

Windows® 64-bit Assembly Language Programming Quick Start: Intel® X86-64, SSE, AVX

Copyright © 2018 by Robert Dunne.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means
without the prior written permission of the copyright owner and publisher. Published in the United
States of America by Gaul Communications, Downers Grove, Illinois.

Cover Design: Daniel van Loon

ISBN 978-0-970112460 (paperback)

ISBN 978-0-970112453 (digital)

Windows® 64-bit Assembly Language Programming Quick Start: Intel® X86-64, SSE, AVX is an
independent publication and has not been authorized, sponsored, or endorsed by any of the hardware or
software rights holders described herein.

The publisher makes no warranty, express or implied, with respect to the material contained herein. The
program listings, examples, and other information presented in this book are distributed on an “as is”
basis, without warranty. Although every precaution has been taken in the preparation of this book,
neither the author nor Gaul Communications shall have any liability regarding its use.

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Windows® 64-bit
Assembly Language

Programming
Quick Start

Intel® X86-64, SSE, AVX

Robert Dunne

Contents at a Glance
Preface

1 The Calculator

2 Compile, Link, Execute

3 Hello World

4 Loops and Branches

5 Macros and Subroutines

6 Link & Lib

7 Binary & Hexadecimal

8 Decimal & More

9 Arrays & Strings

10 Parallel Logic

11 SSE & AVX

12 Floating Point

13 IDE & C++

Conclusion

Appendix A: Microsoft Visual Studio

Appendix B: Windows Command Processor

Appendix C: List of Instructions

Appendix D: X64 Calling Convention

Appendix E: Windows Function Calls

Appendix F: ASCII

Appendix G: Binary Numbers

Appendix H: Hexadecimal Numbers

Answers to Selected Questions

Preface

It’s time to “Take the bull by the horns” urged my department head as I was
stuck in design mode and not moving fast enough into coding. Fortunately,
he was referring to a supercomputer interface project I was developing, and
not the herd of bison sharing the national laboratory at which we were on
staff. Likewise, the purpose of this book is to get students programming in
assembly language as quickly as possible without getting too hung up on
adjacent topics.

This book is about programming the Intel® X86-64 in assembly language
using Microsoft® Visual Studio 17 software. The X86 implies the 16-bit
legacy Intel® 8086 processor up through the 64-bit Intel® core i9 and
comparable processors from AMD. This is not a book that has been modified
or migrates from a 32-bit or 16-bit perspective, but starts right in with 64-bit
programming and only refers to past approaches when necessary to explain
seemingly unnatural conventions and names.

All programming examples use the ML64.exe assembler included with
the free Community Edition of Microsoft® Visual Studio 17, which is
used to develop C and C++ programs running in full 64-bit mode.
Every sample program is complete, but leaves room for enhancements
and experimentation encouraged by the questions at the end of each
chapter.
The sample programs, ranging from five to over one hundred lines of
code, are extensively documented in both flow diagrams and comments.
All are available for download through GitHub.
Many assembly language books present CPU instructions in “catalog
form” along with snippets of coding examples. In this book, CPU
instructions are introduced as needed to achieve programming goals as
the projects in each chapter progress to the next.
Over seventy illustrations are included to explain programming
techniques as well as X86, SSE, and AVX instructions.

Topics like binary and hexadecimal are introduced through
programming examples as well as appearing in appendices.
The examples in this book have been “classroom tested” with students
having very little, if any, previous programming experience. The
information is complete, allowing it to be used as an independent study.

Audience for This Book

The goal of this book is to assist students and computer enthusiasts get on a
solid path to understanding computer architecture and also get a deeper
understanding of Microsoft® Windows® programming. The intended
audience is the following:

Anyone wanting to learn assembly language, especially individuals
interested in Intel® processors and Microsoft® Windows.
Someone who already has assembly language experience, but now
wants to become familiar with 64-bit programming.

Expected prerequisites for someone reading this book to learn assembly
language:

Access to an Intel® X86-64 based computer running Microsoft®
Windows® 7 or 10. This is the norm for desktop and laptop computers
sold in the last decade.
Enough user computer experience to be able to search for files, use a
simple editor such as Notepad, and create a directory.
Internet access to download the free “Community Edition” of
Microsoft® Visual Studio if necessary. Many years ago, Microsoft sold
its MASM assembler as a separate product, but now its assembler is
only available as part of the C++ component of Microsoft® Visual
Studio. Many students using this book will have access to computers
already loaded with a professional or educational version of Microsoft®
Visual Studio. For those who don’t, the “Community Edition” is
available as a free download from Microsoft, and only the C++ language
component is needed.

Why the Microsoft Assembler and Why 64-bit?

There are many assemblers available today, and most are available as a free
download. Why study the ML64 assembler in Visual Studio 17 instead of
others?

ML64 works both in a traditional Command Line Interface approach
and in an Integrated Development Environment (IDE), including its
editor and powerful interactive debugger.
Assembly Language programming in 64-bit mode is much easier than in
16-bit mode or in 32-bit mode. The horrific memory management
techniques using segment registers to squeeze applications into small
memory spaces are no longer needed. The variety and inconsistency of
subroutine calling “conventions” of 32-bit applications have been
simplified in 64-bit Windows.
Microsoft® Windows® 10 will not run 16-bit applications. Even 32-bit
applications cannot run directly, but must be partially run in an
emulation mode. Some day they may be eliminated as well.
The ML64 assembler is free and down-loadable from Microsoft.

Book Organization

How can a 200 page book be a “quick start”? Basically, you only have to go
as far as you want. Either Chapter 2 or Chapter 13 is enough to get a person
programming and running 64-bit assembly language programs using
Microsoft® Visual Studio.

The first chapter introduces the concept and structure of CPU “machine
code” in general using examples modeled as a calculator. Those already
familiar with CPU architectures in general can easily skip this chapter.
Chapter 2 provides a command line work flow for developing all of the
test programs in the remainder of this book. It includes directions on
locating the ML64 assembler, linker, and library, as well as setting up
working directories for writing test programs.
Chapter 3 introduces Windows function calls with a program that reads

from the keyboard and writes to the monitor. This read/write console
program is then gradually enhanced in Chapters 4 and 5 with additional
assembly language instructions and programming techniques using
macros, subroutines, and nested loops.
Chapter 6 focuses on the linker and divides the console application into
multiple source files, object files, and a link library.
In Chapters 7 and 8, more subroutines are added to the console program
to produce ASCII, binary, decimal, and hexadecimal outputs showcasing
several more instructions.
Chapter 9 begins a new console program focusing on memory
addressing schemes and string instructions.
Chapters 10, 11, and 12 focus on SIMD (Single Instruction Multiple
Data) programming including the SSE and AVX enhancements and
floating point.
Chapter 13 details the set up of the C++ IDE in 64-bit mode and has
examples of a C program combined with assembly language as well as a
program totally in assembly language. This chapter highlights the
powerful interactive debugger and provides further examples
implementing the X64 Calling Convention.
Eight appendices present background information on setting up Visual
Studio, batch command processing, binary, hexadecimal, Windows
function calls, and summaries of X86-64 instructions and assembler
directives used in this book.

IDE or Command Line Interface?

With Microsoft® Visual Studio 17, assembly language programs can be built
using either its Integrated Development Environment (IDE) or using the
ML64 assembler directly in a traditional command line approach. Both
techniques are presented in this book, and each has its own merits for gaining
a deeper understanding of computer software and hardware.

The Visual Studio 17 IDE combines a text editor, file organizer,
compilers, linker, and an interactive debugger in a single package that is
fairly easy to use. However, it “hides” much of what it is doing to generate a
working program.

Beginning with Chapter 2, this book uses the command line approach to

introduce X86-64 instructions, programming techniques, and program linking
and libraries. It ends with Chapter 13 that uses the IDE to build applications
containing both C and assembly language, as well as 100% assembly
language programs. For those who like to start from the end and work to the
beginning, Chapter 13 does show how to produce a 64-bit 100% assembly
language program using the IDE. One could then use the IDE's editor and
interactive debugger for chapters 2 through 12.

I recommend readers make two passes through this book: 1) Use
command line mode to get familiar with the registers, instructions,
assembling, and linking, and 2) Use the interactive debugger to monitor
registers, flags, and memory locations as each program progresses. No matter
which approach you prefer, it is now time to “Take the bull by the horns” and
get down to coding.

About the Author

Robert Dunne has over 40 years of computer experience ranging from
developing custom hardware interfaces on supercomputers to teaching
technology courses in middle-school gifted-education programs. Starting out
with degrees in physics and computer science, he was on staff at a national
laboratory and a major engineering firm for ten years before becoming an
entrepreneur in the development of embedded systems. He has written well
over 100,000 lines of assembler code developing systems and applications on
ten unique CPU architectures encompassing mainframes, minicomputers, and
microcomputers.

During the past twelve years, he has taught three undergraduate courses
per semester in digital electronics and embedded systems and is notorious for
getting his students working on a lab project within the first 60 seconds of the
very first class meeting.

— 1 —
The Calculator

When I ask my students when do they think the first computers were
developed, I usually get answers like the 1980s or even the 1940s. Very few
know that the basic architecture of almost all computers used in the past 50
years dates back to the 1830s with Charles Babbage’s Analytical Engine.

Figure 1.1: Babbage’s Analytical Engine

Babbage’s Analytical Engine
consisted of two principal
components:

Mill: The hardware that did the
work (arithmetic and logic
operations)
Store: Location for data storage
of intermediate results

Figure 1.2: “Modern” computer
hardware nomenclature

Babbage’s mill and store correspond
to today’s computers:

CPU (Central Processing Unit):
The hardware that does the work
(arithmetic and logic operations)
Memory: Location for data
storage of intermediate results

By no means am I implying there existed a positive progression of concepts
and devices from Babbage’s day to today. The computer pioneers in the
1940s recreated much of what was lost for nearly one hundred years. I
personally observed the microcomputer software industry in the 1980s
recreate the same mistakes and going down the same wrong paths as the
mainframe developers did in the 1960s.

The Machine and Its Language

“Machine Language” generally refers to the numeric codes that instruct the

CPU what operation is to be performed and on what values.

Figure 1.3: Simple calculator model

In order to understand machine language,
think of a calculator which has the
following features:

Display: Current number being
entered or current result of operations
Operations: Clear (C), add(+),
subtract(-), multiply(*), divide(/),
display(=)
Data input: Digits and decimal
point, sign(+/-), clear entry (CE),
back space (BS)

When we use a simple calculator, there is
a symbiotic partnership to achieve the
final calculation: The calculator does the
work, and we provide the directions.

We enter the following sequence of instructions to perform the calculation
13×21+6:

1. Clear
2. Add 13
3. Multiply 21
4. Add 6
5. Display

Registers

CPUs contain a small number of fast-access memory locations called
registers. Depending upon the particular CPU design, the number of registers
varies from about five up to nearly one hundred. Some of the registers are
accessible to user programs in assembly language, and some registers are
only accessed by the CPU’s electronics to perform its many tasks. The
principal data register is generally referred to as the “accumulator.” In our
calculator example, the accumulator value is that “running total” or
accumulated total that is in the display.

Most of the logical and arithmetic operations performed by CPUs are
binary operations. Two numbers (called operands) are added, or two
operands are multiplied, or one operand is subtracted from another. In our
calculator example, the first operand is the value in the display (i.e., the
accumulator), and the second operand is the number being entered.

Op-codes

Although a CPU could be constructed to work with the character string
names of operations like clear, add, and multiply, it would be somewhat
inefficient. Instead, the CPU designers assign a numeric operation code (op-
code) to represent each of the available CPU operations. For example, let the
following six numbers be assigned to the following six calculator operations:

1. Clear (C): Load zero into the accumulator.
2. Add (+): Add the value of the operand (being entered) to the current

accumulator contents.
3. Subtract (-): Subtract the value of the operand (being entered) from the

current accumulator contents.
4. Multiply (*): Multiply the value of the operand (being entered) to the

current accumulator contents.
5. Divide (/): Divide the current contents of the accumulator by the

operand (being entered).
6. Display (=): Copy the current contents of the accumulator to the display

line.

If we use the above numeric assignments to translate our previous sequence

of instructions to calculate 13×21+6, we will get the following machine code:

Step number Operation Op-code with operand
1 Clear translates to 1 : 0
2 Add 13 translates to 2 : 13
3 Multiply 21 translates to 4 : 21
4 Add 6 translates to 2 : 6
5 Display translates to 6 : 0

Table 1.1: Translate “assembly code” into “machine code.”

Note that in this simple model of a calculator being used as a computer, I’ve
represented each instruction as a binomial: an op-code and operand pair. In
Table 1.1’s translation to machine code, binary operations like Add and
Multiply are converted to form “op-code : operand” pairs. Unitary operations,
such as Clear and Display, are converted to the form “op-code : 0” because
there was no operand. So in this example, we would calculate 13×21+6 by
entering “Clear, Add 13, Multiply 21, Add 6, Display” on a calculator, but
the corresponding computer program (in machine language) would be the
sequence “1 : 0, 2 : 13, 4 : 21, 2 : 6, 6 : 0.”

Memory

What about the other half of Babbage’s computer: the “store” (“memory” in
today’s terminology)? Babbage needed memory for the storage of
intermediate results and so do we. In an arithmetic problem like
13×14+15×16, we can’t just multiply 13 times 14, add 15, and then multiply
by 16. The answer would be wrong because by convention, multiplication has
precedence over addition: the 15 and 16 have to be multiplied before being
added to the product of 13 and 14. There is an implied parenthesis in this
calculation as follows: (13×14)+(15×16). With our non-memory calculator,
we would have to write down the intermediate value of 13×14 and then
reenter it after we calculate 15×16. Memory calculators do this “writing
down” and reentering for us.

Figure 1.4: Memory Calculator with
functions

In our calculator model shown in
Figure 1.4, we have more operations,
two of which are related to memory:
Store (=MEM) and Load (MEM).
Since we added two more operations
to the calculator, we must also add
two more op-codes: Store (op-code =
7) and Load (op-code = 8).

Op-codes 1 through 8 are defined as follows:

1. Clear (C)
2. Add (+)
3. Subtract (-)
4. Multiply (*)
5. Divide (/)
6. Display (=)
7. Store (=MEM): Copy the contents of the accumulator into a memory

location.
8. Load (MEM): Copy the contents of a memory location into the

accumulator.

Is this the best approach for using memory? The above Store command is
fine, but the Load instruction is too limiting. In some simple memory
calculators that store only one value in memory, there is an “Add memory”
command, but what if you want to multiply using the value in memory or
divide by it? What we really would like is to not just reload a saved value, but
use it in any of the previously defined operations such as Add or Multiply.

Most CPU implementations include a “flag” in the instruction that
indicates if the operand is immediate (value in the operand) or is from
memory. Our binomial instruction format (op-code and operand) now
becomes a trinomial (op-code, immediate-flag, and operand). If we use the
above operations including the new immediate flag to write a little program
to calculate 13×14+15×16, we will get the following code:

Step number Operation Op-code :i- flag :
operand

1 Clear translates to 1 : 1 : 0
2 Add 13 translates to 2 : 1 : 13
3 Multiply 14 translates to 4 : 1 : 14
4 Store Mem 0 translates to 7 : 0 : 0
5 Clear translates to 1 : 1 : 0
6 Add 15 translates to 2 : 1 : 15
7 Multiply 16 translates to 4 : 1 : 16
8 Add Mem 0 translates to 2 : 0 : 0
9 Display translates to 6 : 1 : 0

Table 1.2: Translate “assembly code” into “machine code.”

The above system actually works fine, but can we improve on the
performance? Storing intermediate results into memory always takes time.
An accumulator is also memory, but it’s very fast local memory inside the
CPU, and we can also use it as an operand in our instructions. Although some
CPUs have only one accumulator, the vast majority have several. The X86-64
architecture has 16 user accessible general purpose registers, most of which
can be used as accumulators for making calculations.

Figure 1.5: Two-accumulator Calculator

Let’s expand our calculator model to
have two accumulators and see how
that changes our assembly language.
First, our instructions are no longer
trinomials consisting of three
numbers, but now have a fourth
component: we have to specify which
accumulator is being used in the
operation. In the previous one-
accumulator calculator model, we only
had one accumulator, so it was the
only one that could be used and
therefore did not need to be specified.

Step number Operation Op-code : acc : i-flag :
operand

1 Clear A0 translates to 1 : 0 : 1 : 0
2 Add 13 to A0 translates to 2 : 0 : 1 : 13
3 Multiply A0 by 14 translates to 4 : 0 : 1 : 14
4 Clear A1 translates to 1 : 1 : 1 : 0
5 Add 15 to A1 translates to 2 : 1 : 1 : 15
6 Multiply A1 by 16 translates to 4 : 1 : 1 : 16
7 Add A1 to A0 translates to 2 : 0 : 0 : 1
8 Display A0 translates to 6 : 0 : 1 : 0

Table 1.3: Use two accumulators: A0 and A1

Any Other Instructions?

Computers are great for doing the same thing over and over again, but on
different sets of input data. Sometimes, we write a program to perform the
calculations differently, depending on the type and values of the data being
processed. Making these decisions, as well as knowing when to exit these
repetitive loops are done by jump instructions (a.k.a., branch instructions)

and conditional test instructions. We’ll examine these techniques in the next
section on documentation, but we’ll not implement them here in this
calculator model.

Language Interpreter and Compiler

The “human language” source code of our programs must be translated to
machine language in order to be executed by the CPU. This translation can be
done all at once before any of the machine code is executed or it can be
converted and executed line by line as it is needed. The two approaches are
the following:

Interpreter: Translate each line of source code to machine language line
by line just before it is executed.
Compiler: Convert the entire source code file to machine language all at
one time.

Assembly language as well as C and Java are almost always compiled.
Languages like Basic have traditionally been interpreted. There are merits to
each approach which we won’t go into here except saying that interpreter
code is easier to write and debug, while compiled code offers much higher
performance at execution time.

As in most things, there’s always a slight modification in order. Java and
Microsoft’s .net programming languages like VB.net and C# don’t compile
all the way to machine language. They compile to an intermediate language
that is very close to a generic machine language, not tied to any particular
CPU.

Assembly Language

A machine language instruction is composed of multiple integer fields
indicating which operation is to be performed and on what data. Assembly
language substitutes names for these integers, and generates one machine
code instruction for each line of assembly language coding. Almost every

assembly language program for all CPUs consists of four columns:

1. Label: Name associated with instruction’s memory address
2. Op-code: The operation being performed (add, sub, shift, ...)
3. Operands: Location of the data (usually a register combined with a

constant, another register, or memory address)
4. Comment: Describes why the instruction is being used

nxtlin: mov RCX,stdout ; Handle to standard output device
lea RDX,msg ; Pointer to prompt message
mov R8,lengthof msg ; Number of characters to display
lea R9,nbwr ; Number of bytes actually written.
call WriteConsoleA ; Write text string to command box.

Listing 1.1: Example of assembly language source code

Each column is separated by one or more blanks or tab characters. How wide
is a column? Typical columns are 8 to 10 characters wide with the exception
of the rightmost column which contains comments. The assembler doesn’t
care if it’s one blank, two blanks, or more that separates the data from one
column to the next. We line up the columns of assembly code for the ease of
reading by the programmers.

Comments

There is more to a well-written program than the machine code itself.
Program design and maintenance requires documentation. “Internal
documentation” is the description of the program appearing in the program
itself and consists of two types of comments:

1. Global: These comments describe what a section of code is doing. They
normally consist of more than one line of text and are not on the same
physical text lines as the actual machine code instructions. Global
comments are used in both assembly language as well as higher level
languages.

2. Local: These comments share the text line with the actual machine code
instructions. They are rarely needed in higher level languages, but are
very important in assembly language to explain not what the code is
doing but why the line of code is doing it.

Importance of comments: They’re not necessary for a program to
successfully run, and many programmers use very few comments. They’re
necessary for program maintenance, whether it be by a new programmer next
week or by the original programmer a month or even several years later.
When I was an undergraduate student and took a course in assembly
language programming, my professor thought comments were so important
that he subtracted one letter grade for each line of code that didn’t have a
local comment. That was a bit extreme, but I got the point. I confess that in
my production code I don’t comment every line, but I do comment much
more than others. In this book, I will be commenting on almost every line to
help set an example as well as explain what’s going on in the code.

The following excerpt from an assembly language program shows both
global (first two lines) and local comments. There are almost as many ways
to mark the beginning of a comment as there are programming languages. In
this book, I will be using the semicolon, which is the most popular character
in assembly language to indicate the beginning of a comment. In other
assemblers, the comment indicator is #, /, . (period) or @ (at-sign). In other
computer languages, comments are indicated by <!, /* with */, //, - -, #, C,
and even REM.

; Macro "msgOut msg" displays a character string in command window.
; msg: Label of ASCII message for command window.

msgOut macro msg ; One argument: msg
mov RCX,stdout ; Handle to standard output device
lea RDX,msg ; Pointer to message to display
mov R8,lengthof msg ; Number of characters to display
lea R9,nbwr ; Number of bytes actually written.
call WriteConsoleA ; Write text to command window.
endm

Listing 1.2: Sample of local and global comments

Documentation

Program documentation is used during both construction and long term
operation of a software application. It tells the development programmers
what the application is supposed to do and tells maintenance programmers
what the application is doing and how it’s doing it.

Some computer languages are somewhat self-documenting. Assembly
language is definitely not one of these. One of the first languages developed
after assembly language was Cobol which has been present in business
applications for over 50 years. Although professionally trained programmers
were needed to write Cobol programs, almost anyone who could read English
could read the Cobol program instructions and get a very good understanding
of what was being done. Even today’s commonly used languages like C and
Java contain structures like loops and objects which help identify what is
being done in the program.

Documentation basically exists at three levels:

1. Narrative: A description in words, charts, tables, and examples
explaining what the application does. To some degree it even
recommends how the application should perform its assigned tasks.

2. Diagrams: There has been a variety of graphic modeling languages over
the years beginning with traditional flowcharts through the Universal
Modeling Language (UML). Their diagrams show program structure
and flow.

3. Internal documentation in the code itself: All programs should have
comments interspersed among lines of code saying what is being done,
why it’s being done, and how it’s being done. For higher level languages
like C and Java, internal documentation is important. In assembly
language it is crucial.

I never really liked flowcharts. However, many students new to programming
say this graphical approach helps them grasp the logic flow more readily. So
I’ll use them in the first few chapters to explain some programming

techniques and even use them to explain how a machine code instruction
works.

I’ll be using three basic flowchart symbols (and then three alterations to
one of them).

Process: Identifies a task, such as adding three numbers.
Decision: Shows alternate paths the program can take based upon
current values in the data.
Terminator: Identifies the beginning and ending points of a portion of
the program

Figure 1.7: Basic flowchart symbols

Although I could use the process block throughout, I will also use three other
symbols when the process is more specific: preparation, predefined process,
and display.

Preparation: A process like initializing a running total to zero (i.e., it is
a process, but not the “main act”)
Predefined Process: A compound process like taking the square root
(normally located external to the current program coding)
Display: A process where the computer user receives a displayed
message.

Figure 1.8: Specialized process symbols

Figure 1.9 provides a flowchart example of a procedure that calculates the
sum of a series of numbers using a calculator. After turning on the calculator
and pushing clear, a series of numbers are entered from the keypad. This is
actually a multi-step procedure where one or more numeric keys are pushed
and may include a decimal point. See Figure 1.10 for the “sub” routine that
will “Enter Number from Keypad.”

Figure 1.9: Program using predefined process

Figure 1.10: Predefined process
“Enter number from keyboard"

Figure 1.10 illustrates the “predefined
process” of “Enter number from keypad”
called from the previous flowchart.
Predefined processes, also known as
subroutines, procedures, functions, and
methods, are common to computer
programming languages. Their use
provides a structure leading to more
reliable as well as more compact code.
Most of the programming examples in this
book involve building subroutines to
perform specific tasks.

Figure 1.11: Connecting
segments of a flowchart

The final flowchart symbol that appears for very
large programs is the off-page link. It is used to
divide a single flowchart into smaller segments.
With a large piece of paper, off-page links would
neither be necessary nor used very often. It will
not be necessary to use that symbol in this book
due to the size of program segments that are being
discussed.

The Universal Modeling Language (UML) has been available for many years
for documenting software structure (usually for higher level languages) and
development on many levels. Its “activity diagram” is the closest thing to
traditional flowcharts, and it has some added real-time (i.e., embedded
systems) features. Also, pseudo code which uses a somewhat arbitrary

program-like verbal description of how the code works is more popular
today.

Numbers

Both integers and real numbers are used in applications software. They reside
in computer registers and memory in binary and floating point formats,
respectively. Integers are also used for memory addresses of program
instructions and data. The following number formats are present in assembly
language:

Decimal: Base 10, having digits 0 through 9, is used to represent most
numbers used in arithmetic calculations.
Binary: Integers contained in registers and memory are stored as a group
of binary digits (bits), zeroes and ones. The sizes of the “containers”
range from an 8-bit byte to a 64-bit “quad word.” Please see Appendix
G for more information on binary format.
Hexadecimal: Hexadecimal is base 16 and is found in assembly
language programs because it’s a compact way to represent binary.
Appendix H has more information on hexadecimal format.
Scientific Notation: Very small and very large numbers used in science
and engineering are represented in computers in floating point format,
which is very similar to scientific notation. Please see Chapter 12 for
more information on floating point format.
Negative: Negative numbers in decimal are preceded by the minus sign.
All floating point numbers can be positive or negative, but integers can
be either signed or unsigned (i.e., whole numbers). Appendix G has
further details.

A variable in algebra is a symbol or name that represents or “stands in” for a
number. Likewise, most assemblers support variables that can be assigned
numeric values, and they fall into three categories:

Run-time data variables: Data being processed by an application
program are stored in memory at specific addresses. Although these

addresses could be entered as integers, associating a name with them is
much more convenient.
Assembly-time variables: Assembly language provides a flexible
scheme to represent constants that do not change during the running of a
program, but programmers might want to change them when the
program is altered for improvements. The size of a table is an example
of a fixed value that might be increased on decreased when the program
design is altered.
Program addresses: Addresses of machine code instructions are integers,
some being absolute and other being relative to a particular location.

Review Questions

1. What advantage does a second accumulator give a CPU? What’s the
disadvantage?

2. Most CPU instructions use two operands. If one operand is a register,
what can the second operand be?

3. How are a compiler and an interpreter similar? How are they different?
4. * “By hand, without a calculator or computer,” convert the following

numbers expressed in decimal to binary format. See Appendix G if you
need some background in binary.

a. 21
b. 63
c. 16
d. 129
e. 13

5. * “By hand, without a calculator or computer,” convert the following
numbers expressed in binary to decimal format. See Appendix G if you
need some background in binary.

a. 1011
b. 1100101
c. 10110
d. 100001
e. 1111011

6. Draw a flowchart for eating a bowl of soup. To start with, it should

contain a process: “Dip spoon into soup” as well as a decision: “Is the
bowl empty?” Other components will of course be necessary to
complete the flowchart.

Programming Exercises

1. Write an assembly language program to calculate: 45×16÷7-46. Note:
I’m not talking about using the real X86-64 instructions, but the simple
ones made up for the calculator example (like the example in Table 1.1).

2. Hand assemble your “program” (from Exercise 1). That is, convert the
op-code mnemonics to their numeric values (like the example in Table
1.1).

3. Write an assembly language program for the memory calculator to
generate: 31+45×37 (like the example in Table 1.2).

4. Rewrite the above exercise using the two-accumulator calculator without
using memory locations.

— 2 —
Compile, Link, Execute

From a programmer’s perspective, software development is a vicious cycle
of modify the program, test the program, modify the program, test the
program, modify the program, test the program until we are satisfied with the
test results. As described in Chapter 1, an assembly language program
consists of lines of text which we create and modify using a simple text
editor. We then test the program by translating it into X86-64 machine code
to be run in a command console window. In this book, we use the ML64
assembler and its associated linker included with Microsoft Visual Studio
2017.

Figure 2.1: Program development and testing

Simple First Program

Let’s begin the vicious software development cycle with a simple program
that starts and then exits. We will need to create a working directory, use the
Notepad editor to write the source code file, run the ML64 assembler, link to
the Windows 64-bit Application Programming Interface (API) library, run
the created program, and display its exit status. Once set up here, the same
compile-link-execute procedure will be easily performed in all of the
following chapters.

Figure 2.2: Program flow

The flowchart in figure 2.2 illustrates the major
flow of a program: It gets CPU control, it does its
intended job, and finally it returns control.

The only purpose of this first program (Listing
2.1) is to start and then quit. How does a computer
start, run, and stop? The hardware knows where to
start the first instruction after power-up or reset,
and there is an X86 instruction that effectively
halts its execution. Those instructions are
controlled by the Windows operating system in
the environment in which we’re working.

1. includelib kernel32.lib
2. ExitProcess proto
3. .code
4. main proc ; Program external name
5. mov RCX,78 ; Load exit status code into RCX
6. call ExitProcess ; Return CPU control to Windows
7. main endp
8. end

Listing 2.1: First program: C:\ASM64\main.asm

Figure 2.3: Windows
X86-64

A program starts when Windows gives it control
at its “ENTRY” point; and when your program
chooses to quit, it will return control back to
Windows using the “ExitProcess” function call.
Actually, Windows never gives up full control to
your program, but don’t be concerned about that
for now.

Windows provides a variety of services to a
running program such as reading and writing disk
files, and communicating with keyboards,
monitors, and networks. When an application
terminates, it returns an “exit code” in register
RCX to Windows that can be tested in command
line scripts, or simply displayed by the “echo
%errorlevel%” command line.

Introductions

Each chapter in this book has an Introductions section describing X86-64
CPU instructions not seen in previous chapters. Most chapters will also
introduce ML64 assembler directives that clarify and simplify how the source
code is to be converted into a running program by the assembler and linker.
All eight lines of Listing 2.1 are described below (It is the first program and
everything is new).

1. INCLUDELIB: Identify external library, such as kernel32.lib that
contains linkages to the Windows Application Programming Interface
(API). Note: Even though the file name says “32,” this library file
contains the 64-bit Windows functions.

2. PROTO: The prototype directive informs the assembler of the name of
an external procedure that will be called. ExitProcess will be called on
line 6.

3. .CODE: Just like Babbage’s computer had the mill and store, today’s

computers have code (instructions) and data areas. Note: The .CODE
directive begins with a period. The .CODE directive marks the
beginning of a section containing X86-64 instructions, while the .DATA
directive (introduced in the next chapter) marks the beginning of a data
section in memory.

4. PROC: Programs are divided into procedures and each is given a name.
The name “main” is arbitrary, but is commonly used to name the
principle component of a program. Whatever you choose, and I
recommend you continue to use main, it must match the name on the
ENTRY option to the linker.

5. MOV: This is the first actual X86-64 machine code instruction in the
program, and here it simply loads a decimal 78 into the 64-bit RCX
register. Two more instructions, ADD and SUB, will be used in the next
program in this chapter.

6. CALL: This CALL machine code instruction will jump to the Windows
ExitProcess function, and thereby return full control of the CPU back to
Windows.

7. ENDP: Every procedure has a beginning and an end. This ENDP
directive marks the end of the “main” procedure code.

8. END: Every assembler source text file has a beginning and an end, so
the END directive marks the end of this simple program.

Is assembly language case sensitive? In other words, is “INCLUDELIB”
different from “includelib”? In general, case does not matter in assembly
language. It’s primarily your choice and style. From what I’ve observed, the
majority of programmers use lowercase for programming. In this book’s
program listings, I will provide the register names in uppercase and
everything else generally in lower case. I will note exceptions where case is
critical.

Program User Interface

Almost every operating system today supports programs that provide the
following user interfaces:

Graphical User Interface (GUI), (Windows Desktop Application): This
is the most popular interface today, where the user inputs data through a
combination of mouse movements, clicks, and keyboard input.
Command Line Interface, (Windows Console Application): This mode
can be traced back to the early mainframe days when input was on
punched cards and output on continuous forms paper. The ML64
assembler is a command line program, and so is the “visual” C++
compiler for that matter.

The following five steps of the software development and testing cycle are
illustrated in Figure 2.4:

1. Edit (make the source code): The source code such as that shown in
Listing 2.1 has to be entered (or copied) into a text file.

2. Compile (make the object code): Each “machine language” instruction
executed by the X86-64 CPU is composed of several fields (“groups of
bits”), which could be entered as integers, but would be a lot of work. In
assembly language, the fields are entered with mnemonic names and
decimal, hexadecimal, or binary numbers. The ML64 assembler
program converts the text lines to the binary instructions (object code).

3. Link (make the executable program): The LINK (linker) program
combines multiple object files into a single executable file.

4. Execute (run the program): This step is the objective of the previous
three steps, but how do you know if your program is doing what you
wanted it to do or is even doing anything at all? You’ll need some type
of I/O (Input/Output).

5. Examine results: In this chapter, we’ll use the echo command line to
assist with a little output using the value of the exit status in register
RCX. Chapter 3 will demonstrate input from the keyboard and output to
the monitor screen.

File names appearing in Figure 2.4:

main.asm: Source file containing assembly language text
main.obj: Object file containing X86-64 machine code
main.exe: Executable file ready to run on 64-bit Windows computer.

Figure 2.4: Work flow of testing a program update

Set Up Working Environment

The following steps are needed to set up the working environment that will
be used for developing and testing programs in command line mode.

1. Create a directory: Program development involves files: source code,
object code, and executable “machine code” files. In the examples, I put
all of these files in one directory named “C:\ASM64,” but a directory
name of your own choosing will also be fine.

2. Find the KERNEL32.LIB library file: The Application Programming
Interface (API) to the 64-bit operating system functions is contained in a
file, oddly enough named KERNEL32.LIB. Note: There are many
libraries with the same file name, but the others are for 32-bit
applications or the ARM processor. You should copy the correct file to
your working directory (C:\ASM64 in my examples).

3. Find the ML64 assembler: It is quite likely that your computer already
has the ML64 assembler present. If not, the C++ compiler of Microsoft®

Visual Studio® will need to be downloaded and installed. A “path” will
then need to be created to the directory containing ML64 and the
associated LINK program.

4. Download sample programs: All of the assembly programs shown in
this book are available as a free download from GitHub. It is, of course,
possible to key in all the examples, but who really wants to do that? It is
also possible to get a good idea how to program in assembly language
simply by reading this book and not running any of the examples, but
most people think hands-on practice is more effective.

Create ASM64 Directory

Create a directory to hold the source code, object code, and executable
“machine code” files. Since I use a directory named “C:\ASM64” in the
examples, I recommend you also create a directory named ASM64, so it
matches the examples, but any directory will be fine. The examples will still
work.

The first program in Listing 2.1 can now be entered into a text file named
main.asm.

1. What text editor to use? Notepad is available on all Windows computers
and will work fine. I prefer Notepad++ which is a free download from
notepad-plus-plus.org and provides extra features like displaying line
numbers. Word processing programs cannot be used because they
include text formatting commands, such as font changes and underlining
in the files they create.

2. Are the line numbers entered? No. The line numbers are for us humans
only, and the assembler does not want line numbers in the file.
Notepad++ can show line numbers while Notepad does not.

3. How many blanks are between columns? One or more. The assembler
does not care. I use the tab to separate columns so it is easier to have the
text lining up properly. The straight columns are for us humans, not the
assembler.

4. Does the file name have to be “main.asm”? No, it could even be X.1, but
I’ll be using main.asm in the examples, and this really is the “main”

“assembly” program being used in this book. In the long run, it is best to
be consistent with the “asm” file type convention. Remember: In
Notepad, you must “Save as Type” “All Files,” or else the file type will
default to TXT.

An alternative approach is to use the Visual Studio IDE which has a built-in
editor, file organizer and interactive debugger. I recommend making a second
pass through all the program examples in this book after setting up the IDE
for 64-bit assembly language programs as shown in Chapter 13.

Copy the KERNEL32.LIB File

In Listing 2.1 line 6, the main.asm program calls the Windows ExitProcess
function. This function and many others, such as those that read and write
files and devices, are contained in a library file named kernel32.lib. Your
computer probably has several versions of the kernel32.lib file: one for 32-bit
applications, one for 64-bit applications, as well as versions for other
processors like the ARM.

Open up Windows “File Explorer” as seen in Figure 2.5, set the base
directory to C:\ and file name to kernel32.lib, push the Enter key and wait for
the search results.

Figure 2.5: Search results for KERNEL32.LIB

Move the mouse to hover over each of the kernel32.lib files, looking for one
ending in X64 as show in Figure 2.6. Right click on this one and copy it into
the C:\ASM64 directory you just created. Be sure to copy, not “move,”
because you don't want to remove kernel32.lib from where it is already
located.

Figure 2.6: Zoom in of Figure 2.5 to identify desired KERNEL32.LIB

In the event you cannot find any kernel32.lib files or the X64 one in
particular, then you currently don’t have a 64-bit version of Visual Studio
installed on your computer, or it is installed on a different disk drive than C.
Appendix A provides advice on how to download the free Community
Edition of Visual Studio 2017. You will only need the C++ compiler portion,
not the entire package. Once loaded, you can perform the above search again.

Open the CMD Window

Because ML64 is a console program and we want to focus on assembly
language at this time, we will use the “Windows Command Processor”
(CMD window) for compiling and testing rather than the Visual Studio IDE
(Integrated Development Environment). The easiest way to start this
command window is to enter CMD followed by the Enter key in the “search”
box on the Windows taskbar. The following three commands should then be
entered in the command window to arrive at the desired working directory.

C:

CD \ASM64
DIR

Only the CD (Change Directory) command should be needed, but the other
two commands won’t hurt to be included. The first line should not be needed
because the CMD processor will usually default to your C directory. The
third line produces a directory which should show both the KERNEL32.LIB
file and the MAIN.ASM file that you just entered. Of course, these
commands can be entered in lower case as well. For more information on the
command processor, please see Appendix B.

Path command

If you enter ML64 in the command window to start the assembler, you will
probably get the following error response:

'ML64' is not recognized as an internal or external command,
operable program or batch file.

The assembler and linker are not special Windows CMD processor
commands, but console programs just like the ones we will be building. The
CMD processor must be told where they are located, so we must first find
them, and then set a “path” to them.

Use a similar search as you did in Figure 2.5, but the file name is
ML64.EXE instead of KERNEL32.LIB. You could, of course, copy both the
ML64.EXE and LINK.EXE program files to C:\ASM64 as you did for the
KERNEL32.LIB file, but a better way is to set a path to the directory
containing both the assembler and linker.

path C:\######\Hostx64\x64;%PATH%

The above path statement consists of the word “path” followed by the file
location containing the ML64 assembler, followed by a semicolon, and
finally %PATH%. The file location will vary from computer to computer
(that’s why we searched for it), but it will probably begin with “C:\Program
Files (x86)\Microsoft Visual Studio” and end with “\Hostx64\x64” (I have

shown the middle as a series of # hash tags). The semicolon followed by
%PATH% enables the new path to be included with any previous paths, but
not replace them.

Listing 2.2 shows the path command and assembler both being entered in
the command window. On the assembler command, I have used the /c option
so that the main.asm program will only be assembled, not linked in this
example. Note that this is a lower case c. Appendix B provides a description
of the ML64 command line and its options. We will normally not be just
assembling in the future, but linking as well.

You have probably noticed that some things are case sensitive and some
things are not. Just like in program source code, programmers commonly use
lower case for commands. I will be starting the assembler as ML64 because
the lower case ml64 looks too much like “m” followed by the number 164.

C:\ASM64> path C:\######\Hostx64\x64;%PATH%
C:\ASM64>ML64 /c main.asm
Microsoft (R) Macro Assembler (x64) Version 14.11.25547.0
Copyright (C) Microsoft Corporation. All rights reserved.

Assembling: main.asm

C:\ASM64>

Listing 2.2: Path command with assembly of main.asm program

The path statement is rather long and has to be entered whenever the CMD
processor is started. You might want to put it into a batch file named
something like setpath.bat and simply enter setpath instead. Don’t name the
batch file path.bat, or else you will have trouble getting to the real path
command. Appendix B describes batch file commands in more detail.

Once started and after entering the path command, you will probably
leave the command windows open for several iterations of compile-link-
execute. Before closing down your computer, you should close the command
window by either entering the EXIT command or simply “X”ing out with a
mouse click.

Compile, Link, and Run First Program

Since the MAIN.ASM file is now present, let’s continue the vicious software
development cycle by assembling, linking, running, and checking status with
the following three commands in the command window.

1. ML64 main.asm /link /SUBSYSTEM:CONSOLE /ENTRY:main
2. main
3. echo %errorlevel%

The first line calls in the ML64 assembler with the following file name and
options:

main.asm => Since only one file name is entered, main.asm is assumed
to contain the assembly source program. The object file generated will
be main.obj.
/link => If the assembly is good, then also call in the linker to make an
executable file which will be named main.exe. Note: “/link” must be
lower case, not /LINK.
/SUBSYSTEM:CONSOLE => A console program is to be created for
CMD mode execution. This is actually a command to the linker,
/ENTRY:main => The program will start with a procedure named
“main.” Note: This parameter is case sensitive (MAIN and Main do not
match the name main in the source code). This is also a command for
the linker.

Please see Appendix B for an explanation of additional assembler command
line options. The second command line (“main”) starts the main.exe program.
The “echo %errorlevel%” command line displays the exit status from
running the main.exe program.

C:\ASM64>ML64 main.asm /link /SUBSYSTEM:CONSOLE /ENTRY:main
Microsoft (R) Macro Assembler (x64) Version 14.11.25547.0
Copyright (C) Microsoft Corporation. All rights reserved.

Assembling: main.asm
Microsoft (R) Incremental Linker Version 14.11.25547.0

Copyright (C) Microsoft Corporation. All rights reserved.

/OUT:main.exe
main.obj
/SUBSYSTEM:CONSOLE
/ENTRY:main

C:\ASM64>main

C:\ASM64>echo %errorlevel%
78

C:\ASM64>

Listing 2.3: Windows CMD commands to compile, link, and execute

Listing 2.3 shows the CMD window display from entering the ML64, main,
and echo commands. Notice in particular that there is no output from
executing the main program, but the echo command does provide the value
“78” from the exit status value. Figure 2.7 illustrates the above by showing
three open windows: file explorer, CMD window, and Notepad.

Figure 2.7: Three windows open: File explorer, CMD, and Notepad

Addition and Subtraction

Let’s make the example a little more interesting by including some
computation. The following lines of code will be inserted into the main
program to include addition and subtraction. Each instruction has its first
operand being a 64-bit register, and the second operand is either an
immediate constant or another register. Only one output will still be
displayed (the exit status) by the echo command.

mov RCX, 1
add  RCX, 100
mov RDX, 10
sub  RCX, RDX

1. includelib kernel32.lib
2. ExitProcess proto
3. .code

4. main proc ; Program external name
5. mov RCX,1 ; Immediate load of register RCX
6. add RCX,100 ; Immediate add to contents of RCX
7. mov RDX,10 ; Register RDX loaded with decimal 10
8. sub RCX,RDX ; Subtract register RDX from RCX
9. call ExitProcess ; Return CPU control to Windows

10. main endp
11. end

Listing 2.4: A simple “calculation” of 1 + 100 - 10.

Go ahead and run the updated program. The “answer” output from the echo
command will be 91, of course. Try some other combinations to get
accustomed to the edit-compile-link-execute process. Note: The up arrow key
can be used in the command window to repeat previously entered commands
and thereby save a lot of key entry. Although we’re currently using the error
status variable to display an “answer” to some computation, it will normally
be set to zero (indicating no errors, consistent with conventions).

Figure 2.8: Errors found during assembly and linking

Try to introduce a few errors such as use MOVE as the opcode instead of
MOV. Also, see what happens when the name of the called function is
misspelled. Is the error caught by the assembler or the linker?
Source Code Download

This book contains over 30 program listings as examples of X86-64 coding. I
have made them available on the Internet so they can be easily downloaded
using the GitHub website. GitHub “is a code hosting platform for version
control and collaboration.” It is composed of multiple public and private
“repositories” holding text, image, and video files. Enter the following
command in your Internet browser to initiate the load of all the program
listings in this book.

https://github.com/robertdunne/X64_Asm

I recommend you download and unpack the source code files into the
C:\ASM\X64_Asm-master directory which I will be using in examples in the
remainder of this book. If you are already familiar with and have experience
with GitHub, then use a procedure with which you are most comfortable.

Otherwise, please perform the following steps at the GitHub site:

1. Click on the button labeled “Clone or download” which will bring up a
drop-down menu.

2. Select “Download Zip” from the drop-down menu which will download
one file to your normal downloads directory.

3. You may now exit GitHub or close your browser since you will no
longer need it.

From your downloads directory, perform the following to extract all the
source code into C:\ASM\X64_Asm-master:

1. Right click on the X64_Asm-master.zip file just downloaded.
2. Select “Extract All...” from the pull-down menu.
3. In the “Select Destination and Extract” screen, change the file name to

“C:\Asm64” or the different directory you chose for your work files.
4. Click on the “Extract” button.

The above procedure will generate all of the listing files as TXT files having
file names corresponding to the captions under each listing in this book. Each
will have to be copied to “main.asm” as needed. In addition, all GitHub
repositories should have a README.md file containing pertinent
information regarding the rest of the files. For example, the following
command prompt generates the main.asm file used in the first demonstration
in this chapter:

copy X64_Asm-master\Listing_2_1.txt main.asm

Warning: The assembler source code that appears in this book and is
available for download is for learning to program in assembly language.
Some of these programs are incomplete and even contain problems that are
used as examples. No guarantee of their commercial utility is expressed or
implied.

Review Questions

1. What is the difference between source code and object code?
2. Why is there a linker? That is, why don’t we go straight from source

code to the executable file and skip this “middle man”?
3. Why do you think assembler directives are many times referred to as

pseudo instructions?
4. An assembler is an example of a type of compiler. What makes an

assembler unique from other compilers?
5. * When updating a line of source code, should the comment on the line

be updated as well?

Programming Exercises

1. Modify Listing 2.1 by removing the first line (includelib). Then compile,
link, and execute as before. Where was the error caught? Where was it
missed?

2. Modify Listing 2.4 so that RCX has a negative number when
ExitProcess is called. What happens when you compile, link, and
execute?

3. Modify Listing 2.4 by removing the call to ExitProcess on line 9. What
happens? Where is the error caught?

— 3 —
Hello World

The “Hello World” program is the “classic” first program students write
while learning a new programming language. It simply displays “Hello
World” and exits. Chapter 3 will build upon the compile-link-execute
sequence for program development introduced in Chapter 2 to actually do
something: Read and write text to the command window using Windows API
function calls. The X64 Calling Convention and general purpose register use
will also be described.

Introductions

Each chapter of this book introduces some X86-64 instructions and/or
assembler directives that have not been demonstrated in previous chapters.

X86-64 instructions:

LEA: Load Effective Address: The 64-bit address of a byte in memory
is loaded into a general purpose register.

ML64 directives:

EQU: The EQU assigns a name to a constant. It not only provides “self
documentation,” but simplifies changing the constant’s value in the
future. Using the EQU is like calling your friends by name rather than
by their ID numbers.
LENGTHOF: This function calculates the length of a string at
“assembly time.”
.DATA: The .DATA directive marks the beginning of a section in
memory which typically contains variable data used while a program

runs. It is similar to the .CODE directive (introduced in Chapter 2)
which marks the beginning of a section containing X86-64 instructions.
Note: Both the .CODE and .DATA directives begin with a period.
BYTE: The BYTE directive initializes one or more 8-bit bytes in
memory. It can build a string of characters as well as a list of numbers
smaller than 256.
QWORD: Initializes one or more “quad words” of memory, each
composed of 8 bytes (64 bits).
DUP: This “assembly time” function duplicates BYTEs, QWORDs, and
other basic memory storage units.

Windows API Functions

We’ve already been using one Windows function, ExitProcess, to quit a
program. It is unique in that it does not return control to the instruction after
the function call. The new functions that we will be using perform their tasks
and then return control to the instruction following the function call.

One of the main responsibilities of an operating system, such as
Windows, is to provide an Application Programming Interface (API) for
programs. A large number of these functions involves reading and writing
peripheral devices (display monitor, keyboard, mouse, network, etc.) and disk
files (real spinning disks as well as solid-state memory devices). The calling
program must provide Windows with the details of the desired data transfer:

1. What is to be done
2. Which device is to written or read
3. Where the data is located
4. How much data is to be written or read

What is to be done is indicated by the name of the function that is called. In
this first example, the WriteConsoleA function is called to write a string of
ASCII characters to a command window. Like most current operating
systems, the 64-bit Windows functions receive most of the remaining details
of the desired data transfer in the CPU’s registers.

Figure 3.1: Register setup before Windows function call

The WriteConsoleA function displays ASCII characters. The ASCII character
code assigns a unique number to each letter, digit, and punctuation mark used
in English. Please see Appendix F for more details on ASCII, and see the
WriteConsoleW function for displaying Unicode (an extension to ASCII
supporting hundreds of languages).
General Purpose Registers

As pointed out in Chapter 1, CPUs contain between about five and one
hundred high-performance memory units called registers. The X86-64 CPU
has sixteen user-accessible general purpose registers that can be used in
computation as well as indexing memory locations. The first eight of these
registers are 64-bit extensions of eight registers from the orignal 16-bit Intel
8086. These are referenced in assembly language by their historic names of
RAX, RBX, RCX, RDX, RSI, RDI, RBP, and RSP. The remaining eight 64-

bit general purpose registers are referenced simply by R8 through R15.
In addition to being general purpose for computation and indexing, Table

3.1 shows many of these registers have a special purpose (either within
special CPU instructions or the Windows X64 Calling Convention).

Register Hardware Software: X64 Calling Convention

RAX Default accumulator Function return value, Volatile

RBX Index Nonvolatile

RCX Loop counter First integer argument, Volatile

RDX Second integer argument, Volatile

RSI Source index Nonvolatile

RDI Destination index Nonvolatile

RBP “Base” pointer Nonvolatile

RSP Stack pointer Nonvolatile

R8 Third integer argument, Volatile

R9 Fourth integer argument, Volatile

R10 Volatile

R11 Volatile

R12 Nonvolatile

R13 Nonvolatile

R14 Nonvolatile

R15 Nonvolatile

Table 3.1: X86-64 general purpose integer registers (some also have special purpose)

Notes regarding special use of registers:

Most of the special hardware features described above are carried
forward from 16-bit versions of the Intel 8086.
The above registers can be divided in half and quarter. Registers EAX,

AX, AL, and AH are all fractions of the 64-bit RAX register. These
fractions will be demonstrated in Chapter 7.
The assignment of registers for calling 64-bit Microsoft Windows
functions and C++ functions is rather different than what was used in
previous versions of Windows. The old 32-bit applications run in the 64-
bit versions of Windows (Windows 7 and 10) in an emulation mode
known as WOW (Windows On Windows). The 16-bit applications will
not even run on a modern Windows-based computer.

The X86-64 architecture contains additional registers used for parallel
processing of data and floating point operations. These are not needed in
elementary assembly language programs and will not be introduced until later
chapters.

X64 Calling Convention

Procedures, including Windows functions and C++ functions, are entered
simply by executing the “machine code” CALL instruction. However,
procedures need to be told what to do, and that is done using software calling
conventions. The parameters needed, such as which device to read and write
as well as how much data is to be transferred, is passed to the procedure in
“arguments.” In 32-bit Windows, there were several “standards” for passing
arguments, which really meant there was not a commonplace standard at all.

For 64-bit Windows, Microsoft uses the Application Binary Interface
(ABI) popular in other operating systems which is basically the same as its
own “fast call” standard in 32-bit Windows. There are basically three
requirements for meeting the X64 Calling Convention:

1. Location of arguments: The first four arguments are passed in registers
RCX, RDX, R8, R9, respectively. If more than four arguments, then
they will be pushed onto the stack. See Chapter 13 for floating point
arguments and arguments on the stack.

2. Volatile registers: The calling program assumes registers RAX, RCX,
RDX, and R8 through R11 are volatile (i.e., they will be modified and
not saved by the procedure). The contents of registers RBX, RSI, RDI,

RBP, RSP, and R12 through R15 are considered non-volatile (i.e., they
will have the same contents on return from the procedure as when the
procedure was called). Functions return values in RAX.

3. Shadow space: The called procedure assumes the stack contains room
for storing four 64-bit registers (32 bytes total). Also, it is assumed that
the RSP stack pointer will be aligned on a 128-bit (16 byte) address
boundary. Because the CALL instruction pushes its return address (8
bytes) onto the stack, a shadow space of 40 bytes is typically reserved
on the stack before each procedure call in order to meet both the storage
and alignment requirements.

Stack Pointer (RSP) Register

The RSP register points to the “top” of the stack, an area of memory where
temporary data may be stored. In the mid-1970s, computers, such as the DEC
PDP 11, implemented the concept of a stack using PUSH, POP, and CALL
machine code instructions. Characteristics of a stack:

A common metaphor of stack operation is the placing and getting of
cafeteria trays and plates. You place new trays on top and also remove
trays from the top. Who would try to take the tray on the very bottom or
from the middle of a stack?
Data is stored onto and retrieved from the stack in a LIFO (Last In, First
Out) manner. Stack usage is very easy: You “push” new data onto the
stack and “pop” the most recent data from the top of the stack. The
pushing and popping user does not have to know the details of where in
memory the stack is actually located and exactly how it works.
Pushing the contents of an X86-64 register onto the stack results in the
RSP register being decreased by 8. Most operating systems, including
Windows, fill their stacks from high memory addresses to lower
addresses.
The amount of memory allocated to the stack and the RSP pointer
contents are set up by Windows when it starts each program. It is
possible for a user program to “blow” the stack by pushing more data
onto it than it was allocated.

Figure 3.2: Stack “concept”

What do we mean by “pushing data on top
of the stack” or “popping data from the
top of the stack”?

Figure 3.2 illustrates pushing a value
onto a stack that already contains four
values. The size of each value can vary
among applications and CPU
architectures. In the X86-64, the PUSH
instruction not only stores 64-bits onto the
stack area of memory, but also updates the
RSP register. The POP instruction does
the reverse: It loads a 64-bit register from
data in memory and also updates the RSP.

Parameters and Arguments

Windows functions have a list of parameters (i.e., variables) that dictate what
is to be done. This parameter data is passed to the Windows function in what
is commonly referred to as arguments. For example, “parameter 1” is passed
to the function in “argument 1,” which in the X64 Calling Convention is
located in register RCX. Arguments are generally of two types:

1. Pass by value: The argument is contained in the register or stack.
2. Pass by reference: The argument is in memory and is pointed to by an

address in a register or on the stack.

Hello World Example

The main.asm program will now be upgraded to display “Hello World" in the

command window. The source code file, as shown in Listing 3.1, can be
downloaded from GitHub or simply be updated from the last main.asm
source file in Chapter 2. The following lines support new features:

Lines 2 and 3: Two new Windows functions will be called:
GetStdHandle opens a device or file, while WriteConsoleA will write
ASCII text data to it.
Line 4: A “handle” will be attached to each device or file that is read or
written by the program. The device code value of -11 selects the CMD
window output display.
Line 10: Meets specification of the X64 Calling Convention for shadow
memory. Note that space is reserved by decreasing the stack pointer.
Before this main program exits, it will have to remove the reserved
space (see line 26).
Lines 12 through 16: The GetStdHandle function is called with one
argument (device code in RCX) and returns a file handle in register
RAX, which is then saved in memory. The file handle will be needed
when calling WriteConsoleA to write to the CMD window.
Lines 18 through 24: Only 4 arguments are needed, so they are all
loaded into the registers: two passed by value using the MOV instruction
and two passed by reference using the LEA instruction. After
performing the service, Windows returns the number of bytes
transferred to the calling program in a quad word (64-bits) in memory
pointed to by register R9.
Line 26: The shadow space on the stack is removed.
Line 32: The .data directive tells the assembler that the following lines
of text should be grouped in a portion of memory along with other
variable data.
Line 33: The label “msg” is the name by which the address of a string of
ASCII letters in memory containing “Hello World” can be referenced.
Lines 34 and 35: From an X86-64 perspective, a byte is 8-bits, a word is
16-bits, a double word is 32-bits, and a quad word is 64-bits. Labels
stdout and nbwr refer to the addresses of data storage for 64-bit values.
The question marks indicate that no initial values are expected to be
loaded into memory for these data.

1. includelib kernel32.lib ; Windows kernel interface.
2. GetStdHandle proto ; Function to retrieve I/O handle
3. WriteConsoleA proto ; Function writes to command window
4. Console equ -11 ; Device code for console text output.

5. ExitProcess proto
6.
7. .code
8. main proc
9.

10. sub RSP,40 ; Reserve "shadow space" on stack.
11.
12. ; Obtain "handle" for console display monitor I/O streams
13.
14. mov RCX,Console ; Console standard output handle
15. call GetStdHandle ; Returns handle in register RAX
16. mov stdout,RAX ; Save handle for text display.
17.
18. ; Display the "Hello World" message.
19.
20. mov RCX,stdout ; Handle to standard output device
21. lea RDX,msg ; Pointer to message (byte array).
22. mov R8,lengthof msg ; Number of characters to display
23. lea R9,nbwr ; Number of bytes actually written.
24. call WriteConsoleA ; Write text to command window.
25.
26. add RSP,40 ; Replace "shadow space" on stack
27. mov RCX,0 ; Set exit status code to zero.
28. call ExitProcess ; Return control to Windows.
29.
30. main endp
31.
32. .data
33. msg byte "Hello World"
34. stdout qword ? ; Handle to standard output device
35. nbwr qword ? ; Number of bytes actually written
36.
37. end

Listing 3.1: Program to display “Hello World” in the command console.

Listing 3.2 shows the compile-link-execute of the Hello World program. The

first line sets the path to the directory containing the assembler and linker
(see Chapter 2). The second line assumes the source code was downloaded
from GitHub as demonstrated in Chapter 2. I will no longer be using the echo
command to display answers since we will now be outputting with
WriteConsoleA.

C:\ASM64> PATH C:\######\Hostx64\x64;%PATH%
C:\ASM64> COPY X64_Asm-master\Listing_3_1.txt main.asm
1 file(s) copied.
C:\ASM64> ML64 main.asm /link /SUBSYSTEM:CONSOLE /ENTRY:main
Microsoft (R) Macro Assembler (x64) Version 14.11.25547.0
Copyright (C) Microsoft Corporation. All rights reserved.

Assembling: main.asm
Microsoft (R) Incremental Linker Version 14.11.25547.0
Copyright (C) Microsoft Corporation. All rights reserved.

/OUT:main.exe
main.obj
/SUBSYSTEM:CONSOLE
/ENTRY:main

C:\ASM64>main
Hello World
C:\ASM64>

Listing 3.2: Command lines to build and execute “Hello World” program

Read and Write

The main.asm program will now be upgraded to both read and write text data.
ReadConsoleA is a Windows function that reads from the keyboard, disk
files, and I/O devices. The following register contents will be set before the
ReadConsoleA function is called to read from the keyboard:

1. RCX: Value of “handle” for keyboard input
2. RDX: Reference points to memory buffer to be filled from keyboard
3. R8: Value of the maximum number of bytes to be read.

4. R9: Reference points to a 64-bit memory location to receive number of
bytes actually read.

In the next program listing, new features are on the following lines:

Line 4: A new Windows functions will be called: ReadConsoleA will
read ASCII text data from keyboard or other device/file.
Line 6: A “handle” will be attached to each device or file that is read or
written by program. The device code value of -10 selects the CMD
window keyboard input.
Lines 18 through 25: The GetStdHandle function is called twice: Once
to get a handle for console display output and next to get a handle for
keyboard input. There is one argument (device code in RCX) and the
function returns a file handle in register RAX, which is then saved in
memory. The file handles will be needed when calling ReadConsoleA
and WriteConsoleA.
Lines 27 through 33: This is the same as the previous “Hello World”
output except the message is now “Please enter text message.”

1. includelib kernel32.lib ; Windows kernel interface.
2. GetStdHandle proto ; Function to retrieve I/O handles
3. WriteConsoleA proto ; Function writes to command window
4. ReadConsoleA proto ; Function reads keyboard buffer
5. Console equ -11 ; Device code for console text output
6. Keyboard equ -10 ; Device code for console text input
7. ExitProcess proto
8.
9. .code

10.
11. ; Main program that reads text message from user through command
12. ; window keyin and displays it in same command window.
13.
14. main proc
15.
16. sub RSP,40 ; Reserve "shadow space" on stack.
17.
18. ; Obtain "handles" for console I/O streams
19.

20. mov RCX,Console ; Console standard output handle
21. call GetStdHandle ; Returns handle in register RAX
22. mov stdout,RAX ; Save handle of console display.
23. mov RCX,Keyboard ; Console standard input handle

24. call GetStdHandle ; Returns handle in register RAX
25. mov stdin,RAX ; Save handle for keyboard input.
26.
27. ; Display the prompt message.
28.
29. mov RCX,stdout ; Handle to standard output device
30. lea RDX,pmsg ; Pointer to prompt message
31. mov R8,lengthof msg ; Number of characters to display
32. lea R9,nbwr ; Number of bytes actually written.
33. call WriteConsoleA ; Write text string to command box.
34.
35. ; Read input line from user keyboard.
36.
37. mov RCX,stdin ; Handle to standard input device
38. mov R8,20 ; Maximum length to receive
39. lea RDX,keymsg ; Memory address to receive input
40. lea R9,nbrd ; Number of bytes actually read.
41. call ReadConsoleA ; Read text string from command box.
42.
43. ; Echo the message input back to the user.
44.
45. mov RCX,stdout ; Handle to standard output device
46. lea RDX,keymsg ; Pointer to message that was input
47. mov R8,nbrd ; Length (bytes) of input message
48. lea R9,nbwr ; Number of bytes actually written.
49. call WriteConsoleA ; Write text string to command box.
50.
51. add RSP,40 ; Replace "shadow space" on stack
52. mov RCX,0 ; Set exit status code to zero.
53. call ExitProcess ; Return control to Windows.
54.
55. main endp
56.
57. .data
58. pmsg byte "Please enter text message: "
59. keymsg byte 20 DUP (?) ; Memory buffer for keyboard input
60. stdout qword ? ; Handle to standard output device
61. nbwr qword ? ; Number of bytes actually written
62. stdin qword ? ; Handle to standard input device

63. nbrd qword ? ; Number of bytes actually read
64.
65. end

Listing 3.3: Program that echos keyboard input to a command console window

Lines 35 through 41: The ReadConsoleA function is called to place
keyboard input into memory buffer keymsg. The quad word in memory,
pointed to by register R9, will be returned with the number of characters
entered (including carriage return and line feed).
Lines 43 through 49: The message just input will now be displayed in a
manner similar to the prompt.

Listing 3.4 shows the compile-link-execute of the Read and Write program.
As in the previous example, the first line sets the path to the directory
containing the assembler and linker, while the second line assumes the source
code was downloaded from GitHub. It is then assembled and linked as
before. When this new program runs, it waits for user input, which it then
echoes back to the console display and exits.

C:\ASM64> path C:\######\Hostx64\x64;%PATH%
C:\ASM64> copy X64_Asm-master\Listing_3_3.txt main.asm
1 file(s) copied.
C:\ASM64> ml64 main.asm /link /SUBSYSTEM:CONSOLE /ENTRY:main
Microsoft (R) Macro Assembler (x64) Version 14.11.25547.0
Copyright (C) Microsoft Corporation. All rights reserved.

Assembling: main.asm
Microsoft (R) Incremental Linker Version 14.11.25547.0
Copyright (C) Microsoft Corporation. All rights reserved.

/OUT:main.exe
main.obj
/SUBSYSTEM:CONSOLE
/ENTRY:main

C:\ASM64>main
Please enter text message: Short echo test
Short echo test

C:\ASM64>

Listing 3.4: Console program to read and write one text line

The last few lines in Listing 3.4 show the program execution where the text
string “Short echo test” is keyed in followed by the “enter key.” Try other
messages, especially one that is longer than 20 characters. See the Review
Questions and Programming Exercises section for some more ideas to test
this program.

Unicode

ASCII is a 7-bit code containing a total of 128 letters, digits, punctuation
marks, and control characters. Unicode is a super set of ASCII (the first 128
characters are the same) supporting many languages from around the world.
The first 65,536 characters of Unicode are stored in memory as 16-bit words
and displayed with the WriteConsoleW function call. The following changes
are necessary to run the above “Hello World” program with Unicode (see
Programming Exercise 1 for details and example).

1. Change WriteConsoleA to WriteConsoleW
2. Change the byte directive to word directive (8-bits to 16-bits)
3. Message must be entered as individual letters rather than a single string.

Non-ASCII characters can be looked up in Unicode tables on the
Internet and entered as hexadecimal.

Review Questions

1. What are two important resources provided by an operating system such
as Windows?

2. What type of argument (pass by value or pass by reference) enables
Windows functions to return values to a calling program?

3. * In the C language, a “function” is an extension of a “procedure” that
allows the return of a single value associated with the function, such as

Y = SQRT(X). Where do you think the return value is located within the
X64 Calling Convention?

4. Why must a string of ten ASCII characters be passed by reference and
not by value?

5. What happens when more than the maximum number of characters is
entered (value of 20 on line 38 of Listing 3.3)? Try it.

6. What happens when the size of the buffer is smaller than the maximum
size passed to ReadConsoleA (Listing 3.3 having a value on line 38
being greater than the value on line 59)? What then happens when the
number of characters entered is greater than the buffer size? How could
the “lengthof” directive be used to eliminate this problem?

7. * The 40 bytes of shadow space meet the requirements for alignment
and room to store four 64-bit registers. What else is assumed to make
this value of 40 work (the alignment requirement in particular)?

Programming Exercises

1. Modify Listing 3.1 to output in Unicode: Change lines 3 and 24 to
WriteConsoleW. Change the directive on line 33 from byte to word, and
change "Hello World" to "H", "e", "l", "l", "o", " ", "W", "o", "r", "l", "d"
where each letter will now use 16-bits. Then compile, link, and execute
as before. This example shows that the first 128 characters of Unicode
are the same as 7-bit ASCII. Now substitute in some other Unicode
characters such as a Greek lambda (hexadecimal code 3bb entered as
03bbh) instead of the "l" in Hello. Try some other Unicode character
codes for some variety.

2. Change the repeat count on line 59 of Listing 3.3 from 20 to 2.
Recompile, link, execute, and enter “World” in response to the prompt.
What happened? Register RAX has a completion status of the last call to
WriteConsoleA. Use a “MOV RCX,RAX” before the call to ExitProcess
so that this value can be examined using the echo command. Change the
repeat count back to 20, and check the status again.

— 4 —
Loops and Branches

Having versatility while performing repetitive tasks characterizes much of
computer software applications. Chapter 4 introduces instructions and special
registers that make the use of “loops” and conditional “branches” perform
repetitive tasks effectively.

Introductions

The Compare (CMP) and Jump if Greater (GT) instructions are introduced to
control program flow. They use the RFLAGS and RIP registers to control the
flow of computer programs. Several other conditional jumps and moves will
also be described with some examples in the Programming Exercises.

CMP: Compare: The contents of a 64-bit register are compared to an
immediate integer value, contents of another register, or contents of a
memory location. This is basically a subtraction instruction where the
answer is not stored anywhere.
JG: Jump if Greater: Program flow normally proceeds from one
instruction to the next one immediately after it in memory. However,
“jump” instructions provide a means to go to another part of the
program. Instructions such as JG only jump to a new program location if
various conditions are met. JG requires a previous arithmetic instruction,
such as subtract or compare, to have a non-negative result.
INC: Increment by 1: The value in a register is incremented by 1. This is
basically an addition instruction, but it executes slightly faster, and it
will also set the status flags.
DEC: Decrement by 1: The value in a register is decremented by 1. This
is basically a subtraction instruction, but it executes slightly faster, and it
will also set the status flags.

Program Loops

Computers are great for doing repetitive operations. A loop is a “process”
that can be performed multiple times until a “decision” is made to move onto
something else. Examples of processes and decisions:

Process: Eating one mouthful of food at lunch
Decision: Is there any more food on my plate?

Process: Grading one student’s exam
Decision: Are there any more exams to grade?

Process: Display one bit (“0” or “1”) on the monitor
Decision: Are there any more bits remaining to display?

Figure 4.1: Program loop

A loop consists of three parts:

1. Preparation: Set initial values for a)
variables to be modified during each
pass of the loop and b) variables, like
counters, that will determine when to
exit the loop.

2. A process to be repeated multiple
times: Examples include adding
numbers to a running total, searching
a table for a particular value, and
calling the same set of subroutines
multiple times.

3. Decision when to exit the loop: Some
loops such as those used in a medical
device performing real-time life-
support are not intended to stop.
However, most loops do have an exit
objective such as all of the desired set
of numbers have been added, the
entire table has been searched, the
desired value has been located, etc.

The main program from Chapter 3 will now be modified to repeatedly echo
lines of input text until an empty line is entered. If only the “enter” key is
entered, the number of bytes transfered will be two: carriage return and line
feed. Listing 4.1 contains the following modifications to Listing 3.3 from
Chapter 3:

Line 7: MaxBuf is an assembly-time equate to set the maximum
keyboard buffer size. It will be used in both the call to ReadConsoleA
(line 41) and the memory space allocation (line 68).
Lines 14,15: Comments are expanded to explain what the program is
doing.

Line 32: Label “nxtlin” is added to mark the top of the loop where the
prompt message is displayed. Notice: There is a colon after labels on the
instructions.

1. includelib kernel32.lib ; Windows kernel interface.
2. GetStdHandle proto ; Function to retrieve I/O handles
3. WriteConsoleA proto ; Function writes to CMD window
4. ReadConsoleA proto ; Function reads CMD window
5. Console equ -11 ; Device code for console text output
6. Keyboard equ -10 ; Device code for console text input
7. MaxBuf equ 20 ; Maximum input buffer size
8. ExitProcess proto
9.

10. .code
11.
12. ; Main program that reads text message from user through command
13. ; window keyin and displays it in same command window.
14. ; 1. Multiple lines input until only "Enter" key pushed.
15. ; 2. Each line will be echoed on a separate line in display.
16.
17. main proc
18.
19. sub RSP,40 ; Reserve "shadow space" on stack.
20.
21. ; Obtain "handles" for console I/O streams
22.
23. mov RCX,Console ; Console standard output handle
24. call GetStdHandle ; Returns handle in register RAX
25. mov stdout,RAX ; Save handle of console display.
26. mov RCX,Keyboard ; Console standard input handle
27. call GetStdHandle ; Returns handle in register RAX
28. mov stdin,RAX ; Save handle for keyboard input.
29.
30. ; Display the prompt message.
31.
32. nxtlin: mov RCX,stdout ; Handle to standard output device
33. lea RDX,msg ; Pointer to prompt message
34. mov R8,lengthof msg ; Number of characters to display
35. lea R9,nbwr ; Number of bytes actually written.
36. call WriteConsoleA ; Write text string to command box.
37.

38. ; Read input line from user keyboard.
39.
40. mov RCX,stdin ; Handle to standard input device
41. mov R8,MaxBuf ; Maximum length to receive
42. lea RDX,keymsg ; Memory address to receive input
43. lea R9,nbrd ; Number of bytes actually read.
44. call ReadConsoleA ; Read text string from command box.
45.
46. ; Echo the message input back to the user.
47.
48. mov RCX,stdout ; Handle to standard output device
49. lea RDX,keymsg ; Pointer to message that was input
50. mov R8,nbrd ; Length (bytes) of input message
51. lea R9,nbwr ; Number of bytes actually written.
52. call WriteConsoleA ; Write text string to command box.
53.
54. ; Go get another line, but exit if only "Enter" key was input.
55.
56. mov R8,nbrd ; Length (bytes) of input message
57. cmp R8,2 ; Test if only CR and LF characters.
58. jg nxtlin ; Loop back around for next input.
59.
60. add RSP,40 ; Replace "shadow space" on stack
61. mov RCX,0 ; Set exit status code to zero.
62. call ExitProcess ; Return control to Windows.
63.
64. main endp
65.
66. .data
67. msg byte "Please enter text message: "
68. keymsg byte MaxBuf DUP (?) ; Memory buffer for keyboard input
69. stdout qword ? ; Handle to standard output device
70. nbwr qword ? ; Number of bytes actually written
71. stdin qword ? ; Handle to standard input device
72. nbrd qword ? ; Number of bytes actually read
73.
74. end

Listing 4.1: Program echoes lines of input text until empty line received.

Lines 54 through 58: Bottom of the loop: Here the number of bytes

received from ReadConsoleA is compared to the immediate value of 2.
If the count is greater than 2, then jump back to the instruction at label
nxtlin.

C:\ASM64>main
Please enter text message: Short echo test
Short echo test
Please enter text message: Another line 12345
Another line 12345
Please enter text message:

C:\ASM64>

Listing 4.2: Loop of multiple input text lines echoed

The program in Listing 4.1 may also be obtained through the GitHub copy as
was done in Listing 3.4. The compile and link steps are exactly the same as in
previous chapters, so they will no longer be shown unless changes are
needed.

Listing 4.2 shows the running of the new program with two lines of text
being entered from the keyboard and echoed. The third input line is only the
“enter” key, thereby forcing the program to exit.

Nested Loops

Let’s modify the program again to make it a bit more interesting. This time,
we will display each character on a separate line.

Figure 4.2: Nested loops

A very common programming technique
is one loop nested within another. Each
loop will have its own exit condition.

The outer loop will be similar to the
previous example: The user will be
prompted for an input which will
then be echoed back to the user on
the display monitor.
The inner loop adds the new feature
in this example where each character
will be on its own line. The inner
loop will have register R12 initialized
to point to the first character in the
buffer, and also have register R13
initialized to the number of
characters input.

Although nested loops are a powerful
technique, it’s very easy to write large
nested loops with confusing code where
one loop’s data and counters interfere with
that of the other.

The first 45 lines of the program will remain the same, so to save space and
focus on the loops, Listing 4.3 will begin on line 29 at the top of the outer
loop. The only alteration needed to the program is to convert the echo of the
input line to be split among several individual output lines. Here’s a hint
where I’m heading with this: Each of these lines will eventually contain not
only the single ASCII character, but its binary, hexadecimal, and decimal
representation as well.

The following lines are of interest in Listing 4.3:

Lines 30 through 70: Outer loop that prompts for keyboard input and
echoes it one character per line until an empty line is entered.

Lines 46 through 64: Inner loop that echoes the input text line, one
character at a time, followed by a carriage return and line feed.
Lines 51 through 55: Display one character of text line that was input.
Lines 57 through 61: Display end of line characters.
Line 62: Increment memory buffer pointer to next character (same as
ADD R12,1).
Line 63: Decrement number of characters to be displayed. This
instruction also sets the flags needed for the JG instructions that follows
on line 64.
Line 81: A string of carriage return (hex 0D) and line feed (hex 0A)
ASCII control characters.

29.
30. ; Display the prompt message.
31.
32. nxtlin: mov RCX,stdout ; Handle to standard output device
33. lea RDX,msg ; Pointer to prompt message
34. mov R8,lengthof msg ; Number of characters to display
35. lea R9,nbwr ; Number of bytes actually written.
36. call WriteConsoleA ; Write text string to command box.
37.
38. ; Read input line from user keyboard.
39.
40. mov RCX,stdin ; Handle to standard input device
41. mov R8,MaxBuf ; Maximum length to receive
42. lea RDX,keymsg ; Memory address to receive input
43. lea R9,nbrd ; Number of bytes actually read.
44. call ReadConsoleA ; Read text entered from keyboard.
45.
46. ; Echo line just input back to the user one character at a time.
47.

48. lea R12,keymsg ; Memory buffer containing input
49. mov R13,nbrd ; Number of characters actually read
50.
51. inloop: mov RCX,stdout ; Handle to standard output device
52. mov RDX,R12 ; Point to next character to display
53. mov R8,1 ; Only display 1 character.
54. lea R9,nbwr ; Number of bytes actually written.
55. call WriteConsoleA ; Write text string to command box.

56.
57. mov RCX,stdout ; Handle to standard output device
58. lea RDX,newln ; Point buffer containing CR and LF.
59. mov R8,2 ; Length of CR/LF buffer.
60. lea R9,nbwr ; Number of bytes actually written.
61. call WriteConsoleA ; Write text string to command box.
62. inc R12 ; Set pointer to next character.
63. dec R13 ; Decrement remaining byte count.
64. jg inloop ; Loop until message complete.
65.
66. ; Go get another line, but exit if only "Enter" key was input.
67.
68. mov R8,nbrd ; Length (bytes) of input message
69. cmp R8,2 ; Test if only CR and LF characters.
70. jg nxtlin ; Loop back for another input.
71.
72. add RSP,40 ; Replace "shadow space" on stack
73. mov RCX,0 ; Set exit status code to zero.
74. call ExitProcess ; Return control to Windows.
75.
76. main endp
77.
78. .data
79. msg byte "Please enter text message: "
80. keymsg byte MaxBuf DUP (?) ; Memory buffer for keyboard input
81. newln byte 0DH,0AH ; Carriage return and line feed
82. stdout qword ? ; Handle to standard output device
83. nbwr qword ? ; Number of bytes actually written
84. stdin qword ? ; Handle to standard input device
85. nbrd qword ? ; Number of bytes actually read
86.
87. end

Listing 4.3: Program to echo each character on its own line.

Why did I use registers R12 and R13 to hold the buffer pointer and remaining
byte count? Why not use R10 and R11, for example? As described in Chapter
3, the Windows functions abide by the X64 Calling Convention. The contents
of registers R12 and R13 are guaranteed to be preserved (i.e, non-volatile) by
the call to WriteConsoleA, while the contents of volatile registers, such as
R10 and R11, are not.

Go ahead and compile, link, and execute the program in Listing 4.3 as
you did in the previous examples. Your output will be similar to that
appearing next in Listing 4.4.

C:\ASM64>main
Please enter text message: First line
F
i
r
s
t

l
i
n
e

Please enter text message: Last
L
a
s
t

Please enter text message:

C:\ASM64>

Listing 4.4: Echo each character on its own line.

RIP and RFLAGS Registers

We have been working with the general purpose registers, all of which can be
modified using the move and arithmetic instructions, but there are two special
purpose registers that we have been using indirectly. The RIP Instruction
Pointer provides the memory location of the next instruction to be executed.
In the X86-64 architecture, the RIP is automatically incremented as each
instruction is executed. Jump, call, and return instructions change the value in

the RIP register.
Historically, about half the CPU architectures refer to their instruction

pointers as IP registers, while half refer to them as PC (Program Counter)
registers. Some architectures even allow “move” instructions to alter the PC
or IP, but even if they do, I highly recommend not doing so.

Nearly every CPU ever designed has a Processor State Register which
provides information regarding previous instructions that were executed (as
well as other status info):

1. Was the previous result zero?
2. Was the previous result positive or negative?
3. Did the previous result fit within the register size?
4. Did the instruction end in error (like the sum of two positive numbers

resulting in a negative number)?

In the X86-64 architecture, there are many status flag bits, and they primarily
reside in the RFLAGS register. Table 4.1 contains the status flag bits that are
used by jump instructions and are set by arithmetic, logic, and compare
instructions. The actual locations of these bits are not important at this point
because the jump instructions know where they are, and software generally
should not be setting them directly.

Z Zero: Result was zero (i.e., bits 63..0 = 0)
S Sign: Result was negative (same as high order bit, i.e., bit 63 = 1)
C Carry: Result is a value that exceeded 64 bit register.
O Overflow: Result overflowed into sign bit.
P Parity: Lower 8 bits of result has even parity (count of 1-bits).

Table 4.1: Status flag bits used by jump instructions

Both “carry” and “overflow” indicate possible problems in the high order bits
(left side) of a binary number. For example, if we had a 4-bit register, and I
added binary 1000 to 1000, I would get 10000 which obviously does not fit
because it requires five bits. This situation is referred to as carry.

If in the same 4-bit register, I added 0100 to 0100, I would get 1000,
which fits, but might indicate a problem. If I consider my numbers to be

unsigned, I have decimal 4 plus 4 equals 8, but if I consider my numbers to
be signed, I then have 4 plus 4 equals negative 8, which is definitely wrong.
The CPU will set the overflow flag, and it does not care or even know
whether I am using unsigned or signed numbers. It is up to the software to
decide if the overflow is an error or not. Please see Appendix G for more
details if you like.

Jump Instructions

In Listing 4.1 and 4.3, I only used the JG (Jump if Greater) jump instruction.
However, the X86 architecture supports a wide variety of jump instructions
based on the current values of various flags. There is also an unconditional
jump (JMP) which says change the RIP to the new value irregardless of any
of the flags.

JMP: Jump (no conditions needed)

The jumps in the following list depend on whether a single flag is set
(value=1) or not set (i.e., clear, value=0).

JZ, JE: Jump if Zero, Jump if Equal
JNZ, JNE: Jump if Not Zero, Jump if Not Equal
JS: Jump on Sign
JNS: Jump on Not Sign
JC: Jump on Carry
JNC: Jump on Not Carry
JO: Jump on Overflow
JNO: Jump on Not Overflow
JP, JPE: Jump on Parity, Jump if Parity Even
JNP, JPO: Jump if Not Parity, Jump if Parity Odd

The assembler produces exactly the same machine code whether JZ (Jump if
Zero) or JE (Jump if Equal) is used. This flexibility enables the programmer
to “self document” what is being done. It doesn’t replace a good comment,
but it does enhance it. For example, if I wrote a program that compared R12

to the value 137, and R12 did contain 137, then the Z-flag would have been
set. However, the Z-flag could also have been set if I subtracted down to
zero. In the first case JE or JNE would be more appropriate, and in the latter
case, JZ or JNZ would be best.

Except in unusually cases, I only use the JMP, JZ, JE, JNZ, and JNE in
the above list. The jump on parity was a more popular instruction decades
ago, when the CPU software might be performing data communications error
checking. The other jumps using the carry and sign flags are better described
in the following list. Note: CF=1 implies the carry flag is set, OF=1 implies
the overflow flag is set, and ZF=1 implies the zero flag is set.

JA, JNBE: Jump if Above, Jump if Not Below or Equal
(CF = 0 AND ZF = 0)
JAE, JNB: Jump if Above or Equal, Jump if Not Below
(CF = 0)
JB, JNAE: Jump if Below, Jump if Not Above or Equal
(CF = 1)
JBE, JNA: Jump if Below or Equal, Jump if Not Above
(CF = 1 OR ZF = 1)
JG, JNLE: Jump if Greater, Jump if Not Less or Equal
(SF = OF AND ZF = 0)
JGE, JNL: Jump if Greater or Equal, Jump if Not Less
(SF = OF)
JL, JNGE: Jump if Less, Jump if Not Greater or Equal
(SF != OF; i.e., Sign Flag not equal to Overflow Flag)
JLE, JNG: Jump if Less or Equal, Jump if Not Greater
(SF != OF OR ZF = 1)

Some new programmers are confused by the difference between JA (Jump
Above) and JG (Jump Greater). The flags show the exact difference, but
generally JA is used for unsigned numbers, and JG works with signed
numbers. Actually, the CPU has no idea if the program is working with
signed or unsigned integers. That’s one of the main benefits of using one’s
complement or two’s complement hardware to represent numbers instead of
the sign and magnitude approach. Please see Appendix G and Chapter 7 for
more details on binary representation for a further explanation.

Conditional Move

Conditional move instructions were added to the X86 instruction set as it
evolved from the original 8086 to today’s X86-64. Basically, there exists a
conditional move instruction corresponding to each of the conditions in the
jump instructions. For example: JZ => CMOVZ, JNZ => CMOVNZ, down
through JLE => CMOVLE. Using these conditional moves whenever
possible has a twofold advantage over an equivalent “jump-over” technique:
The code is easier to read for us humans, and it executes faster (two reasons
for speed improvement, see Review Question 6).

Table 4.2 shows a conditional move instruction on the left and the “jump-
over” technique it replaces on the right.

CMP AX,10 CMP AX,10
CMOVG AX,10 JLE overIt

MOV AX,10

Table 4.2: Compare conditional move to “jump over”

LOOP and JCXZ

The X86-64 instruction set actually contains an instruction named LOOP
which was designed for implementing loops. Why didn’t I use that one
instruction instead of the two instructions: CMP and JG? See Review
Question 7 for the best answer, but a subtle answer is that the LOOP
instruction was designed to improve the performance of 8086 processors, and
in many situations in today’s CPUs, it will actually run a little slower than the
two instructions I used. I do, however, like the self documentation that comes
from the name “loop.”

There are also a few instructions such as JCXZ which jump based on
whether the current contents of the CX “count” register are zero (i.e., doesn’t
examine the flags). The JECXZ and JRCXZ are the corresponding 32-bit and
64-bit extensions which jump if register ECX is zero or register RCX is zero,
respectively.

Review Questions

1. Why are loops important in a computer program?
2. What’s an infinite loop? How does one happen? Why would we

intentionally create an infinite loop?
3. How can the addition of two positive numbers result in a negative

number? Which status bit would be set indicating this error occurred?
4. The X86 architecture has a TEST instruction which is basically a logical

AND that does not store its result. Provide an example when a TEST
instruction would be used instead of a CMP compare instruction?

5. The CALL and RET instructions are actually unconditional jump
instructions. How are they different from JMP? How can a CALL be
replaced by a JMP instruction?

6. The conditional move instructions save instruction execution time by
using one instruction rather than two, but they can also improve pipe-
lining performance. From a quick Internet search, why do you think
jump instructions flush the pipeline and conditional move instructions
do not?

7. * On lines 63 and 64 of Listing 4.3, a DEC followed by a JG was used to
continue the loop. Why wasn’t a LOOP instruction used instead?

Programming Exercises

1. The inner loop in Listing 4.3 is terminated when R13 counts down to
zero on lines 63 and 64. Instead, terminate the loop when R12 points to
the last character input (a line feed character). There may, of course, be a
problem if no line feed character is present, so it’s a good thing a
carriage return and line feed immediately follow the input buffer in the
data area.

— 5 —
Macros and Subroutines

One of the principal hallmarks of the industrial revolution was the use of
interchangeable parts in the manufacturing process. In a similar manner,
subroutines, macros, and operating system Application Programming
Interfaces (API) are building blocks for developing large sophisticated
software applications. These three building blocks are predefined program
segments that can be used over and over again by calling them from the
application program.

API Function: A section of operating system code that is called
(“jumped to”) to perform a common task for all user programs.
Subroutine: A section of user-written code that is called to perform a
common task within a user program.
Macro: A section of user-written code that is essentially “copied and
pasted” into multiple locations within the program source code.

Introductions

We’re only performing structural changes in Chapter 5, so only a few new
directives and one new instruction appear in the code.

X86-64 instructions:

RET: Return: Subroutines are entered by a CALL instruction which
pushes a “return address” onto the stack just like the Windows functions
have been entered. The RET instruction effectively pops the return
address from the stack into the RIP register, thereby returning to the
instruction after the call.

ML64 directives:

MACRO: The MACRO directive marks the beginning, provides a name,
and identifies parameters for a macro.
ENDM: The end of a macro is indicated by ENDM.
OFFSET: Get address of data variable.

Macros

A macro is similar to “copy and paste.” A macro is a series of assembly
language instructions and directives that is given a name. Whenever that
name appears later in the program source code in the opcode column, the
series of instructions and directives is substituted. Macros not only enable
quicker initial program development, but also provide better documentation
and maintenance. Some flexibility is provided by giving the macro a list of
parameters that can be changed whenever the macro is called.

The final version of the main program in Chapter 4 calls the
WriteConsoleA function in three places to output text strings to the command
window. All three use five lines of code to provide the arguments in registers
RCX, RDX, R8, and R9. The first and last calls are identical, except for the
label of the string being displayed. The “msgOut” macro will be built to
produce five lines of assembler code from one text line. It will have one
parameter: the address (label) of the message to be displayed.

Figure 5.1: Macro expansion example that generates 5 lines of code.

The program in Listing 4.3 is now modified to include the “msgOut” macro
and two places where the macro is called. Listing 5.1 shows the entire new
main.asm program.

Lines 10 through 19: Macro msgOut is defined. Notice that it has only
one parameter, msg, that will be substituted when the macro is called.
Line 43: Macro is called to display text beginning at label pmsg.
Line 63: Macro is called to display text beginning at label newln.

1. includelib kernel32.lib ; Windows kernel interface.
2. GetStdHandle proto ; Function to retrieve I/O handle
3. WriteConsoleA proto ; Function writes to command window

4. ReadConsoleA proto ; Function reads from keyboard
5. Console equ -11 ; Device code for console text output
6. Keyboard equ -10 ; Device code for console text input
7. MaxBuf equ 20 ; Maximum input buffer size
8. ExitProcess proto
9.

10. ; Macro "msgOut msg" displays a character string.
11. ; msg: Label of ASCII message for command window.
12.
13. msgOut macro msg ; One argument: msg
14. mov RCX,stdout ; Handle to standard output device
15. lea RDX,msg ; Pointer to message to display
16. mov R8,lengthof msg ; Number of characters to display
17. lea R9,nbwr ; Number of bytes actually written.
18. call WriteConsoleA ; Write text to command window.
19. endm
20.
21. .code
22.
23. ; Main program that reads text message from user through command
24. ; window keyin and displays it in same command window.
25. ; 1. Multiple lines input until only "Enter" key pushed.
26. ; 2. Each character input is echoed on a separate line.
27.
28. main proc
29.
30. sub RSP,40 ; Reserve "shadow space" on stack.

31.
32. ; Obtain "handles" for console I/O streams
33.
34. mov RCX,Console ; Console standard output handle
35. call GetStdHandle ; Returns handle in register RAX
36. mov stdout,RAX ; Save handle of console display.
37. mov RCX,Keyboard ; Console standard input handle
38. call GetStdHandle ; Returns handle in register RAX
39. mov stdin,RAX ; Save handle for keyboard input.
40.
41. ; Display the prompt message.
42.
43. nxtlin: msgOut pmsg ; Write text string to command box.
44.
45. ; Read input line from user keyboard.

46.
47. mov RCX,stdin ; Handle to standard input device
48. mov R8,MaxBuf ; Maximum length to receive
49. lea RDX,keymsg ; Memory address to receive input
50. lea R9,nbrd ; Number of bytes actually read.
51. call ReadConsoleA ; Read text string from command box.
52.
53. ; Echo line just input back to the user one character at a time.
54.
55. lea R12,keymsg ; Memory buffer containing input
56. mov R13,nbrd ; Number of characters actually read
57. inloop: mov RCX,stdout ; Handle to standard output device
58. mov RDX,R12 ; Point to next character to display
59. mov R8,1 ; Only display 1 character.
60. lea R9,nbwr ; Number of bytes actually written.
61. call WriteConsoleA ; Write text string to command box.
62.
63. msgOut newln ; Write CR/LF to command box.
64. inc R12 ; Set pointer to next character.
65. dec R13 ; Decrement remaining byte count.
66. jg inloop ; Loop until message complete.
67.
68. ; Go get another line, but exit if only "Enter" key was input.
69.
70. mov R8,nbrd ; Length (bytes) of input message
71. cmp R8,2 ; Test if only CR and LF characters.
72. jg nxtlin ; Loop back to get another input.

73.
74. add RSP,40 ; Replace "shadow space" on stack
75. mov RCX,0 ; Set exit status code to zero.
76. call ExitProcess ; Return control to Windows.
77.
78. main endp
79.
80. .data
81. pmsg byte "Please enter text message: "
82. keymsg byte MaxBuf DUP (?) ; Memory buffer for keyboard input
83. newln byte 0DH,0AH ; Carriage return and line feed
84. stdout qword ? ; Handle to standard output device
85. nbwr qword ? ; Number of bytes actually written
86. stdin qword ? ; Handle to standard input device
87. nbrd qword ? ; Number of bytes actually read
88.

89. end

Listing 5.1: Using a macro to simplify assembler text.

Why didn’t I use the msgOut macro for the WriteConsoleA function call on
line 61? I could have, but I would have needed a more complicated macro
which could handle the different types of message location and size
parameters. Instead, I will make a subroutine to handle all three display lines.

Subroutines

A subroutine is a section of code that is “called” to perform a specific job.
Depending upon the programming language and application, subroutines are
also known as functions, modules, procedures, and methods. Examples of
jobs a subroutine can perform:

Display a number to the user
Get keyboard input from the user
Get input from a specific device such as a temperature sensor
Change the speed of a motor
Perform a particular type of analysis such as a least-squares fit of data

The program in Listing 5.1 will now be modified by adding a very simple
subroutine, v_asc, which will display an ASCII character string in the
command window. Listing 5.2 provides the specifications of what v_asc will
do and the argument values it needs. Figure 5.2 provides the actual coding.

; Subroutine v_asc displays ASCII string in command window.
; RDX: Points to first character in memory
; R8: Number of bytes to display
; RSP: 16-byte aligned before CALL
; RBX,RSI,RDI,RBP,RSP,R12-R15: Contents preserved.

Listing 5.2: Subroutine v_asc specifications

Figure 5.2: Subroutine v_asc displays one character

The first question you might ask: “Since subroutine v_asc is so simple, why
bother at all, just use the Windows WriteConsoleA function directly and
reduce the additional overhead of a subroutine essentially calling the same
type of subroutine.” In a very small program with only a few calls, I would
agree. However, for larger programs, a dedicated display subroutine provides

a lot of flexibility from the maintenance perspective. Just for example, let’s
say we have developed a program with thousands of calls to WriteConsoleA,
and now the “marketplace” requires that we send our display messages to a
different device (one that the simple Windows function cannot perform).
Wouldn’t it be more convenient to accommodate that change in one place in
the subroutine’s code rather than hunt it down in the large program and try to
successfully change it thousands of times?

When the msgOut macro is rewritten to call v_asc instead of
WriteConsoleA, it is simpler because subroutine v_asc only has two
parameters, not four.

Figure 5.3: Macro expansion calling v_asc.

Listing 5.3 shows the update main program, including the v_asc subroutine,
and calls to the v_asc subroutine:

Lines 10 through 17: New msgOut macro that calls v_asc.
Line 57: Call to v_asc to display one character
Lines 76 through 89: New v_asc subroutine.

1. includelib kernel32.lib ; Windows kernel interface.
2. GetStdHandle proto ; Function to retrieve I/O handle
3. WriteConsoleA proto ; Function writes command window
4. ReadConsoleA proto ; Function reads from keyboard
5. Console equ -11 ; Device code for console text output
6. Keyboard equ -10 ; Device code for console text input
7. MaxBuf equ 20 ; Maximum input buffer size
8. ExitProcess proto
9.

10. ; Macro "msgOut msg" displays a character string.
11. ; msg: Label of ASCII message for command window.

12.
13. msgOut macro msg ; One argument: msg
14. lea RDX,msg ; Pointer to message to display
15. mov R8,lengthof msg ; Number of characters to display
16. call v_asc ; Write text to command window.
17. endm
18.
19. .code
20.
21. ; Main program that reads text message from user through command
22. ; window keyin and displays it in same command window.
23. ; 1. Multiple lines input until only "Enter" key pushed.
24. ; 2. Each character input is echoed on a separate line.
25.
26. main proc
27.
28. sub RSP,40 ; Reserve "shadow space" on stack.
29.
30. ; Obtain "handles" for console I/O streams
31.
32. mov RCX,Console ; Console standard output handle
33. call GetStdHandle ; Returns handle in register RAX
34. mov stdout,RAX ; Save handle of console display.
35. mov RCX,Keyboard ; Console standard input handle
36. call GetStdHandle ; Returns handle in register RAX
37. mov stdin,RAX ; Save handle for keyboard input.
38.
39. ; Display the prompt message.
40.
41. nxtlin: msgOut pmsg ; Write text string to command box.
42.
43. ; Read input line from user keyboard.
44.
45. mov RCX,stdin ; Handle to standard input device
46. mov R8,MaxBuf ; Maximum length to receive
47. lea RDX,keymsg ; Memory address to receive input
48. lea R9,nbrd ; Number of bytes actually read.
49. call ReadConsoleA ; Read text string from keyboard.
50.
51. ; Echo line just input back to the user one character at a time.

52.
53. lea R12,keymsg ; Memory buffer containing input
54. mov R13,nbrd ; Number of characters actually read
55. inloop: mov RDX,R12 ; Point to next character to display
56. mov RCX,1 ; Only display 1 character.
57. call v_asc ; Write text string to command box.
58.
59. msgOut newln ; Write CR/LF to command box.
60. inc R12 ; Set pointer to next character.
61. dec R13 ; Decrement remaining byte count.
62. jg inloop ; Loop until message complete.
63.
64. ; Go get another line, but exit if only "Enter" key was input.
65.
66. mov R8,nbrd ; Length (bytes) of input message
67. cmp R8,2 ; Test if only CR and LF characters.
68. jg nxtlin ; Loop back around for more input.
69.
70. add RSP,40 ; Replace "shadow space" on stack
71. mov RCX,0 ; Set exit status code to zero.
72. call ExitProcess ; Return control to Windows.
73.
74. main endp
75.
76. ; Subroutine v_asc displays ASCII string in command window.
77. ; RDX: Points to first character in memory
78. ; R8: Number of bytes to display
79. ; RSP: 16-byte aligned before CALL
80. ; RBX,RSI,RDI,RBP,RSP,R12-R15: Preserved.
81.
82. v_asc proc
83. lea R9,nbwr ; Number of bytes actually written.
84. mov RCX,stdout ; Handle to standard output device
85. sub RSP,40 ; Reserve "shadow space" on stack.
86. call WriteConsoleA ; Write text string to command box.
87. add RSP,40 ; Replace "shadow space" on stack
88. ret ; Return to the calling program.
89. v_asc endp
90.
91. .data
92. pmsg byte "Please enter text message: "
93. keymsg byte MaxBuf DUP (?) ; Memory buffer for keyboard input
94. newln byte 0DH,0AH ; Carriage return and line feed

95. stdout qword ? ; Handle to standard output device
96. nbwr qword ? ; Number of bytes actually written

97. stdin qword ? ; Handle to standard input device

98. nbrd qword ? ; Number of bytes actually read
99.

100. end

Listing 5.3: Main program with subroutine v_asc

The advantages of using subroutines are many:

Subroutines help organize the construction of the program.
The code only takes up memory space once.
It’s less work to modify or correct one area of common code rather than
many copies of almost identical code.
“Information hiding” occurs because one part of the program is unable
to directly access data in another part of the program and accidentally
change it.
Division of programming assignments is easier.

The disadvantages of subroutines are few.

There is a slight performance degradation compared to “in-line code”
due to the overhead of the call and return.
It can lead to too much of a good thing: Too many tiny subroutines can
lead to confusion.

X64 Calling Convention

Assembly language programs that either call the Windows API functions or
are a part of a C or C++ program must abide by the X64 Calling Convention.
As described in Chapter 3, the X64 Calling Convention declares which
registers contain the arguments, which registers’ contents will be preserved,
and the 16-byte RSP alignment requirement.

A “leaf” function or subroutine is one that does not call another

subroutine or function. It, therefore does not have to be as concerned about
the calling convention as other subroutines. Since it calls no subroutines, no
other subroutine will destroy its register contents, and it doesn’t have to be
concerned about the RSP 16-byte alignment unless it uses AVX aligned
instructions. It does have to protect the non-volatile register contents for the
program that called it.

The X64 Calling Convention also describes floating point values passed
in XMM registers for use in SSE instructions. Appendix D and Chapters 11
and 12 provide those details.

LEA or OFFSET

I have used the LEA instruction to load the effective address of variables in
memory. The OFFSET assembly language directive along with a MOV
instruction can do the same thing, and even a little faster in most cases.
However, the LEA instruction is more flexible and can work with addresses
in registers as well. Figure 5.4 shows macro msgOut implemented with the
offset directive.

Figure 5.4: Macro msgOut using offset assembly-time function.

From a user’s perspective, both programs in this chapter (Listings 5.1 and
5.3) appear to run exactly the same as the main.asm program in Chapter 4.
They echo a text line one character per line. Go ahead and compile, link, and
execute the programs in Listings 5.1 and 5.3 as you did in Chapter 4 and
verify that they behave the same. The techniques discussed in this chapter are
recommended for better program development and maintenance.

Review Questions

1. What is a “leaf” function or subroutine?
2. * How is a macro different from a subroutine?
3. * Give an example of a useful macro that generates neither any

instructions nor any data.
4. * What is a principal danger in using “pass by reference"?
5. Within the X64 Calling Convention, which registers can be changed by

a subroutine and not be restored to their original values before
returning?

6. List the locations for the first four arguments in calling a subroutine
according to the X64 Calling Convention?

7. Within the X64 Calling Convention, the first four arguments are in
registers and any additional arguments are on the run-time stack (RSP
register). Provide a MOV instruction that would load the fifth argument
into register R15.

Programming Exercises

1. Temporarily modify the v_asc subroutine so that it is 100% X64 Calling
Convention compatible. Note: The location of the arguments will have
to be changed.

— 6 —
Link & LIB

We have been overlooking the middle step of the compile-link-execute
sequence. By not having the compile-only /c option on the ML64 command,
the assembler has been invoking the linker for us by default. In Chapter 6, we
will break out the v_asc subroutine into its own source file, and then link its
object module with the main program’s object module, both in separate files.
We will also build an object code library using the LIB command and
examine it with the DUMPBIN utility.

Figure 6.1: Dividing a program into modules

Figure 6.1 shows where we’re heading: The main program will be in a source
file by itself, and each of the display subroutines will be in separate files. We
will first split the program from Listing 5.3 into two source files by isolating
subroutine v_asc to its own file. Then in the next couple of chapters, we will
built new source files containing subroutines v_bin1 for binary, v_hex1 for
hexadecimal, and v_dig1 for decimal display. The link command will bring

them all together along with the API functions in kernel32.lib to make a
working program.

We begin by putting subroutine v_asc into a file all by itself, but it is
somewhat more complicated because v_asc needs the handle ID number from
the GetStdHandle for the command window display. This separation can be
programmed several ways. For example, I could still get the handle in the
main program and pass it to v_asc as another argument. There is some merit
to that approach, but a better way is to make a new v_opn subroutine that is
in the same source file as v_asc. If this were a large application with
thousands of calls to display text, this latter approach offers flexibility of
migrating to a whole different type of display environment.

As I hinted above, I will be adding more individual subroutines to display
just one character, or byte, in binary, hexadecimal, and decimal formats. For
consistency, I will also make a new subroutine that is specialized to display
only one byte in ASCII. Listing 6.1 shows the new v_asc.asm file containing
three subroutines: v_opn, v_asc, and v_asc1.

Lines 6 through 9: Subroutine v_asc needs the Windows API functions
that formerly appeared in the main program.
Lines 12 through 22: Subroutine v_opn obtains the handle needed by
v_asc and v_asc1.
Lines 24 through 37: Subroutine v_asc is same as before, but now in its
own source file.
Lines 39 through 53: New subroutine v_asc1 displays only 1 character.
Lines 56 and 57: Local storage for variables associated with
WriteConsoleA.

1. ; Subroutines to display one or more characters on the console.
2. ; v_opn: Opens the standard display monitor
3. ; v_asc: Displays string of characters in memory buffer
4. ; v_asc1: Displays one characters in memory buffer
5.
6. includelib kernel32.lib ; Windows kernel interface.
7. GetStdHandle proto ; Function to retrieve I/O handle
8. WriteConsoleA proto ; Function writes command window
9. Console equ -11 ; Device code for console text output

10. .code

11.
12. ; Subroutine v_opn will open the standard display monitor.
13. ; RBX,RSI,RDI,RBP,RSP,R12-R15: Preserved.

14.
15. v_opn proc
16. mov RCX,Console ; Console standard output handle
17. sub RSP,40 ; Reserve "shadow space" on stack.
18. call GetStdHandle ; Returns handle in register RAX
19. add RSP,40 ; Replace "shadow space" on stack
20. mov stdout,RAX ; Save handle of console display.
21. ret ; Return to the calling program.
22. v_opn endp
23.
24. ; Subroutine v_asc displays ASCII string in command window.
25. ; RDX: Points to first character in memory
26. ; R8: Number of bytes to display
27. ; RSP: 16-byte aligned before CALL
28. ; RBX,RSI,RDI,RBP,RSP,R12-R15: Preserved.
29.
30. v_asc proc
31. lea R9,nbwr ; Number of bytes actually written.
32. mov RCX,stdout ; Handle to standard output device
33. sub RSP,40 ; Reserve "shadow space" on stack.
34. call WriteConsoleA ; Write text string to command box.
35. add RSP,40 ; Replace "shadow space" on stack
36. ret ; Return to the calling program.
37. v_asc endp
38.
39. ; Subroutine v_asc1 will display 1 character in memory buffer.
40. ; R12: Points to the one character in memory
41. ; RSP: 16-byte aligned before CALL
42. ; Registers preserved: RBX,RBP,RDI,RSI,RSP,R12-R15
43.
44. v_asc1 proc
45. mov R8,1 ; Number of bytes requested to write
46. lea R9,nbwr ; Number of bytes actually written.
47. mov RDX,R12 ; Memory address of buffer to write
48. mov RCX,stdout ; I/O handle for display monitor.
49. sub RSP,40 ; Reserve "shadow space" on stack.
50. call WriteConsoleA ; Write text string to command box.
51. add RSP,40 ; Replace "shadow space" on stack
52. ret ; Return to the calling program.

53. v_asc1 endp
54.
55. .data
56. stdout qword ? ; Handle to standard output device

57. nbwr qword ? ; Number of bytes actually written
58. end

Listing 6.1: Subroutines v_asc, v_asc1, and v_opn

Subroutine v_asc1 displays one character in ASCII. Of course, v_asc1 could
have been programmed so that it calls v_asc to output the one character rather
than going straight to WriteConsoleA. If it was a more complicate situation
or if both subroutines were not in the same source code file, I probably would
have done that. Instead, I programmed it as shown in Figure 6.2.

Figure 6.2: Subroutine v_asc1 displays one character

Listing 6.2 shows the updated main program which now calls v_opn and
v_asc1:

Lines 7 through 9: The prototypes for subroutines v_asc, v_asc1, and
v_opn, which are now external to the main source code file and

therefore must now be declared. Note that the prototype for
WriteConsoleA is no longer needed here.
Line 33: Subroutine v_opn will get the handle that will be used by
subroutines v_asc and v_asc1..
Line 54: Subroutine v_asc1 is more specialized than v_asc, and it needs
fewer arguments.

1. includelib kernel32.lib ; Windows kernel interface.
2. GetStdHandle proto ; Function to retrieve I/O handles
3. ReadConsoleA proto ; Function reads keyboard buffer
4. Keyboard equ -10 ; Device code for console text input.
5. MaxBuf equ 20 ; Maximum input buffer size
6. ExitProcess proto
7. v_asc proto ; Function writes ASCII string.
8. v_asc1 proto ; Function writes one ASCII character.
9. v_opn proto ; Function opens display stream.

10.
11. ; Macro "msgOut msg" calls subroutine to display a string.
12. ; msg: Label of ASCII message for command window.
13.
14. msgOut macro msg ; One argument: msg
15. lea RDX,msg ; Pointer to message to display
16. mov R8,lengthof msg ; Number of characters to display
17. call v_asc ; Write text to command window.
18. endm
19.
20. .code
21.
22. ; Main program that reads text message from user through command
23. ; window keyin and displays it in same command window.
24. ; 1. Multiple lines are input until only "Enter" key pushed.
25. ; 2. Each character input will be echoed on a separate line.
26.
27. main proc
28.
29. sub RSP,40 ; Reserve "shadow space" on stack.
30.
31. ; Obtain "handles" for console Input/Output streams
32.
33. call v_opn ; Open text display stream.

34. mov RCX,Keyboard ; Console standard input handle
35. call GetStdHandle ; Returns handle in register RAX
36. mov stdin,RAX ; Save handle for keyboard input.
37.
38. ; Display the prompt message.
39.
40. nxtlin: msgOut pmsg ; Write text string to command box.
41.

42. ; Read input line from user keyboard.

43.

44. mov RCX,stdin ; Handle to standard input device
45. mov R8,MaxBuf ; Maximum length to receive
46. lea RDX,keymsg ; Memory address to receive input
47. lea R9,nbrd ; Number of bytes actually read.
48. call ReadConsoleA ; Read text string from command box.
49.
50. ; Echo line just input back to the user one character at a time.
51.
52. lea R12,keymsg ; Memory buffer containing input
53. mov R13,nbrd ; Number of characters actually read
54. inloop: call v_asc1 ; Display one ASCII character
55. msgOut newln ; Output carriage return / line feed
56. inc R12 ; Set pointer to next character.
57. dec R13 ; Decrement bytes remaining.
58. jg inloop ; Loop until message complete.
59.
60. ; Go get another line, but exit if only "Enter" key was input.
61.
62. mov R8,nbrd ; Length (bytes) of input message
63. cmp R8,2 ; Test if only CR and LF characters.
64. jg nxtlin ; Loop back for more input.
65.
66. add RSP,40 ; Replace "shadow space" on stack
67. mov RCX,0 ; Set exit status code to zero.
68. call ExitProcess ; Return control to Windows.
69. main endp
70.
71. .data
72. stdin qword ? ; Handle to standard input device
73. nbrd qword ? ; Number of bytes actually read

74. pmsg byte "Please enter text message: "
75. keymsg byte MaxBuf DUP (?) ; Memory buffer for keyboard input
76. newln byte 0DH,0AH ; Carriage return and line feed
77. end

Listing 6.2: Main program calling v_asc1

Listing 6.3 shows the sequence of commands to compile-link-execute to be
the same as before except the ML64 line has both main.asm and v_asc.asm
(separated by a blank) instead of just main.asm. This approach works fine for
compiling and linking a few files, and can be used in the following chapters
as well.

C:\ASM64> path C:\######\Hostx64\x64;%PATH%
C:\ASM64> copy X64_Asm-master\Listing_6_1.txt v_asc.asm
1 file(s) copied.
C:\ASM64> copy X64_Asm-master\Listing_6_2.txt main.asm
1 file(s) copied.
C:\ASM64> ML64 main.asm v_asc.asm /link /SUBSYSTEM:CONSOLE /ENTRY:main
Microsoft (R) Macro Assembler (x64) Version 14.11.25547.0
Copyright (C) Microsoft Corporation. All rights reserved.

Assembling: main.asm
Assembling: v_asc.asm
Microsoft (R) Incremental Linker Version 14.11.25547.0
Copyright (C) Microsoft Corporation. All rights reserved.

/OUT:main.exe
main.obj
v_asc.obj
/SUBSYSTEM:CONSOLE
/ENTRY:main

C:\ASM64>main
Please enter text message: Hi
H
i

Please enter text message:

C:\ASM64>

Listing 6.3: Compile and link with two source code file

The assemble and link steps can be separate commands as shown below.

ML64 /c main.asm v_asc.asm
LINK /out:main.exe main.obj v_asc.obj /entry:main

LIB and DUMPBIN

The kernel32.lib file contains hundreds of entry points to the Windows API
functions. A user library file can also be constructed and is very convenient
as the number of subroutines grow. The main program will need a second
includelib line as shown below for a library named user.lib (it could be any
name such as x.lib).

1. includelib kernel32.lib ; Windows kernel interface.
2. includelib user.lib ; Contains v_opn, v_asc, and v_asc1.

The user.lib file can be built and accessed by the main program using the
following three lines.

1. ML64 /c v_asc.asm
2. LIB /out : user.lib /verbose v_asc.obj
3. ML64 main.asm /link /SUBSYSTEM : CONSOLE /ENTRY : 

main

The first line assembles source code v_asc.asm into object file v_asc.obj. In
the second line, the library is created with only the one object file, and the
third line will build the absolute as before. The end of Chapter 7 has a further
example of building and using a library where four object files are involved.

The DUMPBIN program provides some interesting internal information
on a variety of file types. Enter “DUMPBIN /symbols user.lib” from the
command line to get a list of global names used by the linker.

Review Questions

1. What are two advantage of breaking a program into multiple source
files?

2. What is a disadvantage (i.e., how much extra work is need) of building a
program from multiple source code files?

3. * If you were going to build a library named “engines.lib” from three
sobject files named “electric.obj," “gasoline.obj," and “diesel.obj," what
command line would be needed?

4. * What assembler directive would be used to find the “engines.lib”
library built in question 3?

Programming Exercises

1. Write subroutine v_asc1 so that it call v_asc rather than WriteConsoleA.

— 7 —
Binary & Hexadecimal

What’s wrong with decimal? Babbage’s Analytical Engine computer
design was decimal. Have we digressed in the past 200 years? Actually, there
have been many decimal-based computers, but why are almost all of today’s
computers based on binary? The simple answer is that the logical building
blocks (i.e., electronics in today’s systems) are simpler and more efficient in
binary than they are in decimal. The importance of hexadecimal in computer
applications is that it’s a compact form of binary.

In Chapter 7, the main console program from the previous chapters will
be modified to echo the input text line as single characters in ASCII, binary,
and hexadecimal. Shift, logical, and string instructions using byte registers
will be demonstrated in the example programs.

Introductions

X86-64 instructions appearing for the first time in Chapter 7:

PUSH: Saves the contents of a 64-bit register on the stack and then
decrements the RSP stack pointer by 8. Chapter 3 described stack
operations, but the PUSH instruction has not been demonstrated until
this chapter.
POP: Reverses the PUSH instruction by loading the 8 bytes from the top
of the stack into a 64-bit register. The RSP stack pointer will be
incremented by 8.
SHR: Shift data bits in a register to the right, and zero fill “empty” bit
positions on left (logical shift).
AND: Bit-by-bit Boolean logic “and” operation
STOSB: Store contents of register AL into next position in string
pointed to by register RDI.

CLD (CLear the Direction flag): Sets the direction for auto-
incrementation of register RDI (used by STOSB).
XLAT: Translate the value in register AL to a new value from table
pointed to by register RBX.

Binary Display

A decimal number is really a short notation for a polynomial of powers of 10.
For example: 137 is 1×102 + 3×101 + 7×100. Likewise, a binary number is
really a short notation for a polynomial of powers of 2. For example: 110101
is 1×25 + 1×24 + 0×23 + 1×22 + 0×21 + 1×20. By the way, this polynomial
structure is the main reason we count bits from right to left starting with zero.
For a more thorough description of the ASCII code and binary, please see
Appendices F and G, respectively.

A character code is a set that assigns a unique number to each text
character. For example in both the ASCII and Unicode sets, the letter “A” is
assigned the value 65 (which is hexadecimal 41 and binary 01000001). A
new subroutine, v_bin1, will be programmed to display a character as a series
of 8 binary digits (bits), and that subroutine will be called by the main
program for display.

Subroutine v_bin1 can be programmed many different ways, but I will
program it using a loop that counts down from 7 to 0 and demonstrate the use
of byte registers, string instructions, register shifts, and logical instructions.

Figure 7.1: Program loop to display
8 bits

Instructions in the loop select a particular
bit, convert it to an ASCII “0” or “1”
character, and store it into a memory
buffer. Subroutine v_asc will then be
called to display all eight characters at
once.

1. Preparation: Initialize “count down”
byte register CL to 7. CL also
identifies the first bit in the data
(loaded into byte register DL).

2. A process to be repeated multiple
times: Select the next bit, indicated
by value in CL, and convert it to
either an ASCII “0” or “1” character.

3. Decision when to exit the loop:
Register CL is decremented by one
on each pass through the loop which
allows it to point to all bit positions 7
through 0. When CL is decremented
from 0 to -1, then an exit from the
loop is taken because all 8 bit
positions have been displayed.

Bit Shift Operations

Almost all CPU architectures include several instructions for shifting bits
within a register. Most CPU architectures support three types of shifts:

Logical: Bits shifted out from either end of the register are discarded and
new zero bits fill in on the opposite side.
Circular (also referred to as rotate): Bits shifted out one end of the
register come back in on the other side.

Arithmetic: This is similar to a logical right shift except arithmetic shift
brings in copies of the sign bit instead of zero.

Logical shifts have many applications. One common application is
converting between serial and parallel, and a second is for multiplying an
integer by a power of two. For example, a one bit shift to the left is
multiplying by two, while a two bit shift is multiplying by four. Some
computers shift only one bit at a time. In the X86-64, multiple bit shifts can
be indicated either from the contents of the CL register or an immediate value
in the instruction.

Figure 7.2: Logical right shift moves out bit on right and brings in zero on left.

A shift to the right is like dividing by a power of two, but be aware of two
basic problems. Division can have a remainder which will get truncated, not
rounded. Secondly, there are two problems with negative integers. A logical
right shift will bring in a zero in bit 31, thereby converting a negative number
to an inappropriate positive number. The arithmetic shift will solve the
negative problem, but a rounding error is still present, so be careful using
shifts to divide negative numbers. Please see Appendix G if you need an
explanation why the high-order bit (bit 63) is a “1” for negative 64-bit
numbers. A circular shift, also referred to as a rotate, allows the bits to be
shifted without losing anything out one end or the other.

Logical Operations

The X86-64 processors provide the Boolean AND, inclusive OR, and
exclusive OR logical operations. The AND will be used here in Chapter 7,
while examples using the two OR operations will appear in Chapter 10.

Figure 7.3: AND operation truth
table

The truth table in Figure 7.3 gives the four
possible outputs for an AND operation
having two inputs.

1. If inputs A and B are both 0, the
output will be 0.

2. If A is 0 and B is 1, the output will be
0.

3. If A is 1 and B is 0, the output will be
0.

4. Only if both A and B are 1 will the
output be 1.

In the loop in subroutine v_bin1, the AND
instruction will remove all data bits except
for the bit position currently being
examined.

The logical instructions in almost all CPUs are “bitwise” logical operations:

In the 64-bit X86-64 registers, sixty-four logical operations are
performed in parallel. Figure 7.4 only shows a portion of the 64 pairs of
corresponding bits being ANDed together.
Figure 7.4 illustrates the AND instruction. The inclusive OR and
exclusive OR (XOR) are also bitwise instructions using 64 pairs of bits,
and they will be demonstrated in Chapter 10.

Figure 7.4: Examples of “bitwise” AND of two values

Table 7.1 provides an example where eight passes through a loop select each
bit from 01010100B (letter T in ASCII) as CL is decremented from 7 to 0.
Figure 7.5 illustrates the combination of the SHR and AND instructions to
select the bit from position 3 and put it into bit position 0 all by itself.

CL SHR AL,CL AND AL,1

7 00000000 0

6 00000001 1

5 00000010 0

4 00000101 1

3 00001010 0

2 00010101 1

1 00101010 0

0 01010100 0

Table 7.1: SHR and AND instructions select 8 bits of ASCII T to be displayed

Figure 7.5: Isolate desired bit using SHR and AND instructions.

Byte, Word, Double, and Quad Word Registers

The low-order (right side) byte, word, and double word of each 64-bit general
purpose register can be used as individual registers themselves. Table 7.2
provides these register names that are available in the X86-64 architecture.

64-bit
registers

32-bit
registers

16-bit
registers 8-bit registers

RAX EAX AX AL

RBX EBX BX BL

RCX ECX CX CL

RDX EDX DX DL

RSI ESI SI SIL

RDI EDI DI DIL

RBP EBP BP BPL

RSP ESP SP SPL

R8 R8D R8W R8B

R9 R9D R9W R9B

R10 R10D R10W R10B

R11 R11D R11W R11B

R12 R12D R12W R12B

R13 R13D R13W R13B

R14 R14D R14W R14B

R15 R15D R15W R15B

Table 7.2: X86-64 general purpose integer registers and “fractions”

Notes regarding the use of the above registers:

The list of above register names work with the Microsoft ML64
assembler. Other documentation, such as that from Intel, have named
eight of the 8-bit registers as R8L through R15L instead of R8B through
R15B.
Loading the 8, 16, and 32 bit fractions generally do not affect other bits
in the 64-bit register. For example: Moving a value into R15B does not
affect bits 8 through 63 in register R15. However, there are special move
instructions that either zero fill (MOVZX) or sign extend (MOVSX) to
fill the upper bits.
Registers SIL, DIL, BPL, and SPL did not exist in the 8086 because the
SI, DI, BP, and SP registers were only used as pointers into memory
segments and were not general purpose at that time.
Segment registers from the 8086 (such as DS and ES) are not listed
above or described in this book because they have not been extended to
be 64-bit general purpose registers.

Four additional byte registers from the original Intel 8086 are also available

in the X86-64 architecture. Registers AH, BH, CH, and DH, which consist of
bits 8 through 15 in registers RAX, RBX, RCX, and RDX, respectively, are
for compatibility with instructions available in the 8086 and can only be used
with other 8-bit registers from the 8086. For example: MOV AH,R8L is not a
legal X86-64 instruction. As an example, Figure 7.6 shows register names by
which fractions of general purpose register RCX can be accessed directly in
instructions.

Figure 7.6: Dividing general purpose register RCX into byte, word, and double word components

Loop Through 8 Binary Digits (Bits)

The specifications for using subroutine v_bin1 are the following:

1. The subroutine name is v_bin1, and it’s purpose is to display one 8-bit
value.

2. The byte to be displayed is passed by reference in register R12 (i.e., R12
points to it in memory).

3. The RSP contains the return address from a call instruction, and it was
128-bit aligned before the call.

4. The calling program can assume that the contents of registers RBX,

RBP, RSI, RDI, RSP, and R12-R15 are preserved (i.e., same as the the
non-volatile set of registers in the X64 Calling Convention). The other
registers are volatile.

The above information is all that a calling program needs to know about
subroutine v_bin1. It does not need to know how v_bin1 works internally, but
we do since we are examining the code. I have programmed v_bin1 to loop
through 8 bits, convert them to a string of eight ASCII characters (“1” and
“0”) in memory, and then call v_asc to display the string. I use 8-bit “byte”
registers along with special logical and shift instructions and string
manipulation instructions.

How does subroutine v_bin1 work? We build a loop which counts down
from 7 (the position of the leftmost bit) to 0 (the position of the rightmost
bit). Register CL not only counts down from 7 to 0, but also indicates which
bit is examined on each pass through the loop.

Listing 7.1 shows the entire v_bin1.asm subroutine that will be assembled
and then linked with the main and v_asc files.

Line 5: Subroutine v_bin1 will be calling subroutine v_asc.
Line 8: This instruction not only preserves the contents of non-volatile
register RDI, but it also adjusts the RSP stack pointer to maintain the 16-
byte alignment when v_asc is called on line 28 (both are requirements of
the X64 Calling Convention).
Line 9: Register DL (lower 8 bits of RDX) is loaded with the contents of
one byte in memory pointed to by register R12. The other bits in RDX
are unaffected, but it would not matter if they were as far as subroutine
v_bin1 is concerned.
Line 10: Register RDI (used in upcoming STOSB instruction on line 20)
is initialized to the address of memory buffer to be filled.
Line 11: String instructions, such as STOSB, either automatically
increment or decrement the index register (RDI) pointing to the next
memory location for data storage. If the direction flag is 0 (i.e., cleared
by the CLD instruction), then STOB will automatically add 1 to RDI
after the byte has been stored.
Line 12: Register CL will both identify the next bit to display as well as

count down each pass through the loop.
Lines 14 through 22: Each pass through the loop selects a particular bit
by shifting, masking, and then storing either an ASCII “0” or “1” in next
position in memory.
Lines 16,17: The next bit is moved into the low order (rightmost) bit
position in register AL all by itself.
Line 20: Stores contents of register AL into memory location pointed to
by register RDI and then increments RDI by 1. If the “direction flag”
was set (STD instruction instead of CLD on line 11), then RDI would
have been decremented.
Lines 21,22: The value 1 is subtracted from the contents of byte register
CL, and the loop continues until CL is decremented to -1.
Line 30: “Pop” both restores the contents of non-volatile register RDI
and the RSP stack pointer.

1. ; Subroutine v_bin1 displays one byte from memory in binary.
2. ; R12: Points to the byte in memory
3. ; Registers preserved: RBX,RBP,RDI,RSI,RSP,R12-R15
4.
5. v_asc proto ; Declare external subroutine.
6. .code
7. v_bin1 proc ; Subroutine v_bin1 entry point
8. push RDI ; Save RDI and decrement RSP by 8
9. mov DL,[R12] ; Load byte to be displayed

10. lea RDI,bits8 ; Pointer to ASCII display buffer
11. cld ; String instructions will increment.
12. mov CL,7 ; Bit 7 will be output first.
13.
14. ; Loop through bits 7 to 0 converting them to ASCII.
15.
16. nxtbit: mov AL,DL ; Copy byte to be displayed to AL.
17. shr AL,CL ; Shift current bit to bit 0.
18. and AL,1 ; Mask off all bits except bit 0.
19. add AL,'0' ; Map binary 0,1 to ASCII '0','1'
20. stosb ; Store in array of 8 "bits."
21. dec CL ; Number of bits left to process.
22. jge nxtbit ; Continue until all 8 bits done.
23. ;
24. ; Display all 8 bits of current byte from memory buffer.

25. ;
26. lea RDX,bits8 ; Points to 8-byte memory buffer
27. mov R8,8 ; Number of characters to display
28. call v_asc ; Subroutine that displays ASCII
29.
30. pop RDI ; Reload RDI and reposition stack
31. ret ; Return to the calling program
32. v_bin1 endp
33.
34. .data
35. bits8 byte 8 DUP (?) ; Memory buffer for display
36. end

Listing 7.1: Subroutine v_bin1 displays a binary number in ASCII

Special purpose registers for string instructions:

AL: Register assumed to be used in string instructions. Similar examples
using registers AX, EAX, and RAX appear in Chapter 9.
RSI: Source Index of next byte to load into register AL using string
instructions.
RDI: Destination Index of next byte to store from register AL.
CL: Count of number of bits to shift. Register RCL can also be used as a
count down to zero register with LOOP instructions.

Figure 7.7: Subroutine v_bin1 design

Main Program

The main program will now be modified to call v_bin1 in addition to v_asc1
so that each character input will be echoed in both binary and ASCII. Later in
this chapter, a third subroutine v_hex1 will be called, thereby providing
hexadecimal, binary, and ASCII for each character input.

Each of the subroutines, v_asc1, v_bin1, and v_hex1, will be called
followed by a separation character such as a tab. Macro “disp” will be created
to call a subroutine and then write out a separation character. As show in
Figure 7.8, macro disp is a simple macro with two arguments: subroutine
name and address of separation character(s) in memory. It is a simple macro,
but it does demonstrate nesting macros, where one macro calls another.

Figure 7.8: Macro expansion generates another macro to be expanded.

The main program in Listing 7.2 includes the following changes for cslling
v_bin1 and using the new macro:

Line 10: Declare external subroutine v_bin1.
Lines 21 through 28: Definition of new “disp” macro.

1. includelib kernel32.lib ; Windows kernel interface.
2. GetStdHandle proto ; Function to retrieve I/O handles
3. ReadConsoleA proto ; Function reads keyboard buffer
4. Keyboard equ -10 ; Device code for console text input.
5. MaxBuf equ 20 ; Maximum input buffer size
6. ExitProcess proto
7. v_asc proto ; Function writes ASCII string.
8. v_asc1 proto ; Function writes one ASCII character.
9. v_opn proto ; Function opens display stream.

10. v_bin1 proto ; Display byte in binary
11.
12. ; Macro "msgOut msg" calls subroutine to display a string.
13. ; msg: Label of ASCII message for command window.
14.
15. msgOut macro msg ; One argument: msg

16. lea RDX,msg ; Pointer to message to display
17. mov R8,lengthof msg ; Number of characters to display
18. call v_asc ; Write text to command window.
19. endm
20.
21. ; Macro "disp sub,tail" calls a subroutine, then displays a character.
22. ; sub: Subroutine to be called
23. ; tail:  Separation character string to be output
24.
25. disp macro sub,tail ; Two arguments
26. call sub ; Subroutine to display a byte
27. msgOut tail ; String of separation characters
28. endm
29.
30. .code
31.
32. ; Main program that reads text message from user through command
33. ; window keyin and displays it in same command window.
34. ; 1. Multiple lines are input until only "Enter" key pushed.
35. ; 2. Each character input will be echoed on a separate line.
36.
37. main proc
38.
39. sub RSP,40 ; Reserve "shadow space" on stack.
40.
41. ; Obtain "handles" for console Input streams
42.
43. call v_opn ; Open text display stream.
44. mov RCX,Keyboard ; Console standard input handle
45. call GetStdHandle ; Returns handle in register RAX
46. mov stdin,RAX ; Save handle for keyboard input.
47.
48. ; Display the prompt message.
49.
50. nxtlin: msgOut pmsg ; Write text string to command box.
51.

52. ; Read input line from user keyboard.
53.
54. mov RCX,stdin ; Handle to standard input device
55. mov R8,MaxBuf ; Maximum length to receive
56. lea RDX,keymsg ; Memory address to receive input
57. lea R9,nbrd ; Number of bytes actually read.
58. call ReadConsoleA ; Read text string from command box.
59.
60. ; Echo line just input back to the user one character at a time.
61.
62. lea R12,keymsg ; Memory buffer containing input
63. mov R13,nbrd ; Number of characters actually read
64. inloop: disp v_bin1,tab ; Display byte as 8 bits.
65. disp v_asc1,newln ; Display byte as ASCII character.
66. inc R12 ; Set pointer to next character.
67. dec R13 ; Decrement bytes remaining.
68. jg inloop ; Loop until message complete.
69.
70. ; Go get another line, but exit if only "Enter" key was input.
71.
72. mov R8,nbrd ; Length (bytes) of input message
73. cmp R8,2 ; Test if only CR and LF characters.
74. jg nxtlin ; Loop back for more input.
75.
76. add RSP,40 ; Replace "shadow space" on stack
77. mov RCX,0 ; Set exit status code to zero.
78. call ExitProcess ; Return control to Windows.
79.
80. main endp
81.
82. .data
83. pmsg byte "Please enter text message: "
84. keymsg byte MaxBuf DUP (?) ; Memory buffer for keyboard input
85. newln byte 0DH,0AH ; Carriage return and line feed
86. tab byte 09H ; Horizontal tab character
87. stdin qword ? ; Handle to standard input device
88. nbrd qword ? ; Number of bytes actually read
89.
90. end

Listing 7.2: Main program to display in both binary and ASCII

Line 64: Macro disp calls subroutine v_bin1 to display a byte in binary
and then outputs a tab character. If this was the only use of macro disp,
it would not have been worth it. Notice that it is not obvious in the code
which registers are being used (and not saved) by a macro unless it is
clearly documented.
Line 65: Macro disp calls subroutine v_asc1 to display a byte in ASCII
and then output a string containing both a carriage return and line feed.
This one line replaced both lines 54 and 55 from Listing 6.2 that
performed the same thing.

Three source files are now present and must be compiled and linked:

1. Main program that reads input text line from user and echoes each input
character in binary and ASCII

2. File containing display subroutines v_asc and v_asc1 along with v_opn
from the previous chapter

3. The new v_bin1 subroutine for displaying a byte in binary.

C:\ASM64>main
Please enter text message: Hi there!
01001000 H
01101001 i
00100000
01110100 t
01101000 h
01100101 e
01110010 r
01100101 e
00100001 !
00001101
00001010
Please enter text message:

C:\ASM64>

Listing 7.3: Loop of multiple input text characters echoed in binary and ASCII

As discussed in the previous chapter, several approaches are available to
generate the executable main program from multiple source files. Each

source file could be compiled separately, a library could be built, or
everything could be compiled and linked with one command line. Since this
is a very small program, I chose the latter approach, and its one line is shown
below.

ML64 main.asm v_asc.asm v_bin1.asm /link /SUBSYSTEM:CONSOLE
/ENTRY:main

Hexadecimal Display

What’s wrong with binary? Why use hexadecimal (base 16)? The simple
answer is hexadecimal is compact, and it is very easy for us humans to
convert between binary and hexadecimal.

Binary numbers are awkward for us due to the large number of columns
required. Who would prefer replacing the decimal representation of 7094,
1620, 1108, 6600, 3033, and 7800 with their binary equivalents
1101110110110, 11001010100, 10001010100, 1100111001000,
101111011001, and 1111001111000? Conversion between binary and
decimal is difficult to do “in our heads.” The difficulty stems from the fact
that 10 is not an integer power of 2, but base 16 is 24 thereby making it easy
to convert every 4-bit binary pattern to a hexadecimal digit.

Conversion from binary to hexadecimal is done from right to left as
shown in Figure 7.9. If the number of binary bits is not a multiple of four,
then the high order “missing” bit positions will be filled with zeroes. Please
see Appendix H for more information on hexadecimal if you like.

Figure 7.9: Binary reduced to hexadecimal

Subroutine v_hex1 is similar to subroutine v_bin1 except four bits are shifted
and masked at one time instead of just one bit. Since there are only two hex
digits in an 8-bit byte, no loop will be needed. Instead, the first digit will be
obtained by a logical shift to the right, and the second is obtained with a
logical AND.

Line 10: Register RBX points to a translation table to be used with the
XLAT instruction on lines 13 and 18.
Line 12: The first 4-bit nibble is obtained by a logical shift as shown if
Figure 7.10.
Line 13: The XLAT instruction indexes into the translation table to
convert the value in register AL from a 4-bit nibble to a hex digit.
Line 17: The second 4-bit nibble is obtained with a 4-bit mask with an
AND instruction as shown if Figure 7.11.
Line 18: The XLAT instruction indexes into the translation table to
convert the value in register AL from a 4-bit nibble to a hex digit.
Lines 29 and 30: Byte array of 16 ASCII characters representing 16
hexadecimal digits

1. ; Subroutine v_hex1 displays one byte in hexadecimal.
2. ; R12: Points to the byte in memory
3. ; Registers preserved: RBX,RBP,RDI,RSI,RSP,R12-R15
4.
5. v_asc proto ; Declare external subroutine.

6. .code
7. v_hex1 proc ; Subroutine v_bin1 entry point
8. push RBX ; Save RBX and decrement RSP by 8
9. lea RDX,nib2 ; Points to 2-byte memory buffer

10. lea RBX,dig ; Pointer to list of hex digits
11. mov AL,[R12] ; Load byte to be displayed
12. shr AL,4 ; Right justify first nibble
13. xlat ; Convert 4-bit nibble to hex digit
14. mov [RDX],AL ; Store high-order hex digit.
15.
16. mov AL,[R12] ; Reload byte to be displayed
17. and AL,1111b ; Mask off all but second nibble.
18. xlat ; Convert 4-bit nibble to hex digit
19. mov [RDX+1],AL ; Store low-order hex digit.
20.
21. mov R8,2 ; Number of characters to display
22. call v_asc ; Subroutine that displays ASCII
23.
24. pop RBX ; Reload RBX and reposition stack
25. ret ; Return to the calling program
26. v_hex1 endp
27.
28. .data
29. dig byte "0123456789" ; ASCII string of digits 0 through 9
30. byte "ABCDEF" ; ASCII string of digits A through F
31. nib2 byte 2 DUP (?) ; Memory buffer for display
32. end

Listing 7.4: Subroutine to output hexadecimal number in ASCII

Figure 7.10: Isolate first hex digit using logical shift instruction.

Figure 7.11: Isolate second hex digit using AND instruction.

The only modifications made to the main program as shown in Listing 7.5 is
to include a hexadecimal display. The disp macro is now even more useful
because it is called three times: binary, hexadecimal, and ASCII. Since the

modifications are so minimal, I have only shown the changes and the inner
loop which calls the three subroutines. The Listing_7_5.txt file in GitHub is
complete, however.

Line 11: Declare external subroutine v_hex1
Line 66: Call subroutine for hexadecimal display followed by a tab.

11. v_hex1 proto ; Display byte in hexadecimal

65. inloop: disp v_bin1,tab ; Display byte as 8 bits.
66. disp v_hex1,tab ; Display byte as 2 hex digits/
67. disp v_asc1,newln ; Display byte as ASCII character.
68. inc R12 ; Set pointer to next character.
69. dec R13 ; Decrement number of bytes remaining.
70. jg inloop ; Continue loop until message complete.

Listing 7.5: Changes to main.asm to support hexadecimal output

LIB Example

There are now four assembly language source code files: main.asm,
v_asc.asm, v_bin1.asm, and v_hex1.asm. The main executable can be
generated by placing the four source code files on the ML64 command line
followed by the LINK command and its options. This is fine for such a small
program. However, in the spirit of building larger systems, we can also
generate the executable with the following three commands.

1. ML64 /c v_asc.asm v_bin1.asm v_hex1.asm
2. LIB /out : v.lib /verbose v_asc.obj v_bin1.obj v_hex1.obj
3. ML64 main.asm /link /SUBSYSTEM : CONSOLE /ENTRY : 

main

The first line assembles the files containing the subroutines into three object
code files. The second line builds a library named v.lib that contains all the
subroutines. The third line builds the executable and finds the needed
subroutines in the v.lib file. Note: The main program has a “includelib 

v.lib” statement, similar to the one for kernel32.lib.
Listing 7.6 shows a sample output displaying binary, hexadecimal, and

ASCII for each character that was entered. Notice that the last two characters
are hexadecimal 0D and 0A which represent “control characters” carriage
return and line feed, respectively.

C:\ASM64>main
Please enter text message: Hi there!
01001000 48 H
01101001 69 i
00100000 20
01110100 74 t
01101000 68 h
01100101 65 e
01110010 72 r
01100101 65 e
00100001 21 !
00001101 0D
00001010 0A
Please enter text message:

C:\ASM64>

Listing 7.6: Each input byte is echoed in binary, hexadecimal, and ASCII.

Review Questions

1. Subroutine v_bin1 (Listing 7.1) supports some of the requirements of
the X64 Calling Convention. What is missing? Why is it necessary that
some requirements be met? Hint: See v_asc coding in Chapters 5 and 6.
What is the advantage, and why is it OK that not all of the requirements
be met?

2. * Even though subroutine v_asc does not fully abide by the X64 Calling
Convention, why must the RSP stack pointer be 16-byte aligned by the
push instruction on line 8 of subroutine v_bin in Listing 7.1?

3. What is meant by a “bitwise” logical operation?
4. * Octal was a very popular base used in assembly language for many

years because it is also a compact form for expressing binary numbers.
Although still available, why has hexadecimal almost universally
replaced it?

Programming Exercises

1.
2. On lines 16 and 17 of Listing 7.1, reverse the order of the shift and move

instructions. Also change the logical shift to a circular shift (SHC
instruction), and make it always shift by 1 bit (not the value in CL).
Compile, link, and execute to verify that the v_bin1 subroutine works
the same with this new coding.

3. Replace the two instructions on lines 21 and 22 with a LOOP
instruction. Why will CL now have to be initialized to 8 instead of 7?
Why could this not have been done before the modifications to the shift
and move that were done in Exercise 1 above?

4. Fill the bits8 array in reverse order. Lines 10 and 11 of Listing 7.1 will
be changed to initialize RDI to bits8+7 and set the direction flag (SDF),
respectively. The shift will also have to be to the right (either logical or
circular will work).

— 8 —
Decimal & More

Decimal representation of a number is really a short notation for a
polynomial of powers of 10. For example: 3274 is
3×103 + 2×102 + 7×101 + 4×100. In the preceding chapter, we displayed a
number in binary using a loop of repeated division by two. Because it’s
faster, we used shifting to perform the division. Of course, the same loop of
repeated divisions would work for decimal, and here we will actually use a
divide instruction because 10 is not an integer power of 2. For example, the
way we display 3274 in base 10 is the following:

1. 3274 / 10 = 327 Remainder 4
2. 327 / 10 = 32 Remainder 7
3. 32 / 10 = 3 Remainder 2
4. 3 / 10 = 0 Remainder 3

Introductions

Only one X86-64 instruction is introduced in this chapter:

DIV: Integer divide is used in the sample program. Integer multiply is
also discussed.

Multiply and Divide

When two bytes, 10000000b and 10000000b (both decimal 128, unsigned)
are added within a CPU, the sum is 100000000b which doesn’t fit in 8 bits,
so the carry flag is set if byte registers are used. Likewise, if two copies of
01000000b (64 decimal) are added, the sum is 10000000b, which fits in a

byte register, but the overflow flag is set indicating a possible error
(depending whether the number is considered to be signed or unsigned).
Similar carry and overflow cases appear for addition in 16-bit, 32-bit, and 64-
bit registers.

In the case of multiplication, it is very easy to get a product that requires
more bits than its factors. For example, when 00010000b and 00010000b
(decimal 16) are multiplied within a CPU, the product is 100000000b which
doesn’t fit in 8 bits. Actually, most combinations of two 8-bit factors have a
product requiring more than 8 bits. For this reason, X86-64 instructions that
multiply two 8-bit numbers result in 16-bit products, two 32-bit numbers
result in a 64-bit product, and two 64-bit numbers result in a 128-bit product.

In the Intel 8086 processor, multiplication and division were very
restrictive regarding which registers were used: all included either AL or AX
as one of the factors. If the contents of AL were multiplied by the contents of
another 8-bit register, the product was placed into AX. But when AX was
multiplied by another 16-bit register, where could the 32-bit product be
placed since the largest register was only 16 bits? The lower 16 bits were
stored in AX while the upper 16 bits were stored in DX. That combination of
the lower bits stored into an “A” register combined with the upper bits in a
“D” register has been extended up to the X86-64 architecture for 32 and 64
operations as well..

Division, being the inverse of multiplication, not only reverses the above
size requirements, but has two results: a quotient and a remainder. Dividing a
128-bit number dividend results in a 64-bit quotient and a 64-bit remainder.
Similar sizes are present for 64-bit, 32-bit, and 16-bit dividends. Where is this
128-bit register? The X86-64 processor combines two 64-bit registers to get
128 bits, just like the 16-bit Intel 8086 combined two 16-bit registers for its
32-bit products. In both cases, the “A” register is combined with the “D”
register. The X86-64 does have a special set of 128-bit and even 256-bit
registers, but these are for use with the SSE and AVX extensions as described
in Chapter 11. Non-integers, i.e., floating point representation, are also
handled by SSE and AVX instructions as described in Chapter 12.

Display in Any Base

Subroutine v_dig1 demonstrates the division instruction with the simplest
format where the dividend is in register AX and the 8-bit divisor results in the
quotient in register AL and the remainder in register AH. The divisor can be
any 8-bit register, any 8-bit byte variable, or even an index register pointing
to a byte (i.e., BYTE PTR [BX]). This AX division example is shown on line
18 of Listing 8.1 where the number in register AX is converted into a string
of decimal digits in a loop of sucessive divisions by 10. Actually, subroutine
v_dig1 is more general than only decimal conversion because the divisor can
be any integer less than 256 (i.e., not just base 10). Programming Exercise 1
includes modifications enabling v_dig1 to display in many more bases.

Notes for the v_dec1 subroutine in Listing 8.1:

Line 11: Register RDX initial value points to the “rightmost” character
position (one’s place) in the string named dbuf. This is because each
digit is peeled off as a remainder during each pass through the loop.
Line 12: Register R8 will be a saved copy pointing to the one’s place
and will be used to calculate the number of digits to display.
Line 16: On each pass through the loop, register RDX will be moved
one digit position to the “left.”
Line 17: Register AX will be divided on the next line, so its upper 8 bits
must be set to zero.
Line 18: Register AX will be divided by the 8-bit R11B register,
resulting in the quotient in register AL and the remainder in register AH.
Line 19: The remainder can be any whole number less than the base, and
it must be mapped to a “printable character” in the range of ASCII “0”
through “9.” It is this instruction that limits subroutine v_dec1 to a
maximum of base 10. If a different mapping is used, such as one using
an XLAT instruction, then higher bases are easily possible.

1. ; Subroutine v_dig1 displays one byte in a selected base.
2. ; R11: Contains the base (2 through 10)
3. ; R12: Points to the byte in memory
4. ; Registers preserved: RBX,RBP,RDI,RSI,RSP,R12-R15
5.
6. v_asc proto ; Declare external subroutine.
7. .code

8. v_dig1 proc ; Subroutine v_dig1 entry point
9. push RBX ; Save RBX and decrement RSP by 8

10. mov AL,[R12] ; Load byte to be displayed
11. lea RDX,dbuf+lengthof dbuf ; Point to buffer end.
12. mov R8,RDX ; R8-RDX will "count" digits.
13.
14. ; Calculate next digit to be displayed.
15.
16. modX: dec RDX ; The position to hold next digit
17. mov AH,0 ; Prepare a 16-bit number in AX.
18. div R11B ; Get quotient in AL, remainder in AH.
19. add AH,'0' ; Map 0 through 9 to '0' through '9'
20. mov [RDX],AH ; Store in array of digits.
21. and AL,AL ; Test if any quotent left to process.
22. jnz modX ; Continue until all digits done.
23. ;
24. ; Display all digits of current byte from memory buffer.
25. ;
26. sub R8,RDX ; Number of characters to display
27. call v_asc ; Subroutine that displays ASCII
28.
29. pop RBX ; Reload RBX and reposition stack
30. ret ; Return to the calling program
31. v_dig1 endp
32.
33. .data
34. dbuf byte 8 DUP (?) ; Memory buffer for display
35. end

Listing 8.1: Subroutine v_dig1 displays in any base (2 through 10)

Figure 8.1: Macro expansion example that generates 3 lines of code.

The main program will be modified to display each echoed character in
binary, hexadecimal, ASCII, and now decimal. A new macro, dispbs, will
also be defined to assist in the calling of new subroutine v_dig1. The
following notes indicate changes made to the main program from Chapter 7:

Line 12: Declare v_dig1 as an external procedure.
Lines 32 through 40: Macro dispbs is defined that will call v_dig1.
Line 78: Macro dispbs will display the byte’s value in base 10. Actually,
any base less than 11 can be chosen, such as 8 for octal.

1. includelib kernel32.lib ; Windows kernel interface.
2. GetStdHandle proto ; Function to retrieve I/O handle
3. ReadConsoleA proto ; Function reads from keyboard
5. Keyboard equ -10 ; Device code for console text input
5. MaxBuf equ 20 ; Maximum input buffer size
6. ExitProcess proto
7. v_asc proto ; Function writes ASCII string.
8. v_asc1 proto ; Function writes one character.

9. v_opn proto ; Function opens display stream.
10. v_bin1 proto ; Display byte in binary
11. v_hex1 proto ; Display byte in hexadecimal
12. v_dig1 proto ; Display byte in selected base (2-10)
13.
14. ; Macro "msgOut msg" calls subroutine to display a string.
15. ; msg: Label of ASCII message for command window.
16.
17. msgOut macro msg ; One argument: msg
18. lea RDX,msg ; Pointer to message to display
19. mov R8,lengthof msg ; Number of characters to display
20. call v_asc ; Write text to command window.
21. endm
22.
23. ; Macro "disp sub,tail" calls a subroutine, then displays a character.
24. ; sub: Subroutine to be called
25. ; tail: Separation character to be output
26.
27. disp macro sub,tail ; Two arguments: sub and tail
28. call sub ; Call specified subroutine

29. msgOut tail ; Write text to command window.
30. endm
31.
32. ; Macro "dispbs base,tail" calls v_dig1, then displays a string.
33. ; base: Base (2 - 10) for display of number
34. ; tail: Separation character to be output
35.
36. dispbs macro base,tail
37. mov R11,base ; Load base for display.
38. call v_dig1 ; Display number in base [R11]
39. msgOut tail ; Output separation string
40. endm
41.
42. .code
43.
44. ; Main program that reads text message from user through command
45. ; window keyin and displays it in same command window.
46. ; 1. Lines are input until only "Enter" key pushed.
47. ; 2. Each character will be echoed on a separate line.
48.
49. main proc
50.
51. sub RSP,40 ; Reserve "shadow space" on stack.

52.
53. ; Obtain "handles" for console Input streams
54.
55. call v_opn ; Open text display stream.
56. mov RCX,Keyboard ; Console standard input handle
57. call GetStdHandle ; Returns handle in register RAX
58. mov [stdin],RAX ; Save handle for keyboard input.
59.
60. ; Display the prompt message.
61.
62. nxtlin: msgOut pmsg ; Write text string to command box.
63.
64. ; Read input line from user keyboard.
65.
66. mov RCX,stdin ; Handle to standard input device
67. mov R8,MaxBuf ; Maximum length to receive
68. lea RDX,keymsg ; Memory address to receive input
69. lea R9,nbrd ; Number of bytes actually read.
70. call ReadConsoleA ; Read text from command box.

71.
72. ; Echo line just input back to the user one character at a time.
73.
74. lea R12,keymsg ; Memory buffer containing input
75. mov R13,nbrd ; Number of characters actually read
76. inloop: disp v_bin1,tab ; Display byte as 8 bits.
77. disp v_hex1,tab ; Display byte as 2 hex digits/
78. dispbs 10,tab ; Display byte in decimal.
79. disp v_asc1,newln ; Display byte as ASCII character.
80. inc R12 ; Set pointer to next character.
81. dec R13 ; Decrement byte count remaining.
82. jg inloop ; Loop until message complete.
83.
84. ; Go get another line, but exit if only "Enter" key was input.
85.
86. mov R8,nbrd ; Length (bytes) of input message
87. cmp R8,2 ; Test if only CR and LF characters.
88. jg nxtlin ; Loop back to get another input.
89.
90. add RSP,40 ; Replace "shadow space" on stack
91. mov RCX,0 ; Set exit status code to zero.
92. call ExitProcess ; Return control to Windows.

93.

94. main endp

95.
96. .data
97. pmsg byte "Please enter text message: "
98. keymsg byte MaxBuf DUP (?) ; Memory buffer for keyboard input
99. newln byte 0DH,0AH ; Carriage return and line feed

100. tab byte 09H ; Horizontal tab character
101. stdin qword ? ; Handle to standard input device
102. nbrd qword ? ; Number of bytes actually read
103.
104. end

Listing 8.2: Main program displays a byte in binary, hexadecimal, decimal, and ASCII.

C:\ASM64>main

Please enter text message: Hi there!
01001000 48 72 H
01101001 69 105 i
00100000 20 32
01110100 74 116 t
01101000 68 104 h
01100101 65 101 e
01110010 72 114 r
01100101 65 101 e
00100001 21 33 !
00001101 0D 13
00001010 0A 10
Please enter text message:

C:\ASM64>

Listing 8.3: Program execution

Table 8.1 shows the integer divide instructions available in the X86-64
architecture. The first three are the same except for the size of the operands,
which are implied by the divisor in the third column which can be either a
register or a memory location. In this table, *64-bit* means any 64-bit
general purpose register such as RBX or R15, any 64-bit quad word memory
variable, or even an index register pointing to a quad word (i.e., QWORD
PTR [BX]). Note: These three instructions always have a dividend that has
the upper half in a D register and the lower half in an A register. For example,
the instruction “DIV R12” divides the 128-bit value in registers RDX:RAX
by the value in register R12, and places the quotient in RAX with the
remainder in RDX.

The fourth case was highlighted in Listing 8.1 and is somewhat different
in that the dividend is entirely in one register, the 16-bit AX register. For
each of the unsigned examples of DIV, there is a signed IDIV version. For
example, “DIV DL” assumes register AX has a range of 0 through 65,535,
while “IDIV DL” assumes register AX has a range of -32,768 through
+32,767. Also, the status flags are not set as they would be for addition and
subtraction instructions. There can even be a hardware interrupt (program
jumps to a Windows error routine) if the divisor has a value of zero.

Instruction Dividend Divisor Quotient Remainder

DIV *64-bit* RDX:RAX *64-bit* RAX RDX

DIV *32-bit* EDX:EAX *32-bit* EAX EDX

DIV *16-bit* DX:AX *16-bit* AX DX

DIV *8-bit* AX *8-bit* AL AH

Table 8.1: Samples of divide instructions

Multiplication

The X86-64 architecture offers much more flexibility with multiplication
than division. Instead of the factors being restricted to only the “A” and “D”
registers, the following three formats are possible (determined by the number
of operands). As in division, both signed and unsigned, versions are available
(MUL and IMUL). The product, [RDX] : [RAX], has the high-order 64 bits
placed into RDX, and the low-order 64 bits placed into RAX.

1. MUL R15 ; One operand
 [RAX] * [R15] => [RDX] : [RAX]

2. MUL R14, R15 ; Two operands
 [R14] * [R15] => [RDX] : [RAX]

3. MUL R14, R15,100 ; Three operands
 [R14] * [R15] * 100 => [RDX] : [RAX]

Review Questions

1. As an exercise, convert 3274 to base seven by successively dividing by
seven until the quotient is zero (3274/7 = 467 remainder 5, ...).

2. * The overflow flag sometimes indicates an error occurred and
sometimes it doesn’t. Why doesn’t the CPU know for sure if there is an
error? Hint: See Appendix G.

3. In Chapter 7, the base two display works by successive division by 2
performed by a shift instruction. Why can’t a division by 10 for decimal

be performed by a shift instruction?

Programming Exercises

1. Line 19 (ADD AH,'0') of subroutine v_dig1 maps a binary digit to its
ASCII equivalent. This limits subroutine v_dig1 to a maximum base of
10. Modify v_dig1 to use a translation table as was done in subroutine
v_hex1 in Chapter 7. Note: Register AL will have to be used, so a little
extra coding will be needed besides the translation table and the XLAT
instruction.

2. Replace the disp macro calls to subroutines v_bin1 and v_hex1 in the
main program with dispbs calls with base arguments of 2 and 16,
respectively.

3. Modify subroutine v_dig1 so that its output is right justified. This can
actually be easier coding the the original, but be sure to initialize the
dbuf buffer to blanks with each call to v_dig1.

4. Generally, a signed number is negative if its high order bit is a one (bit 7
= 1 for an 8-bit value). Modify v_dig1 to output a negative number as a
minus sign followed by the negative (NEG instruction) of the original
value.

— 9 —
Arrays & Strings

An array is an ordered list of adjacent storage locations in memory. The list
is composed of elements of a fixed size that can be bytes, words, or even a
more complicated combination of bytes and words. Tables, vectors, and
matrices are other names commonly associated with arrays, and many times
only differ by the number of dimensions (number of rows, number of
columns, etc.).

A string has traditionally referred to a byte-array of ASCII characters
such as a message to be displayed. There are several “string manipulation”
instructions within the X86-64 architecture, and they are not just limited to
bytes, but work with words, double words, and even quad words. “String
instructions” process data sequentially from beginning to end or end to
beginning, while “indexing” instructions access array elements in any
“random” order.

The sample program in Chapter 9 uses a variety of string and indexing
instructions to copy data from one location in memory to another. It builds
upon the simple keyboard echo program from Chapter 4. This program will
then be extended in chapters 10 and 11 covering SIMD (Single Instruction
Multiple Data) operations.

Introductions

X86-64 instructions:

LODSQ: Load quad word from memory into register RAX. Instructions
LODSB, LODSW, and LODSD are the same instruction as LODSQ
except they load AL, AX, and EAX, respectively.
STOSQ: Store RAX into quad word in memory. STOSB, STOSW, and
STOSD store registers AL, AX, and EAX, respectively.

MOVSQ: Copy a quad word from one location in memory to another.
MOVSB, MOVSW, and MOVSD copy bytes, words, and double words,
respectively.
REP: An instruction prefix that turns string instructions into “hardware”
loops.

Special Registers

Some of the X86-64 general purpose registers have a special purpose from
both hardware and software perspectives (see Table 3.1). String instructions
are limited to the following string index registers.

RAX: Data register used in string instructions
RSI: Source index used in string instructions
RDI: Destination index used in string instructions
RCX: Counter register used in REP string instructions

The line echo program, originally appearing in Listing 4.1, has been modified
in Listing 9.1 with the following enhancements:

Lines 10 through 20: Macro “txtOut” has been added to simply display a
fixed length string in memory in ASCII.
Line 53: Echoes the keyboard input buffer “as is”
Lines 55 through 62: Loop that copies keyboard input buffer using string
load and store instructions
Line 63: Display copy of keyboard input
Lines 84 and 85: Reserve memory for keyboard and display buffers.
Note: For this first example “byte” rather than “quadword” is more
appropriate for size, but upcoming modifications will need the quad
word size.

1. includelib kernel32.lib ; Windows kernel interface
2. GetStdHandle proto ; Function to retrieve I/O handles
3. WriteConsoleA proto ; Function writes command window
4. ReadConsoleA proto ; Function reads keyboard buffer

5. Console equ -11 ; Device code for console output.
6. Keyboard equ -10 ; Device code for console input.
7. MaxBuf equ 40 ; Maximum input buffer size
8. ExitProcess proto
9.

10. ; Macro "txtOut msg, nchar" displays a character string.
11. ; msg: Address of ASCII message
12. ; nchar: Address of message length
13.
14. txtOut macro msg,nchar ; Message location and length
15. mov RCX,stdout ; Handle to standard output device
16. lea RDX,msg ; Pointer to message to display
17. mov R8,nchar ; Number of characters to display
18. lea R9,nbwr ; Number of bytes actually written.
19. call WriteConsoleA ; Write text string to window.
20. endm
21.
22. .code
23.
24. ; Main program that reads text message from user through command
25. ; window keyin and displays it in same command window.
26. ; 1. Multiple lines are input until only "Enter" key pushed.
27. ; 2. Each line will be output twice: as input and a copy.
28.
29. main proc
30.
31. sub RSP,40 ; Reserve "shadow space" on stack.
32.
33. ; Obtain "handles" for console I/O streams
34.
35. mov RCX,Console ; Console standard output handle
36. call GetStdHandle ; Returns handle in register RAX
37. mov stdout,RAX ; Save handle of console display.
38. mov RCX,Keyboard ; Console standard input handle
39. call GetStdHandle ; Returns handle in register RAX
40. mov stdin,RAX ; Save handle for keyboard input.
41.
42. ; Display the prompt message.
43.
44. nxtlin: txtOut pmsg,plen ; Write text string to command box.
45.
46. ; Read input line from user keyboard.
47.

48. mov RCX,stdin ; Handle to standard input device
49. mov R8,MaxBuf ; Maximum length to receive
50. lea RDX,keymsg ; Memory address to receive input
51. lea R9,nbrd ; Number of bytes actually read.
52. call ReadConsoleA ; Read text from keyboard input.
53. txtOut keymsg,nbrd ; Write text back to command box.
54.
55. ; Copy message to a second buffer and display it, too.
56.
57. lea RSI,keymsg ; Pointer to input buffer
58. lea RDI,dismsg ; Pointer to display buffer
59. mov RCX,MAXBUF ; Size of buffer in bytes
60. cpylp: lodsb ; Load next byte and inc RSI.
61. stosb ; Store byte from AL and inc RDI.
62. loop cpylp ; Continue until all copied.
63. txtOut dismsg,nbrd ; Display new copy.
64.
65. ; Go get another line, but exit if only "Enter" key was input.
66.
67. mov R8,nbrd ; Length (bytes) of input message
68. cmp R8,2 ; Test if only CR and LF characters.
69. jg nxtlin ; Loop back to get another input.
70.
71. add RSP,40 ; Replace "shadow space" on stack
72. mov RCX,0 ; Set exit status code to zero.
73. call ExitProcess ; Return control to Windows.
74. main endp
75.
76. .data
77. pmsg byte "Please enter text message: "
78. align 16
79. plen qword lengthof pmsg ; Number of bytes in prompt message.
80. stdout qword ? ; Handle to standard output device
81. nbwr qword ? ; Number of bytes actually written
82. stdin qword ? ; Handle to standard input device
83. nbrd qword ? ; Number of bytes actually read
84. keymsg qword MaxBuf DUP (?) ; Memory buffer for keyboard input
85. dismsg qword MaxBuf DUP (?) ; Memory buffer for display
86. end

Listing 9.1: Loop that copies keyboard buffer to display buffer

Assembling, linking, and executing the main program in Listing 9.1 is as
simple as that for the single source file used in chapters 3 and 4. Listing 9.2
shows a sample execution where a line of text is input from the keyboard, and
the program displays it twice: once from the input buffer and once from a
copy of the input buffer. The first echo of the input line verifies that the input
buffer has been filled, while the second verifies that the string copy has been
successful. Entering only the “Enter” key terminates the program.

C:\ASM64> PATH C:\######\Hostx64\x64;%PATH%
C:\ASM64> COPY X64_Asm-master\Listing_9_1.txt main.asm
C:\ASM64> ML64 main.asm /link /SUBSYSTEM:CONSOLE /ENTRY:main
C:\ASM64>main
Please enter text message: First test - 123
First test - 123
First test - 123
Please enter text message: Another test!
Another test!
Another test!
Please enter text message:

C:\ASM64>

Listing 9.2: Program execution

String instructions were first introduced in Chapter 7 in the v_bin1
subroutine. There in Listing 7.1 and Figure 7.1, instruction STOSB stored the
value in the AL register into the memory location pointed to by register RDI,
and then RDI was automatically incremented to the next memory location to
be filled. Since the direction flag was 0, RDI was incremented, but if it was 1,
then RDI would have been decremented. In that subroutine, I used the CLD
instruction to make sure the flag was clear because the states of the flags in
the RFLAGs register are not guaranteed in the X64 Calling Convention.

Although the direction flag register is clear when a Windows program
starts, it is still a good idea to precede a copy-loop, such as that in Listing 9.1,
with a CLD instruction. I could have used the STD instruction to set the
direction flag if I had wanted to fill the array in reverse order (see

Programming Exercise 1).
The LODSB instruction is similar to the STOSB instruction except the

data pointed to by the source index register RSI is loaded into byte register
AL. Register RSI is then either incremented or decremented depending on the
state of the direction flag. As shown in Table 9.1, the X86-64 architecture has
been expanded to include loading the EAX and RAX registers in addition to
the AL and AX options available with the original 8086.

Instruction Register loaded from
[RSI]

RSI incremented or
decremented by ...

LODSB AL 1

LODSW AX 2

LODSD EAX 4

LODSQ RAX 8

Table 9.1: Four variations of the LODS instruction

Listing 9.3 shows a modification to the program where each pass through the
copy loop moves 16 bits at a time. Similar modifications can be made to
move 32 and 64 bits at a time.

57. lea RSI,keymsg ; Pointer to input buffer
58. lea RDI,dismsg ; Pointer to display buffer
59. mov RCX,MAXBUF ; Size of buffer in wordss
60. cpylp: lodsw ; Load next word and inc RSI.
61. stosw ; Store word from AX and inc RDI.
62. loop cpylp ; Continue until all copied.

Listing 9.3: Loop that copies 16 bits at a time

Little Endian

Listing 9.4 alters the same copy loop, but couples a LODSQ instruction to
load the RAX register with a STOSB instruction to store only the AL

register. Obviously, data will be lost in this copy as is illustrated by the
program execution in Listing 9.5

57. lea RSI,keymsg ; Pointer to input buffer
58. lea RDI,dismsg ; Pointer to display buffer
59. mov RCX,MAXBUF ; Size of buffer in bytes
60. cpylp: lodsq ; Load next quad and inc RSI.
61. stosb ; Store byte from AL and inc RDI.
62. loop cpylp ; Continue until all copied.

Listing 9.4: Loop with LODSQ and STOSB

Are you surprised that “AIQY” is displayed from the copied buffer and
not “HPX6”? In other words, did you expect register AL to contain the letter
“H” being the eighth letter input instead of “A” which was the first?

C:\ASM64>main
Please enter text message:
ABCDEFGHIJKLMNOPQRSTUVWXYZ123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ123456789
AIQY
Please enter text message:

C:\ASM64>

Listing 9.5: Loop with LODSQ and STOSB

If you step through the first four passes through the loop, register RAX will
contain the following values. Note: After going through Chapter 13 using the
interactive debugger, come back to this program and single step through it to
watch the registers change.

First RAX contents: “HGFEDCBA”
Second RAX: “PONMLKJI”
Third RAX: “XWVUTSRQ”
Fourth RAX: “654321ZY”

Does this seem to be backwards? It’s what is known as “little endian” format.
As seen in Figure 9.1, the first byte from the memory buffer is loaded first
into the “little end” (i.e., bit 0) of the register, and the succeeding bytes keep
moving in until the “big end” is reached.

Figure 9.1: Demonstrates “Little Endian”

Figure 9.2 shows where each byte loaded into register RAX on the first three
passes come from in the buffer.

Figure 9.2: Three passes through the copy loop

Not all “byte-addressable” computers use little endian. Mainframe computers
from the 1960s used big endian, while mini-computers in the 1970s typically
used little endian as did microcomputers like the Intel 8086. The ARM
architecture even has a processor state register bit that can switch between big
and little endian formats.

Figure 9.3: Difference between little and big endian formats

Outside of some possible memory bus hardware advantage, is there any
software advantage of little endian over big endian? One advantage is
automatic casting (changing types) for small constants in memory. As seen in
Figure 9.4, the same pattern in memory works with byte, word, double word,
and quad word values.

Figure 9.4: Same value if loaded into AL, AX, EAX, or RAX.

The X86-64 architecture has one memory to memory instruction: MOVS.
Listing 9.6 shows a modification to the copy loop where the MOVSQ
instruction copies the quad word from memory location [RSI] to memory
location [RDI], and then increments both RSI and RDI. Bytes, words, and
double words can also be copied using MOVSB, MOVSW, and MOVSD,
respectively.

57. lea RSI,keymsg ; Pointer to input buffer
58. lea RDI,dismsg ; Pointer to display buffer
59. mov RCX,MAXBUF ; Size of buffer in quad words
60. cpylp: movsq ; Copy next quad and inc RSI,RDI.
61. loop cpylp ; Continue until all copied.

Listing 9.6: Copy program using MOVSQ instruction

Instruction Prefixes

The above copy can actually be reduced to just one instruction. The X86
architecture has always had a repeat “prefix” that will continuously execute a
single string instruction, decrement the RCX register on each pass, and
continue to do so until RCX reaches zero. Not only can the REP work with
the MOVS instructions as shown in Listing 9.7 to copy a text “string,” but
also with the STO instructions for initializing an array to some fixed value.

57. lea RSI,keymsg ; Pointer to input buffer
58. lea RDI,dismsg ; Pointer to display buffer
59. mov RCX,MAXBUF ; Size of buffer in quad words
60. rep movsq ; Copy block of memory.

Listing 9.7: Repeat prefix used with string instruction

Two other instructions that can work with the REP prefix are CMPS
(Compare String) and SCAS (Scan String). These can search for a particular
value in an array or string.

Indexed Addressing

Most of the common arithmetic and logical X86-64 instructions involve a
register and a second operand in one of the following formats: Immediate,
Register, Direct, and Scaled Index.

1. Immediate: ADD R15, Const
A constant is added to a register.

2. Register: ADD R15, R14
The contents of two register are added.

3. Direct: ADD R15, MemLoc
The contents of a memory location are added to the contents of a

register.
4. Scaled Index: ADD R15, [R14+8*R13+Const]

The address of a memory location is calculated from the sum of 1) the
contents of a “base” register, 2) the contents of an “index” register times
a scale factor of 1, 2, 4, or 8, and 3) a constant. The contents of this
calculated memory location is then added to the contents of a register.

In the above examples, Const refers to a constant known at assembly time
such as the integer 137, and MemLoc refers to a label in the data area such as
the name of an array. I used registers R13, R14, and R15 in the examples, but
almost any of the general purpose registers will work. The examples used
ADD, but MOV, SUB, and logical instructions like AND also work.

The Direct format can be thought of as a special case of the Scaled Index
format, where the base and index registers are ignored. Other “special cases”
of the Scaled Index format are the following:

1. Base Relative plus Index: ADD R15, [R14+R13+Const]
This is like the Scaled Index format where the scale factor equals 1. An
alternate format is “ADD R15, MemLoc[R14+R13]” where MemLoc
is a label in the data area (such as the beginning of an array).

2. Base plus Index: ADD R15, [R14+R13]
The sum of the contents of registers R14 and R13 points to a memory
location containing a value to be added to the contents of register R15.
This is like the Scaled Index format where the scale factor equals 1 and
the constant equals 0.

3. Register Relative: ADD R15, [R14+Const]
An alternate format is “ADD R15, MemLoc[R14]” where MemLoc is
simply a label in the data area (such as the beginning of an array).

4. Register Indirect: ADD R15, [R14]
The “base” register R14 points to a memory location containing a value
to be added to the contents of register R15.

Listing 9.8 shows the previous copy program using the Scaled Index
instruction format to copy one array to another, one quad word at a time. Of
course, the power of this “indexing” format is in randomly indexing into an
array rather than sequentially stepping through it.

57. lea R13,keymsg ; Pointer to input buffer
58. lea R14,dismsg ; Pointer to display buffer
59. mov RCX,MAXBUF ; Buffer size in quad words
60. xor R15,R15 ; Initialize index to zero.
61. cpylp: mov R12,[R13+8*R15] ; Load next quad.
62. mov [R14+8*R15],R12 ; Store 64-bits into buffer.
63. inc R15 ; Increment index by 1.
64. loop cpylp ; Continue until all copied.

Listing 9.8: Copy using Scaled Index format instructions

Listing 9.9 is basically the same as Listing 9.8, except registers R13 and R14
are no longer needed since the Scaled Index MOV instructions in the copy
loop now point to the beginning of each array. Note: The option
“/LARGEADDRESSAWARE:NO” will be needed for the linker. Put it at the
end of the ML64 command line.

57. mov RCX,MAXBUF ; Buffer size in quad words
58. xor R15,R15 ; Initialize index to zero.
59. cpylp: mov R12,keymsg[8*R15] ; Load next quad.
60. mov dismsg[8*R15],R12 ; Store 64-bits into buffer.
61. inc R15 ; Increment index by 1.
62. loop cpylp ; Continue until all copied.

Listing 9.9: Copy using Scaled Index format instructions

Instead of using register R15 as an index, register RCX can be both the
counter and the index, but the array will be copied from end to beginning
instead of beginning to end. See Programming Exercise 3 for details.

Review Questions

1. Which combination of LODS and STOS in the copy as in Listing 9.4
would be used to convert ASCII to Unicode?

2. * Using the Scaled Index format, what instruction would implement

ARRAY[I] = 6 if register DX contained the value 6, ARRAY is an array
of 32-bit integers, and register R15 represents the index I?

3. Why do arrays in most programming languages today begin with an
index of zero instead of one? Also, why do we number bits within a
register beginning with zero instead of one? Appendix G may have some
hints.

4. Why is the “little end” (i.e., the “low order” bit) of a register on the left?
Wouldn’t that solve some of the confusion with little endian? Hint: See
Appendix G.

Programming Exercises

1. Alter the string copy loop in Listing 9.1 to copy in the reverse direction
(RSI and RDI being decremented). You will need the STD instruction
and probably the LENGTHOF directive.

2. Modify Listing 9.4 to convert from Unicode to ASCII. The
ReadConsoleA function will have to be changed to ReadConsoleW to
get Unicode, and the copy loop will need LODSW with LODSB.

3. * Modify Listing 9.9 to copy the buffer from end to beginning by using
register RCX as both the array index and loop counter. Hint: Use
“R12,keymsg[8*RCX-8]” instead of “keymsg[8*R15]”

— 10 —
Parallel Logic

Application developers and users always want better performance, and
electronics designers have generally been able to fulfill those expectations for
decades. Of course, whenever one application is satisfied, another one that
was previously “impossible” whets the appetite of application developers for
continued performance enhancements. “Moore’s Law” implies that computer
performance will double every 18 months, mostly due to improvements in the
packing density of transistors on integrated circuits. Oddly enough, this has
proven to be the case for over three decades, far longer than many of us
thought possible.

One way to improve performance is to perform multiple operations in
parallel. Chapter 10 introduces parallel operations using logical instructions
that have been available on almost all computers for decades. Chapters 11
and 12 will present the SSE and AVX extensions within the X86-64
architecture that provides parallelism for arithmetic operations.

Introductions

X86-64 instructions:

OR: Logical Inclusive OR (64 simultaneous logical operations)
XOR: Logical Exclusive OR (64 simultaneous logical operations)

Case Conversion Example

The copy program from Chapter 9 will now be slightly modified to use
logical instructions to change the case of letters entered at the keyboard. As
already seen in Chapter 7, the logical instructions in almost all CPUs are

“bitwise” logical operations:

In the 64-bit X86-64 registers, sixty-four logical operations are
performed independently and in parallel. Logical operations can also be
performed 32, 16, and even 8 bits at a time by specifying the appropriate
sized registers or memory locations.
For example, in an “OR R12, R13” instruction, bit 0 of register R12 is
ORed with bit 0 of R13, and the result is placed back into bit 0 of R12.
Likewise, bit 1 of R12 is ORed with bit 1 of R13, and the result is
placed into bit 1 of R12. The remaining 62 bits are similar.

In ASCII, the difference between the character code for a lower case letter
and an upper case letter is bit 5. As shown in Figure 10.1, the upper case “A”
can be changed to lower case by setting bit 5. This can either be done through
addition or the inclusive OR, both of which are commonly represented by the
plus sign.

Figure 10.1: Convert upper case ASCII letter to lower case

The three logical operators available in almost every computer architecture
are the AND, the inclusive OR, and the exclusive OR. Their truth tables, as
well as the X86 operator names, are provided in Figure 10.2. We have
already used the AND operation in previous chapters, so we will now use the
XOR (exclusive OR) to switch the case of letters and the OR (inclusive OR)

to force letters to lower case.

Figure 10.2: Truth tables for the logical AND, OR, and exclusive OR operations

The program in Listing 10.1 is a stand-alone program without any
subroutines. It performs the following:

1. Prompts the user and reads a text line from the keyboard.
2. Echoes the input line back to the user the same as it was received.
3. Toggles the “case” of the first eight bytes, where lower case letters are

converted to upper case, and upper case letters are converted to lower
case. The entire text line will then be displayed. Warning: If non-alpha
characters are in the first eight bytes, unusual conversions may take
place.

4. Convert the first eight bytes to lower case. The entire text line will then
be displayed again.

5. Continue the above four steps until a blank line is input.

1. includelib kernel32.lib ; Windows kernel interface
2. GetStdHandle proto ; Function to retrieve I/O handles
3. WriteConsoleA proto ; Function writes command window
4. ReadConsoleA proto ; Function reads keyboard buffer
5. Console equ -11 ; Device code for console text output.

6. Keyboard equ -10 ; Device code for console text input.
7. MaxBuf equ 40 ; Maximum input buffer size
8. ExitProcess proto
9.

10. ; Macro "txtOut msg, nchar" displays a character string.
11. ; msg: Address of ASCII message
12. ; nchar: Address of message length
13.
14. txtOut macro msg,nchar ; Message location and length
15. mov RCX,stdout ; Handle to standard output device
16. lea RDX,msg ; Pointer to message to display
17. mov R8,nchar ; Number of characters to display
18. lea R9,nbwr ; Number of bytes actually written.
19. call WriteConsoleA ; Write text string to window.
20. endm
21.
22. .code
23.
24. ; Main program that reads text message from user through command
25. ; window keyin and displays it in same command window.
26. ; 1. Multiple lines are input until only "Enter" key pushed.
27. ; 2. Each line will be output "as is" and two case changes.

28.
29. main proc

30.
31. sub RSP,40 ; Reserve "shadow space" on stack.
32.
33. ; Obtain "handles" for console I/O streams
34.
35. mov RCX,Console ; Console standard output handle
36. call GetStdHandle ; Returns handle in register RAX
37. mov stdout,RAX ; Save handle of console display.
38. mov RCX,Keyboard ; Console standard input handle
39. call GetStdHandle ; Returns handle in register RAX
40. mov stdin,RAX ; Save handle for keyboard input.
41.
42. ; Display the prompt message.
43.
44. nxtlin: txtOut pmsg,plen ; Write text string to command box.
45.
46. ; Read input line from user keyboard.
47.

48. mov RCX,stdin ; Handle to standard input device
49. mov R8,MaxBuf ; Maximum length to receive
50. lea RDX,keymsg ; Memory address to receive input
51. lea R9,nbrd ; Number of bytes actually read.
52. call ReadConsoleA ; Read text string from command box.
53. txtOut keymsg,nbrd ; Write text back to command box.
54.
55. ; Change case of first 8 letters and echo again
56.
57. mov R13,keymsg ; First 8 bytes of message.
58. xor R13,qword ptr [cvt] ; "Flip" the letter case.
59. mov keymsg,R13 ; Overlay start of message.
60. txtOut keymsg,nbrd ; Display whole message.
61.
62. ; Convert to lower case and echo again
63.
64. or R13,qword ptr [cvt] ; Convert to lower case.
65. mov keymsg,R13 ; Overlay start of message.
66. txtOut keymsg,nbrd ; Display whole message.
67.
68. ; Go get another line, but exit if only "Enter" key was input.
69.

70. mov R8,nbrd ; Length (bytes) of input message
71. cmp R8,2 ; Test if only CR and LF characters.

72. jg nxtlin ; Loop back to get another input.
73.
74. add RSP,40 ; Replace "shadow space" on stack
75. mov RCX,0 ; Set exit status code to zero.
76. call ExitProcess ; Return control to Windows.
77. main endp
78.
79. .data
80. pmsg byte "Please enter text message: "
81. align 16 ; Set up for quad words alignment
82. plen qword lengthof pmsg ; Number of bytes in prompt message.
83. stdout qword ? ; Handle to standard output device
84. nbwr qword ? ; Number of bytes actually written
85. stdin qword ? ; Handle to standard input device
86. nbrd qword ? ; Number of bytes actually read
87. keymsg qword MaxBuf DUP (?) ; Memory buffer for keyboard input
88. cvt byte 8 DUP (20h) ; Pattern to convert letter case.
89. end

Listing 10.1: Program that changes the case of the first eight letters input.

The following lines perform the case conversion in the above program:

Line 58: The XOR instruction takes the exclusive OR of bit 0 from
register R13 with bit 0 of first quad word in the CVT array. The same
logical operation is done for the other bit positions 1 through 63.
Because CVT contains eight copies of the binary pattern 00100000, the
exclusive OR will toggle bit 5 of each of the eight ASCII characters
loaded into R13, thereby changing their cases.
Line 59: The result of the above 64 exclusive OR operations are stored
back into the first 8 bytes of the keyboard buffer.
Line 64: Each bit in register R13 is ORed with its corresponding bit in
the CVT array, thereby changing all eight letters to lower case.
Line 88: Eight bytes of binary 00100000 corresponding to bit 5 of each
byte.

The program is compiled, linked, and executed as in the previous chapter.
The following test output shows the case changes as expected. What is that
“_*_*” on the last line? Please see review Question 1 for more details.

C:\ASM64>main
Please enter text message: This is a test
This is a test
tHIS IS a test
this is a test
Please enter text message: AbCdEfGhIjKlMn
AbCdEfGhIjKlMn
aBcDeFgHIjKlMn
abcdefghIjKlMn
Please enter text message:
-*-*
C:\ASM64>main

Listing 10.2: Sample execution of changing case of first 8 letters input from keyboard

Review Questions

1. * In Listing 10.2, why does the program output _*_* as the last line
echoed?

2. On lines 58 and 64 of Listing 10.1, why is “qword ptr [cvt]” used
instead of just “cvt”?

3. Which logical instruction (AND, OR, or XOR) can clear all bits in a
register to zero without using an immediate value of zero?

4. Using a logical instruction with a 64-bit register such as RAX affects all
64 bits of the register. In an instruction such as “AND EAX,0” using
only the lower 32 bits, what happens in the upper 32 bits of RAX?

Programming Exercises

1. Modify Listing 10.1 to clear bit 5 of each byte which will effectively
convert the first eight letters to upper case. One possible way to clear bit
5 is to AND each byte with binary 11011111.

— 11 —
SSE & AVX

Streaming SIMD Extensions (SSE) and Advanced Vector Extensions
(AVX) are two enhancements to the basic X86 instruction set to improve
performance. Each consists of a set of instructions and a special register set
that provide the following features not present among the original Intel 8086
instructions.

1. SIMD: Single Instruction Multiple Data (SIMD) capability where the
same instruction, such as addition, is performed on multiple pairs of
numbers “at the same time”

2. Floating Point: Arithmetic supporting fractions and scientific notation
(very large and very small real numbers)

3. Saturation Arithmetic: Instead of setting carry and overflow flags,
arithmetic operations will fill the result register with either the highest or
lowest value possible for the particular data type.

4. Special Instructions: Many specialized instructions such as fused
multiply/addition, square root, extreme values, etc. are now available.

From a user perspective, SSE and AVX are very similar, where SSE appeared
earlier in the X86 product line with 128-bit registers. Two versions of AVX
were included later, the first with 256-bit registers and AVX-512 with 512-bit
registers. SSE and AVX were preceded in the X86 product line by a floating
point coprocessor and MMX (multimedia extensions), both of which are now
outdated.

The SSE and AVX instruction sets are very extensive, and I’m only
providing a quick introduction to some of their capabilities. The program
from Chapter 10 which performs logical operations in parallel will be altered
in Chapter 11 to use SSE instructions and registers. A second sample
program will compare saturated and non-saturated arithmetic using SIMD
instructions. A floating point discussion and sample program appear in

Chapter 12.

Introductions

X86-64 (SSE) instructions:

MOVDQU: Move Unaligned Double Quad word (move a 128-bit value
that does not have to be aligned on a 16-byte memory address)
POR: Packed logical OR
PXOR: Packed logical XOR
PADDB: Packed addition of 8-bit integers

ML64 directives:

XMMWORD PTR: Pointer to 128-bit memory data type

SSE and AVX Registers

The SSE and AVX instructions use their own sets of registers that are distinct
from the 64-bit general purpose registers of the basic X86-64 architecture.

XMM: 128-bit registers used with SSE instructions. Depending on the
CPU version, there can be either 8 (XMM0 through XMM7), 16, or 32
XMM registers.
YMM: 256-bit registers used with AVX instructions. Depending on the
CPU version, there can be either 16 (YMM0 through YMM15) or 32
YMM registers. The lower 128 bits of each YMM register are the same
as (i.e., overlap) the corresponding XMM register.
ZMM: 512-bit registers used with AVX-512 instructions. There are 32
ZMM registers (ZMM0 through ZMM31), and the lower 256 bits of
each ZMM register are the same as (i.e., overlap) the corresponding
YMM register.

The program from Chapter 10 that changed the case of the first 8 ASCII
characters of a text line has been modified to use SSE instructions and an

XMM register. Listing 11.1 shows the modifications which now change the
case of the first 16 letters of each text line (16 8-bit ASCII characters fit in
each 128-bit XMM register). The program is simply assembled, linked, and
executed as before giving the sample output shown in Listing 11.2.

55. ; Change case of first 16 letters and echo again
56.
57. movdqu XMM8,xmmword ptr [keymsg] ; First 16 bytes of message.
58. pxor XMM8,xmmword ptr [cvt] ; "Flip" the letter case.
59. movdqu xmmword ptr [keymsg],XMM8 ; Overlay start of message.
60. txtOut keymsg,nbrd ; Display whole message.
61.
62. ; Convert to lower case and echo again
63.
64. por XMM8,xmmword ptr [cvt] ; Convert to lower case.
65. movdqu xmmword ptr [keymsg],XMM8 ; Overlay start of message.
66. txtOut keymsg,nbrd ; Display whole message.

Listing 11.1: Changing the case of the first 16 letters

The following lines perform the case conversion in the above program:

Line 57: The 128-bit XMM8 register is loaded with the first 16 bytes of
the keyboard buffer.
Line 58: The SSE PXOR instruction takes the exclusive OR of bit 0
from register XMM8 with bit 0 of first double quad word in the CVT
array. The same logical operation is done for the other bit positions 1
through 127. Because CVT contains sixteen copies of the binary pattern
00100000, the exclusive OR will toggle bit 5 of each of the sixteen
ASCII characters loaded into XMM8, thereby changing their cases.
Line 59: The result of the above 128 exclusive OR operations are stored
back into the first 16 bytes of the keyboard buffer.
Line 64: Each bit in register XMM8 is ORed with its corresponding bit
in the CVT array, thereby changing all sixteen letters to lower case.
Line 88: Sixteen bytes of binary 00100000 corresponding to bit 5 of
each byte are in array cvt..

The program is compiled, linked, and executed as in the previous chapter.
The following test output shows the case changes as expected. What is that
“_*_*” on the last line? Please see Review Question 1 from Chapter 10 for
more details.

C:\ASM64>main
Please enter text message: Hi There Everybody!
Hi There Everybody!
hI tHERE eVERYBOdy!
hi there everybody!
Please enter text message:
AbCdEfGhIjKlMnOpQrStUvWxYz
AbCdEfGhIjKlMnOpQrStUvWxYz
aBcDeFgHiJkLmNoPQrStUvWxYz
abcdefghijklmnopQrStUvWxYz
Please enter text message:
-*-*
C:\ASM64>main

Listing 11.2: Sample execution of changing case of first 16 letters input from keyboard

Alignment

Most computer memories, including that of the X86-64 architecture, are byte-
addressable. Instructions accessing words, double words, and quad words
sometimes have problems fetching the multiple bytes they need at one time.
Some problems such as big and little endian amount to simply knowing the
correct pattern, while other problems lead to performance degradation or
hardware exception errors.

“Aligned” means that 16-bit words are loaded only from even memory
addresses, 32-bit double words are loaded only from addresses that are
multiples of 4, 64-bit quad words are loaded only from addresses that are
multiples of 8, and 128-bit double quad words are loaded only from addresses
that are multiples of 16.

Although some instructions, such as MOVDQU (Move Unaligned
Double Quad word), work with unaligned data addresses, it is generally safer
to organize data storage on appropriate boundaries using the “align”

directive.

Packed Integer Arithmetic

SSE and AVX also provide integer arithmetic operations. How do the results
from an arithmetic operation such as addition or multiplication compare to
one of the logical operations? Logical operations are bit-by-bit, and the
results stay in each bit “column,” but arithmetic operations must expand to
use more bits. Even an example such as 12+12=102 shows addition can have a
carry that requires another bit column. In order to provide multiple
simultaneous parallel arithmetic operations, the SSE and AVX instructions
“pack” arithmetic operations in fixed-sized “lanes” and do not allow the
results from one lane to carry into the next. For SSE instructions, the
maximum number of lanes is sixteen (128-bit XMM register divided by an 8-
bit lane width)

The new main program in Listing 11.3 demonstrates sixteen additions
taking places simultaneously in 8-bit lanes. It’s output shows the results of
staying in each lane without carrying into the next.

1. Macro dispbs will be called to display the contents of a byte in decimal.
It is identical to that already used in Chapter 6.

2. Outer loop: Add the contents of each lane to itself, and display the first
eight lanes on the display screen. On each of the four iterations through
the loop, the contents in each lane will double.

3. Inner loop: Although the SSE instruction adds all sixteen 8-bit lanes
simultaneously, the display routine will only loop through the the first
eight values to display them.

Take note of the following lines in Listing 11.3:

Lines 3 through 5: Subroutines from previous chapters will be called.
Lines 7 through 17: Macro dispbs outputs one of the lanes in decimal.
Note: Change the 10 to a 2 to display the lane in binary if you like.
Line 35: Outer loop is initialized for four passes through the loop. More
passes could be made, of course.

Lines 47 through 51: Use SSE instructions to double the 16 8-bit
integers in array intlst.

1. includelib kernel32.lib ; Windows kernel interface.
2. ExitProcess proto
3. v_asc proto ; Function writes ASCII string.
4. v_opn proto ; Function opens display stream.
5. v_dig1 proto ; Display byte in selected base (2-10)
6.
7. ; Macro "dispbs base,tail" calls v_dig1, then displays a string.
8. ; base: Base (2 - 10) for display of number
9. ; tail: Separation string to be output

10.
11. dispbs macro base,tail
12. mov R11,base ; Load base for display.
13. call v_dig1 ; Display number in base [R11]
14. lea RDX,tail ; Pointer to message to display
15. mov R8,lengthof tail ; Number of characters to display
16. call v_asc ; Write text to command window.
17. endm
18.
19. .code
20.
21. ; Main program doubles and displays contents of SSE register.
22. ; 1. Packed addition adds multiple numbers simultaneously.
23. ; 2. An inner loop displays each sum one at a time.
24.
25. main proc
26.
27. sub RSP,40 ; Reserve "shadow space" on stack.
28.
29. ; Obtain "handles" for console Input streams
30.
31. call v_opn ; Open text display stream.
32.
33. ; Make four passes through loop to double the value of each integer.
34.
35. mov R14,4 ; Use R14 for loop counter.
36.
37. ; Display first eight 8-bit integers in array intlst.
38.

39. double: lea R12,intlst ; Pointer to array of 8-bit integers
40. mov R13,7 ; Loop through first 7 integers
41. inloop: dispbs 10,tab ; Display byte in decimal.
42. inc R12 ; Set pointer to next integer.
43. dec R13 ; Decrement byte count remaining.
44. jg inloop ; Loop until all 7 done.
45. dispbs 10,newln ; Display eighth integer.
46.
47. movdqu XMM3,xmmword ptr [intlst] ; 16 8-bit integers.
48. paddb XMM3,XMM3 ; Double the value in XMM3.
49. ; paddusb XMM3,XMM3 ; Unsigned Saturated values in XMM3
50. ; paddsb XMM3,XMM3 ; Signed Saturated values in XMM3
51. movdqu xmmword ptr [intlst],XMM3 ; Store 16 integers.
52.
53. dec R14 ; Decrement passes remaining.
54. jg double ; Loop back to double again.
55.
56. add RSP,40 ; Replace "shadow space" on stack
57. mov RCX,0 ; Set exit status code to zero.
58. call ExitProcess ; Return control to Windows.
59.
60. main endp
61.
62. .data
63. intlst byte 1,2,10,50,100,150,200,250 ; Array of 8 test integers
64. byte 8 DUP (0) ; Fill remainder of double quad word.
65. newln byte 0DH,0AH ; Carriage return and line feed
66. tab byte 09H ; Horizontal tab character
67. end

Listing 11.3: Main program adds 16 pairs of numbers simultaneously.

Line 48: PADDB Instruction (Packed Addition, Not Saturated, Byte):
This is a normal addition as would be done with the X86 ADD
instruction except no carry or overflow flags are set.
Line 49: PADDUSB Instruction (Packed Addition Unsigned Saturated
Byte): Currently commented out, but will be used in next example to
limit sum to 255.
Line 50: PADDSB Instruction (Packed Addition Signed Saturated
Byte): Currently commented out, but will be used in example to limit

sum to range of -128 to +127.
Lines 63 and 64: List of sixteen 1-byte integers. The second eight
integers are just zero, but they could even be anything because we will
not be looking at them.

Assemble, link, and execute the new program. The main.asm program will
need external subroutines in files v_asc.asm and v_dig1.asm from previous
chapters. All three source files can be compiled and linked as before. Listing
11.4 shows the execution’s display.

  1      2      10    50    100     150    200   250
  2      4      20    100   200     44      144   244
  4      8      40    200   144      88      32     232
  8      16     80    144    32     176     64     208

Listing 11.4: Adding eight lanes (i.e., columns) simultaneously

The first three lanes (i.e., columns in the display) look fine, For example in
lane 1: 1 + 1 = 2, 2 + 2 = 4, and 4 + 4 = 8. However, in lane 4 where 50 + 50
= 100 and 100 + 100 = 200 is correct, a problem appears with
200 + 200 = 144. Carry has occurred! The sum 200 + 200 = 400, which will
not fit in an 8-bit byte. The maximum unsigned value that can fit in 8 bits is
255. Similar carry problems exist for other additions shown in Listing 11.4
and summarized in Figure 11.1.

Figure 11.1 Eight lanes added in parallel with three resulting in caries and one overflow

Saturated Packed Integer Arithmetic

Is there anything that can be done about carry and overflow conditions giving
ridiculous looking results? There are basically two approaches:

1. The traditional approach is simply don’t use too small of a container,
and avoid the problem. Depending on the application, choose a data type
that is large enough to hold any possible value, whether it be word,
double word, or 64-bit quad word.

2. By using “saturation” arithmetic, the X86-64 processor still won’t
provide the correct answer in the case of a carry, but it will keep the
answer as close as possible. For unsigned bytes, the range is 0 through
255. If the result of an addition exceeds 255, then the processor will give
255 as the result. If a subtraction leads to a negative result, then the
processor will give 0 as the result. For signed integer bytes, the range is
-128 through 127.

There are basically twelve variations of packed integer addition and
subtraction, depending on whether saturation is chosen and if the values are
considered signed or unsigned. The 128 bit XMM registers can be packed as
8-bit bytes, 16-bit words, 32-bit double words, or 64-bit quad words.

Figure 11.2: Packed addition and subtraction variations

Instruction Sign/Saturate Number Range Limit

PADDB Not Saturated 16 @ 8 bits No limits

PADDUSB Unsigned/Saturated 16 @ 8 bits 0 to 255

PADDSB Signed/Saturated 16 @ 8 bits -128 to 127

PADDW Not Saturated 8 @ 16 bits No limits

PADDUSW Unsigned/Saturated 8 @ 16 bits 0 to 65,535

PADDSW Signed/Saturated 8 @ 16 bits -32,768 to 
32,767

PADDD Not Saturated 4 @ 32 bits No limits

PADDUSD Unsigned/Saturated 4 @ 32 bits 0 to 
4,294,967,295

PADDSD Signed/Saturated 4 @ 32 bits
-2,147,483,648 
to 
2,147,483,647

PADDQ Not Saturated 2 @ 64 bits No limits

PADDUSQ Unsigned/Saturated 2 @ 64 bits
0 to 
9.2 × 1018

PADDSQ Signed/Saturated 2 @ 64 bits -4.6 × 1018 
to 4.6 × 1018

Table 11.1: Twelve options for SSE packed integer addition

The same program will be run two more times with a one-line alteration to
demonstrate saturation arithmetic. Line 48 will be “commented out” by
placing a semicolon in the first column, and either line 49 or 50 will be
activated instead. Listings 11.5 and 11.6 are the output from modifying the
program using saturation addition in unsigned and signed versions,
respectively.

1. Line 49: PADDUSB, Unsigned Saturated, Range will be 0 to 255 for
bytes.

2. Line 50: PADDSB, Signed Saturated, Range will be -128 to +127.

  1      2      10    50    100     150    200   250
  2      4      20    100   200     255    255   255
  4      8      40    200   255     255    255   255
  8      16     80    255   255     255    255   255

Listing 11.5: Output Unsiged Saturated PADDUSB instead of PADDB

  1      2      10    50    100     150    200   250
  2      4      20    100   127     128    144   244
  4      8      40    127   127     128    128   232
  8      16     80    127   127     128    128   208

Listing 11.6: Output Signed Saturated PADDSB instead of PADDB

The above output of signed saturated looks a little strange with the limits
being 127 and 128. The 128 is binary 10000000 which is -128 for a two’s
complement signed 8-bit number. Likewise, any value over 127 is really a
negative number in an 8-bit signed interpretation. See Appendix G and
Programming Exercise 11.1 for a further explanation.

Figure 11.3: Compare additions for 200 (-56 in signed 8-bits) and 150 (-106 if signed)

Review Questions

1. The AVX instructions are similar to the SSE instructions except they use
the YMM or ZMM registers and the instruction name begins with a “v”
preceding the SSE instruction name (such as vpaddb). What would an
equivalent AVX instruction for “PADDUSB XMM3,XMM3” be?

2. * The packed arithmetic instructions do not set the carry and overflow
flags. How could a program rather simply check for these conditions on
every lane?

3. For saturated arithmetic, there is both a signed and unsigned version
(ADDUSB and ADDSB). Why is there only one version for unsaturated
addition and subtraction?

Programming Exercises

1. Make a new version of the v_dec1 subroutine where it will consider bit
7 to be the sign bit. If negative (i.e., bit 7 is set), then display the minus
sign followed by the negative (NEG instruction) of the byte. Rerun the
saturation samples with this new v_sdec1 subroutine.

2. Make a new version of the v_dec1 subroutine where it will use 16 bit
integers. Rerun the saturation samples with 16-bit PADDW instructions
and this new new v_sdec2 subroutine.

— 12 —
Floating Point

Floating Point arithmetic supports the set of real numbers generally needed
in science and engineering. Its internal storage format is a package similar to
scientific notation, having a sign, a coefficient, and an integer exponent.
Floating point hardware is not new, but has always been complicated,
expensive, and relatively slow. It first appeared in computers during the
1940s, was present on most mainframes of the 1960s, and was available for
the Intel 8086 using the 8087 coprocessor chip.

The SSE (Streaming SIMD Extensions) and AVX (Advanced Vector
Extensions) features of the X86-64 architecture support Single Instruction
Multiple Data (SIMD) floating point operations. In Chapter 12, floating point
format is first discussed, and then a simple coding example is presented.

Introductions

X86-64 (SSE, AVX) instructions:

MOVUPS: Move Unaligned Packed Single-precision value
ADDPS: SSE addition of XMM registers containing four single
precision floating point numbers
ADDPD: SSE addition of XMM registers containing two double
precision floating point numbers
VADDPS: AVX addition of YMM registers containing eight single
precision floating point numbers
VADDPD: AVX addition of YMM registers containing four double
precision floating point numbers

ML64 directives:

REAL4: Initialize a single precision (32 bits) floating point number in
memory
REAL8: Initialize a double precision (64 bits) floating point number in
memory

Floating point can be supported in software, of course, but it is extremely
slow. Floating point coprocessors like the Intel 8087 and 80287 were
developed as options to accompany the Intel 8086 and 80286 CPUs,
respectively. Many of the complex instruction set microcomputers (CISC)
that followed actually contained floating point arithmetic on the same chip.

Moving real number data (i.e., floating point) from one computer system
to another was not impossible, but certainly more difficult than necessary,
and it was even prone to error. The problem with the floating point formats
present in the mainframes and minicomputers of the 1960s and 1970s was
that although they were almost identical in concept, their implementations
were incompatible. In the 1960s, even the size of a floating point number
varied: 32 bits, 36 bits, 48 bits, and 60 bits were common, and double
precision added another four sizes. Some computers used one’s complement;
some used two’s complement. Most had the exponent in base 2, while one
used base 16 and another base 8.

In the 1960s, ASCII was defined to address incompatibility among
character sets in different computers. Likewise in 1985, the Institute of
Electrical and Electronics Engineers (IEEE) standard 754 was defined to
address the incompatibility among floating point formats used by various
computer manufacturers. This standard was later refined in 2008, as well as
becoming standard ISO/IEC/IEEE 60559:2011.

Floating Point Implements Scientific Notation

When we look at real numbers expressed in scientific notation such as
6.0221409×1023, 9.10938356×10-31, and -1.60217662×10-19 used in science,
we observe the following:

1. The number is positive or negative
2. The significant (left of the ×10)

Is in base 10
Contains a decimal point
Has a precision related to the number of digits

3. The exponent (right of the ×10)
Can be negative or positive
Is in base 10
Is a whole number (i.e., although exponents like 5.23 are certainly
allowed in mathematics, we only use integers in scientific notation)

So how are these base 10 real numbers with a wide range of values
implemented in floating point? Figure 12.2 illustrates the floating point
components and their locations within IEEE standard 754’s single precision
format.

Figure 12.2: Single precision floating point fields in IEEE 754 format

Normalization

Does 220 equal 2.2×102 and equal 2200×10-1? Of course. What about binary?
Is 1102 equal to 1.102×22 and equal to 11002×2-1? That is also true. In
scientific notation, a number is expressed in “normalized” form when it has
exactly one non-zero digit left of the decimal point. When a floating point
value is “normalized,” it has exactly one non-zero digit to the left of the

“binary point.” This restriction leads to the following three advantages:

Each real number is represented by a unique floating point value. Of the
above three decimal choices, only 2.2×102 is in scientific notation. Of
the above three binary numbers, only 1.102×22 is eligible for floating
point format.
Since there are only two binary symbols, and the digit left of the binary
point cannot be “0,” it must therefore be a “1.” For this reason, the IEEE
754 format doesn’t include this bit in the 32-bit format, and thereby
“gains” an extra bit of precision.
In “normalized” floating point format, the number of significant digits
will be consistent and maximized. Note: I didn’t say that the precision of
all floating point numbers is equal.

The requirement of normalization was not new when it appeared in the IEEE
754 standard, but was present on all floating point hardware of the 1960s. Of
course, it varied somewhat from one manufacturer’s implementation to
another.

Conversion to IEEE 754 Floating Point

Let’s look at a couple of examples to see how a floating point number in
IEEE 754 format is constructed. The first example will be the easier one to
convert from base 10, since it is only a whole number and requires only the
steps listed below:

1. Convert the number to base 2.
2. Normalize it.
3. Bias the base 2 exponent by adding 127, and store it into bits 23 through

30.
4. Store the fractional part of the normalized binary number into bits 0

through 22. Note: Nothing is done with the “1” that is to the left of the
decimal point.

Figure 12.3: Pack 13.0 into single precision floating point fields in IEEE 754 format

Let’s take a more thorough examination of the construction of floating point
representation using the more complicated example shown in Figure 12.4.
Although several different programing approaches can be taken, the
following the steps are pretty common :

1. Set the sign bit: 1 if negative, 0 if positive.
2. Convert the base 10 exponent into a base 2 exponent
3. Convert the fraction to base 2 as the significant
4. Normalize the significant
5. Bias the base 2 exponent by adding 127, and store it into bits 23 through

30.
6. Store the significant of the normalized binary number into bits 0 through

22. Note: Nothing is done with the 1-bit that is to the left of the decimal
point.

Figure 12.4: Convert scientific notation into floating point format

Why Bias the Exponent?

The obvious answer is that floating point must support a range of both

positive and negative exponents. Appendix G describes four ways of
indicating negative numbers: sign/magnitude, bias, one’s complement, and
two’s complement. They all work, but why not just pick one and use it
consistently? One would think that even though differences arise among
different computer manufactures, at least there would be consistency within a
single machine. The X86-64 uses three of the four techniques, while some
computers of the past, such as the CDC 6600, have employed all four
techniques for representing negative numbers.

Both one’s and two’s complement use the same arithmetic unit for signed
and unsigned numbers. They can also extend to virtually any size “word” by
combining multiple bytes using the carry flag. The bias format, on the other
hand, used in the exponent, enables the integer compare instruction (CMP) to
work on floating point numbers. One way to look at it is that floating point is
a package, and integer format is homogeneous.

Where Did the Most Significant “1” Bit Go?

We put the sign bit into bit position 31. We biased and put the base 2
exponent into bits 23 through 30. We put the fractional part of the normalized
binary number into bits 0 through 22, but we discarded what seems to be the
most significant bit of all. Every additional bit included in a binary number
doubles its range, so if a bit is “always” going to be the same in the floating
point format, why not allow that bit position in the 32-bit word to either
extend the range of the exponent or the precision of the significant?
Secondly, if the bit is not there in the format, it is nearly impossible to make a
non-normalized floating point number.

A Note on Normalization

I have to admit that I took a bit of liberty in the above floating point
description. I did so because that description has been the one that my
students have found the easiest and quickest to accept. You may find other
descriptions where the bias is 128 (hex 80) because that is one half of the 256
range provided in the 8-bit exponent field. The exponent is then decremented

because normalization from a hardware viewpoint has the significant being
less than one.

Traditionally, a normalized floating point number is defined as one where
the significant is shifted until its high order bit is a 1 bit (i.e., the significant is
greater than or equal to ½, but less than 1). Unlike IEEE 754, most floating
point formats did not remove the high order bit even though it “always” had
to be a 1. It was even possible to generate non-normalized floating point
numbers, but their use in arithmetic usually produced undesirable results. A
special non-normalized case is present in the IEEE 754 standard to represent
various special cases such as zero.

Not a Number (NaN)

The IEEE 754 format includes a “value” known as NaN (Not a Number)
which results from operations like square root of a negative number or
division by zero. There are other special cases where the exponent is either all
one bits or all zero bits as shown in Figure 13.1. These cases can be generated
by floating point instructions, and can also be used as operands in floating
point instructions.

Figure 12.5: IEEE 754 floating point numbers and special cases.

The following observations can be made from Figure 12.5:

It would be impossible to make a number that is not normalized if it
were not for these de-normalized special cases. How could you
normalize a floating point value of zero? You can’t. That “assumed”
high order 1-bit in the significant of the IEEE 754 would always get in
the way. How small can a normalized number be? How small can it be if
de-normalized, yet still not zero?
All four of the special cases can be both positive and negative. Positive
and negative infinity are certainly different, but positive and negative
zero really are the same “value.”
Infinity is certainly “not a number” from a math perspective, but there
are also other cases within the IEEE 754 standard as described below.

For an exponent of all one-bits, infinity is identified by its all-zero
significant, while the two types of NaN are identified by a non-zero
“Payload” (definition varies for bits 0 through 21) plus the QNaN quiet flag
in bit 22:

Signaling QNaN=0: If signaling NaN values are in one of the operands
of a floating point operation, a CPU floating point interrupt will occur
that requires immediate special handling by the operating system and
application program.
Quiet QNaN=1: These quiet NaN values will run through the floating
point processor as smoothly as any normalized floating point number.
The result will probably be another quiet NaN that will have to be
examined later, but no immediate action is necessary.

Significant or Mantissa?

The terms “significant” and “mantissa” refer to the fractional part in the
floating point format and are used somewhat interchangeably in the literature.
The term “mantissa” has been used to describe floating point format for
several decades beginning in the mid 1940s. The term “significant” is
preferred in the IEEE 754 documentation apparently because “mantissa” has
been associated with logarithms for centuries, and the “fraction” in the
floating point format really isn’t a logarithm.

Floating Point Sample Code

The function in Listing 12.1 demonstrates a couple of SSE floating point
instructions in a function that simply adds 3.1416 to the input argument
value. In the X64 Calling Convention, floating point augment “values” will
be in registers XMM0 through XMM3 instead of integer values in registers
RCX, RDX, R8, and R9, respectively. Floating point numbers can easily be
displayed from a C program, so for those interested in seeing function addPi
in action, I recommend using the techniques presented in the next chapter.

1. ; Function addPi adds Pi to a floating point value.
2. ; XMM0: 32 bit single precision (first argument).
3.
4. .code
5. addPi proc
6. movups XMM1,pi ; Load floating point Pi value.
7. addps XMM0,XMM1 ; Add Pi to argument.
8. ret ; Return to the calling program
9. addPi endp

10.
11. .data
12. pi real4 3.1416 ; Approximate value of Pi
13. end

Listing 12.1: Subroutine showing SSE floating point instructions

Scalars and Vectors

A scalar value consists of a single number, and a vector value consists of a
group of numbers. Examples of vectors are the position and velocity of an
object in a three-dimensional coordinate system which would have X, Y, and
Z components, for example. An example of a scalar is the mass of an object
(i.e., one number).

Why all the bother? Are vectors used that extensively that it’s worth
adding confusion to push for a performance gain? Consider the following:

1. In physics and engineering, quantities like position, velocity, and
acceleration are all vectors that are measurable quantities.

2. Many scientific and engineering problems are solved using matrix
transformations and inversions which require many vector-type
multiplications and additions.

3. Graphics applications which display the 3-D world mapped onto a 2-D
screen require many matrix multiplications which are efficiently
processed by vector instructions.

4. Digital signal processing and many analog to digital conversions work
efficiently with extensive vector processing.

Review Questions

1. * “By hand, without a computer,” convert the following real numbers
into single precision IEEE 754 floating point and provide the answers in
hexadecimal.

a. 128.0
b. 9.25
c. -9.25
d. 0.03125
e. 128.03125
f. 0.0
g. -0.0

2. * “By hand, without a computer,” convert the following IEEE 754
floating point numbers from hexadecimal back into real numbers in base
10.

a. 42a80000
b. C1A80000
c. 424C8000
d. BF100000
e. 3DCCCCCD

3. Which of the four ways to represent negative numbers described in
Appendix G allows for both a positive and a negative zero?

4. In IEEE 754 floating point format, zero is represented by both the
significant and the exponent being zero. If this was not the case, what
value, expressed as a power of 2, would a word of all zero bits
represent?

5. Why is it impossible to have a non-normalized IEEE 754 format
“value”?

6. * By examining Figure 12.1, what is the smallest absolute value non-
zero normalized number?

7. By examining Figure 12.1, what is the smallest absolute value non-zero
de-normalized number?

8. What type of data processing would work best with quiet NaN values?
9. What type of data processing would work best with signaling NaN

values?

10. * Is getting that extra 1-bit of precision in the significant more important
to the single precision, double precision, or half precision format
numbers?

11. * Why will multiplying by 0.1 always result in a loss of precision in
binary computers?

— 13 —
IDE & C++

Some think I saved the best for the last: the Visual Studio 17 Integrated
Development Environment (IDE) and applications composed of both C and
assembly language. In Chapter 13, Visual Studio will be configured to
properly combine C with assembly language in 64-bit mode, as well as
demonstrate a program composed only of assembly language. The X64
Calling Convention and visual debugging will be highlighted. Actually,
almost all of the embedded systems that I have programmed over the years
“in the real world” consist of a combination of assembly language with a
higher level language like C.

Introductions

Most of the new coding is in C, but there are a couple of X86 instructions not
previously appearing in an example:

XCHG: Exchange the contents of two registers.
LOOP: The LOOP instruction decrements RCX and jumps if RCX
becomes zero. This instruction was described in Chapter 4, but
individual instructions to decrement and jump were used at that time.

Calling Functions from C++

My objective of this chapter is to introduce two powerful program
development techniques: Mixing assembly language with a higher level
language and interactive visual debugging. As pointed out in Chapter 4, there
are basically two techniques used to pass a variable’s data in arguments to a
function or subroutine:

Pass by value: The value of a variable is passed in a register or on the
stack, and the function has no access to the source variable itself.
Pass by reference: The memory address of a variable is passed, and the
function can actually update the variable in the calling routine’s data
area.

Listing 13.1 contains a very short C main program that calls two assembly
language routines that calculate the sum of an array of 32-bit integers:

fcnsum: Function that returns the sum as the return value
thesum: Void function (i.e., subroutine) that returns the sum to a
reference argument

Since this is not a book on C programming, I will only provide details of the
main program shown in Listing 13.1 related to calling assembly language
functions:

Line 1: This include statement is standard with Visual Studio and
contains characteristics of many library functions.
Line 2: This prototype describes the “fcnsum” function that has two
arguments: 1) an array of 32-bit integers, 2) a 32-bit integer. Note: This
function will return its value as a 32-bit integer. This line begins with
“extern "C"” which tells the C compiler to call the function by its actual
name of “fcnsum” rather than a special name that contains additional
information related to object oriented programming.
Line 3: This prototype describes the “thesum” function that has three
arguments: 1) the address of a 32-bit integer, 2) an array of 32-bit
integers, 3) a 32-bit integer. Note: The function will not return a
function value (void), and it also begins with the special “extern "C".”
Line 7: The void function is called, and the sum is returned to variable
totalA.
Line 8: The integer function is called, and the sum is returned to variable
totalB.
Line 9,10: The two sums will be printed (both will be 126).
Line 11: Return 0 in a main program is the same as calling the
ExitProcess Windows function in assembly language.

1. #include "stdafx.h"
2. extern "C" int fcnsum(int[], int);
3. extern "C" void thesum(int*,int[], int);
4.
5. int main() {
6.  int count = 3, totalA, totalB, tstdat[] = {11, 45, 70};
7.  thesum (&totalA, tstdat, 3);
8.  totalB = fcnsum (tstdat, count);
9.  printf ("Sum from subroutine = %d\n", totalA);

10.  printf ("Sum from function = %d\n", totalB);
11.  return 0;
12. }

Listing 13.1: Main C program calling a function and a “void” function

Generally speaking, the difference between a function and a subroutine is a
function returns a value and a subroutine does not. However, as seen in this
example, a subroutine can return one or more values through arguments
“passed by reference.” In situations where only one value is returned, it is
advisable to only use a function to return a value because 1) it hides the
location of the actual data, 2) it is more efficient, and 3) it is expected to be
done (self documenting).

Arrays are passed by reference.
Constants and single variables are passed by value.
A single variable can be passed by reference if preceded by an
ampersand.

Listing 13.2 provides file “sum.asm” that contains both the function and
subroutine (void function) called by the C main program. Notice that the
arguments appear very similar to what we have been using in all the chapters.
The following lines highlight subroutine “thesum”:

Line 9: The running total is initialized with the first 32-bit integer in the
array.
Line 10: Register R8 contains the index number of the last integer in the
array.
Line 11: If the array size was only one (or less), then no more values

will be added.
Lines 12 through 14: Loop to add each of the remaining integers in the
array. Note: Loop goes from end to beginning of array, and each integer
is composed of four bytes.
Line 15: The 32-bit sum in register EAX is stored into the memory
location pointed to by the first argument.

1. ; Subroutine thesum adds a variable number of integers.
2. ; RCX: Memory address of variable to receive the sum.
3. ; RDX: Memory address of array of integer values
4. ; R8: Number of integers in the array
5. ; Supports X64 Calling Convention
6.
7. .code
8. thesum proc ; Subroutine thesum entry point
9. mov EAX,[RDX] ; Load first value.

10. dec R8 ; Decrement number of integers.
11. jle retsub ; Return with just one value.
12. thelp: add EAX,[RDX+4*R8] ; Add next integer.
13. dec R8 ; Number of integers still to add.
14. jnz thelp ; Continue with next integer
15. retsub: mov [RCX],EAX ; Return sum to calling program
16. ret ; Return to calling program
17. thesum endp
18.
19. ; Function fcnsum adds a variable number of integers.
20. ; RCX: Memory address of array of integer values
21. ; RDX: Number of integers in the array
22. ; RAX: Return calculated sum to calling program.
23. ; Supports X64 Calling Convention
24.
25. fcnsum proc ; Function fcnsum entry point
26. xchg RCX,RDX ; Load RCX count, RDX with address
27. mov EAX,[RDX] ; Load first value.
28. dec RCX ; Decrement number of integers.
29. jle retfcn ; Return with just one value.
30. fcnlp: add EAX,[RDX+4*RCX] ; Add next integer.
31. loop fcnlp ; Continue with next integer
32. retfcn: ret ; Return to calling program
33. fcnsum endp

34. end

Listing 13.2: Assembly language functions called by C main program

The following lines highlight function “fcnsum” in above listing:

Line 26: The contents of the first two arguments are switched because
the RCX register is needed for the LOOP instruction on line 31.
Line 27: The running total is initialized with the first 32-bit integer in
the array.
Line 28: Register RCX contains the index number of the last integer in
the array.
Line 29: If the array size was only one (or less), then no more values
will be added.
Lines 30 and 31: Loop to add each of the remaining integers in the array.
Note: Loop goes from end to beginning of array, and each integer is
composed of four bytes.
Line 32: The 32-bit sum in already in register RAX.

Arguments Pass by __ Location

thesum (&totalA, tstdat, 3); // a subroutine

&totalA Reference [RCX]

tstdat Reference [RDX]

3 Value R8

totalB = fcnsum (tstdat, count); // a function

tstdat Reference [RCX]

count Value RDX

totalB Value RAX

Table 13.1: Subroutine and function arguments in example program

The C++ compiler is a console program and can be used in command mode
as we have been doing with the assembler programs up to this point. It is

now, however, time to move forward with the visual editor with its great
debugger and file organization appropriate for developing larger programs.

Configure Visual Studio for 64-bit and Assembly Language

Visual Studio currently does not default to the 64-bit Calling Convention, nor
does it default to accepting assembly language source code. Both of these
options will be chosen in the following example using the source code
described above in Listings 13.1 and 13.2. The following steps will be
performed:

1. Create a Console Application named DemoMasm.
2. Configure Visual Studio to invoke the ML64 assembler for source files

having an “.ASM” extension.
3. Put Visual Studio into 64-bit mode rather than its 32-bit default.
4. Run the DemoMasm program in debug mode showing register and

memory contents in various formats.

We begin as though we are creating a normal C++ application. After starting
Visual Studio, we are given the choice of creating either a Console
Application or a Windows Desktop Application. As seen in Figure 13.1, the
Console Application is selected, and a solution name must be entered before
clicking OK. I made up “DemoMasm” for the example in this book. Of
course, assembly language can also work with a Windows Application, but
the user interface is more involved (pixels, locations, colors, mouse clicks,
etc.)

Figure 13.1: Create console application with “DemoMasm” as its solution/project name.

Visual Studio then presents a skeleton of a C++ main program. As shown in
Figure 13.2, the skeleton is completely replaced by copying and pasting the
code from Listing 13.1.

Figure 13.2: Copy/paste code from Listing 13.1.

Figure 13.3: Select “Build Customizations”

Before we add a new source file containing the assembler functions, we must
“Build Customizations” that tell Visual Studio what to do with files having
an “.ASM” extension. First, right-click on the DemoMasm project name in
the solution explorer on the upper right corner of the screen as shown in
Figure 13.3. Go down to “Build Dependencies” and then over to click on
“Build Customizations.” Click to select the box labeled “masm (, targets,
.props)” as shown in Figure 13.4, and then click OK.

Note: This .ASM assignment is in effect for all new files added to the
current project and solution. This customization will have to be done on any
new solutions that need assembly language.

Figure 13.4: Set check box for Masm.

New source files can now be added to the project by right-clicking on the
“Source Files” line in the Solution Explorer as shown in Figure 13.5. One
approach is to click to “Add” an existing file ending in .ASM. However, in
this example, I will “Add” a “New Item...” as shown in Figure 13.5 that then
brings up the screen shown in Figure 13.6.

Figure 13.5: Select a new assembler source code file.

Here, select the “C++ File” even though we are adding a new assembler
source code file. The file name to be created is “sum.asm” as is noted on the
bottom of Figure 13.6. Then click the “Add” button to create the new empty
assembler file.

Figure 13.6: Add source file sum.asm.

The assembler source code from Listing 13.2 can now be copied and pasted
into the empty sum.asm file. There is only one more configuration parameter
to check: 32-bit or 64-bit mode. As shown in Figure 13.7, click on “Build”
which brings down a list, and then click “Configuration Manager ...” on the
bottom which brings up the “Configuration Manager” window. Here,
select “X64” as the platform, and then click the Close button.

Figure 13.7: Select X64 platform.

We are now at a point where we can build the final program and even run it
in debug mode. Figure 13.8 shows a break point being set by clicking in the
column just left of line 12 in the assembler file. When the program is started
in debug mode by pulling down the “Debug” menu and choosing “Start
Debugging.”

Figure 13.8: Start the debugger and run the program.

If no breakpoints are set, the program will compile, link, execute within a
command window, and exit without any user interaction. If a breakpoint is
set, the following screen appears. The command window will also be
available, and will usually be minimized as an entry on the task bar.

Figure 13.9: Program stopped at break point.

Interactive Debugging

The interactive debugger is usually entered when a breapoint is reached. The
following debugging features are very handy for program development and
maintenance:

1. Breakpoints: By left clicking on the left side of a C or assembly
language statement, a breakpoint can be set that will stop execution
when the RIP register reaches that point in the program. A red dot
appears when and where a breakpoint has been set. While stopped,
current register and memory contents can be examined and even
changed.

2. Single Stepping: From a breakpoint, program execution can continue at
full speed or be done one machine code instruction at a time. Register
and memory contents can be examined at each step.

3. Register Contents: Not only can the general purpose registers be
examined, but MMX, YMM, and ZMM registers used with SSE and
AVX instructions can be also displayed.

4. Watch Windows: Four “Watch Windows” are available that show the
current contents of variables in memory. One very easy way to add a
variable to a watch window is to right click on it in its source code
window and then select “Add Watch.”

All Assembly Language

A 100% assembly language program can be built using the IDE. A second
main program, in assembly language, would either be loaded or copied, and
the default skeleton generated by the IDE in C can then be removed from the
project. The program name (proc directive) should be “mainCRTStartup”
which is the default named expected by the linker. File main.asm in the
download directory contains the main source code for echo program from
Chapter 8 that can be used to build a 100% assembly language program.

Review Questions

1. Name two characteristics of using “pass by value.”
2. Name two advantages of using “pass by reference.”
3. What is a principal danger in using “pass by reference”?
4. What are the debug function keys for “start debugging” and single

stepping? How do the two single stepping commands differ from each
other?

Programming Exercises

1. Rewrite the example programs to use floating point. Note: Registers
XMM0, XMM1, XMM2, and XMM3 are used for the first four function
arguments in floating point format if they are called by value, but since
this example has no floating point arguments in registers, it doesn’t
really matter.

Conclusion

Aristotle is credited with the saying, “The more you know, the more you
know you don’t know.” I look at learning assembly language not so much as
a target, but as a springboard. The goal of this book is to get students and
computer enthusiasts programming as quickly as possible to build a
foundation for digging deeper into contemporary hardware and software
architectures.

First, I recommend readers make two passes through this book: once
using the command line approach and once using the IDE with its interactive
debugger. This book is intended to be a “quick start” to get your “feet wet,”
and I now recommend readers consider going deeper into the following
subjects.

Machine Code Format: Compared to most CPU machine code
architectures, the X86-64 is very intricate. I recommend starting with the
Intel 8086 16-bit processor architecture and migrating upward.

Technical Reference Manual: The focus of this book is to get students
programming and understanding the architecture as quickly as possible using
the most common instructions. You should now be at a comfortable point to
understand many of the details covered in the Intel and AMD technical
specification documents.

Command Line Processing: With today’s graphical user interfaces, most
computer users have no idea how much command line processing is being
done behind the scenes. Well-rounded programmers should be comfortable
developing console programs and writing command line scripts.

SSE and AVX: This book barely touches the subject of the Streaming SIMD
Extensions (SSE) and Advanced Vector Extensions (AVX). SSE and AVX
are whole, very elaborate, instruction sets in themselves. I wanted to limit the
introduction in this book so that readers can get comfortable with a few

examples before being overwhelmed by the versatility.

Interrupt Processing: In a real-time embedded systems program, there are
basically two approaches that can be used to determine when a device
requires attention from the software: polling and interrupts. In the polling
approach, the software must loop though all possible devices, reading the
status of each and deciding what to do with any status changes. This
approach is very controlled and relatively easy to implement. The problem is
it wastes a lot of time checking devices that do not need attention while
devices that do need immediate attention have to wait their turn.

In the interrupt approach, the I/O hardware essentially “calls” a device
driver (similar to a subroutine) using an “instruction” that behaves almost
identical to the CALL instruction we’ve been using.

Supervisor Mode: The X86-64 processor design enables multiprogramming
where multiple users can be sharing the same CPU and memory at virtually
the same time. One responsibility of an operating system, such as Windows,
is to protect one user from another while they are in the same memory space
and taking turns using the CPU. This capability requires the operating system
to run in a privileged, or supervisory, state where it can have access to all of
memory, while user programs are restricted to their own data areas.

Windows Function Calls: In this book, I use only enough Windows API
function calls to demonstrate the programming techniques and examples. File
I/O, as well as task and thread management. are an important part of
Windows applications development. The file I/O using “handles” is not much
more complicated than the console read and write commands.

Other CPUs: The ARM processor is another very popular contemporary
CPU architecture. Well-rounded computer professionals should be familiar
with at least the ARM and X86-64.

Other Operating Systems: Although Microsoft® Windows® is a very
popular PC operating system, well-rounded programmers should also have
experience on other systems such as Linux, and I don’t mean just at the user
level, but the system calls as well.

Appendix A
 Microsoft® Visual Studio®

All programming examples use the ML64.exe assembler included with the
free Community Edition of Microsoft® Visual Studio 17, that is used to
develop C and C++ programs running in full 64-bit mode. Many readers of
this book will already have Visual Studio 17 installed on their X86-64
computers. For those of you who do not, I’ve included a few pointers in this
brief appendix. This appendix also includes download instruction for
obtaining the source code for the assembly language programs developed in
this book.

Download Visual Studio 17

With Microsoft® Visual Studio 17, assembly language programs can be built
using either its Integrated Development Environment (IDE) or using the
ML64 assembler directly in a traditional command line approach. Both
techniques are presented in this book, and each has its own merits for gaining
a deeper understanding of computer software and hardware. The download is
very easy from the Microsoft web site:

1. Use a search engine with “visual studio 2017 community” to find the
download site. Visual Studio Community Edition is a “Free, fully-
featured IDE for students, open-source and individual developers.”
Make sure you are downloading directly from Microsoft.

2. Visual Studio is a large application. In order to program in assembly
language, only the C++ component is needed. Although C# is a popular
and fine programming environment, it does not need the ML64
assembler.

Source Code Download

This book contains over 30 program listings as examples of X86-64 coding. I
have made them available on the Internet so they can be easily downloaded
using the GitHub website. GitHub “is a code hosting platform for version
control and collaboration.” It is composed of multiple public and private
“repositories” holding text, image, and video files. Enter the following
command in your Internet browser to initiate the load of all the program
listings in this book.

https://github.com/robertdunne/X64_Asm

I recommend you download and unpack the source code files into the
C:\ASM\X64_Asm-master directory which I will be using in examples in the
remainder of this book. If you are already familiar with and have experience
with GitHub, then use a procedure with which you are most comfortable.
Otherwise, please perform the following steps at the GitHub site:

1. Click on the button labeled “Clone or download” which will bring up a
drop-down menu.

2. Select “Download Zip” from the drop-down menu which will download
one file to your normal downloads directory.

3. You may now exit GitHub or close your browser since you will no
longer need it.

From your downloads directory, perform the following to extract all the
source code into C:\ASM\X64_Asm-master:

1. Right click on the X64_Asm-master.zip file just downloaded.
2. Select “Extract All...” from the pull-down menu.
3. In the “Select Destination and Extract” screen, change the file name to

“C:\Asm64” or the different directory you chose for your work files.
4. Click on the “Extract” button.

The above procedure will generate most of the listing files as TXT files
having file names corresponding to the captions under each listing in this

book. Each will have to be copied to “main.asm” as needed. A few of the
files will have .ASM file name extensions and will be used in Chapter 13. In
addition, all GitHub repositories should have a README.md file containing
pertinent information regarding the rest of the files. For example, the
following command prompt generates the main.asm file used in the first
demonstration in this chapter:

copy X64_Asm-master\Listing_2_1.txt main.asm

Warning: The assembler source code that appears in this book and is
available for download is for learning to program in assembly language.
Some of these programs are incomplete and even contain problems that are
used as examples. No guarantee of their commercial utility is expressed or
implied.

Appendix B
 Windows Command Processor

The Microsoft ML64 assembler is a “console” application, and so is the
“visual” C++ compiler for that matter. Many Windows “desktop”
applications which have a GUI (Graphical User Interface) call in console
applications in the background to perform major tasks. There are basically
two types of user interfaces available for Windows user applications:

Windows Console Application: Communicates with user only through
text messages: Keyboard input and lines displayed in CMD window.
This type of interface dates back to punch card input and line printer
output in the mainframe days.
Windows Desktop Application: Communicates with user through
keyboard, mouse, and graphic images.

CMD Window

Console programs can run within the “Windows Command Processor” (CMD
window) and are started using the “Command Prompt,” also known as the
“Command Language Interpreter (CLI),” and “Command-Line Interface.”
Because ML64 is a console program, we will use the “Windows Command
Processor” (CMD window) for compiling and testing. The easiest way to
start this command window is to enter CMD followed by the Enter key in the
“search” box on the Windows taskbar. The following three commands should
then be entered in the command window to arrive at the desired working
directory.

C:
CD \ASM64
DIR

Only the CD (Change Directory) command should be needed, but the other
two commands won’t hurt to be included. The first line should not be needed
because the CMD processor will usually default to your C directory. The
third line produces a directory which should show both the KERNEL32.LIB
file and assembler source code files already run. Of course, these commands
can be entered in lower case as well.

Path command

If you enter ML64 in the command window to start the assembler, you may
get the following error response if a Path command has not been executed:

'ML64' is not recognized as an internal or external command,
operable program or batch file.

The assembler and linker are not special Windows CMD processor
commands, but console programs just like the ones we will be building. The
CMD processor must be told where they are located, so we must first find
them, and then set a “path” to them. Chapter 2 shows how to search for the
locations of ML64.EXE and KERNEL32.LIB. .

path C:\######\Hostx64\x64;%PATH%

The above path statement consists of the word “path” followed by the file
location containing the ML64 assembler, followed by a semicolon, and
finally %PATH%. The file location will vary from computer to computer
(that’s why we searched for it), but it will probably begin with “C:\Program
Files (x86)\Microsoft Visual Studio” and end with “\Hostx64\x64” (I have
shown the middle as a series of # hash tags). The semicolon followed by
%PATH% enables the new path to be included with any previous paths, but
not replace them.

Rather than typing in the path command each time, I recommend putting
it in a file with a name like masmpath.bat. Then, whenever you start the
command window, just enter “masmpath” in response to the command
prompt, and it will then substitute the path command.

ML64 Command Line

Listing B.1 shows the assembler producting one object file from one source
code file. Typically, multiple files are assembled at the same time, and the
linker can be called in as well..

C:\ASM64>ML64 /c main.asm
Microsoft (R) Macro Assembler (x64) Version
14.11.25547.0
Copyright (C) Microsoft Corporation. All rights reserved.

Assembling: main.asm

C:\ASM64>

Listing B.1: Assembling one file from command line

Listing B.2 shows the output of the ML64 help command. Some of the most
common options include the /Fl “listing file” followed by the /link command
and its options.

C:\ASM64>ML64 /help
Microsoft (R) Macro Assembler (x64) Version 14.11.25547.0
Copyright (C) Microsoft Corporation. All rights reserved.

 ML64 [/options] filelist [/link linkoptions]

/Bl<linker> Use alternate linker /Sf Generate first pass listing
/c Assemble without linking /Sl<width> Set line width
/Cp Preserve case of user identifiers /Sn Suppress symbol-table listing
/Cx Preserve case in publics, externs /Sp<length> Set page length
/D<name>[=text] Define text macro /Ss<string> Set subtitle
/EP Output preprocessed listing to stdout /St<string> Set title
/F <hex> Set stack size (bytes) /Sx List false conditionals
/Fe<file> Name executable /Ta<file> Assemble non-.ASM file
/Fl[file] Generate listing /w Same as /W0 /WX
/Fm[file] Generate map /WX Treat warnings as errors
/Fo<file> Name object file /W<number> Set warning level
/Fr[file] Generate limited browser info /X Ignore INCLUDE environment path
/FR[file] Generate full browser info /Zd Add line number debug info
/I<name> Add include path /Zf Make all symbols public
/link <linker options and libraries> /Zi Add symbolic debug info

/nologo Suppress copyright message /Zp[n] Set structure alignment
/Sa Maximize source listing /Zs Perform syntax check only
/ZH:SHA_256 Use SHA256 for checksum
 in debug info (experimental)
/Gy[-] separate functions for linker
/errorReport:<option> Report internal assembler errors to Microsoft
 none - do not send report
 prompt - prompt to immediately send report
 queue - at next admin logon, prompt to send report
 send - send report automatically

Listing B.2: List of ML64 options and files

blank

Appendix C
 List of Instructions

Appendix C provides a list of X86-64 instructions and assembler directives
used in programming examples in this book. The first column in each of the
following tables contains a three number field indicating the chapter, listing
number, and text line number where the instruction is first used. For example,
3.5.27 indicates the instruction is on line 27 of Listing 5 in Chapter 3. Other
instructions and directives are also described in this book and can most easily
be located through the Table of Contents and Index.

2.4.6. add RCX,100 ; Immediate add to contents of RCX
7.1.18. and AL,1 ; Mask off all bits except bit 0.
2.1.6. call ExitProcess ; Return CPU control to Windows

7.1.11. cld ; String instructions will increment.
4.1.57. cmp R8,2 ; Test if only CR and LF characters.
4.3.63. dec R13 ; Decrement remaining byte count.
8.1.18. div R11B ; Get quotient in AL, remainder in AH.
4.3.62. inc R12 ; Set pointer to next character.
4.1.58. jg nxtlin ; Loop back around for next input.
7.1.22. jge nxtbit ; Continue until all 8 bits done.
3.1.21. lea RDX,msg ; Pointer to message (byte array).
9.1.60. lodsb ; Load next byte and inc RSI.
9.4.60. lodsq ; Load next quad and inc RSI.
9.3.60. lodsw ; Load next word and inc RSI.
2.1.5. mov RCX,78 ; Load exit status code into RCX

9.8.61. mov R12,
[R13+8*R15] ; Load next quad.

9.6.60. movsq ; Copy next quad and inc RSI,RDI.
10.1.64. or R13,qword ptr [cvt] ; Convert to lower case.
7.1.30. pop RDI ; Reload RDI and reposition stack
7.1.8. push RDI ; Save RDI and decrement RSP by 8

9.7.60. rep movsq ; Copy block of memory.
5.3.88. ret ; Return to the calling program.
7.1.17. shr AL,CL ; Shift current bit to bit 0.

7.1.20. stosb ; Store in array of 8 "bits."
9.3.61. stosw ; Store word from AX and inc RDI.
2.4.8. sub RCX,RDX ; Subtract register RDX from RCX

7.4.18. xlat ; Convert 4-bit nibble to hex digit
10.1.58. xor R13,qword ptr [cvt] ; "Flip" the letter case.

Listing C.1: Program location for first appearance of X86 instructions

12.1.7. addps XMM0,XMM1 ; Add Pi to argument.
11.1.57. movdqu XMM8,xmmword ptr [keymsg] ; First 16 bytes of message.
12.1.6. movups XMM1,pi ; Load floating point Pi value.

11.3.48. paddb XMM3,XMM3 ; Double the value in XMM3.

11.3.50. paddsb XMM3,XMM3 ; Signed Saturated values in
XMM3

11.3.49. paddusb XMM3,XMM3 ; Unsigned Saturated values in
XMM3

11.1.64. por XMM8,xmmword ptr [cvt] ; Convert to lower case.
11.1.58. pxor XMM8,xmmword ptr [cvt] ; "Flip" the letter case.

Listing C.2: Program location for first appearance of SSE instructions

9.1.78. align 16

3.1.33. msg byte "Hello
World"

2.1.3. .code
3.1.32. .data
7.1.35. bits8 byte 8 DUP (?) ; Memory buffer for display
2.1.8. end

5.1.19. endm
2.1.7. main endp
3.1.4. Console equ -11 ; Device code for console text output.
2.1.1. includelib kernel32.lib

3.1.22. mov R8,lengthof
msg ; Number of characters to display

5.1.13. msgOut macro msg ; One argument: msg
2.1.4. main proc ; Program external name
2.1.2. ExitProcess proto

12.1.12. pi real4 3.1416 ; Approximate value of Pi
3.1.34. stdout qword ? ; Handle to standard output device

Listing C.3: Program location for first appearance of assembler directives

Obviously, not all X86-64 instructions nor assembler directives are
represented in this book. There are many very good technical reference
manuals available on the Internet that provide tables of all possible
instructions and directives.

Appendix D
 X64 Calling Convention

Subroutines and procedures, including Windows functions and C++
functions, are entered simply by executing the “machine code” CALL
instruction. However, procedures need to be told what to do, and that is done
using software calling conventions. The parameters needed, such as which
device to read and write as well as how much data is to be transferred, is
passed to the procedure in “arguments.”

In 32-bit Windows, there were several “standards” for passing arguments,
which really meant there was not a commonplace standard at all. In 32-bit
Windows, assembly language programs that either call the Windows API
functions or are a part of a C or C++ program must abide by the X64 Calling
Convention. Some portion of the convention can be relaxed for “leaf”
functions.

1. Return Address: The last 64-bit value pushed onto the run-time stack
(register RSP) contains the address of the instruction to be executed after
the function is finished.

2. Location of arguments: The first four arguments are passed in registers:
RCX, RDX, R8, R9. If more than four arguments, then they will be
pushed onto the stack before the return address.

3. Function Return Value: If the function returns a value, it will be in
register RAX. Of course, other values can also be “returned” by
changing parameters called by reference.

4. Run-time Stack Alignment: The RSP register must be on a 16-byte (128
bits) memory address boundary (i.e., the lower 4 bits of RSP must be
zero).

5. Shadow space: Preceding the return address on the run-time stack, there
will be at least 32 bytes of “scratch” space that the called function can
use if it chooses. This is enough space to store the contents of the first

four arguments which are now in registers. Because the CALL
instruction pushes its return address (8 bytes) onto the stack, a shadow
space of 40 bytes is typically reserved on the stack before each function
call in order to meet both the storage and alignment requirements.

6. Volatile registers: The calling program assumes registers RAX, RCX,
RDX, and R8 through R11 are volatile (i.e., they will be modified and
not saved by the procedure). The contents of registers RBX, RSI, RDI,
RBP, RSP, and R12 through R15 are considered non-volatile (i.e., they
will have the same contents on return from the procedure as when the
procedure was called). Functions return values in RAX.

A “leaf” function or subroutine is one that does not call another subroutine or
function. It, therefore does not have to be as concerned about the calling
convention as other subroutines. Since it calls no subroutines, no other
subroutine will destroy its register contents, and it doesn’t have to be
concerned about the RSP 16-byte alignment unless it uses AVX aligned
instructions. It does have to protect the non-volatile register contents for the
program that called it.

SSE registers for Floating Point

The X64 Calling Convention also describes floating point values passed in
XMM registers for use in SSE instructions. In the X64 Calling Convention,
floating point augment “values” will be in registers XMM0 through XMM3
instead of integer values in registers RCX, RDX, R8, and R9, respectively
(i.e., register XMM0 is used instead of RCX, not both used). Obviously, the
called subroutine must know whether the argument is in XMM0 or RCX by
whether it is “typed” as integer or floating point.

Registers XMM0 through XMM5 are considered volatile and can be used
without preserving the original contents. Registers XMM6 through XMM15
must be returned to the calling program with their same values (nonvolatile).

Parameters and Arguments

Windows functions have a list of parameters (i.e., variables) that dictate what
is to be done. This parameter data is passed to the Windows function in what
is commonly referred to as arguments. For example, “parameter 1” is passed
to the function in “argument 1,” which in the X64 Calling Convention is
located in register RCX. Arguments are generally of two types:

1. Pass by value: The argument is contained in the register or stack.
2. Pass by reference: The argument is in memory and is pointed to by an

address in a register or on the stack.

Appendix E
 Windows Function Calls

One of the main responsibilities of an operating system, such as Windows,
is to provide services for application programs. A large portion of these
services involves reading and writing peripheral devices (display monitor,
keyboard, mouse, network, etc.) and disk files (real spinning disks as well as
solid-state memory devices). The calling program must provide Windows
with the details of what is to be performed:

1. What is to be done
2. Which device is to written or read
3. Where the data buffer is in the program’s memory
4. How much data is to be written or read

List of Windows function calls introduced in this book
ExitProcess Terminate the program.
ExitProcess Get file handle.
ReadConsoleA Read ASCII bytes from device into memory buffer
ReadConsoleW Read Unicode 16-bit words from device into memory buffer
WriteConsoleA Write array of ASCII bytes to device from memory buffer
WriteConsoleW Write array of Unicode words to device from memory buffer

Table E.1: Windows functions for read/write console applications

ExitProcess: Terminate program

Application programs start when Windows give them control at its /Entry
label, and when a program chooses to quit, it will return control back to
Windows by calling ExitProcess.

5. mov RCX,78 ; Load exit status code into RCX
6. call ExitProcess ; Return CPU control to Windows

Listing E.1: Example from Chapter 2 to quit program

File Handles

Before text data can be written to or read from a file or command window,
the device must by identified, opened, and assigned a “handle” (ID number)
by calling “GetStdHandle.” The returned value in RAX will be used for all
subsequent data transfers.

20. mov RCX,-11 ; Console standard output handle
21. call GetStdHandle ; Returns handle in register RAX

Listing E.2: Example from Chapter 3 to get file handle

ReadConsoleA: Read data from I/O device into memory buffer

Many custom devices and disk files can be supported, but there are a few
device names that have become standard. The device stdin refers to the
standard character input stream that by default is the keyboard, but can be
redirected to an alternate device or file. This byte count may be less than the
value provided in register R8, but will not be more.

call WriteConsoleA (4 arguments):

1. RCX: Value of “handle”
2. RDX: Reference pointing to memory buffer containing the data
3. R8: Value of the number of bytes to be written or read.
4. R9: Reference points to 64-bit memory location to receive number of

bytes actually written.

37. mov RCX,stdin ; Handle to standard input device
38. mov R8,20 ; Maximum length to receive
39. lea RDX,keymsg ; Memory address to receive input
40. lea R9,nbrd ; Number of bytes actually read.
41. call ReadConsoleA ; Read text string from command box.

Listing E.3: Example from Chapter 3 to read ASCII characters from keyboard

WriteConsoleA: Write data from memory buffer to I/O device

A second standard device name is stdout which by default is the display
monitor, but can be redirected to an alternate device or file.

In the X64 Calling Convention, the first four arguments are passed in
registers to both Windows functions as well as C and C++ procedures. The
four registers and their meaning for the WriteConsoleA function are as
follows:

1. RCX: Register indicating which device is to written
2. RDX: Register pointing to memory buffer containing the data
3. R8: Register holding the size (number of bytes) to be written or read.
4. R9: Points to 64-bit count of bytes actually written.

45. mov RCX,stdout ; Handle to standard output device
46. lea RDX,keymsg ; Pointer to message that was input
47. mov R8,nbrd ; Length (bytes) of input message
48. lea R9,nbwr ; Number of bytes actually written.
49. call WriteConsoleA ; Write text string to command box.

Listing E.4: Example from Chapter 3 to write to display monitor

blank

Appendix F
 ASCII

Why ASCII? Why not Baudot, BCD, Display Code, Fieldata, Unicode,
XS3, or any other character code?

What is a Character Code

Binary computers store and manipulate bits (binary digits). Numbers are
represented by “groups of bits” as either integers or real numbers. That’s fine
for science and engineering applications, but what’s stored in “groups of bits”
for business applications, such as correspondence, reports, and mailing lists?
How is this text data consisting of letters, digits, and punctuation represented
by “groups of bits”? A character code is a set that assigns each text character
to a unique number.

This was not so much of a problem 3000 years ago. Several of the ancient
languages including Assyrian, Hebrew, and Greek were “computer ready,”
but our modern written languages, such as English, are not. In these ancient
languages, every symbol used to compose words was also used to compose
numbers. The symbols alpha and beta in Greek were assigned both sounds to
form words as well as numeric values to write numbers. In English, letters
and digits are separate (i.e., the letter “R” does not have a numeric value).
This means there was no “standard” for storing text data as a series of
numbers.

In the 1960s, several companies were manufacturing mainframe computer
systems. They were competing for sales and were interested in locking
customers into their unique designs rather than making computer data files
and applications portable from one system to another. There were basically
two problems with character codes in the 1960s:

Each character was stored in a byte, but the number of bits composing a

byte varied from system to system.
Each character was assigned a unique numeric code, but each computer
system had a different set of character code assignments..

Several mainframe computer systems had 6-bit bytes, which supported a set
of 64 different characters. BCD, Display Code, Fieldata, and XS3 are
examples of 6-bit codes. Each of these sets contained 26 upper case letters,
10 digits, and a few punctuation marks and control characters. In order to
include lower case letters, IBM switched from a 6-bit code to an 8-bit
EBCDIC code in the mid 1960s. The size of the byte determines how many
different characters can be represented as listed below:

6 bits: 64 characters
7 bits: 128 characters
8 bits: 256 characters
16 bits: 65,536 characters

The second compatibility problem was that the unique assignments were
inconsistent among the different character code sets and computer systems. It
took a presidential decree to alleviate some of the inconsistencies. On March
11, 1968, President Johnson signed ASCII (American Standard Code for
Information Interchange) into existence.

Character Code Letter A Digit 5 blank

IBM BCD 11 05 30

CDC Display Code 01 20 2D

Univac Fieldata 06 25 05

XS3 14 08 33

EBCDIC C1 F5 40

ASCII 41 33 20

Unicode 41 33 20

Table F.1: Example of three characters expressed in various character codes (in hexadecimal)

The 7-bit ASCII code from 1968 was fine for the English language, but it
could not even support all the characters used in French, Spanish, and other
Latin languages. In 1985, character set ISO 8859 was defined as an 8-bit code
with 256 character codes defined, where the first 128 are identical to 7-bit
ASCII. The remaining 128 character codes were assigned to accent characters
for the Latin languages and a variety of special symbols like copyright and
trademark.

Hex Code Symbol Hex Code Symbol Hex Code Symbol

30 0 40 @ 50 P

31 1 41 A 51 Q

32 2 42 B 52 R

33 3 43 C 53 S

34 4 44 D 54 T

35 5 45 E 55 U

36 6 46 F 56 V

37 7 47 G 57 W

38 8 48 H 58 X

39 9 49 I 59 Y

3A : 4A J 5A Z

3B ; 4B K 5B [

3C < 4C L 5C \

3D = 4D M 5D]

3E > 4E N 5E ^

3F ? 4F O 5F _

Table F.2: ASCII and ISO codes in hexadecimal

Hex Code Symbol Hex Code Symbol Hex Code Symbol

60 ` 70 p

61 a 71 q

62 b 72 r

63 c 73 s

64 d 74 t

65 e 75 u

66 f 76 v

67 g 77 w

68 h 78 x

69 i 79 y

6A j 7A z

6B k 7B {

6C l 7C |

6D m 7D }

6E n 7E ~

6F o 7F

Table F.3: ASCII and ISO codes in hexadecimal

What about those written languages like Hebrew and Greek that were
“computer ready” thousands of years ago? Were they still computer ready in

1968 when ASCII was defined? They were by themselves, but to include
them alongside ASCII and ISO 8895, a new character set has been defined:
Unicode. Casually speaking, Unicode is considered to be a 16-bit code
supporting 65,536 different character code symbols, enough to encompass all
the written symbols composing thousands of different languages. The first
128 characters of Unicode are the same as the ASCII character set.

Appendix G
 Binary Numbers

To be precise, it’s not the numbers that are binary, but the written
representation of numbers. For example, we currently count eight planets in
the solar system. This has been “written down” as 8, VIII, 108, 10002, as well
as a variety of other representations throughout history.

What’s Binary?

Binary means two like a binary star system consisting of a pair of stars. In the
case of binary “numbers,” the two refers to the base, also known as the radix,
which indicates how many different symbols (or digits) can be used. In our
every day decimal (base 10) system, there are ten symbols available {0, 1, 2,
3, 4, 5, 6, 7, 8, 9} so we can represent a number in a form like 3274, 1620,
and 36. While in binary (base 2), we have only two symbols available {0, 1}
so we are restricted to representing numbers in a form like 1100, 10101, 1,
and 111. Other popular bases that have been used in the computer industry
are octal (base 8) having eight symbols {0, 1, 2, 3, 4, 5, 6, 7} and
hexadecimal (base 16) having sixteen symbols {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,
B, C, D, E, F}.

Why Binary?

The simple answer is that the logical building blocks (i.e., electronics in
today’s systems) are simpler and more efficient in binary than they are in our
everyday decimal. The electronic logic circuits have two states: High and
Low (voltage levels) which can model a variety of binary states like True and
False, Yes and No, and of course One and Zero. This system follows the
logic attributed to Aristotle thousands of years ago.

In the following table, we compare the written representations of counting
from 0 to 12 in five different bases. Notice how the rightmost column (one’s
place) is incremented through all of the possible symbols available in the
base before the next column to its left is incremented.

base 10 base 2 base 3 base 4 base 5
10 symbols 2 symbols 3 symbols 4 symbols 5 symbols

{0123456789} {01} {012} {0123} {01234}
0 0 0 0 0
1 1 1 1 1
2 10 2 2 2
3 11 10 3 3
4 100 11 10 4
5 101 12 11 10
6 110 20 12 11
7 111 21 13 12
8 1000 22 20 13
9 1001 100 21 14

10 1010 101 22 20
11 1011 102 23 21
12 1100 110 30 22

Table G.1: Counting from 0 to 12 in bases 10, 2, 3, 4, and 5

Column 3 2 1 0

Base 10 103=1000 102=100 101=10 100=1
Base 2 23=8 22=4 21=2 20=1
Base 3 33=27 32=9 31=3 30=1
Base 4 43=64 42=16 41=4 40=1
Base 5 53=125 52=25 51=5 50=1

Table G.2: Value of each column in bases 10, 2, 3, 4, and 5

The Problems with Binary

The problems with binary are not with computers, but with us humans:

1. We are comfortable with base ten and have used it daily for most of our
lives.

2. Binary numbers are awkward for us due to the large number of columns
required. Who would prefer replacing the decimal representation of
7094, 1620, 1108, 6600, 3033, and 7800 with their binary equivalents
1101110110110, 11001010100, 10001010100, 1100111001000,
101111011001, and 1111001111000?

3. Conversion between binary and decimal is difficult to do “in our heads.”
The difficulty stems from the fact that 10 is not an integer power of two.

Superscripts and Subscripts

In math books, the base (or radix) used to represent a number is given as a
subscript. For example: a number written in decimal would be like 25710 and
in binary it would be like 100000012. If no subscript is provided, we assume
it is decimal unless it is stated in the text that the numbers are expressed in a
different base such as binary. When working with computer programs,
whether assembler or higher level, subscripts are not commonly available so
binary is generally entered as 0b10101, 10101b, or %10101 depending on the
computer system or application being used.

Superscripts indicate a number raised to a power. For example, 43 means
4×4×4 equaling 64 and 28 is 2×2×2×2×2×2×2×2 equaling 256. Also recall
that 20, 100, 160, and any non-zero number raised to the zeroth power equals
one.

A decimal number is really a short notation for a polynomial of powers of
10. For example: 13710 is 1×102 + 3×101 + 7×100 which is 100 + 30 + 7.
Likewise, a binary number is really a short notation for a polynomial of
powers of 2. For example: 1101012 is
1×25 + 1×24 + 0×23 + 1×22 + 0×21 + 1×20. By the way, this polynomial
structure is the main reason we label and count bits within a byte or word
from right to left starting with zero.

Bit Position 3 2 1 0
Power of 2 23=8 22=4 21=2 20=1
Binary example 1 0 1 1

10112 = 1 × 23 + 0 × 22 + 1 × 21 + 1 × 20 = 8 + 0 + 2 + 1 = 1110

Table G.3: Bit position example: 10112 = 23 + 0 + 21 + 20 = 8 + 0 + 2 + 1 = 1110

Conversion to Any Base

A popular way to convert a number to a particular base is successive division.
The remainders from each division will provide the digits (i.e., symbols)
beginning with rightmost digit. For example, converting the number 3274 to
decimal follows:

1. 3274 / 10 = 327 Remainder 4
2. 327 / 10 = 32 Remainder 7
3. 32 / 10 = 3 Remainder 2
4. 3 / 10 = 0 Remainder 3

So the “number” 3274 is represented in decimal as the sequence of
remainders “3” “2” “7” and “4.” By the way: This technique of successively
dividing a number by the desired base works regardless of how the
“computer” internally stores numbers. It could be binary, decimal, or any
conceivable internal structure that would permit division.

Converting the same number 3274 to binary follows:

1. 3274 / 2 = 1637 Remainder 0
2. 1637 / 2 = 818 Remainder 1
3. 818 / 2 = 409 Remainder 0
4. 409 / 2 = 204 Remainder 1
5. 204 / 2 = 102 Remainder 0
6. 102 / 2 = 51 Remainder 0
7. 51 / 2 = 25 Remainder 1
8. 25 / 2 = 12 Remainder 1

9. 12 / 2 = 6 Remainder 0
10. 6 / 2 = 3 Remainder 0
11. 3 / 2 = 1 Remainder 1
12. 1 / 2 = 0 Remainder 1

So the “number” 3274 is represented in binary as the sequence of remainders
“1” “1” “0” “0” “1” “1” “0” “0” “1” “0” “1” and “0.” As an exercise, try
converting 3274 to base five by successively dividing by five until the
quotient is zero (3274/5 = 654 remainder 4, ...). The answer will be 1010445.

Multiplying and Dividing by Shifting

If we want to multiply by ten “in our heads” in our everyday decimal system,
we just append a zero. For example to multiply 709 by 10, we append “0” to
“709” and get “7090.” Likewise, when we multiply by 100 (i.e., 102), we
append two zeroes, and for 1000, we append 3 zeroes, etc. For dividing by
powers of ten, we do the reverse: we remove zeroes on the right. What if
there are not enough zeros present on the right? Then we move the decimal
point. For example to divide 1108 by 100, we move the decimal point to the
left two places giving us 11.08.

When we shift a number to the left in base two, we are multiplying by a
power of two, and when we shift to the right, we are dividing by a power of
two. This means that conversion into and from binary format is done very
efficiently using shifting rather than division. Converting the same number
3274 (1100110010102) to binary by shifting is below. Note: The notation
“>> 1” means shift 1 bit position to the right, and the “Carry out” refers to the
rightmost bit that is lost when the value is shifted.

1. 110011001010 >> 1 = 11001100101 with Carry out 0
2. 11001100101 >> 1 = 1100110010 Carry out 1
3. 1100110010 >> 1 = 110011001 Carry out 0
4. 110011001 >> 1 = 11001100 Carry out 1
5. 11001100 >> 1 = 1100110 Carry out 0
6. 1100110 >> 1 = 110011 Carry out 0
7. 110011 >> 1 = 11001 Carry out 1

8. 11001 >> 1 = 1100 Carry out 1
9. 1100 >> 1 = 110 Carry out 0

10. 110 >> 1 = 11 Carry out 0
11. 11 >> 1 = 1 Carry out 1
12. 1 >> 1 = 0 Carry out 1

Converting Digits Into a Number

To convert “written digits” into a number, run the above process in reverse:
Do successive multiplications. For example in base 10: the sequence of digits
“1” “6” “2” “2” could be used to “build” the number 1622 as follows:

1. Start with 0
2. 0×10 + 1 = 1
3. 1×10 + 6 = 16
4. 16×10 + 2 = 162
5. 162×10 + 2 = 1622

In binary, it is simply a matter of shifting to the left one bit position to
“multiply” by two. In the following example, the number expressed as a
sequence of digits “110011001010” is built by a series of logical left shifts
notated by “<< 1” combined with a logical OR notated by “+”:

1. Start with 0
2. 0 << 1 + 1 = 1
3. 1 << 1 + 1 = 11
4. 11 << 1 + 0 = 110
5. 110 << 1 + 0 = 1100
6. 1100 << 1 + 1 = 11001
7. 11001 << 1 + 1 = 110011
8. 110011 << 1 + 0 = 1100110
9. 1100110 << 1 + 0 = 11001100

10. 11001100 << 1 + 1 = 110011001
11. 110011001 << 1 + 0 = 1100110010
12. 1100110010 << 1 + 1 = 11001100101

13. 11001100101 << 1 + 0 = 110011001010

Negative Binary Numbers

When we include negative numbers, we effectively double how many
numbers we have to be able to represent in binary. For every positive
number, we have a corresponding negative number. This requires an
additional bit, a “sign” bit, that has to be associated with every binary number
in registers and storage.

Rather than append an additional bit to each numeric storage type,
computer manufacturers have chosen to steal a bit from the positive range.
Instead of an 8-bit byte supporting numbers in the range of 0 through 255, it
supports -128 through +127 for “signed” bytes. Likewise, signed half-words
have a range of -32,768 to +32,767 rather than 0 through 65,535 for the
unsigned format. The range is actually the same, but it has been shifted by
50%.

There have been four formats popular for representing signed numbers in
binary computers:

Bias: Add ½ the total range to all numbers
Sign and magnitude: High order (leftmost) bit is the sign: 1 for
negative
One’s complement: Complement (i.e., toggle) all bits for negative.
Two’s complement: Add 1 to one’s complement value

The question is, which one is popular in today’s computers? Being even more
specific, which are present in the X86-64 architecture? Three are used: two’s
complement represents signed integers in the X86 CPU while both
sign/magnitude and bias are used in the floating point format available in the
SSE and AVX extensions. Table G.4 gives 8-bit binary examples where
positive and negative 2610 are represented four ways. I've also included zero,
including the rather unexpected negative zero case.

Decimal + 26 – 26 + 0 – 0

Sign &

Magnitude 00011010 10011010 00000000 10000000

One’s
Complement 00011010 11100101 00000000 11111111

Two’s
Complement 00011010 11100110 00000000 00000000

Biased 10011010 01100110 10000000 10000000

Table G.4: Comparison of +26, –26, +0, and –0 in four signed byte formats

Nine’s complement

How can we subtract using an “adding machine”? This question was not new
with electronic computers, but goes back to the days when accountants and
human “computers” used mechanical adding machines. It involves converting
the algebraic expression “A – B” to “A + (–B)” which transforms the
question into how should we represent –B?

Figure G.1: Nine’s complement
example of subtraction by addition

Accountants, working in base ten, could
represent a negative number by
subtracting each of its digits from nine
(one less than the base). On the left, we
see an example where the negative of
1130 is 8869 in nine’s complement (each
8 comes from 9 – 1, the 6 comes from 9 –
 3, and the 9 comes from 9 – 0).

Obviously, since we’re adding, rather than subtracting, the result is larger
than we want, but if you do the algebra, you’ll notice that the correct answer
can be achieved. Notice how the first sum in Figure G.1 had a “carry out”

that did not fit in the number of columns we were using. If you add this carry
in a second step as shown, the correct answer appears. If there is no carry, do
not add it, and there will be a large number, but it is really a negative number.

One’s complement

One’s complement is the same as nine’s complement except the base is now
two: every digit is subtracted from 1, instead of 9. Actually, this technique
works in any base. Do the algebra if you like to prove it. Because there’s only
two symbols in base 2, one’s complement is achieved by simply inverting
each bit as is shown in Figure G.2.

Figure G.2: One’s complement
example of subtraction by addition

Just like in nine’s complement a
subtraction is converted into an addition.
Here the negative of “0110” is calculated
to be “1001" where the value in each
column is calculated by subtracting it from
one less than the base. Notice that it’s still
a two-step process where the carry out is
added back to obtain the correct answer.

If you follow the above naming convention, you would think that two’s
complement involves numbers expressed in base 3. Actually, the expression
“two’s complement” refers to the technique that eliminates the second step
during a subtraction.

Two’s complement

In two’s complement, the negative of a number is generated by adding one to
the one’s complement and ignoring any caries. For example, the negative of
0110 is 1001 + 1 = 1010.

Figure G.3: Two’s complement
example of subtraction by addition

Rather than adding the “carry out” as a
second step, a 1-bit is added preemptively
when the negative is generated. Then
during the subtraction, the carry is just
ignored, making two’s complement
subtractions twice as fast as one’s
complement subtractions.

Appendix H
 Hexadecimal Numbers

To be precise, it’s not the numbers that are hexadecimal, but the written
representation of numbers. Hexadecimal is a compact form of binary
representation where we have sixteen symbols
{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F} to represent numbers. If you’re not
familiar with binary representation, please read Appendix B before studying
hexadecimal. If it wasn’t for binary, there would be negligible need for
hexadecimal in the computer industry.

A decimal number is really a short notation for a polynomial of powers of
10. For example: 13710 is 1×102 + 3×101 + 7×100 which is 100 + 30 + 7.
Likewise, a binary number is really a short notation for a polynomial of
powers of 2. For example: 1101012 is 1×25 + 1×24 + 0×23 + 1×22 + 0×21 +
1×20. A hexadecimal number is really a short notation for a polynomial of
powers of 16. For example: 5A732C16 is 5×165 + 10×164 + 7×163 + 3×162 +
2×161 + 12×160 where A and C are digits representing values of 10 and 12,
respectively.

Why Use Hexadecimal?

The simple answer is hexadecimal is compact, and it is very easy for us
humans to convert between binary and hexadecimal. Consider the following:

1. Internally, almost all our computer systems are based in binary (see Lab
5 and Appendix B for an explanation).

2. Inputting and displaying numbers in the computer’s natural binary
notation is very efficient for the computer, but clumsy and inefficient for
us humans. Who is comfortable reading and entering numbers like
100001101010010 or 1101101101101, and even much longer ones up to

64 bits in length?
3. Decimal is a rather compact form of representing numbers, and we are

very comfortable with it because we use it in our daily lives. We can
convert between decimal and binary by using successive divisions by
ten. However, that is slow and cumbersome to do “in our heads.” A
division by sixteen is simply a four bit shift, but a division by ten cannot
be achieved by shifting bits.

4. Do we humans actually need to use binary? As people working with
computers at a detailed architectural level, we have to see the actual bits.
We have to look at status words, IP addresses, instruction formats, and
memory dumps.

Table H.1 shows counting from 0 to 17 in decimal, binary, hexadecimal, and
octal. Notice how one hexadecimal digit fits exactly in four bits. Figure H.1
shows a binary number being “mapped” to hexadecimal digits, four bits at a
time. starting from the right side.

base 10 base 2 base 16 base 8
10 symbols 2 symbols 16 symbols 8 symbols

{0123456789} {01} {0123456789ABCDEF} {01234567}
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 8 10
9 1001 9 11

10 1010 A 12
11 1011 B 13
12 1100 C 14
13 1101 D 15
14 1110 E 16
15 1111 F 17
16 10000 10 20
17 10001 11 21

Table H.1: Counting from 0 to 17 in four different bases

Figure H.1: Convert binary to hex, 4 bits at a time starting from the right (low order) side

Answers to
 Selected Questions

Questions marked with an asterisk (*) in the Review Questions and
Programming Exercises section of each chapter have their answers, or at least
hints, provided below.

1.4 “By hand, without a calculator or computer,” convert the following
numbers expressed in decimal to binary format. See Appendix G if you need
some background in binary.

a. 2110 = 101012
b. 6310 = 1111112
c. 1610 = 100002
d. 12910 = 100000012

1.5 “By hand, without a calculator or computer,” convert the following
numbers expressed in binary to decimal format. See Appendix G if you need
some background in binary.

a. 10112 = 1110
b. 11001012 = 10110
c. 101102 = 2210
d. 1000012 = 3310
e. 11110112 = 12310

2.5 When updating a line of source code, should the comment on the line be
updated as well?

Yes, usually. However, sometimes the comment is right, but the
code was wrong. For example, the comment said why the line of

code was present, but the code did not work. The worst case is
when someone changed what the code was supposed to be doing,
but left the old comment which is now irrelevant and much worse
than no comment at all.

3.3 In the C language, a “function” is an extension of a “procedure” that
allows the return of a single value associated with the function, such as Y =
SQRT(X). Where do you think the return value is located within the X64
Calling Convention?

Register RAX

3.7 The 40 bytes of shadow space meets the requirements for alignment and
room to store four 64-bit registers. What else is assumed to make this value
of 40 work for the alignment requirement in particular?

It is assumed that the RSP is already aligned to a 128-bit (16
bytes) memory location when the program is started and a
subroutine is called. Otherwise, adding 40 bytes would not create
alignment. Alignment could, of course, be achieved with an AND
instruction, but then the incoming RSP value would also have to
be saved somewhere (i.e., several instructions instead of just one).

4.7. On lines 63 and 64 of Listing 4.3, a DEC followed by a JG is used to
continue the loop. Why wasn’t a LOOP instruction used instead?

A first answer is that the LOOP instruction is very specific and
restrictive: The CX register is decremented, and if the result is
greater than zero, it jumps back to continue the loop. I wanted the
loop to continue until negative, not just zero. But even more
important is that CX is volatile according to the X64 calling
Convention, and it would have mostly likely been changed by the
call to the Windows function. Also, in many X86-64 processors,
the LOOP instruction actually runs a little slower than the
combined DEC and JG,

5.2. How is a macro different from a subroutine?

A macro is called while the assembler is running, and a subroutine is
called when the application program (being written) is running.
A macro generates text lines that will later be “assembled,” while a
subroutine works with numbers and text of the running application.
Each macro call makes the program physically larger and take up more
memory, while subroutines generally reduce memory requirements by
eliminating duplicate code.

5.3. Give an example of a useful macro that generates neither any
instructions nor any data.

Just a few examples are listed below:

ALIGN statement to indicate a word or double word boundary will be
used next.
EQU statements to assign values to constants used at assembly time.
.CODE or .DATA to indicate where following instructions and data are
to be placed.

5.4. What is a principal danger in using “pass by reference"?

One of the hallmarks of object oriented programming is
“information hiding.” If a part of a program does not need access
to a part of the data, don’t give it access. “Pass by reference”
provides the location of the data to the subroutine, and if the
subroutine makes a mistake, it can write over the original source
of the data. In “pass by value,” only a copy of the original data is
sent as an argument to a subroutine. Of course, if all programs and
subroutines worked perfectly, none of this would be a concern.

6.3. If you were going to build a library named “engines.lib” from three
sobject files named “electric.obj," “gasoline.obj," and “diesel.obj," what
command line would be needed?

LIB /out : engines.lib /verbose electric.obj gasoline.obj 

diesel.obj

6.4. What assembler directive would be used to find the “engines.lib” library
built in question 3?

includelib engines.lib

7.2. Even though subroutine v_asc does not fully abide by the X64 Calling
Convention, why must the RSP stack pointer be 16-byte aligned by the push
instruction on line 8 of subroutine v_bin in Listing 7.1?

Subroutine v_asc needs the RSP alligned on a 16-byte boundary
when it calls the Windows API WriteConsoleA which is fully
compliant with the X64 Calling Convention.

7.4. Octal was a very popular base used in assembly language for many
years because it is also a compact form for expressing binary numbers.
Although still available, why has hexadecimal almost universally replaced it?

Basically, the size of a “byte” changed from 6 bits to 8 bits. In the
1960s and 1970s, most mainframes and mini-computers used 6-bit
character codes supporting only 64 characters. Lower case letters
were generally not available. Octal converts a 3-bit binary number
into an octal digit in the range of 0 through 7. A 6-bit value can be
converted into two octal digits, while three octal digits are
required to express an 8-bit value. Hexadecimal, although looking
awkward by having 0 through 9 mixed with A through F, is a
better fit for expressing multiples of 8 bits.

8,2. The overflow flag sometimes indicates an error occurred and sometimes
it doesn’t. Why doesn’t the CPU know for sure if there is an error? Hint: See
Appendix G.

A great advantage of using one’s or two’s complement to
represent signed numbers is the same addition/subtraction
hardware can be used for both signed and unsigned arithmetic. For
eight bit unsigned numbers, the range is 0 to 255, and for signed

numbers, the range is -127 to positive 128. For signed numbers,
the high order bit indicates a negative number, while in 8-bit
unsigned number, the high order bit indicates a value of 128 or
more. So, if 100 is added to 100, the overflow bit is set indicating
an error if the bit patter is considered signed, but is OK if the the
number is considered unsigned.

9.3. Modify Listing 9.9 to copy the buffer from end to beginning by using
register RCX as both the array index and loop counter. Hint: Use
“R12,keymsg[8*RCX-8]” instead of “keymsg[8*R15]”

57. mov RCX,MAXBUF ; Buffer size in quad words
58. cpylp: mov R12,keymsg[8*RCX-8]
59. mov dismsg[8*RCX-8],R12
60. loop cpylp ; Continue until all copied.

9.2 Using the Scaled Index format, what instruction would implement
ARRAY[I] = 6 if register DX contained the value 6, ARRAY is an array of
32-bit integers, and register R15 represents the index I?

MOV ARRAY[4*R15],EDX

10.1 In Listing 10.2, why does the program output _*_* as the last line
echoed?

The “Enter Key” places Carriage Return (hexadecimal 0D) and
Line Feed (hexadecimal 0A) into the input buffer. When bit 5
(hexadecimal 20) is ORed with 0D0A, the result is 2D2A which
represents the characters _*.

9.2 The packed arithmetic instructions do not set the carry and overflow
flags. How could a program rather simply check for these conditions on every
lane?

Do the addition twice: once in saturated mode and once not
saturated. If the two results are identical, then no carries or

overflow (if signed) occurred.

12.1 Convert the following real numbers into single precision IEEE 754
floating point and provide the answers in hexadecimal.

a. 128.0 is 43000000 in floating point
b. 9.25 is 41140000 in floating point
c. -9.25 is C1140000 in floating point
d. 0.03125 is 3D000000 in floating point
e. 128.03125 is 43000800 in floating point
f. 0.0 is 00000000 in floating point
g. -0.0 is 80000000 in floating point

12.2 Convert the following IEEE 754 floating point numbers back into real
numbers in base 10.

a. 42A80000 is 84.0
b. C1A80000 is -21.0
c. 424C8000 is 51.125
d. BF100000 is -0.5625
e. 3DCCCCCD is 0.1

12.6 By examining Figure 12.1, what is the smallest absolute value non-zero
normalized number?

Hint: Convert 1 × 21-127 to decimal.

12.10. Is getting that extra 1-bit of precision in the significant more
important to the single precision, double precision, or half precision format
numbers?

The half-precision floating point format is a 16-bit package
containing a sign bit, five bits for the biased exponent, and ten bits
for the significant. Note: Half-precision is only used for storage
and is not supported for computation within IEEE 754 devices.

That extra bit obtained by not taking up a bit-position for the most
significant bit improves the resolution of the Half precision format
the most.

Half precision (significant is 10 bits): 1 in 210

Single precision (significant is 23 bits): 1 in 223

Double precision (significant is 52 bits): 1 in 252

The exclusive OR operation. Think back to your digital
electronics days. How do you build a “half adder”?

12.11 Why will multiplying by 0.1 always result in a loss of precision in
binary computers?

Base ten is not a multiple of base 2, like base 8 and base 16 are
multiples. Some numbers like 0.1 cannot exactly be represented as
a base two fraction for the same reason 1/3 is 0.333333...10.

	Copyright
	Windows® 64-bitAssembly LanguageProgrammingQuick Start
	Contents
	Preface
	1: The Calculator
	2: Compile, Link, Execute
	3: Hello World
	4: Loops and Branches
	5: Macros & Subroutines
	6: Link & LIB
	7: Binary & Hexadecimal
	8: Decimal & More
	9: Arrays & Strings
	10: Parallel Logic
	11: SSE & AVX
	12: Floating Point
	13: IDE & C++
	Conclusion
	A: Microsoft® Visual Studio
	B: Windows Command Processor
	C: List of Instructions
	D: List of Directives
	E: Windows Function Calls
	F: ASCII
	G: Binary Numbers
	H: Hexadecimal Numbers
	Answers to Selected Questions

