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PREFACE

This book has been designed and used as a text for a second course in computer
programming. It has developed from class notes for a course offered at the University
of Texas at Austin to undergraduate students. These students have had one previous
programming course and should know, from that first course, the basic operation of
computers, in general, and have some basic skills in converting problem statements
into programs in a higher-level language, such as Fortran. The second course, and this
text, assumes that the student knows how to program, i.e., how to find an algorithm to
solve a problem and convert that algorithm into a program.

The purpose of this book is to teach the student about lower level computer
programming: machine language and assembly language, and how these languages
are used in the typical computer system. This is meant to give the student a basic
understanding of the fundamental concepts of the organization and operation of a
computer. Even if the student never again programs in assembly language (and we
would hope that they never have to!) it is important that they understand what the
computer is doing at the machine language level. A good understanding of computer
organization translates into a better understanding of the features and limitations of all
computer facilities, since all systems must eventually rest on the underlying hardware
machine.

The content of this text follows the recommendations of the ACM Curriculum 68 for
Course B2 “Computers and Programming.” After a brief review of the general concepts
of computers in Chapter 1, the remainder of the text uses the MIX computer to provide
an example machine for illustrating computer organization and programming. Chapter
2 and Chapter 3 present the architecture of the MIX computer, its machine language
and the MIXAL assembly language. Programming techniques in assembly language
are covered in Chapters 4 and 5 with Chapter 5 concentrating mostly on input/output
programming. The use and implementation of the subroutine concept is investigated in
Chapter 6.

Systems programs are considered in the next three chapters. Chapter 7 explores
loaders, while Chapter 8 discusses assemblers. In Chapter 7 the code for a simple,
but real, absolute loader is given; in Chapter 8, the code for a MIXAL assembler is
given. These two programs provide an opportunity for the student to see and study
a real loader and assembler, and not simply the concepts in the abstract. Chapter 9
briefly discusses other system programs, macro assemblers, compilers, interpreters,
and operating systems.

From these chapters, the basic concepts of assembly language programming and
programs should be evident to the student. Chapter 10 then proceeds to present a brief
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description of several other computers, to introduce the student to both the similarities
and differences among computer systems.

In our one-semester course, these concepts are reinforced by numerous
programming assignments. The early assignments emphasize basic programming
techniques such as simple arithmetic, input/output, character manipulation and array
handling. The later assignments have included writing either a relocatable loader and
two-pass assembler for a subset of the MIX computer, or writing an interpreter and
one-pass load-and-go assembler for a simple minicomputer (16 instructions, four
general registers, etc.). All of these assignments are programmed in MIXAL. The last
assignment is to write a simple program in the new assembly language of their own
assembler. Thus, students should see that they know how to program in assembly
language, in general, and not simply in MIXAL.

The major question in your mind now is undoubtedly: Why MIX? MIX is a pseudo
computer, not a real one. This is at once both its major drawback and its major
advantage. The major drawback to MIX is, of course, that it is not real; this implies that
the use and programming of the MIX computer will include a certain air of artificiality
which may annoy and confuse some students.

However, from an educational point of view, MIX is ideal. It is simple, easy to
understand, and yet typical of many computers. Machine and assembly languages
are different for each computer. However, the techniques of assembly language
programming are largely machine-independent. Thus, learning one assembly language
provides the basis for quickly and easily learning any other assembly language. This is
emphasized by the descriptions of other computers in Chapter 10.

Also, consider the alternative to teaching MIX: teaching the structure and language
of a real computer. As Knuth has written, in the Preface to Volume 1 of The Art of
Computer Programming (Addison-Wesley, Reading, Mass., 1973),

“Given the decision to use a machine-oriented language, which language
should be used? I could have chosen the language of a particular machine
X, but then those people who do not possess machine X would think this
book is only for X-people. Furthermore, machine X probably has a lot of
idiosyncrasies which are completely irrelevant to the material in this book,
yet which must be explained; and in two years the manufacturer of machine
X will put out machine X + 1 or machine 10X, and machine X will no longer
be of interest to anyone”.

Knuth continues that it is very unlikely that programmers will only use one computer
in their life. Each new machine can be easily learned once the first machine is
understood, but the ability to change smoothly from one computer to another is an
important skill for a programmer. Thus, teaching first MIX and then another, real,
computer is preferable, since it immediately forces the student to understand how to
move from machine to machine. In my own, so far short career, I have programmed on
several different computers (IBM 1620, CDC 3600, CDC 6500, PDP-11/20, HP 2116,
CDC 1700, IBM 360/370, DEC-10, SDS Sigma 5, Nova 3/D).

From an economic viewpoint also, the MIX machine is an advantage over a real
computer. It is often said that a simulated machine is much more expensive than a
real machine, and for production computation this is undeniably true. However, for a
student environment, most of the computer time is in assembly and debugging, not
execution. The simple MIXAL assembler, written as a cross assembler for the machine
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at hand, generating load-and-go code for a simulator with good trace, dump, and error
detection facilities will provide a much better instructional tool at a lower price than most
real assemblers with their extensive pseudo instructions, macros, relocatable code,
and operating system input/output, most of which cannot and need not be used in an
introductory course.

The construction of a MIXAL assembler/simulator is, although non-trivial, within the
range of a senior year or early graduate student project. The complexities are derived
mainly from the need for an event-driven simulator to allow CPU and I/O overlap, and
the need to provide the best possible debugging facilities. Properly written, the design
and code for these systems would be easily transported over the years to new computer
systems.

One further benefit from the use of MIX is the ability to easily pick up and use
The Art of Computer Programming books by D. E. Knuth. These are very handy in
later courses as references and texts. More can be learned from them with a good
knowledge of MIX.

In summary, we feel that MIX is preferable to any real machine for teaching a
beginning course in machine language, assembly language, and computer organization.
The major problem we have faced in using MIX has been the lack of an adequate text,
a problem which we hope has now been solved.

I would especially like to express my gratitude to the reviewers – Stan Benton,
Montclair State College; Michel Boillot, Pensacola Junior College; Werner Rheinboldt,
University of Maryland; and Robert C. Uzgalis, University of California, Los Angeles –
whose comments and suggestions helped greatly in guiding the manuscript to its final
form.

James Peterson
Austin, Texas
August 11, 1977

Digital Edition

This book was originally published by Academic Press. It was moderately successful
as a textbook from 1978 to maybe 1988, but computer technology moved on. There
is now, for example, a 64-bit MIX (MMIX) introduced in 1999, and programs are more
likely to use keyboard input and display output than input from a card reader with output
to a line printer. But, while the details have changed, the basic concepts of assembly
language programming are still the same, so we believe this book still has value.

The original book was created using RUNOFF, but in 1977, we could find no publisher
that would take text from a computer, so it was re-typed for printing (introducing lots of
typographical errors). For this digital edition, the original printed book was scanned,
OCRed, converted to HTML, editted for correctness and consistency, and then
converted to LaTeX, which was used to produce a PDF for printing.

James Peterson
Austin, Texas
August 11, 2018
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BASIC COMPUTER ORGANIZATION

Computers, like automobiles, television, and telephones, are becoming more and
more an integral part of our society. As such, more and more people come into regular
contact with computers. Most of these people know how to use their computers only
for specific purposes, although an increasing number of people know how to program
them, and hence are able to solve new problems by using computers. Most of these
people know how to program in a higher-level language, such as Basic, Fortran, Cobol,
Algol, or PL/I. We assume that you know how to program in one of these languages.

However, although many people know how to use automobiles, televisions,
telephones, and now computers, few people really understand how they work internally.
Thus, there is a need for automotive engineers, electronics specialists, and assembly
language programmers. There is a need for people who understand how a computer
system works, and why it is designed the way that it is. In the case of computers, there
are two major components to understand: the hardware (electronics), and the software
(programs). It is the latter, the software, that we are mainly concerned with in this book.
However, we also consider how the hardware operates, from a programmer’s point of
view, to make clear how it influences the software.

This chapter reviews the basic organization of computers, to provide a background
for the software considerations of later chapters. You should be familiar with most of this
material already, but this review will assure that we all agree on the basic information.

We can understand a computer by studying each of its components separately
and by examining how they fit together to form a computing system. The four basic
components of a computer are shown in Figure 1.1. These four elements are: (a)
a memory unit , (b) a computation unit , (c) an input and output system, and (d) a
control unit . The arrows between the different components in Figure 1.1 illustrate that
information may travel freely between any two components of the computer. Some
information paths may be missing in some computers. For example, in many systems
there is no direct connection between the computation unit and the input/output system.
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FIGURE 1.1 Basic components of a computer.

The memory unit functions as a storage device in the computer, storing data and
programs for the computer. The computation unit does the actual computing of the
computer – the additions, subtractions, multiplications, divisions, comparisons, and so
on. The input/output (I/O) system allows the computer to communicate with the outside
world, to accept new data and programs and to deliver the results of the computer’s
work back to the outside world. The control unit uses the programs stored in the
computer’s memory to determine the proper sequence of operations to be performed
by the computer. The control unit issues commands to the other components of the
system directing the memory unit to pass information to and from the computation unit
and the I/O system, telling the computation unit what operation to perform and where to
put the results, and so forth.

Each of these components is discussed in more detail below. Every computer must
have these four basic components, although the organization of a specific computer
may structure and utilize them in its own manner. We are therefore presenting general
organizational features of computers, at the moment. In Chapters 2, 3, and 10 we
consider specific computers and their organization.

1.1 THE MEMORY UNIT

A very necessary capability for a computer is the ability to store, and retrieve,
information. Memory size and speed are often the limiting factors in the operation of
modern computers. For many of today’s computing problems it is essential that the
computer be able to quickly access large amounts of data stored in memory.
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We consider the memory unit from two different points of view. We first consider the
physical organization of a memory unit. This will give us a foundation from which we
can investigate the logical organization of the memory unit.

1.1.1 Physical organization of computer memory

For the past twenty years, the magnetic core has been the major form of computer
memory. More recently, semiconductor memories have been developed to the point
that most new computer memories are likely to be semiconductor memories rather than
core memories. The major deciding factors between the two have been speed and cost.
Semiconductor memories are undeniably faster, but until recently have also been more
expensive.

Core memories have been used for many years and will undoubtedly continue to be
used widely. They have been the main form of computer main memory for almost twenty
years. Since semiconductor memories have been trying to replace core memories,
they have been built to look very much like core memories, from a functional point of
view. Therefore, we present some basic aspects of computer memories in terms of
core memories first, and then we consider semiconductor memories.

Core memories

Figure 1.2 is a drawing of a magnetic core. Cores are very small (from 0.02 to
0.05 inches in diameter) doughnut-shaped pieces of metallic ferrite materials which are
mainly iron oxide. They have the useful property of being able to be easily magnetized
in either of two directions: clockwise or counterclockwise. A core can be magnetized by
passing an electrical current along the wire through the hole in the center of the core
for a short time. Current in one direction (+) will magnetize the core in one direction
(clockwise), and current in the opposite direction (-) will magnetize the core in the
opposite direction (counterclockwise). Once the core has been magnetized in a given
direction, it will remain magnetized in that direction for an indefinitely long time (unless
it is deliberately remagnetized in the opposite direction, of course). This allows a core

FIGURE 1.2 A magnetic core (much enlarged)
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to store either of two states, which can be arbitrarily assigned the symbols 0 and 1 (or +
and -, or A and B, etc.).

The magnetic core was chosen as the basic storage unit because of several
desirable physical properties. It can be easily and quickly switched from one state to
the other by passing an electrical current through the core. A positive current will put
the core in one state, while a negative current will put the core in the other state. The
switching time of a core depends again upon the size and composition of the core, but
is typically in the range 0.25 to 2.5 microseconds (10-6 seconds). The switching time is
the time it takes the core to switch from one state to the other.

Individual cores are organized into larger units called core planes. A core plane is
a two-dimensional rectangular array of cores. Figure 1.3 illustrates the basic design
of a core plane. A specific core can be selected by choosing a specific X -select and
Y -select wire. For example, in Figure 1.3 the core at the intersection of the X 5 and the
Y 2 wires has been “selected.”

Cores can be written by setting their magnetic state to one of the two possible states.
They can be read by sensing their current state. Core memories have destructive
readout ; that is, reading a core can be accomplished only by disturbing the state of
the core. It is necessary to rewrite the information back to the core to preserve it. This

FIGURE 1.3 Core plane showing X -select and Y -select wires and sense wire.
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FIGURE 1.4 Core planes stacked to form a memory module; one bit from each core
plane forms a word (or byte).

defines a read-write cycle for the memory. Whenever a core is read, it is immediately
rewritten. For a write, the “old” information is read out, and the “new” information is
written instead. The cycle time for a memory is at least twice its switching time, and
typical core memory cycle times are 0.5 to 5 microseconds. Notice that the access time
(time to read information) is generally only half the cycle time.

Core planes are “stacked”, one on top of another, to form memory modules. All the
cores selected by a specific pair of X and Y wires (one core from each core plane) are
used to form a word of memory. To read from or write to a word in memory, one core
from each core plane is read and written, simultaneously. The specific core in each
core plane is selected by a memory address register which specifies the X -select and
Y -select wires to be used. The result from a read is put into a memory data register .
The contents of this register are then used to restore the selected word. In a write
operation, the result of the read operation is not used to set the memory data register,
but is simply discarded. The word in memory is then written from the memory data
register.

The memory address register and the memory data register, along with a single
read or write line, are the interface of the memory module to the rest of the computer
system (Figure 1.5). To read from memory, another component of the computer system
puts the address of the desired word in the memory address register, puts “READ” on
the read-write selector, and waits for the first half of the read-write cycle. After this first
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FIGURE 1.5 Memory module appearance to rest of system.

half, the contents of the addressed word are in the memory data register and may be
used. They are also written back into memory to restore the cores of that word. For a
write, the contents of the word to be written are put in the memory data register, and the
read-write wire is set to “WRITE”. After the entire read-write cycle is over, the addressed
word will have its new contents.

Semiconductor memory

The basic element in a core memory is the core. The parameters of the core
define the parameters of the memory. Specifically, the size of the core determines its
switching time, and switching time defines access time and cycle time. To achieve faster
memories, it is necessary to make the cores smaller and smaller. There is a practical
limit, given current manufacturing techniques, to the size, and hence, speed, of core
memories.

Semiconductor memories use electrical rather than magnetic means to store
information. The basic element of a semiconductor memory is often called a flip-
flop. Like the core, it has two basic states: on/off, or 0/1, or +/-, and so on. The basic
idea is to replace the magnetic cores of a memory with the electrical flip-flops. However,
the functional view of memory is the same. Each memory module has a memory
address register, a memory data register, and a read-write function selector. The
difference lies in how the information is stored in the memory module. Many different
kinds of semiconductor memories have been developed.
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Bipolar memories are the fastest memories available, with switching times as low as
100 nanoseconds (100 × 10-9 seconds). MOS (metallic-oxide semiconductor) memories
are slower (500 to 1000 nanoseconds) but cheaper. These memories are made on
“chips” which correspond roughly to a core plane. Memory modules are constructed by
placing a number of chips on a memory board.

One major problem with semiconductor memories is the volatility of the stored
information. In core memories, information is stored magnetically, while semiconductor
memories store information electrically. If the power to a semiconductor memory is
turned off, the contents of the memory are lost. This means that power is never
intentionally turned off, unless all useful information has been stored elsewhere.
However, if power is cut off due to an accident, a power failure, or a “brown-out”,
the consequences can be a major catastrophe. A temporary alternate power supply
(such as a battery) can solve this problem, and most systems now have this protection.

Another form of this same volatility exhibits itself in some semiconductor memories.
Static memories use transistor-like memory elements which store information by the
“on” or “off” state of the transistor. Dynamic memories store information by the presence
or absence of an electrical charge on a capacitor. The problem is that the electrical
charge will leak off over time, and so dynamic memories must be refreshed at regular
intervals. Refreshing a memory requires reading every word and writing it back in place.
Special circuitry is used to constantly refresh a dynamic memory.

Almost the opposite of a dynamic memory is a read-only memory (ROM). Read-
only memories are very static. In fact, as their name implies, they cannot be written
(except maybe the first time, and even that is often difficult). Read-only memories
are used for special functions; information is stored once and never changed. For
example, read-only memories are often used to store bootstrap loaders (Chapter 7) and
interpreters (Chapter 9), programs which are supplied with the computer and are not
meant to ever be changed. Most hand calculators are small computers with a special
program, stored in ROM, which is executed over and over.

Some read-only memories can in fact be rewritten, but while access time for
reading may be only 100 nanoseconds, writing may take several microseconds.
These memories are called programmable read-only memories (PROMs) and erasable
programmable read-only memories (EPROMs), among others.

Even more advanced forms of semiconductor memories which may be used in
the near future include magnetic bubbles and charge-coupled devices (CCDs). The
important fact about all of these forms of memory, however, is that despite their various
types of physical construction, their interface to the rest of the computer system is the
same: an address register, a data register, and a read-write signal. Memory modules
can be constructed in many different ways and with many different materials: cores,
semiconductors, thin magnetic films, magnetic bubbles, and so on. However, because
of the uniform and simple interface to the rest of the computing system, we need not
be overly concerned with the physical organization of the memory unit. We need only
consider its logical organization.

1.1.2 Logical organization of computer memory

All (current) computer memories are composed of basic units which can be in either
of two possible states. By arbitrarily assigning a label to each of these two states, we
can store information in these memory devices. Traditionally, we assign the label 0 to
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Number of bits in the Memory size
memory address register (in words)

12 4,096
15 32,768
16 65,536
18 262,144
20 1,048,576
24 16,777,216
n 2n

TABLE 1.1 Typical Memory Sizes and Address Sizes

one of these states and 1 to the other state. The actual assignment is important only to
the computer hardware designers and builders. We do not care if a 0 is assigned to a
clockwise magnetized core and 1 to a counterclockwise magnetized core, or vice versa.
What we do want is that if we say to write a 1 into a specific cell, then a subsequent
read of that cell returns a 1, and if we write a 0, we will then read a 0. We can then
consider memory to store 0s and 1s and may ignore how they are physically stored.

Each 0 or 1 is called a binary digit , or a bit . Each bit can be either a 0 or a 1. A
word is a fixed number of bits. The number of bits per word varies from computer to
computer. Some small computers have only 8 bits per word, while others have as many
as 64 bits per word. Typical numbers of bits per word are 12, 16, 18, 24, 32, 36, 48,
and 60, with 16 and 32 being the most common. Each word of memory has an address.
The address of a word is the bit pattern which must be put into the memory address
register in order to select that word in the memory module. In general, every possible
bit pattern in the memory address register will select a different word in memory. Thus,
the maximum size of the memory unit (number of different words) depends upon the
size of the memory address register (number of bits).

If there are n bits in the memory address register, how many words can there be
in memory? With only one bit (n = 1), there are only two possible addresses: 0 and 1.
With two bits, there are four possible addresses: 00, 01, 10, and 11. If we have three
bits, there are eight possible addresses: 000, 001, 010, 011, 100, 101, 110, and 111. In
general, every additional bit in the memory address register doubles the number of
possible addresses, so with n bits there are 2n possible addresses. Table 1.1 gives
some typical memory sizes and the number of bits in the memory address register.

Consider a computer with a 32-bit word and a 16-bit address. This computer could
have up to 65,536 different 32-bit words. The purchaser of the computer may not have
been able to afford to buy all 65,536 words, however. Memory modules are generally
made in sizes of 4096, 8192, 16,384 or 32,768 words. Since 210 = 1024 is almost
1000, these are often referred to as 4K, 8K, 16K, or 32K memories. (The K stands for
kilo, meaning 1000. The next size of memory, containing 65,536 words, is referred to
as either 64K or 65K.) To get a larger memory, several modules are purchased and
combined to form the memory unit. For example, a 64K memory may be made up of
four 16K memory modules. The address size for a specific computer only places an
upper limit on the amount of memory which can be attached to the computer.
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An n-bit word can be drawn as

To be able to refer to specific bits, we number them. Different people number their
bits differently. Some number from left to right, others from right to left. Some number
their bits from 0 to n-1, others from 1 to n. We will number our bits from 0 to n-1 from
right to left. This will be convenient in Section 1.2 when we discuss number systems.
The right-hand bits are called the low-order bits, while the left-hand bits are called
high-order bits.

Many computers consider their words to be composed of bytes. A byte is a part
of a word composed of a fixed number (usually 6 or 8) of bits. A 32-bit word could
be composed of four 8-bit bytes. These would be bits 0-7, 8-15, 16-23, and 24-31.
The usefulness of byte-sized quantities will become apparent in Section 1.3, when we
discuss I/O and character codes.

In addition to the words of the memory unit, a computer will probably have a small
number of high-speed registers. These are generally either the same size as a word of
memory or the size of an address. Most registers are referred to by a name, rather than
an address. For example, the memory address register might be called the MAR, and
the memory data register the MDR. Typical other registers may include an accumulator
(A register) of the computation unit, and the program counter (P register) of the control
unit. These registers provide memory for the computer, but they are used for special
purposes.

Memory for a computer consists of a large number of fixed-length words. Each word
is composed of a fixed number of bits. Words can be stored at specific locations in the
memory unit and later read from that location. Each location in memory is one word
and has its own unique address. A machine with n-bit addresses can have up to 2n

different memory locations.

EXERCISES

1. Name two forms of physical memory. How do they differ?

2. What is the function of the memory address register? What is the function of the
memory data register?

3. If we have 12-bit addresses, how much memory can the computer address? How
much with 15-bit addresses? With 24-bit addresses?

4. Why is the cycle time of a core memory at least twice the switching time? Show
the relationship between cycle time, switching time, and access time.

5. How many different bit patterns can be represented in an n-bit word?

6. How many individual bits are needed to build a memory module of 4K of 16-bit
words? If the memory module costs $3,000, what is the cost per bit?
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7. The obvious improvement upon a memory module with two-state storage units
would be a three-state storage unit. This would allow information to be coded in
ternary. Each ternary digit (trit) could represent three values (0, 1, 2). How many
different values can be stored in an n-trit word? How many different words can be
addressed by an n-trit address?

8. Consider a computer system with two memory modules, A and B, each with 4096
words. The total amount of memory is thus 8192 words, and requires a 13-bit
address. If half the words are in module A and half the words are in module B,
then 1 bit is needed to determine which memory module has a specific word, and
the remaining 12 bits address one of the words within the selected module. If
the high-order bit of the address is used to select module A or module B, which
addresses are in which module? Which words are in which module if the low-order
bit is used to select the module?

9. What is the difference between dynamic and static semiconductor memory?

10. Is a read-only memory volatile? Why?

1.2 THE COMPUTATION UNIT

The computation unit contains the electronic circuitry which manipulates the data
in the computer. It is here that numbers are added, subtracted, multiplied, divided,
and compared. The computation unit is commonly called the arithmetic and logic unit
(ALU).

Since the main function of the computation unit is to manipulate numbers, the
design of the computation unit is determined mainly by the way in which numbers are
represented within the computer. Once the scheme for representing numbers has
been decided upon, the construction of the computation unit is an exercise in electronic
switching theory.

1.2.1 The representation of numbers

Mathematicians have emphasized that a number is a concept. The concept of a
specific number can be represented by a numeral . A numeral is simply a convenient
means of recording and manipulating numbers. The specific manner in which numbers
are represented has varied from culture to culture and from time to time. Early
representations of numbers by piles of sticks gave way to making marks in an organized
manner (|, ||, |||, ||||, |||||, . . . ). This method in turn eventually was replaced by Roman
numerals (I, II, III, IV, V, . . . ) and finally by Arabic numerals (1, 2, 3, 4, 5, . . . ). Notice
that we have Roman numerals and Arabic numerals, not Roman numbers or Arabic
numbers. The symbols which are used to represent numbers are called digits.

The choice of a number system depends on many things. One important factor
is the convenience of expressing and operating on the numerals. Another important
idea is the expressive power of the system (Roman numerals, for example, have no
representation for zero, or for fractions). A third determining factor is convention. A
representation of a number is used both to remember numbers and to communicate
them. In order for the communication to succeed, all parties must agree on how
numbers are to be represented.
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Computers, of course, have only two symbols which can be used as digits. These
two digits are the 0 and the 1 symbols which can be stored in the computer’s memory
unit. We are limited to representing our numbers only as combinations of these symbols.
Remember that with n bits we can represent 2n different bit patterns. Each of these bit
patterns can be used to represent a different number. (If we were to use more than
one bit pattern to represent a number, or one bit pattern to represent more than one
number, using the numbers might be more difficult.)

The correspondence between numbers and bit patterns can be quite arbitrary. For
example, to represent the eight numbers 0, 1, . . . , 7, we could use

Number Bit pattern

0 110
1 101
2 001
3 100
4 010
5 111
6 011
7 000

or any other pairing of numbers with bit patterns. However, we should realize that if we
assign bit patterns to numbers with no underlying plan, the circuitry of the computation
unit to perform operations on our numerals may become very, very complex (and
expensive).

We are defining a mapping, R, from bit patterns to numbers. The computation unit
must be designed so that the mapping, R, is an isomorphism under the operations
of addition, subtraction, multiplication, and division, and under relations such as “less
than”, “equal to”, and “greater than”. This means that if a bit pattern X and a bit pattern
Y are presented to the computation unit for addition and the bit pattern Z is the result,
then we want R(X) + R(Y) = R(Z). That is, the number R(Z), represented by the bit
pattern Z, should be the sum of the number R(X), represented by the bit pattern X, and
the number R(Y), represented by the bit pattern Y.

This requirement, plus the desire to keep the cost of the computer down, has
resulted in almost all computers representing their numbers in a positional notation.
Everyone should be familiar with positional (or place) notation from our familiar decimal
(base 10) number system. In a positional notation, the value of a digit depends upon its
place in the numeral. For example, the digit 2 has different values in the three numbers
274, 126, and 592, meaning two hundreds, two tens, and two units, respectively.

In a binary (base 2) place notation, the concepts are the same, but each place can
have only two possible digits, 0 or 1, rather than ten (0 through 9) as in the decimal
(base 10) place notation. Because of this, the value of the places increases more slowly
than with the decimal system. Each place is worth only twice the value of the place
to its right, rather than ten times the value as in the decimal system. The rightmost
place represents the number of units; the next rightmost, the number of “twos”; the next,
the number of “fours”; and so forth. Counting in the binary positional number system
proceeds

0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, . . .
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, . . .
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1.2.2 The decimal system

We stopped at 9 above, because at 10 two major methods of representing numbers
in a computer show their differences. One method, the binary system (discussed in the
following section), continues as above. The other system, the decimal system uses
the above bit patterns to represent the digits from 0 to 9, and then uses these digits to
represent all other numbers. The decimal system represents numbers in the familiar
decimal place system, replacing the digits 0 through 9 with 0000, 0001, 0010, 0011,
0100, 0101, 0110, 0111, 1000, 1001, respectively. This is known as a binary coded
decimal (BCD) representation. For example, the numbers 314,159 and 271,823 are
represented in BCD by

314,15910 = 0011 0001 0100 0001 0101 1001BCD

271,82310 = 0010 0111 0001 1000 0010 0011BCD

The subscripts indicate what kind of representation scheme is being used. The “10”
means standard base 10 positional notation; “BCD” means a binary coded decimal
representation. The blanks between digits in the BCD representation would not be
stored, but are only put in to make the number easier to understand.

To add these numbers, we add each digit of the addend to the corresponding digit
of the augend to give the sum digit. Each digit is represented in binary, so binary
arithmetic is used. For binary addition, the addition table is

0 + 0 = 0
1 + 0 = 1
0 + 1 = 1
1 + 1 = 0 with a carry into the next higher place

Thus, adding the two numbers 314,159 (base 10) and 271,823 (base 10) is

0011 0001 0100 0001 0101 1001 (BCD)
+ 0010 0111 0001 1000 0010 0011 (BCD)

0101 1000 0101 1001 0111 1100 (BCD)

Notice that in the low-order digit we have added 1001 (9) and 0011 (3) to yield a sum
digit of 1100. This is the binary equivalent of 12 (1 × 8 + 1 × 4 + 0 × 2 + 0 × 1), but it is
not a decimal digit. To correct this, we must subtract 10 and add a carry into the next
higher place to give

0101 1000 0101 1001 0111 1100 (BCD)
+0001 -1010 (correction)

0101 1000 0101 1001 1000 0010 (BCD)

This is then the number 585,982 (base 10). Checking, we see that 314,159 + 271,823
= 585,982, which agrees.

The decimal number system has been used in many computers, particularly the
earlier machines. It has several distinct advantages over competing number systems.
Its greatest advantage is its similarity to the representation of numbers used by most
people. Numbers can be easily read into the machine and output again. Its major
disadvantages tend to outweigh these considerations, however. Compared to the binary
number systems which we discuss next, the computation unit circuitry for addition, and
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so forth, is much more complicated (and hence more expensive). Furthermore, it uses
only 10 of the 16 possible bit patterns in 4 bits (24 = 16), so that it wastes memory. To
represent the numbers from 0 to 99,999,999 would take 32 bits (4 bits per digit times
8 digits) in BCD, while only 27 bits provide many more than 100,000,000 different bit
patterns (227 = 134,217,728). At $.05 per bit, this means each word costs ($.05 per
bit times 5 bits) $.25 more for decimal than for binary, and a memory module of 4096
words would cost an extra thousand dollars.

For certain applications, however, these considerations are not as important. An
electronic calculator, for example, normally uses a decimal number representation
scheme, since a calculator uses very little memory, but must be compatible with human
operators. Also, as the price of computer memory and logic hardware decreases, so
will the cost disadvantage of decimal machines.

1.2.3 The binary number system

In the binary number system, numbers are represented by a sequence of binary
digits (bits). Each bit has a value determined by its position in the number. The
sequence of bits

X n X n-1 . . . X 2 X 1 X 0 0 ≤ X i ≤ 1

represents the number

X 0 + 2 × X 1 + 4 × X 2 + 8 × X 3 + . . . + 2n-1 × X n-1 + 2n × X n

The binary number system assigns the following bit patterns to represent the
corresponding numbers.

Binary number Decimal number

0 0
1 1

10 2
11 3

100 4
101 5
110 6
111 7

1000 8
1001 9
1010 10
1011 11
1100 12
1101 13
1110 14
1111 15

10000 16
10001 17
10010 18

. . . . . .
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The largest number which can be represented in n bits is 111. . . 111 (n bits of 1)
which is

1 + 2 + 4 + 8 + . . . + 2n-1 = 2n - 1

In a word of n bits, each bit pattern corresponds to one of the numbers 0 to 2n - 1, thus
allowing the representation of 2n different numbers.

Binary arithmetic is quite simple. The addition table is simply

0 + 0 = 0
1 + 0 = 1
0 + 1 = 1
1 + 1 = 0 with a carry of 1

Adding two binary numbers is simply

1 1 1 1 1 1 1 1 1 carries
0 1 1 0 1 0 1 1 1 1 0 0 0 1 0 1 addend

+ 0 0 0 1 1 0 0 1 0 1 0 1 0 1 0 0 augend

1 0 0 0 0 1 0 1 0 0 0 1 1 0 0 1 sum

Notice how the carries may propagate, with one carry causing the sum in the next
column to result in a carry also. If we change bit 11 of the addend from a one to a zero,
for example, the resulting sum is

1 1 1 1 1 carries
0 1 1 0 1 0 1 1 1 1 0 0 0 1 0 1 addend

+ 0 0 0 1 1 0 0 1 0 1 0 1 0 1 0 0 augend

1 0 0 0 0 1 0 1 0 0 0 1 1 0 0 1 sum

The value of the high-order bit of a sum depends upon the value of all lower-order bits.
Since the value of the high-order bit is greatest, it is called the most significant bit . The
low-order bit is the least significant bit .

The hardware to build a computational unit for a binary machine is quite simple
and easy to design and build. The major disadvantage of binary systems is their
inconvenience and unfamiliarity to humans (Quick! Is 010101110010 [base 2] greater
or less than 1394 [base 10]?). The large number of symbols (zeros and ones) which
must be used to represent even “small” numbers is also cumbersome. Hence, very few
programmers prefer to work in binary. But the computer must work completely in binary.
It has no choice, due to the binary nature of computer hardware. What is needed is a
quick and easy way to convert between binary and decimal. Unfortunately, there is no
quick and easy conversion algorithm between these two bases.

1.2.4 Conversions between bases

In an arbitrary base B (B > 0) a sequence of digits

X n X n-1 . . . X 2 X 1 X 0 (0 ≤ X i < B)

represents the number
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X 0 + B × X 1 + B2 × X 2 + . . . + Bn-1 × X n-1 + Bn × X n

Now if we wish to express the number in another base, A, we can do it in either of two
ways: we can use the arithmetic of base A or we can use the arithmetic of base B. For
example, if we wish to convert a number from binary (base B = 2) to decimal (base A =
10), we (humans) want to use decimal arithmetic (base A). If we wish to convert from
decimal (base B = 10) to binary (base A = 2), we want to use decimal arithmetic (base
B). The computer, on the other hand, always wants to use binary arithmetic. Thus, we
need two different algorithms for conversion.

To convert from binary to decimal, we use the equation given above to calculate the
decimal representation of the binary number. For example,

0110101001 (base 2) = 0 × 29 + 1 × 28 + 1 × 27 + 0 × 26 + 1 × 25

+ 0 × 24 + 1 × 23 + 0 × 22 + 0 × 21 + 1 × 20

= 0 × 512 + 1 × 256 + 1 × 128 + 0 × 64 + 1 × 32
+ 0 × 16 + 1 × 8 + 0 × 4 + 0 × 2 + 1 × 1

= 256 + 128 + 32 + 8 + 1
= 425 (base 10)

1000101100 (base 2) = 1 × 29 + 1 × 25 + 1 × 23 + 1 × 22

= 512 + 32 + 8 + 4
= 556 (base 10)

For large numbers, a table of powers of two (such as Table 1.2) is obviously useful. You
should, of course, memorize the small powers of two, up to about 210 or 211.

To convert from decimal to binary requires a different approach. For a number x, we
have the equation

x = X 0 + 2 × X 1 + 4 × X 2 + 8 × X 3 + . . . + 2n-1 × X n-1 + 2n × X n

where 2n+1 > x, and we wish to determine the values of the bits

n 2n n 2n

0 1 13 8,192
1 2 14 16,384
2 4 15 32,768
3 8 16 65,536
4 16 17 131,072
5 32 18 262,144
6 64 19 524,288
7 128 20 1,048,576
8 256 21 2,097,152
9 512 22 4,194,304

10 1,024 23 8,388,608
11 2,048 24 16,777,216
12 4,096 25 33,554,432

TABLE 1.2 Powers of Two
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X n X n-1 . . . X 2 X 1 X 0 0 ≤ X i ≤ 1

which are the binary representation of the number x. It is convenient to rewrite this
equation as

x = X 0 + 2 × (X 1 + 2 × (X 2 + 2 × (X 3 + . . . + 2 × (X n-1 + 2 × X n) . . . )))

From this we notice that

1. X 0 is 1 if x is odd; X 0 is 0 if x is even.
2. X 0 is the remainder resulting from dividing x by 2.
3. The integer part of x /2 specifies the values of the remaining bits.

We can now derive the values of the bits in the binary representation of x by repeated
division by 2. The remainder of the i th division is the i th bit. For example, 47,132 (base
10) is converted to binary by

47132 ÷ 2 = 23566 remainder is 0
23566 ÷ 2 = 11783 remainder is 0
11783 ÷ 2 = 5891 remainder is 1

5891 ÷ 2 = 2945 remainder is 1
2945 ÷ 2 = 1472 remainder is 1
1472 ÷ 2 = 736 remainder is 0

736 ÷ 2 = 368 remainder is 0
368 ÷ 2 = 184 remainder is 0
184 ÷ 2 = 92 remainder is 0

92 ÷ 2 = 46 remainder is 0
46 ÷ 2 = 23 remainder is 0
23 ÷ 2 = 11 remainder is 1
11 ÷ 2 = 5 remainder is 1

5 ÷ 2 = 2 remainder is 1
2 ÷ 2 = 1 remainder is 0
1 ÷ 2 = 0 remainder is 1

Reading up from the bottom, 47,132 (base 10) = 1011100000011100 (base 2).
A different algorithm can be used when a table of the powers of two (such as Table

1.2) can be used. Suppose we want to convert 747 (base 10) to binary. Looking in the
table, we see that the first power of two that is less than 747 is 512 (= 29). Since 747 -
512 = 235, we can construct the following sequence

747 (base 10) = 512 + 235
= 512 + 128 + 107
= 512 + 128 + 64 + 43
= 512 + 128 + 64 + 32 + 11
= 512 + 128 + 64 + 32 + 8 + 3
= 512 + 128 + 64 + 32 + 8 + 2 + 1
= 29 + 27 + 26+ 25 + 23 + 21+ 20

= 1011101011 (base 2)
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1.2.5 The octal and hexadecimal number systems

As we said earlier, there is no conversion method between binary and decimal that
is so quick and simple that it can be done in your head. A simple observation leads,
however, to two reasonable alternatives to using binary. Consider the expansion of the
12-bit binary number

x = X 11X 10X 9X 8 . . . X 2X 1X 0

= X 0 + 2 × X 1 + 4 × X 2 + 8 × X 3 + 16 × X 4

+ 32 × X 5 + 64 × X 6 + 128 × X 7 + 256 × X 8

+ 512 × X 9 + 1024 × X 10 + 2048 × X 11 [1]
= (X 0 + 2 × X 1 + 4 × X 2)

+ 8 × (X 3 + 2 × X 4 + 4 × X 5)
+ 82 × (X 6 + 2 × X 7 + 4 × X 8)
+ 83 × (X 9 + 2 × X 10 + 4 × X 11) [2]

= (X 0 + 2 × X 1 + 4 × X 2 + 8 × X 3)
+ 16 × (X 4 + 2 × X 5 + 4 × X 6 + 8 × X 7)
+ 162 × (X 8 + 2 × X 9 + 4 × X 10 + 8 × X 11) [3]

Notice that in equation [2] each of the parenthesized quantities (X 3 + 2 × X 4 + 4 × X 5)
represents a value from 0 to 7, an octal digit (base 8). The equation is of the form

x = 80 × Y 0 + 81 × Y 1 + 82 × Y 2 + 83 × Y 3

where the parenthesized groups of bits define the octal digits for the representation of
the number x in base 8 (octal). Similarly, equation [3] is of the form

x = 160 × Z 0 + 161 × Z 1 + 162 × Z 2

and each Z i is in the range 0 to 15, a hexadecimal digit (base 16).
As a direct result of the fact that 8 = 23 and 16 = 24 we can easily convert between

binary and octal or binary and hexadecimal. To convert a binary number to octal, start
at the right-hand side (low-order bits) and group the bits, three bits per group. Add
leading zeros as necessary to make the number of bits a multiple of three. To convert
to hexadecimal, group four bits per group, with leading zeros as necessary to make the
total number of bits a multiple of four. Then convert each group as follows.

Binary Octal Binary Octal

000 0 100 4
001 1 101 5
010 2 110 6
011 3 111 7

Binary Hexadecimal Binary Hexadecimal

0000 0 1000 8
0001 1 1001 9
0010 2 1010 A (10)
0011 3 1011 B (11)
0100 4 1100 C (12)
0101 5 1101 D (13)
0110 6 1110 E (14)
0111 7 1111 F (15)
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Notice that we use the first six letters of the alphabet in order to have 16 different
possible hexadecimal digits, since there are only 10 decimal digits and we need 16 for
hexadecimal.

As an example of the conversion from binary to octal, consider 111000110010100110
and 11110011010111001010

In this last case, we have added a leading zero in order to convert from binary to octal.
For conversion to hexadecimal we have,

Conversion from hexadecimal to binary or from octal to binary is simply the reverse
of the above transformation.

Because these conversions can be done easily and quickly, bit patterns are almost
never given in binary, but in octal or hexadecimal. Addition in these systems is basically
the same as in base 10, except that carries occur whenever a sum exceeds 7 (in octal)
or 15 (in hexadecimal).

The choice between using octal or hexadecimal is largely a matter of personal taste.
There are some objective measures which can be used to compare them. Hexadecimal
obviously will use fewer characters to represent a bit string. For a 32-bit number, for
example, only 8 hexadecimal digits are needed, while 11 octal digits would be necessary.
Machine word lengths (the number of bits per word) tend to be powers of 2, and 4
bits per hexadecimal digit gives an integral number of hexadecimal digits per word, in
these cases. Thus, for machines with word lengths of 12, 16, 24, 32, 48, 60, or 64 bits,
hexadecimal is a convenient choice.

Octal, on the other hand, has the advantage of being “closer” to base ten than
hexadecimal. Machines with 12, 18, 24, 36, 48, or 60 bits per word have an integral
number of octal digits per word. Only eight conversions between octal and binary need
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Octal Decimal Octal Decimal

10 8 1 000 512
40 32 4 000 2,048

100 64 10 000 4,096
200 128 100 000 32,768
400 256 1 000 000 262,144

TABLE 1.3 A Table of Octal Numbers and Their Decimal Equivalents

to be memorized (as opposed to 16 for hexadecimal). Also, all octal digits are decimal
digits, so octal numbers look like numbers (not like half-word, half-number hybrids).
Still, this means octal can be mistaken for decimal, while a hexadecimal number is more
likely to have a digit which is not a decimal digit.

Most decisions to use either octal or hexadecimal as the primary way to represent
binary numbers are determined by personal bias. We use octal, in this text.

One advantage of octal mentioned above was that it was “close” to base 10. This
can be very useful when quick order-of-magnitude type comparisons are needed with
binary numbers and decimal numbers. Table 1.3 gives a short table of octal numbers
and their decimal equivalents. Notice that until about 1000 (octal) = 512 (base 10),
octal numbers and decimal numbers are very similar in magnitude. Even with 18-bit
numbers, octal numbers are only about 4 times smaller than they should be. Hence, a
very crude way to interpret a binary number is to convert it to octal, and then treat that
octal number as a decimal number.

Of course, this crude conversion gives only order-of-magnitude results. To know
exactly the value of an octal number, we need to follow the same multiplicative algorithm
which we saw earlier for base 2, but now we are working with base 8, so the multiplicative
factor is eight. For example

1742 (octal) = 1 × 83 + 7 × 82+ 4 × 8 + 2 × 1
= 512 + 448 + 32 + 2
= 994 (base 10)

40653 (octal) = 4 × 84 + 0 × 83 + 6 × 82 + 5 × 8 + 3 × 1
= 16384 + 0 + 384 + 40 + 3
= 16811 (base 10)

This can be done quite easily by the use of a table such as Table 1.4. This table gives,
for each octal digit, the value of that digit for each of the places in a six-digit octal
number. This also illustrates that the value of a given digit depends upon which position
in the number it occupies. To utilize the table for the octal number 574, for example, we
look up the entry for digit 5, place 3 (320), and add to that the value for digit 7, place 2
(56), and add to that the value of digit 4, place 1 (4), to give 574 (octal) = 320 + 56 + 4 =
380 (base 10).

A different method of conversion is to express the original equation of a conversion
as

x = X 0 + B1 × X 1 + B2 × X 2 + B3 × X 3 + . . . + Bn × X n

= X 0 + B × (X 1 + B × (X 2 + B × (X 3 + . . . + B × X n . . . )))
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Digit position

Digit 6 5 4 3 2 1
0 0 0 0 0 0 0
1 32768 4096 512 64 8 1
2 65536 8192 1024 128 16 2
3 98304 12288 1536 192 24 3
4 131072 16384 2048 256 32 4
5 163840 20480 2560 320 40 5
6 196608 24576 3072 384 48 6
7 229376 28672 3584 448 56 7

TABLE 1.4 Table of the Value of an Octal Digit in a Given Position

Using this form of the conversion equation, we can convert 3756 (octal) to decimal
by

3756 (octal) = 6 + 8 × (5 + 8 × (7 + 8 × 3))
= 6 + 8 × (5 + 8 × 31)
= 6 + 8 × 253
= 2030 (base 10)

To convert back from decimal to octal, we repeatedly divide the decimal number
by 8. The remainder at each step is the octal digit, with low-order digits produced first.
Thus, converting 2030 (base 10) to octal gives

2030 ÷ 8 = 253, remainder = 6
253 ÷ 8 = 31, remainder = 5

31 ÷ 8 = 3, remainder = 7
3 ÷ 8 = 0, remainder = 3

and so 2030 (base 10) = 3756 (octal).
Similar algorithms can be used to convert between decimal and hexadecimal.

1.2.6 Computer addition

Now that we are familiar with the use of the different number systems, how do we
use this information to represent numbers in the computer? A number is represented
by setting the bits in a word of the computer memory to the binary representation of
the number. To perform arithmetic operations on two numbers (for example, to add
them), the words containing the binary representation of the two numbers are read
from memory, or registers, and copied to the computation unit. The computation unit is
instructed (by the control unit) as to which operation is to be performed, and when the
operation is complete the result is stored back in memory or a register.

The different operations which the computation unit may be asked to do vary from
computer to computer, but almost every computer can at least add two numbers. Like
reading or writing information in memory, the operations done by the computation unit
take time. Generally the computation unit operates somewhat faster than the memory
cycle time. The time to do an addition (the add time) varies from machine to machine
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due to different hardware designs and components, and also due to different word
lengths. Longer words mean longer waiting for carries to propagate. Add times typically
are from 0.3 to 2 microseconds.

Addition of two n-bit words may produce a number requiring n + 1 bits for its
representation. This is too large to fit into one computer word and is known as overflow .
For example, if we were working with a 6-bit computer word, we could represent the
numbers from 000000 (base 2) (00 (octal) = 0 (base 10)) up to 111111 (base 2) (77
(octal) = 63 (base 10)). If we add 010110 (base 2) (26 (octal)) to 100101 (base 2) (45
(octal)), we have a sum of

0 1 0 1 1 0 (26 (octal))
1 0 0 1 0 1 (45 (octal))

1 1 1 0 1 1 (73 (octal))

which is fine, but if we add 101010 (base 2) (52 (octal)) to 110001 (base 2) (61 (octal))

1 0 1 0 1 0 (52 (octal))
1 1 0 0 0 1 (61 (octal))

1 0 1 1 0 1 1 (133 (octal))

and we have a carry into a seventh bit position, which does not exist in a six-bit word.
This is overflow and means that the result of the addition is too large to fit into one
computer word. Since only a fixed number of bits are available in a word, we can only
represent a fixed range of numbers. With n bits, we can represent all (and only) the
integers from 0 to 2n-1.

Subtraction of binary numbers is similar to addition, except that we may generate a
“borrow” of 1 from the next higher place rather than a “carry”. For example

0 10 (borrows)
1 0 0 1 1 1 (47 (octal))

- 0 1 0 1 0 1 (25 (octal))

0 1 0 0 1 0 (22 (octal))

In this example, a borrow occurred from the high-order bit to the next highest order bit
(bit 5 to bit 4).

1.2.7 Representation of negative numbers

The possibility of subtraction brings up the problem of the representation of negative
numbers. So far we have considered only the problem of representing positive numbers,
and have seen that there are at least two methods of representation: decimal and
binary. Negative numbers may also be stored and manipulated in the computer as well.
Several methods of representing negative numbers, in addition to positive numbers,
are used in computers. We consider here four representation schemes for negative
numbers

1. Sign and magnitude
2. Ones’ complement
3. Two’s complement
4. Biased, or excess, notation
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Sign and magnitude

In the early designs of computers the representation of numbers was in BCD
because the algorithms for decimal arithmetic were familiar to the designers, builders,
and users of the computer. For much the same reasons, a sign and magnitude
representation of negative numbers was used. To represent positive and negative
numbers, all we need is a sign (+ or -) and the absolute value of the number (its
magnitude). Thus, positive 5 is represented by +5 and negative 5 by -5. The same
scheme can be used in binary, octal, decimal, or any other number system. Positive
100110 (base 2) is represented by +100110 (base 2) and negative 100110 (base 2) is
represented by -100110 (base 2). The sign can be represented by encoding a plus (+)
as a 0 and a minus (-) as a 1 and attaching this sign bit to the front of the word. The
decision to make plus a 0 bit, and minus a 1 bit is arbitrary, but was done to represent
zero by 00. . . 000. An n-bit word has a high-order sign bit and n-1 bits to represent the
magnitude of the number. The range of numbers which can be represented is

-2n-1+1, . . . , 0, . . . , +2n-1-1

For n = 16, this is -32,767 (base 10) to +32,767 (base 10); for n = 32, from -
2,147,483,647 (base 10) to +2,147,483,647 (base 10).

Notice that this method of specifying negative numbers can also be used for a BCD
representation of numbers. To represent the numbers from -999,999,999 (base 10) to
+999,999,999 (base 10), we would use a 1-bit sign bit and 9 BCD digits of 4 bits each,
so our word length would be 37 bits.

A quirk of sign and magnitude for binary numbers is the existence of 100. . . 000 as a
signed number. The sign bit is 1, so the number has a negative sign, but the magnitude
is zero. This number is known as minus zero (-0) or negative zero, and is the negative
of positive zero (+0).

The major problem with sign and magnitude notation, however, is the complexity
of the computational unit necessary to operate on sign and magnitude numbers. If we
wish to add two numbers, we must first examine their signs, and if they differ, subtract
one from the other rather than adding. This means we must have both adding and
subtracting devices (adders and subtracters) in our computation unit. These units are
very similar in design, so this may double the cost of the computation unit, over those
with only adders. If we could find an easy way to simply add two numbers, rather than
having to subtract for different signs, and a way to find the negative of a number, then
we could utilize the fact that x - y = x + (-y) and dispense with the subtracter (or the
adder, since x + y = x - (-y )).

Ones’ complement notation

Ones’ complement notation was devised to make the adding of two numbers with
different signs the same as for two numbers with the same sign. The complement
of a binary number is the number which results from changing all 0s to 1s and all 1s
to 0s in the original number. For example, in a 12-bit machine, the complement of
0110100111010011 is 1001011000101100, and the complement of 1110111101011011
is 0001000010100100. The complement of 00. . . 000 is 11. . . 111 and the complement
of 11. . . 111 is 00. . . 000. In octal, the complement of each octal digit is
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Complement Complement
Octal Binary Binary Octal

0 000 111 7
1 001 110 6
2 010 101 5
3 011 100 4
4 100 011 3
5 101 010 2
6 110 001 1
7 111 000 0

The complement of a number is very easy to create. Also, notice that the complement
of the complement of a number is the original number, a very important property for
a method of representing negatives. The ones’ complement notation represents the
negative of a number by its complement. Thus, for an 8-bit word, the number 100
(base 10) is represented by 01100100, and negative 100 (base 10) by 10011011. The
high-order bit is still treated as the sign bit and not as a part of the number. A 0 sign bit
is a positive number, and a 1 sign bit is a negative number.

To evaluate the usefulness of this scheme for representing negative numbers,
consider each of the four possible combinations of signs for adding two numbers, 33
(base 10) and 21 (base 10), in 8-bit binary

+ 33 0 0 1 0 0 0 0 1
+ 21 0 0 0 1 0 1 0 1

+ 54 0 0 1 1 0 1 1 0 = 54 (base 10)

+ 33 0 0 1 0 0 0 0 1
- 21 1 1 1 0 1 0 1 0

+ 12 1 1 0 0 0 0 1 0 1 = 11 (base 10) plus a carry

- 33 1 1 0 1 1 1 1 0
+ 21 0 0 0 1 0 1 0 1

- 12 1 1 1 1 0 0 1 1 = -12 (base 10)

- 33 1 1 0 1 1 1 1 0
- 21 1 1 1 0 1 0 1 0

- 54 1 1 1 0 0 1 0 0 0 = -55 (base 10) plus a carry

In two of our four examples, the addition works fine, but in the other two cases our
answers are incorrect in two ways: (1) we have a carry out of the high-order bit, and
(2) our answer is one too small. Putting these two problems together, and using one
to solve the other, it can be shown that ones’ complement arithmetic requires an end-
around carry . That is, if a carry is generated out of the high order (sign) bit, this carry
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is taken around to the low order bit and added back in. Thus, for the two cases which
were in error above, we have

+ 33 0 0 1 0 0 0 0 1
- 21 1 1 1 0 1 0 1 0

+ 12 1 0 0 0 0 1 0 1 1
+ 1 end-around carry

0 0 0 0 1 1 0 0 = 12 (base 10)

- 33 1 1 0 1 1 1 1 0
- 21 1 1 1 0 1 0 1 0

- 54 1 1 1 0 0 1 0 0 0
+ 1 end-around carry

1 1 0 0 1 0 0 1 = -55 (base 10)

Overflow is still possible, of course, although the method of detecting it is different
from the method used for unsigned integers. Before considering overflow, notice that,

1. Overflow can now occur because a number becomes too large (positive) or too
small (negative), and

2. The addition of two numbers of opposite sign can never cause overflow.

Now consider the addition of two positive numbers and two negative numbers which
cause overflow. For an 8-bit word (7 bits plus sign), we can represent the range of
integers from -127 to +127, so

+ 100 0 1 1 0 0 1 0 0
+ 28 0 0 0 1 1 1 0 0

+ 128 1 0 0 0 0 0 0 0 = -127 (base 10)

- 100 1 0 0 1 1 0 1 1
- 28 1 1 1 0 0 0 1 1

- 128 1 0 1 1 1 1 1 1 0
+ 1 end-around carry

0 1 1 1 1 1 1 1 = +127 (base 10)

There are several ways to state the condition for overflow. One method is to notice that
the sign of the output is different from the sign of the inputs. Overflow occurs in ones’
complement if – and only if – the signs of the inputs are both the same and differ from
the sign of the output. Another statement of this is that overflow occurs if there is a
carry into the sign bit and no carry out of the sign bit (no end-around carry), or if there
is no carry into the sign bit and there is a carry out (the carry out of the sign bit differs
from the carry into the sign bit).

Ones’ complement allows simple arithmetic with negative numbers. It does suffer
from one problem that sign and magnitude notation has: negative zero. The complement
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of zero (00. . . 000) is negative zero (11. . . 111). Because of the end-around carry, the
properties of negative zero are the same as the properties of positive zero, as far as
arithmetic is concerned. For example, 307 (octal) + -0 on a 10-bit word is

0 0 1 1 0 0 0 1 1 1
+ 1 1 1 1 1 1 1 1 1 1

1 0 0 1 1 0 0 0 1 1 0
+ 1 end-around carry

0 0 1 1 0 0 0 1 1 1 = 307 (octal)

But the hardware to test for zero must check for both representations of zero, making it
more complicated.

Two’s complement notation

To correct the problem of negative zero, two’s complement arithmetic is used. The
ones’ complement arithmetic is fine except for negative zero, so to eliminate it, two’s
complement notation moves all negative numbers “up” by one. The two’s complement
negative of a number is formed by complementing all bits and then adding one. The
two’s complement of 342 (octal) on a 12-bit machine is

0 0 0 0 1 1 1 0 0 0 1 0
1 1 1 1 0 0 0 1 1 1 0 1 complement

+ 1 plus one

1 1 1 1 0 0 0 1 1 1 1 0 two’s complement negative

(The high-order bit is still the sign bit). If we consider the four cases of addition given
above for ones’ complement arithmetic on an 8-bit machine, we have the following
(notice that negative numbers are represented differently from ones’ complement):

+ 33 0 0 1 0 0 0 0 1
+ 21 0 0 0 1 0 1 0 1

+ 54 0 0 1 1 0 1 1 0 = 54 (base 10)

+ 33 0 0 1 0 0 0 0 1
- 21 1 1 1 0 1 0 1 1

+ 12 1 0 0 0 0 1 1 0 0 = 12 (base 10) plus a carry

- 33 1 1 0 1 1 1 1 1
+ 21 0 0 0 1 0 1 0 1

- 12 1 1 1 1 0 1 0 0 = -12 (base 10)

- 33 1 1 0 1 1 1 1 1
- 21 1 1 1 0 1 0 1 1

- 54 1 1 1 0 0 1 0 1 0 = -54 (base 10) plus a carry
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We see that with two’s complement arithmetic an end-around carry is not needed. A
carry out of the sign bit is simply ignored. Since an end-around carry might have
produced carry propagation throughout the entire word, this feature may result in faster
adders, as well as simpler ones. (This complexity is simply transferred to the part of the
computation unit which produces the negative of a number.)

Negative zero has disappeared, since

zero 0 0 0 0 0 0 0 0 0 0 0 0
complement 1 1 1 1 1 1 1 1 1 1 1 1
add 1 + 1

1 0 0 0 0 0 0 0 0 0 0 0 0
discard carry 0 0 0 0 0 0 0 0 0 0 0 0 = 0

Overflow is detected in the same way as in ones’ complement; if the signs of the
inputs are equal, but differ from the sign of the output, or if the carry into the sign differs
from the carry out of the sign.

A new “quirk” has appeared to replace minus zero, however. The range of numbers
which can be represented in n bits for ones’ complement notation is

-2n-1 + 1 to +2n-1 - 1

For two’s complement, the range is

-2n-1 to +2n-1 - 1

(Since we shifted all the negative numbers up by one, we gained one new negative
number at the bottom.) Notice that although -2n-1 is representable, its negative +2n-1 is
not. If we try to negate -2n-1 we have (using 8-bits per word as an example)

-128 1 0 0 0 0 0 0 0
complement 0 1 1 1 1 1 1 1
add 1 + 1

1 0 0 0 0 0 0 0 = -128 (base 10)

We add two positive numbers and get a negative number: overflow. Overflow must be
checked both when addition is done and when a negative is formed.

Biased or excess notation

Another scheme for representing negative numbers is excess 2n-1 notation. In this
scheme, the range of numbers from -2n-1 to +2n-1 - 1 is represented by biasing each
number by 2n-1. Biasing is done by adding the bias (2n-1 in this case) to the number to be
biased. This transforms the represented numbers to the range 0 to 2n-1. These biased
numbers can be represented in the normal n-bit unsigned binary notation. Excess
notation is identical to two’s complement notation, but with the sign bit complemented
(a 0 sign bit means a negative number, a 1 sign bit a positive number; the opposite of a
normal sign bit).

The major advantage of excess notation is with comparisons. For the normal sign
bit definition (0 = +, 1 = -), signed and unsigned numbers must be compared differently.
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Sign and Ones’ Two’s
Unsigned magnitude complement complement Excess 8

0000 0 0 0 0 -8
0001 1 1 1 1 -7
0010 2 2 2 2 -6
0011 3 3 3 3 -5
0100 4 4 4 4 -4
0101 5 5 5 5 -3
0110 6 6 6 6 -2
0111 7 7 7 7 -1
1000 8 -0 -7 -8 0
1001 9 -1 -6 -7 1
1010 10 -2 -5 -6 2
1011 11 -3 -4 -5 3
1100 12 -4 -3 -4 4
1101 13 -5 -2 -3 5
1110 14 -6 -1 -2 6
1111 15 -7 -0 -1 7

TABLE 1.5 Interpretation of a 4-Bit Number as Five Different Number Representation
Schemes.

If 0100 and 1011 are unsigned integers, then 1011 > 0100, but if they are signed, then
0100 > 1011, since 0100 is positive and 1011 is negative. By reversing the sign bit
definition, both signed and unsigned numbers can be compared in the same way, since
1 > 0 and + > -. (On the other hand, the adder now has to treat the sign bit differently
from the other bits when addition is being done.)

All of these schemes (sign and magnitude, ones’ complement, two’s complement,
and excess) are used for the representation of numbers in some computer system.
They are simply convenient methods of defining the mapping from bit patterns to the
integers which we wish to represent in the computer. Different notations assign the bit
patterns to suit different purposes. Table 1.5 illustrates how a 4-bit word is interpreted
differently for each of the schemes we have discussed. The bit pattern is the same;
only the interpretation of its meaning differs. Most computer systems use only one of
these methods for representing integers so that the same interpretation can be applied
to all words.

Addition and subtraction are two very common operations in a computer, and the
computation unit provides the ability to perform these operations on binary numbers.
As we hinted earlier, most computers do not provide separate adding and subtracting
devices, but only an adder (or subtracter) and a device to complement or negate
numbers. This requires that subtraction be done by negation and addition (or that
addition be done by negation and subtraction).
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1.2.8 Multiplication and division

Multiplication and division do not occur as frequently as addition and subtraction, so
many of the smaller computers do not provide hardware to multiply or divide, but require
that the programmer implement multiplication by repeated additions, and division by
repeated subtraction. Larger computers, however, do generally provide multiplication
and division hardware. Both of these functions normally take more time to perform than
addition.

In addition to the increased time required for multiplication, the problem of overflow
becomes more important. When two n-bit numbers are added, overflow may occur
because the result may generate a carry out of the high-order bit. The largest number
which can be represented in an unsigned n-bit number is 2n-1, and so the sum of any
two numbers can be no larger than 2n - 1 + 2n - 1 = 2n+1 - 2 which requires n + 1 bits for
its representation.

For multiplication, the largest possible result is (2n - 1) × (2n - 1) = 22×n - 2n+1 + 1
which requires 2 × n bits, or twice as many bits. In decimal, for example, 99 × 99 =
9801, so the product of two two-digit numbers may be a four-digit number. To represent
the entire product, a double-length register is used. This is commonly done by using
two single-length registers and considering them as one long register with twice the
normal number of bits. If the result of a multiplication is to be used further, with addition,
subtraction, or further multiplication, the high-order bits had best be all zeros (or all ones,
if the product is negative and represented in ones’ complement or two’s complement).
Otherwise, the product is a number which is too large to be represented in one word of
memory and hence cannot be operated on by the normal arithmetic operations.

For division, the opposite phenomenon occurs. A 2 × n-bit dividend divided by an
n-bit divisor may result in an n-bit quotient plus an n-bit remainder. For example, the
four-digit number 1478 divided by the two-digit number 55 yields the two-digit quotient
26 and the two-digit remainder 48. Thus, many computation units require a double-
length dividend and produce two single-length results, the quotient and the remainder.
If a single length dividend is desired, it is extended to a double-length representation for
the division. For sign and magnitude, this involves simply inserting additional high-order
(leading) zeros. For ones’ complement, two’s complement, and excess notation, this is
done by sign extension. The sign bit is replicated as the new high-order bits.

For example, in ones’ complement, a 6-bit representation of 13 (base 10) is 001101
(base 2), while a 12-bit representation is 000000001101 (base 2). For -13 (base 10), we
have 110010 for a 6-bit representation and 111111110010 for a 12-bit representation.
Only the high order 6 bits differ between the 6-bit and 12-bit representations, and each
of these bits is the same as the sign bit.

If the quotient which results from a division exceeds the normal word length, it
can be treated either as overflow or as a double-length quotient, according to how the
computation unit is built. The remainder of a division by an n-bit divisor is never more
than n-bits.

1.2.9 Fractions and fixed-point numbers

The divide operation discussed above is often called an integer divide, since it
divides one integer by another and produces an integer quotient and integer remainder.
An alternative way to represent the result would be to give the quotient as a fraction.



1.2. THE COMPUTATION UNIT 29

How do we represent fractions? In common decimal mathematical notation, fractions
can be represented in two different forms, as a ratio a/b or as a decimal fraction,
0.xxxx . . . xx. A decimal fraction is another example of positional notation, but with
weights of negative powers of ten (the base) associated with the places. For example

0.357 = 3 × 10-1 + 5 × 10-2 + 7 × 10-3

Similarly, we can define binary fractions as a sequence of binary digits after a binary
point . A binary point looks like a decimal point, but the base of the numbers is 2, not
10. Thus,

0.1011 (base 2) = 1 × 2-1 + 0 × 2-2 + 1 × 2-3 + 1 × 2-4

= 0.5 + 0.125 + 0.0625
= 0.6875 (base 10)

Integers and fractions can be combined, as in

1100.011 (base 2) = 1 × 23 + 1 × 22 + 0 × 21 + 0 × 20

+ 0 × 2-1 + 1 × 2-2 + 1 × 2-3

= 12.375 (base 10)

Conversion from binary fractions to decimal can be done in several ways. One
method is, as demonstrated above, to expand the number as a sum of products of
powers of two and simply evaluate the resulting expression. A table of negative powers
of two can help. Alternatively, common powers of two can be factored out, as in (using
2-1 = ½)

0.01101 (base 2) = (0 + (1 + (1 + (0 + 1/2)/2)/2)/2)/2
= (0 + (1 + (1 + (0 + 0.5)/2)/2)/2)/2
= (0 + (1 + (1 + 0.25)/2)/2)/2
= (0 + (1 + 0.625)/2)/2
= (0 + 0.8125)/2
= 0.40625 (base 10)

Or, considering that multiplication by two simply shifts the binary point by one place to
the right, we can convert by

0.101111 (base 2) = 0.101111 × 26 × 2-6

= 101111 × 2-6

= 47/26

= 47/64
= 0.734375 (base 10)

Conversion from decimal fractions to binary is easily done by a simple iterative
multiplication scheme. Assume we have a fraction, x, which we wish to express in
binary. Then we wish to solve for the bits in

x = X -12-1 + X -22-2 + X -32-3 + . . . + X -m2-m

We can immediately derive that

2 × x = X -1 + X -22-1 + X -32-2 + . . . + X -m2-m+1
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and the first bit (X -1) is the integer part of the result. Separating this from the remaining
fraction, we can derive the second bit by multiplying by two again, and so on. Thus, for
0.435 (base 10), we have

2 × 0.435 = 0.87 first bit = 0
2 × 0.87 = 1.74 next bit = 1
2 × 0.74 = 1.48 = 1
2 × 0.48 = 0.96 = 0
2 × 0.96 = 1.92 = 1
2 × 0.92 = 1.84 = 1
2 × 0.84 = 1.68 = 1
2 × 0.68 = 1.36 = 1
2 × 0.36 = 0.72 = 0
2 × 0.72 = 1.44 = 1

. . . . . .

and so on. Thus,

0.435 (base 10) = 0.0110111101011100001010001111

where the underlined portion repeats forever, in the same way that the decimal fraction
for 1/3 = 0.33333333333333333. This illustrates both the conversion process and that
not all decimal numbers can be exactly represented in a finite number of bits. Some
non-repeating decimal fractions are repeating fractions in binary, just as the fraction
1/3 is a repeating fraction in decimal. No matter how many bits we allow in a word to
represent a binary fraction, we may not be able to represent some decimal fractions
exactly. By adding more and more bits, we can come closer and closer, but we may
always be incorrect by some small amount.

For 0.435, for example, if we allow only two bits of precision, then we can represent
only 0.00, 0.01, 0.10, and 0.11 (base 2) (0, 0.25, 0.5 and 0.75 [base 10]) and
we would chose 0.10 as the closest approximation to 0.435. With 9 bits, we can
represent 0.011011110 (base 2) (=0.43359375 [base 10]) and 0.011011111 (base
2) (= 0.435536875 [base 10]) but not 0.435. Obviously, as we keep increasing the
number of bits used, the precision of our numbers gets better and better. In fact, if the
closest binary fraction of n bits is used to represent a decimal fraction, the round-off
error in representation is less than 2-n-1. With 9 bits to represent 0.435, the closest
representation is 0.011011111 (base 2) (= 0.435546875 (base 10)) and the error is

0.435546875 - 0.435 = 0.000546875 < 0.0009765625 = 2 -10

When the position of the binary point is assumed to be in the same location for all
numbers, the resulting representation is called a fixed-point number. Integers are a
special case of fixed-point numbers where the binary point is assumed to be just to the
right of the low-order bit. Fixed-point numbers can always be treated as if they were
just integers whenever addition or subtraction is done because of the distributive law of
multiplication over addition. If a and b have the binary point n bits from the right, then a
× 2n and b × 2n are integers and

a + b = (a + b) × 2n × 2-n

= (a × 2n + b × 2n) × 2-n
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(This is just saying that when you add dollars and cents, you do not have to add the
cents by any special rule, but can just add as if the decimal point is not there, and then
replace the decimal point after the addition.)

1.2.10 Floating point representation

A different way to represent fractions allows the position of the binary point to
vary from one number to another. This is called floating point representation. If this
is done, then we need to know both the fraction and where the binary point is. So
a floating point number consists of two parts, one part to give the magnitude of the
number and the other to indicate the location of the binary point. Binary floating
point numbers are generally thought of as equivalent to scientific notation for decimal
numbers. Scientific notation, as you remember, represents a number as a fraction
times a power of 10. Thus, Avogadro’s number is expressed as 6.0225 × 1023, rather
than as 602250000000000000000000. Planck’s constant is 1.0545 × 10-27, rather
than 0.0000000000000000000000000010545. Similarly, we can express numbers in
binary as 0.101101 × 215 to represent 101101000000000 (base 2), and 0.111101 × 2-3

to represent 0.000111101 (base 2).
For each floating point number, we need to store only two numbers: the exponent

(or characteristic) and the fraction (or mantissa). The same base can be used for all
floating point numbers and need not be stored. The most popular base for floating point
numbers is 2 (for obvious reasons), but some machines use 8 or 16 as the base for the
exponent. The choice of exponent base is influenced by considerations of range and
precision, and can in turn affect the choice of octal or hexadecimal for writing numbers.

To represent a floating point number, we have two numbers to store. Notice that
both numbers can be treated as signed integers. Both numbers are commonly packed
into one word for machines with large enough word sizes. For example, on the CDC
3600, a 48-bit floating point number is stored as

sw se exponent fraction

where,

• sw is the sign of the number (ones’ complement)
• se is the sign of the exponent (excess 1024)
• exponent is a 10-bit biased exponent
• fraction is a 36-bit fraction

This notation allows a range of numbers from approximately

2-1024 to 2+1023 (10-307 to 10+307)

On the IBM 360/370 machines, a 32-bit floating point number is represented by

sf se exponent fraction

where

• sf is the sign of the fraction (sign and magnitude)
• se is the sign of the exponent (excess 64)
• exponent is a 6-bit exponent
• fraction is a 24-bit fraction
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The IBM 360/370 uses 16 as the base of the exponent, so that the range of numbers
which can be represented is approximately

16-64 to 16+63 (10-77 to 10+75)

The number of bits allocated to the fraction determines the precision of the number.
Remember that the round-off error in an n-bit fraction is less than 2-n-1 so the 36-bit
fraction of the CDC 3600 means an error of less than 2-37 (about 11 decimal digits
of accuracy), while the 24-bit fraction of the IBM 360/370 gives only about 6 decimal
digits of accuracy. For more places of accuracy, more bits are needed to represent the
fraction, and some machines use two words to represent a floating point number, with
the second word being considered an extension of the fraction of the first word, as (for
the IBM 360/370)

First 32-bit word Second 32-bit word
1 1 6 24 32
sf se exponent 56-bit fraction

By increasing the number of bits used to represent the fraction in this way, the round-off
error is less than 2-57, giving about 16 decimal digits of accuracy. This latter form is
known as a double precision floating point number, while the normal, one-word format
is called single precision.

The exponents are generally stored as biased integers, using the excess 2n-1

representation, while the fraction is stored in either ones’ or two’s complement, or even
sign and magnitude. The interpretation of a bit pattern as a floating point number can
be quite complex. For example, on the CDC 3600, the exponent is stored as a biased,
excess 1024 number, while the fraction is stored in ones’ complement. To make things
even more complex, if the fraction is negative, the entire word (including the exponent)
is complemented. Thus, if the word

10111111101101011111111111111111111111111111111111

is to be interpreted as a floating point number on the CDC 3600, we first note that the
sign bit is 1, so the number is negative. To determine its magnitude, we first complement
the entire word to get

01000000010010100000000000000000000000000000000000

Then we extract the exponent and its sign (10000000100) and the fraction (1010000. . . 0).
The exponent is 1028, which is +4, since it is biased by 1024. The binary point is
assumed to lie just to the left of the fraction so the fraction is 0.101000. . . 0. The number
represented is then 0.101 × 24 = 1010 (base 2) = 10 (base 10). Since the original
number was negative, the bit pattern given above represents -10 (base 10).

As another example, try

00111111110111100000000. . . 00

The sign is positive. The exponent is 01111111101 (base 2) = 1021 (base 10), which
with a bias of 1024 gives a true exponent of -3. The fraction is 0.111000. . . 0. The
entire number is 0.111 × 2-3 = 0.000111 = 0.109375 (base 10).

There are several ways to store the number 0.111 × 2-3 as a floating point number.
We could store it as 0.111 × 2-3, or 0.0111 × 2-2 or 0.000111 × 20 or 0.0000000000111
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× 27. Which representation do we use? All we are doing in the alternative definitions
is introducing leading zeros. Leading zeros make no contribution to the accuracy of
our number; they are not significant digits. Zeros after the first nonzero digit can be
significant. Thus, the trailing zeros on 0.1110000000 × 2-3 distinguish this number from
0.1110000001 × 2-3, or 0.1110000010 × 2-3. If we have only a limited number of bits to
represent a floating point number, we want to store only the significant digits, not the
leading zeros. This is accomplished by shifting our fraction and adjusting the exponent
so that the first digit after the binary point is nonzero. This is the normalized form of a
floating point number. Only zero has no one bits. It is treated as a special case with
both an exponent and fraction of zero.

In general, for a base B of the exponent of a floating point number, the number is
normalized if the first digit (in base B) after the radix point is nonzero. For a base 16
exponent, only the first hexadecimal digit of the fraction need be nonzero; the first bits
may be zero, as in the normalized number

0.1A816 × 164 = 0.0001101010002 × 164

For a general base B, this means that a floating point number

frac × Bexp 0 ≤ frac < 1

is normalized if either (1) it is zero, or (2) the exponent, exp, has been adjusted so that
the fraction, frac, satisfies

1/B ≤ frac < 1

1.2.11 Floating point arithmetic

Arithmetic with floating point numbers is more complex than with integer or fixed-
point numbers. Addition consists of several steps. First, the binary points of the
two numbers must be aligned . This is done by shifting the number with the smaller
exponent to the right until exponents are equal. As an example, to add

0.111010100 × 24

+ 0.111000111 × 22

we first align the binary points by shifting the number with the smaller exponent right as
many places as the difference in exponents, in this case, two places:

0.111010100 × 24

+ 0.00111000111 × 24

1.00100010111 × 24

This result will need to be post-normalized to place the binary point before the first
significant digit. Also, we see that the result has more bits than the original operands.
Since we cannot store these bits (having only a fixed number of bits per word),
something must be done with them. One approach is to just ignore them. This is
called truncation, and in this case yields the answer 0.100100010 × 25 (truncated to
nine bits for the fractional part). Truncation always results in a number which is less than
or equal to the correct answer (in absolute value). Hence any inaccuracy in computation
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caused by the limited number of bits used to represent numbers tends to accumulate,
and the accuracy of the result of repeated operations may be quite limited.

An alternate policy is to round the result by adding 1 to the least significant digit if
the first bit which cannot be kept is 1. This results in an addition like

0. Original operands 0.111010100 × 24

+ 0.111000111 × 22

1. Align operands 0.111010100 × 24

+ 0.00111000111 × 24

2. Add 1.00100010111 × 24

3. Round result + 0.000000001

1.00100011011 × 24

4. Normalize result 0.100100011 × 25

Another problem for floating point numbers is overflow . Just as with integers, the
addition of two large (in magnitude) numbers may produce a number which is too large
to be represented in the machine. For example, if we have a 7-bit biased exponent and
a 24-bit fraction, and try to add two numbers like

01111111110000000000000000000000
+ 01111111100000000000000000000000

we get (since the exponents are equal, no alignment is necessary)

1. Operands 0.110000. . . 00 × 263

0.100000. . . 00 × 263

2. Add 1.010000. . . 00 × 263

3. Normalize 0.101000. . . 00 × 264

The biased exponent is 64 plus the bias of 64 = 128, which cannot be represented in 7
bits (0 to 127). This is exponent overflow . For floating point numbers, a number which
is too large to represent results in a requirement for an exponent which is too large to
represent, so overflow occurs due to overflow of the exponent.

A similar problem can happen when the difference between two very small numbers
is being computed. For example, the difference between 0.101000000 × 2-63 and
0.101000001 × 2-63 is only 0.000000001 × 2-63, or when normalized, 0.100000000 ×
2-71. If we are limited to a seven-bit biased exponent, this exponent is too large (in a
negative direction) to be represented. This is exponent underflow . Normal practice
for exponent underflow is to replace the result with zero, since although this is not the
correct answer, it is very close to the correct answer.

The fraction of a floating point number cannot overflow, since this is corrected
by adjusting the exponent, in post-normalization. Adjusting the exponent may cause
exponent overflow or underflow, however.

The representation of floating point numbers is different for almost every computer.
The variations which are possible include,

1. The base of the exponent part (2, 8, 10, 16).

2. How the exponent is represented (sign and magnitude, ones’ complement, two’s
complement, biased).
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3. How the fraction is represented (sign and magnitude, ones’ complement, two’s
complement, biased).

4. Where the binary point is assumed to be (to the left of the high-order bit of the
fraction, just to the right of the high-order bit of the fraction, to the right of the
low-order bit).

5. The number of bits used for exponent.

6. The number of bits used for fraction.

7. How the parts are assembled (where the exponent is, where the sign bits are,
where the fraction is).

8. Other miscellaneous points (not storing the first bit of the normalized fraction,
since it is always 1, whether the exponent is complemented for negative fractions,
etc.).

On many computers with a small word length, several words are used to represent
a floating point number. For example, on the HP 2100, a floating point number is
represented by two words by

First 16-bit word Second 16-bit word
1 15 8 7 1
sf 23-bit fraction 7-bit exponent se

Both exponent and fraction are represented in two’s complement notation. The
binary point is assumed to be between the sign for the fraction and the high-order bit of
the fraction.

1.2.12 SUMMARY

Numbers can be represented in a computer in many ways. The basic unit of
representation is the binary digit, or bit. Each number is represented by an encoding
in terms of the bits of a computer word. Numbers can be represented in decimal by
the binary coded decimal (BCD) scheme or in a binary positional notation. If the latter
scheme is used, it is necessary to be able to convert between binary and decimal. Octal
and hexadecimal schemes are sometimes used.

Since only a fixed-number of bits are allowed, overflow may occur. If subtraction
is possible as well as addition, then negative numbers may result. Negative numbers
can be represented in sign and magnitude, ones’ complement, two’s complement, or
excess notation.

When multiplication and division are possible also, then fractions may need to be
stored as well as integers. These can be stored as either fixed-point or floating point
numbers. Floating point numbers are represented by encoding a pair of numbers
representing an exponent and a fractional part in a normalized form. Exponent overflow
and exponent underflow may occur as the result of operating on floating point numbers.
Some numbers cannot be represented exactly as binary fractions with a given number
of bits, so the precision and accuracy of the results of computation should be considered.
This is influenced by the use of either truncated or rounded arithmetic.
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EXERCISES

1. What is the difference between a number, a numeral, and a digit?

2. What is the largest unsigned number that can be represented in 16 bits?

3. If n bits can represent 2n different numbers, why is the largest unsigned number
only 2n - 1 and not 2n?

4. Represent 41,972 in BCD.

5. In what base is 13426?

6. Add the following numbers:

Binary
1011010 1001000111 11101011

+ 0101011 + 110010 + 100100101

Octal
567674 77651 3472010

+ 776571 + 1623507 + 7743

Hexadecimal
143AF F9A8C7B 4FF58

+ 2E135 + 9A67B + 141508

7. Convert the following numbers between the indicated bases so that each row of
the table is the same number represented in each base.

Binary Decimal Octal Hexadecimal

1101 13 15 D

100110010

144

144

101101

CAB

127

43

144
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8. What number(s) have the same representation in octal, binary, and decimal?

9. What hexadecimal numbers of four digits or less can also be interpreted as
English words?

10. How many octal digits are necessary to represent 35 bits? How many binary
digits can be represented by this number of octal digits? Is there a difference
between the 35 bits we started with and the answer to the second question?
Why?

11. Define a base 4 representation. Show how to convert from binary to base 4 and
back.

12. Show how Table 1.4 can be used to convert from decimal to octal.

13. Consider any three-digit number, abc. Show that abc represents a smaller number
if it is interpreted as an octal number, as compared to interpreting it as a decimal
number. That is, show that abc (base 8) ≤ abc (base 10).

14. Show that a binary number can be multiplied by 2 by shifting all bits left one
bit. What should be shifted into the low-order bit, zero or one? Show that a
binary number can be divided by 2 by shifting all bits right one bit. What is the
significance of the value of the bit shifted out of the low-order bit?

15. Represent the following decimal numbers in (a) sign and magnitude, (b) two’s
complement, (c) ones’ complement, and (d) excess-128, for an eight-bit machine
(seven bits plus sign).

93 -93 -13 -14 47 128 -128 0 -0

16. What range of numbers can be represented in 8 bits with an excess-3 notation?

17. Write all possible bit patterns for a three-bit word. Interpret each of these bit
patterns as a signed number in sign and magnitude, two’s complement, ones’
complement, and excess-4 notation, and also as unsigned numbers.

18. What is an end-around carry? Why is it needed?

19. How can a number represented in n bits be transformed into the same number,
but represented in 2 × n bits? Consider if the number is interpreted as unsigned,
sign and magnitude, two’s complement, or excess notation.

20. Show that the complement of the complement of a number in two’s complement
notation is the original number again.

21. How is overflow detected for ones’ complement arithmetic? For two’s complement
arithmetic?

22. Does division of a double-length dividend by a single-length divisor always yield a
single-length quotient? A single-length remainder?
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23. In converting from a decimal fraction to a binary fraction, why do we always
eventually arrive at a repeating pattern? What is the maximum length of the
pattern, for a decimal with at most n decimal fraction places?

24. Not every decimal fraction can be represented exactly by a finite number of binary
digits. Why can every binary fraction be represented exactly by a finite number of
decimal digits?

25. Convert 10101.111010 (base 2) to decimal.

26. Define overflow and underflow.

27. What is a normalized floating point number (in contrast to an un-normalized
floating point number)?

28. Convert 3.1416 to a normalized binary floating point number, assuming that the
high-order bit is the sign for the number, followed by a 7-bit signed excess-64
exponent for a power of two, followed by a 16-bit fraction with the binary point
between the exponent and the fraction (i.e., the fraction is less than 1 and greater
than or equal to 0.5). Assuming that 011111011100000000000000 is a floating
point number in this same representation, convert it to decimal.

29. Why would the exponent of a floating point number be represented in an excess
notation, while the entire number uses two’s complement?

30. Can BCD be used to represent fractions? Fixed-point or floating point?

1.3 THE INPUT/OUTPUT SYSTEM

The largest memory unit and fastest computation unit in the world would be useless
if there was no way to get information into the computer or to get results back from the
computer. In fact, the usefulness of many present computers is severely limited by the
way in which new programs and data can be put into and results displayed from the
computer. Thus, the input/output (I/O) system is an integral component of a computer
system. We will see that there exist a large number of radically different devices which
the computer may use for this purpose. This makes it very difficult to discuss all aspects
of an I/O system. In this section, we consider first some general concepts important to
an understanding of I/O, and then some specific common I/O devices.

The function of an I/O system is to allow communication between the computer
system and its environment. This may mean communication with people (operators,
programmers, users) and also with other machines. These other machines may be
other computers (such as in a computer network), laboratory measuring devices,
manufacturing equipment, switching equipment, or almost anything which can produce
or receive electrical signals. Computers interact with other machines by sending
electrical signals on cables. The cables are attached to the computer by interface
boards which plug into slots in the computer chassis. Interface boards are flat pieces of
plastic which contain the electronic circuitry to convert between the binary words of the
computer and the electrical signals which go to and from the devices. Some devices
are used for both input and output, while others are only input devices or output devices.
For each different kind of device, a new interface board is needed.
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FIGURE 1.6 Block diagram of computer system and peripheral devices.

The organization of the I/O system within the computer itself varies from machine
to machine. We examine some specific organizations later. Generally, each computer
manufacturer provides a collection of I/O devices which are specifically designed for use
with its particular line of computers. These devices are mainly incompatible with the I/O
system of other computers. However, with a suitable interface, almost any device can
be attached to any computer. Thus, there is a growing number of independent vendors
of I/O devices. These independent manufacturers often design their devices so that
they are plug-to-plug compatible with a popular computing system (such as the IBM
360/370 system, or the PDP-11). This means that, with their interface, their I/O device
looks the same to the computer as the original manufacturer’s device and can be just
plugged right in. (Of course, the device is faster, cheaper, or has more functions than
the original manufacturer’s device.)

Figure 1.6 illustrates a typical block diagram of a computer system which has a
large number and variety of I/O devices. Since I/O devices are the interface between
the machine and its users, they are called peripheral devices to distinguish them from
the central computer.
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Char BCD Char BCD Char BCD Char BCD
0 00 + 20 - 40 blank 60
1 01 A 21 J 41 / 61
2 02 B 22 K 42 S 62
3 03 C 23 L 43 T 63
4 04 D 24 M 44 U 64
5 05 E 25 N 45 V 65
6 06 F 26 O 46 W 66
7 07 G 27 P 47 X 67
8 10 H 30 Q 50 Y 70
9 11 I 31 R 51 Z 71
: 12 < 32 V 52 ] 72
= 13 . 33 $ 53 , 73
’ 14 ) 34 * 54 ( 74
≤ 15 ≥ 35 ↑ 55 → 75
% 16 ¬ 36 ↓ 56 ≡ 76
[ 17 ; 37 > 57 ∧ 77

TABLE 1.6 A BCD Character Code (Code Given in Octal)

1.3.1 Character codes

In the same way that information is encoded in the memory unit (as 0s and 1s),
and the computation unit (as fixed-point integers or floating point numbers), it is also
encoded in the I/O system. Unlike the memory unit and computation unit, it is often not
encoded in the same way for all peripheral devices. Much of the information in the I/O
system is not numbers, but digits, letters, and punctuation, or characters. For instance,
when a computer is handling billing information, the information is both amounts paid
and owed, and the names and addresses of the people involved. These names and
addresses must be represented in an encoding which the computer can store and
manipulate. This is done by defining a character code. A character code is a list of the
characters which can be represented and the bit pattern which is used to represent
each character. Although characters can be assigned bit patterns in arbitrary ways,
most computers and peripheral devices use one of three standard character codes:
BCD, ASCII, or EBCDIC.

What is needed for a character code? We certainly want to be able to represent
all 26 letters, 10 digits, and some special characters, such as a blank, comma, period,
left and right parenthesis, plus sign, minus sign, and equals sign. A 48-character set
is generally considered a minimal set, meaning that at least 6 bits must be used per
character (25 = 32 < 48 < 64 = 26). The BCD (Binary Coded Decimal) character code
uses 6 bits per character to define a 64-character set, including (upper case only)
letters, digits, and some special characters. Table 1.6 lists a BCD character code. This
is a rather than the BCD code, because there are several BCD codes, varying from
machine to machine. Most of these codes agree on the representation of the letters
and numbers, but many special characters will have different representations.

Although BCD is satisfactory for many purposes, it is too small a set of characters if
upper and lower case letters and additional special characters are desired. This means
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at least a seven-bit code. The American Standard Code for Information Interchange
(ASCII) is a seven-bit character code which allows representation of upper and lower
case letters, the decimal digits, a wide variety of special symbols, and a collection of
control characters for use in telecommunications. Table 1.7 gives the ASCII character
code (in octal). The two- and three-letter codes (000 to 037) are control codes, mainly
for use on computer typewriter-like terminals. BEL, for example, rings a bell on a
teletype.

Seven bits provide for up to 128 different characters – enough to satisfy most
computer users. But 7 is an awkward number, since it is not a power or multiple of 2.

ASCII Char ASCII Char ASCII Char ASCII Char
000 NULL 040 blank 100 @ 140 "
001 SOH 041 ! 101 A 141 a
002 STX 042 " 102 B 142 b
003 ETX 043 # 103 C 143 c
004 EOT 044 $ 104 D 144 d
005 ENQ 045 % 105 E 145 e
006 ACK 046 & 106 F 146 f
007 BELL 047 ’ 107 G 147 g
010 BS 050 ( 110 H 150 h
011 HT 051 ) 111 I 151 i
012 LF 052 * 112 J 152 j
013 VT 053 + 113 K 153 k
014 FF 054 , 114 L 154 l
015 CR 055 - 115 M 155 m
016 SO 056 . 116 N 156 n
017 SI 057 / 117 O 157 o
020 DLE 060 0 120 P 160 p
021 DC1 061 1 121 Q 161 q
022 DC2 062 2 122 R 162 r
023 DC3 063 3 123 S 163 s
024 DC4 064 4 124 T 164 t
025 NACK 065 5 125 U 165 u
026 SYNC 066 6 126 V 166 v
027 ETB 067 7 127 W 167 w
030 CNCL 070 8 130 X 170 x
031 EM 071 9 131 Y 171 y
032 SS 072 : 132 Z 172 z
033 ESC 073 ; 133 [ 173 {
034 FS 074 < 134 \ 174 |
035 GS 075 = 135 ] 175 }
036 RS 076 > 136 ∧ 176 ¬
037 US 077 ? 137 _ 177 DEL

TABLE 1.7 The ASCII Character Code (Code Given in Octal)
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Thus, many computers use an eight-bit character code. Since ASCII has an acceptable
character set, the question is what to do with the extra bit. Mostly it is just left as a zero,
or a one, and ignored, but for many applications it can be used to increase the reliability
of the computer. For this use, the extra bit is used as a parity bit and helps to detect
incorrect information.

Incorrect information can be introduced into a computer in several ways. If
information is sent across wires (like telephone lines) from one location to another,
static and interference can cause the information to be received incorrectly. If it is
stored magnetically for a long period of time, it may change due to flaws in the magnetic
medium or external magnetic fields (caused by static electricity or electrical storms,
for example). Or an electronic component in the computer itself may break and cause
incorrect results. In all these cases, the potential damage done by the changing of even
one bit is great. For example, if the bit number 2 of the first “E” in “PETERSON” were to
switch from a 1 to a 0, the “E” would change into an “A” (“E” = 1000101 6= 1000001 = “A”),
and a Mr. Paterson might be billed, paid, credited, or shot instead of Mr. Peterson!

Parity allows this kind of error (a change of one bit) to be detected . Once the error
is detected, the appropriate steps to correct the error are not immediately obvious, but
that is another problem. Parity can be either even or odd. For odd parity, the extra bit is
set so that the total number of 1 bits in the code for a character is an odd number. Thus,
for the characters given below, the parity bit is as shown.

Character ASCII code Parity ASCII with odd parity
A 1000001 1 11000001
E 1000101 0 01000101
R 1010010 0 01010010
Z 1011010 1 11011010
4 0110100 0 00110100
, 0101100 0 00101100

(blank) 0100000 1 10100000

For even parity, the parity bit is set so that the total number of one bits per character is
even. Thus, an even parity bit is the complement of an odd parity bit .

Now suppose the same error described above happened, but the character is
represented in odd parity. An “E” is represented by the bit pattern 01000101 and after
bit 2 changes, the pattern is 01000001. This is no longer an “A” (11000001), and in fact,
is not a legal bit pattern at all, since it has an even number of 1 bits. Since we are
using odd parity, this is an error, and is called a parity error . Although we know that
the character is illegal, we do not know what the original character was. It might have
been an “E”, but it could also have been an “I” (01001001) whose bit 3 changed, or an
“A” whose parity bit changed. Also, notice that if two bits change, the parity of the result
is still correct. Hence, parity bits allow us to detect some, but not all, errors. Hopefully,
the more common errors will be detected.

Adding parity bits to the 7-bit ASCII code gives an 8-bit code, but only 128 characters
are available. With 8 bits, up to 256 characters are possible. Although this many
characters are not needed now, they undoubtedly will be someday. For this and other
reasons, a third code, EBCDIC (Extended Binary Coded Decimal Interchange Code) is
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EBCDIC Char EBCDIC Char EBCDIC Char EBCDIC Char
00 NULL 40 blank 80 C0
01 SOH 81 a C1 A
02 STX 82 b C2 B
03 ETX 83 c C3 C
04 PF 4A ¢ 84 d C4 D
05 HT 4B . 85 e C5 E
06 LC 4C < 86 f C6 F
07 DEL 4D ( 87 g C7 G
08 4E + 88 h C8 H
09 4F | 89 i C9 I
11 DC1 91 j D1 J
12 DC2 92 k D2 K
13 TM 93 l D3 L
14 RES 5A 94 m D4 M
15 NL 5B $ 95 n D5 N
16 BS 5G * 96 o D6 O
17 IL 5D 97 p D7 P
18 CAN 5E ; 98 q D8 Q
19 EM 5F ¬ 99 r D9 R
21 SOS A1 s E1 S
22 FS A2 t E2 T
23 A3 u E3 U
24 BYP 6A A4 v E4 V
25 LF 6B , A5 w E5 W
26 ETB 6C % A6 x E6 X
27 ESC 6D _ A7 y E7 Y
28 6E > A8 z E8 Z
29 6F ? A9 E9
30 B0 F0 0
31 B1 F1 1
32 SYN B2 F2 2
33 B3 F3 3
34 PN 7A : B4 F4 4
35 RS 7B # B5 F5 5
36 UC 7C @ B6 F6 6
37 EOT 7D ´ B7 F7 7
38 7E = B8 F8 8
39 7F " B9 F9 9

TABLE 1.8 An Abridged Listing of the EBCDIC Character Code. An empty character
means no character has been assigned to that character code, yet. Some characters
are not listed. Character code is given in hexadecimal.
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used by IBM for their 360/370 computers and peripherals. Table 1.8 lists some of this
code. This code, as its name indicates, is similar to the BCD code.

Why are there different character codes? Part of the reason is indexBit Patthistorical.
The original BCD code was defined to allow easy translation from the Hollerith punched
card code (see Table 1.9) to the BCD code. This explains the strange grouping of 0-9,
A-I, J-R, and S-Z. Special characters sort of filled in the left-over spaces. ASCII was
defined with telecommunications in mind, so the letters, digits, and so forth can be
put wherever convenient, trying to keep control characters, letters, digits, and so on
together as much as possible to allow easy programming. EBCDIC tries to combine
both of these features into its code.

What difference does it make which code is used? Within the computer, very little.
Some codes are more convenient than others for some purposes. For simple English
text, a BCD code requires only six bits per character rather than eight bits per character
for ASCII with parity or EBCDIC; thus, only 3/4 as many bits are needed to store a
given sequence of characters. We could store one character per word, but this would
be intolerably wasteful of memory for large words, or long strings of characters. Hence,
several characters are normally packed in each word. The number of bits needed to
represent a character is called a byte. On a 24-bit machine, for example, each word
has four 6-bit bytes, or three 8-bit bytes. The character code often influences the length
of word (or vice versa). Hence 16-bit computers almost always use an 8-bit byte with
an 8-bit ASCII code. The CDC 6600, with its 60-bit words, uses a 6-bit character code,
while if its words had been 64 bits long, it probably would have used an 8-bit code. The
IBM 360/370, with 32-bit words, uses the 8-bit byte with an EBCDIC code.

The character code also influences another function of the machine. It is often
convenient to output lists of names in alphabetical order. It is convenient within the
computer to consider each character as the unsigned integer number defined by its
character code. Thus, “A” < “B” < “C” < . . . in all the character codes. But what
about the digits, special symbols, and blanks? If the character code is used for names
containing combinations of letters, digits, and special characters (like 3M, IBM 360, I/O),
the alphabetical order may not be obvious, and is generally left up to the character code.
Thus, on some machines “A1” is before “AA” alphabetically, while on others “A1” is after
“AA”. The order of the characters in the character code is called the collating sequence.
If the character code in use matches our expectation for the collating sequence, then
no problems arise. If not, then placing words in alphabetical order may become very
complicated (or we adjust our expectations to what is easy for the computer).

The character code can also influence the ease of using various peripheral devices.
A computer which is set up to use a six-bit BCD code may not be able to easily use
an I/O device using ASCII or EBCDIC. Being able to use only a character set of 64
characters can limit how concepts are expressed to the computer, if these concepts are
naturally expressed in terms of characters or symbols not available on the machine.

1.3.2 Specific I/O devices

Many different I/O devices are currently in use with computer systems. Despite this
wide variety, however, there are certain classes of devices which are common to many
computer installations. In order to be able to understand the constraints which are
placed on the computer by its peripheral devices, we consider the typical characteristics
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of the common I/O devices. Individual devices will differ, and specific information can
be obtained only from the vendors’ manuals.

The console

Although most people do not consider the console of a computer as an input or
output device, it can be a very useful means of communicating with a computer. The
console generally consists of a collection of display lights, switches, and buttons. It is
designed for utility and, sometimes, impressiveness. Typically, at least the following
features are available on the computer console:

1. An ON/OFF switch for turning the computer power on and off. For some small
computers, the electrical power to the computer is turned off whenever it is not
needed. For larger computers, power may never be turned off.

2. A GO/HALT button, which starts and stops the execution of instructions. This is
often called a RUN or EXECUTE switch.

3. A switch register. This is a set of switches which can be set to one of two positions
(0/1) and can be read by the computer. It is often used to define addresses or
contents of words.

4. A set of display lights, which can be used to display the contents of selected
words of memory or registers. One light is provided for each bit in a word or
address and indicates by its on/off state whether the corresponding bit is 1 or 0.

5. A set of status lights, which indicate whether the power is on or off, whether the
computer is running or halted, and perhaps other state information.

FIGURE 1.7 A typical operator’s console for a small computer.
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6. A set of control switches, which allow the state of the computer and its memory to
be manipulated. Common control buttons include a button which when pushed
will read the console switches as an address and remember that address (LOAD
ADDRESS); a button which will display in the status lights the contents of an
addressed location of memory (DISPLAY/EXAMINE); a button which will store the
switch register value into an addressed location of memory (DEPOSIT/STORE); a
button to allow a program to be executed one instruction at a time, one instruction
executed every time the button is pushed (SINGLE STEP); and so on.

The console is normally designed so that an operator sitting at the console has total
control over the entire computer. The display lights allow the operator to monitor
the contents of all memory locations and registers. Using the switch register to
give addresses and data, the operator may change the contents of selected memory
locations or registers.

In the early days of computing, a programmer normally debugged programs by sitting
at the console and following them through, step by step, instruction by instruction. But
as computers became more expensive, this was no longer possible, and programmers
had to learn to debug programs from listings and dumps of memory. The console is
generally used now only by the operator. Even the operator seldom uses the console
display much for most computers, using instead a console typewriter . The console
typewriter is really two devices in one. An input device, the keyboard , is basically a set
of typewriter keys. When the operator depresses one of the keys, the character code
corresponding to that character is sent to the computer. This allows the operator to
input information to a program in the computer.

The computer can send information back by outputting to the other part of the
console typewriter, the printer . When a character code is sent to the printer by the
computer, the printer selects the appropriate symbol and prints it on the printer paper.
Normally, the operator wants the characters typed on the keyboard printed also. This
can be done either by a direct link from the keyboard to the printer, or by having the
computer echo print every character that is typed in.

For many early computers and some modern small computers, the console
typewriter is the only I/O device available. These devices tend to be relatively slow (from
10 to 100 characters printed per second) and hence may severely limit the usefulness
of the computer. Typical is the ASR-33 Teletypewriter (TTY), which operates at 10
characters per second and uses the ASCII character code. These machines are slow,
mainly because of their mechanical construction, but they are also very inexpensive
(about $1,000) and hence fairly popular.

Paper tape

One problem with using a console typewriter to input a program or data is that if an
error occurs, or if it is necessary to run the program again with more data, the entire
program or data must be typed again. To prevent having to type the input many times, it
can be put on a machine-readable medium. One such medium is paper tape. Paper
tape is normally one inch wide and slightly thicker than a normal piece of paper. It is
as long as necessary. Up to eight holes can be punched across the tape. Each hole
is in one of the eight channels which run along the tape. Between the third and fourth
channels is the sprocket hole. The sprocket hole serves several functions. It provides a
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FIGURE 1.8 Sample paper tape.

means for a mechanical paper tape reader to move the tape (like the sprocket holes
on the edges of a piece of movie film). It also defines where information is on the tape.
Some systems use tape with 5, 6 or 7 channels rather than 8.

Information is encoded onto the tape by punching holes in the tape. Holes
correspond to 1-bits and the absences of holes to 0-bits. Normally, ASCII is used
to represent the characters to be punched on the tape. Thus, each character needs
seven or eight bits (depending upon whether or not parity is used). Each character
is punched as a set of holes across the width of the tape, one bit per channel. For
each character, a sprocket hole is also punched. The sprocket hole thus defines when
a character should be looked for. Without the sprocket holes, a sequence of NULL
characters with an ASCII code of 00000000 (with even parity) would be just a space of
blank tape, and it would be difficult to determine how many NULL characters are on the
tape.

Paper tape is input to a computer by a paper tape reader . There are two varieties
of these devices. One is electromechanical and reads the tape by using little pins which
sense the presence or absence of a hole by pressing against the tape. If a hole is there,
the pin moves through the tape and connects a switch; if no hole is in the tape, the
pin is held back and the switch stays open. A sprocket wheel moves the tape forward
one character at a time for the sensing pins. These readers operate at about 10 to 50
characters per second and are often attached to Teletypes. The ASR-33 and ASR-35
normally come with a paper tape reader attached to them, which allows input to be
either from the keyboard or from paper tape.

The other paper tape readers are optical and read the tape by a set of eight
photocells. The tape is moved between the photocells and a bright light. A special
photocell is put under the sprocket hole to control when the other photocells are used
to sense a hole or non-hole. By using a friction drive (rubber wheels, as in a tape
recorder), paper tape can be read by an optical paper tape reader at speeds of up to
1000 characters per second.

Paper tape can be punched either by a special typewriter-like device (for example,
a Teletype with paper tape punch attachment) which punches one eight-bit character
for each key which is depressed at the keyboard, or by a computer using a paper tape
punch I/O device. A computer-controlled paper tape punch can punch paper tape at a
rate of about 200 characters per second.

The computer can use a paper tape punch as an output device, but, since people
tend to be relatively poor at reading paper tape, it is used mainly to create output which
can be easily read back into a computer at a later time. Thus, paper tape can be
considered as an input medium, an output medium, and a storage medium.
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Punched cards

One of the major problems with paper tape is the difficulty of correcting an error in
the information on the tape. Programs often must be fed into the computer many times,
with minor changes each time, before they are correct. Computer-punched paper tape
can be wrong sometimes. Even if the tape is correct, it may become torn, or badly worn
in a few spots. Generally, this requires punching a complete new paper tape.

Punched cards do not have this problem. Each card is a piece of cardboard about
3½ inches wide by 7½ inches long (the size of the dollar bill around 1900, according to
computer folklore). The card is divided into 80 columns, spaced along the card. Each
column has 12 rows. A small rectangular hole can be punched into any row of any
column. A character can be encoded into any column by the right pattern of holes.
Figure 1.9 illustrates a punched card with the letters, digits, and some special characters
in a Hollerith punched card code. Both the columns and the rows are numbered: the
columns from 1 to 80; the rows by 12, 11, 0, 1, 2, . . . , 9, from the top to bottom. A
punched card code gives for each character which rows are to be punched. Table 1.9
gives one common punched card code, the Hollerith code.

Cards are prepared by using a card punch or keypunch machine. Several
companies manufacture these devices, but the most common ones are the IBM model
026 and the IBM model 029 keypunches. These machines have a typewriter-like
keyboard with additional keys to control the flow of cards through the machine. The
keypunch operator types his or her program onto the cards, one line of the program
per card. If a mistake is made, the card is simply discarded and a new one punched.
In addition to punching the code representing a character in a column, the keypunch
prints the character on the top of the card (above row 12), making it relatively easy for a
human to read the information on a card also.

Punched cards have been used for a long time, well before the invention of
computers. Their first use in data processing operations was in the 1890 U.S. census.
The population had been increasing so fast that data from the 1880 census took nearly
eight years to process by hand, and it was projected that the processing of the 1890

FIGURE 1.9 Sample punched computer card.
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census would not be finished before it was time for the 1900 census. Herman Hollerith
invented the techniques used for encoding information onto punched cards and the
machines to process them. He later founded a company which eventually merged with
others to become the International Business Machines Corporation (IBM).

In addition to the keypunch, there are many other machines which can be used to
process information punched on cards, without the help of a computer. Card sorters,
duplicators, listers, verifiers, and interpreters are the more common pieces of simple
card processing machines. More sophisticated machines include the collator (which
can merge two card decks into one) and the tabulator, or accounting machine, which
can perform simple computations to produce totals and subtotals for reports.

Because of this long history, the basic punched card code is standard for letters,
digits, and certain special characters (such as “$”, “.”, and “,”). For the more recent
special characters, however, different punches are used by different computer systems.
Even the codes for the IBM 026 and the IBM 029 keypunches may differ. This is one of
the problems in moving a program or data from one computer to another.

Cards are read by an input device called a card reader . Each card is read, one at a
time, and the information for each column is sent to the computer. Cards can be read
either in an alphabetic mode, where each column is interpreted as a character according
to a Hollerith code, or in column binary mode, where each column is interpreted as 12
binary digits (hole = 1, no hole = 0) and these 12 bits are sent to the computer with no
interpretation as characters, digits, etc.

Cards can be read either by an optical card reader, which uses a set of photocells
to detect the holes in each row, or by using a metallic brush (one brush for each row)
which contacts a charged metal plate behind the card if there is a hole, or is insulated
from it by the card if there is no hole. Either technique produces an electric current for a
hole (1) and no current for no hole (0). Card readers can read from 200 to 1000 cards

Char Hollerith Char Hollerith Char Hollerith Char Hollerith
blank no punch + 12 - 11 0 0
1 1 A 12-1 J 11-1 / 0-1
2 2 B 12-2 K 11-2 S 0-2
3 3 C 12-3 L 11-3 T 0-3
4 4 D 12-4 M 11-4 U 0-4
5 5 E 12-5 N 11-5 V 0-5
6 6 F 12-6 0 11-6 W 0-6
7 7 G 12-7 P 11-7 X 0-7
8 8 H 12-8 Q 11-8 Y 0-8
9 9 I 12-9 R 11-9 Z 0-9
: 2-8 < 12-2-8 ∨ 11-2-8 ] 0-2-8
= 3-8 . 12-3-8 $ 11-3-8 , 0-3-8
’ 4-8 ) 12-4-8 * 11-4-8 ( 0-4-8
≤ 5-8 ≥ 12-5-8 ↑ 11-5-8 → 0-5-8
% 6-8 ¬ 12-6-8 ↓ 11-6-8 ≡ 0-6-8
[ 7-8 ; 12-7-8 > 11-7-8 ∧ 0-7-8

TABLE 1.9 A Hollerith Punched Card Character Code
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per minute or, at 80 characters per card and 60 seconds per minute, from 250 to 1300
characters per second.

Cards can be punched by hand, or if the information is already in the computer, by
a computer card punch output device. A computer-controlled card punch will punch
either the alphanumeric Hollerith code or column binary in a form which can be read
back into a computer later, but often without the printing on the top of the card to allow
a person to read it. Card punches operate at a speed of about 200 cards per minute
(250 characters per second).

Line printers

In addition to being able to get information into a computer by using a Teletype,
paper tape, or punched cards, it is sometimes useful to be able to get information out of
the computer. The printer of a Teletype can be used for this purpose, but it is normally
quite slow. A card punch can be used, but this requires running the punched cards
through another machine to print the information punched in them on paper, or on
the cards themselves. The most common form of computer output device is the line
printer . A line printer is a printer which prints, not one character at a time, but an entire
line at a time. The length (or width) of a line varies from 80 to 136 characters. Each
character is 1/10 inch wide, so the paper for a line printer varies from about 10 inches
to 15 inches across. On each edge is a set of sprocket holes to allow the line printer to
easily and accurately move the paper for each line to be printed. A page of computer
paper typically has 66 to 88 lines for printing (6 or 8 lines per inch, on 11-inch paper)
and each page is serrated to allow easy separation.

The line printer prints each character much the same as a typewriter would. An
ink-impregnated ribbon extends along the length of the page. On one side of the ribbon
is the paper; on the other, the metallic image of the character. An electrically controlled
hammer (solenoid) strikes the type for the selected character, printing the character.
The major difference is that where a typewriter prints one character at a time, the line
printer prints all the characters at once. Sometimes they “cheat” and print first all the
odd columns, then all the even columns. Some of the more inexpensive line printers
separately print the first twenty characters, then the next twenty, and so forth.

The character type pieces are organized in two ways. One is as a set of type wheels
(one for each character position on the line) which rotate until the correct character
is opposite the paper and then print that character. With this system, it is somewhat
difficult to assure that each character is positioned exactly right, so some vertical
displacement sometimes occurs, which produces an output line that wiggles slightly
across the page. An alternative method organizes the characters in a long circular
horizontal chain which rotates at high speed along the length of the print line. When the
proper character is between the hammer and the ribbon for a particular print position,
the hammer fires, to print the character. This may cause some horizontal displacement,
so that the character spacing is not exact, but the eye tends not to notice this. To
prevent having to wait too long for a given character to appear, characters are repeated
on the chain at regular intervals, so that four copies of an “A” may appear on the chain.

Normal computer paper can be used in the line printer, or special forms may be
used to print checks, reports, letters, bills, books, and so on. Unlike the other devices
we have seen, there is no input device which corresponds naturally with this output
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device. The line printer is mainly used to present the results of a computer program to
users for their reading.

Non-mechanical printers are also in use. These devices employ heat or radiation to
“print” on specially processed paper and can print at speeds of up to 30,000 lines per
minute.

Other input and output devices

The devices and media which we have just seen are by far the most common
input and output devices in use with computers today, but they are by no means the
only devices. An increasingly common output device is the cathode-ray tube (CRT),
commonly connected with a keyboard to replace a console typewriter or Teletype. A
CRT is basically an oscilloscope or TV tube with additional electronics to allow it to
interface with the computer. This device uses an electron beam to “draw” pictures on
the phosphorus-coated screen, or simply to display characters. A screen can typically
display 24 lines of 80 characters and imitates a Teletype by “scrolling” (a new line
appears at the bottom, pushing all other lines up, and the top line disappears). CRTs
are quiet, fast, and easy to use, since they are completely electronic, but they suffer
from their inability to produce “hard copy” (printed copy) which can be kept for reference.

CRTs were originally connected to computers to serve as graphic output devices,
for plotting functions, charts, and diagrams. Another device used for this same purpose,
but capable of giving hard copy output, is the plotter . A plotter controls the movement
of an ink pen over a piece of paper. The paper is either stationary on a flat surface,
with the pen moving back and forth across it, or the paper moves along the surface of a
cylinder, called a drum, and the pen can move left and right as the paper goes back
and forth. The pen can either move in a “down” position, where the pen is touching
the paper and a line is left as the pen moves, or in an “up” position, with no line being
drawn. Plotters can be quite useful in displaying the results of a computation in an
easily understood visual manner.

In addition to output devices, there are additional input devices. Mark sense card
readers and page readers use a reflective light photocell to be able to read marks made
with the standard, number 2 pencil on special mark sense forms. This eliminates the
need for a keypunch, since rather than punching a hole in the form, it is only necessary
to mark where the hole should be. Optical character readers are being developed
which can read some types of printed characters.

IBM has introduced a 96-character punched card that is only one-third the size of
a Hollerith card, but which uses 3 sets of 6 rows of 32 columns to represent up to 96
characters. Each set of 6 rows encodes a character in a 6-bit BCD code and are read
in column binary mode.

Television cameras, loudspeakers, mechanical arms, toy trains, robots, and other
strange devices have been attached to computers to allow communication between
them and their environment, although mainly for research purposes. A large variety of
devices can be attached to a computer to provide it with input and output facilities.

Magnetic tape

Very early in the use of computers, it became obvious that there simply was not
enough core memory to store all the information which we wanted to process. Punching
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the information out on paper tape or cards was both expensive (since the medium could
not be reused) and slow. A fast, relatively inexpensive means of storing large amounts
of data was needed. The magnetic tape was the answer.

Magnetic tape is a long (2400 feet) reel of a flexible plastic, about ½ inch in width
and coated with an iron oxide. Information is recorded by magnetizing little spots on
the tape, allowing one bit of information to be recorded per spot. As with paper tape,
the tape is recorded in channels, or tracks. Tapes are recorded as either seven- or
nine-track tapes. This allows seven or nine bits to be recorded vertically along the width
of the tape, accommodating a six- or eight-bit character code plus a parity bit. Each
set of seven or nine tracks is called a frame. Along the length of the tape, information
can be recorded at low density (200 bits per inch), medium density (556 bits per inch),
high density (800 bits per inch) or hyper density (1600 bits per inch). The wording “bits
per inch” (bpi) really means “frames per inch”. Since each bit along the tape is 7 or
9 bits high, each bit along the tape can represent one character and hence, at high
density, we can store 800 characters per inch of tape. If an entire tape were used to
store information at 800 bpi, 23,040,000 characters could be recorded. In practice,
however, it is best not to record too close to either end of the tape, and it is not practical
to record information continuously on the tape.

A magnetic tape is mounted on a magnetic tape drive or tape transport to be read
or written. In order to work properly, the tape must be traveling past the read-write
heads of the tape drive at a fixed speed. This requires some time for the tape to “get
up to speed” before reading or writing, and to stop after reading or writing. With only
1/800 inch per character, the tape drive cannot stop between characters. Thus, tape
is written in blocks, or records, of information, which are read or written at one time
and separated by inter-record gaps. An inter-record gap is simply a span of blank tape,
typically about 3/4-inch long. The inter-record gap allows enough space for the tape
drive to stop after one record and get started again before the next record. This can
considerably reduce the amount of information on a tape, however.

For example, if we copy 80 character card images to a tape, one card image per
record, then at 800 bpi, a card image will take only 0.1 inch of tape. Separating each
record by an inter-record gap of 0.75 inch means that less than 1/8 of the tape is being
used to store information. This allows the storage of about 30,000 cards per tape.

Most tape drives have the same functions that an audio tape recorder has. They
can read or write, rewind, fast forward (called skipping forward), or skip backwards.
Some tape drives can also read and write tape backwards.

Magnetic tape can be reused; that is, written and then rewritten. One problem with
normal tape drives, however, is that to write on the tape, the information which was
there must be erased first. This is done automatically by an erase head that erases
the tape in front of the write head, which writes the new information on the tape. The
old information which was written on the tape in front of the space just written may
be partially erased. Thus, magnetic tape cannot be read beyond the end of the most
recent write on the tape. New or corrected information can only be added to the end of
a tape. If it must be added in the middle, the entire tape must be recopied.

Another feature of magnetic tape is that the only way to determine where the
information is on the tape (as opposed to just blank tape) is by having at least one 1
bit in each frame on the tape. Blank tape looks just like a character of all zeros. (This
is like a paper tape with no sprocket hole.) Because of this, either odd parity must be
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FIGURE 1.10 Magnetic tape – information is recorded in variable-length records which
are separated by inter-record gaps.

used, or the all-zero code cannot be recorded on the tape. For the BCD code, if this
code is written in even parity it is automatically converted to a 12 (octal) code, and all
12 (octal) codes are read back in as a 00 (octal) code. Thus, the character “:”, which
normally corresponds to a 12 (octal) code cannot be stored on a magnetic tape. In fact,
there are two separate BCD codes: internal BCD, used for representing characters in
memory; and external BCD, used for representing characters on tape. This is of little
importance except to cause additional difficulty and confusion in the transporting of
data or programs from one computer installation to another.

Tapes can be recorded in either even or odd parity. The parity bit is of great value
with magnetic tapes, since the likelihood of a parity error on a magnetic tape is non-
negligible. The actual error rate per bit is quite small, but one tape can easily store a
million characters, which is 7 or 9 million bits. Also, tapes are susceptible to damage
from heat, dust, magnetic fields, or simple wear and tear. Whenever working with
magnetic tapes, you should consider the possibility of parity errors.

Many computer systems store large amounts of data on tape and have extensive
tape libraries. Hundreds or thousands of tapes may be mounted on the tape drives for
use and then dismounted and put back in the library. Tapes are a removablestorage
media, since they can be removed from the actual tape drive and stored separately
from the computer.

In addition to the large storage capacity of magnetic tapes, they can be read or
written at very high speeds. It takes from 1 to 20 milliseconds to get the tape up to
speed. Then 3000 to 20,000 characters per second can be transferred between the
tape and core memory.

How are magnetic tapes used? Mainly, they are used as auxiliary storage devices for
the computer, storing large amounts of information, either temporarily or permanently.
But they are also used as input and output devices. Because of the large speed
difference between card readers and line printers on the one hand and the computer
on the other, the computer can spend much of its time waiting on these devices. To
prevent this, these devices are sometimes run off-line. The card reader reads onto a
magnetic tape, rather than directly into the computer. When the tape is full, it is taken
over and mounted on a tape drive connected to the computer. The computer reads and
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processes the data on the input tape, producing output on an output tape. The output
tape is then taken to a line printer, which is driven not by the computer but by a tape
drive, and the contents of the tape are copied to the line printer. This mode of operation
can be quite successful in some situations. Several manufacturers have gone one step
further and provide an ability to prepare data directly on a magnetic tape by using a
magnetic keyrecorder . This device is similar in operation to a keypunch, but it outputs
the typed data onto a magnetic tape instead of punched cards.

Magnetic disks and drums

One annoyance in using tapes is that they must be accessed sequentially. If we are
at the rear of the tape and need some information from the front of the tape, we must
rewind the tape. If we then want to continue writing, we must skip forward to the end of
the recorded information to be able to write. On some problems, we must be able to
store large amounts of data and be able to access it randomly and quickly. For these
problems, magnetic tape is insufficient.

A magnetic disk is a form of auxiliary storage which is better than tape for these
problems. A disk is very similar to a long-playing phonograph record but is made of a
flat, circular metallic plate coated with ferromagnetic material. It is used in a disk drive,
where it rotates at very high speeds (several thousand rpm) at all times. A read-write
head is attached to an arm (like a phonograph needle) and can be positioned over any
part of the disk’s surface. The surface of the disk is logically divided into tracks, each
track being a concentric circle. There are typically 200 tracks per disk surface, and 2
surfaces per disk (top and bottom). Several disks are attached to a spindle (like a stack
of records) separated by 1 or 2 inches of space (to allow the read-write heads to move
between them). All the disks rotate simultaneously, and each surface (top and bottom

FIGURE 1.11 A magnetic moving-head disk. Each disk has about 200 tracks of 12
sectors per track.
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FIGURE 1.12 A magnetic drum.

of each disk platter) has its own read-write head attached to a moveable arm. All the
arms are ganged together and move together.

In order to read or write from a specific location on the disk, the arm is moved to
position the read-write heads over the correct track. When the right spot rotates under
the read-write heads, the transfer of information between the disk system and computer
can begin. It normally takes between 20 and 600 milliseconds to position the heads
depending upon how far the arm has to move and whose disk you are working with.
After this seek time, there is the latency time (while waiting for the right spot to rotate
under the heads), then the transfer time (while the reading or writing is done). Transfer
rates for disks range from 100,000 to 1,000,000 characters per second. Disks can store
up to 200 million characters, but typically store from 10 to 30 million characters. As with
a phonograph record, the entire surface of the disk is not used, since we do not want to
get too close to the edge or the middle.

Several variations on this basic design are used. Some disk systems have removable
disk packs; that is, one set of disks can be taken off the disk drive and another mounted.
This allows disk packs to be used as very high speed, large-capacity tapes. Unlike
tapes, however, disks take considerably longer to get up to speed, and to slow down
after use, so they are changed only infrequently. Some disk systems are designed as
non-removable devices.

If still faster access to data is needed, it is possible to eliminate the seek time by
using a disk system with fixed (i.e., non-moving) read-write heads. This requires one
head for each track. One large system has 5000 separate read-write heads. With
this approach, only the latency time and transfer time are important. Since read-write
heads are rather expensive, a fixed-head device can be very expensive. A compromise
between these two extremes is to have several heads per surface – for example, two
independent movable arms, one for the inner half of the tracks on each surface, the
other for the outer half of the tracks.

Similar to the design of the head-per-track disk is the magnetic drum. A drum is
shaped like a cylinder and the outside surface is coated with a magnetic material. The
drum rotates at high speed at all times like the disk. Similar to the disk, the recording
surface of the drum is made up of tracks. Each track generally has its own read-write
head. The transfer rate of a drum is usually higher than for a disk (up to 1.5 million
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characters per second), but the capacity is lower (from 1 to 10 million characters).
Drums are non-removable.

Other auxiliary storage devices

Just as there is a wide variety of input devices and output devices, so there is also
a variety of auxiliary storage devices. Magnetic tape is being used both in the normal
½-inch magnetic tape reels and in more convenient (but smaller and slower) cassettes
and cartridges. Small “floppy” disks are available that can be used very much like a
flexible phonograph record. All these media are providing relatively cheap, convenient,
mass storage for small computer systems.

For larger computer systems there are more exotic memory systems. Magnetic
core storage is available in bulk, for use as an auxiliary storage device. Large (about a
million words of memory) core memories can be built whose access times are greater
than normal memory but for which sequential blocks of memory can be transferred
between the bulk memory and normal memory at normal memory speeds.

Optical memories have been in use at a few computer sites for a number of years.
One system used an electron beam to record on photographic film, which was then
automatically developed and stored. When needed, it could be automatically retrieved
and read by use of another electron beam and a photocell. Access times were on the
order of seconds to minutes, but this was still faster than finding and mounting a tape.
Recently, a similar system using a laser beam to burn small holes in plastic chips has
been developed which provides a very large storage capacity (over a billion characters).
Other new memories are being developed.

It is not possible to go into the details of all the various input/output/storage devices
that are available. However, several of these devices will be referred to later in this
book, and, since every computer installation will have its own devices, you should be
aware both of typical devices (typewriter-like terminals, CRTs, paper tape reader/punch,
card reader/punch, line printers, magnetic tapes, disks, and drums) and their general
characteristics, as well as the great variety of devices a computer may use.

EXERCISES

1. Name five different I/O devices. What are their media?

2. How many bits are used in the BCD character code? In EBCDIC? In ASCII?

3. Give two definitions of BCD.

4. Why is a six-bit character code unsatisfactory? Why is a seven-bit code
inconvenient?

5. At 200 bpi, how many bits of actual information are stored in 1 inch of 7-track
magnetic tape?

6. Why are there 7-track and 9-track tapes?

7. Suppose we wish to store 7-bit ASCII on a magnetic tape, one character per
frame, with odd parity, and there are no 8-track computer tapes. What kind of
tape do we use?
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8. What is a parity bit? Explain odd and even parity, and how parity is used to detect
errors in data transmission.

9. What is a typical set of functions and displays for a computer console? Why are
there sprocket holes on paper tape? Does the same problem occur on magnetic
tape, and if so, why are there no sprocket holes on magnetic tape?

10. If each column of a punched card has 12 rows and each row can either be
punched or not, how many different bit patterns can be punched in one column?
Can you suggest a more efficient way to represent information on punched cards
than the Hollerith punched card code?

11. Recording 80 character card images at 800 bpi with inter-record gaps of 0.75 inch
results in less than 1/8 of the tape being used for information. How much tape is
used at 200 bpi? At 1600 bpi? Which of these recording densities would be best?

12. What is the difference between a disk and a drum? Between a moving-head
device and a fixed-head device?

13. Define seek time, latency time, and transfer time for fixed-head and moving-head
disks and drums.

1.4 THE CONTROL UNIT

Each of the components of the computer system which we have discussed so far
has supplied one of the necessary functions of a computer. The memory unit provides
the ability to store and retrieve words quickly. The computation unit can interpret these
words as numbers and perform arithmetic functions on them. The input/output system
can read information into the computer or write information from the computer. But how
does the memory unit know what to store, and in what location of memory? How does
the computation unit know which operation to perform? How does the I/O system know
when and what to transfer in or out of the computer? Obviously, the system needs
some coordination between the components. This is the function of the control unit.

The control unit directs the memory unit to store information or read that information
back and send it to the computation unit. It instructs the computation unit to perform
a specific operation and what to do with the result (send it back to memory or to a
register). The control unit directs the I/O system to transfer information and tells it where
the information is and where it should go. The control unit supervises the operation of
the entire computer system.

How does the control unit know what to do? In some special-purpose computers,
the control unit is built to perform one specific task and is designed to do this and only
this. For general purpose computers, the specification of what the control unit is to do is
supplied by a program. A program is a sequence of instructions to the computer which
the control unit uses to control the operation of the memory unit, the computation unit,
and the I/O system. The control unit executes continuously the following instruction
execution cycle:

1. Fetch the next instruction from memory.
2. Execute that instruction by sending appropriate signals to the other components

of the system.
3. Then go back to step 1 and repeat the sequence for the next instruction.
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Instructions are stored as words in memory, in the same way that data is stored. In
order to locate the word in memory which is the next instruction to be executed, the
address of the memory location which is storing that instruction is needed. This address
is stored in a register in the control unit, called the program counter or instruction
address register . The name of this register varies from computer to computer. In order
to fetch the next instruction to be executed, this address is sent to the memory unit by
copying it into the memory address register. The memory unit is then ordered to read,
and when the read portion of the read-write cycle is over, the result has appeared in the
memory data register. This is copied back to the control unit and put into an instruction
register . The instruction address register is then incremented to the address of the next
location in memory. Under normal circumstances, this will be the address of the next
instruction to be fetched.

There are many different instructions that most computers can execute. The set
of instructions which a computer can execute is called its instruction set , or instruction
repertoire. Each computer tends to have its own instruction set, although many
computers have similar or compatible repertoires. Since instructions are stored in
memory, they must be encoded into a binary representation. As with all the other
encodings of information, the decision as to how the encoding is done is strictly arbitrary;
it can be done in many different ways. Some ways make the subsequent construction
of the control unit easier, others make it more difficult. We consider now some of the
general systematic methods used to encode instructions, but this general review does
not cover all the many different ways instructions are represented.

One of the first problems is to decide what is an instruction. One approach is
to consider every operation which differs from another in any way to be a different,
unique, instruction. Thus, storing a zero word in location 21 of the memory is a
different instruction from storing a zero word in location 47. More commonly, these are
considered to be the same instruction, with the address of the location to be set to zero
treated as an operand. Some instructions may have several operands. For example, an
“add” instruction may have three operands: the location of the augend, the location of
the addend, and the location in which the sum is to be put. Thus, a specific instruction
is made up of an operation and a number (perhaps zero) of operands. The operations
are assigned operation codes (opcodes), which are generally binary numbers. The
operands are specified by the address of a location in memory, an integer number, or a
register name.

The different components of an instruction are specified by different portions of
the computer word which specifies a particular instruction. A word is composed of
fields, one field specifying the opcode, and the others specifying modifications of the
operation, or operands of the instruction. The instruction format defines where each
field is in a word, how large it is, and what it is used for. For example, on the HP 2100,
the instruction format is

D/I opcode Z/C operand address

where,

• D/I (bit 15) and Z/C (bit 10) are one-bit fields which modify how the operand
address is computed;

• opcode is a 4-bit opcode (16 instructions); and
• operand address is 10 bits long.
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Example:

0010110010101110

• D/I = 0
• opcode = 0101
• Z/C = 1
• operand address = 0010101110

The number of bits which are available for the opcode field determines the number
of different instructions which can be in a computer instruction set. Thus, the HP 2100
can have up to 16 different instructions because it has a 4-bit opcode field.

Some machines have different instruction formats for different opcodes. For example,
on the IBM 7090, five different instruction formats were used, with the decision between
different formats made on the basis of the opcode. This allows different operations
to have a varying number and kind of operands. For example, an instruction which
halts the computer need have no operand, while an instruction which stores a zero in a
memory location needs one operand, which is the address of the memory location, and
an add instruction like the one described above may need three operands. In addition
to being of different formats, instructions may also be of different lengths, with some
instructions occupying two or three words of memory, rather than just one.

When a computer is being designed, the specification of the instruction set is one
of the major problems that must be considered. The desire to have a large set of
instructions must be balanced against the difficulty of building the control hardware
to execute those instructions. The instruction set is sometimes tailored to be able to
efficiently solve specific kinds of problems. On the IBM 360, for example, two different,
but similar, instruction sets – the business instruction set and the scientific instruction
set – were developed. Most of the instructions were the same in both sets, but some
additional instructions for character handling and decimal arithmetic were included in
the business set, while floating point operations were added to the scientific set. The
instruction set is one of the major differences between computers.

On the other hand, although specific instructions vary from computer to computer,
almost every computer has similar instructions. Instructions can be grouped into classes
of similar instructions. Typical classes are

1. Load and Store Instructions. These instructions transfer words between the
registers of the computer and the memory unit. The address of the memory
location to be used and the register involved are specified as operands.

2. Arithmetic Instructions. These instructions specify an arithmetic operation (such
as addition, subtraction, multiplication, or division), its operands, and where to put
the result.

3. Input/Output Instructions. This class of instructions causes the I/O system to
begin operation, halt operation, or allows the state of the I/O devices to be tested.
Operands may include a memory address, a device number, and a function (input,
output, test, rewind, and so on).

4. Comparison, Test, and Jump Instructions. Sometimes it is necessary to execute
two different sequences of instructions, depending upon properties of the data.
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These instructions allow the program to specify a condition to test and a new
memory address where execution of the next instruction should continue if the
condition is true.

5. Other, Miscellaneous Instructions. This group includes all the instructions which
will not fit conveniently into any other group. It includes instructions like the
instruction to halt the computer and the “no operation” instruction.

These classes of instructions are by no means well-defined or complete. Some
instructions may belong to several classes (like the instruction which tests the status of
an I/O device and is hence both an I/O instruction and a Test instruction). The classes
could also be further refined into more specific sets of instructions, but this could result
in a very large number of classes. These classes should give you an idea of the types
of instructions which are typical.

For all computers, the basic instruction execution cycle is the same. With the
additional information about instructions we have now gained, we can give a better
statement of the instruction execution cycle which the control unit follows:

1. Fetch the next instruction.
2. Decode the instruction.
3. Fetch the operands (if any) needed for the instruction.
4. Execute the instruction.
5. Go back to step 1 and repeat for the next instruction.

An even more detailed statement of the instruction cycle can be given for any specific
machine, but this general outline is the same for all machines.

EXERCISES

1. What are the four basic components of a computer?

2. What is the function of the control unit?

3. What is the basic instruction execution cycle for all stored program computers?

4. What is the difference between a general-purpose and a special-purpose
computer? How does each know what to do next?

5. What is the use of a program counter or instruction address?

6. Suppose a computer has 37 different instructions. How many bits would be in its
opcode field?

1.5 SUMMARY

So far we have been considering general principles that apply to all computers. As
we have seen, there are many decisions which need to be made in the design of a
computer. The basic parts of a computer are the memory unit, the computation unit,
the input/output system, and the control unit, but in any given computer these units will
be designed and built in a specific way. The specific design of both the components of
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a computer and their interconnections defines the architecture of the computer. The
architecture of a computer defines what registers are used and for what, what the
pathways in the computer are for, data and instruction formats, and how the basic units
are connected.

Most books for a course on assembly language programming have introductory
chapters discussing the general structure of computers. Ullman (1976) and Gear (1974)
are such books. More complete and detailed information is contained in Sloan (1976),
Tanenbaum (1976), and Stone (1975). These books are concerned solely with the
organization and architecture of computer systems.

In order to learn how the architecture affects the ways computers are used, what
computers can do, and how they do it, a specific computer design, the MIX computer, is
examined (Chapters 2 and 3). After the background information necessary for a good
understanding of this particular computer is presented, some other computer designs
are presented (Chapter 10) to illustrate how these systems are different from and similar
to the MIX computer.





63

THE MIX COMPUTER

The MIX computer system first appeared in 1968, although prototype models were
undoubtedly in use before this. The MIX machine was designed to be both powerful
and simple. It incorporates many of the useful and common features of a large class of
computers. Although you may never have an opportunity to program in MIX machine
language after this text, the MIX machine is so similar to many other computers that you
will be able to learn and program the machine language for any new computer easily if
you are able to program well for the MIX computer.

Although we will talk about the MIX computer, there is not just one MIX computer,
but rather a family of computers. The base machine, the MIX 1009, is available in a
number of models. The choice of which model should be used is an important decision
and is affected by the problems for which the computer will be programmed and the
funds available (the bigger models cost more). All MIX machines have the same basic
instruction set and architecture. This basic design is the MIX 1009. To this base
machine can be added I/O devices, additional memory, and additional instructions to
increase the speed, capacity, and convenience of the basic machine. We shall introduce
some of these extensions as we discuss the MIX machine, in order to show how the
capabilities of the machine can be increased. Most of our discussion is applicable to all
MIX computers, with one exception.

The original design of the MIX machine reveals a certain ambiguity as to whether it
is a binary machine or a decimal machine. This is to its credit, since, as we have seen,
both systems have their advantages and disadvantages. With the rapid technological
changes which are occurring in the design and use of computer hardware, a machine
which is too closely tied to a particular hardware technology may rapidly become
obsolete. The MIX machine was designed to be a flexible computer which can be
implemented in many different hardware technologies. Thus, it will be able to evolve
and improve while maintaining compatibility of programs which are written for different
models of the computer. Most programs can be written so that they will work properly on
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any MIX machine, be it binary, decimal, hexadecimal, or any other underlying number
system. MIX programs should be written to execute correctly for a variety of memories,
computation units, and I/O devices.

There are certain properties of a specific model of the MIX machine which can be
exploited, however, to increase considerably the efficiency and clarity of a program.
It is important, for example, that the techniques for handling binary data be well
understood, since so many computers are binary. Because of these considerations,
we will sometimes use, not the basic MIX 1009 computer, but the MIX 1009B binary
computer for our examples.

The MIX 1009B is a binary MIX computer with the same basic architecture as the
MIX 1009, but with an explicitly binary representation of instructions and data. The
instruction set has been extended to include instructions which exploit the binary data
representation. These instructions are seldom needed, so most programs for the MIX
1009B computer will execute correctly on the MIX 1009D decimal computer as well
as the basic MIX 1009 computer. Programs which use only the instructions which are
available on all three machines are using the common instruction set. We state when
the binary nature of the MIX 1009B computer is used in any of our programs.

A considerable amount of our early discussion of the MIX computer will deal with
the representation of data and instructions in the computer. Since more computers
represent information in binary than in decimal, we will likewise use binary to show our

FIGURE 2.1 The MIX memory (4000 words; 5 bytes plus sign).
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data representations. The contents of memory and encodings will thus be presented in
binary (octal, actually).

2.1 THE MIX COMPUTER ARCHITECTURE

We turn now to examining the basic architecture of the MIX computer. The
presentation of the specific properties of the MIX computer follows the general
presentation of Chapter 1. We consider first the memory unit and registers of the
MIX machine, its number representation scheme, its input/output system, character
code, and instruction set. After a brief introduction to the instruction set, we turn to
a description of the MIXAL assembly language for the MIX computers. Chapter 3
presents a very detailed discussion of the instruction set for the MIX computer.

2.1.1 The MIX architecture

The basic MIX machine has 4000 words of memory. These are addressed by the
addresses 0, 1, 2, . . . , 3999. Each word of memory consists of five bytes plus a sign.
Each byte is six bits (on a binary machine). Thus, a MIX word is 31 bits, consisting of a
one-bit sign and 5 six-bit bytes. Bytes are numbered from 0 to 5, left to right, with “byte”
0 being the sign bit.

sign byte byte byte byte byte
byte 0 1 2 3 4 5

The MIX machine has nine registers. The A (accumulator) register and the X
(extension) register are both five bytes plus sign, like the words of memory. The A
register is called rA; the X register, rX. Six index registers are named I1, I2, I3, I4,
I5, I6. Index registers are only two bytes plus sign. The J (jump) register is only two
bytes and is identified by rJ. In addition to these nine registers, the MIX machine has
an overflow toggle (OT) and a comparison indicator (CI). The overflow toggle is one bit,
being either ON or OFF, while the comparison indicator has three states: LESS, EQUAL,
and GREATER. The usage of these registers will become clear later.

Numbers are represented in sign and magnitude notation. With six bits per byte

one byte can represent 0 through 63.
two bytes can represent 0 through 4095.

three bytes can represent 0 through 262,143.
four bytes can represent 0 through 16,777,215.
five bytes can represent 0 through 1,073,741,823.

With a sign bit, the A register, the X register and each MIX memory word can represent
the range of integers from -1,073,741,823 to +1,073,741,823. Index registers can
represent any number in the range -4095 to +4095. The J register can represent only 0
to 4095, since it has no sign bit.

Floating point numbers are represented by storing a biased (excess 32) base 64
exponent in byte 1 (the high-order byte) and the fractional part in bytes 2 through 5.
The MIX word

± e f 1 f 2 f 3 f 4

represents the floating point number
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± 0.f 1f 2f 3f 4 × 64 e-32

A floating point number is normalized when (a) it is zero, or (b) the leading fractional
digit (f 1) is not zero. This representation allows a range of floating point numbers from
about 64-32 to 6431 (about 10-58 to 1056) with an accuracy of about five or six decimal
places.

Double precision floating point numbers on the MIX computer extend both the range
and accuracy of representation by using two MIX words as

± e1 e2 f 1 f 2 f 3 ± f 4 f 5 f 6 f 7 f 8

which represents

± 0.f 1f 2f 3f 4f 5f 6f 7f 8 × 64 e1e2-2048

The sign of the number is determined by the sign of the first word; the sign bit of the
second word is ignored. This representation gives about 12 places of accuracy and a
range from approximately 10-3700 to 103700.

The MIX machine has provision for several different input/output devices. The
basic MIX machine has room for up to 20 separate devices. These are nominally
used for eight magnetic tape units, eight disk or drum units, a card reader, a card
punch, a line printer, and a typewriter/ paper tape device. Each device is identified
by a unit number from 0 to 19. This corresponds to the slot in the MIX computer
chassis in which the interface card for the device is plugged in. The disks, drums, and
tapes store information in 100-word fixed length records. The card reader, card punch,
line printer, and typewriter/paper tape units are character oriented and use the MIX
character code shown in Table 2.1. Each byte of a MIX word can store one character,
so each word can store 5 characters. The card reader and card punch have 16 word
(80 character) records, while the line printer uses 24 words per record (120 characters).
The typewriter/paper tape unit transmits 70 characters (14 words) at a time.

FIGURE 2.2 The MIX registers.
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Char MIX Char MIX Char MIX Char MIX
blank 00 M 14 Y 28 ( 42
A 01 N 15 Z 29 ) 43
B 02 O 16 0 30 + 44
C 03 P 17 1 31 - 45
D 04 Q 18 2 32 * 46
E 05 R 19 3 33 / 47
F 06 Φ 20 4 34 = 48
G 07 Π 21 5 35 $ 49
H 08 S 22 6 36 < 50
I 09 T 23 7 37 > 51
Θ 10 U 24 8 38 @ 52
J 11 V 25 9 39 ; 53
K 12 W 26 . 40 : 54
L 13 X 27 , 41 ’ 55

TABLE 2.1 The Mix Character Set. Codes are given in decimal.

The instruction set of the MIX machine is represented in the following format

± A A I F C

Byte 5, C, is the operation code (opcode) specifying the basic operation. F (byte 4) is a
modifier byte which gives additional information about the operation to be performed.
The ± AA field (bytes 0, 1, and 2) is the operand for the operation, and I (byte 3)
modifies the operand.

There are eight classes of instructions for the MIX machine. Loading Operators
copy information from memory into the registers, while the storing operators copy from
the registers back to memory. These are necessary because all arithmetic operations
operate on the registers. A set of immediate operators allow the registers to be modified
by small constants. Data can be tested by a set of comparison operators which set the
comparison indicator. Jump instructions can transfer control to different instructions
based upon the comparison indicator or the state of the registers. Input/Output
operations allow information to flow between memory and the input/output devices. A
set of miscellaneous operations includes instructions to move information from memory
to memory, shift information in the registers, and convert between the character code
and binary representation of numbers.

2.1.2 The MIX instruction set, briefly

An assembly language or machine language programmer must be very familiar with
the instruction set of the machine which is being used. However, often some of the
instructions are used only rarely, in certain special circumstances. Some instructions
may also be rather complex. Because of this, an assembly language programmer
always programs with a computer reference manual at hand. The computer reference
manual lists all the instructions for the computer and exactly what they do. In Chapter
3, we give a reference manual for the MIX computer. This is a rather technical and
lengthy description of the MIX instruction set and may require several readings before it
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is completely understood. This is normal. Whenever you are programming, you may
want to refer to the description of the MIX instruction set often.

Each instruction is specified by its numeric opcode (C) and the opcode modifier (F).
The computer hardware interprets the contents of the C and F fields of the instruction
and performs the instruction specified. Thus, if the opcode is 10 (octal) and the F field
is 05, then the hardware knows that it is to take the contents of the location specified by
the address part of the instruction and copy it into the A register.

It is difficult to memorize all the different numeric opcodes of a computer and their
corresponding instruction. Because of this, assembly language programmers do not
use the numeric opcode of an instruction to identify the instruction but use a short name
which tries to describe the effect of the instruction. This is a symbolic opcode. It is also
called a mnemonic opcode. For example, the instruction which copies the contents of
a memory location into the A register is denoted by “LDA” which stands for “ LoaD the A
register”. Machine language programs are developed with symbolic opcodes, rather
than numeric opcodes. After the program is written, it is necessary only to look up in a
table the corresponding numeric opcode for each symbolic opcode, in order to produce
the final machine language program (in binary).

The choice of which symbolic opcodes stand for which numeric opcodes is
completely arbitrary. However, most symbolic opcodes are a natural abbreviation
for the machine instruction in order to make them easier to remember. Also, since
programmers want to be able to talk to each other about their programs, everyone
who is working with a given machine generally uses the same symbolic opcodes. The
symbolic opcodes are almost always assigned by the computer manufacturer and
everyone uses these standard symbolic opcodes.

We give now a brief description of the MIX instruction set.
There are 16 loading operators. These loading operators are used to copy the

contents of a memory location (or the negative of the contents) into the registers of the
MIX machine. The address of the location to be copied from is specified by the address
part of the instruction. There is a separate instruction to allow loading of the A register,
the X register, and the six index registers, and another separate instruction for loading
the negative of the contents of a memory location into each of these eight registers.

In addition to being able to load from memory into the registers, we need to be able
to store information from the registers into memory. The storing operators allow this to
be done. These storing operators are almost the opposite of the loading operators. The
contents of the A register, the X register, and the six index registers can be stored into
any memory location. In addition to these instructions, we can also store the J register.
Another special store instruction allows us to easily set any memory location to zero, a
very important value in programming.

Being able to move information between memory and the registers is of little use
if we cannot do useful computations with the information. The arithmetic operators
provide the four standard arithmetic operations of addition, subtraction, multiplication
and division for both integers (ADD, SUB, MUL, DIV) and floating point numbers (FADD,
FSUB, FMUL, FDIV). These operations are all binary operations; that is, they operate on
two operands. But notice that we have only one address per instruction, and hence
we can only specify one operand per instruction. This problem is resolved by defining
all arithmetic operations to perform their operation on the A register and the memory
location given in the instruction, leaving their result in the A register. Thus, an ADD
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instruction adds the contents of the memory location specified by the address part of
the instruction to the A register, and the sum is left in the A register. The A register is
often called the accumulator because of this.

In addition to being able to modify the A register by full-word addition and subtraction,
it is often desirable to be able to modify the A register, the X register, and index registers
by “small” integers. Commonly, it is necessary to add or subtract 1, for example. This
capability can, of course, be achieved by storing a word in memory whose contents
are an integer 1, and then adding or subtracting by using ADD or SUB, but the MIX
machine provides a more convenient method with its immediate operators. For the
normal arithmetic operators, the address field of the instruction specifies the address
of a location in memory whose contents are the operand for the instruction. These
operations are called memory reference instructions. With immediate operators, the
address field specifies the operand itself. This means that the operand must be the
same size as an address, so it is limited to being in the range -4095 to +4095, a “small”
integer. Immediate operators allow the operand to be entered directly into the A, X,
or index registers; or for the negative of the operand to be entered (in analogy to the
“load” and “load negative” instructions) or for the operand to be added (an increment) or
subtracted (a decrement) from the registers.

In addition to being able to perform computations on the registers, it is necessary in
programming to be able to compare results in order to perform different computations
for different types of input. The comparison operators are used to compare the contents
of a register to the contents of a memory location and set the comparison indicator
to indicate the result of the comparison. The comparison indicator has three possible
values: LESS, EQUAL, and GREATER. The value of the comparison indicator changes only
when a compare instruction is executed. There are instructions to compare a memory
location to the A, X, or index registers as integers, or to the A register as a floating point
number.

Once the comparison is done, we may wish to execute one of two different
sequences of instructions, depending upon the result of the comparison. The jump
operators allow the program to transfer control to a different location if the condition
tested for is true, or to continue execution at the next location if the condition is false.
Jump instructions allow the comparison indicator to be used to cause a jump, or to
jump on the positive, negative, or zero state of the A, X, or index registers. Two special
remarks need to be made about the jump operators. If a jump is made (for any of the
jump instructions except JSJ), then the J register is set equal to the address of the
instruction which immediately follows the jump instruction. This allows us to determine
where we would have been if we had not jumped and is useful for subroutine calls.
The JOV and JNOV instructions allow us to test the state of the overflow toggle and, in
addition, always leave the overflow toggle off.

Any sequence of instructions which performs some useful computation must have
input data and output results. The input/output instructions start the movement of data
between the memory of the MIX computer and an external I/O device. The I/O system
for the MIX machine is very simple and is controlled by only five instructions. The use
of these instructions is covered in more detail in Chapter 5.

There are a few instructions that are left over, which do not fit comfortably into any
of the above categories. These include operators which convert from character code
to binary (NUM), and from binary to character code (CHAR), which copy a block of words
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starting at one location in memory to another location in memory (MOVE), and which
shift the contents of the A and X registers left or right. These last instructions are the
shift instructions and can shift the A register end-off, or the A and X register (as a unit)
end-off or circularly. The sign bits are not affected by any of the shift instructions.

There are also a few control operations, such as HLT, which halts the computer, and
NOP, which does nothing.

This very brief description of the MIX instruction set should give you an idea of the
types of instructions which are available on the MIX machine, and the level of detail
which is necessary when working in machine language. In fact, the level of detail
needed to write programs in machine language is quite great, and in order to be able to
program well for a computer it is necessary to understand the internal structure of the
computer. The next chapter is a reference section which describes, in detail, the actual
operation of the MIX computer.

Once you are familiar with the architecture and instruction set of the MIX computer,
you can begin to program. In this section, we present two ways to program: machine
language and assembly language. These two programming languages are very similar
and are often confused for each other. There is, however, a definite difference between
the two, and almost no one voluntarily programs in machine language. After giving an
example of machine language programming, we present the MIX assembly language,
MIXAL, to provide the assembly language which is used in the remainder of this text.

2.2 MACHINE LANGUAGE

Machine language is the only language which the MIX machine can execute: binary.
Every instruction must be encoded in the proper numeric binary representation in order
for the MIX computer to understand it. All computers can speak only machine language
and, to make things worse, the machine language for most computers is different for
each computer. The machine language is defined by the instruction set and instruction
format of the computer.

For example, in MIX, the instruction to load the X register with the contents of
location 1453 is, in binary

+001100101011000000000101001111

or, in octal

+1453000517

(Although the computer machine language must be in binary, we shall express it in octal
for convenience.)

A program in machine language is a set of addresses of instructions and data and
the contents of these memory locations. To illustrate machine language programming,
let us write a machine language program for a very simple problem, such as adding two
numbers and printing their sum.

Even solving this very simple problem requires careful thought. How are the two
numbers to be input? What should the output look like? Where does our program go
in memory? These questions are actually relatively minor, compared with the actual
programming, and so they will be answered later. We will basically assume that the
two numbers to be added are on an input card and the sum will be printed on the line
printer. The general outline of our program is given by the following algorithm.
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Step I Input the two numbers (IN)
Step II Add the two numbers (ADD)
Step III Output the sum (OUT)
Step IV Stop (HLT)

This is an algorithm for solving our problem, but it leaves a lot unsaid. In most
higher-level languages (such as Fortran, PL/I, Algol, and Pascal), each of the above
steps could be expressed as a single statement in the higher-level language. In machine
language, however, things are more difficult.

After each step of the above program, we have listed the (symbolic) opcode in MIX
which will do roughly what we want. Upon careful examination, however, we find that
these instructions are not quite sufficient. First, the IN and OUT instructions only start an
I/O operation; the numbers will not be input or output until the device is not busy again.
Also, both the card reader and line printer use a character code representation of data,
while the ADD instruction must have its data in numeric binary. Thus, we must refine our
statement of what is to be done in steps I and III, for the input and output. Our second
version of a solution to this problem is, then,

Step I Input the two numbers
I.1 Begin reading the numbers (IN)
I.2 Wait until input complete (JBUS or JRED)
I.3 Convert the two numbers to binary from character code (NUM)

Step II Add the two numbers (ADD)
Step III Output the sum

III.1 Convert the sum to character code (CHAR)
III.2 Begin the output of the sum (OUT)
III.3 Wait until output complete (JRED or JBUS)

Step IV Stop (HLT)

This improves our solution, making it closer to actual machine language instructions,
but there are still some problems.

When working with data in a computer, there are two properties of the data which
must be kept in mind. One is the type of the data; that is, how it is represented. Data
can be represented in many ways. The number 5, for example, can be represented
as an integer number (+0000000005), as a floating point number (+4105000000), in
character code (+3636363643), in character code for the Roman numeral representation
(+3100000000), and so on. The same piece of data may exist in different representations
at different times in the computer. For example, a CHAR instruction will convert a binary
integer representation into a character code representation. Thus, the type of a piece of
data is a dynamic property of the data; it may change with the execution of the program.

The other property which must be kept in mind when programming is the location
of the data: where is it stored? Data may be stored in memory (which location?), in a
register (which register?), or on an I/O device (which unit and where on that unit?). Data
may exist in several places at the same time. After a LDA instruction, the data is in both
the A register and in memory. Data may also exist in several different places, in different
representations at the same time or at different times. It should be remembered that
each piece of memory in a computer has one and only one value at any given time, so
that two different items or two different representations of the same item cannot exist in
the same location at the same time. The most common location for data is in one of the
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registers or in memory. Since the registers are needed for performing arithmetic, data
is often kept in memory and loaded into a register only when needed.

But, to get back to the problem at hand, the algorithm above does not consider the
problem of where our data is stored, or the effect of our operations upon these storage
locations. We now should add whatever instructions are needed to put information in
the right place for our instructions.

First, we note that the IN instruction will read our card into memory, while the NUM
instruction wants its operands to be in the A and X register. Thus, our program for step
1.3 needs to be refined. We need to convert the first number, then the second number,
from character code to numeric.

I.3 Convert the two numbers to binary from character code
a. Load first 5 bytes of character code of the first number

into A register, second 5 bytes into X register (LDA, LDX)
b. Convert to numeric (NUM)
c. Store first number back into memory to free registers

for next conversion (STA)
d. Load first 5 bytes of second number into A register,

second 5 into X (LDA, LDX)
e. Convert to numeric (NUM)
f. Store second number in memory (STA)

This code now moves the two numbers from memory back into memory in a converted
form. Now to do the ADD, we need to load one number into the A register and add the
other to it.

Step II Add the two numbers
II.1 Load first number into A register (LDA)
II.2 Add second number (ADD)
II.3 Store sum back in memory (STA)

The conversion for output uses the CHAR instruction. This instruction assumes that
its operand is in the A register and puts the character code representation of this number
back into the A and X registers. The OUT for step III.2 assumes that the sum (in character
code) is in memory. This means we need to refine III.1, as

III.1 Convert sum to character code
a. Load sum from memory (LDA)
b. Convert to character code (CHAR)
c. Store both A and X register into memory for output (STA, STX)

After these refinements, our entire algorithm looks like:

Step I Input the two numbers.
I.1 Begin reading the numbers (IN)
I.2 Wait until input complete (JBUS or JRED)
I.3 Convert the two numbers to binary

a. Load first number into A and X registers (LDA, LDX)
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b. Convert to numeric (NUM)
c. Store first number (STA)
d. Load next number into A and X (LDA, LDX)
e. Convert to numeric (NUM)
f. Store second number back in memory (STA)

Step II Add the two numbers
II.1 Load first number from memory (LDA)
II.2 Add the second number (ADD)
II.3 Store sum back in memory (STA)

Step III Output the sum
III.1 Convert sum to character code

a. Load sum from memory (LDA)
b. Convert to character code (CHAR)
c. Store A and X registers for output (STA, STX)

III.2 Begin the output of the sum (OUT)
III.3 Wait until output is complete (JBUS or JRED)

Step IV Stop (HLT)

This gives us a complete set of instructions for our program. Looking them over, we
should notice at once that some of the instructions are not needed. Specifically, the STA
in step II.3 is followed by an LDA in step III.1a of the same information. Since the STA of
step II.3 does not change the contents of the A register, we can drop the LDA altogether.
As soon as we do this, we notice that the store in II.3 is now no longer needed either.
Hence, we eliminate both the STA in II.3 and the LDA in III.1a.

Similarly, if we consider that addition is commutative (i.e., a + b = b + a), we realize
that, since the NUM of step I.3e leaves its result in the A register and the ADD wants one
of its operands in the A register, we can eliminate the STA in I.3f and the load in II.1,
changing II.2 to adding the first number (from memory) to the second (in the A register).

These types of considerations are known as local optimizations, since we are
improving the program (in terms of number of instructions, execution time, and number
of data locations needed) by making only small changes in the program. These small
changes only affect a small amount of the program, and take advantage of the local,
temporary flow of data within the computer. This is in contrast to global optimization,
which tries to improve the program by considering the entire program at once.

The next problem we need to face is: Where do we put our data? This is called
storage allocation. It is necessary to use memory for our input, our output, and the
temporary storage of the first number in memory. (Notice that our local optimization
eliminated the need for memory to store either the second number or the sum.) For the
input card, we will need 16 memory locations; the output line will require 24 memory
locations. We need one location to store one of the numbers. If we start our program
at location 0000 of memory, then we can allocate memory for our data either before
or after our instructions. If we put our data before the program, then we can reserve
locations 0000 to 0017 for the input card, 0020 for the number, and 0021 to 0050 for
the output line image. Our instructions then begin at location 0051, and continue to
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(counting 16 instructions) 0070. Alternatively, we can put our 16 instructions at locations
0000 to 0017, our card image at 0020 to 0037, our first number at 0040, and our line
image from 0041 to 0070. Since it makes no difference, we flip a coin, and it comes up,
. . . tails! So we will put our data before our instructions.

Now, we can write what instruction goes into each memory location. We assume
that the two numbers we are to add will be right-justified in columns 1 to 10 and 11 to
20 of the input card. We put the output sum in columns 1 to 10 of the line printer image.

0000-0017 Card image
0020 Storage location for one number
0021-0050 Line printer line image
0051 Begin input into locations 0000 to 0017 from card reader (IN)
0052 Wait until the card reader is done by jumping to this instruction until

card reader is not busy (JBUS)
0053 Load first five columns of card from 0000 into A (LDA)
0054 Load second five columns from 0001 into X (LDX)
0055 Convert to numeric (NUM)
0056 Store first number in 0020 (STA)
0057 Load first five bytes of second number, columns 11-15, from location

0002 into A (LDA)
0060 Load columns 16-20 from location 0003 into X (LDX)
0061 Convert to number (NUM)
0062 Add first number (in 0020) to A register (ADD)
0063 Convert the sum (in A) to character code (CHAR)
0064 Store first 5 bytes of sum in location 0021 (STA)
0065 Store second 5 bytes of sum in location 0022 (STX)
0066 Begin output of line image in locations 0021 to 0050 to line printer

(OUT)
0067 Wait until output is complete by jumping to this instruction until line

printer is ready (JBUS)
0070 Stop (HLT)

Now that we have our program designed, we can convert this into machine language.
This involves giving the (octal) machine language representation of each instruction.
For the first one, we have an IN instruction, whose opcode is 44. The F field is the
device which is the card reader, device number 16 (20 octal). The address field is the
address of the first location to read into, in this case 0000. So our first instruction is

0051 +0000 00 20 44

Our next instruction is a JBUS (opcode = 42) to location 0052 for device 16, or

0052 +0052 00 20 42

Continuing, we can write our entire program, in machine language, as follows. On
each line we give the address of the instruction, the numeric octal representation of the
instruction, and a short comment about what the instruction should do.
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0051 +0000 00 20 44 Begin reading a card
0052 +0052 00 20 42 Wait until read done
0053 +0000 00 05 10 Put part of number in A
0054 +0001 00 05 17 Put rest in X
0055 +0000 00 00 05 Convert to numeric
0056 +0020 00 05 30 Store for later ADD
0057 +0002 00 05 10 Do the same for the
0060 +0003 00 05 17 Second number
0061 +0000 00 00 05 Convert to numeric
0062 +0020 00 05 01 Add the two numbers
0063 +0000 00 01 05 Convert sum to characters
0064 +0021 00 05 30 Store first 5 characters
0065 +0022 00 05 37 And second 5 characters
0066 +0021 00 22 45 Start print of sum
0067 +0067 00 22 42 Wait until print is done
0070 +0000 00 02 05 Stop

This is a MIX machine language program to read two numbers from a card and print
their sum. It is difficult to follow, long, obscure, and probably wrong. The input numbers
must be right-justified in columns 1 to 10 and 11 to 20 of the input card. Overflow is not
considered. Only the sum is printed, not the input numbers and their sum. It is not a
very easy way to add two numbers. If we only wanted to add two numbers, it would be
better to do it by hand. However, if a million pairs of numbers are to be added, then a
program similar to the above might be reasonable. It is in these cases that writing a
computer program is worth the effort and trouble.

Machine language is hardly worth the effort, however. Any little change would
require us to rewrite the entire program. To add an instruction to test for overflow, for
example, requires inserting a JOV instruction right after the ADD instruction at location
0062. This would require all the addresses of instructions which follow the ADD to be
increased by one, and result in changing many of the address fields in the program.
Also, the last step of actually converting our program into machine language was very
simple from an intellectual point of view, but dull, monotonous, and error-prone. (I made
at least five errors in the first translation into machine code for this example.)

These problems, among others, make it very difficult to program in machine
language. However, machine language is very powerful, in the sense that if the
computer can possibly do a certain thing, it can be done in machine language simply
by creating the correct instruction or instruction sequence. Assembly language is
a computer programming language which allows the programmer to exercise total
control over the computer, as can be done in machine language, but also relieves the
programmer of some of the hassles of machine language.

2.3 INTRODUCTION TO ASSEMBLY LANGUAGE

One of these hassles is the final translation of the program from a descriptive (but
detailed) statement of the program into the actual numeric binary machine language.
Notice that our writing of the machine language program was divided into two steps.
The first was the creative one, deciding what the steps of the solution would be, which
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instructions to use, where to allocate space for data and where to allocate space for the
instructions, considering the type and location of the data.

The second step was the relatively trivial, mechanical process of translating the
program which resulted from the first step into machine language. This translation step
requires no creativity, only the ability to derive, from our description of the program, the
four fields of each instruction and assemble them into one machine language statement.
The only difficult part is determining from our description what the four fields (opcode,
field, index and address) of the instruction should be. If we would accept writing this
description in a special format – one that explicitly states each field – then the actual
construction of each instruction would be very easy and could even be done by a
computer. This is the basic idea behind an assembler .

An assembler is a computer program which translates from assembly language
into machine language. Assembly language is a simple way of describing instructions
for a machine language program which is more convenient than machine language.
The assembler reads these descriptions and translates them into a machine language
instruction. After this translation, called assembly, is complete, the resulting machine
language program can be executed by the computer.

The assembler needs one assembly language statement for each machine language
statement. For MIX, we must specify four fields for each instruction:

1. The opcode (byte 5)
2. The field specification (byte 4)
3. The indexing modes (byte 3)
4. The address field (bytes 0:2)

In the assembly language for MIX, these are defined by an assembly language
statement of the form

opcode address, index(field)

From this assembly language statement, the assembler creates the following machine
language instruction

Bytes 0 1 2 3 4 5
address index field opcode

This is some help, but the assembler does more. Each of the fields is, in machine
language, a binary number, and the assembly language must specify what these
numbers are. People, and programmers, have difficulty working with numbers all the
time, however, and are more comfortable with symbolic, word-like quantities. Thus,
assembly language uses symbolic opcodes to specify the opcode of an instruction.
The assembler has a table which gives, for each symbolic opcode, the corresponding
numeric opcode. This allows the assembly language programmer to write

ST3 +1453,0(05)

and the assembler will automatically translate the symbolic opcode “ST3” into its numeric
equivalent “33” and produce the machine language instruction

+1453 00 05 33
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Another convenience provided by the assembler is the ability to express the address
field of the instruction by a symbolic name, rather than an actual number. In our example
of the last section, we had three data items: the number stored in memory, the input
card, and the output line. Rather than giving numeric addresses for each of these, we
can use a symbolic name (such as FIRSTNUM, CARD, LINE) to represent the numeric
address and have the assembler automatically substitute the numeric address for the
symbolic address during assembly. This allows us to write an assembly language
statement like

CMPA FOUR,0(05)

and the assembler will assemble the correct machine language statement, given that
the symbol FOUR has been given a value. This requires some means of defining our
symbolic addresses. The MIX assembler uses a label to specify the symbol which
is used to address a location in memory. The label is written as the first item of an
assembly language statement as in

ENT1 14
LOOP DEC1 1

J1P LOOP

LOOP is a label on the second statement and a symbolic address in the third.
Several other conveniences can be provided by the assembler. For most of our

instructions, the index field will be 00 and the field specification will be 05. Rather than
having to specify these fields for each instruction, the assembler allows these fields to
not be specified; they are optional. If the contents of a field are not specified, its default
value (00 for the index field and 05 for most field specifications) is used.

Another convenience is in the specification of numbers. Rather than requiring
numbers to be specified in binary or octal, the assembler expects numbers to be written
in decimal, and will convert these decimal numbers to binary for the programmer. This
relieves the programmer of the burden of converting numbers (which are thought of in
decimal) into octal for the program, but has the contrary result of requiring that numbers
thought of in octal must be converted to decimal for the assembler (which then converts
them back into octal for the machine language program).

There are many other properties of assemblers, and each assembler will be different
from each other assembler in some way. This is because different computers have
different instruction sets and instruction formats. Also, it is because assemblers are
programs, written by programmers, and hence reflect how the writer of the assembler
views how things should be done. Assembly language is defined by the assembler
and may thus be full of arbitrary decisions. It is necessary to write programs in the
conventions defined by the assembly language only if you want to use that assembler.
If you do not want to write programs in the way that the assembler says they must be
written, you should feel free to write in machine language, write your own assembler, or
use some other assembler. Some computers do have several assemblers.

In this text, from now on, we use the MIX assembly language, MIXAL. We give now
a definition of that language.
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2.4 MIXAL: MIX ASSEMBLY LANGUAGE

The MIX assembler reads assembly language programs, normally prepared on
punched cards, and produces a numeric machine language program and a listing of
the input program. The listing is printed on a line printer and consists of the assembled
machine language program and the original assembly language program. Each line of
the output listing corresponds to one input card image.

2.4.1 Statement format

An assembly language program is made up of a sequence of assembly language
statements. Each statement is one card or line image. There are two types of
statements: comments and non-comments. If a MIXAL statement has an “*” in column
1 of the input card, it is a comment card . Comment cards are not used by the assembler
to generate an instruction in the machine language program, but should be included by
the assembly language programmer to describe, for himself and future programmers,
what the program is doing and how. Comment cards are copied to the output listing of
the program but have no other effect on the assembler.

Non-comment cards are all statements without an “*” in column 1. These are the
statements which result in machine language instructions. These cards are prepared
in an assembly language statement format . This format consists of four fields in the
following order.

label opcode operand comments

TABLE 2.2 The Assembly Process
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The label field is optional. If present it must begin in column 1, and consist of a symbol .
A symbol in MIX is a string of one to ten letters or digits with at least one letter. Symbols
are like variable names in other languages, but may be more general. Remember
that most higher-level languages require that variable names begin with a letter. In
MIXAL this is not necessary; it is only required that at least one letter exist in the
symbol someplace, to allow the MIXAL assembler to differentiate between numbers
and symbols.

After the label field is the opcode field. This field contains the symbolic opcode for
the machine language instruction to be assembled. The symbolic opcodes which are
used in MIXAL are listed in Appendixes B, C, and D.

The next field is the operand field. The operand field specifies the operand for the
instruction. For most instructions (the memory reference instructions), this consists
of three (optional) subfields: the address field, the indexing field, and the partial field
specification. For immediate instructions, the operand field specifies the operand
and any indexing. (The contents of byte 4 of the machine language instruction, the
opcode modifier, is not a partial field specification, but identifies which of the immediate
instructions is given.) The form of this field will be considered in more detail below.

The last of the four fields is the comment field. This field allows each and every
statement in an assembly language program to be commented. This field should be
used often, in a descriptive way, to aid the reader of a program to understand what a
program is doing and how this particular instruction is being used to help the program
work. Comments are very important to good programs, and particularly to assembly
language programs.

The placement of the fields in an assembly language on an input card can be done
in two general ways: fixed-format and free-format . A fixed-format assembler requires
that each field be contained within specific columns of the input card. Some MIXAL
assemblers are fixed-format, and for these assemblers, the input format is:

Columns Field Comments
1-10 Label If a label is given, it must be left-justified, with blank fill

(i.e., the symbol starts in column 1 and continues for
as many columns as necessary, but no more than 10.
The rest of the field is left blank).

12-15 Opcode Each symbolic opcode has been defined so that it is 3
or 4 characters long, so no more than 4 columns are
needed.

17-? Operand Starts in column 17 and continues for as many columns
as needed, but not beyond column 80. This field is
terminated by the first blank column.

?-80 Comment Follows the operand field and is separated from it by at
least one blank; continues to the end of the card.

Many assemblers reserve columns 73-80 for sequencing and identification information,
so, for these assemblers, the operand and comment field may have to stop before
column 73.

Column 11 (between the label and the opcode field) and column 16 (between the
opcode and operand field) are left blank to improve the readability of the program, by
ensuring at least one blank between each field.
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Notice how the comment field cannot be defined to occupy only certain columns, the
way the label and opcode fields can. This is because the operand field may be of varying
complexity and length. Normally, the operand field will be less than twenty columns in
length, so one can almost always assign columns 17-36 for the operand and 38-80 for
the comment field. Occasionally the operand may be longer, but most of the time it is
shorter. Thus, the operand field is not terminated by a specific column but by the first
occurrence of a blank, with the comment field being able to begin immediately after the
delimiting blank. This idea can also be applied to the other fields of the statement, and
is the basis of free-format input.

Since a blank cannot be a part of a symbol or a number, it can be used as a
delimiter . For free-format input, the fields are separated by one or more blanks and are
not constrained to begin in any specific set of columns. The label field starts in column 1,
and ends with the first blank. The opcode field begins with the next non-blank character
and is terminated by the first following blank. The operand field begins with the next
non-blank and is terminated by the next blank; the rest of the card is the comment field.
The label field is optional. If it is not present, the delimiting blank must still be included,
so a blank in column 1 specifies that the label field is not present (or is blank). If column
1 is non-blank, then either it is a comment (* in column 1) or a label (symbol begins in
column 1 and continues until the first blank).

Free-format input is almost always easier to prepare than fixed-format input, while
it is easier for the assembler to input only fixed-format. Your assembler may be either.
Notice, though, that a free-format assembler can accept programs which have been
prepared in a fixed format, but not generally vice versa. Also, fixed-format input
produces a listing which is attractively laid out in columns. Thus, most assembly
language programs are prepared in fixed-format. The use of a program drum on a
keypunch or the tab mechanism of a typewriter or computer terminal can make it quite
easy to prepare fixed-format assembly language programs.

2.4.2 Symbol definition and use

The major advantage of using an assembly language is the ability to use symbolic
names rather than numeric constants. Two types of symbols are used: symbolic
opcodes (defined by the assembler) and symbols defined by the user. The assembler
has a table of each kind of symbol. The table contains, at least, the name of the symbol
and its value. When the assembler is examining the opcode field of a statement, it
searches the opcode table. If a symbolic opcode is found in the table which is equal to
the symbolic opcode of the assembly language statement, then the value associated
with that symbolic opcode is the numeric opcode and standard field specification for the
assembled machine language statement.

Similarly, another table contains the user-defined symbols and their (user-defined)
values. The value of a symbol is normally an address. As the assembler reads the
program, and translates it, card by card, into a machine language program, new symbols
may be defined and put into this symbol table, along with their values. Then if a symbol
is used, later in the program, the symbol table is searched and the value of that symbol
is used where the symbol occurs. Symbols may be defined only once, and so always
have the same value once they are defined.

There are two ways to define symbols, with the EQU statement (which we will discuss
later) and with the label field of an instruction. Since most symbols are symbolic



2.4. MIXAL: MIX ASSEMBLY LANGUAGE 81

Symbols Values
ABCD 437
TR1 -1
5XY7KD3 263
ONE 100005
NOW 0

TABLE 2.3 A Symbol Table

addresses, they are used as the label for the location whose address is their value.
Remember that each instruction in a machine language program goes in a specific
memory location. To specify an instruction, it is necessary to give both its address and
its numeric machine language representation. Most programs are placed in consecutive
locations in memory, one after another. To minimize the need for the programmer to
specify the address of every instruction, the assembler uses a special variable called the
location counter to determine the address into which each assembled instruction should
be put. After an instruction is assembled and printed on the output listing, the assembler
reads in another card, and increments the location counter by one. It assembles that
card, prints it, reads in the next one, increments its location counter, and so on, until
the end of the assembly program is reached. The location counter is a variable in
the assembler whose value is the address at which the current assembly language
instruction is to be placed in memory. When a label is encountered on an assembly
language statement, the symbol which is the label is entered into the symbol table with
a value which is the current value of the location counter; that is, the address of the
labeled instruction. As an example, consider the following sequence of instructions

LOOP CMPA TABLE,3 CHECK FOR ELEMENT IN TABLE
INC3 1
JNE LOOP IF NOT FOUND, TRY NEXT

If the location counter value is +2465 when the first card (with the label LOOP) is
assembled, then LOOP will be entered into the symbol table with a value of +2465. Later,
this value will be retrieved to assemble the machine language instruction +2465001047
for the JNE LOOP statement which will be assembled for location 2467.

The major use of symbols is in the specification of the operand field of a MIXAL
instruction. The operand field is composed of three fields: the address field, the index
field, and the field specification. The contents of these fields can be specified in very
general ways, but it is best to keep in mind that the resulting value for each subfield must
be an integer number which is in the correct range for the part of the MIX instruction
which it specifies. Thus, the address part must be in the range -4095 to +4095, and the
index and field specification values must be in the range 0 to 63.

The basic components for specifying the operand of an instruction are of two types:
numbers and symbols. A number can be considered a self-defining symbol, in that its
value is represented by itself. All numbers are interpreted as decimal integers and must
be less than the maximum integer which a MIX word can represent. When a number is
used in an operand, the assembled instruction will use that number. The other basic
component is a symbol. The value of a symbol is the value which has been stored in
the symbol table for that symbol.



82 CHAPTER 2. THE MIX COMPUTER

In addition to these two types of values – numbers and programmer-defined symbols
– one other symbol can be used in operand field specifications. This is the symbol “*”. *
(pronounced star) has as its value the value of the location counter, the address of the
instruction currently being assembled. This is useful in such situations as waiting for a
device to finish an I/O operation, as in

IN CARD(16) READ A CARD
JBUS *(16) WAIT UNTIL IT IS READ

Any of these three (number, symbol, or *) may be used for the operand field of an
assembly language statement. In addition to being used singly, they may be combined
in expressions. An expression is any number of numbers, symbols, or *s, combined
by any of the five binary operators +, -, *, /, :, with an optional leading plus or minus
sign. The value of the expression is determined from the value of its components. The
value of a number is that number; of a symbol, the value stored in the symbol table;
and of *, the address of the current instruction. If these are combined by operators, the
evaluation of the expressions “a + b”, “a - b”, “a * b”, and “a / b”, is the normal result
of addition (+), subtraction (-), multiplication (*) and (integer) division (/), on the MIX
machine. The result of any expression evaluation may not exceed five bytes plus sign.
The expression a:b is evaluated as (8 × a) + b. This is used mainly for specifying the
contents of index fields and partial field specifications, but may be used more generally.
(Notice that if a and b are 0 ≤ a, b ≤ 7, then a:b is the octal number whose “eights”
digit is a and whose units digit is b).

The evaluation of expressions is strictly left to right. No parenthesis can be used to
group subexpression evaluation and no operator has precedence over another. Thus,
the expression

1+2-3*4/5

is evaluated as

((((1 + 2) - 3) * 4) / 5) = 0

and 2*4-2*4 = 24. Strictly left to right.
Examples:

4+5 equals 9
3+5*6 equals 48
7+2:6 equals 78
7+2:6+1 equals 79

Each subfield of the operand field of an assembly language statement may be an
expression (with the constraint that the resulting value must be in the proper range).
Each field may also be absent. The form of the operand field is “address,index(field)”.
If a particular subfield is absent, then its delimiter is also. Thus, if the index field is
missing, zero is assumed and the comma separating the address and index fields is
not present. If the field specification is missing, then the default is the standard field
setting (0:5 for all memory reference instructions except STJ, for which it is 0:2). If the
address is missing, it is assumed to be zero.
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2.4.3 Assembler operation

The assembly process can now be described in considerable detail. It will be
examined in more detail in Chapter 8, but a brief walk-through of the assembly process
here will make it easier to understand assembly language programming. Each card is
handled separately. First, a card is read. If column 1 is a “*”, the card is copied to the
printer, and we have completed this card and may start the next. For a non-comment
card, the label field is examined. If it is non-blank, the symbol in the label field is entered
into the symbol table with a value of the location counter. Next, the opcode is translated
into its numeric form for byte (5:5) of the machine language instruction and the standard
field setting defined for byte (4:4). The operand field expressions are evaluated, looking
symbols up in the symbol table and using the value of the location counter for *, as
needed. This specifies bytes (0:2), (3:3), and sometimes (4:4) of the instruction. All of
these are assembled to form the machine language instruction which is output. The
input assembly statement and the assembled machine language instruction are also
printed on the line printer. Then the assembler increments the location counter, reads
the next card, and repeats this entire process for the next card.

Several points still need to be considered. At several places in the assembler, errors
can occur. Most of these are treated in a reasonable way. If a symbol is defined in the
label field of a statement, and that symbol already exists in the symbol table, then the
symbol is doubly-defined , or more generally, multiply-defined . The second definition
is ignored and the output line is flagged to indicate the error. If the opcode cannot be
found in the opcode table, it is an undefined opcode or an illegal opcode and is treated
as a NOP instruction. If the operand field, or any of its subfields, is botched (by two
operators next to each other, undefined symbols, results too large for the field, or results
which exceed 5 bytes plus sign in an intermediate step), the default values are normally
used. In all cases, the statement is flagged on the output listing and often the machine
language program will not be executed.

One special case comes up in evaluating the address subfield of the operand.
Suppose we wish to write the following

JAP POSITIVE
ENTA 0

POSITIVE STA VR1

When the address field of the JAP is evaluated, the symbol is not yet defined. This is
known as a forward reference. Forward references are allowed in MIXAL only because
the assembler treats them as a special case. However, they can only be used by
themselves; they cannot be used in expressions. They also cannot be used in the index,
or partial field subfields. Forward references can only be used in the address field of an
instruction, and not as part of an expression.

2.4.4 Pseudo-instructions

A number of questions can still be raised concerning the assembler operation.
How does it stop? What is the initial value of the location counter? How are data
values specified? These and other questions reveal the need to be able to give the
assembler information other than simply the assembly language statements which are
to be converted into machine language instructions. This control information could be
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specified in several ways, but for esthetic reasons it is felt to be nice if all input to the
assembler has (roughly) the same format. Thus, a number of assembly instructions
have been defined which resemble in their appearance the format of the machine
instructions given above. These assembler instructions are not machine operations,
so their symbolic notation cannot be called opcodes. However, their resemblance to
opcodes has resulted in their being called pseudo-instructions. The MIXAL language
has five pseudo-instructions: ORIG, CON, ALF, EQU, and END. The treatment of each of
these is quite different from the treatment of the machine opcodes, and so we discuss
each in some detail.

ORIG Pseudo-instruction

The placement of machine language instructions in memory is controlled by the
value of the location counter, *. The location counter starts initially at zero, 0000, at the
very beginning of the program and is normally increased by one after each machine
language statement is generated. Occasionally, it is necessary to reset the location
counter to another value. For example, if we wish our program to be placed in memory
starting at location 3000, rather than at 0000. This can be accomplished by the ORIG
pseudo-instruction. The format of the ORIG statement is

[label] ORIG expression [comment]

The brackets [ ] around the label indicate it is optional. The label, if present, is given
the value of the location counter before it is changed. Then the expression is evaluated
and the location counter is set equal to the value of the expression. The expression
cannot contain any forward references and must be a legal address (i.e., from 0 to
3999). The next assembled location will be assembled at the location whose address is
the operand of the ORIG statement (not the expression plus one). For example

ORIG 1000
P LDA Q

ORIG 2000
Q ENTA P
R STA P

The symbol P will have the value 1000, the symbol Q will have the value 2000 and the
symbol R will have the value 2001.

This statement can be used to reserve memory locations whose initial value is not
important. For example

ORIG 2140
ARRAY ORIG *+20

LDA ARRAY,3

The first ORIG sets the location counter to 2140. The label ARRAY is entered into the
symbol table and given a value before the second ORIG takes effect, so its value will be
2140. For the second ORIG, the evaluation of the expression is * (whose current value
is 2140) plus 20, or 2160, so the location counter * is reset to be 2160. The LDA then
is assembled into location 2160, leaving 20 empty memory locations, addressable as
ARRAY, ARRAY+1, ARRAY+2, . . . , ARRAY+19.
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CON Pseudo-instruction

A program is made up of two parts: instructions and data. We have already seen
how instructions may be specified by using a symbolic opcode and expression. What
about data? The ORIG statement can be used, as illustrated above, to reserve memory
space for variables whose initial value is not important, but, sometimes, the initial value
is important. For example, if we are running an index register, say 15, in a loop from 1
to 16, we need to be able to compare the contents of 15 with 16. There is no immediate
compare instruction, so it is necessary to create a memory location someplace whose
contents are 16. If we give this the label SIXTEEN, we can then write

CMP5 SIXTEEN

To define the memory location whose initial contents are a specific number, we use the
CON statement. The format of the CON statement is

[label] CON w-value [comments]

The label, if present, is assigned the value of the address of the location counter. In
this location will be put one word, then the location counter will be incremented for the
next instruction and the next card read and assembled. The contents of the word are
specified by the w-value. A w-value is used to describe a full-word MIX constant. In
the simplest case, this is just an expression and the expression is put into the word
which is assembled. However, we may want to define specific values for specific bytes
or fields of the constant being assembled. As an example, suppose we wish to store
two numbers in one MIX word, one number in bytes (1:2) and the other in bytes (4:5). If
we want to put 17 into bytes (4:5) and 43 into bytes (1:2), we can write

CON 17(4:5),43(1:2)

In general the form of a w-value is

expr 1(field1), expr 2(field2), . . . , expr k (fieldk )

The word which results is the result of taking a zero word of MIX memory and
placing the value of expr 1 in field1 then the value of expr 2 in field2, then . . . , and finally
the value of expr k in fieldk . All expressions (and field expressions) must be evaluatable;
that is, no forward references are allowed. Any field in the MIX word which is not set
by any field will be zero; the sign bit will be “+” if not otherwise specified. If a field
specification is absent, (0:5) is assumed. If an expression is absent, it is assumed zero.
Remember that the evaluation of expressions and storage in fields is strictly left to right,
so if the partial fields overlap, the rightmost one will be used. Thus, the result of

ORIG 1736
ABC CON 100(3:4),23(4:5)

is the word

+ 00 00 01 00 27

stored in location 1736 with label “ABC”. Remember first that numbers in MIXAL are
decimal, while the numbers given above for the MIX word are octal. The 100(3:4), puts
an octal 0144 in bytes 3:4, but then the 23(4:5) puts a 0027 in bytes 4:5, erasing the
44 in byte 4 put there by the 100(3:4).
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The CON pseudo-instruction affects only the initial value of the location defined by it.
If we define

PDQ CON 13

and then write and execute the instructions

ENTA -5
STA PDQ

then the value of location labeled PDQ will not be 13 but -5. (The value was 13 until after
the STA instruction was executed.)

ALF Pseudo-instruction

In addition to wanting to define numeric constants, it is sometimes necessary
to define alphanumeric character code constants. This is accomplished by the ALF
instruction. Each word in MIX memory is made up of five bytes and each byte can hold
one character. The ALF pseudo-instruction takes as its operand five characters and
assembles one word whose contents will be the character code for these five characters.
For example

Statement Resulting MIX word
ALF ABODE +0102030405
ALF MIXAL +1611330115
ALF 12345 +3740414243

The format of the ALF statement is

[label] ALF 5 characters [comments]

The label, if present, is given a value of the address of this word.
For a fixed-format assembler, the five characters are the contents of columns 17-21

of the input card. For a free-format assembler, however, it is not so easy. In a free-format
assembler, the fields are separated by one or more blanks, because for all instructions
(except ALF) blanks are not important and cannot appear within a symbol or expression.
For the ALF instruction, blanks can be very important. Suppose we want to construct
two alphabetic constants, one of an A followed by four blanks, the other of one blank,
then an A, followed by three blanks. In a free-format assembler, the leading blank of the
second constant would be thought to be part of the delimiting blanks between the ALF
pseudo-instruction and its operand string, and hence it would be ignored, unless ALF
is treated specially. This problem is common to other assemblers and can be solved
in several ways. The simplest is to state that the ALF pseudo-instruction is always
followed by exactly two blanks and then the five characters to be put in the MIX word.
(Two blanks allows the operand to start in the same column as everything else if a
fixed-format is being used.) Thus, to create the two constants mentioned above we
would write (where we are using a “.” to represent a blank in order to emphasize the
spacing)

ALF..A.... +0100000000
ALF...A... +0001000000
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Another approach is to introduce a special delimiter which is used to surround and
delimit the five characters which are to be used for the ALF. For example, if a quote is
the delimiter, then the two above constants are

ALF "A "
ALF " A "

Notice that the second delimiter is not really needed if there must always be exactly five
characters in a MIX word. If this restriction is not made, the word is generally padded
out with blanks to the right to fill a whole word. With this approach, special steps must
be taken to allow the delimiter to appear within an ALF operand. (How do we do an ALF
of three quotes?)

Other variations are also possible. The specific method used by your assembler
may vary from those presented here. The ALF pseudo-instruction is one reason why a
fixed-format input is often used; it avoids these problems.

EQU Pseudo-instruction

We have already seen that one way to define a symbol is to place it in the label
field of an instruction. The symbol so defined then has a value which is the address
of the memory location for which that instruction is assembled. There are other times,
however, when we wish to use symbols whose values do not correspond to memory
addresses. These values may be device numbers (16 for the card reader; 18 for the
line printer), lengths of tables or arrays, special values for flags or switches, or any of a
number of other purposes. The EQU pseudo-instruction is a means of defining a symbol
and putting it in the symbol table without affecting the location counter or assembling
any code. The format of the EQU pseudo-instruction is

[label] EQU w-value [comments]

If the label field is non-blank (it really does not make sense for it to be blank), the
w-value in the operand field is evaluated to give a five-byte-plus-sign value. Then the
symbol in the label field is entered into the symbol table with a value of the evaluated
w-value. The w-value cannot have any forward references. The value of the location
counter is unchanged. No machine language instruction is generated.

Examples:

CR EQU 16
LP EQU 18
N EQU 4
M EQU 3+2
P EQU M*N

END Pseudo-instruction

Appropriately enough, the last pseudo-instruction is the END pseudo-instruction.
The END pseudo-instruction signals to the assembler that the last assembly language
statement has been read, and the program is now completely input. The assembler then
terminates its operation, having completed the translation of the assembly language
program into a machine language program. The format of the END statement is
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[label] END [w-value] [comments]

If a label is given on the END card, it is given a value of the address of the first location
beyond the end of the machine language program. Thus, if the program ends with

JMP LOOP
LAST END

and the JMP instruction is at location 3798, then the symbol LAST will have the value
3799. Notice that all references to it must be forward references.

If an operand (the w-value) is given on the END card, it is taken to be the address
where execution of the program should begin. If no operand is given, the program will
be started at location 0000.

If there are any undefined symbols in the program (i.e., forward references which
never did appear as labels), the assembler will define them as CON 0 statements
occurring just before the END card. Undefined symbols are generally considered
programming errors and should be avoided, but if you do forget some, the assembler
will assume that you meant to define them as the label of a CON 0 at the end of your
program.

2.4.5 An example

As an example, we present the assembly language program which is equivalent
to the machine language program presented in Section 2.2. This program reads two
numbers from the card reader and prints their sum on the line printer. The assembler
translates the following assembly language program into the machine language program
of Section 2.2.

*
* THIS PROGRAM WILL READ TWO NUMBERS FROM A
* CARD IN THE CARD READER AND PRINT THEIR
* SUM ON THE LINE PRINTER. THE NUMBERS MUST
* BE IN DECIMAL, RIGHT-JUSTIFIED IN COLUMNS
* 1-10 AND 11-20 OF THE INPUT CARD.
* THE SUM IS PRINTED IN DECIMAL. NUMBERS MUST
* BE POSITIVE; OVERFLOW IS NOT CHECKED.
*
CR EQU 16 CARD READER UNIT NUMBER
LP EQU 18 LINE PRINTER UNIT
*
*
CARD ORIG *+16 FOR INPUT CARD IMAGE
NUMBER CON 0 LOCATION TO STORE ONE NUMBER
LINE ORIG *+24 FOR LINE PRINTER IMAGE
*
BEGIN IN CARD(CR) BEGIN READING A CARD

JBUS *(CR) WAIT UNTIL READ DONE
LDA CARD PUT PART OF NUMBER IN A
LDX CARD+1 PUT REST IN X
NUM CONVERT TO NUMERIC
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STA NUMBER STORE FOR LATER ADD
LDA CARD+2 DO THE SAME FOR THE
LDX CARD+3 SECOND NUMBER
NUM CONVERT TO NUMERIC
ADD NUMBER ADD THE TWO NUMBERS
CHAR CONVERT SUM TO CHARACTERS
STA LINE STORE FIRST 5 CHARACTERS
STX LINE+1 AND SECOND 5 CHARACTERS
OUT LINE(LP) START PRINT OF SUM
JBUS *(LP) WAIT UNTIL PRINT IS DONE
HLT STOP
END BEGIN

2.4.6 Literals and local symbols

Many of the features of assembly language are provided to make programming more
convenient. The ability to use symbolic opcodes and operands, to specify numbers in
decimal, and other features are both a convenience, and to some degree, necessary to
make assembly language programming a reasonable task. In this section, we discuss
two more features of MIXAL which are convenient, but not as necessary; they simply
make programming easier by allowing us to program in terms which are closer to the
way in which we think of the programming task.

When we are programming, it is sometimes necessary to refer to a constant value
which should be stored somewhere in memory. For example, if we have an index
register, say 4, which is controlling the number of times that a loop is executed by
ranging from 1 to 24, we would want to compare the register against the constant 24.
We could do this by writing

CMP4 TWENTYFOUR

and elsewhere in our program, defining

TWENTYFOUR CON 24

Instead of this three-step process – thinking up a name, using that name in the
instruction, and defining the memory location ourselves – we can let the assembler do
it for us by the use of a literal . A literal is a symbol which is a special form, so that the
assembler can tell that it is to be a constant value stored in memory someplace. The
form of a literal is a w-value enclosed in a pair of equal signs, “=”. The w-value must be
less than 10 characters in length. In the example above, we could just write

CMP4 =24=

The assembler, when it finds a literal, stores it in the symbol table as a forward
referenced symbol. When the END card is read, the symbol table is searched both
for undefined symbols (as explained above) which are defined as CON 0 statements
just before the END statement, and for literals. All literals are also defined as memory
locations just before the END card. The contents of the memory location are the value of
the w-value which defined the literal. If the literal symbol is =w=, this will result in the
generation of an assembly language statement
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CON w LITERAL =w=

and the address of this memory location will be used as the value of the literal symbol.
For example, the program

ORIG 0
BEGIN LDA =63(3:3)=(1:5)

HLT
END BEGIN

is exactly equivalent to the program

ORIG 0
BEGIN LDA LITERAL(1:5)

HLT
LITERAL CON 63(3:3)

END BEGIN

and will result in the generation of the following machine language program,

0000 +0002001510
0001 +0000000205
0002 +0000770000

The program begins at location 0000.
Literals are quite useful, since they allow the reader of an assembly language

program to see at once both the instruction and the contents of the literal, instead of
seeing a label and having to search throughout the program for that label to discover
the contents of the location. Literals also help avoid accidentally forgetting to define
symbols with a resultant CON 0 being generated instead.

Examples:

=100=
=N+1=
=BEGIN+3=
=ADDR(0:2)=

A second convenience in MIXAL is local symbols. For all loops or jumps, it is
necessary to use a label in order to have an address to jump to. For short loops or
branches this may result in a large number of labels, each of which must be unique.
Normally, the label should be picked to reflect the meaning of the code which it labels,
but often it becomes difficult to think of unique names which may describe code which
is basically the same except for subtle differences.

To solve this, MIXAL provides local symbols. Local symbols are the 10 symbols
0H, 1H, 2H, . . . , 9H. They are referenced by the symbols 0F, 1F, 2F, . . . , 9F when the
local symbol is a forward reference, and by 0B, 1B, 2B, . . . , 9B when the local symbol
is a backward reference. The H stands for “Here”, the F for “Forward”, and the B for
“Back.” The digit is used to allow 10 different local symbols. When a reference to
iB is encountered (for i = 0, 1, . . . , 9), the assembler uses as the value of the local
symbol the value of the most recently encountered iH symbol; when a reference to iF
is encountered, the assembler treats it as a forward reference to the next iH symbol it
finds. Because of this convention, the iH local symbols may be used many times in a
program without resulting in multiply-defined symbols.
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For example

ORIG 1000
CARD ORIG *+16 RESERVE SPACE FOR INPUT CARD
*
3H IN CARD(16) READ A CARD
1H JBUS 1B(16) WAIT UNTIL READ

ENT1 0 WORD COUNTER 0..15
2H ENT2 0 CHARACTER COUNTER 0..4

LDA CARD,1
1H CMPA =0=(1:1) CHECK IF CHARACTER IS BLANK

JE 1F
*

SLA 1 SHIFT TO NEXT CHARACTER
INC2 1 INCREASE COUNTER
CMP2 =5=
JL 1B IF MORE CHARACTERS THIS WORD
INC1 1
CMP1 =16=
JL 2B OR MORE WORDS THIS CARD
JMP 2F NO BLANKS ON CARD

*
1H HLT BLANK FOUND, HALT
2H JMP 3B READ NEXT CARD

END 3B

Remember that the label on a card is processed before the operand field, hence, in the
following 5B refers to itself, while the 5F refers to the next instruction.

5H LDA ZED(1:5)
5H JAN 5B
5H JAP 5F
5H STA ZED

2.5 SUMMARY

The MIX computer is a small, general-purpose computer whose architecture was
defined by Knuth (1968). In this chapter, we first briefly described the architecture of the
MIX computer, and then we presented an example of how machine language programs
are written, showing the difficulty of programming in machine language.

An assembler is a program which translates from assembly language into machine
language. With the exception of the assembler pseudo-instructions of ORIG, EQU, and
END, each and every assembly language statement results in one machine language
instruction or data value. The assembly language statement is composed of several
fields in either a fixed-format or a free-format. The label field defines a symbol which
may be used as the operand of other statements to reference the labeled instruction.
The opcode and operand fields specify the machine language opcode, indexing, field
specification, and address fields for the assembled instruction.
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The assembler pseudo-instructions allow the location counter for assembly to be
set (ORIG), numerical constants (CON) or alphanumeric character code constants (ALF)
to be defined, symbols entered into the symbol table with a value other than an address
(EQU), and define the end of the assembly program (END). Literals and local symbols
make assembly language programming easier.

MIXAL was defined by Knuth (1968). However, each MIX computer system will have
its own MIXAL assembler. This means that the operation and some of the specifics
of your MIXAL assembler may differ from the assembler described here or in Knuth
(1968). Check with your instructor for a manual or report describing your specific MIXAL
assembler and its use.

Chapter 3 describes the MIX computer in more detail.

EXERCISES

1. How many words of memory does the MIX machine have? What are the
addresses of these words?

2. What are the registers of the MIX machine?

3. What are the fields of a MIX instruction?

4. What I/O devices can be attached to a MIX computer?

5. How does a MIX 1009B differ from a MIX 1009D?

6. Name the six different types of MIX instructions.

7. List three advantages of assembly language over machine language.

8. Explain the difference between MIX and MIXAL.

9. What is the difference between an END and a HLT in MIXAL?

10. Contrast the following MIXAL instructions:

LDA =5=
ENTA 5
LDA 5
ENTA =5=

11. What is the difference (if any) between a program counter and a location counter?

12. Contrast the use of an enter instruction (such as ENTA n) with the use of a load
instruction with a literal operand (such as LDA =n=). What are the advantages of
both?

13. What is the difference (if any) between the following two statements?

ERG EQU 1435
ERG CON 1435
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14. What does the symbol * mean in MIXAL?

15. A programmer wanted to reserve space for a table of floating point numbers, FTAB.
He needed double precision, so each entry in the table is two words long. He
wrote the following code

N EQU 100 NUMBER OF WORDS IN TABLE
FTAB ORIG *+2*N RESERVE N TWO WORD ENTRIES

But the program does not work. Can you suggest his error?

16. Consider the END card. If it has a label, the text says that all references to that
label are forward references. Why?

17. Discuss what would happen if you stuck an ORIG *-100 card somewhere in the
middle of a friend’s MIXAL program.

18. Suppose we want the octal number +2145030000 to be in our program. Give three
assembly language instructions which will generate this value.

19. In MIX there are many ways to do nothing at execution time: NOP, INCA 0, JSJ
*+1, and so on. Give a way to do nothing at assembly time. For example, a
comment card does nothing at assembly time. (We want an assembly language
instruction that we could put any place in our program and which would not affect
the generated machine language in any way.)

20. Literals cannot be involved in expressions in the address field of an instruction
(i.e., LDA =47=+1). Why?

21. Write the equivalent of

2H EQU 10
2H MOVE 2F(2B)
2H EQU 2B-2

without using any local symbols.

22. Some assembly language statements are instructions to the assembler and are
executed at assembly time, while others are instructions for the MIX machine and
so are executed at execution time. When are the following statements executed?

ORIG 100
JMP 100

X EQU 100
ENTX 100
HLT
END
JXN 0F
ALF TRACE
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23. Suppose we had a defective MIXAL assembler which would allow labels only on
EQU statements. How could we write a program where we wanted a statement
equivalent to:

FIND STJ EXIT

24. Give the octal code and the symbol table which would result from the following
MIXAL program (i.e., give the machine language for this assembly language).

ORIG 100
X ORIG *+1
Y EQU X-10
BEGIN LDA X,1(0:2)

STA Y,7
STJ X+2
HLT
END BEGIN

25. Suppose you are given the contents of some memory locations of the MIX
computer. Can you reconstruct the assembly language program which assembled
into these memory words? Is this assembly program unique? Explain.

26. Assume that a dump of locations 0 to 7 of MIX memory showed (all numbers are
octal):

0000 +0004002044
0001 +0001002042
0002 +0004002245
0003 +0017040262
0004 +0000020406
0005 +3736000267
0006 +0015000406
0007 +0000000205

What is a possible assembly language program to have generated this MIX
memory? This process is called deassembling.

27. What are the contents of the A register when the HLT instruction is executed
below?

BEGIN LDA WORD
WORD CON 5

HLT
END BEGIN

28. Write a machine language program to input three numbers and print their product.

29. Write a machine language program to read three number from cards and print
their maximum. What changes would be necessary to this program if we wanted
to find the maximum of four numbers?



2.5. SUMMARY 95

30. What does the MIXAL assembler do?

31. What are the default values for the fields of an assembly language statement?

32. What is the difference between a free-format and a fixed-format assembler?

33. Name five possible errors in a MIXAL program.

34. What is a forward reference?

35. Are both the ALF and the CON pseudo-instructions needed? Why are they both
part of the assembly language?





97

A DETAILED DESCRIPTION OF THE MIX
COMPUTER

In this chapter, we give a detailed description of the instruction set of the MIX
computer. This description considers the detailed specifications of the execution of
each instruction. Much of assembly language programming is concerned with the small
details of the computer organization and instruction set. Thus, it is necessary to be very
familiar with the exact meaning of each instruction.

Before we can give a complete explanation of what the MIX instruction set is, we
need to first look at how a program is executed by the computer. This is followed by a
consideration of the common features of the execution of a large class of instructions –
the memory reference instructions. Finally, we examine the complete instruction set.

3.1 INSTRUCTION INTERPRETATION AND EXECUTION

How does the MIX computer actually execute instructions? What does it do at
what time and why? To answer these questions, it is necessary to look beneath the
description of the MIX computer as a computer with 4000 words of memory and nine
registers, an overflow toggle, comparison indicator, and I/O devices. We know that the
basic instruction execution cycle is composed of the following four steps:

1. Fetch the next instruction.
2. Decode the instruction.
3. Fetch the operands (if any).
4. Execute the instruction.

All computers do nothing more than continuously repeat this basic instruction execution
cycle. If we want to be able to truly understand the operation of the MIX machine,
however, we need to know more about what is done in each of the above steps, and
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how it happens. This requires looking at the inside of the MIX computer and seeing
how it is actually put together.

Figure 3.1 gives a block diagram of the internal structure of the MIX computer.
Notice that the four basic components (memory, ALU, control unit, and I/O system) are
present. There are also a number of registers which we did not tell you about in our
earlier description of the MIX computer. These are the internal registers and are not
directly accessible by the programmer. They are registers which have been used by
the computer designers to build the MIX machine and are dedicated to specific internal
functions; they are not meant to be used by the programmer. In fact, there are no
instructions in the instruction set of the MIX machine which would allow them to be
used.

Specifically, the internal registers are,

1. MAR (memory address register) A two-byte register which holds the address of
every referenced memory location.

2. MDR (memory data register) A five-byte-plus-sign register which contains the
contents of memory locations (the data) which are read from or written to the
memory.

3. P (program counter) The contents of the program counter is the address of the
next (or current) instruction to be executed. The P register is two bytes, just
enough to hold an address.

4. I (instruction register) The instruction register is used to hold the instruction which
is being executed (five bytes plus sign). It is used by the control unit.

The instruction execution cycle for the MIX computer is quite simple. When the
machine is started, the following steps are executed over and over again, until the
computer executes a halt instruction, or someone presses the STOP button on the MIX
console.

1. The first thing which must be done is to fetch the instruction to be executed. The
P register has the address of the next instruction, so the contents of the P register
are copied into the MAR register.

2. Next, the memory unit reads the contents of the memory location addressed by
the contents of the MAR. These contents are put into the MDR.

3. When the read has been performed, the instruction which has been read into the
MDR is copied into the I register so that it can be decoded into the control signals
needed to execute the instruction.

4. Now that the current instruction has been fetched, the contents of the P register
are increased by 1 to be ready to fetch the next instruction after the current one is
executed.

5. Once the instruction has been fetched and copied into the I register and the
P register incremented, the control unit can decode the instruction and start its
execution.
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FIGURE 3.2 The MIX opcode format.

Byte 5 of all MIX instructions is the opcode of the instruction and is examined first.
Based upon the value of the opcode, the remainder of the instruction may be interpreted
in different ways. For each of the different interpretations, the control unit performs
different operations in order to execute the instruction.

There are two main types of instructions: those which specify an operand and those
which need no operand. Instructions such as HLT (halt the computer), NUM (convert
the AX register from character code to numeric in the A register), NOP (no operation),
and others need no operand. These instructions, determined by their opcode (C field,
byte 5) and opcode modifier (F field, byte 4) are executed immediately, and the control
unit returns to step 1 to fetch the next instruction (unless the instruction was a HLT, of
course).

For operations with an operand, the operand must be determined. The operand
is specified by the address field (bytes 0, 1, and 2) as modified by the I field (byte
3) of the instruction. The modification of the address field by the I field is called
the effective operand calculation and is described in Section 3.2. This produces the
effective operand , m. The effective operand is used in two ways. For immediate
operations, jumps, and I/O instructions, the effective operand is the operand, a two-
byte-plus-sign integer number. For memory reference instructions (the loading, storing,
arithmetic, and comparison operations), the effective operand is the address of the
operand. For these instructions, the control unit copies the effective operand into the
MAR and fetches the contents of the addressed memory location into the MDR. This
full-word (five bytes plus sign) quantity is then used as the operand.

In either case, memory reference or non-memory reference, the instruction is
executed once the operand is obtained. Fetching an operand from memory for a
memory reference instruction means that these instructions take longer to execute than
the operations which use the effective address as their operand. Once the execution
is complete the control unit returns to step 1 to repeat this sequence for the next
instruction.

3.2 EFFECTIVE OPERAND CALCULATION

Most of the instructions for the MIX computer specify an operand in the address
field (bytes 0 through 2) of the instruction. This operand is modified according to the
contents of the I field (byte 3) of the instruction. Many, but not all, instructions use the
resulting operand as an address. The immediate and the shift instructions treat the
operand as an integer number. However, the load, store, compare, jump, arithmetic,
and (some) I/O instructions treat the operand which results from the original operand
and the modification specified by byte 3 as an address, the effective address. Because
these instructions are more common, the standard terminology refers to the operand
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FIGURE 3.3 Direct addressing (the effective address is the address field of the
instruction).

as an address. (Hence, bytes 0, 1, and 2 are called the address field instead of the
operand field.) Thus, although we are concerned with the calculation of the effective
operand and the operand is only used as an address most of the time, we present
our discussion in terms of an effective address calculation. We denote the effective
operand (or effective address) by m.

The I field of an instruction determines the mode of the effective address calculation.
The simplest mode is direct addressing. Direct addressing is indicated by a zero value
for the I field. In this case, the effective address is equal to the address given in the
instruction. No modification is needed. This is the most common and useful addressing
mode.

The other addressing mode of every MIX computer is an indexed addressing mode.
If the value of the I field is between 1 and 6 (inclusive) then the effective address is the
sum of the contents of the address field of the instruction and the contents of the index
register whose number is given in the I field. Letting AA be the contents of the address
field, and i be the number given in the I field, then m = AA + contents of index register i.

As an example, let the index registers have the (octal) values

I1 = +0100
I2 = +0200
I3 = -0001
I4 = +0001
I5 = -0500
I6 = +6666

Then for each of the following LDA (opcode = 10, F field = 05), instructions we have the
effective address given

Instruction Effective address
AA I F C m
+0013 00 05 10 +0013 no indexing (direct)
+1472 00 05 10 +1472 no indexing
+1472 01 05 10 +1572 indexing by I1
+0001 02 05 10 +0201 indexing by I2
+0014 03 05 10 +0013 indexing by I3
+0000 04 05 10 +0001 indexing by I4
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FIGURE 3.4 Indexing (the effective address is the sum of the contents of the address
field of the instruction and the index register).

Notice, however, that the indexing field is one byte (six bits) in size, and we have only
specified the addressing mode for the values of the index field equal to 0, 1, 2, 3, 4, 5,
6. Many owners of MIX computers have bought an option for the CPU which increases
the number and kind of addressing modes. This additional unit treats the index field
as a pair of octal digits: ab. Each of these two digits specifies an addressing mode.
The effective address calculation is performed by first modifying the address by the
addressing mode specified by a and then using this effective address as the address to
be modified by the addressing mode given by b. Since we have 3 bits per octal digit, we
have 8 values for each of a and b, and 64 possible combination addressing modes. The
interpretation of the addressing modes for each of the octal digits of the indexing field is

Digit Mode
0 direct addressing (no modification)
1 indexing by I1
2 indexing by I2
3 indexing by I3
4 indexing by I4
5 indexing by I5
6 indexing by I6
7 indirect addressing

The first seven addressing modes have already been discussed. Indirect addressing
(a = 7 or b =7) is another addressing technique which is a common addressing mode
for computers. With indirect addressing, the address which we already have (initially the
address field of the instruction, AA) is not the effective address (as in direct addressing)
but the address of a word in memory which contains (in its address field) the effective
address.
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Consider for a minute the difference between an immediate instruction and a
memory reference instruction. If the address were +0100 for an immediate instruction,
then the operand for the instruction is +0100. For a memory reference instruction, the
operand is not +0100 but the contents of location +0100 in memory. For an indirect
addressing mode, the operand is not +0100, nor is it the contents of location +0100.
Rather, for indirect addressing, it is the contents of the memory location whose address
is the contents of location +0100. Thus, in order for the MIX computer to execute the
instruction, it requires either 0, 1, or 2 memory references:

0. For an immediate instruction, the effective address is calculated and the instruction
is executed immediately, using this number as an operand.

1. For a memory reference instruction, the effective address is calculated. This
address is sent to the memory unit and the instruction is executed on the contents
of the location addressed by the effective address.

2. For a memory reference instruction with indirect addressing, the effective address
is calculated first. This address is sent to the memory unit (first memory reference).
The resulting word which is read from memory is not the operand but the address
of the operand, so the contents of the fetched location are given back to the
memory unit as an address, and this new location is read out (second memory
reference). The instruction is then executed on the contents of this memory
location.

The presence of two address modifier digits (a and b) in each instruction allows for
three classes of effective addresses:

1. No modification. Both a and b are zero. The effective address is the address
given in the instruction.

2. Simple modification. One of a or b is zero, but the other is nonzero. This results
in either,

FIGURE 3.5 Indirect addressing (the effective address is the contents of the address
field of the memory location addressed by the address field of the instruction).
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(a) Simple indexing (if the nonzero indicator is between 1 and 6, inclusive). In
this case, the effective address is the address field of the instruction plus the
contents of the specified index register.

(b) Simple indirection (if the nonzero indicator is 7). The effective address is the
effective address of the location whose address is given in the instruction.

3. Complex modification. Both a and b are nonzero. In this case, the address
modification specified by a is performed first, resulting in a partially calculated
effective address. This address is then modified by the address modification
technique specified by b. The different combinations of indexing and indirection
result in four kinds of complex address modifications:

(a) Double indexing. If 1 ≤ a ≤ 6 and 1 ≤ b ≤ 6, then the effective address
is the address (given in the instruction) plus the contents of the two index
registers specified by a and b. For example, if

I1 = +0143
I2 = +0010
I3 = -1000

then the following LDA instructions have the listed effective addresses:

Instruction Effective address
+0040 12 05 10 +0040 + 0143 + 0010 = +0213
+1000 32 05 10 +1000 - 1000 + 0010 = +0010
+3000 33 05 10 +3000 - 1000 - 1000 = +1000

(b) Preindexed indirection. If 1 ≤ a ≤ 6 and b = 7, the indexing operation is
performed first and then this indexed address is used for indirection.

(c) Postindexed indirection. If a = 7 and 1 ≤ b ≤ 6, then the first address
modification is indirection. The contents of the location specified by the
address given in the instruction are fetched as the (partial) effective address
for the indirection stage. Then the contents of the index register specified by
b are added to the indirectly specified address to form the effective address.

(d) Double indirection. If both a = 7 and b = 7, then the modification being
specified is double indirection. Because of certain features of the MIX
indirection feature (see below), this is not allowed. If an instruction attempts
to use double indirection, the MIX machine will halt.

One major aspect of MIX indirect addressing has not been mentioned yet.
Remember that there are 4000 memory locations in the MIX memory, addressed
from 0000 to 7637. Thus, an address can be specified in two bytes. The address field
of the instruction allows for two bytes plus a sign, while a word in memory is five bytes
plus sign.

Which bytes of a memory word are used to specify an indirect address? There are
two reasonable ways to specify a two-byte address in a five-byte memory word. One
would be to use the lower two bytes (bytes 4 and 5) of the memory word, ignoring the
high order bytes, or requiring them to be zero. The other method would be to interpret
the memory word as if it were an instruction and use the upper two bytes (the address
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field of the instruction) as the indirectly specified address. This approach also makes it
reasonable to allow the I field of the indirect word to modify the address field. This is
the approach to indirect addressing taken by the MIX computer. The indirect address is
used to fetch a word from memory. The effective address is then the result of applying
the effective address calculation to this memory word. This may, of course, involve
further indirection and/or indexing.

For example, assume that the (octal) contents of the following memory locations are

Location Contents
1013 +0017 00 00 00
1014 +0200 01 00 00
1015 +0000 21 00 00
1016 +1013 07 00 00
1017 -0001 17 00 00
1020 +1017 71 00 00

and the contents of I1 = +1017 and I2 = +0005. Then, for an instruction such as +1013
00 05 10, no modification is specified (a = 0, b = 0), and the effective address is +1013.
If the instruction were +1013 02 05 10, then indexing by index register 2 is specified,
and the effective address is +1013 + (I2) = +1013 + 0005 = 1020.

For an instruction, +1013 07 05 10, indirection has been specified (b = 7). To
calculate the effective address for this instruction, we must calculate the effective
address of location 1013 of memory. The effective address of 1013 is an unmodified
+0017 (since no modification is specified in byte 3 of location 1013). Thus, the effective
address for the instruction is +0017. For an instruction +1014 07 05 10, we indirect
through location +1014. This specifies an address of +0200 indexed by register I1, so
the effective address is +0200 + 1017 = 1217. An indirect reference to location 1015
results in double indexing to give an effective address of +0000 + (I2) + (I1) = +1024.

For an instruction +1016 07 05 10, we have indirection through location 1016, so
the effective address is the effective address of location 1016. The effective address
of location 1016 specifies another level of indirection, through location 1013, so the
effective address is +0017.

Consider the effective address calculation of the instruction +0000 17 05 10. This
instruction does indexing first by I1 (a = 1). This gives a partially computed address
of +0000 + (I1) = +1017. Then indirection occurs (b = 7), so we fetch location 1017
and apply the effective address calculation to it. Location 1017 specifies preindexing
of -0001 by I1, and then indirection again. The partially computed address is -0001 +
(I1) = +1016. Going indirect through 1016 will take us (indirectly) to 1013 giving a final
effective address of +0017 after three levels of indirection and two indexing operations.

An instruction like +1013 27 05 10 will result in four levels of indirection with both
preindexing and postindexing, resulting eventually in an effective address of +1036.

The effective address calculation for the MIX computer can seem quite complex. It is
based on the two simple techniques of indexing and indirection, which are used in many
computers. The more complex forms of the effective address calculation seldom occur
in programming. Most addresses are either direct or indexed with an occasional double
indexing or simple one-level indirection. The other forms of effective address calculation
must be used with great care, but can be quite useful in special circumstances. It is most
important that you understand the effective address calculation procedure thoroughly in
order to be able to read and write good MIX programs.
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FIGURE 3.6 Multiple levels of indirection (this example has three levels of indirection).

3.3 PARTIAL FIELD SPECIFICATIONS

For immediate instructions, the effective address calculation produces the operand
which is to be used for the instruction. For memory reference instructions, however,
the effective address is only the address of the operand and the operand must now
be fetched from this location in memory. The contents of the addressed location is,
of course, five bytes plus sign. Sometimes it is desirable to operate not on the entire
memory word, but only on a part of a word (particularly when characters are being
manipulated). To allow this, the F field (byte 4) of memory reference instructions is
used to give a field specification which describes which part of the addressed memory
location is to be used by the memory reference instruction.

A field specification specifies two-byte numbers, which are the left and right byte
numbers of the field. The field is the left byte and the right byte and all bytes in between.
These are encoded into one byte in the same way that the I field (byte 3) encodes both
a and b, as the two octal digits of a byte. If the F field is the two octal digits LR then L is
the left byte number and R is the right byte number. Since the bytes are numbered 0
through 5, we must have 0 ≤ L ≤ R ≤ 5 to specify a valid field. The following list gives
some examples of partial fields.

F Field Partial field specified
05 the whole word
00 the sign bit only
02 the first two bytes plus sign
15 the whole word except the sign
45 bytes 4 and 5
55 byte 5 only

To make it easier to specify partial fields, we use the colon (“:”) to separate the left
and right byte numbers of a partial field, as in 0:5, 0:0, 0:2, 1:5, 4:5, 5:5, and L:R.
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Being able to specify only a part of a word of memory can be very useful, but it
requires that the description of the instructions which can use partial fields be more
complex, in order to describe how the partial fields are used. There are three ways that
partial fields are used.

1. For the register loading and arithmetic instructions, the partial field of the memory
word is treated as the low-order bytes of a complete five-byte-plus-sign word. The
high-order bytes of the operand are treated as zero. If the sign byte is included in
the field (L = 0), then it is used otherwise a positive sign (+) is used.

2. For a storing instruction, the low-order bytes of the register are stored into the
specified field of the memory word. The remaining bytes of the memory location
are unchanged. If the sign byte is included, then the sign of the register is stored
in the sign of the memory location.

3. For a comparison instruction, the same specified field of both register and memory
are compared.

As examples, consider a MIX memory with the contents of location 0452 =
+1122334455 and 0453 = -0102030405. Then an instruction +0452 00 24 10 will load
into the A register (opcode = 10) from the contents of the effective address 0452 (no
modification, since byte 3 is zero). A partial field is specified by byte 4 (= 2:4), so bytes
2, 3, and 4 of location 0452 will be copied into bytes 3, 4, and 5, respectively, of the A

FIGURE 3.7 Partial field loading and storing (for loading, the L:R field of memory is
copied into the low-order bytes of the register; for storing, the low-order bytes of the
register are copied into the L:R field of memory).
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FIGURE 3.8 Comparing partial fields (the same fields of the register and memory word
are compared and the comparison indicator is set).

register. Bytes 1 and 2 of A will be set to zero, and the sign byte will be set “+”. Thus,
the A register will be +0000223344. If we then execute the instruction +0453 00 02 30,
we will store (opcode = 30) the sign plus bytes 4 and 5 of the A register into the sign and
bytes 1 and 2 (partial field specification in byte 4 of instruction = 0:2) of location 0453
(the effective address resulting from bytes 0:3 of the instruction), changing location
0453 from -0102030405 to +3344030405. The A register is not changed by the store.

For non-memory reference instructions, the F field is not used to specify partial
fields but is used to distinguish between instructions with the same numeric opcode in
the C field. For example, an opcode of 64 specifies an immediate operation on register
4. The F field determines whether the instruction is an INC4 (F = 00), a DEC4 (F = 01), an
ENT4 (F = 02), or an ENN4 (F = 03). For jump instructions, the F field determines which
conditions will be tested for the jump. The F field specifies the I/O device unit number
for I/O instructions.

Also, some F field specifications which do not specify partial fields are used for
memory reference instructions of special kinds. For example, a field of 06 is used
with opcodes 01, 02, 03, and 04 (ADD, SUB, MUL, and DIV) to designate a floating point
operation (FADD, FSUB, FMUL, FDIV). This allows the same opcode to be used for both
integer and floating point operands, with the F field specifying which type of operand is
meant.
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This completes our description of the instruction execution steps for the MIX
computer. We have presented the main ideas of a common instruction execution
cycle, effective address calculation, and partial field specification. We now present a
detailed description of the operation performed by each instruction.

3.4 LOADING OPERATORS

There are two kinds of loading operators in the MIX computer, the load (LD*)
instruction and the load negative (LD*N) instruction. For both of these instructions, *
specifies the register into which the new value will be loaded, and can be either A, 1,
2, 3, 4, 5, 6, or X, to refer to the appropriate register. The register is first set to zero
with a positive sign. Then the bytes specified by the partial field specification in the
F field are loaded into the register. In the case of the LD*N instructions, the sign is
complemented (+ to -, - to +) after the loading operation. The contents of the memory
location addressed by the effective address of the instruction are not changed. The
previous value of the register is lost.

The index registers are only two bytes plus sign. The two bytes correspond to bytes
4 and 5 of a five-byte MIX word; bytes 1, 2, and 3 are missing. If an attempt is made to
load nonzero information into these bytes, an error exists and the MIX machine will halt.
To prevent this, it is wise to use a partial field specification for loading index registers,
which results in only a two-byte-plus-sign field.

Partial field specifications for load instructions may or may not include the sign byte
(byte 0). If it is included in the partial field specification, the sign of the memory word
is loaded into the sign of the register; if not, the sign of the register is set to “+”. The
remaining bytes (non-sign) are loaded into the low-order bytes of the register being

Opcode Field Mnemonic Instruction
10 * LDA load A with (m)
11 * LD1 load I1 with (m)
12 * LD2 load I2 with (m)
13 * LD3 load I3 with (m)
14 * LD4 load I4 with (m)
15 * LD5 load I5 with (m)
16 * LD6 load I6 with (m)
17 * LDX load X with (m)
20 * LDAN load A with negative of (m)
21 * LD1N load I1 with negative of (m)
22 * LD2N load I2 with negative of (m)
23 * LD3N load I3 with negative of (m)
24 * LD4N load I4 with negative of (m)
25 * LD5N load I5 with negative of (m)
26 * LD6N load I6 with negative of (m)
27 * LDXN load X with negative of (m)

TABLE 3.1 Loading Instructions for the MIX Computer
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loaded. So, if L is not zero, the L:R bytes of memory location m are copied to the L-R +
5:5 bytes of the destination register.

For the load negative (LD*N) instructions, the sign is complemented after the above
load has been performed. Thus, if the field specification includes the sign byte of the
memory word, the sign of the register will be the opposite. If the field specification does
not include the sign, then the sign of the register will be “-”.

3.5 STORING OPERATORS

The storing operators are almost the inverses of the loading operators. The store
instructions are named ST*, where * = A, 1, 2, 3, 4, 5, 6, X specifies the register to be
stored into the memory location specified by the effective address, m. The contents of
the register are left unchanged.

If a partial field specification is used, only those bytes of the memory location
addressed by the effective address are changed. If the sign byte is included in the
partial field specification, the sign byte of the register is stored in the sign byte of the
memory location. For 1 ≤ L ≤ R ≤ 5, the 5-R+L:5 bytes of the register are stored in
the L:R bytes of the memory location. That is, the low order bytes of the register are
stored into the partial field specified by the instruction. If a partial field specification for
storing an index register includes bytes 1, 2, or 3 of the index register, zeros are stored
for these bytes.

In addition to store instructions for the arithmetic (A, X) and index registers, two
special store instructions are available in the MIX instruction repertoire. STJ stores the
J register into a memory location. The J register is always treated as having a positive
sign, and bytes 1, 2, and 3 are zero. Partial fields can be used as with any of the other
store instructions.

Since zero is an important value in computers, a special store instruction, STZ, can
be used to store a (positive) zero in a memory location. Partial field specifications can
be used to zero only selected bytes and to set sign bits to “+”.

Opcode Field Mnemonic Instruction
30 * STA store A into location m
31 * ST1 store I1 into location m
32 * ST2 store I2 into location m
33 * ST3 store I3 into location m
34 * ST4 store I4 into location m
35 * ST5 store I5 into location m
36 * ST6 store I6 into location m
37 * STX store X into location m
40 * STJ store J register into location m
41 * STZ store zero into location m

TABLE 3.2 Storing Instructions for the MIX Computer
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3.6 INTEGER ARITHMETIC INSTRUCTIONS

For ADD (and SUB), the partial field of the memory location specified by the effective
address of the instruction is added to (or subtracted from) the contents of the A register.
The contents of the memory location are unchanged.

If the result of an ADD or SUB instruction is too large to be stored in the A register,
then overflow occurs, and the overflow toggle is turned on. The result in the A register is
the lower five bytes of the result (plus the correct sign). Overflow occurs if the magnitude
(either positive or negative) of the result is greater than 1,073,741,823. Since the largest
numbers which could be added (or subtracted) would be 1,073,741,823 + 1,073,741,823
(or -1,073,741,823 - 1,073,741,823), the result can never be greater in magnitude than
2,147,483,646. So, only one bit is unable to fit into the A register. The value of this bit
can be determined by testing the overflow toggle.

The MIX computer also provides integer multiplication and division operations. MUL
multiplies the contents of the A register by the partial field contents of the memory
location addressed by the effective address and places the result back in the A and X
registers. The low-order five bytes are in the X register, and the high-order 5 bytes are
in the A register. Both signs are set to the sign of the product.

The double register result is produced, since if two n-bit numbers are multiplied, the
result can require 2 × n bits. Thus, for any two 30-bit numbers on the MIX machine,
the product could be up to 60 bits long. The X register has been added to the MIX
machine for this specific purpose. When a multiply instruction is executed, the contents
of the A register are multiplied by the contents of the addressed memory location and
the result is placed in both register A and register X. The low-order bytes are put into
the X register, and the high-order bytes are put into the A register. If the product of two
numbers should never be too great to store in one word of MIX memory, then the A
register should always be zero, after the multiplication.

Division is the inverse of multiplication, and so it expects a double register dividend
in register A and register X (high-order bytes in the A register; low-order bytes in the X
register; sign of A is used; sign of X is ignored) and returns both an integer quotient (in
the A register) and an integer remainder (in the X register). If the dividend is only one
word, the A register must be set to zero, and the dividend loaded into the X register, with
the proper sign in the A register.

If the quotient is more than five bytes in magnitude (or the divisor is zero), the
contents of A and X are undefined and the overflow toggle is turned on. The sign of the
X register is the same as the original sign of the dividend (in the A register). The sign of
the quotient (in the A register) is positive if both divisor and dividend had the same sign

Opcode Field Mnemonic Instruction
01 * ADD add (m) to register A
02 * SUB subtract (m) from A
03 * MUL multiply (m) by A, giving AX
04 * DIV divide (m) into AX, giving A (quotient) and X

(remainder)

TABLE 3.3 Arithmetic Instructions for the MIX Computer
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Opcode Field Mnemonic Instruction
01 06 FADD add (m) to A as floating point numbers
02 06 FSUB subtract (m) from A as floating point numbers
03 06 FMUL floating point multiply of (m) by A; result in A
04 06 FDIV floating point divide of (m) into A; quotient in A
56 06 FCMP compare A and (m); set condition indicator
05 06 FLOT convert the integer in A to floating point

representation

TABLE 3.4 Floating Point Instructions for the MIX Computer

and negative if they did not. If we let AX be the 10-byte dividend and C be the divisor,
then the new contents of the A and X registers are related by

AX = A × C + X

with 0 ≤ X < C (if 0 < C), or C < X ≤ 0 (if C < 0).

3.7 FLOATING POINT ARITHMETIC INSTRUCTIONS

The MIX computer instruction set provides for five floating point arithmetic
instructions (FADD, FSUB, FMUL, FDIV, and FLOT). Floating point operators are similar to
the integer operations in that the A register is used as an accumulator. The overflow
toggle is also set if exponent overflow or underflow occurs. Because of the nature
of floating point numbers, however, multiplication and division do not result in, or
require, more bits in the fractional part of the floating point, but only an adjustment
in the exponent. Thus, the X register is not used for floating point instructions. The
floating point hardware works best on normalized numbers, and always returns a
normalized result. The operator FLOT converts an integer number in the A register into
the corresponding floating point representation and leaves this floating point number in
the A register.

Most of our work in this text will deal with integer arithmetic, since (almost) all
computers provide integer arithmetic operators, while floating point hardware is often
not provided for the MIX machine. In fact, the floating point hardware for the MIX
machine is not provided with the basic MIX 1009 computer but is an option available at
extra cost. The instruction set has been defined with floating point operators included,
however. If these instructions are included in a program which is run on a MIX computer
without the floating point hardware option, they are treated as illegal instructions and
will cause the MIX machine to halt.

3.8 COMPARISON OPERATORS

The comparison operators, CMP*, allow * to specify any of the eight registers A, 1, 2,
3, 4, 5, 6, X to be compared against the partial field in the memory location specified
by the effective address. The same bytes of the register and memory are always
compared. Thus, a CMPA with field specification 1:3 will compare bytes 1:3 of the A
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Opcode Field Mnemonic Instruction
70 L:R CMPA compare A and (m), set comparison indicator
71 L:R CMP1 compare I1 and (m), set comparison indicator
72 L:R CMP2 compare I2 and (m), set comparison indicator
73 L:R CMP3 compare I3 and (m), set comparison indicator
74 L:R CMP4 compare I4 and (m), set comparison indicator
75 L:R CMP5 compare I5 and (m), set comparison indicator
76 L:R CMP6 compare I6 and (m), set comparison indicator
77 L:R CMPX compare X and (m), set comparison indicator

TABLE 3.5 Comparison Instructions for the MIX Computer

register to bytes 1:3 of memory. The values of any other bytes in memory or the register
are not important. If the sign bit is not included, a positive sign is used.

The register is compared to memory and the comparison indicator is set to either
GREATER, EQUAL, or LESS as,

GREATER The register is greater than the memory location
EQUAL The register is equal to the memory location
LESS The register is less than the memory location

Remember that positive zero is equal to negative zero. Thus, a comparison with partial
field 0:0 will always result in an EQUAL comparison indicator. Since bytes 1, 2, and 3 of
all index registers are zero, using a field specification of 0:0, 0:1, 0:2, or 0:3 allows
these bytes of memory to be compared with zero, to determine the positive, zero, or
negative nature of memory.

3.9 JUMPS

The comparison operators are used to set the comparison indicator. The results of
a comparison can be used to affect the flow of control in a program by a jump. Jump
instructions will change the value of the program counter to the effective address if the
test condition is satisfied. The following jump instructions test the current value of the
comparison indicator.

JG Jump if comparison indicator is GREATER
JE Jump if comparison indicator is EQUAL
JL Jump if comparison indicator is LESS
JLE Jump if comparison indicator is LESS or EQUAL
JNE Jump if comparison indicator is LESS or GREATER
JGE Jump if comparison indicator is GREATER or EQUAL

These instructions do not change the value of the comparison indicator.
In addition, programs can test the state of the A register, X register, or index registers

directly and transfer control without the use of a comparison instruction by the following
jumps, where * may be A, 1, 2, 3, 4, 5, 6, or X to specify the register being tested.
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J*N Jump if register * is negative (but not negative zero)
J*Z Jump if register * is zero (positive zero or negative zero)
J*P Jump if register * is positive (but not positive zero)
J*NN Jump if register * is nonnegative (positive or zero)
J*NZ Jump if register * is nonzero (positive or negative)
J*NP Jump if register * is nonpositive (zero or negative)

In all these tests, negative zero and positive zero are zero, and are not considered
to be positive or negative numbers.

JOV and JNOV will transfer control to the effective address if the overflow toggle is on
(overflow) or off (no overflow), respectively. In either case, for both of these instructions,
the overflow toggle is turned off after the instruction is executed.

JMP is an unconditional jump. It always transfers control to the effective address.

In all these cases, the J register is always set to the value of the program counter
before the program counter is set to the effective address if the condition is satisfied and
the jump occurs. (If the jump does not occur, both the J and P registers are unchanged.)
Since the program counter is already advanced to point to the next instruction, the J
register will always contain the address of the instruction which follows the most recent
successful jump.

In certain cases, this may not be desired. The JSJ instruction is an unconditional
jump, but the value of the J register is not changed.

Opcode Field Mnemonic Instruction
47 00 JMP jump to m
47 01 JSJ jump to m (but do not change register J)
47 02 JOV jump to m if overflow on, turn overflow off
47 03 JNOV jump to m if overflow off, turn overflow off anyway
47 04 JL jump to m if comparison indicator is less
47 05 JE jump to m if comparison indicator is equal
47 06 JG jump to m if comparison indicator is greater
47 07 JGE jump to m if comparison indicator is greater or equal
47 10 JNE jump to m if comparison indicator is not equal
47 11 JLE jump to m if comparison indicator is less or equal
5* 00 J*N jump to m if * is negative
5* 01 J*Z jump to m if * is zero
5* 02 J*P jump to m if * is positive
5* 03 J*NN jump to m if * is nonnegative
5* 04 J*NZ jump to m if * is nonzero
5* 05 J*NP jump to m if * is nonpositive

TABLE 3.6 Jump Instructions for the MIX Computer. The * in the last six jump
instructions can be replaced by either A, X, 1, 2, 3, 4, 5, or 6, giving 48 of these
types of jump instructions.
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3.10 IMMEDIATE OPERATORS

The load, store, arithmetic, comparison and jump instructions all treat the effective
address as an address of a location in memory. The immediate operators do not treat
the effective address as an address but as a signed integer. This signed integer can be
entered (placed, loaded) into a register (ENT*), added to a register (INC*), subtracted
from a register (DEC*), or its negative entered into a register (ENN*). In any of these
instructions, the register involved can be A, X, or any of the index registers.

Opcode Field Mnemonic Instruction
60 00 INCA increment A by m
60 01 DECA decrement A by m
60 02 ENTA enter m into A
60 03 ENNA enter negative of m into A
61 00 INC1 increment I1 by m
61 01 DEC1 decrement I1 by m
61 02 ENT1 enter m into I1
61 03 ENN1 enter negative of m into I1
62 00 INC2 increment I2 by m
62 01 DEC2 decrement I2 by m
62 02 ENT2 enter m into I2
62 03 ENN2 enter negative of m into I2
63 00 INC3 increment I3 by m
63 01 DEC3 decrement I3 by m
63 02 ENT3 enter m into I3
63 03 ENN3 enter negative of m into I3
64 00 INC4 increment I4 by m
64 01 DEC4 decrement I4 by m
64 02 ENT4 enter m into I4
64 03 ENN4 enter negative of m into I4
65 00 INC5 increment I5 by m
65 01 DEC5 decrement I5 by m
65 02 ENT5 enter m into I5
65 03 ENN5 enter negative of m into I5
66 00 INC6 increment I6 by m
66 01 DEC6 decrement I6 by m
66 02 ENT6 enter m into I6
66 03 ENN6 enter negative of m into I6
67 00 INCX increment X by m
67 01 DECX decrement X by m
67 02 ENTX enter m into X
67 03 ENNX enter negative of m into X

TABLE 3.7 Immediate Instructions for the MIX Computer



116 CHAPTER 3. A DETAILED DESCRIPTION OF THE MIX COMPUTER

The ENT* and ENN* instructions are directly analogous to the LD* and LD*N
instructions allowing any register to be loaded with a small constant (in the range
-4095 to +4095) directly from the instruction without needing to load from memory.
Bytes 1 to 3 are always zero after an enter or enter negative instruction. The increment
and decrement are similar to ADD and SUB but can affect any of the eight central registers
by the addition or subtraction of a small constant (-4095 to +4095) without fetching it
from memory. Overflow may occur and will cause the overflow toggle to be set, in the
case of the A or X register. The index registers cannot be set outside the range of -4095
to +4095 (two bytes plus sign). An attempt to increment or decrement an index register
outside this range is an error and will halt the computer.

3.11 INPUT/OUTPUT INSTRUCTIONS

The input/output system for the MIX machine is quite simple and uses only three
instructions (IN, OUT, IOC). Byte 4 of the instruction specifies the device which is being
used with the instruction.

The IN instruction starts the input of information from an input device. The address
given as the operand of the instruction is the address of the first location of a group of
contiguous memory words into which information from the device will be read. Each
device always reads a fixed amount of information. Each of these items is called a
record . For example, a record for a card reader is one card, or 80 characters. At 5
characters per word (one character per byte), a card reader record is 16 words long.
The record length is 16 words. The record length for tape, disk, and drum units is 100
words.

When an IN instruction is executed, the device (specified in byte 4) is notified that it
should read one record and put it in memory, starting at the memory location given by
the effective address, m.

Most I/O devices are very slow relative to the central processing unit (CPU). The
fastest card reader still takes about 50 milliseconds to read a card, while the CPU takes
on the order of microseconds to execute an instruction. Thus, the IN instruction only
starts to read the card and then it continues to the next instruction. The device will
become busy for as long as it takes to input a record and then will again become ready
(idle), waiting for the next IN instruction. Before the CPU can use the information which
is being read in, it must be certain that the IN instruction which started the reading is
complete. This will happen when the device becomes ready (not busy) again. To test
this, two jump instructions exist. JBUS (jump if device is busy) will jump if the device
(whose device number is in byte 4) is busy. If the device is not busy, execution continues

Opcode Field Mnemonic Instruction
42 N JBUS jump to location m if unit N is busy
43 N IOC issue I/O control signal to unit N
44 N IN start input transfer from unit N
45 N OUT start output transfer from unit N
46 N JRED jump to location m if unit N is ready

TABLE 3.8 Input/Output Instructions for the MIX Computer
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to the next instruction. The JRED (jump if ready) will jump if the device is ready, that is,
not doing anything now and ready to perform an I/O operation if so instructed. Both of
these instructions will change the J register if the jump occurs; otherwise, execution
continues at the next instruction.

The OUT instruction is very similar to the IN. The device is requested to begin
outputting information from the block of memory beginning at the memory location
specified by the effective address. As with the IN instruction, the amount of information
which is transferred is always exactly one record, the length of a record depending
on the device. The line printer, for example, has 120 characters per line and a record
length therefore of 24 words. The card punch has a record of 16 words.

Also, as with the IN instruction, the transfer of information caused by the OUT
instruction is only started by the OUT instruction. It cannot be considered complete until
a JBUS or JRED instruction indicates that the device is ready for another instruction. This
is true with one exception. For both the IN and OUT instructions, if an I/O instruction
occurs for a busy device (busy because of a previous I/O instruction which is not yet
complete), then the CPU waits until the previous operation is complete before starting
the new I/O operation and going on to the next instruction.

The IOC (Input/Output Control) instruction is provided in MIX to allow different I/O
devices to be controlled. Each I/O device is unique in how it operates and although
the basic functions which they perform are those of Input and Output, some devices
can also do other functions. The IOC instruction instructs the I/O device to begin one of
these additional functions. If the device is busy, the CPU waits until it is ready before
executing the instruction and continuing. The effective address is a parameter to the
device.

The greatest use of IOC comes with magnetic tapes. The IOC command is used to
position a tape. The effective address, m, specifies how. If m = 0, the tape is rewound.
If m > 0, the tape skips forward m records; if m < 0 then the tape skips backwards -m
records (or to the beginning of the tape, whichever comes first). For other devices, the
effect of the IOC command depends on the device.

3.12 SHIFT INSTRUCTIONS

Six shift instructions are provided to shift information in the A and X registers. Three
shift instructions shift left, and three shift right. The effective address specifies the
number of bytes to shift. SLA and SRA are end-off shifts which affect only the A register,
while SLAX and SRAX shift the A and X registers as one large 10-byte double register. (A

Opcode Field Mnemonic Instruction
06 00 SLA shift A m bytes left, end-off
06 01 SRA shift A m bytes right, end-off
06 02 SLAX shift AX m bytes left, end-off
06 03 SRAX shift AX m bytes right, end-off
06 04 SLC shift AX m bytes left, circular
06 05 SRC shift AX m bytes right, circular

TABLE 3.9 Shift Instructions for the MIX Computer
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is the high-order 5 bytes; X is the low-order 5 bytes.) Zeros are shifted in from the left
(for an SRA or SRAX) or from the right (for an SLA or SLAX), since these are end-off shifts.
The SRC and SLC shift the A and X registers (again as a double register) circularly with
the bytes which are shifted off one end being shifted back in at the other end. The signs
of the A and X registers are not changed by any shift instruction.

3.13 MISCELLANEOUS COMMANDS

A number of commands do not fit easily into the categories of instructions presented
above. These miscellaneous commands perform various important tasks.

The HLT instruction stops the computer. The computer can be restarted only by
pushing the BEGIN button on the MIX console.

NOP is an instruction which does nothing. It is similar to a CONTINUE statement in
Fortran.

MOVE is a very complicated but useful instruction. It copies the contents of a block
of memory locations into another block of memory locations, effecting a memory-to-
memory transfer capability. Byte 4 specifies the number of words to move, while the
effective address specifies the address from which the contents should be copied. Index
register 1 contains the address where the contents should be copied to. The copy is
done one word at a time, and I1 is increased as the copy is executed, so that at the
end of the move, I1 has been increased by the number of words moved. Words are
moved one at a time, and the blocks of words being copied to and from can overlap.

The input/output system has many devices which treat information as alphabetic
characters, not as numeric quantities, while the CPU operates only on numeric data, of
course. To simplify the conversion between binary and character code, two conversion
instructions, NUM and CHAR, are included in the MIX instruction set. The NUM operator
converts the contents of the A and X register, considered as one large 10-byte register
(A is high-order; X is low order), from a 10-character character code representation
of an integer number (right justified, zero filled) to the binary representation of that
number, and puts the numeric representation into the A register. The X register and
the sign bytes of both registers remain unchanged. Each byte of the A and X register
is the character code for one digit of the number. The digit specified by a byte is the
remainder of the byte divided by 10. Thus, 00, 10, 20, . . . , 60 all are converted to the
digit 0; 01, 11, 21, . . . , 61 convert to the digit 1; and 09, 19, 29, . . . , 59 convert to 9.
Since the largest number which can be stored in one word is 1,073,741,823, there are
(ten-character) numbers which cannot be converted to binary, and overflow results in
these cases.

Opcode Field Mnemonic Instruction
05 00 NUM 10-byte decimal in AX converted to binary in A
05 01 CHAR A is converted to 10-byte decimal characters in AX
05 02 HLT halt the MIX machine
00 00 NOP no operation
07 N MOVE move N words starting from m to (I1), add N to I1

TABLE 3.10 Miscellaneous Instructions for the MIX Computer
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Conversion in the other direction, from numeric binary to character code is performed
by the CHAR instruction. When the CHAR instruction is executed, the contents of the A
register are converted from numeric binary into a 10 digit (decimal) character code (with
leading zeros if necessary). The high-order 5 characters are put into the A register, and
the low-order five characters are put into the X register. The signs of the A and X register
are unchanged.

For both the NUM and the CHAR instructions, the effective address (bytes 0:3) of the
instruction is ignored.

3.14 BINARY INSTRUCTIONS

As an option (at extra cost), purchasers of the binary MIX 1009B computer can
have added to their instruction set several special instructions specifically designed for
a binary machine. These instructions are only for binary computers and treat a MIX
word, not as 5 bytes plus sign, but as a word of 30 bits plus sign.

SRB and SLB shift the A and X register, treated as a double register, right or left the
number of bits specified by the effective address. A shift left of one bit is equivalent to
multiplying by two; a shift left by two bits, multiplying by four; and so on. These shifts
are end-off, with zeros shifted in.

The AND, ORR, and XOR operations are called Boolean instructions. They perform
the “logical”, or Boolean, operations on the A register and the contents of the memory
location addressed by the effective address. These operations are those of “and”, “or”,
and “exclusive-OR”. They are applied bitwise; so, for an AND instruction bit 0 of the A
register is ANDed with bit 0 of memory and the result is put in bit 0 of the A register; bit 1
of the A register is ANDed with bit 1 of memory and put in bit 1 of the A register; and so
on. The AND, ORR, and XOR functions on each of the four possible operand pairs (one
from the A register, and the other from memory) are

Operand 1 Operand 2 AND ORR XOR
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

Opcode Field Mnemonic Instruction
01 07 ORR inclusive-OR of (m) with A
02 07 XOR exclusive-OR of (m) with A
03 07 AND logical AND (m) into A
06 06 SLB shift AX m bits left, end-off
06 07 SRB shift AX m bits right, end-off
50 06 JAE jump to m if A is even
50 07 JAO jump to m if A is odd
57 06 JXE jump to m if X is even
57 07 JXO jump to m if X is odd

TABLE 3.11 Binary Instructions for the MIX Computer
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3.15 INSTRUCTION EXECUTION TIMES

One important property of a computer program is how long it takes to execute. This
is determined to a large extent by the algorithm which the program uses, but also by
which instructions it uses. Since arithmetic unit and control unit circuitry is electronic, it
can operate at very high speeds, and so the time it takes to execute an instruction is
determined mainly by how many memory references are made. The immediate, jump,
NOP, NUM, and CHAR instructions all take one time unit, since only the instruction need
be fetched from memory. The memory reference instructions (load, store, arithmetic,
and compare instructions) need two memory references (one for the instruction and
one for the operand), and so take two time units. MUL and DIV instructions are an
exception, since they are so complex; MUL takes 10 time units and DIV takes 12. Shift
instructions take two time units, even though they only reference memory once. The
MOVE instruction requires 2 × n + 1 memory references to move n words, and so takes
2 × n + 1 time units (one for the instruction fetch, and one to load and one to store each
of the n words).

The IN, OUT, and IOC instructions only take one unit plus any time they must wait
because of a busy device. This extra time is called the interlock time and is often on
the order of thousands of time units.

The actual length of a time unit varies according to the technology used to build
the MIX computer. Old MIX machines may have time units of 3 or 4 microseconds,
while the newer models, using semiconductor memory, have time units of 500 to 800
nanoseconds. Since we wish to discuss all MIX machines, we discuss all execution
timings in terms of the memory cycle time of the MIX machine, which we call one time
unit.

3.16 SUMMARY

The MIX computer is a small general-purpose computer whose design has
been influenced by a number of contemporary computers. It has 4000 words
of memory, with each memory location being composed of 5 bytes plus a sign.
Registers include the A and X registers (five bytes plus sign), six index registers
(two bytes plus sign), the J register (two bytes), overflow toggle (ON/OFF) and
comparison indicator (GREATER/EQUAL/LESS). Instructions allow loading and storing
registers, addition, subtraction, multiplication, division, shifts, immediate operations,
compares, jumps, input/output, conversion between (decimal) character code and

Instructions Time
All load, store, compare, and shift instructions: 2 units
The ADD and SUB arithmetic operations: 2 units
The MUL arithmetic operation: 10 units
The DIV arithmetic operation: 12 units
The MOVE operation, to MOVE n words in memory: 2×n + 1 units
All other instructions: 1 unit

TABLE 3.12 Execution Times for the Instructions of the MIX Computer
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numeric binary, and a few miscellaneous commands. The operands for memory
reference instructions may be partial fields of a memory location. The effective
address may be given in the instruction with no modification, indexing, double indexing,
indirection, preindexed indirection, or postindexed indirection. Binary MIX machines
can be equipped with special binary instructions.

The MIX machine was originally defined by Knuth in the first volume of The Art
of Computer Programming, Knuth (1968), and repeated in the second volume, Knuth
(1969). A short paperback, entitled MIX, was published in 1970 to serve as a reference
for the MIX system. This was a reprint of the defining pages of Knuth (1968). There may
be a locally prepared manual or report which describes your particular MIX computer
system; check with your instructor or computation center.

EXERCISES

1. Why does the MIX machine need the X register?

2. What are the contents of the A and X registers after a multiply? After a divide?

3. Why does it take longer to execute a load instruction than an enter instruction?

4. What is the difference between a memory reference instruction and an immediate
instruction? Describe the instruction execution cycle for each on the MIX machine.

5. Describe the effective address calculation procedure without indirection.

6. How does (or doesn’t) an increment of n differ from a decrement of -n? Why
would both instructions be provided?

7. Write a single machine language instruction to do each of the following operations.
Assume that your instruction will go in location 2734 (octal).

(a) Put 10 (decimal) into index register I5.

(b) Set the A register to zero.

(c) Subtract the contents of I3 from the A register.

(d) Put the sum of index registers I1 and I2 into I2.

(e) Put the address of the current instruction into the A register.

(f) Rewind tape unit 1.

8. What is double indexing? Give a MIX machine language instruction which uses
double indexing by I1 and I2.

9. Most computers have a NOP (no operation) instruction. Why? Discuss its possible
uses, if any. Can you think of any other instructions which have no more effect on
the computer but add one to the program counter?

10. Appendices C and D list 159 different MIX instructions. How many bits are needed
to represent 159 different things? How does MIX get by with only a six-bit opcode
field?
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11. For a load, store, and compare instruction with a partial field specification of L:R,
which bytes of the register and which bytes of the memory location are affected
and how?

12. Why are partial fields not allowed with immediate instructions?

13. Is the MOVE instruction necessary, or could its function be done with an appropriate
combination of other instructions?

14. Give the instruction execution times for the MIX instruction set. If the MOVE
instruction only moves n words, why does it take more than n time units?
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ASSEMBLY LANGUAGE PROGRAMMING
TECHNIQUES

In some sense, the programming process is independent of the language which
is used for programming, but in a more realistic sense different languages encourage
different programming techniques to be used. The machine which is being used for
assembly language programming, since it affects the instruction set, also affects the
type of programming which can be easily done. The result of this is that there is a body
of general programming techniques which can be used for programming in assembly
language for most machines, but the details must depend upon the particular machine
being used. The basic concepts and techniques are the same for most computers.
In this chapter, we present some of these techniques to illustrate how to program in
assembly language. By and large, many of these techniques will only be learned by
their use, however, and as you program, you will learn new techniques which are not
presented here.

Writing a program is an art, and no one way to program is correct for all situations.
Recent discussions have lead to general agreement on several points, however. First,
an important distinction exists between programming and coding. Programming is the
process of converting a vague description of a problem into a specific algorithm for
solving the problem. This involves defining appropriate data structures, determining
what information is to be input and output and the flow of control within the program.

Defining the flow of control can be helped by the use of top-down programming
techniques. A top-down approach starts with a general statement of the problem and
successively refines its components by considering each of these to be a separate
problem. This is somewhat difficult to explain, but easier to illustrate. Look back at
how the program to add two numbers together and print their sum, in Section 2.2, was
developed. First, the top-most level was defined: Input, Add, Output, Halt. Then, each
step at this level was examined and broken down into its components until each step
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of the program could be converted directly into machine language. Typically, the top-
down refinement process continues until each step can be solved by a single machine
language instruction, subroutine (see Chapter 6), or macro (see Chapter 9).

The translation of each step of a program into a machine readable format and
machine instruction is coding. Coding is a necessary but not generally exciting activity.

The process of coding is itself composed of several steps. The data locations which
are to be used must be decided upon and allocated. Then the instructions must be
written to manipulate this data and perform the function for which the program is being
written. In practice, these two steps are often intermixed, with new variables being
found to be needed as the result of newly written code. The data and the code must
be well separated in the final program, however. A common mistake made by novice
programmers is to allocate storage for variables as they find they are needed, as in

LDA B COMPUTE B + C
ADD C
STA D STORE IN D

D CON 0 ALLOCATE STORAGE FOR D
LDA E
SUB D NOW SUBTRACT (B+C) FROM E

What is the problem with this? In the assembly of this code, no problem develops;
six words are assembled, the five instructions and the data value for D. But during
the execution of the program, the program counter will be incremented by one after
each instruction is executed in order to fetch the next instruction. This will result in
the LDA being fetched and executed, then the ADD, then the STA and then the next
location (containing the data value for D) will be fetched, decoded and executed as an
instruction. The result of this is completely dependent upon the number stored in that
location by the previous STA D instruction. For example, if B = 24 and C = 15, then their
sum will be 39 and this will be stored in D as

+ 00 00 00 00 47

which is a JMP to +0000!
To prevent this kind of error, programmers use several methods. One method is to

program with two sheets of paper, one for the instructions and a separate one for the
variables and other data items. Then if new data items are discovered to be needed
while writing instructions, the declarations for them are written on the appropriate sheet
with other data items. Another approach is to first sit down and write all the code,
ignoring the data declarations, and then after the instructions have been written, go
back and write down data declarations and allocations for all variables which are used.

In either case, one arrives at the end with two lists, the instructions and the data.
These are then combined to form the program. They can be combined in either of two
ways: code and then data, or data and then code. In many instances the order is not
important, but it is generally best, in MIXAL, to put your data before your code. This
avoids many forward references and possible limitations on the use of symbols due to
this. (Remember that forward references cannot be used in ORIG, EQU, or CON pseudo-
instructions, in literals or in address expressions). Also, the wise use of mnemonic
variable names and comments can explain the use of the variables, preparing the
reader of the program for the code which follows.
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We do not generally present entire programs here, but only small fragments of
code. This is because we wish to focus our attention on only specific aspects of the
coding problem. This allows us to present coding techniques specifically applicable to
that aspect of programming under study only. This may sometimes result in undefined
symbols being used. It is assumed that the reader will be able to understand from their
use how they should be defined. Most often it will be a simple variable which can be
defined by a CON 0 or an ORIG *+1.

4.1 ARITHMETIC

Computers were originally built to automate arithmetic calculations, and many
people still believe this is their major function. Thus the coding of arithmetic expressions
is a logical place to start. (In fact, actual arithmetic computation is only a minor part of
what computers do. Remember that in the machine language program of Section 2.2,
only 1 instruction out of 16 was an arithmetic computation; the others were input/output,
conversion, loads and stores, etc.). Here we assume we have a set of integer numbers
upon which we wish to compute some simple arithmetic expression.

To start, consider a simple addition. We wish to compute the sum of the value of the
variables CAT and DOG and store the sum in the variable FIGHT. This code might look
like

CAT CON 0 DATA LOCATION FOR CAT
DOG CON 0
FIGHT CON 0

...
<code to give CAT and DOG values>
...
LDA CAT
ADD DOG
STA FIGHT SET FIGHT = CAT + DOG

If we wanted FIGHT = CAT - DOG, we have (assuming the data declarations above)

LDA CAT
SUB DOG
STA FIGHT SET FIGHT = CAT - DOG

For ZOO = DOG * CAT, the code needs to consider that the product of two 5-byte
numbers will be a 10-byte number with the upper 5 bytes in the A register and the lower
5 bytes in the X register. If we expect that the product will always be no more than 5
bytes in magnitude, we can write

LDA DOG
MUL CAT PUTS PRODUCT IN AX
STX ZOO ZOO = DOG*CAT LOWER 5 BYTES

Notice that this code fragment does not worry about overflow. If we fear that the product
DOG*CAT may be too large for five bytes, we can write

LDA CAT
MUL DOG AX = DOG * CAT
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JANZ TOOLARGE CHECK FOR PRODUCT TOO BIG
STX ZOO

For this code, if the product is greater than five bytes, the A register will have the
upper five bytes, which will be nonzero. In this case the program will jump to the location
whose label is TOOLARGE and execute the code there. If the A register is zero, the
product is small enough to fit in five bytes (and is in the X register), so this is stored in
the memory location ZOO. Remember, we still have to write the code for TOOLARGE. This
code might be a simple

TOOLARGE HLT 0 OVERFLOW, STOP

or more complicated (and better) code which prints a message saying what went wrong
and informs the user of the program what steps can be taken to correct the problem
(change data, rewrite program, or such).

Division must also be coded carefully. If we want RATIO = NMEN / NWOMEN, we need
the dividend (NMEN in this case) as a 10-byte quantity in register AX for the DIV operator.
Normally this means putting the dividend in the X register and zero in the A register.
This can be done in several ways. The major constraint in how it is done is that the
sign of the dividend is the sign of the A register. Thus, if you know that your dividend is
positive, division can be

LDX NMEN
ENTA 0
DIV NWOMEN COMPUTE NMEN/NWOMEN

If the sign of the dividend can be either positive or negative, then code can be

LDA NMEN(0:0) PUT SIGN IN A
LDX NMEN LOAD NUMBER IN X
DIV NWOMEN DIVIDE NMEN BY NWOMEN

which loads the sign into the A register (setting the rest to zero) and the rest of the
dividend into the X register, or the code can be,

LDA NMEN LOAD NUMBER IN A
SRAX 5 SHIFT INTO X, LEAVING SIGN
DIV NWOMEN DIVIDE

In this case, the number is loaded into the A register and shifted into X. SRAX is an
end-off shift, so zeros are shifted into the A register and the old contents of the X register
are lost. The sign bits do not participate in the shift, so the sign of the dividend remains
in the sign bit of the A register.

Once the division has been done, the quotient will be in the A register, and the
remainder in the X register. Thus, these two quantities can be used, as desired, and
the same code can be used to compute either the quotient or the remainder (or both).
Remember that the DIV operator is an integer division. Fractions would require the use
of floating point arithmetic.

Once these basic operations are understood, it is possible to compute much more
complicated expressions, like XI = I + J*L1. This expression would be programmed to
first perform the multiplication, then the addition. To do the multiplication, we would
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LDA J
MUL L1 AX = L1*J

Now we have J*L1, but it is in the X register. The ADD operator only adds to the A
register, so we must get our result into the A register for the addition. This could be
done by

STX TEMP
LDA TEMP TRANSFER FROM X TO A

where TEMP is a temporary variable, or we could simply

SLAX 5 SHIFT X INTO A

which is faster (2 time units instead of 4) and shorter (1 instruction instead of 2). Notice
that we are taking advantage of the sign bits of the A and X registers as set by the MUL
operator. Now we can add and store. Our complete code is then

LDA J
MUL L1 COMPUTE J*L1
SLAX 5 MOVE X TO A
ADD I
STA X1 X1 = I + J*L1

Even more complicated expressions may be computed. Consider the expression

((B+W)*Y) + 2 + ((L-M)*(-K))/Z

This is the sum of three terms. This means that at least one term must be stored in
memory, in a temporary, while the other term is being computed. The addition by 2 can
be done by either

ADD =2= INCREASE A BY 2

or

INCA 2 INCREASE A BY 2.

Since the latter is shorter and faster, we use it. (Shorter because although both
instructions are the same length, the ADD also requires a literal, which is one memory
location).

Since the first term is simpler, let us attack it first. We can write

LDA B
ADD W A = B+W
MUL Y AX = (B+W)*Y

Now we can add the 2, but remember the result of the MUL will be in AX, so we

INCX 2 X = (B+W)*Y + 2

This is even better than we had thought, over the ADD approach, since it prevents having
to move the product from the X register to the A register for the ADD. Now we need to
store this while we compute the next term.

STX TEMP SAVE PARTIAL TERM
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Next we compute ((L-M)*(-K))/Z. This can be done easiest by noting that
((L-M)*(-K)) = ((M-L) * K), which removes one operation, and we can now write,

LDA M
SUB L M-L
MUL K (M-L) * K
DIV Z ((M-L)*K) / Z.

Notice that the MUL leaves the AX register just right for a DIV. This is one reason for doing
our multiply first. Another reason is due to the integer nature of the division. If (M-L)
= 100, K = 50, and Z = 100, consider the result of computing (M-L)*(K/Z) instead of
((M-L)*K)/Z. For (M-L)*(K/Z), K/Z = 0 and the product is 0, while for ((M-L)*K)/Z,
the product is 5000 and the quotient is 50. This illustrates the wide difference which
can result from carelessness with the order of multiplication and division.

Once the division is done, we can add from our temporary, TEMP, to the quotient,
which is conveniently in the A register. Our complete code is then

LDA B B
ADD W B+W
MUL Y (B+W)*Y
INCX 2 ((B+W)*Y)+2
STX TEMP TEMP = ((B+W) * Y) + 2
LDA M M
SUB L M-L
MUL K (M-L) * K
DIV Z ((M-L)*K) / Z
ADD TEMP ((B+W)*Y) + 2 + ((M-L)* K)/Z

Overflow is a problem which we have not considered in this code. Notice that at any
(arithmetic) instruction overflow could occur (except for the DIV, but if Z = 0, this will act
the same as overflow). One of the nice features of MIX is that the overflow toggle is
turned on whenever overflow occurs, but is not turned off when it does not occur. This
means that if it is off before we begin to execute this code, and is on after the code
is executed then overflow has occurred somewhere in the expression. Often it is not
important to know exactly where overflow has occurred, but only if it has occurred at
any time during the evaluation of the expression. This can be tested by one test at the
end of the expression computation as,

JOV OVERFLOW

Remember that this will also turn the overflow toggle off so that it can be used for the
next segment of code. This approach to testing overflow requires that the overflow
toggle be off before the computation of the arithmetic expression is begun. How do we
guarantee that it is off? The easiest way is to test for overflow whenever it may occur.
This assures that as soon as it happens, it will be recognized and appropriate action
taken. Alternatively, we will need to turn the overflow toggle off explicitly. Searching the
list of machine instructions, we find that there is no instruction to turn off the overflow
toggle. But consider

JOV *+1
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This instruction will not jump if the overflow is off, and if it is on, it will turn the overflow
off, and jump to *+1. In either case the next instruction will be at *+1, with the overflow
toggle off.

4.2 JUMPS

The discussion of overflow brings up the subject of jumps and particularly conditional
jumps. These instructions allow us to compute different functions based on the value of
our data. Consider the absolute value function

if n < 0,
then absolute value of n = -n
otherwise absolute value of n = n.

To compute this we could write the following code

LDA N
JANN 1F IF NOT NEGATIVE LEAVE ALONE
LDAN N BUT OTHERWISE LOAD -N

1H EQU * A REGISTER HAS ABS OF N

When execution reaches the label 1H, the A register has the absolute value of N. The
JANN will jump directly to 1H if the contents of the A register is positive or zero. If N was
negative, then the LDAN would load the negative of N into the A register and then “drop
through” to 1H.

Tests on the sign of a number or on the zero/nonzero nature of a number can be
done by loading into a register and testing the register. The jump instructions allow the
A and X registers and the index registers to be tested directly for positive, negative, zero,
nonzero, nonpositive, and nonnegative states.

We can use these instructions to compute the sign function. The sign function of
a number p is +1 if p is positive, zero if p is zero and -1 if p is negative. If we want to
leave the sign function of p in the A register, we can write

LDA P
JAZ 1F
JAP 2F
ENTA -1 NEGATIVE NUMBER
JMP 1F

2H ENTA +1 POSITIVE NUMBER
1H EQU *

Follow this code for each of the three cases (p < 0, p = 0, p > 0) to make sure that it is
correct.

Comparisons between two numbers, and computations based on this comparison,
generally use the CMPA or CMPX instruction. For example, to execute the code at FGREAT
if F > G, or FLESS if F < G, we can write

LDA F
CMPA G
JG FGREAT
JL FLESS
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What happens if F = G? In the above code, we “drop through” the tests. If we wanted to
take the FGREAT path, then we should have written

LDA F
CMPA G
JGE FGREAT
JL FLESS

and the JL could have been replaced by a JMP.
To compute the maximum of two numbers P and W, we could write

LDA P
CMPA W
JGE 1F
LDA W

1H EQU *

This code leaves the maximum of P and W in the A register.

4.3 LOOPS

Jumps are a very important part of computers. Code which does not have any
jumps is called straight-line code, since it is executed in a linear manner, one statement
after another. Jumps are used in two ways. One is to produce conditional execution of
code similar to an IF statement. The other use of jumps is to create loops. Loops allow
code to be repeated until some condition is met. The condition may be that a particular
property holds, or that the loop has been executed a certain number of times. Both of
these are programmed by the use of conditional jumps.

Suppose we wish to find a number i such that i2 ≤ N < (i + 1)2. We can do this by a
loop which can be described as,

set i to 1.
if i × i > N

then i - 1 is our number
otherwise set i to i + 1 and repeat the test again.

In MIXAL this would be

ENTA 1
STA I SET I TO 1

*
1H LDA I

MUL I AX = I*I
CMPX N COMPARE LOWER 5 BYTES
JG FOUND IF GREATER, QUIT LOOP

*
LDA I
INCA 1 SET I TO 1+1
STA I
JMP 1B REPEAT LOOP

*
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FOUND LDA I
DECA 1 WANT I-1

This is a straightforward coding of the previous algorithm. We would hope that some
local optimization would be able to improve that code, but the only obvious improvement
is to move the label 1H back one location to the STA I in order to eliminate the second
STA I before the JMP 1B.

Another kind of loop is the equivalent of the DO-loop of Fortran. In this kind of loop,
we repeat execution of the loop a fixed number of times, as counted by an index variable.
The DO-loop was specifically designed to allow its index variable to be stored in an index
register. Thus the DO-loop

DO 10 I = 1, N
<DO-loop body>

10 CONTINUE

can be written in MIX code as (letting index register 3 be the index variable I)

ENT3 1
1H EQU *

<MIX code for DO-loop body>
INC3 1
CMP3 N
JLE 1B CHECK FOR END OF LOOP

For example, to add the numbers from 1 to N, we could write

ENT3 1 LOOP INDEX = 1..N
ENTA 0 ACCUMULATOR OF SUM

1H INCA 0,3 INCREASE A BY CONTENTS OF I3
INC3 1 SET FOR NEXT LOOP
CMP3 N IF ANY
JLE 1B

* A HAS SUM OF 1 TO N

Notice that since addition is commutative, we could also add our numbers backwards,
from N to 1. The advantage of this is that our index can then be tested against zero,
which eliminates the CMP3 instruction, making the code slightly shorter (and faster) as

LD3 N
ENTA 0 ACCUMULATOR FOR SUM

1H INCA 0,3 A = A + INDEX 3
DEC3 1
J3P 1B CHECK FOR END OF LOOP

* A HAS SUM OF 1 TO N.

Loops can be nested. When loops are nested, different index registers should be
used to control the loops, of course.
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4.4 ARRAYS

One of the primary reasons for the use of loops is the repetition of a piece of code
on each element of an array. An array is a linear list of similar items which is indexed to
specify any particular element. Arrays are represented in MIX programs by sequential
locations in memory. Memory is allocated for an array by the ORIG pseudo-instruction.
For example, an array of 100 integers can be declared by

BASE ORIG *+100

This statement moves the location counter of the assembly program ahead 100
locations, leaving 100 locations of memory for the array. The elements are accessed
by BASE, BASE+1, BASE+2, . . . , BASE+99. The label (BASE in this case) is called the base
address. To avoid having to write out each address separately, we use indexing to
specify the address of each element in the array relative to the base address.

To initialize an entire array to zero, we could use code such as

ENT3 0 INDEX FOR ARRAY REFERENCING
1H STZ ARRAY,3 SET ELEMENT 13 TO ZERO

INC3 1
CMP3 =N= CHECK FOR END OF ARRAY
JL 1B

where the symbol N has been defined as the length of the array, as for example,

N EQU 176 LENGTH OF ARRAY IS 176

and the array ARRAY has been defined as

ARRAY ORIG *+N

FIGURE 4.1 Storage allocation and accessing for an array.
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Notice that an actual number may be used instead of the symbol. For example, for an
array of length 238 called XRAY,

XRAY ORIG *+238 RESERVE SPACE FOR XRAY
...
ENT6 0 INDEX FOR LOOP AND SUBSCRIPT

7H STZ XRAY,6
INC6 1
CMP6 =238= CHECK FOR END OF ZERO LOOP
JL 7B

The symbol is used rather than the actual number because (a) it can be more
descriptive, and (b) if the length of the array must be changed later, only the value of
the symbol need be changed (one line of code) if a symbol is used, instead of many
lines of code (one for every time the length of the array is used).

As with the loops seen above, the index variable can often be manipulated to make
the code simpler by running the index towards zero, rather than a nonzero quantity. For
an array 3DIM of length 27, for example, we could zero it by

3LENGTH EQU 27 LENGTH OF 3DIM ARRAY
3DIM ORIG *+3LENGTH
*

ENT2 3LENGTH-1 LENGTH MINUS ONE
2H STZ 3DIM,2 ZERO 3DIM

DEC2 1
J2NN 2B CHECK FOR ENTIRE ARRAY DONE

We can also index our array by quantities other than 0 to (the length of the array
minus one). If we want an array called YEAR which is indexed from 1900 to 1984, we
can declare it as

YEAR ORIG *+85

Then the label YEAR refers to the first location of the array. We want this to correspond
to an index value of 1900, so the correspondence between addresses and index values
is

Address Index value
YEAR 1900
YEAR+1 1901
YEAR+2 1902
. . . . . .
YEAR+84 1984

If index register 3 has the index value, then the address expression to access that
element of the array is YEAR-1900,3. This is the quantity YEAR-1900 plus the contents
of register 3. Since the index value is between 1900 and 1984, we have

1900 ≤ I3 ≤ 1984,
0 ≤ -1900+I3 ≤ 84,

and YEAR ≤ YEAR-1900+I3 ≤ YEAR+84,
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so our address will be in range. To illustrate it more concretely, suppose the array YEAR
begins at location 1000 and continues to location 1084, then the address YEAR-1900,3
is 1000 - 1900,3 = -900,3. From 1900 ≤ I3 ≤ 1984, we have 1000 ≤ -900,3 ≤ 1084,
again showing that the address which eventually results from the indexed address is
correct.

The most common form of this type of array indexing is with arrays indexed from 1
to M, rather than 0 to M-1. For this case the address is (using index register 5 to hold the
index value), ARRAY-1,5.

The types of processing which can be done on an array are almost endless, as
are the variations of coding which can be used. For example, consider the array XRAY
mentioned earlier, of length 238. XRAY can be zeroed by the code

ENT5 238
2H STZ XRAY-1,5

DEC5 1
J5P 2B

Notice our index runs from 238 down to 1, as the locations zeroed vary from XRAY-1+238
down to XRAY-1+1.

Consider how long this code takes to execute. The ENT5 is executed once and takes
1 unit of MIX time. The STZ takes 2 units, DEC5 1 unit, and J5P 1 unit, with each of these
being executed 238 times. The total time is then 1 + 238 × (2 + 1 +1) = 953 units.

Now consider the code

ENT5 238
2H STZ XRAY-1,5

STZ XRAY-2,5 ZERO TWO ELEMENTS AT ONCE
DEC5 2
J5P 2B

This code zeros the array the same as the previous loop, but it does it two elements at
a time. Notice that it is one instruction longer, but the loop is only executed 119 times
(238/2) rather than 238 times. The execution time is then 1 + 119 × (2 + 2 + 1 + 1)
= 715 units, saving 238 units over our first code. (However, it should be pointed out
that 238 units is much less than a millisecond, so unless this code was to be executed
millions of times, the effort to save the computer time would take much longer than the
savings). This is an example of a space-time trade-off . We can trade one extra location
in memory for 238 units of time (in this case). It is almost always possible to make a
program run faster by making it more complex and hence longer in terms of the amount
of space it uses. Similarly, it is generally possible to make a program use less space
by making it take more time to execute. These trade-offs (more time/less space; less
time/more space) are most often the result of using different algorithms. Consideration
of the time-versus-space trade-offs of particular algorithms is very important when
programming, since often the machine may have very limited memory available, or
computer time is very expensive (or both).

Array loops need not be executed a fixed number of times. Suppose we have an
array NAME ORIG *+500 and we want to search the first 37 entries for an entry whose
value is in the A register, because we wish to know the index of such an item. Searching
for an item in the A register can be
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ENT1 0 INDEX FOR SEARCH
4H CMPA NAME,1

JE FOUND MATCH FOUND
INC1 1 OTHERWISE INCREASE INDEX
CMP1 =37=
JL 4B IF STILL MORE TO CHECK

If the code “drops through”, then the item is not in the first 37 elements of the array; if
the code jumps to the label FOUND (someplace else in the program), index register 1
has the index of the item in the array NAME.

Now a “smart” programmer comes along and says “I can speed that up by running
my index from 37 down to 1 rather than from 0 to 36.” He proceeds to write the code

ENT1 37
4H CMPA NAME-1,1

JE FOUND
DEC1 1
J1P 4B

Now several questions arise. First, how much time has been saved? Only the loop
is changed, and it now has a DEC1 instead of an INC1 (but these take the same time)
and a J1P instead of a CMP1, JL (saving 2 units and 1 memory location, plus the literal).
Since the loop is executed 38 times, this saves 76 units. (Consider how much real
time this is). Another question is, does the code do the same thing? Well, no, not
quite. Notice that if FOUND is reached in this version, the value of index register 1 is one
more than the value of index register 1 from the first version. This means that either
all references which were NAME,1 must now be changed to NAME-1,1, or we need to
modify the code slightly to run our index from 36 to 0 rather than 37 to 1, as

ENT1 36
4H CMPA NAME,1

JE FOUND
DEC1 1
J1NN 4B

This makes the code the same except in one, not necessarily unlikely case. Suppose
there are two (or more) items in the array which are equal to the A register. Our first
code, running the index register from 0 to 36, would find the entry that matched which
had the lowest index, since it searches from smallest index to largest. The code above
would find the match with the highest index. This may make a very large difference to
the code at FOUND.

Another difference between these two pieces of code is in the average time that it
takes them to execute. Notice that for this code two times are important: how long it
takes to execute if the item is not found, and how long it takes to execute if an item is
found. If the items searched for tend to be at the beginning of the table most of the time,
then searching from the front will be faster (on average), while if the items searched for
tend to be towards the end of the table, then the search from the back will be faster (on
average). Most often we may not know where our searched-for items will tend to be
(front or back), and so the choice between these two techniques should be made on
other considerations (such as indicated above). Notice however that our not knowing
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which code will be faster does not mean that they both will take the same time; one of
them will be faster on average, we just do not know which. The problem of selecting
efficient searching and sorting algorithms has received considerable attention and is
the subject of many other books.

Arrays need not be constructed of only one-word elements. Multiple-word elements
are also possible. These arrays are sometimes called tables. Each element of a table is
a record with several fields. For example, the MIXAL assembler builds a symbol table
which is used to translate symbols in an assembly language program into their values.
This requires two parts to each item, the name and the value. The name may be up to
10 characters long, so we need two words for it, plus one word for the value. Thus each
record is three words long, with a format such as

first 5 characters of name
second 5 characters of name
value of name

Suppose that the symbol table is an array of up to 500 such records declared by

SYMBOL ORIG 3*500+* SAVE 500 ENTRIES 3 WORDS EACH

and LENGTH is a variable whose value is the number (from 0 to 1500) which is the
number of words in the symbol table. The table is originally empty (LENGTH = 0) and
as each new symbol is entered into it, the length is increased by 3. LENGTH then has
the index of the next empty spot in the symbol table. Then we can search the symbol
table for a name whose first five characters are in the A register and whose second five
characters are in the X register by

ENT1 0
1H CMPA SYMBOL,1

JNE 2F
CMPX SYMBOL+1,1 COMPARE SECOND HALF OF NAME
JE FOUND

2H INC1 3 3 WORDS PER RECORD
CMP1 LENGTH
JL 1B

If the program drops through, the name in the AX register is not in the table; if control
transfers to FOUND, the value of the name in AX is at SYMBOL+2,1.

One problem with the above might be if instead of LENGTH being the number of words
in the table, suppose we only had NITEMS whose value was the number of records in
the table. (So LENGTH = 3*NITEMS). From this we could compute the number of words
by a multiplication or we could run our loop with two index registers, one for counting
the number of items (0, 1, 2, . . . , NITEMS) and the other for indexing the symbol table (0,
3, 6, . . . , 3*(NITEMS-1)). This can be coded as

ENT1 1 COUNT NUMBER OF ITEMS
ENT3 0 INDEX FOR SYMBOL TABLE

1H CMP1 NITEMS END OF TABLE?
JG NOTFOUND
CMPA SYMBOL,3 CHECK FIRST HALF
JNE 2F
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CMPX SYMBOL+1,3 CHECK SECOND HALF
JE FOUND

2H INC3 3 NOT YET, INCREMENT INDEX
INC1 1
JMP 1B

Here we have made some other changes also. Control transfers to either FOUND or
NOTFOUND, depending on whether the symbol is found or not. We have moved the test
for completion of loop (I1 > NITEMS) to before the comparison to allow for a table with
zero entries. If the item is found, SYMBOL+2,3 is the address of the value of the name in
AX; if it is not found, I3 has the index of the first empty location in the table.

4.5 STACKS

One common use for an array is to implement a stack. A stack is a data structure
along with a specific way of entering data onto and removing data from the stack. The
classical example is a stack of plates or trays in a cafeteria. As plates are washed, they
are added to the top of the stack; as they are needed they are removed from the top of
the stack. This type of adding to the top and removing from the top mechanism is often
very useful in computer systems (for example, with subroutines as explained in Chapter
6), and so we show here how a stack would be coded.

Two data structures are needed for a stack: an array, to store the stack and a
variable to indicate the current number of items in the stack (top of stack pointer). As
with tables, the items in a stack may be several words long, but for simplicity we assume
that each item to be stacked is only one word. To provide storage for a stack, we define

TOP CON 0 TOP OF STACK INDEX
STACK ORIG *+LENGTH SPACE FOR STACK

Notice that although the stack may have a variable number of elements in the stack, we
must allocate a fixed amount of space for the stack. Thus, it is necessary to estimate
the maximum size that the stack will ever grow to be, and allocate that much memory

FIGURE 4.2 Stack operations: the PUSH operation adds a new element to the top of the
stack; the POP operation removes it.
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(or even a little more). This can be done by a LENGTH EQU n, where n is the amount of
space wanted. By using a symbolic stack length indicator, we need only change the
EQU statement if we decide we need more or less stack space.

Two operations are possible on a stack: PUSH and POP (or STACK/UNSTACK,
ADD/REMOVE, etc.). The PUSH operation involves adding a new element to the top of the
stack. This requires storing the element on the top of the stack and increasing the
number of elements by one. Assuming the element is in the A register and index I5 is
not in use, the code for this would be,

LD5 TOP TOP OF STACK POINTER
CMP5 =LENGTH= CHECK IF STACK IS FULL
JGE OVERFLOW IF SO, STACK OVERFLOW

*
STA STACK,5 STACK NEW ELEMENT
INC5 1
ST5 TOP SET TOP = TOP + 1

*

This code checks to see that we do not store more elements in the stack than we have
allocated space for. This type of error checking is good programming practice.

To remove an element from the stack and put it into the A register requires a similar
sequence of code. This time we check to make sure that the stack is not empty before
we remove an element from the stack. Also, since the top-of-stack index (TOP) is the
index of the next empty space in the stack array, we decrement it before loading the
stack element.

LD5 TOP
DEC5 1 SET TOP = TOP - 1
J5N UNDERFLOW CHECK IF STACK IS EMPTY

*
LDA STACK,5 LOAD TOP OF STACK
ST5 TOP RESTORE TOP INDEX

An additional function on a stack would be a test for an empty stack.

4.6 CHARACTER MANIPULATION

In addition to arrays of multiple-word items, arrays may be of partial-word elements,
and particularly of single characters (one byte). The techniques which are used for
manipulating arrays of characters (called strings) are very important. One character
requires one byte for storage, thus it would be very wasteful to use an entire word
to store only one character. Also, certain I/O devices, such as the card reader and
line printer, use character strings which are packed five characters per word. For
computational purposes, however, we wish to use the string one character at a time,
generally. This requires unpacking the string and extracting one character from it. Two
techniques are commonly used on the MIX computer: partial field specifications and
shifting.

As an example, suppose we have an input card in the 16 locations CARD, CARD+1,
. . . , CARD+15, and we wish to count the number of blank characters on the card. We
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FIGURE 4.3 Packed and unpacked strings of characters (characters must be packed
for input and output, but it is more convenient to program unpacked characters).

want to examine each of the 5 bytes in each of the 16 words of the card. Letting index
register 2 be our counter, we can write the following code to do this, using partial field
specifications.

ENT2 0 COUNTER FOR BLANKS
ENT1 0 INDEX FOR WORDS, 0..15

1H LDA CARD,1(1:1) CHECK FIRST BYTE
CMPA BLANK
JNE *+2
INC2 1 FOUND A BLANK, COUNT IT
LDA CARD,1(2:2) CHECK SECOND BYTE
CMPA BLANK
JNE *+2
INC2 1
LDA CARD,1(3:3) THIRD BYTE
CMPA BLANK
JNE *+2
INC2 1
LDA CARD,1(4:4) FOURTH BYTE
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CMPA BLANK
JNE *+2
INC2 1
LDA CARD,1(5:5) FIFTH BYTE
CMPA BLANK
JNE *+2
INC2 1

* FINISHED WORD
INC1 1 INDEX FOR NEXT WORD
CMP1 =16= CHECK FOR LAST WORD
JL 1B

* INDEX 2 HAS BLANK COUNT

This is a very simplistic approach which has its advantages but is very tiring in
terms of writing code. The only varying portion is the field specification of the LDA
instruction. There are several approaches to shortening the code. One is through
instruction modification. In this approach we notice that the field specification is stored
in byte 4 of the load instruction and we want this to be successively (1:1), (2:2), (3:3),
(4:4), (5:5). The following code does this by keeping in index register 3 the partial field
we want to use and changing the LDA instruction for each execution of the loop.

ENT2 0 COUNTER OF BLANKS
ENT1 0 INDEX FOR WORDS

1H ENT3 1:1 FIRST BYTE
2H ST3 *+1(4:4) MODIFY LDA FIELD

LDA CARD,1(7:7) PARTIAL FIELD SET AT *-1
CMPA BLANK
JNE *+2
INC2 1 COUNT A BLANK
INC3 1:1 INCREASE FIELD SPECIFICATION
CMP3 =5:5= CHECK END OF WORD
JLE 2B
INC1 1 IF END OF WORD, INCREASE INDEX
CMP1 =16= CHECK END OF CARD
JL 1B

* INDEX 2 HAS BLANK COUNT

This shortens the code but is more difficult to follow. The problem is that in debugging
this code, the instructions which are executed are not the instructions which are written
in the assembly program listing. You cannot tell by looking at the listing what the
instruction which used to be LDA CARD,1(7:7) is in fact when it is executed. This
makes it very difficult to debug a program and is considered a poor programming
practice.

The more common approach to character manipulation is through shifting. Consider
the word

A B C D E

If we load this into the A register, the (1:1) byte will have the first character we wish to
use. Then if we SLA 1, we have
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B C D E 00

and the second character we want is now in the (1:1) byte. Another SLA 1 gives us

C D E 00 00

Another SLA 1 gives us

D E 00 00 00

and finally a last SLA 1 gives

E 00 00 00 00

This allows us to examine each character in the (1:1) byte of the A register without
needing to do partial loads. The code to count blanks using this technique can be

ENT2 0 NUMBER OF BLANKS
ENT1 0 WORD INDEX 0..15

7H ENT3 5 BYTE COUNTER 5..0
LDA CARD,1 PICK UP 5 BYTES

1H CMPA BLANK(1:1) BLANK HAS BLANK CHAR
JNE *+2
INC2 1 FOUND A BLANK
SLA 1 SHIFT NEXT BYTE INTO (1:1)
DEC3 1 DECREASE BYTE COUNT
J3P 1B IF STILL MORE BYTES THIS WORD
INC1 1 NEXT WORD
CMP1 =16= IF ANY LEFT
JL 7B

* INDEX 2 HAS BLANK COUNT

Other shift instructions can be used to vary the position of the character which we
are processing. If we load into the X register and SLAX 1 before processing, then the
characters appear in byte (5:5) of the A register for processing as

A Register X Register
S T U V W

SLAX 1
S T U V W

SLAX 1
S T U V W

Or we can load into the A register and shift circularly (SLC 1) into the X register.
This approach is fine for processing the characters sequentially from left to right,

but what if we need only the 37th character from the card? The 37th character will be in
word CARD+7, byte (2:2). How do we access it? First, how did we determine its location?
Looking at the card as it is stored in memory

COLUMN OF CARD 1 2 3 4 5 6 7 8 9 10 11 . . . 80
WORD 0 0 0 0 0 1 1 1 1 1 2 . . . 15
BYTE 1 2 3 4 5 1 2 3 4 5 1 . . . 5
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To obtain the word and byte number of a given column of the card, we notice that COLUMN
NUMBER = BYTE NUMBER + 5*WORD NUMBER. If we divide the column number by 5, this
almost gives us what we want in the quotient and remainder, but column 5 divided by 5
gives word 1 instead of word 0, so we subtract one from the column number first to give

WORD NUMBER = (COLUMN NUMBER-1) / 5
BYTE NUMBER = 1 + REMAINDER OF (COLUMN NUMBER-1)/5

Notice that the DIV instruction returns both of these numbers, one in the A register and
the other in the X register.

Once we know the word number, we can use that as an index to load the appropriate
word. Then, to get the correct byte we shift the loaded word so that the byte we want is
in some convenient location (generally byte 1 or 5 of the A or X registers). For example,
if we load into the X register and shift left the number of bytes which is the byte number
(1, 2, 3, 4, or 5), the desired byte will be in byte 5 of the A register. To illustrate, suppose
register I5 has the column number of the character we want. Then our code can be as
follows. First, put the column number minus one in the X register and zero the A register
for the DIV.

ENTA 0
ENTX -1,5 COLUMN NUMBER MINUS ONE
DIV =5=

Now the A register has the quotient and the X register has the remainder. Both of these
need to go into index registers. Unfortunately, MIX does not provide convenient ways to
move information from the A or X registers to the index registers, except via memory.
One way to do this would be to store them in a temporary as

STA TEMP
LD2 TEMP
STX TEMP
LD3 TEMP

Another way is self-modifying code.

STA *+1(0:2)
ENT2 0
STX *+1(0:2)
ENT3 0

The address fields of the ENT2 and ENT3 instructions are modified at execution time to
the values of the A and X registers, respectively. This saves one memory location (TEMP)
and is only six time units instead of eight.

Once we have the word number in I2 and the byte number in I3, we can obtain the
character we want by

LDX CARD,2
SLAX 1,3

The character is now in byte 5 of the A register. We could have put it in byte 1 of the A
register by

LDA CARD,2
SLA 0,3
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or by

LDX CARD,2
SLAX 5,3

or by

LDA CARD,2
SLC 10,3

among others.
Code such as the above allows us to specify characters by a character or column

number, and hence ignore the packed nature of the characters in memory. However,
notice that this takes a fair amount of computer time (the DIV instruction has the longest
execution time of any instruction in MIX) and it also requires the use of both the A and
X registers and two index registers. Thus, it may be better to break the processing of
a card into two parts: first, unpack the card, and second, process the unpacked form.
This allows the character number to be used as an index into the unpacked character
array. After being processed, the data may need to be packed again for output.

Consider a program which reads a card and squeezes out all multiple blanks
between the words on a card. The input might be English text which was prepared on
a keypunch whose space bar sticks and sometimes inserts several blanks, between
words. Our overall approach for the program could be to first read the card into a
16-word array CARD. Then it is unpacked into the 80-word array CHAR. From this array,
we move the card to an array OUTPUT without multiple blanks, and then finally pack it
into an array called LINE for output (say to a card punch). Ignoring the actual input and
output (which is the subject of Chapter 5), we can write the following code.

*
* DATA ELEMENTS
*
CARD ORIG *+16 INPUT CARD IMAGE
CHAR ORIG *+80 UNPACKED INPUT IMAGE
OUTPUT ORIG *+80 UNPACKED COMPRESSED OUTPUT
LINE ORIG *+16 PACKED OUTPUT
*

<code to read into CARD>
*
* UNPACK THE CARD IMAGE OF 16 WORDS,
* 5 CHARACTERS PER WORD FROM CARD INTO CHAR.
* UNPACKING IS DONE RIGHT TO LEFT TO ALLOW
* REGISTERS TO BE TESTED AGAINST ZERO.
*
* REGISTER USAGE
*
* I1 = WORD COUNTER FOR CARD 15..0
* I2 = BYTE COUNTER 4..0
* I3 = INDEX FOR CHAR 79..0
* A = LOADED WORD SHIFTED TO GIVE THE RIGHT
* CHARACTER IN BYTE 5
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ENT3 79 CHARACTER COUNTER 79..0
ENT1 15 COUNTER OF WORDS 15..0

NEWWORD LDA CARD,1
ENT2 4 COUNTER OF BYTES 4..0

NEXTCHAR STA CHAR,3(5:5)
DEC3 1 DECREASE INDEX INTO CHAR
SRA 1 SHIFT WORD IN A RIGHT ONE
DEC2 1 ONE LESS BYTE
J2NN NEXTCHAR
DEC1 1 ONE LESS WORD
J1NN NEWWORD

*
* MOVE CHARACTERS FROM CHAR TO OUTPUT ONE AT A
* TIME. IF A BLANK IS FOUND, SET A FLAG TO
* PREVENT ANY MORE BLANKS FROM BEING STORED. I1
* IS INDEX FOR CHAR, I2 INDEX FOR OUTPUT. FLAG
* FOR MULTIPLE BLANKS IS HELD IN REGISTER I3.
* CODE MAKES USE OF MIX CODE FOR BLANK BEING
* ZERO.
*

ENT1 -80 INDEX FOR CHAR -80..-1
ENT2 0 INDEX FOR OUTPUT 0..79
ENT3 STOREBLK FIRST BLANK SHOULD BE STORED

*
ANOTHER LDA CHAR+80,1 LOAD NEXT CHARACTER

JMP 0,3 PROCESS THIS CHARACTER
* AT STOREBLK OR NOSTORE.
STOREBLK JANZ STORE STORE ALL, BUT IF BLANK SET

ENT3 NOSTORE TO SKIP ANY FUTURE BLANKS
JMP STORE

*
NOSTORE JAZ SKIP IF BLANK, SKIP IT

ENT3 STOREBLK IF NOT SET TO STORE NEXT
*
*
STORE STA OUTPUT,2 STORE THE CHAR IN OUTPUT

INC2 1
SKIP INC1 1 MOVE TO NEXT CHARACTER

J1N ANOTHER
*
* LINE NOW COMPRESSED, MOVE TO LINE ARRAY.
* FIRST BLANK THE ENTIRE ARRAY
*

ENT1 LINE+1
STZ LINE
MOVE LINE(15) ZERO (BLANK) LINE ARRAY

*
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* NOW PACK CHARACTERS BACK INTO ARRAY LINE FROM
* OUTPUT. I2 HAS THE LENGTH OF THE ARRAY OUTPUT.
* SINCE EXTRA BLANKS HAVE BEEN DELETED, MAY BE
* LESS THAN 80. I1 WILL INDEX THE PACKED WORDS
* OF LINE, I4 INDEXES OUTPUT. CHARACTERS WILL
* BE LOADED INTO BYTE 5 OF A, SHIFTED TO BYTE 1
* OF A AND THEN SHIFTED INTO THE X REGISTER.
*

ENT4 0
ENT1 0 WORDS OF LINE 0..15

PACKWORD ENT3 4 NUMBER OF BYTES IN THIS WORD
*
PACKNEXT LDA OUTPUT,4(5:5)

INC4 1 FETCH NEXT CHARACTER NEXT TIME
SLA 4 SHIFT CHAR INTO BYTE 1
SLC 1 SHIFT INTO X
DEC2 1
J2NP LASTONE COUNTER OF CHARACTERS IN CHAR
DEC3 1 BYTE COUNT
J3NN PACKNEXT
STX LINE,1 WHEN 5 BYTES PACKED STORE IN
INC1 1 NEXT WORD INDEX
JMP PACKWORD

*
LASTONE SLC 0,3 JUSTIFY LAST PARTIAL WORD

STX LINE,1
*

<code to output LINE >
*

4.7 LEXICAL SCANNING

A very common form of character manipulation is lexical analysis. Many programs
operate on character data which is constructed from free-format multi-character words
or symbols. The words or symbols are separated by blanks, special characters, or other
delimiters. To operate on them, it is necessary to group together contiguous characters
into words or symbols. This is lexical analysis, or lexical scanning.

For example, the entire text of this book has been stored on magnetic tape. To
ensure that there are no spelling errors, a program was written which produced a list of
all of the different words in this book. This list was scanned for misspelled words. To
produce the list, it was necessary to scan a line of characters and identify where each
word began and ended. Then these individual characters were packed into a single
item and stored in a table.

Assume that no single word or symbol (called a token) is more than 10 characters
long. It could be packed into the A and X registers, using shift instructions as shown in
the last section. Then, to find all the words on a card, we could write a program such as

*
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* READ A CARD
*
NEXTCARD <code to read a card into the array CARD>
*
* UNPACK THE CARD INTO THE ONE CHARACTER PER WORD
* FORMAT IN THE ARRAY CHAR.
*

<code to unpack CARD into CHAR>
*
* NOW SCAN THE CHARACTER ARRAY CHAR UNTIL THE FIRST
* ALPHABETIC CHARACTER IS FOUND. TREAT BLANKS (00)
* AND SPECIAL CHARACTERS (> 39) AS DELIMITERS.
*
* INDEX REGISTER 6 POINTS TO THE END OF A TOKEN,
* WHILE INDEX REGISTER 5 POINTS TO THE BEGINNING.
*

ENT6 -1
*
* SKIP LEADING DELIMITERS FIRST
*
NEXTOKEN INC6 1

CMP6 =80= TEST END OF CARD
JGE NEXTCARD

*
LDA CHAR,6 GET NEXT CHARACTER
JAZ NEXTOKEN BLANK
CMPA =40= OR SPECIAL
JGE NEXTOKEN

*
* FOUND NONBLANK, NONSPECIAL
* SET INDEX REGISTER 5
* THEN LOOK FOR NEXT BLANK OR SPECIAL
*

ENT5 0,6
*
1H INC6 1 CHECK NEXT CHARACTER

LDA CHAR,6
JAZ ENDTOKEN IF BLANK
CMPA =40=
JL 1B OR SPECIAL

*
* TOKEN IS IN CHAR,5 TO CHAR-1,6
*
ENDTOKEN <pack token into A and X register>

<process new token>
*

JMP NEXTOKEN REPEAT WITH NEXT
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4.8 SUMMARY

In this chapter, we have presented many different assembly language programming
techniques. The techniques presented include how to compute arithmetic expressions,
how to program conditionals and loops, examples of the use of arrays and tables,
and some simple character manipulation techniques. Most of these concepts are
easy and should quickly become a matter of habit. These are basic programming
techniques; there are many others equally simple, and also a large number of more
advanced techniques. The more practice you have in programming, the more skilled
you will become at the art of assembly language programming. Additional programming
concepts will be introduced throughout the remainder of this text.

Most assembly language programming techniques are developed by assembly
language programmers by trial and error and are not written down for study. Many
are passed from programmer to programmer informally, and many are picked up by
reading the programs of a more experienced programmer. The program segments in
the three volumes of The Art of Computer Programming by Knuth (1968, 1969, 1973)
are good sources for MIX. Gear (1974) has a chapter on programming techniques,
as does Eckhouse (1975). Stone and Siewiorek (1976) have many examples. In all
cases, except Knuth, however, these examples are for a computer other than the MIX
computer. Thus, it is generally necessary to understand the computer instruction set
and assembly language being used as the example language of that book before the
programming techniques can be transferred to your MIX programs.

EXERCISES

1. What is the difference between programming and coding?

2. Write MIXAL code to compute the value of the expression,
(J*LOGICAL)/PHYSICAL + BASE.

3. Write the MIXAL code to compute Z = Y+2*(W+V)/4-6*(10-W-V).

4. Section 4.2 gives a four-statement program to compute the absolute value of a
number. This was done to illustrate the use of jumps. Can you give one statement
which calculates the absolute value of a number?

5. Section 4.2 also gives a seven-statement program to compute the sign function.
Can you give a shorter program to do the same, but without jumps?

6. Why would a programmer write

LABEL EQU *

rather than just attaching the label to the next instruction?

7. Write a code segment which simulates the MOVE instruction, but without using the
MOVE instruction.

8. Why are some loops run backwards? Consider the two loops in Section 4.3 to
compute the sum of the numbers from 1 to N. How much time does each take to
execute for N = 3? For N = 10? For N = n?
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9. Consider the following code to index an array with a subscript in the range 400 to
800.

ARRAY ORIG *+401
...
LD1 INDEX
DEC1 400
LDA ARRAY,1

Can you improve on this code? How is your code better?

10. How does an array differ from a table?

11. What is a space-time trade-off?

12. Write the code to add two double-precision integers in MIX. Define your data
representation.

13. The stacks shown in Section 4.5 grow up, from low memory to high memory. Give
the code for the PUSH and POP operations which would manipulate a stack which
grows down from high memory to low memory.

14. Three different pieces of code were given to count the number of blanks on a
card. How much time and how much space does each take?

15. Write a program to read a sequence of numbers and compute their maximum,
minimum, and average. What problems arise in computing the average?

16. Write a program to read a set of numbers, calculate their sum, and then print
the numbers and, for each number, its percentage of the sum. Do the printed
percentages add up to 100? If not, why?

17. Write a program to read a text file and produce a table of all of the different words,
and the number of times they occur. Consider printing the list either alphabetically
or in order of decreasing frequency of words.
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INPUT/OUTPUT PROGRAMMING

A very important part of assembly language programming deals with the input and
output of information to and from peripheral devices. The programming techniques
of Chapter 4 deal mainly with the computing aspect of programming, but this aspect
is useless unless data can be input for computation and the results of computation
can be output for examination and use. In this chapter, we present some of the basic
techniques for input/output programming.

As with the techniques of Chapter 4, the concepts discussed in this chapter are
generally applicable to most computers. However, the specific instructions or instruction
sequences for coding these techniques will vary with the instruction set, input/output
system and devices available on a given computer. Each computer and each problem
will need to be considered for its own properties.

5.1 BASIC I/O PROGRAMMING CONCEPTS

Input/output for most modern computers is asynchronous. This means that the
timing of the operation of the central processor and each I/O device is independent.
The central processor is internally synchronous; each action is controlled by the control
unit and each action is performed at exact specific times as determined by a central
clock in the CPU. Every operation in the CPU occurs at well-specified times and the
duration of each operation is exactly specified in terms of the number of ticks of the
clock needed for that operation.

With input/output devices, this is not true. The input/output instructions (IN, OUT, IOC)
only initiate an operation; the actual operation takes an indeterminable time depending
on the nature of the I/O device, its state, and the operation. This is caused by the
physical nature of the I/O devices and the necessity of mechanical operation in order to
perform I/O functions. Mechanical operations simply cannot be built to the rigid timing
specifications that electronic circuits can be built to. This uncertainty requires careful
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consideration of the way in which I/O devices and the CPU interact. Physically, this
is done by building, for each device, a controller . A controller is a piece of electronic
circuitry which controls the attached I/O device for the CPU. A controller may well be a
small computer (a microcomputer or minicomputer) programmed exclusively for this
purpose, or it may be a special-purpose device designed and built specifically as a
controller. The CPU sends commands to the controller to perform I/O, and the controller
sees that it is actually done.

The actual input/output instructions for the MIX computer are limited to only three:
IN, OUT, and IOC. For each of these, the F field of the instruction (byte 4) specifies
the unit number of the device which is to be used for the I/O. The effective address
calculated from bytes 0:3 (the address and index fields) is used as a parameter for
the instruction. For the IN and OUT instructions, the effective address is the address
of a buffer in memory which should be used in the transfer of information between
the I/O device and memory. The IN instruction initiates the input of information into
memory, storing in the memory locations beginning with the effective address and
continuing for one record. The previous contents of the memory locations used by an
IN instruction are destroyed by the storage of the new information. The OUT instruction
sends information to an output device. The information is transferred from memory,
beginning at the address specified by the effective address of the OUT instruction. Since
the contents of memory are simply read and sent to the I/O device, the contents of
memory remain unchanged.

For both the IN and OUT instructions, the amount of memory transferred is
determined by the I/O device selected. Each IN or OUT instruction begins the transfer
of one record of information. A record is the (physical) unit of information which is
naturally handled by a device. The record for a card reader or card punch is one card;
for a line printer, one line. Thus the size of a record for a card reader or card punch is
80 characters long; for a line printer, 120 characters long. Since 5 characters can fit
in one word on the MIX computer, this requires 16 words of memory for a record of a
card reader or card punch, and 24 words for a record of a line printer. The magnetic
tape, disk, and drum devices for MIX computers all have records of 100 words. The
typewriter and paper tape unit have 70-character (14-word) records.

Note that these record lengths need not be true for all card readers, punches, line
printers, tapes, disks, drums, or terminals. There exist card readers and punches which
deal with cards of 51 or 96 characters instead of 80. Line printers have been built to
handle lines of 80, 120, 132, or 136 characters (among others). Many teletypewriters,
CRT terminals, and paper tape devices handle data one character at a time, with line
lengths of 70, 72, 80, 120, 132, or 136 characters. In this text, we will consider only the
standard MIX input/output devices. If your installation has non-standard peripherals,
special attention may be necessary on your part in their programming, but the concepts
presented here will still be applicable.

Since an IN or OUT instruction only starts an operation, at any time each device
may be in either of two states: ready for a new command, or busy with a previous one.
Each device alternates between these two states. Initially, the state of the device is
ready; it is waiting for a command to do something. When the CPU executes an I/O
instruction which selects this device, the device begins work on the task which it is
assigned, becoming busy. After as long a time as needed to perform the task requested
of it by the CPU, it finishes and becomes ready again, able to perform another I/O
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FIGURE 5.1 The relationship between an I/O device and an I/O buffer.

command. One bit for each device records the state of the device, as ready or busy.
The setting and clearing of this bit are controlled completely by the device.

The ready/busy bit is used in several ways. First, it may be tested by the JRED and
JBUS instructions which can be used to control the execution of the CPU. The JRED
and JBUS instructions specify a device unit number in their F field, and will jump to the
effective address if the device is ready (JRED) or busy (JBUS). The state of the device is
not affected in any way.

The other use of the busy/ready bit is in controlling the IN, OUT, and IOC instructions.
When an IN, OUT, or IOC instruction is decoded by the control unit, it will mean that a
new I/O command is to be issued to the (controller of the) device specified by the unit
number given in byte 4 of the instruction. If that device is ready, the new command
can be issued and the CPU can continue to the next instruction. If the device is busy,
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however, the new command cannot be issued. I/O devices (and their controllers) are
generally rather simple devices and so they can only do one thing at a time. Because
of this, it is only possible to have one outstanding I/O request per device at a time. If
the control unit decodes an I/O command (IN, OUT, IOC) for a busy device, it must wait
until that device becomes ready before it can issue the new command.

Thus, if a device is ready when an I/O instruction is executed for that device, it only
takes one time unit to execute. If, however, the device is busy, the execution time for
that instruction can take an arbitrarily long and unpredictable length of time, however
long it takes until the device finishes its last command and becomes ready (only to
become busy again with the new command). This extra time is called interlock time.

We have discussed the IN, OUT, JRED, and JBUS instructions so far and have avoided
mention of the IOC instruction. The IOC instruction is used to provide special-purpose
control functions for some I/O devices; its use and meaning is entirely dependent upon
the device with which it is used. It is the instruction which allows all of the special
device-dependent functions we may need to do but do not really need a separate
instruction for. We would like to be able to tell the tape units to rewind, but a rewind
command would not make much sense for most other devices. (Rewind a line printer?)
The IOC instruction has a different interpretation for each device, and allows us to skip
to the top of a page on the line printer, position magnetic tapes forward or backward,
move the read-write head of a moving-head disk to a new track, or rewind a roll of paper
tape. The specific coding of the IOC instruction for each device is covered below when
we discuss the programming of each MIX I/O device.

5.2 PROGRAMMING MIX I/O DEVICES

The standard programming for MIX I/O devices varies from device to device.
Because of this, we give here a short description of the standard programming
techniques used for each of the normal MIX I/O devices: card reader, card punch, line
printer, magnetic tape, magnetic disk and drum, teletype, and paper tape reader/punch.

5.2.1 Input devices

These devices are the main source of input for a program. They are all character-
oriented and transmit the six-bit MIX character code. The only difference in their
programming is in their record lengths. For the card reader, the input record is one card,
80 characters, 16 words; for the teletype and paper tape reader, the input record is one
line, 70 characters, 14 words. This affects only the size of the buffer which needs to be
allocated and the values of indices used in loops to use the input data. For convenience
of explanation, we discuss all of these devices in terms of the card reader. The changes
for the other devices only involve changing the device numbers and record lengths.

Input is initiated by the IN instruction. If we have defined a 16-word buffer CARD
(CARD ORIG *+16), then we can read a card into it by

IN CARD(16) BEGIN READING CARD
JBUS *(16) WAIT UNTIL READ

The card reader is device number 16. The IN instruction sends a command from the
control unit through the I/O system to the controller of the card reader, telling it to read
a card into memory beginning at location CARD. The controller of the card reader begins
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the action of reading a card while the computer continues with the next instruction.
Notice that the IN instruction only began the input of a card. In order to use the card,
we must wait until it has actually been read into memory. Since the card reader will be
in a busy state until the card has been read, we need only wait until the device is not
busy; then we will know that the card has been read and can be used. We program this
by a very short loop (a tight loop) which does nothing but repetitively test the device
state, waiting for it to become non-busy (JBUS *(device)).

While the computer is executing the JBUS instruction, the card reader is reading
characters off the card one at a time as they pass in front of the reading station in the
card reader. These are sent, one at a time, to the card reader controller. When the
controller has five characters, it packs them into one MIX word, sets the sign bit to “+”
and stores this word in the next buffer location in MIX memory. The controller has an
internal register which is used to remember the address of the next memory location
into which the next word will be stored. After each new word is stored in memory, this
register is incremented by one. Thus successive five character groups are packed
together and stored in successive locations in memory as they are read. Each character
may take from 100 to 600 MIX time units to be read. When the entire card is safely
placed in memory, the controller sets its ready/busy bit back to ready and waits for a
new command from the computer.

All this time the CPU is executing the JBUS *(16) instruction over and over again.
When the controller finally sets its state to ready, the jump test fails and we drop out of
the wait loop and can proceed to use the newly read card. When we want another card,
we can repeat this code.

A programmer must always be very careful that the input device is done with an
input operation before attempting to use the data being read in. For example if we were
to write

IN CARD(16) READ A CARD
ENT1 0 INDEX INTO CARD 0..15
LDA CARD,1 LOAD FIRST FIVE CHARACTERS

The contents of the A register would not be the contents of the first five columns of the
card read by the IN. It will take 500 to 3000 time units before that new data is read
and put in memory. In the meantime, the previous contents of the buffer locations
remain there, and so the LDA, coming only two time units after the card started to
be read, will load these old values into the A register. However, this should not be
depended upon either. Card readers, like all I/O devices, are asynchronous and have
no concept of CPU time. Also, the design of the card reader may be such that its
timing is almost unpredictable. Card reader controllers have been built which have
little 80-character memories built into them. When the card reader is turned on, they
automatically read the first card into this internal memory. When an IN instruction is
issued, they immediately transfer this previously read card into memory and start to
read the next into their private 80-character memory, trying to always keep one card
ahead of the input requests. If a new IN instruction occurs before the next card is read,
however (which is likely), the controller reverts to the old way of reading and storing into
MIX memory as before. The important point is simply to never make any assumptions
about the I/O speeds of I/O devices. Being off by only one time unit can ruin the entire
program.
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5.2.2 Output devices

The card reader, teletype keyboard, and paper tape reader are the standard input
devices, while the line printer, card punch, teletype printer, and paper tape punch are
the standard output devices. As with the input devices, the programming of these output
devices varies only with respect to their record lengths and speeds. The record lengths
(120 characters for the line printer, 80 characters for the card punch, 70 characters for
the teletype printer and paper tape punch) only determine the amount of space needed
for the buffers for these devices; thus, we will limit our discussion to the line printer. The
concepts apply equally to the other devices.

Outputting to the line printer is essentially the same as reading from the card reader,
with the exception that since we are outputting, the programming to create the output
line must be programmed and executed before the line is output. Once this is done,
and the appropriate character codes are stored in memory – for example, in a buffer
called LINE – we simply write

OUT LINE(18) PRINT A LINE
JBUS *(18) LINE PRINTER IS DEVICE 18

The OUT will start the output and the JBUS will assure that it is complete before continuing.
The controller for the output device loads five characters (one word) at a time from
memory and prints or punches them. The sign bit of each word is ignored. When the
entire record has been output, the state of the device is reset from busy to ready.

An IOC 0(18) will cause the line printer to skip to the top of a page. IOC 0(19) will
rewind the paper tape. IOC has no effect on a card reader or card punch.

The main effort in I/O programming for these devices is not the actual I/O but rather
in the conversion between numeric and character code representation of data, and
formatting input and output. The format of our input and output is simply a statement of
what it looks like.

For input, the format of the data is the form in which the data is expected to be
by the program which is inputting the data. Examples: two decimal integer numbers,
one in columns 4 and 5, the other in columns 9 and 10, with all other columns blank;
or a 10-character name in columns 1 to 10, with a description of any kind (i.e., any
sequence of characters) in columns 15 to 72, columns 11 to 14 should be blank. It is
the problem of the programmer to interpret this input correctly. This generally becomes
a problem of character manipulation. The only help that MIX offers is the NUM instruction.
If a character code representation of a number (up to 10 characters long) is put into
the A and X registers, the NUM instruction will convert this to numeric binary and put the
result in the A register. The signs of both registers and the contents of the X register
are unchanged. An example of the use of this instruction: Suppose we have a number
punched in columns 11-20 of a card. To read it and use it, we write

IN CARD(16) READ CARD
JBUS *(16)
LDA CARD+2 COLUMNS 11-15
LDX CARD+3 COLUMNS 16-20
NUM CONVERT CHARACTER TO NUMERIC
STA NUMBER
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This code will read a card, wait until it is read, then convert the character code
representation of the number in columns 11 through 20 into a numeric representation
and store in the memory location labeled NUMBER.

What happens if columns 11-20 have non-numeric punches? The NUM instruction
works anyway, by treating each character, numeric or not, as having a value equal to
the units digit of its character code expressed in decimal. Thus the characters “A”, “J”,
“1”, comma, and "> “ all have a value of 1 for the NUM instruction, while ”B“, ”K“, ”S“, ”2“,
”(“, and ”@" have the value 2.

For output, the conversion is performed in the opposite direction, numeric to
character code, by the CHAR instruction. If we have a number in the location NUMBER, we
can convert it to character code and print it by

LDA NUMBER
CHAR CONVERT NUMBER TO CHARACTERS
STA LINE+2
STX LINE+3 STORE IN OUTPUT COLUMNS 11-20
OUT LINE(18) START PRINT
JBUS *(18) WAIT UNTIL PRINT DONE

The CHAR instruction converts a numeric integer in the A register into a 10-byte decimal
character code representation. This character representation can be stored into an
output line image and printed. Note that the programmer has complete control over
where in the output line the characters to be printed are put. The format of the output
line is determined by the programmer. The preparation of the output line may involve
some character manipulation.

5.2.3 Magnetic tape

The I/O devices which we have considered so far have been for the input and output
of character representation of data. Magnetic tape, on the other hand, is basically a
storage I/O device. Information can be written to tape and then read back into the
computer, but it is very difficult for a human to either read or write magnetic tape.
Because of this, programming of magnetic tape devices differs from the devices which
we have already considered.

The writing of information to a tape is done by the OUT instruction as

<construct a buffer of information in TAPEBUF >
OUT TAPEBUF(unit)
JBUS *(unit) WAIT UNTIL IT IS OUTPUT

where unit is the device number of the tape drive being used. This information can later
be read back in with

IN TAPEBUF(unit)
JBUS *(unit)

The record for a magnetic tape is always 100 words long and the entire word, including
sign, is transmitted.

The magnetic tape at any given time has a number of records on it. Each time a new
record is read or written, the tape moves so that the read-write heads are positioned
after the most recently read-written record and before the next one. Typical use of a
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FIGURE 5.2 Magnetic tape usage on the MIX system.

tape is to write out successively a number of records. Then the tape is rewound and
the records are read back in.

The IOC instruction is used to position the tape, relative to its current position. The
effective address, M, is used to specify the direction the tape should be moved. If M
is less than zero, the tape is moved backwards; if M is greater than zero, the tape is
moved forward. The magnitude of M specifies the number of physical 100-word records
to move. Thus, IOC -1(2) moves tape unit number 2 back one physical record, while
IOC +3(1) moves tape unit 1 forward 3 records. IOC 0(n) would mean to not move the
tape (forward or backward) and hence is meaningless, so this code (effective address =
0) is used to mean to rewind the tape. To position a tape just before the first record on
the tape, we would simply IOC 0(n); if we wanted to position before the second record,
we would IOC 0(n) and then IOC +1(n).

Since the effective address is used to determine the positioning it can be indexed.
This allows code like the following to be used. Assume that index register 4 contains
the number of the record before which we are currently positioned on tape unit 5 (after
a rewind, register I4 would contain 1, and after each read I4 would be incremented by
one). Index register 1 contains the record number of the record we want to read in next.
Then we can execute the following code to position tape 5 correctly

ENT2 0,1 INDEX 2 = INDEX 1
DEC2 0,4 INDEX 2 = INDEX 1 - INDEX 4
J2Z *+2 IF ALREADY POSITIONED RIGHT
IOC 0,2(5) MOVE TAPE TO RIGHT SPOT
IN TAPEBUF(5) READ IN DESIRED RECORD
ENT4 1,1 NEW TAPE POSITION

The first two lines of code set index register 2 to the difference between the current
position and the desired position. The J2Z instruction is included to prevent a rewind
(effective address zero) when no repositioning is desired (index register 4 = index
register 1).

Remember that, because of the nature of magnetic tape, a write (OUT) instruction
destroys all information from the point of the write to the physical end of the tape.
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Hence, at any given time it is possible to read only as far as the last record written; the
remainder of the tape is garbage. This constraint applies to positioning also. The tape
cannot be positioned beyond the end of the most recently written record on the tape.

5.2.4 Magnetic disks and drums

Magnetic tape is by its nature a sequentially accessed device; records are accessed
from the beginning to the end, one at a time. This is due to the physical nature
of the device. Disk and drum storage devices have been constructed to allow any
given record to be directly accessible, however, so these are called direct access, or
sometimes random access devices, as opposed to the sequentially accessed magnetic
tape devices.

The differences between disks and drums are mainly physical. A drum is constructed
as a recording surface on the side of a cylinder, while a disk unit has perhaps several
flat disc-shaped objects with recording being done on both the top and bottom surfaces
of each disk. Each device has a number of tracks which are broken up into 100-word
sectors. There are 4096 sectors per device. Each sector corresponds to a record for
that device: 100 words (including sign).

The real difference between these two types of devices concerns how the read-write
heads are used. Just as with magnetic tape, it is necessary to move the recording
surface past a read-write head to convert between the magnetic form of information
on the disk/drum and the electronic form of information used in the CPU. This is
accomplished in two ways. In the one case, usually used for drums, each track has
its own head. This is known as a fixed-head device. When a particular record is to be
read or written, the head for that track is selected and the device controller waits until
the sector for that record rotates beneath the heads, then the data is transferred (to the

FIGURE 5.3 Disk structure for the MIX system. Each disk has 64 tracks, with 64 sectors
per track.
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device for a write; to memory for a read). The time waiting for the device to rotate is
called latency time; the time for the actual read or write is called transfer time.

This architecture can be very expensive. With one head per track, a drum with 200
tracks requires 200 read-write heads, and heads are not cheap. The most common
solution to this is the moving-head device (generally a disk). In these devices, there
is only one head per surface (for a single disk platter, this requires two heads: one for
the top surface and the other for the bottom). The heads are attached to a movable
arm. An I/O operation requires several steps. First, the heads are moved to be over
the desired track. This is called a seek operation, and the time to perform it is seek
time. Once the head is positioned over the correct track, the controller waits until the
correct sector rotates under the head (latency time) and then begins the requested I/O
operation (transfer time).

For either fixed-head or moving-head devices, every I/O operation must supply the
addresses of the locations involved in the transfer: the address of the memory buffer of
100 words in MIX memory, and the address of the sector to be used. The address in
memory is the effective address given in the IN or OUT instruction; the address on the
disk/drum is specified by bytes 4 and 5 of the X register. When the IN or OUT instruction
is executed by the control unit for a disk or drum, the contents of the lower two bytes
of the X register are copied into the disk/drum controller which then performs a seek
operation (if the device is moving-head), waits for latency, and finally performs the
transfer. This can be programmed by

LDX DISKADD ADDRESS FOR SECTOR TO USE
OUT BUFFER(unit)
JBUS *(unit) WAIT UNTIL OUTPUT COMPLETE

where unit is the device number of the disk or drum unit. If we have a loop which is
outputting repeated records to the disk, this can look like

STZ DISKADD INITIALIZE TO SECTOR 0
...

LOOP ...
LDX DISKADD
OUT BUFFER(unit) OUTPUT BUFFER TO DISK
JBUS *(unit)
INCX 1
STX DISKADD INCREASE X TO NEXT SECTOR
...
JMP LOOP

In this code, we output to each successive physical record on the disk. To read this
information back into memory, we simply set DISKADD back to zero and read back in
from the same disk addresses that we wrote out to, incrementing DISKADD after each
read, of course.

Disk records need not be accessed strictly sequentially either. In an information
storage system for names, we might store all names starting with “A” in records 0 to 9,
all names starting with “B” in records 10 to 19, and so on. Then, to update a record for
a given name, we can write
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LDA NAME(1:1) FIRST CHARACTER
DECA 1 A=0,B=1,C=2, ...
MUL =10= A=0,B=10,C=20, ...

2H IN BUFFER(DISK) MUL LEAVES ANSWER IN X
JBUS *(DISK)

*
<search for NAME in this record>

*
NOTFOUND INCX 1 TRY NEXT RECORD

JMP 2B
*
FOUND <update information in BUFFER>
*

OUT BUFFER(DISK)
JBUS *(DISK) PUT UPDATED INFO BACK ON DISK

We assume in this code that the search for the name and the updating do not change
the X register, so that we simply leave in it the address of the sector we are using. If this
was not the case, then we would simply need to STX TEMPX before changing X and then
LDX TEMPX before our IN and OUT to the disk. Also, we are using a symbolic constant
DISK for the specific unit we want, so earlier in the program we would have a DISK EQU
9, or DISK EQU 13, or whatever unit we wish to use.

An IOC for a disk or drum initiates a seek instruction. The seek time for a moving-
head disk or drum can be quite long, on the order of 10 to 100 milliseconds, and much
longer than either latency or transfer time. Because of this, it is sometimes possible,
and advantageous, to seek ahead by moving the head to the track which contains the
sector to be used next, so that the head will already be there before the actual IN or
OUT is issued. The effective address of the IOC should be zero. The track to seek to
is given by bytes 4:5 of the X register. An IOC for a fixed-head disk or drum is ignored,
since no seek is needed. For example, to access records sequentially

STZ DISKADD ZERO INITIAL VALUE
...
LDX DISKADD SECTOR ADDRESS
IN BUFF(DISK)
INCX 1
STX DISKADD ADDRESS OF NEXT SECTOR
IOC 0(DISK) START SEEK TO NEXT RECORD

Notice that it is still necessary to load the disk address into the X register for any IN or
OUT instructions (since we may have changed our minds about where we want to IN or
OUT from). However, we no longer need a JBUS *(DISK) since the IOC automatically
waits until the previous operation (the IN in this case) is complete before the IOC can
be issued to the controller, and the control unit can continue to the next instruction.

5.3 A SIMPLE I/O PROGRAM

Consider a simple, but useful, problem: we have a deck of cards and we wish to
copy them from the card reader onto the line printer in order to get a listing of them. In
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FIGURE 5.4 Input/output structure – basic structure of a simple program to input data,
process it, and output the results.

order to do this, we must first read a card, then print it on the line printer, read the next
card, print it, and so forth until the last card is read.

How do we tell when the last card is read? The MIX card reader has no way of
telling the CPU that there are no more cards, so we must find some way to mark the
end of our input. This will be done by an end-of-file card, a special card which marks
the end of our deck. Since it is easy to compare an entire word at once, we will use
a card with *EOF* in columns 1-5 to mark the end of a card deck. We could use any
set of letters in any columns, but we want to avoid any end-of-file marker which might
be expected to occur in the input. If the input to be listed were to accidentally contain
the end-of-file marker as part of the normal deck, the listing would stop prematurely,
which can be most frustrating. Thus we do not want to interpret a card which is blank in
column 1 as the end-of-file, since this is very likely to happen in most decks.

Now that we have made this decision, we can begin to write our program. The
general flow is:

1. Read a card.
2. Print the card.
3. If not the last card, go back to 1.
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Notice that this program will print the *EOF* card so that we can easily see that the entire
deck has been printed. Expanding this description of the program into code, we will
need two buffers, one to read into and one to write from. Thus our declarations are

CARD ORIG *+16 INPUT BUFFER
LINE ORIG *+24 OUTPUT BUFFER
EOF ALF *EOF* EOF MARKER

and our code is

COPY IN CARD(16) READ CARD
JBUS *(16) WAIT UNTIL READ
ENT1 LINE
MOVE CARD(16) MOVE INPUT TO OUTPUT
OUT LINE(18) OUTPUT LINE
JBUS *(18)
LDA CARD CHECK FOR EOF
CMPA EOF
JNE COPY IF NOT EOF, REPEAT
HLT
END COPY

This program shows the basics of reading from the card reader and writing on the
line printer. To input from a device, first define an array as large as the record for that
device as

X ORIG *+record length

Then, to read into that array

IN X(device number)

This initiates the input. To wait until the input is complete

JBUS *(device number)

To output, the same procedure is followed, but OUT is used instead of IN.
A number of improvements of the above copy program are possible. First, notice that

there is no need to move the input card from CARD to LINE; we can output directly from
our input buffer (or input directly into our output buffer). Second, the *EOF* constant is
used to compare against the first word of the input record, which requires loading one of
them into the A register (or the X register). In the above, we chose to load the first word
of the input. If we load *EOF* instead, it need never be reloaded, since the A register
is not used for anything else. Third, notice that the above card-reader-to-line-printer
copy program will work equally well for a card-reader-to-card-punch copy program if
we simply change the unit numbers. In fact, the unit numbers are only an artifact of
the standard unit numbers assigned by the factory; they may be changed for another
MIX computer system. For these reasons, it is better to use symbolic constants for unit
numbers rather than numeric unit numbers.
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With these modifications, we can rewrite COPY as

CR EQU 16 INPUT DEVICE NUMBER
LP EQU 18 OUTPUT DEVICE NUMBER
BUFFER ORIG *+24 BUFFER FOR LARGEST RECORD SIZE
EOF ALF *EOF*
COPY LDA EOF SET A REGISTER FOR COMPARE
LOOP IN BUFFER(CR) START READ

JBUS *(CR) WAIT UNTIL DONE
OUT BUFFER(LP) NOW OUTPUT
JBUS *(LP) WAIT UNTIL OUTPUT COMPLETE
CMPA BUFFER CHECK FOR END
JNE LOOP
HLT
END COPY

A slightly more complicated program will also give us line numbers for each line, to
give us a count of the number of cards read. Noticing that (for a card-to-printer copy)
each input record is 80 characters, while each output is 120, we have 40 columns of
spacing and line numbers to use. Assuming that no more than 99,999 cards will be
listed, we only need a five-character line number. Thus, we can format our output line
as

Columns 1-5 blank
6-10 line number

11-15 blank
16-95 input card image

This format has been chosen to be both convenient to program and pleasing to look at.
For this program, we must introduce a counter and instructions to convert the

counter from binary to character code for output. We can still read our card directly into
the locations used for the output buffer, and most of the above program remains the
same.

CR EQU 16 INPUT DEVICE NUMBER
LP EQU 18 OUTPUT
BUFFER ORIG *+24 INPUT/OUTPUT BUFFER
COUNT CON 0 COUNTER FOR LINES
*
BLANK ORIG *+24 BLANK LINE FOR SPACING
EOFLINE ALF LAST LINE FOR PRINTING
EOF ALF *EOF* EOF MARKER

ALF
ALF NUMBE
ALF R OF
ALF CARDS
ALF READ
ALF =

NCARDS ALF
ORIG *+15 REST OF LAST LINE
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*
COPY STZ COUNT INITIALIZE COUNT
LOOP IN BUFFER+3(CR) READ A CARD

JBUS *(CR)
LDA BUFFER+3 CHECK FOR LAST CARD
CMPA EOF
JE EOFOUND YES, LAST CARD

*
LDA COUNT INCREASE CARD COUNT BY ONE
INCA 1
STA COUNT
CHAR CONVERT COUNT TO CHARACTERS
STX BUFFER+1 CHARACTERS FOR COUNT
OUT BUFFER(LP) WRITE BUFFER PLUS COUNT
JBUS *(LP)
JMP LOOP

*
EOFOUND OUT BLANK(LP) PRINT ONE BLANK LINE

LDA COUNT NUMBER OF CARDS READ
CHAR (EXCLUDING *EOF*)
STX NCARDS STORE IN LAST OUTPUT LINE
OUT EOFLINE(LP)
JBUS *(LP)
HLT
END COPY

In this program, we have done several things differently. In addition to numbering
the cards, we have added special code to print the number of cards read (excluding
the *EOF* card) after the listing, separated from it by one blank line. Notice that we
are outputting from three different output buffers and that a JBUS is not needed after
the OUT BLANK since the OUT EOFLINE(LP) will automatically wait for it to finish. Some
local optimization can be done. The last CHAR sequence (in EOFOUND+1 and EOFOUND+2)
is unnecessary, since the character code for COUNT is still in the X register from the
previous output. The CHAR destroys both the A and X registers, which prevents keeping
the EOF marker in a register for comparison, and since the index registers can only
count to 4095, they cannot be used to store the counter (which can be as large as
99,999).

5.4 OVERLAPPED I/O

Local optimizations can only decrease the time to execute by microseconds or
milliseconds, however. An entirely different form of optimization is needed to produce
an effective speed-up in a program such as the above COPY routines. Consider our
second, and shortest, COPY program. The loop which copied cards consists of IN, JBUS,
OUT, CMPA, JNE. Thus the execution time for this program is the number of cards times
(five time units for the IN, OUT, CMPA, and JNE plus however many times the JBUSs are
executed). The time to execute the JBUSs is essentially the time to read a card and print
a line.
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FIGURE 5.5 A time chart of the execution of a simple program with no overlap of I/O
with other I/O or processing.

If we assume that we have a fast card reader, we can read 1000 cards per minute,
or one card every 60 milliseconds. If a MIX time unit is 1 microsecond, then it takes
60,000 time units to read a card. A slower card reader (like 300 cards per minute) will
take longer (like 200,000 MIX time units). Line printer times are comparable. This is to
emphasize that mechanical input/output operations are extremely slow, compared to
electronic computing speeds. Programs such as the above COPY programs will spend
only a very, very small fraction of their time doing any computation; the rest of the time
is spent waiting on the I/O devices. These programs are known as I/O-bound programs.
Many data processing and business application programs are I/O-bound. Many scientific
programs, on the other hand, may input and output only a small amount of data, but
may spend large amounts of time computing. These programs are compute-bound or
CPU-bound . There are also programs which are neither I/O-bound nor CPU-bound,
but so few that there is not even a special name for this kind of program.

Most programs do at least some I/O, and since I/O is so incredibly slow, it is
necessary to try to take advantage of time spent waiting for I/O to perform other, more
useful tasks. This results in I/O overlap. There are two kinds of overlap: I/O-I/O overlap,
and CPU-I/O overlap. I/O-I/O overlap is the result of programming to try to keep several
I/O devices busy at the same time, by overlapping the time to input or output on one
device with the time to input or output on another device. CPU-I/O overlap tries to
overlap the time to compute something with the time to perform input or output. An
efficient program will often use both.

As an example of I/O-I/O overlap, consider the second COPY program

CR EQU 16
LP EQU 18
BUFFER ORIG *+24 INPUT/OUTPUT BUFFER
EOF ALF *EOF* END OF DECK FLAG
COPY LDA EOF
LOOP IN BUFFER(CR) READ A CARD

JBUS *(CR)
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OUT BUFFER(LP) PRINT A CARD
JBUS *(LP)
CMPA BUFFER CHECK FOR EOF
JNE LOOP
HLT
END COPY

In this program, only one I/O device is operating at any given time. A card is first read,
then printed, then the next card is read. While a card is being read, the printer is idle;
while a line is being printed, the card reader is idle. If we assume that the time to read a
card is r time units and the time to print a line is p time units then this program takes

3 + n × (5 + r + p)

time units to copy n cards from the card reader to the printer. Remember we are talking
of r and p on the order of 50,000 to 200,000 time units. If we assume r is approximately
equal to p, then this is roughly 2×n×r time units.

Now suppose we notice that while this program is executing both the card reader
and the line printer are idle half the time. To read n cards takes only n × r time units, so
if the total program takes 2 × n × r time units, the reader must be idle (i.e., ready, not
busy) the other n × r time units. Similarly for the line printer. Since these I/O devices
are the slowest units in the system, they are the bottlenecks. Hence, we want to keep
them busy as much as possible. Our approach is to keep both units busy all the time.
This is done by a program which executes like

1. Read first card.
2. Next, read the second card, and print the first card at the same time.
3. Read the third card and print the second card at the same time.

. . .
n. Read the nth card and print the (n-1)st card at the same time.

n + 1. Print the nth card.

The implementation of this idea can take many forms. First, we note that since we
are reading and writing simultaneously, we must have two separate buffers, one for
reading and the other for writing. This results in the necessity of moving our input card
from the input buffer to the output buffer as

LP EQU 18 OUTPUT UNIT
CR EQU 16 INPUT UNIT
CARD ORIG *+24 INPUT CARD BUFFER
LINE ORIG *+24 OUTPUT LINE IMAGE
EOF ALF *EOF* EOF MARKER
*
COPY IN CARD(CR) READ FIRST CARD

LDA EOF SET UP FOR EOF COMPARISON
*
* THE FOLLOWING LOOP PRINTS THE ITH CARD AND
* READS THE (I+1)ST CARD, SIMULTANEOUSLY.
*
LOOP JBUS *(CR) WAIT UNTIL READ COMPLETE

CMPA CARD CHECK FOR LAST CARD
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JE QUIT
ENT1 LINE FOR MOVE
JBUS *(LP) WAIT UNTIL PREVIOUS WRITE DONE
MOVE CARD(16) MOVE CARD I TO OUTPUT
IN CARD(CR) READ NEXT CARD
OUT LINE(LP) AND OUTPUT PREVIOUS
JMP LOOP

*
* LAST CARD READ. PRINT FROM INPUT BUFFER.
*
QUIT OUT CARD(LP) PRINT LAST CARD

JBUS *(LP) WAIT
HLT
END COPY

In this program, we move the input out of the input buffer as soon as possible (as
soon as it is read and the previous one is printed), and begin the input of the next card
immediately. Similarly, as soon as the previous output is complete, we move the next
line into the output buffer and start to print it. This keeps both units busy almost all the
time.

What does this do to our execution time? Well, the first card is read by itself and the
last card is printed by itself. However, the reading of the last n - 1 cards and the printing
of the first n - 1 lines overlap almost completely (the input actually starts one instruction
ahead of the output). Thus, rather than taking 2 × n × r time units, the program now
takes only r + (n - 1) × (max(r,p) + m) + p, where m is the amount of time it takes to
move the record from the input buffer to the output buffer (33 units in this case). If p is
approximately equal to r and m is very small, compared to r, then this is approximately

FIGURE 5.6 A time chart of the execution of a program with overlap of I/O with other I/O
and processing. Note that each record must still be input, processed, and output, in that
order; but at any given time we can work with three different records, simultaneously.
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(n + 1) × r and for n greater than just a few cards, we have effectively cut the execution
time for the copy approximately in half. Not completely half, but almost.

There are other techniques for the same basic idea. Notice that the time it takes to
move the data from one buffer to another cannot be overlapped. As with some of the
previous programs, it is faster if we just read directly into the locations where we wish
the data to be rather than reading into a buffer and then moving it. Rather than moving
the data to (or from) the buffer, we simply use a different buffer. For this simple COPY, we
need two buffers, one for input and one for output, but now when input is complete for
one buffer, we immediately start to output from that buffer and then input into another
buffer. When this second input is complete, we can output it and begin to input back
into our first buffer again, and so on. This can be coded as

CR EQU 16
LP EQU 18
BUF1 ORIG *+24
BUF2 ORIG *+24
EOF ALF *EOF* END OF FILE FLAG
*
* THIS PROGRAM COPIES CARDS TO THE PRINTER BY
* USING TWO BUFFERS AND SWITCHING INPUT AND
* OUTPUT BETWEEN THEM.
*
COPY LDA EOF FOR COMPARISON
*
LOOP IN BUF1(CR) READ CARD INTO BUF1

JBUS *(CR)
CMPA BUF1 CHECK END OF FILE
JE QUIT1
OUT BUF1(LP) OUTPUT FROM BUF1

* NOW SWITCH BUFFERS
IN BUF2(CR) INPUT INTO BUF2
JBUS *(CR)
CMPA BUF2 CHECK END IN BUF2
JE QUIT2
OUT BUF2(LP) OUTPUT FROM BUF2

* NOW SWITCH BUFFERS
JMP LOOP AND INPUT INTO BUF1

*
QUIT1 OUT BUF1(LP) FINISH LAST

JBUS *(LP)
HLT

*
QUIT2 OUT BUF2(LP) LAST ONE IN BUF2

JBUS *(LP)
HLT

*
END COPY
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Notice that in this program we have taken advantage of the way that an OUT
automatically waits for a previous OUT to be complete so that we may begin the next
output and, as a side benefit, reuse the old output buffer as the new input buffer.

An advantage of this approach is that the MOVE is no longer necessary, and so
the total time to copy a deck is less than for the previous versions with the MOVE. A
disadvantage is the necessity of writing almost two complete sets of code, one for when
we are inputting into BUF1 and outputting from BUF2, and almost the same code for
when we are inputting into BUF2 and outputting from BUF1.

This latter disadvantage can be overcome by taking advantage of the effective
address calculation of the MIX computer. The only real difference between the two
sets of code written above is in the addresses, which differ. We define two variables
INBUFADD and OUTBUFADD which will contain, in bytes 1:2, the address of the buffer
which is being used for input (for INBUFADD) and for output (for OUTBUFADD). When we
want to input, we use indirection to indicate where the next card should be read

IN INBUFADD,7(CR)

Similarly, for output

OUT OUTBUFADD,7(LP)

To switch buffers, we simply

LDA INBUFADD
LDX OUTBUFADD
STA OUTBUFADD
STX INBUFADD

Our entire copy routine is now

CR EQU 16
LP EQU 18 UNIT NUMBERS
BUF1 ORIG *+24
BUF2 ORIG *+24 BUFFERS
INBUFADD CON BUF1(0:2)
OUTBUFADD CON BUF2(0:2) POINTERS TO BUFFERS
EOF ALF *EOF* END-OF-FILE FLAG
*
COPY IN INBUFADD,7(CR) READ CARD

JBUS *(CR)
*

LDA INBUFADD
LDX OUTBUFADD SWITCH
STA OUTBUFADD BUFFERS
STX INBUFADD

*
OUT OUTBUFADD,7(LP)
LDA OUTBUFADD,7 CHECK EOF
CMPA EOF
JNE COPY IF NOT CONTINUE

*
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JBUS *(LP) WAIT FOR LAST CARD TO PRINT
HLT
END COPY

An alternative implementation of the same method is to use indexing instead of
indirection. In this version, we use index register 5 to point to the input buffer and index
register 6 to point to the output buffer.

...
COPY ENT5 BUF1 INITIALIZE REGISTERS

ENT6 BUF2
LDA EOF

*
LOOP IN 0,5(CR) READ CARD INTO INPUT BUFFER

JBUS *(CR)
*

ENT4 0,5 SWITCH
ENT5 0,6 BUFFER
ENT6 0,4 POINTERS
OUT 0,6(LP) OUTPUT FROM NEW OUTPUT BUFFER

*
CMPA 0,6 CHECK FOR END-OF-FILE
JNE LOOP

*
JBUS *(LP) WAIT FOR LAST PRINT
HLT
END COPY

This code is a little shorter, since an index register swap is somewhat easier than a
memory-to-memory swap and somewhat faster, since indexing is faster than indirection,
but it ties up more registers, leaving them unavailable for other uses.

The COPY program we have been studying is a very special case demonstrating
I/O-I/O overlap. More generally, some computation will need to be done on the input
before it can be used as output. Thus, in addition to trying to do input and output
simultaneously, we will also try to do computing at the same time. If we consider the
time involved, let I be the time to do the input, C the time to do the computing, and O
the time to do output. If we input a card, compute on it, and then output the card before
going back to read another card (no overlap), then the total execution time will be on
the order of I + C + O for each card. If, on the other hand, we read a card and, while
computing on that card, we also read the next card, and while printing the first card,
are computing on the second and reading the third, then the total time will be more
like max(I,C,O) per card. This will require at least three buffers, one for input, one for
computing, and one for output. The data can be moved between buffers, or the buffers
can be swapped, using index registers or indirection to point to the appropriate buffer
for each activity. An example is the following program, which counts the number of
blank spaces on a card, stopping when an *EOF* card is read.

*
* THIS PROGRAM INPUTS A DECK OF CARDS FROM THE
* CARD READER AND PRINTS EACH CARD WITH THE
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* NUMBER OF BLANK SPACES WHICH OCCUR ON THAT
* CARD. I/O BUFFERING IS USED TO OVERLAP THE
* READING OF THE CARDS, THE COUNTING OF BLANKS,
* AND THE PRINTING OF THE OUTPUT LINES. LEADING
* ZEROS IN THE NUMBER OF BLANKS ARE SUPPRESSED
* BY CONVERTING THEM INTO BLANKS (LEADING-ZERO-
* SUPPRESSION).
*
CR EQU 16 CARD READER UNIT
LP EQU 18 LINE PRINTER UNIT
*
BUF1 ORIG *+24
BUF2 ORIG *+24
BUF3 ORIG *+24 SET OF I/O BUFFERS
*
BLANK CON 00(1:1) FOR LEADING ZERO SUPPRESSION
ZERO CON 30(1:1) FOR COMPARISON
EOF ALF *EOF* EOF MARKER
*
* START FIRST INPUT. THEN SET UP REGISTERS
* I4, I5, AND I6 TO POINT TO BUFFERS FOR
* INPUT, COMPUTE, AND OUTPUT, RESPECTIVELY.
*
START IN BUF1+8(CR) INPUT INTO BUFFER

ENT4 BUF1
ENT5 BUF2
ENT6 BUF3 POINTERS TO BUFFERS

*
NEXTCARD ENT3 0,6 SWITCH

ENT6 0,5 BUFFER
ENT5 0,4 POINTERS
ENT4 0,3
IN 8,4(CR) INPUT NEXT CARD

*
* COUNT THE NUMBER OF CHARACTERS THAT ARE BLANK
* LINES ARE EXAMINED BACKWARDS TO SPEED END OF
* LOOP CHECKS. X COUNTS THE NUMBER OF BLANKS.
* A HAS THE NEXT WORD, INDEX 1 INDEXES THE WORDS
* AND RUNS FROM 16..0, INDEX 2 COUNTS THE BYTES
* IN EACH WORD (IN A) AND RUNS 5..0, INDEX 5
* POINTS TO THE BUFFER TO WORK ON (COMPUTE).
*

ENTX 0 BLANK COUNTER
ENT1 16 WORD INDEX

NEXTWORD LDA 7,1:5 LOAD WORD FROM BUFFER+8-1+I1
ENT2 5 BYTE COUNTER

*
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NEXTBYTE CMPA BLANK(1:1) CHECK IF NEXT BLANK
JNE *+2
INCX 1 FOUND A BLANK, INCREASE COUNT
SLA 1 SHIFT TO NEXT CHARACTER
DEC2 1
J2P NEXTBYTE STILL MORE BYTES?

*
DEC1 1 FINISHED WORD
J1P NEXTWORD STILL MORE WORDS?

*
* NUMBER OF BLANKS IN X, CONVERT TO CHARACTERS.
*

SLAX 5 MOVE X TO A FOR CHAR
CHAR

*
* SUPPRESS LEADING ZEROS. I1 HAS BYTE COUNT
*

ENT1 9 ONLY CHECK LEADING 9 DIGITS
1H CMPA ZERO(1:1) CHECK FOR LEADING ZERO

JNE NONZERO
SLAX 1 SHIFT OFF LEADING ZERO
DEC1 1
J1P 1B IF STILL MORE DIGITS

*
NONZERO SLC 1,1 I1 HAS NUMBER NONZERO DIGITS

STA 1,5 STORE HIGH ORDER BYTES
STX 2,5 AND LOW ORDER BYTES

*
OUT 0,5(LP) PRINT (AND WAIT IF NECESSARY)
JBUS *(CR) NEXT CARD
LDA 8,4 CHECK EOF
CMPA EOF
JNE NEXTCARD

*
JBUS *(LP) WAIT LAST PRINT
HLT 0
END START

Computer programs are not restricted to just being of the form: “read a card,
compute on that card, print a line of output”, however. The program may read several
cards before outputting anything or may output many lines while reading nothing. Still,
we can attempt to overlap any required I/O as much as possible. All of the programs we
have studied so far read into a buffer, and output from a buffer. For sequential devices,
such as card readers, card punches, line printers, and magnetic tapes, we can use
buffering to overlap our I/O time with computation time. Buffering is simply reading or
writing with one buffer while other processing is being done with another buffer.

Double buffering is the simplest case of buffering. In double buffering, we have two
buffers for each device. For input, we take our input out of one buffer while the other is
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being read into by the input device. When the one buffer is empty, we wait until the other
buffer is filled (JBUS *) and then start the input of the next record into the empty buffer
while we use the newly read one. This can be done either by moving from the one
buffer into the other, or merely by switching pointers. For output, we place our output
image in one buffer and when this is full, we begin its output (OUT) and immediately
begin to place our new output into another buffer. When this new buffer is full we wait
for the previous OUT to finish (JBUS *) and then OUT from the newly filled buffer while
our program fills the newly emptied buffer with new material to be output. This results in
programs such as

BEGIN IN INBUF(CR) INPUT FIRST CARD
...
JBUS *(CR) WAIT FOR LAST INPUT
ENT1 OTHERBUF
MOVE INBUF(16) MOVE NEW DATA OUT OF INBUF
IN INBUF(CR)
...

Similarly, for output

...
JBUS *(LP) WAIT UNTIL LAST PRINTED
ENT1 OUTBUF
MOVE ONEBUF(24) MOVE TO OUTPUT BUFFER
OUT OUTBUF(LP) AND START PRINT
...

Both of these examples use the MOVE technique. The pointer approach (index registers
or indirection) is also possible, and generally slightly faster (by milliseconds).

Note that buffering may not be possible for input from direct access devices like disk
or drum, since accesses on these devices are not likely to be sequential. This means
that it is not possible to buffer ahead on input by reading the next record (since we do
not know what the next record will be). It is still possible to buffer behind on output,
however, since we do know where the last record should be output.

5.5 BLOCKING

Another problem which arises from direct access devices is efficient storage
utilization. Suppose we wished to copy a deck of cards from the card reader to
the line printer, backwards. This requires storing the entire card deck in the computer
until the last is read and then printing the entire deck. At 16 words per card, and only
4000 words of memory, we could only store 4000/16 = 250 cards if we stored them in
memory (and then we would have no room for the program). However, if we store them
on disk, we could store 4096 cards by putting one card in each disk record. This would
result in an input portion of the program such as

IN CARD(CR)
ENTX 0 DISK ADDRESS

INLOOP JBUS *(CR) WAIT UNTIL CARD READ
LDA CARD
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FIGURE 5.7 No blocking – each logical record (in this case a card) is stored in one
physical record (a disk or tape block).

CMPA EOF CHECK EOF
JE OUTPUT
ENT1 DISKBUF
MOVE CARD(16) MOVE CARD TO DISK BUFFER
IN CARD(CR)
OUT DISKBUF(DISK)
INCX 1
JMP INLOOP CONTINUE WITH NEXT CARD

We are keeping our disk address in the X register, incrementing by one for each disk
record written. Output is then

OUTPUT ENT1 BUF1 POINTER TO OUTPUT BUFFER
ENT2 BUF2
DECX 1
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JXNP QUIT IF NO INPUT
*
OUTLOOP IN 0,1(DISK) READ FROM DISK

ENT3 0,1 SWITCH POINTERS
ENT1 0,2
ENT2 0,3
DECX 1 DECREASE DISK ADDRESS
JBUS *(DISK)
OUT 0,2(LP) OUTPUT NEW DISK RECORD
JXNN OUTLOOP CONTINUE IF MORE

*
QUIT JBUS *(LP) WAIT ON LAST

HLT
END

However, even this approach limits us to only 4096 cards (only about 2 boxes).
Notice that the physical record size for a disk record is 100 words, while a card takes
up only 16 words. Thus 84 words of each record are being wasted. We can avoid this
waste by packing several card images into one disk record. This is called blocking,
since we are then treating several cards as a block. For the situation mentioned above,
we can block six cards per disk record easily and increase the number of cards which
can be stored to 6 × 4096 = 24,576. The blocking factor is the number of cards per disk
record, and in this case is 6.

A blocking factor of 6, for card images, still leaves 4 words per disk physical record
being wasted. Things could be worse if the size of the information block we wish to
store (a logical record) were some other number which does not divide evenly into the
size of the physical record. For a 17-word logical record, and a blocking factor of 5, we
would use only 85 words, leaving 15 words per physical record wasted. For a 51-word
logical record, 49 words would be wasted.

These considerations rapidly lead to the conclusion that it is not always desirable to
limit ourselves to only putting an integral number of logical records per physical record
(loose blocking), but rather that it is to our advantage, at times, to split a logical record
between two physical records. Thus, for 17-word logical records, we put logical records
in physical records as

logical record number physical record number words

1 1 0-16
2 1 17-33
3 1 34-50
4 1 51-67
5 1 68-84

6 1 85-99
and 2 0-1

7 2 2-18

Notice that the first 15 words of logical record 6 are in physical record 1, the last 2
words are the first 2 words of the next physical record. Retrieving a logical record may
thus require the reading of two physical records.
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FIGURE 5.8 Loose blocking – multiple logical records are blocked into each physical
record, but no logical records are split between physical records.

Where is a given logical record? Each logical record is 17 words long, so the k th
logical record follows the first k -1 logical records and is words 17 × (k - 1) through 17 ×
(k - 1) + 16 = 17 × k - 1. Since there are 100 words per physical record, the physical
record which holds the first word of the k th logical record is physical record number
(starting at zero) 17 × (k - 1)/100. The remainder of this division is the word number
within the physical record of the first word of the logical record. Thus, it is possible
to access a given logical record directly even if we block logical records as tightly as
possible.

For sequential access, the problem is much easier to solve. To extract the next
logical record from a physical record buffer, we need a pointer which indicates the index
of the last word which we have returned (the end of the last record). Putting this in a
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FIGURE 5.9 Tight blocking – multiple logical records are blocked into each physical
record, and some logical records may be split between physical records.

register, we transfer from the physical record buffer to the logical record buffer, one
word at a time, the next 17 words. If the index into the physical record buffer at any
time exceeds 100, this means that the physical record buffer is empty and a new record
must be read and our index reset to zero before transferring the next word. The MIX
code for this is

DISK EQU 9
LOGSIZE EQU 17 LOGICAL RECORD SIZE
PHYSIZE EQU 100 PHYSICAL RECORD SIZE
LOGBUF ORIG *+LOGSIZE
PHYBUF ORIG *+PHYSIZE
PHYINDEX CON 0 POINTER INTO PHYBUF
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DISKADD CON 0 DISK ADDRESS
...
STZ PHYINDEX SET INDEX TO ZERO
ENTX 0
IN PHYBUF(DISK) READ FIRST PHYSICAL BUF
STZ DISKADD
JBUS *(DISK) WAIT UNTIL READ DONE
...

*
* TRANSFER NEXT LOGICAL RECORD FROM PHYSICAL
* RECORD BUFFER TO LOGICAL RECORD BUFFER.
* INDEX 2 HOLDS THE INDEX INTO THE PHYSICAL
* BUFFER (0..99). INDEX 5 HOLDS THE INDEX
* INTO THE LOGICAL RECORD BUFFER (0..16).
*

ENT5 0 LOGICAL INDEX
LD2 PHYINDEX

2H CMP2 =PHYSIZE= CHECK IF END OF BUFFER
JL 1F NO

*
LDX DISKADD
INCX 1 READ NEXT PHYSICAL RECORD
IN PHYBUF(DISK)
STX DISKADD
JBUS *(DISK) WAIT UNTIL READ COMPLETE
ENT2 0 RESET INDEX TO ZERO

*
1H LDA PHYBUF,2

STA LOGBUF,5
INC5 1
INC2 1 INCREASE BOTH INDEXES
CMP5 =LOGSIZE= CHECK END OF LOGICAL RECORD
JL 2B

*
ST2 PHYINDEX RESTORE UPDATED INDEX

*

We have purposely used a very simple I/O scheme without buffering here to illustrate
how unblocking (or deblocking) is done. You should be able to easily modify this code
to buffer ahead.

There are two other points which should be made. First, how do we know where the
end of the data on the disk is (particularly since it may end in the middle of a physical
record)? One method would be to use a special value for the logical record, such as
the *EOF* marker we have used for card decks. As each logical record is used, we can
check to see if it is the last one. A variant on this, for the case of alphanumeric character
code information stored on the disk would be to use the sign bit (which is always set to
“+” by the card reader) to signal the last logical record by setting the sign bit of the first



178 CHAPTER 5. INPUT/OUTPUT PROGRAMMING

word of a logical record to “+” for all logical records except the last one, for which the
sign is set to “-”.

A more general idea is to store at the beginning of the physical record a count of the
number of information-bearing words in the physical record. If the value of this counter
were 37 for a particular record, this would indicate that the first 37 words are valid and
the other words (the last 62) are garbage. Notice that this reduces the effective size of
the physical record by one word. Also, for most records, the value of this word will be
constant (at 99); only the last physical record will have a different value.

The number stored in the first word could also be the number of valid logical records,
the number of unused words, the beginning index of the last valid logical record, and so
on.

5.6 SUMMARY

Input/output is a crucial part of most programs, since few programs operate in
isolation from the outside world. At least the results of the program must be output, either
to a person or for another program or computer. Input/output is basically asynchronous.
Each device has a busy state and a ready state. The JBUS and JRED instructions allow
this to be tested. The IN and OUT instructions start the transfer of information between
the device and the memory of the MIX computer. Each device is programmed using
its own techniques. Buffering is used to reduce the real time that it takes to execute
a program by overlapping the execution of the CPU and input/output operations and
to overlap the operation of different I/O devices. Blocking is a technique for making
maximal use of disk, drum, or tape space by packing several logical records into a
physical record.

Because I/O is so very slow relative to CPU operations, I/O programming must be
very carefully done. Gear (1974), Stone and Siewiorek (1975), and Eckhouse (1976) all
have a complete chapter on I/O programming. Knuth (1968) also devotes a section to
I/O. These treatments are especially concerned with overlapped I/O.

A very important improvement over the ideas presented in this chapter is the
technique of interrupts. Interrupts is a hardware feature which can help with I/O. MIX
does not have an interrupt system, so we delay discussion of this topic until Chapter 10,
where it will be presented in terms of other computer systems.

EXERCISES

1. What are the physical record sizes of the following MIX devices:

(a) card reader
(b) line printer
(c) disk
(d) drum
(e) tape

2. How is the track and sector address determined for an I/O instruction for a disk or
drum?

3. What is a buffer?
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4. What is I/O interlock time?

5. What is buffering and why is it used?

6. What is blocking and why is it used?

7. Define seek time, latency time, and transfer time for a moving-head disk.

8. Why is the JBUS *(16) in the following code?

IN BUF(16)
JBUS *(16)
LDX BUF+5

9. Describe the results of the following program.

ALF DATA
BUF ORIG *+23

...
IN BUF(16)
OUT BUF-1(18)

10. Suppose you see the two lines

WAIT JBUS WAIT(16)
IN CARD(16)

in a MIXAL program. Can you always replace them with

WAIT IN CARD(16)

and still be assured of the same results?

11. If we wish to copy a card deck to drum, and reading a card takes 50 milliseconds,
processing it takes 10 microseconds, and writing it to the drum, one card per
drum record, takes 1 millisecond, and we do not overlap any processing or I/O,
how long does it take to copy 1000 cards? What would be the effect on timing of
overlapping the CPU processing and the drum and card I/O? What would be the
effect of blocking multiple card images per drum record?

12. We want to copy a card deck to disk, and also make a listing of it. It takes 50
milliseconds to read or print a card and 1 millisecond to write a block to disk. In
the best case, how much time would it take to process n cards?

13. What is the blocking factor (logical records per physical record) and the number of
wasted words per physical disk block, if we store logical records of 7, 13, 18, 41,
or 500 words on a MIX disk? Consider the cases of no blocking, loose blocking,
and tight blocking.

14. Write a MIXAL program which reads cards and prints the card images after
squeezing out multiple blanks. Any sequence of blanks should be replaced by
one blank. Overlap I/O with I/O and CPU processing.
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15. Write a program to read a file and print it backwards. How much I/O overlap can
you do?

16. What is the difference between a sequential access device and a direct access
device? Can we simulate one type of device on the other?

17. What are the differences between moving information between buffers and simply
switching pointers to the buffers?

18. Can buffering be used for a direct access input device? For a direct access output
device?
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SUBROUTINES AND PARAMETERS

After a programmer has written a few assembly language programs, a number of
things become obvious. One is the repetitive nature of assembly language programming.
For almost every program, code must be written for inputting data and converting from
character code, and code must be written for formatting and outputting results. This
code is often very similar from program to program. It may be necessary to input or
output at several points in the algorithm being programmed, so within the same program
similar code must be written in several places.

This problem is compounded by the very low level of instructions available in
assembly language. The operations performed by an assembly language statement are
very simple, and to program even the simplest computations may take tens or hundreds
of these simple instructions. To have to write the code necessary to effect some logically
simple higher-level operation (such as summing the elements of an array, or counting
the number of blanks in a line, or searching an array for the maximum element, and so
on) more than once becomes tedious and boring.

For these reasons, subroutines are a standard programming technique of assembly
language programmers (among others). A subroutine is a sequence of instructions
which is a logical unit. Subroutines are also called procedures or functions. Their
original and main purpose is to reduce the amount of code which must be repetitively
written for a program. This makes assembly language programming easier and faster.
Subroutines also allow code by another programmer to be used in a different program
than it was originally written for.

Another effect of subroutines is to free the assembly language programmer from
thinking only in terms of the instructions and data types provided by the hardware
computer. Subroutines can provide the programmer with the opportunity to think and
design a program in terms of abstract data types and abstract instructions for these
data types. For instance, MIX provides only the basic data types of integer numbers,
floating point numbers, and characters (bytes). It does not provide arrays, or instructions
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FIGURE 6.1 A main program and its set of subroutines (the main program calls two
subroutines; each of these may then call other subroutines).

to manipulate arrays. However, if we write a set of subroutines which add, subtract,
compare, copy, input, and output arrays, then we can program in an extended instruction
set, an instruction set which does have instructions to manipulate arrays. When it is
necessary to actually operate on an array, the instruction is written as a call to the
appropriate subroutine. Thus, subroutines free the programmer from some of the
constraints of assembly language programming.

In this chapter, we consider many of the ideas, techniques and conventions which
have developed regarding subroutines and their use. We are interested simply in the
mechanics of how to write a subroutine and how to use it. Much of this information
is applicable to both assembly language programming and higher-level language
programming.

6.1 SUBROUTINE STRUCTURE

A subroutine is a closed piece of a program which has some logical function. It is
executed by transferring control to its entry point . The subroutine executes, performing
the task for which it was written and then returns to the program which called it. A
subroutine may be completely self-contained and have the code to do everything itself,
or it may call another subroutine.

A program is made up of a main program and subroutines. These subroutines are
the subroutines which the main program calls, the subroutines which are called by the
subroutines which are called by the main program, the subroutines which are called
by the subroutines which are called by the subroutines which are called by the main
program, and so on. Both the main program and the subroutines can be called routines.
For each call, two routines are involved: the calling routine and the called routine.
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6.1.1 Return addresses

A subroutine normally has a name. The name of the subroutine is often also the
name of its entry point, the address where execution of the subroutine should begin. A
subroutine is called by transferring control to the entry point of the subroutine. When
the subroutine completes its execution, it will return control back to the calling routine.
Normally, control is returned to the instruction immediately following the call in the
calling routine. The address of this instruction is called the return address. Notice that
if the subroutine is called from two different locations in the calling routine (or from
two different calling routines) it will need to return control to two different addresses
after it is through with its execution. This requires that every call of a subroutine not
only transfer control to the entry point of the subroutine but also supply it with a return
address where it should transfer control upon completion of its code.

On the MIX machine, subroutine calls are made by using the jump instructions to
transfer control to a subroutine. The J register has been specifically designed to be
used for supplying the return address to the called routine. When a JMP is executed to
the entry point of a subroutine, the address of the instruction following the JMP is put
into the J register. Thus the J register has the return address for the subroutine call.

The called routine must save the J register, and when the subroutine finishes its
task, return to that address. This is done by

ENTRY STJ EXIT
<code for subroutine>

EXIT JMP *

The STJ instruction stores the contents of the J register (the return address) into the
address field (bytes 0:2) of the JMP instruction at EXIT. Thus, when the instruction at
EXIT is executed, the address to which control is transferred will be the return address
for the call. Notice that this form of linkage is a self-modifying program.

As a simple example of a subroutine, consider a subroutine which computes the
sum of the elements of an array INCOME of length 10. The subroutine could be

SUMMER STJ EXITSUM SAVE RETURN ADDRESS
ENTA 0 SUM = 0
ENT1 9 I1 = 9, ..., 0

LOOP ADD INCOME,1 ADD INCOME(I1)
DEC1 1
J1NN LOOP CHECK FOR END OF LOOP

EXITSUM JMP * THIS INSTRUCTION MODIFIED

This subroutine can be called by the simple instruction

JMP SUMMER SUM INCOME ARRAY

and returns with the A register being the sum of the elements in the array INCOME.

6.1.2 Register saving and restoring

The subroutine given above (SUMMER) used the A register and index register 1 in
the computation of the sum. It is possible that the calling routine was also using these
registers to store important values for its own computations. When the subroutine is
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FIGURE 6.2 Illustration of the relationship between a calling routine and a called routine,
and how the return address is passed.

called, it is necessary to save these registers and restore them before the calling routine
is resumed. If we let P be the set of registers used by the calling routine which need to
be saved and Q be the set of registers used by the called routine, then the intersection
of P and Q, those registers used by both the calling and called routines, are the only
registers which need to be saved. Any register which is not used by the calling program,
or is not used by the called program, or is not used by either, need not be saved.

There are two places that the saving and restoring of registers can be done. The
registers can be saved in the calling program before the subroutine is called and
restored after the subroutine returns. Alternatively, they can be saved in the subroutine
before it modifies anything, and restored right before the subroutine returns to the
calling routine. Notice that only the intersection of the set of registers used by calling
and called routines need be saved. However neither routine may know what the other
routine uses. Often different routines are programmed by different programmers, or at
different times. It is considered poor programming practice to make assumptions about
how a subroutine works internally. Thus, since neither routine knows the registers used
by the other, they are forced to save all the registers they use. If the calling routine
saves and restores registers, then it should save all of the registers that it uses. If the
called routine saves and restores registers, then it should save all of the registers it may
need to use.

The question as to which routine, called or calling, saves registers can be decided
either way. If the calling routine generally needs only a few registers saved, then it may
save them. On the other hand, if the called routine only uses a few registers, it may
save them itself. Different routines may save registers or assume that they are saved by
someone else as long as the decisions are consistent. It is even acceptable (although
wasteful) for both the calling and called routine to save the registers. What must be
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avoided is a situation where the calling routine assumes that the called routine will save
registers, and vice versa, resulting in neither routine saving them.

To prevent any possible problem of forgetting to save and restore a register, many
programmers adopt a personal rule to always save all registers used in a called routine,
in that called routine. This convention means that the calling program need not worry
about the value of the registers when it calls a subroutine, and eliminates a major
source of errors in assembly language programming.

Using this rule, we would rewrite our subroutine SUMMER given above as follows

SUMMER STJ EXITSUM SAVE RETURN ADDRESS
ST1 SUMTEMP1
ENTA 0
ENT1 9

LOOP ADD INCOME,1
DEC1 1
J1NN LOOP
LD1 SUMTEMP1 RESTORE I1

EXITSUM JMP *
SUMTEMP1 ORIG *+1

Notice that we still did not save and restore the A register. This is because the A register
is being used to pass the result of executing the subroutine back to the calling routine.
This is typically the case for a function. A function is a subroutine which returns a value,
generally in a register. A subroutine which does not return a value is called a procedure,
or simply a subroutine.

In the above code, we stored the value of index register 1 in the temporary variable
SUMTEMP1. This extra temporary variable could have been eliminated by saving and
restoring the index register as follows.

SUMMER STJ EXITSUM
ST1 SUMT1(0:2)
ENTA 0
ENT1 9

1H ADD INCOME,1
DEC1 1
J1NN 1B

SUMT1 ENT1 * MODIFIED BY ST1
EXITSUM JMP * MODIFIED BY STJ

The extra code which has been added to the beginning of the subroutine which
is only necessary because the code is a subroutine is called the prologue of the
subroutine; the code at the end is the epilogue. The prologue typically consists of
instructions to store the return address and save registers. The epilogue consists of
code to restore the registers and transfer control back to the calling program.

6.1.3 Variables

If the registers are to be saved and/or if the computation is long enough or
complicated enough, the subroutine may very well need to store values in memory
for its own private use. At the same time, it may be necessary for the subroutine to
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FIGURE 6.3 Global variables (global variables are shared by several routines in a
program; many routines may load and store from these global locations).

access some variables in the main program. Variables which are meant solely for the
internal coding of the subroutine and are never used by any other routine are local
to that routine. Variables which may be accessed by many routines are called global
variables. Global variables are external to the routines which access them.

In the writing of a program of many subroutines, global variables are often declared
first. Then the code for subroutines is included, followed by the main program. The
code for each subroutine would consist of first the declarations of its local variables,
and then its prologue, code, and epilogue. Variations from this basic scheme are not
uncommon. Each subroutine should be written as a separate package and should be
well commented. A short paragraph at the beginning of the subroutine should explain
what the subroutine does, what it assumes, what registers it affects, and what other
subroutines are called.

Following this format, would require rewriting subroutine SUMMER.

* * * * * * * FUNCTION SUMMER * * * * * *
* THIS SUBROUTINE SUMS THE VALUES OF TEN
* ELEMENTS OF THE ARRAY, INCOME. THE SUM IS
* RETURNED IN THE A REGISTER.
*
* REGISTERS: A - RETURNS SUM OF ARRAY;
* PREVIOUS VALUE LOST.
* OT - MAY BE SET IF OVERFLOW.
*
* SUBROUTINES CALLED: NONE
*
* INDEX I1 IS USED TO INDEX THROUGH THE ARRAY.
* IT IS SAVED AND RESTORED. ARRAY IS SUMMED
* BACKWARDS FROM 9 DOWN TO 0.
*
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SUMMER STJ EXITSUM SAVE RETURN ADDRESS
ST1 TEMP1SUM(0:2) AND REGISTER I1

*
ENTA 0 SUM = 0
ENT1 9 INDEX FROM 9 TO 0

*
1H ADD INCOME,1 SUM = SUM + INCOME(I)

DEC1 1
J1NN 1B LOOP TEN TIMES

*
TEMP1SUM ENT1 * RESTORE INDEX 1
EXITSUM JMP * AND EXIT.
*

6.2 PARAMETERS

The subroutine SUMMER used as an example in the last section is indeed a bona fide
subroutine, but it is a very special-purpose one. It always sums exactly 10 elements of
the array INCOME. If we wanted to sum only the first five elements of INCOME, we would
have to write another subroutine. If we wanted to sum the first 10 elements of some
other array, we would again have to write another subroutine.

Rather than write separate subroutines for all of these basically similar functions,
we write one general-purpose subroutine. Parameters are used to specify those parts
of the subroutine which may vary. For the SUMMER function, it is reasonable to assume
that the array being summed and the length of the array may differ from one call of
the subroutine to another. Thus, we define a function, called SUM, with two parameters.
Parameters are also called arguments.

To refer to the parameters, we give them names. There are two types of parameter
names. When we discuss the general subroutine, we use formal parameters, which
are simply the names of the parameters. For any particular call of the subroutine, it is
necessary to specify the specific variables to be used with the subroutine for this call.
These specific variables are the actual parameters.

One of the major problems with subroutines is how to pass parameters. The calling
routine knows, for each call, what the actual parameters are. It is necessary to transmit
this information from the calling routine to the called routine somehow. The problem is,
how? As with many problems in programming, many different solutions to the problem
have been proposed. Each method may require a small amount of code in the calling
routine to set up the parameters. This is called the calling sequence of the subroutine.

6.2.1 Passing parameters in registers

One of the most common solutions for assembly language programs is to pass
parameters in the programmable registers of the central processor. In MIX, the A and X
registers can be used to pass two five-byte-plus-sign numbers, or up to 10 characters.
The index registers can pass small numbers or addresses. The return address can be
considered as just another parameter which, for the MIX computer, is always passed in



188 CHAPTER 6. SUBROUTINES AND PARAMETERS

the J register. A function value is a parameter which is passed back from the function
to the calling routine through the registers.

If values are passed into or out of a subroutine in the A and X registers, they can be
accessed directly and used in the subroutine immediately. Often, however, a parameter
may not fit into the A or X register. For example, for a subroutine which adds the
elements of an array, we need the length of the array (a number easily passed in a
register) and the array elements. However, the array cannot be put in the registers
(unless it was a very small array), so a pointer to the array, its address in memory,
is passed instead. This requires the elements of the array to be accessed indirectly,
generally by using indexed or indirect addressing.

If registers are used to pass the address and length of the array to be summed, we
can write a SUM subroutine which will add the elements of the array and return the value
in the A register as follows.

*
* SUM: FUNCTION TO ADD THE ELEMENTS OF AN ARRAY
* AND RETURN THE VALUE IN THE A REGISTER.
*
* ON INPUT, I1 = ADDRESS OF THE ARRAY
* I2 = LENGTH OF THE ARRAY
*
SUM STJ SUMEXIT SAVE RETURN ADDRESS

ST2 TEMP2(0:2) AND REGISTER
ENTA 0

*
1H ADD -1,1:2 ADD ELEMENT OF ARRAY

DEC2 1
J2P 1B

*
TEMP2 ENT2 * RESTORE INDEX 2
SUMEXIT JMP * EXIT

An alternative subroutine which does not use double indexing is

SUM STJ SUMEXIT SAVE RETURN ADDRESS
ST2 TEMP2(0:2) AND REGISTER
ENTA 0

*
1H ADD 0,1

INC1 1 NEXT ELEMENT OF ARRAY
DEC2 1
J2P 1B ADD FOR EACH ELEMENT OF ARRAY

*
TEMP2 ENT2 * RESTORE REGISTER
SUMEXIT JMP * AND EXIT

If desired, index register I1 could also be saved and restored.
The calling sequence for passing parameters in registers requires that the registers

be properly loaded before the JMP to the subroutine is executed. For the SUM function
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above, we could sum the two arrays P and Q, whose lengths are equal and equal to the
contents of location N, by

ENT1 P ADDRESS OF ARRAY
LD2 N LENGTH OF ARRAY
JMP SUM
STA SUMP SAVE SUM

*
ENT1 Q ADDRESS OF ARRAY Q

* LD2 N INDEX 2 STILL HAS N IN IT
JMP SUM
STA SUMQ SAVE SUM OF Q

The calling routine has the responsibility of making sure that any values which are in
the registers used for parameter passing are correct when the subroutine is called. This
may mean that the calling routine will need to save some registers.

6.2.2 Global variables

Another way to pass parameters is to use global variables. In this method, special
global variables are declared which serve as the parameters for the subroutine. When
a routine wishes to call the subroutine, it copies the actual parameters into the special
global variables and then simply jumps to the subroutine. The subroutine accesses the
parameters through the global variables.

For our array summing subroutine, we could declare two global variables, ARRAYADD
and LENGTH.

*
* GLOBAL PARAMETERS FOR SUM SUBROUTINE
*
ARRAYADD ORIG *+1
LENGTH ORIG *+1

The calling sequence becomes

ENTA P ADDRESS OF P
STA ARRAYADD(0:2)
LDA N VALUE OF N
STA LENGTH
JMP SUM

The subroutine itself is then

SUM STJ SUMEXIT
ST2 TEMP2(0:2)
ENTA 0
LD2 LENGTH

*
1H DEC2 1

ADD ARRAYADD,7:2
J2P 1B
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TEMP2 ENT2 *
SUMEXIT JMP *

This version requires indirect addressing, and specifically postindexed indirection.
This could be eliminated, as the double indexing was above, by loading from ARRAYADD
into I1 and then incrementing register I1 in the loop. Or the program can modify itself
by substituting the actual parameter into the code before executing it. In this case, SUM
would be written as

SUM STJ SUMEXIT
ST2 TEMP2(0:2)
LD2 ARRAYADD(0:2)
ST2 2F(0:2)
LD2 LENGTH
ENTA 0

1H DEC2 1
2H ADD *,2 ADDRESS OF ARRAY SUBSTITUTED

J2P 1B
TEMP2 ENT2 *
SUMEXIT JMP *

Substituting the parameter directly into the code may be acceptable if the parameter is
used in only a few instructions in the subroutine, but generally indexing or indirection is
a better method of accessing a parameter.

The use of global variables to pass parameters is similar to the use of registers
to pass parameters, since registers are essentially just global variables with certain
special properties and faster access times. However, use of global variables means
that the number and size of parameters are not limited by the number and size of the
registers. If a subroutine in MIX had 10 parameters, we could not pass the parameters
in the registers, since there are only 8 registers. We would not be able to pass even
three parameters if these parameters were each a full five bytes plus sign, since index
registers are too small for such parameters. Only the A and X registers can be used to
pass full-size parameters. Thus the use of global variables has certain advantages over
the use of registers.

6.2.3 Passing parameters in the called routine

There are some problems with the use of global variables, however. Sometimes it
is difficult, or inconvenient, to have to allocate global variables. Both the calling and
called routines (which may be written by different programmers) must agree upon the
location and names of these global parameters. Thus it is not possible to simply pick up
a subroutine and use it; it is necessary to also allocate the appropriate global variables.

An alternative method of passing the parameters is to have the space for them be
allocated in the subroutine to be called. This means that the subroutine is self-contained
and need not reference, nor have allocated, global variables. Notice that the same
amount of space is needed, and the parameters would still be accessed in the same
manner; the question is simply where to put the parameters. One possibility is in global
memory space, another is local to the called routine.

But if the parameters are to be put in the called routine, how is the calling routine to
refer to the memory locations where the parameters are to be put? A subroutine should
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FIGURE 6.4 Parameters passed before the entry point (parameters are passed by
placing them in the memory location before the entry point).

be treated as a black box. No other routine should make any assumptions about how it
is internally structured. To do so invites possible errors in the program if the subroutine
must be rewritten. The only information about a subroutine which should be necessary
outside that subroutine is the location of the entry point, the parameters needed, and
the function of the subroutine. It would be possible to require the definition of two entry
points for each subroutine: one as the address of the code to which control should be
passed to start execution of the subroutine, and the other the beginning address of a
block of memory where the parameters should be put.

More often, however, these two addresses are combined, so that only one address
need be defined to use a subroutine. To execute the subroutine, control is transferred
to the entry point. This same address is also the address of the first location after the
locations where the parameters are to be put. Thus the block of memory locations for
passing parameters is just before the entry point to the subroutine. For a subroutine
with an entry point SUB, for example, control is transferred to the subroutine by a JMP
SUB. The first parameter is passed in SUB-1, the second parameter in SUB-2, the third in
SUB-3, and so forth.

For our array summing routine, SUM, the code would look like

ORIG *+1 SAVE SPACE FOR ARRAY LENGTH
ORIG *+1 SAVE SPACE FOR ARRAY ADDRESS

*
SUM STJ SUMEXIT

ST2 TEM2(0:2)
ENTA 0
LD2 SUM-2 LENGTH

1H DEC2 1
ADD SUM-1,7:2 INDIRECT ACCESS OF ARRAY
J2P 1B
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TEM2 ENT2 *
SUMEXIT JMP *

The calling sequence is

ENTA P
STA SUM-1(0:2) STORE IN ADDRESS FIELD
LDA N
STA SUM-2
JMP SUM

6.2.4 Parameter passing in the calling routine

For a system like the MIX computer, however, passing the parameters just before
the entry point can cause definite problems. Specifically, if the subroutine is a forward
reference then we cannot use expressions like SUB-1, SUB-2 in our program. Also (as
we will see later in Chapter 7), some loaders do not allow expressions which involve
entry points. Thus there may be problems with passing parameters in the calling routine.

Still the parameters must be passed from calling routine to called routine in some
locations which are mutually accessible by both routines. If the parameters are not
passed globally, or in the called routine, the natural place is the calling routine.

If the parameters are passed in the calling routine, the calling routine will have
no difficulty accessing them. How does the called routine find them, however? What
information does the called routine typically have about the calling routine? Only
one thing: the return address. How can the return address be used to locate the
parameters? The parameters cannot be put before the return address (as they were
put before the entry point when passed in the called routine), since this will be the code
which is executed just before the subroutine is called. Thus they must be placed after
the call to the subroutine.

This causes one minor problem: how does the subroutine return control to the
calling routine without executing its parameters as instructions, by mistake? There are
two standard solutions. One is to place a jump around the parameters immediately
after the call to the subroutine. In this case, our calling sequence is

LDA LENGTH
STA *+4 SAVE LENGTH PARAMETER
JMP SUM
JMP *+3 JUMP AROUND PARAMETERS
CON P(0:2) ADDRESS OF ARRAY
ORIG *+1 LENGTH OF ARRAY

To access parameters, we must fetch them indirectly through the return address.
Often the return address is loaded into a register to facilitate this. For example, our SUM
subroutine (for the calling sequence above) might be

SUM STJ SUMEXIT
ST1 TEM1(0:2)
ST2 TEM2(0:2)
LD1 SUMEXIT(0:2) RETURN ADDRESS
LD2 2,1 LENGTH OF ARRAY
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LD1 1,1 ADDRESS OF ARRAY
*

ENTA 0
1H DEC2 1

ADD 0,1
INC1 1
J2P 1B

*
TEM1 ENT1 * RESTORE REGISTERS
TEM2 ENT2 *
SUMEXIT JMP *

Notice that accessing the parameters is somewhat more complicated than in previous
versions of SUM. To access an element of the array, it is necessary to first use the return
address to fetch the address of the array, and then index with this address.

The other standard solution to the problem of keeping the parameters from being
executed is to require a subroutine with n parameters to return, not to the address R
which is passed as the return address (in the J register) but to return to the address
R + n. In this way, the parameters are skipped over by the subroutine. This allows a
calling sequence like

LDA LENGTH
STA *+3 LENGTH OF ARRAY
JMP SUM
CON P ARRAY ADDRESS
ORIG *+1 SPACE FOR LENGTH

Control from the subroutine will return to the instruction after the ORIG, rather than the
instruction after the JMP. The subroutine SUM could be

FIGURE 6.5 Parameters passed after the subroutine call (either the main program or
the subroutine must remember to jump around the parameters).
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SUM STJ SUMEXIT
ST1 TEM1(0:2)
ST2 TEM2(0:2)

*
LD1 SUMEXIT(0:2) RETURN ADDRESS
INC1 2 IS 2 BEYOND J REGISTER
ST1 SUMEXIT(0:2) RESTORE FOR EXIT

*
LD2 -1,1 LENGTH OF ARRAY
LD1 -2,1 ADDRESS OF ARRAY

*
ENTA 0

1H DEC2 1
ADD 0,1
INC1 1
J2P 1B

*
TEM1 ENT1 *
TEM2 ENT2 *
SUMEXIT JMP *

Again, it is necessary to be very careful when accessing the parameters to be sure
when you have the value of the parameter and when you have the address of the
parameter or the address of the address of the parameter.

6.2.5 Passing parameters in a table

The technique of passing parameters in the calling routine, as described in the
last section, is widely used. In addition to a number of other advantages, the calling
sequence is shorter than many of the other techniques. Since the parameter list is
known at the time that the subroutine call is written, and is constant for that call, it can
often be written directly after the call, eliminating the need to move the parameters into
registers, global variables, or the called routine.

For many programs, an examination of the subroutine calls shows that the same
parameter list is being used over and over again for different calls, sometimes even to
different subroutines. Consider a program which manipulates vectors. We may have
the following subroutines (among others),

ADD(p,q,n) Add the vector p to the vector q.
SUB(p,q,n) Subtract the vector p from the vector q.
COMP(p,q,n) Compare the vector p to the vector q. Set the condition indicator.

If there were a program with 14 calls to these routines, all with actual parameters X0
and Y0, of length 27, then using the calling sequence

JMP ADD, SUB, or COMP
CON X0
CON Y0
CON 27
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FIGURE 6.6 Parameters passed in a table (the address of the table is placed in a
register – typically, an index register).

there would be 14 sets of identical parameter lists in memory, one for each call. This
seems somewhat wasteful of space.

To prevent this waste of memory, another parameter passing technique is to pass the
parameters in a table. One table is allocated for every different set of actual parameters,
thus there are never more tables than subroutine calls. The table is simply a list of
the actual parameters of the subroutine call. The address of this table is put in one
of the index registers before control is transferred to the subroutine. Thus, the calling
sequence is

ENT1 <address of parameter table>
JMP <subroutine entry point>

For the example above, the calling sequence would be

TABLE7 CON X0 TABLE OF PARAMETERS
CON Y0
CON 27
...
ENT1 TABLE7
JMP ADD
...
ENT1 TABLE7
JMP COMP
JLE SMALL
...

The subroutine accesses the parameters by indexing, through the register pointing
at the table, to get the specific parameter desired. Notice that passing parameters
immediately after the call in the calling routine is basically the same idea, except that
the two addresses passed in the table method, the address of the table and the return
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address, are combined into simply the return address, which is passed in the J register.

6.2.6 Passing parameters on a stack

On machines or systems which facilitate the use of stacks, parameters are generally
passed on a stack. A little thought shows that the last-in-first-out (LIFO) nature of the
stack structure matches the last-called-first-returned nature of subroutine calls.

A stack calling sequence consists of the calling routine pushing onto the stack all
parameters. The called routine pops these parameters off the stack and uses them.
The return address can also be passed on the stack.

The real advantage of using stacks for passing parameters is when subroutines are
nested. Since parameters are always added to the top of the stack, a subroutine need
not consider which subroutines call it, nor what subroutines it calls, as long as each
subroutine removes from the stack everything that it puts on the stack.

FIGURE 6.7 Parameters passed on a stack (parameters are passed to the called
routine by pushing them onto a stack; the called routine accesses them by popping the
stack).
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6.2.7 Other methods of passing parameters

Each of the methods of passing parameters which we have explained has been
used by assembly language programmers, and each one has its advantages and
disadvantages. But assembly language programmers are not restricted to only these
techniques; they have the freedom to use any logically consistent method of passing
parameters. Often programmers use a mixture of these techniques, passing several
parameters through the registers while passing others as global variables or in the
calling or called routine. The only important thing is that both the calling and called
routine agree on how the parameters are to be passed. An assembly language
programmer has the freedom to choose an appropriate method for each different
subroutine.

This also calls for the responsibility to check that parameters are passed correctly in
all cases. If each different subroutine has a different method of passing parameters,
then this can become a major source of errors. To avoid this, programmers often adopt
one standard calling sequence for the entire program. This eliminates a number of
potential problems for the programmer, and hence means the program is more likely to
be finished sooner.

Other sources of standard calling sequences are subroutine libraries and compilers
for higher-level languages. In the first case, a standard calling sequence increases the
usability of the set of subroutines in the library. If you wish to use one of the subroutines
in the library, you need only use the standard calling sequence to access it.

For compilers, when a higher-level language instruction calls a subroutine, the
correct calling sequence must be generated, and when a subroutine accesses a
parameter, the code which is generated must be consistent with the calling sequence.
Thus, for most compilers, one standard calling sequence is used for all subroutines and
functions. Often these calling sequences are published and available to any programmer
who is interested. This allows the assembly language programmer to combine routines
written in the higher-level language and assembly language.

A typical situation in which this is done is when a central computation is crucial
to the speed of a program and must be carefully programmed to take an absolute
minimal amount of time. In these cases, the central computation may be written as
an assembly language subroutine which is called by a higher-level language main
program. This allows the most important code to be written in assembly language
without making it necessary to code the entire program (which might be quite large) in
assembly language.

Another situation may involve I/O. I/O is often difficult in assembly language, since it
requires considerable code to properly format, block, and buffer data for input or output.
In this case it is often convenient to have an assembly language main program call
subroutines written in a higher-level language to perform the I/O.

Notice that when combining routines in different languages, the higher-level
language compiler normally has a fixed method of passing parameters, which-ever
method seemed best at the time that the compiler was written. Thus, such routines can
be combined with assembly language routines only because the assembly language
routine can be written to match the higher-level language calling sequence. This means
that it is generally not possible to combine routines written in different higher-level
languages or even compiled by different compilers for the same language. For example,
the RUN Fortran compiler for the CDC 6600 computer passes parameters in its registers,
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unless there are more than six, when the extra parameters are passed before the entry
point in the called routine. The FTN Fortran compiler for the same computer, on the
other hand, uses a table. Thus routines compiled by these two compilers cannot be
combined, because they use different standard calling sequences.

6.3 CALL BY VALUE, REFERENCE, OR NAME

In the previous section, we considered how information could be passed to a
subroutine. In this section, we consider what information should be passed. The
decision as to what information should be passed to a subroutine about a parameter
often helps to determine how that parameter is passed. For example, the two most
common kinds of information about a parameter are its address and its value. If its
value is passed, then it may be necessary to utilize the A and X registers to pass
the parameters. If more than two parameters are passed, this may mean that the
parameters cannot be passed in the registers. On the other hand, if addresses are
passed, then they can easily be passed in the index registers, allowing six or eight (if
the A and X registers are used also) parameters to be passed in the registers.

Notice that although we are discussing what information should be passed to a
subroutine, we do not address here the problem of what the parameters of a subroutine
should be. That is a creative decision which is part of the programming problem. Here
we are concerned only with how to code a problem once the program has been defined.

6.3.1 Input and output parameters

Parameters can be defined to have one of three kinds of effects on a subroutine.
They can be input parameters, output parameters, or both input and output parameters.
An input parameter is a parameter whose initial value (the value of the parameter at
the time of the subroutine call) is used in the program. Both the array parameters and
the length of the array parameter in the SUM subroutine used as an example in Section
6.2 were input parameters. An output parameter is a parameter whose value is defined
by the called routine and returned to the calling routine. The sum of the elements of the
array was an output parameter of the SUM subroutine. Some parameters may be both
input and output parameters. Notice that if a parameter is neither an input parameter
nor an output parameter, it need not be a parameter.

These different types of parameters result in different types of information being
passed between routines:

6.3.2 Call by value

One type of information about a parameter which can be passed is its value. If
the parameter is a simple variable or an element of an array, its value is loaded from
memory and passed to the subroutine. Often the value is passed in a register.

Notice that this type of subroutine call, a call by value, is most suitable for input
parameters. If a value of a parameter is passed into a subroutine for an output parameter,
we have wasted our efforts to pass it in, since it will not be used. Furthermore, the
subroutine lacks the ability to change the value of the parameter. At best, it can change
the copy of the value of the variable which is passed in, but it cannot change the value
of the actual parameter, which is in memory. The subroutine does not know where in
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memory the parameter is; it knows only the value that the parameter had when the
subroutine was called.

To allow for output parameters, a variation on call by value is used. In this variation,
call by value/result , the values of input parameters are passed into the subroutine, and
the subroutine passes out the values of the output parameters which may then be
used or stored by the calling routine. This allows both input, output, and input/output
parameters . It is typically used by assembly language programmers.

Still there are some problems with call by value. Specifically, it is difficult to use call
by value, or call by value/result when the parameter is an array or table. To pass an
array by value would require copying the entire array and passing each element into
the subroutine. This would be prohibitively expensive, in both time and space, for most
situations.

6.3.3 Call by reference

A second type of information about a parameter which can be passed is its address.
This form of passing parameters is call by reference, or call by address. The address
of the parameter is passed to the subroutine. If this parameter is an input parameter,
its value can be determined by loading indirectly through this address; if it is an output
parameter, its new value can be stored indirectly through the passed address.

Call by reference is typically used whenever arrays or tables are passed as
parameters. In this case, the base address of the array is passed into the subroutine.
The subroutine can then index into the array and reference individual elements of the
array without the entire array needing to be copied.

Call by reference can be easily used with any of the parameter passing mechanisms
considered in Section 6.2, and so is often used as a standard calling technique. It
is particularly common for compilers, like Fortran and PL/I compilers, to use call
by reference. For a Fortran compiler, the code for a subroutine call such as CALL
SUB(A,B,C,D,5), which uses call by reference and a calling sequence which lists the
parameters in the calling routine, becomes simply

JMP SUB
CON A ADDRESS OF FIRST PARAMETER
CON B
CON C
CON D
CON =5= ADDRESS OF LITERAL FOR CONSTANT

Some problems with this approach do occur however. Since parameters in Fortran
are allowed to be array elements, the call might be CALL SUB2(A,B(J)) where B is an
array, and J an integer index. For call by reference, the address of B(J) is computed
at the time of the call, and stored in the parameter list. Thus the code for this, using a
parameter list in the calling routine as above, is

ENTA B-1 BASE ADDRESS OF B
ADD J B(1) IS B, B(2) IS B+1, ETC
STA *+3
JMP SUB2
CON A
CON * TO BE SET AT TIME OF CALL
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A similar problem is caused by expressions. If the call is CALL POLY(P+Q*2,
RESULT), the value of the expression P+Q*2 is quite easily calculated, so a call by
value approach is straightforward. For call by reference, we must pass an address, and
an expression has no obvious address associated with it. This problem is resolved by
computing the value of the expression and storing that value in a temporary variable.
Then the address of the temporary variable is passed to the subroutine. Thus, for the
above call to POLY, a calling sequence is

LDA Q A = Q
MUL =2= PRODUCT IN X
SLAX 5 MOVE PRODUCT TO A
ADD P P + 2*Q
STA TEMP
JMP POLY
CON TEMP ADDRESS OF EXPRESSION VALUE
CON RESULT

With this approach, the subroutine need not worry about what the parameter is that is
being passed in (variable, constant, array element, or expression). In all cases, call by
reference supplies an address.

In some subtle cases, call by reference and the lack of concern in the subroutine for
what kind of parameter is being passed in can cause rather obscure bugs in a program.
One of the problems with call by value is that it has no provision for output parameters,
parameters whose value should be set by the subroutine. Call by value/result has
provision for output parameters, but may result in a lot of unnecessary copying. By
passing an address to the subroutine, as in call by reference, the subroutine can easily
load and store in any parameter. And that is the problem. The subroutine can load and
store in any parameter, including those in which it is not intended that it should store by
the calling routine.

The classic example of this is as follows. Consider the subroutine,

SUBROUTINE ZERO (N)
N = 0
RETURN
END

When call by reference is used, the MIX code for this subroutine would be (assuming
the address of the parameter were passed in index register 1),

ZERO STJ ZEROEXIT
STZ 0,1 ZERO PARAMETER

ZEROEXIT JMP * AND RETURN

And the call for CALL ZERO(J) would be

ENT1 J PUT ADDRESS OF J IN I1
JMP ZERO AND CALL SUBROUTINE

Follow through the execution of the call and the subroutine for the above. Notice that it
works exactly as it should. The address of the parameter is passed in index register 1,
and the contents of the parameter are set to zero by the indexed STZ.

Now consider the same subroutine for a CALL ZERO(5). The calling sequence is
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ENT1 =5= ADDRESS OF LITERAL 5
JMP ZERO

But what happens when this is executed? Our literal with a value of 5, now has a value
of zero. If we later say P = 5*Q, this will result in

LDA Q
MUL =5=
STX P

and the value of P will be zero, independent of the value of Q. This is known as clobbering
a constant . It has been the source of unknown numbers of bugs in programs (and
probably still is). The problem is that the calling routine has no knowledge or control
over which of the parameters are input parameters and which are output parameters for
the subroutine, and once a subroutine has an address, it can either load or store as it
wishes. Even more disastrous results can occur when the address of a simple variable
is supplied to a subroutine which treats that address as the base address of an output
array.

The simple variable and constant clobbering problem can be solved by treating these
values as expressions, and copying them to temporary variables whose addresses are
passed to the subroutine. If these are clobbered, there is no problem, as these values
are never used by the calling routine. This is similar to call by value/result, only with
addresses instead of values.

6.3.4 Call by name

The problems of call by reference bring up a larger problem relating to subroutines
in higher-level languages and how they are implemented. Given a definition of a
subroutine, what does a call on that subroutine mean? This is a subtle question and not
an easy one to understand or answer. But consider the subroutine ZERO defined above.
The meaning of CALL ZERO(J) is obvious: set the variable J to zero. But what is the
meaning of CALL ZERO(5) or CALL ZERO(P+Q)? Some programming languages never
really worry about the problem, assuming that “strange” subroutine calls are errors, and
hence, let the programmer beware! Others have carefully defined what a subroutine
call should mean. Algol has one of the most commonly referred to definitions.

The rules of the Algol programming language state that when a subroutine is
executed, the results of that execution should be identical to the execution of the body
of the subroutine with all occurrences of the formal parameters replaced by the names
of the actual parameters. This means that the effect of a subroutine call should be the
same as if the subroutine call were removed and the text of the subroutine body were
copied into the calling routine where the call was, substituting the strings of characters
which define the actual parameters everywhere that the corresponding formal parameter
occurs. This is called the copy rule or the replacement rule.

As an example, consider

SUBROUTINE SUB4(A,B,C)
A = A+1
C = B+A
RETURN
END
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According to the copy rule, the following code

X = 0
CALL SUB4(X, G(J), G(J+1))
J = J + 1

is equivalent to

X = 0
X = X + 1
G(J+1) = G(J) + X
J = J + 1

where we have copied the text of the subroutine into the calling routine, substituting
“X”, “G(J)”, and “G(J+1)” for all occurrences of the formal parameters A, B, and C,
respectively, in the subroutine.

This is a simple and seemingly reasonable definition of what a subroutine call should
mean. It corresponds to what most people think subroutines should mean. However,
there are some subtle complexities which are often overlooked.

Consider the subroutine SWAP(A,B) defined by

SUBROUTINE SWAP(A,B)
TEMP = A
A = B
B = TEMP
RETURN
END

For a simple CALL SWAP(P,Q), this would result in, according to the copy rule

TEMP = P
P = Q
Q = TEMP

which is what was expected. But consider a case where we wish to swap J and G(J),
so that G(J) = J and J will have the old value of G(J). If we say SWAP(G(J),J), this is

TEMP = G(J)
G(J) = J
J = TEMP

which is what we wanted. But SWAP(A,B) should be the same as SWAP(B,A), so consider
SWAP(J,G(J)).

TEMP = J
J = G(J)
G(J) = TEMP

Notice that the value of J (initially j) has changed and so we are swapping not J and
G(j), but setting J to G(j) and G(G(j)) to j. (Let G be the array (4,3,2,1) and J = 1, and try
it.)

This simple example should illustrate not only that the copy rule may result in
unexpected results, but also that it cannot be implemented by call by value or call by
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reference. For either call by value or call by reference, the values or addresses of the
parameters are calculated and fixed at the time of call. To properly implement the copy
rule, a new parameter passing technique, call by name, is used. For call by name the
values or addresses of parameters may change during the execution of the subroutine.
This means that it is necessary to recalculate the value or address of each parameter
each time it is used in the subroutine. This is done by creating a small subroutine with
no parameters for each parameter. This subroutine is called a thunk . The thunk for a
parameter is called by the subroutine whenever the parameter is about to be used. The
thunk calculates the current address of the parameter and returns it to the subroutine.
The subroutine then uses this address to access the parameter.

As an example, consider the above SWAP routine. Assume that each thunk for a
parameter will leave the current address of that parameter in index register 6, and that
the calling sequence is to put the addresses of the thunks of the parameters immediately
after the call in the calling routine. Then the calling sequence for CALL SWAP(J,G(J)) is

JMP SWAP
CON THUNK1 THUNK FOR J
CON THUNK2 THUNK FOR G(J)

The code for the thunks is

THUNK1 STJ EXITTHK1
ENT6 J ADDRESS OF J

EXITTHK1 JMP *
*
THUNK2 STJ EXITTHK2

LD6 J VALUE OF J
INC6 G-1 ADDRESS OF G

EXITTHK2 JMP *

and the code for SWAP is

TEMPA CON 0
TEMP CON 0 TEMPORARY VARIABLE
*
SWAP STJ EXITSWAP

STA TEMPA
ST1 TEMPI(0:2)
ST2 TEMP2(0:2)
ST6 TEMP6(0:2) SAVE REGISTERS TO BE USED

*
LD1 EXITSWAP(0:2) RETURN ADDRESS
INC1 2 REAL RETURN ADDRESS
ST1 EXITSWAP(0:2)
LD2 -1,1 ADDRESS OF THUNK2
LD1 -2,1 ADDRESS OF THUNK1

*
JMP 0,1 CALL THUNK1
LDA 0,6 VALUE OF FIRST PARAMETER
STA TEMP (TEMP = FIRST)
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*
JMP 0,2 CALL THUNK2
LDA 0,6 VALUE OF SECOND
JMP 0,1 CALL THUNK1
STA 0,6 (FIRST = SECOND)

*
LDA TEMP
JMP 0,2 ADDRESS OF SECOND
STA 0,6 (SECOND = TEMP)

*
LDA TEMPA RESTORE REGISTERS

TEMP6 ENT6 *
TEMP2 ENT2 *
TEMP1 ENT1 *
EXITSWAP JMP *

This code is admittedly longer and more complex than call by reference or call by value.
But this is what is necessary to implement call by name and the copy rule.

Some improvements can be made. Indirect addressing (with preindexing) can
eliminate the need for index register 2. But the overhead of the code and calls for the
thunks is fundamental to call by name, so minor improvements cannot really help much.
Also, some systems require two subroutines per parameter, one to return the value of
the parameter and the other to store a new value into the parameter. This seeks to
prevent undesired storing into parameters in the way that call by value prevents illegal
stores which are possible in call by reference.

Given the desire to implement the copy rule, the use of thunks is necessary. However,
thunks are a very expensive way to access parameters. Thus call by name is seldom
used. Call by reference is the most common technique with call by value or call by
value/result also enjoying reasonable popularity. As always, an assembly language
programmer has the freedom to pick and choose as appropriate. The techniques can
even be mixed in assembly language so that of three parameters, one may be call by
name, another call by reference, and the third call by value/result. Typically, expressions
and simple variables are passed by value, where possible, while arrays and tables are
passed by reference.

6.4 THE COST OF SUBROUTINES

The cost of a particular programming technique is generally measured in two ways:
space and time. We have said that call by name is a very expensive method of passing
parameters. Can we formalize that statement to some degree by showing just how
expensive the use of call by name is, relative to call by reference or some other scheme?
Yes, we can, but let us first consider the cost of using subroutines at all, versus not
using them.

Consider a program which uses a subroutine to perform some task. Looking first
at space, suppose that the subroutine is called from m different places in the text of
the program, and that the body of the subroutine is k words long. The body of the
subroutine does not include the prologue or epilogue of the subroutine. Now, if the
subroutine were to be bodily written out in each of the m different places where it is
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called, then m × k words would be needed for the subroutine part of the program. By
using a subroutine, however, we reduce the code for each of the m calls to 1 word each,
plus the body of the subroutine (k words) plus the prologue and epilogue. The prologue
saves the return address (STJ) and the epilogue returns to the calling program (JMP).
So with the subroutine, the number of words needed is m + k + 2. For the cases where
m + k + 2 is less than m × k, using a subroutine takes less space. Obviously, for m = 1
(subroutine only called from one place) or k = 1 (subroutine only one word long), we
should not use a subroutine, if we are worried about space.

These equations are, in fact, too simple. The subroutine probably has parameters
(p of them) and needs to save and restore registers (r of them). The prologue is at least
1 + r words, the epilogue is 1 + r words, and the calling sequence is p + 1. In addition,
if call by name is used we must consider the space needed for the thunks (at least three
words per parameter) and the additional code that is needed to access the parameters
(if any). Thus the actual space used by a subroutine is relatively complex. In general,
however, as long as your subroutine is longer than your calling sequence (k > p + 1)
and your subroutine is called in more places than the number of words in the prologue
and epilogue (m > 2 × r + 2), then using a subroutine probably saves space.

Another major consideration is time, and it may be more important than space. More
computer systems charge for time than space, so as long as your program can fit in
core, time is often of crucial importance. To calculate the amount of time needed for a
subroutine, we need to know the number of times it is called, n. Notice that the number
of times it is called is different from the number of places where it is called. Given that
there are m different calls to the subroutine, some of these may be skipped due to
conditional branching, and others may be in loops so that the subroutine is called over
and over again although it is called from only one place. Thus we may have m > n, m =
n, or m < n.

Now for each call of the subroutine, the subroutine will take some average execution
time, f, to execute the body of the subroutine. Thus if no subroutine is used, the program
will take n × t time units to execute the function of the subroutine. If a subroutine is
used, each call now takes 1 time unit for the JMP to the subroutine, 2 time units for the
STJ, t time units for the subroutine body, and 1 time unit for the return jump. Thus, if a
subroutine is used, our time is n × (t + 4), and in all cases, the use of a subroutine takes
more execution time. The times become even worse when you add the additional time
to set up the calling sequence, save and restore the registers, and fetch parameters.

If using subroutines always takes longer, why are they used? First, consider that
if f is on the order of 1000 or 1000000 time units, the extra 4 or so time units per call
are of minimal importance. Second, we have considered only execution time in this
analysis. For a complete view of the cost of not using subroutines, the extra cost of
programming time, keypunching time, assembly time, load time, and debug time, all
of which tend to be larger for larger programs, must be considered. Except for trivial
subroutines, the relative cost of using subroutines is generally far outweighed by the
convenience of using subroutines. Subroutines make programs easier to read, to write,
and to understand (hence debug) when used properly. Although one must be careful as
to how to write subroutines and how to pass parameters, subroutines are considered
good programming practice.
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6.5 OTHER TOPICS ABOUT SUBROUTINES

There are several other aspects of subroutines which a good programmer should
be aware of, although the use of these techniques is relatively rare. We discuss them
briefly here simply to acquaint you with the ideas.

6.5.1 Multiple entry points

It is sometimes convenient to write the body of one subroutine which is used by
several entry points. This saves unnecessary duplication of code. For example, consider
a pair of subroutines to calculate the sine and cosine of an angle in radians. These
routines could be written as two separate subroutines. However, it is well known that
sine(x) = cosine(x - pi /2). This can be exploited by writing one subroutine with two
entry points. The sine entry point subtracts pi /2 from its parameter and then goes
directly to the code for the cosine calculation. The basic structure for this in MIX might
be, (assuming that the parameter is passed by value in the A register)

SINE FSUB PIOVER2
COSINE STJ EXIT

<calculate cosine of A register>
EXIT JMP *

Multiple entry points can also be written as separate routines which call a common
subroutine to do the common calculations. The JSJ instruction in MIX is sometimes
used with multiple entry points,

6.5.2 Multiple exits

Some subroutines function as decision makers, testing some condition. The result of
the test requires the execution of different code in the calling routine for each outcome.
On the MIX machine, it is possible to effect this by having the subroutine set the
condition indicator before it exits. The condition indicator can then be tested in the
calling routine after the call. For example, to compare two vectors, P and Q, of length N,
we could use a calling sequence

JMP CMPV
CON P
CON Q
CON N
JL PLTQ P LESS THAN Q
JG PGTQ P GREATER THAN Q
JE PEQQ P EQUAL TO Q

An alternative to this approach is to pass the addresses of the branches to the
subroutine as parameters, and allow it to transfer control directly to the appropriate
code. In this case, the subroutine does not always transfer to the location following the
call, but has multiple exits.

A combination of multiple entry points and multiple exit points can also be used.
Suppose we wish to write a generalized search subroutine. The subroutine will search
a table for a particular value (passed in the A register) and, if found, return its index
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in index register 1. An error condition exists if the value is not found. We construct
a subroutine with two entry points. One entry point is used for performing a search.
The other entry point is used to define where control should transfer to if the value is
not found. It requires one parameter, the error address. This entry point sets internal
variables so that if the other entry point is called later and the value is not found, the
search subroutine will not return to the location after the entry point, but rather return to
the error address defined by the call to the other entry point. This routine would have
multiple entry points and multiple exits.

6.5.3 Variable number of parameters

Another variation on subroutine calling sequences is to allow a variable number
of parameters. For some subroutines this may be very useful, as in a subroutine to
calculate the maximum value of its parameters. It would be ridiculous to have to write
separate subroutines for finding the maximum of 2, 3, 4, 5, 6, or more parameters.
What is needed is one subroutine which allows a variable number of parameters.

Another use for this feature is with subroutines which have a long parameter list, most
of which will not change from call to call. In these cases, the parameters are ordered
so that the least frequently changing (or those assumed to be the least frequently
changing) occur last in the list. Then if the last k parameters are the same as the
previous call, they are simply not listed.

To properly effect this, two things are needed. First, the subroutine must keep copies
of the previous parameters for possible use in subsequent calls. Second, there must
be some way of determining the number of parameters. The first problem is simply
a problem for the programmer of the subroutine to look after by storing copies of all
parameters in local variables. The second may require the changing of the calling
sequence.

Basically, what is done is to add another parameter which indicates the number of
parameters in the parameter list. One technique places a special value after the last
parameter in the parameter list. For example, in call by reference, all parameters are
addresses. On the MIX machine, all addresses must be in the range 0 to 3999. Thus,
we can use either a negative number, or a number larger than 3999 to indicate the end
of the parameter list. For this approach, a call to a MAX function with parameters 0, X,
and Z might be

JMP MAX
CON =0= ADDRESS OF LITERAL 0
CON X
CON Z
CON -1 END OF PARAMETER LIST

Another approach is to make the first parameter the number of parameters in the
list. This has the advantage of being usable for either call by name, call by reference or
call by value and careful coding can mean that no extra space is needed for a flag at
the end of the list. In the simple case, the calling sequence is simply

JMP MAX
CON 3 NUMBER OF PARAMETERS
CON =0=
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CON X
CON Z

Special coding techniques can be used for the calling sequence which requires the
calling routine to jump around the parameters (as opposed to the above where the
called routine must calculate the correct return address). In this case, the calling
sequence is

JMP MAX
L JMP *+4

CON =0=
CON X
CON Z

The jump around the parameters has been labeled L to allow us to refer to it easily.
The return address, supplied to MAX in the J register, is L. At L we have a JMP to L+4.
Thus the number of parameters is the address field (bytes 0:2) of location L minus the
address L (minus one). This can be easily computed by the subroutine by

MAX STJ EXITMAX
ST1 TEMP1(0:2)
ST2 TEMP2(0:2)
LD1 EXITMAX(0:2) GET L
LD2 0,1(0:2) GET ADDRESS OF JUMP
DEC2 1,1 COMPUTE P = L+P+1 - 1 - L

* I2 HAS NUMBER OF PARAMETERS

6.5.4 Subroutines or functions as parameters

In some situations, the variable part of a subroutine is not a variable or constant
that is used, but a subroutine or function which is called. This would seem to rule
out the use of a subroutine, but in fact a subroutine or function can be passed as a
parameter to a subroutine quite easily. Call by reference or call by name are almost
always used since what is needed is the address of the function parameter so that it
may be called. (Thunks are simply special functions which are passed, by reference, to
another subroutine.)

The major problem which arises is in the calling sequence of a function which is
passed as a parameter. Since the function is not known by name when it is called, the
calling sequences for all functions which may be the actual parameter for the formal
parameter must be the same. Often a thunk is created for each function, so that the
calling sequence for the function in the subroutine is the simplest possible, with at most
one parameter, or more commonly with none. Passing a function as a parameter is a
technique sometimes used in programs for numerical analysis.

6.5.5 Reentrant and recursive subroutines

In addition to the different types of parameters (call by value, call by reference, call
by name) and different ways of passing them (in registers, globally, in called routine, in
calling routine, in a table), there are different types of subroutines. These classifications
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are made on the basis of the programming techniques which are used, rather than on
the subject matter of the subroutine.

One of the easiest to define but sometimes most difficult to implement is the
reentrant subroutine. A subroutine is reentrant if it is non-self-modifying. Non-self-
modifying means that the subroutine never changes. This is also called pure code, and
requires quite simply that there be no store instructions whose operand is an instruction
of the subroutine.

On the MIX computer, reentrant programs are quite difficult to write, since the
standard subroutine call mechanism generally involves an STJ instruction to save the
return address. Also, the saving and restoring of registers often involves storing index
register values directly into the instructions which restore them. Both of these coding
practices are invalid for reentrant programming.

How can subroutines be written which never store? They probably cannot be written,
but luckily this is not quite the restriction. The restriction is that a subroutine cannot
store in the subroutine, but it can store outside the subroutine. Typically, what is done
is that the calling routine is required to pass, as a parameter, by reference, in one of
the index registers, a large array which can be used by the reentrant subroutine for the
temporary storage of data, return addresses and old register values. This allows the
storage of variables outside the subroutine itself, meaning that the subroutine itself can
be pure code.

Reentrant routines are useful in relatively rare circumstances. One situation where
they are useful is in a computer system with multiple CPUs. Each CPU would have
its own ALU, control unit, and registers, but they may share memory. To avoid having
two copies of the same program, that program can be written as a reentrant program.
Each CPU can execute the same code, at the same time, but with different work areas
pointed at by their different register sets.

By analogy, consider a program to be like a cookbook. When a cook uses a recipe,
he may need to take notes about what is done and at what time (local variables). If he
writes these in the margins of the book, then his notes may confuse another cook trying
to use the same recipe at the same time, especially if that cook is taking her own notes
by erasing the first cook’s notes and writing her own in the same place. For the cooks
to be able to share the cookbook, the cookbook must be reentrant, with all notes being
kept on a separate piece of paper for each cook.

Similarly, each CPU can execute the same subroutine or program only if all variables
are kept in separate work areas and the code is pure and reentrant.

A less stringent requirement for a subroutine is serial reentrancy . A subroutine
is serially reentrant if it works correctly whenever it is executed, perhaps by multiple
processors, so that each processor executes the subroutine completely before the
next processor starts executing it. That is, as long as only one processor at a time
is executing the code, it works correctly. In terms of our cook/cookbook analogy, this
means that several cooks can use the same cookbook but only one can use it at a time.
Obviously, a cook can make notes in the cookbook, as long as either they are erased
before she finishes with the cookbook and gives it to another cook, or the next cook
erases them before he starts.

A serially reentrant subroutine can store information in local variables in a subroutine,
as long as these local variables are properly initialized before the subroutine is executed
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again. Thus the STJ method of using the return address is acceptable, since the next
time the subroutine is called that location will be reset properly for the call.

A simple example of a non-serially reentrant program is the following routine to
return the A register as the sum of the array whose base address is in index register I1
and whose length is in index register I2.

TOTAL CON 0
SUM STJ EXITSUM
LOOP LDA TOTAL

ADD -1,1:2
STA TOTAL
DEC2 1
J2P LOOP
LDA TOTAL

EXITSUM JMP *

Ignore for the moment that this is rather inefficient code. This subroutine will work
correctly the first time. But notice that the second time, the value returned will be the
sum of the array plus the sum of the first array; the third time, the sum will be the sum
of all three, and so on. The variable TOTAL is not being reset back to zero before the
subroutine is executed again. Thus this subroutine is not serially reentrant. It can be
made serially reentrant by including STZ TOTAL either after the STJ or before the JMP *.

Another type of subroutine is the recursive subroutine. A recursive subroutine is
a subroutine which may call itself. Recursive subroutines are almost never written in
assembly language and cannot be written even in some higher-level languages, such
as Fortran. The problem is of course that the second call on the subroutine may clobber
the return address passed to the subroutine by the first call, and hence the subroutine
will never know how to return to the first call. Recursive subroutines are often written as
reentrant subroutines and use a stack to hold return addresses and local variables.

6.5.6 Coroutines

Coroutines are another special type of subroutine, or rather a subroutine is a special
type of coroutine. A called and calling routine exist in a specific relationship. The
calling routine calls the called routine and the called routine returns control to the calling
routine. The called routine is, in some sense, subservient to the calling routine. Hence
the name subroutine.

A coroutine or a set of coroutines do not restrict themselves to a calling-called
relationship but rather work more as equals. A coroutine does not simply call another
coroutine, but also supplies a return address to which the called coroutine should return.
When the called coroutine returns, it also passes an address which is where it should
be resumed next. Thus each coroutine is equal, calling the other where it left off and
specifying the address where it should be resumed.

For MIX, coroutines are quite easy to implement. A restart address is associated
with each coroutine. A coroutine call involves resetting the coroutine restart address for
the current coroutine and then jumping, indirectly through the restart address, to the
next coroutine.

Although coroutines have their advantages, they seem not to have been adopted by
assembly language programmers.
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6.6 SUMMARY

Subroutines are a very important programming technique, especially for assembly
language programmers. Subroutines allow redundant code to be grouped together and
written only once, saving computer memory and programming time. Most subroutines
require parameters to be passed to them, and many methods are used to do so.
Parameters can be passed in registers, in global variables, in special parameter areas
before the entry point or after the call, or in a table. The parameters themselves may be
call by value, call by reference, or call by name, requiring that the value of, the address
of, or the address of a thunk for, respectively, the parameter be passed.

Subroutines can save space but always require more time to execute than simply
writing out the code repetitively. Subroutines may have multiple entry points or multiple
exit points or both. The address of a subroutine or function can even be passed as a
parameter to another subroutine.

Subroutines can be reentrant, serially reentrant, recursive, or none of these.
Coroutines are programming structures related to subroutines.

Subroutine programming techniques have developed over the years and are part of
the common knowledge of programmers. Knuth (1968) has a treatment of subroutines
and coroutines, as do the books by Gear (1974) and Stone and Siewiorek (1975). The
definition of thunks is due to Ingermann (1961), while coroutines are generally credited
to Conway (1963).

EXERCISES

1. Give two reasons for writing subroutines.

2. What is a calling sequence?

3. Give one reason to save registers in the calling routine and one reason to save
registers in the called routine.

4. Why does the J register exist?

5. List five methods of passing parameters for call by reference parameters.

6. The following code has been proposed as a simple subroutine in MIXAL. Comment
on its probable usefulness, with reasons.

... SUB LDA 0,1
ENT1 X ...
ENT2 Y STA 0,2
JMP SUB JMP RTN

RTN ...

7. Write a subroutine which will input the address of an array in I1 and the length of
the array in I2, and produce in the A register, the minimum value of the array, and
in I1 the address of that element.

8. Define call by value, call by reference, and call by name.
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9. Suppose that the only parameters which are allowed to be passed to a subroutine
are simple variables; no expressions, constants, arrays, array elements, and so
on. It is desired to use the copy rule. Which of the calling methods can be used
to implement the copy rule correctly?

10. In a Fortran-like language, suppose we had the program segment

I = 1
J = 2
A(1) = 100
A(2) = 0
CALL SUB(I,J,A(I),A(J))

and subroutine SUB is defined as

SUBROUTINE SUB(A,B,C,D)
A = B
C = D
RETURN
END

What is the value of I, J, A(1), and A(2) after the subroutine has been executed,
assuming that parameters were passed by (a) call by value, (b) call by reference,
and (c) call by name?

11. Why are there thunks?

12. Explain briefly, but clearly, the terms: self-modifying code, serially re-entrant,
recursive, coroutines, pure code, reentrant.

13. A recursive subroutine normally needs what kind of a data structure?

14. Is a reentrant subroutine always serially reentrant? Is it always pure code? Is it
position-independent? Must it be recursive?

15. Draw a Venn diagram showing the relationships between the sets of subroutines
which are recursive, serially reentrant, self-modifying, position-independent,
coroutines, reentrant, and pure.

16. What is the advantage of using pure procedures on a computer that is used by
many people at the same time?
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LOADERS AND LINKERS

With the programming techniques which have been presented in Chapters 4, 5,
and 6 fully understood, you have the basic information needed to program the MIX
computer. In the next few chapters, we change our focus somewhat to consider not how
to program the MIX machine, but rather its operation in normal use. The MIX computer,
like all computers, is merely a simple electronic machine which can do no more than
execute the simple instructions in its instruction set, although at very high speed. To
make the computer useful, however, requires software. It is the software, the programs,
which allows the computer to perform its many and varied functions.

Remember that all programs must be in the main memory of the computer, in
machine language, in order for them to be executed. It is difficult to program in machine
language, and so a number of programs have been written to ease the programming
problem by allowing programs to be written in assembly or higher-level language, and
then translated by the computer into the machine language required for execution.

We examine two of these programs in great detail: loaders and assemblers. These
are considered for two reasons: first, they are widely used as tools for programming,
and second, the techniques used in them are illustrative of the approaches taken in
the writing of other system programs. We consider loaders here, and assemblers in
Chapter 8. This order is used because loaders are much simpler than assemblers,
although in typical usage the assembler is used first.

Let us briefly review the process of programming a computer. The programmer first
conceives of a solution to the problem at hand and defines his solution in some English-
like procedural manner. This may be in written form or strictly mental notes. Then the
program is written. Let us assume the program is written in MIXAL. Now at this point
the program exists in a well-defined representation. However, it cannot be executed
by the computer because it is in the wrong representation. To be executed it must be
in machine language in memory, not on cards in assembly language. Thus it must be
translated into the correct form. A part of this translation is done by the assembler. The
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FIGURE 7.1 An input program is translated by the assembler from a source program into
an object program (on tape), which is loaded into memory by the loader for execution.

assembler could translate the assembly language into machine language and put it in
memory for execution except for one problem: the assembler.

The assembler is a program. Like any other program, when it is being executed it
resides in machine language in memory. The assembler is also a very large program.
While assembling, it takes up almost all of available memory. The problem that this
causes is that it leaves no place in memory into which the assembled program can be
put. Hence, the assembler cannot both translate from assembly language to machine
language and put the resulting program in memory.

The solution to this problem is quite simple. The assembler translates the assembly
language into machine language and puts the resulting program on a secondary
storage device, like a tape, drum, or disk. Then, when the assembler is finished with the
assembly task, a separate program is called which does nothing but read the program
into memory. This second program is called a loader . A loader reads (loads) a program
from an input device into memory for execution.

There are several advantages to this scheme (in addition to the fact that it is
necessary). The main advantage is that to execute a program it is no longer necessary
to have an assembly language version of the program and reassemble it every time
it is to be executed. Instead, it is only necessary to save the output of the assembler
and execute the loader to load it into memory for execution. Thus, if for example the
assembler writes the machine language out on magnetic tape, the reel of tape can be
dismounted and stored for an indefinite period of time before execution. It can also be
executed repetitively by simply mounting the tape and executing the loader to reload the
same program. For programs which are run over and over, this can result in substantial
savings in computer time. Most computers have methods of loading from punched
cards or punched paper tape in addition to magnetic tape, drum, or disk.

There are several different types of loaders. The simplest is an absolute loader . By
making the loader more sophisticated, more complex functions can be done by the
loader, resulting in even better utilization of the computer. We consider the absolute
loader first, and then based on some problems in the use of the absolute loader, discuss
more sophisticated loaders.
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7.1 ABSOLUTE LOADERS

An absolute loader is the simplest of loaders. Its function is simply to take the output
of the assembler and load it into memory. The output of the assembler can be stored
on any machine-readable form of storage, but most commonly it is stored on punched
cards or magnetic tape, disk, or drum.

7.1.1 Absolute load format

The input to an absolute loader is generally not quite in machine language. Machine
language is really defined only in terms of a program in memory. The input is in loader
format , a form of representation for a program which is so close to machine language
that the loader need do nothing more than store the program in the appropriate memory
locations.

How does the loader know which addresses the instructions (and data) should be
loaded into? The assembler is told by ORIG statements written by the programmer, and
this information must be passed on to the loader by the assembler. Thus the input to the
loader must consist of two pieces of information: the instruction or data to be loaded,
and the address where it should be loaded.

In addition, the loader will need to know when to stop loading, so we need some
kind of an end-of-file marker at the end of the loader input. When the loader stops, it

FIGURE 7.2 A simple format for the output of a translator for input to the loader. Each
word in memory requires two words, one for the address and one for the value to be
loaded.
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should transfer control to the newly loaded program. This means that a starting address
is also needed.

All of these considerations lead to the following statement of the input to an absolute
loader: a sequence of pairs of addresses and the values to be loaded into those
addresses, followed by a starting address. The loader loads the values into the
addresses until the starting address is reached, at which point it jumps to the starting
address. This defines the basic structure of the loader program, and indicates what
format the loader input should be in.

One approach would be to use two words for each word to be loaded by the loader.
The first word contains the address where the value is to be loaded and the second
contains the value to be loaded. Thus loader input would be a sequence of these pairs.
A flag is needed to signal the end. We could use the sign bit to signal the end by setting
it to “+” for the address/value pairs and “-” for the starting address (which comes at the
end). However, if the address were zero, it would be difficult to distinguish a positive
sign from a negative sign, so instead let us put the address in bytes 0:2 and use byte 5
to signal an address/value pair (byte 5 = 1) or the starting address (byte 5 = 0). Notice
that by putting the address in bytes 0:2, it may be possible to use indirect addressing to
use the address.

Our load format can thus be as diagrammed in Figure 7.2. This load format certainly
supplies the loader with all the information it needs to load. However, it is probably not
very efficient about it. Consider the sequence of addresses where words should be
loaded. Suppose the loader has just finished loading a word into location 1000. What
is the most likely address for the next load? Probably 1001. And after 1001? Probably
1002. And so on. Most of the code and data to be loaded will be placed in sequential
locations in memory. The only reason why this would not occur would be due to ORIG
statements in the assembly language program, or the end of the program.

We can take advantage of this to reduce the size of our loader format for a given
program. Instead of giving one load address, LA, and one value to be stored at location
LA, we give one load address, LA, a number, N, and N values to be loaded into locations
LA, LA+1, LA+2, . . . , LA+N-1. Each of these will be called a loader record . The load
address and number of words will be the first word of the loader record, and will be
followed by the values to be stored, one per word for the next N words. The starting
address will still be the last value and will be indicated by an N of 0.

This revised format reduces the size of our loader image considerably. In the old
loader format, we had one word of overhead for every value to be loaded. With our new
format, we have only one word of overhead per loader record. If loader records average
100 words, then out of 100 words of loader format we have 99 words to load, while with
the old format we have only 50 words.

The amount of memory needed to store a program in loader format is very important
for two reasons. One is that the less efficient loader formats will take more space on
the storage media. The other is that loading is a very I/O-bound process; virtually no
computation is needed. Thus, reducing the size of the input reduces the amount which
the loader must read, and hence the amount of time to load.

7.1.2 Error checking

All programs should be correct, and this is especially true for systems programs.
Systems programs are used by many computer users, not just by the programmer who
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FIGURE 7.3 An alternative format for loader input which has better utilization of memory.
Many values can be loaded in sequential memory locations with only one header word.

writes them. Thus errors in systems programs may result in expensive malfunctions
of the computer which cost dearly in both time and money (and sometimes life). It is
therefore wise to take a very conservative approach to writing systems programs.

Absolute loaders are relatively simple programs and hence most of the errors which
may occur are limited to errors in the input to the loader. The input to the loader is
normally produced as the output of an assembler, compiler, or other program, but even
so, it may have errors. These errors must be checked for and appropriate steps taken if
they are discovered.

What are appropriate steps? Almost all loader errors will result in being unable to
correctly load the program. Hence in the case of loader errors, it would seem most
reasonable to halt the loading process, after printing an appropriate error message.

There are two types of errors which can occur in loader input. One is the result of
incorrect generation by the program which produces the loader input, and the other is
the result of incorrect storage or transmission by the I/O devices involved. The errors of
the first type which could occur would consist mainly of illegal load addresses or illegal
values of N. The load address, LA, being an address, should obviously be greater than
or equal to zero and less than 4000. Similarly, the number of values to be loaded, N,
should be greater than or equal to zero, and less than or equal to 4000. In addition,
since the last value loaded will be loaded at address LA+N-1, this address must be less
than 4000 also. Thus we have the following requirements:

0 ≤ LA < 4000,
0 ≤ N ≤ 4000,
LA+N-1 < 4000

Notice that if N = 0, then LA is the starting address and the above restrictions still hold. It
is possible for the starting address to be zero, so that LA+N-1 would be -1, but no value
is loaded in this case anyway.
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In fact, the restrictions on addresses must be even stronger. Certainly it is the case
that each address must be a legitimate machine address, but in addition, we cannot
allow a load address or start address which would be an address in the loader either.
The loader is a program and resides in memory. Since its code must remain correct in
order for its function to be correctly carried out, we must prevent user code from being
loaded into those locations which the loader occupies.

This may cause a problem, since this limits the size of user programs. The limitation
is in fact quite reasonable. An absolute loader is quite small, occupying less than several
hundred words. Thus most of memory is available for user programs. If all of memory
is needed by a program, then it may be possible to overlay the loader with a large array,
table, or I/O buffer whose initial value is unimportant. There are few programs that
consist of 4000 words of solid code.

To allow the loader to stay out of the way of most user programs, it is generally
written to occupy the last locations of memory. Most programmers write their programs
to start at location 0. Thus placing the loader in high core means that it will seldom
interfere with the user program. This effectively changes the limit 4000 in the above
inequalities to 4000 – (size of the loader).

The second kind of error which can occur is an error by the I/O devices involved
in the output, storage, and input of the loader input. It is not unknown for paper tape
readers, or card readers, to misread a hole as a non-hole or vice versa, or to shift the
position of a hole. Magnetic tape is generally more immune to this sort of problem due
to parity checks, but still failures are known to have occurred. The errors may even
occur in the CPU rather than in the I/O devices or in the electronics between the two
devices.

Errors caused by storage or transmission of the loader input may cause illegal
addresses or counts to be used, and hence would be detected by the above checks.
However, it is more likely that they will occur in the values to be stored in memory, and
hence be unnoticed, until the loaded program executes the incorrect instruction. Any
possible number is permissible for the values to be loaded, and so no simple check
(such as a range check) can be put on them to catch I/O errors.

The method most commonly used to detect I/O errors in loader input is a checksum.
The idea of a checksum is similar to the idea of parity. A checksum is computed and
stored by the assembler with each block of loader input. The computation of a checksum
is quite easy: the sum of the entire block is computed (ignoring overflows). This sum
(the checksum) is generally stored as the last word of the loader record. When the block
is read back in, the checksum is computed on the input and compared with the stored
checksum. If they match, no error has occurred; if they do not match, a checksum error
has occurred.

To show that a checksum helps to prevent errors, assume that any one value
changes. Then the sum of the values changes and so the stored checksum will not
match a checksum which is computed when the block is read back in. Thus the error is
detected. For an error to be undetected, multiple changes will need to occur in such a
way that the arithmetic sum is unchanged; this is very unlikely.

A checksum is strictly an error detection technique. If a checksum error occurs, it is
not possible to know which word (or words) have changed, or from what. In order to
correct the error, it is necessary to go back to the original assembly language source
and reassemble, producing new (and hopefully correct) input values for the loader.
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7.1.3 An absolute loader

With all of the considerations of the above sections on loader formats and error
checking, we can now turn to writing the code for an absolute loader. Our general
algorithm is

1. Fetch the first word of a block and define N, the number of words in the block, as
the value in bytes 4:5, and LA, the load address, as the value in bytes 0:2. Check
for correct values of N and LA.

2. If N = 0, then go to 3. Otherwise, initialize the checksum value, and move the next
N words to LA, LA+1, . . . , LA+N-1. As each word is moved, add it to the checksum
value. When the entire block of N words has been loaded, compare the computed
checksum with the stored checksum. Then return to step 1 for another block.

3. Since N = 0, LA is the starting address. Begin execution by jumping to the starting
address.

If any errors are detected, an appropriate error message should be printed and the
loader halted.

An absolute loader is heavily I/O-bound and so double buffering should be used.
Also, the loader format is device-independent and can be used with any device which
can store words. Thus, for modularity we use a subroutine to properly handle all I/O.
The subroutine, whenever it is called, returns the next word of the loader input. Thus, if a
different I/O device is used, only this one subroutine need be changed. The subroutine
will return the next word in the A register.

For example, if input were from magnetic tape, the input subroutine could be

*
* DATA FOR INPUT SUBROUTINE
*
TAPE EQU 0 DEVICE NUMBER
ADDR ORIG *+1 ADDRESS OF NEXT WORD TO RETURN
COUNT CON 0 COUNT OF NUMBER OF WORDS
BUF1 ORIG *+100 BUFFERS FOR
BUF2 ORIG *+100 DOUBLE BUFFERING
INPUTBUF CON BUF1 BUFFER TO READ INTO
USINGBUF CON BUF2 BUFFER TO USE
*
*
* INPUT SUBROUTINE FOR MAGNETIC TAPE.
* 100 WORD PHYSICAL RECORDS ARE READ FROM
* TAPE AND RETURNED TO THE LOADER ONE WORD
* AT A TIME, IN A REGISTER. DOUBLE BUFFERING
* IS USED. NO REGISTERS, OTHER THAN A, ARE
* CHANGED.
*
* FIRST IN BUF1(TAPE) SHOULD BE EXECUTED IN MAIN
* PROGRAM TO START DOUBLE BUFFERING.
*
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INPUT STJ EXITINPUT
ST1 TEMP1(0:2)
ST2 TEMP2(0:2) SAVE REGISTERS

*
LD1 COUNT CHECK IF WORDS LEFT IN BUFFER
J1P RETURNWORD

*
* WORDS IN USINGBUF ALL GONE. INPUT MORE INTO
* THAT BUFFER, AND SWITCH BUFFER POINTERS.
* ALSO RESET COUNT AND ADDRESS FOR RETURN WORDS.
*

LD1 USINGBUF
IN 0,1(TAPE) READ NEW BLOCK
LD2 INPUTBUF
ST2 USINGBUF SWITCH BUFFER POINTERS
ST2 ADDR
ST1 INPUTBUF BUFFER BEING INPUT TO
ENT1 100 COUNTER

*
* RETURN THE NEXT WORD.
* ADDRESS IN I2, COUNT IN I1
*
RETURNWORD LD2 ADDR ADDRESS POINTER FOR NEXT WORD

LDA 0,2
INC2 1 SET FOR NEXT WORD
ST2 ADDR
DEC1 1 AND DECREMENT COUNTER
ST1 COUNT

*
TEMP2 ENT2 *
TEMP1 ENT1 *
EXITINPUT JMP *

This should be easily written following the techniques of Chapter 5.
The loader itself is now very straightforward coding. The major coding is actually

error checking and messages.

LP EQU 18
*

ORIG 3700
FIRST CON *
*
* DATA AND VARIABLES FOR LOADER
*
CHKSUM ORIG *+1 FOR CHECKSUM COMPUTATION
HEADER ORIG *+1 HEADER FOR ERRORS
*
* ERROR MESSAGE PRINTING
*
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CHKMSG ALF CHECK
ALF SUM E
ALF RROR

HDRMSG ALF ERROR
ALF IN H
ALF EADER

*
*
ERRORLINE ALF ***
ERRORMSG ORIG *+3 SPACE FOR MESSAGE

ALF
ALF BLO
ALF CK =

ERRORBLK ORIG *+1
ALF
ALF HEAD
ALF ER =

ERRORLA ORIG *+1 LOAD ADDRESS
ALF (LA),
ALF

ERRORN ORIG *+1 NUMBER OF WORDS
ALF (N)
ORIG *+8

*
*
* AN ABSOLUTE LOADER FOR A MIX MACHINE
*
* LOADER INPUT IS ASSUMED TO BE ON TAPE 0 AS A
* SEQUENCE OF BLOCKS. THE FIRST WORD OF EACH
* BLOCK IS A HEADER, CONTAINING THE NUMBER OF
* WORDS TO BE LOADED (N), AND THEIR LOAD
* ADDRESS (LA), FOLLOWED BY THE WORDS TO
* BE LOADED AND A CHECKSUM. AN EMPTY BLOCK
* (N = 0) MEANS THAT LA IS THE STARTING ADDRESS.
*
*
* INITIALIZATION
*
LOADER IN BUF1(TAPE) START DOUBLE BUFFERING

ENT3 0 BLOCK COUNTER
*
* START NEXT BLOCK. INPUT LOAD ADDRESS AND
* NUMBER OF WORDS. INITIALIZE CHECKSUM.
* INCREMENT BLOCK NUMBER STORED IN I3.
*
NEXTBLOCK JMP INPUT

STA CHKSUM INITIAL CHECKSUM VALUE
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STA HEADER SAVE HEADER FOR POSSIBLE ERROR
INC3 1

*
* USE I1 FOR LOAD ADDRESS
* AND I2 FOR NUMBER OF WORDS
*

LD1 HEADER(0:2)
LD2 HEADER(4:5)
J1N HDRERROR CHECK FOR 0 ≤ LA
CMP1 FIRST AND LA < LOADER
JGE HDRERROR

*
ENTA -1,2 N-1
INCA 0,1 LA+N-1
CMPA FIRST
JGE HDRERROR

*
J2Z 0,1 IF N=0, I1 IS START ADDRESS

*
* LOAD THE NEXT N WORDS INTO LA, LA+1, ...
* COMPUTE THE CHECKSUM AS WE GO.
*
LOADLOOP JMP INPUT GET WORD

STA 0,1 LOAD INTO MEMORY
INC1 1
ADD CHKSUM
STA CHKSUM
DEC2 1
J2P LOADLOOP CONTINUE FOR MORE WORDS

*
* BLOCK IS LOADED. GET CHECKSUM AND COMPARE
*

JMP INPUT
CMPA CHKSUM
JE NEXTBLOCK

*
* ERROR HANDLING. PRINT MESSAGE AND HALT
*
CHKSUMERR ENT2 CHKMSG CHECKSUM ERROR

JMP ERROR PRINT AND HALT ROUTINE
*
HDRERROR ENT2 HDRMSG HEADER ERROR
*

JMP ERROR FALL THROUGH TO ERROR ROUTINE
*
* ERROR ROUTINE. FORMAT ERROR MESSAGE WITH
* MESSAGE (ADDRESS IN I2), BLOCK NUMBER (IN I3),
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* LA AND N (FROM HEADER). PRINT AND HALT
*
ERROR ENT1 ERRORMSG

MOVE 0,2(3) MESSAGES OF 3 WORDS
ENTA 0,3 BLOCK NUMBER
CHAR
STX ERRORBLK
LDA HEADER(0:2)
CHAR
STX ERRORLA(2:5)
LDA HEADER(4:5) NUMBER N
CHAR
STX ERRORN(2:5)
OUT ERRORLINE(LP) PRINT LINE
HLT

*
END LOADER

Some minor points still need to be considered for the assembly of the loader. The
loader should be ORIGed to the end of memory, but where is that? There are two ways
to tell. One is to count the number of words used by the loader, by hand. The other is
to submit the program to the assembler and then look at the output listing. Either way,
we can then compute the length of the loader and the proper ORIG address.

A more important problem is testing the loader. The loader is one of the most often
used programs in the system and because of this should be very carefully coded. It is
wise to both examine the written code by hand for possible errors and also to carefully
test the code. A special driver program should be written to produce tapes for testing
the loader. These test tapes should include both legitimate loader input and all possible
error cases. The performance of the loader should be checked for both correctness,
speed, and usefulness of error messages.

7.2 RELOCATABLE LOADERS

Absolute loaders have a number of advantages: they are small, fast and simple.
But they have a number of disadvantages, too. The major problem deals with the need
to assemble an entire program all at once. Since the addresses for the program are
determined at assembly time, the entire program must be assembled at one time in
order for proper addresses to be assigned to the different parts. This means that a small
change to one subroutine requires reassembly of the entire program. Also, standard
subroutines, which might be kept in a library of useful subroutines and functions, must
be physically copied and added to each program which uses them.

There is one possible alternative to constant reassembly of unchanged subroutines.
Given an estimate of the lengths of the subroutines involved, we can ORIG each
subroutine separately, and assemble each one individually. Then we can load the
subroutines into their predefined locations by feeding the separate loader files into the
loader. A change in a single subroutine requires reassembly of only that subroutine and
a new loader file to be loaded with the others which need not be reassembled.
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The approach can work, but only with care, foresight, and a lot of luck. The problem
is in knowing how big each subroutine will be. Since the subroutines cannot be allowed
to overlap, we must not estimate too little, so to be safe, we must overestimate. This
results in wasted, unused space between the subroutines. Also, if a subroutine needs
changing it may grow in size. This may result in it overlapping the subroutine which
follows it in memory, which would require reassembly of that routine with a different
ORIG statement, but this might cause that subroutine to overlap the subroutine following
it, and so forth.

For library subroutines, this can be even a greater problem. At the time that the
library routines are written, it is nearly impossible to decide where they should go in
memory. The subroutine should be placed in memory so that it does not overlap any
other subroutine, user-written or library, which may be in memory at the same time,
and so that little memory is wasted between routines. For any sizable collection of
subroutines, this is a nearly impossible task.

The problem here is one of binding time. Remember that one of the purposes
of assembly language is to allow symbolic addresses to be used. These symbolic
addresses are being bound to physical addresses at assembly time. To bind an
address is simply to associate it with a physical memory location. The assembler is,
using ORIG statements and its symbol table, assigning physical addresses to symbolic
addresses. But this negates one of the possible benefits of assembly language, the
ability of the assembly language programmer to ignore physical machine addresses.
The binding of symbolic addresses to physical addresses is really important only when
the program is actually loaded into memory. Thus, we would like to delay address
binding until load time.

A relocatable loader is a loader which allows this delay of binding time. A relocatable
loader accepts as input a sequence of segments, each in a special relocatable load
format, and loads these segments into memory. The addresses into which segments
are loaded are determined by the relocatable loader, not by the assembler or the
programmer.

Each segment is a subroutine, function, main program, block of global data, or
some similar set of memory locations which the programmer wishes to group together.
Segments are loaded into memory one after the other, to use as little space as possible.
The relocatable load format is defined so that separate segments can be assembled or
compiled separately and combined at load time.

7.2.1 Relocation

The relocation implied in the name “relocatable loader” refers to the fact that on two
separate loads, the same segment can be loaded into two different locations in memory.
If any of the segments which are loaded into memory before a segment change in size
due to recoding and reassembly between the two loads, then the addresses in memory
into which the segment is loaded will change by the same amount.

How can this be done? Consider the following simple program

BEGIN LD2 LENGTH
LOOP IN BUFFER(16)

OUT BUFFER(18)
DEC2 1
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J2P LOOP
HLT

LENGTH CON 10
BUFFER ORIG *+24

END BEGIN

This program has four symbols, BEGIN, LOOP, LENGTH, and BUFFER. If the program were
to be loaded into memory starting at location 0, then the values of these symbols
would be 0, 1, 6, and 7, respectively. If the starting address were 1000, the values
of the symbols would be 1000, 1001, 1006, and 1007; if the base address were 1976,
the values would be 1976, 1977, 1982, and 1983. In all cases, the addresses, for
a base BASE, would be BASE+0, BASE+1, BASE+6, and BASE+7. Thus, to relocate the
program from starting at an address BASE to starting at an address NEWBASE merely
involves adding NEWBASE-BASE to the values of all of the symbols. If the assembler
would produce all code as if it had a base of 0, then relocating this code would involve
only adding the correct base.

Knowing this, how does a change in the values of the symbols affect the code
generated by the assembler? The symbols which refer to addresses are used in the
address field of an instruction. Thus, changing the value of a symbol, as a result of
changing the base address for the program, means changing the address field of any
instruction which refers to an address in the program.

For our sample program above, the addresses generated, assuming that the
program starts at zero, would be

FIGURE 7.4 An example of the use of a relocatable loader to load three separately
assembled segments into memory.
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Code Address generated

BEGIN LD2 LENGTH 6
LOOP IN BUFFER(16) 7

OUT BUFFER(18) 7
DEC2 1 1
J2P LOOP 1
HLT 0

LENGTH CON 10 10
BUFFER ORIG *+24

END BEGIN 0

If we were to start the program at 1000, the addresses would be

Code Address generated

BEGIN LD2 LENGTH 1006
LOOP IN BUFFER(16) 1007

OUT BUFFER(18) 1007
DEC2 1 1
J2P LOOP 1001
HLT 0

LENGTH CON 10 10
BUFFER ORIG *+24

END BEGIN 1000

Notice that not all of the address fields changed. Only those address fields whose
contents were defined in terms of relocatable symbols changed. Not all symbols are
relocatable. For example, if we had included some symbolic constants such as

CR EQU 16
LP EQU 18
N EQU 10

and used them as

IN BUFFER(CR)
OUT BUFFER(LP)

LENGTH CON N

the values of the fields defined by these absolute symbols would not change. Thus,
we see that in a relocatable program, there are two types of symbols, relocatable and
absolute. Later a third type, external symbols, will be added to this list.

The dichotomy between absolute and relocatable symbols means that when a
program is loaded into memory with a base other than zero, some, but not all, of
the address fields must be changed by addition of the correct base address. These
addresses must be distinguished in some manner, so that the loader can correctly
modify them during loading. Various techniques for this are used, and we discuss them
shortly. The addresses used in the program when assembled are relocatable or relative
addresses, since they are only the addresses relative to the base address.

The general flow of a relocatable loader can now be defined. A variable, LOADBASE,
stores the value of the base address for the segment currently being loaded. As that
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segment is loaded, all relative addresses are modified by the addition of the base
address. When the segment is loaded, LOADBASE is increased by the length of the
segment to be ready for use as the base address of the next segment. Thus segments
are loaded into memory one after another, with no overlap and no wasted space, just
as desired.

7.2.2 Linking

At this point we might pause a moment to consider the usefulness of a relocatable
loader. The objective is to allow separate subroutines and functions to be prepared
and assembled separately and loaded together. The relocatable loader does this, but
it provides no means for one subroutine to call another. Consider the three assembly
statements for calling a subroutine SUM with two parameters

ENT1 ARRAY
ENT2 10
JMP SUM

where ARRAY ORIG *+10 occurs elsewhere in the routine with the above code. The
address of the ENT1 ARRAY instruction is relative and the assembler can produce the
offset from the base of the routine for the loader. The loader can add the correct base
address for this routine to correctly modify it. The ENT2 10 instruction has an absolute
address field which requires no modification. But what about the JMP SUM instruction?
Its address is not absolute; neither is it relative to the calling routine. It is external to
that segment; it is in another segment somewhere.

Thus there are three types of addresses in a relocatable program: absolute, relative,
and external. The treatment of absolute and relative addresses has already been
discussed. Let us now consider externals. An external symbol in one segment must
be an entry point in some other segment. For example, the subroutine name SUM used
above as an external is an entry point in a separate segment. The loader must link up
the reference to the external symbol SUM with the definition of the entry point SUM in a
separate segment. The linking means that the address of SUM, in its segment, must be
stored in the address field of the instruction which referenced SUM as an external, in
its segment. This linking function is performed by a linking loader , or simply, a linker .
Since it makes no sense to relocate programs in memory unless they have the ability
to reference each other (which is what linking allows), most relocatable loaders are
relocatable linking loaders. We follow standard practice by referring to a relocatable
linking loader as a relocatable loader.

7.2.3 Relocatable assembly language

The changes that are necessary for use of a relocatable loader have implications for
the assembly language which produces the input for the loader. The MIXAL language
which is used on the MIX computer is an absolute assembly language; it is used in
connection with an assembler which produces loader input for an absolute loader. It
has no provisions for generating relocatable loader code. A relocatable MIXAL would
vary in several respects.

One variation would be in the ORIG statement; it would be allowed in only limited
ways, if at all. A programmer would no longer be able to ORIG her code to an arbitrary
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absolute address. The only uses which would be permitted would be relative ORIGs,
like ORIG *+10, ORIG N*2+*, and so forth. Many assemblers thus replace the ORIG
statement with a BSS statement. The BSS statement stands for “Block Storage Save”
and takes one expression in its operand field. A BSS 10 is identical to an ORIG 10+*, a
BSS N*2 to an ORIG N*2+*, and so on.

Another change is in allowed address expressions. Each symbol is either absolute
or relocatable. Expressions can also be typed as absolute or relocatable. An absolute
symbol is an absolute expression, and a relocatable symbol is a relocatable expression.
The sum, difference, product, and quotient of absolute expressions are absolute
expressions. Relocatable expressions are more difficult to define. A relocatable
expression is one whose final value depends upon the base address in the same
way as a relocatable symbol. The binding from relocatable to absolute should be a
simple addition of a base. Let R be a relocatable symbol or expression, and let A be an
absolute symbol, constant, or expression. Then the expressions, R+A, R-A, and A+R are
relocatable. An expression like R-R is absolute. Expressions like R+R, R*R, R/R, A*R, or
R/A are neither relocatable nor absolute and hence are not allowed.

Notice that either R or A can be an expression, and so expressions like R-R-A+R+A-
R+R are allowed (and are relocatable). To determine if an expression is either relocatable
or absolute, replace all relocatable symbols by R and all absolute symbols by A. Then
check that no relocatable symbols are involved in multiplications or divisions. Finally
combine subexpressions such as R+A, A+R, R-A and substitute with R, and A+A, A-A,
A/A, A*A, and R-R, substituting with an A until the entire expression is reduced as far as
possible. If the result is either R or A, the expression is valid and of the indicated type;
otherwise it is illegal.

One other change is concerned with externals and entry points. To the assembler of
a segment, any reference to an external will appear to be a reference to an undefined
symbol, which is not what is meant. One possible approach to this would be to treat all
undefined symbols as externals, but this would result in truly undefined symbols being
treated incorrectly. Thus a new pseudo-instruction is introduced which is used to notify
the assembler that a symbol is meant to be an external symbol, not an undefined one.
This new pseudo-instruction, EXT, could be of the form

EXT <list of external symbols>

or alternatively

<symbol> EXT <operand field ignored>

Many assemblers require external symbols to be declared as such before their first
use in the segment and often place restrictions on the use of externals in address
expressions, allowing only an external by itself, or plus or minus an absolute expression.

Corresponding to the externals are entry points and they are treated in much the
same way. In order for the loader to correctly link externals with the corresponding entry
point, the loader must know where the entry points are. Thus assembly languages
often include an entry point declaration pseudo-instruction ENT. The form of this pseudo
instruction is often

ENT <list of entry point symbols>

Any symbol listed in an ENT pseudo-instruction must be defined as a relocatable symbol
elsewhere in the segment, and can then be used by the loader for linking.
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In addition to these programmer-visible changes in assembly language programs,
the assembler itself must also produce relocatable, not absolute, loader code.

7.2.4 Relocatable load format

Many different formats can be used for relocatable loader input and each of the
formats may have its own advantages and disadvantages. The basic information which
must be provided by the assembler to the loader is,

1. For each segment, its length, its block of instructions and data, and an indication
of the end of the segment.

2. For each code word, an indication of whether its address field is absolute, relative,
or external, and if external, which external symbol.

3. The names and locations of all entry points.
4. The end of loader input.
5. The starting address.

As a simple approach to the problem, we can use a loader format very similar to
the absolute loader format of Figure 7.2 above. All input to the relocatable loader will
consist of a sequence of codes which identify what information follows it. The codes
will be stored in byte 3 of a header word, and are,

Code Meaning
0 Start of a segment
1 Absolute address (no relocation needed)
2 Relocatable address (needs BASE added)
3 Entry point symbol
4 External symbol
5 Starting address
6 End of segment
7 End of loader input.

The remainder of the header word will contain various information depending upon the
code. Specifically,

Code Meaning
0 Start of segment. A segment name of up to 10 characters follows in the

next two words.
1 Absolute. Bytes 0:2 of the header contain a relative address. The following

word is an absolute value which should be loaded into memory at the
relative address.

2 Relocatable. Bytes 0:2 of the header contain a relative address. The
following word should be loaded into that location and the address field of
the loaded value should be modified by the addition of the base address of
the current segment.

3 Entry point. The next two words contain the 10-character symbolic name
of an entry point. Its relative address is in bytes 0:2 of the header word.
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4 External. The next two words contain the 10-character symbolic name of an
external. The instruction (which must already have been loaded) which is at the
relative address given in bytes 0:2 of the header uses this external.

5 Starting address. Bytes 0:2 contain the relative address in the current segment
where execution should begin.

6 End of segment. Bytes 0:2 contain the length of the segment.
7 End of loader input. Control can now be transferred to the starting address.

As before, with our absolute loader input, we should consider the efficiency of this
representation. Each instruction to be loaded here takes two words, at the least, plus
additional words for segment definitions, entry points, and externals. This needs to
be reduced if possible. There will probably be few entry points, externals, starting
addresses or segments, so we can ignore those codes for now and concentrate on the
representation of codes 1 and 2; these will be the bulk of our loader input.

With the input to the absolute loader, it was reasonable to assume that there would
be a large number of contiguous locations to be loaded, and that one header word
could serve a block of contiguous words as well as one word. For relocatable input, that
is not strictly true, however. While it is reasonable to assume that blocks of contiguous
words will need to be loaded, it is not reasonable to assume that blocks of contiguous
absolute words or blocks of contiguous relocatable words will be loaded. Rather, it is
more likely that relocatable and absolute words will be intermixed.

With the exception of adding the base address to the address field of a relocatable
instruction, however, relocatable and absolute instructions can be treated the same.
Thus, rather than an entire header word, only one extra bit per instruction is needed
to distinguish between relocatable and absolute instructions. If that bit were supplied
separately, then the loader could accept blocks of input instructions, loading them as
if they were absolute, and then later returning to convert the address fields of some
instructions from relative to absolute by the addition of the base address. This is the
approach we take here. To reduce the size of the loader input, and consequently the
amount of I/O time needed to load it, we allow each header word to prefix a block of
words. The number of words is given in bytes 4:5 of the header word. Thus, we redefine
the code 1 input as

Code Meaning
1 Absolute. Bytes 0:2 of the header contain a relative address; bytes 4:5

contain a number of words (N). Load the N following words into memory
at the relative address given in 0:2. Some of these words may be later
modified as external or relocatable references.

Code 2 input must be redefined in light of this approach. What is needed is simply
the (relative) addresses of all instructions which need relocation. One approach would
be to simply list the addresses of the relocatable instructions, one after another, with
bytes 4:5 specifying the number of such addresses. The addresses could also be
packed two to a word, to reduce the amount of space needed.

A slightly different approach is more commonly used on binary computers. From
examinations of typical programs, you notice that most instructions use an address and
most of these are relocatable. Thus, many instructions are relocatable and contiguous
to other relocatable instructions. Hence a list of addresses of relocatable instructions
would be a list of addresses which could typically differ only by one or two locations.
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Thus rather than an address for each, we need only the address of the first (which can
be stored in bytes 0:2 of the header) and an indicator, for each of the following words,
whether it is or is not relocatable. This requires only one bit per word, so that the need
for relocation of 30 words can be packed into one 5-byte word on a binary MIX machine.

Consider the binary word

b29 b28 b27 . . . b1b0

and a header word with an address of 1000 in bytes 0:2. If bit zero were 1, then the
address field of location 1000 would need relocation, if bit 1 were 1, then the address
field of location 1001 would need relocation, . . . , if bit i were 1, then the address field of
location 1000 + i would need relocation. This relocation could be done in a simple loop
similar to the following (assuming index register 1 has the address of the first of the
30 words, the A register has the relocation bits, and index register 6 has the relocation
base)

1H JAE 2F LOW ORDER BIT IS ZERO IF A EVEN
LD3 0,1(0:2) ADDRESS FIELD FOR
INC3 0,6 RELOCATIONS
ST3 0,1(0:2)

2H SRB 1 SHIFT A RIGHT ONE BIT
INC1 1 INCREMENT ADDRESS
JANZ 1B A NONZERO MEANS STILL 1 BIT

Notice that this technique requires the ability to test and shift bits and so is only really
suitable for binary machines. For a decimal machine, or a binary machine without the
extended instruction set, it would be necessary to divide by 2 to shift right one bit and
examine the remainder to determine whether the low-order bit was zero or one.

Whichever representation is used for the code 2 information on relocation addresses,
it should be clear how to write the code for relocating addresses in a program to be
loaded. If we assume the list of addresses approach, then the loader code for the
subroutine

NAME SUM10
ENT SUM10 ENTRY POINT DEFINITION
EXT ARRAY EXTERNAL

TEM1 BSS 1
*
SUM10 STJ EXITSUM

ST1 TEM1
ENT1 10
ENTA 0

LOOP ADD ARRAY-1,1
DEC1 1
J1P LOOP
LD1 TEM1

EXITSUM JMP *
END

would be
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+0000 00 0002 CODE 0: START OF SEGMENT
+2630163736 NAME OF SEGMENT: SUM10
+0000000000
+0001 01 0011 CODE 1: 9 ABSOLUTE WORDS
+0011 00 0240 TO BE LOADED AT RELATIVE +0001
+0000 00 0231
+0012 00 0261
+0000 00 0260
-0001 01 0501
+0001 00 0161
+0005 00 0251
+0000 00 0211
+0011 00 0047
+0000 02 0005 CODE 2: LIST OF 5 ADDRESSES
+0000 00 0001 TO BE RELOCATED
+0000 00 0002
+0000 00 0007
+0000 00 0010
+0000 00 0011
+0001 03 0002 CODE 3: ENTRY POINT AT RELATIVE +0001
+2630163736 NAME OF ENTRY POINT SUM10
+0000000000
+0005 04 0002 CODE 4: EXTERNAL USED AT RELATIVE +0005
+0123230134 NAME OF EXTERNAL ARRAY
+0000000000
+0012 06 0000 CODE 6: END OF SEGMENT OF LENGTH 10 WORDS

7.2.5 Techniques for linking

The programming techniques which are used for linking entry points to externals
are similar to techniques used in other system programs, particularly assemblers and
compilers. Both entry points and externals are defined by their symbolic names. The
problem is to match the definitions of these symbols, as entry points, to their uses, as
externals.

This matching is performed by the use of a data structure called a symbol table, or
in this case, an entry point table. This table is a list of the known entry points, both their
symbolic name and their address in memory. This table is defined by the collection of
all code 3 entry point definitions in the input. As each entry point definition is found,
the name of the new entry point and its absolute address are entered into the entry
point table. When a reference to an external (code 4) is found, the entry point table is
searched for the correspondingly named entry point, and the address of that entry point
is then used to modify the address field of the instruction which used that external/entry
point.

This solution to the linking problem works very well, except for one problem: forward
references. If an external reference to an entry point is encountered before the definition
of that entry point is encountered, then the search of the entry point table will not find
an address for the external. Since an entry point can be declared after it is used as
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FIGURE 7.5 A two-pass loader; pass 1 creates the entry point table which is used by
the second pass to properly link segments together.

an external, it cannot be known for certain if an external reference which finds no
corresponding entry point is a reference to an undefined entry point (an error) or simply
a reference to an entry point which is yet to be defined (a forward reference). This can
be known only when the end of loader input (code 7) is encountered. At that point, any
undefined externals are errors.

As always, there are many techniques for solving the problem of forward references.
The simplest is to use a two-pass loader. After inputting all of the loader input once, all
entry points are defined. On the first pass through the loader input, we can ignore all
loader input except the entry point definitions and the length of the segments (so we
can convert the relative addresses of the entry point definitions to absolute addresses).
When the end of loader input is encountered, the loader input is read a second time
(pass two). This time the segments are loaded into memory, and all external references
are resolved. Forward references will not be a problem, since all entry points were
defined and entered into the symbol table during pass one. Any forward reference
during pass two is a reference to an undefined external, and is an error.

The mechanics of a two-pass loader depend upon the I/O devices involved. If the
loader input is on a mass storage device (magnetic tape, disk, or drum), then the loader
can reread the input by rewinding or repositioning the input to the beginning for the
second pass. If input is on cards or paper tape, it is often copied to a mass storage
device during pass one, and then read back from this device during pass 2. If no mass
storage is available, the loader input must simply be read into the computer twice.

A two-pass solution to forward references is conceptually simple, and hence easy to
write. However, it requires twice as much I/O as might be desired, and since loading
is an I/O-bound process anyway, will produce a slow loader. This is quite unfortunate,
since the loader is so frequently used. Thus, other approaches have been tried to
reduce the amount of I/O which is necessary.
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One variant is to notice that all of the loading functions (storing in memory, relocation,
entry point table definition) can be accomplished in one pass, except external reference
resolution. Even this can be done except for forward references. Thus, instead of
inputting the entire loader input twice, on pass one we do all possible loading. If forward
external references are encountered, then the (absolute) address of the reference and
the name of the referenced external are written to mass storage. Pass two consists of
nothing more than rewinding this device and rereading it. The amount of I/O during
pass two is reduced considerably.

A more radical approach is to eliminate the second pass entirely, rather than simply
trying to reduce it in size. In this case, rather than storing the external references on a
mass storage device, they are stored in memory. Two tables are constructed during
pass one, an entry point table, and an external reference table (often called a use table).
The external reference table stores, for each (forward) external reference, the name
of the external and the (absolute) address where it is used. Pass two now no longer
need do any I/O, and need not even be a separate pass. During pass one, if a forward
external reference is found, then it is entered into the external reference table. When an
entry point is defined, the external reference table is searched, and any references to
this newly defined entry point are resolved (i.e., the address of the entry point is used
to modify the address field of the referencing instruction). The entry in the external
reference table is then deleted. When pass one is completed, the external reference
table should be empty. Any remaining entries are references to externals which were
never defined as entry points.

The problem is now reduced to the construction and maintenance of the two tables,
the entry point table and the external reference table. The entry point table is an easier
table to construct and maintain since deletions are never made from it. Thus only
search and enter subroutines are needed. The external reference table is much more
difficult. The table must be able to add entries, search for entries, and delete entries.
This requires care that deleted entries are not used after they are deleted. Also, the
memory space they occupied should be reused if possible to reduce the total amount
of memory needed. This requires very careful design of an appropriate data structure.

Some loaders have merged the entry point table and the external reference table
into one table. Each entry in this table consists of several fields. One field is a name,
another is a bit. If the bit is 0, then the name is the name of an external reference
which has not yet been defined as an entry point (a forward external reference). If
the bit is 1, the name is the name of an entry point. For an entry point, we need an
absolute address for that entry point. For an external reference, we need a list of all the
addresses which reference that external. The problem is that the length of this list is
variable and unbounded. How much space should be allocated for the list?

Since the list is of variable length, the standard approach is to use a linked list .
In the table entry itself, we do not store the list, but only a pointer to the list. This
means that each table entry is a name, an address, and a bit. The bit distinguishes
between forward external references and entry point table entries. For forward external
references, the word is the external name and the address is the address of a list of
addresses which reference the external; for entry points, the word is the entry point
name and the address is the address of the entry point in memory.

Where should the list be stored? One approach is to store the list in a large array
of available memory. Another is to restrict the assembly language, so that external
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references cannot be used in expressions, but only by themselves. Thus LDA EXTERNAL
is acceptable, but LDA EXTERNAL+1 is not. In this case, resolving an external reference
consists in simply storing the address of the entry point in the address field of the
instruction. That means that the address field has no necessary information and hence
can be used as temporary storage until the external reference is resolved. This allows
the list of external references to be stored in the address fields of the instructions which
reference the externals. This technique is known as chaining.

In chaining, the first reference to a forwardly referenced external stores in its address
field a special value (like 4095 or -1 or any other value which cannot be interpreted as a
legal address). The entry point/external table entry points to this by saving the address
of this instruction. When the loader finds the next reference, it sets the address field
of the second reference to point to the first reference, and the address of the second
reference is stored in the table. The third reference would point to the second reference,
and so on. Thus, when the entry point is finally defined, the table entry points to the last

FIGURE 7.6 The entry point table and external reference table of a one-pass loader.
The entry point table records where entry points are defined to be; the external reference
table records where they are used.
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FIGURE 7.7 Chaining (rather than storing the addresses of the uses of an external
symbol in the external reference table, the uses are chained together by a linked list).

reference, which points to the previous reference, . . . , which points to the first reference,
which has a special easily recognizable pointer. The loader must follow down this chain
of addresses, replacing them all with the address of the entry point.

Another technique is to set all external reference addresses to refer indirectly through
the entry point table entry. The address of the entry point table entry can be defined as
soon as the name of the symbol is known. Since at execution time the addresses of all
entry points will have been put into the entry point table, every access to an external
can simply be made indirectly through the entry point table. In this case, the entry point
table is an example of a transfer vector .

All of these linking techniques have their advantages and disadvantages. A two-
pass loader is relatively simple, but takes more time than a one-pass loader. The
transfer vector approach is straightforward, but requires additional memory at execution
time for the transfer vector and additional time due to the indirect references. Indexing
or indirection on externals may not occur correctly with the transfer vector approach.
Chaining can be done in one pass without additional memory, but the coding for
resolving the chain must be carefully written to avoid errors, and the use of external
references must be restricted. The use of an external reference table may require
considerable memory for the table, but allows the loader to produce a cross reference



7.3. VARIATIONS OF LOADERS 237

table for entry points and externals, showing where every entry point is and the
addresses of all of its uses.

An entry point cross reference listing generally accompanies a memory map. A
memory map lists the names, lengths, and load address of all segments and entry points.
A memory map and cross reference listing can be very valuable aids in debugging a
program.

7.2.6 Relocatable load errors

As with the absolute loader, a relocatable loader must check carefully for possible
errors in loading. The errors which an absolute loader checked for were relatively
obvious, while the errors of a relocatable loader are more complex. Certainly the
relocatable loader must ensure that all absolute addresses are legal and do not overlap
the relocatable loader. To assure this, the relocatable loader is again generally placed
in high memory, while user programs are loaded into low memory. The tables for the
loader are of variable size and so generally start just below the loader and grow towards
the user’s programs. Thus a large program with few symbols or a small program with
many symbols will have no problem being loaded.

In addition, some other errors which may be detected by a relocatable loader include,

1. Multiply-defined segments. Two or more segments may have the same name.

2. Multiply-defined entry points. Two different segments may have entry points with
the same name.

3. Undefined external. An external reference is made to a symbol which is never
declared as an entry point.

4. Load attempt out of segment. A relative load address may exceed the segment
length. If a segment is of length L, then all (relative) load addresses should be in
the range 0 to L-1.

5. No starting address or multiple starting addresses. There should be one and only
one starting address per program.

6. Incorrect loader input. Loader blocks may come out of order. For example,
following the end of a segment (code 6), the next code should be either a code 0
(start of next segment) or a code 7 (end of loader input). Any other code would
be in error.

Other strange conditions may or may not be errors depending upon your philosophy.
Should one segment be allowed to declare the same symbol both external and an entry
point?

7.3 VARIATIONS OF LOADERS

7.3.1 Linkage editors

A variation on the idea of a relocatable linking loader is a linkage editor . A linkage
editor can be thought of as a relocatable linking non-loading loader. Its purpose is to
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FIGURE 7.8 A linkage editor inputs several relocatable segments and outputs one
relocatable segment which combines the code and entry points of all its inputs.

input a number of segments in a relocatable load format, and to output a new segment
which is the combination of the input segments. In so doing, some relocation is done,
and some linkage.

As an example, consider two segments, MAIN and ZERO. MAIN is 43 words long, has
one entry point, START, and references the externals ONE and TWO. ZERO is 15 words
long, has two entry points, TWO and ZERO, and references the externals START and STOP.
A linkage editor which receives as input MAIN and ZERO would produce as output a
new segment which would consist of both segments MAIN and ZERO, so it would be 58
words long. In addition, all addresses in ZERO would be relocated by 43 words, so that
they would be correct for following MAIN. Any externals in one segment which are entry
points in the other would be resolved and would no longer appear as externals, while
all the entry points of both segments would appear as entry points of the new segment.
Thus, the new segment would have three entry points, START, TWO and ZERO. It would
reference two externals, ONE and STOP. The references to TWO in MAIN would be linked
to the entry point in ZERO, the references to START in ZERO would be linked to the entry
point in MAIN. These references would now appear like any other relocatable memory
references.
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The reasons for wanting a linkage editor vary. From a user point of view, the
repetitive linking of many routines can be quite expensive. If these routines are not
changing, then they could be linked together, once and for all, by the linkage editor,
while the remainder of the program is modified, reassembled, relinked, and debugged
as needed. Thus a linkage editor may save valuable time.

From a system point of view the use of a linkage editor can separate the linking
function from the loading function. That is, a user may need to run his entire program
first through the linkage editor, until no externals remain to be linked. Then, although
the program remains in relocatable format, the relocation for it for loading is zero. Thus
it can be loaded by what is essentially an absolute loader. This means the loader can
be considerably smaller and faster than a relocating linking loader, since it need do no
linking (and generally no relocation).

A linkage editor is normally a two-pass linker. Since the program is not being loaded
into memory, we cannot use chaining or an in core fix-up for externals. We must make
one pass first to define the entry point table and then another pass to link and relocate
the segments together.

7.3.2 Overlays

Sometimes a program is too large to fit in memory. There is only a fixed amount
of memory on a MIX machine and some problems can only be solved by programs
which require more than 4000 words of memory. However, often it is the case that the
program can easily be partitioned into separate sections which are never needed at the
same time. In this case, if a mass storage device is available, the program may still be
able to be written and executed.

The idea of overlaying is to store the entire program only on the mass storage
device. In memory is kept only the common (global) data that the sections use and any
heavily used subroutines. At any given time, only one of the sections will be in main
memory. When control needs to transfer from one section to another, a jump is made
to a small special subroutine called an overlay monitor. The overlay monitor loads the
next section from the mass storage device into memory in the same memory locations
as the previous section. The sections are called overlays.

On the MIX machine, for example, assume that the common data and overlay
monitor took 2000 words of memory and each of three overlays took 2000 words of
memory. Although only 4000 words of memory are available, an overlay system could
run this program, although it would take 8000 words to run without overlays. (What
we gain in space, we lose in time, since bringing in overlays requires considerable
input/output time.)

Loaders are involved with overlays in two ways. First, the overlay monitor is obviously
a loader of sorts, prepared to load any of several overlay sections as directed. Second,
a linkage-editor-type loader is generally used to link and relocate the program into the
form needed for the overlay monitor on the direct access device.

7.3.3 Bootstrap loaders

Suppose the computer is executing your program. You now know how that program
got into memory. It was loaded by the relocatable linking loader. You also know (or can
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guess) that the relocatable loader was loaded into memory by an absolute loader. How
did the absolute loader get into memory? It was obviously loaded, but by what?

On most machines someone has written a small special-purpose loader program
which is meant only for loading the absolute loader. This program is used to load the
absolute loader. But, you continue, how did this program get into memory? Answer: it
loaded itself into memory (with a little help from its friends).

The bottom line in loaders is a special program called a bootstrap loader . A
bootstrap loader loads itself into memory. Obviously, however, it cannot do this all by
itself. The first few instructions of a bootstrap loader are I/O instructions which read into
memory from a specific I/O device. The I/O is done into the memory locations which
directly follow these few instructions. The information read in by these few instructions
is the remainder of the bootstrap loader. For example, if the bootstrap loader is written
on a magnetic tape on tape drive 1, then the following instructions are enough to get
the bootstrap loader started.

IN *+2(1)
JBUS *(1)

When the I/O is complete, control will drop through the JBUS to the newly read in
bootstrap loader.

These first few instructions were loaded into the computer by hand. The computer
operator, when a computer is first turned on, must enter these instructions, by hand,
in binary, through the console of the computer. When these instructions are executed,
they read in the remainder of the bootstrap loader, which then loads the absolute loader,
which then loads the relocatable loader, which then loads your program.

Many computers now have special options which provide a bootstrap loader in
special memory which can be read but not written (read-only memory), so that the
loader cannot be clobbered, intentionally or unintentionally. This relieves the operator
of needing to enter the bootstrap loader by hand.

7.3.4 Subroutine libraries

On most computer systems there exists a set of subroutines which have been
written and are used by many programmers. Subroutines for common mathematical
functions and for input/output are typical. This set of subroutines is often grouped into a
library . A loader uses this library to try to satisfy any unsatisfied externals when the
end of a relocatable load results in undefined externals.

A programmer can use any of these subroutines simply by declaring them to be
external. When loading of user input is complete, the loader checks for any unsatisfied
external references. If there are any, each reference causes the loader to search the
library of subroutines, looking for an entry point for any of these subroutines which
matches the unsatisfied external. If none is found, we have an error as before. If one is
found, however, it is then loaded into memory and the external reference resolved.

Since blind searching of the entire library may be quite time-consuming, the library
is generally structured so that the searching can be more efficient. The names of all
entry points and the name and location of their segments are stored in a directory which
is at the front of the library. It is possible to then search for an entry point and load it
very quickly.

A linkage editor uses a library in much the same manner.
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7.4 SUMMARY

As you can tell, there are a number of different approaches to loading a program
into memory. Typically, the standard loader is either an absolute loader or a relocatable
loader. The absolute loader is very simple and may be all that is needed or can be
afforded for small computers. A relocatable loader is more complicated but allows
programs to be written as separate subroutines which may be assembled or compiled
by different translators at different times.

The relocatable loader must combine the many different segments, relocating
addresses and linking external references and entry points. There are many different
possible input formats and the format produced by the assembler must be appropriate
for the loader to be used. A relocatable loader may use many techniques for linking as
either a two-pass or a one-pass loader. If the loader is one-pass, it may link through a
transfer vector, chaining, or an external reference table.

A linkage editor links many small segments into one large segment, with the same
output format as input format. Thus the output of a linkage editor may be input to a
relocatable loader or back to the linkage editor for combination with other segments.

Bootstrap loaders and overlay loaders are special purpose loaders.
Several books include a chapter on loaders and linkers, including Donovan (1972),

Graham (1975), and Ullman (1976). Barron (1969) gives a brief treatment of loaders, in
general, while Presser and White (1972) concentrate on the loader and linkage editor
for the IBM 360/370 systems. Knuth (1968) gives a bootstrap loader for MIX in Volume
1.

EXERCISES

1. Name four kinds of loaders or linkers.

2. Describe the information in each logical record given to an absolute loader.

3. What is the name for a location within a routine which is used by another routine?
Could it be called anything else? What determines which name is used for a
location?

4. What is the purpose of a checksum?

5. Suppose that one of the logical operations of AND, ORR or XOR was used, instead
of addition, to compute the checksum for loader input. Comment on how useful
you think each operation would be.

6. What is a bootstrap loader? Under what circumstances is a bootstrap loader
needed? Is a bootstrap loader normally an absolute loader or a relocatable
loader?

7. Name two techniques for handling forward references in a linking loader.

8. Indicate which of the following assembly language statements should be marked
as relocatable by the assembler in order for this subroutine to be properly loaded
by a relocatable loader. What would you think would be the entry points and
externals?
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I CON 0
N CON 43
*
SQRT STJ EXIT

STZ I
1H LDA I

MUL I
CMPX N
JG FOUND
LDA I
INCA 1
STA I
JMP 1B

FOUND LDA I
EXIT JMP *

9. Assume that the following three routines had the indicated entry points and
externals.

ENTRY POINTS EXTERNALS
MAIN BEGIN N

ARY CS
FORE

FUN N CS
FOD TOD
NIX

TURKEY CS (none)

What would be the entry points and externals of the combined module which
would result from processing the above three routines with a linkage editor?

10. How many passes are there in each of the following types of loaders?

(a) Absolute loader

(b) Relocatable loader

(c) Linkage editor

(d) Bootstrap loader

11. Assume that the input to a MIX relocatable loader is of the form

address type contents

where the “contents” is a MIX word which should be loaded at “address.” If type
= ABS, then nothing needs to be done to “contents”, but if type = REL, then the
address field of the instruction needs to be relocated. The “address” field is
always a relocatable address.

If the input to the loader is
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0000 ABS +0000000000
0003 REL +0000000510
0004 REL +0001000530
0005 ABS +0001000260
0006 REL +0002003430

and the program is to be relocated to start at location 0432, what is loaded and
where?

12. What is the latest binding time possible for the symbols in relocatable, absolute,
or machine language programs?

13. Can a loader be relocating without being linking? Would it make sense if it were
possible?

14. How does a linkage editor differ from a linking loader?

15. Suppose that you have just been put in charge of loaders for the new improved
XCD-12A computer. In what order would you write the following loaders/linkers?

(a) Linkage editor

(b) Bootstrap loader

(c) Absolute loader

(d) Linking loader

(e) Relocatable loader

16. Write a relocatable loader which loads relocatable MIXAL programs from tape
unit 1.

17. What changes are needed in the assembly language for a relocatable loader, as
compared with an absolute loader?
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ASSEMBLERS

Assemblers are the simplest of a class of systems programs called translators. A
translator is simply a program which translates from one (computer) language to another
(computer) language. In the case of an assembler, the translation is from assembly
language to object language (which is input to a loader). Notice that an assembler, like
all translators, adds nothing to the program which it translates, but merely changes
the program from one form to another. The use of a translator allows a program to
be written in a form which is convenient for the programmer, and then the program is
translated into a form convenient for the computer.

Assembly language is almost the same as machine language. The major difference
is that assembly language allows the declaration and use of symbols to stand for the
numeric values to be used for opcodes, fields, and addresses. An assembler inputs a
program written in assembly language, and translates all of the symbols in the input
into numeric values, creating an output object module, suitable for loading. The object
module is output to a storage device which allows the assembled program to be read
back into the computer by the loader.

This is an external view of an assembler. Now we turn our attention to an internal
view, in order to see how the assembler is structured internally to translate assembly
programs into object programs.

8.1 DATA STRUCTURES

Appropriate data structures can make a program much easier to understand, and
the data structures for an assembler are crucial to its programming. An assembler must
translate two different kinds of symbols: assembler-defined symbols and programmer-
defined symbols. The assembler-defined symbols are mnemonics for the machine
instructions and pseudo-instructions. Programmer-defined symbols are the symbols
which the programmer defines in the label field of statements in his program. These
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two kinds of symbols are translated by two different tables: the opcode table, and the
symbol table.

8.1.1 The opcode table

The opcode table contains one entry for each assembly language mnemonic. Each
entry needs to contain several fields. One field is the character code of the symbolic
opcode. In addition, for machine instructions, each entry would contain the numeric
opcode and default field specification. These are the minimal pieces of information
needed. With an opcode table like this, it is possible to search for a symbolic opcode
and find the correct numeric opcode and field specification.

Pseudo instructions require a little more thought. There is no numeric opcode
or field specification associated with a pseudo-instruction; rather, there is a function
which must be performed for each pseudo-instruction. This can be encoded in several
ways. One method is to include in the opcode table, a type field. The type field is
used to separate pseudo-instructions from machine instructions and to separate the
various pseudo-instructions. Different things need to be done for each of the different
pseudo-instructions, and so each has its own type. All machine instructions can be
handled the same, however, so only one type is needed for them. One possible type
assignment is then,

Type Instruction class
1 Machine instruction
2 ORIG pseudo-instruction
3 CON pseudo-instruction
4 ALF pseudo-instruction
5 EQU pseudo-instruction
6 END pseudo-instruction.

Other type assignments are also possible. For example, in the above assignment,
all machine instructions have one type, and are treated equally. This allows both
instructions such as

LDA X(0:3)

and

ENTA X(0:3)

But the ENTA instruction is encoded as an opcode of 60 and a field of 02. Thus, it is not
correct to specify a field with an ENTA. This reasoning can lead to separating memory
reference instructions (which may have field specifications) from non-memory reference
instructions (which should not have field specifications). Even further classification
could separate the I/O instructions (which use the F field for a device number) and the
MOVE instruction. The idea of attaching a type to a table entry is quite general.

Another approach to separating the pseudo-instructions in the opcode table is to
consider how the type field of the above discussion would be used. It would be used in a
jump table. In this case, rather than using the type to specify the code address through
a jump table, we could store the address of the code directly in the opcode table. In
each opcode table entry, we can store the address of the code to be executed for proper
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FIGURE 8.1 Opcode table entry (each opcode table entry contains the symbolic opcode,
numeric opcode and field specification, and a type field).

treatment of this instruction, whether it is a machine instruction or a pseudo-instruction.
This is a commonly used technique for assemblers.

Other opcode table structures are possible also. Some assemblers have separate
tables for machine instructions and for pseudo-instructions. Others will use a type field
of one bit to distinguish between machine instructions and pseudo-instructions, and
then store a numeric opcode and field specification for the machine instructions or an
address of code to execute for pseudo-instructions.

For simplicity, let us assume that we store, for each entry, the symbolic mnemonic,
numeric opcode, default field specification and a type, as defined above. For pseudo-
instructions, the numeric opcode and default field specification of the entry will be
ignored. How should we organize our opcode table entries? The opcode table should
be organized to minimize both search time and table space. These two goals may not
be achievable at the same time. The fastest access to table entries would require that
each field of an entry be in the same relative position of a memory word, such as in
Figure 8.1. But notice that, in this case, three bytes of each entry are unused, so that
the table includes a large amount of wasted space. (Actually, three bytes, two signs,
and the upper three bits of the type byte are unused.) To save this space would require
more code and longer execution times for packing and unpacking operations. Thus, to
save time it seems wise to accept this wasted space in the opcode table.

To a great extent this wasted space is due to the design of the assembly language
mnemonics. If the mnemonics had been defined as a maximum of three characters
(instead of four), it would have been possible to store the mnemonic, field specifications,
and opcode in one word. The sign bit would be “+”for machine instructions and “-” for
pseudo-instructions. Pseudo instructions could have a type field or address in the lower
bytes while machine instructions would store opcode and field specifications. On the
other hand, once the decision is made that four character mnemonics are needed, then
it is necessary to go to a multi-word opcode table entry. In this case, we could allow
mnemonics of up to seven characters, by using the currently unused three bytes of
the opcode table entry. On the other hand, there may be no desire to have opcode
mnemonics of more than four characters; mnemonics should be short.

Another consideration is the order of entries in the table. This relates to the expected
search time to find a particular entry in the table. The simplest search is a linear search
starting at one end of the table and working towards the other end until a match is
found (or the end of the table is reached). In this case, one should organize the table
so that the more common mnemonics will be compared first. If, as expected, the LDA
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mnemonic is the most common instruction, then it should be put at the end of the table
which is searched first.

Rather than use a linear search, it can be noted that the opcode table is a static
structure; it does not change. The opcode table is like a dictionary explaining the
numeric meaning of symbolic opcodes. Like a dictionary, it can be usefully organized
in an alphabetical order. By ordering the entries, the table can be searched with a
binary search. A binary search is the method commonly used to look for an entry in a
dictionary, telephone book, or encyclopedia. First, the middle of the book is compared
with the entry being searched for (the search key ). If the search key is smaller than the
middle entry, then the key must be in the first half of the book, if it is larger it must be in
the latter half of the book. After this comparison, the same idea can be repeated on the
half of the book which still needs to be searched. Each comparison splits the remaining
section of the book in half.

In MIX, this might be coded as follows. Location KEY contains the value for which we
are searching. LOW contains our low index, while HIGH contains our high index. Initially,
LOW would point to the first entry of the table; HIGH would point to the last entry. The
search loop would then be

SEARCHLOOP LDA LOW
ADD HIGH A = LOW + HIGH
SRAX 5
DIV =2= A = (LOW + HIGH)/2 = MIDDLE
STA *+1(0:2) MOVE TO INDEX 3
ENT3 0
LDA TABLE,3 MIDDLE OF TABLE
CMPA KEY
JE FOUND IF EQUAL, FOUND ENTRY
JL 1F

*
DEC3 1 IF TABLE[MIDDLE] > KEY
ST3 HIGH HIGH = MIDDLE - 1
JMP 2F

*
1H INC3 1 IF TABLE[MIDDLE] < KEY

ST3 LOW LOW = MIDDLE + 1
2H LDA HIGH

CMPA LOW IF LOW > HIGH, STOP
JGE SEARCHLOOP

NOTFOUND ...

The search code has two exits. If the search key is found in the table, a jump is made
to the label FOUND, with index register 3 being the index into the table of the search key
entry. If the key is not in the table, control transfers to the label NOTFOUND.

A binary search is not always the best search method to use. Each time through,
the search loop cuts the size of the table yet to be searched in half. In general, a table
of size 2n will take about n comparisons to find an entry. Thus, a table of size 32 will
take only 5 comparisons, while for a linear search, it is normally assumed, that on the
average, half of the table must be searched, resulting in 16 comparisons. Thus, the
binary search almost always requires fewer executions of its search loop than a linear
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search. However, notice that the binary search requires considerably more computation
per comparison than a linear search. The binary search loop requires about 35 time
units per comparison while a linear search can require only 5 time units. Thus, for a
table of size 32, the binary search takes 5 comparisons at 35 time units each, for 175
time units, while the linear search takes 16 comparisons at 5 time units each for 80 time
units. This is not to say that a binary search should never be used. For a table of size
128, a binary search will take about 245 (= 7 × 35) time units, while a linear search will
take 320 (= 64 × 5). Thus, for a large table a binary search is better. Also, if a shift (SRB)
could be used instead of the divide, the time per loop could be cut by 11 time units,
making the binary search better. Since there are around 150 MIX opcodes, we use a
binary search for the opcode table.

8.1.2 The symbol table

The opcode table is used to translate the assembler-defined symbols into their
numeric equivalents; the symbol table is used to translate programmer-defined symbols
into their numeric equivalents. Thus, these two tables can be quite alike. A symbol table,
like an opcode table, is a table of many entries, one entry for each programmer-defined
symbol. Each entry is composed of several fields.

For the symbol table, only two fields are basically needed. It is necessary to store
the symbol and the value of the symbol. A symbol in a MIXAL program can be up to
10 characters in length. This requires two MIX words. In addition, the value of the
symbol can be up to five bytes plus sign, requiring another MIX word. Thus, each
entry in the symbol table takes at least three words. Additional fields may be added for
some assemblers. A bit may be needed to indicate if the symbol has been defined or is
undefined (i.e., a forward reference). Another bit may specify whether the symbol is an
absolute symbol or a relative symbol (depending on whether the output is to be used
with a relocatable or absolute loader). Other fields may also be included in a symbol
table entry, but for the moment let us use only the two fields, for the symbol and its
value.

As with the opcode table, the organization of the symbol table is very important
for proper use. But the symbol table differs from the opcode table in one important
respect: it is dynamic. The opcode table was static; it is never changed, neither during
nor between executions of the assembler. It is the same for each and every assembly
program for the entire assembly process. The symbol table is dynamic; each program
has its own set of symbols with their own values and new symbols are added to the
symbol table as the assembly process proceeds. Initially the symbol table is empty; no
symbols have been defined. By the time assembly is completed, however, all symbols
in the program have been entered into the symbol table.

This requires the definition of two subroutines to manipulate the symbol table: a
search routine and an enter routine. The search routine searches the symbol table for
a symbol (its search key) and returns its value (or an index into the table to its value).
The enter subroutine puts a new symbol and its value into the table.

These two subroutines need to be designed together, since both of them affect the
symbol table. A binary search might be quite efficient, but it requires that the table
be kept ordered. This means that the enter subroutine would have to adjust the table
for each new entry, so that the table was always sorted into the correct order. Thus,
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although a binary search might be quick, the combination of a binary search plus an
ordered enter might be very expensive.

Also, consider that a linear search is more efficient than a binary search for small
tables. Many assembly language programs have less than 200 different symbols, and
so a linear search may be quite reasonable. A linear search allows the enter routine to
simply put any new symbol and its value at the end of the table. Thus, both the search
and enter routines are simple.

Many other table management techniques have been considered and are used.
Some of these are quite complex and useful only for special cases. Others have wide
applicability. One of the most commonly used techniques is hashing. The objective
of hashing is quite simple. Rather than have to search for a symbol at all, we would
prefer to be able to compute the location in the table of a symbol from the symbol itself.
Then, to enter a symbol, we compute where it should go, and define that entry. For
accessing, we compute the address of the entry and use the value stored in the table
at that location.

As a simple example, assume that all of our symbols were one-letter symbols (A, B,
C, . . . , Z). Then if we simply allocated a symbol table of 26 locations, we could index
directly to a table entry for each symbol by using its character code for an index. No
searching would be needed. If our symbols were any two-letter symbols, we could
apply the same idea if we had a symbol table of 676 (= 26 × 26) entries, where our
hash function would be to multiply the character code of the first letter by 26 and
add the character code of the second (and subtract 26 to normalize). However, for
three-letter symbols, we would need 17,576 spaces in our symbol table. This is clearly
impossible. (Our MIX memory is only 4000 words long.) It also is not necessary, since
we assume that at most only a few hundred symbols will be used in each different
assembly program. What is needed is a function which produces an address for each
different symbol, but maps them all into a table of several hundred words.

Many different hashing functions can be used. For example, we can add together
the character codes for the different characters of the symbol, or multiply them, or shift
some of them a few bits and exclusive-OR them with the other characters, or whatever
we wish. Then, after we have hashed up the input characters to get some weird number,
we can divide by the length of the table and use the remainder. The remainder is
guaranteed to be between 0 and the length of the table and hence can be used as an
index into the table. For a binary machine and a table whose length is a power of two,
the division can be done by simply masking the low-order bits.

The objective of all this calculation is to arrive at an address for a symbol which
hopefully is unique for each symbol. But since there are millions of 10-character
symbols, and only a few hundred table entries, it must be the case that two different
symbols may hash into the same table entry. For example, if we use a hash function
which adds together the character codes of the letters in the symbol, then both EVIL
and LIVE will hash to the same location. This is called a collision. The simplest solution
to this problem is to then search through successive entries in the table, until an empty
table entry is found. (If the end of the table is found, start over at the beginning).

The search and enter routines are now straightforward. To enter a new symbol,
compute its hash function, and find an empty entry in the table. Enter the new symbol
in this entry. To search for a symbol, compute its hash function and search the table
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starting at that entry. If an empty entry is found, the symbol is not in the table. Otherwise,
it will be found before the first empty location.

The problem with using hashing is defining a good hash function. A good hash
function will result in very few collisions. This means that both the search and enter
routines will be very fast. In the worst case, all symbols will hash to the same location
and a linear search will result. Hashing is sometimes also used for opcode tables, where,
since the opcode table is static and known, a hashing function can be constructed
which guarantees no collisions.

More about hashing can be found in the paper by Morris (1968), or in Knuth (1973),
Volume 3.

8.1.3 Other data structures

The opcode table and the symbol table are the major data structures for an
assembler, but not the only ones. The other data structures differ from assembler
to assembler, depending upon the design of the assembly language and the assembler.

A buffer is probably needed to hold each input assembly language statement, and
another buffer is needed to hold the line image corresponding to that statement for the
listing of the program. In addition buffers may be needed to create the object module
output for the loader, and to perform double buffering in order to maximize CPU-I/O
overlap. Various variables are needed to count the number of cards read, the number
of symbols in the symbol table, and so on.

One variable in particular is important. This is the location counter . The location
counter is a variable which stores the address of the location into which the current
instruction is to be loaded. The value of the location counter is used whenever the
symbol “*” is used, and this value can be set by the ORIG pseudo-instruction. Normally
the value of the location counter is increased by one after each instruction is assembled,
in order to load the next instruction into the next location in memory. The value of the
location counter for each instruction is used to instruct the loader where to load the
instruction.

8.2 GENERAL FLOW OF AN ASSEMBLER

With a familiarity with the basic data structures of an assembler (the opcode table,
the symbol table, and the location counter), we can now describe the general flow of an
assembler. Each input assembly statement, each card, is handled separately, so our
most general flow would be simply, “Process each card until an END pseudo-instruction
is found.”

More specifically, consider what kind of processing is needed for each card:

1. Read in a card.
2. If the card is a comment (column 1 is an “*”) then skip over processing to step 4

for printing.
3. For non-comment cards, get the opcode and search the opcode table for it. Using

the type field of the opcode table entry, process this card.
4. After the card has been processed, print a line of listing for this card.
5. If the opcode was not an END pseudo-instruction, go back to step 1 to process the

next card.
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FIGURE 8.2 The general flow of an assembler (for MIXAL). Refinement of this general
design resulted in the assembler described in Section 8.3.

This much of the assembly process is common to all of the input cards. The
important processing is in step 3, where each card is processed according to its
type. This level of the assembler provides an organizational framework for further
development.

8.2.1 Machine language instructions

Continuing then, what processing needs to be done for each type of opcode?
Consider a machine language instruction. For a machine language instruction, we need
to determine the contents of each of the four fields of a machine language instruction.
In addition, we must define any label which is in the label field. Let us define the label
first. Defining a label is simply a matter of entering the label (if any) in the label field of
the assembly language statement into the symbol table with a value which is the value
of the current location counter.
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Now we need to determine the fields of the machine language instruction. The
opcode field (byte 5:5) and the field specification (byte 4:4) are available in the opcode
table entry which has already been found. To find the other fields (address and index),
let us assume that we have a subroutine which will evaluate an expression. This
subroutine will be written later. Then, to define the address field, we call our expression
evaluator. The value it returns is the contents of the address field (bytes 0:2). When it
returns, we check the next character. If the next character is a comma “”„ then an index
part follows and we call the expression evaluator again to evaluate the index part. If the
next character is not a comma, then the index part is zero (default). When the index
has been processed, we check the next character. If it is a left parenthesis, then the
expression which follows is a field specification, and we call the expression evaluator
again. Otherwise, we use the default specification from the opcode table.

Basically, we have defined an assembly language statement to be of the form

LABEL OP EXPRESSION,EXPRESSION(EXPRESSION)

and have written one subroutine which will evaluate each expression. From this we
can determine the value of each of the fields of the machine language instruction to be
generated for this assembly language instruction. Now, we assemble the generated
word

LDA OPCODE
STA MACHLANG(5:5)
LDA FIELD
STA MACHLANG(4:4)
LDA INDEX
STA MACHLANG(3:3)
LDA ADDRESS
STA MACHLANG(0:2)

and output it for the loader, to be loaded at the address indicated by the location counter.
Then we advance the location counter and we are ready for the next input card.

8.2.2 Pseudo instruction processing

The processing for each pseudo-instruction is generally easy.
For an ORIG instruction, no code is generated. Rather, only two things need be done.

First, if a label is present, it should be defined. Its value is the value of the location
counter. Second, the expression in the operand field is evaluated and the value of the
expression is stored as the new value of the location counter. We can use the same
expression evaluator that is used for evaluation of the machine language operands.

The EQU pseudo-instruction is similarly straightforward. For an EQU instruction, we
first evaluate the operand expression (using the expression evaluator as before), and
then we enter the symbol in the label field into the symbol table with a value of the
expression.

The ALF pseudo-instruction is even easier. In this case, we first define the label of
the instruction. Then we pick up the character code of the five characters of the ALF
operand and issue them as a generated word, incrementing the location counter after
we do so.
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The most complicated pseudo-instruction is probably the CON instruction. The
general form of this instruction is

CON exp1(fexp1),exp2(fexp2), ... , expn(fexpn)

Notice that again we can use our expression evaluation routine. With this subroutine,
the assembler code to handle a CON instruction is simply,

1. Initialize the generated word to zero.

2. Evaluate the next expression.

3. If the next character is a left parenthesis, then evaluate the next expression to get
a field specification; otherwise use a field specification of 0:5.

4. Store the expression from step 2 in the indicated field of the generated word.

5. If the next character is a comma, then go back to step 2, to repeat for the next
part of the CON instruction.

Once the operand of the CON instruction has been generated, it can be output for
loading and the location counter can be incremented.

The last pseudo-instruction the assembler will encounter is the END pseudo-
instruction. For this pseudo-instruction, we first define the label. Then we evaluate the
operand expression and output it to the loader as the starting address.

As you can see, each pseudo-instruction requires its own section of code for correct
processing, and the pseudo-instruction processing for each is different. However, the
processing for each individual pseudo-instruction, considered separately, is not overly
complicated. The basic functions used in processing all assembly language instructions
involve defining labels, evaluating expressions, and generating code. The first of these
was discussed in Section 8.1, so now let us consider the evaluation of expressions.

8.2.3 Expression evaluation

An expression in MIXAL is composed of two basic elements: operands and
operators. The operators are addition (+), subtraction (-), multiplication (*), division
(/), and “multiplication by eight and addition” (:). The operands are of three types:
numbers, symbols, and “*”. Numbers have a value which is defined by the number
itself, interpreted as a decimal number. Symbols are defined by the value field of their
symbol table entry. The value of * is the value of the location counter.

The operators are applied to the operands strictly left to right, without precedence.
This allows a very simple expression evaluation routine whose code is basically as
follows.

1. Evaluate the first operand. Save its value in VALUE1.

2. If the next character is an operator, remember it and go on to step 3. Otherwise,
stop. VALUE1 is the value of the expression.

3. Evaluate the second operand. Save its value in VALUE2.

4. Apply the operator to VALUE1 and VALUE2, saving the result in VALUE1. Then go
back to step 2.
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And that is all that there is to it. Expressions for MIXAL have been defined in such
a way that their evaluation is quite simple. Only one problem has been ignored. That
problem is forward references.

8.2.4 Forward references

The forward referencing problem arises in a very simple way: the expression
evaluator attempts to evaluate an operand which is a symbol by searching the symbol
table, and finds that the symbol is not in the symbol table. The symbol is not defined,
the expression cannot be evaluated, and the assembly language statement cannot be
assembled. What can be done?

One solution is to disallow forward references. MIXAL uses this approach in several
places. No pseudo-instruction can make a forward reference. Forward references
are not allowed in the index or field specification fields of an instruction. However,
a restriction to no forward references would be extremely inconvenient and so two
other solutions are more commonly used for allowing some forward references. These
two solutions result in two classes of assemblers: one-pass assemblers and two-pass
assemblers. Since two-pass assemblers are conceptually simpler, we consider them
first.

Two-pass assemblers

A two-pass assembler makes two passes over the input program. That is, it reads
the program twice. On the first pass, the assembler constructs the symbol table. On the
second pass, the complete symbol table is used to allow expressions to be evaluated
without problems due to forward references. If any symbol is not in the symbol table
during an expression evaluation, it is an error, not a forward reference.

Briefly, for a two-pass assembler, the first pass constructs the symbol table; the
second pass generates object code. This causes a major change in the basic flow of
an assembler, and results in another important data structure: the intermediate text.
Since two passes are being made over the input assembly language, it is necessary to
save a copy of the program read for pass 1, to be used in pass two. Notice that since
the assembly listing includes the generated machine language code, and the machine
language code is not produced until pass 2, the assembly listing is not produced until
pass 2. This requires storing the entire input program, including comments, and so
forth, which are not needed by the assembler during pass 2.

The intermediate text can be stored in several ways. The best storage location
would be in main memory. However, since MIX memory is so small, this technique
is not possible on the MIX computer. On other machines, with more memory, this
technique is sometimes used for very small programs. Another approach, used for
very small machines, is to simply require the programmer to read his program into the
computer twice, once for pass 1, and again for pass 2. A PDP-8 assembler has used
this approach, even going so far as to require the program be read in a third time if a
listing is desired.

A more common solution is to store the intermediate text on a secondary storage
device, such as tape, drum, or disk. During pass 1, the original program is read in, and
copied to secondary storage as the symbol table is constructed. Between passes, the
device is repositioned (rewound for tapes, or the head moved back to the first track for
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FIGURE 8.3 A block diagram of a two-pass assembler. Pass 1 produces a symbol table
and a copy of the input source program for pass 2. Pass 2 produces loader code and a
listing.

moving-head disk or drum). During pass 2, the program is read back from secondary
storage for object code generation and printing a listing. (Notice that precautions should
be taken that the same tape is not used for both storage of the intermediate text input
for pass 2 and the storage of the object code produced as output from pass 2 for the
loader.)

The general flow of a two-pass assembler differs from that given above, in that now
each card must be processed twice, with different processing on each pass. It is also
still necessary to process each type of card differently, depending upon its opcode type.
This applies to both pass 1 and pass 2.

For machine instructions, pass 1 processing involves simply defining the label (if
any) and incrementing the location counter by one. ALF and CON pseudo-instructions are
handled in the same way. ORIG statements must be handled exactly as we described
above, however, in order for the location counter to have the correct value for defining
labels. Similarly, EQU statements must also be treated on pass 1. This means that no
matter what approach is used, no forward references can be allowed in ORIG or EQU
statements, since both are processed during pass 1. The END statement needs to have
its label defined and then should jump to pass 2 for further processing.

During pass 2, EQU statements can be treated as comments. The label field can
likewise be ignored. ALF, CON, and machine instructions will be processed as described
above, as will the END statement.

The need to make two passes over the program can result in considerable
duplication in code and computation during pass 1 and pass 2. For example, on
both passes, we need to find the type of the opcode; on pass 1, to be able to treat ORIG,
EQU, and END statements; on pass 2, for all types. This can result in having to search
the opcode table twice for each assembly language statement. To prevent this, we need
only save the index into the opcode table of the opcode (once it is found during pass
1) with each instruction. Also, consider that since the operand “*” may be used in the



8.2. GENERAL FLOW OF AN ASSEMBLER 257

expressions evaluated during pass 2, it is necessary to duplicate during pass 2 the
efforts of pass 1 to define the location counter, unless we can simply store with each
assembly language statement the value of the location counter for that statement.

These considerations can result in extending the definition of the intermediate text
to be more than simply the input to pass 1. Each input assembly language statement
can be a record containing (at least) the following fields.

1. the input card image.

2. the index of the opcode into the opcode table.

3. the location counter value for this statement.

Additional fields may include error flags, a pointer to the column in which the operand
starts (for free-format assemblers), a line number, and so on; whatever is conveniently
computed on pass 1 and needed on pass 2.

Even more can be computed during pass 1. For example, ALF and CON statements
can be completely processed during pass 1. The opcode field, field specification,
and index field for a machine instruction can be easily computed during pass 1, and
most of the time the address field, too, can be processed on pass 1. It is only the
occasional forward reference which causes a second pass to be needed. Most two-
pass assemblers store a partially digested form of the input source program as their
intermediate text for pass 2.

Assemblers, like loaders, are almost always I/O-bound programs, since the time to
read a card generally far exceeds the time to assemble it. Thus, requiring two passes
means an assembler takes twice as long to execute as an assembler which only uses
one pass.

One pass assemblers

It is these considerations which have given rise to one-pass assemblers. A one-pass
assembler does everything in one pass through the program, much as described earlier.
The only problem with a one-pass assembler is caused by forward references, of course.
The solutions to this problem are the same as were presented earlier for one-pass
relocatable linking loaders: Use-tables or Chaining.

In either case, Use-table or Chaining, it is not possible to completely generate the
machine language statement which corresponds to an assembly language statement;
the address field cannot always be defined. Thus, some later program must fix-up those
instructions with forward reference. In a two-pass assembler, this program is pass 2.
In a one-pass assembler, there is no second pass, and so the program which must
fix-up the forward references is the loader. The loader resolves forward references for a
one-pass assembler.

If Use-tables are used to solve the future reference problem, then the assembler
keeps track of all forward references to each symbol. After the value of the symbol
is defined, the assembler generates special loader instructions to tell the loader the
addresses of all forward references to a symbol and its correct value. When the loader
encounters these special instructions during loading, it will fix-up the address field of
the forward reference instruction to have the correct value.

A variation of this same idea is to use chaining. With chaining, the entries in the Use-
table are kept in the address fields of the instructions which forward reference symbols.



258 CHAPTER 8. ASSEMBLERS

Only the address of the most recent use must be kept. When a new forward reference
is encountered, the address of the previous reference is used, and the address of
the most recent reference is kept. When a symbol is defined which has been forward
referenced (or at the end of the program), special instructions are again issued to the
loader to fix-up the chains which have been produced.

Variations on this basic theme are possible also. For example, if the standard loader
will not fix-up forward references, it would be possible for the assembler to generate
some special instructions which would be executed first, after loading, but before the
assembled program is executed to fix-up forward references. But the basic idea remains
the same: a one-pass assembler generates its object code for the loader in such a way
that the loader, or the loaded program itself, will fix-up forward references.

8.2.5 Other considerations

Listings

Throughout the discussion of the assembly process, so far, we have ignored many
of the (relatively) minor points concerning the writing of an assembler. One of the
most visible of these considerations is the assembly listing. The assembly listing gives,
for each input assembly line, the correspondingly generated machine language code.
Notice, however, that not all assembly language statements result in the generation of
machine language code, and not all code is meant to be interpreted in the same way
(some are instructions, others numbers or character code).

For a machine language statement, useful information which can be listed includes
the card image, card number, location counter, and generated code, broken down by
field. For an ORIG, EQU, or END statement, on the other hand, no code is generated, but
the value of the operand expression would be of interest. A CON or ALF statement would
need to list the generated word, but as a number, not broken down by fields, as an
instruction. Forward references in a one-pass assembler might be specially marked, as
might a relocatable address field in a relocatable assembly program.

In addition to the listing of the input assembly, some assemblers also print a copy
of their symbol table after it is completed. This symbol table listing would include the
defined symbols, their values and perhaps the input card number where they were
defined. Some assemblers will also produce a cross reference listing, which is a
listing, for each symbol, of the card numbers or memory locations in the program of all
references to that symbol. Most symbol table listings and cross reference listings are
ordered alphabetically by symbol to aid in finding a particular symbol.

Errors

Another concern is the problem of errors. Many programs have assembler errors
in them. These are errors not in what the program does, but in its form. These can
be caused by mistakes in writing the program, or in the transcription of the program
into a machine-readable form, like keypunching. The assembler must check for errors
at all times. Typical errors include, multiply-defined symbols (using the same symbol
in the label field twice), undefined symbols (using a symbol in the operand field of a
statement, but never defining it in the label field), undefined opcodes (opcode cannot
be found in the opcode table), illegal use of a forward reference, an illegal value for a
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field (index or field specification value not between 0 and 63, or address expression not
between -4095 and +4095), and so on.

For each possible error, two things must be decided: (1) how to notify the
programmer of the error, and (2) what to do next. The notification is often simplest.
An error symbol or error number is associated with each type of error. The degree
of specification of the exact error varies. One approach is to simply declare “error in
assembly” or “error in xxxx part”, where xxxx may be replaced by “label”, “opcode”, or
“operand.” However, these approaches may not give the programmer enough information
to find and correct the error. The opposite approach is also sometimes taken, over-
specifying the error to the extent that the user’s manual lists thousands of errors, most
of which are equivalent (from the point of view of the programmer), and with each error
highly unlikely.

More typically, the major errors are classified and identified, while more obscure
and unlikely errors are grouped into a category such as “syntax error in operand part.”
The listing line format may include a field in which errors are flagged, or a statement
with an error may be followed by an error message.

In any case, the writer of the assembler must check for all possible errors in the input
assembly program. If one is found, a decision must be made as to what to do next. This
often may depend upon the type of error which is found, and the error handling code for
each error is generally different. For a multiply-defined label, the second definition is
often ignored, or the latest definition may always be used. An undefined opcode may be
assumed to be a comment card, or treated like a HLT or NOP instruction. Illegal values
for any of the fields of an instruction can result in default values being used.

Whatever the specific approach taken to a specific error, a general approach must
also be taken. From the way in which an assembly language program is written, each
input statement is basically a separate item to be translated. Thus, an error in one
statement still allows the assembler to continue its assembly of the remaining program
by simply ignoring the statement which is in error. This is in contrast to some systems
which cease all operations whenever the first error is found. An assembler can always
continue with the next card, after an error is found in the current card.

A more subtle point is whether or not an assembler should attempt to continue
assembling the card in which the error occurs. If the opcode is undefined, the assembler
may misinterpret the label field or operand field, causing it to appear that there are more
(or fewer) errors than exist, once the incorrect opcode is corrected. (For example, a
typing error on an ALF card may result in an undefined opcode. If the operand field of the
incorrect ALF is treated as if the opcode were a machine instruction, then the character
sequence for the ALF may result in an apparent reference to an undefined symbol.) On
the other hand, attempting to continue assembling a card after an error may identify
additional errors which would save the programmer several extra assemblies to find.

Relocatable versus absolute assembly

The discussion of loaders and linkers in Chapter 7 mentioned several differences
between an assembly language which is used with a relocatable loader and an assembly
language for an absolute loader. These differences show up in the assembly language
in terms of the pseudo-instructions available and also in restrictions on the types of
expressions (absolute or relocatable) which can be used.
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It should be relatively obvious that the changes in the assembler for absolute and
relocatable programs are not major changes, but consist mainly in the writing of some
new code to handle the new pseudo-instructions and some changes in code generation
format to match the input expected by a relocatable loader. Extra tables may be required
for listing entry points and external symbols, and a type field will need to be added to
the symbol table to distinguish between absolute symbols, relocatable symbols, entry
points, and external symbols.

Load-and-go assemblers

Another type of assembler, in addition to relocatable versus absolute and one-pass
versus two-pass, is the load-and-go assembler. These assemblers are typically used
on large computers for small programs (like programs written by students just learning
the assembly language). The idea of a load-and-go assembler is to both assemble
and load a program at the same time. The major problem with this, on most machines,
including the MIX computer, is the size of memory and the size of the assembler. There
is simply not enough room for both a program and the assembler in memory at the
same time.

However, for a simple assembly language, giving rise to a simple and small
assembler, and with a large memory, it is possible to write an assembler which, rather
than generating loader code, loads the program directly into memory as it is assembled.
The assembler acts as both an assembler and a loader at the same time. These
load-and-go systems often are one-pass, absolute assemblers, but can just as well be
two-pass and/or relocatable assemblers.

Where they are possible, load-and-go systems are generally significantly faster than
non-load-and-go systems, since they save on I/O.

8.3 AN EXAMPLE ASSEMBLER

To demonstrate the techniques which have been discussed in this Chapter, we
present here the actual code for a one-pass absolute assembler for MIXAL. The
assembler accepts a MIXAL program from the card reader. It produces a listing on the
line printer, and object code similar to that accepted by the absolute loader of Section
7.1 (with modifications for fix-ups).

The assembler is presented from the bottom up. That is, the simpler routines, which
do not call other routines, are written first. Then we write routines which may call
these routines, and so forth until the main program is written. This order of writing the
assembler is possible mainly because the discussion in Section 8.2 has shown which
routines we need for the assembler and how they fit together.

Each routine is written to be an independent function, as much as possible.
Registers should be saved and restored by each routine as needed, with the exception
of registers I5 and I6. Register I6 is used as the location counter of the assembly
program. Register I5 is a column indicator for the lexical scan portion of the assembler.
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8.3.1 Tape output routines

Since the loader output is being written to tape, but is produced one word at a time
by the assembler, several routines are needed to handle the tape output. The first two
routines TAPEOUT and FINISHBUF are standard blocking routines such as discussed in
Chapter 5. TAPEOUT accepts as a parameter one word, in the A register. These words
are stored into a buffer of 100 words (one physical record) until the buffer is full. When
the buffer is full, TAPEOUT calls FINISHBUF, which simply outputs the current buffer and
resets the buffer pointers to allow double buffering. FINISHBUF can also be called to
empty the last, partially filled buffer before the assembler halts.

Variables for these routines would include the two buffers (BUF1 and BUF2), pointers
to these two buffers for double buffering, and a counter of the number of words in the
buffer.

*
* TAPE BUFFER VARIABLES
*
BUF1 ORIG *+100 BUFFERS
BUF2 ORIG *+100
STOREBUF CON BUF1 POINTER TO BUFFER FOR STORING
TAPEBUF CON BUF2 POINTER TO BUFFER FOR OUTPUT
TAPEBUFPTR CON BUF1 CURRENT WORD POINTER
TAPECNTR CON 100 NUMBER OF WORDS LEFT
*
*
* SUBROUTINE FINISHBUF
*
* LOADER WORDS TO BE WRITTEN TO TAPE FOR
* LOADING ARE STORED IN A BUFFER UNTIL 100
* WORDS ARE ACCUMULATED. THEN THIS ROUTINE
* IS CALLED TO DUMP THE BUFFER TO TAPE. DOUBLE
* BUFFERING IS USED.
*
FINISHBUF STJ FIBEXIT

ST1 FIBSAVE1(0:2) SAVE REGISTERS
ST2 FIBSAVE2(0:2)

*
LD1 STOREBUF CURRENT BUFFER
OUT 0,1(TAPE) WRITE BUFFER TO TAPE
LD2 TAPEBUF SWITCH BUFFER POINTERS
ST2 STOREBUF
ST2 TAPEBUFPTR AND RESET POINTER
ST1 TAPEBUF

*
FIBSAVE1 ENT1 * RESTORE REGISTERS
FIBSAVE2 ENT2 *
FIBEXIT JMP *
*
*
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* SUBROUTINE TAPEOUT
*
* THIS SUBROUTINE ACCEPTS ONE WORD TO BE
* WRITTEN TO THE TAPE FOR THE LOADER AND
* STORES IT IN THE BUFFER UNTIL THE BUFFER IS
* FULL. THEN IT CALLS FINISHBUF TO EMPTY
* THE BUFFER.
*
* INPUT WORD IS IN THE A REGISTER
*
TAPEOUT STJ TOEXIT SAVE REGISTERS

ST1 TOSAVE1(0:2)
*

LD1 TAPEBUFPTR NEXT WORD POINTER
STA 0,1 SAVE WORD
INC1 1
ST1 TAPEBUFPTR UPDATE POINTER

*
LD1 TAPECNTR CHECK FOR FULL BUFFER
DEC1 1
J1P STILLROOM
JMP FINISHBUF BUFFER FULL
ENT1 100 RESET COUNTER

*
STILLROOM ST1 TAPECNTR RESTORE COUNTER
*
TOSAVE1 ENT1 *
TOEXIT JMP *
*

8.3.2 Loader code generation routines

The TAPEOUT routine is called mainly by the routines which create the loader output.
These routines are mainly concerned with formatting the output from the assembler.
The loader output is a series of logical records, as described in Chapter 7. For a
one-pass absolute loader, we need three types of loader records: (a) words to be stored
in memory, (b) chain addresses for forward reference fix-up, and (c) the start address of
the assembled program. Each block is identified by a header word of the format shown
in Figure 8.5.

Byte 3 (T) is a type byte which is used to indicate the type of information in N (bytes
4:5) and LA (bytes 0:2). They can have only a value of 0, 1, or 2, as follows,

1. T = 0. The address LA is a load address. The next N words on the tape should be
loaded into locations LA, LA+1, . . . , LA+N-1. A checksum follows these N words.

2. T = 1. The address LA is the first address of a chain of addresses of locations
which were forward references. The value N should be used to fix-up this chain of
forward references.

3. T = 2. The address LA is the starting address of the program. N should be zero.
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FIGURE 8.5 The format of the header word for a loader record.

Most of the output to the tape will be of type 0. These words are produced by the
assembler one at a time and need to be blocked into N word groups with a header in
front and a checksum following. Notice that the header cannot be output until the value
of N is known. So words are stored in a buffer (LDRBLOCK) until a discontinuity in load
addresses occurs, or the buffer is full. Then the header and checksum are attached
and the entire block written to tape by use of the routine TAPEOUT. The variables and
code for this are

*
* LOADER BLOCK VARIABLES
*
BLCKLENGTH CON 63 LENGTH OF LDRBLOCK
LDRBLOCK ORIG *+64 BLOCK FOR LOADER RECORDS
NXTLOADLOC CON 0 INDEX INTO LDRBLOCK

FIGURE 8.6 The three types of loader records. The type of record is determined by
byte 3:3.
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Two routines are used; one (GENERATE) puts the words into the loader record block
(LDRBLOCK), while the other (FINISHBLCK) will empty the buffer, output it to tape, and
compute the checksum.

*
* GENERATE
*
* GENERATE A WORD OF LOADER OUTPUT.
* THE LOADER WORD IS IN VALUE. REGISTER I6 HAS
* THE ADDRESS OF THE LOCATION WHERE IT SHOULD
* BE LOADED. IF THIS WORD IS A CONTINUATION
* OF THE CURRENT BUFFER, IT IS SIMPLY STORED.
* IF THE WORD IS NONCONTIGUOUS OR FILLS THE
* BUFFER, THE BUFFER IS EMPTIED.
*
GNSAVEA ORIG *+1
*
GENERATE STJ GENEXIT

STA GNSAVEA
ST1 GNSAVE1(0:2)

*
CMP6 NXTLOADLOC CHECK IF CONTIGUOUS
JNE FINISHBLCK IF NOT, FINISH OLD BLOCK

*
LD1 LDRBLOCK(4:5) NUMBER OF WORDS
INC1 1
ST1 LDRBLOCK(4:5)

*
LDA VALUE
STA LDRBLOCK,1 STORE GENERATED WORD

*
INC6 1 INCREASE LOCATION COUNTER
ST6 NXTLOADLOC

*
CMP1 BLCKLENGTH CHECK FOR END OF BLOCK
JGE FINISHBLCK IF SO, FINISH BLOCK
LDA GNSAVEA

GNSAVE1 ENT1 * RESTORE REGISTER
GENEXIT JMP *
*
*
* SUBROUTINE FINISHBLCK
*
* OUTPUT TO THE LOADER THE BLOCK IN LDRBLOCK.
* NUMBER OF WORDS IS IN BYTE 4:5 OF FIRST WORD.
* (MAY BE ZERO, IN WHICH CASE IGNORE CALL).
* COMPUTE CHECKSUM AND OUTPUT IT TOO
*
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CHECKSUM ORIG *+1
FLBSAVEA ORIG *+1
FINISHBLCK STJ FLBEXIT

STA FLBSAVEA
ST1 FLBSAVE1(0:2)

*
LD1 LDRBLOCK(4:5)
J1Z FLBQUIT IF BLOCK IS EMPTY

*
STZ CHECKSUM INITIALIZE CHECKSUM
ENT1 0 INDEX AND COUNTER

*
BLOCKOUT LDA LDRBLOCK,1

JMP TAPEOUT OUTPUT EACH WORD
ADD CHECKSUM(1:5)
STA CHECKSUM(1:5) AND COMPUTE CHECKSUM

*
INC1 1
CMP1 LDRBLOCK(4:5) CHECK ALL WORD OUT
JLE BLOCKOUT

*
LDA CHECKSUM(1:5) OUTPUT CHECKSUM
JMP TAPEOUT

*
JOV *+1 TURN OVERFLOW OFF (IF ON)

*
FLBQUIT STZ LDRBLOCK NEW HEADER WORD

ST6 LDRBLOCK(0:2)
*

LDA FLBSAVEA RESTORE REGISTERS
FLBSAVE1 ENT1 *
FLBEXIT JMP *
*

8.3.3 Input routines

Subroutine READCARD will read one card and unpack it into a one-character-per-word
card image form. Double buffering is used.

*
INBUF ORIG *+16
CARD ORIG *+80
CARDNUMBER CON 0 NUMBER OF CARDS READ
*
*
* SUBROUTINE READCARD
*
* READ THE NEXT CARD FROM THE CARD READER AND
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* UNPACK IT INTO THE CHARACTER ARRAY CARD. THE
* CARD IS READ INTO THE BUFFER INBUF AND WE
* TRY TO KEEP THE CARD READER BUSY BY THIS
* DOUBLE BUFFERING.
*
RCSAVEA ORIG *+1
*
READCARD STJ RCEXIT

STA RCSAVEA SAVE REGISTERS
ST1 RCSAVE1(0:2)
ST2 RCSAVE2(0:2)
ST3 RCSAVE3(0:2)

*
JBUS *(CR) WAIT TILL CARD READ
ENT1 79 79..0 CHARACTER COUNTER
ENT2 15 15..0 WORD COUNTER

*
* UNPACK CARD FROM RIGHT TO LEFT
*
NEXTWORD LDA INBUF,2

DEC2 1
ENT3 4 4..0 NUMBER OF CHARACTERS

*
NEXTCHAR STA CARD,1(5:5)

DEC1 1
J1N CARDDONE IF ALL DONE
DEC3 1
J3N NEXTWORD OR NEW WORD NEEDED
SRA 1
JMP NEXTCHAR ELSE SHIFT AND CONTINUE

*
CARDDONE IN INBUF(CR) START NEXT READ

LDA CARDNUMBER
INCA 1 INCREMENT NUMBER OF CARDS
STA CARDNUMBER

*
LDA RCSAVEA RESTORE REGISTERS

RCSAVE1 ENT1 *
RCSAVE2 ENT2 *
RCSAVE3 ENT3 *
RCEXIT JMP *
*

8.3.4 Lexical scan routines

GETSYM is the main lexical scan routine. Using index register I5 as a pointer to the
card image in CARD, GETSYM packs the next symbol into SYM. SYM is 2 words, to allow up
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to 10 characters per symbol. A symbol is delimited by any non-alphabetic, non-numeric
character. If the current character is non-alphanumeric, then SYM will be blank. The
variable LETTER is used to indicate if the symbol is strictly numeric (LETTER zero) or
contains an alphabetic character (LETTER nonzero). Numeric symbols are right-justified
(to allow NUMing), while symbols with letters are left-justified.

*
SYM ORIG *+2 SYMBOL
LETTER ORIG *+1 NUMERIC=ZERO
*
*
* SUBROUTINE GETSYM
*
* GET THE NEXT SYMBOL FROM CARD(15) AND PACK
* IT INTO SYM UNTIL A DELIMITER. I5 WILL BE
* MOVED TO POINT TO THE DELIMITER. LETTER IS
* ZERO IF NO LETTER FOUND.
*
GSSAVEA ORIG *+1
GSSAVEX ORIG *+1
*
GETSYM STJ GSEXIT SAVE REGISTERS

STA GSSAVEA
STX GSSAVEX
ST1 GSSAVE1(0:2)
ST2 GSSAVE2(0:2)

*
ENT1 10 MAXIMUM NUMBER OF CHARACTERS
STZ LETTER
ENTX 0
ENTA 0 BLANK AX

*
SCANSYM LD2 CARD,5

CMP2 CHARA(5:5) MUST BE AT LEAST A
JL ENDSYM
CMP2 CHAR9(5:5) AND NOT MORE THAN 9
JG ENDSYM
CMP2 CHARO(5:5) ALSO CHECK IF 0..9
JGE *+2
STJ LETTER(4:5) LETTER FOUND

*
DEC1 1 DECREMENT NUMBER OF CHARACTERS
J1N *+3
SLAX 1
INCX 0,2 ADD NEW CHARACTER TO SYMBOL
INC5 1 NEXT COLUMN
JMP SCANSYM

*
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SYMERROR JMP BADSYM BAD SYMBOL (TOO LONG)
JMP GSQUIT NO JUSTIFICATION NEEDED

*
ENDSYM J1N SYMERROR CHECK IF TOO LONG

LD2 LETTER CHECK IF NEED JUSTIFY.
J2Z *+2
SLAX 0,1 REGISTER 1 HAS COUNT

*
GSQUIT STA SYM SAVE SYMBOL

STX SYM+1
*

LDA GSSAVEA
LDX GSSAVEX

GSSAVE1 ENT1 *
GSSAVE2 ENT2 *
GSEXIT JMP *

GETSYM is used by GETFIELDS (among others). GETFIELDS gets the label and opcode
fields of an assembly language program for later processing. This MIXAL assembler
accepts only fixed-format input, and GETFIELDS reflects this. Notice that the change to
a free-format assembler would require only that this one subroutine need be changed.

*
LABEL ORIG *+2 SPACE FOR LABEL (IF ANY)
OP ORIG *+1 AND OPCODE
*
*
* SUBROUTINE GETFIELDS
*
* GET THE FIELDS FOR THE ASSEMBLY LANGUAGE.
* FIELDS ARE LABEL, OPCODE AND OPERAND. LABEL
* MAY BE MISSING. REGISTER I5 IS LEFT
* POINTING JUST BEFORE THE OPERAND.
* THE EXPRESSION ROUTINE WILL SKIP ONE COLUMN
* TO BEGIN EVALUATION, SO LEAVE I5 ONE BEFORE
* THE START OF THE OPERAND.
*
* FIXED FIELD
*
GFSAVEA ORIG *+1
*
GETFIELDS STJ GFEXIT SAVE REGISTERS

STA GFSAVEA
ST1 GFSAVE1(0:2)

*
STZ LABEL DEFAULT IS BLANK LABEL
LDA CARD CHECK COLUMN ONE
JAZ NOLABEL
ENT5 0 COLUMN OF LABEL
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JMP GETSYM
*

LDA LETTER ERROR CHECKING
JANZ LEGALLABEL
JMP BADSYM NUMERIC SYMBOL
JMP NOLABEL

*
LEGALLABEL ENT1 LABEL MOVE LABEL FROM SYM

MOVE SYM(2)
*
NOLABEL ENT5 11 OPCODE

JMP GETSYM
LDA SYM(1:4) FOUR CHAR OPCODE
STA OP

*
ENT5 15 READY FOR OPERAND

* (COLUMN 17)
*

LDA GFSAVEA
GFSAVE1 ENT1 *
GFEXIT JMP *
*

8.3.5 Table search and enter routines

Both the opcode table and symbol table need search routines, and the symbol table
needs an enter routine.

Each entry of the opcode table is two words. The symbolic opcode is in bytes
1:4 of the first word. Byte 5:5 is a type field. For machine instructions, word 2 has
the default field and the numeric opcode in bytes 4 and 5, while word 2 is ignored for
pseudo-instructions.

OPTAB EQU *
ALF ADD A
ADD
ALF ALF D
CON 0
ALF CHARA
CHAR
ALF CMPAA
CMPA
ALF CMPXA
CMPX
ALF CMP1A
CMP1
ALF CMP2A
CMP2
...
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ALF ENT6A
ENT6
ALF EQU E
CON 0

*
HLTINDEX EQU *-OPTAB/2 INDEX OF HLT

ALF HLT A
HLT
ALF IN A
IN
ALF INCAA
INCA
...
ALF ST6 A
ST6
ALF SUB A
SUB

*
NUMBEROPS EQU *-OPTAB/2 2 LOCATIONS PER ENTRY
*
OPTYPE CON 0
*
VALUE ORIG *+1

Each entry of the symbol table takes four words. The name of the symbol is stored in
the first two words, and the value in the third word. If there were any forward references
to this symbol, the fourth word contains the address of the last forward reference in
bytes 4:5. Forward references are chained through this address.

The sign bit of the first word (D) is used to indicate if the symbol has been defined
(D = +) or undefined (D = -). A symbol is undefined only if there has been a (forward)
reference to it but it has not yet appeared in the label field.

*
NSYMBOL CON 0 NUMBER OF SYMBOLS (TIMES 4)
SYMINDEX ORIG *+1

FIGURE 8.7 A symbol table entry (each entry contains the 10-character symbol, value,
and a fix-up address, along with a defined/forward reference bit, D).
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SYMTAB ORIG 4*MAXSYMBOL+* SYMBOL TABLE
*

The opcode table search routine uses a binary search on the ordered opcode table.
If we search with a binary search, we need the opcode table to be sorted alphabetically.
If the opcode is not found, an error is flagged and a HLT instruction is assumed as the
opcode. The division by two in the binary search could be replaced by a right shift by
one bit if a binary MIX machine is used.

*
* SUBROUTINE SEARCH OP
*
* SEARCH THE OPCODE TABLE (OPTAB) FOR THE
* OPCODE IN OP. A BINARY SEARCH IS USED. IF
* THE OPCODE IS NOT FOUND, AN UNOP ERROR
* OCCURS. A HLT IS USED FOR UNOP ERRORS. THE
* VALUE OF THE SECOND WORD IS
* STORED IN VALUE AND THE TYPE OF THE OPCODE
* IN OPTYPE.
*
SOPSAVEA ORIG *+1
SOPSAVEX ORIG *+1
OPHIGH ORIG *+1
OPLOW ORIG *+1
OPMID ORIG *+1
*
SEARCHOP STJ SOPEXIT SAVE REGISTERS

STA SOPSAVEA
STX SOPSAVEX
ST1 SOPSAVE1(0:2)

*
ENT1 NUMBEROPS-1
ST1 OPHIGH
STZ OPLOW INITIALIZE HIGH AND LOW

*
SOPLOOP LDA OPLOW

ADD OPHIGH
SRAX 5
DIV TWO COMPUTE OPMID = (HIGH+LOW)/2
STA OPMID
LD1 OPMID
INC1 0,1 2*OPMID (TWO WORDS PER ENTRY)

*
LDA OPTAB,1(1:4)
CMPA OP COMPARE OPCODES
JE SOPFOUND

*
JL UPLOW

DOWNHIGH LD1 OPMID OP < OPTAB[OPMID]
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DEC1 1
ST1 OPHIGH SO HIGH = OPMID - 1
JMP SOPDONE

*
UPLOW LD1 OPMID OP > OPTAB[MID]

INC1 1
ST1 OPLOW SO LOW = OPMID + 1

* JMP SOPDONE DROP THRU, SO JMP NOT NEEDED
*
SOPDONE LDA OPHIGH CHECK FOR END

CMPA OPLOW
JGE SOPLOOP CHECK FROM LOW TO HIGH

*
JMP UNOP OPCODE NOT FOUND IN OPTAB
ENT1 2*HLTINDEX DEFAULT OPCODE

*
SOPFOUND LDA OPTAB+1,1 NUMERIC OPCODE

STA VALUE
LD1 OPTAB,1(5:5) OPCODE TYPE
ST1 OPTYPE

*
LDA SOPSAVEA RESTORE REGISTERS
LDX SOPSAVEX

SOPSAVE1 ENT1 *
SOPEXIT JMP *
*

A linear search is used for the symbol table. This is not the best search possible,
but it is relatively simple. Since the search is done only in this one routine, it can be
changed later, if we find a linear search to be too slow. The symbol definition routine
simply adds symbols to the end of the table.

*
* SUBROUTINE DEFINESYM
*
* DEFINE A SYMBOL. PUT IT IN THE SYMBOL
* TABLE. THE A REGISTER HAS ITS VALUE. THE
* FORWARD REFERENCE FIELD IS SET TO INDICATE
* NO FORWARD REFERENCES (YET) BY SETTING IT
* TO CHAINEND.
*
DEFINESYM STJ DSEXIT SAVE REGISTERS

ST1 DSSAVE1(0:2)
*

LD1 NSYMBOL NEXT SYMBOL TABLE SPACE
STA SYMTAB+2,1 SYMBOL VALUE
LDA SYM
STA SYMTAB,1 FIRST FIVE CHARS
LDA SYM+1
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STA SYMTAB+1,1 SECOND FIVE
LDA CHAINEND
STA SYMTAB+3,1(4:5) FORWARD REFERENCE

*
ST1 SYMINDEX SYMBOL INDEX
INC1 4
ST1 NSYMBOL UPDATE NUMBER OF SYMBOLS

*
LDA SYMTAB-2,1 RESTORE A REGISTER

DSSAVE1 ENT1 *
DSEXIT JMP *
*
*
* SUBROUTINE SEARCHSYM
*
* SEARCH SYMBOL TABLE. SYMBOL TABLE
* IS SEARCHED FROM THE BACK TO THE FRONT.
* THE RESULT OF THE SEARCH IS RETURNED IN
* SYMINDEX. SYMINDEX IS AN INDEX INTO SYMTAB
* IF FOUND, OR NEGATIVE
*
SSSAVEA ORIG *+1
SSSAVEX ORIG *+1
*
SEARCHSYM STJ SSEXIT SAVE REGISTERS

STA SSSAVEA
STX SSSAVEX
ST1 SSSAVE1(0:2)

*
LDA SYM
LDX SYM+1 SYMBOL TO SEARCH FOR
LD1 NSYMBOL SYMTAB INDEX

*
SYMLOOP DEC1 4

J1N SYMDONE IF NEGATIVE, NOT FOUND
CMPA SYMTAB,1(1:5) COMPARE
JNE SYMLOOP
CMPX SYMTAB+1,1(1:5) AND COMPARE
JNE SYMLOOP

*
SYMDONE ST1 SYMINDEX EITHER FOUND OR NOT
*
SSSAVE1 ENT1 *

LDA SSSAVEA
LDX SSSAVEX

SSEXIT JMP *
*
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8.3.6 Expression evaluation

Expression evaluation for the MIXAL language is relatively simple since it involves
only three types of operands (symbols, numbers, and *) and evaluation of operators
is strictly left to right. After checking first for a *, the EVALSYM routine uses GETSYM to
get the next symbol from the input card. If the symbol has no letters (LETTER = 0), it is
numeric and is converted from character code to a numeric value by the NUM instruction.
If the symbol has letters, then the symbol table is searched and the value of the symbol
in the symbol table is used.

The evaluation of a symbol is actually more complicated due to forward references.
Two special cases may arise in the symbol table search. First, the symbol may not be
there. In this case, it must be entered into the table (using DEFINESYM). Then it can
be treated like the second case, which involves symbols in the table, but not defined.
These are symbols which have previously appeared as forward references. They are
distinguished by a “-” sign in the sign bit of the first word of the symbol table entry. In
this case, the “value” of the symbol is the previous reference address and the reference
address is updated to be this instruction. Since forward references are not always
allowed, the undefined nature of the symbol is noted by setting the variable UNDEFSYM
to nonzero.

EVALSYM is used by EXPRESSION to evaluate the components of an expression.
EXPRESSION evaluates the first component (using EVALSYM) and then examines the next
character. If it is a delimiter, the evaluation stops; if it is an operator, the evaluation
continues. This decision is made by the use of an array (OPERATOR) which is indexed by
the character code of the next character. If the value is zero, the character is a delimiter.
If it is nonzero, then the character is an operator and the value is in the range 1 to
5, to be used in a jump table for interpreting that operator. Thus, since the character
code for “+” is 44, OPERATOR+44 is 1, OPERATOR+45 is 2 (“-”), OPERATOR+46 is 3 (“*”),
OPERATOR+47 is 4 (“/”), and OPERATOR+54 is 5 (“:”). All other values are zero.

If the character following an evaluated symbol is an operator, EVALSYM is called
again and the two values are combined according to the operator. This process of
finding operators, calling EVALSYM to evaluate the symbol, and combining its value with
the previously computed value, continues until a delimiter is found.

Several problems must be attended to. Forward references are only allowed when
NOFORWARD is zero. UNDEFSYM is used to tell when a symbol is a forward reference.
Overflow must also be checked and flagged as an error. This includes expressions
which exceed the range which is appropriate for their intended use. (An expression for
an index or field specification can only be in the range 0 to 63.) These upper and lower
bounds are passed as a parameter to EXPRESSION. The address of the lower bound is
passed in register I1; the upper bound follows at 1,1.

*
UNDEFSYM ORIG *+1
NOFORWARD CON 1 NONZERO, NO FORWARDS
*
* UPPER AND LOWER BOUNDS FOR EXPRESSIONS
*
HLBYTE CON 0 INDEX, FIELD

CON 63
HLADDR CON 0 ADDRESSES (ORIG, END)
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CON 3999
HL2BYTE CON -4095 ADDRESS FIELD

CON +4095
HLWORD CON -1073741823 MIN AND MAX WORD

CON +1073741823
*
*
OPERATOR ORIG *+44 FIRST 44 ZEROS

CON 1 ADD
CON 2 SUBTRACT
CON 3 MULTIPLY
CON 4 DIVIDE
ORIG *+6
CON 5 COLON OPERATOR
ORIG *+10

*
*
* SUBROUTINE EVALSYM
*
* EVALUATE THE NEXT SYMBOL. VALUE RETURNED
* IN A. UNDEFSYM IS NONZERO IF VALUE IS
* UNDEFINED. SYMBOLS MAY BE *, NUMBER
* OR SYMBOL. GETSYM IS USED TO GET NUMBERS
* OR SYMBOLS.
*
ESSAVEX ORIG *+1
*
EVALSYM STJ ESEXIT SAVE REGISTERS

ST1 ESSAVE1(0:2)
STX ESSAVEX

*
LDA CARD,5 CARD(COLUMN)
CMPA CHARSTAR(5:5) CHECK FOR *
JNE NOTSTAR

*
ISSTAR INC5 1 INCREASE COLUMN COUNTER

ENTA 0,6 VALUE
STZ UNDEFSYM DEFINED
JMP ESQUIT

*
NOTSTAR JMP GETSYM GET SYMBOL

LD1 LETTER
J1NZ ISSYMBOL LETTER NONZERO MEANS SYMBOL

*
ISNUMBER LDA SYM CONVERT SYMBOL TO NUMERIC

LDX SYM+1
NUM
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JOV EXPOV IF OVERFLOW, ERROR
STZ UNDEFSYM DEFINED
JMP ESQUIT

*
ISSYMBOL JMP SEARCHSYM SEARCH FOR SYMBOL

LD1 SYMINDEX
J1N ISNOTTHERE NOT IN SYMBOL TABLE
LDA SYMTAB,1
JAN ISNOTDEF IF IN TABLE, NOT DEFINED

*
ISDEFINED LDA SYMTAB+2,1

STZ UNDEFSYM DEFINED
JMP ESQUIT

*
ISNOTTHERE ENTA -1 NOT IN SYMBOL TABLE, ENTER

JMP DEFINESYM ARBITRARY VALUE
LD1 SYMINDEX
STA SYMTAB,1(0:0) MARK NEGATIVE: FORWARD REF

*
ISNOTDEF LDA SYMTAB+3,1 FORWARD REFERENCE

STJ UNDEFSYM(4:5) UNDEFINED VALUE
ST6 SYMTAB+3,1 UPDATE CHAIN ADDRESS

*
ESQUIT EQU *

LDX ESSAVEX
ESSAVE1 ENT1 *
ESEXIT JMP *
*
*
* SUBROUTINE EXPRESSION
*
* EVALUATE THE NEXT EXPRESSION. EXPRESSION
* STARTS AT COLUMN+1 (COLUMN IN I5). (THE
* PLUS ONE IS TO SKIP OVER THE LAST DELIMITER)
* OPERANDS ARE EVALUATED BY EVALSYM.
* OPERATORS ARE + - * / :
* AND ARE APPLIED LEFT TO RIGHT UNTIL A
* DELIMITER IS FOUND.
*
VALUE1 ORIG *+1
VALUE2 ORIG *+1
EXPSAVEX ORIG *+1
*
EXPRESSION STJ EXPEXIT SAVE REGISTERS

ST1 EXPSAVE1(0:2)
ST2 EXPSAVE2(0:2)
STX EXPSAVEX



278 CHAPTER 8. ASSEMBLERS

*
INC5 1
JMP EVALSYM EVALUATE FIRST OPERAND

*
EXPLOOP LD2 CARD,5 CHECK NEXT COLUMN

LD2 OPERATOR,2 FOR OPERATOR
J2NP EXPOVER

*
LD1 UNDEFSYM NO UNDEFS AND OPERATORS
J1NZ FORERROR FORWARD REFERENCE ERROR

*
INC5 1 SKIP OPERATOR
STA VALUE1
JMP EVALSYM SECOND OPERAND
STA VALUE2
LDA VALUE1
JMP *,2 APPROPRIATE OPERATOR
JMP OPADD
JMP OPSUB
JMP OPMUL
JMP OPDIV
JMP OP8ADD

*
OPADD ADD VALUE2 VALUE1 = VALUE1 + VALUE2

JMP NEXTOP
*
OPSUB SUB VALUE2 VALUE1 = VALUE1 - VALUE2

JMP NEXTOP
*
OPMUL MUL VALUE2 VALUE1 = VALUE1 * VALUE2

JANZ EXPOV IF A NONZERO, OVERFLOW
SLAX 5 PUT VALUE IN A
JMP NEXTOP

*
OPDIV SRAX 5 VALUE1 = VALUE1 / VALUE2

DIV VALUE2
JMP NEXTOP

*
OP8ADD MUL EIGHT VALUE1 = 8*VALUE1 + VALUE2

JANZ EXPOV
SLAX 5
ADD VALUE2
JMP NEXTOP

*
NEXTOP JOV EXPOV CHECK OVERFLOW

JMP EXPLOOP
*
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EXPOVER LD1 UNDEFSYM
J1Z EXPQUIT CHECK IF UNDEFINED
LD1 NOFORWARD AND FORWARD REFERENCES

FORERROR J1NZ ILLFOR NOT ALLOWED => ERROR
*
EXPQUIT EQU *
EXPSAVE1 ENT1 * RESTORE INDEX 1

CMPA 0,1 CHECK LOWER BOUND
JGE *+3
JMP EXPOV LESS THAN LOWER
LDA 0,1 REPLACE WITH LOWER
CMPA 1,1 CHECK UPPER
JLE *+3
JMP EXPOV MORE THAN UPPER
LDA 1,1 REPLACE WITH UPPER

*
STJ NOFORWARD(4:5) FORWARDS NOT ALLOWED

*
LDX EXPSAVEX

EXPSAVE2 ENT2 *
EXPEXIT JMP *
*

8.3.7 Formatting print lines

The print routine is relatively straightforward, although lengthy. Each input statement
generates an output line in the listing. The most common format is the format of a
machine instruction, which is

Location Generated Card Card
counter instruction image number

+3516 +3514 00 05 30 STA ERRSAVA 469

Since the individual fields for an instruction are of interest, these fields are separated by
a blank.

For other types of assembly language statements, this format is not always
appropriate. For the CON and ALF statements, the generated code is not normally
interpreted as an instruction, so it could be better presented as a five-byte signed value.
For the EQU statement, no code is generated, and no location counter can thus be
meaningfully associated with the statement, but the operand expression should be
printed. The ORIG and END statements likewise do not generate code, but their operand
expressions, which are addresses (not five-byte values) should be printed. Thus, there
are several different formats for output, depending upon the type of the opcode. These
are encoded in the PRTFMT table.

The PRINTLINE routine formats the output line in LINE according to the entry in
PRTFMT determined by OPTYPE. LINE is then packed into PRTBUF and printed. By
positioning the CARD array in the LINE array, the copying from CARD to LINE is not
needed for the card image. Since the location counter may have been changed by the
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time that the line is formatted and printed, a separate variable, PRINTLOC, is used to
store the location to be printed on the output line.

*
* PRINTER SELECTION FORMAT VARIABLES
*
PRT CON 0 PRINT FORMAT HOLDING VARIABLE
ADR EQU 4:4 PRINT VALUE AS ADDRESS
VAL EQU 3:3 PRINT VALUE AS WORD
INST EQU 2:2 PRINT VALUE AS INSTRUCTION
LOC EQU 1:1 PRINT LOCATION COUNTER
*
PRTFMT CON 0 COMMENT PRINT

CON 1(LOC),1(INST) MACHINE: TYPE 1
CON 1(LOC),1(ADR) ORIG: TYPE 2
CON 1(LOC),1(VAL) CON: TYPE 3
CON 1(LOC),1(VAL) ALF: TYPE 4
CON 1(VAL) EQU: TYPE 5
CON 1(LOC),1(ADR) END: TYPE 6

*
PRTBUF ORIG *+24 PRINTER BUFFER
LINE ORIG *+30 FIRST 30 COLUMNS
CARD ORIG *+80 CARD IMAGE

ORIG *+10 CARD NUMBER
*
PRINTLOC ORIG *+1 LOCATION COUNTER FOR PRT
*

On a binary machine, it is most useful to print the output in octal, not decimal. Since
the CHAR instruction converts from numeric into decimal character code, a separate
routine, OCTCHAR, is used to convert into octal character code. Notice that by simply
changing the divide by 8 to a divide by 10, decimal output can be generated.

*
* SUBROUTINE OCTCHAR
*
* CONVERTS A NUMBER FROM A NUMERIC FORMAT INTO
* AN OCTAL CHARACTER REPRESENTATION.
* CHARACTERS ARE STORED ONE PER WORD, SIGN FIRST,
* ZERO FILL. THE NUMBER IS IN THE A REGISTER,
* THE NUMBER OF CHARACTERS TO BE USED IN I2
* AND THE ADDRESS IN WHICH THEY SHOULD BE
* STORED IN REGISTER I1.
*
OCSAVEX ORIG *+1
OCTEMPA ORIG *+1
*
OCTCHAR STJ OCEXIT SAVE REGISTERS

STX OCSAVEX
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*
STA OCTEMPA SAVE VALUE
STA *+1(0:0) SAVE SIGN FOR TESTING
ENTA 1 PLUS OR MINUS
ENTX 44 PLUS SIGN
JAP STORESIGN
ENTX 45 MINUS SIGN

STORESIGN STX 0,1 FIRST CHARACTER IS SIGN
LDA OCTEMPA(1:5) MAGNITUDE ONLY

*
INC1 0,2 LOW ORDER CHARACTERS FIRST

*
NXTDIGIT SRAX 5 SHIFT TO X FOR DIVIDE

DIV EIGHT OCTAL
INCX 30 X HAS DIGIT, CONVERT TO CHAR
STX 0,1 STORE CHARACTER

*
DEC1 1
DEC2 1 NUMBER OF CHARACTERS
J2P NXTDIGIT

*
LDX OCSAVEX RESTORE REGISTERS

OCEXIT JMP *
*
*
*
* SUBROUTINE PRINTLINE
*
* PRINT A LINE FOR THE OUTPUT LISTING.
* LINES CAN BE OF DIFFERENT TYPES.
* THE FORMAT OF EACH LINE IS
* DETERMINED BY PRTFMT(OPTYPE).
*
PLSAVEA ORIG *+1
PLSAVEX ORIG *+1
*
PRINTLINE STJ PLEXIT SAVE REGISTERS

STA PLSAVEA
STX PLSAVEX
ST1 PLSAVE1(0:2)
ST2 PLSAVE2(0:2)
ST3 PLSAVE3(0:2)

*
LD1 OPTYPE
STZ OPTYPE LAST USE OF OPTYPE, RESET
LDA PRTFMT,1 PRINT FORMAT FOR THIS TYPE
STA PRT
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*
* CHECK IF LOCATION COUNTER TO BE PRINTED.
* IF SO PRINT IN COLUMNS 8-13.
*

LDA PRT(LOC) LOCATION COUNTER
JAZ NOLOCPRT
LDA PRINTLOC PRINT VALUE
ENT1 LINE+7
ENT2 4 FOUR CHARACTERS (PLUS SIGN)
JMP OCTCHAR

NOLOCPRT EQU *
*
*
* CHECK IF VALUE SHOULD BE PRINTED AS NUMBER
*

LDA PRT(VAL) VALUE AS NUMBER
JAZ NOVALPRT
LDA VALUE VALUE HAS VALUE
ENT1 LINE+17 COLUMNS 18 - 27
ENT2 10
JMP OCTCHAR

NOVALPRT EQU *
*
* PRINTVALUE AS AN ADDRESS FOR ORIG AND END
*

LDA PRT(ADR)
JAZ NOADRPRT
LDA VALUE VALUE HAS ADDRESS
ENT1 LINE+23 COLUMNS 24 - 28
ENT2 4
JMP OCTCHAR

NOADRPRT EQU *
*
* CHECK IF VALUE SHOULD BE AN INSTRUCTION
*

LDA PRT(INST)
JAZ NOOPPRT
LDA VALUE(0:2) ADDRESS FIELD
ENT1 LINE+14 COLUMNS 15 - 19
ENT2 4
JMP OCTCHAR

*
LDA VALUE(3:3) INDEX FIELD
ENT1 LINE+19 COLUMNS 20-22 BUT
ENT2 2
JMP OCTCHAR
STZ LINE+19 CLEAR SIGN
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*
LDA VALUE(4:4) FIELD SPECIFICATION
ENT1 LINE+22 COLUMNS 23-25 BUT
ENT2 2
JMP OCTCHAR
STZ LINE+22 CLEAR SIGN

*
LDA VALUE(5:5) OPCODE FIELD
ENT1 LINE+25 COLUMNS 26-28 BUT
ENT2 2
JMP OCTCHAR
STZ LINE+25 CLEAR SIGN

*
NOOPPRT EQU *
*
* CARD IMAGE IS ALREADY IN LINE IMAGE IN CARD.
* NOW APPEND CARD NUMBER. CARD NUMBER IS
* DECIMAL, SO WE USE CHAR, BUT THEN MUST
* SUPPRESS LEADING ZEROS.
*

LDA CARDNUMBER
CHAR
ENT1 LINE+110 COLUMNS 111-120

*
LEADZERO STZ 0,1 BLANK

INC1 1
ENTA 0
SLC 1
CMPA CHARO(5:5) CHECK FOR LEADING ZEROS
JE LEADZERO

*
STRCHR STA 0,1 STORE NONZERO CHARACTER

JXZ ENDCARDNUM
INC1 1
ENTA 0
SLC 1 NEXT CHARACTER
JMP STRCHR

ENDCARDNUM EQU *
*

JBUS *(LP)
*
* NOW OUTPUT LINE MUST BE PACKED INTO BUFFER
*

ENT1 119 120 CHARACTERS
ENT2 24 NUMBER OF WORDS

*
PCKWORD ENT3 5
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ENTX 0 PACK BACKWARDS
*
PCKCHAR LDA LINE,1 NEXT CHARACTER

STZ LINE,1 BLANK FOR NEXT TIME
DEC1 1
SRC 1
DEC3 1
J3P PCKCHAR GET NEXT CHARACTER
DEC2 1
STX PRTBUF,2
J2P PCKWORD

*
OUT PRTBUF(LP)

*
LDA LINERROR NUMBER OF ERRORS THIS LINE
ADD NERROR TOTAL NUMBER OF ERRORS
STA NERROR
STZ LINERROR

*
LDA PLSAVEA
LDX PLSAVEX

PLSAVE1 ENT1 *
PLSAVE2 ENT2 *
PLSAVE3 ENT3 *
PLEXIT JMP *
*

8.3.8 Error routines

Any system program must check its input carefully for possible errors, and an
assembler has many opportunities for errors. Thus, errors must be checked for
continuously, throughout the program.

When an error is detected, it should be signalled to the programmer somehow. For
this assembler, we have elected to place flags in the first five characters to indicate
any errors. If the first five characters of an output line are blank, no errors were found.
If errors are found, the type of error can be identified by the character in the first five
columns.

M Multiply-defined label. This label has been previously defined.

L Bad symbol or label. A symbol exceeds ten characters in length or the label
is numeric.

U Undefined opcode. The symbolic opcode in the opcode field cannot be found
in the opcode table.

F Illegal forward reference. A forward reference occurs in an expression or
where it is not allowed (EQU, CON, ORIG or END, or in I or F field).
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O Expression overflow. The expression evaluation resulted in a value which
exceeded one MIX word, or exceeded the allowable range of the expression.

S Illegal syntax. The assembly language statement does not have correct
syntax; it is not of the correct form.

*
NERROR CON 0 TOTAL NUMBER OF ERRORS IN INPUT
LINERROR CON 0 NUMBER OF ERRORS THIS LINE
*
* SUBROUTINE ERROR
*
* THIS SUBROUTINE PUTS AN ERROR FLAG INTO THE
* OUTPUT LINE IMAGE AND COUNTS THE NUMBER OF
* ERRORS PER LINE. UP TO 5 ERROR FLAGS WILL BE
* SIGNALLED. THE ERROR FLAG IS THE CHARACTER IN
* BYTE 1:1 OF THE WORD FOLLOWING THE CALL TO
* ERROR.
*
ERRSAVA ORIG *+1
*
ERROR STJ *+3(0:2) SAVE REGISTERS

STA ERRSAVA
ST1 ERRSAVE1(0:2)

*
ENT1 * RETURN ADDRESS
LDA 0,1(1:1) ACTUALLY FLAG ADDRESS
INC1 1 INCREASE ADDRESS
ST1 ERREXIT(0:2) STORE REAL RETURN ADDRESS

*
LD1 LINERROR INCREASE NUMBER OF
INC1 1
ST1 LINERROR ERRORS IN THIS LINE

*
DEC1 5 CHECK IF MORE THAN 5
J1P *+2
STA LINE+5,1 STORE ERROR FLAG IN OUTPUT

*
LDA ERRSAVA RESTORE REGISTERS

ERRSAVE1 ENT1 *
ERREXIT JMP *
*
*
* A SEPARATE ERROR ROUTINE FOR EACH TYPE.
*
MULDEF STJ *+3 MULTIPLY-DEFINED LABELS

JMP ERROR
ALF M
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JMP *
*
BADSYM STJ *+3 BAD SYMBOL (TOO LONG, NUMERIC)

JMP ERROR
ALF L L FOR LABEL
JMP *

*
UNOP STJ *+3 UNDEFINED OPCODE

JMP ERROR
ALF U
JMP *

*
ILLFOR STJ *+3 ILLEGAL FORWARD REFERENCE

JMP ERROR
ALF F
JMP *

*
EXPOV STJ *+3 OVERFLOW IN EXPRESSION

JMP ERROR
ALF O
JMP *

*
ILLSYN STJ *+3 ILLEGAL SYNTAX

JMP ERROR
ALF S
JMP *

*
*

8.3.9 Label definition

One additional routine which is useful is DEFINELAB. This routine uses DEFINESYM to
define a label for an assembly language statement. It does not simply call DEFINESYM,
however, but must first call SEARCHSYM to check for multiply-defined symbols, or symbols
which have been forward referenced. The label is taken out of the variable LABEL, where
it was put by GETFIELDS. The value of the label is in the A register.

*
* SUBROUTINE DEFINELAB
*
* DEFINE A LABEL IF THERE IS ONE. THE VALUE
* OF THE LABEL IS IN THE A REGISTER. FIRST
* SEARCH THE SYMBOL TABLE FOR MULTIPLY
* DEFINED LABELS OR FORWARD REFERENCES.
*
DEFINELAB STJ DLEXIT SAVE REGISTERS

ST1 DLSAVE1(0:2)
ST2 DLSAVE2(0:2)
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*
LD1 LABEL(1:1) CHECK IF THERE IS LABEL
J1Z DLSAVE1 NO LABEL

*
ENT1 SYM
MOVE LABEL(2) MOVE LABEL TO SYM

*
JMP SEARCHSYM SEARCH TABLE FOR LABEL

*
LD1 SYMINDEX
J1N NEWLABDEFN NOT FOUND

*
LD2 SYMTAB,1(0:1) CHECK SIGN FOR DEFINED/NOT
J2P MULDEF MULTIPLY-DEFINED

*
STA SYMTAB+2,1 SAVE VALUE OF FORWARD REF
STZ SYMTAB,1(0:0)
JMP DLSAVE1

*
NEWLABDEFN JMP DEFINESYM DEFINE NEW LABEL
*
DLSAVE1 ENT1 *
DLSAVE2 ENT2 *
DLEXIT JMP *
*

8.3.10 Main loop code

With these subroutines to perform most of the processing, the main assembler code
is now quite simple. The main loop is

*
* MAIN LOOP STARTS HERE
*
MAIN JMP INITIALIZE
*
MAINLOOP JMP READCARD
*

LDA CARD CHECK FOR COMMENT
CMPA CHARSTAR(5:5)
JE PRTLINE IF COMMENT JUST PRINT

*
JMP GETFIELDS GET LABEL, OP, OPERAND
JMP SEARCHOP SEARCH FOR OPCODE

*
ST6 PRINTLOC SAVE LOCATION COUNTER FOR PRT

*
LD1 OPTYPE
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JMP *+1,1 JUMP TABLE ON TYPE OF OPCODE
JMP PRTLINE COMMENT
JMP MACHINEOP MACHINE OPCODE: TYPE 1 (A)
JMP ORIGOP ORIG: TYPE 2 (B)
JMP CONOP CON: TYPE 3 (C)
JMP ALFOP ALF: TYPE 4 (D)
JMP EQUOP EQU: TYPE 5 (E)
JMP ENDOP END: TYPE 6 (F)

*
*
ENDCASE LDA CARD,5 AFTER PROCESSING COLUMN SHOULD

JANZ ILLSYN BE BLANK, IF NOT, ERROR
*
PRTLINE JMP PRINTLINE PRINT

LDA ENDASSEM CHECK FOR END
JAZ MAINLOOP
JMP FINISHUP FINISH ASSEMBLY
HLT
END MAIN

Machine instructions

Each opcode type has its own section of code to process each assembly language
statement. For a machine opcode, this involves first defining the label (JMP DEFINELAB).
Then the address expression is evaluated (JMP EXPRESSION) and saved in the 0:2 field
of the word to be generated (VALUE). If the next character is a comma, an index field is
evaluated; if the next character is a left parenthesis, a field specification is evaluated.
Finally, the word is generated.

MACHINEOP ENTA 0,6 VALUE OF LABEL IS *
JMP DEFINELAB

*
ENT1 HL2BYTE
STZ NOFORWARD FORWARDS ALLOWED
JMP EXPRESSION GET ADDRESS PART
STA VALUE(0:2)

*
LDA CARD,5 CARD(COLUMN)
CMPA CHARCOMMA(5:5) IS IT COMMA?
JNE NOIPART

*
IPART ENT1 HLBYTE I FIELD IS ONE BYTE

JMP EXPRESSION
STA VALUE(3:3)

NOIPART EQU *
*

LDA CARD,5
CMPA CHARLEFTP(5:5) CHECK FOR ( FOR FIELD
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JNE NOFPART
ENT1 HLBYTE F FIELD IS ONE BYTE
JMP EXPRESSION
STA VALUE(4:4)

*
LDA CARD,5 CHECK FOR TRAILING )
CMPA CHARRIGHTP(5:5)
JNE ILLSYN
INC5 1 SKIP OVER )

NOFPART EQU *
*

JMP GENERATE
JMP ENDCASE

*

EQU statements

EQU statements are even simpler. The expression is evaluated, and the label defined
to have this value.

*
EQUOP ENT1 HLWORD EQU VALUE CAN BE ANY WORD

JMP EXPRESSION
STA VALUE
JMP DEFINELAB DEFINE LABEL
JMP ENDCASE

*

ORIG statements

ORIG statements are almost as simple as EQUs.

*
ORIGOP ENTA 0,6 DEFINE LABEL FIRST

JMP DEFINELAB
*

ENT1 HLADDR ORIG VALUE IS ADDRESS
JMP EXPRESSION

*
STA VALUE (FOR PRINT)
LD6 VALUE SET LOCATION COUNTER

*
JMP ENDCASE

ALF statements

ALF statements are processed by simply picking up the five characters in columns
17 through 21 and packing them into VALUE.
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ALFOP ENTA 0,6 DEFINE LABEL
JMP DEFINELAB

*
ENT1 16 COLUMN 17
LDA CARD,1
ENT2 4 FOUR MORE

*
NXTALFCHAR INC1 1

SLA 1 SHIFT OVER CHARACTERS
ADD CARD,1(5:5) AND ADD IN NEXT
DEC2 1 ONE LESS CHARACTER
J2P NXTALFCHAR

*
STA VALUE
JMP GENERATE OUTPUT WORD
JMP ENDCASE

*

CON statements

The CON statement is perhaps the most complicated of the pseudo-instructions. It
consists of evaluating the first expression, and checking for a field specification. If a
field is given, the value is stored in that field. This repeats until no more expressions
are found. The major complexity in the code comes from the necessity of checking that
the field specification given is valid.

CONTEMPVAL ORIG *+1
CONTEMP ORIG *+1 TEMPORARY VARIABLES
*
CONOP ENTA 0,6

JMP DEFINELAB DEFINE LABEL FIRST
*

STZ VALUE DEFAULT VALUE
*
NEXTCON ENT1 HLWORD EXPRESSION ARE ANY VALUE

JMP EXPRESSION
*

LDX CARD,5 CHECK FOR (FIELD)
CMPX CHARLEFTP(5:5)
JE CONF
STA VALUE NO FIELD IS (0:5)
JMP NOF

*
CONERROR JMP ILLSYN ERROR IN CON

JMP NOFSTORE
*
CONF STA CONTEMPVAL SAVE EXPRESSION

ENT1 HLBYTE UNTIL FIELD EVALUATED
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JMP EXPRESSION
*

STA FMOD(4:4) CHANGE FIELD OF STORE
*

SRAX 5 CHECK IF 0 ≤ L ≤ R ≤ 5
DIV EIGHT L IN A, R IN X
CMPX FIVE
JG CONERROR R > 5
STA CONTEMP
CMPX CONTEMP
JL CONERROR L > R
LDA CONTEMPVAL EXPRESSION

FMOD STA VALUE(0) FIELD TO BE CHANGED
*
NOFSTORE LDA CARD,5 CHECK FOR )

CMPA CHARRIGHTP(5:5)
JNE ILLSYN SYNTAX ERROR
INC5 1

NOF EQU *
*

LDA CARD,5 CHECK FOR COMMA
CMPA CHARCOMMA(5:5)
JE NEXTCON IF SO, DO NEXT PART

*
JMP GENERATE
JMP ENDCASE

END statements

The last pseudo-instruction processed will be an END statement. First, any label is
defined. Then the starting address is evaluated and an end-of-assembly flag is set.

ENDASSEM CON 0
STARTADD CON 0 STARTING ADDRESS
*
*
ENDOP ENTA 0,6

JMP DEFINELAB DEFINE LABEL
*

ENT1 HLADDR STARTING ADDRESS IS ADDRESS
JMP EXPRESSION
STA VALUE FOR PRINT
STA STARTADD FOR LOADER
STJ ENDASSEM(4:5) SET NONZERO TO STOP
JMP ENDCASE

*
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8.3.11 Initialization and termination

With most of the assembler written, we can easily see what needs to be initialized.
The first card input should be started, the loader tape should be rewound, and the
location counter set to zero. All other variables were initialized by CON statements when
they were declared.

INITIALIZE STJ INITEXIT
IN INBUF(CR) READ FIRST CARD
IOC 0(TAPE) REWIND TAPE
ENT6 0 SET LOCATION COUNTER TO ZERO

INITEXIT JMP *
*

In addition, we need to define the following symbols and constants.

*
TAPE EQU 0 TAPE UNIT NUMBER FOR LOADER
CR EQU 16 INPUT CARD READER
LP EQU 18 OUTPUT LINE PRINTER
*
MAXSYMBOL EQU 250 MAXIMUM NUMBER OF SYMBOLS
*
CHARA ALF AAAAA CHARACTER CONSTANT
CHARO ALF 00000
CHAR9 ALF 99999
CHARSTAR ALF *****
CHARLEFTP ALF (((((
CHARRIGHTP ALF )))))
CHARCOMMA ALF ,,,,,
TWO CON 2
FIVE CON 5
EIGHT CON 8
CHAINEND CON 4095
*

Termination is more complicated. First, any unfinished loader block should be
finished. Then the symbol table needs to be searched. Any undefined symbols are
defined, and fix-up codes are output to the loader tape for symbols which were forward
referenced. Finally, the start address is output and the last tape buffer written to tape.

ASMDEF ALF PRINT LINE FOR SYMBOLS
ORIG *+1 WHICH ARE DEFINED BY ASSEMBLER
ALF
ORIG *+5
ALF ORIG
ALF *+1
ORIG *+3
ALF SYMBO
ALF L DEF
ALF INED
ALF BY AS
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ALF SEMBL
ALF ER
ORIG *+5

*
*
* SUBROUTINE FINISH UP
*
* WHEN AN END CARD IS READ, WE MUST FINISH
* LAST LOADER BLOCK, OUTPUT FORWARD REFERENCE
* FIX-UP COMMANDS, AND START ADDRESS.
*
FINTEMP ORIG *+5 FOR CHARACTERS FOR LOCATION
*
FINISHUP STJ FINEXIT

JMP FINISHBLCK FINISH LAST BLOCK
*
* CHECK FOR UNDEFINED SYMBOLS AND DEFINE THEM
*

ENTA 1
STA VALUE(0:3) TYPE FIELD FOR LOADER FIX-UPS

*
ENT3 0 COUNTER TO SYMBOL TABLE

NEXTSYM1 LDA SYMTAB,3 LOAD DEFINED FLAG (SIGN)
JAP DENFDSYM IF DEFINED

*
STA LABEL(1:5)
STA ASMDEF+6(1:5) FOR PRINT
LDA SYMTAB+1,3 SECOND PART OF NAME
STA LABEL+1
STA ASMDEF+7
ENTA 0,6 VALUE FOR DEFINING SYMBOL
JMP DEFINELAB
INC6 1 INCREASE * FOR NEXT

*
ENTA -1,6
ENT1 FINTEMP TEMPORARY FOR OCTAL CHARACTERS
ENT2 4
JMP OCTCHAR CONVERT * TO OCTAL FOR PRINT

*
LDA FINTEMP
STA ASMDEF+1(3:3)
LDA FINTEMP+1
STA ASMDEF+1(4:4)
LDA FINTEMP+2
STA ASMDEF+1(5:5)
LDA FINTEMP+3
STA ASMDEF+2(1:1)
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LDA FINTEMP+4
STA ASMDEF+2(2:2) INSERT * OCTAL IN PRT LINE

*
OUT ASMDEF(LP) PRINT ASSEMBLER DEFINED
JBUS *(LP)

*
DENFDSYM EQU * SYMBOL IS DEFINED
*

LDA SYMTAB+3,3(4:5) CHECK FOR CHAIN
CMPA CHAINEND
JE UPSYM1 IF NOT, GO ON TO NEXT

*
STA VALUE(4:5) PREPARE VALUE FOR LOADER
LDA SYMTAB+2,3(4:5) ADDRESS OF SYMBOL
STA VALUE(0:2)
LDA VALUE
JMP TAPEOUT OUTPUT FIX-UP COMMAND

*
UPSYM1 INC3 4

CMP3 NSYMBOL CHECK END OF TABLE
JL NEXTSYM1

*
LDA STARTADD
STA VALUE(0:2) STARTING ADDRESS
ENTA 2
STA VALUE(3:3) TYPE FOR STARTING ADDRESS
STZ VALUE(4:5) BYTES 4:5 ZERO
LDA VALUE
JMP TAPEOUT OUTPUT STARTING ADDRESS

*
JMP FINISHBUF CLEAR LAST BUFFER TO TAPE

*
FINEXIT JMP *
*

8.3.12 Evaluation

The MIXAL assembler which we have presented in this chapter is a relatively simple
one, despite its length. A number of improvements can be made. However, the basic
structure of the assembler is such that most improvements can be made by only local
modifications to a few subroutines. The entire assembler will not need to be rewritten.

1. By changing only the GETFIELDS routine, the assembler could be changed from a
fixed-format to a free-format assembler.

2. Literals were not included. However, the introduction of literals would involve only
changing EVALSYM, to recognize a literal by its preceding and terminating equal
signs, adding code to FINISHUP to define them and a decision on whether to store
literals in the symbol table or in a separate literal table. Notice that the definition
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of literals as being limited to no more than nine characters would allow them to
be stored in the symbol table, and distinguished by their leading equal sign. The
trailing equal sign is not needed.

3. Local symbols (iH, iF, iB) would similarly require only a change in EVALSYM and
DEFINESYM plus a local symbol table.

4. Additional error checking should be added to consider the problems of symbol
table overflow, additional types of syntax errors, and programs which attempt to
use more than 4000 words of memory.

5. The binary and floating point opcodes could be added.

6. The input program, output listing, and loader tape routines could be modified to
allow input or output from tape, disk, or drum and to produce loader output on
cards, tape, disk, or drum as desired by the programmer.

7. The FINISHUP subroutine could be extended to print a symbol table following
the assembly program listing. With a non-trivial amount of new code, a cross
reference listing could be added.

These are just a few of the changes which can be, or should be made. One of
the major evaluation criteria is the ability of a programmer, other than its author, to
understand a program, and be able to correctly modify it.

Another evaluation criteria is performance. This can be measured in terms of
either memory size or speed. For a 4000-word MIX memory, the assembler occupies
about 1600 words for its code and opcode table. This leaves over half of memory for
the symbol table, allowing the symbol table to hold a maximum of about 600 symbols.
Reducing the size of a symbol table entry to 3 words would increase this to 800 symbols.

Since card input, listing output, and tape output are all double buffered, and overlap
most of the computation, the speed of the assembler is bounded mainly by the speed
of the I/O devices. The assembler took 80.9 seconds to assemble itself (1579 cards) on
a 1-microsecond-per-time-unit MIX computer, with a 1200-card-per-minute card reader,
and a 1200-line-per-minute line printer. Of this time, 76.1 seconds were spent waiting
for I/O devices. This means that only 5.8 percent of the total execution time was needed
for the assembly of the program, the remainder of the time is all I/O. Assemblers are
typically very I/O-bound programs.

This simple measurement means that it would be very difficult to significantly speed
up the assembler. A number of minor modifications can be made to speed up the
assembler (such as a better symbol table search algorithm, better use of registers, and
not saving registers which are not needed). But the effect of these changes on the total
processing time would be minimal at best, and hence they are probably not worth the
bother.

8.4 SUMMARY

The basic function of an assembler is to translate a program from assembly language
into loader code for loading. The major data structures which assist in this translation
are the opcode table, which is used to translate from symbolic opcode to numeric
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opcode, and the symbol table, which is used to translate programmer-defined symbols
to their numeric values.

With these major data structures and subroutines to search and enter these tables,
as necessary, to evaluate symbols, to evaluate expressions, to print lines, to handle
errors, to buffer and block loader output, to read cards and get symbols, to initialize
and terminate the assembler, the code for assembling each type of assembly language
statement is relatively easy to write and understand.

The major problem for an assembler is forward references. These can be handled by
either a two-pass assembler or a one-pass assembler. A one-pass assembler requires
the loader to fix-up forward references.

Assemblers are a major topic for books on systems programming, and chapters on
assemblers are included in Stone and Siewiorek (1975), Graham (1975), Hsiao (1975),
and Donovan (1972). Gear (1974) and Ullman (1976) also discuss assemblers. The
book by Barron (1969) has an extensive description of assemblers and how they work.
For a look at the insides of a real assembler, try the Program Logic Manual for the
assembler for the IBM 360 computers (IBM order number GY26-3716).

EXERCISES

1. Hand assemble the following MIXAL program. Use two passes. First construct
the symbol table, then assemble the program into octal machine language.

MAXSYM EQU 100
SYMBOL ORIG 2*MAXSYM+2
*
SEARCH STJ ENDSEAR

ST2 SAVSEAR(0:2)
STA 0,1
LD2 1,1
INC2 2,2

2H EQU *
DEC2 2
CMPA 0,1:2
JNE 2B
ENT1 0,2

SAVSEAR ENT2 *
ENDSEAR JMP *
*

2. Hand assemble the above MIXAL program in one pass. Show the assembled
code in octal. Chain all forward references in the address fields of instructions
with forward references. Use +7777 as the end of the list of forward references
to a symbol. Explain any errors discovered. Give the symbol table at the end of
assembly.

3. A friend of mine complained that she had two MIX routines. One was prepared
for fixed-format MIXAL; the other for free-format MIXAL. She wants to combine
the two subroutines in one program. Which will have to be reformatted for a fixed-
format assembler? Which will need reformatting for a free-format assembler?
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4. A free-format assembler will often include the non-free-format restriction that any
label in the location field must begin in column 1. Can this restriction be relaxed?
What are the problems?

5. What would be the result of using only one table for both the symbol table and
the opcode table?

6. What information is kept in the symbol table of a one-pass assembler?

7. Assume that an assembler uses a linear search for a symbol table. Entries into
the symbol table are made by adding to the end of the table. Symbols are added
to the table whenever they occur in the label field. Multiply-defined symbols are
allowed. If the first defined value of a multiply-defined symbol is wanted, how
should the search routine search? What if the most recently defined value is
desired?

8. Suppose it were very easy to read the time of day. Would this be useful in
computing a hash function?

9. For a two-pass assembler, which of these functions must be done on pass 1,
which must be done on pass 2, which can be done on either, and which must be
done on both?

(a) construct the symbol table.

(b) output code to the loader.

(c) scan for the opcode.

(d) print the listing.

(e) process ORIG pseudo-instructions.

(f) search the symbol table.

(g) update the program location counter.

(h) treat an LDA different from an STA.

(i) process a CON pseudo-instructions.

(j) process the label field.

10. What can be done on the first pass of a two-pass assembler if a symbol in the
location field has already been entered into the symbol table (i.e., it is multiply-
defined)?

11. On which pass of a two-pass assembler would you detect the following types of
errors?

(a) undefined symbol

(b) undefined opcode

(c) multiply-defined symbol

(d) ORIG to a forward reference

(e) expression value too large for address field
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12. Name three techniques for handling forward references in an assembler?

13. An assembler gives a listing of the symbol table before listing the assembly
program and assembled code. How many passes is it?

14. Suppose you had available (already written) both a one-pass and a two-pass
assembler for a particular machine, and suppose that any program accepted by
one was also acceptable to the other. Give one advantage you might expect the
one-pass assembler to have, and one advantage you might expect the two-pass
assembler to have.

15. A one-pass assembler cannot handle forward references in expressions. Thus,
the following is illegal in MIXAL.

X EQU Y+1
Y EQU 0

A two-pass assembler can do this without problems, since on pass 1 it finds the
value of Y, and on pass 2 it can compute the value of X, enter it in its symbol
table, and use it in the remainder of the program. Does this mean that a two-pass
assembler has no restrictions on forward references? If it does not, show an
example to demonstrate a problem which even a two-pass assembler cannot
handle.

16. An assembler is assembling for a relocating linking loader. What internal tables
and data structures must it have that an absolute assembler need not have?

17. Suppose we want to extend MIXAL by adding the following new symbolic opcodes.

LDN* * = A, 1, 2, 3, 4, 5, 6, X

These new opcodes should be treated like the LDiN opcodes. That is, both the
opcodes should generate the same code and accept the same form of operand.
How would we need to modify the existing MIXAL assembler to allow these new
opcodes?

18. Consider a restricted MIX machine with only the A register and X register (no
index registers). Eliminate all indexing and partial field considerations and all
mnemonics involving index registers. Write a fixed-format assembler for this
restricted assembly language. Allow only symbols or constants (no expressions)
for operands.
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SYSTEMS PROGRAMS

The loaders and assemblers of the last two chapters are only a few of the many
systems programs which are used on most computers. Like most systems programs,
their main purpose is to make the writing and running of other programs easier. However,
they are far from being the best programming tools. As more and more programs are
written, the usefulness of other system programs becomes evident.

Historically, as the desire for more sophisticated systems programs grew, so too
did the capability of the computer systems available to support these programs. These
larger computers are more capable of supporting the larger and more complex systems
programs and their data structures. Today almost all large computers have at least
one system program of each of the types described in this chapter, and many smaller
computers do also. However, many of the smaller computer systems may not have
sufficient memory, primary or secondary, to support some of these programs. This is
generally the case for MIX machines. Since most programmers use many different
machines in their careers, it is probable though that these systems will be available to
you at some point in your programming.

9.1 MACRO ASSEMBLERS

When writing a large assembly language program, like the assembler of Chapter 8,
it is not uncommon to encounter sections of repetitive coding. Consider, as an example,
the error subroutines. Six small subroutines (MULDEF, BADSYM, UNOP, ILLFOR, EXPOV,
ILLSYN) were all four statements long, of the form

STJ *+3
JMP ERROR
ALF x
JMP *
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The letter x in the ALF statement varied according to the kind of error. Other instances
of short pieces of repetitive code can be found in the assembler. It would ease the
programming task if we could simply say that the section of code listed above is a
schema, or form, called ERR. When we write ERR U, it would be the same as writing

STJ *+3
JMP ERROR
ALF U SUBSTITUTE THE U FOR x
JMP *

This sort of a feature would allow us to write programs faster.
The standard means of eliminating repetitive code is to use subroutines. But often,

as in the example above, the repetitive code is too short for subroutines to be effective
in reducing the amount of code to be written. Remember also that calling a subroutine
with p parameters will require at least p + 1 instructions, so if the code segment is short,
a subroutine call may take more code than the code itself. In many cases, in fact, the
repetitive code is itself a subroutine call, the repetition being caused by the use of a
standard calling sequence.

The execution time for using a subroutine call to replace repetitive code must also
be considered. From our simple analysis of the cost of using a subroutine (Section 6.4),
it was obvious that although a subroutine can sometimes save space, it always takes
more time to execute a subroutine than to just write the code out. In some cases, this
additional time is of crucial importance, as when the code will be executed millions of
times.

Thus, what is needed is a means of reducing the repetitive writing of similar sections
of code without introducing the cost of calling a subroutine. A macro assembler provides
this facility. A macro is a named sequence of instructions. The macro assembler
generates the sequence of instructions whenever it encounters the macro name. A
macro name is thus an abbreviation for the sequence of instructions. (The name “macro”
comes from thinking of the sequence of instructions as a macro-instruction.)

Macros are sometimes called in-line or open subroutines to distinguish them from
the standard closed subroutine concepts of Chapter 6. When a subroutine is used, the
code for the subroutine is located out of the way of the main line of code. Hence the
subroutine is out of line. Since a subroutine is only to be entered at its entry point and
its internal structure is of no concern to the rest of the program, a subroutine is closed,
like a black box. A macro, on the other hand, places its code right where it is called,
in-line, and it is part of the routine in which it occurs. Thus, its internal structure is part
of that routine and open to that routine.

9.1.1 Macro usage

As with a subroutine, macro usage consists of two things: a macro definition and
a macro call . The macro definition defines the name of the macro and the sequence
of statements for which that name stands. The macro call causes macro expansion to
occur, with the sequence of instructions for which the macro name stands replacing the
macro name in the program. Also, as with subroutines, macros may have parameters.
Actual parameters, given in each call, replace the formal parameters used in the macro
definition during macro expansion.
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MIXAL does not provide for macros. To illustrate how macros typically are used, we
extend MIXAL to MACRO-MIXAL, a macro assembly language for the MIX computers,
based on MIXAL. MACRO-MIXAL is upwards compatible with MIXAL; that is, any MIXAL
program is also a legal MACRO-MIXAL program. Thus, all of the features and facilities
of MIXAL are included in MACRO-MIXAL, and the syntax is almost the same.

The extensions to MIXAL in MACRO-MIXAL are to allow the definition and use of
macros. These require the introduction of two new pseudo-instructions, MACR and ENDM.
The MACR pseudo-instruction indicates the start of a macro definition, and the ENDM
pseudo-instruction indicates the end of the macro definition.

A macro definition consists of three parts: a macro header, a macro body, and a
macro trailer. The macro header is one assembly language instruction whose opcode
field is the MACR pseudo-instruction. The label field of the macro header has the name
of the macro and the operand field has a (possibly empty) list of formal parameters for
the macro, separated by commas.

name MACR p1,p2,... ,pn
<macro body>
ENDM

The macro body is composed of those assembly language statements which are to be
assembled whenever the macro is called. The formal parameters may be used in the
macro body wherever a symbol may appear. This includes the label field, the opcode
field, or the operand field. The macro trailer is simply the ENDM statement.

Once a macro has been defined, it may be called by simply writing its name in the
opcode field of an assembly language statement. Actual parameters are specified by
listing them in the operand field, separated by commas. Any label is processed by
entering it in the symbol table with a value equal to the value of the location counter at
the time that the macro call was encountered.

As a simple example, assume that the value of the variable C must be incremented
at several places in a program. The macro definition for this function might be

UPC MACR
LDA C
INCA 1
STA C
ENDM

After this definition, the three lines of the macro body can be generated simply by writing
UPC as an opcode. This macro has no parameters. A more general macro, which could
be used for the same purpose, could make the name of the variable to be incremented
a parameter.

UP MACR N
LDA N
INCA 1
STA N
ENDM

A call of this macro might look like

UP C
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or

LOOP UP COLUMN

This latter call is equivalent to writing the lines

LOOP LDA COLUMN
INCA 1
STA COLUMN

Macros can be used to introduce new instructions. For example, the BSS pseudo-
instruction can be used with a macro assembler which provides only the ORIG pseudo-
instruction but does not provide the BSS, by defining the macro

BSS MACR N
ORIG N+*
ENDM

Macro calls can be nested; that is, a macro may call another macro. A macro can
be defined to save all registers upon entry to a subroutine by

ENTRY MACR NAME
BSS 8 SPACE FOR REGISTERS

NAME STA *-8
STX *-8
ST1 *-8
ST2 *-8
ST3 *-8
ST4 *-8
ST5 *-8
ST6 *-8
ENDM

When this macro is called, it immediately calls another macro, the BSS macro defined
above. After the BSS macro is expanded, expansion of the ENTRY macro continues.

In addition to the introduction of two new pseudo-instructions, macros require one
other change to the MIX assembly language. Notice that the name of a macro is defined
by placing it in the label field. Hence it is possible to define a macro with a name of up to
10 characters. A macro call, on the other hand, requires putting the name of the macro
in the opcode field of the assembly language instruction. Since the opcode field is only
four characters wide, problems may arise. These problems may be solved in either
of two ways. One method is to restrict macro names to four characters or less. This
can make it difficult to use meaningful macro names, and so the alternative solution is
more common: change to a free-format input. Most macro assemblers are free-format
assemblers. This allows the length of macro names to be longer than the typically short
opcode mnemonics. Assembly language statements are still composed of four fields: a
label field, an opcode field, an operand field, and a comment field. A label, if present,
begins in column 1 and continues to the first blank. Fields are separated by one or
more blanks.

Parameter passing for macros is by name. The character string which defines the
actual parameter is substituted for each occurrence of the formal parameter. The actual
parameter in the macro call is not evaluated in any way until the expanded macro is
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assembled. This allows parameters to be used which would appear ill-formed if they
were evaluated before substitution, as in the following example.

WEIRD MACR P1,P2
P1 P2)
ENDM

With this definition, the macro call

WEIRD MOVE,ARR(7

will yield the expansion

MOVE ARR(7)

which is perfectly correct, although neither the sequence ARR(7 nor the sequence P2)
is a correct syntactic entity by itself.

Occasionally it is convenient to include commas or blanks within parameters. Extra
measures must be taken if this is the case since commas normally separate parameters
and blanks terminate a line. In these cases, the parameter is enclosed in parenthesis.
When the parameter substitution is done, the outermost parentheses are removed
before any substitution occurs. For example, consider the macro, XCH, defined by

XCH MACR P1,P2
LDA P1
LDX P2
STA P2
STX P1
ENDM

If we wish to use this macro to generate the assembly lines

LDA X,1
LDX Y,2
STA Y,2
STX X,1

we must call the macro as

XCH (X,1),(Y,2)

If we were to write XCH X,1,Y,2, we would appear to be calling a macro of two
parameters with four actual parameters.

The inclusion of blanks in a parameter is illustrated by the following macro, which
performs an operation on each of the elements of the 100-element array X.

ALLX MACR OP
ENT1 99

2H LDA X,1
OP
STA X,1
DEC1 1
J1NN 2B
ENDM
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To add one to all the elements of the X array, we simply write

ALLX (INCA 1)

which expands to

ENT1 99
2H LDA X,1

INCA 1
STA X,1
DEC1 1
J1NN 2B

To perform more complicated operations, we can define a macro and pass the name
of that macro to ALLX as a parameter. To ensure that all X are within the range from LOW
to HIGH, we could define the macro

TSTR MACR
CMPA HIGH
JLE *+2
LDA HIGH
CMPA LOW
JGE *+2
LDA LOW
ENDM

and call the ALLX macro by

ALLX TSTR

This expands to

ENT1 99
2H LDA X,1
TSTR

STA X,1
DEC1 1
J1NN 2B

This in turn expands to

ENT1 99
2H LDA X,1

CMPA HIGH
JLE *+2
LDA HIGH
CMPA LOW
JGE *+2
LDA LOW
STA X,1
DEC1 1
J1NN 2B



9.1. MACRO ASSEMBLERS 305

Some care must be taken with nested macros and local symbols. Consider what
would have happened to ALLX TSTR, if TSTR had been defined as

TSTR MACR
CMPA HIGH
JLE 2F
LDA HIGH

2H CMPA LOW
JLE 2F
LDA LOW

2H EQU *
ENDM

When the ALLX macro and the TSTR macro are both expanded, the 2B in ALLX does not
refer to the 2H in the ALLX macro, but rather to the second 2H in the expanded TSTR
macro.

Macros are also very useful in defining data structures. The opcode table in the
assembler, for example, had most of the entries of the form

ALF op
op

Thus, the number of lines needed to define the opcode table could be reduced by half,
with the definition of a macro such as

MACHOP MACR OP
ALF OP
OP
ENDM

9.1.2 Macro implementation

How are macros implemented? What changes to the assembler are necessary to
allow macro processing? Several changes are needed, including both the modification
of some existing code and the introduction of some new data structures.

The major new data structure is a macro table. The macro table contains the
symbolic name of each defined macro and additional information to allow the body of the
macro to be found. This can be done in several ways. One of the most straightforward is
to have each entry of the macro table include the macro body. Thus, each macro table
entry consists of the name of the macro, followed by the macro body. Macro bodies
may differ in size, and so each entry must also include length information. This allows
the macro table to be searched for a given macro name by using the length information
to skip over macro bodies, looking only at macro names.

The variable length of macro table entries in the above scheme causes problems in
searching the macro table. (The macro table must be linearly searched.) To allow more
efficient search techniques, fixed-size macro table entries are desired. To this end, an
alternative approach utilizes two data structures: a macro name table, and a macro
body table. The macro name table contains entries which specify the macro name, its
length, number of parameters, and so on, and a pointer to the beginning of the macro
body in the macro body table. The macro body table is a large array in which macro
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bodies are stored as they are defined. This approach separates the fixed-length macro
information (in the macro name table) from the variable-length macro information (in
the macro body table).

Parameters can similarly be handled in several ways. The formal parameter names
can be stored in the macro body table as the first N symbols of each macro body table
entry, before the macro body itself. The macro name table entry would include N, the
number of parameters. During expansion of the macro, every symbol in the macro
would be compared against the list of formal parameters. If one is found, the actual
parameter would be used instead. This approach minimizes the amount of work at
macro definition time, but increases the work done at expansion time.

Another approach to parameters increases the work at definition time, in exchange
for more efficient macro expansion. In this approach, each parameter is assigned a
number, according to its position in the list of parameters in the macro header. When
the macro body is being stored, during macro definition, the macro is scanned for formal
parameters. If a formal parameter is found, it is replaced by a special character which
is not otherwise allowed in the assembly language, followed by the number, of the
parameter. In MACRO-MIXAL, for example, notice that the character “$” is not used for
any special-purpose. If we simply declare that the $ is an illegal character (and check
all input to be sure that a $ does not occur), then we can replace all occurrences of
the first parameter by $A (the character code for A is 1), all occurrences of the second
parameter by $B, etc.

As the macro is expanded, the assembler need only check each character in the
macro to see if it is a $. When a $ is found, the next character can be used to index into
the list of actual parameters for substitution. Using this convention, the macro definition

CALL2 MACR SUB,PARM1,PARM2
JMP SUB
NOP PARM1
NOP PARM2
ENDM

would be stored internally as

JMP $A
NOP $B
NOP $C

Notice that different methods of handling the substitution of actual parameters for
formal parameters may result in subtly different results, in much the same way that the
different subroutine calling conventions (call by value, call by reference, call by name)
could give different results in some cases. Some of these differences may show up at
the programmer level, such as not being allowed to use the character $, or not being
allowed over 64 parameters (the maximum number which can be held in the one byte
following a $). Other differences are more subtle. Consider the two macros XPL1 and
XPL2, defined by

XPL1 MACR A,B,C
A *+1(0:2)
ENT1 *
XPL2 C
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STA B
ENDM

XPL2 MACR N
LDA N
INC1 C
ENDM

If the search for parameters is done at execution time, then the expansion of the macro
call

XPL1 STA,X,Y

would result in substituting the actual parameters STA, X, Y for the formal parameters A,
B, C. The expansion of the inner macro call to XPL2 would result in the C of the definition
of XPL2 being recognized as a formal parameter of the macro XPL1. The assembly code
generated by the macro expansion would thus be

STA *+1(0:2)
ENT1 *
LDA Y
INC1 Y
STA X

If the parameter substitution is done when the macro is defined, replacing an
occurrence of the i th parameter by $i, then the two macros would be stored as

XPL1
$A *+1(0:2)
ENT1 *
XPL2 $C
STA $B

XPL2
LDA $A
INC1 C

Thus, a macro call XPL1 STA,X,Y would result in the expanded assembly code

STA *+1(0:2)
ENT1 *
LDA Y
INC1 C
STA X

The symbol C in the XPL2 macro would not be substituted for, since it was not known to
be a parameter at macro definition time when parameters were identified and replaced
by the $i representation.

In addition to these basic concerns, other programming techniques can be used
to improve the efficiency of a macro assembler. One common technique is the use of
compressed text . When a macro definition is stored for later expansion, not all of the
input text is stored. Remember that for a standard assembly language input statement,
most of the 80-character input is comments or blank. A typical input card may have only
10 to 20 useful characters on it. Thus, when the card is stored in the macro body table



308 CHAPTER 9. SYSTEMS PROGRAMS

there is no need to store the entire card. Only the label, opcode, and operand fields
need be saved, and multiple blanks between fields can be reduced to only one blank
between fields.

The use of compressed text has several results. First, it increases the number or size
of macros which can be stored in the fixed amount of memory available for the macro
body table by 4 to 10 times. Second, it increases the complexity of macro expansion.
Consider that the card images that are to be manipulated now are no longer of fixed
length, but rather are of variable length. This requires special programming techniques
for the representation and manipulation of variable-length strings of characters. Typically,
this is done by appending the length of the string to the front of it (just as the length of
the loader blocks was contained in a header word at the first of each block), or the use
of a special end-of-line character or characters at the end of the line. Still, the extra
efficiency in the use of memory by the assembler is generally considered to be worth
the additional cost of using variable-length strings.

A rough idea of how macros are implemented should now be apparent to you. As
with everything else in programming, there are many ways of actually writing a macro
assembler. One of the simplest is to add another pass to an existing assembler to
expand all macros. Thus, an existing two-pass assembler can be converted into a
three-pass macro assembler. The first pass expands all macros, the second pass
defines the symbol table, and the third pass generates the loader output.

The macro expansion pass copies all assembly language statements except macro
definitions and macro calls. A macro definition is entered into the macro name table,
and the assembly language statements which follow are stored, in compressed text
form, in the macro body table until an ENDM statement is encountered. When a macro
call is found the body of the macro is copied out onto the secondary storage device
which holds the copy of the program for input to pass 2 of the assembler. Parameter
substitution is performed as the macro body is copied out for pass 2. Nested macros
require some additional programming care.

A little thought shows that there is nothing in the second pass of a three-pass
assembler (symbol table definition) which cannot be done in the first pass along
with the macro expansion. Similarly, it is possible to create a one-pass assembler
which assembles a macro assembly language program in one pass. Because of the
complexity of these assemblers, however, they must be very carefully designed, written,
and documented.

The concept of macros need not be applied only to assembly languages, but can be
applied more generally to any arbitrary file of characters. PL/I programs have a limited
form of macros. Some computer systems have a program called a general-purpose
macro processor , which will input a text file, possibly with macro definitions and macro
calls, and will output the text file which results from expanding all macro calls. (In
business offices, macros are generally called form letters.)

The ideas behind a general-purpose macro processor are discussed in Strachey
(1965), while Brown (1969) gives a survey of macro processors. Kent (1969)
emphasizes the characteristics of the macro assembly language for the IBM System
360/370.
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9.2 CONDITIONAL ASSEMBLY

A professional systems programmer often writes a program in such a way that it
may be usable in a wider set of circumstances than is necessary. He knows that certain
aspects of the environment in which the program is to be run may change. These
changes may include device numbers or types, the amount of memory available, and so
forth. In writing a program, this type of information is provided to the program in such a
way that the program can be easily changed, if necessary. The EQU statement provides
one mechanism for this type of programming. Unit numbers (like CR, LP, or TAPE in
the assembler) or the size of large tables (like the symbol table of the assembler) are
defined in terms of symbolic constants, rather than their (current) numeric values. This
allows these values to be changed easily if the configuration of the computer changes.

9.2.1 Motivation for conditional assembly

The EQU statement often suffices for small changes, but more drastic changes may
require complete changes in the way in which a program is written. Consider the
assembler of Chapter 7. This assembler was written with a binary MIX computer in
mind. This is reflected in the use of an octal representation for the listing of assembled
instructions, and the limitations on the ranges of numbers which can be represented in
one byte, two bytes, or an entire word. By just changing these few values and the code
for generating listing output, we can have an assembler for a decimal MIX computer.

Typically, making these changes will result in two separate programs, one an
assembler for a MIX 1009B, the other for a MIX 1009D. This requires twice as much
storage space, and any changes or modifications to the assembler must be made in
both programs. Experience with this arrangement indicates that after a while small
changes will be made in one assembler but not in the other, so that the two supposedly
equivalent programs become different.

Another problem may deal with the use of different algorithms depending upon
some property of a variable. For example, in our discussion of the opcode table, we
indicated that either a linear or a binary search can be used; the choice between these
two algorithms is made on the basis of the size of the opcode table. When the search
routine was written, however, we did not know the exact size of the opcode table, except
that it had NUMBEROPS opcodes. It would be possible to write our search routine so that,
at execution time, the value of NUMBEROPS would be tested, and if greater than 32 (say),
a jump would be made to a binary search; if less than 32, a jump would be made to a
linear search. However, the value of NUMBEROPS is fixed at assembly time and hence
for any particular assembly the non-selected search algorithm would never be used; it
would only take up valuable space.

Both of these problems, and others, can be solved using conditional assembly .
Conditional assembly refers to the ability, during assembly, to have the assembler test
a condition. On the basis of the results of that test, assembly language statements
may either be assembled (as normal) or not assembled (treated as comments). The
important concept in conditional assembly is that the test is done during assembly, not
during execution.

A conditional assembly feature is added to an assembly language by the introduction
of additional pseudo-instructions. Two things need to be specified: the test to be
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performed and the assembly language statements to be conditionally assembled or
skipped. The complexity and sophistication of these types of statements vary widely.

9.2.2 A simple conditional assembly feature

Probably the simplest form of conditional assembly would be the provision of a
single new pseudo-instruction of the form

IF expression,expression

This pseudo-instruction, when encountered by the assembler, evaluates the first
expression in the operand field. If this expression is zero, then the next n lines are
skipped, where n is the value of the second expression. If the expression is nonzero,
the n lines following the IF pseudo-instruction are assembled normally.

To illustrate the use of this new pseudo-instruction, consider the problem of modifying
the assembler for both binary and decimal MIX computers. We define a variable BINARY
which is 0 for a binary machine and 1 for a decimal machine

BINARY EQU 0 BINARY ASSEMBLER
BINARY EQU 1 DECIMAL ASSEMBLER

Then we can write

HLBYTE CON 0 HIGH AND LOW FOR BYTE
IF BINARY-1,1
CON 63 BINARY MACHINE
IF BINARY,1
CON 99 DECIMAL MACHINE

If BINARY is zero, then BINARY-1 is nonzero, so the CON 63 is assembled. The second
IF has a zero expression, however, so it skips 1 line, the CON 99 statement. Thus, if
BINARY is zero, the above code is identical to

HLBYTE CON 0
CON 63

On the other hand, if BINARY is 1, the CON 63 is skipped and the CON 99 is assembled.
Thus, the assembled code would be

HLBYTE CON 0
CON 99

Similar conditional code could be used in the other few places where an assembler for
a binary MIX machine would differ from an assembler for a decimal MIX machine.

The implementation of a conditional assembly feature such as the above is very
simple. To the one-pass assembler of Chapter 8, it would be necessary only to,

1. Add the new pseudo-instruction to the opcode and give it an opcode type of 7.

2. Add a jump to IFOP to the jump table of the main loop which separates out opcode
types.
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3. Add code to interpret the IF pseudo-instruction by first calling the EXPRESSION
routine. If the value of the expression is nonzero, return control back to the end of
the main loop. Otherwise, evaluate the second expression and skip that many
cards by calling READCARD repetitively. Then return to the end of the main loop.

IFOP ENT1 HLWORD FIRST EXPRESSION ANY VALUE
JMP EXPRESSION
JANZ ENDCASE IF NONZERO, CONTINUE

*
* IF EXPRESSION WAS ZERO, SKIP N CARDS.
* FIRST DETERMINE N, PUT IN I1
*

ENT1 HLADDR SKIP MAX OF 4000 CARDS.
JMP EXPRESSION
STA *+1(0:2)
ENT1 * MOVE A TO I1

SKIPCARDS JMP READCARD
DEC1 1
J1P SKIPCARDS
JMP ENDCASE

*

9.2.3 More sophisticated conditional assembly

The simple form of conditional assembly introduced in the previous section can
easily be introduced into any assembler. However, it is unsatisfactory for a number
of reasons. First, the requirement of providing the number of input cards to skip is,
while simple for the assembler, troublesome for the programmer. The programmer must
carefully count the number of cards to skip. If any changes are made in code which
is conditionally assembled which may increase or decrease the number of cards, the
programmer must remember to change the skip counts on the IF instructions also.

This problem is generally eliminated by introducing a new pseudo-instruction, ENDI.
When an IF pseudo-instruction is encountered and the assembler decides to skip, it
skips cards until it encounters an ENDI pseudo-instruction. If an ENDI is encountered
when the assembler is not skipping due to conditional assembly, it is simply treated as
a comment and ignored.

In addition, the form of the IF pseudo-instruction is generally more complex. Rather
than allow only a test for zero or nonzero, conditional assembly often allows tests for
zero, nonzero, positive, negative, nonpositive, or nonnegative of an expression. These
could be written as

IF Z,expression
IF NZ,expression
IF P,expression
IF N,expression
IF NP,expression
IF NN,expression
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In each case, the expression is evaluated. If the condition is true, then the following
lines are assembled; if the condition is false, the lines which follow, up to and including
the next ENDI, are skipped and treated as comments.

Even more complex conditional assembly forms allow the comparison of two
expressions for equal, not equal, less than, less than or equal, greater than, and
greater than or equal. In addition, it is sometimes possible to test for equality or
nonequality of character strings (generally passed as parameters to macros).

Another type of conditional assembly allows a symbol to be tested for a defined or
undefined characteristic. This is easily done by a simple search of the symbol table, and
is most useful in macros, when a parameter may or may not be defined. For example,
consider a macro to exchange the values of the A and X registers. This can be written
as

AXCH MACR
STA TEMPA
STX TEMPX
LDA TEMPX
LDX TEMPA
JMP *+3

TEMPA CON 0 TEMPORARY SPACE
TEMPX CON 0

ENDM

However, notice that if this macro is ever called twice, the second call will result in the
labels TEMPA and TEMPX being doubly-defined. To avoid this we can write, assuming
that the IFD pseudo-instruction will skip until an ENDI if the symbol is defined

AXCH MACR
STA TEMPA
STX TEMPX
LDA TEMPX
LDX TEMPA
IFD TEMPA
JMP *+3

TEMPA CON 0
TEMPX CON 0

ENDI
ENDM

This macro will not generate the last three lines of code (the JMP and two CONs) if the
symbol TEMPA is defined. This prevents multiply-defined labels from multiple uses of the
macro.

Even more sophisticated pseudo-instructions can be added to an assembler to
control what instructions are generated. These pseudo-instructions can result in only a
minor change to the assembler, or can require additional passes for correct processing.
Although each of these additional features may be very useful, and even necessary in
some cases, they often make the use of such a sophisticated assembler much more
expensive (in both time and memory) than a simpler assembler. The important concept
is that a certain amount of control over what code is generated can be exercised at
assembly time. The assembler itself can make decisions to include or exclude blocks of
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assembly language statements in order to generate more efficient, compact, or useful
machine language programs.

9.3 COMPILERS AND HIGHER LEVEL LANGUAGES

Assemblers are used because programming in machine language is too boring,
dull, and error-prone to be fun or cost-effective. Assemblers allow the programmer to
express the specification of a program in a symbolic rather than a numeric form. This
allows the programmer to create a program in a more convenient form, one closer to
the way in which the algorithm for solving the problem was conceived.

Assembly language is still a very primitive, computer-oriented means of writing
a program. To ease the programmer’s task even more, higher-level languages have
been defined. Algol, Cobol, PL/I, Fortran, Pascal, and Basic are all examples of
higher-level languages. These languages attempt to be more human-oriented than
computer-oriented, and, compared to assembly languages, succeed.

Still, all computer programs must be expressed in machine language in order to be
executed. A compiler is a program which translates from a higher-level programming
language into machine language. (Actually, of course, a compiler, like an assembler,
translates into loader code and then a loader translates this loader code into machine
language.) A compiler is a translator.

A higher-level language program is composed of a sequence of statements. Each
statement corresponds to possibly many machine language (or assembly language)
instructions. This is the major difference between the definition of an assembler
(which is basically a one assembly language statement to one machine language
instruction translator) and a compiler. A compiler may generate many machine language
instructions for a statement in a higher-level language. Also, a program written in a
higher-level language is relatively machine independent. It does not deal with bits,
registers, or addresses, but rather with variables and statements which operate on
these and more complex data structures.

The statements of a higher-level language are specified in two ways. First, each
statement has its own syntax . The syntax of a statement defines the form or forms that
a statement can take. For example, in Fortran the syntax of an assignment statement is

< variable name > = < expression >

The same type of statement in Algol or Pascal has a different form

< variable name > := < expression >

The meaning of these two statements is the same, but the syntax is different. The items
in brackets are syntactic entities, items whose syntax is also defined in the syntactic
definition of a higher-level language.

In addition to syntax, a higher-level language defines for each statement its
semantics, or meaning. The semantics of a statement or other syntactic unit define
what that statement means when it is written in a program. The semantics of the
assignment statement in Fortran are that the value of the expression on the right of
the equal sign should be evaluated and the value of the variable named on the left of
the equal sign is set equal to the value of the expression. (In fact, the semantics of
the assignment statement are considerably more complex due to such things as type
conversions between different types of variables and expressions.)



314 CHAPTER 9. SYSTEMS PROGRAMS

The problem for a compiler is to generate code which, when executed, correctly
reflects the semantics of a program with correct syntax. To do so, a compiler has
great latitude in the type of code it generates. A compiler has complete control over
(and responsibility for) how storage is allocated for variables, how registers are used,
subroutine calling sequences, code generation, and so on.

To compile a program, each statement passes through several phases. First, there
is a lexical phase. This phase groups together characters from the input statement into
variable names, operators, separators, and other lexical entities. One of the important
classes of lexical entities is the class of reserved words or keywords. Keywords are
used in the next phase of a compiler: the syntactic analysis. Syntactic analysis
identifies the type and components of a statement and checks for errors in the form of
the statement. This is also called parsing.

The result of the syntactic analysis determines the input to the semantic phase.
In this phase, further error checking occurs to ensure that proper types of variables
and expressions are used in that statement. Then the machine code to be executed
is generated, and the compiler continues with the next statement. Code optimization
routines may go back over the generated code and try to improve it by better register
allocation and use of instructions.

Many different techniques are used to compile programs. The older languages,
like Cobol and Fortran, generally use ad hoc techniques which make heavy use of
the keywords in the language. In Fortran, for example, every statement except the
assignment statement starts with a keyword. Thus, a compiler need only check the first
few characters of a statement. If it is a keyword, then the type of the statement has
been identified; if it is not a keyword, then the statement is an assignment statement,
and again its type has been identified. Once the type of the statement is identified, the
expected syntax of the remainder of the statement is known, and can be used to direct
the parsing. Basic is another language which requires each statement to begin with a
keyword.

Other languages have been designed in such a way that special compiling
techniques can be used with them. The compilers for these languages determine
what code to generate from the sequence of lexical entities which the compiler sees.
These compilers are called syntax directed compilers. Algol and Pascal are examples
of these languages.

Compiling techniques and programming languages are subjects for study in
themselves. We do not consider them in this book. The basic concepts are the same
as with assemblers: the input program is read and an equivalent program in loader
format is output, along with a listing of the input program. Some compilers are one-pass,
load-and-go systems, while others take multiple passes to produce their output loader
code. (Rumor has it that there exists a twenty-pass Cobol compiler.) Compilers allow
programmers to concentrate more on the problem to be solved, instead of having to
constantly consider the idiosyncrasies of the computer on which the problem is to be
solved.

The books by Gries (1971) and Aho and Ullman (1973) are excellent and
comprehensive treatments of how to write compilers. Less formal treatments are
in Donovan (1972) and Graham (1977).
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9.4 INTERPRETERS

All of the systems programs we have examined so far could be classified as
translators, in that they only transform a program from one form to another; they
do not add anything to the program which was not there before. A different class
of programs is the class of interpreters. Where a translator only translates from one
language to another, an interpreter actually executes the program. Most often an
interpreter executes the machine language for some computer, or sometimes executes
a higher-level language directly.

There are many reasons for using an interpreter. For a machine language interpreter,
the machine which is being simulated may not have been built yet. Having a simulator
or interpreter available allows the basic software (loaders, assemblers, compilers) to be
written at the same time that the machine is being built. This allows the computer to be
useful for programming months earlier than if software development had to wait until
the hardware was available.

Another use for interpreters is to allow the evaluation of a proposed computer design
before committing the resources needed to actually build one. If the design is not easy
to program, or does not perform well on typical programs, it may need to be redesigned
or discarded altogether.

Perhaps the largest use of interpreters, however, is for education. Since, as of
this writing, there are no real MIX machines, the “computer” which you have been
programming is most likely a simulator which interprets the MIX instruction set. The
MIX machine is used because it is typical of a number of real machines (as we shall
see in Chapter 10), but does not have the hard-to-explain properties of real computers
that are caused by the realities of engineering.

In addition, it is possible to add to an interpreter features which make the debugging
of programs much easier than debugging on a real machine. Routines which dump
simulated memory when an error is found, that trace the execution of certain instructions
by printing the program counter, instruction being executed, and contents of the affected
registers and memory locations, that stop the program when certain conditions occur
(program counter equal to one of a set of values, a given memory location is read from
or written to, a certain opcode is encountered), or that can even print the instructions
which were executed just before any of the above conditions occurred; all these features
can be programmed into an interpreter, but would be difficult to add to the hardware of
a real computer. Also, these features are really only needed when a program is being
debugged, not when it is being run in a production environment.

Writing an interpreter is relatively simple. Knuth (1968), in Volume 1 of his The
Art of Computer Programming presents the basic idea by presenting an interpreter for
MIX, written in MIXAL. The basic data structures are an array which is used to simulate
MIX memory, and variables which simulate the MIX registers. The general flow of the
interpreter is to read an instruction from memory, decode the instruction according
to its opcode, and then branch to short code segments which simulate each type of
instruction in the MIX instruction set. If you have an opportunity, review Knuth’s program.
It is an example of the work of a master of the art of computer programming.
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9.5 OPERATING SYSTEMS

You may have noticed that the number of programs which have been discussed
is getting large, and we have not begun to discuss programs for solving differential
equations, for playing chess, for computing your tax returns, for learning French, for
compiling a list of all distinct words in Shakespeare’s plays, and so on. As more and
more programs are written and the procedure for executing them becomes more and
more varied, it is necessary to write a program to organize and control the use of the
computer. This program is called an operating system. An operating system is a large
program, or collection of programs, whose only purpose is to make the use of the
computer more convenient and more efficient.

The convenience occurs in many ways. The operating system performs services for
the user of the computer. Most operating systems do all the I/O for their users. The I/O
is automatically buffered and blocked to keep the I/O devices as busy as possible while
relieving the user from having to write the code for this task for each new program.

In addition, this I/O is device-independent . User programs perform I/O on named
collections of data called files. A file generally looks to the user like a magnetic tape; it
can be read, written, or rewound. The physical implementation may be a tape, or a card
reader (for an input only file), or a line printer (for an output only file), or magnetic disk
or drum. The user need not worry about which device his information is stored on, nor
(for disk and drum) where on the device it is. The operating system maintains a symbol
table, called a file directory , which maps symbolic file names onto numeric device unit
numbers and (for disk and drum) track and sector numbers.

Another convenience offered to the user of an operating system is control cards.
Without an operating system, an assembly language programmer must first load the
bootstrap loader, then load the absolute loader, then the assembler, then the relocatable
loader, then the assembled program. This can take a lot of work even for very simple
programs. An operating system relieves the programmer of most of this work by
defining a control card language which allows the most commonly requested uses of
the computer to be specified with only one (or a few) control cards. For example, the
control card

MIXAL.

might cause the MIXAL assembler to be loaded and begin reading a program from the
card reader, printing a listing on the line printer and putting loader code on a file called
RUN. Then the control card

RUN.

could load and begin execution of the assembled program. The control card interpreter
is the part of the operating system which reads the control cards and causes the
computer to perform the correct actions.

For small computers, this may be all the operating system which is needed. The
operating system may be either a batch system, if it accepts its input from a card reader,
or an interactive system, if it accepts its input from a terminal like a typewriter or CRT.
For large computers, however, the operating systems become much more complex in
an effort to use the computer as efficiently as possible. Typically, the cost of a large
computer is $200 to $500 an hour. (Cost of the purchase price of the system divided
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by its expected lifetime plus operating expenses of power, paper, programmers, and
people.)

To justify such large costs, the computer should be busy all the time. To increase
the efficiency, such machines are often multiprogrammed ; that is, several programs
are executed together for short periods of time, to share the computer. The main
idea is to execute one program until it has to wait for I/O, then, rather than sitting
idly by, the computer begins to execute another program, until the I/O for the first
program is complete; then it switches back to the first program. Later it will continue the
second program where it was interrupted. The computer is so fast (and I/O is so slow)
that often four to eight programs can be executed this way without any one program
being executed any slower than if it had the computer to itself. An extreme case of
this is a time-sharing system, where possibly 50 people, sitting at typewriter or CRT
terminals, each give the computer commands to execute and each think that they have
the computer all to themselves.

Like the subject of compilers, the subject of operating systems is a field of study in
itself. A great deal of work has been and is being done concerning the services which
an operating system should provide, how it should be designed, and how it should be
implemented. The introductory texts by Madnick and Donovan (1974) and Tsichritzis
and Bernstein (1974) have good treatments of general operating system problems and
solutions. Wilkes (1968) concentrates on time-sharing systems.

9.6 OTHER SYSTEMS PROGRAMS

The major systems for a computer system are the loaders, assemblers, compilers
and operating systems, but there are more.

A text editor is a system program for manipulating files of text. The text files may be
programs, data, output, or any other set of textual material which is machine-readable.
Typically, these programs are written for time-sharing systems, although a few have
been written for batch systems. The objective of a text editor is to allow a user of the
computer who has some text file to modify that file easily without the necessity of using
cards.

A text editor is an interpreter. It inputs commands from the user and executes
them, modifying the text file as instructed. Text editors allow characters and lines to be
inserted, deleted, replaced, searched for, substituted for, and moved about in the file.
Some editors allow macros of the basic editing commands to be defined and called
allowing very complex editing functions to be done by a single macro command. A
good text editor in a time-sharing system will allow programs to be written, compiled,
debugged, corrected, and documented entirely in the computer.

Much of the use of text editors is for the writing of programs, but some uses are
for simple text such as papers and books. This book was written, revised, and edited
entirely on a computer. This allowed changes to be easily made as necessary. To
assure an attractive appearance, another program, a text formatter was used. The
text formatter read an input text file and produced a nicely formatted output file. The
output file had proper indention and spacing, centered titles, automatic line counting for
paging, and right-justification. Right-justification is the property of having all complete
lines ending evenly at the right margin. This is fairly difficult to do on a typewriter but
can be easily coded in a computer program with a little character manipulation.
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Text formatters are generally driven by commands embedded in the text to be
formatted. These commands control spacing, margins, paging, paragraphing, indenting,
centering, underlining, and so on. The more sophisticated text formatters allow macros
of commands to be defined and used and some allow conditional formatting.

There are many more, useful systems programs. Most of these are not often treated
in printed sources, but mainly are developed as needed for each new system. The book
by Kernighan and Plauger (1976) is probably the best published treatment of systems
programs and how they should be designed and coded.

9.7 SYSTEMS PROGRAMMING LANGUAGES

The vast majority of systems programs are written in assembly language. There are
many reasons for this. One reason is simply historical – systems programs have always
been written in assembly language – but the primary reasons are function and speed.
A higher-level language, such as Fortran, generally does not allow the programmer
to express easily those functions which are common to systems programs, such as
character manipulation or the use of absolute addresses. Higher-level languages
are generally meant to be machine-independent, preventing the systems programmer
from exploiting the particular features of the particular computer being used. This is
especially critical in interrupt handling and I/O instructions.

Just as important is the fact that no compiler can generate code which is better than
the code that the best assembly language programmer can write. Consider simply that
any code which a compiler can produce can also be written by a programmer, but the
programmer may be able to apply local or global optimizations to improve the speed
of the code or to reduce its size. On many small computers, like MIX, the problem of
limited memory space may be quite severe, and this is a constraint that compilers tend
to be unable to consider.

There are also arguments against using assembly language. First, assembly
language demands great attention to detail, which complicates the programming
process. This makes assembly language programs difficult to write, debug, and
understand. It is particularly difficult to try to read an assembly language program
which has been written by another programmer. Second, assembly language is specific
to a particular machine, which means that programs written in assembly language for
one computer cannot be transported to a different computer; they must be completely
rewritten.

Finally, although compiler-generated code may not be better than the best assembly
language code produced by the best assembly language programmers, all programmers
are not assembly language experts; most are average programmers writing average
code. Compilers can often generate reasonably good, average code. Further, the real
determining factor in efficient programming is not the coding but the algorithm design.
A good algorithm, with average code, will far outperform a poor algorithm, with excellent
code. For example, a binary search on a large table will take far less time than a linear
search, no matter how well the linear search is coded.

These considerations have resulted in the development of a number of new
languages, called systems programming languages (or machine-oriented languages,
or systems implementation languages). These languages lie between the low-level
assembly languages and the higher-level procedure-oriented languages. One early
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language was PL360 for the IBM 360 (and IBM 370) computers. It was designed by
Wirth (1968) to include the advantages of both assembly language (in terms of control
over generated code) and higher-level languages (in terms of ease of reading and
coding). PL360 allows a program to be written in a syntax similar to PL/I or Algol, but
allows anything which can be written in assembly language to be written in PL360.

Many other systems programming languages have been developed, including some,
like the SIMPL language of Basili and Turner (1975) which are reasonably transportable;
that is, they can be used on several different computers. A systems programming
language exists for many current computers, so that many systems programs need no
longer be written in assembly language. Knuth (1968) mentions PL/MIX, a systems
programming language for the MIX computer which will be described in Chapter 9 of
his set of books, The Art of Computer Programming.

9.8 SUMMARY

The first pieces of system software which are developed for a computer are the
loaders and assemblers. As the use of a computer grows, the sophistication of the
software generally does also. A macro assembler with conditional assembly features can
make assembly language programming easier. Text editors, compilers, text formatters,
and operating systems are programs which help the user of the computer to accomplish
useful work without being forced to write assembly language programs. Systems
programming languages can give the programmer the power of an assembly language
but with the syntax of a higher-level language.

EXERCISES

1. What is the primary difference between a subroutine and a macro? Give
an advantage of subroutines over macros and an advantage of macros over
subroutines.

2. A macro

(a) is an open subroutine.
(b) is an inline subroutine.
(c) is a closed subroutine.
(d) is a reentrant subroutine.
(e) passes parameters by value.
(f) passes parameters by name.
(g) passes parameters by address.

3. Assume that we have a three-pass macro assembler. What is the most likely
purpose for each pass?

4. Why isn’t a macro checked for errors when it is first defined?

5. Some macro generators permit assembly language operations to be redefined as
macros. How could this feature be used advantageously in debugging?
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6. If an assembler allows recursive macro calls, what else must it allow? (For
example: Nested macro definitions? Conditional assembly? Forward references
in expressions? Default parameters?)

7. Explain how macros are implemented in an assembler. What new data structures
are needed?

8. What is the name of the system software which,

(a) makes one computer act like another?

(b) translates Fortran into machine language?

(c) translates MIXAL into machine language?

(d) coordinates and controls the entire computer and its use?

9. What is an interpreter?

10. Some systems have a form of conditional loading (similar to conditional assembly)
that works like this: Input to the loader is a collection of segments with defined
entry points and externals (as discussed in Chapter 7). In addition, associated
with each segment is a special bit. If this bit is on, then loading proceeds as
normal. If this bit is off, then this segment is loaded only if there is a reference to
an entry point of this segment by some other segment which is loaded.

This allows library subroutines to be included, and if they are never used, they
will not be loaded into memory. For example, if the segment for a SQRT function is
marked to be conditionally loaded, it will be loaded only if it is used by a segment
which is loaded.

Notice that loading a segment which was marked for conditional loading may
require that other conditionally loaded segments be loaded also.

How many passes would a loader need to be to implement conditional loading?

11. What are some advantages of higher-level languages over assembly languages?
Of assembly languages over higher-level languages? How do systems
programming languages fit in with these other languages?

12. Are there reserved words in MIXAL?

13. Why would programs be run on an interpreter rather than a real computer?

14. What is the purpose of control cards?

15. What is device-independent I/O? What is a file?

16. Why can’t a compiler generate better code than an assembly language
programmer? How does a systems programming language approach this
problem?
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SOME COMPUTER ARCHITECTURES

As was admitted in the last chapter, there is no real MIX computer. MIX computers
are simulated on other machines. However, the MIX computer is very similar to many
existing computers. To illustrate this, we present here a description of some of the more
common computers in use today. We do not attempt to teach you how to program in the
assembly language of each of these computers; we present them for two reasons. First,
after your extensive work with MIX, and the brief description of the computer given here,
it should be obvious that, given about a week to familiarize yourself with a reference
manual describing the hardware instruction set and the assembly language, you could
be programming on any of these computers as well as you currently program for the
MIX computer. Second, it is unlikely that you will only work on one computer in your life.
Thus, this chapter will give you a familiarity with the different types of computers which
currently exist. This will allow you to move easily from machine to machine, including
new designs or machines which you have not seen before.

We begin with a brief history and survey of recent computers.

10.1 A HISTORY OF COMPUTERS IN THE UNITED STATES

The first commercial computer sold in the United States was the Univac I in 1951.
The Univac I was produced by the Univac division of the Remington Rand Corporation
(later to become Sperry Rand). The Univac I was a very sophisticated machine, for
its time, and established Univac as the leader in the computer market. The Univac I
was followed up by the Univac II in 1957 and the Univac III in 1960. These were all
commercial machines aimed towards business data processing.

Univac was also building computers for the scientific research market. In 1952,
the Univac 1103 was built, followed later by the 1107. These were early vacuum tube
computers, and were eventually replaced by the larger, faster 1108 and 1106 in 1964. In
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1970, the 1110 was announced. The Univac 1108 and 1110 are very powerful scientific
computers which normally execute under the EXEC-8 operating system.

Univac was not the only computer manufacturer in the early 1950s, however. The
International Business Machines Corporation (IBM) had for a long time sold punched
card equipment as well as general office equipment. Their early 701 (1952) computer
was later replaced by the 704 (1954) and the 709 (1957). These vacuum tube computers
were superseded by the 7070 and the 7090 (1958) and 7094 (1962). The 7090 and
7094 computers were very popular and considered the best scientific computers of
their day. The 1401 (1959) and 1410 (1960) were very successful for commercial data
processing problems.

IBM, by 1960, could see the tremendous market which was developing for computers
and computer services. They could also see that there was a wide range of uses for
computers, so that one computer would not be able to meet the diverse demands of
small businesses and large scientific computing. But each different computer required
its own hardware, maintenance, and software. To try to limit the cost of producing
different software and hardware for different computers, IBM in 1964 announced its
System 360 family of computers. Originally six models (30, 40, 50, 60, 62, 70) were
announced to handle the range of computing problems from small systems (the model
30), through medium sized systems (models 40 and 50), and on to larger systems (the
models 60, 62, and 70). The entire family utilized the same hardware, architecture,
and instruction set and I/O devices (with some exceptions). Any program which was
programmed for one model could also be used on another model. Thus, IBM could
provide excellent support for a large range of computing problems with one family of
internally compatible computers.

This approach was immensely successful, with the 360 establishing itself as the
major computer on the market. Some models were dropped and others added as
technology and demand changed, but the basic architecture remained the same. A
user could, if his workload increased, move up from his current model to the next larger
model and still retain his existing software and I/O devices. Compilers, assemblers,
loaders, and the operating systems (DOS/360 and OS/360) all run on all of the models
(more or less). The larger models were simply faster and could support more services
than the smaller models. Eventually fourteen models were produced (20, 22, 25, 30,
40, 44, 50, 65, 67, 75, 85, 91, 95, 195).

In 1970, IBM announced their 370 series (models 115, 125, 135, 138, 145, 148, 155,
158, 165, 168), which represented an evolutionary compatible improvement over the
360 family. Some problems of the 360 design were corrected, and some new features
added. The technology of construction was changed so that the 370s are faster, but
from an architectural point of view the 370s are simply a continuation of the 360 line.

Although the basic idea of using one family of computers to span the range of
demand for computers is reasonable, economic realities make it nearly impossible to
achieve in practice. The major problem is at the low end, where very simple, inexpensive
systems are needed by small businesses. The IBM System/3 (1969) is aimed at this
market and has been relatively successful. Recently the System/32 has been introduced
as an even smaller system, aimed at situations where there is no resident programming
staff (like the typical office). Similar demands for small to medium scientific computers
resulted in the IBM 1620 and its successor the IBM 1130. The IBM 1800 and the follow-
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on System/1 were also aimed at process control and scientific laboratory requirements.
The Series/1 (1977) is aimed at this market too.

At the other end of the computer market are the users of large scientific computers.
The 370/168 is IBM’s main machine in this area. One of the principal designers of the
360, Gene Amdahl, left IBM after the announcement of the 370 series. He formed
his own company which is now producing its own computer, the Amdahl 470V/6. The
Amdahl computer uses the same instruction set as the IBM 360/370 series (thus
allowing software developed for the IBM computers to be run on the Amdahl computer),
but is about twice as fast as the IBM 370/168 at a slightly lower price (from $4 million to
$6 million, depending on the amount of memory wanted).

The forming of a competing company by ex-employees of a company is not unheard
of in the computer field. As early as 1957, a group of Univac employees left Univac
and formed their own company, Control Data Corporation (CDC). Their first computer
was the CDC 1604 (1960), followed by the CDC 3600 in 1963. These were medium-
sized machines. In 1964, however, CDC announced their CDC 6600 computer, the
largest and fastest computer system then available. The 6600 (and other 6000 series
machines, the 6400, 6500, and 6700) was aimed at the large scientific computer
market and particularly the need for massive computing power of the Atomic Energy
Commission. In 1968, the 7600, successor to the 6600 was announced. The 7600
was 7 to 8 times faster (20 million instructions per second) than the 6600 and generally
cleaned up some of the design problems of the 6600. The 6000 and 7000 series were
renamed the Cyber 70 series in 1970, but this was mainly a marketing move.

In 1972, the chief designer of the CDC 6600, Seymour Cray, left CDC to form his own
company (backed in part by CDC and Fairchild, a leading semiconductor component
manufacturer). Cray Research, Inc., has now produced the CRAY-1 computer, a very
large powerful scientific computer. Unlike the Amdahl computer, however, which is
identical to IBM’s 370 in architecture, the CRAY machine has an architecture and
instruction set which, although vaguely similar, differs from the CDC computers. Thus,
entirely new software will need to be developed.

Many other companies also manufacture computers. The Burroughs Corporation
has built computers for many years. Their most popular large machine was the
B5500, a successor to the B5000. The B5500 was succeeded by the larger, newer
B6500, B7500, and B8500 computers. All of these machines were designed with
both hardware and software in mind and represent architecturally different concepts
from the standard register machines. The Burroughs machines are stack machines.
A stack machine is particularly appropriate for executing code written in a high level
language like Algol, so that no assembly language programming need be done on the
Burroughs machines; there are no assemblers. All programming is done in a higher-
level language, or an intermediate language called a systems programming language.
Even the operating system, MCP (Master Control Program), is written in the systems
programming language.

Univac, IBM, and Burroughs are all companies which have entered the computer
field from the business side of computing, having been involved in office machines,
forms, and service before producing computing equipment. The other side is, of course,
the electronics field. General Electric, RCA, and Honeywell were all well-established
electronics firms before entering the computer field.
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General Electric produced three lines of computers: the 200 series, 400 series, and
600 series. Some significant software was developed for these systems. The Basic
programming language was originally developed at Dartmouth College for a GE 235
computer, and has since spread to almost all computer systems. The 600 series, the
larger computers in GE’s product line, gave rise to the GECOS operating systems and
the MULTICS operating system of MIT’s Project MAC. However, GE’s computer division
consistently lost money, and so in 1970 GE withdrew from the commercial computer
manufacturing market. Its computer division was sold to Honeywell, which has merged
it into its own computer operations.

RCA was an early pioneer in computer technology, but never seemed to be able
to take advantage of this position. Its major computer line, the Spectra 70 series,
was compatible with the IBM System 360 family, having the same architecture and
instruction set. Although there were some price/performance advantages to some of
the RCA models, sales did not go well, and in 1972 RCA sold its computer division to
Univac.

A more complicated history starts with the Scientific Data Systems (SDS) computer
firm. This California-based company produced two lines of computers. The 900 series
started in 1962 with the 910 and 920, and continued with the 930, 940, and 945 models.
These computers were used for some of the early time-sharing systems. In 1965, to
compete with IBM’s System 360, SDS produced the Sigma line of computers. The
Sigma 2 and Sigma 7 were superseded by the Sigma 3 and Sigma 5. The users of
these computers thought highly of their design as medium-sized scientific computers.

In 1969, Xerox Corporation bought SDS, changing its name to Xerox Data Systems
(XDS), in an attempt to enter the computer field. New computer models were introduced
in 1973, the Xerox 530 to replace the Sigma 3 and the 550 and 560 to replace the Sigma
5. However, these did not sell well, and in 1975 Xerox withdrew from the computer field,
selling its computer division to Honeywell.

The major problem in the medium and large computer market is, of course,
competing with IBM. The most successful strategies have been to concentrate on
a particular segment of the computer field, and not try to cover the entire market. This
has been particularly successful in the minicomputer market where computers are used
as laboratory and control devices.

The Digital Equipment Corporation (DEC), is the IBM of the minicomputer market.
One of its most successful computers is the PDP-8 (1965). This small machine is
extremely limited, but also very inexpensive. (Originally under $10,000 and now around
$2,000). It has become, and remains, very popular. The PDP-11 (1969) has also
become a very popular computer. These smaller computers complement the DEC-10,
a large time-sharing computer whose roots lie in the PDP-10 and PDP-6 computers.

DEC is not the only minicomputer manufacturer, however; far from it. Data General
(DG) started in 1968, by a group of ex-DEC employees, produces the NOVA line of
minicomputers. Hewlett-Packard’s 2116 developed in 1967 to compete with the PDP-8,
was followed by the HP 2100 and HP 21MX computers. The Interdata Corporation’s 7/32
computer is architecturally similar to an IBM 360. Minicomputers are also produced by
General Automation, Varian, Prime, Modular Computer Systems, Computer Automation,
Harris, Datum, Cincinnati Milacron, Lockheed Electronics, Tandem Computers, MITS,
Texas Instruments, Raytheon Data Systems, and many more.
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Even smaller computers, the microcomputers, are now being produced. The heart of
these systems is a microprocessor which puts all the functions of a central processing
unit on just one or a few semiconductor chips. The Intel 8080 and Motorola 6800
microprocessors seem to be the two most popular micro-processors. The Intersil
IM6100 executes the PDP-8 instruction set, and the PDP-11 instruction set is available
in an LSI-11 microprocessor. Microprocessors are being used in many applications
where simple control functions can be easily programmed, and also by a growing
number of people who build and program their own computers as a hobby.

This discussion gives you some familiarity with the names of common computers.
Now, we briefly present the architecture of a selected set of common computers to give
you a better understanding of their structure.

10.2 THE PDP-8

The PDP-8 is a small but easy to use and simple computer. It was first sold in 1965.
Since then several versions have been manufactured as new hardware technology
became available. The PDP-8/I, PDP-8/E, PDP-8/S, PDP-8/L and PDP-8/A are all
models of this same computer. The PDP-8 is a product of the Digital Equipment
Corporation. It is mainly used in dedicated data collecting or control functions, like
running steel mills, medical laboratory experiments, or monitoring air pollution. The
PDP-8/A was available with a CRT terminal for about $5,000.

10.2.1 Memory

The PDP-8 is a 12-bit binary machine. It uses two’s complement arithmetic. With
12-bit addresses, up to 4096 words of memory can be addressed, so most PDP-8’s
have 4K of main memory. There are two registers in the PDP-8, the A register (a 12-bit
accumulator) and the Link bit. There is also a 12-bit program counter, but this is not
directly accessible to the programmer. A block diagram of the PDP-8 is shown in Figure
10.2.

10.2.2 Instruction set

The PDP-8 has eight instructions. These can be grouped into three classes:

1. memory reference instructions
2. operate instruction
3. input-output instruction

For eight instructions, a 3-bit opcode is needed. In a 12-bit memory reference instruction,
this leaves 9 bits to specify a memory address. But 9 bits will address only 512 words,
so special addressing techniques must be used.

One technique is indirect addressing. One bit associated with each memory
reference instruction specifies whether the address in the instruction is (0) the address
of the memory location wanted (no indirection), or (1) the address of the address of
the memory location (indirect addressing). Indirect addressing is at most one level. In
order to specify the entire 4K memory, all 12 bits of a memory location are needed, so
there is no bit left over in a 12-bit word to indicate if further indirection is needed.
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This leaves us with eight bits in the instruction with which to specify an address.
One more bit is used to specify a page. Memory is considered to be split into 32 pages
of 128 words. The first page is addresses 0000 to 0177 (octal), the next page is from
0200 to 0377 (octal), 0400 to 0577 (octal), and so forth. In effect, a 12-bit address is
broken into two parts: a 5-bit page number and a 7-bit location within a page.

Each memory reference instruction has one bit which is used to specify what
page the address is on. This bit specifies that the address is either (0) on the zero
page (locations 0000 to 0177) or (1) on the current page (same page as the current
instruction). The remaining seven bits in the instruction specify the location in the page.
This scheme allows certain locations (zero page) to be accessed by any instruction
(allowing global variables), while the current page can be used to store local variables.

The memory reference instruction format is given in Figure 10.3. To interpret the
instruction at location P, the Z/C bit is examined. If Z/C is zero, the high-order five bits
of the memory address are zero (zero page); if Z/C is one, the high order five bits of
the memory address are the same as the high order 5 bits of the address P (current
page). The low-order seven bits are the address field of the instruction. This specifies
a 12-bit memory address. Now if the D/I bit is zero, then this is the effective address
(direct addressing); if the D/I bit is one, then the contents of the memory address
are fetched, and these contents are the effective address (indirect addressing). The
effective address is used in all memory reference instructions.

FIGURE 10.1 A PDP-8/A computer, the most recent version of the very successful
PDP-8 architecture. The two boards in the foreground are the central processor (left)
and the memory (right). (Photo courtesy of Digital Equipment Corporation.)
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FIGURE 10.2 A block diagram of the PDP-8. All registers except the Link bit are 12
bits.

FIGURE 10.3 Memory reference instruction format (PDP-8)

There are six memory reference instructions:

Instruction Mnemonic Opcode Time
Logical AND AND 0 2
Two’s complement add TAD 1 2
Increment and skip if zero ISZ 2 2
Deposit and clear accumulator DCA 3 2
Jump to subroutine JMS 4 2
Jump JMP 5 1

The time for each instruction is the number of memory cycles needed. The actual
time varies from 1.5 to 8 microseconds per memory cycle, depending upon the model.
Indirect addressing adds another memory cycle, of course.

In more detail, the instructions are
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AND The contents of the effective address are ANDed with the A register. ANDing
is done bitwise. The result is left in the A register; memory is not changed.

TAD The contents of the effective address are added to the A register. Addition
is 12-bit, two’s complement integer arithmetic. The result is left in the A
register; memory is not changed. A carry out of the high-order bit (sign bit)
will complement the Link bit.

ISZ The contents of the effective address are incremented by one and put back
in the same memory location. If the result of the increment is zero, the next
instruction is skipped (i.e., the program counter is incremented by 2, rather
than 1).

DCA Store the contents of the A register in the effective address and clear the A
register (i.e., set A register to zero). The original contents of the memory
location are lost.

JMS The address of the next location (program counter plus one) is stored at the
effective address and the program counter is set to the effective address plus
one.

JMP The program counter is set to the effective address.

These instructions are a little different, but very similar to some instructions in the
MIX machine. TAD is addition to the A register. DCA is a store into memory. AND is used
for masking. JMP allows transfer of control. JMS stores the return address in the first
word of the subroutine and starts execution at the next location; a JMP indirect through
the entry point will return to the main program. The ISZ instruction is used for loops.
The negative of the number of loop iterations wanted is stored in memory some place,
then the ISZ instruction counts each loop. If the count is nonzero, the next instruction (a
JMP to start of loop) is executed; when count is zero, we skip over the JMP and continue.

For example, to multiply the A register by 10, (where X has -10, and Y is a temporary)

DCA Y / STORE A IN Y TO CLEAR IT
TAD Y / ADD OLD VALUE FROM Y TEN TIMES
ISZ X / X STARTS WITH NEGATIVE TEN
JMP *-2 / REPEAT JUMP BACK TEN TIMES
... ... / A REGISTER NOW HAS TEN TIMES OLD A

There are still a large number of things we want to do as programmers. The Operate
instruction is a special instruction which allows for many different functions. These
functions are encoded in a very few bits. The operate instruction specifies operations
which affect only the A register, Link bit, and program counter. Thus, the space used in
memory reference instructions for specifying a memory address can be used for other
purposes. There are two formats for the operate instruction; these are called group 1
and group 2 operate instructions. Bit 8 distinguishes between these two groups. The
instruction format is shown in Figure 10.4.

The effect of the operate instruction is determined by which of the subinstructions
are selected. Each subinstruction is selected by setting the corresponding bit to one.
The subinstructions are:
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FIGURE 10.4 Format of the operate instruction of the PDP-8.

CLA Clear the A register; set it to zero.
CLL Clear the Link bit.
CMA Complement the A register (bit by bit, change 1 to 0 and 0 to 1).
CML Complement the Link bit.
RAR Rotate the A register right (one bit if bit 1 of the instruction is zero; two bits if

bit 1 of the instruction is one). A rotate is a circular shift of the A register and
Link bit. The Link bit is shifted into bit 11 of the A register, and bit 0 of the A
register is shifted into the Link bit.

RAL Rotate the A register left. Rotate one bit if bit 1 of the instruction is zero; two
bits if bit 1 of the instruction is one.

RTR Special mnemonic for rotating two bits right (sets bit 1 in the instruction).
RTL Special mnemonic for rotating two bits left.
IAC Add 1 to the A register.
SMA Skip on Minus A. If the A register is negative, skip the next instruction.
SZA Skip on Zero A. If the A register is zero, skip the next instruction.
SNL Skip on Nonzero Link. If the Link bit is one, skip the next instruction.
RSS Reverse Skip Sense. If this bit is one, the SMA, SZA, and SNL subinstructions

will skip on the opposite condition. That is, SMA skips on positive or zero, SZA
skips on nonzero, and SNL skips if the Link is zero.

OSR OR from the Switch Register. The contents of the switch register on the console
are ORed into the A register.

HLT Halt.
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These subinstructions can be combined independently of each other to form more
complicated instructions. Thus,

CLA Clear the A register.
CLA CLL Clear both the A register and the Link.
CLA CMA Clear the A register, then complement (set the A register to all ones).
CMA IAC Complement and add 1 (two’s complement).
CLL RAL Clear Link; rotate one place left (multiply the A register by two; put sign

bit in Link).
SMA SZA Skip if the A register is less than or equal to zero.
CLA SZA First, test if A is zero or not. Then clear A. If A was zero, skip next

instruction.

This last example points out that the order in which the subinstructions are executed
is very important. The PDP-8 interprets these instructions for group 1 as follows:

1. CLA and CLL (if selected of course)
2. CMA and CML
3. IAC
4. RAR, RAL, RTR, and RTL

For group 2,

1. Test SMA, SZA, SNL. If any of these are selected and the condition is true, set the
Skip flag. If all selected conditions are false, clear the Skip flag. (If none are
selected, the Skip flag is cleared.)

2. If RSS is selected, complement the Skip flag.
3. CLA
4. OSR
5. HLT

Notice that subinstructions can only be selected from one group, group 1 or group 2.
These different groups cannot be combined in one instruction.

Possible combinations are a subset of

CLA, CLL, CMA, CML, IAC, (RAR, RAL, RTR, or RTL)

or

SMA, SZA, SNL, RSS, CLA, OSR, HLT

Any subset of the instructions may be selected, but only one of the RAR, RAL, RTR, or
RTL subinstructions may be selected per operate instruction.

Bit 0 of a group 2 operate instruction is always zero. Setting this bit to one (leaving
bits 11, 10, 9, and 8 one) specifies an additional set of instructions which are executed
by an Extended Arithmetic Element (EAE) for doing multiplies, divides, and shifts. The
EAE is an optional feature of the PDP-8 (and costs extra).

10.2.3 Assembly language

Several assembly languages for the PDP-8 exist. One is the PAL-III assembler. It
is extremely simple, since the assembler must run on such a small computer. Most
assembly language statements are of the form:
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label, opcode [I] operand / comments

Any field may be omitted. A label, if it occurs, is the first symbol on the line and is
followed by a comma. Symbols can be up to six characters long, must start with a
letter, and cannot be opcodes or the letter I. The opcodes are any of the mnemonics
presented in the last section plus a few extras. Additional mnemonic instructions
have been added to the assembler for commonly used combinations of the operate
instruction.

NOP No instructions selected; no operation
SPA SMA RSS (Skip on Positive A register)
SNA SZA RSS (Skip on Nonzero A register)
SZL SNL RSS (Skip on Zero Link)
SKP RSS (Always skip)
CIA CMA IAC (Complement and Increment A register)
LAS CLA OSR (Load A register from Switch Register)
STL CLL CML (Set Link)

Some mnemonics are also added for common I/O instructions and EAE instructions.
Comments are indicated by the slash and continue to the end of the card. Indirect

addressing is indicated by the letter I. The symbol “.” (period) refers to the value of the
location counter. Fields can be either symbols or octal numbers or the period.

Only two pseudo-instructions are recognized. The ORIG function in MIX is
accomplished in the PDP-8 by an assembly language statement of the form,

*nnnn

where nnnn is an octal number. This resets the value of the location counter to nnnn.
The END function of MIX is simply a card with a $ on it for PAL-III. Constants can be
defined by omitting an opcode, as

C100, 144 / CONSTANT 100

Remember that all constants are octal. There are no literals, local symbols, character
strings (ALF), or EQUs.

The PAL-III assembler is a two-pass assembler (or three-pass if you want a listing).
Only one symbol table is used, including opcodes and user symbols into this one table.
(This is why you cannot use I or mnemonics for labels). The assembly language is
admittedly very simple, but even so, it is an improvement over machine language and
has enough features to allow reasonable assembly language programs to be written.

10.2.4 Programming techniques

Even though there are very few instructions on the PDP-8, there are enough. Below
we list some of the fundamental programming techniques.

Loading

One major obvious lack is the absence of a load instruction. Loading the A register
is done by first clearing the A register and then adding the storage location to be loaded.
For example, to load the A register with the contents of location X, either
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DCA some place
TAD X

or

CLA
TAD X

Subtraction

Subtraction is done by complementing and adding. To subtract Y from X, and leave
the difference in Z

CLA / A IS ZERO
TAD Y / 0 + Y = Y
CMA IAC / -Y
TAD X / X - Y
DCA Z / Z = X - Y, A = 0

To subtract X from the A register can be done in two ways: (1) simple

DCA TEMP / SAVE A REGISTER
TAD X / X
CMA IAC / -X
TAD TEMP / A - X

or (2) clever

CMA IAC / -A
TAD X / X - A
CMA IAC / A - X

Comparisons

To compare two numbers X and Y, we use the old “subtract and compare difference
to zero” trick.

CLA
TAD Y / A = Y
CMA IAC / A = -Y
TAD X / X - Y
SNA
JMP EQUAL / X - Y = 0, X = Y
SMA
JMP GREATER / X - Y > 0, X > Y
JMP LESS / X - Y < 0, X < Y
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Loops

The ISZ instruction is the easy way to execute a loop. For example to search a list
of numbers starting at location X, for one equal to the A register with the length of the
list in the variable N

DCA TEMP / SAVE A
TAD N
CMA IAC / -N FOR ISZ
DCA LOOPN

/
LOOP, TAD X

CMA IAC / -X
TAD TEMP / A - X
SNA CLA / SKIP IF NOT EQUAL, CLEAR A
JMP FOUND / FOUND IT
ISZ LOOP / MODIFY ADDRESS OF X
ISZ LOOPN / TEST END OF LOOP
JMP LOOP
... ... / NOT FOUND IN LIST

Notice that we use the fact that the SNA test is done before the CLA to assure that the
test is done correctly and that the A register is zero when we get back to LOOP. Also,
notice that we are using address modification. There are no index registers on the
PDP-8, so addressing through a loop must be done either by modifying the address
portion of an instruction (as above) or by indirection, as follows.

DCA TEMP / SAVE A FOR COMPARISON
TAD N
CMA IAC
DCA LOOPN / LOOP COUNTER = -N
TAD XADR / ADDRESS OF LIST
DCA ADDR / FOR INDIRECTION

LOOP, TAD I ADDR / INDIRECT LOAD
CMA IAC
TAD TEMP / A REGISTER - X
SNA CLA
JMP FOUND
ISZ ADDR / INCREMENT ADDRESS
ISZ LOOPN / LOOP COUNTER
JMP LOOP
... ... / NOT FOUND IN LIST

where XADR has the address of X as its contents.
A special feature on the PDP-8 is auto-indexing. In page 0, locations 0010 through

0017 (octal) automatically increment their contents by one before they are used as the
address of the operand when it is addressed indirectly. Thus, if we assign ADDR to
location 0010 in the above code, we do not need the ISZ ADDR, since this will be done
automatically. We do need to store, not the address of X, but one less than the address
of X (since auto-indexing is done before using the address for indirection).
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Subroutines

With as simple a machine as the PDP-8, subroutines are used a lot. Subroutine
linkage is done by the JMS, which stores the return address in its operand and starts
execution at the next location. For example, a subroutine to decrement one from the A
register:

DEC1, NOP / WILL BE RETURN ADDRESS
CMA IAC / -K
CMA / -(-K) - 1
JMP I DEC1 / INDIRECT RETURN

The call is simply

JMS DEC1

We can make this a decrement and skip if zero by

DSZ, NOP / RETURN ADDRESS
CMA IAC
CMA
SNA
ISZ DSZ / INCREMENT ADDRESS IF ZERO
JMP I DSZ

Parameters are almost always passed by reference, after the call to the subroutine, or
in global variables on the zero page.

Input/output

The one instruction we have ignored so far is the Input/Output transfer (IOT)
instruction. It has an opcode of 6 and two fields, a 6-bit device number and a 3-
bit function field. A device can have up to eight different functions and each device can
have any eight functions which are appropriate for that device. Each device normally
has a one-bit device flag. If the flag is 0, the device is busy; if the flag is 1, the device is
ready. The ASCII character code is used. Most I/O transfers go through the A register,
one character at a time.

To illustrate the use of the input/output instructions, consider the functions of a
Teletype input keyboard.

FIGURE 10.5 Instruction format for opcode 6, I/O instructions.
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Function Mnemonic Explanation

0 KCF Clear the flag, but do not start the device
1 KSF Skip next instruction if flag is 1
2 KCC Clear the A register and flag
4 KRS Read a character from device into A register
6 KRB Read a character into A register, clear flag

For the Teletype printer,

Function Mnemonic Explanation

0 TFL Set flag
1 TSF Skip if Flag is 1
2 TCF Clear Flag
4 TPC Output character from A register and start printing it
6 TLS Clear Flag and Output Character

To input one character from the keyboard and echo print it on the printer

KCC / CLEAR FLAG ON KEYBOARD
KSF / WAIT UNTIL CHARACTER READ
JMP .-1
KRB / READ CHARACTER INTO A
TLS / OUTPUT CHARACTER TO PRINTER
TSF
JMP .-1 / WAIT UNTIL DONE

This program first clears the flag for the keyboard. Clearing the flag is a signal for
the keyboard to input a character. When a key is hit on the keyboard, the keyboard
reads the key, constructs the appropriate ASCII character code, and saves it in a buffer
register. Then the flag is set. In the meantime, the CPU has been repetitively testing
the flag, waiting for it to become set. When the flag is set, the CPU reads the character
from the buffer register into the A register. Then it outputs this character to the buffer
register for the printer, and clears the flag, telling the printer to print the character in its
buffer register. The CPU waits until the printer signals that it has printed the character
by setting the flag.

Normally, the program would try to overlap its input, output, and computing, of
course.

Suppose we have several different I/O devices, d1, d2, d3 and d4, and we want to
do I/O on all of them simultaneously. We also have some computing to do. We can
do all our I/O on each device one at a time or try to overlap them. Suppose we are
inputting from d1 and d2 into buffers in memory and outputting from buffers to d3 and
d4. All of the devices operate at different speeds. If we program them as above for the
Teletype we will spend most of our time in loops like

KSF / IS KEYBOARD READY
JMP .-1

What we need is to test each device at regular intervals; if any device is ready, we will
service it; if not, we will go compute for a while, and come back to check again later.
The KSF and TSF commands are like Skip if ready, so we will say SKR di for device di.
We can then write a subroutine
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POLL, NOP / RETURN ADDRESS
SKR D1 / IS D1 READY
SKP / NO
JMS SERVD1 / YES, SERVICE D1
SKR D2 / IS D2 READY
SKP / NO
JMS SERVD2 / YES, SERVICE D2
SKR D3 / IS D3 READY
SKP / NO
JMS SERVD3 / YES, SERVICE D3
SKR D4 / IS D4 READY
SKP / NO
JMS SERVD4 / YES, SERVICE D4
JMP I POLL

In our main program we can now add JMS POLL at regular intervals. The length of the
interval depends upon how long we are willing to tolerate having an I/O device finish
and not be served. In the worst case (must respond to each device finishing as soon as
possible), this may be after each instruction.

DCA TEMP
JMS POLL
TAD N
JMS POLL
CMA IAC
JMS POLL

This is called polling. Although it is better than busy loop waiting (JBUS *), it takes a lot
of time.

Interrupts do this polling in hardware. Each device has an interrupt request flag.
The interrupt system can be either on or off. If it is off, execution is just as we have
always thought it to be. If the interrupt system is on, however, the following changes
take place (on the PDP-8).

After every instruction is executed, the CPU looks at all of the interrupt request flags.
If they are all off, the CPU continues to the next instruction. If any flag is on, the CPU

1. executes a JMS 0, storing the program counter in location 0 and executing the
instruction at location 1, and

2. turns the interrupt system off.

This allows the programmer to be informed immediately that one of the I/O devices
needs attention. After the I/O device is serviced, and the programmer wishes to
resume the computation which had been executing when the I/O interrupt occurred, it is
necessary to only do a JMP I 0. Thus, an interrupt forces a subroutine jump to location
0.

The normal use of the interrupt system for I/O is,

1. Start all I/O devices.
2. Turn on the interrupt system. (On the PDP-8, the interrupt system is device 0, so

I/O instructions are used to turn it on and off.)
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3. Go do some computation, or twiddle your thumbs (JMP .) if you have nothing to
do, while you wait for an interrupt.

When an interrupt occurs,

1. The address of the current instruction is stored in location 0. The interrupt system
is turned off to prevent interrupting an interrupt.

2. The instruction in location 1 is executed. This is normally a JMP to an interrupt
service routine.

3. Save all registers.
4. Determine what device caused the interrupt.
5. Service that device, possibly restarting it on something new (next character).
6. Check if any other devices want service too; if so, go back to 5.
7. Restore the registers.
8. Turn the interrupt system back on.
9. Return to the interrupted program by a JMP I 0.

The addition of an interrupt system to the design of a computer system is necessary
if I/O is to be effectively overlapped with computation and other I/O. Almost all modern
computers have an interrupt system. The major features of the interrupt system are
that it can be turned on or off, and that interrupts cause a forced jump to some location
in such a way that the interrupted program can be restarted without knowing that it was
interrupted. Thus, the background computation can proceed correctly, without special
programming being necessary because of the frequent interrupts of the CPU to service
I/O devices.

The best source of more complete information on the PDP-8 is from its manufacturer,
Digital Equipment Corporation (DEC). DEC publishes several manuals about the PDP-
8. Of particular interest are the “Introduction to Programming” and “Small Computer
Handbook” manuals.

EXERCISES

1. Describe the memory and registers of the PDP-8. What is the word size? What is
the address size?

2. How is the memory of the PDP-8 logically organized? Describe the effective
address calculation for a memory reference instruction.

3. The PDP-8 has only a 3-bit opcode. Does this mean that it only has eight
instructions? If so, why are there more than eight mnemonics in the assembly
language?

4. Are all of the instructions for the PDP-8 necessary, or could the number of
instructions be reduced even more? For example, are the ISZ and JMS instructions
really necessary? If not, why do you think they were included in the instruction
set of the PDP-8?

5. What is the meaning of the PDP-8 instructions

(a) CMA, IAC

(b) SMA, CLA, IAC
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6. We wish to test the high-order bit of the switch register on the PDP-8. One student
wrote

CLA, OSR, SMA, RSS
<JMP for sign bit on>

Why does this not work?

7. The MIX computer is much more powerful than the PDP-8 because the MIX
computer has a much larger instruction set. To show this, consider both the MIX
code and the PDP-8 code needed to jump to NNEG if a location labeled TEA is
nonnegative and jump to NGE if not. The MIX code is

LDA TEA
JANN NNEG
JMP NGE

Write the PDP-8 code to do this same function. (Assume the A register may have
any initial value.)

8. The last problem showed that the MIX computer is better than the PDP-8.
However, for some purposes the PDP-8 may be better. Write the MIX code
and the PDP-8 code which would add one to a variable TOPS and jump to LOOP if
the resulting sum (which should be stored back in TOPS) is nonzero, or continues
on at the next instruction (falls through) if TOPS is zero.

9. Write a subroutine for the PDP-8 to add the elements of an array. Call your
subroutine SUM. Define an appropriate calling sequence. How does your code
compare with the subroutine SUMMER in Chapter 6?

10.3 THE HP 2100

The HP 2100 (1972), manufactured by the Hewlett-Packard Company, is a new
model of the HP 2116. The HP 2116 was brought out in 1967 to compete with the
PDP-8. It was designed and built with the design of the PDP-8 in mind and hence has
some similarities to the PDP-8. The designers tried to correct what were felt to be the
major limitations of the PDP-8. Like the PDP-8, the HP 2100 is used mainly in process
control and laboratory systems, but it also is used to provide simple time-sharing in
Basic for up to 32 terminals.

The HP 2100 was produced in two models, the 2100A and the 2100S. These
computers have generally been replaced by the newer 21MX computers (M-series,
K-series, and E-series); however, these newer models are basically the same as the
2100 architecturally.

10.3.1 Memory

The HP 2100 is a 16-bit binary computer. It uses two’s complement integer
arithmetic. With 16-bit words, integers from -32,678 to +32,767 can be represented.
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Addresses are 15 bits, allowing up to 32K words to be addressed. Two 16-bit registers,
the A and B registers, function as accumulators, while two one-bit registers, E (the
Extend bit) and O (the Overflow bit) are also provided. The Extend bit acts the same
as the Link bit on the PDP-8; the Overflow bit acts like the overflow toggle of the MIX
computer.

A number of internal registers are also used, including a program counter (P register),
a memory address register (M register), and a memory data register (T register).

A special feature of the HP 2100 is that locations 0 and 1 of memory are the A and
B registers, respectively. Thus, a LDA 1 will load the A register with the B register.

10.3.2 Instruction set

The instructions of the HP 2100 can be grouped into three classes of instructions:

1. memory reference instructions
2. register reference instructions
3. input/output instructions

Other classes would include the extended arithmetic instructions (multiply, divide, shift)
and the floating point instructions, available as options at extra cost.

Memory reference instructions are encoded as shown in Figure 10.8. Four bits are
used for the opcode, giving 16 different memory reference instructions. Addressing

FIGURE 10.6 Two of the HP 21MX series of computers from Hewlett-Packard. These
small minicomputers are often used in dedicated applications. (Photo courtesy of
Hewlett-Packard Company.)
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FIGURE 10.7 A block diagram of the HP 2100 computer. All registers are 16 bits,
except the extend and overflow bits, and the 15-bit M register.

of memory is accomplished by two techniques, indirection and paging. Bit 15 of the
instruction specifies either direct (D/I = 0) or indirect (D/I = 1) addressing. If indirect
addressing is specified, the address given in the instruction is not the address of the
operand, but the address of the address of the operand. Since only 15 bits are needed
for an address, and the word in the indirect address is 15 bits, the high-order bit of that
word is again taken as a direct/indirect bit. Indirect addressing can occur to any number
of levels, and continues until bit 15 of the word fetched from memory is zero. When bit
15 is zero, the remaining bits specify the address of the operand.

Paging allows the 10 bits in the instruction to specify a 15-bit address. Bit 10 of
a memory reference instruction specifies if the upper 5 bits of the address should be
zero (Z/C = 0) or the same as the upper 5 bits of the program counter (Z/C = 1). This
logically breaks memory up into 32 pages, each with 1024 words. The 1024 words on
the zero page or the 1024 words on the current page can be accessed directly at any
time. The remaining pages must be accessed indirectly.

The effective address calculation for the HP 2100 is thus as follows.
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1. (Paging) The initial address is composed of the lower 10 bits of the instruction
with an upper 5 bits of zero (if the Z/C bit of instruction is 0) or the upper 5 bits of
the program counter (if the Z/C bit of the instruction is 1).

2. (Indirection) If the D/I bit of the instruction is zero, this initial address is the
effective address; if the D/I bit is one, then the contents of the memory location
addressed by the initial address are fetched.

3. (Multiple levels of indirection) As long as bit 15 of this fetched memory word is
1, the lower 15 bits are used as an address to fetch a new memory word. When
bit 15 is finally 0, the lower 15 bits of the fetched memory word are the effective
address.

The instruction set is then (expressing the opcode as an octal number)

02 AND AND the contents of the effective address to the A register, leaving
the results in the A register.

04 XOR Exclusive-OR the contents of the effective address to the A
register, leaving the results in the A register.

06 IOR Inclusive-OR the contents of the effective address to the A register,
leaving the results in the A register.

03 JSB Jump to subroutine. Store the address of the next instruction in
the effective address and jump to the effective address plus one.

05 JMP Jump to the effective address.
07 ISZ Add 1 to the contents of the effective address and store the sum

back in the effective address. Skip the next instruction if the stored
sum is zero.

10 ADA Add the contents of the effective address to the A register.
11 ADB Add the contents of the effective address to the B register.
12 CPA Compare the contents of the effective address to the A register.

Skip the next instruction if they are equal.
13 CPB Compare the contents of the effective address to the B register.

Skip the next instruction if they are equal.
14 LDA Load the contents of the effective address into the A register.
15 LDB Load the contents of the effective address into the B register.
16 STA Store the contents of the A register into the effective address.
17 STB Store the contents of the B register into the effective address.

Notice that these instructions are similar to the instructions for the PDP-8. However,
the extra bit in the opcode field has allowed us to add another register (the B register)
and some additional instructions (the IOR, XOR, CPA, CPB). Also, by including a load
instruction, we no longer need a deposit and clear, but can use a standard store
instruction.

FIGURE 10.8 Memory reference instruction format for HP 2100.
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FIGURE 10.9 Alter/skip and shift/rotate instruction formats for HP 2100.

The register reference instructions come in two groups: the shift-rotate group and
the alter-skip group. These instructions are formed by combining subinstructions. The
format of these instructions is shown in Figure 10.9. Bit 11 controls whether the A or B
register is used. For the shift-rotate group, bits 8-6 and 2-0 are 3-bit shift and rotate
fields. The shifts and rotates are

Mnemonic Bit pattern Meaning

*LS 000 Shift left one bit, end off.
*RS 001 Shift right one bit, end off.
R*L 010 Rotate left one bit, circular.
R*R 011 Rotate right one bit, circular.
*LR 100 Shift left one bit, then zero sign bit.
ER* 101 Rotate right one bit register and Extend bit. Bit 0

into E; E into 15.
EL* 110 Rotate left one bit, register and Extend bit. Bit 15

into E; E into bit 0.
*LF 111 Rotate left four bits.

The * is either A or B, depending upon which register is selected by bit 11. Since all
of these combinations select some change on the selected register, a separate bit is
used to disable or enable the selected shift. If the control bit disables the shift, then the
register is not changed; the shift does not occur. (This provides a NOP if both shifts are
disabled). Bit 9 is the disable/enable control bit for the shift/rotate of bits 8-6; bit 4 is the
disable/enable control for bits 2-0.

Bit 5, if set to one, causes the Extend bit to be cleared; otherwise it is left alone. Bit
3, if set to one, will cause the CPU to skip the next instruction if the least significant bit
(bit 0) of the selected register is zero; the next instruction is executed as normal if bit 3
is zero or bit 0 of the selected register is nonzero. These two functions (clear E; skip if
low-order bit zero) occur after the shift function selected by bits 9, 8, 7, 6 and before the
shift function of bits 4, 2, 1, 0.

These subinstructions can be combined according to the following:
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(Any Shift/Rotate), CLE, SL*, (Any Shift/Rotate)

The register used in all the subinstructions in one register reference instruction must be
the same, of course. The ability to select two shifts in one instruction allows a great deal
of flexibility. For example, in one instruction we can rotate 1, 2, 3, 4, 5, or 8 bits left or
right by combining the rotate one and rotate four functions appropriately. By combining
end-off and circular shifts, a bit in a register can be selectively cleared, or tested by
moving it into the E bit or low-order bit, and then moving it back, in the same instruction.

The alter-skip group provides the following subinstructions, where the * represents
either A or B, as selected by bit 11.

CL* Clear register
CM* Complement register
SEZ Skip on E zero
CLE Clear E
CME Complement E
SS* Skip if register is positive
SL* Skip if low-order bit is zero
IN* Increment register
SZ* Skip if register is zero
RSS Reverse skip sense.

These subinstructions can be combined according to the following chart.

CL*, CM*, SEZ, CLE, CME, SS*, SL*, IN*, SZ*, RSS

Subinstructions are executed left to right.

10.3.3 Assembly language

The assembler for the HP 2100 is a three-pass assembler like the assembler for the
PDP-8. The first pass creates the symbol table, the second the output loader code, and
the third a program listing.

The input to the assembler is free-format, consisting of a label field, opcode field,
operand field, and comment field, delimited by spaces. The label field is optional; it must
start in column 1 if it is present. The operand field may be an expression formed from
symbols, decimal numbers, or “*” (the location counter value). Expression operators
are addition and subtraction. Octal numbers are indicated by using the letters as a
suffix. Literals may also be used. Indirection is indicated by following the operand with
a comma and the letter I, as

LABEL LDA SAM,I INDIRECT ACCESS

Pseudo-instructions for the HP assembler include ORG (to define the origin of a
program or reset the location counter), END, EQU, DEC (to define a decimal constant), OCT
(to define an octal constant), and BSS (to reserve storage locations). Pseudo-instructions
also exist for creating relocatable programs with entry points (ENT), and external symbols
(EXT). Primitive conditional assembly and some listing pseudo-instructions are also
provided.
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10.3.4 Input/output

Programming for the HP 2100 is very similar to programming either the PDP-8 or
MIX computers. The additional register allows some code to be simpler on the HP 2100
than on the PDP-8. The longer word length increases the range of numbers which
can be represented, the number of opcodes, and the amount of memory which can be
addressed. The major changes are in the I/O system.

Each I/O device has two bits to control I/O operations. One bit is called the control
bit; the other is the flag bit. The setting of the control bit initiates an I/O operation; the
control bit cannot be changed by the device. The flag bit is set by the I/O device when
a transfer is complete. Normal I/O operation is to clear the flag and set the control
bit to initiate the I/O operation. When the I/O device finishes the I/O operation, it sets
the flag bit. Each device has its own interface card, with control and flag and buffer
registers. Information is normally transferred between the A and B registers and the
device interface buffer.

I/O instructions have four fields. The A/B bit selects either the A or B register; the
H/C bit will clear the flag bit of the selected device if the H/C bit is one. The device field
is a 6-bit field which indicates the selected I/O device. A 3-bit operation field specifies
an I/O operation to be performed on the selected device. These are,

Mnemonic Bit pattern Meaning

HLT 000 Halt the computer
STF,CLF 001 Clear or set the flag (bit 9 says which)
SFC 010 Skip on flag clear
SFS 011 Skip on flag set
MI* 100 Inclusive-OR interface buffer to register
LI* 101 Load interface buffer into register
OT* 110 Output from register to interface buffer
STC,CLC 111 Set or Clear (bit 11) the control bit

Input or output can be done under flag control using busy wait loops, as in MIX. For
example, to output one character

LDA CHAR GET CHARACTER
OTA DEVICE OUTPUT CHARACTER TO DEVICE
STC DEVICE,C SET CONTROL AND CLEAR FLAG
SFS DEVICE SKIP WHEN FLAG IS SET
JMP *-1 WAIT UNTIL FLAG SET

Input is similar. (Set control/clear flag, wait until flag is set by device, then load or merge
character into A or B register.) Most I/O is character-by-character (ASCII character code)
through the A and B registers. Polling can also be used.

Two major improvements were made over the PDP-8 I/O. In addition to the busy
loop I/O technique illustrated above, the HP 2100 has an interrupt system. The PDP-8

FIGURE 10.10 Input/output instruction format for HP 2100.
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had an interrupt system which would, when any device requested an interrupt, store
the address of the next instruction is location 0, and begin execution at location 1. The
interrupting device could be determined by polling.

The HP 2100 eliminates the need for polling by having a vectored interrupt system.
Instead of all interrupts causing a forced transfer to a fixed address, each device on the
HP 2100 interrupts to a different location. The device number indicates the address to
interrupt to. Thus, device 20 interrupts to location 20; device 21 interrupts to location
21; and so on. The action which occurs when an interrupt occurs is somewhat different
also. Instead of automatically executing a subroutine jump (as on the PDP-8), the
contents of the interrupt location for the interrupting device are fetched and executed
as an instruction. No registers are changed before the fetched instruction is executed.
Typically, the instruction executed is a subroutine jump.

For example, if we have a JSB 300 in location 20, are executing the instruction at
location 1734, and an interrupt request arrives from device 20, the execution proceeds as
follows. The execution of the instruction at location 1734 continues until it is completed,
since it had already begun. Interrupt requests are honored only between instructions,
never in the middle of an instruction execution. The program counter is incremented
to 1735. Now the computer pauses before fetching the instruction at 1735 to look for
interrupt requests. Seeing a request from device 20, it fetches the contents of location
20, decodes it, and executes it (intending to continue at 1735 after this one instruction).
The instruction at 20 is a jump to subroutine at location 300, so the program counter
(with 1735 in it) is stored in location 300, and then reset to 301. Execution continues at
location 301. Control can be returned to the interrupted program by an indirect jump
through location 300.

Notice that, since each device interrupts to a different location, each device interrupt
can be serviced immediately. There is no need to poll all the devices to determine
which caused the interrupt. An additional feature of the HP interrupt system is its
priority interrupt structure. On the PDP-8, the interrupt system is automatically turned
off when an interrupt occurs. On the HP 2100, when an interrupt from device x is
requested, interrupts from all higher numbered devices are disabled, but all lower
numbered devices may still interrupt. Thus, a priority scheme is established where
higher priority (lower device numbered) devices can interrupt lower priority (higher
device numbered) devices. Generally, higher speed devices are given higher priority so
that they will not have to wait for lower speed devices to be serviced before continuing.

An interrupt is requested anytime the interrupt system is on, and a flag is set. Setting
the flag disables interrupt requests from lower priority devices. These requests are
held pending. When the flag of an interrupting device is cleared, the next lower priority
pending request becomes enabled and can cause a new interrupt for that device.

With a 6-bit device select field, up to 64 different device codes are possible. Some
of these are used for special purposes. Device 0 is the interrupt system, device 1 is the
overflow bit and switch register. Devices 4 and 5 are used to indicate interrupts caused
by a power failure (4) or a parity error in memory (5).

The addition of a priority vectored interrupt system is one major feature of the HP
2100 I/O system. The other is the direct memory access (DMA) feature. High-speed I/O
devices, such as disks, drums, and magnetic tapes, can sometimes transfer information
faster than the computer can handle it if all information must go through the A or B
register when being transferred between memory and the I/O device. At best, because
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of instruction fetches, incrementing pointers, the lack of index registers, comparisons,
and such, only one word every seven memory cycles can be input or output. Even this
takes all available CPU time. To change this situation, a special “device” is available on
the HP 2100 which allows DMA transfer between memory and a high speed I/O device
which bypasses the CPU completely.

A DMA processor is a special-purpose processor which is built for one purpose and
one purpose only, to transfer information between memory and an I/O device. To start
a DMA transfer, the DMA device is told (a) which device is involved, (b) whether the
transfer is an input or an output, (c) the address in memory for the transferred words,
and (d) the number of words. The DMA processor then supervises fetching words from
memory and sending them to the I/O device, or vice versa, as fast as the I/O device and
memory can handle them. This continues until all words are transferred (or an error
occurs). While this is going on, the CPU may continue computing. (The I/O for MIX
consists of DMA transfers). The I/O can proceed at the speed of the I/O device. The
DMA device does cycle-stealing by using memory read-write cycles as necessary when
the CPU is not using memory. If both the CPU and DMA want a word from memory
at the same time, one of them must wait, and it is generally the CPU which does the
waiting.

The HP 2100 is a considerable improvement over the PDP-8. It has a longer
word length, additional register, more instructions, and more sophisticated I/O system,
including a priority, vectored interrupt system and DMA transfers. These additional
features are not free, however. A minimal HP 2100 system with CPU and 4K of memory
costs around $6,000. As with the PDP-8, the best source of further information is the
manufacturer. Hewlett-Packard publishes the “Pocket Guide to the 2100 Computer”,
a manual which covers the basic hardware for the HP 2100 as well as the assembler,
Fortran, Basic, and a simple operating system.

EXERCISES

1. Describe the memory of the HP 2100. What is its word size? What is its address
size? Why are these two (word size and address size) different?

2. Describe the registers of the HP 2100.

3. What is the fundamental difference between the instruction set of the PDP-8 and
the HP 2100?

4. How does the I/O system of the HP 2100 differ from the PDP-8?

5. What is DMA?

6. What is a vectored interrupt system?

10.4 THE PDP-11

The PDP-11, first announced in 1969, is not just one computer, but has developed
over the years into a family of computers. All PDP-11 computers have the same
instruction set. The various models may have different options available, are
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FIGURE 10.11 A PDP-11 computer system. The processor in this system is the PDP-
11/35. Also, shown is a set of peripherals including magnetic tape, disks, cassette tapes,
paper tape reader, CRT, and printer. (Photo courtesy of Digital Equipment Corporation.)

manufactured from different hardware technologies, use memories of different speeds,
and cost different amounts. The models vary from the LSI-11 (less than $1,000), 11/04,
and 11/10, at the small, slow, and cheap end, through the medium size 11/40, and
11/45 to the moderately fast 11/70 ($55,000), the top of the line. The 11/04 can have
from 4K to 28K words of memory and is used mainly for process control and laboratory
use. The 11/70 on the other hand can have up to 2 million words of memory and is
used as a general purpose computing machine.

10.4.1 Memory and registers

Memory for the PDP-11 is designed to handle the desire to access both words
and bytes. Memory consists of 16-bit words, each of which is composed of two 8-bit
bytes, an upper (high-order) and lower (low-order) byte. Memory is byte-addressable,
meaning that each byte has its own unique address. Words are addressed by the
address of the low-order byte. Thus, addresses of sequential memory locations are 0,
2, 4, 6, 8, and so on. The word at location n (where n is an even number) is composed
of the bytes with addresses n and n + 1. Addresses are 16 bits.
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Each byte can hold an integer from 0 to 255 which can be either a small integer or a
character code. The ASCII character code is most commonly used. Each 16-bit word
can be either two characters or an integer number. Instructions treat 16-bit integers as
either unsigned integers or signed two’s complement numbers. Floating point numbers
are represented by either two words (with sign, 8-bit excess 128 exponent, and 23-
bit fraction) or four words (with sign, 8-bit excess 128 exponent, and 55-bit fraction).
Floating point numbers are always normalized, so the leading one bit just after the
binary point in the fraction is not stored.

The PDP-11 has eight (or seven or six) 16-bit general purpose registers. A general
purpose register can be used as either an accumulator or an index register, or both, or
anything else that a 16-bit register can be used as. The vagueness over the number of
registers comes from the fact that two of these registers are used for special purposes:
register 7 is the program counter, and register 6 is used as a stack pointer. Thus,
although the instructions allow registers 6 and 7 to be used as any other register, they
are normally not used as general purpose registers.

In addition to the general purpose registers, a collection of bits indicate the status
of overflow, carry, and comparisons. These bits are grouped together and collectively
called the condition code. The condition code consists of four bits (N, Z, V, C) which
roughly are used to indicate the following information about the last CPU operation,

Z = 1 if the result was zero.
N = 1 if the result was negative.
C = 1 if a carry out of the high-order bit resulted.
V = 1 if there was an arithmetic overflow.

10.4.2 Instruction set

The PDP-11 has a very rich instruction set, which makes it that much more difficult to
describe, and that much easier to program when the entire instruction set is understood.
The instructions can be grouped into the following categories

FIGURE 10.12 Memory on the PDP-11 is byte-addressable. Words are two bytes, so
word addresses are even.
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FIGURE 10.13 Block structure of a PDP-11. The CPU, memory, and all I/O devices
communicate by using the UNIBUS. The UNIBUS is a set of 56 wires which allow data
and addresses to be transmitted between any two devices, memories, or CPUs on the
bus.

1. double operand instructions

2. single operand instructions

3. jumps

4. miscellaneous

The double and single operand instructions may address memory. For the
double operand instructions, two addresses need to be specified; for single operand
instructions, only one address need be specified. Since memory addresses are 16 bits
long, how can one instruction specify two 16-bit addresses in one 16-bit word? The
answer is that it often does not, but the solution to the problem is actually somewhat
more complex.

Instructions sometimes specify addresses in different ways. On the MIX computer,
addresses could be direct, indexed, indirect, or combinations of these. Each different
way of specifying the address is an addressing mode. The PDP-11 has eight addressing
modes. A register is used with each addressing mode. Each address is thus six bits
long, three bits to specify one of eight modes and three bits to specify one of the eight
general purpose registers. These eight modes and their assembler syntax are
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Assembler
syntax Numeric mode Meaning

Rn 0 General purpose register n.
(Rn) 1 The contents of register n are the address of the

operand.
(Rn)+ 2 The contents of register n are the address of

the operand, and after the contents are used
as an address the register is incremented (auto-
increment).

@(Rn)+ 3 Indirect auto-increment.
-(Rn) 4 Register n is decremented, and then the contents

of the register are used as the address of the
operand (auto-decrement).

@-(Rn) 5 Indirect auto-decrement.
X (Rn) 6 The contents of the next word in memory (X ) are

added to the contents of register n to yield the
address of the operand (indexing).

@X (Rn) 7 Indirection after indexing.

These eight modes allow for a great flexibility in programming. Operands can be
registers, or pointed at by registers, or pointed at by the address in words pointed
at by registers. In addition, pointer registers can be incremented or decremented
automatically to allow operations on tables, arrays, or character strings. The auto-
decrement before and the auto-increment after were specifically designed for use
with stacks. Using the program counter (register 7) in mode 6 allows addresses to be
specified as program counter relative. The advantage of this mode is that the instruction
need not be changed if the program is loaded in a different set of locations (relocated).
Code with this feature is called position-independent code.

FIGURE 10.14 Instruction formats for the PDP-11.



10.4. THE PDP-11 351

Double operand instructions

One major group of instructions is the double operand instruction group. These
instructions have two operands: a source and a destination. The high-order bit indicates
if the operands are bytes or words. The source and destination fields each specify one
of the addressing modes listed above and a register. The opcodes are

MOV 1 Copy the contents of the source to the destination.
CMP 2 Compare the source and destination and set the condition

code.
BIT 3 AND the source and destination and set the condition code. Do

not change either the source or destination.
BIC 4 Clear the bits in the destination which correspond to one bits

in the source.
BIS 5 Set the bits in the destination that correspond to one bits in

the source.
ADD/SUB 6 Add or subtract (bit 15 says which) the contents of the source

to the contents of the destination, storing the result back in the
destination.

Notice that the MOV instruction eliminates the need for load and store instructions to
transfer information between memory and registers, and can even eliminate the need
for using the registers in many cases. Consider that on the MIX computer, to copy from
one location to another requires

LDA P
STA Q

On the PDP-11, this can be simply

MOV P,Q

which assembles to two program counter relative indexed addressing modes, occupying
three words of memory (one for the instruction and one for the index for each operand).

The single operand instructions

The single operand instructions use the same address modes as the double operand
instructions but only operate on one operand. Most of these instructions are instructions
which, on the PDP-8 or HP 2100, use one of the registers as an operand. On the
PDP-11, one of the registers, or any memory location, can be the operand for the
instruction.

CLR Clear. Set the contents of the operand to zero.
COM Complement the contents of the operand.
INC Increment by 1 the contents of the operand.
DEC Decrement by 1 the contents of the operand.
NEG Negate the operand (complement and add one).
TST Test the contents of the operand and set the condition code.
ASR Arithmetic shift right.
ASL Arithmetic shift left.
ROR Rotate right.
ROL Rotate left.
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These shifts and rotates are all by one bit and include the carry bit.

ADC Add carry.
SBC Subtract carry.

These two instructions use the carry bit in the condition code and are used for multiple
precision arithmetic.

Jump instructions

All the test and compare instructions set the condition code. To jump on the
outcome of a test, a branch (or jump) instruction is used. Separate branch instructions
are available for almost every interesting condition code value. The format of the jump
instruction includes five bits which determine the test to be used to determine if a jump
should take place (branch on equal, not equal, plus, minus, and so on). The address to
jump to is defined by an 8-bit offset (interpreted as an 8-bit signed two’s complement
number) plus the program counter. Thus, a branch instruction can transfer control
up to 128 words backwards, or 127 words forwards. All branches are automatically
position-independent.

For longer transfers of control, the JMP instruction is used. Both the JMP and JSR
(jump to subroutine) instructions allow their operands to be specified in any of the
PDP-11 addressing modes. The JSR also specifies a register. The return address
is put in the register and the previous contents of the register are pushed onto the
stack pointed at by register 6. An RTS (return from subroutine) instruction reverses the
operations, jumping to the address contained in a register and reloading the register
from the top of the stack.

Miscellaneous instructions

This last classification includes HALT and WAIT (wait for an interrupt) instructions
as well as an entire set of instructions for setting or clearing the condition code bits.
Additional instructions are used mainly with operating systems to cause and return from
interrupts.

10.4.3 Assembly language

The assembly language for the PDP-11 is more similar to the assembly language
for the PDP-8 than MIXAL. An assembly language statement still has four fields: label,
opcode, operand, and comment. Input is free-format. A label is followed by a colon (“:”).
Comments are preceded by a semicolon (“;”). Operand formats depend upon the type
of opcode and the mode of the addressing. Double operand instructions are of the form

LOOP: MOV SRC,DST ;COMMENT

where SRC is the source operand and DST is the destination operand. The assembler will
automatically generate additional words for the indexed and indirect indexed addressing
modes. All other instructions have only one operand. For branch instructions, the
assembler automatically calculates the proper offset. The location counter is referenced
by the period (.).

The pseudo-instructions for the PDP-11 are distinguished from machine instructions
by all starting with a period. The assembler includes the normal pseudo-instructions
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.GLOBL Declares each symbol on its operand list to be either an entry point or
an external. The assembler knows which, since entry points will be
defined in this program, and externals will not.

.WORD Acts like a CON for full word values

.BYTE Acts like a CON for bytes.

.ASCII Defines an ASCII character coded string.

.EVEN Assures that the location counter is even (so that it addresses a word).
= The equal sign is used for an EQU pseudo-instruction.

10.4.4 I/O and interrupts

The PDP-11 has no I/O instructions. I/O is performed in a manner which allows the
normal instruction set to do all necessary I/O functions. This is done by assigning all I/O
devices, not a device number, but an address, or set of addresses in memory. All I/O
device control registers, buffer registers, and status registers are assigned addresses in
the PDP-11. (In the HP 2100, the A and B registers were assigned addresses 0 and 1 in
memory. The registers were not really in memory, but simply could be accessed by the
addresses 0 and 1.) On the PDP-11, the upper 4K words of memory, from addresses
160000 to 177777 (octal) are reserved for I/O device addresses.

For example, if a PDP-11 has a card reader attached, that card reader has two
registers associated with it, a control register and a data register. The control register
will have address 177160, and the data register, address 177162. A line printer will
have addresses 177514 (control and status) and 177516 (data). An RF11 disk uses
the addresses from 177400 to 177416 for various status registers, word counts, track
address registers, memory addresses, and so on.

I/O is performed differently for each device. For simple devices, however the
interface is generally provided by two registers: a control register and a data register.
For output a character is put in the data register (using the MOV or MOVE instructions).
Then a bit is set in the control registers (using the BIS instruction). When a bit is cleared
by the device, the output is complete. For higher-speed devices, DMA transfers are
made.

The PDP-11 has a priority vectored interrupt system. Two types of interrupts can
occur: I/O interrupts and traps. A trap is an interrupt caused by the CPU. In the PDP-11,
traps can occur for many reasons, including illegal opcodes, referencing nonexistent
memory, using an odd address to fetch word data or instructions, power failure, and
even some instructions. Traps cannot be turned off; they will always cause an interrupt.
I/O interrupts will only be recognized when the priority of the I/O device exceeds the
priority of the CPU.

The CPU priority is kept with the condition code bits in a special register called the
processor status. The processor priority is a three-bit number, allowing eight priority
levels in the PDP-11. Each device has its own (fixed) three-bit priority. An interrupt
request from a device will be recognized if the device priority is greater than the current
CPU priority.

Interrupt processing on the PDP-11 is more complex than on the HP 2100. Notice
that there are no device numbers and that sequential memory addresses refer to single
bytes, while addresses are two bytes long and instructions may be several words long.
On the PDP-11, each device is assigned an interrupt location. Interrupt locations are
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in low memory, starting at address 4 and counting at 4-byte intervals up to address
192. Each interrupt location is two words (4 bytes) and consists of a new processor
status (priority and condition code) and an address. The address is the address where
control should be transferred when an interrupt occurs. When an interrupt occurs, the
current processor status and program counter are pushed onto the stack pointed to
by register 6. Then a new processor status and a new value for the program counter
are loaded from the interrupt vector, in low core, for the interrupting device. Execution
now continues at the new program counter. A special instruction, RTI (Return from
Interrupt) is used to reload the old processor status and program counter when the
interrupt processing is over.

The PDP-11 has been a highly successful computer. Many people think that it is
one of the better designed computers in years, that it is easy to program and easy to
use. A number of relatively sophisticated programming techniques (stacks, reentrant
code, position-independent code) can be routinely used on the PDP-11. The I/O system
has been designed to allow I/O programming to be a natural extension of ordinary
programming, while the interrupt system provides a fast means of handling I/O to
achieve maximum response to external I/O events.

Manuals published by Digital Equipment Corporation about the PDP-11 include
processor handbooks for each of the models of the PDP-11. Separate handbooks
describe available software and peripheral devices. The PDP-11 is also discussed in
Gear (1974), Eckhouse (1975), and Stone and Siewiorek (1975), which use the PDP-11
as an example machine to teach assembly language programming in the same way we
have used the MIX computer.

EXERCISES

1. Describe the memory of the PDP-11. What is the word size? What is the address
size?

2. Why would the PDP-11 want each byte to be addressable, rather than each word?

3. What are the registers of the PDP-11? What are their uses?

4. Double operand instructions require two addresses per instruction. Why might
this be better than a one address instruction set?

5. Why do you think all pseudo-instructions for the PDP-11 start with a period?

6. Why are recursive programs easy to write on the PDP-11?

7. Describe the interrupt structure of the PDP-11.

10.5 THE IBM SYSTEM 360 AND SYSTEM 370

The IBM system 360 and system 370 line of computers is probably the most
important computer system today, and no description of computer systems would be
complete without including these machines. The 360 was announced in 1964, and is
one of the first third-generation computers, using solid state circuitry with a low level of



10.5. THE IBM SYSTEM 360 AND SYSTEM 370 355

integration. The range of machines was an attempt to satisfy all customers with one
basic architecture. This strategy has been successful for the most part.

The 370 series was brought out in 1970 to replace the aging 360 machines by newer
computers with a compatible instruction set, but implemented in newer technology to
give faster internal performance, increased reliability, and extended capabilities in some
areas. For purposes of our discussion, the 360 and 370 computers are identical.
Most 360s have been replaced by 370s by now, so we will refer to the IBM 370. A
small 370/115 system will cost about $250,000, while a 370/168 can cost as much as
$5,000,000.

10.5.1 Memory and registers

As with the PDP-11, memory in the 370 is byte addressable. Memory is composed
of 8-bit bytes, and memory size is generally quoted in units of bytes, not words. 370
systems have from a low of 64 kilo-bytes to a maximum of 16,384 kilo-bytes (16 mega-
bytes) of memory. Each byte can hold an integer from 0 to 255, or one EBCDIC
character.

Although memory is byte-addressable, it is generally used in larger quantities. A
word on the 370 is 32 bits (4 bytes). Since memory is byte addressable, word addresses
are all multiples of 4 (0, 4, 8, 12, 16, . . . ). In addition, memory can be accessed by
half-words (16 bits, 2 bytes, addresses multiples of 2), or double-words (64 bits, 8
bytes, addresses multiples of 8). Memory addresses are 24 bits long, allowing up to 16
mega-bytes of memory.

FIGURE 10.15 An IBM Model 168. One of the most powerful computers available from
IBM is shown here with a complete set of peripheral devices. (Photo courtesy of IBM
Corporation.)
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Number representation schemes on the 370 are many. The basic representation is
two’s complement integer. This representation can be used in a half-word or full-word
memory unit. Bytes are treated as unsigned integers.

Floating point numbers in full-word memory units are stored as sign and magnitude
numbers with a 7-bit excess-64 base 16 biased exponent, and a 24-bit fraction. A long
floating point form increases the precision of the number to a 56-bit fraction. There is
even an extended precision format which gives a 112-bit fraction (about 34 decimal
places of accuracy).

The integer and floating point data representations on the 370 computers are
normally found on general-purpose computers. The integer format is used for counters
and pointers. Floating point numbers are generally used in scientific computing.
For commercial data processing, other data formats are useful, however. Since
the 370 design was to be used for all computing functions, it includes other data
representations. Strings of characters, from 1 to 256 characters (bytes) in length can be
easily manipulated. Decimal numbers are represented in either of two formats. Packed
decimal format uses four bits to represent one decimal digit. Two decimal digits can be
packed in one byte. A sign and magnitude format is used with the sign stored in the
low-order 4 bits of the last byte.

Another decimal format is the zoned decimal number format. This format is based
on the Hollerith punched card character code, where most characters consist of one of
the digit punches (0-9) and a zone punch (rows 0, 11, and 12). In the zoned decimal
format, the lower four bits of each byte represent one decimal digit, while the upper four
bits represent the zone punch. The sign is encoded in the upper four bits (zone) of the
last byte.

The 370 has two sets of registers. The most commonly used set consists of 16
general purpose registers. These 32-bit registers, numbered 0 to 15, can be used as
accumulators, index registers, pointers, and so forth. In addition, four 64-bit floating
point registers (numbered 0, 2, 4, and 6) are used for floating point operations. Separate
instructions control the use of the floating point and general purpose registers.

In addition to the general purpose and floating point registers, the 370 has a program
counter (called the instruction address) and a condition code. These, along with other
information, are stored in a program status word (PSW). The other information in the PSW
deals mainly with interrupt enabling and disabling.

10.5.2 Instruction set

The designers of the 360 and 370 were faced with the same problem that other
designers have: how to provide the largest set of useful instructions encoded into the
least number of bits. This problem was solved in several ways.

First, an 8-bit opcode is used, providing up to 256 different instruction opcodes. In
addition, different types of instructions are provided. Some instructions operate only
on registers, others between memory and registers, still others between memory and
memory. Since only 4 bits are needed to specify a register, and 24 bits are needed for
a memory address, this results in instructions of varying length. Register-to-register
instructions need only specify an opcode (one byte) and two registers (one byte), while
memory-to-memory instructions take six bytes for opcode and two addresses.

Another technique used was to group the instructions according to function. Not
all models include all instructions. For example, the small commercial models may not
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FIGURE 10.17 Representation of decimal numbers on the IBM 370 is in two formats,
packed and zoned.

include the Floating Point Instructions, while the larger scientific machines may not
include the decimal instructions. If these instructions are used on machines which are
not equipped for them, they are treated as illegal instructions and a trap occurs.

The major problem for a computer designer is memory accessing. Since the
360/370 design was to be good for many years, it was designed with very large
memory addresses, 24 bits. (Even so, some models have been modified to allow 32-bit
addresses.) But if two 24-bit addresses are stored in an instruction, the instructions
become very long. And, since few computer centers would have the funds to buy the
entire 16 mega-bytes of memory, most of the addresses which were used would have
up to 8 bits of leading zeros. Even if the maximum memory existed, few programs
would need to use all of it.

These two contradictory goals (large address space, and short instructions) were
solved by using a base-displacement addressing technique. All addresses are

FIGURE 10.18 Block structure of an IBM 360 or 370. Channels are special-purpose
processors for performing input and output from memory.
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described by 16 bits: a 4-bit base register and a 12-bit displacement. The address is
computed by adding the contents of the selected register to the displacement. The
lower 24 bits of this sum is the memory address. (The extension to 32-bit addresses is
obvious.)

Register 0 cannot be used as a base register. If register 0 is used as the base
register, the contents of the register are ignored and a zero is used as the base address.
Thus, the lower 4096 bytes may be accessed directly without setting a base register.
To access any other byte in memory, it is necessary to use at least one register as a
base register. Most commonly, one or two registers are used as base registers to allow
access to instructions in the current subroutine (needed for local variable accessing
and jump addresses), and one or two are used for accessing global variables, arrays,
tables, and other data structures. Notice that this can reduce the number of generally
available registers from 16 to 12 or 13.

The instruction formats for the different instructions are shown in Figure 10.19. The
RX-formatted instructions, which include most memory reference instructions, allow
indexing by any general register (except register 0) in addition to the base-displacement
address calculation. Although we cannot discuss all of the instructions, here are some
of them.

The load instructions copy information from memory to the registers. Loading
instructions allow the general registers to be loaded with another register (LR), a full-
word (L), a half-word with sign extension (LH), and load an immediate quantity, like
an ENTA (LA). Additional loads between registers allow load complement (LCR), load
and test, setting the condition code (LTR), load positive (LPR), and load negative (LNR).
Multiple registers can be loaded from memory at once (LM), allowing all general purpose
registers to be loaded with one instruction. Similar instructions allow the floating point
registers to be loaded, single or double precision, from memory or a register, positive,
negative, tested or rounded.

Storing can be done by character (STC), half-word (STH), full-word (ST), or multiple
registers (STM).

Arithmetic operations can be between registers or memory, full-word or half-word,
and include addition (A, AR, AH, AL), subtraction (S, SR, SH, SL), multiplication (M, MR, MH),
division (D, DR), and comparisons (C, CR, CH, CL, CLR, CLI). Multiplication and division
involve double-length integers and so need double-length registers. This is done by
grouping even and odd registers together as even-odd pairs. Register 0 is paired with
register 1, register 2 with register 3, and so on. The comparison instructions set the
condition code. Floating point arithmetic instructions operate on long or short floating
point numbers in the floating point registers.

Jump instructions (called branch instructions) allow jumps to any address in memory
on any setting of the condition code. Branch instructions also can be used to increment
a register, compare against another register and branch if greater (BXH), or branch if
less than or equal (BXLE), or decrement and branch if nonzero (BC, BCR). Subroutine
jumps are made by a branch and link (BAL) instruction which puts the return address in
a register.

Logical AND, logical OR and exclusive-OR instructions can be used on the general
purpose registers for masking, as can a set of left or right, single or double (even-odd
pairs), end-off shifts by any number of bits (0 to 63).
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FIGURE 10.19 The five basic instruction formats of the IBM 360 and 370.

Decimal instructions all operate directly on numbers stored in memory and allow
addition, subtraction, multiplication, division, and comparisons as well as instructions
for converting between binary and packed decimal, and between packed decimal
and zoned decimal. Fancy editing instructions allow leading zero suppression, check
protection, and addition of commas and periods in decimal numbers for output.

Character strings can be manipulated by instructions which copy strings of bytes
from memory to memory, that translate from one character code to another, or that
search for particular characters.

10.5.3 Assembly language

The assembly language for the 370 is similar to the other assembly languages we
have seen, but larger. The large number of different instructions, instruction formats,
and data representations all make the assembler a very complex program. There are,
in fact, at least six assemblers for the 370 assembly language, ranging from a two-pass
load-and-go assembler to a four-pass assembler.



10.5. THE IBM SYSTEM 360 AND SYSTEM 370 361

The basic assembly language statement format is the same as for a free-format
MIXAL program. An optional label (up to eight characters, starting with a letter) may
start in column one. The opcode field may be any of the symbolic mnemonic opcodes
for 370 instructions, an assembler pseudo-instruction, or a macro call. The operand field
format depends upon the opcode. The operand field may be followed by a comment
field. All fields are separated by blanks. An asterisk in column 1 indicates a comment
card.

One of the major problems in writing 370 programs is addressing. The base-
displacement form of address calculation is a good hardware design but requires that
the machine language programmer constantly calculate displacements. This is solved in
assembly language by maintaining a base register table in the assembler. Whenever a
symbol is used in an operand field where base-displacement in needed, the assembler
searches the base register table for the base register closest to the symbol. The
displacement from this base register is calculated, and code is generated using this
displacement and base register. Entries are added to the base register table by the
USING pseudo-instruction. It has the format

USING address,register

When this pseudo-instruction is encountered, it is entered into the base register table to
allow that register to be used as a base register if necessary. A DROP pseudo-instruction
will remove the register from the table. It should be used whenever the contents of base
registers are changed. Remember that all this calculation is done at assembly time and
affects only the generation of assembled code. If a programmer lies with his USING or
DROP pseudo-instructions, the assembler will generate the code it thinks is correct, but
this code will probably not execute correctly.

Other pseudo-operations include EQU, DC (a complex version of the CON statement),
DS (a BSS statement), ENTRY and EXTRN (for relocatable programs), ORG, MACRO and MEND,
listing control (define a title, start a new page, space), and many others.

The 370 assembly language, particularly its macro and conditional assembly
features, is very powerful. A truly excellent programmer can write very sophisticated
programs in 370 assembly language. The rest of us tend to ignore a large number of
these features.

10.5.4 I/O and interrupts

Six classes of interrupts can occur in the 370. These are I/O, external (an interrupt
from a clock or power failure), program (illegal opcode, addressing error, illegal data,
overflow or underflow, or translation errors), supervisor call (a special instruction to
allow programs to communicate with the operating system), machine check (hardware
failure) and restart (operator pushes the restart button on the console). Each type of
interrupt has two double-words assigned to it in low core. When an interrupt occurs, a
new PSW is loaded from the first double-word assigned to this type of interrupt; the old
PSW is saved in the other double-word (old PSW).

Each type of interrupt has a priority associated with it. If two interrupts are requested
at the same time, the higher priority request takes precedence. In addition, four bits in
the PSW allow I/O, external, machine check, and program interrupts to be enabled or
disabled separately. Supervisor calls and restart interrupts are always possible.
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Another field in the PSW records information on the specific interrupt which occurred.
The device number and channel number are stored for I/O interrupts. In addition, the
length of the last instruction is stored in the PSW to allow the computer to “back up” and
try again if need be.

The I/O system of the 370 is quite sophisticated. All I/O is done directly to memory.
This requires a processor, as on the HP 2100 and PDP-11, to control the transfer
of information between the I/O devices and memory, to count the number of words
transferred, and to keep track of the address where each word should go. On the HP
2100 and PDP-11, this was a relatively simple special-purpose processor. On the 370,
this processor is more complex. It is called a channel . A channel on the 370 is a special
purpose computer which can execute channel programs.

Channel programs, like CPU programs, are made up of instructions. The channel,
after initiation by the CPU, executes a channel program by executing each instruction
in the channel program, one after another. The channel program is stored in main
memory along with normal CPU programs. The channel fetches each instruction from
memory as necessary. The CPU initiates I/O activity by starting a channel with a Start
I/O (SIO) instruction. When an SIO instruction is executed, the addressed channel loads
the address of the first instruction in its channel program from location 72 in memory,
and starts to execute its channel program. The CPU continues to execute programs
independent of channel activity. Two other instructions, Test I/O (TIO) and Halt I/O (HIO),
can be used by the CPU to interact with a channel.

A channel is a special-purpose processor. Since it is meant to do I/O and nothing
else, it does not need arithmetic instructions or conditional instructions or similar
instructions which are necessary for computation. Each instruction to a channel is
called a channel command word (CCW) and is a double-word (see Figure 10.20). The
fields of a CCW are its command code (read, write, read backwards, sense, control,
and jump), a memory address of the memory buffer for the I/O transfer, a count of the
number of bytes to transfer, and a set of flag bits. The flags contain various options
including one to not store data during reads, to request an interrupt after each CCW
(instead of only after the entire program is completed or an error occurs), and a chain
bit . The chain bit in a channel command word is the opposite of a halt bit. As long
as the chain bit in a CCW is on, the channel processor will continue to fetch the next
double-word in memory as a new CCW when the current CCW is completely executed.

FIGURE 10.20 Channel command word format. The flags field includes a chain bit.
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The first CCW which is encountered with a zero chain bit causes the channel processor
to stop and request an interrupt of the CPU.

There are several different kinds of channels available. Multiplexor channels are
used for slow-speed devices, while selector channels are used for high-speed devices.
Channels, with their direct memory access and ability to execute relatively simple
sequences of I/O actions, relieve the CPU of the need to keep complete track of all
activity itself, just as a secretary allows an executive to be more effective by taking over
some of the routine work.

“IBM System/370 Principles of Operation” (IBM Order number GA22-7000) is the
definitive reference on the 370 computers, while “IBM System/370 System Summary”
(IBM Order number GA22-7001) gives a good overview of the different models, their
features, and their peripherals. Several textbooks use the 360 and 370 computers to
teach assembly language programming, including Struble (1975).

EXERCISES

1. Describe the memory and registers of the IBM 370 family of computers. What is
the word size? What is the address size? How is memory addressed?

2. What is the difference between a System 360 model 30 and a System 370 model
168?

3. Describe the effective address calculation for the 370.

4. Describe the instruction set of the 370. Include the size of the opcode field, the
instruction length, number representations, and types of operands for the different
instructions.

5. What are the USING and DROP pseudo-instructions for?

6. How is I/O done on the 370? What is the advantage of this approach over the
approach of the MIX or PDP-8 computers?

10.6 THE BURROUGHS B5500

The B5000, announced by Burroughs in 1961, is a radical departure from the
architecture of most computers. Most computers are register-oriented, from the
programmer’s point of view, while the Burroughs’ computers are stack-oriented (see
Section 4.5). The B5000 was the first of this line of computers. The B5500 (1965) was a
second edition which solved some of the problems of the B5000. More recent computer
systems, including the B2700, B3700 and B4700, and the B2800, B3800, and B4800,
have followed the same general architectural design, although with new technology. We
describe here the B5500, as the classic model of a stack machine.

One point should be kept in mind during the discussion of the architecture of the
B5500: there is virtually no assembly language programming for the B5500. In fact,
there is no assembly language. This remarkable fact is a result of a conscious decision
on the part of the designers of the Burroughs’ computers. The designers saw the
computer hardware as only a part of the overall computing system, composed of
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FIGURE 10.21 A Burroughs B5500 computer system. The B5500 was a very successful
computer system based on a stack architecture. (Photo courtesy of Burroughs
Corporation.)

hardware and software. Thus, the B5500 was designed to efficiently execute higher-
level languages, particularly Algol-like languages. Since it does this so well, there is
no need for assembly language, and all code for Burroughs’ computers is written in a
higher-level language. This includes even the operating system, MCP.

With this in mind, we present a description of the Burroughs B5500.

10.6.1 Memory

The B5500 is a 48-bit machine with 15-bit addresses, allowing up to 32K words of
memory. Each word can be either data or instructions. Data words can be interpreted
in two ways. A 48-bit word can be interpreted as eight 6-bit characters; the character
code is a variant of BCD.

Alternatively, the data word can be interpreted as a number. Numbers are
represented in floating point notation, with a 6-bit exponent and a 39-bit fraction. Each
portion of the number, exponent and fraction, has a separate sign bit, using sign and
magnitude notation. “Fraction” is a misleading term for the 39-bit part, since the decimal
point is assumed to be at the far right of the “fraction”, making the 39-bit portion an
integer, not a fraction. This integer portion is in the range 0 to 549,755,813,887. The
exponent base is 8, so the range of representation is approximately 8-51 to 8+76 with
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FIGURE 10.22 Representation of numbers on the B5500. All numbers, both floating
point and integer, are represented in this floating point format.

about 12 places of accuracy. There is no integer number representation; integers are
simply floating point numbers with a zero exponent.

10.6.2 Instruction set

The instruction set for the B5500 is composed of two separate sets: word mode
instructions and character mode instructions. The computer operates in one of two
modes; word mode or character mode, with separate instruction sets for both modes.
One of the instructions in word mode switches the B5500 to character mode; one
of the instructions in character mode switches to word mode. A one-bit flag register
remembers the current mode. We consider word mode operation first.

Word mode

In word mode, the B5500 is completely stack-oriented. Each instruction which
needs an operand or generates a result uses the stack for the source of its operands
and the destination of its results. For example, the ADD instruction takes the two words
at the top of the stack, removes them from the stack, adds them, and places their sum
back on the top of the stack. The stack is stored in memory and pointed at by a special
register, the S register.

This approach to designing the instruction set has several advantages. No operand
address need be specified in the instruction. A stack machine is thus called a 0-address
machine. This makes the instruction very short, since it need only specify an opcode.
Thus, programs are very short, saving memory. No registers are needed to act as
accumulators or counters; all functions are performed on the top of the stack.

The B5500 has 12-bit instructions, allowing 4 instructions to be packed into each
word. There are four types of instructions, selected by two bits of the instructions. These
four types of instructions are,

1. Literals (00). This instruction type is composed of a 10-bit literal. This literal is a
small integer in the range 0 to 1023 and is copied to top of the stack. This allows
small constants and addresses to be put on the stack directly.
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2. Operand (01). This instruction type consists of a 10-bit address. The contents of
the addressed location are copied onto the top of the stack. This is similar to a
load instruction.

3. Descriptor (11). This instruction type includes a 10-bit address which is copied to
the top of the stack.

4. Operation (10). The remaining 10 bits of the instruction specify an operation to be
performed, generally on the top of the stack.

The operand and descriptor instructions are more complex than the above
description indicates. Notice for example that the descriptor function would appear
to be the same as the literal function. Also, both descriptor and operand instructions
specify addresses, but only a 10-bit address, despite the fact that addresses are 15 bits.
The reason for this is that the 10-bit “addresses” are not addresses into memory but
rather indices into an area of memory called the Program Reference Table (PRT).

The PRT contains constants and simple variables for the program as well as pointers
to more complex structures, such as subprograms and arrays. All references to
subprograms and arrays are made indirectly through the PRT. The PRT acts like a
symbol table (but without the symbols), allowing each symbol in a program to be
represented by its index into the PRT rather than a complete 15-bit address. The
descriptor function places the absolute 15-bit address of its PRT index on the stack.

Operations

The operations which can be performed on the B5500 are typical of most computers.
The top two elements of the stack can be added, subtracted, multiplied, or divided,
with the result placed on the top of the stack. These operations can be either single or
double precision. All of these operations are floating point operations, but since integers
are represented as unnormalized floating point numbers, these same operations can
also be used on integers or mixed integer and floating point numbers. A special integer
divide instruction allows an integer quotient and remainder to be generated from two
numbers.

Logical operations of AND, OR, equivalence (1 bit for each pair of identical bits, 0 bit
for each pair of different bits), and negate operate on the top of the stack, placing the
result on the top of the stack. Each word is treated as a string of 48 bits. These logical
operations are useful in conjunction with the compare operators and for masking.

The compare operators compare the top two elements of the stack for equal, not
equal, less, less or equal, greater, or greater or equal, whichever is selected, and places
the result of the comparison (zero for false, nonzero for true) on the top of the stack. A

FIGURE 10.23 Instruction format for word-mode instructions. The two-bit type field
selects either a literal (00), operand (01), descriptor (11), or operation (10); this
determines the interpretation of the remaining 10 bits.
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FIGURE 10.24 Stack operation on the B5500. All operations are done on the top
elements of the stack, with the result being placed back on the stack. The S register
points to the top of the stack.

special field compare instruction allows any two arbitrary fields of the top two elements
of the stack to be compared.

Conditional jumps use the top of the stack to control jumping: jumping if true, not
jumping if false. Unconditional jumps always jump. The address to which to jump is
given on the top of the stack. Separate instructions exist for forward jumps and for
backward jumps. The address on the stack is the offset (from the current instruction) of
the instruction to which to jump. Since a jump will normally not be too far away, only the
lower 12 bits of the stack address are used. This allows a jump to any instruction within
1023 words forward or backwards. In all cases, the jump offset and logical value (for
conditional jumps) are removed after the jump instruction is completed.

Storing operations require the value to be stored and the address of the location to
be on the top of the stack. The value is stored in the memory location addressed, and
normally both are removed from the stack. A special store operation allows the value to
remain on the stack for further use, removing only the address from the stack.

A special set of instructions allows the top two elements on the stack to be
interchanged, the top element to be duplicated, or the top element to be deleted.

An example of using the stack

To see how the stack structure of the B5500 affects its programming, consider the
program to evaluate a simple arithmetic expression like,

((B+W) * Y) + 2 + ((M-L) * K)/Z

For the B5500, our program could look like

*
* Opcode Operand Stack Contents
*

OPERAND W W
OPERAND B W B
ADD W+B
OPERAND Y W+B Y
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MUL (W+B)*Y
LITERAL 2 (W+B)*Y 2
ADD ((W+B)*Y)+2
OPERAND M ((W+B)*Y)+2 M
OPERAND L ((W+B)*Y)+2 M L
SUB ((W+B)*Y)+2 M-L
OPERAND K ((W+B)*Y)+2 M-L K
MUL ((W+B)*Y)+2 (M-L)*K
OPERAND Z ((W+B)*Y)+2 (M-L)*K Z
DIV ((W+B)*Y)+2 ((M-L)*K)/Z
ADD (((W+B)*Y)+2) + (((M-L)*K)/Z)

This expression was programmed in Chapter 4 with 10 MIX instructions, while the
above B5500 program takes 15 instructions. However, remember that MIX instructions
are 31 bits in length, while B5500 instructions are only 12 bits. Thus, the MIX program
took 310 bits compared to the 180 bits for the B5500 program. Also, the MIX program
required a temporary storage location, while the B5500 program needs no temporary
storage, storing all intermediate results on the stack.

Character mode

One special control instruction for the B5500 changes the mode of execution to
character mode. In character mode, the entire instruction is interpreted in a different
manner. There is no stack. Two special registers point to two areas of memory called
the source and the destination. Operations transfer from the source to the destination,
compare the source to the destination, add or subtract the source to the destination (as
decimal integers), and perform editing operations (like suppressing leading zeros). Two
instructions are almost exactly like NUM and CHAR in MIX. The length of the character
strings is included in each 12-bit instruction. Each instruction has a 6-bit repeat field
and a 6-bit opcode field. This allows character strings to be any length from 0 to 63.

An interesting pair of special instructions is the BEGIN-LOOP/END-LOOP pair. When a
BEGIN-LOOP opcode is encountered, a counter is initialized to the 6-bit repeat field in
the instruction and the address of the BEGIN-LOOP instruction is remembered. When an
END-LOOP instruction is executed, the counter is decremented. If it is still positive, the
loop is repeated from the address following the BEGIN-LOOP instruction. If the counter is
zero, the computer continues to the next instruction, following the END-LOOP instruction.
These instructions allow loops on character strings without the need for an explicit
counter, decrement, and conditional jump.

FIGURE 10.25 Instruction format in character mode. Each instruction has a 6-bit repeat
count and a 6-bit opcode. All operations are between two memory areas, the source
character string and the destination character string.
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I/O and interrupts

The input and output of information is handled by channels executing a channel
program. The I/O start instruction starts the channel executing a channel program which
starts at memory location 8. An interrupt system is used to signal completion of I/O
and also to handle exceptional conditions such as overflow or underflow (of numbers
or of the stack), divide by zero, memory parity errors, and so on. A 7-bit interrupt
code is used to indicate the type of interrupt occurring. Interrupts are vectored through
locations in low memory. Registers are stacked when the interrupt occurs, allowing the
interrupted program to be restarted after the interrupt is serviced.

EXERCISES

1. Describe the memory of the B5500.

2. What would be the advantage of building a machine which does not need
assembly language programs?

3. Can all programming for a computer be done in a higher-level language, or must
at least some program be written in machine language at least once? (Hint:
consider loaders).

4. Why are there two modes of operation on the B5500?

5. Why are there no integer numbers on the B5500?

6. Write a program for the B5500 to calculate the expression Y + 2 * (W + V) / 4
- 6 * (10 - W - V).

7. A stack machine allows instructions to be much shorter, since no address need
be specified for arithmetic operations. Does this mean all programs are always
shorter on a stack machine?

10.7 THE CDC 6600

In discussing the CDC 6600, it is important to make clear at the start that the
6600 was not designed for the same purpose as the other computers described in this
chapter. The 6600 was built for the express purpose of delivering the greatest possible
computing power for the solution of large scientific computing problems. As such it
has succeeded very well. The 6600 and the later 6400, 6500, 6700, and Cyber 70
models are not meant for the business data processing problems which typically involve
much I/O and little computation. They were designed for problems which involve large
amounts of floating point calculations.

The design goals resulted in a dramatic change in the basic architecture of the
computer. The CDC 6600 is not 1 processor but 11 separate processors: 1 main
central processor (CP) and 10 peripheral processors (PP). Each of these processors
has its own memory, registers, and instruction set. The objective is quite simple: to
relieve the central processor of all input/output, bookkeeping, and control functions. The
entire operating system of the 6600 resides in the peripheral processors. This is an
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FIGURE 10.26 A CDC 6600. The 6600 is composed of 11 separate computers: one
central processor and 10 peripheral processors. One peripheral processor is commonly
used to drive the operator’s console, shown in the foreground. (Photo courtesy of
Control Data Corporation.)

extension to the extreme of the same ideas which lead to the design of the channels on
the 360/370 computers. The idea is to relieve the CP of the responsibility for operating
system functions, allowing it to devote itself totally to computation. The 6600 is an
expensive computer system, costing from $3,000,000 to $5,000,000.

10.7.1 The peripheral processors

Each of the peripheral processors is a 12-bit computer with its own 4K of memory
and an 18-bit accumulator, the A register. Instructions are either 12-bits or 24-bits
long and allow loading, storing, addition, subtraction, shifting, masking, and conditional
jumps. A subroutine jump instruction stores the return address in memory and starts
execution at the next instruction. Addressing modes allow 6-bit and 18-bit immediate
operands, as well as direct and indirect addressing. All of these instructions access the
PP’s private 4K of memory. Additional instructions allow the PPs to copy words between
central memory and its own memory.

The PPs have I/O instructions which allow each PP to do input or output on any
I/O device, one word at a time. No interrupt system is used, so busy loop waiting, or
polling, is needed for I/O. Remember, however, that when busy loop waiting is used, the
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FIGURE 10.28 Block diagram of a peripheral processor (PP). There are 10 PPs, and
each has its own registers and 4096 12-bit words of memory.

entire computer system is not waiting, only the one PP doing that I/O. The other PPs can
continue work.

The PPs are designed to perform I/O and operating system functions, not general
computing. They normally execute only programs which are a part of the operating
system. Thus, most programmers never have an opportunity to program the PPs. When
the 6600 is discussed, most discussion centers on the central processor.

10.7.2 Central Processor

The central processor was designed for scientific calculations. This implies floating
point numbers and a desire for many digits of precision. This in turn implies a large
word length. Correspondingly, the word length for central memory is 60 bits. Each
60-bit word can be copied to 5 12-bit PP words. Up to 256K words can be used on a
6600, since addresses are 18 bits.

A 60-bit word can represent an integer, in ones’ complement notation, or ten 6-bit
characters. The character code is of CDC’s own design, called display code, but is only
6-bits per character, 64 characters. The characters provided are basically the same as
those provided by the BCD character code.

A 60-bit word can also be interpreted as a floating point number in ones’ complement
notation, with an 11-bit, ones’ complement base 2 exponent (but with a complemented
sign bit) and a 48-bit fraction with a binary point to the right of the fraction. Special
floating point numbers are used to represent “infinite” and “indefinite” numbers. Infinite
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numbers result from operations causing exponent overflow, while indefinite numbers
result from using infinite numbers in operations.

The 6600 has 24 (plus or minus one) programmable registers:

• 8 X registers (X0, X1, . . . , X7),
• 8 B registers (B0, B1, . . . , B7),
• 8 A registers (A0, A1, . . . , A7).

The X registers are the operand registers. These are 60-bit registers. All arithmetic
operations are done on these registers. The B registers are 18-bit index registers; they
can hold addresses, or “small” integers. The A registers are 18-bit address registers.

The A registers are used to do all loading and storing of the X registers. Whenever
an address is loaded into any of A1, A2, A3, A4, or A5, the contents of that memory
location in memory is loaded into X1, X2, X3, X4, or X5, respectively. Whenever an
address is put into A6 or A7, the contents of X6 or X7, respectively, is stored into the
memory word at that address. Memory is only loaded from or stored into as a result of
setting one of the appropriate A registers (A1 though A5 for loading; A6 or A7 for storing)
to an address.

A few of the registers are special. A0 and X0 are not connected nor do they cause
loading or storing. A0 is essentially an extra index register, while X0 is a “free” operand
register. B0 is always zero. It is possible to “store” into B0 any value, but it will always
be read out as zero. This is actually very useful, and many programmers go one step
farther, initializing B1 to 1 and leaving it as 1 for the duration of their programs.

10.7.3 Instruction set

The 6600 has two types of instructions. The short form is 15 bits with an opcode
field (6 bits), and three 3-bit register fields (i, j, and k). The register fields select one
of the eight registers for the instruction. The opcode determines whether the A, X, or

FIGURE 10.29 The central processor of a CDC 6600. The A and B registers are 18-bit
registers for holding counters and addresses; the X registers are 60-bit registers for
holding integer, character, and floating point operands.
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B registers should be used. The long form of instruction has the same format, except
the k field is an 18-bit ones’ complement number, denoted as K. The K field most often
holds an 18-bit address.

Having instructions of varying lengths is not unusual, but notice that both instruction
lengths are smaller than the size of the basic addressable memory unit (in this case a
60-bit word), not larger, as in the PDP-11 and IBM 370. Multiple instructions are packed
into each word. In the best case, four 15-bit instructions can be packed into one 60-bit
word. Alternatively, two 30-bit instructions, or two 15-bit and one 30-bit instruction can
be packed into one word. If, in writing a program, you encounter the situation of having
three 15-bit instructions (or one 15-bit and one 30-bit instruction) in a word, and the next
instruction is 30 bits, then the last 15 bits of the word are padded with a no-operation
(NOP), and the next word gets the 30-bit instruction in its upper 30 bits. If an instruction
is to be jumped to, it must be the first instruction in a new word. This can result in a
word being padded with up to three NOPs.

The instruction set itself is quite simple. With only 6 bits for the opcode field, only
64 opcodes are possible. The instructions can be split into three groups: the set
instructions, the jump instructions, and the computational instructions.

The set instructions are used to put values into the A, B, and X registers. The values
are 18-bit quantities which result from addition or subtraction of the contents of A, B, and
X registers, or (in the long format instructions) the number K. Any Ai, Bi, or Xi register
can be set to

1. The contents of an A register plus K (Aj + K)
2. The contents of a B register plus K (Bj + K)
3. The contents of an X register plus K (Xj + K)
4. The contents of an X register plus the contents of a B register (Xj + Bk )
5. The contents of an A register plus the contents of a B register (Aj + Bk )
6. The contents of an A register minus the contents of a B register (Aj - Bk )
7. The sum of the contents of two B registers (Bj + Bk )
8. The difference of the contents of two B registers (Bj - Bk )

Remember that the B register involved can be B0, which is always zero. This allows any
Ai, Bi, or Xi to be set to any Aj, Bj, Xj, K, -Bk or zero.

The contents of registers can be tested and a jump made on the result by the
jump instructions. The jumps allow X registers to be tested for positive, negative, zero,
nonzero, indefinite, or infinite values. If the condition is true for the selected X register,

FIGURE 10.30 Instruction formats for the CDC 6600. Several instructions are packed
into each word. The opcode defines the length of the instruction. K is an 18-bit constant;
the other fields (i, j, k ) select one of eight registers.
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a jump is made to the address K given in the instruction. In addition, jumps can be
made as the result of comparing any two B registers for equality, nonequality, greater
than or equal, or less than. Since one of these registers can be B0, this allows jumps
if a B register is positive, negative, zero, nonzero, nonnegative, or nonpositive. Two
other jumps are an unconditional jump and a subroutine jump. A subroutine jump to
location K from location P will result in a jump instruction to location P+1 being stored in
location K, and execution continuing at K+1. A return to the calling program is effected
by jumping to K (which jumps back to P+1).

The remaining instructions are the computational ones. These are the instructions
which actually compute. They include Boolean operations (AND, OR, and exclusive-OR
of X registers and their complements), shifts (left or right, end-off or circular), addition,
subtraction, multiplication (both integer and floating point), and division (floating point).
Additional instructions help to multiply and divide double precision numbers and to
convert between integers and floating point numbers.

The contents of X registers can be copied from register to register by ANDing or ORing
the source register with itself. This is probably the most common use of the Boolean
instructions: to move values between registers.

A few miscellaneous instructions allow the CP to do nothing (NOP) or stop (PS).
And that is all the instructions for the 6600 (give or take a few). There are no load or

store instructions (this is done by setting A registers), no character handling instructions
(done by shifting and masking with the Boolean operations), and no I/O instructions
(done by the PP’s). The instruction set is very simple, possessing a kind of elegance for
its simplicity. This makes the computer relatively easy to program (once you get used to
it).

However, it should be admitted that although it is possible to program the 6600 in
a very straightforward manner, this is seldom done. The main reason for this is that
very large increases in speed can be obtained by careful use of registers, selection of
operations, and ordering of instructions. Only the very sophisticated programmer can
consider all of these factors and produce truly optimal code.

10.7.4 Assembly language and programming

Since there are two computers with two separate instruction sets for the CDC 6600
(CP and PP), two assemblers would be expected. However, since most of the code
in an assembler is independent of the instruction set, only one assembler is used. A
pseudo-instruction selects the PP opcode table for PP programs; normally the opcode
table for the CP is used. This assembler runs on the CP, but not on the PPs. Thus,
the PPs have no assembler for PP assembly language which runs on a PP. The CP
assembler for PP assembly language is a cross-assembler , an assembler which runs
on one computer and produces code to be executed on another computer.

The statement format for the 6600 assembly language is the same as for many
other computers: free-format, composed of four fields: label, opcode, operand, and
comment. The label field must start in column 1 or 2, if there is a label. (Labels are
allowed to start in column 2 because the operating system uses the Fortran convention
of using column 1 for carriage control information when a file is printed. Thus, if labels
started in column 1, and the program were simply copied onto the printer, the first letter
of each label would be interpreted as a carriage control character.)
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The central processor assembler recognizes the special symbols A0, A1, . . . , A7,
B0, B1, . . . , B7 and X0, X1, . . . , X7 as the names of the corresponding registers. The
opcode field plus the form of the operand field are used to determine the opcode and
assembled instruction. For example, all set instructions use the mnemonic “S” followed
immediately by the register to be set. The type of set and the other registers involved
are indicated by the form of the operand. The following examples might illustrate this

SA1 A1+B1 SET A1 TO THE SUM OF A1 AND B1. OPCODE = 54
SA1 B2+B5 SET A1 TO THE SUM OF B2 AND B5. OPCODE = 56
SX1 B2+B5 SET X1 TO THE SUM OF B2 AND B5. OPCODE = 76

When an instruction is used with a constant (SB3 B3+1), the constant can be numeric
(decimal or octal if suffixed by B), symbolic, * (location counter), or an expression.
Expression operators are +, -, *, and /, with * and / having precedence over + or -;
otherwise evaluation is left to right. Literals are allowed.

A large number of pseudo-instructions are used. Each program is preceded by an
IDENT pseudo-instruction (which identifies and names the program), and terminates
with an END pseudo-instruction. DATA or CON pseudo-instructions can be used to define
constants; DIS defines strings of characters (like ALF), and BSS reserves memory
locations. ORG is used to set the location counter, but almost all programs are relocatable,
so it is seldom used. ENTRY and EXT pseudo-instructions declare entry points and
externals. The EQU defines a symbol for the symbol table. Conditional assembly and
macro instructions are also available.

Some of the more unusual pseudo-operations include BASE, which can be used
to define the base in which numeric constants are interpreted (octal or decimal); PPU
which declares the program which follows to be a PP program and not a CP program;
and OPDEF, which allows the programmer to define his own entries for the opcode table.
The assembler is two-pass.

Programming the 6600 is somewhat different from programming other computers.
All operations are done on registers and loading and storing operations are done in a
somewhat unconventional manner. Most of these problems disappear as experience
and familiarity with the machine are gained. The more important problems deal with the
coordination of the CP and the ten PPs to allow a program to perform both computation
and I/O as necessary. Since the CP can do no I/O, it must request the PPs to do all
I/O for it. This leads to some interesting problems in operating system design, but is
beyond the scope of this book.

As with most computers, the reference manuals published by the manufacturer
provide the most authoritative description of the hardware and assembler for the
computer. For the 6600, these are the “Control Data 6000 Series Computer Systems
Reference Manual”, and the “Compass Reference Manual”. Another source is the
excellent book by one of the designers of the 6000 series of computers, Thornton
(1970), which describes the 6600 and its hardware design. Programming techniques
for the central processor are described in the text by Grishman (1974).

EXERCISES

1. Describe the memory and registers of the CDC 6600 central processor. What is
the word size? What is the address size?
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2. The CDC 6600 central processor has no LOAD or STORE operations. How is
information transferred between memory and the registers?

3. Both MIX and the 6600 have index registers; why doesn’t the 370?

4. Since the 6600 has no interrupts, how does the computer know when devices
have completed requested I/O operations? Which processor(s) in the 6600
actually do the I/O?

5. The 6600 peripheral processors (PPs) each have 4K of 12-bit words and an 18-bit
accumulator. Why would they have an 18-bit accumulator when they have only
12-bit words?

6. IBM uses hexadecimal for the IBM 370, while CDC promotes octal for the 6600.
Can you suggest reasons why?

10.8 THE INTEL 8080

One of the major concerns which must be considered in designing a computer is the
available technology. Charles Babbage was unable to complete his Analytical Engine
in the nineteenth century not because of faulty design, but simply because his design

FIGURE 10.31 The Intel 8080 CPU. This small chip of semiconductor material includes
all of the logic for the arithmetic and logic unit and control unit for the 8080. The entire
chip is less than ½ inch on each side. (Photo courtesy of Intel Corporation.)
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exceeded by almost a century the technology to implement his ideas. Within the last
five years, however, the technology of electronic circuits has improved to the point that
an entirely new type of computer is possible: the microcomputer.

The transistor started the semiconductor revolution, allowing computers to replace
the bulky vacuum tubes with the smaller, faster, and more reliable solid state devices.
Originally these devices (transistors, resistors, capacitors, diodes) were used as discrete
components, but soon they were combined into combinations of devices produced as
an entity. This is known as small-scale integration (SSI). SSI allowed several gates to
be put on a single silicon chip. Medium-scale integration (MSI) increased the number of
components that could be placed on a single chip, so that an entire register might be one
chip. Most recently, large-scale integration (LSI) has allowed thousands of components
to be put on a single chip. In particular, LSI makes possible the construction of an entire
CPU on one chip. This includes the ALU, registers, and control logic. Separate chips
can be used to provide memory and I/O driver circuits.

One of the first computers-on-a-chip, or microprocessors, to be developed was
the Intel 8008. This was used to control an “intelligent” CRT terminal. The 8008 was
replaced by the Intel 8080. The 8080 has more instructions than the 8008 and is faster,
but is also upwards compatible, so any 8008 program will also run on the 8080. The
8080 has been upgraded to the 8080A and recently the 8085 has been announced.
The 8085 is compatible with the 8080, but runs 50 percent faster.

The 8080 is certainly not the only microprocessor. The Motorola M6800 is another
popular 8-bit microprocessor, while the Intersil IM6100 is a 12-bit PDP-8 compatible
processor, and the LSI-11 microprocessor is a 16-bit PDP-11 compatible processor.
Zilog Corporation makes the Z80 which is 8080-compatible but twice as fast and
uses less power. RCA manufactures the COSMAC micro-processor; Data General
manufactures the microNOVA microprocessor; and so on. We have chosen to describe
the 8080, not because it is best, but only because it is well-known, widespread, and
similar to many other microprocessors.

10.8.1 Memory

The 8080 is an 8-bit machine, so memory is made up of 8-bit bytes. Each byte has
a separate address (byte-addressable). If 8-bit bytes were used as addresses, only 256
bytes would be addressable, so 16-bit addresses are used. This allows up to 65,536
bytes of memory to be used.

The 8080 chip does not have memory on it; memory is available on other chips,
such as the 8102 chip with 1024 bits of memory. Typically, an 8080 will have from 4K
to 16K bytes of memory. For dedicated applications, programs could be in read only
memory (ROM) with only a small amount of read-write random access memory (RAM)
for storing data and variables.

10.8.2 Registers

The 8080 has several registers. A 16-bit program counter contains the address of
the next instruction, and a 16-bit stack pointer contains the address of the top of a stack
in memory. The stack is used for subroutine return addresses and can also be used for
temporary storage and parameters.
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FIGURE 10.32 An Intel 8080 CPU chip. This photomicrograph shows the structure of a
single chip which includes registers (upper left), an arithmetic and logic unit (lower half),
and control circuits. (Photo courtesy of Intel Corporation.)

The 8-bit accumulator (A) is used for arithmetic functions. In addition there are six
8-bit general registers: B, C, D, E, H, and L. These registers can be used to store 8-bit
bytes or used as register pairs (B,C), (D,E), and (H,L) to hold 16-bit quantities, generally
addresses. A set of five 1-bit flag registers are used as condition code indicators to
signal when the result of an arithmetic operation is zero, negative, generates a carry,
has even parity, or generates a carry out of bit 3 (for decimal arithmetic).

Data is stored as 8-bit binary integers and can easily be interpreted as signed two’s
complement or unsigned 8-bit integers. Double precision (16-bit) integers can be used
by multiple-precision programming techniques and even floating point numbers could
be simulated with proper programming, but generally programs work with signed or
unsigned 8-bit or 16-bit integers.
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10.8.3 Instructions

The 8080 instruction set uses an 8-bit opcode. This allows up to 256 different
instructions, of which 12 are not used by the 8080. Many of these opcodes operate on
the registers and so do not have operands. A few use the byte following the opcode
for an 8-bit “immediate” constant, or the two bytes following the opcode for an address.
Thus, an instruction may be one, two, or three bytes in length, depending upon the
opcode.

The instructions can be divided into four types:

1. Data transfer instructions, which move data between registers and memory, or
between registers and registers.

2. Arithmetic instructions, which operate on the registers, or the registers and
memory, leaving the result in the registers.

3. Jump instructions, which may alter the flow of control in the program.

4. Miscellaneous instructions, including I/O instructions, stack instructions, HALT and
NOP instructions.

Notice that the above commands may reference memory. Memory can be addressed
in several ways. First, it can be addressed directly. In this case the two bytes following

FIGURE 10.33 Block diagram of the Intel 8080. All communication between the CPU
and memory or external devices is via the 8-bit data register and the 16-bit address
register.
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the opcode specify the address of the memory location. Second, memory can be
addressed indirectly through the register pairs (H,L), (B,C), or (D,E). Most commonly (H,L)
is used as an address of a memory location.

Memory can also be accessed via the stack pointer and data may be in the
instruction for immediate use. Immediate operands can be 8 or 16 bits, depending on
the opcode. Thus, addressing modes include immediate, direct, and indirect (through a
register). Not all addressing modes are possible with all instructions.

Data transfer instructions

The data transfer instructions include instructions to move data between any two
registers, or between a register and memory. This allows both loads, stores, and the
entering of immediate data.

Arithmetic instructions

Arithmetic instructions allow the contents of any register or memory location to be
added or subtracted from the accumulator. Memory is addressed only indirectly through
the (H,L) register pair, so to add the contents of an arbitrary memory location, x, to the
accumulator would require first entering the address of x into (H,L) and then adding.
Immediate adds and subtracts (increments and decrements) are also possible.

Remember that the accumulator is an 8-bit register, so all arithmetic is 8-bit
arithmetic. To allow multiple-precision arithmetic to be programmed easily, the carry bit
records the carry (for addition) or the borrow (for subtraction) out of the high-order bit.
Instructions allow this carry to be added to the accumulator. Thus, to add two unsigned
16-bit integers, a program would first add the low-order 8-bit bytes of each operand,
store the sum back in memory, and then add the two high-order 8-bit bytes and the
carry from the low-order addition. If there was a carry from this addition, overflow has
occurred.

FIGURE 10.34 Instruction formats for the Intel 8080. Instructions can be one, two, or
three bytes long, depending upon the opcode.
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The logical operators of AND, OR, and XOR are available also. These instructions
operate between the accumulator and any register, memory [indirect through the (H,L)
register pair], or immediate operand. Rotate instructions allow the contents of the
accumulator to be rotated (circular shift) left or right one bit position, with or without the
carry bit. The accumulator can also be complemented.

Another set of instructions allow any register or memory location [addressed indirect
through the (H,L) register pair] to be incremented (by one) or decremented (by one).
This is particularly useful for counters and index addresses.

Finally, the accumulator can be compared with any other register or memory location
[addressed indirectly through the (H,L) register pair], or an immediate operand. The
results of this comparison are used to set the condition flags.

Jump instructions

The jump instructions allow the program to jump, either conditionally or
unconditionally, to any memory location. The jump address is contained in the two
bytes following the jump opcode. Conditional jumps are based on the value of the
condition flags, which may be set on the basis of a compare, addition, subtraction, or
logical operation.

Subroutine linkage is performed by two special instructions, CALL and RET. These
allow a subroutine to be called and later return. The return address of the call is
automatically pushed by the CALL instruction onto the stack pointed to by the stack
pointer register. The RET instruction then pops the top two bytes off the stack and jumps
to that address to return from the subroutine call. This mechanism makes it easy to
write recursive subroutines. The designers of the 8080 then went one step farther
and allowed subroutine calls and returns to be conditional as well as unconditional. A
subroutine call or return can be conditional on the value of the condition flags in the
same way as the conditional jumps.

Miscellaneous instructions

In addition to being used by CALL and RET, the stack can be used directly. Specific
instructions allow register pairs to be pushed onto or popped from the stack. The
accumulator and condition flags can also be saved and restored using the stack. This
allows convenient saving and restoring of registers in subroutines or interrupt handlers.

Instructions for halting the CPU and doing nothing (NOP) are also provided.

I/O operation

Four instructions control input and output. An IN instruction moves one 8-bit byte
from an I/O device to the accumulator, while an OUT instruction moves one 8-bit byte
from the accumulator to an I/O device. The device number is specified in the byte
following the opcode, allowing up to 256 I/O devices. These instructions are similar to
the MIX I/O commands, but there is one major difference: the MIX system provides the
JBUS and JRED instructions to determine when the I/O devices are busy or ready; the
8080 has no such instructions.

There are several ways to solve this problem. One would be to assign two device
numbers to each I/O device. The even device number would be used for control and
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status information and the odd device number for data. This effectively reduces the
number of different I/O devices to 128, still a reasonably large number, and the additional
control circuitry is not great.

Another approach that has been suggested is to assign I/O devices to memory
addresses. Thus, when an address is sent from the CPU, ostensibly to memory, special
circuitry separates the addresses into some which are sent on to the memory modules
and others that are sent to I/O devices. For example, using the high-order bit to choose
between memory addresses and I/O devices would allow up to 32,768 bytes of memory
and 32,768 different I/O devices. This scheme is similar to the approach of the PDP-11.

There are two other I/O techniques which can be used with the 8080. For high-
speed devices, DMA transfers can be made directly to memory. To avoid interference
at the memory between the I/O device doing the DMA transfer and the CPU, it may be
necessary to suspend all CPU operations during the transfer. This will be necessary
only if the memory cycle time is too long to allow the memory units to service both the
CPU and the DMA I/O device.

Finally, the 8080 has an interrupt structure. Two instructions allow the interrupt
system to be turned on and off. When the interrupt system is on, and a request for an
interrupt is made by an I/O device, the interrupt system is turned off and an interrupt
phase is entered. The interrupting I/O device is requested to provide one 8-bit opcode
to the 8080 processor. After this instruction is executed, the 8080 continues its normal
instruction execution cycle.

The instruction supplied by an interrupting I/O device can be any 8080 instruction,
but, of course, what is desired is a jump to an interrupt routine in such a way that control
can be resumed at the interrupted instruction; that is, a subroutine jump to an interrupt
routine. The problem is that all jumps and subroutine calls require an address, meaning
that subroutine call instructions are three bytes in length. To remedy this problem, a
special instruction has been included in the instruction set. This instruction, called a
restart, has a 3-bit field in the 8-bit opcode which specifies one of the 8 addresses, 0, 8,
16, 24, . . . , 56. The restart instruction cause a subroutine call to the address specified
by its 3-bit field. This pushes onto the stack the address of the interrupted instruction.

Typically then an interrupt instruction is a restart to one of the 8 restart addresses.
At each of these addresses is a short program segment which saves registers and
then jumps to another section of code to service the interrupt. After the interrupt has
been serviced, the interrupt system is turned back on, and processing is returned to
the interrupted instruction. By storing interrupt return addresses and registers on the
stack, it is possible to allow interrupts to occur during interrupt handling subroutines.

10.8.4 Assembly language

Several assembly languages for the 8080 exist and more are being developed. One
sizable market for the 8080, and other microprocessors, is the computer hobbyist. Since
a complete 8080-based computer costs less than $500, many people are buying them
for personal experimentation and use. Since assemblers are relatively straightforward
to write (as shown in Chapter 8), many people are writing their own. We describe here
the assembly language provided by Intel.

Each assembly language statement has four fields, as usual: the label field, the
opcode field, the operand field, and the comment field. Input is free-format. The general
form of an assembly language statement is:
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LABEL: OPCODE OPERAND ;COMMENT

The colon following the LABEL defines it as a label and not an opcode. One or more
blanks must separate the opcode and its operand.

The operand field may or may not be needed, depending upon the opcode. It
can contain a constant, a symbol, or an expression. Constants can be specified as
decimal, octal, hexadecimal, binary, or an ASCII character. Symbols are one to five
characters (the first character being alphabetic) and must appear as labels somewhere.
The special symbol $ is the value of the current location counter. Expressions are
constructed from constants and symbols and the operators of +, -, *, /, MOD (modulo),
NOT, AND, OR, XOR, SHR (shift right), and SHL (shift left). Parentheses can be used to force
the order of evaluation; otherwise evaluation is by precedence of operators, similar to
most higher-level languages.

Pseudo-instructions include

DB Define a byte of data
DW Define a word of data
DS Reserve storage (like a BSS)
ORG Define the location counter value
EQU Define a symbol value
SET Like EQU but the symbol can be redefined later
END End of assembly

Conditional assembly is provided by IF and ENDIF pseudo-instructions. The
expression in the operand field is evaluated, and if it is zero, the statements between
the IF and the ENDIF are ignored. If the expression value is nonzero, the statements
are assembled.

Macros are available by using the MACRO and ENDM pseudo-instructions for macro
definition. The MACRO pseudo-instruction specifies the macro name (in the label field)
and a (possibly empty) list of parameter names in the operand field. For an instruction
set as primitive as the 8080, macros are very important for convenient programming.

10.8.5 Programming techniques

Most of the programming techniques for the 8080 are very similar to those of the
PDP-8, although the instruction set is actually more powerful for the 8080. Complex
instructions like multiplications and division are programmed either as macros or
subroutines, as space and time demand. Array processing is easiest by keeping
the base address in a register pair and incrementing or decrementing to move through
the entire array. Subroutine calls use the stack for return addresses. Parameters can be
passed in the registers, on the stack or in memory. The use of subroutines and macros
is very important in the production of good assembly language programs.

EXERCISES

1. Describe the memory of the Intel 8080.

2. Why would the designers of the 8080 limit the word size to 8 bits?

3. Describe how multiple precision arithmetic would be coded on the 8080.
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4. Compare the interrupt processing of the 8080 with the PDP-8 and HP 2100.

5. The assembler for the 8080 is a cross-assembler. Define what this means and
why this would be the case.

6. Compare the I/O instructions of the 8080 with the I/O instructions of the MIX
computer.

10.9 SUMMARY

By this point, we hope you are aware of both the basic similarities among computer
systems and the points of difference. Each new computer should be considered for the
following design points.

10.9.1 Memory and registers

What is the basic unit of memory (word, byte) and its size (8 to 128 bits)? What
are the variations on this basic unit (bytes, half-words, full-words, double-words)?
How big can memory be and what is the address size (8 to 32 bits)? What forms of
data are represented (integers, floating point, decimal, character strings) and in what
representation (ones’ complement, two’s complement, packed, zoned, etc.)?

What registers are available for use by the programmer, their size and usage
(accumulators, index registers, floating point registers, general purpose registers,
condition codes)?

10.9.2 Instruction set

What is the instruction set and its format? What addressing modes are available
(direct, indirect, indexed, auto-increment or decrement)? Are the instructions three-
address (A = B op C), two-address (A = A op B), one-address (register = register op A),
or zero-address (all operations use the top elements of a stack and replace their results
on the stack)? How is loading, storing, testing, and arithmetic handled? What jump
conditions are available and how is a subroutine jump done? How many (bits, bytes,
words) does each instruction format take?

10.9.3 Assembly language

What is the assembly language statement format? What is the maximum symbol
length and any other restrictions on the naming of symbols? How are fields of the
statement defined? What are the mnemonic opcodes and the pseudo-instructions?
What forms of expressions are allowed? What is the symbol for the location counter?

10.9.4 I/O and interrupts

How is I/O performed (CPU, DMA, channels)? What are the I/O instructions? Is
there an interrupt structure and what kind (vectored, priority)? What happens when
there is an interrupt? Are some device numbers interpreted in a special way, and if so,
what way?
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These are the questions which need to be asked about a new computer. With a
familiarity with the computers considered in this book, you should be able to both ask
these questions and to understand their answers. Within a short period of time, you
can then be programming in assembly language on any new computer that you find.

EXERCISES

1. The following computer companies were founded by ex-employees of other
computer companies. Identify the company from which the founders of the
following companies came.

(a) Amdahl Corporation
(b) Control Data Corporation
(c) Data General Corporation
(d) Cray Research, Inc.

2. The PDP-8 has a 3-bit opcode field and has eight instructions. The IBM 370 has
an 8-bit opcode and has about 160 legal instructions (plus about 90 which are
not used). The MIX machine has a 6-bit opcode field, but the list of instructions in
Appendix B has almost 180 different instructions. Explain why MIX has more than
64.

3. Give the instruction execution cycle for a computer with interrupts.

4. Why would some machines have a conditional skip instruction (like the PDP-8),
while other machines have a conditional jump instruction (like MIX).

5. What is the advantage of having a lot of registers in a computer?

6. Which of the following is a stack machine?

(a) a 3-address computer
(b) the IBM 360 or IBM 370
(c) a 0-address computer
(d) a 1-address computer
(e) the MIX computer
(f) a Burroughs B5500

7. What sort of machine would be able to execute code such as

LOAD A
LOAD B
LOAD C
ADD
MPY
STORE D

What does the above code compute?

8. Define microprogramming. Why is it a reasonable way to build computers?
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9. Give the main reason for interrupts.

10. What is a branch initiated by the control unit in response to an error called?

11. Fill in the blanks in the following table.

PDP HP PDP IBM CDC
MIX 8 2100 11 370 6600

Word Size
(in bits)

Addressable
Memory Unit

Integer Number
Representation

Major
Registers

Bits in
Address

Opcode Size
(in bits)
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APPENDIX B: THE MIX INSTRUCTION
SET

The instruction set of the MIX computer is described below. The instructions are
grouped by function. In describing the instructions, the following notation is used:

A the A register
X the X register

AX the 10-byte double-length register composed of the A and X
register, with the A register being the upper 5 bytes and the X
register being the lower 5 bytes.

I1,I2,I3,I4,I5,I6 the 6 index registers
J the J register

MEMORY[q] the memory word whose address is q (0 ≤ q < 4000)
REG[*] the *th register, where REG[0] is A, REG[1] is I1, REG[2] is I2,

REG[3] is I3, . . . , REG[6] is I6, and REG[7] is X
q → r the contents of register or memory word q, or the value of the

expression q, is copied to the register or memory word r.
q(L:R) the L:R bytes of memory word or register q

m the effective address of the instruction being executed
P the program counter
I the instruction register; holds the instruction while it is being

executed

The instruction execution cycle for the MIX computer is:

1. (Fetch instruction) MEMORY[P]→ I.
2. (Increment program counter) P + 1→ P.
3. (Calculate effective address) effective address(I)→ m.
4. (Execute instruction) execute(I).
5. (Repeat until HLT instruction.) If the instruction was not a HLT, return to step 1.

The effect of execute(I) depends upon bytes 5 and 4 of the instruction register I as
follows. (All numbers are octal.)

For each instruction, the assembler mnemonic, octal numeric opcode and field
specifications are given, along with a short description of the instruction. When the
same instruction applies to the eight registers, A, X, I1, I2, I3, I4, I5, and I6 in the
same way, the symbol “*” is used to stand for the register to be used. For mnemonics,
the * should be replaced by A, 1, 2, 3, 4, 5, 6, X; for opcodes by 0, 1, 2, 3, 4, 5, 6, 7, as
appropriate.
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Loading Instructions

LD* 10+* L:R MEMORY[m](L:R)→ REG[*]
LD*N 20+* L:R -MEMORY[m](L:R)→ REG[*]

Storing Instructions

ST* 30+* L:R if L=0, then REG[*](0:0)→ MEMORY[m](0:0) and REG[*](6-R:5)
→ MEMORY[m](1:R); if L > 0, then REG[*](5-R+L:5) →
MEMORY[m](L:R)

STJ 40 L:R if L=0, then “+” → MEMORY[m](0:0) and J(6-R:5)
→ MEMORY[m](1:R); if L > 0, then J(5-R+L:5) →
MEMORY[m](L:R)

STZ 41 L:R +0→ MEMORY[m](L:R)

Arithmetic Instructions

ADD 01 L:R A + MEMORY[m](L:R)→ A; if the magnitude of this sum is too
large, “ON”→ Overflow toggle

SUB 02 L:R A - MEMORY[m](L:R)→ A; if the magnitude of this difference is
too large, “ON”→ Overflow toggle

MUL 03 L:R A × MEMORY[m](L:R)→ AX
DIV 04 L:R the quotient of AX / MEMORY[m](L:R)→ A; the remainder→ X; if

the magnitude of the quotient is too large, or MEMORY[m](L:R)
= 0, then “ON”→ Overflow toggle

Immediate Instructions

INC* 60+* 00 REG[*] + m→ REG[*]
DEC* 60+* 01 REG[*] - m→ REG[*]
ENT* 60+* 02 m→ REG[*]
ENN* 60+* 03 -m→ REG[*]

Comparison Instructions

CMP* 70+* L:R if REG[*](L:R) < MEMORY[m](L:R), then “LESS” →
Comparison indicator;
if REG[*](L:R) = MEMORY[m](L:R), then “EQUAL” →
Comparison indicator;
if REG[*](L:R) > MEMORY[m](L:R), then “GREATER” →
Comparison indicator
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Jumps

JMP 47 00 P→ J and m→ P
JSJ 47 01 m→ P
JOV 47 02 if Overflow toggle = “ON”, then “OFF”→ Overflow toggle and

P→ J and m→ P
JNOV 47 03 if Overflow toggle = “OFF”, then P→ J and m→ P;
JL 47 04 if Comparison indicator = “LESS”, then P→ J and m→ P
JE 47 05 if Comparison indicator = “EQUAL”, then P→ J and m→ P
JG 47 06 if Comparison indicator = “GREATER”, then P→ J and m→

P
JGE 47 07 if Comparison indicator = “GREATER” or Comparison

indicator = “EQUAL”, then P→ J and m→ P
JNE 47 10 if Comparison indicator = “GREATER” or Comparison

indicator = “LESS”, then P→ J and m→ P
JLE 47 11 if Comparison indicator = “LESS” or Comparison indicator

= “EQUAL”, then P→ J and m→ P
J*N 50+* 00 if REG[*] < 0, then P→ J and m→ P
J*Z 50+* 01 if REG[*] = 0, then P→ J and m→ P
J*P 50+* 02 if REG[*] > 0, then P→ J and m→ P
J*NN 50+* 03 if REG[*] ≥ 0, then P→ J and m→ P
J*NZ 50+* 04 if REG[*] 6= 0, then P→ J and m→ P
J*NP 50+* 05 if REG[*] ≤ 0, then P→ J and m→ P
JBUS 42 N if unit N is busy, then P→ J and m→ P
JRED 46 N if unit N is not busy, then P→ J and m→ P

Input/Output Instructions

IN 44 N if unit N is busy, wait until it is not busy; when it is not busy, issue
an input command to unit N with memory address m.

OUT 45 N if unit N is busy, wait until it is not busy; when it is not busy, issue
an output command to unit N with memory address m.

IOC 43 N if unit N is busy, wait until it is not busy; when it is not busy, issue
a control command to unit N with parameter m.

Shift Instructions

SLA 06 00 shift A left m bytes, end-off, zero fill
SRA 06 01 shift A right m bytes, end-off, zero fill
SLAX 06 02 shift AX left m bytes, end-off, zero fill
SRAX 06 03 shift AX right m bytes, end-off, zero fill
SLC 06 04 shift AX left m bytes, circular
SRC 06 05 shift AX right m bytes, circular
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Miscellaneous Instructions

NUM 05 00 convert from decimal character code in AX to binary numeric
in A

CHAR 05 01 convert from binary numeric in A to decimal character code
in AX

OCT 05 03 convert from binary numeric in A to octal character code in AX
HLT 05 02 halt the computer
NOP 00 00 do nothing, simply continue with the next instruction
MOVE 07 N copy the N words at m, m+1, m+2, . . . , m+N-1 to I1, I1+1,

I1+2, . . . , I1+N-1, one at a time, leaving I1 + N→ I1

Floating Point Instructions

FADD 01 06 A + MEMORY[m]→ A
FSUB 02 06 A - MEMORY[m]→ A
FMUL 03 06 A × MEMORY[m]→ A
FDIV 04 06 A / MEMORY[m]→ A
FCMP 70 06 if A < MEMORY[m], then “LESS”→ Comparison indicator;

if A = MEMORY[m], then “EQUAL”→ Comparison indicator;
if A > MEMORY[m], then “GREATER”→ Comparison indicator

FLOT 05 06 convert the integer number in A to a floating point number of
the same value, and leave the floating point representation in
A

Binary Instructions

AND 03 07 A and MEMORY[m]→ A
ORR 01 07 A or MEMORY[m]→ A
XOR 02 07 A xor MEMORY[m]→ A
SLB 06 06 shift AX left m bits
SRB 06 07 shift AX right m bits
JAE 50 06 if A is even, then P→ J and m→ P
JAO 50 07 if A is odd, then P→ J and m→ P
JXE 57 06 if X is even, then P→ J and m→ P
JXO 57 07 if X is odd, then P→ J and m→ P
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APPENDIX C: MIX SYMBOLIC OPCODES
– ALPHABETIC ORDER

Notation: m is the computed effective address
(m) is the contents of location m

Code Field Symbol Instruction

01 L:R ADD add (m) to register A
03 07 AND logical and (m) into A
05 01 CHAR A is converted to 10-byte decimal characters in AX
71 L:R CMP1 compare I1 and (m), set comparison indicator
72 L:R CMP2 compare I2 and (m), set comparison indicator
73 L:R CMP3 compare I3 and (m), set comparison indicator
74 L:R CMP4 compare I4 and (m), set comparison indicator
75 L:R CMP5 compare I5 and (m), set comparison indicator
76 L:R CMP6 compare I6 and (m), set comparison indicator
70 L:R CMPA compare A and (m), set comparison indicator
77 L:R CMPX compare X and (m), set comparison indicator
61 01 DEC1 decrement I1 by m
62 01 DEC2 decrement I2 by m
63 01 DEC3 decrement I3 by m
64 01 DEC4 decrement I4 by m
65 01 DEC5 decrement I5 by m
66 01 DEC6 decrement I6 by m
60 01 DECA decrement A by m
67 01 DECX decrement X by m
04 L:R DIV divide (m) into AX giving A (quotient) and X (remainder)
61 03 ENN1 enter negative of m into I1
62 03 ENN2 enter negative of m into I2
63 03 ENN3 enter negative of m into I3
64 03 ENN4 enter negative of m into I4
65 03 ENN5 enter negative of m into I5
66 03 ENN6 enter negative of m into I6
60 03 ENNA enter negative of m into A
67 03 ENNX enter negative of m into X
61 02 ENT1 enter m into I1
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62 02 ENT2 enter m into I2
63 02 ENT3 enter m into I3
64 02 ENT4 enter m into I4
65 02 ENT5 enter m into I5
66 02 ENT6 enter m into I6
60 02 ENTA enter m into A
67 02 ENTX enter m into X
01 06 FADD floating point add (m) to A
70 06 FCMP floating point compare A and (m), set comparison indicator
04 06 FDIV floating point divide of A by (m)
05 06 FLOT convert A from integer to floating point in A
03 06 FMUL floating point multiply of A by (m)
02 06 FSUB floating point subtract (m) from A
05 02 HLT halt the MIX machine
44 N IN start input transfer from unit N
61 00 INC1 increment I1 by m
62 00 INC2 increment I2 by m
63 00 INC3 increment I3 by m
64 00 INC4 increment I4 by m
65 00 INC5 increment I5 by m
66 00 INC6 increment I6 by m
60 00 INCA increment A by m
67 00 INCX increment X by m
43 N IOC issue I/O control signal to unit N
51 00 J1N jump to m if I1 is negative
51 03 J1NN jump to m if I1 is nonnegative
51 05 J1NP jump to m if I1 is nonpositive
51 04 J1NZ jump to m if I1 is nonzero
51 02 J1P jump to m if I1 is positive
51 01 J1Z jump to m if I1 is zero
52 00 J2N jump to m if I2 is negative
52 03 J2NN jump to m if I2 is nonnegative
52 05 J2NP jump to m if I2 is nonpositive
52 04 J2NZ jump to m if I2 is nonzero
52 02 J2P jump to m if I2 is positive
52 01 J2Z jump to m if I2 is zero
53 00 J3N jump to m if I3 is negative
53 03 J3NN jump to m if I3 is nonnegative
53 05 J3NP jump to m if I3 is nonpositive
53 04 J3NZ jump to m if I3 is nonzero
53 02 J3P jump to m if I3 is positive
53 01 J3Z jump to m if I3 is zero
54 00 J4N jump to m if I4 is negative
54 03 J4NN jump to m if I4 is nonnegative
54 05 J4NP jump to m if I4 is nonpositive
54 04 J4NZ jump to m if I4 is nonzero
54 02 J4P jump to m if I4 is positive
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54 01 J4Z jump to m if I4 is zero
55 00 J5N jump to m if I5 is negative
55 03 J5NN jump to m if I5 is nonnegative
55 05 J5NP jump to m if I5 is nonpositive
55 04 J5NZ jump to m if I5 is nonzero
55 02 J5P jump to m if I5 is positive
55 01 J5Z jump to m if I5 is zero
56 00 J6N jump to m if I6 is negative
56 03 J6NN jump to m if I6 is nonnegative
56 05 J6NP jump to m if I6 is nonpositive
56 04 J6NZ jump to m if I6 is nonzero
56 02 J6P jump to m if I6 is positive
56 01 J6Z jump to m if I6 is zero
50 06 JAE jump to m if A is even
50 00 JAN jump to m if A is negative
50 03 JANN jump to m if A is nonnegative
50 05 JANP jump to m if A is nonpositive
50 04 JANZ jump to m if A is nonzero
50 07 JAO jump to m if A is odd
50 02 JAP jump to m if A is positive
50 01 JAZ jump to m if A is zero
42 N JBUS jump to location m if unit N is busy
47 05 JE jump to m if comparison indicator is equal
47 06 JG jump to m if comparison indicator is greater
47 07 JGE jump to m if comparison indicator is greater or equal
47 04 JL jump to m if comparison indicator is less
47 11 JLE jump to m if comparison indicator is less or equal
47 00 JMP jump to m
47 10 JNE jump to m if comparison indicator is not equal
47 03 JNOV jump to m if overflow off, turn overflow off anyway
47 02 JOV jump to m if overflow on, turn overflow off
46 N JRED jump to location m if unit N is ready
47 01 JSJ jump to m (but do not change register J)
57 06 JXE jump to m if X is even
57 00 JXN jump to m if X is negative
57 03 JXNN jump to m if X is nonnegative
57 05 JXNP jump to m if X is nonpositive
57 04 JXNZ jump to m if X is nonzero
57 07 JXO jump to m if X is odd
57 02 JXP jump to m if X is positive
57 01 JXZ jump to m if X is zero
11 L:R LD1 load I1 with (m)
21 L:R LD1N load I1 with negative of (m)
12 L:R LD2 load I2 with (m)
22 L:R LD2N load I2 with negative of (m)
13 L:R LD3 load I3 with (m)
23 L:R LD3N load I3 with negative of (m)
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14 L:R LD4 load I4 with (m)
24 L:R LD4N load I4 with negative of (m)
15 L:R LD5 load I5 with (m)
25 L:R LD5N load I5 with negative of (m)
16 L:R LD6 load I6 with (m)
26 L:R LD6N load I6 with negative of (m)
10 L:R LDA load A with (m)
20 L:R LDAN load A with negative of (m)
17 L:R LDX load X with (m)
27 L:R LDXN load X with negative of (m)
07 N MOVE move N words starting from m to (I1), add N to I1
03 L:R MUL multiply (m) by A giving AX
00 00 NOP no operation
05 00 NUM 10-byte decimal in AX converted to binary in A
05 03 OCT A is converted to 10-byte octal characters in AX
01 07 ORR inclusive-OR of (m) with A
45 N OUT start output transfer from unit N
06 00 SLA shift A m bytes left, end-off
06 02 SLAX shift AX m bytes left, end-off
06 06 SLB shift AX m bits left, end-off
06 04 SLC shift AX m bytes left, circular
06 01 SRA shift A m bytes right, end-off
06 03 SRAX shift AX m bytes right, end-off
06 07 SRB shift AX m bits right, end-off
06 05 SRC shift AX m bytes right, circular
31 L:R ST1 store I1 into location m
32 L:R ST2 store I2 into location m
33 L:R ST3 store I3 into location m
34 L:R ST4 store I4 into location m
35 L:R ST5 store I5 into location m
36 L:R ST6 store I6 into location m
30 L:R STA store A into location m
40 L:R STJ store J register into location m
37 L:R STX store X into location m
41 L:R STZ store zero into location m
02 L:R SUB subtract (m) from A
02 07 XOR exclusive-OR of (m) with A
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APPENDIX D: MIX SYMBOLIC OPCODES
– NUMERIC ORDER

Notation: m is the computed effective address
(m) is the contents of location m

Code Field Symbol Instruction

00 00 NOP no operation
01 06 FADD floating point add (m) to A
01 07 ORR inclusive-OR of (m) with A
01 L:R ADD add (m) to register A
02 06 FSUB floating point subtract (m) from A
02 07 XOR exclusive-OR of (m) with A
02 L:R SUB subtract (m) from A
03 06 FMUL floating point multiply of A by (m)
03 07 AND logical and (m) into A
03 L:R MUL multiply (m) by A giving AX
04 06 FDIV floating point divide of A by (m)
04 L:R DIV divide (m) into AX giving A (quotient) and X (remainder)
05 00 NUM 10-byte decimal in AX converted to binary in A
05 01 CHAR A is converted to 10-byte decimal characters in AX
05 02 HLT halt the MIX machine
05 03 OCT A is converted to 10-byte octal characters in AX
05 06 FLOT convert A from integer to floating point in A
06 00 SLA shift A m bytes left, end-off
06 01 SRA shift A m bytes right, end-off
06 02 SLAX shift AX m bytes left, end-off
06 03 SRAX shift AX m bytes right, end-off
06 04 SLC shift AX m bytes left, circular
06 05 SRC shift AX m bytes right, circular
06 06 SLB shift AX m bits left, end-off
06 07 SRB shift AX m bits right, end-off
07 N MOVE move N words starting from m to (I1), add N to I1
10 L:R LDA load A with (m)
11 L:R LD1 load I1 with (m)
12 L:R LD2 load I2 with (m)
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13 L:R LD3 load I3 with (m)
14 L:R LD4 load I4 with (m)
15 L:R LD5 load I5 with (m)
16 L:R LD6 load I6 with (m)
17 L:R LDX load X with (m)
20 L:R LDAN load A with negative of (m)
21 L:R LD1N load I1 with negative of (m)
22 L:R LD2N load I2 with negative of (m)
23 L:R LD3N load I3 with negative of (m)
24 L:R LD4N load I4 with negative of (m)
25 L:R LD5N load I5 with negative of (m)
26 L:R LD6N load I6 with negative of (m)
27 L:R LDXN load X with negative of (m)
30 L:R STA store A into location m
31 L:R ST1 store I1 into location m
32 L:R ST2 store I2 into location m
33 L:R ST3 store I3 into location m
34 L:R ST4 store I4 into location m
35 L:R ST5 store I5 into location m
36 L:R ST6 store I6 into location m
37 L:R STX store X into location m
40 L:R STJ store J register into location m
41 L:R STZ store zero into location m
42 N JBUS jump to location m if unit N is busy
43 N IOC issue I/O control signal to unit N
44 N IN start input transfer from unit N
45 N OUT start output transfer from unit N
46 N JRED jump to location m if unit N is ready
47 00 JMP jump to m
47 01 JSJ jump to m (but do not change register J)
47 02 JOV jump to m if overflow on, turn overflow off
47 03 JNOV jump to m if overflow off, turn overflow off anyway
47 04 JL jump to m if comparison indicator is less
47 05 JE jump to m if comparison indicator is equal
47 06 JG jump to m if comparison indicator is greater
47 07 JGE jump to m if comparison indicator is greater or equal
47 10 JNE jump to m if comparison indicator is not equal
47 11 JLE jump to m if comparison indicator is less or equal
50 00 JAN jump to m if A is negative
50 01 JAZ jump to m if A is zero
50 02 JAP jump to m if A is positive
50 03 JANN jump to m if A is nonnegative
50 04 JANZ jump to m if A is nonzero
50 05 JANP jump to m if A is nonpositive
50 06 JAE jump to m if A is even
50 07 JAO jump to m if A is odd
51 00 J1N jump to m if I1 is negative
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51 01 J1Z jump to m if I1 is zero
51 02 J1P jump to m if I1 is positive
51 03 J1NN jump to m if I1 is nonnegative
51 04 J1NZ jump to m if I1 is nonzero
51 05 J1NP jump to m if I1 is nonpositive
52 00 J2N jump to m if I2 is negative
52 01 J2Z jump to m if I2 is zero
52 02 J2P jump to m if I2 is positive
52 03 J2NN jump to m if I2 is nonnegative
52 04 J2NZ jump to m if I2 is nonzero
52 05 J2NP jump to m if I2 is nonpositive
53 00 J3N jump to m if I3 is negative
53 01 J3Z jump to m if I3 is zero
53 02 J3P jump to m if I3 is positive
53 03 J3NN jump to m if I3 is nonnegative
53 04 J3NZ jump to m if I3 is nonzero
53 05 J3NP jump to m if I3 is nonpositive
54 00 J4N jump to m if I4 is negative
54 01 J4Z jump to m if I4 is zero
54 02 J4P jump to m if I4 is positive
54 03 J4NN jump to m if I4 is nonnegative
54 04 J4NZ jump to m if I4 is nonzero
54 05 J4NP jump to m if I4 is nonpositive
55 00 J5N jump to m if I5 is negative
55 01 J5Z jump to m if I5 is zero
55 02 J5P jump to m if I5 is positive
55 03 J5NN jump to m if I5 is nonnegative
55 04 J5NZ jump to m if I5 is nonzero
55 05 J5NP jump to m if I5 is nonpositive
56 00 J6N jump to m if I6 is negative
56 01 J6Z jump to m if I6 is zero
56 02 J6P jump to m if I6 is positive
56 03 J6NN jump to m if I6 is nonnegative
56 04 J6NZ jump to m if I6 is nonzero
56 05 J6NP jump to m if I6 is nonpositive
57 00 JXN jump to m if X is negative
57 01 JXZ jump to m if X is zero
57 02 JXP jump to m if X is positive
57 03 JXNN jump to m if X is nonnegative
57 04 JXNZ jump to m if X is nonzero
57 05 JXNP jump to m if X is nonpositive
57 06 JXE jump to m if X is even
57 07 JXO jump to m if X is odd
60 00 INCA increment A by m
60 01 DECA decrement A by m
60 02 ENTA enter m into A
60 03 ENNA enter negative of m into A
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61 00 INC1 increment I1 by m
61 01 DEC1 decrement I1 by m
61 02 ENT1 enter m into I1
61 03 ENN1 enter negative of m into I1
62 00 INC2 increment I2 by m
62 01 DEC2 decrement I2 by m
62 02 ENT2 enter m into I2
62 03 ENN2 enter negative of m into I2
63 00 INC3 increment I3 by m
63 01 DEC3 decrement I3 by m
63 02 ENT3 enter m into I3
63 03 ENN3 enter negative of m into I3
64 00 INC4 increment I4 by m
64 01 DEC4 decrement I4 by m
64 02 ENT4 enter m into I4
64 03 ENN4 enter negative of m into I4
65 00 INC5 increment I5 by m
65 01 DEC5 decrement I5 by m
65 02 ENT5 enter m into I5
65 03 ENN5 enter negative of m into I5
66 00 INC6 increment I6 by m
66 01 DEC6 decrement I6 by m
66 02 ENT6 enter m into I6
66 03 ENN6 enter negative of m into I6
67 00 INCX increment X by m
67 01 DECX decrement X by m
67 02 ENTX enter m into X
67 03 ENNX enter negative of m into X
70 06 FCMP floating point compare A and (m), set comparison indicator
70 L:R CMPA compare A and (m), set comparison indicator
71 L:R CMP1 compare I1 and (m), set comparison indicator
72 L:R CMP2 compare I2 and (m), set comparison indicator
73 L:R CMP3 compare I3 and (m), set comparison indicator
74 L:R CMP4 compare I4 and (m), set comparison indicator
75 L:R CMP5 compare I5 and (m), set comparison indicator
76 L:R CMP6 compare I6 and (m), set comparison indicator
77 L:R CMPX compare X and (m), set comparison indicator
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APPENDIX E: MIX CHARACTER CODE

Character Decimal Octal Character Decimal Octal

blank 00 00 0 30 36
A 01 01 1 31 37
B 02 02 2 32 40
C 03 03 3 33 41
D 04 04 4 34 42
E 05 05 5 35 43
F 06 06 6 36 44
G 07 07 7 37 45
H 08 10 8 38 46
I 09 11 9 39 47
Θ 10 12 . 40 50
J 11 13 , 41 51
K 12 14 ( 42 52
L 13 15 ) 43 53
M 14 16 + 44 54
N 15 17 - 45 55
O 16 20 * 46 56
P 17 21 / 47 57
Q 18 22 = 48 60
R 19 23 $ 49 61
Φ 20 24 < 50 62
Π 21 25 > 51 63
S 22 26 @ 52 64
T 23 27 ; 53 65
U 24 30 : 54 66
V 25 31 ’ 55 67
W 26 32
X 27 33
Y 28 34
Z 29 35
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*, see Star (*)
., see Period (.)
:, see Colon Operator (:)
;, see Semicolon (;)
= (PDP-11), 353
0-address Computer, 365

8080, see Intel 8080

A (IBM 360), 359
A Register, 9, 65, 68–74, 100, 107,

108, 111–113, 117, 119,
120, 125–130, 134–136,
140–142, 153, 154, 161,
183, 185, 206, 210, 219,
231, 286, 325, 328–335,
339, 341, 391

A Registers
CDC 6600, 370, 373, 374

Absolute
Assemblers, 260
Load Format, 215–216
Loaders, 214–223
Symbols, 226

Abstract Data Types, 181
Abstract Instructions, 181
Access

Sequential, 157, 175
Time, 5

Accumulator, 69
ACM, vii, 389, 390
Actual Parameters, 187
ADA (HP 2100), 341
ADB (HP 2100), 341
ADC (PDP-11), 352
ADD, 68, 69, 71–75, 108, 111, 116,

120, 124, 127, 392, 395, 399

ADD (B5500), 365
Add Time, 20
Adders, 22
Addition, 125
Address

Base, 132
Effective, 100–106
Modification, 333
Relative, 226, 227
Return, 183–184

Address Field, 69, 74, 76, 77, 79, 81,
83, 91, 100–102, 104, 183,
208, 225, 253

Addressing Modes, 101, 349, 351, 352
Direct, 101
Indexed, 101
Indirect, 102, 103, 105, 325, 340
Page, 326, 340, 341

AH (IBM 360), 359
Aho, A.V., 314, 389
AL (IBM 360), 359
ALF, 84, 86–87, 92, 246, 253, 256–259,

279, 289, 300, 331, 376
ALF Statement Assembly, 289–290
Algol, 1, 71, 201, 313, 314, 364
Alignment of Floating Point Numbers,

33
Allocation

Storage, 73, 132
Alphabetical Order, 44
ALU, see Arithmetic and Logic Unit

(ALU)
Amdahl 470V/6, 323
Amdahl, Gene, 323
AND, 119, 351, 366, 382, 394, 395,

399
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AND (6600), 375
AND (8080), 384
AND (HP 2100), 341
AND (PDP-8), 327, 328
AR (IBM 360), 359
Arguments, see Parameters
Arithmetic

Binary, 12, 15
Floating Point, 33–35
Instructions, 59, 392
Operations, 67
Programming, 125

Arithmetic and Logic Unit (ALU), 10
Arithmetic for Partial Fields, 107
Array Indexing, 134
Arrays, 132–137
ASCII Character Code, 40–42, 44, 46,

47, 334, 335, 344, 348, 353,
384

ASL (PDP-11), 351
ASR (PDP-11), 351
ASR-33, 46, 47
Assembler

Main Loop Code, 287–288
Assembler Errors, 258–259
Assembler Operation, 83
Assemblers, 76, 77, 86, 245, 247, 249,

255, 257, 258, 260, 295,
296, 308

Absolute, 260
One-pass, viii, 255, 257–258,

260, 296, 308, 310
Two-pass, viii, 255–257, 260, 296,

308, 331, 360, 376
Assembly

Conditional, 309–313
Assembly Language, 75–83, 87–92,

123, 136, 147, 330, 331,
352, 360, 361, 385–386

CDC 6600, 375–376
HP 2100, 343
IBM 360/370, 360–361
Intel 8080, 383–384
MIX, 78–91
PDP-11, 352–353
PDP-8, 330–331
Programming, 89, 123, 147, 182

Relocatable, 227–229
Asterisk, see Star (*)
Asynchronous, 149
Atomic Energy Commission, 323
Auto-decrement, 350
Auto-increment, 350
Auto-indexing, 333
Auxiliary Storage Devices, 56

Babbage, C., 377
BAL (IBM 360), 359
Barron, D.W., 241, 296, 389
BASE (CDC 6600), 376
Base Address, 132
Base-displacement, 358
Basic, 1, 313, 314, 324, 338, 346
Basili, V.R., 319, 389
Batch System, 316, 317
BC (IBM 360), 359
BCD, see Binary Coded Decimal

(BCD)
Character Code, 40, 44
External, 53
Internal, 53

BCR (IBM 360), 359
BEL (ASCII), 41
Bell, C.G., 389
Bernstein, P.A., 317, 390
Biased Exponent, 34
Biased Notation, 21, 26–27, 31, 32, 65,

356
Biasing, 26
BIC (PDP-11), 351
Binary

Addition, 12, 14
Arithmetic, 12, 15
Digits (Bits), 8, 13, 14, 49
Fractions, 29
Number System, 11–17, 29, 119,

310, 394
Point, 29
Representation, 16
Search, 248, 249, 272, 309
Subtraction, 21

Binary Coded Decimal (BCD), 12, 40,
53

Binary MIX Computer, 119, 272
Binding Time, 224
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Bipolar Memory, 7
BIS (PDP-11), 351, 353
BIT (PDP-11), 351
Bits, see Binary Digits (Bits)

Chain, 362
High-order, 9
Low-order, 9
Pattern, 8
Sign, 22
Significant, 14

Bits Per Inch (BPI), 52
Blocking, 172–178, 262

Factor, 174
Loose, 174, 175
Tight, 176

Bootstrap Loaders, 239–240
BPI, see Bits Per Inch (BPI)
Brown, P.J., 308, 389
BSS, 228, 302, 361
BSS (8080), 384
BSS (CDC 6600), 376
BSS (HP 2100), 343
Buffer, 150
Buffering, 171, 172

Double, 171
Burroughs B5500, 323, 363–369

Channels, 369
Character Mode, 368
Input/Output (I/O), 369
Instructions, 365–369
Interrupts, 369
Master Control Program (MCP),

323, 364
Memory, 364–365
Program Reference Table, 366
Registers, 367, 368
Stacks, 365–368
Word Mode, 365–366

Burroughs Computers, 323
Burroughs Corporation, 323, 363, 364
BXH (IBM 360), 359
BXLE (IBM 360), 359
Byte-addressable, 347, 348, 355, 378
Bytes, 9, 44, 64, 65, 347, 355–357,

378

C (IBM 360), 359
CALL (8080), 382

Call by
Address, 199
Name, 198, 201–205, 207, 208,

211, 306
Reference, 198–201, 203, 204,

207, 208, 211, 306
Value, 198–200, 202–204, 207,

208, 211, 306
Value/Result, 199, 201, 204

Called Routine, 182
Calling Routine, 182
Calling Sequence, 187, 197
Calls

Supervisor, 361
Card

Comment, 78
Control, 316
Punch, 48, 56, 66, 154
Punched, 48–50
Readers, 49, 56, 66, 116, 150,

152, 153, 316
Carry, 12, 14, 21, 24, 28, 348, 379

End-around, 23, 24
Propagation, 14, 26

Carry Bit (8080), 381
Carry Bit (PDP-11), 352
Carry Bit (PDP-8), 328
Cartridges, 56
Cassettes, 56
Cathode-ray Tube (CRT), 51, 56, 150,

316, 317, 325, 347, 378
CCDs, see Charge-coupled Devices

(CCDs)
CCW, see Channel Command Word

(CCW)
CDC, see Control Data Corporation

(CDC)
CDC 3600, viii, 31, 32, 323
CDC 6600, 44, 197, 323, 369–377

A Registers, 370, 373, 374
Assembly Language, 375–376
B Registers, 373–375
Central Memory, 370
Central Processor, 372–373
Console, 370
Cost, 370
Instructions, 373–375
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Memory, 372
Peripheral Processors (PPU),

369–372
Registers, 373
X Registers, 373–375

CDC Computers, viii, 323
CDC Cyber 70, 323
CH (IBM 360), 359
Chain Bit, 362
Chaining, 235, 236, 241, 257
Channel Command Word (CCW), 362,

363
Channel Programs, 362
Channels, 46, 47, 362, 363

Burroughs B5500, 369
CHAR, 69, 71–74, 118–120, 143, 155,

163, 280, 368, 394, 395, 399
Character Code Constants, 86
Character Codes, 40–44

ASCII, 40–42, 44, 46, 47, 334,
335, 344, 348, 353, 384

BCD, 40, 44, 53
EBCDIC, 40, 42–44, 355
MIX, 66, 152, 403

Character Manipulation, 138–145
Character Mode

Burroughs B5500, 368
Character Strings, 138
Characteristic, 31
Characters

Control, 41, 44
Quote, 87

Charge-coupled Devices (CCDs), 7
Checksum, 218
Checksum Error, 218
CI, see Comparison Indicator (CI)
CIA (PDP-8), 331
Cincinnati Milacron, 324
CL (IBM 360), 359
CLA (PDP-8), 329, 330, 333
CLE (HP 2100), 343
CLI (IBM 360), 359
CLL (PDP-8), 329, 330
Clobbering a Constant, 201
Closed Subroutines, 300
CLR (IBM 360), 359
CLR (PDP-11), 351

CMA (PDP-8), 329, 330
CME (HP 2100), 343
CML (PDP-8), 329, 330
CMP (PDP-11), 351
CMP*, 112, 392
CMP1, 113, 135, 395, 402
CMP2, 113, 395, 402
CMP3, 113, 131, 395, 402
CMP4, 113, 395, 402
CMP5, 113, 395, 402
CMP6, 113, 395, 402
CMPA, 112, 113, 129, 163, 395, 402
CMPX, 113, 129, 395, 402
Cobol, 1, 313, 314
Code

Position-independent, 350, 354
Pure, 209
Straight-line, 130

Coding, 123, 124
Collating Sequence, 44
Collision

Hashing, 250
Colon Operator (:), 106, 275, 352, 384
Column Binary, 50
Column Binary Mode, 49
COM (PDP-11), 351
Comment Card, 78
Comparing Partial Fields, 107
Comparison Indicator (CI), 65, 67, 69,

97, 113, 120
Compatible I/O Devices, 39
Compilers, 197, 198, 313–315
Complement, 22–24, 32
Compressed Text, 307, 308
Computation Unit, 1, 2, 10–35
Compute-bound, 164
Computer, 346

Addition, 20–21, 27, 28
Architecture, 61
Division, 28
Forms, 50
Memory, 20
Multiplication, 28
Subtraction, 21, 27, 28

Computer Automation, 324
Computers



INDEX 409

General-purpose, 57, 91, 120,
347

Special-purpose, 57, 362, 370
CON, 84–86, 92, 124, 246, 254,

256–258, 279, 284, 290,
292, 312, 353

CON (CDC 6600), 376
CON (IBM 360), 361
CON Statement Assembly, 290–291
Condition Code, 348, 379
Conditional Assembly, 309–313
Conditional Jumps, 129, 367, 368, 370,

382
Console, 45–46, 240, 361

CDC 6600, 370
MIX, 98, 118
Printer, 46
Switches, 46
Typewriter, 46, 51

Control Card Interpreter, 316
Control Cards, 316
Control Characters, 41, 44
Control Data Corporation (CDC), 323,

370
Control Unit, 1, 2, 57–60
Conversions

Between Bases, 14–16, 19
Binary and Decimal, 14, 17
Binary and Hexadecimal, 18, 19
Binary and Octal, 18
Fractions, 29
Octal and Decimal, 19, 20

Conway, M., 211, 389
COPY Program, 161, 162
Copy Rule, 201–204
Core

Magnetic, 3, 4, 6, 56
Memories, 3–6
Planes, 4

Coroutines, 210–211
COSMAC, 378
Cost of Subroutines, 204–205
CPA (HP 2100), 341
CPB (HP 2100), 341
CPU-bound, 164
CPU-I/O Overlap, 164
CR (IBM 360), 359

Cray Research, 323
Cray, Seymour, 323
CRAY-1 Computer, 323
Cross Reference Listings, 237, 258,

295
Cross-assembler, 375
CRT, see Cathode-ray Tube (CRT)
Current Page, 326, 340
Cycle Time, 5
Cycle-stealing, 346

D (IBM 360), 359
Dartmouth College, 324
DATA (CDC 6600), 376
Data Format, 154
Data General, 324, 378
Data Structures, 305

Array, 132, 137, 315
Assembler, 245–251, 295
Loader, 234
Stack, 137
Symbol Table, 232, 251

Datum, 324
DC (IBM 360), 361
DCA (PDP-8), 327, 328
Deblocking, 177
DEC, see Digital Equipment

Corporation (DEC)
DEC (HP 2100), 343
DEC (PDP-11), 351
DEC*, 115, 392
DEC-10, viii, 324
DEC1, 115, 135, 395, 402
DEC2, 115, 395, 402
DEC3, 115, 395, 402
DEC4, 108, 115, 395, 402
DEC5, 115, 134, 395, 402
DEC6, 115, 395, 402
DECA, 115, 395, 401
Decimal

Digit, 12, 356
Fractions, 29
Number Representation, 11–13,

29
Packed, 356, 358, 360
Place System, 12, 29, 356

DECX, 115, 395, 402
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Default Field Specification, 77, 82, 246,
247, 253, 270

Default Value, 77, 83, 253, 259
Delimiters, 80, 87, 145, 275
Destructive Readout, 4
Device-independent I/O, 219, 316
Devices

Charge-coupled, 7
Input/Output (I/O), 38, 39, 44–47,

152
Peripheral, 39
Random Access, 157

Digit
Decimal, 12, 356

Digital Equipment Corporation (DEC),
324–326, 337, 347, 354

Digits, 10
Binary, 8, 13, 14, 49
Hexadecimal, 17, 18
Octal, 17
Significant, 33

Direct Access Devices, 157, 172, 239
Direct Addressing, 101
Direct Memory Access (DMA), 345,

346, 353, 383, 385
DIS (CDC 6600), 376
Disk Systems, 55
Disks, 54–56, 66, 116, 150, 157–159,

172, 178, 214, 233, 255,
316, 345

Floppy, 56
Display Lights, 45
DIV, 68, 108, 111, 120, 126, 128, 142,

143, 392, 395, 399
Division, 126
DMA, see Direct Memory Access

(DMA)
HP 2100, 346

Donovan, J.J., 241, 296, 314, 317, 389
DOS/360, 322
Double Buffering, 171
Double Indexing, 104, 188
Double Indirection, 104
Double Precision, 32
Double Precision Floating Point

Numbers, 66
Double-length Registers, 359, 391

Doubly-defined Symbols, 83, 312
DR (IBM 360), 359
DROP (IBM 360), 361
Drop Through, 130, 135, 136, 240
Drum Plotters, 51
Drums, 54–56, 66, 116, 150, 157–159,

172, 178, 214, 233, 255,
316, 345

DS (IBM 360), 361
Dynamic Memory, 7
Dynamic Table, 249

EAE, see Extended Arithmetic
Element (EAE) (PDP-8)

EBCDIC Character Code, 40, 42–44,
355

Echo Print, 46
Eckhouse, R.H., Jr., 147, 178, 354,

389
Effective Address, 100–106

Calculation, 101, 102, 105, 106
Effective Operand, 100, 101

Calculation, 100–105
END, 84, 87–89, 91, 92, 246, 251, 254,

256, 258, 279, 284, 291
END (8080), 384
END (CDC 6600), 376
END (HP 2100), 343
END (PDP-8), 331
END Statement Assembly, 291
End-around Carry, 23, 24
End-of-file Marker, 160, 215
ENDI, 311, 312
ENDM, 301, 308
ENDM (8080), 384
ENN*, 115, 116, 392
ENN1, 115, 395, 402
ENN2, 115, 395, 402
ENN3, 115, 395, 402
ENN4, 108, 115, 395, 402
ENN5, 115, 395, 402
ENN6, 115, 395, 402
ENNA, 115, 395, 401
ENNX, 115, 395, 402
ENT, 228
ENT (HP 2100), 343
ENT*, 115, 116, 392
ENT1, 115, 395, 402
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ENT2, 115, 142, 396, 402
ENT3, 115, 142, 396, 402
ENT4, 108, 115, 396, 402
ENT5, 115, 134, 396, 402
ENT6, 115, 396, 402
ENTA, 115, 246, 359, 396, 401
ENTRY (CDC 6600), 376
ENTRY (IBM 360), 361
Entry Point, 182, 183, 227, 232, 233
Entry Point Table, 232
ENTX, 115, 396, 402
Epilogue, 185
EQU, 80, 84, 87, 91, 92, 124, 138, 246,

253, 256, 258, 279, 284,
289, 309, 331, 353, 384

EQU (8080), 384
EQU (CDC 6600), 376
EQU (HP 2100), 343
EQU (IBM 360), 361
EQU Statement Assembly, 289
EQUAL, 65, 69, 113, 120, 392–394
Error

Checking, 216–219
Checksum, 218
Detection, 42, 218
Round-off, 30, 32
Routines, 284–286

Errors
Assembler, 258–259

Excess Notation, 21, 26
Exchange Macro (XCH), 303
EXEC-8 Operating System, 322
Exercises, 9, 36, 56, 60, 92, 121, 147,

178, 211, 241, 296, 319,
337, 346, 354, 363, 369,
376, 384, 386

Expansion
Macro, 300

Exponent, 31, 34
Biased, 34
Overflow, 34
True, 32
Underflow, 34

Expression Evaluation, 82, 254–255,
275–279

Expressions
Relocatable, 228, 259

Expressive Power, 10
EXT (CDC 6600), 376
EXT (HP 2100), 343
Extended Arithmetic Element (EAE)

(PDP-8), 330, 331
External BCD, 53
External Reference Table, 234, 235,

241
Externals, 186, 227, 361
EXTRN (IBM 360), 361

F Field Definition, 106–108
FADD, 68, 108, 112, 394, 396, 399
FCMP, 112, 394, 396, 402
FDIV, 68, 108, 112, 394, 396, 399
Ferromagnetic, 54
Field Specifications, 106, 108
Fields, 58, 136

Magnetic, 53
File Directory, 316
Files, 316
Film

Magnetic, 7
Fixed-format, 79, 80
Fixed-format Assembly Language, 80
Fixed-head Device, 55, 157, 158
Fixed-point Numbers, 28–31
Flip-flop, 6
Floating Point

Arithmetic, 33–35
Hardware, 112, 339
Numbers, 31–35, 65, 68, 69, 112,

181, 348, 356, 365, 369,
379, 394

Floating Point Instructions
MIX, 112, 394

Floating Point Numbers
IBM 360/370, 31, 32
MIX, 65

Floppy Disks, 56
FLOT, 112, 394, 396, 399
Flow of an Assembler, 251–260
FMUL, 68, 108, 112, 394, 396, 399
Formal Parameters, 187
Formatting, 154
Formatting Print Lines, 279–284
Fortran, vii, 1, 71, 118, 131, 197–199,

210, 313, 314, 318, 346, 375
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Forward References, 83, 84, 124,
255–260

Fractional Numbers, 28–31
Fractions

Binary, 29
Conversions, 29
Decimal, 29
Repeating, 30
Representation Of, 28–33

Free-format, 79, 80, 352
FSUB, 68, 108, 112, 394, 396, 399
Functions, 181–212

As Parameters, 208

Gear, C.W., 61, 147, 178, 211, 296,
354, 389

GECOS Operating Systems, 324
General Automation, 324
General Electric, 323, 324
General-purpose Computers, 57, 91,

120, 347
General-purpose Macro Processor,

308
Global Optimizations, 73
Global Variables, 186, 189–190
Graham, R.M., 241, 296, 314, 389
GREATER, 65, 69, 113, 120, 392–394
Gries, D., 314, 389
Grishman, R., 376, 389

HALT (8080), 380
HALT (PDP-11), 352
Harris, 324
Hash Collision, 250
Hashing, 250, 251
Hewlett-Packard (HP), 338, 339, 346
Hexadecimal, 17–19

Digits, 17, 18
Number System, 17–20

High-order Bits, 9
Higher-level Languages, 182, 313, 318,

364
HIO (IBM 360), 362
HLT, 70, 71, 73, 74, 100, 118, 259,

272, 391, 394, 396, 399
HLT (HP 2100), 344
HLT (PDP-8), 329, 330
Hollerith, 49, 50

Hollerith Punched Card Code, 44, 48,
356

Hollerith, Herman, 49
Honeywell, 323, 324
HP 2100, 35, 58, 59, 324, 338–346,

351, 353, 362
Assembly Language, 343
Cost, 346
DMA, 346
Input/Output (I/O), 344–346
Instructions, 339–344
Interrupts, 344, 345
Memory, 338–339, 341
Registers, 338

HP 2116, viii, 338
HP Computers, 324, 339
Hsiao, D.K., 296, 389

I/O, see Input/Output (I/O)
Devices, 44–56

I/O Operation
Intel 8080, 382–383

I/O-bound, 164, 216, 219, 233, 257,
295

I/O-I/O Overlap, 164, 169
IAC (PDP-8), 329, 330
IBM, 49, 322, 323, 355
IBM 026 Keypunch, 49
IBM 1620, viii, 322
IBM 360/370, viii, 39, 241, 296, 319,

323, 324, 354–363
Assembly Language, 360–361
Cost, 355
Floating Point Numbers, 31, 32
Input/Output (I/O), 361
Instructions, 59, 323, 356–360,

374
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INC5, 115, 396, 402
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Relocatable, 230, 231

Integer Divide, 28
Intel 8008, 378
Intel 8080, 325, 377–385

Arithmetic Instructions, 381–382
Assembly Language, 383–384
Data Transfer Instructions, 381
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JXNP, 397, 401
JXNZ, 397, 401
JXO, 119, 394, 397, 401
JXP, 397, 401
JXZ, 397, 401

KCC (PDP-8), 335
KCF (PDP-8), 335
Kent, W., 308, 389
Kernighan, B.W., 318, 389
Keyboard, 46
Keypunch, 48
Keyrecorder

Magnetic, 54
Keywords, 314
Kilo, 8
Knuth, D.E., ix, 91, 92, 121, 147, 178,

211, 241, 251, 315, 319, 389
KRB (PDP-8), 335
KRS (PDP-8), 335
KSF (PDP-8), 335
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Loader Record, 216
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Programming, 70
Representation, 74
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Macro
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Call, 300
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Intel 8080, 378
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MIX, 65
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PDP-11, 347
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MITS, 324
MIX, vii

1009B, 64
1009D, 64
1009, 63, 64, 112
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Binary Instructions, 119, 394
Boolean Instructions, 119
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Double Indexing, 104
Double Indirection, 104
Double Precision Floating Point
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Effective Operand Calculation,
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F Field Definition, 106–108
Floating Point Instructions, 112,

394
Floating Point Numbers, 65
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Immediate Instructions, 67, 69,
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Immediate Operators, 115–116
Indirect Addressing, 104
Input/Output (I/O), 152–153
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Instruction Execution Times, 120
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Loading Instructions, 67, 68, 392
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Partial Field Specifications, 106
Postindexed Indirection, 104
Preindexed Indirection, 104
Registers, 65, 66, 69, 169, 183,
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Shift Instructions, 70, 117–118,
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Storing Instructions, 67, 68, 392
Storing Operators, 110
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Symbolic Opcodes, 395–402
Time Unit, 120, 295
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Mnemonic Opcode, 68
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351, 352
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MOV (PDP-11), 351, 353
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MOVE (PDP-11), 353
Moving-head Device, 54, 158
MR (IBM 360), 359
MSI, see Medium-scale Integration

(MSI)
MUL, 68, 108, 111, 120, 127, 128, 392,

398, 399
MULTICS Operating System, 324
Multiple CPUs, 209
Multiple Entry Points, 206–207
Multiple Exits, 206–207
Multiply-defined Symbols, 83
Multiprogrammed, 317

NEG (PDP-11), 351
Negative, 22–28

Numbers, 21–27
Zero, 22, 24–26

Nested
Loops, 131
Macros, 302, 305, 308
Subroutines, 196
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NOP, 70, 83, 100, 118, 120, 259, 394,
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NOP (6600), 374, 375
NOP (8080), 380, 382
NOP (HP 2100), 342
NOP (PDP-8), 331
Normalized Floating Point Numbers,

33–35, 66, 112
NOT (8080), 384
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Excess, 21, 26
Place, 11
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Positional, 11
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Unsigned, 24, 26, 27, 44, 348,

356, 379, 381
NOVA, 324
Nova 3/D, viii
NULL, 41, 43, 47
NUM, 69, 71–74, 100, 118–120, 154,
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Number System
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Floating Point, 31–35, 65, 68, 69,
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369, 379, 394
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Negative, 21–27
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Numeric Opcodes, 399–402
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OFF, 65, 120
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ON, 65, 120
One-pass Assemblers, viii, 255,

257–258, 260, 296, 308, 310
One-pass Loaders, 235, 236
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27, 32
Opcode Tables, 246–249
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Numeric, 399–402
Symbolic, 68, 76, 395–398
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Open Subroutines, 300
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Optical Memories, 56
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ORR, 119, 394, 398, 399
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OSR (PDP-8), 329, 330
OT, see Overflow Toggle (OT)
OUT, 71–74, 116, 117, 120, 149–152,
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Output Devices, 154–155
Output Parameters, 198–199
Overflow, 21, 24, 26, 34, 128, 129, 348
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Stack, 138
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Packed Decimal, 356, 358, 360
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Current, 326, 340
Zero, 326, 334, 340
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Paper Tape, 46–48, 66, 150, 154, 347

Reader, 152
Reader/Punch, 56, 152

Parameters, 187–198
Actual, 187
Formal, 187
Input, 198–199
Macro, 300, 306
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Output, 198–199
Passing, 187–198
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Bit, 42, 52, 53
Errors, 42, 53
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Partial Field Specifications, 106
Pascal, 71, 313, 314
Passing Parameters, 194–197
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In Global Variables, 189–190
In Registers, 187–189
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In the Calling Routine, 192–194
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PDP-11, 39, 324, 325, 346–354, 378
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Cost, 347
Double Operand Instructions, 351
Input/Output (I/O), 353
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Interrupts, 353–354
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Miscellaneous Instructions, 352
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Input/Output (I/O), 334–337
Instructions, 325–330
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331–337
Registers, 325
Subroutines, 334
Subtraction, 332

Variant Computers, 325
Pending Interrupts, 345
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Peripheral Devices, 39
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CDC 6600, 369–372, 376
Physical Organization of Memory, 3–7
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PL/MIX, 319
PL360, 319
Place Notation, 11
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Plug-to-plug, 39
Pointer, 234

Stack, 137, 348, 365
Polling, 336, 344, 345
Position-independent Code, 350, 354
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Post-normalized, 33
Postindexed Indirection, 104
Precision

Double, 32
Fractions, 30–32
Single, 32

Preindexed Indirection, 104
Presser, L., 241, 390
Prime, 324
Printer

Console, 46
Teletype, 335

Printers
Line, 50–51, 56, 66, 150, 154,
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Priority Interrupt System, 345, 353
Procedures, 181–212

As Parameters, 208
Program Counter, 58, 98, 356
Program Counter Relative Addressing,

350
Program Drum, 80
Program Interrupts, 361
Program Reference Table, 366
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Intel 8080, 384
PDP-8, 331–337

Project MAC, 324
Prologue, 185
Propagation

Carry, 14, 26
PRT (B5500), 366
PS (6600), 375
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PSW (IBM 360), 356, 361, 362
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RAL (PDP-8), 329, 330
RAM, see Random Access Memory

(RAM)
Random Access
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Memory (RAM), 378

RAR (PDP-8), 329, 330
Raytheon Data Systems, 324
RCA, 323, 324, 378
Read-only Memory (ROM), 7, 240, 378
Read-write Cycle, 5
Record Lengths, 150
Records, 52, 116, 136, 150
Recursive Subroutines, 208–210
Reentrant, 208–210, 354

Serially, 209, 210
Reference Table, 237
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Restoring, 183–185
Saving, 183–185
Swap, 169, 312

Registers, 184, 185, 385
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CDC 6600, 373
Double-length, 359, 391
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IBM 360/370, 355–356
Index, 65, 101, 120, 136

Intel 8080, 378–379
MIX, 65, 66, 69, 169, 183, 185
PDP-11, 347–348
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Relocatable, 226, 227, 229, 230, 260
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Assembly Language, 227–229
Expressions, 228, 259
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Linking Loaders, 227, 237
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Load Format, 224, 229–232, 238
Loaders, 223–237, 259, 260
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Symbols, 226, 228, 229, 260
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259–260
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Repeating Fractions, 30
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Floating Point Numbers, 31–33
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Numbers, 10–12, 22
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Restoring Registers, 183–185
RET (8080), 382
Return Address, 183–184
ROL (PDP-11), 351
ROM, see Read-only Memory (ROM)
ROR (PDP-11), 351
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Round-off Error, 30, 32
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RSS (HP 2100), 343
RSS (PDP-8), 329–331
RTI (PDP-11), 354
RTL (PDP-8), 329, 330
RTR (PDP-8), 329, 330
RTS (PDP-11), 352

S (IBM 360), 359
Saving Registers, 183–185
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SBC (PDP-11), 352
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SDS, see Scientific Data Systems

(SDS)
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Search Key, 248
Searching an Array, 134
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SEZ (HP 2100), 343
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SKP (PDP-8), 331
SKR (PDP-8), 335
SL (IBM 360), 359
SLA, 117, 118, 393, 398, 399
SLAX, 117, 118, 393, 398, 399
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SNA (PDP-8), 331, 333
SNL (PDP-8), 329, 330
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Sprocket Holes, 46, 47, 50
SR (IBM 360), 359
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SRAX, 117, 118, 126, 393, 398, 399
SRB, 119, 249, 394, 398, 399
SRC, 117, 118, 393, 398, 399
SSI, see Small-scale Integration (SSI)
ST (IBM 360), 359
ST*, 110, 392
ST1, 110
ST2, 110
ST3, 110
ST4, 110
ST5, 110
ST6, 110
STA, 72–74, 86, 110, 124, 398, 400
STA (HP 2100), 341
Stack, 137–138, 354, 365
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B5500, 363, 365
Intel 8080, 378
Machines, 323, 363, 365
Overflow, 138
PDP-11, 348
Pointer, 137, 348, 365
Underflow, 138
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Star (*), 78, 80, 82–84, 251, 254, 361
Statement Format, 78
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Table, 249
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STB (HP 2100), 341
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STC (IBM 360), 359
STH (IBM 360), 359
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In-line, 300
Library, 197, 224, 240
Nested, 196
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Recursive, 208–210
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Subtraction, 21, 27, 28, 125, 332

PDP-8, 332
Summary, 35, 60–61, 91, 120, 147,

178, 211, 241, 295, 319, 385
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SWAP Subroutine, 202, 203
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Symbolic Opcodes, 68, 76, 395–398
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Doubly-defined, 83, 312
Local, 89–92
MIX, 79
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Relocatable, 226, 228, 229, 260
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Tandem Computers, 324
Tanenbaum, A.S., 61, 390
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Text Editor, 317
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TFL (PDP-8), 335
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