

Table 12.7: fclass result format, by bit number.

12.13. Fahrenheit to Celsius Revisited
Whew! That was a lot of material to cover. Let's now apply what we've learned in converting 
the original integer-based program to use a floating-point for calculating degrees Celsius 
from Fahrenheit. By way of review, the formula for the conversion is:

Instead of multiplying by 5 and then dividing by 9, we'll just divide by the constant 1.8 
instead.

This will be a Fedora Linux project using QEMU where we have hardware floating-point sup-
port in extensions F and D. The listing for the assembler portion is provided in Listing 12.1.

     1  #       The floating-point version of conftemp (fconvtemp)
     2          .global fconvtemp
     3          .text
     4  
     5          .equ    rtz,0x1                 # Round to zero
     6          .equ    rmm,0x4                 # Round to Nearest
     7          .equ    dyn,0x7                 # Dynamic rounding mode
     8  #
     9  #       extern double fconvtemp(double fahrenheit,unsigned *pflags)
    10  #
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    11  # ARGUMENTS:
    12  #       fa0     temperature in Fahrenheit
    13  #       a0      pointer to int to return flags
    14  #
    15  # RETURNS:
    16  #       fa0     temperature in Celsius
    17  #       flags through ptr in a0
    18  
    19  fconvtemp:
    20          frcsr   t2                      # t2 = original fcsr
    21          fsrmi   x0,rmm                  # Set rnd mode to RMM
    22          fsflagsi x0,0                   # Clear exceptions
    23          la      t4,f18
    24          fld     ft0,0(t4)               # ft0 = 1.8
    25          addi    t0,x0,32                # t0 = 32
    26          fcvt.d.lu ft1,t0,rtz            # ft1 = 32.0
    27  
    28  conv:   fsub.d  fa0,fa0,ft1,rtz         # fa0 -= 32.0
    29          fdiv.d  fa0,fa0,ft0,rmm         # fa0 /= 1.8
    30  
    31          frflags t0                      # t0 = fcsr.flags
    32          sw      t0,0(a0)                # Store fcsr.flags
    33  
    34          fscsr   x0,t2                   # Restore fscr
    35          ret     
    36  
    37          .section .rodata
    38  f18:    .double 1.8

Listing 12.1: Floating-point program fconvtemp in  
~/riscv/repo/12/celsius/qemu64/celsius.S. 

Let's now examine the breakdown of this code:

1. The function takes two arguments:

A. A double value containing the temperature in degrees Fahrenheit. This will 
arrive in hardware register fa0.

B. A pointer to an unsigned int, which will receive the returned fcsr.flags after the 
computation is completed.

2. Line 20 loads the current value of fcsr into integer register t2. We'll use this value 
to restore the fcsr when the function returns later.
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3. Just in case no rounding mode is specified on the instruction, we set the rounding 
mode in line 21. We don't care about its prior value so x0 is the destination. We set 
the default rounding mode to "round to nearest".

4. We are interested in the exception flags, so these are all cleared in line 22 by set-
ting the exceptions register to zero. Again, we don't care about the prior value so 
the register x0 is used for the destination.

5. We need to access a double constant from line 38, so we establish an address in 
t4 using the "load address" pseudo-op (line 23).

6. Line 24 loads the double-precision value 1.8 into the floating-point register ft0, for 
use later on.

7. We establish the integer constant of 32 in temporary register t0 (line 25).
8. Then convert that integer (32) to floating-point in line 26, using "round to zero", 

just for fun.
9. Line 28 finally gets started on the calculation. It subtracts 32.0 in ft1 from the 

value passed in fa0, rounding towards zero. The result is returned to fa0.
10. Then fa0 is divided by 1.8 in ft0 to arrive at the temperature in Celsius, rounding to 

the nearest. The result is returned to fa0, which will be the function's return value.
11. Line 31 then loads the fcsr.flags into temporary register t0. This value is returned 

to the caller through the pointer passed in integer a0 (recall that the first argument 
went into fa0 instead).

12. The flags in t0 are passed back to the caller in line 32 by storing a word through 
the given pointer.

13. The fcsr register is restored to the way we found it, in case the caller (and C/C++) 
needs it that way in line 34.

14. Finally, the function returns, with the return value passed back in floating-point 
register fa0 at line 35.

For a simple calculation, that procedure may seem a little tedious. But this is an advantage 
to consider. If this were a complex and serious scientific calculation, then we've guided 
the rounding at every step of the way. In C/C++, a rounding mode is selected (likely by 
default) and used throughout.

Let's now examine the main program in Listing 12.2.

     1  #include <stdio.h>
     2  
     3  extern double fconvtemp(double f,unsigned *pflags);
     4  
     5  int
     6  main(int argc,char **argv) {
     7          static double const tests[] = {
     8                  32.0, 0.0, -40.0, 18.5
     9          };
    10  
    11          for ( int ux=0; ux < 4; ++ux ) {
    12                  unsigned flags;

RISC-V Assembly Language Programming - UK.indd   195RISC-V Assembly Language Programming - UK.indd   195 04/10/2022   11:0204/10/2022   11:02



RISC-V Assembly Language Programming

● 196

    13  
    14                  double celsius = fconvtemp(tests[ux],&flags);
    15  
    16                  printf("%.1lf F -> %.1lf C (flags = 0x%04X)\n",
    17                          tests[ux], celsius, flags);
    18          }
    19          return 0;
    20  }

Listing 12.2: Main driver program for the Fahrenheit to Celsius conversion in  
~/riscv/repo/12/celsius/qemu64/main.c. 

The main program loops through trying every test Fahrenheit temperature in lines 11 to 
18. The result of the conversion is reported along with the returned flags. Compile and run 
it as follows:

$ cd ~/riscv/repo/12/celsius/qemu64
$ gcc -g celsius.S main.c
$ ./a.out
32.0 F -> 0.0 C (flags = 0x0000)
0.0 F -> -17.8 C (flags = 0x0001)
-40.0 F -> -40.0 C (flags = 0x0001)
18.5 F -> -7.5 C (flags = 0x0001)

Yes, -40 ºF is the same as -40ºC (it's one of a few favourite things I memorized). Note 
that the flag's value for the first conversion was zero, indicating that there were no excep-
tions raised. The flag's value of 0x0001 for the remaining calculations indicates that the 
NX exception flag was set. This simply means that the computed result was inexact. This 
is not unusual in floating-point calculations. These exception flags can be very helpful for 
checking difficult calculations.

12.14. Summary
Precise floating-point calculations can be tedious to get right. In C/C++, they are often 
written in a careless fashion without any regard for rounding. In the RISC-V assembler 
language, you are more likely to pay close attention to each step. This can be helpful for 
correctly rounding critical formulas. Finally, the hardware operation of these floating calcu-
lations is much faster than performing those in software.
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Portability Pioneers

Programs, particularly assembler language code can be tedious to write and test for cor-
rectness. Portable C/C++ code is relatively straightforward with the use of the CPP (C 
Pre-Processor) macro capabilities. Sometimes, it is equally desirable to do the same for 
assembly language code so that only one source module needs to be maintained. In this 
chapter, let's see what is available to you using the GNU Compiler Collection (GCC).

13.1. C/C++ Pre-Processor
You might recall that the reason we use the capital ".S" suffix for our assembly language 
source code in this book is to take advantage of the CPP macro capabilities. The alternative 
is the lowercase ".s" file suffix but then you give up the preprocessing.

The first question that follows is "what macros are available?"  Because of the large number 
of them, you'll find yourself referring to the source code rather than a specific document. 
You might say that the macros are self-documenting. But these are inconveniently defined 
in several files, so it is more convenient to ask the compiler to list them instead. On POSIX 
systems like Linux/MacOS/*BSD, you can ask for this list from GCC directly as follows:

$ gcc -dM -E - </dev/null

This dumps all predefined GCC macros. For example, the following is a dump of the first 
few:

$ gcc -dM -E - </dev/null | head
#define __riscv 1
#define __DBL_MIN_EXP__ (-1021)
#define __FLT32X_MAX_EXP__ 1024
#define __UINT_LEAST16_MAX__ 0xffff
#define __ATOMIC_ACQUIRE 2
#define __FLT128_MAX_10_EXP__ 4932
#define __FLT_MIN__ 1.17549435082228750796873653722224568e-38F
#define __GCC_IEC_559_COMPLEX 0
#define __UINT_LEAST8_TYPE__ unsigned char
#define __INTMAX_C(c) c ## LL
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The compiler options and arguments used here are described in Table 13.1. The definitions 
are directed to standard output, which is convenient for piping to grep or other filter com-
mands.

Option/Argument Description

-dM Dump preprocessing macro definitions

-E Stop at the end of the preprocessing (do not compile)

- Input will come from standard input (stdin)

</dev/null Standard input is redirected from /dev/null

Table 13.1: GCC Compiler Options for dumping out macro definitions.

Macros relevant to RISC-V are listed in Table 13.2. For example, when the macro __riscv is 
defined, then you know that the compile is targeted to the RISC-V instruction set.

Macro Name Description

__riscv Defined for any RISC-V target.

__riscv_xlen Defined as 32 for RV32, 64 for RV64 etc.

__riscv_float_abi_soft,
__riscv_float_abi_single,
__riscv_float_abi_double

One of these three will be defined, depending on target ABI.

__riscv_cmodel_medlow,
__riscv_cmodel_medany

One of these two will be defined, depending on the target 
code model.

__riscv_mul Defined when 'M' ISA extension is the target.

__riscv_muldiv Defined when targeting the 'M' ISA extension and option mno-
div has not been used.

__riscv_div Defined when targeting the 'M' ISA extension and mnodiv has 
not been used.

__riscv_atomic Defined when targeting the 'A' ISA extension (atomics).

__riscv_flen Defined as 32 when targeting the 'F' ISA extension (but not 
'D"), or 64 when targeting 'FD' instead.

__riscv_fdiv Defined when targeting the 'F' or 'D' ISA extensions and 
mnofdiv has not been used.

__riscv_fsqrt Defined when targeting the 'F' or 'D' ISA extensions and 
mnofdiv has not been used.

__riscv_compressed Defined when targeting the 'C' ISA extension.

Table 13.2: RISC-V relevant CPP macros.

Some of the macros depend upon the compiler options used. The two options that are ref-
erenced in Table 13.2 are described in Table 13.3.

RISC-V Assembly Language Programming - UK.indd   198RISC-V Assembly Language Programming - UK.indd   198 04/10/2022   11:0204/10/2022   11:02



Chapter 13 • Portability

● 199

Option Meaning

-mdiv or -mno-div Determines if the hardware instructions for division should be 
used/not-used. The default is to use them if they are defined for 
that architecture. This requires the RISC-V ISA 'M' extension.

-mfdiv or -mno-fdiv Determines if the hardware floating-point divide or square-root 
instructions should be used/not-used. These require the RISC-V 'F' 
or 'D' ISA extensions. The default is to use them if the architecture 
supports them.

Table 13.3: Compiler options affecting RISC-V macro definitions.

13.2. Testing for RISC-V Architecture
Probably the most basic of these macros is whether we are assembling/compiling for the 
RISC-V architecture at all, or some other platform. If you want to force an error in assem-
bling your RISC-V assembly program, you could do something like the example in Listing 
13.1.

     1          .global         foo
     2          .text
     3  
     4  #ifndef __RISCV
     5  #error  This is not a RISCV architecture!
     6  #endif
     7  foo:    ret

Listing 13.1: Forcing an assembly error for non-RISC-V platforms.

In Listing 13.1 the CPP #ifndef is used with the macro __RISCV. When the macro value 
for __RISCV is undefined, the #error message "This is not a RISC-V architecture!" will be 
issued and the build will stop.

13.3. Testing For Integer Multiplication
Say you wanted to write a universal RISC-V version of our earlier struint() function from 
Chapter 11 Addressing and Subscripting, but you wanted to use the hardware integer 
multiply opcode when it was available else fall back to the three-step software procedure 
instead. Listing 13.2 demonstrates how this can be accomplished:

     1          .global struint
     2          .text
     3  
     4  #       extern unsigned struint(char const *text,bool *ok)
     5  #
     6  # ARGUMENTS:
     7  #       a0      char const *text (text to convert)
     8  #       a1      pointer to bool
     9  #
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    10  # RETURNS:
    11  #       a0      unsigned value (when ok is true)
    12  #       ok:
    13  #               true, conversion successful
    14  #               false, conversion failed
    15  
    16  struint:
    17          mv      t6,a0           # t6 = ptr to test
    18          li      a0,0            # Accumulator for uint
    19          li      t2,0            # Digit count
    20          li      t4,'0'
    21          li      t3,'9'
    22          li      t1,' '
    23          li      t0,10
    24  
    25  loop:   lbu     t5,0(t6)        # Load text char
    26          beqz    t5,nulbyt       # Branch if null byte
    27          beq     t5,t1,skip      # Skip white space
    28          bgt     t5,t3,fail      # char > '9'?
    29          blt     t5,t4,fail      # char < '0'?   
    30          andi    t5,t5,0x0F      # Mask out 0x00 to 0x09
    31  #ifdef __riscv_mul
    32          mul     a0,a0,t0        # a0 *= 10
    33  #else
    34          sll     a6,a0,3         # a6 = a0 * 8
    35          sll     a0,a0,1         # a0 *= 2
    36          add     a0,a0,a6        # a0 += a6
    37  #endif
    38          add     a0,a0,t5        # a0 += t5
    39          addi    t2,t2,1         # Bump digit count
    40  skip:   addi    t6,t6,1         # ++text ptr
    41          j       loop
    42  
    43  nulbyt: beqz    t2,fail         # Fail if no digits
    44          li      t0,1
    45          sb      t0,0(a1)        # ok = true
    46          ret
    47  
    48  fail:   li      t0,0
    49  exit:   sb      t0,0(a1)        # ok = false
    50          ret

Listing 13.2: The universal RISC-V version of struint() function.
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Line 31 uses the C Pre-Processor to test the macro name __riscv_mul. If the macro is 
defined, then the source at line 32 invokes the hardware multiply opcode. Otherwise, the 
assembly falls back to lines 38 to 36 to perform that multiplication by ten in three steps 
instead. We can test this change by producing a compiler listing.

$ cd ~/riscv/repo/13/cpp
$ ~/riscv/repo/listesp struint.S # For ESP32-C3 environment
$ ~/riscv/repo/list struint.S # For QEMU in Fedora Linux
$ C:\riscv\repo\listesp.bat struint.S # For Windows ESP32-C3

Once the listing is produced, look at lines 25 to 41. Notice how there is assembled opcode 
data for line 32 specifying the mul instruction, but no code for lines 33 to 36.

  25 0014 03CF0F00      loop:   lbu     t5,0(t6)        # Load text char
  26 0018 63000F02              beqz    t5,nulbyt       # Branch if null byte
  27 001c 630C6F00              beq     t5,t1,skip      # Skip white space
  28 0020 6342EE03              bgt     t5,t3,fail      # char > '9'?
  29 0024 6340DF03              blt     t5,t4,fail      # char < '0'?   
  30 0028 137FFF00              andi    t5,t5,0x0F      # Mask out 0x00 to 0x09
  31                    #ifdef __riscv_mul
  32 002c 33055502              mul     a0,a0,t0        # a0 *= 10
  33                    #else
  34                            sll     a6,a0,3         # a6 = a0 * 8
  35                            sll     a0,a0,1         # a0 *= 2
  36                            add     a0,a0,a6        # a0 += a6
  37                    #endif
  38 0030 7A95                  add     a0,a0,t5        # a0 += t5
  39 0032 8503                  addi    t2,t2,1         # Bump digit count
  40 0034 850F          skip:   addi    t6,t6,1         # ++text ptr
  41 0036 F9BF                  j       loop

Listing 13.3: Listing output of the main loop for struint.S.

Now try removing extension support 'M'. Under Fedora, specify -march=rv64iac and for the 
ESP32-C3 environment, use -march=rv32iac instead. This compiles without the 'M' exten-
sion. Listing 13.4 illustrates what the ESP32-C3 listing would look like after the assembly:

$ cd ~/riscv/repo/13/cpp
$ ~/riscv/repo/listesp -march=rv32iac struint.S   # For ESP32-C3 environment

  25 0014 03CF0F00      loop:   lbu     t5,0(t6)        # Load text char
  26 0018 63020F02              beqz    t5,nulbyt       # Branch if null byte
  27 001c 630E6F00              beq     t5,t1,skip      # Skip white space
  28 0020 6344EE03              bgt     t5,t3,fail      # char > '9'?
  29 0024 6342DF03              blt     t5,t4,fail      # char < '0'?   
  30 0028 137FFF00              andi    t5,t5,0x0F      # Mask out 0x00 to 0x09
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  31                    #ifdef __riscv_mul
  32                            mul     a0,a0,t0        # a0 *= 10
  33                    #else
  34 002c 13183500              sll     a6,a0,3         # a6 = a0 * 8
  35 0030 0605                  sll     a0,a0,1         # a0 *= 2
  36 0032 4295                  add     a0,a0,a6        # a0 += a6
  37                    #endif
  38 0034 7A95                  add     a0,a0,t5        # a0 += t5
  39 0036 8503                  addi    t2,t2,1         # Bump digit count
  40 0038 850F          skip:   addi    t6,t6,1         # ++text ptr
  41 003a E9BF                  j       loop

Listing 13.4 Compiling with -march=rv32iac for struint.S for ESP32-C3 environment.

Notice in Listing 13.4 how there is no code assembled for line 32, but there is for lines 34 to 
36. When we take away the extension 'M', the assembler substitutes the software solution 
for us.

13.4. RV32 vs RV64
There may be times when you want to make an assembler routine portable to both the 
32-bit and 64-bit environments. In many cases, you can just leverage the fact that the 
sign-extend feature of many opcodes to the full width of the 64-bit registers in RV64 allows 
you to code it the same way. For example, the first integer argument will arrive in register 
a0, whether RV32 or RV64. A second integer argument likewise will arrive in a1. If the goal 
was to multiply the two arguments and return an int, the code can remain the same for 
both environments:

    mul   a0,a0,a1 # return a0 * a1

But when you need to return a 64-bit result in the RV32 environment, you have to split the 
returned results into a0 and a1, with a0 holding the low order word.

    mulh  t2,a0,a1 # high order a0 * a1 into t2
    mul   a0,a0,a1 # low order a0 * a1
    mv    a1,t2 # a1 = high order a0 * a1

But for RV64, the product can be fully returned in a0 because the register holds 64 bits:

    mul  a0,a0,a1 # return a0 * a1

To work around this, preprocessor statements can help:

#if __riscv_xlen == 32
    mulh  t2,a0,a1 # high order a0 * a1 into t2
    mul   a0,a0,a1 # low order a0 * a1
    mv    a1,t2 # a1 = high order a0 * a1
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#elif __riscv_xlen == 64
    mul  a0,a0,a1 # return a0 * a1
#else
#error The budgie died: wrong RISC-V environment
#endif

Let's examine the listings for RV32 and RV64, to see if the assembler did the correct thing. 
Listing 13.5 is the ESP32-C3 listing and Listing 13.6 is the QEMU Fedora Linux assembler 
listing for the RV64 environment.

   1                    # 1 "port3264.S"
   1                            .global         foo
   0                    
   0                    
   2                            .text
   3                    
   4                    foo:
   5                    #if __riscv_xlen == 32
   6 0000 B313B502              mulh  t2,a0,a1  # high order a0 * a1 into t2
   7 0004 3305B502              mul   a0,a0,a1  # low order a0 * a1
   8 0008 9E85                  mv    a1,t2     # a1 = high order a0 * a1
   9                    #elif __riscv_xlen == 64
  10                            mul  a0,a0,a1   # return a0 * a1
  11                    #else
  12                    #error The budgie died: wrong RISC-V environment
  13                    #endif
  14 000a 8280                  ret

Listing 13.5: The assembler listing for ~/riscv/repo/13/cpp/port3264.S for RV32.

   1                    # 1 "port3264.S"
   1                            .global         foo
   0                    
   0                    
   1                    /* Copyright (C) 1991-2020 Free Software Foundation, Inc.
   2                            .text
   3                    
   4                    foo:
   5                    #if __riscv_xlen == 32
   6                            mulh  t2,a0,a1  # high order a0 * a1 into t2
   7                            mul   a0,a0,a1  # low order a0 * a1
   8                            mv    a1,t2     # a1 = high order a0 * a1
   9                    #elif __riscv_xlen == 64
  10 0000 3305B502              mul  a0,a0,a1   # return a0 * a1
  11                    #else
  12                    #error The budgie died: wrong RISC-V environment
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  13                    #endif
  14 0004 8280                  ret

Listing 13.6: The assembler listing for ~/riscv/repo/13/cpp/port3264.S for RV64.

Comparing the two listings, you can see that for the RV32 environment, lines 6 through 8 
are assembled, but not line 10. In the RV64 listing, lines 6 through 8 are not assembled, 
yet line 10 is. The preprocessor allowed the code to adapt to its environment.

13.5. Assembler Macros
The GNU assembler possesses a macro processor that can be helpful, especially if you need 
to code something repetitively or with some variation in parameters. The basic format of a 
macro is as follows:

      .macro    macname parm1=default1 parm2=default2...
      opcode    \parm1,\parm2 # Statement(s)
      etc...         # etc..
      .endm # End of macro

where:

• macname is the required unique name of the macro
• parm1 is the first optional parameter
• default1 is the default for parm1 (when specified)
• parm2 is the second optional parameter
• etc.

Let's take the last assignment from chapter 12 and define and use a macro named fpinit, to 
save the current floating-point state and to initialize the environment for a new calculation. 
The definition of the macro has been extracted for ease of reference:

     8  #
     9  #       Macro to save current fscr status to register 'save',
    10  #       and set the default rounding mode to 'round' (round to
    11  #       nearest, by default), and clear exceptions:
    12  #
    13          .macro  fpinit save=t2 round=0x4
    14  #if __riscv_flen > 0
    15          frcsr   \save                   # save = original fcsr
    16          fsrmi   x0,\round               # Set rnd mode to RMM
    17          fsflagsi x0,0                   # Clear exceptions
    18  #else
    19  #error  No RISC-V hardware floating point support
    20  #endif
    21          .endm
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Line 13 declares the start of the macro body, declaring its name to be fpinit and to take two 
optional parameters save and round. Each of these parameters has default values of t2 for 
save and 0x4 for round (which is the value for round to the nearest). Specifying defaults 
for each parameter is optional.

Line 14 checks that the hardware-floating point exists, and if not, the error at line 19 is 
highlighted. Otherwise, lines 15 to 17 are expanded, with the text for "\save" and "\round" 
substituted according to the values supplied in the macro parameters.

Listing 13.7 illustrates the entire program for celsius.S where the macro is defined and 
used. The definition of the macro must appear before its use.

     1  #       The floating-point version of conftemp (fconvtemp)
     2          .global fconvtemp
     3          .text
     4  
     5          .equ    rtz,0x1                 # Round to zero
     6          .equ    rmm,0x4                 # Round to Nearest
     7          .equ    dyn,0x7                 # Dynamic rounding mode
     8  #
     9  #       Macro to save current fscr status to register 'save',
    10  #       and set the default rounding mode to 'round' (round to
    11  #       nearest, by default), and clear exceptions:
    12  #
    13          .macro  fpinit save=t2 round=0x4
    14  #if __riscv_flen > 0
    15          frcsr   \save                   # save = original fcsr
    16          fsrmi   x0,\round               # Set rnd mode to RMM
    17          fsflagsi x0,0                   # Clear exceptions
    18  #else
    19  #error  No RISC-V hardware floating point support
    20  #endif
    21          .endm
    22  
    23  #
    24  #       extern double fconvtemp(double ahrenheit,unsigned *pflags)
    25  #
    26  # ARGUMENTS:
    27  #       fa0     temperature in Fahrenheit
    28  #       a0      pointer to int to return flags
    29  #
    30  # RETURNS:
    31  #       fa0     temperature in Celsius
    32  #       flags through ptr in a0
    33  
    34  fconvtemp:
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    35          fpinit  save=a7 round=rmm
    36          la      t4,f18
    37          fld     ft0,0(t4)               # ft0 = 1.8
    38          addi    t0,x0,32                # t0 = 32
    39          fcvt.d.lu ft1,t0,rtz            # ft1 = 32.0
    40  
    41  conv:   fsub.d  fa0,fa0,ft1,rtz         # fa0 -= 32.0
    42          fdiv.d  fa0,fa0,ft0,rmm         # fa0 /= 1.8
    43  
    44          frflags t0                      # t0 = fcsr.flags
    45          sw      t0,0(a0)                # Store fcsr.flags
    46  
    47          fscsr   x0,a7                   # Restore fscr
    48          ret     
    49  
    50          .section .rodata
    51  f18:    .double 1.8

Listing 13.7: Program using macro fpinit, ~/riscv/repo/13/cpp/qemu64/celsius.S.

We see that the macro is declared at the top of the source file on lines 13 to 21. The macro 
is invoked in line 35, with the same parameter set to a7, and the round parameter set to 
rmm. The excerpted assembler output listing of the main section of code is illustrated in 
Listing 13.8.

  34                    fconvtemp:
  35 0000 F3283000              fpinit  save=a7 round=rmm
  35      73502200
  35      73501000
  36 000c 970E0000              la      t4,f18
  36      938E0E00
  37 0014 07B00E00              fld     ft0,0(t4)               # ft0 = 1.8
  38 0018 93020002              addi    t0,x0,32                # t0 = 32
  39 001c D39032D2              fcvt.d.lu ft1,t0,rtz            # ft1 = 32.0
  40                    
  41 0020 5315150A      conv:   fsub.d  fa0,fa0,ft1,rtz         # fa0 -= 32.0
  42 0024 5345051A              fdiv.d  fa0,fa0,ft0,rmm         # fa0 /= 1.8
  43                    
  44 0028 F3221000              frflags t0                      # t0 = fcsr.flags
  45 002c 23205500              sw      t0,0(a0)                # Store fcsr.
flags
  46                    
  47 0030 73903800              fscsr   x0,a7                   # Restore fscr
  48 0034 8280                  ret     

Listing 13.8: Excerpt of assembler listing for ~/riscv/repo/13/cpp/qemu64/celsius.S.

RISC-V Assembly Language Programming - UK.indd   206RISC-V Assembly Language Programming - UK.indd   206 04/10/2022   11:0204/10/2022   11:02



Chapter 13 • Portability

● 207

The macro invocation occurs in line 35, from which you can see the assembled code at the 
left in lines labeled as 35 (all three of them).  Had we set the parameter save=t2, the code 
shown would have been identical to the program in chapter 12, Floating-Point. Since the 
macro permits us to use a different register, we chose unused register a7 this time. Note 
that this change requires us to change the register referenced in line 47.

Line 35 supplied the value of round=rmm to the macro. The default for this parameter was 
the value 0x4, which is the bit pattern for round to the nearest. Since we supplied "rmm" 
to this parameter and it is used as immediate data in line 16, the value "rmm" must be a 
defined symbol. In this program, that value comes from line 6 of the source program:

    .equ    rmm,0x4   # Round to Nearest

These are little details that sometimes mess us up. If we were lazy and didn't want to define 
rmm, we could have invoked the macro in either of the following ways:

    fpinit  save=a7 round=0x4         # Specify numeric value for rounding
    fpinit  save=a7                   # Depend upon default for round=0x4

While this is a fairly simple macro with limited utility in this case, the idea was to introduce 
to you the ability of the GNU assembler to apply macros. For completeness, Listing 13.9 
illustrates the main driver program for this particular project.

     1  #include <stdio.h>
     2  
     3  extern double fconvtemp(double f,unsigned *pflags);
     4  
     5  int
     6  main(int argc,char **argv) {
     7          static double const tests[] = {
     8                  32.0, 0.0, -40.0, 18.5
     9          };
    10  
    11          for ( int ux=0; ux < 4; ++ux ) {
    12                  unsigned flags;
    13  
    14                  double celsius = fconvtemp(tests[ux],&flags);
    15  
    16                  printf("%.1lf F -> %.1lf C (flags = 0x%04X)\n",
    17                          tests[ux], celsius, flags);
    18          }
    19          return 0;
    20  }

Listing 13.9: Main driver program ~/riscv/repo/13/cpp/qemu64/main.c.
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Let's make sure that this change to use the fpinit macro produces the same results. Start 
up Fedora Linux in QEMU, and perform the following:

$ cd ~/riscv/repo/13/cpp/qemu64
$ gcc -g celsius.S main.c
$ ./a.out
32.0 F -> 0.0 C (flags = 0x0000)
0.0 F -> -17.8 C (flags = 0x0001)
-40.0 F -> -40.0 C (flags = 0x0001)
18.5 F -> -7.5 C (flags = 0x0001)

The results look good!

13.6. Summary
Using the C preprocessor macros in assembler work the same as they do for C/C++ when 
the source code is provided in a ".S" suffixed file. This permits the programmer to perform 
clever work-arounds to adjust for environmental differences. Whether you use this feature 
or not will depend upon the complexity involved. Sometimes it may be simpler to use sep-
arate source files for different environments because a source file with too many preproc-
essor directives can be difficult to read.

When developing a more involved function, it may be profitable to develop separately for 
RV32 and RV64 at first. Once both are debugged and tested, you might try to merge the 
two by careful use of preprocessing. If that still proves difficult the other option is to #if 
out large unique sections of the code for each environment and share the other sections in 
common. Do keep the source code pleasant for the reader.

Additionally, the GNU assembler provides macro capabilities that are especially helpful for 
repetitive or error-prone code. The GCC preprocessor and macro processor offer another 
pair of tools for the RISC-V developer to exploit.
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Chapter 14 • Determining Support

Trusted Support

In the last chapter, C preprocessor macros helped shape the assembly of RISC-V code by 
use of macros to direct it. For example, if it was known at build time that multiply support 
was provided then the multiply opcode would be assembled. But what do you do when you 
must assemble a binary that will run on platforms that may or may not have multiply sup-
port? If you can't determine the support level at compile time, then how do you determine 
it at runtime? That is one exploration that lies before us in this chapter.

Another area that will be touched upon is the CPU's counters and timers. RISC-V defines 
some standard ones that should exist. There may also be custom timers and counters pro-
vided, which are obviously defined by the vendor.

14.1. Privilege Levels
Before we get started, let's introduce RISC-V privilege levels. You will discover that on the 
ESP32-C3 that you can run almost any defined opcode. Yet while running under QEMU 
emulating Fedora Linux, that is not possible. Some opcodes require a particular operating 
privilege mode and will cause an exception if this is violated. Table 14.1 lists the defined 
RISC-V privilege levels.

Level Encoding Name Abbreviation

0 0b00 User/Application U

1 0b01 Supervisor S

2 0b10 Reserved -

3 0b11 Machine M

Table 14.1: RISC-V privilege levels.

For a given hardware platform, the vendor may support a subset of these privilege levels. 
The one mandatory level for all platforms is, however, the Machine Level. Level 2 in Table 
14.1 may be defined as Hypervisor in some early documents. But some of these aspects of 
RISC-V are still undergoing development.
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14.1.1. Machine Level
Machine Level (M) is the highest privilege level and is the mode that must be supported by 
all RISC-V hardware platforms. Code executing at Machine Level is inherently trusted and 
has access to all low-level aspects of "the machine".

14.1.2. Supervisor Level
The Supervisor Level (S) is used by conventional operating systems like Linux for operating 
system-level operations, which must be protected from the application-level code.

14.1.3. User Level
Applications in a conventional operating system such as Linux, run in User Level (U) mode 
so that problems in the application are prevented from causing issues for other applications 
on the same system. When special operations are requested, the application will enter Su-
pervisor Level (S) through a standard interface.

14.2. Control and Status Registers
Now let's examine an important register: The Control and Status Register (CSR). The 
RISC-V ISA has assigned up to 4,096 CSRs with the use of a 12-bit encoded address. There 
are several addresses available for each of the privilege levels supported. Some registers 
are read-only while others may be read/write. In this chapter, we will initially examine the 
Machine ISA Register (misa), which is available at address 0x301.

14.2.1. Machine ISA Register
The misa is a read-only register of XLEN bits in length, which reports the ISA and exten-
sions supported by this CPU. The specification indicates that:

"This register must be readable in any implementation, but a value of zero can be re-
turned to indicate the misa register has not been implemented, requiring that CPU capa-
bilities be determined through a separate non-standard mechanism."[1]

According to the RISC-V standard, the misa register is classed as "Write Any Values, Read 
Legal Values" (WARL) type of register. This means that no exceptions are raised if you 
write values in unsupported bits of the register. When reading the register, only the legal 
supported bit values are returned. The layout of the misa CSR is illustrated in Figure 14.1.

MXLEN-1 MXLEN-2 MXLEN-3

MXLEN-282 26

26  25 0
MXL[1:0] (WARL) 0 (WARL) Extension[25:0] (WARL)

Figure 14.1: The MISA Control Status Register (address 0x301).

Notice that the leftmost 2 bits encode the MXL field, while extensions are the rightmost 26 
bits. This has an impact when working with 32-bit or 64-bit machines. The XLEN value is 
encoded in the left 2 most significant bits according to Table 14.2.
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MXL XLEN

1 32

2 64

3 128

Table 14.2: Encoding of the MXL field within MISA.

The bit encodings for the instruction sets and extensions are shown in Table 14.3. Some of 
these may change in meaning as the standards are ratified over time. Most notable is bit 
8 which indicates one of the RV32I, RV64I or RV128I base ISA, which combined with the 
MXL value identifies your base platform. If bit 8 is not set, then check bit 4 for the special 
RV32E base ISA, reserved for very small-embedded platforms. In addition, extension bits 
will appear when they apply. For example, the ESP32-C3 will also indicate bit 2 (C) for 
compressed instruction set support and bit 12 (M) for multiply support.

Bit Character Extension

0 A Atomic

1 B Bit-Manipulation

2 C Compressed

3 D Double-precision floating-point

4 E RV32E base ISA

5 F Single-precision floating-point

6 G Reserved

7 H Hypervisor

8 I RV32I/RV64I/RV128I base ISA

9 J Tentatively reserved for Dynamically Translated Languages extension

10 K Reserved

11 L Reserved

12 M Integer Multiply

13 N Tentatively reserved for User Level Interrupts

14 O Reserved

15 P Tentatively reserved for Packed-SIMD

16 Q Quad-precision floating-point

17 R Reserved

18 S Supervisor mode implemented

19 T Reserved

20 U User mode implemented

21 V Vector

22 W Reserved
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Bit Character Extension

23 X Non-standard extensions present

24 Y Reserved

25 Z Reserved

Table 14.3: Encoding for the Extensions field in MISA.

14.3. Opcodes
There are three basic opcodes to know about before we look at the pseudo-opcodes. Where 
"CSR" is specified, supply the Control Status Register address that you want to work with. 
For one example the address misa from Figure 14.1 can be supplied. The generalized op-
codes are:

csrrs  rd, csr, rs1 # rd<-csr, csr<-rs1  Atomic Read and Set Bit in CSR
csrrw  rd, csr, rs1 # rd<-csr, csr<-rs1  Atomic Read/Write CSR
csrrwi rd, csr, imm  # rd<-csr, csr<-imm  Atomic Read/Write CSR immediate

The csrrw and csrrwi atomically place the CSR contents into rd, while replacing the CSR 
with the value in rs1 or the immediate data. The csrrs opcode differs by only setting bits in 
the CSR for each bit that is a 1-bit in rs1, while zero bits have no effect.

For programmer convenience, there are three pseudo-instructions offered, with the equiv-
alent opcode shown at right in the comment field:

csrr   rd, csr #  csrrs  rd, csr, x0  (read by do not change)
csrw   csr, rs1 #  csrrw  x0, csr, rs1 (write by do not read)
csrwi  csr, imm #  csrrwi x0, csr, imm (write imm by do not read)

To read the misa register into register t3 without changing the value of the misa register, 
you would code:

csrr   t3, misa #  t3 <- misa

14.4. ESP32-C3
The ESP32-C3 device as programmed by the Espressif ESP-IDF operates in the Ma-
chine Level mode, allowing us to explore privileged opcodes like csrr. The ESP-IDF 
incorporates a number of libraries, including FreeRTOS, so that preemptive mul-
ti-threading is possible. But all this runs at the "machine level" (M).

14.5. Reporting MISA
To demonstrate reading the misa register, we'll run the main program shown in Listing 
14.1, which calls upon the assembler function named extensions(). This function will return 
the extensions supported in the return value, and the XLEN value by the pointer in the third 
argument. The buffer and its maximum length are passed in arguments one and two (line 
11) to be populated with some text. Upon return, the printf() statement will further format 
and display the result.
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     1  #include <stdio.h>
     2  #include <stdbool.h>
     3  
     4  extern unsigned extensions(char *buf,unsigned bufsiz,unsigned *bits);
     5  
     6  void
     7  app_main(void) {
     8          char buf[32];
     9          unsigned exten=0, bits=0;
    10  
    11          exten = extensions(buf,sizeof buf,&bits);       
    12  
    13          printf("exten = 0x%06X, %u bits, RV%u%s\n",
    14                  exten, bits, bits, buf);
    15  }

Listing 14.1: Main program ~/riscv/repo/14/extend/main/main.c to report MISA.

The assembler function is illustrated in Listing 14.2. It might look a little complicated, but it 
is merely a bunch of little steps used to return an improved format to the caller.

     1          .global extensions
     2          .text
     3  
     4  # extern unsigned extensions(
     5  #       char *buf,
     6  #       unsigned bufsiz,
     7  #       unsigned *bits);
     8  #
     9  # ARGUMENTS:
    10  #       a0      char const *buf (text to return)
    11  #       a1      unsigned buf size (bytes)
    12  #       a2      pointer to unsigned int 'bits'
    13  #
    14  # RETURNS:
    15  #       a0      unsigned value (extension bits)
    16  
    17  extensions:
    18          mv      t6,a0           # t6 = buf ptr
    19          add     a6,t6,a1        # a6 = buf + buf_size
    20          csrr    t3,misa         # t3 = misa register
    21          li      t2,1            # t2 = 1
    22          sll     t2,t2,8         # t2 <<= 8 (Mask for 'I')       
    23          and     t4,t3,t2        # t4 = t3 & t2
    24          beq     x0,t4,3f        # Branch if not 'I'
    25          li      t1,'I'          # t1 = ascii 'I'
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    26          jal     t0,putch        # Stuff 'I' into buf
    27          xor     t3,t3,t4        # Clear 'I' bit
    28  #
    29  #       Return 32/64/128 bits
    30  #
    31  3:      li      t4,32           # t4 = 32
    32          blt     t3,x0,7f        # Branch if t3 negative
    33          j       8f
    34  7:      li      t4,64           # t4 = 64
    35          slli    t2,t3,1         # t2 = t3 << 1
    36          blt     t2,x0,9f
    37          j       8f
    38  9:      li      t4,128          # t4 = 128
    39  8:      sw      t4,0(a2)        # Return bits = xlen
    40  #
    41  #       Now mask out extensions only (exclude 'I')
    42  #
    43          addi    a4,t4,-26       # a4 = xlen - 26
    44          li      a0,-1           # a0 = mask all 1's
    45          sll     a0,t3,a4        # a0 = t3 << (xlen - 26)
    46          srl     a0,a0,a4        # a0 >>= (xlen - 26)
    47  #
    48  #       Populate buf with extensions
    49  #
    50          li      t1,'A'
    51          mv      t2,a0           # t2 = a0
    52  loop:   andi    t5,t2,1         # Bit set?
    53          beq     t5,x0,4f        # Branch if zero bit
    54          jal     t0,putch        # Put character t1
    55  4:      addi    t1,t1,1         # ++t1 (ascii char)
    56          srli    t2,t2,1         # t2 >>= 1
    57          bne     t2,x0,loop      # Loop until all bits
    58          li      t1,0            # Load nul byte
    59          jal     t0,putch        # Put nul byte
    60  xit:    ret     
    61  #
    62  #       Internal routine: returns via t0
    63  #       Put char in t1 to buffer pointed by t6
    64  #
    65  putch:  bgeu    t6,a6,5f        # If at end of buf...
    66          sb      t1,0(t6)        # else put byte
    67          addi    t6,t6,1         # ++ptr in t6
    68  5:      jr      t0           

Listing 14.2: Program to read MISA, ~/riscv/repo/14/extend/main/extend.S.
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Let's first examine the inner function named putch() defined in lines 65 to 68.

1. The function is called using t0 as the "link register". The value in t0 will be used 
for returning to the caller.

2. Register a6 has been initialized as the address past the end of the caller's buffer, 
which is established in line 19. Register t6 is used as the working pointer into the 
caller's buffer.

3. Upon entry to putch() in line 67, we first test if the buffer pointer (t6) is greater 
than or equal to the end of the buffer. If it is, control passes to label 5 in line 68, 
where we promptly return.

4. Otherwise, the byte held in temporary t1 is stored at the pointer 0(t6) placing that 
character into the caller's buffer (line 66).

5. The buffer pointer is then incremented by 1 in line 67.
6. The function returns by the link register t0 in this case.

This use of the little internal function allows us to blindly call it, knowing that if the caller 
ever supplies a buffer that is too small, no harm will be done. The bounds of the buffer will 
always be checked.
The entry of the function is line 18, where the buffer pointer in a0 is copied to t6, and the 
end pointer is computed in a6 (an unused argument register). Now let's trace the remaining 
steps:

1. The misa CSR is read in line 20, with the value placed into t3. The misa is left 
unchanged.

2. Register t2 is then loaded with 1, then shifted left 8 bits in lines 21 and 22.
3. That mask value is used in line 23 to set t4 (line 23).
4. If t4 is zero (in other words, the 'I' bit in misa is not set) the code branches to line 

31 (label 3).
5. Otherwise, the misa 'I' bit was set, and then the ASCII value for 'I' is loaded into 

t1 and then stored in the caller's buffer in lines 25 and 26.
6. To suppress the 'I' from being reported later, we mask out that bit in line 27, by 

using the xor operation to flip the 1-bit to a zero.
7. Line 31 then sets t4 to the value 32 as a trial value for XLEN.
8. If the sign bit of t3 is set (negative), then branch to line 34 (label 7).
9. Otherwise, we jump to line 39 from line 33 (XLEN is 32).
10. If control passes to line 34 (from line 32), we then set t4 to 64 as the next trial 

XLEN value.
11. Line 35 shifts t4 left one bit and tests the sign bit again, branching from line 36 

if the bit was set. If the branch to line 38 is taken, the XLEN is determined to be 
128 (label 9).

12. At line 39, the value for XLEN in t4 is saved to the caller's unsigned int argument, 
returning the XLEN value to the caller.

13. Lines 43 to 46 then mask out the lower 26 bits of the misa register, since we want 
to eliminate all but the lower 26 bits. These bits are left in register a0 to be the 
return value containing all extension bits (except for 'I', which we turned off).
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14. Line 50 initializes t1 with the ASCII value for 'A' and copies a0 to t2, for the exten-
sion bits to be tested.

15. The loop begins at line 52, where we test the low-order bit of t2, placing that bit in 
t5. If that bit was zero, then the code skips ahead to line 55 (label 4).

16. If the bit tested is a 1 bit, then the ASCII character in t1 is saved to the caller at 
line 54. The putch() function will also increment the buffer pointer in t6.

17. Line 55 increments the ASCII character to the next in sequence. The first time 
around the 'A' will become a 'B'.

18. The extension bits in t2 are shifted right one bit in line 56, and if that shift results 
in a non-zero value, then we loop back to line 52, from 57.

19. Otherwise, we fall through to line 58, where we load a null byte into t1.
20. Internal function putch() is called one more time from line 59 to place a null byte 

at the end of the string.
21. The extensions() function returns at line 60.

Build, flash and monitor the ESP32-C3 as follows:

$ cd ~/riscv/repo/14/extend
$ idf.py build
...
$ idf.py -p <<<yourport>>> flash monitor
...
I (257) cpu_start: Starting scheduler.
exten = 0x101004, 32 bits, RV32ICMU

From the last line of output (from our main program), we see that it reports an XLEN 
of 32 bits, and that it is an RV32I platform with CMU extensions. These are all encoded 
in the "exten = 0x101004" bits that were returned and reported. Note that the 'I' bit 
was stripped out of this string in the code. With the information returned, the caller can 
determine at runtime, whether multiply is supported for example.

14.6. RV64 Platform
What happens if we run that same code on an RV64 platform? Start up your Fedora Linux 
under QEMU, and perform the following?

$ ~/riscv/repo/14/extend/qemu64
$ gcc -g -Wall extend.S main.c
$ ./a.out
Illegal instruction (core dumped)
$

It appears that the program builds ok, but aborts when run under Fedora Linux. To see why, 
let's enlist the help of gdb:
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$ gdb ./a.out
GNU gdb (GDB) Fedora 9.0.50.20191119-2.0.riscv64.fc32
Copyright (C) 2019 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type "show copying" and "show warranty" for details.
This GDB was configured as "riscv64-redhat-linux-gnu".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
    <http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from ./a.out...
(gdb) r
Starting program: /home/riscv/riscv/repo/14/extend/qemu64/a.out
 glibc-2.30.9000-29.fc32.riscv64
Missing separate debuginfos, use: dnf debuginfo-install
Program received signal SIGILL, Illegal instruction.
extensions () at extend.S:20
20  csrr t3,misa  # t3 = misa register

Normally we'd just analyze a "core file" in gdb after an abort but in recent years it seems 
that every distribution is doing their best to do away with core files (this drives developers 
nuts!)  That problem is fixable, but each platform has its own rules for configuring core file 
support. Because of this annoyance, I've cut to the chase and just run the executable a.out 
directly from gdb instead.

After considerable verbiage, the "(gdb)" prompt appears:

1. At the prompt type "r" + CR to tell gdb to "run" the program.
2. The gdb command then starts the program, and produces a few more messages 

before reporting the message "Program received signal SIGILL, Illegal instruction. 
extensions () at extend.S:20". This tells us why ("signal SIGILL, Illegal instruc-
tion"), the function ("extensions()") and the module ("extend.S") and the line 
number where the problem occurred (line 20). Note that to get all of this informa-
tion, we must have built the project with the debug (-g) compile option.

3. Additionally, gdb reports the source line itself, and it is evident that the Linux ker-
nel did not like us issuing the csrr opcode.

Note: If gdb does not report the source line of the failure, it is because the executable 
was not compiled and linked with debugging support (GCC option -g).
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The last lines shown by gdb are:

Program received signal SIGILL, Illegal instruction.
extensions () at extend.S:20
20  csrr t3,misa  # t3 = misa register

There is nothing wrong with the way the program (or the opcode) is written. What caused 
the above signal is that Fedora Linux is running our programs in "User/Application mode" 
(U). This mode of execution does not permit privileged instructions like csrr to be executed. 
If you wanted to, you could write a kernel device module, and issue the opcode there. But 
that is beyond the scope of this book.

To exit gdb, type "q" + CR to quit.

Fortunately, Linux provides another way to query the capabilities:

$ cat /proc/cpuinfo
processor : 0
hart  : 1
isa  : rv64imafdcsu
mmu  : sv48

processor : 1
hart  : 0
isa  : rv64imafdcsu
mmu  : sv48

From this display, we see that there are two configured cores (processors). Each RV64I core 
with MAFDCSU extensions supported. Table 14.4 lists the support available in our Fedora 
Linux RISC-V system. A user program can open and parse the file /proc/cpuinfo to deter-
mine the level of support available.

Bit Character Extension

0 A Atomic

2 C Compressed

3 D Double-precision floating-point

5 F Single-precision floating-point

8 I RV32I/RV64I/RV128I base ISA

12 M Integer Multiply

18 S Supervisor mode implemented

20 U User mode implemented

Table 14.4: Encoding for the Extensions field in MISA reported by QEMU.
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14.7. Counters
The RISC-V standards define performance counters and timers, which are available to the 
unprivileged mode of operation. These counters are 64 bits in width and are CSR read-only 
values. For RV32, the upper half of the counter is read with an "h" version of the opcode. 
For example, the upper word is read with rdcycleh instead of rdcycle.

The RISC-V standard for reading the cycles counter is the rdcycle pseudo-opcode:

rdcycle   rd # equivalent: csrr rd,cycle

For RV32I, there is the risk of the counter overflowing between the reading of the low order 
32 bits and the high order bits. To work around that, use the following sequence:

loop:  rdcycleh  t2
       rdcycle   t1
       rdcycleh  t3
       bne       t2,t3,loop

This sequence checks to see if the upper 32-bit word changed between the start and end 
of the sequence. If it did, the sequence is repeated one more time.

There are also two more timers and counters that often interest the programmer:

rdtime    rd # equivalent: csrr rd,time
rdinstret rd # equivalent: csrr rd,instret

For RV32I, there are also rdtimeh and rdinstreth opcodes. The rdtime pseudo-opcode reads 
the time CSR value into the destination register. This counter tracks the wall-clock real time 
that has passed from some arbitrary start point (the units used may be implementation 
specific). The CSR instret counts the number of instructions "retired" by this hardware 
thread.

14.7.1 Project rdcycle
To get a feel for the rdcycle pseudo-opcode, let's run Fedora Linux under QEMU, to obtain 
our RV64 environment. In this project, we're going to attempt to measure the difference 
between using the multiply instruction and using the multiply by ten without the multiply 
opcode. The main driver program is shown in Listing 14.3.

     1  #include <stdio.h>
     2  #include <stdint.h>
     3  
     4  extern uint64_t measure(int mul);
     5  
     6  int
     7  main(int argc,char **argv) {
     8          uint64_t cycles;
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     9  
    10          for ( int x=0; x<10; ++x ) {
    11                  cycles = measure(1);
    12                  printf("muliply cycles = %lu\n",cycles);
    13                  cycles = measure(0);
    14                  printf("mul10 cycles   = %lu\n",cycles);
    15          }
    16          return 0;
    17  }

Listing 14.3: Main program ~/riscv/repo/14/rdcycle/qemu64/main.c.

When the assembler routine measure() is called with a true argument, it will measure the 
cycle time of the multiply opcode. When called with zero (false), the multiply by 10 without 
the multiply opcode is measured instead. The test is repeated ten times for the pair of calls 
by the main program (lines 11 and 13).
The source program for the assembler measure() function is provided in Listing 14.4.

     1          .global measure
     2          .text
     3  
     4  # extern unsigned measure(int mul)
     5  #
     6  # ARGUMENTS:
     7  #       a0      When true, measure the mul instruction,
     8  #               otherwise measure two shifts and one add.
     9  # RETURNS:
    10  #       a0      unsigned count of cycles
    11  
    12  measure:
    13          beqz    a0,1f           # Branch if measuring by 10
    14          li      t5,10           # t5 = 10
    15          rdcycle t1
    16          mul     a2,a0,t5        # a2 = a0 * 10
    17          rdcycle t2
    18          sub     a0,t2,t1        # Difference in cycles
    19          ret
    20  
    21  1:      rdcycle t1
    22          sll     a2,a0,3         # a2 = a0 * 8
    23          sll     a1,a0,1         # a1 = a0 * 2
    24          add     a2,a2,a1        # a2 = a0 * 10
    25          rdcycle t2
    26          sub     a0,t2,t1        # Difference in cycles
    27          ret

Listing 14.4: Program ~/riscv/repo/14/rdcycle/qemu64/measure.S.
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Let's break down the steps used:

1. The 1 or 0 value is provided in the call through the register a0 and is tested in line 
13. The argument was non-zero (true), then the execution falls through to line 14.

2. The constant 10 is loaded into temporary register t5 (line 14).
3. Line 15 takes a cycle counter snapshot into register t1.
4. Then the actual multiplication by the mul opcode occurs in line 16.
5. Followed by that is the second snapshot of the cycle counter into t2 at line 17.
6. The difference between the two counts is computed and returned in a0 (line 18).
7. Control returns to the caller in line 19.
8. When the argument is false, control passes to label "1" at line 21 from line 13. At 

this point, a cycle snapshot is copied into register t1.
9. Lines 22 through 24 compute a multiply by ten using shifts and add.
10. The second cycle snapshot is captured into t2 at line 25.
11. Finally, the cycle difference is computed in line 26 and returned in register a0.

There is no provision for handling a counter rollover in the presented code. If the cycle 
counter overflows after capturing the first snapshot, then the difference computed will be 
huge. This is unlikely to happen depending on how long you have had QEMU running. If it 
does happen, repeat the test.

First, compile and then run the test, as follows:

$ gcc -g measure.S main.c
$ ./a.out
muliply cycles = 18724
mul10 cycles   = 25428
muliply cycles = 19714
mul10 cycles   = 846
muliply cycles = 594
mul10 cycles   = 526
muliply cycles = 604
mul10 cycles   = 504
muliply cycles = 410
mul10 cycles   = 512
muliply cycles = 450
mul10 cycles   = 458
muliply cycles = 496
mul10 cycles   = 678
muliply cycles = 432
mul10 cycles   = 494
muliply cycles = 810
mul10 cycles   = 460
muliply cycles = 432
mul10 cycles   = 454
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Your results will likely differ, perhaps considerably so. The first three lines indicate a lot of 
work being done by Fedora Linux, perhaps the result of loading and linking with shared 
libraries. There is also the overhead of mapping the executable file into memory. So I would 
throw away at least the first four results.

The remaining results are inconsistent. This is because the QEMU emulation is not a true re-
flection of what hardware would have returned. So, the best we can do with the emulation 
run is say "we did it" and leave it at that. The essential lesson from this exercise is how we 
used the rdcycle opcode to measure cycle time.

    15          rdcycle t1
    16          mul     a2,a0,t5        # a2 = a0 * 10
    17          rdcycle t2

Benchmarking is tricky. This exercise glosses over other issues like the fact that there is no 
guarantee that the instructions in lines 15 to 17 run without interruption. So, keep these 
factors in mind when designing benchmarks.

If you have access to real RV64 hardware, you should be able to run this exercise and 
obtain good results. New affordable hardware announcements for RISC-V are frequently 
being made these days.

14.7.2. ESP32-C3 rdcycle Support
Given that it is difficult to get a consistent experience under QEMU, can we do better with 
the ESP32C3?  At the time of writing, it turns out that the ESP32-C3 does not support the 
rdcycle command. It will "fault" if you try to invoke it. Despite that, the Espressif folks have 
provided an alternative custom counter that we can experiment with to give us nearly the 
same experience. They provide the MPCCR counter, which is addressed at 0x7E2. In our 
assembler code, we can define the value symbolically as follows:

       .equ    mpccr,0x7E2

The main program, which is similar to the QEMU version is presented in Listing 14.5.

     1  #include <stdio.h>
     2  #include <stdint.h>
     3  
     4  extern uint32_t measure(int mul);
     5  
     6  void
     7  app_main(void) {
     8          uint32_t cycles;
     9  
    10          for ( int x=0; x<10; ++x ) {
    11                  cycles = measure(1);
    12                  printf("muliply cycles = %u\n",cycles);
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    13                  cycles = measure(0);
    14                  printf("shift   cycles = %u\n",cycles);
    15          }
    16  }

Listing 14.5: Main program ~/riscv/repo/14/rdcycle/main/main.c.

This program runs the measure() test multiple times, for reasons that will be explained 
shortly. The assembler routine for the ESP32-C3 version is shown in Listing 14.6.

     1          .global measure
     2          .text
     3  
     4          .equ    mpccr,0x7E2
     5  
     6  # extern unsigned measure(bool mul)
     7  #
     8  # ARGUMENTS:
     9  #       a0      true = use mul else shift
    10  #
    11  # RETURNS:
    12  #       a0      unsigned count of cycles
    13  
    14  measure:
    15          li      a1,99           # Some number
    16          beqz    a0,1f           # If mul is false, jump to 1
    17          li      a2,10           # ten
    18  #
    19  #       Multiply by ten with mul opcode
    20  #
    21          csrr    t1,mpccr
    22          mul     t0,a1,a2        # 99 * 10 -> 136 cycles
    23          csrr    t3,mpccr
    24          j       xit
    25  #
    26  #       Multiply by ten without mul opcode
    27  #
    28  1:      csrr    t1,mpccr
    29          sll     a2,a1,3         # a2 = a1 * 8
    30          sll     a1,a1,1         # a1 *= 2
    31          add     a0,a1,a1        # a0 = a1 * 10 => 200 cycles
    32          csrr    t3,mpccr
    33  
    34  xit:    sub     a0,t3,t1
    35          ret

Listing 14.6: Program ~/riscv/repo/14/rdcycle/main/measure.S.
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Let's now examine the assembler language listing for measure():

1. Line 4 defines a symbol mpccr with the Espressif custom address of 0x7E2. This 
permits us to refer to it symbolically in lines 21 and 23 for example.

2. The function begins by defining a value for a1 in line 15, though this is not really 
required (we can multiply any number).

3. Line 16 tests the calling argument to see if it is zero or non-zero. If non-zero, the 
execution falls through to line 17.

4. The value of 10 is loaded into a2, to keep the code comparison fair, so that we are 
multiplying by ten in line 22 (line 17).

5. The first mpccr value is captured into t1 (line 21).
6. The multiply opcode is used in line 22.
7. The second mpccr value is captured into t3 (line 23).
8. Then the code branches from line 24 to line 34, where the mpccr difference is 

computed and returned in register a0.
9. If the argument was zero upon calling this routine, control would resume at line 28 

where label "1" is defined. At this point, the first mpccr counter is captured into t1.
10. Then the multiply by ten the hard way is performed in lines 29 through 31.
11. The second mpccr value is captured into t3 at line 32.
12. Finally, the difference in mpccr values is computed and returned in register a0 (line 

34) before returning to the caller (line 35).

Once again, note that this code does not handle counters that roll over after overflow. 
Because your demonstration runs shortly after the CPU reset, you are not likely to see a 
problem with that.

Let's now build, flash and monitor the program run:

$ idf.py build
$ idf.py -p <<<yourport>>> flash monitor
...
I (258) cpu_start: Starting scheduler.
muliply cycles = 64
shift   cycles = 4
muliply cycles = 2
shift   cycles = 4
muliply cycles = 2
shift   cycles = 4
muliply cycles = 2
shift   cycles = 4
muliply cycles = 2
shift   cycles = 4
muliply cycles = 2
shift   cycles = 4
muliply cycles = 2
shift   cycles = 4
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muliply cycles = 2
shift   cycles = 4
muliply cycles = 2
shift   cycles = 4
muliply cycles = 2
shift   cycles = 4

Except for the initial surprise, we have better results this time. It is easy to forget that the 
ESP32C3 code resides in flash memory and must be loaded into the RAM cache before it 
can execute. This is the reason for the initial high count.

Once the code has entered the cache, we see that the multiply instruction measures con-
sistently 2, while the shift and add return a count of 4. If we assume that this counter 
represents instructions performed, then we can say that the multiply should be a count of 
1, while the shift and add should be 3. Keep in mind an added instruction was needed to 
perform the second counter capture within measure(). The Espressif documentation in the 
"ESP32C3 Technical Reference Manual" simply describes the MPCCR counter as "Machine 
Performance Counter Value". Espressif's counter address values are defined in the address 
space reserved by the RISC-V standard for customization.

14.8. Summary
There is considerably more that could be said about the counters, timers, Control and Sta-
tus Registers and privilege levels than space would allow. This chapter serves the reader, 
however, as an introduction to these concepts.

[1]  Waterman, A., Krste Asanović, & Hauser, J. (Eds.). (n.d.). The RISC-V Instruction Set 
Manual: Volume II: Privileged Architecture. Retrieved June 23, 2022.
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Chapter 15 • JTAG Debugging

 
A bug attempting to escape JTAG debugging

Debugging can be difficult at the best of times. Programs today are often long and com-
plicated. When an MCU program suddenly faults, how do you determine the exact cause? 
Knowing exactly where the fault occurs is a help. But knowing the state of the variables it 
was working with can make the solution to the problem obvious.

When programming in assembly language the need for a debugger is often more urgent. 
You can look at the code hundreds of times and still be convinced that it should work. But 
the evidence demonstrates that it clearly doesn't. If only you were able to step through that 
same code one instruction at a time looking at the registers and associated memory along 
the way. That is when you experience that "aha!" moment. Seeing is believing.

JTAG is a standard that was developed to help with testing circuits without the use of the 
traditional bed-of-nails approach. This required defining new electrical connections and a 
protocol to drive it. In addition to chip-level testing, the JTAG protocol can be used to pro-
gram flash memory and debug your device. In this chapter, we will examine the Espressif 
ESP32-C3 debugging capabilities made available over the USB link.

15.1. Espressif JTAG
The ESP32-C3 device can be JTAG debugged using a USB cable connected to the D+/D- 
USB pins of the ESP32-C3 device. This is especially convenient because it requires no JTAG 
adapter and requires no extra wiring. According to Espressif's documentation, it is also 
possible to use a JTAG adapter if you prefer. But this requires a number of things including 
operation at the 3.3V level and support from the OpenOCD software.[1] Because there are 
many adapters available and the use of USB is so easy, this chapter will focus on the USB 
JTAG support, which is already supported by OpenOCD.

15.2. Device Requirements
Unfortunately, not all ESP32-C3 devices will support JTAG. The chip must be revision 3 or 
newer. Furthermore, the device must be wired directly to the USB D+/D- USB pins, unlike 
the early devkit versions that used a USB to serial interface chip instead. When shopping 
for your device, if the PCB lacks the USB to serial chip, then there is a good chance that the 
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device is revision 3 or later and will support JTAG. Figure 15.1 illustrates one example of a 
JTAG capable ESP32-C3 dev board.

Figure 15.1: A JTAG capable ESP32-C3 on a bread board.  
Notice the lack of a USB to Serial interface chip.

15.3. Software Components
Since we'll be using USB to perform JTAG debugging, we can summarize the major soft-
ware components as follows:

1. The Espressif version of OpenOCD
2. ESP32-C3 (RISC-V) version of gdb
3. Espressif software on the ESP32-C3 device

Figure 15.1 illustrates the relationships between the major components. For debugging, 
you will have the OpenOCD software running and communicating with the RISC-V aware 
gdb process, both on your desktop PC. The gdb process will be operated through a PC win-
dow. OpenOCD in turn communicates with the ESP32-C3 device over USB, working through 
a layer of device JTAG support. In this manner, the user on the PC can direct the execution 
of code running on the ESP32-C3 device.

Optionally, you can have simultaneous USB CDC (Communication Device Class) support 
so that your ESP32C3 code can send and receive serial data to another window on your 
desktop. This allows the user to see what the code has "printed" for example. This support 
is optional and requires some configuration to use.
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Figure 15.2: Major components of ESP32-C3 JTAG debugging.

If you don't need to see your program output, you can dispense with the second optional 
(serial) window session and interact only with the gdb debugger.

While Figure 15.2 does not show a window attached to the OpenOCD software, there can be 
a window used there also. The procedure that I am going to show you will have it run from 
a terminal session window. If you get fancy and use an IDE like Eclipse or Visual Studio, 
you can have OpenOCD run automatically for you in the background and in that case won't 
need a terminal session. I'm going to stick with manual command line methods here, since 
it leaves us in full control and makes it easier to identify and resolve problems.

15.4. JTAG With No Serial Window
As your first foray into JTAG, I recommend that you start this way and leave the simulta-
neous serial terminal window for later. This simplifies getting things started and tests your 
software and hardware setup with the minimum of dependencies.

Using this procedure, the following general steps are:

1. Plug in your ESP32-C3 device USB cable to the PC.
2. Start OpenOCD.
3. Start gdb.

The following subsections will expand on the details for OpenOCD and gdb.
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15.4.1. Starting OpenOCD
1. Start a terminal window to run OpenOCD from. Be sure to set up your ESP32-C3 

session environment if you're using a Linux/MacOS type of session (review section 
"4 Setup Environment Variables" in chapter 2 if necessary). Windows users can 
simply click on the Espressif provided CMD icon. The current directory is not critical 
in this case.

2. Your JTAG-capable ESP32-C3 device is assumed to be plugged into the PC with the 
USB cable at this point.

3. Enter the OpenOCD command shown in Figure 15.3. You should see messages 
very similar to the example.

$ openocd -f board/esp32c3-builtin.cfg
Open On-Chip Debugger  v0.11.0-esp32-20211220 (2021-12-20-15:45)
Licensed under GNU GPL v2
For bug reports, read
 http://openocd.org/doc/doxygen/bugs.html
Info : only one transport option; autoselect 'jtag'
Info : esp_usb_jtag: VID set to 0x303a and PID to 0x1001
Info : esp_usb_jtag: capabilities descriptor set to 0x2000
Warn : Transport "jtag" was already selected
Info : Listening on port 6666 for tcl connections
Info : Listening on port 4444 for telnet connections
Info : esp_usb_jtag: Device found. Base speed 40000KHz, div range 1 to 255
Info : clock speed 40000 kHz
Info : JTAG tap: esp32c3.cpu tap/device found: 0x00005c25 (mfg: 0x612 (Espressif 
Systems), part: 0x0005, ver: 0x0)
Info : Examined RISC-V core; found 1 harts
Info :  hart 0: XLEN=32, misa=0x40101104
Info : starting gdb server for esp32c3 on 3333
Info : Listening on port 3333 for gdb connections

Figure 15.3: Typical messages from OpenOCD when it starts up.

Note that you don't need to specify a port because OpenOCD locates the device using USB 
identifiers. If the device is not plugged in or not recognized, you will see the message:

Error: esp_usb_jtag: could not find or open device!

What you want to see is the message:

Info : Listening on port 3333 for gdb connections

since this tells you that OpenOCD is ready to work with a gdb session.
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15.4.2. Problems with OpenOCD
Sometimes OpenOCD can get confusing signals from the ESP32-C3 device or encounter 
USB errors. The best option for recovery is to kill the OpenOCD session and unplug the USB 
cable. On Linux/MacOS systems, you may also need to kill background processes that may 
still be running:

$ ps -ef | grep openocd
  501 76202 1690  0 2:48pm ttys005  0:02.16 openocd -f board/esp32c3-builtin.cfg
$ kill -9 76202

Normally it is bad practice to use kill -9, but when OpenOCD goes astray, I found it neces-
sary under MacOS. Once all instances of OpenOCD have been terminated, plug in the USB 
cable again and restart OpenOCD.

Note: It is possible for the ESP32-C3 to get into a state that OpenOCD cannot work 
with because the flashed code has done something bad. If you cannot get OpenOCD to 
start successfully, try flashing the device with a different project. Test if the OpenOCD 
and gdb can work with that project. If so, go back and recheck your code of the problem 
project. Often adding a 10-second delay at the start of your app_main() will give time 
for OpenOCD to connect. Use the FreeRTOS function vTaskDelay().

15.4.3. Terminating OpenOCD
At some point, you'll want to terminate your OpenOCD access to the device. I recommend 
that you kill (Control-C) the OpenOCD command before unplugging the USB cable. The 
current version of the software seems to get upset on MacOS when you unplug the USB 
first. If you already unplugged the USB cable, look for any OpenOCD processes running in 
the background and issue kill -9 on any that remain running.

15.4.4. Start gdb
With OpenOCD at the ready, you can now start gdb if you've already built the project. For 
this example, we'll use the project at directory ~/riscv/repo/14/rdcycle. If you've not built 
and flashed the project, then do so now:

$ cd ~/riscv/repo/14/rdcycle
$ idf.py build
$ idf.py -p <<<yourport>>> flash

This creates an executable in file ./build/rdcycle.elf, that will be loaded by gdb to match the 
code in the device flash. To start gdb, use the Espressif aid, idf.py as follows (it will know 
where to find your *.elf file). You must be in the same directory that you used to build the 
project:

$ idf.py gdb
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The messages should resemble Figure 14.2. If you see error messages instead, it may be 
because OpenOCD was not started, or that the process ran into problems. Recheck the 
OpenOCD startup and try again.

$ idf.py gdb
Executing action: gdb
GNU gdb (crosstool-NG esp-2021r2-patch3) 9.2.90.20200913-git
Copyright (C) 2020 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type "show copying" and "show warranty" for details.
This GDB was configured as "--host=x86_64-host_apple-darwin12 
--target=riscv32-esp-elf".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
    <http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".
Type "apropos word" to search for commands related to "word".
/Users/ve3wwg/.gdbinit:1: Error in sourced command file:
No symbol table is loaded.  Use the "file" command.
0x40000000 in ?? ()
JTAG tap: esp32c3.cpu tap/device found: 0x00005c25 (mfg: 0x612 (Espressif 
Systems), part: 0x0005, ver: 0x0)
Hardware assisted breakpoint 1 at 0x42004c38: file /Users/ve3wwg/riscv/repo/14/
rdcycle/main/main.c, line 7.
[New Thread 1070133268]
[New Thread 1070128416]
[Switching to Thread 1070132924]

Thread 1 hit Temporary breakpoint 1, app_main () at /Users/ve3wwg/riscv/repo/14/
rdcycle/main/main.c:7
7 app_main(void) {
(gdb)

Figure 14.2: gdb startup messages connecting to OpenOCD.

Notice that gdb has automatically set a breakpoint at app_main(), where the ESP32-C3 
program starts. To quit debugging, you can type "quit" followed by return.
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(gdb) quit
A debugging session is active.

 Inferior 1 [Remote target] will be detached.

Quit anyway? (y or n) y
Detaching from program: /Users/ve3wwg/riscv/repo/14/rdcycle/build/rdcycle.elf, 
Remote target
Ending remote debugging.
[Inferior 1 (Remote target) detached]
$

If you got that far, then consider it a success! We'll dig into gdb in the next section, so that 
you can do a whole lot more.

15.5. Operating gdb
The gdb tool is command line driven. But don't fear the command line! GNU has made it 
easy to use and painless. Like operating the bash/zsh shell in Linux/MacOS, gdb supports 
command line editing. Because of this feature, it is rarely necessary to retype an entire 
command. GNU provides documentation here [2], but many users may prefer a quick-start 
read instead.[3] Even if you have never learned any editing control sequences, you can use 
the arrow-up key to locate a previously entered command. Then using the left and right 
arrow keys, you can reposition and edit the command before you hit enter.

In addition to command line editing and history, the gdb debugger repeats the last execut-
ed command if you just press enter (return). This is extremely useful for some commands 
like stepping through code one instruction (or statement) at a time.

15.5.1. Abbreviations
The gdb command goes further than editing to make entering commands easy. It allows 
you to abbreviate commands as short as you want, as long as your abbreviation is unique. 
For example, the "info" command can be shortened to "inf", "in" or even just "i" at the 
moment. If GNU eventually adds another "i" command, then the abbreviation "i" will no 
longer work.

The abbreviations also apply to command arguments. For example:

(gdb) info registers

can be (at the moment) be shortened to just:

(gdb) i r

The "r" is accepted as an abbreviation for "registers".
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While [4] is an older resource, you might consider it as a gentle introduction to using gdb. 
In this chapter I am just going to show some highlights to gdb usage, to whet your appetite 
and get you started. There is a hefty manual for gdb that can be downloaded and printed. 
See [5] under the section "GDB User Manual (PDF)".

15.5.2 GDB Walkthrough
Rather than listing a lot of documentation for you to digest, let's walk through our rdcycles 
project example to learn some basics. Let's continue with the rdcycle project from chapter 
14. Start OpenOCD in another terminal window as described in the section "Starting Ope-
nOCD". In a new window, after setting the environment, if necessary, start gdb as follows:

$ cd ~/riscv/repo/14/rdcycle
$ $ idf.py gdb
...
Thread 1 hit Temporary breakpoint 1, app_main () at /Users/ve3wwg/riscv/repo/14/
rdcycle/main/main.c:7
7 app_main(void) {
(gdb)

Note: Square brackets as in "i[nfo]" will be used in this chapter to indicate valid abbrevi-
ations. The square brackets are not typed and are not part of the command. A frequently 
used command is seldom typed out in full.

Note: The sessions that are shown in this chapter have pathnames abbreviated to a path 
that begins with a tilda (~). The actual path shown will include a full pathname when you 
perform the same operations. For example, userid jackie on MacOS will display without 
the tilda as in:
/Users/jackie/riscv/repo/14/rdcycle/main/main.c

Espressif automatically breakpoints at the start of app_main(), where the ESP32-C3 appli-
cation begins. One helpful command is the "l[ist]" command, since it shows us source lines 
near the current breakpoint without having to refer to the program listing:

Thread 1 hit Temporary breakpoint 1, app_main () at ~/riscv/repo/14/rdcycle/main/
main.c:7
7 app_main(void) {
(gdb) list
2 #include <stdint.h>
3 
4 extern uint32_t measure(int mul);
5 
6 void
7 app_main(void) {
8  uint32_t cycles;
9 
10  for ( int x=0; x<10; ++x ) {
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11   cycles = measure(1);
(gdb) <CR>
12   printf("muliply cycles = %u\n",cycles);
13   cycles = measure(0);
14   printf("shift   cycles = %u\n",cycles);
15  }
16  fflush(stdout);
17 }
(gdb) <CR>
Line number 18 out of range; ~/riscv/repo/14/rdcycle/main/main.c has 17 lines.
(gdb)

Notice how the "list" command was repeated twice by just pressing return (shown as 
"<CR>" in the sample session. After listing several lines of code, you might lose track of 
where the program was stopped. Use the "f[rame]" command to display and refresh your 
memory:

(gdb) frame
#0  app_main () at ~/riscv/repo/14/rdcycle/main/main.c:7
7 app_main(void) {
(gdb)

This reminds us that we are stopped at line 7 of main.c.

Since there is a stack involved, we can also do a "ba[cktrace]" (or "bt"). This is one com-
mand that is also abbreviated as "bt" since it is often used and is more mnemonic than 
"ba":

#0  app_main () at ~/riscv/repo/14/rdcycle/main/main.c:7
#1  0x4201080c in main_task (args=<optimized out>) at ~/esp32c3/esp-idf/
components/freertos/port/port_common.c:129
#2  0x40385b32 in vPortSetInterruptMask () at ~/esp32c3/esp-idf/components/
freertos/port/riscv/port.c:306
Backtrace stopped: frame did not save the PC
(gdb)

The "backtrace" command is extremely helpful in identifying where a problem occurred, or 
exactly where we have stopped. It indicates which function called which, especially when a 
fault or abort occurs. In this example, we see that there are two stack frames shown prior 
to calling app_main() at frame number 0. Keep the "bt" in your back pocket.

In C/C++ code, a person often wants to step through the code one statement at a time. 
This is done with the "n[ext]" command. Let's perform one "next" now:
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(gdb) n
10  for ( int x=0; x<10; ++x ) {
(gdb)

This takes us to the first executable statement in main.c:10 (the convention used by gdb 
is to report a file name followed by a colon and then a line number for ease of reference). 
Let's step one more time:

(gdb) n
11   cycles = measure(1);
(gdb)

At this point, the "for" statement has begun, and we are now ready to call the assembler 
routine measure(). What if you wanted to know what variable x was at this point? You 
"p[rint]" it of course:

(gdb) p x
$2 = 0
(gdb)

This is what we expected the first time into the loop. Sometimes you may want to see all 
local variables at once for convenience. This can be done with the "i[nfo] lo[cals" command:

(gdb) i lo
x = 0
cycles = <optimized out>
(gdb)

Unfortunately, the value for cycles has been "optimized out" by the compiler. This can be a 
nuisance when debugging. In this particular example, the value is not technically defined 
anyway, since it was not initialized. Anyway, that is another gdb command to keep in your 
back pocket.

Let's assume that for this particular time, we don't actually want to examine all the assem-
bler steps involved in the measure() function. We can invoke the function and have it return 
its result by use of the "n[ext]" command again:

(gdb) n
Note: automatically using hardware breakpoints for read-only addresses.
12   printf("muliply cycles = %u\n",cycles);
(gdb)

The JTAG system reports a message about using hardware breakpoints, and then we're 
placed at the statement following the call to measure(). The value cycles should now be 
defined with the returned value. Fortunately, we can report it this time (sometimes even 
this is optimized out):
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(gdb) i lo
x = 0
cycles = 2
(gdb)

From this, we can see that variable x is still zero, and that the variable cycles now have the 
value 2. Let's continue with the next statement:

(gdb) n
13   cycles = measure(0);
(gdb)

Notice in this example, that no printed output is shown. This is because we don't have a 
window open for the serial output. In this example, we don't need it since we've already 
seen the first value of cycles returned.

Let's assume that we now want to see the assembler function's operation in greater detail. 
To step into the function measure(), use the "s[tep]" command:

(gdb) s
measure () at /Users/ve3wwg/riscv/repo/14/rdcycle/main/measure.S:15
15  li a1,99  # Some number
(gdb)

This time, the execution has stopped at measure.S:15 at the beginning of the assembled 
function measure(). Just for fun, issue the "ba[cktrace]" (or "bt") to report on the stack:

(gdb) bt
#0  measure () at /Users/ve3wwg/riscv/repo/14/rdcycle/main/measure.S:15
#1  0x42004c5c in app_main () at /Users/ve3wwg/riscv/repo/14/rdcycle/main/
main.c:13
#2  0x4201080c in main_task (args=<optimized out>) at /Users/ve3wwg/esp32c3/
esp-idf/components/freertos/port/port_common.c:129
#3  0x40385b32 in vPortSetInterruptMask () at /Users/ve3wwg/esp32c3/esp-idf/
components/freertos/port/riscv/port.c:306
Backtrace stopped: frame did not save the PC
(gdb)

From this, you can see that app_main() at main.c:13 has called measure() at measure.S:15. 
Notice the frame numbers have changed, with app_main() at frame 1, and measure() is 
now frame 0.
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We know that our argument arrives in register a0. We can display that as follows:

(gdb) p $a0
$4 = 0
(gdb)

From this, we can report any register by name by prepending a dollar ($) to the register 
name. We can also report all registers if you need to with the "i[nfo] r[egisters]" command:

(gdb) i r
ra             0x42004c5c 0x42004c5c <app_main+36>
sp             0x3fc8edf0 0x3fc8edf0
gp             0x3fc8a600 0x3fc8a600
tp             0x3fc8891c 0x3fc8891c
t0             0x3de 990
t1             0x3fc8ea4c 1070131788
t2             0x0 0
fp             0x0 0x0
s1             0x0 0
a0             0x0 0
a1             0x3fc8ea28 1070131752
a2             0x0 0
a3             0x1 1
a4             0x3fc8c000 1070120960
a5             0x0 0
a6             0x42001dc8 1107303880
a7             0x0 0
s2             0x0 0
s3             0x0 0
s4             0x0 0
s5             0x0 0
s6             0x0 0
s7             0x0 0
s8             0x0 0
s9             0x0 0
s10            0x0 0
s11            0x0 0
t3             0x6b197044 1796829252
t4             0x0 0
t5             0x0 0
t6             0x0 0
pc             0x42004c84 0x42004c84 <measure>
(gdb)
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Let's now step further into the measure() function:

(gdb) fr
#0  measure () at /Users/ve3wwg/riscv/repo/14/rdcycle/main/measure.S:15
15  li a1,99  # Some number
(gdb) s
16  beqz a0,1f  # If mul is false, jump to 1
(gdb) p $a1
$5 = 99
(gdb)

Here I repeated "f[rame]" to remind me where we were, followed by an "s[tep]" to execute 
that statement (instruction in this case). Gdb reports that the next instruction is line 16. 
Then I printed the value of register a1, and it is reported as 99 as line 15 said it should.

We previously reported register (argument 1) as containing a zero, so it is no surprise that 
the branch is now taken as a result of the beqz instruction:

(gdb) s
28 1: csrr t1,mpccr
(gdb)

Stepping again:

(gdb)
29  sll a2,a1,3  # a2 = a1 * 8
(gdb) <CR>
(gdb) p $t1
$6 = 324356966
(gdb) p /x $t1
$7 = 0x13554b66
(gdb)

Since the last thing we did was a "s[tep]", pressing enter (shown as "<CR>"), repeats the 
step once again. Printing register t1, shows us the value in decimal, which is inconvenient 
here. To print in hexadecimal, use the "/x" argument after the "p[rint]" command name.

(gdb)
29  sll a2,a1,3  # a2 = a1 * 8
(gdb)
30  sll a1,a1,1  # a1 *= 2
(gdb)
31  add a0,a2,a1 # a0 = a1 * 10 => 200 cycles
(gdb) p $a2
$1 = 792
(gdb) p $a1
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$2 = 198
(gdb) s
32  csrr t3,mpccr
(gdb) p $a0
$3 = 990
(gdb)

In this sequence, we stepped through the execution of lines 29 to 31, where the multiply 
by ten was performed by two shifts and an add. Examining the result in $a0 confirms that 
99 was indeed multiplied by 10.

As we step through the rest of the measure() function, the computed return value may 
report a wildly large number. This is because the mpccr values returned in measure.S:28 
and measure.S:32 include a number of cycles that are going on in the background as a 
result of being debugged in single stepping mode. With that in mind, let's step until the 
function returns:

(gdb) fr
#0  xit () at /Users/ve3wwg/riscv/repo/14/rdcycle/main/measure.S:34
34 xit: sub a0,t3,t1
(gdb) s
35  ret
(gdb)
app_main () at /Users/ve3wwg/riscv/repo/14/rdcycle/main/main.c:14
14   printf("shift   cycles = %u\n",cycles);
(gdb) p cycles
$15 = 716845243
(gdb)

We see here that the value of cycles is much larger than it should be. But this is under-
standable since we single-stepped through the code while the cycles kept ticking.

Let's assume that you're now satisfied that the program is executing correctly and that you 
want it to continue unhindered. We can "c[ontinue]" the program:

(gdb) c
Continuing.

At this point, gdb will seem to hang and not give you a prompt. Let's find out why. Press 
Control-C to interrupt gdb:

^C
Thread 2 received signal SIGINT, Interrupt.
[Switching to Thread 1070133268]
0x42006342 in esp_vApplicationIdleHook () at /Users/ve3wwg/esp32c3/esp-idf/
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components/esp_system/freertos_hooks.c:50
50     for (int n = 0; n < MAX_HOOKS; n++) {
(gdb) bt
#0  0x42006342 in esp_vApplicationIdleHook () at /Users/ve3wwg/esp32c3/esp-idf/
components/esp_system/freertos_hooks.c:50
#1  0x40384960 in prvIdleTask (pvParameters=<optimized out>) at /Users/ve3wwg/
esp32c3/esp-idf/components/freertos/tasks.c:3973
#2  0x40385b32 in vPortSetInterruptMask () at /Users/ve3wwg/esp32c3/esp-idf/
components/freertos/port/riscv/port.c:306
Backtrace stopped: frame did not save the PC
(gdb)

After interrupting gdb with Control-C, gdb reports to us that it is stuck in a FreeRTOS rou-
tine. This is what happens after app_main() returns, since control has now returned to the 
environment that called our app_main().

While we're here, let's take note of the fact that gdb is FreeRTOS thread-aware. We can 
report on the threads that are running using "i[nfo] "th[reads]":

(gdb) i th
  Id   Target Id                           Frame
* 2    Thread 1070133268 (Name: IDLE)      0x42006342 in esp_vApplicationIdleHook 
()
    at /Users/ve3wwg/esp32c3/esp-idf/components/esp_system/freertos_hooks.c:50
  3    Thread 1070128416 (Name: esp_timer) 0x40385ba4 in vPortClearInterruptMask 
(mask=1)
    at /Users/ve3wwg/esp32c3/esp-idf/components/freertos/port/riscv/port.c:329
(gdb)

We see that we are now in the FreeRTOS IDLE thread, while another thread also exists as 
the esp_timer thread.  If our app_main() program was still running, it would have been 
shown as running as the main thread. You can change threads if you want to examine 
where it is executing by using "t[hread] <n>", where "<n>" is the thread number shown.

15.5.3. Quitting gdb
When you're done with gdb, simply use the "q[uit]" command. If you need to restart gdb, 
nothing further should need to be done on the OpenOCD end, unless it got tripped up with 
a hardware error (like having the USB cable removed). Simply use:

$ idf.py gdb

as before.

RISC-V Assembly Language Programming - UK.indd   240RISC-V Assembly Language Programming - UK.indd   240 04/10/2022   11:0204/10/2022   11:02



Chapter 15 • JTAG Debugging

● 241

15.6. JTAG With a Serial Window
Now that you have JTAG debugging conquered, let's try doing so again, but this time with 
a serial window available, so that you can view the printed output. This procedure must be 
followed in a prescribed sequence because starting the ESP32-C3 monitor causes a hard-
ware reset. If OpenOCD were running at the time, it would error out creating complications.

Configuration
This procedure assumes that the "Channel for console output" has been set to "USB Serial/
JTAG Controller". The default for ESP32-C3 projects is to use "UART0". To check this, per-
form the following in your build directory (and environment).

$ idf.py menuconfig

Then select the option "Component config " shown in Figure 15.3.

Figure 15.3: idf.py menuconfig.

From Component config, select "ESP System Settings " shown in Figure 15.4.

Figure 15.4: idf.py menuconfig: Component config.
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Then look for the line "Channel for console output" in Figure 15.5.

Figure 15.5: menuconfig: ESP System Settings.

If it already shows "USB Serial/JTAG Controller" then you are set. Otherwise, enter into that 
menu and change the selection so that there is an "X" in the line USB Serial/JTAG Control-
ler" as shown in Figure 15.6.

Figure 15.6: menuconfig: Channel for console output.

Make certain you save your changes before quitting the menuconfig.  After making changes 
you will need to build and flash your project again.

Procedure
Using this procedure, the following general steps must be performed in order:

1. Configure your project to use the USB Serial console with menuconfig, build and 
flash your ESP32-C3 device (as shown in the previous section).

2. Plug in your ESP32-C3 device USB cable to the PC (or unplug and replug).
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3. In a new terminal session, establish your ESP environment (if necessary) and start 
idf.py monitor.

4. In its own window (and environment), launch OpenOCD
5. In a third window (and environment) launch idf.py gdb.

When OpenOCD starts, it will again cause a reset of the device, so the monitor window may 
show some output. Once the gdb window starts, you should again see the output:

$ idf.py gdb
Executing action: gdb
GNU gdb (crosstool-NG esp-2021r2-patch3) 9.2.90.20200913-git
Copyright (C) 2020 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type "show copying" and "show warranty" for details.
This GDB was configured as "--host=x86_64-host_apple-darwin12 
--target=riscv32-esp-elf".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
    <http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".
Type "apropos word" to search for commands related to "word".
/Users/ve3wwg/.gdbinit:1: Error in sourced command file:
No symbol table is loaded.  Use the "file" command.
0x40000000 in ?? ()
JTAG tap: esp32c3.cpu tap/device found: 0x00005c25 (mfg: 0x612 (Espressif 
Systems), part: 0x0005, ver: 0x0)
Hardware assisted breakpoint 1 at 0x42004c38: file /Users/ve3wwg/riscv/repo/14/
rdcycle/main/main.c, line 7.
[New Thread 1070133268]
[New Thread 1070128416]
[Switching to Thread 1070132924]

Thread 1 hit Temporary breakpoint 1, app_main () at /Users/ve3wwg/riscv/repo/14/
rdcycle/main/main.c:7
7 app_main(void) {
(gdb)

Now if you were to step or run through the program, the console output should appear in 
your monitor window.
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Problems
Problems can trip up the OpenOCD software, so it is sometimes necessary to recover from 
them. If OpenOCD doesn't start correctly try the following:

1. In the monitor window, exit the monitor using Control-].
2. In the gdb window, quit the debugger (if running).
3. In the OpenOCD window, Control-C to terminate it.
4. Unplug the USB cable.  

For Linux/MacOS systems, check and kill any rogue OpenOCD processes still running:

$ ps -ef | grep openocd
  501 76202 1690  0 2:48pm ttys005  0:02.16 openocd -f board/esp32c3-builtin.cfg
$ kill -9 76202

Then repeat the procedure. Sometimes the ESP32-C3 device can be messed up by the 
code flashed into it. If you suspect that, then include a vTaskDelay() call at the start of 
app_main() to give you time to get the monitor started and the OpenOCD process. In that 
manner, OpenOCD can reset the CPU before the monitor run can mess things up. Then 
work through gdb to locate the source of your inflicted problem.

15.6. Miscellaneous
The gdb debugger is too large to fully cover its power in one chapter. However, a few more 
things are worth mentioning:

1. When running gdb from Fedora Linux (without using JTAG), you need to start the 
program running with the "r[un]" command. But before you do that, most users 
set a breakpoint at main() with the use of "b[reakpoint] main" first. Then after you 
start the program running, it will pause upon entry to the main() function.

2. Breakpoints are also useful when using JTAG. They permit you to skip the execu-
tion of a large body of code, until you get to the point where you are interested in 
scrutinizing. But there may be restrictions based upon whether the code is in ROM, 
flash, or RAM.

3. To delete a breakpoint, use the "d[elete] <n>" where "<n>" is the breakpoint 
number.

4. You can list breakpoints with "i[nfo] b[reakpoints]".
5. The "p[rint]" command can also display the contents of structures and classes. 

This is far better than instrumenting a program with oodles of printf() calls.

Don't be afraid to use the gdb help system and peruse the fine manual.

15.7. Summary
There is considerably more that could be explained about gdb's debugging capabilities. But 
what you have seen in this chapter should get you started using gdb to locate bugs. JTAG 
is wonderful in that it allows you to debug the actual hardware that you are using. Only do 
be aware that there are a number of restrictions that the user should be aware of. Espressif 
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has documented these on their website.[5] The use of JTAG and gdb can save the user time 
and frustration, by tracing assembly code one instruction at a time.
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Chapter 16 • Inline Assembly

 
The inline RISC-V assembly line

With the utility and productivity of C/C++, there are likely to be times when you just want 
to invoke a few assembly language instructions directly from your high-level code. The GCC 
compiler makes this possible through the "asm" (or "__asm__") extension. This chapter 
gets you started with the basics of this advanced facility.

16.1. Keyword Asm
The GNU GCC compiler permits the "asm" keyword as a language extension to allow the 
programmer to supply assembler language elements. When compiling with options -ansi or 
some of the -std options, you must use the keyword "__asm__" instead, since the keyword 
is an extension to the standard.

16.2. Basic asm Form
The most basic form of this extension uses the following format:

    asm [volatile] ("AssemblerInstruction(s)");

This most basic form can be provided both inside and outside of functions (the extended 
form can only be used inside functions).

Let's see this simple mechanism at work. I'll reuse the rdcycle project from chapter 14 but 
use copies of the files for this chapter so that we can mess with it. Listing 16.1 is our first 
demonstration of the code change to main.c. Take note of line 10, where a "nop" (no oper-
ation) instruction was added inline with the C code.

    19  #include <stdio.h>
     2  #include <stdint.h>
     3  
     4  extern uint32_t measure(int mul);
     5  
     6  void
     7  app_main(void) {
     8          uint32_t cycles;
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     9  
    10          asm volatile ( "nop" );
    11  
    12          for ( int x=0; x<10; ++x ) {
    13                  cycles = measure(1);
    14                  printf("ultiply cycles = %u\n",cycles);
    15                  cycles = measure(0);
    16                  printf("shift   cycles = %u\n",cycles);
    17          }
    18          fflush(stdout);
    19  }

Listing 16.1: Program ~/riscv/repo/16/rdcycle/main/main.c with a basic asm statement.

If you need convincing that everything still works, build, flash and monitor the program as 
follows:

$ cd ~/riscv/repo/16/rdcycle
$ idf.py build
$ idf.py -p <<<yourport>>> flash monitor

Now let's examine the assembler listing for the main.c program in Listing 16.2, which has 
been edited to reduce the page count. You can view the full listing by generating it as fol-
lows:

$ ~/riscv/repo/listesp main/main.c

 ...snip...
   6                    void
   7                    app_main(void) {
   8                            uint32_t cycles;
   9                    
  10 0008 0100                  asm volatile ( "nop" );
  11                    
  22                            nop
  23                    # 0 "" 2
  24                     #NO_APP
  25 000a 232604FE              sw      zero,-20(s0)
  26 000e 81A8                  j       .L2
...snip...

Listing 16.2: Edited assembler listing for main.c with nop added. 

The important thing to note is how the compiler inserts the nop instruction at line 22 of 
the listing. On the left side of the listing, you see at offset 0008 the assembled nop opcode 
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0100, in hexadecimal. Of course, this doesn't do much for the program but serves as an 
illustration.

16.2.1. Keyword volatile
The volatile keyword often comes up in the context of compiler code optimization. Using 
it with the asm keyword is no exception. The volatile keyword directs the compiler not to 
optimize out your inline assembler code. Otherwise, it might assume that the code is not 
needed and suppress it. This can be troublesome at higher optimization levels.

16.2.2. Multiple Instructions
The "nop" example was extremely simple. However, it is possible to include multiple assem-
bler statements as follows:

        asm volatile (
                "nop\n"
                "\tnop\n"
        );

This results in assembling two nop instructions:

  10 0008 0100                  asm volatile (
  11 000a 0100                          "nop\n"
  12                                    "\tnop\n"
  13                            );
  22                            nop
  23                            nop

Notice a few things here. We used the newline (\n) character to separate the two assembler 
instructions. The tab character (\t) was put in front of the second opcode to indicate that 
no label was present. A space works equally well. You might not need to do this for RISC-V, 
but it makes the assembler listing easier to read. As you can see, lines 10 and 11 report 
the two assembled nop instructions as we expected.

It is also possible to provide multiple opcodes on one line and in one string. Remember that 
C/C++ will concatenate string constants if they are listed one after the other. So, in the last 
example, the compiler would have compiled:

asm volatile ( "nop\n" "\tnop\n" );

the same as:

asm volatile ( "nop\n\tnop\n" );

I believe that making code friendly for the reader is important. So listing opcodes on their 
own lines is polite.

RISC-V Assembly Language Programming - UK.indd   248RISC-V Assembly Language Programming - UK.indd   248 04/10/2022   11:0204/10/2022   11:02



Chapter 16 • Inline Assembly

● 249

16.2.3. Behind the Scenes
It should be pointed out that the C/C++ compiler does not interpret what is provided in the 
asm strings. What is supplied is merely copied with optional substitution to the temporary 
file before it is assembled. Thus, errors in the opcodes will not be detected until the tem-
porary file is assembled.

16.3. Extended Asm
In the extended asm formats, it is possible for you to read, write or read/write C/C++ 
language variables from the assembler opcodes. The two extended forms are listed below:

asm [volatile] ( "AssemblerTemplate"
    : "OutputOperands"
  [ : "InputOperands" [ : "Clobbers" ] ])

asm [volatile] goto ( "AssemblerTemplate"
    :
    : "InputOperands"
    : "Clobbers"
    : "GotoLabels")

The "goto" keyword informs the compiler that there may be a jump to one of the labels 
listed. Extended asm statements must be used inside a C/C++ function.

16.3.1. Assembler Template
Just like the basic form, the string represents an assembler language template. Substitu-
tions are made by the compiler before the string is submitted to the assembler language 
file. Special tokens are introduced with the percent (%) character. Special tokens are shown 
in Table 16.1, ready to be used when necessary.

Token Description

%% Represents a single percent (%) character.

%{ Represents a left curly bracket ({).†

%| Represents a vertical bar (|).†

%} Represents a right curly bracket (}).†

%= Output a unique asm instance number

 Table 16.1: Special Assembler Tokens.

† While GCC documents these, they don't seem to be accepted by the RISC-V compiler for 
the ESP32-C3.

The following example illustrates a listing extract where some of these special symbols are 
used. Extracted listing lines 10 through 14 show the source lines that went into the asm 
block, while listing lines 22 to 24 show what was actually written into the assembly file. 
Notice that '%=' caused "10" to be substituted and confirmed in listing line 23. It is also 
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used as an immediate constant on line 24. The single '%' was written in place of the '%%', 
confirmed in listing line 23.

  10 0008 0100                  asm volatile (
  11 000a 93025002                      "nop\n"
  12 000e 2943                          "%=: li t0,'%%'\n"
  13                                    " li t1,%=\n"
  14                                    : :
  22                            nop
  23                    10: li t0,'%'
  24                     li t1,10

16.3.2. Output Operands
Following the AssemblerTemplate is the optional output operands field. This field has the 
following general format:

[ [asmSymbolicName] "constraint" ( cexpression )

The [asmSymbolicName] parameter is optional. When used, it gives the parameter a name 
for references within the AssemblerTemplate like "%[name]". When omitted, use a ze-
ro-based parameter reference of the form '%0', '%1' etc. for parameters listed as output 
operands. When the parameter is provided, you must put the square brackets around the 
name.

16.3.2.1. Constraint
The constraint string normally begins with a '=' or '+' character for output parameters 
(there are other possibilities, but they have limited use). Table 16.2 lists their functions. 
Characters that follow this leading character, identify possibilities where the value resides 
(there can be more than one). Table 16.3 lists the constraint characters discussed in this 
chapter.

Character Meaning

'=' This operand is written to by this asm block. The previous value held 
is discarded and replaced by new data.

'+' This operand is both read and written by this asm block.

Table 16.2: Starting constraint characters (Output).

Character Meaning

'm' A memory operand is permitted, with any kind of address that the 
machine generally supports.

'r' A register operand is permitted provided that it is a general register.

Table 16.3: Simple constraint characters.
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The GCC notes some special exceptions like the following. If the constraint used on an Out-
put Operand starts with a '+' (rather than '='), then that counts as two parameters (input 
+ output). So, when specifying '%5', for example, make sure to take this into account. For 
code reading sanity and correctness, it is far safer to use the '%[name]' form instead.

Output Operand Example 1
Reading about cryptic rules and syntax can be confusing. So, let's illustrate some concrete 
examples. Listing 16.3 provides a partial assembly language listing for a program that ini-
tializes variables cycles and ninety5 from inlined assembly language code. Yes, this is a silly 
way to do it, but we justify it in the name of learning.

Note: In these first two Output Operand examples, I have left out the Clobbers clause so 
that it can be explained later. Technically, these examples should list register t1 as being 
clobbered (even though I was able to get away without it this time).

   6                    void
   7                    app_main(void) {
   8                           uint32_t cycles;
   9                           uint32_t ninety5;
  10                    
  11 0008 1303F005      asm volatile (
  12 000c 232264FE             " li t1,95\n"
  13 0010 232404FE             " sw t1,%[ninety5]\n"
  14                           " sw x0,%[cycles]\n"
  15                           : [ninety5] "=m" (ninety5), [cycles] "=m" (cycles)
  25                    li t1,95
  26                sw t1,-28(s0)
  27                sw x0,-24(s0)

Listing 16.3: The program app_main() initializing two variables from inline assembly.

The first output clause specified from line 15 is:

[ninety5] "=m" (ninety5),

1. This tells the compiler that we will refer to the variable in the assembler code as 
"%[ninety5]".

2. The constraint character '=' indicates that the output value will be overwritten and 
that any previous value of ninety5 is discarded.

3. The 'm' in the constraint indicates that the output variable is in memory.
4. Finally, the C expression '(ninety5)' indicates to the compiler where the value is 

going.

The second output clause from line 15 is:

[cycles] "=m" (cycles)
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1. This indicates that "%[cycles]" is how the variable for cycles is referenced in the 
assembler code.

2. The constraint "=m" indicates that the output value will be overwritten and is in 
memory.

3. The C expression "cycles" is used to provide the location for the operand output.

The output of the assembly from Listing 16.3 is:

  25                    li t1,95
  26                sw t1,-28(s0)
  27                sw x0,-24(s0)

From this, we see how the compiler has inserted the target address for ninety5 as -28(s0), 
and cycles as -24(s0). The compiler knows the offsets of these variables on the stack, rela-
tive to the save register s0. This frees the programmer from having to figure it out.

Note: It might seem that the asmSymbolicName is redundant ([cycles] vs (cycles)). But 
what is specified in brackets (cexpression) can be a C/C++ expression, which need not 
be a simple variable name.

Output Operand Example 2
In this example, we perform the same work as the first example, except that we use the 
positional parameters "%0" and "%1" instead.

  27   #include <stdio.h>
   2                    #include <stdint.h>
   3                    
   4                    extern uint32_t measure(int mul);
   5                    
   6                    void
   7                    app_main(void) {
   8                            uint32_t cycles;
   9                            uint32_t ninety5;
  10                    
  11 0008 1303F005              asm volatile (
  12 000c 232264FE                      " li t1,95\n"
  13 0010 232404FE                      " sw t1,%0\n"
  14                                    " sw x0,%1\n"
  15                                    : "=m" (ninety5), "=m" (cycles)
  25                             li t1,95
  26                     sw t1,-28(s0)
  27                     sw x0,-24(s0)

In this example, the [asmSymbolicName] has been omitted from both output parameter 
specifications. Because of this, the inline code uses "%0" to refer to the first parameter 
ninety5, and "%1" to refer to cycles. An examination of listing lines 25 to 27 reveals that 
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the same code was generated. When there is a large number of output parameters, the use 
of the [asmSymbolicName] is recommended for code clarity.

16.3.3. Input Operands
The input operands take values from the C/C++ language side and make them available 
to the assembly code. Like the output parameters, multiple parameters are separated by 
commas. Reviewing the statement again, we see that InputOperands follows the Output-
Operands separated by a colon (:) character. If there are no output operands, then the 
colon (:) must be specified.

asm [volatile] ( "AssemblerTemplate"
    : "OutputOperands"
  [ : "InputOperands" [ : "Clobbers" ] ])

The general format for each input operand is as follows:

[ [asmSymbolicName] ] "constraint" (cexpression)

The optional [asmSymbolicName], the constraint and cexpression are used in a manner 
similar to the output parameters, except that this time the data is coming from the C pro-
gram. A full C program example is illustrated in Listing 16.4.

     1  #include <stdio.h>
     2  #include <stdint.h>
     3  
     4  void
     5  app_main(void) {
     6          uint32_t a=33, b=75, m;
     7  
     8          asm volatile (
     9                  " lw a0,%1\n"           // a0 = a
    10                  " lw a1,%2\n"           // a1 = b
    11                  " mul t0,a0,a1\n"       // t0 = a0 * a1
    12                  " sw t0,%0\n"           // m = t0
    13                  : "=m" (m)              // Outputs
    14                  : "m" (a), "m" (b)      // Inputs
    15                  : "a0", "a1", "t0"      // Clobbers
    16          );
    17  
    18          printf("%u * %u => %u\n",a,b,m);
    19          fflush(stdout);
    20  }

Listing 16.4: Program ~/riscv/repo/16/inmul/main/main.c. 

First build, flash and monitor it to convince yourself that it works. Here the variable a is 
multiplied by the value in b and the product is stored in the variable m. The printf() call in 
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line 18 will report the inputs and the produced product m.

$ cd ~/riscv/repo/16/inmul
$ idf.py build
$ idf.py -p <<<yourport>>> flash monitor
...
I (257) cpu_start: Starting scheduler.
33 * 75 => 2475

The reported product is good. Now let's break down what was coded in Listing 16.1.

1. Line 9 loads the value from variable a, into register a0. Notice that the input value 
for a is identified as "%1" because the expression (a) is the second parameter 
within the entire asm block.

2. In the same manner, line 10 loads the value from variable b into register a1. The 
value for b is coded as "%2" since it is the third parameter in the asm block.

3. Line 11 performs the multiplication, placing the product into temporary register t0.
4. Line 12 stores a word value from register t0 into the expression "%0", which is the 

variable m (line 6).
5. Notice that the input parameter list uses a constraint of "m", whereas the output 

constraint used "=m". Both reference a value in memory, but the output needs the 
'=' to indicate how the value will be stored/updated. Inputs, on the other hand, can 
simply be fetched from memory.

6. Line 15 identifies the registers that were clobbered by our assembly code.

16.3.3.1. Clobbers
For some platforms there can be side effects from executing certain opcodes that change 
register values. Or we may simply assign registers to compute intermediate results. These 
must be identified in the clobbers clause so that the compiler is informed. In Listing 16.4, 
the registers a0, a1 and t0 were identified in the clobbers clause. This informs the compiler 
that these registers were used ("clobbered").

The compiler must choose registers to use for input and output operands. Registers listed in 
the clobbered list are not used by the compiler. Hence clobbered registers become available 
for any use in your assembler code. Additionally, the stack pointer register must not appear 
in the clobber list and must not be altered. The stack pointer must have the same value 
upon exit as it had upon entry.

Note: Incorrect code can result when modified registers are not identified in the clobbers 
clause. For example, imagine if the compiler placed an address in register t0, to be used 
later on. But in the asm block that follows, you modified register t0. If register t0 is not 
referenced in an input or output clause, then the compiler would be completely oblivious 
to the fact that the address in t0 was lost.

There are two special clobber arguments listed in Table 16.4. The "cc" argument has no 
value to RISC-V and can be ignored because it has no flags register. The "memory" argu-
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ment may, however, be necessary if your code is reading/modifying memory outside of the 
parameters provided for input/output.

Argument Meaning

cc Indicates that the flags register was modified. On platforms like RISC-V 
that don't support a flags register, this argument is simply ignored.

memory Indicates that the code reads/modifies memory locations other than 
those listed in the input/output operands. This may cause the compiler to 
flush certain variables held in registers.

Table 16.4: Special Clobber Arguments.

16.4. Bit Multiply
Listing 16.5 illustrates the next example demonstrating how the "cexpression" part can 
participate. In this program, we use the mulh and mul instruction pair to compute and 
return the 64-bit unsigned product.

     1  #include <stdio.h>
     2  #include <stdint.h>
     3  
     4  void
     5  app_main(void) {
     6          uint32_t a=9300000, b=7500000;
     7          union {
     8                  uint64_t m64;
     9                  uint32_t m32[2];
    10          } u;
    11  
    12          asm volatile (
    13                  " lw a0,%[a]\n"                 // a0 = a
    14                  " lw a1,%[b]\n"                 // a1 = b
    15                  " mulh t1,a0,a1\n"              // t1 = high a0 * a1
    16                  " mul t0,a0,a1\n"               // t0 = low a0 * a1
    17                  " sw t0,%[low]\n"               // m = t0 (low word)
    18                  " sw t1,%[hi]\n"                // m = t1 (high word)
    19                  : [low] "=m" (u.m32[0]),        // Output: low
    20                    [hi] "=m" (u.m32[1])          // high
    21                  : [a] "m" (a), [b] "m" (b)      // Inputs
    22                  : "a0", "a1", "t0", "t1"        // Clobbers
    23          );
    24  
    25          printf("%u * %u => %llu\n",a,b,u.m64);
    26          fflush(stdout);
    27  }

Listing 16.5: ~/riscv/repo/16/inmul64/main/main.c. 
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The variables a and b have been assigned extra large constants to prove that our product 
results in more than 32 bits, is valid. Due to the increased number of input and output 
values, the [asmSymbolicName] form was used in this specification for inputs and outputs. 
For example, "%[a]" refers to the input variable a (line 21).

A C language union was used in lines 7 through 10 to permit access of the 64-bit value 
of u.m64 as a pair of 32-bit values u.m32[0] and u.m32[1]. Notice in the output clause, 
how the C expressions in the refer to "%[low]" as the expression u.m32[0] and "%[hi]" as 
m.32[1].

    19                  : [low] "=m" (u.m32[0]),        // Output: low
    20                    [hi] "=m" (u.m32[1])          // high

Build, flash and monitor the program to prove that it works:

$ cd ~/riscv/repo/16/inmul64
$ idf.py build
$ idf.py -p <<<yoourport>>> flash monitor
I (257) cpu_start: Starting scheduler.
9300000 * 7500000 => 69750000000000

If you have bc installed, check the result:

$ bc
bc 1.06
Copyright 1991-1994, 1997, 1998, 2000 Free Software Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type `warranty'.
9300000 * 7500000
69750000000000
^D
$

The results agree. To see the result in hexadecimal, try the following:

$ bc
bc 1.06
Copyright 1991-1994, 1997, 1998, 2000 Free Software Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type `warranty'.
obase=16
9300000 * 7500000
3F6FEFF91C00
^D
$
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Given that the result is longer than 8 hexadecimal digits, we know the result size is greater 
than 32 bits.

16.5. Example asm goto
The last example to be explored is the use of C language labels referenced by the assembler 
code. To review, the general form is:

asm [volatile] goto ( "AssemblerTemplate"
    :
    : "InputOperands"
    : "Clobbers"
    : "GotoLabels")

The first thing to take special note of is that there can be no output operands with this form 
(note how the output operands clause is blank). If you try to specify outputs, you get the 
compile error:

    expected ':' before string constant "asm goto"

This limits the usefulness of this form, but this is what we have to work with. The GCC doc-
umentation indicates that the asm goto statement is always considered volatile. I suggest 
that you always include it in case the compiler defaults change.

Note: The GCC document suggests that you can provide input/output operands in the 
asm goto statement using the '+' constraint. However, I was not able to succeed in 
this using the compiler version: riscv32-esp-elf-gcc (crosstool-NG esp-2021r2-patch3) 
8.4.0. That functionality may vary with platform type.

The addition of the "goto" keyword permits the specification of C/C++ language labels that 
can be referenced by the asm code. When referencing the labels within the assembler code, 
use one of the following formats:

• "%l<n>", for example, "%l2" (note the lowercase 'L' after the percent 
character).

• "%l[label]", for example, "%l[exception]" (note the lowercase 'L' after the 
percent character).

Another restriction is that the total number of input + output + goto operands is limited 
to 30.
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The asm goto program example is provided in Listing 16.6.

     1  #include <stdio.h>
     2  #include <stdint.h>
     3  
     4  void
     5  app_main(void) {
     6          uint32_t a=315, b=75, r=0;
     7  
     8          asm volatile goto (
     9                  " lw a1,%[b]\n"                   // a1 = b
    10                  " beqz a1,%l[excep]\n"            // Jump if b=zero
    11                  : /* no outputs allowed for goto  */
    12                  : [b] "m" (b)                     // Inputs
    13                  : "a1"                            // Clobbers
    14                  : excep
    15          );
    16  
    17          asm volatile (
    18                  " lw a0,%[a]\n"                   // a0 = a
    19                  " lw a1,%[b]\n"                   // a1 = b
    20                  " div a0,a0,a1\n"                 // a0 /= a1
    21                  " sw  a0,%[r]\n"                  // r = result
    22                  : [r] "=m" (r)                    // Outputs
    23                  : [a] "m" (a), [b] "m" (b)        // Inputs
    24                  : "a0", "a1"                      // Clobbers
    25          );
    26  
    27          printf("%u / %u => %u\n",a,b,r);
    28          fflush(stdout);
    29          return;
    30  
    31  excep:
    32          printf("Division by zero!\n");
    33          fflush(stdout);
    34  }

Listing 16.6: Program ~/riscv/repo/16/except/main/main.c.

Because the "goto" form does not permit the specification of output parameters, there were 
two asm blocks defined in this program. The first block (lines 8 to 15) tests if variable b is 
zero, and if so, branches to the C label "excep". Otherwise, it just returns. Of course, it is 
silly to use asm to test for zero in this way, but it is justified for demonstration purposes.
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The second block is a normal asm block so it can actually perform the division and return 
the result (lines 17 to 25). Again, this simple asm example is justifiable in the name of 
education.

Build, flash and monitor the program to see if the "happy path" works as expected:

$ cd ~/riscv/repo/16/except
$ cd idf.py build
$ idf.py -p <<<yourport>>> flash monitor
...
I (257) cpu_start: Starting scheduler.
315 / 75 => 4

The divide was indeed performed and is correct. Now edit the program main.c so that the 
value of b is zero. Change line 6 to read:

        uint32_t a=315, b=0, r=0;

Repeat the build, flash and monitor:

$ idf.py -p <<<yourport>>> flash monitor
...
I (258) cpu_start: Starting scheduler.
Division by zero!

In this particular run, the goto was in fact performed to report "Division by zero!". In this 
example, the only way execution can proceed to the label "excep" is from our asm code.

One of the best applications for the asm goto form is perhaps the management of a state 
machine. Where entry into the asm block moves the execution from one label to another, 
depending upon the current state.

16.6. Register Constraints
In addition to the 'm' option for 'memory' in the constraints string, there is the option of 
using 'r' for register. Listing 16.7 demonstrates the usefulness of the 'r' constraint in per-
forming the multiply instruction without any loading or storing of values.

     1  #include <stdio.h>
     2  #include <stdint.h>
     3  
     4  // #pragma GCC optimize ("-O3")
     5  
     6  void
     7  app_main(void) {
     8          uint32_t a=33, b=75, m;
     9  
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    10          asm volatile (
    11                  " mul %[m],%[a],%[b]\n"         // m = a * b
    12                  : [m] "=r" (m)                  // Outputs
    13                  : [a] "r" (a), [b] "r" (b)      // Inputs
    14          );      // No clobbers
    15  
    16          printf("%u * %u => %u\n",a,b,m);
    17          fflush(stdout);
    18  }

Listing 16.7: Program ~/riscv/repo/16/inmulrr/main/main.c.

Notice that in line 12, the constraint is "=r" indicating that the product for variable m is ex-
pected to be in a register ('=' indicates that the result will overwrite the original value). The 
constraint "r" is used in line 13 for both variables a and b. This means that both of these 
variables are expected to have values already in memory.

With the pragma optimize commented out (line 4), let's examine the assembler listing to 
see what the compiler does with this.

$ cd ~/riscv/repo/16/inmulrr
$ ~/riscv/repo/listesp main/main.c

   1                            .file   "main.c"
   2                            .option nopic
   3                            .text
   4                            .section        .rodata
   5                            .align  2
   6                    .LC0:
   7 0000 2575202A              .string "%u * %u => %u\n"
   7      20257520
   7      3D3E2025
   7      750A00
   8                            .text
   9                            .align  1
  10                            .globl  app_main
  12                    app_main:
  13 0000 0111                  addi    sp,sp,-32
  14 0002 06CE                  sw      ra,28(sp)
  15 0004 22CC                  sw      s0,24(sp)
  16 0006 0010                  addi    s0,sp,32
  17 0008 93071002              li      a5,33
  18 000c 2326F4FE              sw      a5,-20(s0)
  19 0010 9307B004              li      a5,75
  20 0014 2324F4FE              sw      a5,-24(s0)
  21 0018 8327C4FE              lw      a5,-20(s0)
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  22 001c 032784FE              lw      a4,-24(s0)
  23                     #APP
  24                    # 10 "main/main.c" 1
   1                    #include <stdio.h>
   2                    #include <stdint.h>
   3                    
   4                    // #pragma GCC optimize ("-O3")
   5                    
   6                    void
   7                    app_main(void) {
   8                            uint32_t a=33, b=75, m;
   9                    
  10 0020 B387E702              asm volatile (
  11                                    " mul %[m],%[a],%[b]\n"   // m = a * b
  12                                    : [m] "=r" (m)            // Outputs
  25                             mul a5,a5,a4
  26                    
  27                    # 0 "" 2
  28                     #NO_APP
  29 0024 2322F4FE              sw      a5,-28(s0)
  30 0028 832644FE              lw      a3,-28(s0)
  31 002c 032684FE              lw      a2,-24(s0)
  32 0030 8325C4FE              lw      a1,-20(s0)
  33 0034 B7070000              lui     a5,%hi(.LC0)
  34 0038 13850700              addi    a0,a5,%lo(.LC0)
  35 003c 97000000              call    printf
  35      E7800000
  36 0044 97000000              call    __getreent
  36      E7800000
  37 004c AA87                  mv      a5,a0
  38 004e 9C47                  lw      a5,8(a5)
  39 0050 3E85                  mv      a0,a5
  40 0052 97000000              call    fflush
  40      E7800000
  41 005a 0100                  nop
  42 005c F240                  lw      ra,28(sp)
  43 005e 6244                  lw      s0,24(sp)
  44 0060 0561                  addi    sp,sp,32
  45 0062 8280                  jr      ra
  47                          .ident  "GCC: (crosstool-NG esp-2021r2-patch3) 
8.4.0"

DEFINED SYMBOLS
                            *ABS*:0000000000000000 main.c
/var/folders/jp/_ktfnf412kvbdznr4m9769tr0000gn/T//ccYqAtij.s:12     
.text:0000000000000000 app_main
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/var/folders/jp/_ktfnf412kvbdznr4m9769tr0000gn/T//ccYqAtij.s:6      
.rodata:0000000000000000 .LC0

UNDEFINED SYMBOLS
printf
__getreent
fflush

Listing 16.8: Assembler language listing of ~/riscv/repo/16/inmulrr/main/main.c.

Let's now breakdown the steps used by the compiler:

1. There is some initial stack frame setup in app_main() in lines 13 to 16.
2. Line 17 loads the value 33 into a5 and then stores that in line 18 (assigns a=33).
3. Line 19 loads the value 75 into a5 and then stores that in line 20 (assigns b=75).
4. Then the value of b is loaded into a5 in line 21 (keep in mind this is unoptimized 

code).
5. The value of a is then loaded into a4 at line 22.
6. The asm block's "mul" instruction is assembled (see lines 10 and 25 of the listing), 

to multiply registers a5 and a4, placing the result in register a5.
7. The product in a5 is stored into variable m in line 29.

All of this is confirmed by looking at the call to printf() that follows:

1. Argument 0 (printf text) is established in a0 at line 34.
2. Argument 1 is provided in line 32 by loading a into a1.
3. Argument 2 is provided in line 31 by loading b into a2.
4. Argument 3 is provided in line 30 by loading m into a3.

Build, flash and monitor the program to prove that it works:

$ cd ~/riscv/repo/16/inmulrr
$ cd idf.py build
$ idf.py -p <<<yourport>>> flash monitor
...
I (257) cpu_start: Starting scheduler.
33 * 75 => 2475

Indeed, it does! Now uncomment the #pragma in line 4 of main.c and repeat the build. 
Then produce an assembler listing (as shown in Listing 16.9) to see what the optimized 
code looks like:

$ cd ~/riscv/repo/16/inmulrr
$ cd idf.py build
$ ~/riscv/repo/listesp main/main.c
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   1                            .file   "main.c"
   2                            .option nopic
   3                            .text
   4                            .section        .rodata.str1.4,"aMS",@progbits,1
   5                            .align  2
   6                    .LC0:
   7 0000 2575202A              .string "%u * %u => %u\n"
   7      20257520
   7      3D3E2025
   7      750A00
   8                            .text
   9                            .align  1
  10                            .globl  app_main
  12                    app_main:
  13 0000 4111                  addi    sp,sp,-16
  14 0002 06C6                  sw      ra,12(sp)
  15 0004 93061002              li      a3,33
  16 0008 9307B004              li      a5,75
  17                     #APP
  18                    # 10 "main/main.c" 1
   1                    #include <stdio.h>
   2                    #include <stdint.h>
   3                    
   4                    #pragma GCC optimize ("-O3")
   5                    
   6                    void
   7                    app_main(void) {
   8                            uint32_t a=33, b=75, m;
   9                    
  10 000c B386F602              asm volatile (
  11                                    " mul %[m],%[a],%[b]\n"   // m = a * b
  12                                    : [m] "=r" (m)            // Outputs
  19                             mul a3,a3,a5
  20                    
  21                    # 0 "" 2
  22                     #NO_APP
  23 0010 37050000              lui     a0,%hi(.LC0)
  24 0014 1306B004              li      a2,75
  25 0018 93051002              li      a1,33
  26 001c 13050500              addi    a0,a0,%lo(.LC0)
  27 0020 97000000              call    printf
  27      E7800000
  28 0028 97000000              call    __getreent
  28      E7800000
  29 0030 B240                  lw      ra,12(sp)
  30 0032 0845                  lw      a0,8(a0)
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  31 0034 4101                  addi    sp,sp,16
  32 0036 17030000              tail    fflush
  32      67000300
  34                          .ident  "GCC: (crosstool-NG esp-2021r2-patch3) 
8.4.0"

DEFINED SYMBOLS
                            *ABS*:0000000000000000 main.c
/var/folders/jp/_ktfnf412kvbdznr4m9769tr0000gn/T//ccjVYvnV.s:12     
.text:0000000000000000 app_main
/var/folders/jp/_ktfnf412kvbdznr4m9769tr0000gn/T//ccjVYvnV.s:6      .rodata.
str1.4:0000000000000000 .LC0

UNDEFINED SYMBOLS
printf
__getreent
fflush

Listing 16.9: The optimized main.c using register constraints.

What does the code do now?

1. Line 15 loads the value for a into the register a3.  Notice that no store to memory 
has been made yet to variable a.

2. Line 16 loads the value for b into the register a5. Likewise, the memory copy of 
variable b is left uninitialized.

3. Lines 10 and 19 show that the "mul" instruction multiplies registers a3 and a5, 
replacing a3 with the product.

4. The printf() format string address is loaded in line 23 in a0 (first argument).
5. The value 33 for a is simply loaded into a1 in line 25 (second argument).
6. The value 75 for b is simply loaded into a2 in line 24 (third argument).
7. The product is already in register a3, so this gets passed to printf() as the fourth 

argument in the call to print in line 27.

From all of this, it should be clear that leaving the argument shuffle up to the C/C++ com-
piler works to your advantage. Use the "r" register constraint whenever it is practical to do 
so.

It is tempting to supply "rm" for an operand constraint. This does not work for RISC-V be-
cause if the operand is in memory, you will have written a load or store instruction like "sw". 
You cannot store words to a register, causing the compiler to complain (its operand must be 
a memory reference). Likewise, you cannot supply a memory reference to an opcode like 
"mul", for example. That opcode requires a register operand.
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16.7. Summary
If you found the use of the asm statement tedious in this chapter, then don't be discour-
aged. It is somewhat cryptic but is useful when minor assembler help is required. It is 
otherwise not the best form for larger assembly language code segments. However, it is a 
good tool to keep in your bag of tricks. You'll also run across it in other people's code. All 
the more reason to master it.

There are some additional asm tricks for advanced use that didn't make it into this chapter. 
You can view those other options in detail at the gnu website.[1] I hope, however, that you 
found this chapter a painless guide to getting started. Having mastered the basics, building 
upon that is easier for those who need it.

Please accept my thanks for allowing me to be your guide in this grand adventure. Re-
ignite that passion for controlling your RISC-V machine at its most basic level: assembly 
language!

Bibliography
[1] https://gcc.gnu.org/onlinedocs/gcc/Basic-Asm.html#Basic-Asm
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