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Introduction

If you really want to learn how a computer works, learning Assembly 

language is a great way to get into the nitty-gritty details. The popularity 

and low cost of the Raspberry Pi provide an ideal platform to learn 

advanced concepts in computing.

Even though the Raspberry Pi is inexpensive and credit card sized, it is 

still a sophisticated computer with a quad-core processor, a floating-point 

coprocessor, and a NEON parallel processing unit. What you learn about 

the Raspberry Pi is directly relevant to any device with an ARM processor, 

which includes nearly every cell phone and tablet. In fact, by volume, the 

ARM processor is the number one processor today.

In this book, we will cover how you program the Raspberry Pi at the 

lowest level; you will be operating as close to the hardware as possible. 

We will teach the format of the instructions, how to put them together 

into programs as well as details on the binary data formats they operate 

on. We will cover how to program the floating-point processor as well as 

the NEON parallel processor. We cover how to program the GPIO ports 

to interface to custom hardware, so you can experiment with electronics 

connected to your Raspberry Pi.

All you need is a Raspberry Pi running Raspbian. This will provide all 

the tools you need to learn Assembly programming. This is the low cost of 

entry of running open source software like Raspbian Linux and the GNU 

Assembler. The last chapter covers 64-bit programming, where you will 

need to run Ubuntu MATE on your Pi.

This book contains many working programs that you can play with, 

use as a starting point, or study. The only way to learn programming is by 

doing; don’t be afraid to experiment, as it is the only way you will learn.
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Even if you don’t use Assembly programming in your day-to-day life, 

knowing how the processor works at the Assembly level and knowing the 

low-level binary data structures will make you a better programmer in 

all other areas. Knowing how the processor works will let you write more 

efficient C code, and can even help you with your Python programming.

The book is designed to be followed in sequence, but there are 

chapters that can be skipped or skimmed, for instance, if you aren’t 

interested in interfacing to hardware, you can pass on Chapter 8, 

“Programming GPIO Pins,” or Chapter 11, “Floating-Point Operations” if 

you will never do numerical computing.

I hope you enjoy your introduction to Assembly language. Learning 

it for one processor family will help you with any other processor 

architectures you encounter through your career.

IntroductionIntroduction
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CHAPTER 1

Getting Started
The Raspberry Pi is a credit card–sized computer that costs only US$35. 

It was originally developed to provide low-cost computers to schools and 

children, who couldn’t afford regular PCs or Macs. Since its release, the 

Raspberry Pi has been incredibly successful—as of this writing, selling 

over 25 million units. The Raspberry Pi has become the basis of a whole 

DIY movement with diverse applications, including home automation 

control systems, acting as the brain for robots, or linked together to build a 

personal supercomputer. The Pi is also a great educational tool.

This book will leverage the Raspberry Pi to assist you in learning 

Assembly language. Programming in Assembly language is programming 

your computer at the lowest bits and bytes level. People usually program 

computers in high-level programming languages, like Python, C, Java, 

C#, or JavaScript. The tools that accompany these languages convert your 

program to Assembly language, whether they do it all at once or as they run.

Assembly language is specific to the computer processor used. Since 

we are learning for the Raspberry Pi, we will learn Assembly language for 

the Advanced RISC Machine (ARM) processor. We will use the Raspbian 

operating system, a 32-bit operating system based on Debian Linux, so we 

will learn 32-bit Assembly on the Raspberry Pi’s ARM processor.

The Raspberry Pi 3 has an ARM processor that can operate in 64-bit 

mode, but Raspbian doesn’t do that. We will highlight some important 

differences between 32-bit and 64-bit Assembly, but all our sample 

programs will be in 32-bit ARM Assembler and will be compiled to run 

under Raspbian.
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�About the ARM Processor
The ARM processor was originally developed by a group in Great Britain, 

who wanted to build a successor to the BBC Microcomputer used for 

educational purposes. The BBC Microcomputer used the 6502 processor, 

which was a simple processor with a simple instruction set. The problem 

was there was no successor to the 6502. They weren’t happy with the 

microprocessors that were around at the time, since they were much more 

complicated than the 6502 and they didn’t want to make another IBM 

PC clone. They took the bold move to design their own. They developed 

the Acorn computer that used it and tried to position it as the successor 

to the BBC Microcomputer. The idea was to use Reduced Instruction 

Set Computer (RISC) technology as opposed to Complex Instruction Set 

Computer (CISC) as championed by Intel and Motorola. We talk at length 

about what these terms really mean later.

Developing silicon chips is an expensive proposition, and unless 

you can get a good volume going, manufacturing is expensive. The ARM 

processor probably wouldn’t have gone anywhere except that Apple 

came calling looking for a processor for a new device they had under 

development—the iPod. The key selling point for Apple was that, as the 

ARM processor was RISC, it used less silicon than CISC processors and as 

a result used far less power. This meant it was possible to build a device 

that ran for a long time on a single battery charge.

Unlike Intel, ARM doesn’t manufacture chips; it just licenses the 

designs for others to optimize and manufacture. With Apple onboard, 

suddenly there was a lot of interest in ARM, and several big manufacturers 

started producing chips. With the advent of smartphones, the ARM chip 

really took off and now is used in pretty much every phone and tablet. 

ARM processors even power some Chromebooks. The ARM processor is 

the number one processor in the computer market.

Chapter 1  Getting Started
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�What You Will Learn
You will learn Assembly language programming for the ARM processor on 

the Raspberry Pi, but everything you learn is directly applicable to all these 

other devices. Learning Assembly language for one processor gives you the 

tools to learn it for another processor, perhaps, the forthcoming RISC-V.

The chip that is the brains of the Raspberry Pi isn’t just a processor, it is 

also a system on a chip. This means that most of the computer is all on one 

chip. This chip contains an ARM quad-core processor, meaning that it can 

process instructions for four programs running at once. It also contains 

several coprocessors for things like floating-point calculations, a graphics 

processing unit (GPU) and specialized multimedia support.

ARM does a good job at supporting coprocessors and allowing 

manufacturers to build their chips in a modular manner incorporating the 

elements they need. All Raspberry Pi include a floating-point coprocessor 

(FPU). Newer Raspberry Pi have advanced capabilities such as NEON 

parallel processors. Table 1-1 gives an overview of the units we will be 

programming and which Raspberry Pi support them. In Table 1-1, SoC 

is system on a chip and contains the Broadcom part number for the unit 

incorporated.

Chapter 1  Getting Started
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�Why Use Assembly
Most programmers today write in a high-level programming language like 

Python, C#, Java, JavaScript, Go, Julia, Scratch, Ruby, Swift, or C. These 

are highly productive languages that are used to write major programs 

from the Linux operating system to web sites like Facebook to productivity 

software like LibreOffice. If you learn to be a good programmer in a couple 

of these, you can find a well-paying interesting job and write some great 

programs. If you create a program in one of these languages, you can 

easily get it working on multiple operating systems on multiple hardware 

architectures. You never have to learn the details of all the bits and bytes, 

and these can remain safely under the covers.

When you program in Assembly language, you are tightly coupled to 

a given CPU, and moving your program to another requires a complete 

rewrite of your program. Each Assembly language instruction does only a 

fraction of the amount of work, so to do anything takes a lot of Assembly 

Table 1-1.  Common Raspberry Pi models and their capabilities 

relevant to this book

Model SoC Memory Divide 
instruction

FPU NEON 
coprocessor

64-Bit 
support

Pi A+ BCM2835 256 MB v2

Pi B BCM2835 512 MB v2

Pi Zero BCM2835 512 MB v2

Pi 2 BCM2836 1 GB Yes v3 Yes Yes

Pi 3 BCM2837 1 GB Yes v4 Yes Yes

Pi 3+ BCM2837B0 1 GB Yes v4 Yes Yes

Pi 4 BCM2711 1, 2, or 4 

GB

Yes v4 Yes Yes

Chapter 1  Getting Started
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statements. Therefore, to do the same work as, say, a Python program, 

takes an order of magnitude larger amount of effort, for the programmer. 

Writing in Assembly is harder, as you must solve problems with memory 

addressing and CPU registers that is all handled transparently by high-

level languages. So why would you ever want to learn Assembly language 

programming? Here are ten reasons people learn and use Assembly 

language:

	 1.	 Even if you don’t write Assembly language code, 

knowing how the computer works internally allows 

you to write more efficient code. You can make your 

data structures easier to access and write code in 

a style that allows the compiler to generate more 

efficient code. You can make better use of computer 

resources like coprocessors and use the given 

computer to its fullest potential.

	 2.	 To write your own operating system. The very core 

of the operating system that initializes the CPU 

handles hardware security and multi-threading/

multi-tasking requires Assembly code.

	 3.	 To create a new programming language. If it is a 

compiled language, then you need to generate 

the Assembly code to execute. The quality and 

speed of your language is largely dependent on the 

quality and speed of the Assembly language code it 

generates.

	 4.	 You want to make the Raspberry Pi faster. The best 

way to make Raspbian faster is to improve the GNU 

C compiler. If you improve the ARM 32-bit Assembly 

code produced by GNU C, then every Linux 

program compiled for the Pi benefits.

Chapter 1  Getting Started
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	 5.	 You might be interfacing your Pi to a hardware 

device, either through USB or the GPIO ports, and 

the speed of data transfer is highly sensitive to how 

fast your program can process the data. Perhaps 

there are a lot of bit-level manipulations that are 

easier to program in Assembly.

	 6.	 To do faster machine learning or 3D graphics 

programming. Both applications rely on fast matrix 

mathematics. If you can make this faster with 

Assembly and/or using the coprocessors, then you 

can make your AI-based robot or video game that 

much better.

	 7.	 Most large programs have components written in 

different languages. If your program is 99% C++, 

the other 1% could be Assembly, perhaps giving 

your program a performance boost or some other 

competitive advantage.

	 8.	 Perhaps you work for a hardware company that 

makes a single board computer competitor to the 

Raspberry Pi. These boards have some Assembly 

language code to manage peripherals included with 

the board. This code is usually called a BIOS (basic 

input/output system).

	 9.	 To look for security vulnerabilities in a program or 

piece of hardware. You usually need to look at the 

Assembly code to do this; otherwise, you may not 

know what is really going on, and hence where holes 

might exist.
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	 10.	 To look for Easter eggs in programs. These are 

hidden messages, images, or inside jokes that 

programmers hide in their programs. They are 

usually enabled by finding a secret keyboard 

combination to pop them up. Finding them requires 

reverse engineering the program and reading 

Assembly language.

�Tools You Need
This book is designed so that all you need is a Raspberry Pi that runs 

the Raspbian operating system. Raspbian is based on Debian Linux, 

so anything you know about Linux is directly useful. There are other 

operating systems for the Pi, but we will only cover Raspbian in this book.

A Raspberry Pi 3, either the B or B+ model, is ideal. Most of what is in 

this book runs on older models as well, as the differences are largely in the 

coprocessor units and the amount of memory. We will talk about how to 

develop programs to run on the compact A models and the Raspberry Pi 

Zero, but you wouldn’t want to develop your programs directly on these.

One of the great things about the Raspbian operating system is that it 

is intended to teach programming, and as a result has many programming 

tools preinstalled, including

•	 GNC Compiler Collection (GCC) that we will use to 

build our Assembly language programs. We will use 

GCC for compiling C programs in later chapters.

•	 GNU Make to build our programs.

•	 GNU Debugger (GDB) to find and solve problems in 

our programs.
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You will need a text editor to create the source program files. Any text 

editor can be used. Raspbian includes several by default, both command 

line and via the GUI. Usually, you learn Assembly language after you’ve 

already mastered a high-level language like C or Java. So, chances are you 

already have a favorite editor and can continue to use it.

We will mention other helpful programs throughout the book that you 

can optionally use, but aren’t required, for example:

•	 A better programmer’s calculator

•	 A better code analysis tool

All of these are open source and you can install them for free.

Now we are going to switch gears to how computers represent 

numbers. We always hear that computers only deal in zeros and ones, now 

we’ll look at how they put them together to represent larger numbers.

�Computers and Numbers
We typically represent numbers using base 10. The common theory is we 

do this, because we have 10 fingers to count with. This means a number 

like 387 is really a representation for

387 = 3 ∗ 102 + 8 ∗ 101 + 7 ∗ 100

= 3 ∗ 100 + 8 ∗ 10 + 7

= 300 + 80 + 7

There is nothing special about using 10 as our base and a fun exercise 

in math class is to do arithmetic using other bases. In fact, the Mayan 

culture used base 20, perhaps because we have 20 digits: 10 fingers and  

10 toes.

Computers don’t have fingers and toes, and in their world, everything 

is a switch that is either on or off. As a result, it is natural for computers 
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to use base 2 arithmetic. Thus, to a computer a number like 1011 is 

represented by

1011 = 1 ∗ 23 + 0 ∗22 + 1 ∗ 21 + 1 ∗ 20

= 1 ∗ 8 + 0 ∗ 4 + 1 ∗ 2 + 1

= 8 + 0 + 2 + 1

= 11 (decimal)

This is great for computers, but we are using 4 digits for the decimal 

number 11 rather than 2 digits. The big disadvantage for humans is that 

writing out binary numbers is tiring, because they take up so many digits.

Computers are incredibly structured, so all their numbers are the same 

size. When designing computers, it doesn’t make sense to have all sorts 

of different sized numbers, so a few common sizes have taken hold and 

become standard.

A byte is 8 binary bits or digits. In our preceding example with 4 bits, 

there are 16 possible combinations of 0s and 1s. This means 4 bits can 

represent the numbers 0 to 15. This means it can be represented by one 

base 16 digit. Base 16 digits are represented by the numbers 0 to 9 and then 

the letters A–F for 10–15. We can then represent a byte (8 bits) as two base 

16 digits. We refer to base 16 numbers as hexadecimal (Figure 1-1).

Figure 1-1.  Representing hexadecimal digits

Since a byte holds 8 bits, it can represent 28 (256) numbers. Thus, the 

byte e6 represents

e6 = e ∗ 161 + 6 ∗ 160

= 14 ∗ 16 + 6

= 230 (decimal)

= 1110 0110 (binary).
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We are running the ARM processor in 32-bit mode; we call a 32-bit 

quantity a word, and it is represented by 4 bytes. You might see a string 

like B6 A4 44 04 as a representation of 32 bits of memory, or one word of 

memory, or perhaps the contents of one register.

If this is confusing or scary, don’t worry. The tools will do all the 

conversions for you. It’s just a matter of understanding what is presented to 

you on screen. Also, if you need to specify an exact binary number, usually 

you do so in hexadecimal, though all the tools accept all the formats.

A handy tool is the Linux Gnome calculator (Figure 1-2). The calculator 

included with Raspbian can perform math in different bases in its 

scientific mode, but the Gnome calculator has a nicer Programming Mode 

which shows a numbers representation in multiple bases at once. To install 

it, use the command line

sudo apt-get install gnome-calculator

Run it from the Accessories menu (probably the second calculator 

there). If you put it in “Programming Mode,” you can do the conversions 

and it shows you numbers in several formats at once.
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This is how we represent computer memory. There is a bit more 

complexity in how signed integers are represented and how arithmetic 

works. We’ll cover that a bit later when we go to do some arithmetic.

In the Assembler we represent hexadecimal numbers (hex for short) 

with a 0x in front. So 0x1B is how we would specify the hex number 1B.

�ARM Assembly Instructions
In this section, we introduce some basic architectural elements of the ARM 

processor and start to look at the form of its machine code instructions. 

The ARM is what is called a Reduced Instruction Set Computer (RISC), 

which theoretically will make learning Assembly easier. There are fewer 

instructions and each instruction is simpler, so the processor can execute 

Figure 1-2.  The Gnome calculator
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each instruction much quicker. While this is true, the ARM system on 

a chip used in the Raspberry Pi is a highly sophisticated computer. The 

core ARM processors handle multiple instruction sets, and then there are 

theinstruction sets for all the coprocessors.

Our approach to this is to divide and conquer. In the first few chapters 

of this book, we will cover only the 32-bit standard ARM Assembly 

instructions. This means that the following topics are deferred to later 

chapters where they can be covered in detail without introducing too 

much confusion:

•	 Instructions for the floating-point processor

•	 Instructions for the NEON processor

•	 Instructions for 64 bits

•	 Thumb mode instructions (special 16-bit compact 

mode)

In this manner, we just need to attack one topic at a time. Each set of 

instructions is consistent and easy to understand.

In technical computer topics, there are often chicken and egg 

problems in presenting the material. The purpose of this section is 

to introduce all the terms and ideas we will use later. Hopefully, this 

introduces all the terms, so they are familiar when we cover them in full 

detail.

�CPU Registers
In all computers, data is not operated in the computer’s memory; instead, 

it is loaded into a CPU register, then the data processing or arithmetic 

operation is performed in the registers. The registers are part of the 

CPU circuitry allowing instant access, whereas memory is a separate 

component and there is a transfer time for the CPU to access it.
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If you want to add two numbers you might load one into one register, 

the other into another register, perform the add operation putting the 

result into a third register, then copy the answer from the result register 

into memory. As you can see, it takes quite a few instructions to perform 

simple operations.

A program on an ARM processor in user mode has access to 16 registers:

•	 R0 to R12: These 13 are general purpose that you can 

use for anything you like.

•	 R13: The stack pointer.

•	 R14: The link register. R13 and R14 are used in the 

context of calling functions, and we’ll explain these in 

more detail when we cover subroutines.

•	 R15: The program counter. The memory address of the 

currently executing instruction.

•	 Current Program Status Register (CPSR): This 17th 

register contains bits of information on the last 

instruction executed. More on the CPSR when we 

cover branch instructions (if statements).

�ARM Instruction Format
Each ARM binary instruction is 32 bits long. Fitting all the information 

for an instruction into 32 bits is quite an accomplishment requiring using 

every bit to tell the processor what to do. There are quite a few instruction 

formats, and we will explain them when we cover that instruction. To give 

you an idea for data processing instructions, let’s consider the format for 

a common class of instructions that we’ll deal with early on. Figure 1-3 

shows the format of the instruction and what the bits specify.
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Let’s look at each of these fields:

•	 Condition: Allows the instruction to execute 

depending on the bits in the CPSR. We’ll examine this 

in detail when we get to branching instructions.

•	 Operand type: Specifies what the operands are in bits 

19–0. We could have specified some of these bits, since 

we used two registers and an immediate operand in 

this example.

•	 Opcode: Which instruction are we performing, like 

ADD or MUL.

•	 Set condition code: This is a single bit indicating if this 

instruction should update the CPSR. If we don’t want 

the result of this instruction to affect following branch 

instructions, we would set it to 0.

•	 Operand register: One register to use as input.

•	 Destination register: Where to put the result of 

whatever this instruction does.

•	 Immediate operand: Usually this is a small bit of 

data that you can specify directly in the instruction. 

So, if you want to add 1 to a register, you could have 

this as 1, rather than putting 1 in another register and 

adding the two registers. The format of this field is quite 

complicated and requires a larger section to explain all 

the details, but this is the basic idea.

Figure 1-3.  Instruction format for data processing instructions
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When things are running well, each instruction executes in one clock 

cycle. An instruction in isolation takes three clock cycles, namely, one to 

load the instruction from memory, one to decode the instruction, and 

then one to execute the instruction. The ARM is smart and works on three 

instructions at a time, each at a different step in the process, called the 

instruction pipeline. If you have a linear block of instructions, they all 

execute on average taking one clock cycle.

�Raspberry Pi Memory
Table 1-1 shows the amount of memory each Raspberry Pi contains. 

Programs are loaded from the Pi’s SD card into memory and executed. The 

memory holds the program, along with any data or variables associated 

with it. This memory isn’t as fast as the CPU registers, but it is much faster 

than accessing data stored on the SD card or on a device connected to a 

USB port.

We’ve talked a lot about 32-bit mode, but what is it? What 32-bit mode 

really means is that memory addresses are specified using 32 bits and the 

CPU registers are each 32 bits wide.

Instructions are also 32 bits in size when running in 64-bit mode; the 

difference is that 64 bits are used to specify a memory address and the 

registers are 64 bits wide.

If we want to load a register from a known 32-bit memory address, 

for example, a variable we want to perform arithmetic on. How do we do 

this? The instruction is only 32 bits in size, and we’ve already used 4 bits 

for the opcode, 4 bits for a conditional instruction, 3 bits for the operand 

type, and 1 bit to say whether we affect the CPSR. We need 4 bits to specify 

one register, so we have left 16 bits for the memory address (12 bits if we 

needed to list two registers).

This is a problem that we’ll come back to several times, since there are 

multiple ways to address it. In a CISC computer, this isn’t a problem since 

instructions are typically quite large and variable in length.
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You can load from memory by using a register to specify the address to 

load. This is called indirect memory access. But all we’ve done is move the 

problem, since we don’t have a way to put the value into that register (in a 

single instruction).

You could load two registers, each with half the address, then shift 

the high part, and then add the two. Four instructions to load an address, 

which seems rather inefficient.

The quick way to load memory that isn’t too far away from the program 

counter (PC) register is to use the load instruction via the PC, since it 

allows a 12-bit offset from the register. This looks like you can efficiently 

access memory within 4096 words of the PC, but it’s more since a few of 

the bits specify a shift to give a bigger range. Yuck, how would you write 

such code? This is where the GNU Assembler comes in. It lets you specify 

the location symbolically and will figure out the offset/shift for you.

In Chapter 2, “Loading and Adding,” we will look at the immediate 

operand in more detail. We will cover many more ways to specify memory 

addresses in future chapters, like asking Linux to give us a block of 

memory, returning the address in a register for us. For now, using the PC 

with an offset meets our needs.

�About the GCC Assembler
Writing Assembler code in binary as 32-bit instructions would be painfully 

tedious. Enter GNU’s Assembler which gives you the power to specify 

everything that the ARM can do but takes care of getting all the bits in the 

right place for you. The general way you specify Assembly instructions is

label:     opcode    operands

The label: is optional and only required if you want the instruction to 

be the target of a branch instruction.
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There are quite a few opcodes, each one is a short mnemonic that is 

human readable and easy for the Assembler to process. They include

•	 ADD for addition

•	 LDR for load a register

•	 B for branch

There are quite a few different formats for the operands, and we will 

cover those as we cover the instructions that use them.

�Hello World
In almost every programming book, the first program is a simple program 

to output the string “Hello World”. We will do the same with Assembly to 

demonstrate some of the concepts we’ve been talking about.

In our favorite text editor, let’s create a file “HelloWorld.s” containing 

that in Listing 1-1.

Listing 1-1. The Hello World program

@

@ Assembler program to print "Hello World!"

@ to stdout.

@

@ R0-R2 - parameters to linux function services

@ R7 - linux function number

@

.global _start         @ Provide program starting

@ address to linker

@ Set up the parameters to print hello world

@ and then call Linux to do it.

Chapter 1  Getting Started



18

_start: mov R0, #1     @ 1 = StdOut

      ldr   R1, =helloworld   @ string to print

      mov   R2, #13    @ length of our string

      mov   R7, #4     @ linux write system call

      svc   0          @ Call linux to print

@ Set up the parameters to exit the program

@ and then call Linux to do it.

      mov     R0, #0  @ Use 0 return code

      mov     R7, #1  @ Service command code 1

                       @ terminates this program

     svc     0         @ Call linux to terminate

.data

helloworld:      .ascii  "Hello World!\n"

This is our first look at a complete Assembly language program, so 

there are a few things to talk about. But first let’s compile and run this 

program.

In our text editor, create a file called “build” that contains

as -o HelloWorld.o HelloWorld.s

ld -o HelloWorld HelloWorld.o

These are the commands to compile our program. First, we have to 

make this file executable using the terminal command

chmod +x build

Now, we can run it by typing ./build. If the files are correct, we can 

execute our program by typing ./HelloWorld. In Figure 1-4, I used bash -x 

(debug mode), so you can see the commands being executed.
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If we run “ls -l”, then the output is

-rwxr-xr-x 1 pi pi  62 Jun  6 19:25 build

-rwxr-xr-x 1 pi pi 884 Jun  6 19:25 HelloWorld

-rw-r--r-- 1 pi pi 728 Jun  6 19:25 HelloWorld.o

-rw-r--r-- 1 pi pi 803 Jun  6 19:23 HelloWorld.s

Notice how small these files are. The executable is only 884 bytes, 

not even 1 KB. This is because there is no runtime or any other libraries 

required to run this program; it is entirely complete in itself. If you want to 

create very small executables, Assembly language programming is the way 

to go.

The format for this program is a common convention for Assembly 

language programs where each line is into these four columns:

•	 Optional statement label

•	 Opcode

Figure 1-4.  Building and executing HelloWorld
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•	 Operands

•	 Comment

These are all separated by tabs, so they line up nicely.

Yay, our first working Assembly language program. Now, let’s talk 

about all the parts.

�About the Starting Comment
We start the program with a comment that states what it does. We also 

document the registers used. Keeping track of which registers are doing 

what becomes important as our programs get bigger:

•	 Whenever you see a “@” character in a line, then 

everything after the “@” is a comment. That means it is 

there for documentation and is discarded by the GNU 

Assembler when it processes the file.

•	 Assembly language is cryptic, so it’s important to 

document what you are doing. Otherwise, you will 

return to the program after a couple of weeks and have 

no idea what the program does.

•	 Each section of the program has a comment stating 

what it does and then each line of the program has a 

comment at the end stating what it does. Everything 

between a /∗ and ∗/ is also a comment and will be 

ignored.

�Where to Start
Next, we specify the starting point of our program:
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•	 We need to define this as a global symbol, so that the 

linker (the ld command in our build file) has access 

to it. The Assembler marks the statement containing 

_start as the program entry point, then the linker can 

find it because it has been defined as a global variable. 

All our programs will contain this somewhere.

•	 Our program can consist of multiple .s files, but only 

one can contain _start.

�Assembly Instructions
We only use three different Assembly language statements in this example:

	 1.	 MOV which moves data into a register. In this case, 

we use an immediate operand, which starts with 

the “#” sign. So “MOV R1, #4” means move the 

number 4 into R1. In this case, the 4 is in part of 

the instruction and not stored somewhere else in 

memory. In the source file, the operands can be 

upper- or lowercase; I tend to prefer lowercase in my 

program listings.

	 2.	 “LDR R1, =helloworld” statement which loads 

register 1 with the address of the string we want to 

print.

	 3.	 SVC 0 command which executes software interrupt 

number 0. This sends control to the interrupt 

handler in the Linux kernel, which interprets the 

parameters we’ve set in various registers and does 

the actual work.
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�Data
Next, we have .data which indicates the following instructions are in the 

data section of the program:

•	 In this, we have a label “helloworld” followed by an 

.ascii statement and then the string we want to print.

•	 The .ascii statement tells the Assembler just to put our 

string in the data section and then we can access it 

via the label as we do in the LDR statement. We’ll talk 

later about how text is represented as numbers, the 

encoding scheme here being called ASCII.

•	 The last “\n” character is how we represent a new line. 

If we don’t include this, you must press return to see 

the text in the terminal window.

�Calling Linux
This program makes two Linux system calls to do its work. The first is the 

Linux write to file command (#4). Normally, we would have to open a file 

first before using this command, but when Linux runs a program, it opens 

three files for it:

	 1.	 stdin (input from the keyboard)

	 2.	 stdout (output to the screen)

	 3.	 stderr (also output to the screen)

The Linux shell will redirect these when you ask it to use >, <, and | 

in your commands. For any Linux system call, you put the parameters in 

registers R0–R4 depending on how many parameters are needed. Then a 
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return code is returned in R0 (which we are bad and not checking). Each 

system call is specified by putting its function number in R7.

The reason we do a software interrupt rather than a branch or 

subroutine call is so we can call Linux without needing to know where this 

routine is in memory. This is rather clever and means we don’t need to 

change any addresses in our program as Linux is updated and its routines 

move around in memory. The software interrupt has another benefit of 

providing a standard mechanism to switch privilege levels. We’ll discuss 

Linux system calls later in Chapter 7, “Linux Operating System Services.”

�Reverse Engineering Our Program
We talked about how each Assembly instruction is compiled into a 32-bit 

word. The Assembler did this for us, but can we see what it did? One way is 

to use the objdump command-line program

objdump -s -d HellowWorld.o

which produces Listing 1-2.

Listing 1-2. Disassembly of Hello World

HelloWorld.o:     file format elf32-littlearm

Contents of section .text:

 0000 0100a0e3 14109fe5 0d20a0e3 0470a0e3  ......... ...p..

 0010 000000ef 0000a0e3 0170a0e3 000000ef  .........p......

 0020 00000000                             ....

Contents of section .data:

 0000 48656c6c 6f20576f 726c6421 0a        Hello World!.

Contents of section .ARM.attributes:

 0000 41130000 00616561 62690001 09000000  A....aeabi......

 0010 06010801                             ....
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Disassembly of section .text:

00000000 <_start>:

   0: e3a00001   mov   r0, #1

   4: e59f1014   ldr   r1, [pc, #20]    ; 20 <_start+0x20>

   8: e3a0200d   mov   r2, #13

   c: e3a07004   mov   r7, #4

  10: ef000000   svc   0x00000000

  14: e3a00000   mov   r0, #0

  18: e3a07001   mov   r7, #1

  1c: ef000000   svc   0x00000000

  20: 00000000   .word 0x00000000

The top part of the output shows the raw data in the file including our 

eight instructions, then our string to print in the .data section. The second 

part is a disassembly of the executable .text section.

Let’s look at the first MOV instruction which compiled to 0xe3a00001 

(Figure 1-5):

Figure 1-5.  Binary representation of the first MOV instruction

•	 Each instruction starts with the hex digit “e” (14 

decimal or 1110 binary). This is the condition code, 

which allows us to conditionally execute an instruction, 

and now we know “e” means execute the instruction 

unconditionally.

•	 The next 3 bits specify 001 which indicates the operand 

type, which in this case is a register and an immediate 

operand.

Chapter 1  Getting Started



25

•	 The next 4 bits are 1110 which is the opcode for the 

MOV instruction.

•	 The next bit is 0 which indicates the type of immediate 

mode parameter, which in this simple case doesn’t 

matter.

•	 The next 4 bits are the register number which is 0.

•	 If you look at the other MOV instructions, you can see 

the register number at this location.

•	 The remaining bits make up our immediate mode 

number which is 1.

Look at the LDR instruction, it changed from

      ldr   R1, =helloworld

to

      ldr   r1, [pc, #20]    ; 20 <_start+0x20>

This is the Assembler helping you with the ARM processor’s obscure 

mechanism of addressing memory. It lets you specify a symbolic address, 

namely, “helloworld”, and translate that into an offset from the program 

counter. I’m certainly happy to have a tool do that bit of nastiness for me.

You might notice that the raw instructions in the top part of the output 

have their bytes reversed, compared to those listed in the disassembly 

listing. This is because we are using a little-endian encoding, which we will 

cover in the next chapter.

Feel free to play with the program, for example:

•	 Change the string but remember to change the length 

loaded into R2.

•	 Change the return code loaded into R0 before the 

second SVC call and see what happens.
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Tip  You only learn programming by experimenting and writing your 
own code.

As we progress through each chapter, you will be able to do more  

and more.

�Summary
In this chapter, we introduced the ARM processor and Assembly language 

programming along with why we want to use Assembly. We covered the tools 

we will be using. We also saw how computers represent positive integers.

We then looked at in more detail how the ARM CPU represents 

Assembly instructions along with the registers it contains for processing 

data. We introduced both the Raspberry Pi’s memory and the GNU 

Assembler that will assist us in writing our Assembly language programs.

Finally, we created a simple complete program to print “Hello World!” 

in our terminal window.

In Chapter 2, “Loading and Adding,” we will look at loading data into 

the CPU registers and performing basic addition. We’ll see how negative 

numbers are represented and learn new techniques for manipulating 

binary bits.
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CHAPTER 2

Loading and Adding
In this chapter, we will go slowly through the MOV and ADD instructions 

to lay the groundwork on how they work, especially in the way they handle 

parameters (operands). So, in the following chapters, we can proceed at a 

faster pace, as we encounter the rest of the ARM instruction set.

Before getting into the MOV and ADD instructions, we will discuss 

the representation of negative numbers and the concepts of shifting and 

rotating bits.

�Negative Numbers
In the previous chapter, we discussed how computers represent positive 

integers as binary numbers, called unsigned integers, but what about 

negative numbers? Our first thought might be to make 1 bit represent 

whether the number is positive or negative. This is simple, but it turns out 

it requires extra logic to implement, since now the CPU must look at the 

sign bits, then decide whether to add or subtract and in which order.

�About Two’s Complement
The great mathematician John von Neumann, of the Manhattan Project, 

came up with the idea of the two’s complement representation for negative 

numbers, in 1945, when working on the Electronic Discrete Variable 

Automatic Computer (EDVAC)—one of the earliest electronic computers.
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Consider a 1-byte hexadecimal number like 01. If we add

0x01 + 0xFF = 0x100

(all binary ones), we get 0x100.

However, if we are limited to 1-byte numbers, then the 1 is lost and we 

are left with 00:

0x01 + 0xFF = 0x00

The mathematical definition of a number’s negative is a number that 

when added to it makes zero; therefore, mathematically, FF is –1. You can 

get the two’s complement form for any number by taking

2N – number

In our example, the two’s complement of 1 is

28 – 1 = 256 – 1 = 255 = 0xFF

This is why it’s called two’s complement. An easier way to calculate the 

two’s complement is to change all the 1s to 0s and all the 0s to 1s and then 

add 1. If we do that to 1, we get

0xFE + 1 = 0xFF

Two’s complement is an interesting mathematical oddity for integers 

that are limited to having a maximum value of one less than a power of two 

(which is all computer representations of integers).

Why would we want to represent negative integers this way on 

computers? As it turns out, addition is simple for the computer to execute. 

There are no special cases; if you discard the overflow, everything works 

out. This means less circuitry is required to perform the addition, and as 

a result it can be performed faster. Besides handling the signs correctly, 

this also results in the CPU using the same addition logic for signed and 

unsigned arithmetic, another circuitry saving measure. Consider

5 + –3
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3 in 1 byte is 0x03 or 0000 0011.

Inverting the bits is

1111 1100

Add 1 to get

1111 1101 = 0xFD

Now add

5 + 0xFD = 0x102 = 2

Since we are limited to 1 byte or 8 bits.

�About Gnome Programmer’s Calculator
Fortunately, we have computers to do the conversions and arithmetic for 

us, but when we see signed numbers in memory, we need to recognize 

what they are. The Gnome programmer’s calculator can calculate two’s 

complement for you. Figure 2-1 shows the Gnome calculator representing –3.

Note T he Gnome programmer’s calculator uses 64-bit 
representations.
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�About One’s Complement
If we don’t add 1 and just change all the 1s to 0s and vice versa, then this is 

called one’s complement. There are uses for the one’s complement form, 

and we will encounter it in how some instructions process their operands.

�Big vs. Little-endian
At the end of Chapter 1, “Getting Started,” we saw that the words of our 

compiled program had their bytes stored in the reverse order to what 

we might expect they should be stored as. In fact, if we look at a 32-bit 

representation of 1 stored in memory, it is

Figure 2-1.  The Gnome calculator calculating the two’s complement 
of 3
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01 00 00 00

rather than

00 00 00 01

Most processors pick one format or the other to store numbers. 

Motorola and IBM mainframes use what is called big-endian, where 

numbers are stored in the order of most significant digit to least significant 

digit, in this case

00 00 00 01

Intel processors use little-endian format and store the numbers in 

reverse order with the least significant digit first, namely:

01 00 00 00

Figure 2-2 shows how the bytes in integers are copied into memory 

in both little- and big-endian formats. Notice how the bytes end up in the 

reverse order to each other.

Figure 2-2.  How integers are stored in memory in Little vs. big-
endian format
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�About Bi-endian
The ARM CPU is called bi-endian, because it can do either. There is a 

program status flag in the CPSR that says which endianness to use. We’ll 

look at all the bits in the CPSR a bit later. By default, Raspbian and your 

programs use little-endian like Intel processors. You can change this if you 

want to. We’ll look at an application of changing this flag in a later chapter.

�Pros of Little-endian
The advantage of little-endian format is that it makes it easy to change the 

size of integers, without requiring any address arithmetic. If you want to 

convert a 4-byte integer to a 1-byte integer, you take the first byte. Assuming 

the integer is in the range of 0–255, and the other 3 bytes are zero.

For example, if memory contains the 4 byte or word representation  

for 1, in little-endian, the memory contains

01 00 00 00

If we want the 1-byte representation of this number, we take the first 

byte; for the 16-bit representation, we take the first 2 bytes. The key point 

is that the memory address we use is the same in call cases, saving us an 

instruction cycle adjusting it.

When we are in the debugger, we will see more representations, and 

these will be pointed out again as we run into them.

Note E ven though Raspbian uses little-endian, many protocols 
like TCP/IP used on the Internet use big-endian and so require a 
transformation when moving data from the Raspberry Pi to the 
outside world.

Chapter 2  Loading and Adding



33

�Shifting and Rotating
We have 16 32-bit registers, and much of programming consists of 

manipulating the bits in these registers. Two extremely useful bit 

manipulations are shifting and rotating. Mathematically shifting all the bits 

left one spot is the same as multiplying by 2, and generally shifting n bits 

is equivalent to multiplying by 2n. Conversely, shifting bits to the right by n 

bits is equivalent to dividing by 2n.

For example, consider shifting the number 3 left by 4 bits:

0000 0011	 (the binary representation of the 

number 3)

Shift the bits left by 4 bits and we get

0011 0000

which is

0x30 = 3 ∗ 16 = 3 ∗ 24

Now if we shift 0x30 right by 4 bits, we undo what we just did and see 

how it is equivalent to dividing by 24.

�About Carry Flag
In the CPSR, there is a bit for carry. This is normally used to perform 

addition on larger numbers. If you add two 32-bit numbers and the result 

is larger than 32 bits, the carry flag is set. We’ll see how to use this when 

we look at addition in detail later in this chapter. When we shift and rotate, 

it turns out to be useful to include the carry flag. This means we can do a 

conditional logic based on the last bit shifted out of the register.
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�About the Barrel Shifter
The ARM processor has circuitry for shifting, called a barrel shifter, but 

there aren’t any native instructions for shifting or rotating bits; rather, it is 

done as a side effect from other instructions like the MOV instruction that 

we are about to cover. The reason for this is that the barrel shifter is outside 

the Arithmetic Logic Unit (ALU) and instead is part of the circuitry that 

loads the second operand to an instruction. We’ll see this in action when 

we cover Operand2 for the MOV instruction. Figure 2-3 shows the location 

of the barrel shifter in relation to the ALU.

Figure 2-3.  The location of the barrel shifter to perform shifts as part 
of loading Operand2
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�Basics of Shifting and Rotating
We have five cases to cover, as follows:

	 1.	 Logical shift left

	 2.	 Logical shift right

	 3.	 Arithmetic shift right

	 4.	 Rotate right

	 5.	 Rotate right extend

�Logical Shift Left

This is quite straightforward, as we shift the bits left by the indicated 

number of places, and zeros come in from the right. The last bit shifted out 

ends up in the carry flag.

�Logical Shift Right

Equally easy, here we shift the bits right, zeros come in from the left, and 

the last bit shifted out ends up in the carry flag.

�Arithmetic Shift Right

The problem with logical shift right is, if it is a negative number, having a 

zero come in from the left suddenly turns the number positive. If we want 

to preserve the sign bit, use arithmetic shift right. Here a 1 comes in from 

the left, if the number is negative, and a 0 if it is positive. This is then the 

correct form if you are shifting signed integers.

�Rotate Right

Rotating is like shifting, except the bits don’t go off the end; instead, they 

wrap around and reappear from the other side. So, rotate right shifts right, 

but the bits that leave on the right, reappear on the left.
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�Rotate Right Extend

Rotate right extend behaves like rotate right, except it treats the register 

as a 33-bit register, where the carry flag is the 33rd bit and is to the right of 

bit 0. This type of rotate is limited to moving 1 bit at a time; therefore, the 

number of bits is not specified on the instruction.

�MOV/MVN
In this section, we are going to look at several forms of the MOV 

instruction:

	 1.	 MOV RD, #imm16

	 2.	 MOVT RD, #imm16

	 3.	 MOV RD, RS

	 4.	 MOV RD, operand2

	 5.	 MVN RD, operand2

We’ve seen examples of the first case, putting a small number into a 

register. Here the immediate value can be any 16-bit quantity, and it will be 

placed in the lower 16 bits of the specified register. This form of the MOV 

instruction is as simple as you can get; therefore, we will use it frequently.

�About MOVT
The second form answers our question of how to load the full 32 bits of 

a register. MOVT, the move top instruction, loads the 16-bit immediate 

operand into the upper 16 bits of the register without disturbing the 
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bottom 16 bits. Suppose we want to load register R2 with the hex value 

0x4F5D6E3A. We could use

      MOV   R2, #0x6E3A

      MOVT  R2, #0x4F5D

Only two instructions, so not too painful, but a bit annoying.

�Register to Register MOV
In the next case 3, we have a version that moves one register into another 

that sounds useful.

�The Dreaded Flexible Operand2
All the ARM’s data processing instructions have the option of taking a 

flexible Operand2 as one of their parameters. At this point, it won’t be 

clear why you want some of this functionality, but as we encounter more 

instructions and start to build small programs, we’ll see how they help us.  

At the bit level, there is a lot of complexity here, but the people who 

designed the Assembler did a good job of providing syntax to hide a lot of 

this from us. Still, when doing Assembly programming, it’s good to always 

know what is going on under the covers.

There are two formats for Operand2:

	 1.	 A register and a shift

	 2.	 A small number and a rotation

Operand2 is processed via the barrel shifter, it’s just a matter of what is 

shifted and by how much.
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�Register and Shift

First, you can specify a register and a shift. For this you specify a register 

that takes 4 bits and then a shift that is 5 bits (for a total of a full 32-bit 

shift). For example:

      MOV   R1, R2, LSL #1      @ Logical shift left

is how we specify to take R2, logically shift it left by 1 bit, and put the 

result in R1. We can then handle the other shift and rotate scenarios we 

mentioned earlier with

      MOV   R1, R2, LSR #1      @ Logical shift right

      MOV   R1, R2, ASR #1      @Arithmetic shift right

      MOV   R1, R2, ROR #1      @ Rotate right

      MOV   R1, R2, RRX         @ Rotate extended right

Since shifting and rotating are quite common, the Assembler provides 

mnemonics for these, so you can specify

      LSL   R1, R2, #1      @ Logical shift left

      LSR   R1, R2, #1      @ Logical shift right

      ASR   R1, R2, #1      @Arithmetic shift right

      ROR   R1, R2, #1      @ Rotate right

      RRX   R1, R2          @ Rotate extended right

These assemble to the same byte code. The intent is that it makes the 

code a little more readable, since it is clear you are doing a shift or rotate 

operation and not just loading a register.

�Small Number and Rotation

Secondly, the other form of operand2 consists of a small number, namely, 

an 8-bit (1-byte) quantity that can be rotated through an even number of 

positions, such as RORs of 0, 2, 4, 8, ..., 30. This uses up the 12 bits we have 
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for operand2, 8 for the number and 4 for the rotation. The values we get are 

like this:

•	 0 - 255 [0 - 0xff ]

•	 256,260,264,..,1020 [0x100-0x3fc, step 4,  

0x40-0xff ror 30]

•	 1024,1040,1056,..,4080 [0x400-0xff0, step 16,  

0x40-0xff ror 28]

•	 4096,4160, 4224,..,16320 [0x1000-0x3fc0, step 64,  

0x40-0xff ror 26]

This is quite a clever scheme, as it lets you represent any power 

of 2 from 0 to 31, so you can set any individual bit in a register. It also 

lets you set any individual byte in a register. These turn out to be quite 

frequent scenarios, and you can specify it as part of most data processing 

instructions.

Fortunately, we don’t need to figure this all out. We just specify a 

number and the Assembler figures out how to represent it. Since there are 

only 12 bits, not all 32-bit numbers can be represented, so if you specify 

something that can’t be dealt with, then the Assembler gives you an error 

message. You then need to use a MOV/MOVT pair as outlined previously.

MOV has the advantage that it can take an #imm16 operand, which 

can usually get us out of trouble. However, other instructions that must 

specify a third register, like the ADD instruction, don’t have this luxury.

Frequently, programmers deal with small integers like loop indexes, 

say to loop from 1 to 10. These simple cases are handled easily, and we 

don’t need to be concerned.

      @ Too big for #imm16

      MOV   R1, #0xAB000000

      @ Too big for #imm16 and can't      be represented.

      MOV   R1, #0xABCDEF11

Chapter 2  Loading and Adding



40

The second instruction gives the error

Error: invalid constant (abcdef11) after fixup

when you run your program through the Assembler. This means the 

Assembler tried all its tricks and failed to represent the number. To load 

this, you need to use an MOV/MOVT pair.

�MVN
This is the Move Not instruction. It works just like MOV, except it reverses 

all the 1s and 0s as it loads the register. This means it loads the register with 

the one’s complement form of what you specified. Another way to say it 

is that it applies a logical NOT operation to each bit in the word you are 

loading into the register.

MVT is a distinct opcode and not an alias for another instruction with 

cryptic parameters. The ARM32 instruction set only has 16 opcodes, so this 

is an important instruction with three main uses:

	 1.	 To calculate the one’s complement of something for 

you. This has its uses, but does it warrant its own 

opcode?

	 2.	 Multiply by –1. We saw that with the shift operations 

we can multiply or divide by powers of 2. This 

instruction gets us halfway to multiplying by –1. 

Remember that the negative of a number is the 

two’s complement of the number or the one’s 

complement plus one. This means we can multiply 

by –1 by doing this instruction, then add one. Why 

would we do this rather than use the Multiply 
(MUL) instruction? The same for shifting, why do 

that rather than using MUL? The answer is that 

the MUL instruction is quite slow and can take 
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quite a few clock cycles to do its work. Shifting only 

takes one cycle, and using MVN and ADD, we can 

multiply by –1 in only two clock cycles. Multiplying 

by –1 is very common, and now we can do it quickly.

	 3.	 You get twice the number of values due to the extra 

bit—13 vs. 12. It turns out that all the numbers 

obtained by using a byte value and even shift are 

different for MVN and MOV. This means that if the 

Assembler sees that the number you specified can’t 

be represented in a MOV instruction, then it tries 

to change it to an MVN instruction and vice versa. 

So, you really have 13 bits of immediate data, rather 

than 12. NOTE: It still might not be able to represent 

your number, and you may still need to use a 

MOV/MOVT pair.

�MOV Examples
In this section, we will write a short program to exercise all the MOV 

instructions. Create a file called

movexamps.s

containing Listing 2-1.

Listing 2-1.  MOV examples

@

@ Examples of the MOV instruction.

@

.global _start         @ Provide program starting address

@ Load R2 with 0x4F5D6E3A first using MOV and MOVT
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_start:    MOV  R2, #0x6E3A

      MOVT R2, #0x4F5D

@ Just move R2 into R1

      MOV  R1, R2

@ Now let’s see all the shift versions of MOV

      MOV   R1, R2, LSL #1   @ Logical shift left

      MOV   R1, R2, LSR #1   @ Logical shift right

      MOV   R1, R2, ASR #1   @Arithmetic shift right

      MOV   R1, R2, ROR #1   @ Rotate right

      MOV   R1, R2, RRX      @ Rotate extended right

@ Repeat the above shifts using

@      the Assembler mnemonics.

      LSL   R1, R2, #1       @ Logical shift left

      LSR   R1, R2, #1       @ Logical shift right

      ASR   R1, R2, #1       @Arithmetic shift right

      ROR   R1, R2, #1       @ Rotate right

      RRX   R1, R2           @ Rotate extended right

@ Example that works with 8 bit immediate and shift

      MOV   R1, #0xAB000000  @ Too big for #imm16

@ Example that can't be represented and

@      results in an error

@ Uncomment the instruction if you want to

@      see the error

@     MOV   R1, #0xABCDEF11  @ Too big for #imm16

@ Example of MVN

      MVN   R1, #45
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@ Example of a MOV that the Assembler will

@      change to MVN

      MOV   R1, #0xFFFFFFFE  @ (-2)

@ Set up the parameters to exit the program

@ and then call Linux to do it.

      Mov   R0, #0      @ Use 0 return code

       mov  R7, #1      @ Service command code 1

       svc     0         @ Call      Linux to terminate

You can compile this program with the build file

as -o movexamps.o movexamps.s

ld -o movexamps movexamps.o

You can run the program after building it.

Note T his program doesn’t do anything besides move various 
numbers into registers.

We will look at how to see what is going on in Chapter 3, “Tooling Up,” 

when we cover the GNU Debugger (GDB).

If we disassemble the program using

objdump -s -d movexamps.o

we get Listing 2-2.

Listing 2-2.  Disassembly of the MOV examples

Disassembly of section .text:

00000000 <_start>:

   0: e3062e3a   movw  r2, #28218  ; 0x6e3a

   4: e3442f5d   movt  r2, #20317  ; 0x4f5d

Chapter 2  Loading and Adding



44

   8: e1a01002   mov   r1, r2

   c: e1a01082   lsl   r1, r2, #1

  10: e1a010a2   lsr   r1, r2, #1

  14: e1a010c2   asr   r1, r2, #1

  18: e1a010e2   ror   r1, r2, #1

  1c: e1a01062   rrx   r1, r2

  20: e1a01082   lsl   r1, r2, #1

  24: e1a010a2   lsr   r1, r2, #1

  28: e1a010c2   asr   r1, r2, #1

  2c: e1a010e2   ror   r1, r2, #1

  30: e1a01062   rrx   r1, r2

  34: e3a014ab   mov   r1, #-1426063360 ; 0xab000000

  38: e3e0102d   mvn   r1, #45    ; 0x2d

  3c: e3e01001   mvn   r1, #1

  40: e3a00000   mov   r0, #0

  44: e3a07001   mov   r7, #1

  48: ef000000   svc   0x00000000

All the instructions start with

0xe

that means to always execute the instruction.

Most of the remaining instructions have

0x1a

as their next digits. The first 3 bits are for instruction format and are 0 

meaning

•	 Register

•	 Register

•	 Immediate
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We then have the 4 bits for the opcode. All the MOV instruction 

variants have this as

1101

the opcode for MOV. We see all the shift operations are really MOV 

instructions, and the computer is trying to be helpful by letting us know 

what the instruction does. The MVN instruction has an opcode of

1111

This includes the MVN we put in our source file and the MOV 

instruction that the Assembler changed to MVN so it could load –2.

The first two instructions that load 16-bit operands are different. 

Notice that the Assembler changed our first MOV into a Move Wide 
(MOVW) instruction. These aren’t part of the data processing instructions 

we are looking at now, and are special cases, but they are handy.

�ADD/ADC
We can now put any value we like in a register, so let’s start doing some 

computing. Let’s start with addition. The instructions we will cover are

	 1.	 ADD{S} Rd, Rs, Operand2

	 2.	 ADD{S} Rd, Rs, #imm12

	 3.	 ADD{S} Rd, Rs1, Rs2

	 4.	 ADC{S} Rd, Rs, Operand2

	 5.	 ADC{S} Rd, Rs1, Rs2

Chapter 2  Loading and Adding



46

These instructions all add their second and third parameters and put 

the result in their first parameter Register Destination (Rd). We already 

know about the following:

•	 Registers

•	 Operand2

•	 #imm12

Pushing through that stuff with the MOV instructions was tough, but 

it’s done. The case with three registers is a special case of Operand2, just 

with a shift of 0 applied. The registers Rd and Source Register (Rs) can be 

the same. If you just want to add 1 to R1, you can specify

ADD R1, #1

The Assembler compiles this as

ADD R1, R1, #1

This saves some typing and is a bit clearer. This is a common scenario 

to increment loop counters.

We haven’t developed the code to print out a number yet, as we must 

first convert the number to an ASCII string. We will get to this after we 

cover loops and conditional statements. In the meantime, we can get one 

number from our program via the program’s return code. This is a 1-byte 

unsigned integer. Let’s look at an example of multiplying a number by –1 

and see the output. Listing 2-3 is the code to do this.

Listing 2-3.  An example of MVN and ADD

@

@ Example of the ADD/ADC instructions.

@

.global _start       @ Provide program starting address

@ Multiply 2 by –1 by using MVN and then adding 1
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_start: MVN     R0, #2

     ADD   R0, #1

@ Set up the parameters to exit the program

@ and then call Linux to do it.

@ R0 is the return code and will be what we

@ calculated above.

      mov     R7, #1      @ Service command code 1

      svc     0           @ Call      Linux to terminate

Here we use the MVN instruction to calculate the one’s complement 

of our number, in this case 2, then we add 1 to get the two’s complement 

form. We use R0 since this will be the return code returned via the Linux 

terminate command. To see the return code, type

      echo $?

after running the program and it prints out 254. If you examine the bits, 

you will see this is the two’s complement form for –2 in 1 byte.

�Add with Carry
The new concepts in this section are what the {S} after the instruction 

means along with why we have both ADD and ADC. This will be our first 

use of the CPSR.

Think back to how we learned to add numbers:

 17

+78

 95
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	 1.	 We first add 7 + 8 and get 15.

	 2.	 We put 5 in our sum and carry the 1 to the tens 

column.

	 3.	 Now we add 1 + 7 + the carry from the ones column, 

so we add 1+7+1 and get 9 for the tens column.

This is the idea behind the carry flag. When an addition overflows, 

it sets the carry flag, so we can include that in the sum of the next part. 

NOTE: A carry is always 0 or 1, so we only need a 1-bit flag for this.

The ARM processor adds 32 bits at a time, so we only need the carry 

flag if we are dealing with numbers larger than will fit into 32 bits. This 

means that even though we are in 32-bit mode, we can easily add 64-bit or 

even larger integers.

In Chapter 1, “Getting Started,” we quickly mentioned that bit 20 in the 

instruction format specifies whether an instruction alters the CPSR. So far, 

we haven’t set that bit, so none of the instructions we’ve written so far will 

alter the CPSR. If we want an instruction to alter the CPSR, then we place 

an “S” on the end of the opcode, and the Assembler will set bit 20 when 

it builds binary version of the instruction. This applies to all instructions, 

including the MOV instructions we just looked at.

ADDS R0, #1

is just like

ADD R0, #1

except that it sets various bits in the CPSR. We’ll cover all the bits when we 

cover conditional statements. For now, we are interested in the carry flag 

that is designated C. If the result of an addition is too large, then the C flag 

is set to 1; otherwise, it is set to 0.
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To add two 64-bit integers, use two registers to hold each number. In 

our example, we’ll use registers R2 and R3 for the first number, R4 and R5 

for the second, and then R0 and R1 for the result. The code would then be

      ADDS  R1, R3, R5   @ Lower order word

      ADC   R0, R2, R4   @ Higher order word

The first ADDS adds the lower-order 32 bits and sets the carry flag if 

needed. It might set other flags in the CPSR, but we’ll worry about those 

later. The second instruction, ADDC, adds the higher-order words, plus the 

carry flag.

The nice thing here is that although we are in 32-bit mode, we can 

still do a 64-bit addition in only two clock cycles. Let’s look at a simple 

complete example in Listing 2-4.

Listing 2-4.  Example of 64-bit addition with ADD and ADC

@

@ Example of 64-bit addition with

@      the ADD/ADC instructions.

@

.global _start       @ Provide program starting address

@ Load the registers with some data

@ First 64-bit number is 0x00000003FFFFFFFF

_start:    MOV   R2, #0x00000003

      MOV  R3, #0xFFFFFFFF      @ as      will change to MVN

@ Second 64-bit number is 0x0000000500000001

      MOV  R4, #0x00000005

      MOV  R5, #0x00000001

      ADDS R1, R3, R5      @ Lower order word

      ADC  R0, R2, R4      @ Higher order word
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@ Set up the parameters to exit the program

@ and then call Linux to do it.

@ R0 is the return code and will be what we

@ calculated above.

        mov     R7, #1      @ Service command code 1

        svc     0           @ Call      Linux to terminate

Here we are adding

00000003 FFFFFFFF

00000005 00000001

00000009 00000000

We’ve rigged this example to demonstrate the carry flag and to produce 

an answer we can see in the return code. The largest unsigned integer is

0xFFFFFFFF

and adding 1 results in

0x100000000

that doesn’t fit in 32 bits, so we get

0x00000000

with a carry. The high-order words add 3 + 5 + carry to yield 9. The high-order 

word is in R0, so it is the return code when the program exits. If we type

echo $?

we get 9 as expected.

Learning about MOV was difficult, because this was the first time; we 

encountered both shifting and Operand2. With these behind us, learning 

about ADD was much easier. We still have some complicated topics to 

cover, but as we become more experienced with how to manipulate bits 

and bytes, the learning should become easier.

Chapter 2  Loading and Adding



51

�Summary
In this chapter, we learned how negative integers are represented in a 

computer. We went on to discuss big vs. little-endian byte ordering. We 

then looked at the concept of shifting and rotating the bits in a register.

Next, we looked in detail at the MOV instruction that allows us to 

move data around the CPU registers or load constants from the MOV 

instruction into a register. We discovered the tricks of operand2 on how 

ARM represents a large range of values, given the limited number of bits it 

has at its disposal.

Finally, we covered the ADD and ADC instructions and discussed how 

to add both 32- and 64-bit numbers.

In Chapter 3, “Tooling Up,” we will look at better ways to build our 

programs and start debugging our programs with the GNU Debugger (gdb).

Chapter 2  Loading and Adding
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CHAPTER 3

Tooling Up
In this chapter, we will learn a better way to build our programs using 

GNU Make. With the GNU Debugger (GDB), we will debug our programs. 

And we will quickly introduce the source control system Git and the build 

server Jenkins.

�GNU Make
We built our programs using a simple shell script to run the GNU Assembler 

and then the Linux linker/loader. As we move forward, we want a more 

sophisticated tool to build our programs. GNU Make is the standard Linux 

utility to do this, and it comes preinstalled with Raspbian. In GNU Make

	 1.	 Specify the rules for how to build one thing from 

another.

	 2.	 GNU Make examines the file date/times to 

determine what needs to be built.

	 3.	 GNU Make issues the commands to build the 

components.

Let’s look at how to build our HelloWorld program from Chapter 1, 

“Getting Started,” using make. First, create a text file named makefile 

containing the code in Listing 3-1.
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Listing 3-1.  Simple makefile for HelloWorld

HelloWorld: HelloWorld.o

      ld -o HelloWorld HelloWorld.o

HelloWorld.o: HelloWorld.s

      as -o HelloWorld.o HelloWorld.s

Note  The command make is particular, and the indented lines must 
start with a tab, not spaces, or you will get an error.

To build our file, type

make

�Rebuilding a File
If we already built the program, then this won’t do anything, since make 

sees that the executable is older than the .o file and that the .o file is older 

than the .s file. We can force a rebuild by typing

make -B

Rather than specify each file separately along with the command to 

build it, we can define a build rule for say building a .o file from an .s file.

�A Rule for Building .s files
Listing 3-2 shows a more advanced version, where we define a rule for 

building an .o file from an .s file. We still need to specify the dependency, 

but we no longer need the compile rule. As we get more sophisticated and 

add command-line parameters to the as command, we’ve now centralized 

the location to do this.
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Listing 3-2.  Hello World makefile with a rule

 %.o : %.s

      as $< -o $@

HelloWorld: HelloWorld.o

      ld -o HelloWorld HelloWorld.o

Now make knows how to create a .o file from a .s file. We’ve told make 

to build HelloWorld from HelloWorld.o and make can look at its list of 

rules to figure out how to build HelloWorld.o. There are some strange 

symbols in this file, and their meaning is

•	 %.s is like a wildcard, meaning any .s file.

•	 $< is a symbol for the source file.

•	 $@ is a symbol for the output file.

There is a lot of good documentation on make, so we aren’t going to go 

into a lot of detail here.

�Defining Variables
Listing 3-3 shows how to define variables. Here we’ll do it to centralize the 

list of files we want to assemble.

Listing 3-3.  Adding a variable to the Hello World makefile

OBJS = HelloWorld.o

%.o : %.s

      as $< -o $@

HelloWorld: $(OBJS)

      ld -o HelloWorld $(OBJS)
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With this code, as we add source files, we just add the new file to the 

OBJS= line and make takes care of the rest.

This is just an introduction to GNU Make—there is a lot more to this 

powerful tool. As we go further into the book, we will introduce new 

elements to our makefiles as needed.

�GDB
Most high-level languages come with tools to easily output any strings or 

numbers to the console, a window, or a web page. Often when using these 

languages, programmers don’t bother using the debugger; instead, they 

rely on libraries that are part of the language.

Later on, we’ll look at how to leverage the libraries that are part of 

other languages, but calling these takes a bit of work. We’ll also develop a 

helpful library to convert numbers to strings, so we can use the techniques, 

used in Chapter 1’s “HelloWorld” to print our work.

When doing Assembly language programming, being proficient 

with the debugger is critical to success. Not only will this help with your 

Assembly language programming, but also it is a great tool for you to use 

with your high-level language programming.

�Preparing to Debug
GDB can debug your program as it is, but this isn’t the most convenient 

way to go. For instance, in our HelloWorld program we have the string 

helloworld. If we debug the program as is, the debugger won’t know 

anything about this label, since the Assembler changed it into an address 

in a .data section. There is a command-line option for the Assembler that 

includes a table of all our source code labels and symbols, so we can use 

them in the debugger. This makes our program executable a bit larger.
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Often, we set a debug flag while we are developing the program, then 

remove the debug flag before releasing the program. Unlike some high-

level programming languages, the debug flag doesn’t affect the machine 

code generated, so the program behaves exactly the same in both debug 

and non-debug mode.

We don’t want to leave the debug information in our program for 

release, because besides making the program executable larger, it is a 

wealth of information for hackers to help them reverse engineer your 

program. There have been several cases where hackers caused mischief 

because the program still had debugging information present.

To add debug information to our program, we must assemble it with 

the -g flag. In Listing 3-4 we add a debug flag to our makefile. For the first 

program we’ll debug, let’s use our examples of the MOV statements, since 

we didn’t see the operations working on the various registers.

Listing 3-4.  Makefile with a debug flag

OBJS = movexamps.o

ifdef DEBUG

DEBUGFLGS = -g

else

DEBUGFLGS =

endif

%.o : %.s

      as $(DEBUGFLGS) $< -o $@

movexamps: $(OBJS)

      ld -o movexamps $(OBJS)

This makefile sets the debug flag if the variable DEBUG is defined.  

We can define it on the command line for make with

make DEBUG=1
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Or, from the command line, define an environment variable with

export DEBUG=1

To clear the environment variable, enter

export DEBUG=

When switching between DEBUG and non-DEBUG, run make with 

the -B switch to build everything.

Tip O ften, I create to shell scripts buildd and buildr to call make 
with and without DEBUG defined.

�Beginning GDB
To start debugging our movexamps program, enter the command

gdb movexamps

This yields the abbreviated output

GNU gdb (Raspbian 7.12-6) 7.12.0.20161007-git

Copyright (C) 2016 Free Software Foundation, Inc.

...

Reading symbols from movexamps...done.

(gdb)

•	 Gdb is a command-line program.

•	 (gdb) is the command prompt where you type 

commands.

•	 (hit tab) for command completion. Enter the first letter 

or two of a command as a shortcut.
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To run the program, type

run

(or r).

The program runs to completion, as if it ran normally from the 

command line.

To list our program, type

list

(or l).

This lists ten lines. Type

l

for the next ten lines. Type

list 1,1000

to list our entire program.

Notice that list gives us the source code for our program, including 

comments. This is a handy way to find line numbers for other commands. 

If we want to see the raw machine code, we can have gdb disassemble our 

program with

disassemble _start

This shows the actual code produced by the Assembler with no 

comments. We can see whether MOV or MVN was used among other 

commands this way.

To stop the program, we set a breakpoint. In this case, we want to stop 

the program at the beginning to single-step through, examining registers 

as we go. To set a breakpoint, use the breakpoint command (or b):

b _start
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We can specify a line number or a symbol for our breakpoint. As in this 

example, now if we run the program, it stops at the breakpoint:

(gdb) b _start

Breakpoint 1 at 0x10054: file movexamps.s, line 8.

(gdb) r

Starting program: /home/pi/asm/Chapter 2/movexamps

Breakpoint 1, _start () at movexamps.s:8

8    _start:    MOV   R2, #0x6E3A

(gdb)

We can now step through the program with the step command (or s). 

As we go, we want to see the values of the registers. We get these with info 
registers (or i r):

(gdb) s

9          MOVT  R2, #0x4F5D

(gdb) i r

r0             0x0    0

r1             0x0    0

r2             0x6e3a 28218

r3             0x0    0

r4             0x0    0

r5             0x0    0

r6             0x0    0

r7             0x0    0

r8             0x0    0

r9             0x0    0

r10            0x0    0

r11            0x0    0

r12            0x0    0

sp             0x7efff040  0x7efff040

lr             0x0    0
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pc             0x10058     0x10058 <_start+4>

cpsr           0x10   16

(gdb)

We see 0x6E3A put in R2 as expected.

We can continue stepping or enter continue (or c) to continue to the next  

breakpoint or to the end of the program. We can set as many breakpoints 

as we like. We can see them all with the info breakpoints (or i b) 

command. We can delete a breakpoint with the delete command, 

specifying the breakpoint number to delete.

(gdb) i b

Num     Type           Disp Enb Address    What

1       breakpoint     keep y   0x00010054 movexamps.s:8

        breakpoint already hit 1 time

(gdb) delete 1

(gdb) i b

No breakpoints or watchpoints.

(gdb)

We haven’t dealt with memory much, but gdb has good mechanisms 

to display memory in different formats. The main command being x. It has 

the format

x /Nfu addr

where

•	 N is the number of objects to display

•	 f is the display format where some common ones are

•	 t for binary

•	 x for hexadecimal

•	 d for decimal
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•	 i for instruction

•	 s for string

•	 u is unit size, and is any of

•	 b for bytes

•	 h for halfwords (16 bits)

•	 w for words (32 bits)

•	 g for giant words (64 bits)

Some examples using our code stored at memory location _start, or 

0x10054:

(gdb) x /4ubft _start

0x10054 <_start>: 00111010 00101110 00000110

                  11100011

(gdb) x /4ubfi _start

=> 0x10054 <_start>:  movw  r2, #28218 ; 0x6e3a

   0x10058 <_start+4>:      movt  r2, #20317 ; 0x4f5d

   0x1005c <_start+8>:      mov   r1, r2

   0x10060 <_start+12>:     lsl   r1, r2, #1

(gdb) x /4ubfx _start

0x10054 <_start>:     0x3a  0x2e  0x06  0xe3

(gdb) x /4ubfd _start

0x10054 <_start>:     58    46    6     -29

To exit gdb, type q (for quit or type control-d).

Table 3-1 provides a quick reference to the GDB commands we 

introduced in this chapter. As we learn new things, we’ll need to add to our 

knowledge of gdb. It is a powerful tool to help us develop our programs. 

Assembly language programs are complex and subtle, and gdb is great at 

showing us what is going on with all the bits and bytes.
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It’s worthwhile single-stepping through our three sample programs, 

and examine the registers at each step to ensure you understand what each 

instruction is doing.

Even if you don’t know of a bug, many programmers like to single-step 

through their code to look for problems and to convince themselves that 

their code is good. Often two programmers do this together as part of the 

pair programming agile methodology.

�Source Control and Build Servers
�Git
As your program gets larger, consider using a source control system to 

manage source files. Source control systems keep all the versions of your 

program. With source control, it’s easy to retrieve the files that make up 

Table 3-1.  Summary of useful GDB commands

Command (short form) Description

break (b) line Set breakpoint at line

run (r) Run the program

step (s) Single-step program

continue (c) Continue running the program

quit (q or control-d) Exit gdb

control-c Interrupt the running program

info registers (i r) Print out the registers

info break Print out the breakpoints

delete n Delete breakpoint n

x /Nuf expression Show contents of memory
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version 1.15 of your program; you can have multiple branches, so you 

can work on version 1.16 while also working on version 2.1 and keep 

everything straight.

Once you have a team of programmers working on your project, you 

need to regulate who is editing what, so people don’t overwrite each 

other’s work. Git takes this to a new level, where two people can edit the 

same file, then Git can merge the changes to keep both people’s work. 

Git is a great program for doing this. Git was developed by Linus Torvalds 

as the source control system for all Linux development. There are cloud 

versions, like GitHub, that keep your files in the Cloud, and as a result, you 

don’t need to worry about backing them up.

Note  The SD cards the Raspberry Pi uses instead of hard drives or 
SSDs are not as reliable. They can fail, so you should always have a 
backup of your work. If you don’t back up to the Cloud with a service 
like Github, back up with one of the following:

•	 Copy your files to Google Drive.

•	 Email your files to yourself.

•	 Copy them to a USB hard drive.

Don’t trust the SD card, as it will fail at some point.

Git is a sophisticated system beyond the scope of this book, but worth 

checking out.

�Jenkins
Once you are using GNU Make and Git, you might consider checking out 

Jenkins. Jenkins is a build server that monitors Git, and every time you 

check in a new version of a program file, it kicks off a build. This is part of a 

continuous development system that can even deploy your program.
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This is especially helpful if you have a team of programmers, where 

the build takes a long time, or you need the result to automatically be 

deployed, say to a web server.

If you have a set of automated tests, these are run after each build. 

Having the automated tests run frequently helps you detect when your 

program is broken. The cost of fixing a bug tends to be proportional to the 

time that the bug exists in the code, so finding and fixing bugs quickly is a 

huge productivity gain.

�Summary
In this chapter, we introduced the GNU Make program that we will use to 

build our programs. This is a powerful tool used to handle all the rules for 

the various compilers and linkers we need.

We then introduced the GNU Debugger that will allow us to 

troubleshoot our programs. Unfortunately, programs have bugs and we 

need a way to single-step through them and examine all the registers and 

memory as we do so. GDB is a technical tool, but it’s indispensable in 

figuring out what our programs are doing.

Lastly, we mentioned the source control system Git and the build 

server Jenkins. We won’t be using these in this book, but as your needs get 

more sophisticated, you should check these out.

In Chapter 4, “Controlling Program Flow,” we will look at conditionally 

executing code, branching and looping—the core building blocks of 

programming logic.
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CHAPTER 4

Controlling Program 
Flow
Now we know a handful of Assembly language instructions and can 

execute them linearly one after the other. We learned how to start and 

terminate a program. We built programs and debugged them.

In this chapter, we’ll make our programs more interesting by using 

conditional logic—if/then/else statements—in high-level language. 

We will also introduce loops—for and while statements—in high-level 

languages. With these instructions in hand, we will have all the basics for 

coding program logic.

�Unconditional Branch
The simplest branch instruction is

B label

that is an unconditional branch to a label. The label is interpreted as 

an offset from the current PC register and has 24 bits in the instruction 

allowing a range of 8 megawords in either direction or a jump of up to 

32 MB in either direction. This instruction is like a goto statement in some 

high-level languages.
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If we encode Listing 4-1, the program is in a closed loop and hangs our 

terminal window until we press Control + C.

Listing 4-1.  A closed loop branch instruction

_start:      MOV R1, #1

                  B _start

�About the CPSR
We’ve mentioned the Current Program Status Register (CPSR) several 

times without really looking at what it contains. We talked about the carry 

flag when we looked at the ADDS/ADC instructions. In this section, we will 

look at a few more of the flags in the CPSR.

We’ll start by listing all the flags it contains, though many of them 

won’t be discussed until later chapters. In this chapter, we are interested 

in the group of condition code bits that tell us things about what happens 

when an instruction executes (Figure 4-1).

Figure 4-1.  The bits in the CPSR

The condition flags are

•	 Negative: N is 1 if the signed value is negative and 

cleared if the result is positive or 0.

•	 Zero: Is set if the result is 0; this usually denotes an 

equal result from a comparison. If the result is non-

zero, this flag is cleared.
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•	 Carry: For addition type operations, this flag is set if 

the result produces an overflow. For subtraction type 

operation, this flag is set if the result requires a borrow. 

Also, it’s used in shifting to hold the last bit that is 

shifted out.

•	 OVerflow: For addition and subtraction, this flag is set 

if a signed overflow occurred. NOTE: Some instructions 

may specifically set oVerflow to flag an error condition.

The Interrupt flags are

•	 I: When set, disables IRQ interrupts

•	 F: When set, disables FIQ interrupts

•	 A: When set, disables imprecise aborts

The Instruction set flags are

•	 Thumb: 16-bit compact instructions

•	 Jazelle: Obsolete mode for directly executing Java 

bytecodes

The other bits are

•	 Q: This flag is set to indicate underflow and/or 

saturation.

•	 GE: These flags control the Greater than or Equal 

behavior in SIMD instructions.

•	 E: Is a flag that controls the “endianness” for data 

handling.

M is the processor mode such as user or supervisor.
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�Branch on Condition
The branch instruction, at the beginning of this chapter, can take a 

modifier that instructs it to only branch if a certain condition flag in the 

CPSR is set or clear.

The general form of the branch instructions is

B{condition} label

where {condition} is taken from Table 4-1.

Table 4-1.  Condition codes for the branch instruction

{condition} Flags Meaning

EQ Z set Equal

NE Z clear Not equal

CS or HS C set Higher or same (unsigned >=)

CC or LO C clear Lower (unsigned <)

MI N set Negative

PL N clear Positive or zero

VS V set Overflow

VC V clear No overflow

HI C set and Z clear Higher (unsigned >)

LS C clear and Z set Lower or same (unsigned <=)

GE N and V the same Signed >=

LT N and V differ Signed <

GT Z clear, N and V the same Signed >

LE Z set, N and V differ Signed <=

AL Any Always (same as no suffix)
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For example:

      BEQ _start

will branch to _start if the Z flag is set. This seems a bit strange, why isn’t 

the instruction BZ for branch on zero? What is equal here? To answer these 

questions, we need to look at the CMP instruction.

�About the CMP Instruction
The format of the CMP instruction is

      CMP Rn, Operand2

This instruction compares the contents of register Rn with Operand2 

by subtracting Operand2 from Rn and updating the status flags 

accordingly. It behaves exactly like the SUBS instruction (which is like the 

ADDS instruction only, it does subtraction rather than addition), except 

that it only updates the status flags and discards the result. For example, to 

do a branch only if register R4 is 45, we might code

      CMP R4, #45

      BEQ _start

In this context, we see how the mnemonic BEQ makes sense; since 

CMP subtracts 45 from R4, the result is zero if they are equal and the Z flag 

will be set. If you go back to Table 4-1 and consider the condition codes in 

this context, then they make sense.

�Loops
With branch and comparison instructions in hand, let’s look at constructing 

some loops modelled on what we find in high-level programming 

languages.
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�FOR Loops
Suppose we want to do the basic for loop

      FOR I = 1 to 10

            ... some statements...

      NEXT I

We can implement this as shown in Listing 4-2.

Listing 4-2.  Basic for loop

      MOV R2, #1 @ R2 holds I

loop: @ body of the loop goes here.

      @ Most of the logic is at the end

      ADD R2, #1        @ I = I + 1

      CMP R2, #10

      BLE loop          @ IF I <= 10 goto loop

If we did this by counting down

      FOR I = 10 TO 1 STEP -1

            ... some statements...

      NEXT I

We can implement this as shown in Listing 4-3.

Listing 4-3.  Reverse for loop

      MOV R2, #10 @R2 holds I

loop: @ body of the loop goes here.

      @ The CMP is redundant since we

      @ are doing SUBS.

      SUBS  R2, #1     @ I = I -1

      BNE   loop       @ branch until I = 0
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Here we save an instruction, since with the SUBS instruction, we don’t 

need the CMP instruction.

�While Loops
Let’s code:

      WHILE X < 5

            ... other statements ....

      END WHILE

Note I nitializing and changing the variables isn’t part of the while 
statement. These are separate statements that appear before and 
in the body of the loop. In Assembly, we might code as shown in 
Listing 4-4.

Listing 4-4.  While loop

 @ R4 is X and has been initialized

loop: CMP   R4, #5

      BGE   loopdone

      ... other statements in the loop body ...

      B     loop

loopdone: @program continues

Note A  while loop only executes if the statement is initially true, so 
there is no guarantee that the loop body will ever be executed.

Chapter 4  Controlling Program Flow



74

�If/Then/Else
In this section, we’ll look at coding

IF <expression> THEN

      ... statements ...

ELSE

      ... statements ...

END IF

In Assembly, we need to evaluate <expression> and have the result 

end up in a register that we can compare. For now, we’ll assume that 

<expression> is simply of the form

      register comparison immediate-constant

In this way, we can evaluate it with a single CMP instruction. For 

example, suppose we want to code

      IF R5 < 10 THEN

            .... if statements ...

      ELSE

            ... else statements ...

      END IF

We can code this as Listing 4-5.

Listing 4-5.  If/Then/Else statement

 CMP R5, #10

      BGE elseclause

      ... if statements ...
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      B endif

elseclause:

      ... else statements ...

endif: @ continue on after the /then/else ...

This is fairly simple, but it is still worth putting in comments to be clear 

which statements are part of the if/then/else and which statements are in 

the body of the if or else blocks.

Tip A dding a blank line can make the code much more readable.

�Logical Operators
For our upcoming sample program, we need to start manipulating the bits 

in the registers. The ARM’s logical operators provide several tools for us to 

do this, as follows:

      AND{S}      Rd, Rs, Operand2

      EOR{S}      Rd, Rs, Operand2

      ORR{S}      Rd, Rs, Operand2

      BIC{S}      Rd, Rs, Operand2

These operate on each bit of the registers separately.

�AND
AND performs a bitwise logical and operation between each bit in Rs and 

Operand2, putting the result in Rd. Remember that logical AND is true (1) 

if both arguments are true (1) and false (0) otherwise, for example.

Let’s use AND to mask of a byte of information. Suppose we only want 

the high-order byte of a register (Listing 4-6).
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Listing 4-6.  Using AND to mask a byte of information

 @ mask off the high-order byte

      AND   R6, #0xFF000000

      @ shift the byte down to the

      @ low order position.

      LSR   R6, #24

�EOR
EOR performs a bitwise exclusive or operation between each bit in Rs and 

Operand2, putting the result in Rd. Remember that exclusive OR is true (1) 

if exactly one argument is true (1) and false (0) otherwise.

�ORR
ORR performs a bitwise logical or operation between each bit in Rs and 

Operand2, putting the result in Rd. Remember that logical OR is true (1) if 

one or both arguments are true (1) and false (0) if both arguments are false 

(0), for example:

      ORR    R6, #0xFF

This sets the low-order byte of R6 to all 1 bits (0xFF) while leaving the 

three other bytes unaffected.

�BIC
BIC (Bit Clear) performs Rs AND NOT Operand2. The reason is that if the 

bit in Operand2 is 1, then the resulting bit will be 0. If the bit in Operand2 

is 0, then the corresponding bit in Rs will be put in the result Rd.
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Sometimes the Assembler substitutes this instruction to encode an 

Operand2 that doesn’t work with AND, similar to MOV and MVN, for 

example:

      BIC    R6, #0xFF

This clears the low-order byte of R6 while leaving the other 3 bytes 

unaffected (Figure 4-2).

Figure 4-2.  What each logical operator does with each pair of bits

�Design Patterns
When writing Assembly language code, there is a great temptation to be 

creative. For instance, we could do a loop ten times by setting the tenth bit in  

a register, then shifting it right until the register is zero. This works, but it 

makes reading your program difficult. If you leave your program and come to 

it next month, you will be scratching your head as to what the program does.

Design patterns are typical solutions to common programming 

patterns. If you adopt a few standard design patterns on how to perform 

loops and other programming constructs, it will make reading your 

programs much easier.

Design patterns make your programming more productive, since you 

can just use an example from a collection of tried and true patterns for 

most situations.

Tip I n Assembly, make sure you document which design pattern 
you are using, along with documenting the registers used.

Chapter 4  Controlling Program Flow



78

Therefore, we implemented loops and if/then/else in the pattern of a  

high-level language. If we do this, it makes our programs more reliable and  

quicker to write. Later, we’ll look at how to use the macro facility in the 

Assembler to help with this.

�Converting Integers to ASCII
As a first example of a loop, let’s convert a 32-bit register to ASCII, so we 

can display the contents on the console. In our HelloWorld program in 

Chapter 1, “Getting Started,” we used Linux system call number 4 to output 

our “Hello World!” string. In this program, we will convert the hex digits 

in the register to ASCII characters digit by digit. ASCII is one way that 

computers represent all the letters, numbers, and symbols that we read, as 

numbers that a computer can process. For instance:

•	 A is represented by 65.

•	 B is represented by 66.

•	 0 is represented by 48.

•	 1 is represented by 49 and so on.

The key point is that the letters A to Z are contiguous as are the 

numbers 0 to 9. See Appendix E for all 255 characters.

Note  For a single ASCII character that fits in 1 byte, enclose it in 
single quotes, for example, ‘A’. If the ASCII characters are going to 
comprise a string, use double quotes, for example, “Hello World!”.

Here is some high-level language pseudo-code for what we will 

implement in Assembly language (Listing 4-7).
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Listing 4-7.  Pseudo-code to print a register

 outstr = memory where we want the string + 9

      @ (string is form 0x12345678 and we want

      @ the last character)

FOR R5 = 8 TO 1 STEP -1

      digit = R4 AND 0xf

      IF digit < 10 THEN

            asciichar = digit + '0'

      ELSE

            asciichar = digit + 'A' - 10

      END IF

      *outstr = asciichar

      outstr = outstr - 1

NEXT R5

Listing 4-8 is the Assembly language program to implement this. It uses 

what we learned about loops, if/else, and logical statements.

Listing 4-8.  Printing a register in ASCII

@

@ Assembler program to print a register in hex

@ to stdout.

@

@ R0-R2 - parameters to linux function services

@ R1 - is also address of byte we are writing

@ R4 - register to print

@ R5 - loop index

@ R6 - current character

@ R7 - linux function number

@
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.global _start @ Provide program starting address to linker

_start: MOV R4, #0x12AB @ number to print

      MOVT R4, #0xDE65 @ high bits of number to print

      LDR  R1, =hexstr @ start of string

      ADD  R1, #9         @ start at least sig digit

@ The loop is FOR r5 = 8 TO 1 STEP -1

      MOV  R5, #8         @ 8 digits to print

loop: AND  R6, r4, #0xf @ mask of least sig digit

@ If R6 >= 10 then goto letter

      CMP  R6, #10        @ is 0-9 or A-F

      BGE  letter

@ Else its a number so convert to an ASCII digit

      ADD  R6, #'0'

      B    cont         @ goto to end if

letter: @ handle the digits A to F

      ADD  R6, #('A'-10)

cont: @ end if

      STRB R6, [R1]     @ store ascii digit

      SUB  R1, #1       @ decrement address for next digit

      LSR  R4, #4       @ shift off the digit we just processed

      @ next R5

      SUBS R5, #1       @ step R5 by -2

      BNE  loop         @ another for loop if not done

@ Set up the parameters to print our hex number

@ and then call Linux to do it.

mov   R0, #1          @ 1 = StdOut

      ldr  R1, =hexstr @ string to print

      mov  R2, #11    @ length of our string

      mov  R7, #4     @ linux write system call

      svc  0          @ Call linux to output the string
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@ Set up the parameters to exit the program

@ and then call Linux to do it.

      mov     R0, #0  @ Use 0 return code

      �mov     R7, #1  @ Service command code 1 terminates this 

program

      svc     0       @ Call linux to terminate the program

.data

hexstr:      .ascii  "0x12345678\n"

If we compile and execute the program, we see

pi@stevepi:~/asm/Chapter 4 $ make

as  printword.s -o printword.o

ld -o printword printword.o

pi@stevepi:~/asm/Chapter 4 $ ./printword

0xDE6512AB

pi@stevepi:~/asm/Chapter 4 $

as we would expect. The best way to understand this program is to single-

step through it in gdb and watch how it is using the registers and updating 

memory.

Make sure you understand why

      AND    R6, r4, #0xf

masks off the low-order digit; if not, review the “AND” section on logical 

operators.

Since AND requires both operands to be 1 in order to result in 1, 

and’ing something with 1s (like 0xf) keeps the other operator as is, 

whereas and’ing something with 0s always makes the result 0.

In our loop, we shift R4, 4 bits right with

      LSR    R4, #4
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This shifts the next digit into position for processing in the next 

iteration.

Note T his is destructive to R4, and you will lose your original 
number during this algorithm.

We’ve already discussed most of the elements present in this program, but 

there are a couple of new elements; they are demonstrated in the following.

�Using Expressions in Immediate Constants
      ADD    R6, #('A'-10)

This demonstrates a couple of new tricks from the GNU Assembler:

	 1.	 We can include ASCII characters in immediate 

operands by putting them in single quotes.

	 2.	 We can place simple expressions in the immediate 

operands. The GNU Assembler translates ‘A’ to 65, 

subtracts 10 to get 55, and uses that as Operand2.

This makes the program more readable, since we can see our intent, 

rather than if we had just coded 55 here. There is no penalty to the program 

in doing this, since the work is done when we assemble the program, not 

when we run it.

�Storing a Register to Memory
      STRB    R6, [R1]

The Store Byte (STRB) instruction saves the low-order byte of the first 

register into the memory location contained in R1. The syntax [R1] is to 

make clear that we are using memory indirection and not just putting the 
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byte into register R1. This is to make the program more readable, so we 

don’t confuse this operation with a corresponding MOV instruction.

Accessing data in memory is the topic of Chapter 5, “Thanks for the 

Memories,” where we will go into far greater detail. The way we are storing 

the byte could be made more efficient, and we’ll look at that then.

�Why Not Print in Decimal?
In this example program, we easily convert to a hex string because using 

AND 0xf is equivalent to getting the remainder when dividing by 16. 

Similarly shifting the register right 4 bits is equivalent to dividing by 16. If 

we wanted to convert to a decimal, base 10, string, then we would need to 

be able to get the remainder from dividing by 10 and later divide by 10.

So far, we haven’t seen a divide instruction. This places converting 

to decimal beyond the scope of this chapter. We could write a loop to 

implement the long division algorithm we learned in elementary school, 

but instead we will defer division until Chapter 10, “Multiply, Divide, and 

Accumulate.”

�Performance of Branch Instructions
In Chapter 1, “Getting Started,” we mentioned that the ARM32 instruction 

set is executed in an instruction pipeline. Individually, an instruction 

requires three clock cycles to execute, one for each of

	 1.	 Load the instruction from memory to the CPU.

	 2.	 Decode the instruction.

	 3.	 Execute the instruction.

However, the CPU works on three instructions at once, each at a 

different step, so on average we execute one instruction every clock cycle. 

But what happens when we branch?
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When we execute the branch, we’ve already decoded the next 

instruction and loaded the instruction 2 ahead. When we branch, we throw 

this work away and start over. This means that the instruction after the 

branch will take three clock cycles to execute.

If you put a lot of branches in your code, you suffer a performance 

penalty, perhaps slowing your program by a factor of 3. Another problem 

is that if you program with a lot of branches, this leads to spaghetti code—

meaning all the lines of code are tangled together like a pot of spaghetti, 

understandably quite hard to maintain.

When I first learned to program in high school and my undergraduate 

years before structured programming was available, I used the BASIC and 

Fortran programming languages to write complex code. I know firsthand 

that deciphering programs full of branches is a challenge.

Early high-level programming languages relied on the goto 

statement that led to hard to understand code; this led to the structured 

programming we see in modern high-level languages that don’t need a 

goto statement. We can’t entirely do away with branches, since ARM32 

doesn’t have structured programming constructs, but we need to structure 

our code along these lines to make it both more efficient and easier to 

read—another great use for a few good design patterns.

The ARM32 instruction set has a mechanism to deal with this, utilizing 

the condition code in each instruction. We’ll look at this in Chapter 13, 

“Conditional Instructions and Optimizing Code.”

�More Comparison Instructions
We looked at the CMP instruction, which is the main comparison 

instruction; however, there are three more:

•	 CMN	Rn, Operand2

•	 TEQ	 Rn, Operand2

•	 TST	 Rn, Operand2
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Remember that the CMP instruction subtracted Operand2 from Rn 

and set the condition flags in the CPSR accordingly. The result of the 

subtraction is discarded. These three instructions work the same way, 

except they use an operation different from subtraction.

The Assembler has the ability to switch between the four comparison 

instructions to finesse some extra values for Operand2, that otherwise 

would be impossible. In this book, we’ll just use CMP, but you can use 

these if you find an application, plus it’s worth being aware of these in case 

the Assembler does a substitution. The other three are

•	 CMN: Uses addition instead of subtraction. The N 

indicates it’s the negative (opposite) of CMP.

•	 TEQ: Performs a bitwise exclusive OR between Rn and 

Operand2. It updates the CPSR based on the result.

•	 TST: Performs a bitwise AND operation between Rn 

and Operand2. It updates the CPSR based on the result.

�Summary
In this chapter, we studied the key instructions for performing program 

logic with loops and if statements. These included the instructions for 

comparisons and conditional branching. We discussed several design 

patterns to code the common constructs from high-level programming 

languages in Assembly. We looked at the statements for logically working 

with the bits in a register. We examined how we could output the contents 

of a register in hexadecimal format.
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CHAPTER 5

Thanks for the  
Memories
In this chapter, we discuss the Raspberry Pi’s memory. So far, we’ve used 

memory to hold our Assembly instructions; now we will look in detail at 

how to define data in memory, then how to load memory into registers for 

processing, and how to write the results back to memory.

The ARM32 uses what is called a load-store architecture. This means 

that the instruction set is divided into two categories: one to load and 

store values from and to memory and the other to perform arithmetic and 

logical operations between the registers. We’ve spent most of our time 

looking at the arithmetic and logical operations. Now we will look at the 

other category.

Memory addresses are 32 bits and instructions are 32 bits, so we 

have the same problems that we experienced in Chapter 2, “Loading and 

Adding,” where we used all sorts of tricks to load 32 bits into a register. In 

this chapter, we’ll use these same tricks for loading addresses, along with a 

few new ones. The goal is to load a 32-bit address in one instruction in as 

many cases as we can.

The ARM32 instruction set has some powerful instructions to access 

memory, including several techniques to access arrays of data structures 

and to increment pointers in loops while loading or storing data.
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�Defining Memory Contents
Before loading and storing memory, first we need to define some memory 

to operate on. The GNU Assembler contains several directives to help you 

define memory to use in your program. These appear in a .data section 

of your program. We’ll look at some examples and then summarize in 

Table 5-1. Listing 5-1 starts us off by showing us how to define bytes, words, 

and ASCII strings.

Listing 5-1.  Some sample memory directives

label: .byte 74, 0112, 0b00101010, 0x4A, 0X4a, 'J', 'H' + 2

      .word  0x1234ABCD, -1434

      .ascii      "Hello World\n"

The first line defines 7 bytes all with the same value. We can define our 

bytes in decimal, octal (base 8), binary, hex, or ASCII. Anywhere we define 

numbers, we can use expressions that the Assembler will evaluate when it 

compiles our program.

We start most memory directives with a label, so we can access it from 

the code. The only exception is if we are defining a larger array of numbers 

that extends over several lines.

The .byte statement defines 1 or more bytes of memory. Listing 5-1 

shows the various formats we can use for the contents of each byte, as 

follows:

•	 A decimal integer starts with a non-zero digit and 

contains decimal digits 0–9.

•	 An octal integer starts with zero and contains octal 

digits 0–7.
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•	 A binary integer starts with 0b or 0B and contains 

binary digits 0–1.

•	 A hex integer starts with 0x or 0X and contains hex  

digit 0–F.

•	 A floating-point number starts with 0f or 0e, followed 

by a floating-point number.

Note  Be careful not to start decimal numbers with zero (0), since 
this indicates the constant is an octal (base 8) number.

The example then shows how to define a word and an ASCII string, as 

we saw in our HelloWorld program in Chapter 1, “Getting Started.” There 

are two prefix operators we can place in front of an integer:

•	 Negative (-) will take the two’s complement of the 

integer.

•	 Complement (~) will take the one’s complement of the 

integer.

For example:

      .byte -0x45, -33, ~0b00111001

Table 5-1 lists the various data types we can define this way.

Chapter 5  Thanks for the Memories 



90

If we want to define a larger set of memory, there are a couple of 

mechanisms to do this without having to list and count them all, such as:

            .fill  repeat, size, value

This repeats a value of a given size, repeat times, for example:

zeros:      .fill  10, 4, 0

creates a block of memory with ten 4-byte words all with a value of zero. 

The following code

      .rept count

      ...

      .endr

repeats the statements between .rept and .endr, count times. This can 

surround any code in your Assembly, for instance, you can make a loop by 

repeating your code count times, for example:

Table 5-1.  The list of memory definition Assembler directives

Directive Description

.ascii A string contained in double quotes

.asciz A zero-byte terminated ascii string

.byte 1-byte integers

.double Double-precision floating-point values

.float Floating-point values

.octa 16-byte integers

.quad 8-byte integers

.short 2-byte integers

.word 4-byte integers
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rpn:  .rept 3

      .byte 0, 1, 2

      .endr

is translated to

      .byte 0, 1, 2

      .byte 0, 1, 2

      .byte 0, 1, 2

In ASCII strings we’ve seen the special character “\n” for new line. 

There are a few more for common unprintable characters as well as to give 

us an ability to put double quotes in our strings. The “\” is called an escape 

character, which is a metacharacter to define special cases. Table 5-2 lists 

the escape character sequences supported by the GNU Assembler.

Table 5-2.  ASCII escape character sequence codes

Escape character sequence Description

\b Backspace (ASCII code 8)

\f Formfeed (ASCII code 12)

\n New line (ASCII code 10)

\r Return (ASCII code 13)

\t Tab (ASCII code 9)

\ddd An octal ASCII code (ex \123)

\xdd A hex ASCII code (ex \x4F)

\\ The “\” character

\” The double quote character

\anything-else anything-else

Chapter 5  Thanks for the Memories 



92

�Loading a Register
In this section, we will look at the LDR instruction and its variations. 

We use LDR to both load an address into a register and to load the data 

pointed to by that address. There are methods to index through memory, 

as well as support for all the tricks to get as much as possible out of our 32-

bit instructions. We’ll go through the cases one by one, including

•	 PC relative addressing

•	 Loading from memory

•	 Indexing through memory

�PC Relative Addressing
In Chapter 1, “Getting Started,” we introduced the LDR instruction to load 

the address of our “Hello World!” string. We needed to do this to pass the 

address of what to print to the Linux write command. This is a simple 

example of PC relative addressing. It is convenient, since it doesn’t involve 

any other registers. As long as you keep your data close to your code, it is 

painless. Remember that when we looked at the disassembly of the LDR 

instruction

      LDR    R1, =helloworld

was

      LDR    r1, [pc, #20]

Here we are writing an instruction to load the address of our 

helloworld string into R1. The Assembler knows the value of the program 

counter at this point, so it can provide an offset to the correct memory 

address. Therefore, it’s called PC relative addressing. There is a bit more 

complexity to this; that we’ll get to in a minute.
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The offset above takes has 12 bits in the instruction, which gives a range 

of 0–4095. There is another bit in the instruction to say which direction to 

offset, so we get a range of ±4095. In this case, we are loading a word, so the 

address range is ±4095 words.

The general form of this instruction is

      LDR{type}    Rt, =label

where type is one of the types listed in Table 5-3.

Table 5-3.  The data types for the 

 load/store instructions

Type Meaning

B Unsigned byte

SB Signed byte

H Unsigned halfword (16 bits)

SH Signed halfword (16 bits)

– Omitted for word

In this simple case, where we are only loading the address, the only 

thing used from the type is the size of the data. If we load a byte, then the 

offset will be in bytes. This signed part is important when we load and save 

data, as we’ll see shortly.

Note T he offset is ±4095 in the units of the data we are loading.

PC relative addressing has one more trick up its sleeve; it gives us a 

way to load any 32-bit quantity into a register in only one instruction, for 

example, consider

      LDR    R1, =0x1234ABCDF

Chapter 5  Thanks for the Memories 



94

This assembles into

      ldr    r1, [pc, #8]

      .word  0x1234abcd

The GNU Assembler is helping us out by putting the constant we want 

into memory, then creating a PC relative instruction to load it.

In Chapter 2, “Loading and Adding,” we performed this with a MOV/

MOVT pair. Here we are doing the same thing in one instruction. Both take 

the same memory, either two 32-bit instructions or one 32-bit instruction 

and one 32-bit memory location.

In fact, this is how the Assembler handles all data labels. When we 

specified

      LDR    R1, =helloworld

the Assembler did the same thing; it created the address of the hellostring 

in memory and then loaded the contents of that memory location, not the 

helloworld string. We’ll look carefully at this process when we discuss our 

program to convert strings to uppercase later in this chapter.

These constants the Assembler creates are placed at the end of the 

.text section which is where the Assembly instructions go. Not in the .data 

section. This makes them read-only in normal circumstances, so they can’t 

be modified. Any data that you want to modify should go in a .data section.

Why would the Assembler do this? Why not just point the PC relative 

index directly at the data? There are several reasons for this, not all of them 

specific to the ARM32 instruction set:

	 1.	 An offset of 4096 isn’t very large, especially if you 

have several large strings. This way we can access 

4096 objects rather than 4096 words. This helps 

keep our program equally efficient as it gets larger.
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	 2.	 All the labels we define go into the object file’s 

symbol table, making this array of addresses 

essentially our symbol table. This way, it’s easy 

for the linker/loader and operating system to 

change memory addresses without you needing to 

recompile your program.

	 3.	 If you need any of these variables to be global, you 

can just make them global (accessible to other files) 

without changing your program. If we didn’t have 

this level of indirection, making a variable global 

would require adjustments to the instructions that 

load and save it.

This is another example of the tools helping us, though at first it may 

not seem so. In our simple one-line examples, it appears to add a layer of 

complexity, but in a real program, this is the design pattern that works.

�Loading from Memory
In our HelloWorld program, we only needed the address to pass on to 

Linux, that then used it to print our string. Generally, we like to use these 

addresses to load data into a register as demonstrated in Listing 5-2.

Listing 5-2.  Loading an address and then the value

@ load the address of mynumber into R1

      LDR    R1, =mynumber

@ load the word stored at mynumber into R2

      LDR    R2, [R1]            .data

mynumber:    .WORD 0x1234ABCD

If you step through this in the debugger, you can watch it load 

0x1234ABCD into R2.
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Note T he square bracket syntax represents indirect memory 
access. This means load the data stored at the address pointed to by 
R1, not move the contents of R1 into R2.

When we encountered “LDR r1, [pc, #20]”, it looked like we were just 

loading the address of pc+20, but now we know we are actually loading the 

address stored at pc+20, which is why square brackets are used.

Note I f you want to load a byte from this memory location, you 
need to add the type to both instructions, or there will be a length 
mismatch and it won’t load the byte you are thinking of.

This works, but you might be dissatisfied that it took us two instructions 

to load R2 with our value from memory: one to load the address and then 

one to load the data. This is life programming a RISC processor; each 

instruction executes very quickly, but performs a small chunk of work. 

As we develop algorithms, we’ll see that we usually load an address once 

and then use it quite a bit, so most accesses take one instruction once we 

are going.

�Indexing Through Memory
All high-level programming languages have an array construct. They can 

define an array of objects and then access the individual elements by 

index. The high-level language will define the array with something like

DIM A[10] AS WORD

then access the individual elements with statements like those in Listing 5-3.
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Listing 5-3.  Pseudo-code to loop through an array

// Set the 5th element of the array to the value 6

      A[5] = 6

// Set the variable X equal to the 3rd array element

      X = A[3]

// Loop through all 10 elements

      FOR I = 1 TO 10

            // Set element I to I cubed

            A[I] = I ** 3

      NEXT I

The ARM32 instruction set gives us support for doing these sorts of 

operations.

Suppose we have an array of ten words (4 bytes each) defined by

arr1: .FILL 10, 4, 0

Let’s load the array’s address into R1:

      LDR    R1, =arr1

We can now access the elements using LDR as demonstrated in 

Listing 5-4 and graphically represented in Figure 5-1.

Listing 5-4.  Indexing into an array

@ Load the first element

LDR   R2, [R1]

@ Load element 3

@ The elements count from 0, so 2 is

@ the third one. Each word is 4 bytes,

@ so we need to multiply by 4

LDR   R2, [R1, #(2 * 4)]
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Figure 5-1.  Graphical view of using R1 and an index to load R2

This is fine for accessing hard-coded elements, but what about via a 

variable? We can use a register as demonstrated in Listing 5-5.

Listing 5-5.  Using a register as an offset

      @ The 3rd element is still number 2

      MOV   R3, #(2 * 4)

@ Add the offset in R3 to R1 to get our element.

      LDR   R2, [R1, R3]

We can do these shifts in reverse. If R2 points to the end of the array, 

we can do

      LDR   R2, [R1, #-(2 * 4)]

      LDR   R2, [R1, -R3]
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With the register as the offset, it is the same as a register and shift type 

Operand2 which we studied in Chapter 2, “Loading and Adding.” For the 

preceding constants, we could do a * 4 in the immediate instruction, but 

if it’s in a register, we would need to do an additional shift operation and 

put the result in yet another register. With the register/shift format, we 

can handle quite a few cases easily. Computing the address of an array of 

words is demonstrated in Listing 5-6.

Listing 5-6.  Multiplying an offset by 4 using a shift operation

@ Suppose our array is of WORDs but we only

@ want the low order byte.

MOV   R3, #2

@ Shift R3 left by 2 positions to multiply

@ by 4 to get the correct address.

LDR   R2, [R1, R3, LSL #2]

�Write Back

When the address is calculated by the adds and shifts, the result is thrown 

away after we’ve loaded the register. When performing a loop, it is handy 

to keep the calculated address. This saves us doing a separate ADD on our 

index register.

The syntax for this is to put an exclamation mark (!) after the 

instruction, then the Assembler will set the bit in the generated instruction 

asking the CPU to save the calculated address, thus

      LDR R2, [R1, R3, LSL #2]!

updates R1 with the value calculated. In the examples we’ve studied, this 

isn’t that useful, but it becomes much more useful in the next section.
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�Post-indexed Addressing

The preceding section covers what is called pre-indexed addressing. This 

is because the address is calculated and then the data is retrieved using the 

calculated address. In post-indexed addressing, the data is retrieved first 

using the base register, then any offset shifting and adding is done. In the 

context of one instruction, this seems strange, but when we write loops, 

we will see this is what we want. The calculated address is written back to 

the base address register, since otherwise there is no point in using this 

feature, so we don’t need the !.

We indicate we want post-indexed addressing by placing the items 

to add outside the square brackets. In the following examples, LDR will 

load R1 with the contents of memory pointed to by R2 and then update 

R2 using the method indicated in each instruction. Listing 5-7 gives some 

examples of post-indexed addressing.

Listing 5-7.  Examples of post-indexed addressing

@ Load R1 with the memory pointed to by R2

@ Then do R2 = R2 + R3

LDR   R1, [R2], R3

@ Load R1 with the memory pointed to by R2

@ Then do R2 = R2 + 2

LDR   R1, [R2], #2

@ Load R1 with the memory pointed to by R2

@ Then do R2 = R2 + (R3 shifted 2 left)

LDR   R1, [R2], R3, LSL #2

Converting to Uppercase

As an example of how post-indexed addressing helps us write loops,  

let’s consider looping through a string of ASCII bytes. Suppose we want  

to convert any lowercase characters to uppercase. Listing 5-8 gives  

pseudo-code to do this.
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Listing 5-8.  Pseudo-code to convert a string to uppercase

i = 0

DO

      char = instr[i]

      IF char >= 'a' AND char <= 'z' THEN

            char = char - ('a' - 'A')

      END IF

      outstr[i] = char

      i = i + 1

UNTIL char == 0

PRINT outstr

In this example, we are going to use NULL-terminated strings. These 

are very common in C programming. Here instead of a string being a length 

and a sequence of characters, the string is the sequence of characters, 

followed by a NULL (ASCII code 0 or \0) character. To process the string, 

we simply loop until we hit the NULL character. This is quite different than 

the fixed length string we dealt with when printing hex digits in Chapter 4, 

“Controlling Program Flow.”

We’ve already covered for and while loops. The third common structured 

programming loop is the DO/UNTIL loop that puts the condition at the 

end of the loop. In this construct, the loop is always executed once. In our 

case, we want this, since if the string is empty, we still want to copy the 

NULL character, so the output string will then be empty as well.

Another difference is that we aren’t changing the input string. Instead 

we leave the input string alone and produce a new output string with the 

uppercase version of the input string.

As is common in Assembly language processing, we reverse the logic 

to jump around the code in the IF block. Listing 5-9 shows the updated 

pseudo-code.
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Listing 5-9.  Pseudo-code on how we will implement the IF statement

      IF char < 'a' GOTO continue

      IF char > 'z' GOTO continue

      char = char - ('a' - 'A')

continue: // the rest of the program

We don’t have the structured programming constructs of a high-level 

language to help us, and this turns out to be quite efficient in Assembly 

language.

Listing 5-10 is the Assembly code to convert a string to uppercase.

Listing 5-10.  Program to convert a string to uppercase

@

@ Assembler program to convert a string to

@ all uppercase.

@

@ R0-R2 - parameters to Linux function services

@ R3 - address of output string

@ R4 - address of input string

@ R5 - current character being processed

@ R7 - Linux function number

@

.global _start @ Provide program starting address

_start: LDR  R4, =instr @ start of input string

       LDR   R3, =outstr @ address of output string

@ The loop is until byte pointed to by R1 is non-zero

@ Load character and increment pointer

loop: LDRB   R5, [R4], #1

@ If R5 > 'z' then goto cont

      CMP    R5, #'z'        @ is letter > 'z'?

      BGT    cont
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@ Else if R5 < 'a' then goto end if

      CMP    R5, #'a'

      BLT    cont  @ goto to end if

@ if we got here then the letter is lower-case,

@ so convert it.

      SUB   R5, #('a'-'A')

cont: @ end if

      STRB  R5, [R3], #1 @ store character to outstr

      CMP   R5, #0       @ stop on hitting a null char

      BNE   loop         @ loop if character isn't null

@ Set up the parameters to print our hex number

@ and then call Linux to do it.

      MOV   R0, #1       @ 1 = StdOut

      LDR   R1, =outstr  @ string to print

@ get the length by subtracting the pointers

      SUB   R2, R3, R1

      MOV   R7, #4       @ linux write system call

      SVC   0            @ Call linux to output the string

@ Set up the parameters to exit the program

@ and then call Linux to do it.

      MOV     R0, #0     @ Use 0 return code

      MOV     R7, #1     @ Service command code 1

      SVC     0          @ Call linux to terminate

.data

instr:  .asciz  "This is our Test String that we will 

convert.\n"

outstr:      .fill 255, 1, 0
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If we compile and run the program, we get the desired output:

pi@raspberrypi:~/asm/Chapter 5 $ ./upper

THIS IS OUR TEST STRING THAT WE WILL CONVERT.

pi@raspberrypi:~/asm/Chapter 5 $

This program is quite short. Besides all the comments and the code 

to print the string and exit, there are only 11 Assembly instructions to 

initialize and execute the loop:

•	 Two instructions: Initialize our pointers for instr and 

outstr

•	 Five instructions: Make up the if statement

•	 Four instructions: For the loop, including loading a 

character, saving a character, updating both pointers, 

checking for a null character, and branching if not null

It would be nice if STRB also set the condition flags, but there is 

no STRBS version. LDR and STR just load and save; they don’t have 

functionality to examine what they are loading and saving, so they can’t set 

the CPSR. Hence the need for the CMP instruction in the UNTIL part of the 

loop to test for NULL.

In this example, we use the LDRB and STRB instructions, since we are 

processing byte by byte. The STRB instruction is the reverse of the LDRB 

instruction. It saves its first argument to the address built from all its other 

parameters. By covering LDR in so much detail, we’ve also covered STR 

which is the mirror image.

To convert the letter to uppercase, we use

      SUB   R5, #('a'-'A')

The lowercase characters have higher values than the uppercase 

characters, so we just use an expression that the Assembler will evaluate to 

get the correct number to subtract.
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When we come to print the string, we don’t know its length and Linux 

requires the length. We use the instruction

      SUB   R2, R3, R1

Here we’ve just loaded R1 with the address of outstr. R3 held the address 

of outstr in our loop, but because we used post-indexed addressing, it got 

incremented in each iteration of the loop. As a result, it is now pointing  

1 past the end of the string. We then calculate the length by subtracting 

the address of the start of the string from the address of the end of the 

string. We could have kept a counter for this in our loop, but in Assembly 

we are trying to be efficient, so we want as few instructions as possible in 

our loops.

Let’s look at Listing 5-11, a disassembly of our program.

Listing 5-11.  Disassembly of the uppercase program

 Contents of section .text:

00010074 <_start>:

   10074:   e59f4044   ldr   r4, [pc, #68]     ; 100c0 <cont+0x2c>

   10078:   e59f3044   ldr   r3, [pc, #68]     ; 100c4 <cont+0x30>

0001007c <loop>:

   1007c:   e4d45001     ldrb   r5, [r4], #1

   10080:   e355007a     cmp    r5, #122    ; 0x7a

   10084:   ca000002     bgt    10094 <cont>

   10088:   e3550061     cmp    r5, #97     ; 0x61

   1008c:   ba000000     blt    10094 <cont>

   10090:   e2455020     sub    r5, r5, #32

00010094 <cont>:

   10094:   e4c35001     strb   r5, [r3], #1

   10098:   e3550000     cmp    r5, #0

   1009c:   1afffff6     bne    1007c <loop>

Chapter 5  Thanks for the Memories 



106

   100a0:   e3a00001     mov    r0, #1

   �100a4:   e59f1018     ldr    r1, [pc, #24]  ; 100c4 <cont+0x30>

   100a8:   e0432001     sub    r2, r3, r1

   100ac:   e3a07004     mov    r7, #4

   100b0:   ef000000     svc    0x00000000

   100b4:   e3a00000     mov    r0, #0

   100b8:   e3a07001     mov    r7, #1

   100bc:   ef000000     svc    0x00000000

   100c0:   000200c8     .word  0x000200c8

   100c4:   000200f7     .word  0x000200f7

Contents of section .data:

 200c8 54686973 20697320 6f757220 54657374  This is our Test

 200d8 20537472 696e6720 74686174 20776520   String that we

 200e8 77696c6c 20636f6e 76657274 2e0a0000  will convert....

 200f8 00000000 00000000 00000000 00000000  ................

The instruction

      LDR   R4, =instr

has been converted to

      ldr   r4, [pc, #68]      ; 100c0

The comment tells us that pc+68 is the address 0x100c0. We can 

calculate that ourselves if we take the address of the instruction 2 past this 

one (the one being loaded as this one executes), which is at 0x1007c, and 

adding 68 in the Gnome calculator to get the same 0x100c0.

This shows how the Assembler added the literal for the address of the 

string instr at the end of the code section. When we do the LDR, it accesses 

this literal and loads it into memory; this gives us the address we need in 

memory. The other literal added to the code section is the address of outstr.
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To see this program in action, it is worthwhile to single-step through it 

in gdb. You can watch the registers with the “i r” (info registers) command. 

To view instr and oustr as the processing occurs, there are a couple of ways 

of doing it. From the disassembly we know the address of instr is 0x200c8, 

so we can enter

(gdb) x /2s 0x200c8

0x200c8:    "This is our Test String that we will convert.\n"

0x200f7:    "THI"

(gdb)

This is convenient since the x command knows how to format strings, 

but it doesn’t know about labels. We can also enter

(gdb) p (char[10]) outstr

$8 = "TH\000\000\000\000\000\000\000"

(gdb)

The print (p) command knows about our labels but doesn’t know about 

our data types, and we must cast the label to tell it how to format the output. 

Gdb handles this better with high-level languages because it knows about 

the data types of the variables. In Assembly, we are closer to the metal.

�Storing a Register
The Store Register STR instruction is a mirror of the LDR instruction. All 

the addressing modes we’ve talked about for LDR work for STR. This is 

necessary since in a load store architecture, we need to store everything 

we load after it is processed in the CPU. We’ve seen the STR instruction a 

couple of times already in our examples.

If we are using the same registers to load and store the data in a 

loop, typically the first LDR call will use pre-indexed addressing without 

writeback and then the STR instruction will use post-indexed addressing 

with writeback to advance to the next item for the next iteration of the loop.
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�Double Registers
There are double-word versions of all the LDR and STR instructions we’ve 

seen. The LDRD instruction takes two registers to load as parameters 

and then loads 64 bits of memory into these. Similarly, for the STRD 

instruction.

For example, Listing 5-12 loads the address of a dword (this is still 32 

bits) and then loads the dword into R2 and R3. Then we store R2 and R3 

back into the mydword.

Listing 5-12.  Example of loading and storing a double-word

      LDR   R1, =mydword

      LDRD  R2, R3, [R1]

      STRD  R2, R3, [R1]

.data

mydword:    .DWORD 0x1234567887654321

This will be useful when we look at multiplication.

�Summary
With this chapter, we can now load data from memory, operate on it in the 

registers, and then save the result back to memory. We examined how the 

data load and store instructions help us with arrays of data and how they 

help us index through data in loops.

In the next chapter, we will look at how to make our code reusable; 

after all, wouldn’t our uppercase program be handy if we could call it 

whenever we wish?
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CHAPTER 6

Functions and the  
Stack
In this chapter, we will examine how to organize our code into small 

independent units called functions. This allows us to build reusable 

components that we can call easily from anywhere we wish.

Typically, in software development we start with low-level components, 

then build on these to create higher and higher level applications. So 

far, we know how to loop, perform conditional logic, and perform some 

arithmetic. Now, we examine how to compartmentalize our code into 

building blocks.

We introduce the stack; this is a computer science data structure for 

storing data. If we are going to build useful reusable functions, we will 

need a good way to manage register usage, so that all these functions don’t 

clobber each other. In Chapter 5, “Thanks for the Memories,” we studied 

how to store data in a data segment in main memory. The problem with 

this is that this memory exists for the duration that our program runs. 

With small functions, like our converting to uppercase program, they run 

quickly and might need a few memory locations while they run, but when 

they are done, they don’t need this memory anymore. Stacks provide us 

a tool to manage register usage across function calls and a tool to provide 

memory to functions for the duration of their invocation.

We introduce a number of low-level concepts first, then we put them 

all together to effectively create and use functions.
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�Stacks on Raspbian
In computer science, a stack is an area of memory where there are two 

operations:

•	 push: Adds an element to the area

•	 pop: Returns and removes the element that was most 

recently added

This behavior is also called a LIFO (last in first out) queue.

When Raspbian runs a program, it gives it an 8 MB stack. In Chapter 1, 

“Getting Started,” we mentioned that register R13 had a special purpose as 

the Stack Pointer (SP). You might have noticed that R13 is named SP in gdb, 

and you might have noticed that when you debugged programs, it had a large 

value, something like 0x7efff380. This is a pointer to the current stack location.

The ARM32 instruction set has two instructions to manipulate stacks, 

Load Multiple (LDM) and Store Multiple (STM). These two instructions 

have quite a few options. These are to support things like whether the stack 

grows by increasing addresses or by decreasing addresses—, whether SP 

points to the end of the stack or the next free location on the stack. These 

options could be useful, if you are creating your own stack, or to match the 

requirement of a different operating system. But all we want is to work with 

the stack Raspbian provides us.

Fortunately, the GNU Assembler offers simpler pseudo-instructions 

that are mapped back to the correct forms of LDM and STM. These are

      PUSH   {reglist}

      POP    {reglist}

The {reglist} parameter is a list of registers, containing a comma-

separated list of registers and register ranges. A register range is something 

like R2–R4, which means R2, R3, and R4, for example:

      PUSH   {r0, r5-r12}

      POP {r0-r4, r6, r9-r12}
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The registers are stored on the stack in numerical order, with the 

lowest register at the lowest address. You shouldn’t include PC or SP in 

this list. Figure 6-1 shows the process of pushing a register onto the stack 

and then Figure 6-2 shows the reverse operation of popping that value off 

the stack.

Figure 6-1.  Pushing R5 onto the stack

Figure 6-2.  Popping R4 from the stack

�Branch with Link
To call a function, we need to set up the ability for the function to return 

execution to after the point where we called the function. We do this with 

the other special register we listed in Chapter 1, “Getting Started,” the 

Link Register (LR) which is R14. To make use of LR, we introduce the 

Branch with Link (BL) instruction, which is the same as the Branch (B) 

instruction, except it puts the address of the next instruction into LR before 

it performs the branch, giving us a mechanism to return from the function.

To return from our function, we use the Branch and Exchange (BX) 

instruction. This branch instruction takes a register as its argument, 
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allowing us to branch to the address stored in LR to continue processing 

after the function completes.

In Listing 6-1, the BL instruction stores the address of the following 

MOV instruction into LR and then branches to myfunc. Myfunc does the 

useful work the function was written to do, then returns execution to the 

caller by having BX branch to the location stored in LR, which is the MOV 

instruction following the BL instruction.

Listing 6-1.  Skeleton code to call a function and return

      @ ... other code ...

      BL    myfunc

      MOV   R1, #4

      @ ... more code ...

-----------------------------

myfunc:      @ do some work

             BX LR

�Nesting Function Calls
We successfully called and returned from a function, but we never used 

the stack. Why did we introduce the stack first and then not use it? First 

think what happens if in the course of its processing myfunc calls another 

function. We would expect this to be fairly common, as we write code 

building on the functionality we’ve previously written. If myfunc executes 

a BL instruction, then BL will copy the next address into LR overwriting 

the return address for myfunc and myfunc won’t be able to return. What 

we need is a way to keep a chain of return addresses as we call function 

after function. Well, not a chain of return addresses, but a stack of return 

addresses.
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If myfunc is going to call other functions, then it needs to push LR onto 

the stack as the first thing it does and pop it from the stack just before it 

returns, for example, Listing 6-2 shows this process.

Listing 6-2.  Skeleton code for a function that calls another function

      @ ... other code ...

      BL    myfunc

      MOV   R1, #4

      @ ... more code ...

-----------------------------

myfunc:     PUSH {LR}

            @ do some work ...

            BL    myfunc2

            @ do some more work...

            POP {LR}

            BX LR

myfunc2:    @ do some work ....

            BX LR

In this example, we see how convenient the stack is to store data that 

only needs to exist for the duration of a function call.

If a function, such as myfunc, calls other functions, then it must save 

LR; if it doesn’t call other functions, such as myfunc2, then it doesn’t 

need to save LR. Programmers often push and pop LR regardless, since if 

the function is modified later to add a function call and the programmer 

forgets to add LR to the list of saved registers, then the program will fail 

to return and either go into an infinite loop or crash. The downside is 

that there is only so much bandwidth between the CPU and memory, so 

PUSHing and POPing more registers does take extra execution cycles. The 

trade-off in speed vs. maintainability is a subjective decision depending on 

the circumstances.
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�Function Parameters and Return Values
In high-level languages, functions take parameters and return their results. 

Assembly language programming is no different. We could invent our own 

mechanisms to do this, but this is counterproductive. Eventually we will 

want our code to interoperate with code written in other programming 

languages. We will want to call our new super-fast functions from C code, 

and we might want to call functions that were written in C.

To facilitate this, there are a set of design patterns for calling functions. 

If we follow these, our code will work reliably since others have already 

worked out all the bugs, plus we achieve the goal of writing interoperable 

code.

The caller passes the first four parameters in R0, R1, R2, and R3. If 

there are additional parameters, then they are pushed onto the stack. If we 

only have two parameters, then we would only use R0 and R1. This means 

the first four parameters are already loaded into registers and ready to be 

processed. Additional parameters need to be popped from the stack before 

being processed.

To return a value to the caller, place it in R0 before returning. If you 

need to return more data, you would have one of the parameters be an 

address to a memory location where you can place the additional data to 

be returned. This is the same as C where you return data through call by 

reference parameters.

�Managing the Registers
If you call a function, chances are it was written by a different programmer 

and you don’t know what registers it will use. It would be very inefficient, 

if you had to reload all your registers every time you call a function. As a 

result, there are a set of rules to govern which registers a function can use 

and who is responsible for saving each one:
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•	 R0–R3: These are the function parameters. The 

function can use these for any other purpose modifying 

them freely. If the calling routine needs them saved, it 

must save them itself.

•	 R4–R12: These can be used freely by the called routine, 

but if it is responsible for saving them. That means the 

calling routine can assume these registers are intact.

•	 SP: This can be freely used by the called routine. The 

routine must POP the stack the same number of times 

that it PUSHes, so it is intact for the calling routine.

•	 LR: The called routine must preserve this as we 

discussed in the last section.

•	 CPSR: Neither routine can make any assumptions 

about the CPSR. As far as the called routine is 

concerned, all the flags are unknown; similarly, they 

are unknown to the caller when the function returns.

�Summary of the Function Call Algorithm
Calling routine

	 1.	 If we need any of R0–R4, save them.

	 2.	 Move first four parameters into registers R0–R4.

	 3.	 Push any additional parameters onto the stack.

	 4.	 Use BL to call the function.

	 5.	 Evaluate the return code in R0.

	 6.	 Restore any of R0–R4 that we saved.
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Called function

	 1.	 PUSH LR and R4–R12 onto the stack.

	 2.	 Do our work.

	 3.	 Put our return code into R0.

	 4.	 POP LR and R4–R12.

	 5.	 Use the BX instruction to return execution to the 

caller.

Note  We can save ourselves some steps if we just use R0–R3 for 
function parameters and return codes and short-term work. Then we 
never have to save and restore them around function calls.

I specified saving all of LR and R4–R12, which is the safest and most 
maintainable practice. However, if we know we don’t use some of 
these registers, we can skip saving them and save some execution 
time on function entry and exit.

These aren’t all the rules. The coprocessors also have registers that 
might need saving. We’ll discuss those rules when we discuss the 
coprocessors.

�Uppercase Revisited
Let’s organize our uppercase example from Chapter 5, “Thanks for the 

Memories,” as a proper function. We’ll move the function into its own 

file and modify the makefile to make both the calling program and the 

uppercase function.

First create a file called main.s containing Listing 6-3 for the driving 

application.
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Listing 6-3.  Main program for uppercase example

@

@ Assembler program to convert a string to

@ all uppercase by calling a function.

@

@ R0-R2 - parameters to linux function services

@ R1 - address of output string

@ R0 - address of input string

@ R5 - current character being processed

@ R7 - linux function number

@

.global _start    @ Provide program starting address

_start: LDR  R0, =instr @ start of input string

      LDR    R1, =outstr @ address of output string

      BL     toupper

@ Set up the parameters to print our hex number

@ and then call Linux to do it.

      MOV   R2,R0  @ return code is the length of the string

      MOV   R0, #1        @ 1 = StdOut

      LDR   R1, =outstr @ string to print

      MOV   R7, #4       @ linux write system call

      SVC   0         @ Call linux to output the string

@ Set up the parameters to exit the program

@ and then call Linux to do it.

      MOV     R0, #0      @ Use 0 return code

      MOV     R7, #1     @ Command code 1 terminates

      SVC     0        @ Call linux to terminate the program
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.data

instr:  .asciz  "This is our Test String that we will 

convert.\n"

outstr:      .fill 255, 1, 0

Now create a file called upper.s containing Listing 6-4, the uppercase 

conversion function.

Listing 6-4.  Function to convert strings to all uppercase

@

@ Assembler program to convert a string to

@ all uppercase.

@

@ R1 - address of output string

@ R0 - address of input string

@ R4 - original output string for length calc.

@ R5 - current character being processed

@

.global toupper     @ Allow other files to call this routine

toupper:    PUSH    {R4-R5} @ Save the registers we use.

      MOV   R4, R1

@ The loop is until byte pointed to by R1 is non-zero

loop: LDRB  R5, [R0], #1      @ �load character and increment 

pointer

@ If R5 > 'z' then goto cont

      CMP   R5, #'z'      @ is letter > 'z'?

      BGT   cont

@ Else if R5 < 'a' then goto end if

      CMP   R5, #'a'

      BLT   cont  @ goto to end if
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@ if we got here then the letter is lower case, so convert it.

      SUB   R5, #('a'-'A')

cont: @ end if

      STRB  R5, [R1], #1      @ store character to output str

      CMP   R5, #0            @ �stop on hitting a null 

character

      BNE   loop        @ loop if character isn't null

      SUB   R0, R1, R4  @ �get the length by subtracting the 

pointers

      POP   {R4-R5}     @ Restore the register we use.

      BX    LR          @ Return to caller

To build these, use the makefile in Listing 6-5.

Listing 6-5.  Makefile for the uppercase function example

UPPEROBJS = main.o upper.o

ifdef DEBUG

DEBUGFLGS = -g

else

DEBUGFLGS =

endif

LSTFLGS =

all: upper

%.o : %.s

      as $(DEBUGFLGS) $(LSTFLGS) $< -o $@

upper: $(UPPEROBJS)

      ld -o upper $(UPPEROBJS)

Let’s step through the function call and examine the contents of 

important registers and the stack. We set a breakpoint at _start and  
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single-step through the first couple of instructions and stop at the BL 

instruction. I set R4 to 12 and R5 to 13, so we can follow how these are saved 

to the stack.

r4             0xc                 12

r5             0xd                 13

sp             0x7efff380          0x7efff380

lr             0x0                 0

pc             0x10084             0x10084 <_start+16>

We see the BL instruction is at 0x10084. Now let’s single-step again to 

execute the BL instruction. Here are the same registers:

r4             0xc                 12

r5             0xd                 13

sp             0x7efff380          0x7efff380

lr             0x10088             65672

pc             0x100b0             0x100b0 <toupper>

The LR has been set to 0x10088 which is the instruction after the BL 

instruction (0x10084+4). The PC is now 0x100b0, pointing to the first 

instruction in the toupper routine. The first instruction in toupper is the 

PUSH instruction to save registers R4 and R5. Let’s single-step through that 

instruction and examine the registers again.

r4             0xc                 12

r5             0xd                 13

sp             0x7efff378          0x7efff378

lr             0x10088             65672

pc             0x100b4             0x100b4 <toupper+4>

We see that the stack pointer (SP) has been decremented by 8 bytes 

(two words) to 0x7efff378. None of the other registers have changed. 

Pushing registers onto the stack does not affect their values; it only saves 

them. If we look at location 0x7efff378, we see
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(gdb) x /4xw 0x7efff378

0x7efff378:   0x0000000c   0x0000000d   0x00000001   0x7efff504

We see copies of registers R4 and R5 on the stack.

From this little exercise, we can see what type of stack Linux uses, 

namely, it is a descending stack; the addresses get small as the stack grows. 

Further SP points to the last item saved (and not the next free slot).

Note T he toupper function doesn’t call any other functions, so we 
don’t save LR along with R4 and R5. If we ever change it to do so, 
we will need to add LR to the list. This version of toupper is intended 
to be as fast as possible, so I didn’t add any extra code for future 
maintainability and safety.

Most C programmers will object that this function is dangerous. If 
the input string isn’t NULL terminated, then it will overrun the output 
string buffer, overwriting the memory past the end. The solution is 
to pass in a third parameter with the buffer lengths and check in 
the loop that we stop at the end of the buffer if there is no NULL 
character.

This routine only processes the core ASCII characters. It doesn’t handle 
the localized characters like é; it won’t be converted to É.

�Stack Frames
In our uppercase function, we didn’t need any additional memory, since 

we could do all our work with the available registers. When we code larger 

functions, we often require more memory for our variables than fit in 

the registers. Rather than add clutter to the .data section, we store these 

variables on the stack.
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PUSHing these variables on the stack isn’t practical, since we usually 

need to access them in a random order, rather than the strict LIFO 

protocol that PUSH/POP enforce.

To allocate space on the stack, we use a subtract instruction to grow the 

stack by the amount we need. Suppose we need three variables which are 

each 32-bit integers, say a, b, and c. Therefore, we need 12 bytes allocated 

on the stack (3 variables x 4 bytes/word).

      SUB   SP, #12

This moves the stack pointer down by 12 bytes, providing us a region 

of memory on the stack to place our variables. Suppose a is in R0, b in R1, 

and c in R2, we can then store these using

      STR   R0, [SP]            @ Store a

      STR   R1, [SP, #4]        @ Store b

      STR   R2, [SP, #8]        @ Store c

Before the end of the function, we need to execute

      ADD   SP, #12

to release our variables from the stack. Remember, it is the responsibility of 

a function to restore SP to its original state before returning.

This is the simplest way to allocate some variables. However, if we are 

doing a lot of other things with the stack in our function, it can be hard to 

keep track of these offsets. The way we alleviate this is with a stack frame. 

Here we allocate a region on the stack and keep a pointer to this region 

in another register that we will refer to as the Frame Pointer (FP). You 

could use any register as the FP, but we will follow the C programming 

convention and use R11.

To use a stack frame, we first set our frame pointer to the next free spot 

on the stack (it grows in descending addresses), then we allocate the space 

as before:
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      SUB   FP, SP, #4

      SUB   SP, #12

Now we address our variables using an offset from FP.

      STR   R0, [FP]               @ Store a

      STR   R1, [FP, #-4]          @ Store b

      STR   R2, [FP, #-8]          @ Store c

When we use FP, we need to include it in the list of registers we PUSH 

at the beginning of the function and then POP at the end. Since R11, the 

FP is one we are responsible for saving.

In this book, we’ll tend to not use FP. This saves a couple of cycles on 

function entry and exit. After all, in Assembly language programming, we 

want to be efficient.

�Stack Frame Example
Listing 6-6 is a simple skeletal example of a function that creates three 

variables on the stack.

Listing 6-6.  Simple skeletal function that demonstrates a stack frame

@ Simple function that takes 2 parameters

@ VAR1 and VAR2. The function adds them,

@ storing the result in a variable SUM.

@ The function returns the sum.

@ It is assumed this function does other work,

@ including other functions.

@ Define our variables

            .EQU   VAR1, 0

            .EQU   VAR2, 4

            .EQU   SUM,  8

Chapter 6  Functions and the Stack 



124

SUMFN:      PUSH   {R4-R12, LR}

            SUB    SP, #12      @ room for three 32-bit values

            STR    R0, [SP, #VAR1]    @ save passed in param.

            STR    R1, [SP, #VAR2]    @ save second param.

@ Do a bunch of other work, but don't change SP.

            LDR    R4, [SP, #VAR1]

            LDR    R5, [SP, #VAR2]

            ADD    R6, R4, R5

            STR    R6, [SP, #SUM]

@ Do other work

@ Function Epilog

            LDR    R0, [SP, #SUM]     @ load sum to return

            ADD    SP, #12     @ Release local vars

            POP    {R4-R12, PC} @ Restore regs and return

�Defining Symbols

In this example, we introduce the .EQU Assembler directive. This directive 

allows us to define symbols that will be substituted by the Assembler 

before generating the compiled code. This way, we can make the code 

more readable. In this example, keeping track of which variable is which 

on the stack makes the code hard to read and is error-prone. With the .EQU 

directive, we can define each variable’s offset on the stack once.

Sadly, .EQU only defines numbers, so we can’t define the whole “[SP, #4]” 

type string.

�One More Optimization

You might notice that our SUMFN doesn’t end in “BX LR”. This is a little 

optimization. The BX instruction basically moves LR into PC, so why not 

just POP LR directly into PC? Notice this is what the POP instruction at the 
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end of the routine does. If we pushed LR, we can save an instruction this 

way. This works fine as long as the caller is regular ARM32 Assembly code. 

There is another type of code called Thumb code which we will look at in 

Chapter 15, “Thumb Code.” BX lets us return to a caller that is running in 

Thumb mode, where popping to PC won’t cause the processor to change 

how it interprets instructions.

�Macros
Another way to make our uppercase loop into a reusable bit of code is to 

use macros. The GNU Assembler has a powerful macro capability; with 

macros rather than calling a function, the Assembler creates a copy of 

the code in each place where it is called, substituting any parameters. 

Consider this alternate implementation of our uppercase program; the first 

file is mainmacro.s containing the contents of Listing 6-7.

Listing 6-7.  Program to call our toupper macro

@

@ Assembler program to convert a string to

@ all uppercase by calling a macro.

@

@ R0-R2 - parameters to linux function services

@ R1 - address of output string

@ R0 - address of input string

@ R7 - linux function number

@

.include "uppermacro.s"

.global _start       @ Provide program starting address

_start:      toupper tststr, buffer

Chapter 6  Functions and the Stack 



126

@ Set up the parameters to print our hex number

@ and then call Linux to do it.

      MOV   R2,R0  @ R0 is the length of the string

      MOV   R0, #1        @ 1 = StdOut

      LDR   R1, =buffer @ string to print

      MOV   R7, #4       @ linux write system call

      SVC   0       @ Call linux to output the string

@ Call it a second time with our second string.

      toupper tststr2, buffer

@ Set up the parameters to print our hex number

@ and then call Linux to do it.

      MOV   R2,R0     @ R0 is the length of the string

      MOV   R0, #1            @ 1 = StdOut

      LDR   R1, =buffer @ string to print

      MOV   R7, #4            @ linux write system call

      SVC   0         @ Call linux to output the string

@ Set up the parameters to exit the program

@ and then call Linux to do it.

      MOV     R0, #0     @ Use 0 return code

      MOV     R7, #1    @ �Service command code 1 terminates 

this program

      SVC     0  @ Call linux to terminate

.data

tststr:  .asciz  "This is our Test String that we will 

convert.\n"

tststr2: .asciz     "A second string to uppercase!!\n"

buffer:      .fill 255, 1, 0

The macro to uppercase the string is in uppermacro.s containing 

Listing 6-8.
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Listing 6-8.  Macro version of our toupper function

@

@ Assembler program to convert a string to

@ all uppercase.

@

@ R1 - address of output string

@ R0 - address of input string

@ R2 - original output string for length calc.

@ R3 - current character being processed

@

@ label 1 = loop

@ label 2 = cont

.MACRO      toupper      instr, outstr

      LDR   R0, =\instr

      LDR   R1, =\outstr

      MOV   R2, R1

@ The loop is until byte pointed to by R1 is non-zero

1:    LDRB  R3, [R0], #1      @ �load character and increment 

pointer

@ If R5 > 'z' then goto cont

      CMP   R3, #'z'        @ is letter > 'z'?

      BGT   2f

@ Else if R5 < 'a' then goto end if

      CMP   R3, #'a'

      BLT   2f    @ goto to end if

@ if we got here then the letter is lower-case, so convert it.

      SUB   R3, #('a'-'A')

2:    @ end if

      STRB  R3, [R1], #1  @ store character to output str

      �CMP   R3, #0        @ stop on hitting a null character
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      BNE   1b            @ loop if character isn't null

      �SUB   R0, R1, R2 @ get the length by subtracting the pointers

.ENDM

�Include Directive
The file uppermacro.s defines our macro to convert a string to uppercase. 

The macro doesn’t generate any code; it just defines the macro for the 

Assembler to insert wherever it is called from. This file doesn’t generate an 

object (∗.o) file; rather, it is included by whichever file needs to use it.

The .include directive

.include "uppermacro.s"

takes the contents of this file and inserts it at this point, so that our source 

file becomes larger. This is done before any other processing. This is 

similar to the C #include preprocessor directive.

�Macro Definition
A macro is defined with the .MACRO directive. This gives the name of the 

macro and lists its parameters. The macro ends at the following .ENDM 

directive. The form of the directive is

.MACRO      macroname     parameter1, parameter2, ...

Within the macro, you specify the parameters by preceding their 

name with a backslash, for instance, \parameter1 to place the value of 

parameter1. Our toupper macro defines two parameters instr and outstr:

.MACRO      toupper     instr, outstr
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You can see how the parameters are used in the code with \instr and \

oustr. These are text substitutions and need to result in correct Assembly 

syntax or you will get an error.

�Labels
Our labels “loop” and “cont” are replaced with the labels “1” and “2”.  

This takes away from the readability of the program. The reason we do this 

is that if we didn’t, we would get an error that a label was defined more 

than once, if we use the macro more than once. The trick here is that the 

Assembler lets you define numeric labels as many times as you want. Then 

to reference them in our code, we used

      BGT   2f

      BNE   1b            @ loop if character isn't null

The f after the 2 means the next label 2 in the forward direction. The 1b 

means the next label 1 in the backward direction.

To prove that this works, we call toupper twice in the mainmacro.s file 

to show everything works and that we can reuse this macro as many times 

as we like.

�Why Macros?
Macros substitute a copy of the code at every point they are used. This will 

make your executable file larger. If you

objdump -d mainmacro

you will see the two copies of code inserted. With functions, there is no 

extra code generated each time. This is why functions are quite appealing, 

even with the extra work of dealing with the stack.
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The reason macros get used is performance. Most Raspberry Pi models 

have a gigabyte or more of memory that is room for a lot of copies of code. 

Remember that whenever we branch, we have to restart the execution 

pipeline, making branching an expensive instruction. With macros, we 

eliminate the BL branch to call the function and the BX branch to return. 

We also eliminate the PUSH and POP instructions to save and restore 

any registers we use. If a macro is small and we use it a lot, there could be 

considerable execution time savings.

Note N otice in the macro implementation of toupper that I only 
used registers R0–R3. This is to try and avoid using any registers 
important to the caller. There is no standard on how to regulate 
register usage with macros, like there is with functions, so it is up to 
you, the programmer, to avoid conflicts and strange bugs.

�Summary
In this chapter, we covered the ARM stack and how it is used to help 

implement functions. We covered how to write and call functions as a 

first step to creating libraries of reusable code. We learned how to manage 

register usage, so there aren’t any conflicts between our calling programs 

and our functions. We learned the function calling protocol that will 

allow us to interoperate with other programming languages. We looked 

at defining stack-based storage for local variables and how to use this 

memory.

Finally, we covered the GNU Assembler’s macro ability as an 

alternative to functions in certain performance critical applications.
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CHAPTER 7

Linux Operating 
System Services
In Chapter 1, “Getting Started,” we needed the ability to exit our program 

and to display a string. We used Raspbian Linux to do this, invoking 

operating system services directly. In all high-level programming languages, 

there is a runtime library that includes wrappers for calling the operating 

system. This makes it appear that these services are part of the high-level 

language. In this chapter, we’ll be looking at what these runtime libraries do 

under the covers to call Linux and what services are available to us.

We will review the syntax for calling the operating system and the error 

codes returned to us. There is a complete listing of all the services and 

error codes in Appendix B, “Linux System Calls.”

�So Many Services
If you look at Appendix B, “Linux System Calls,” it looks like there are 

nearly 400 Linux system services. Why so many? Linux turned 25 years 

old in 2019. That’s quite old for a computer program. These services were 

added piece by piece over all those years. The problem of this patchwork 

development arises in software compatibility. If a service call requires 

a parameter change, then the current service can’t be changed without 

breaking a bunch of programs.
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The solution to software incompatibility is often to just add a new 

function. The old function then becomes a thin wrapper that translates the 

parameters to what the new function requires. Examples of this are any file 

access routines that take an offset into a file or a size parameter. Originally, 

32-bit Linux only supported files 32 bits in length (4 GB). This became 

too small, and a whole new set of file I/O routines were added that take a 

64-bit parameter for file offsets and sizes. All these functions are like the 

32-bit versions, but with 64 appended to their names.

Fortunately, the Linux documentation for all these services is quite 

good. It is oriented entirely to C programmers, so anyone else using it 

must know enough C to convert the meaning to what is appropriate for the 

language they are using.

Linux is a powerful operating system—as an application or systems 

programmer, it certainly will help you learn Linux system programming. 

There are a lot of services to help you. You don’t want to be reinventing all 

these yourself, unless you are creating a new operating system.

�Calling Convention
We’ve used two system calls: one to write ASCII data to the console and 

the second to exit our program. The calling convention for system calls 

is different than that for function. It uses a software interrupt to switch 

context from our user-level program to the context of the Linux kernel.

The calling convention is

	 1.	 r0–r6: Input parameters, up to seven parameters for 

the system call.

	 2.	 r7: The Linux system call number (see Appendix B, 

“Linux System Calls”).
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	 3.	 Call software interrupt 0 with “SVC 0”.

	 4.	 R0: The return code from the call (see Appendix B, 

“Linux System Calls”).

The software interrupt is a clever way for us to call routines in the Linux 

kernel without knowing where they are stored in memory. It also provides 

a mechanism to run at a higher security level while the call executes. Linux 

will check if you have the correct access rights to perform the requested 

operation and give back an error code like EACCES (13) if you are denied.

Although it doesn’t follow the function calling convention from 

Chapter 6, “Functions and the Stack,” the Linux system call mechanism 

will preserve all registers not used as parameters or the return code. When 

system calls require a large block of parameters, they tend to take a pointer 

to a block of memory as one parameter, which then holds all the data they 

need. Hence, most system calls don’t use that many parameters.

The return code for these functions is usually zero or a positive 

number for success and a negative number for failure. The negative 

number is the negative of the error codes in Appendix B, “Linux System 

Calls.” For example, the open call to open a file returns a file descriptor 

if it is successful. A file descriptor is a small positive number, then a 

negative number if it fails, where it is the negative of one of the constants in 

Appendix B, “Linux System Calls.”

�Structures
Many Linux services take pointers to blocks of memory as their 

parameters. The contents of these blocks of memory are documented with 

C structures, so as Assembly programmers, we have to reverse engineer the 

C and duplicate the memory structure. For instance, the nanosleep service 

lets your program sleep for a number of nanoseconds; it is defined as

int nanosleep(const struct timespec *req, struct timespec *rem);
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and then the struct timespec is defined as

   struct timespec {

               time_t tv_sec;      /* seconds */

               long   tv_nsec;     /* nanoseconds */

           };

We then must figure out that these are two 32-bit integers, then define 

in Assembly

timespecsec:   .word   0

timespecnano:  .word   100000000

To use them, we load their address into the registers for the first two 

parameters:

        ldr         r0, =timespecsec

        ldr         r1, =timespecsec

We’ll be using the nanosleep function in Chapter 8, “Programming GPIO 

Pins,” but this is typical of what it takes to directly call some Linux services.

�Wrappers
Rather than figure out all the registers each time we want to call a Linux 

service, we will develop a library of routines or macros to make our job 

easier. The C programming language includes function call wrappers 

for all the Linux services; we will see how to use these in Chapter 9, 

“Interacting with C and Python.”

Rather than duplicate the work of the C runtime library, we’ll 

develop a library of Linux system calls using the GNU Assembler’s macro 

functionality. We won’t develop this for all the functions, just the functions 

we need. Most programmers do this, then over time their libraries become 

quite extensive.
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A problem with macros is that you often need several variants with 

different parameter types. For instance, sometimes you might like to 

call the macro with a register as a parameter and other times with an 

immediate value.

�Converting a File to Uppercase
In this chapter, we present a complete program to convert the contents of a 

text file to all uppercase. We will use our toupper function from Chapter 6, 

“Functions and the Stack,” and get practice coding loops and if statements.

To start with, we need a library of file I/O routines to read from our 

input file, then write the uppercased version to another file. If you’ve 

done any C programming, these should look familiar, since the C runtime 

provides a thin layer over these services. We create a file fileio.s containing 

Listing 7-1 to do this.

Listing 7-1.  Macros to help us read and write files

@ Various macros to perform file I/O

@ The fd parameter needs to be a register.

@ Uses R0, R1, R7.

@ Return code is in R0.

.include "unistd.s"

.equ  O_RDONLY, 0

.equ  O_WRONLY, 1

.equ  O_CREAT,  0100

.equ  S_RDWR,   0666

.macro  openFile    fileName, flags

        ldr         r0, =\fileName

        mov         r1, #\flags
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        mov      r2, #S_RDWR  @ RW access rights

        mov      r7, #sys_open

        svc         0

.endm

.macro  readFile   fd, buffer, length

        mov         r0, \fd      @ file descriptor

        ldr         r1, =\buffer

        mov         r2, #\length

        mov         r7, #sys_read

        svc         0

.endm

.macro  writeFile   fd, buffer, length

        mov         r0, \fd      @ file descriptor

        ldr         r1, =\buffer

        mov         r2, \length

        mov         r7, #sys_write

        svc         0

.endm

.macro  flushClose  fd

@fsync syscall

        mov         r0, \fd

        mov         r7, #sys_fsync

        svc         0

@close syscall

        mov         r0, \fd

        mov         r7, #sys_close

        svc         0

.endm

Now we need a main program to orchestrate the process. We’ll call this 

main.s containing the contents of Listing 7-2.
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Listing 7-2.  Main program for our case conversion program

@

@ Assembler program to convert a string to

@ all uppercase by calling a function.

@

@ R0-R2, R7 - used by macros to call linux

@ R8 - input file descriptor

@ R9 - output file descriptor

@ R10 - number of characters read

@

.include "fileio.s"

.equ  BUFFERLEN, 250

.global _start    @ Provide program starting address

_start:      openFile   inFile, O_RDONLY

      MOVS         R8, R0     @ save file descriptor

      BPL          nxtfil  @ pos number file opened ok

      MOV          R1, #1  @ stdout

      LDR          R2, =inpErrsz     @ Error msg

      LDR          R2, [R2]

      writeFile    R1, inpErr, R2 @ print the error

      B            exit

nxtfil: openFile   outFile, O_CREAT+O_WRONLY

      MOVS         R9, R0      @ save file descriptor

      BPL          loop    @ pos number file opened ok

      MOV          R1, #1

      LDR          R2, =outErrsz

      LDR          R2, [R2]

      writeFile    R1, outErr, R2

      B            exit
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@ loop through file until done.

loop: readFile      R8, buffer, BUFFERLEN

      MOV           R10, R0     @ Keep the length read

      MOV           R1, #0      @ Null terminator for string

      @ set up call to toupper and call function

      LDR          R0, =buffer   @ first param for toupper

      STRB         R1, [R0, R10] @ put null at end of string.

      LDR          R1, =outBuf

      BL           toupper

      writeFile    R9, outBuf, R10

      CMP          R10, #BUFFERLEN

      BEQ          loop

      flushClose   R8

      flushClose   R9

@ Set up the parameters to exit the program

@ and then call Linux to do it.

exit: MOV     R0, #0      @ Use 0 return code

        MOV     R7, #1      @ Command code 1 terms

        SVC     0           @ Call linux to terminate

.data

inFile:  .asciz  "main.s"

outFile: .asciz    "upper.txt"

buffer:     .fill  BUFFERLEN + 1, 1, 0

outBuf:     .fill  BUFFERLEN + 1, 1, 0

inpErr: .asciz     "Failed to open input file.\n"

inpErrsz: .word  .-inpErr

outErr:     .asciz       "Failed to open output file.\n"

outErrsz: .word   .-outErr
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The makefile is contained in Listing 7-3.

Listing 7-3.  Makefile for our file conversion program

UPPEROBJS = main.o upper.o

ifdef DEBUG

DEBUGFLGS = -g

else

DEBUGFLGS =

endif

LSTFLGS =

all: upper

%.o : %.s

      as $(DEBUGFLGS) $(LSTFLGS) $< -o $@

upper: $(UPPEROBJS)

      ld -o upper $(UPPEROBJS)

This program uses the upper.s file from Chapter 6, “Functions and 

the Stack,” that contains the function version of our uppercase logic. The 

program also uses the unistd.s from Appendix B, “Linux System Calls,” that 

gives meaningful definitions of the Linux service function numbers.

If you build this program, notice that it is only 13 KB in size. This is one 

of the appeals of pure Assembly language programming. There is nothing 

extra added to the program—we control every byte—no mysterious 

libraries or runtimes added.

Note T he files this program operates on are hard-coded in the 
.data section. Feel free to change them, play with them, generate 
some errors to see what happens. Single-step through the program 
in gdb to ensure you understand how it works.
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�Opening a File
The Linux open service is typical of a Linux system service. It takes three 

parameters:

	 1.	 Filename: The file to open as a NULL-terminated 

string.

	 2.	 Flags: To specify whether we’re opening it for 

reading or writing or whether to create the file. We 

included some .EQU directives with the values we 

need (using the same names as in the C runtime).

	 3.	 Mode: The access mode for the file when creating 

the file. We included a couple of defines, but in octal 

these are the same as the parameters to the chmod 

Linux command.

The return code is either a file descriptor or an error code. Like many 

Linux services, the call fits this in a single return code by making errors 

negative and successful results positive.

�Error Checking
Books tend to not promote good programming practices for error checking. 

The sample programs are kept as small as possible, so the main ideas 

being explained aren’t lost in a sea of details. This is the first program 

where we test any return codes. Partly, we had to develop enough code to 

be able to do it, and second error checking code tends to not reveal any 

new concepts.

File open calls are prone to failing. The file might not exist, perhaps 

because we are in the wrong folder, or we may not have sufficient access 

rights to the file. Generally, check the return code to every system call, or 

function you call, but practically programmers are lazy and tend to only check 

those that are likely to fail. In this program, we check the two file open calls.
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First of all, we have to copy the file descriptor to a register that won’t be 

overwritten, so we move it to R8. We do this with a MOVS instruction, so 

the CPSR will be set.

      MOVS      R8, R0      @ save file descriptor

This means we can test if it’s positive and if so go on to the next bit of code.

      BPL      nxtfil  @ pos number file opened ok

If the branch isn’t taken, then openFile returned a negative number. 

Here we use our writeFile routine to write an error message to stdout, then 

branch to the end of the program to exit.

      MOV         R1, #1  @ stdout

      LDR         R2, =inpErrsz  @ Error msg sz

      LDR         R2, [R2]

      writeFile   R1, inpErr, R2 @ print the error

      B           exit

In our .data section, we defined the error messages as follows:

inpErr: .asciz    "Failed to open input file.\n"

inpErrsz: .word  .-inpErr

We’ve seen .asciz and this is standard. For writeFile, we need the 

length of the string to write to the console. In Chapter 1, “Getting Started,” 

we counted the characters in our string and put the hard-coded number 

in our code. We could do that here too, but error messages start getting 

long and counting the characters seems like something the computer 

should do. We could write a routine like the C library’s strlen() function to 

calculate the length of a NULL-terminated string. Instead, we use a little 

GNU Assembler trickery. We add a .word directive right after the string 

and initialize it with “.-inpErr”. The “ . ” is a special Assembler variable 

that contains the current address the Assembler is on as it works. Hence, 

the current address right after the string minus the address of the start of 
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the string is the length. Now people can revise the wording of the error 

message to their heart’s content without needing to count the characters 

each time.

Most applications contain an error module, so if a function fails, the 

error module is called. Then the error module is responsible for reporting 

and logging the error. This way, error reporting can be made quite 

sophisticated without cluttering up the rest of the code with error-handling 

code. Another problem with error-handling code is that it tends to not be 

tested. Often bad things can happen when an error finally does happen, 

and problems with the previously untested code manifest.

�Looping
In our loop, we

	 1.	 Read a block of 250 characters from the input file.

	 2.	 Append a NULL terminator.

	 3.	 Call toupper.

	 4.	 Write the converted characters to the output file.

	 5.	 If we aren’t done, branch to the top of the loop.

We check if we are done with

      CMP        R10, #BUFFERLEN

      BEQ        loop

R10 contains the number of characters returned from the read service 

call. If it equals the number of characters requested, then we branch to loop. 

If it doesn’t equal exactly, then either we hit end of file, so the number of 

characters returned is less (and possibly 0), or an error occurred, in which 

case the number is negative. Either way, we are done and fall through to the 

program exit.
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�Summary
In this chapter, we gave an overview of how to call the various Linux 

system services. We covered the calling convention and how to interpret 

the return codes. We didn’t cover the purpose of each call and referred the 

user to the Linux documentation instead.

We presented a program to read a file, convert it to uppercase, and 

write it out to another file. This is our first chance to put together what 

we learned in Chapters 1–6 to build a full application, with loops, if 

statements, error messages, and file I/O.

In the next chapter, we will use Linux service calls to manipulate the 

GPIO pins on the Raspberry Pi board.
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CHAPTER 8

Programming GPIO 
Pins
The Raspberry Pi has a set of General Purpose I/O (GPIO) pins that you 

can use to control homemade electronic projects. Most of the Raspberry 

Pi starter kits include a breadboard and a few electronic components to 

play with. In this chapter, we will look at programming GPIO pins from 

Assembly language.

We will experiment with a breadboard containing a number of LEDs 

and resistors, so we can write some real code. We will program the GPIO 

pins two ways, firstly by using the included Linux device driver and 

secondly by accessing the GPIO controller’s registers directly.

�GPIO Overview
The original Raspberry Pi 1 has 26 GPIO pins; newer Raspberry Pi 

expanded this to 40 pins. In this section, we will limit our discussion to the 

original 26 pins. They either provide power or are generally programmable:

•	 Pins 1 and 17: Provide +3.3V DC power

•	 Pins 2 and 4: Provide +5V DC power
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•	 Pins 6, 9, 14, 20, and 25: Provide electrical ground

•	 Pins 3, 5, 7–8, 10–13, 15, 16, 18, 19, 21–24, and 26: Are 

programmable general purpose

For the programmable pins, we can use them for output, where we 

control whether they output power or not (are binary 1 or 0). We can read 

them to see if power is provided, for instance, if it is connected to a switch.

However, this isn’t all there is to GPIO; besides the functions we’ve 

talked about so far, a number of the pins have alternate functions that you 

can select programmatically. For instance, pins 3 and 5 can support the 

I2C standard that allows two microchips to talk to each other.

There are pins that can support two serial ports which are handy for 

connecting to radios or printers. There are pins that support pulse width 

modulation (PWM) and pulse-position modulation (PPM) that convert 

digital to analog and are handy for controlling electric motors.

�In Linux, Everything Is a File
The model for controlling devices in Linux is to map each device to a file. 

The file appears under either /dev or /sys and can be manipulated with the 

same Linux service calls that operate on regular files. The GPIO pins are 

no different. There is a Linux device driver for them that then controls the 

pin’s operations via application programs opening files then reading and 

writing data to them.

The files to controlling the GPIO pin all appear under the /sys/class/

gpio folder. By writing short text strings to the files here, we control the 

operation of the pins.

Suppose we want to programmatically control pin 17; the first thing 

we do is tell the driver we want to do this. We write the string “17” to /sys/

class/gpio/export. If this succeeds, then we now control the pin. The driver 

then creates the following files in a gpio17 folder:
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•	 /sys/class/gpio/gpio17/direction: Used to specify 

whether the pin is for input or output

•	 /sys/class/gpio/gpio17/value: Used to set or read the 

value of the pin

•	 /sys/class/gpio/gpio17/edge: Used to set an interrupt 

to detect value changes

•	 /sys/class/gpio/gpio17/active_low: Used to invert the 

meaning of 0 and 1

The next thing we do is set the direction for the pin, either use it for 

input or for output. We either write “in” or “out” to the direction file to do 

this.

Now we can write to the value file for an output pin or read the value 

file for an input pin. To turn on a pin, we write “1” to value, and to turn it 

off, we write “0”. When activated, the GPIO pin provides +3.3V.

When we are done with a pin, we should write its pin number to /sys/

class/gpio/unexport. However, this will be done automatically when our 

program terminates.

We can do all this with the macros we created in Chapter 7, “Linux 

Operating System Services,” in fileio.s. In fact, by providing this interface, 

you can control the GPIO pins via any programming language capable of 

reading and writing files, that is pretty much every single one. Raspbian 

includes some special libraries to control the GPIO pins for Python and 

Scratch to make it easier, but behind the scenes they are just making the 

file I/O calls we are describing.
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�Flashing LEDs
To demonstrate programming the GPIO, we will connect some LEDs to a 

breadboard and then make them flash in sequence.

We will connect each of three LEDs to a GPIO pin (in this case 17, 27, 

and 22), then to ground through a resistor. We need the resistor because 

the GPIO is specified to keep the current under 16mA, or you can damage 

the circuits. Most of the kits come with several 220 Ohm resistors. By Ohm’s 

law, I = V / R, these would cause the current to be 3.3V/220Ω = 15mA, so 

just right. You need to have a resistor in series with the LED since the LED’s 

resistance is quite low (typically around 13 Ohms and variable).

WARNING: LEDs have a positive and negative side. The positive side 

needs to connect to the GPIO pin; reversing it could damage the LED.

Figure 8-1 shows how the LEDs and resistors are wired up on a 

breadboard.

Figure 8-1.  Breadboard with LEDs and resistors installed
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Initially, we’ll define a set of macros in gpiomacros.s containing Listing 8-1 

that use the macros in fileio.s to perform the various GPIO functions.

Listing 8-1.  Macros to control the GPIO pins

@ Various macros to access the GPIO pins

@ on the Raspberry Pi.

@

@ R8 - file descriptor.

@

.include "fileio.s"

@ Macro nanoSleep to sleep .1 second

@ Calls Linux nanosleep service which is funct 162.

@ Pass a reference to a timespec in both r0 and r1

@ First is input time to sleep in secs and nanosecs.

@ Second is time left to sleep if interrupted

.macro  nanoSleep

        ldr         r0, =timespecsec

        ldr         r1, =timespecsec

        mov         r7, #sys_nanosleep

        svc         0

.endm

.macro  GPIOExport  pin

        openFile    gpioexp, O_WRONLY

        mov         r8, r0      @ save the file desc

        writeFile   r8, \pin, #2

        flushClose  r8

.endm

.macro  GPIODirectionOut   pin

        @ copy pin into filename pattern

        ldr         r1, =\pin
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        ldr         r2, =gpiopinfile

        add         r2, #20

        ldrb        r3, [r1], #1 @ load pin and post incr

        �strb        r3, [r2], #1 @ store to filename and post incr

        ldrb        r3, [r1]

        strb        r3, [r2]

        openFile    gpiopinfile, O_WRONLY

        mov         r8, r0      @ save the file descriptor

        writeFile   r8, outstr, #3

        flushClose  r8

.endm

.macro  GPIOWrite   pin, value

        @ copy pin into filename pattern

        ldr         r1, =\pin

        ldr         r2, =gpiovaluefile

        add         r2, #20

        �ldrb        r3, [r1], #1    @ load pin and post increment

        �strb        r3, [r2], #1    @ �store to filename and 

post increment

        ldrb        r3, [r1]

        strb        r3, [r2]

        openFile    gpiovaluefile, O_WRONLY

        mov         r8, r0      @ save the file descriptor

        writeFile   r8, \value, #1

        flushClose  r8

.endm

.data

timespecsec:   .word   0

timespecnano:  .word   100000000

gpioexp:    .asciz  "/sys/class/gpio/export"

gpiopinfile: .asciz "/sys/class/gpio/gpioxx/direction"

Chapter 8  Programming GPIO Pins



151

gpiovaluefile: .asciz "/sys/class/gpio/gpioxx/value"

outstr:     .asciz  "out"

            .align  2          @ �save users of this file having 

to do this.

Now we need a controlling program, main.s containing Listing 8-2, to 

orchestrate the process.

Listing 8-2.  Main program to flash the LEDs

@

@ Assembler program to flash three LEDs connected to

@ the Raspberry Pi GPIO port.

@

@ r6 - loop variable to flash lights 10 times

@

.include "gpiomacros.s"

.global _start                @ �Provide program starting 

address to linker

_start: GPIOExport  pin17

        GPIOExport  pin27

        GPIOExport  pin22

        nanoSleep

        GPIODirectionOut pin17

        GPIODirectionOut pin27

        GPIODirectionOut pin22

        @ set up a loop counter for 10 iterations

        mov         r6, #10

loop:   GPIOWrite   pin17, high

        nanoSleep

        GPIOWrite   pin17, low
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        GPIOWrite   pin27, high

        nanoSleep

        GPIOWrite   pin27, low

        GPIOWrite   pin22, high

        nanoSleep

        GPIOWrite   pin22, low

        @decrement loop counter and see if we loop

   @ Subtract 1 from loop register

   @ setting status register.

        subs    r6, #1

   @ If we haven't counted down to 0 then loop

        bne     loop

_end:   mov     R0, #0  @ Use 0 return code

        mov     R7, #1  @ Command code 1 terminates

        svc     0       @ Linux command to terminate

pin17:      .asciz  "17"

pin27:      .asciz  "27"

pin22:      .asciz  "22"

low:        .asciz  "0"

high:       .asciz  "1"

This program is a straightforward application of the Linux system 

service calls we learned in Chapter 7, “Linux Operating System Services.”

�Moving Closer to the Metal
For Assembly language programmers, the previous example is not 

satisfying. When we program in Assembly, we are usually directly 

manipulating devices for performance reasons or to perform operations 

that simply can’t be done in high-level programming languages. In this 

section, we will interact with the GPIO controller directly.
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WARNING: Make sure you back up your work before running your 

program, since you may need to power off and power back on again. The 

GPIO controller controls 54 pins; the Raspberry Pi only exposes either 

26 or 40 of them, depending on the Pi model, for external use; many of 

the others are used by the Raspberry Pi for other important tasks. In the 

previous section, the device driver provided a level of protection, so we 

couldn’t easily do any damage. Now that we are writing directly to the 

GPIO controller, we have no such protection; if we make a mistake and 

manipulate the wrong pins, we may interfere with the Raspberry Pi’s 

operation and cause it to crash or lock up.

�Virtual Memory
We looked at how to access memory in Chapter 5, “Thanks for the 

Memories,” and we looked at the memory addresses our instructions 

are stored at in gdb. These memory addresses aren’t physical memory 

addresses; rather, they are virtual memory addresses. As a Linux process, 

our program is given a 4 GB virtual address space. 3 GB of this is for us and 

1 GB is for system things. Within this address space, some of it is mapped 

to physical memory to store our Assembly instructions, our .data sections, 

and our 8 MB stack. Furthermore, Linux may swap some of this memory to 

secondary storage like the SD card as it needs more physical memory for 

other processes. There is a lot of complexity in the memory management 

process to allow dozens of processes to run independently of each other, 

each thinking it has the whole system to itself.

In the next section, we want access to specific physical memory 

addresses, but when we request that access, Linux returns a virtual 

memory pointer that is different than the physical address we asked for. 

This is okay, as we know that behind the scenes the memory management 

hardware in the Raspberry Pi will be doing the memory translations 

between virtual and physical memory for us.
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�About Raspberry Pi 4 RAM
You might wonder why the Raspberry Pi 4 comes with up to 4 GB of RAM, 

but our process can only access 3 GB of it? However, all this RAM will be 

used, since each process and the kernel can have up to 3 GB of RAM. In 

fact, the memory controller in the Raspberry Pi has 40 address pins, so it 

can address more than 4 GB of physical memory.

In the future, if there is a 16 GB version of the Pi, that memory can 

be used, even if Raspbian is still 32 bits. Every 32-bit process could map 

different sections of memory, so even though a 32-bit process can only 

access 3 GB of memory at a time, it can use more by swapping parts of its 

virtual address space to different physical regions.

�In Devices, Everything Is Memory
The GPIO controller has 41 registers. We can’t read or write these like the 

ARM CPU’s registers. The ARM32 instruction set doesn’t know anything 

about the GPIO controller, and there are no special instructions to support 

it. The way we access these registers is by reading and writing to specific 

memory locations. There is circuitry in the Raspberry Pi’s system on a chip 

(SoC) that will see these memory reads and writes and redirect them to 

the GPIO’s registers. This is how most hardware communicates. This is the 

job of the Linux device drivers, to translate these memory register accesses 

into a standard set of file I/O calls.

The memory address for the GPIO registers on the Raspberry Pi 2, 3, 

and 4 is 0x3F200000 (for the Raspberry Pi 0 and 1, it is 0x20200000). Sounds 

easy—we know how to load addresses into registers, then reference the 

memory stored there. Not so fast, if we tried this, our program would just 

crash with a memory access error. This is because these memory addresses 

are outside those assigned to our program, and we are not allowed to use 

them. Our first job then is to get access.
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This leads us back to everything being a file in Linux. There is a file that will 

give us a pointer that we can use to access these memory locations, as follows:

	 1.	 Open the file /dev/mem.

	 2.	 Then we ask /dev/mem to map the registers for 

GPIO into our memory space. We do this with the 

Linux mmap2 service. Mmap2 takes the following 

parameters:

•	 R0: Hint for the virtual address we would like. We 

don’t really care and will use NULL, which gives 

Linux complete freedom to choose.

•	 R1: Length of region. Should be a multiple of 4096, 

the memory page size.

•	 R2: Memory protection required.

•	 R3: File descriptor to open /dev/mem.

•	 R4: Offset into physical memory in 4096-byte pages 

(we’ll use 0x3f200000/4096).

�This call will return a virtual address in R0 that maps to the 

physical address we asked for. The original mmap took an 

offset in bytes for the physical address; this restricted the call 

to mapping the first 4 GB of memory. The newer mmap2 call 

takes the address in pages allowing a greater range of physical 

addresses without the need to go to full 64 bits. This function 

returns a small negative number if it fails.

�Registers in Bits
We will cover just those registers we need to configure our pins for output, 

then to set the bits to flash the LEDs. If you are interested in the full 

functionality, then check the Broadcom datasheet for the GPIO controller.
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Although we’ve mapped these registers to memory locations, they don’t 

always act like memory. Some of the registers are write-only, and if we read 

them, we won’t crash, but we’ll just read some random bits. Broadcom 

defines the protocol for interacting with the registers; it's a good idea to 

follow their documentation exactly. These aren’t like CPU registers or real 

memory. The circuitry is intercepting our memory reads and writes to these 

locations, but only acting on things that it understands. In the previous 

sections, the Linux device driver for the GPIO hid all these details from us.

�GPIO Function Select Registers
The first thing we need to do is configure the pins we are using for output. 

There is a bank of six registers to configure all the GPIO pins for input or 

output. These GPIO Function Select Registers are named GPSEL0–GPSEL5. 

Each pin gets 3 bits in one of these registers to configure it. These are read-

write registers. Since each register is 32 bits, each one can control ten pins, 

with 2 bits left unused (GPSEL5 only controls four pins). Table 8-1 shows 

the details of each select register.

Table 8-1.  GPIO Function Select Registers

No. Address Name Pins

0 0x3f200000 GPSEL0 0–9

1 0x3f200004 GPSEL1 10–19

2 0x3f200008 GPSEL2 20–29

3 0x3f20000c GPSEL3 30–39

4 0x3f200010 GPSEL4 40–49

5 0x3f200014 GPSEL5 50–53
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To use these registers, the protocol is to

	 1.	 Read the register.

	 2.	 Set the bits for our register.

	 3.	 Write the value back.

Note  We must be careful not to affect other bits in the register.

Table 8-2 shows the bits corresponding to each pin in the GPSEL1 

register.

Table 8-2.  Pin number and corresponding 

bits for the GPSEL1 register

Pin no. GPSEL1 bits

10 0–2

11 3–5

12 6–8

13 9–11

14 12–14

15 15–17

16 18–20

17 21–23

18 24–26

19 27–29

We store 000 in the 3 bits if we want to input from the pin, and we store 

001 in the bits if we want to write to the pin.
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�GPIO Output Set and Clear Registers
There are two registers for setting pins and then two registers to clear 

them. The first register controls the first 32 pins and then the second 

controls the remaining 22 pins that aren’t accessible to us. Table 8-3 shows 

the details of these registers.

Table 8-3.  The GP set and clear pin registers

No. Address Name Pins

0 0x3f20001c GPSET0 0–31

1 0x3f200020 GPSET1 32–53

2 0x3f200028 GPCLR0 0–31

3 0x3f20002c GPCLR1 32–53

These registers are write-only. You should set the bit for the register 

you want (with all the other bits 0) and write that bit. Reading these 

registers is meaningless.

The Broadcom datasheet states this as a feature, in that they save you 

reading the register first, then it's easier to just set a single bit than edit a bit 

in a sequence of bits. However, it could also be that this saved them some 

circuitry and reduced the cost of the controller chip.

�More Flashing LEDs
We’ll now repeat our flashing LEDs program, but this time we’ll use 

mapped memory and access the GPIO’s registers directly. First of all, the 

macros that do the nitty-gritty work from Listing 8-3 go in gpiomem.s.
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Listing 8-3.  GPIO support macros using mapped memory

@ Various macros to access the GPIO pins

@ on the Raspberry Pi.

@

@ R8 - memory map address.

@

.include "fileio.s"

.equ  pagelen, 4096

.equ  setregoffset, 28

.equ  clrregoffset, 40

.equ  PROT_READ, 1

.equ  PROT_WRITE, 2

.equ  MAP_SHARED, 1

@ Macro to map memory for GPIO Registers

.macro mapMem

      openFile    devmem, S_RDWR    @ open /dev/mem

      movs        r4, r0      @ fd for memmap

      @ check for error and print error msg if necessary

      BPL         1f  @ pos number file opened ok

      MOV         R1, #1  @ stdout

      LDR         R2, =memOpnsz    @ Error msg

      LDR         R2, [R2]

      writeFile   R1, memOpnErr, R2 @ print the error

      B           _end

@ Set up can call the mmap2 Linux service

1:    ldr         r5, =gpioaddr     @ address we want / 4096

      ldr         r5, [r5]    @ load the address

      mov         r1, #pagelen @ size of mem we want
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@ mem protection options

      mov         r2, #(PROT_READ + PROT_WRITE)

      mov         r3, #MAP_SHARED   @ mem share options

      �mov         r0, #0            @ �let linux choose a 

virtual address

      mov         r7, #sys_mmap2    @ mmap2 service num

      svc         0       @ call service

      movs        r8, r0 @ keep the returned virt addr

      @ check for error and print error msg

      @ if necessary.

      BPL         2f  @ pos number file opened ok

      MOV         R1, #1  @ stdout

      LDR         R2, =memMapsz     @ Error msg

      LDR         R2, [R2]

      writeFile   R1, memMapErr, R2 @ print the error

      B           _end

2:

.endm

@ Macro nanoSleep to sleep .1 second

@ Calls Linux nanosleep entry point which is function 162.

@ Pass a reference to a timespec in both r0 and r1

@ First is input time to sleep in seconds and nanoseconds.

@ Second is time left to sleep if interrupted (which we ignore)

.macro  nanoSleep

        ldr         r0, =timespecsec

        ldr         r1, =timespecsec

        mov         r7, #sys_nanosleep

        svc         0

.endm

.macro  GPIODirectionOut   pin

      ldr   r2, =\pin   @ offset of select register

      ldr   r2, [r2]    @ load the value
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      ldr   r1, [r8, r2]  @ address of register

      ldr   r3, =\pin   @ address of pin table

      add   r3, #4 @ load amount to shift from table

      ldr   r3, [r3]       @ load value of shift amt

      mov   r0, #0b111     @ mask to clear 3 bits

      lsl   r0, r3         @ shift into position

      bic   r1, r0         @ clear the three bits

      mov   r0, #1         @ 1 bit to shift into pos

      lsl   r0, r3         @ shift by amount from table

      orr   r1, r0         @ set the bit

      str   r1, [r8, r2]  @ save it to reg to do work

.endm

.macro  GPIOTurnOn   pin, value

      mov   r2, r8      @ address of gpio regs

      add   r2, #setregoffset @ off to set reg

      mov   r0, #1      @ 1 bit to shift into pos

      ldr   r3, =\pin   @ base of pin info table

      add   r3, #8      @ add offset for shift amt

      ldr   r3, [r3]   @ load shift from table

      lsl   r0, r3      @ do the shift

      str   r0, [r2]    @ write to the register

.endm

.macro  GPIOTurnOff   pin, value

      mov   r2, r8      @ address of gpio regs

      add   r2, #clrregoffset @ off set of clr reg

      mov   r0, #1      @ 1 bit to shift into pos

      ldr   r3, =\pin   @ base of pin info table

      add   r3, #8      @ add offset for shift amt

      ldr   r3, [r3]   @ load shift from table

      lsl   r0, r3      @ do the shift

      str   r0, [r2]    @ write to the register

.endm

Chapter 8  Programming GPIO Pins



162

.data

timespecsec:   .word   0

timespecnano:  .word   100000000

devmem:        .asciz  "/dev/mem"

memOpnErr:     .asciz  "Failed to open /dev/mem\n"

memOpnsz:      .word  .-memOpnErr

memMapErr:     .asciz  "Failed to map memory\n"

memMapsz:      .word  .-memMapErr

             .align  4 @ realign after strings

@ mem address of gpio register / 4096

gpioaddr: .word   0x3F200

pin17: .word   4   @ offset to select register

       .word   21  @ bit offset in select register

       .word   17  @ bit offset in set & clr register

pin22: .word   8   @ offset to select register

       .word   6  @ bit offset in select register

       .word   22  @ bit offset in set & clr register

pin27: .word   8   @ offset to select register

       .word   21  @ bit offset in select register

       .word   27  @ bit offset in set & clr register

.text

Now the driving program mainmem.s contains Listing 8-4 that is quite 

similar to the last one. The main differences are in the macros.

Listing 8-4.  Main program for the memory mapped flashing lights

@

@ Assembler program to flash three LEDs connected to the

@ Raspberry Pi GPIO port using direct memory access.

@

@ r6 - loop variable to flash lights 10 times
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@

.include "gpiomem.s"

.global _start                  �@ Provide program starting 

address to linker

_start: mapMem

        nanoSleep

        GPIODirectionOut pin17

        GPIODirectionOut pin27

        GPIODirectionOut pin22

        @ set up a loop counter for 10 iterations

        mov         r6, #10

loop:   GPIOTurnOn   pin17

        nanoSleep

        GPIOTurnOff   pin17

        GPIOTurnOn    pin27

        nanoSleep

        GPIOTurnOff   pin27

        GPIOTurnOn    pin22

        nanoSleep

brk1:

        GPIOTurnOff   pin22

        @decrement loop counter and see if we loop

        subs    r6, #1

@ If we haven't counted down to 0 then loop

        bne     loop

_end:   mov     R0, #0      @ Use 0 return code

        mov     R7, #1      @ Command code 1 terms

        svc     0           @ Linux command to terminate
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The main program is the same as the first example, except that it 

includes a different set of macros.

The first thing we need to do is call the mapMem macro. This opens /

dev/mem and sets up and calls the mmap2 service as we described in the 

section “In Devices, Everything Is Memory.” We store the returned address 

into R8, so that it is easily accessible from the rest of the macros. There is 

error checking on the file open and mmap2 calls since these can fail.

�Root Access
To access /dev/mem, you need root access, so run this program with root 

access via

sudo ./flashmem

If you don’t, then the file open will fail. We didn’t have to do this with 

the last program, because the GPIO device driver keeps everything safe. 

Accessing /dev/mem is very powerful and gives you access to all memory 

and all hardware devices.

This is a restricted operation, so we need to be root. Programs that 

directly access memory are usually implemented as Linux device drivers 

or kernel loadable modules, but then installing these also requires root 

access. A virus or other malware would love to have access to all physical 

memory.

�Table Driven
We won’t cover multiplication or division until Chapter 10, “Multiply, 

Divide, and Accumulate”; without these, it’s hard to compute the pin 

offsets inside these registers. Division is a slow operation, and Assembly 

language programmers tend to avoid it. The common workaround is to 

use a table of precomputed values, rather than calculating the values as we 

need them. A table lookup is very fast, and we examined all the features 
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in the ARM instruction set to help us do this in Chapter 5, “Thanks for the 

Memories.”

For each pin, we provide three values in our .data section:

	 1.	 The offset to the select register (from the base 

memory address)

	 2.	 The bit offset in select register for this pin

	 3.	 The bit offset in set and clr register

With these in hand, accessing and manipulating the GPIO control 

registers is a snap.

Note  We only populate these tables for the three pins we use.

�Setting Pin Direction
Start with loading the offset of the selection register for our pin—for pin 17, 

this is 4.

      ldr   r2, =\pin     @ offset of select register

      ldr   r2, [r2]      @ load the value

Now use pre-indexed addressing to load the current contents of the 

selection register. r8 is the address, plus the offset we just loaded into r2.

      ldr   r1, [r8, r2]  @ address of register

We now load the second item in the table, the shift into the control 

register for our 3 bits.

      ldr   r3, =\pin     @ address of pin table

      add   r3, #4 @ load amount to shift from table

      ldr   r3, [r3]      @ load value of shift amt
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Clear the 3 bits with a mask of binary 111 that we shift into position, 

then call bit clear (bic) to clear.

      mov   r0, #0b111     @ mask to clear 3 bits

      lsl   r0, r3         @ shift into position

      bic   r1, r0         @ clear the three bits

We move one into position, so we can set the lower of the 3 bits to 1 

using a logical or instruction (orr).

      mov   r0, #1         @ 1 bit to shift into pos

      lsl   r0, r3         @ shift by amount from table

      orr   r1, r0         @ set the bit

Finally, now that we’ve set our 3 bits, we write the value back to the 

GPIO control register to execute our command.

      str   r1, [r8, r2]  @ save it to reg to do work

�Setting and Clearing Pins
Setting and clearing pins is easier, since we don’t need to read the register 

first. We just need to construct the value to write to it and execute it.

Since all our pins are controlled by one register, we just have its offset 

defined in a .EQU directive. We take the base virtual address and add that 

offset.

      mov   r2, r8      @ address of gpio regs

      add   r2, #setregoffset @ off to set reg

Next, we want to have a register with just a 1 in the correct position. We 

start with 1 and shift it into position. We look up that shift value as the third 

item in our pin lookup table.

      mov   r0, #1      @ 1 bit to shift into pos

      ldr   r3, =\pin   @ base of pin info table
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      add   r3, #8      @ add offset for shift amt

      ldr   r3, [r3]   @ load shift from table

      lsl   r0, r3      @ do the shift

Now we have r0 containing a 1 in the correct bit; we write it back to the 

GPIO set register to turn on the LED.

      str   r0, [r2]    @ write to the register

Clearing the pin is the same, except that we use the clear register rather 

than the set register.

�Summary
In this chapter, we built on everything we’ve learned so far to write a 

program to flash a series of LEDs attached to the GPIO ports on our 

Raspberry Pi. We did this in two ways:

	 1.	 Using the GPIO device driver by accessing the files 

under /sys/class/gpio

	 2.	 Using direct memory access by asking the device 

driver for /dev/mem to give us a virtual block 

of memory corresponding to the GPIO’s control 

registers

Controlling devices are a key use case for Assembly language 

programming. Hopefully, this chapter gave you a flavor for what is 

involved.

In Chapter 9, “Interacting with C and Python,” we will learn how to 

interact with high-level programming languages like C and Python.
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CHAPTER 9

Interacting with C 
and Python
In the early days of microcomputers, like the Apple II, people wrote complete 

applications in Assembly language, such as the first spreadsheet program 

VisiCalc. Many video games were written in Assembly to squeeze every bit of 

performance they could out of the hardware. These days, modern compilers 

like the GNU C compiler generate fairly good code and microprocessors 

are much faster; as a result, most applications are written in a collection of 

programming languages, where each excels at a specific function. If you are 

writing a video game today, chances are you would write most in C, C++, or 

even C#, then use Assembly for performance, or to access parts of the video 

hardware not exposed through the graphics library you are using.

In this chapter, we will look at using components written in other 

languages from our Assembly language code and look at how other 

languages can make use of the fast-efficient code we are writing in Assembly.

�Calling C Routines
If we want to call C functions, we must restructure our program. The C 

runtime has a _start label; it expects to be called first and to initialize itself 

before calling our program, as it does by calling a main function. If we 

leave our _start label in, we will get an error that _start is defined more 
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than once. Similarly, we won’t call the Linux terminate program service 

anymore; instead, we’ll return from main and let the C runtime do that 

along with any other cleanup it performs.

To include the C runtime, we could add it to the command-line 

arguments in the ld command in our makefile. However, it's easier to 

compile our program with the GNU C compiler (which includes the GNU 

Assembler), then it will link in the C runtime automatically. To compile our 

program, we will use

gcc -o myprogram myprogram.s

That will call as on myprogram.s and then do the ld command 

including the C runtime.

The C runtime gives us a lot of capabilities including wrappers for most 

of the Linux system services. There is an extensive library for manipulating 

NULL-terminated strings, routines for memory management, and routines 

to convert between all the data types.

�Printing Debug Information
One handy use of the C runtime is to print out data to trace what our 

program is doing. We wrote a routine to output the contents of a register in 

hexadecimal, and we could write more Assembly code to extend this or we 

could just get the C runtime to do it. After all, if we are printing out trace or 

debugging information, it doesn’t need to be performant, rather just easy 

to add to our code.

For this example, we’ll use the C runtime’s printf function to print 

out the contents of a register in both decimal and hexadecimal format. 

We’ll package this routine as a macro, and we’ll preserve all the registers 

with push and pop instructions. This way, we can call the macro without 

worrying about register conflicts. The exception is CPSR which it can’t 

preserve, so don’t put these macros between instructions that set the 

CPSR, then test the CPSR. We also provide a macro to print a string for 

either logging or formatting purposes.
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The C printf function is mighty; it takes a variable number of 

arguments depending on the contents of a format string. There is extensive 

online documentation on printf; so for a fuller understanding, please have 

a look. We will call our collection of macros debug.s, and it contains the 

code from Listing 9-1.

Listing 9-1.  Debug macros that use the C runtime’s printf function

@ Various macros to help with debugging

@ These macros preserve all registers.

@ Beware they will change cpsr.

.macro  printReg    reg

      push     {r0-r4, lr} @ save regs

      mov      r2, R\reg   @ for the %d

      mov      r3, R\reg   @ for the %x

      mov      r1, #\reg

      add      r1, #'0'    @ for %c

      ldr      r0, =ptfStr @ printf format str

      bl       printf @ call printf

      pop      {r0-r4, lr} @ restore regs

.endm

.macro      printStr    str

      push     {r0-r4, lr} @ save regs

      ldr      r0, =1f     @ load print str

      bl       printf @ call printf

      pop      {r0-r4, lr} @ restore regs

      b        2f          @ branch around str

1:    .asciz        "\str\n"

      .align        4

2:

.endm
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.data

ptfStr: .asciz   "R%c = %16d, 0x%08x\n"

.align 4

.text

�Preserving State

First, we push registers R0–R4 and LR; we either use these registers, or 

printf might change them. They aren’t saved as part of the function calling 

protocol. At the end, we restore these. This makes calling our macros as 

minimally disruptive to the calling code as possible.

�Calling Printf

We call the C function with these arguments:

printf("R%c = %16d, 0x%08x\n", reg, Rreg, Rreg);

Since there are four parameters, we set them into R0–R3. In printf each 

string that starts with a percentage sign (“%”), it takes the next parameter 

and formats it according to the next letter:

•	 c for character.

•	 d for decimal.

•	 x for hex.

•	 0 means 0 pad.

•	 A number specifies the length of the field to print.

Note  It is important to move the value of the register to R2 and R3 
first since populating the other registers might wipe out the passed-
in value if we are printing R0 or R1. If our register is R2 or R3, one of 
the MOV instructions does nothing. Luckily, we don’t get an error or 
warning, so we don’t need a special case.
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�Passing a String

In the printStr macro, we pass in a string to print. Assembly doesn’t handle 

strings, so we embed the string in the code with an .asciz directive, then 

branch around it.

There is an .align directive right after the string, since Assembly 

instructions must be word aligned. It is good practice to add an .align 

directive after strings, since other data types will load faster if they are word 

aligned.

Generally, I don’t like adding data to the code section, but for our 

macro, this is the easiest way. The assumption is that the debug calls will 

be removed from the final code. If we add too many strings, we could make 

PC relative offsets too large to be resolved. If this happens, we may need to 

shorten the strings or remove some.

�Adding with Carry Revisited
In Chapter 2, “Loading and Adding,” we gave sample code to add two  

64-bit numbers using ADDS and ADC instructions. What was lacking from 

this example was some way to see the output. Now we’ll take addexamp2.s 

and add some calls to our debug macros, in Listing 9-2, to show it in action.

Listing 9-2.  Updated addexamp2.s to print out the inputs and outputs

@

@ Example of 64-bit addition with the ADD/ADC

@ instructions.

@

.include "debug.s"

.global main  @ Provide program starting
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@ main routine to be called by C runtime

main:

      push {R4-R12, LR}

@ Load the registers with some data

@ First 64-bit number is 0x00000003FFFFFFFF

      MOV  R2, #0x00000003

      MOV  R3, #0xFFFFFFFF     @Assembler will change to MVN

@ Second 64-bit number is 0x0000000500000001

      MOV  R4, #0x00000005

      MOV  R5, #0x00000001

      printStr "Inputs:"

      printReg 2

      printReg 3

      printReg 4

      printReg 5

      ADDS  R1, R3, R5 @ Lower order word

      ADC   R0, R2, R4 @ Higher order word

      printStr "Outputs:"

      printReg 1

      printReg 0

      mov  r0, #0           @ return code

      @ restore registers and return by popping to PC

      pop  {R4-R12, PC}

The makefile, in Listing 9-3, for this is quite simple.

Listing 9-3.  Makefile for updated addexamp2.s

addexamp2: addexamp2.s debug.s

      gcc -o addexamp2 addexamp2.s
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If we compile and run the program, we will see:

pi@raspberrypi:~/asm/Chapter 9 $ make

gcc -o addexamp2 addexamp2.s

pi@raspberrypi:~/asm/Chapter 9 $ ./addexamp2

Inputs:

R2 =                3, 0x00000003

R3 =               -1, 0xffffffff

R4 =                5, 0x00000005

R5 =                1, 0x00000001

Outputs:

R1 =                0, 0x00000000

R0 =                9, 0x00000009

pi@raspberrypi:~/asm/Chapter 9 $

Besides adding the debug statements, notice how the program is 

restructured as a function. The entry point is main, and it follows the 

function protocol of saving all the registers. Since this is the main routine 

and only called once, we save all the registers rather than try to track the 

registers we are really using. This is the safest, since then we don’t have to 

worry about it as we work on our program.

By just adding the C runtime, we bring a powerful tool chest to save us 

time as we develop our full Assembly application. On the downside, notice 

our executable has grown to over 8KB.

�Calling Assembly Routines from C
A typical scenario is to write most of our application in C, then call 

Assembly language routines in specific use cases. If we follow the function 

calling protocol from Chapter 6, “Functions and the Stack,” C won’t be 

able to tell the difference between our functions and any other functions 

written in C.
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As an example, let’s call our toupper function from Chapter 6, 

“Functions and the Stack,” and call it from C. Listing 9-4 contains the C 

code for uppertst.c to call our Assembly function.

Listing 9-4.  Main program to show calling our toupper function 

from C

//

// C program to call our Assembly

// toupper routine.

//

#include <stdio.h>

extern int mytoupper( char *, char * );

#define MAX_BUFFSIZE 255

int main()

{

      char *str = "This is a test.";

      char outBuf[MAX_BUFFSIZE];

      int len;

      len = mytoupper( str, outBuf );

      printf("Before str: %s\n", str);

      printf("After str: %s\n", outBuf);

      printf("Str len = %d\n", len);

      return(0);

}

The makefile is in Listing 9-5.
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Listing 9-5.  Makefile for C and our toupper function

uppertst: uppertst.c upper.s

      gcc -o uppertst uppertst.c upper.s

We had to change the name of our toupper function to mytoupper, 

since there is already a toupper function in the C runtime, and this led 

to a multiple definition error. This had to be done in both the C and the 

Assembly code. Otherwise, the function is the same as in Chapter 6, 

“Functions and the Stack.”

We must define the parameters and return code for our function to the 

C compiler. We do this with

extern int mytoupper( char *, char * );

This should be familiar to all C programmers, as you must do this for 

C functions as well. Usually, you would gather up all these definitions and 

put them in a header (.h) file.

As far as the C code is concerned, there is no difference to using this 

Assembly function than if we wrote it in C. When we compile and run the 

program, we get

pi@raspberrypi:~/asm/Chapter 9 $ make

gcc -o uppertst uppertst.c upper.s

pi@raspberrypi:~/asm/Chapter 9 $ ./uppertst

Before str: This is a test.

After str: THIS IS A TEST.

Str len = 16

pi@raspberrypi:~/asm/Chapter 9 $

The string is in uppercase as we would expect, but the string length 

appears one greater than we might expect. That is because the length 

includes the NULL character that isn’t the C standard. If we really 

wanted to use this a lot with C, we should subtract 1, so that our length is 

consistent with other C runtime routines.
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�Packaging Our Code
We could leave our Assembly code in individual object (.o) files, but it 

is more convenient for programmers using our library to package them 

together in a library. This way, the user of our Assembly routines just needs 

to add one library to get all of our code, rather than possibly dozens of 

.o files. In Linux there are two ways to do this; the first way is to package 

our code together into a static library that is linked into the program. The 

second method is to package our code as a shared library that lives outside 

the calling program and can be shared by several applications.

�Static Library
To package our code as a static library, we use the Linux ar command. This 

command will take a number of .o files and combine them into a single 

file by convention lib<ourname>.a, that can then be included into a gcc 

or ld command. To do this, we modify our makefile to build this way as 

demonstrated in Listing 9-6.

Listing 9-6.  Makefile to build upper.s into a statically linked library

LIBOBJS = upper.o

all: uppertst2

%.o : %.s

      as $(DEBUGFLGS) $(LSTFLGS) $< -o $@

libupper.a: $(LIBOBJS)

      ar -cvq libupper.a upper.o

uppertst2: uppertst.c libupper.a

      gcc -o uppertst2 uppertst.c libupper.a
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If we build and run this program, we get

pi@raspberrypi:~/asm/Chapter 9 $ make

as   upper.s -o upper.o

ar -cvq libupper.a upper.o

a - upper.o

gcc -o uppertst2 uppertst.c libupper.a

pi@raspberrypi:~/asm/Chapter 9 $ ./uppertst2

Before str: This is a test.

After str: THIS IS A TEST.

Str len = 16

pi@raspberrypi:~/asm/Chapter 9 $

The only difference to the last example is that we first use as to 

compile upper.s into upper.o and then use ar to build a library containing 

our routine. If we want to distribute our library, we include libupper.a, a 

header file with the C function definitions, and some documentation. Even 

if you aren’t selling or otherwise distributing your code, building libraries 

internally can help organizationally to share code among programmers 

and reduce duplicated work.

�Shared Library
Shared libraries are much more technical than statically linked libraries. 

They place the code in a separate file from the executable and are 

dynamically loaded by the system as needed. There are a number of issues, 

but we are only going to touch on them, such as versioning and library 

placement in the filesystem. If you decide to package your code as a shared 

library, this section provides a starting point and demonstrates that it 

applies to Assembly code as much as C code.

The shared library is created with the gcc command, giving it the 

-shared command-line parameter to indicate we want to create a shared 

library and then the -soname parameter to name it.
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To use a shared library, it must be in a specific place in the filesystem. 

We can add new places, but we are going to use a place created by the C 

runtime, namely, /usr/local/lib. After we build our library, we copy it here 

and create a couple of links to it. These steps are all required as part of 

shared library versioning control system.

Then to use our shared library libup.so.1, we include -lup on the gcc 

command to compile uppertst3. The makefile is presented in Listing 9-7.

Listing 9-7.  Makefile for building and using a shared library

LIBOBJS = upper.o

all: uppertst3

%.o : %.s

      as $(DEBUGFLGS) $(LSTFLGS) $< -o $@

libup.so.1.0: $(LIBOBJS)

      gcc -shared -Wl,-soname,libup.so.1 -o libup.so.1.0 $(LIBOBJS)

      mv libup.so.1.0 /usr/local/lib

      �ln -sf /usr/local/lib/libup.so.1.0 /usr/local/lib/libup.so.1

      �ln -sf /usr/local/lib/libup.so.1.0 /usr/local/lib/libup.so

uppertst3: libup.so.1.0

      gcc -o uppertst3 -lup uppertst.c

If we run this, several commands will fail. To copy the files to /usr/

local/lib, we need root access, so use the sudo command. The following is 

the sequence of commands to build and run the program

pi@raspberrypi:~/asm/Chapter 9 $ sudo make -B

as   upper.s -o upper.o

gcc -shared -Wl,-soname,libup.so.1 -o libup.so.1.0 upper.o
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mv libup.so.1.0 /usr/local/lib

ln -sf /usr/local/lib/libup.so.1.0 /usr/local/lib/libup.so.1

ln -sf /usr/local/lib/libup.so.1.0 /usr/local/lib/libup.so

gcc -o uppertst3 -lup uppertst.c

pi@raspberrypi:~/asm/Chapter 9 $ sudo ldconfig

pi@raspberrypi:~/asm/Chapter 9 $ ./uppertst3

Before str: This is a test.

After str: THIS IS A TEST.

Str len = 16

pi@raspberrypi:~/asm/Chapter 9 $

Notice there is a call to the following command:

sudo ldconfig

before we run the program. This causes Linux to search all the folders that 

hold shared libraries and update its master list. We have to run this once 

after we successfully compile our library, or Linux won’t know it exists.

If you use objdump to look inside uppertst3, you won’t find the code 

for the mytoupper routine; instead, in our main code, you will find

 104c0:    ebffffb4 bl     10398 <mytoupper@plt>

which calls

00010398 <mytoupper@plt>:

   10398:  e28fc600 add    ip, pc, #0, 12

   1039c:  e28cca10 add    ip, ip, #16, 20  ; 0x10000

   103a0:  e5bcfc78 ldr    pc, [ip, #3192]! ; 0xc78

Gcc inserted this indirection into our code, so the loader can fix up the 

address when it dynamically loads the shared library.
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�Embedding Assembly Code Inside C Code
The GNU C compiler allows Assembly code to be embedded right in the 

middle of C code. It contains features to interact with C variables and 

labels and cooperate with the C compiler and optimizer for register usage.

Listing 9-8 is a simple example, where we embed the core algorithm for 

the toupper function inside the C main program.

Listing 9-8.  Embedding our Assembly routine directly in C code

//

// C program to embed our Assembly

// toupper routine inline.

//

#include <stdio.h>

extern int mytoupper( char *, char * );

#define MAX_BUFFSIZE 255

int main()

{

      char *str = "This is a test.";

      char outBuf[MAX_BUFFSIZE];

      int len;

      asm

      (

            "MOV R4, %2\n"

            "loop:    LDRB   R5, [%1], #1\n"

            "CMP  R5, #'z'\n"

            "BGT  cont\n"

            "CMP  R5, #'a'\n"

            "BLT  cont\n"

            "SUB  R5, #('a'-'A')\n"
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            "cont:      STRB R5, [%2], #1\n"

            "CMP  R5, #0\n"

            "BNE  loop\n"

            "SUB  %0, %2, R4\n"

            : "=r" (len)

            : "r" (str), "r" (outBuf)

            : "r4", "r5"

      );

      printf("Before str: %s\n", str);

      printf("After str: %s\n", outBuf);

      printf("Str len = %d\n", len);

      return(0);

}

The asm statement lets us embed Assembly code directly into our C 

code. Doing this, we could write an arbitrary mixture of C and Assembly. 

I stripped out the comments from the Assembly code, so the structure of 

the C and Assembly is a bit easier to read. The general form of the asm 

statement is

asm asm-qualifiers ( AssemblerTemplate

                : OutputOperands

                [ : InputOperands]

                [ : Clobbers ] ]

                [ : GotoLabels])

The parameters are

•	 AssemblerTemplate: A C string containing the 

Assembly code. There are macro substitutions that 

start with % to let the C compiler insert the inputs and 

outputs.
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•	 OutputOperands: A list of variables or registers 

returned from the code. This is required, since it is 

expected that the routine does something. In our case 

this is “=r” (len) where the =r means an output register 

and that we want it to go into the C variable len.

•	 InputOperands: A list of input variables or registers 

used by our routine, in this case “r” (str), “r” (outBuf) 

meaning we want two registers, one holding str 

and one holding outBuf. It is fortunate that C string 

variables hold the address of the string, which is what 

we want in the register.

•	 Clobbers: A list of registers that we use and will be 

clobbered when our code runs, in this case “r4” and “r5”.

•	 GotoLabelsr: A list of C program labels that our code 

might want to jump to. Usually, this is an error exit. If 

you do jump to a C label, you have to warn the compiler 

with a goto asm-qualifier.

You can label the input and output operands, we didn’t, and that 

means the compiler will assign them names %0, %1, … as you can see used 

in the Assembly code.

Since this is a single C file, it is easy to compile with

gcc -o uppertst4 uppertst4.c

Running the program produces the same output as the last section.

If you disassemble the program, you will find that the C compiler 

avoids using registers R4 and R5 entirely, leaving them to us. You will see it 

load up our input registers from the variables on the stack, before our code 

executes and then copies our return value from the assigned register to the 

variable len on the stack. It doesn’t give the same registers we originally 

used, but that isn’t a problem.
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This routine is straightforward and doesn’t have any side effects. If 

your Assembly code is modifying things behind the scenes, you need to 

add a volatile keyword to the asm statement to make the C compile be 

more conservative on any assumptions it makes about your code.

�Calling Assembly from Python
If we write our functions following the Raspbian function calling 

protocol from Chapter 6, “Functions and the Stack,” we can follow the 

documentation on how to call C functions for any given programming 

language. Python has a good capability to call C functions in its ctypes 

module. This module requires we package our routines into a shared 

library. Since Python is an interpreted language, we can’t link static 

libraries to it, but we can dynamically load and call shared libraries. The 

techniques we go through here for Python have matching components in 

many other interpreted languages.

The hard part is already done, we’ve built the shared library version of 

our uppercase function; all we must do is call it from Python. Listing 9-9 is 

the Python code for uppertst5.py.

Listing 9-9.  Python code to call mytoupper

from ctypes import *

libupper = CDLL("libup.so")

libupper.mytoupper.argtypes = [c_char_p, c_char_p]

libupper.mytoupper.restype = c_int

inStr = create_string_buffer(b"This is a test!")

outStr = create_string_buffer(250)

len = libupper.mytoupper(inStr, outStr)
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print(inStr.value)

print(outStr.value)

print(len)

The code is fairly simple; we first import the ctypes module so we can 

use it. We then load our shared library with the CDLL function. This is an 

unfortunate name since it refers to Windows DLLs rather than something 

more operating system neutral. Since we installed our shared library in /

usr/local/lib and added it to the Linux shared library cache, Python has no 

trouble finding and loading it.

The next two lines are optional, but good practice. They define the 

function parameters and return type to Python, so it can do extra error 

checking.

In Python, strings are immutable, meaning you can’t change them, and 

they are in Unicode, meaning each character takes up more than 1 byte. 

We need to provide the strings in regular buffers that we can change, and 

we need the strings in ASCII rather than Unicode. We can make a string 

ASCII in Python by putting a “b” in front of the string; that means to make 

it a byte array using ASCII characters. The create_string_buffer function 

in the ctypes module creates a string buffer that is compatible with C (and 

hence Assembly) for us to use.

We then call our function and print the inputs and outputs. Raspbian 

comes with the Thonny Python IDE preinstalled as shown in Figure 9-1, 

so we can use that to test the program.
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Figure 9-1.  Our Python program running in the Thonny IDE

�Summary
In this chapter, we looked at calling C functions from our Assembly code. We 

made use of the standard C runtime to develop some debug helper functions 

to make developing our Assembly code a little easier. We then did the reverse 

and called our Assembly uppercase function from a C main program.

We learned how to package our code as both static and shared 

libraries. We discussed how to package our code for consumption. We 

looked at how to call our uppercase function from Python, which is typical 

of high-level languages with the ability to call shared libraries.

In the next chapter, Chapter 10, “Multiply, Divide, and Accumulate,” 

we will return to mathematics. We will cover multiplication, division, and 

multiply with accumulate.
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CHAPTER 10

Multiply, Divide, 
and Accumulate
In this chapter, we return to mathematics. We’ve covered addition, 

subtraction, and a collection of bit operations on our 32-bit registers. 

Now we will cover multiplication and division. The ARM processor has a 

surplus of multiply instructions, then a dearth of division operations.

We will cover multiply with accumulate instructions. We will provide 

some background on why the ARM processor has so much circuitry 

dedicated to performing this operation. This will get us into the mechanics 

of vector and matrix multiplication.

�Multiplication
In Chapter 7, “Linux Operating System Services,” we discussed why 

there are so many Linux service calls and how part of the reason was for 

compatibility when they needed new functionality; they added a new call, 

so the old call is preserved. The ARM multiply instructions have a similar 

history. Multiply has been in the ARM architecture for a long time, but the 

original instructions were inadequate and new instructions were added 

while keeping the old instructions for software compatibility.

The original 32-bit instruction is

      MUL{S}   Rd, Rn, Rm
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This instruction computes Rd = Rn * Rm. It looks good, but people 

familiar with multiplication might immediately ask “These are all 32-bit 

registers, so when you multiply two 32-bit numbers, don’t you get a 64-

bit product?” That is true, and that is the most obvious limitation on this 

instruction. Here are some notes on this instruction:

•	 Rd is the lower 32 bits of the product. The upper 32 bits 

are discarded.

•	 The MULS version of the instruction only sets the N 

and Z flags; it does not set the C or V flags, so you don’t 

know if it overflowed.

•	 There aren’t separate signed and unsigned versions; 

multiplication isn’t like addition where the two's 

complement makes the operations the same.

•	 All the operands are registers; immediate operands are 

not allowed.

•	 Rd cannot be the same as Rn.

To overcome some of these limitations, later versions of the ARM 

processor added an abundance of multiply instructions:

•	 SMULL{S} RdLo, RdHi, Rn, Rm

•	 UMULL{S} RdLo, RdHi, Rn, Rm

•	 SMMUL{R} {Rd}, Rn, Rm

•	 SMUL<x><y> {Rd}, Rn, Rm

•	 SMULW<y> {Rd}, Rn, Rm

The first SMULL instruction will perform signed 32-bit multiplication 

putting the 64-bit result in two registers. The second UMULL instruction 

is the unsigned version of this. SMMUL complements the original MUL 

instruction by providing the upper 32 bits of the product and discarding 

the lower 32 bits.
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Multiplication is an expensive operation, so there is some merit in 

multiplying small numbers quickly. SMUL provides this; it multiplies two 

16-bit quantities to provide a 32-bit quantity. The <x> and <y> modifiers 

specify which 16 bits of the operand registers are used:

•	 <x> is either B or T. B means use the bottom half (bits 

[15:0]) of Rn; T means use the top half (bits [31:16]) of Rn.

•	 <y> is either B or T. B means use the bottom half (bits 

[15:0]) of Rm; T means use the top half (bits [31:16]) 

of Rm.

SMULW is an intermediate version that multiplies a 32-bit value by a 

16-bit value, then only keeps the upper 32 bits of the 48-bit product. The 

<y> modifier is the same as for SMUL. When I’ve seen this instruction 

used, one of the operands has usually been shifted so that the product 

ends up in the upper 32 bits.

All these instructions have the same performance. The ability to detect 

when a multiply is done (remaining digits are 0) was added to the ARM 

processor some time ago, so the need for shorter versions of multiply, 

in my opinion, doesn’t exist anymore. I would recommend always using 

SMULL and UMULL as then there are less things to go wrong if your 

numbers change over time.

�Examples
Listing 10-1 is some code to demonstrate all the various multiply 

instructions. We use our debug.s file from Chapter 9, “Interacting with 

C and Python,” which means our program must be organized with the C 

runtime in mind.
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Listing 10-1.  Examples of the various multiply instructions

@

@ Example of 16 & 32-bit Multiplication

@

.include "debug.s"

.global main @ Provide program starting address to linker

@ Load the registers with some data

@ Use small positive numbers that will work for all

@ multiply instructions.

main:

      push {R4-R12, LR}

      MOV   R2, #25

      MOV   R3, #4

      printStr "Inputs:"

      printReg 2

      printReg 3

      MUL   R4, R2, R3

      printStr "MUL R4=R2*R3:"

      printReg 4

      SMULL R4, R5, R2, R3

      printStr "SMULL R5, R4=R2*R3:"

      printReg 4

      printReg 5

      UMULL R4, R5, R2, R3

      printStr "UMULL R5, R4=R2*R3:"

      printReg 4

      printReg 5
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      SMMUL R4, R2, R3

      printStr "SMMUL R4 = top 32 bits of R2*R3:"

      printReg 4

      SMULBB     R4, R2, R3

      printStr "SMULBB R4 = R2*R3:"

      printReg 4

      SMULWB     R4, R2, R3

      printStr "SMULWB R4 = upper 32 bits of R2*R3:"

      printReg 4

      mov   r0, #0          @ return code

      pop   {R4-R12, PC}

The makefile is as we would expect. The output is

pi@raspberrypi:~/asm/Chapter 10 $ make

gcc -o mulexamp mulexamp.s

pi@raspberrypi:~/asm/Chapter 10 $ ./mulexamp

Inputs:

R2 =               25, 0x00000019

R3 =                4, 0x00000004

MUL R4=R2*R3:

R4 =              100, 0x00000064

SMULL R5, R4=R2*R3:

R4 =              100, 0x00000064

R5 =                0, 0x00000000

UMULL R5, R4=R2*R3:

R4 =              100, 0x00000064

R5 =                0, 0x00000000

SMMUL R4 = top 32 bits of R2*R3:

R4 =                0, 0x00000000

SMULBB R4 = R2*R3:

R4 =              100, 0x00000064
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SMULWB R4 = upper 32 bits of R2*R3:

R4 =                0, 0x00000000

pi@raspberrypi:~/asm/Chapter 10 $

Multiply is straightforward, especially using SMULL and UMULL.

�Division
Integer division is a much more recent addition to the ARM processor. In 

fact, the Raspberry Pi 1 and Zero have no integer division instruction. The 

second generation of the Raspberry Pi 2 uses ARM Cortex-A53 processors, 

which introduce integer division to the Pi world. The Raspberry Pi 4 

includes newer Cortex-A72 processors.

If you are targeting Raspberry Pi Zero or 1, then you will need to either 

implement your own division algorithm in code, call some C code, or use 

the floating-point coprocessor. We’ll cover the floating-point coprocessor 

in Chapter 11, “Floating-Point Operations.”

The Raspberry Pi 2, 3, and 4’s division instructions are

•	 SDIV {Rd}, Rn, Rm

•	 UDIV {Rd}, Rn, Rm

where

•	 Rd is the destination register.

•	 Rn is the register holding the numerator.

•	 Rm is a register holding the denominator.

There are a few problems or technical notes on these instructions:

•	 There is no “S” option of this instruction, as it doesn’t 

set CPSR at all.

•	 Dividing by 0 should throw an exception; with these 

instructions, it returns 0 which can be very misleading.
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•	 These instructions aren’t the inverses of SMULL and 

UMULL. For this Rn needs to be a register pair, so the 

value to be divided can be 64 bits. To divide a 64-bit 

value, we need to either go to the floating-point  

processor or roll our own code.

•	 The instruction only returns the quotient, not the 

remainder. Many algorithms require the remainder, 

and you must calculate it as remainder = numerator - 

(quotient * denominator).

�Example
The code to execute the divide instructions is simple; Listing 10-2 is an 

example like we did for multiplication.

Listing 10-2.  Examples of the SDIV and UDIV instructions

@

@ Examples of 32-bit Integer Division

@

.include "debug.s"

.global main              @ �Provide program starting address to 

linker

@ Load the registers with some data

@ Perform various division instructions

main:

      push   {R4-R12, LR}

      MOV   R2, #100

      MOV   R3, #4
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      printStr "Inputs:"

      printReg 2

      printReg 3

      SDIV  R4, R2, R3

      printStr "Outputs:"

      printReg 4

      UDIV  R4, R2, R3

      printStr "Outputs:"

      printReg 4

      mov   r0, #0          @ return code

      pop   {R4-R12, PC}

If we try to build this in the same way we did for the multiplication 

example, we will get the error

pi@raspberrypi:~/asm/Chapter 10 $ make -B

gcc -o divexamp divexamp.s

divexamp.s: Assembler messages:

divexamp.s:21: Error: selected processor does not support `sdiv 

R4,R2,R3' in ARM mode

make: *** [makefile:15: divexamp] Error 1

pi@raspberrypi:~/asm/Chapter 10 $

This is run on a Raspberry Pi 4. Didn’t we say it supports the SDIV 

instruction? The reason is that the Raspberry Pi foundation goes to great 

pains to ensure all their software runs on all Raspberry Pi no matter how 

old. The default configuration of the GNU Compiler Collection in Raspbian 

is to target the lowest common denominator. If we change the makefile to 

the following

divexamp: divexamp.s debug.s

      gcc -march="armv8-a" -o divexamp divexamp.s
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then the program will compile and run. The -march parameter is for 

machine architecture, and “arm8-a” is the correct one for the Raspberry 

Pi 4. We could have used one to match a Raspberry Pi 3, but we’ll want to 

explore some new features in the Pi 4 later.

With this in place, the program runs and we get the expected results:

pi@raspberrypi:~/asm/Chapter 10 $ make

gcc -march="armv8-a" -o divexamp divexamp.s

pi@raspberrypi:~/asm/Chapter 10 $ ./divexamp

Inputs:

R2 =              100, 0x00000064

R3 =                4, 0x00000004

Outputs:

R4 =               25, 0x00000019

Outputs:

R4 =               25, 0x00000019

pi@raspberrypi:~/asm/Chapter 10 $

�Multiply and Accumulate
The multiply and accumulate operation multiplies two numbers, then 

adds them to a third. As we go through the next few chapters, we will see 

this operation reappear again and again. The ARM processor is RISC, if 

the instruction set is reduced, then why do we find so many instructions, 

and hence so much circuitry, dedicated to performing multiply and 

accumulate. The answer goes back to our favorite first year university math 

course on linear algebra. Most science students are forced to take this 

course, learn to work with vectors and matrices, then hope they never see 

these concepts again. Unfortunately, they form the foundation for both 

graphics and machine learning. Before delving into the ARM instructions 

for multiply and accumulate, let’s review a bit of linear algebra.
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�Vectors and Matrices
A vector is an ordered list of numbers. For instance, in 3D graphics, 

it might represent your location in 3D space where [x, y, z] are your 

coordinates. Vectors have a dimension which is the number of elements 

they contain. It turns out a useful computation with vectors is something 

called a dot product. If A = [a1, a2, … , an] is one vector and B = [b1, b2, … , bn] 

is another vector, then their dot product is defined as

A ⋅ B = a1*b1 + a2* b1 + … + an * bn

If we want to calculate this dot product, then a loop performing 

multiply and accumulate instructions should be quite efficient. A matrix is 

a 2D table of numbers such as

 

Matrix multiplication is a complicated process that drives first-year 

linear algebra students nuts. When you multiply matrix A times matrix B, 

then each element on the resulting matrix is the dot product of a row of 

matrix A with a column of matrix B.

 

If these were 3x3 matrices, then there would be nine dot products each 

with nine terms. We can also multiply a matrix by a vector the same way.
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In 3D graphics, if we represent a point as a 4D vector [x, y, z, 1], then 

the affine transformations of scale, rotate, shear, and reflection can be 

represented as 4x4 matrices. Any number of these transformations can be 

combined into a single matrix. Thus, to transform an object into a scene 

requires a matrix multiplication applied to each of the object’s vertex 

points. The faster we can do this, the faster we can render a frame in a 

video game.

In neural networks, the calculation for each layer of neurons is 

calculated by a matrix multiplication, followed by the application of a 

nonlinear function. The bulk of the work is the matrix multiplication. Most 

neural networks have many layers of neurons, each requiring a matrix 

multiplication. The matrix size corresponds to the number of variables 

and the number of neurons; hence, the matrix dimensions are often in 

the thousands. How quickly we perform object recognition or speech 

translation is dependent on how fast we can multiply matrices, that is 

dependent on how fast we can do multiply with accumulate.

These important applications are why the ARM processor dedicates 

so much silicon to multiply and accumulate. We’ll keep returning to how 

to speed up this process as we explore the Raspberry Pi’s FPU and NEON 

coprocessors in the following chapters.

�Accumulate Instructions
As we saw with multiplication, there have been quite a proliferation of 

multiply with accumulate instructions. Fortunately, we’ve covered most of 

the details in the “Multiplication” section. Here they are:

•	 MLA{S}		  Rd, Rn, Rm, Ra

•	 SMLAL{S}		  RdLo, RdHi, Rn, Rm

•	 SMLA<x><y> 	 Rd, Rn, Rm, Ra

•	 SMLAD{X}		  Rd, Rn, Rm, Ra
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•	 SMLALD{X}		  RdLo, RdHi, Rn, Rm

•	 SMLAL<x><y>	 RdLo, RdHi, Rn, Rm

•	 SMLAW<y>		  Rd, Rn, Rm, Ra

•	 SMLSD{X}		  Rd, Rn, Rm, Ra

•	 SMLSD{X}		  RdLo, RdHi, Rn, Rm

•	 SMMLA{R}		  Rd, Rn, Rm, Ra

•	 SMMLS{R}		  Rd, Rn, Rm, Ra

•	 SMUAD{X}		  {Rd}, Rn, Rm

•	 UMAAL		  RdLo, RdHi, Rn, Rm

•	 UMLAL{S}		  RdLo, RdHi, Rn, Rm

That is a lot of instructions, so we won’t cover each in detail, but we 

can recognize that there is a multiply with accumulate for each regular 

multiply instruction. Let’s look at what leads to a further proliferation of 

instructions.

If there is an Ra operand, then the calculation is

Rd = Rn * Rm + Ra

Note R d can be the same as Ra for calculating a running sum.

If there isn’t an Ra operand, then the calculation is

Rd = Rd + Rn * Rm

This second form tends to be for instructions with 64-bit results, so the 

sum needs to be 64 bits, therefore, can’t be a single register.

Chapter 10  Multiply, Divide, and Accumulate



201

�Dual Multiply with Accumulate

The instructions that end in D are dual. They do two multiply and 

accumulates in a single step. They multiply the top 16 bits of Rn and Rm 

and multiply the bottom 16 bits of Rn and Rm, then add both products to 

the accumulator.

If there is an S in the instruction instead of an A, then it means it 

subtracts the two values before adding the result to the accumulator.

Rd = Ra + (bottom Rn * bottom Rm - top Rn * top Rm)

If the accuracy works for you and you can encode all the data this way, 

then you can double your throughput using these instructions. We’ll look 

at this in Example 2.

�Example 1
We’ve talked about how multiply and accumulate is ideal for multiplying 

matrices, so for an example, let's multiply two 3x3 matrices.

The algorithm we are implementing is shown in Listing 10-3.

Listing 10-3.  Pseudo-code for our matrix multiplication program

FOR row = 1 to 3

      FOR col = 1 to 3

            acum = 0

            FOR i = 1 to 3

                  acum = acum + A[row, i]*B[i, col]

            NEXT I

            C[row, col] = acum

      NEXT col

NEXT row
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Basically, the row and column loops go through each cell of the output 

matrix and calculate the correct dot product for that cell in the innermost 

loop.

Listing 10-4 shows our implementation in Assembly.

Listing 10-4.  3x3 matrix multiplication in Assembly

@

@ Multiply 2 3x3 integer matrices

@

@ Registers:

@      R1 - Row index

@      R2 - Column index

@      R4 - Address of row

@      R5 - Address of column

@      R7 - 64 bit accumulated sum

@      R8 - 64 bit accumulated sum

@      R9 - Cell of A

@      R10 - Cell of B

@      R11 - Position in C

@      R12 - row in dotloop

@      R6 - col in dotloop

.global main @ Provide program starting address

      .equ  N, 3 @ Matrix dimensions

      .equ  WDSIZE, 4 @ Size of element

main:

      push  {R4-R12, LR}    @ Save required regs

      MOV   R1, #N          @ Row index

      LDR   R4, =A          @ Address of current row

      LDR   R11, =C         @ Addr of results matrix
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rowloop:

      LDR   R5, =B          @ first column in B

      MOV   R2, #N    @ Colindex (will count down)

colloop:

      @ Zero accumulator registers

      MOV   R7, #0

      MOV   R8, #0

      MOV   R0, #N          @ dot product loop counter

      MOV   R12, R4         @ row for dot product

      MOV   R6, R5          @ column for dot product

dotloop:

      @ Do dot product of a row of A with column of B

      LDR   R9, [R12], #WDSIZE @ load A[row, i] and incr

      LDR   R10, [R6], #(N*WDSIZE) @ load B[i, col]

      SMLAL R7, R8, R9, R10 @ Do multiply and accumulate

      SUBS  R0, #1           @ Dec loop counter

      BNE   dotloop          @ If not zero loop

      STR   R7, [R11], #4    @ C[row, col] = dotprod

      ADD   R5, #WDSIZE      @ Increment current col

      SUBS  R2, #1           @ Dec col loop counter

      BNE   colloop          @ If not zero loop

      ADD   R4, #(N*WDSIZE)  @ Increment to next row

      SUBS  R1, #1           @ Dec row loop counter

      BNE   rowloop          @ If not zero loop

@ Print out matrix C

@ Loop through 3 rows printing 3 cols each time.

      MOV   R5, #3           @ Print 3 rows

      LDR   R11, =C          @ Addr of results matrix

printloop:
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      LDR   R0, =prtstr @ printf format string

      LDR   R1, [R11], #WDSIZE   @ first element in current row

      LDR   R2, [R11], #WDSIZE   @ second element in current row

      LDR   R3, [R11], #WDSIZE   @ third element in current row

      BL    printf           @ Call printf

      SUBS  R5, #1           @ Dec loop counter

      BNE   printloop  @ If not zero loop

      mov   r0, #0           @ return code

      pop   {R4-R12, PC}     @ Restore regs and return

.data

@ First matrix

A:    .word  1, 2, 3

      .word  4, 5, 6

      .word  7, 8, 9

@ Second matrix

B:    .word  9, 8, 7

      .word  6, 5, 4

      .word  3, 2, 1

@ Result matrix

C:    .fill  9, 4, 0

prtstr: .asciz  "%3d  %3d  %3d\n"

Compiling and running this program, we get

pi@raspberrypi:~/asm/Chapter 10 $ make

gcc -o matrixmult matrixmult.s

pi@raspberrypi:~/asm/Chapter 10 $ ./matrixmult

 30   24   18

 84   69   54

138  114   90

pi@raspberrypi:~/asm/Chapter 10 $ 
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�Accessing Matrix Elements

We store the three matrices in memory, in row order. They are arranged 

in the .word directives so that you can see the matrix structure. In the 

pseudo-code, we refer to the matrix elements using 2D arrays. There are 

no instructions or operand formats to specify 2D array access, so we must 

do it ourselves. To Assembly, each array is just a nine-word sequence of 

memory. Now that we know how to multiply, we can do something like

A[i, j] = A[i*N + j]

where N is the dimension of the array. We don’t do this though; in 

Assembly it pays to notice that we access the array elements in order 

and can go from one element in a row to the next by adding the size of 

an element—the size of a word, or four. We can go from an element in a 

column to the next one by adding the size of a row. Therefore, we use the 

constant N * WDSIZE so often in the code. This way, we go through the 

array incrementally and never have to multiply array indexes. Generally, 

multiplication and division are expensive operations, and we should try to 

avoid them as much as possible.

We can use post-indexing techniques to access elements increment 

pointers to the next element. We use post-indexing to store the result of 

each computation in the array C. We see this in

      STR   R7, [R11], #4

which stores our computed dot product into C, then increments the 

pointer into C by 4 bytes. We see it again when we print the C matrix at 

the end.
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�Multiply with Accumulate

The core of the algorithm relies on the SMLAL instruction to multiply an 

element of A by an element of B and add that to the running sum for the 

dot product.

      SMLAL   R7, R8, R9, R10

This instruction accumulates a 64-bit sum, but we only take the lower 

32 bits in R7. We don’t check for overflow; if at the end R8 isn’t 0, we are 

going to give an incorrect result.

�Register Usage

We nearly use all the registers; we are lucky we can keep track of all our 

loop indexes and pointers in registers and don’t have to move them in and 

out of memory. If we needed to do this, we would have allocated space on 

the stack to hold any needed variables.

�Example 2
When we discussed the multiply with accumulate instructions, we 

mentioned the dual instructions that will do two steps in one instruction. 

The main problem is packing two numbers that need processing in each 

32-bit register. We can create 16-bit integers easily enough using the .short 
Assembler directive. Processing the rows is easy since the cells are next to 

each other, but for the columns, each element is a row away. How can we 

easily load two column elements into one 32-bit register?

What we can do is take the transpose of the second matrix. This means 

making the rows columns and the columns rows, basically switching B[i, j] 

with B[j, i]. If we do that, then the column elements are next to each other 

and easy to load into a single 32-bit register.

Listing 10-5 is the code to do this.
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Listing 10-5.  3x3 matrix multiplication using a dual multiply/accumulate

@

@ Multiply 2 3x3 integer matrices

@ Uses a dual multiply/accumulate instruction

@ so processes two elements in the dot product

@ per loop.

@

@ Registers:

@      R1 - Row index

@      R2 - Column index

@      R4 - Address of row

@      R5 - Address of column

@      R7 - 64 bit accumulated sum

@      R8 - 64 bit accumulated sum

@      R9 - Cell of A

@      R10 - Cell of B

@      R11 - Position in C

@      R12 - row in dotloop

@      R6 - col in dotloop

.global main @ Provide program starting address to linker

      .equ  N, 3  @ Matrix dimensions

      .equ  ELSIZE, 2 @ Size of element

main:

      push  {R4-R12, LR}   @ Save required regs

      MOV   R1, #N         @ Row index

      LDR   R4, =A         @ Address of current row

      LDR   R11, =C        @ Address of results matrix

rowloop:

      LDR   R5, =B         @ first column in B

      �MOV   R2, #N          @ Column index (will count down to 0)
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colloop:

      @ Zero accumulator registers

      MOV   R7, #0

      MOV   R8, #0

      MOV   R0, #((N+1)/2)   @ dot product loop counter

      MOV   R12, R4          @ row for dot product

      MOV   R6, R5           @ column for dot product

dotloop:

      @ Do dot product of a row of A with column of B

      LDR   R9, [R12], #(ELSIZE*2) @ load A[row, i] and incr

      LDR   R10, [R6], #(ELSIZE*2) @ load B[i, col]

      SMLAD R7, R9, R10, R7  @ Do dual multiply and accumulate

      SUBS  R0, #1           @ Dec loop counter

      BNE   dotloop          @ If not zero loop

      STR   R7, [R11], #4    @ C[row, col] = dotprod

      ADD   R5, #((N+1)*ELSIZE)    @ Increment current col

      SUBS  R2, #1           @ Dec col loop counter

      BNE   colloop          @ If not zero loop

      ADD   R4, #((N+1)*ELSIZE)    @ Increment to next row

      SUBS  R1, #1           @ Dec row loop counter

      BNE   rowloop          @ If not zero loop

@ Print out matrix C

@ Loop through 3 rows printing 3 cols each time.

      MOV   R5, #3           @ Print 3 rows

      LDR   R11, =C          @ Addr of results matrix

printloop:

      LDR   R0, =prtstr      @ printf format string

      LDR   R1, [R11], #4    @ first element in current row

      LDR   R2, [R11], #4    @ second element in current row

Chapter 10  Multiply, Divide, and Accumulate



209

      LDR   R3, [R11], #4    @ third element in current row

      BL    printf           @ Call printf

      SUBS  R5, #1           @ Dec loop counter

      BNE   printloop  @ If not zero loop

      mov   r0, #0           @ return code

      pop   {R4-R12, PC}     @ Restore regs and return

.data

@ First matrix

A:    .short      1, 2, 3, 0

      .short      4, 5, 6, 0

      .short      7, 8, 9, 0

@ Second matrix

B:    .short      9, 6, 3, 0

      .short      8, 5, 2, 0

      .short      7, 4, 1, 0

@ Result matrix

C:    .fill 9, 4, 0

prtstr: .asciz  "%3d  %3d  %3d\n"

The saving in instructions is in reducing the inner loop that computes 

the dot product.

MOV   R0, #((N+1)/2)  @ dot product loop counter

If our matrix had an even dimension, we would have saved more. For 

our 3x3 example, the dot product loop still has two elements. But then if we 

were doing two 4x4 matrices, it would also be two times through this loop. 

Notice that we had to add a 0 to the end of each row of both matrices, since 

the dual instruction is going to process an even number of entries.

The real workhorse of this program is

      SMLAD   R7, R9, R10, R7

Chapter 10  Multiply, Divide, and Accumulate



210

which multiplies the high part of R9 by the high part of R10 and at the 

same time the low part of R9 by the low part of R10, then adds both to R7 

and puts the new sum into R7. Notice it’s okay to have Rd=Ra, which is 

what you mostly want.

We still use LDR to load the registers from the matrices. This will load 

32 bits; since we specified each element to take 16 bits, it will load two at a 

time enhancing our performance.

�Summary
We covered the various forms of the multiply instruction supported in the 

ARM 32-bit instruction set. We covered the division instructions included 

in newer versions of the ARM processors, like those in the Raspberry Pi 3 

and 4. For older processors we can use the FPU, write our own routine, or 

call some C code.

We then covered the concept of multiply and accumulate and why 

these instructions are so important to modern applications in graphics and 

machine learning. We reviewed the many variations of these instructions 

and then presented two versions of matrix multiplication to show them in 

action.

In Chapter 11, “Floating-Point Operations,” we will look at more math, 

but this time in scientific notation allowing fractions and exponents, going 

beyond integers for the first time.
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CHAPTER 11

Floating-Point 
Operations
The Raspberry Pi is based on a system on a chip. This chip contains the 

quad-core ARM CPU that we have been studying along with a couple of 

coprocessors. In this chapter, we’ll be looking at what the floating-point 

unit (FPU) does. Some ARM documentation refers to this as the Vector 

Floating-Point (VFP) to promote the fact that it can do some limited vector 

processing. Any vector processing in the FPU is now replaced by the much 

better parallel processing provided by the NEON coprocessor, which we 

study in Chapter 12, “NEON Coprocessor.” Regardless, the FPU provides 

several useful instructions for performing floating-point mathematics.

We’ll review what floating-point numbers are, how they are 

represented in memory, and how to insert them into our Assembly 

programs. We’ll look at how to transfer data between the FPU and the 

ARM’s regular registers and memory. We’ll look at how to perform basic 

arithmetic operations, comparisons, and conversions.
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�About Floating-Point Numbers
Floating-point numbers are a way to represent numbers in scientific 

notation on the computer. Scientific notation represents numbers 

something like this:

1.456354 x 1016

There is a fractional part and an exponent that lets you move the decimal 

place to the left if it’s positive and to the right if it’s negative. The Raspberry 

Pi deals with single-precision floating-point numbers that are 32 bits in size 

and double-precision floating-point numbers that are 64 bits in size.

The Raspberry Pi uses the IEEE 754 standard for floating-point 

numbers. Each number contains a sign bit to indicate if it is positive 

or negative, a field of bits for the exponent, and a string of digits for the 

fractional part. Table 11-1 lists the number of bits for the parts of each 

format.

Table 11-1.  Bits of a floating-point number

Name Precision Sign Fractional Exponent Decimal digits

Single 32 bits 1 24 8 7

Double 64 bits 1 53 11 16

The decimal digits column of Table 11-1 is the approximate number of 

decimal digits that the format can represent, or the decimal precision.

�Normalization and NaNs
In the integers we’ve seen so far, all combinations of the bits provide a 

valid unique number. No two different patterns of bits produce the same 

number; however, this isn’t the case in floating-point. First of all, we have 

the concept of not a number or NaN. NaNs are produced from illegal 
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operations like dividing by zero or taking the square root of a negative 

number. These allow the error to quietly propagate through the calculation 

without crashing a program. In the IEEE 754 specification, a NaN is 

represented by an exponent of all 1 bits.

A normalized floating-point number means the first digit in the fractional 

part is non-zero. A problem with floating-point numbers is that numbers can 

often be represented in multiple ways. For instance, a fractional part of 0 with 

either sign bit or any exponent is zero. Consider a representation of 1:

1E0 = 0.1E1 = 0.01E2 = 0.001E3

All of these represent 1, but we call the first one with no leading zeros 

the normalized form. The ARM FPU tries to keep floating-point numbers 

in normal form, but will break this rule for small numbers, where the 

exponent is already as negative as it can go, then to try to avoid underflow 

errors, the FPU will give up on normalization to represent numbers a bit 

smaller than it could otherwise.

�Rounding Errors
If we take a number like   and represent it in floating-point, then 

we only keep 7 or so digits for single precision. This introduces rounding 

errors. If these are a problem, usually going to double precision solves the 

problems, but some calculations are prone to magnifying rounding errors, 

such as subtracting two numbers that have a minute difference.

Note  Floating-point numbers are represented in base 2, so the 
decimal expansions that lead to repeating patterns of digit is different 
than that of base 10. It comes as a surprise to many people that 0.1 
is a repeating binary fraction: 0.00011001100110011…, meaning 
that adding dollars and cents in floating-point will introduce rounding 
error over enough calculations.
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For financial calculations, most applications use fixed-point arithmetic 

that is built on integer arithmetic to avoid rounding errors in addition and 

subtraction.

�Defining Floating-Point Numbers
The GNU Assembler has directives for defining storage for both single- and 

double-precision floating-point numbers. These are .single and .double, 

for example:

.single   1.343, 4.343e20, -0.4343, -0.4444e-10

.double   -4.24322322332e-10, 3.141592653589793

These directives always take base 10 numbers.

�FPU Registers
The ARM FPU has its own set of registers. There are 32 single-precision 

floating-point registers that are referred to as S0, S1, …, S31. These same 

registers can also be referred to as 16 double-precision registers D0, …, 

D15. Figure 11-1 shows this configuration of registers.
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Note R egisters S0 and S1 take the same space as D0. The 
registers S2 and S3 use the same space as D1 and so on. The FPU 
just gives an easier syntax to do either single-precision or double-
precision operations. It is up to us to keep things straight and not 
corrupt our registers by accessing the same space incorrectly.

The Raspberry Pi 2, 3, and 4 have 16 additional double-precision 
registers D16–D31 which have no single-precision counterparts.

These are a subset of the registers available for the NEON processor, 
which we will cover in the next chapter. For now, just a warning that 
there could be a conflict with the NEON processor if we are using that 
as well.

Figure 11-1.  The ARM’s FPU registers (the single-precision registers 
on the left overlap the double-precision registers on the right)
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�Function Call Protocol
In Chapter 6, “Functions and the Stack,” we gave the protocol for who saves 

which registers when calling functions. With these floating-point registers, 

we have to add them to our protocol:

•	 Callee saved: The function is responsible for saving 

registers S16–S31 (D8–D15) needed to be saved by a 

function if the function uses them.

•	 Caller saved: All other registers don’t need to be saved 

by a function, so they must be saved by the caller 

if they are required to be preserved. This includes 

S0–S15 (D0–D7) and D16–D31 if they are present. This 

also applies to any additional registers for the NEON 

coprocessor.

Note T he double is also our first 64-bit data type. There is an 
additional rule about placing these in registers, namely, that when 
passing a 64-bit item, it can go in registers R0 and R1 or R2 and 
R3. It cannot be placed in R1 and R2. And it can’t half be in R3 and 
half on the stack. We’ll see this later calling printf with a double as a 
parameter.

Here are our first coprocessor instructions:

•	 VPUSH	 {reglist}

•	 VPOP	 {reglist}

For example:

      VPUSH  {S16-S31}

      VPOP   {S16-S31}
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You are only allowed one list in these instructions that you can create 

with either S or D registers.

Note T he list can’t be longer than 16 D registers.

�About Building
All the examples in this chapter use the C runtime and are built using gcc. 

This works fine in the same manner as the previous chapters. If we want 

to use the GNU Assembler directly via the as command, then we need to 

modify our makefile with

%.o : %.s

      as -mfpu=vfp $(DEBUGFLGS) $(LSTFLGS) $< -o $@

Here we specify that we have an FPU. This will give us vfpv2 which 

works for all Raspberry Pi. We could use vfpv3 or vfpv4 for newer Pi if we 

need a newer feature. All the floating-point examples in this book work 

for any Pi and can just use the generic version of the command-line 

parameter.

�Loading and Saving FPU Registers
In Chapter 5, “Thanks for the Memories,” we covered the LDR and STR 

instructions to load registers from memory, then store them back to 

memory. The floating-point coprocessor has similar instructions for its 

registers:

•	 VLDR	 Fd, [Rn{, #offset}]

•	 VSTR	 Fd, [Rn{, #offset}]
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We see that both instructions support pre-indexed addressing offsets. 

The Fd register can be either an S or D register. For example:

      LDR   R1, =fp1

      VLDR  S4, [R1]

      VLDR  S4, [R1, #4]

      VSTR  S4, [R1]

      VSTR  S4, [R1, #4]

      ...

.data

fp1:  .single    3.14159

fp2:  .single    4.3341

fp3:  .single 0.0

There is also a load multiple instruction and store multiple—these are

•	 VLDM Rn{!}, Registers

•	 VSTM Rn{!}, Registers

Registers are a range of registers like for the VPUSH and VPOP 

instructions. Only one range is allowed, and it can have at most 16 double 

registers. These will load the number from the address pointed to by Rn, 

and the number of registers and whether they are single or double will 

determine how much data is loaded. The optional ! will update the pointer 

in Rn after the operation if present.

�Basic Arithmetic
The floating-point processor includes the four basic arithmetic operations, 

along with a few extensions like our favorite multiply and accumulate. 

There are some specialty functions like square root and quite a few 

variations that affect the sign—negate versions of functions.
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Each of these functions comes in two versions, a 32-bit version that you 

put .F32 after and a 64-bit version that you place .F64 after. It would be nice 

if the Assembler just did this for you based on the registers you provide, 

but if you leave off the size part, the error message is misleading. Here is a 

selection of the instructions:

•	 VADD.F32	 {Sd}, Sn, Sm

•	 VADD.F64	 {Dd}, Dn, Dm

•	 VSUB.F32	 {Sd}, Sn, Sm

•	 VSUB.F64	 {Dd}, Dn, Dm

•	 VMUL.F32	 {Sd,} Sn, Sm

•	 VMUL.F64	 {Dd,} Dn, Dm

•	 VDIV.F32	 {Sd}, Sn, Sm

•	 VDIV.F64	 {Dd}, Dn, Dm

•	 VMLA.F32	 Sd, Sn, Sm

•	 VMLA.F64	 Dd, Dn, Dm

•	 VSQRT.F32	 Sd, Sm

•	 VSQRT.F64	 Dd, Dm

If the destination register is in curly brackets {}, it is optional, so we can 

leave it out. This means we apply the second operand to the first, so to add 

S1 to S4, we simply write

      VADD.F32   S4, S1

These functions are all fairly simple, so let’s move on to an example.
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�Distance Between Points
If we have two points (x1, y1) and (x2, y2), then the distance between them is 

given by the formula

d = sqrt( (y2-y1)2 + (x2-x1)2 )

Let’s write a function to calculate this for any two single-precision 

floating-point pair of coordinates. We’ll use the C runtime’s printf function 

to print out our results. First the distance function from Listing 11-1, in the 

file distance.s.

Listing 11-1.  Function to calculate the distance between two points

@

@ Example function to calculate the distance

@ between two points in single precision

@ floating point.

@

@ Inputs:

@     R0 - pointer to the 4 FP numbers

@            they are x1, y1, x2, y2

@ Outputs:

@     R0 - the length (as single precision FP)

.global distance @ Allow function to be called by others

@

distance:

      @ push all registers to be safe, we don't

      @ really need to push so many.

      push  {R4-R12, LR}

      vpush {S16-S31}

      @ load all 4 numbers at once

      vldm  R0, {S0-S3}
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      @ calc s4 = x2 - x1

      vsub.f32   S4, S2, S0

      @ calc s5 = y2 - y1

      vsub.f32   S5, S3, S1

      @ calc s4 = S4 ∗ S4 (x2-X1)^2
      vmul.f32   S4, S4

      @ calc s5 = s5 ∗ s5 (Y2-Y1)^2
      vmul.f32   S5, S5

      @ calc S4 = S4 + S5

      vadd.f32   S4, S5

      @ calc sqrt(S4)

      vsqrt.f32  S4, S4

      @ move result to R0 to be returned

      vmov  R0, S4

      @ restore what we preserved.

      vpop  {S16-S31}

      pop   {R4-R12, PC}

Now we place the code from Listing 11-2 in main.s, which calls 

distance three times with three different points and prints out the distance 

for each one.

Listing 11-2.  Main program to call the distance function three times

@

@ Main program to test our distance function

@

@ r7 - loop counter

@ r8 - address to current set of points

.global main @ Provide program entry point
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@

      .equ  N, 3  @ Number of points.

main:

      push  {R4-R12, LR}

      ldr  r8, =points @ pointer to current points

      mov  r7, #N     @ number of loop iterations

loop: mov  r0, r8     @ move pointer to parameter 1

      bl   distance   @ call distance function

@ need to take the single precision return value

@ and convert it to a double, because the C printf

@ function can only print doubles.

      vmov  s2, r0         @ move back to fpu for conversion

      vcvt.f64.f32 d0, s2  @ convert single to double

      vmov r2, r3, d0      @ return double to r2, r3

      ldr  r0, =prtstr     @ load print string

      bl   printf          @ print the distance

      add  r8, #(4*4)      @ 4 points each 4 bytes

      subs r7, #1          @ decrement loop counter

      bne  loop            @ loop if more points

      mov  r0, #0          @ return code

      pop  {R4-R12, PC}

.data

points:    .single   0.0, 0.0, 3.0, 4.0

      .single    1.3, 5.4, 3.1, -1.5

      .single 1.323e10, -1.2e-4, 34.55, 5454.234

prtstr:    .asciz "Distance = %f\n"
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The makefile is in Listing 11-3.

Listing 11-3.  Makefile for the distance program

distance: distance.s main.s

      gcc -o distance distance.s main.s

If we build and run the program, we get

pi@raspberrypi:~/asm/Chapter 11 $ make

gcc -g -o distance distance.s main.s

pi@raspberrypi:~/asm/Chapter 11 $ ./distance

Distance = 5.000000

Distance = 7.130919

Distance = 13230000128.000000

pi@raspberrypi:~/asm/Chapter 11 $

We constructed the data, so the first set of points comprise a 3-4-5 

triangle, which is why we get the exact answer of 5 for the first distance.

The distance function is straightforward. It loads all four numbers in 

one VLDM instruction and then calls the various floating-point arithmetic 

functions to perform the calculation. We don’t really need to save any 

registers, but I included the VPUSH and VPOP instructions as an example.

The part of the main routine that loops and calls the distance routine is 

straightforward. The part that calls printf has a couple of new complexities. 

The problem is that the C printf routine only has support to print doubles. 

In C this isn’t much of a problem, since you can just cast the argument to 

force a conversion. In Assembly, we need to convert our single-precision 

sum to a double-precision number, so we can print it.

To do the conversion, we VMOV the sum back to the FPU. VMOV is a 

handy instruction to move values between FPU registers and between FPU 

and CPU registers. We use the strange looking VCVT.F64.F32 instruction 

to convert from single to double precision. This function is the topic of 
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the next section. We then VMOV the freshly constructed double back to 

registers R2 and R3.

When we call printf, the first parameter goes in R0. We then hit the rule 

about having to place the next 64-bit parameter in R2 and R3.

Note I f you are debugging the program with gdb and you want 
to see the contents of the FPU registers at any point, use the “info 
all-registers” command that will exhaustively list all the coprocessor 
registers. We won’t see some of these until the next chapter when we 
cover the NEON coprocessor.

�Floating-Point Conversions
In the last example, we had our first look at the conversion instruction 

VCVT. The FPU supports a variety of versions of this function; not only 

does it support conversions between single- and double-precision 

floating-point numbers, but it supports conversions to and from integers. It 

also supports conversion to fixed-point decimal numbers (integers with an 

implied decimal). It supports several rounding methods as well. The most 

used versions of this function are

•	 VCVT.F64.F32	 Dd, Sm

•	 VCVT.F32.F64	 Sd, Dm

These convert single to double precision and double to single 

precision.

To convert from an integer to a floating-point number, we have

•	 VCVT.F64.S32	 Dd, Sm

•	 VCVT.F32.S32	 Sd, Sm

•	 VCVT.F64.U32	 Dd, Sm

•	 VCVT.F32.U32	 Sd, Sm
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where the source can be either a signed or unsigned integer.

To convert from floating-point to integer, we have

•	 VCVTmode.S32.F64	Sd, Dm

•	 VCVTmode.S32.F32	Sd, Sm

•	 VCVTmode.U32.F64	Sd, Dm

•	 VCVTmode.U32.F32	Sd, Sm

In this direction, we have rounding, so we specify the method of 

rounding we want with mode. Mode must be one of

•	 A: Round to nearest, ties away from zero

•	 N: Round to nearest, ties to even

•	 P: Round toward plus infinity

•	 M: Round toward minus infinity

There are similar versions for fixed point such as

•	 VCVT.S32.F64	 Dd, Dd, #fbits

where #fbits are the number of bits in the fractional part of the fixed-point 

number.

Note T his form isn’t useful for money computations, for those you 
should multiply by 100, for two decimal places and convert.

�Floating-Point Comparison
The floating-point instructions don’t affect the CPSR. There is a Floating-

Point Status Control Register (FPSCR) for floating-point operations. 

It contains N, Z, C, and V flags like the CPSR. The meaning of these is 

mostly the same. There are no S versions of the floating-point instructions; 
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there is only one instruction that updates these flags, namely, the VCMP 

instruction. Here are some of its forms:

•	 VCMP.F32	 Sd, Sm

•	 VCMP.F32	 Sd, #0

•	 VCMP.F64	 Dd, Dm

•	 VCMP.F64	 Dd, #0

It can compare two single-precision registers or two double-precision 

registers. It allows one immediate value, namely, zero, so it can compare 

either a single- or double-precision register to zero.

The VCMP instruction updates the FPSCR, but all our branch-on-

condition instructions branch based on flags in the CPSR. This forces an 

extra step to copy the flags from the FPSCR to the CPSR before using one 

of our regular instructions to act on the results of the comparison. There is 

an instruction specifically for this purpose:

•	 VMRS	 APSR_nzcv, FPSCR

VMRS copies just the N, Z, C, and V flags from the FPCR to the CPSR. 

After the copy, we can use any instruction that reads these flags.

Testing for equality of floating-point numbers is problematic due to 

rounding error, numbers are often close but not exactly equal. The solution 

is to decide on a tolerance, then consider numbers equal if they are within 

the tolerance from each other. For instance, we might define e = 0.000001 

and then consider two registers equal if

abs(S1 - S2) < e

where abs() is a function to calculate the absolute value.
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�Example
Let’s create a routing to test if two floating-point numbers are equal using 

this technique. We’ll first add 100 cents, then test if they exactly equal $1.00 

(spoiler alert, they won’t). Then we’ll compare the sum using our fpcomp 

routine that tests them within a supplied tolerance (usually referred to as 

epsilon).

We start with our floating-point comparison routine, placing the 

contents of Listing 11-4 into fpcomp.s.

Listing 11-4.  Routine to compare two floating-point numbers 

within a tolerance

@

@ Function to compare to floating point numbers

@ the parameters are a pointer to the two numbers

@ and an error epsilon.

@

@ Inputs:

@     R0 - pointer to the 3 FP numbers

@            they are x1, x2, e

@ Outputs:

@     R0 - 1 if they are equal, else 0

.global fpcomp @ Allow function to be called by others

@

fpcomp:

      @ push all registers to be safe, we don't really

      @ need to push so many.

      push  {R4-R12, LR}

      vpush {S16-S31}
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      @ load all 3 numbers at once

      vldm  R0, {S0-S2}

      @ calc s3 = x2 - x1

      vsub.f32    S3, S1, S0

      vabs.f32    S3, S3

      vcmp.f32    S3, S2

      vmrs        APSR_nzcv, FPSCR

      BLE         notequal

      MOV         R0, #1

      B           done

notequal:MOV            R0, #0

      @ restore what we preserved.

done: vpop  {S16-S31}

      pop   {R4-R12, PC}

Now the main program maincomp.s contains Listing 11-5.

Listing 11-5.  Main program to add up 100 cents and compare to $1.00

@

@ Main program to test our distance function

@

@ r7 - loop counter

@ r8 - address to current set of points

.global main @ Provide program starting address to linker

      .equ  N, 100    @ Number of additions.

Chapter 11  Floating-Point Operations



229

main:

      push  {R4-R12, LR}

@ Add up one hundred cents and test

@ if they equal $1.00

      mov   r7, #N    @ number of loop iterations

@ load cents, running sum and real sum to FPU

      ldr  r0, =cent

      vldm r0, {S0-S2}

loop:

      @ add cent to running sum

      vadd.f32   s1, s0

      subs r7, #1     @ decrement loop counter

      bne  loop       @ loop if more points

      @ compare running sum to real sum

      vcmp.f32 s1, s2

      @ copy FPSCR to CPSR

      vmrs       APSR_nzcv, FPSCR

      @ print if the numbers are equal or not

      beq  equal

      ldr  r0, =notequalstr

      bl   printf

      b    next

equal:  ldr      r0, =equalstr

      bl   printf

next:

@ load pointer to running sum, real sum and epsilon

      ldr   r0, =runsum

      vldm  r0, {S0-S2}

@ call comparison function
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      bl    fpcomp        @ call comparison function

@ compare return code to 1 and print if the numbers

@ are equal or not (within epsilon).

      cmp   r0, #1

      beq   equal2

      ldr   r0, =notequalstr

      bl    printf

      b     done

equal2:  ldr      r0, =equalstr

      bl   printf

done: mov   r0, #0           @ return code

      pop   {R4-R12, PC}

.data

cent: .single   0.01

runsum: .single 0.0

sum:  .single 1.00

epsilon:.single 0.00001

equalstr:  .asciz "equal\n"

notequalstr: .asciz "not equal\n"

The makefile, in Listing 11-6, is as we would expect.

Listing 11-6.  The makefile for the floating-point comparison example

fpcomp: fpcomp.s maincomp.s

      gcc -o fpcomp fpcomp.s maincomp.s

If we build and run the program, we get

pi@raspberrypi:~/asm/Chapter 11 $ make

gcc -g -o fpcomp fpcomp.s maincomp.s

pi@raspberrypi:~/asm/Chapter 11 $ ./fpcomp

Chapter 11  Floating-Point Operations



231

not equal

equal

pi@raspberrypi:~/asm/Chapter 11 $

The program demonstrates how to compare floating-point numbers 

and how to copy the results to the CPSR, so we can branch based on the 

result.

If we run the program under gdb, we can examine the sum of 100 

cents. We see

S1 = 0x3f7ffff5

S2 = 0x3f80

We haven’t talked about the bit format of floating-point numbers, but 

the first bit is zero indicating positive. The next 8 bits are the exponent, 

which is 7F; the exponent doesn’t use two’s complement; instead, it’s value 

is what is there minus 127. In this case, the exponent is 0. As S2 has no 

more bits, but in normalized form, there is an implied 1 after the exponent, 

so this then gives the value of 1. Then S1 has a value of 0.99999934, 

showing the rounding error creeping in, even in the small number of 

additions we performed.

Then we call our fpcomp routine that determines if the numbers are 

within the provided tolerance and that considers them equal.

It didn’t take that many additions to start introducing rounding errors 

into our sums. You must be careful when using floating-point for this 

reason.

�Summary
In this chapter, we covered what are floating-point numbers and how they 

are represented. We covered normalization, NaNs, and rounding error. 

We showed how to create floating-point numbers in our .data section and 
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discussed the bank of single- and double-precision floating-point registers 

and how they overlap. We covered how to load them into the floating-

point registers, perform mathematical operations, and save them back to 

memory.

We looked at how to convert between different floating-point types, 

how to compare floating-point numbers, and how to copy the result back 

to the ARM CPU. We looked at the effect rounding error has on these 

comparisons.

In Chapter 12, “NEON Coprocessor,” we’ll look at how to perform 

multiple floating-point operations in parallel.
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CHAPTER 12

NEON Coprocessor
In this chapter, we start performing true parallel computing. The NEON 

coprocessor shares a lot of functionality with the FPU from Chapter 11, 

“Floating-Point Operations,” but can perform several operations at once. 

For instance, you can perform four 32-bit floating-point operations with 

one instruction, and these four operations are performed at the same time. 

The type of parallel processing performed by the NEON coprocessor is 

Single Instruction Multiple Data (SIMD). In SIMD processing, each single 

instruction you issue executes in parallel on several multiple data items.

Note  The NEON coprocessor was introduced with the Raspberry Pi 2. 
It is not available on the Raspberry Pi 1 or the Raspberry Pi Zero. The 
programs in this chapter only run on a Raspberry Pi 2 or later.

The NEON coprocessor shares the same register file we examined in 

Chapter 11, “Floating-Point Operations,” except that it sees a larger set of 

registers. All the instructions we learned to load and store the FPU registers 

are the same here, including VMOV, VLDR, VSTR, VLDM, VSTM, VPUSH, 
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and VPOP. We’ll examine how the NEON registers extend the FPU set of 

registers and how they are intended to be used with NEON.

We’ll examine how to arrange data so we can operate on it in parallel 

and study the instructions that do so. We’ll then update our vector distance 

and 3x3 matrix multiplication programs to use the NEON processor to see 

how much of the work we can do in parallel.

�The NEON Registers
The NEON coprocessor can operate on the 64-bit registers, which we 

studied in last chapter, and a set of 16 128-bit registers, that are new for this 

chapter.

Note  All these registers overlap, so care must be taken if you use a 
combination. See Figure 12-1 for the overlaps. 

The NEON coprocessor cannot reference the 32-bit S registers that the 

FPU commonly uses. Any ARM processor with a NEON coprocessor will 

have all 32 D registers.
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Figure 12-1.  The complete set of coprocessor registers for both the 
FPU and NEON coprocessors

Having 128-bit registers does not mean the NEON processor performs 

128-bit arithmetic. In fact, the NEON processor can’t even perform 64-bit 

floating-point arithmetic. If you remember in Chapter 10, “Multiply, 

Divide, and Accumulate,” in the second example of matrix multiplication, 

we optimized the program by using a version of the integer multiply 

instruction that did the multiply as two independent 16-bit operations 

Chapter 12  NEON Coprocessor



236

at the same time. This was our first encounter with SIMD programming. 

NEON coprocessor takes that idea to a new level, because in one 128-bit 

register, we can fit four 32-bit single-precision floating-point numbers. 

If we multiply two such registers, all four 32-bit numbers are multiplied 

together at the same time.

The NEON coprocessor can operate on both integers and floating-

point numbers. However, the sizes are limited to 8, 16, and 32 bits 

for integers and 16 and 32 bits for floating-point to perform as many 

operations as possible at once. The greatest parallelism is obtained using 

8-bit integers where 16 operations can happen at once.

The NEON coprocessor can operate on 64-bit D or 128-bit Q registers; 

of course, if you use 64-bit D registers, you only have half the amount of 

parallelism.

Table 12-1 shows the number of elements that fit in each register type. 

Next we’ll see how we can perform arithmetic on these elements.

Table 12-1.  Number of elements in each register type by size

8-bit elements 16-bit elements 32-bit elements

64-bit D register 8 4 2

128-bit Q register 16 8 4

�Stay in Your Lane
The NEON coprocessor uses the concept of lanes for all its computations. 

When you choose your data type, the processor considers the register 

divided into the number of lanes—one lane for each data element. If we 

work on 32-bit integers and use a 128-bit Q register, then the register is 

considered divided into four lanes, one for each integer.

Figure 12-2 shows how the Q registers are divided into four lanes, one 

for each 32-bit number, then how the arithmetic operation is applied to 

each lane independently. This way, we accomplish four additions in one 
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instruction, and the NEON coprocessor performs them all at the same 

time—in parallel.

Figure 12-2.  Example of the four lanes involved in doing 32-bit 
addition on the Q registers

�Arithmetic Operations
Figure 12-2 shows our first example of a NEON coprocessor instruction. 

The two forms of the VADD instruction for NEON are

•	 VADD.datatype	 {Qd}, Qn, Qm

•	 VADD.datatype	 {Dd}, Dn, Dm

Datatype must be one of I8, I16, I32, I64, or F32.

Note  This is very similar to the VADD instruction we saw for the 
FPU. The Assembler knows the instruction is for the FPU, if you use S 
registers—NEON doesn’t support those or if you use the F64 type—
which NEON doesn’t support.

The trick to using NEON is arranging your code so that you keep all the 

lanes doing useful work.
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The NEON coprocessor has a great many arithmetic instructions, and 

there is a lot of similarities to the FPUs. However, there are quite a few 

differences, such as NEON does not support division, but it does support 

reciprocal, so you can do division by taking the reciprocal and multiplying. 

Strangely, NEON doesn’t support square root, but it does support 

reciprocal square root.

Since the NEON processor supports integer operations, it supports 

all the logical operations like and, bic, and orr. There are also more 

comparison operations than the FPU supports.

If you look at the list of NEON instructions, there are a lot of specialty 

instructions provided to help with specific algorithms. For instance, there 

is direct support for polynomials over the binary ring to support certain 

classes of cryptographic algorithms.

We will show how to use a few of the instructions in working examples. 

This will give you enough knowledge to apply the general principles 

of operations for the NEON coprocessor, then you can peruse all the 

instructions in the “ARM Instruction Set Reference Guide.”

�4D Vector Distance
For our first example, let’s expand the distance calculation example from 

Chapter 11, “Floating-Point Operations,” to calculate the distance between 

two 4D vectors. The formula generalizes to any number of dimensions 

by just adding the extra squares of the differences for the additional 

dimensions under the square root.

First distance.s, shown in Listing 12-1, using the NEON coprocessor.
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Listing 12-1.  Routine to calculate the distance between two 4D 

vectors using the NEON coprocessor

@

@ Example function to calculate the distance

@ between 4D two points in single precision

@ floating point using the NEON Processor

@

@ Inputs:

@     R0 - pointer to the 8 FP numbers

@            they are (x1, x2, x3, x4),

@                   (y1, y2, y3, y4)

@ Outputs:

@     R0 - the length (as single precision FP)

.global distance @ Allow function to be called by others

@

distance:

      @ push all registers to be safe, we don't

      @ really need to push so many.

      push  {R4-R12, LR}

      vpush {S16-S31}

      @ load all 4 numbers at once

      vldm  R0, {Q2-Q3}

      @ calc q1 = q2 - q3

      vsub.f32   Q1, Q2, Q3

      @ calc Q1 = Q1 * Q1 (xi-yi)^2

      vmul.f32   Q1, Q1, Q1

      @ calc S0 = S0 + S1 + S2 + S3

      vpadd.f32  D0, D2, D3

      vadd.f32   S0, S1
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      @ calc sqrt(S4)

      vsqrt.f32  S4, S0

      @ move result to R0 to be returned

      vmov R0, S4

      @ restore what we preserved.

      vpop  {S16-S31}

      pop   {R4-R12, PC}

Now main.s, shown in Listing 12-2, to test the routine.

Listing 12-2.  The main program to test the 4D distance function

@

@ Main program to test our distance function

@

@ r7 - loop counter

@ r8 - address to current set of points

.global main @ Provide program starting

      .equ  N, 3   @ Number of points.

main:

      push  {R4-R12, LR}

      ldr   r8, =points @ pointer to current points

      mov   r7, #N      @ number of loop iterations

loop: mov   r0, r8      @ move pointer to parameter 1 (r0)

      bl    distance    @ call distance function

@ need to take the single precision return value

@ and convert it to a double, because the C printf

@ function can only print doubles.
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      vmov  s2, r0        @ move back to fpu for conversion

      vcvt.f64.f32 d0, s2 @ convert single to double

      vmov r2, r3, d0     @ return double to r2, r3

      ldr  r0, =prtstr    @ load print string

      bl   printf     @ print the distance

      add  r8, #(8*4) @ 8 elements each 4 bytes

      subs r7, #1     @ decrement loop counter

      bne  loop       @ loop if more points

      mov  r0, #0     @ return code

      pop  {R4-R12, PC}

.data

points:    .single    0.0, 0.0, 0.0, 0.0, 17.0, 4.0, 2.0, 1.0

      .single    1.3, 5.4, 3.1, -1.5, -2.4, 0.323, 3.4, -0.232

      �.single 1.323e10, -1.2e-4, 34.55, 5454.234, 10.9, -3.6, 

4.2, 1.3

prtstr:    .asciz "Distance = %f\n"

The makefile is in Listing 12-3.

Listing 12-3.  The makefile for the distance program

distance: distance.s main.s

      gcc -mfpu=neon-vfpv4 -o distance distance.s main.s

If we build and run the program, we see

pi@raspberrypi:~/asm/Chapter 12 $ make

gcc -mfpu=neon-vfpv4 -g -o distance distance.s main.s

pi@raspberrypi:~/asm/Chapter 12 $ ./distance

Distance = 17.606817

Distance = 6.415898

Distance = 13230000128.000000

pi@raspberrypi:~/asm/Chapter 12 $

Chapter 12  NEON Coprocessor



242

We load one vector into Q2 and the other into Q3. Each vector consists 

of four 32-bit floating-point number, so each one can be placed in a 128-bit 

Q register and treated as four lanes. We then subtract all four components 

at once using a single VSUB.F32 instruction. We calculate the squares all 

at once using a VMUL.F32 instruction. Both instructions operate on all 

four lanes in parallel.

We want to add up all the sums which are all in Q1. This means all the 

numbers are in different lanes and we can’t add them in parallel. This is a 

common situation to get into; fortunately, the NEON instruction set does 

give us some help. It won’t add up all the lanes in a register, but it will do 

pairwise additions in parallel. The instruction

      vpadd.f32   D0, D2, D3

will add the two 32-bit numbers in D2, put the sum in half of D0, and 

similarly add the two halves of D3, putting the sum in the other half of D0. 

The pairwise instruction only operates on D registers and only does two 

32-bit additions at a time. The numbers to add are all in Q1, which is why 

we select D2 and D3 for the instruction, since these are the registers that 

overlap Q1; see Figure 12-1.

This accomplishes two of the additions we need; we then perform the 

third using the regular FPU VADD.F32 instruction, noting that S0 and S1 

overlap D0.

Once the numbers are added, we use the FPU’s square root instruction 

to calculate the final distance.

Figure 12-3 shows how these operations flow through the lanes in our 

registers.
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This shows a nice feature of having the NEON and FPU sharing 

registers, in that it allows us to intermix FPU and NEON instructions 

without needing to move data around.

The only change to the main program is to make the vectors 4D and 

adjust the loop to use the new vector size.

Notice that the makefile includes the gcc option:

      -mfpu=neon-vfpv4

This tells the GNU C compiler or GNU Assembler that you have a 

NEON coprocessor and want to generate code for it. If we don’t include 

this, we will get a lot of errors about instructions not being supported on 

our processor. This is because by default the tools target all Raspberry Pi 

models, and what we are doing won’t work on the Pi 1 or Zero.

�3x3 Matrix Multiplication
Let’s take the 3x3 matrix multiplication example program from Chapter 10,  

“Multiply, Divide, and Accumulate,” and optimize it use the parallel 

processing abilities of the NEON coprocessor.

Figure 12-3.  Flow of the calculations through the registers showing 
the lanes

Chapter 12  NEON Coprocessor



244

The NEON coprocessor does have a dot product function VSDOT, 

but sadly it only operates on 8-bit integers. This isn’t suitable for most 

matrices, so we won’t use it. As we saw in the last example, adding within 

one register is a problem, and similarly there are problems with just doing 

multiply with accumulates. The recommended solution is to reverse two 

of our loops from the previous program. This way, we do the multiply 

with accumulates as separate instructions, but we do it on three vectors 

at a time. The result is we eliminate one of our loops from the previous 

program and achieve some level of parallel operation.

The trick is to notice that one 3x3 matrix multiplication is really three 

matrices by vector calculations, namely

•	 Ccol1 = A * Bcol1

•	 Ccol2 = A * Bcol2

•	 Ccol3 = A * Bcol3

If we look at one of these matrix times a vector for example

 

we see the calculation is

 

If we put a, d, and g in a register in separate lanes and b, e, and h in 

another register and c, f, and i in a third register in the matching lanes, then 

we can calculate a column in the results matrix, as shown in Figure 12-4.
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This is the recommended algorithm for matrix multiplication on the 

NEON coprocessor. We will use short integers like we did before, so we can 

fit a column of any of our matrices in a D register.

What we did earlier is for one column of the results matrix; we then 

need to do this for all the columns. We will place this logic in a macro, so 

we can repeat the calculation three times. Since the goal is as fast matrix 

multiplication as possible, it is worth removing the loops, since it saves 

extra logic. This makes the program look much simpler.

Listing 12-4 is the code for our NEON-enabled matrix multiplication.

Listing 12-4.  NEON-enabled 3x3 matrix multiplication example

@

@ Multiply 2 3x3 integer matrices

@ Uses the NEON Coprocessor to do

@ some operations in parallel.

@

@ Registers:

@     D0 - first column of matrix A

@     D1 - second column of matrix A

@     D2 - third column of matrix A

@     D3 - first column of matrix B

@     D4 - second column of matrix B

@     D5 - third column of matrix B

@     D6 - first column of matrix C

@     D7 - second column of matrix C

@     D8 - third column of matrix C

Figure 12-4.  Showing how the calculations flow through the lanes
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.global main @ Provide program starting address

main:

      push   {R4-R12, LR}   @ Save required regs

@ load matrix A into NEON registers D0, D1, D2

      LDR    R0, =A         @ Address of A

      VLDM   R0, {D0-D2}    @ bulk load the three columns

@ load matrix B into NEON registers D3, D4, D5

      LDR    R0, =B         @ Address of B

      VLDM   R0, {D3-D5}    @ bulk load the three columns

.MACRO mulcol ccol bcol

      VMUL.I16   \ccol, D0, \bcol[0]

      VMLA.I16   \ccol, D1, \bcol[1]

      VMLA.I16   \ccol, D2, \bcol[2]

.ENDM

      mulcol     D6, D3     @ process first column

      mulcol     D7, D4     @ process second column

      mulcol     D8, D5     @ process third column

      LDR   R1, =C          @ Address of C

      VSTM  R1, {D6-D8}     @ store the three columns

@ Print out matrix C

@ Loop through 3 rows printing 3 cols each time.

      MOV   R5, #3          @ Print 3 rows

      LDR   R11, =C         @ Addr of results matrix

printloop:

      LDR    R0, =prtstr    @ printf format string

@ print transpose so matrix is in

@ usual row column order.

@ first ldrh post-indexes by 2 for next row
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@ so second ldrh adds 6, so is ahead

@ by 2+6=8=row size

@ similarly for third ldh ahead

@ by 2+14=16 = 2 x row size

      LDRH   R1, [R11], #2     @ first element in current row

      LDRH   R2, [R11,#6]      @ second element in current row

      LDRH   R3, [R11,#14]     @ third element in current row

      BL     printf            @ Call printf

      SUBS   R5, #1            @ Dec loop counter

      BNE    printloop         @ If not zero loop

      mov    r0, #0            @ return code

      pop    {R4-R12, PC}      @ Restore regs and return

.data

@ First matrix in column major order

A:     .short      1, 4, 7, 0

       .short      2, 5, 8, 0

       .short      3, 6, 9, 0

@ Second matrix in column major order

B:     .short      9, 6, 3, 0

       .short      8, 5, 2, 0

       .short      7, 4, 1, 0

@ Results matrix in column major order

C:     .fill 12, 2, 0

prtstr: .asciz  "%3d  %3d  %3d\n"

We store both matrices in column major order, and the C matrix 

is produced in column major order. This is to make setting up the 

calculations easier, since everything is aligned properly to bulk load 

into our NEON registers. We changed the print loop, so that it prints out 

the results matrix in our usual row order form, basically doing a matrix 

transpose as it loops through the C matrix.
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In the macro, we do the scalar multiplication

      VMUL.I16   \ccol, D0, \bcol[0]

which translates to something like

      VMUL.I16   D6, D0, D3[0]

We don’t have access to the S registers to access a single floating-point 

number, but in many instructions, we can refer to a given lane. Here the 

D3[0] syntax is like an array index into D3 or can be thought of as D3 lane 

0—counting lanes from zero. When we multiply a register with lanes by a 

single lane, then VMUL will perform a scalar multiplication of the single 

number by each lane in the first operand—D3 in this case.

�Summary
This chapter was a quick overview of how the NEON coprocessor works 

and how to write programs for it. We covered how NEON uses lanes to 

perform parallel computations and a selection of the instructions available 

for computations. We gave two examples, one to calculate the distance 

between two 4D vectors and one to perform 3x3 matrix multiplication 

to demonstrate how you can easily harness the power of the NEON 

coprocessor.

In Chapter 13, “Conditional Instructions and Optimizing Code,” we’ll 

look at what the four condition code bits in each instruction do and how to 

take advantage of them.
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CHAPTER 13

Conditional 
Instructions and 
Optimizing Code
In Chapter 4, “Controlling Program Flow,” we learned how to branch code 

conditionally based on flags in the CPSR. In this chapter, we will look at 

how this can be generalized to all instructions.

In Chapter 1, “Getting Started,” we looked at the ARM Instruction 

Format and noted that nearly every instruction contains a 4-bit condition 

code. So far, we’ve ignored the purpose of these bits; now we’ll look at 

how to use them and why we want to execute instructions conditionally 

to reduce the number of branch instructions. We want to minimize the 

number of branch instructions, because they are expensive to execute, 

since they interrupt the execution pipeline.

To demonstrate we’ll apply conditional instructions to our uppercase 

program that we talked about in Chapter 4, “Controlling Program Flow,” 

and Chapter 6, “Functions and the Stack.” We’ll optimize its range 

comparison to use a single conditional instruction, then look at some 

other code optimizations we can apply.
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�Reasons Not to Use Conditional Instructions
Before we get into how and why to add condition codes to all our 

instructions, I want to note a couple of reasons why these are becoming 

obsolete and not needed today as much as they were in the earlier days of 

the ARM processor, such as when porting your Assembly code to 64 bits, 

and the improved pipeline.

�No Conditional Instructions in 64 Bits
When the ARM engineers designed the 64-bit instruction set, they kept the 

instruction length to 32 bits. However, they wanted to double the number 

of registers and increase the number of opcodes. To do this, they took the 

4 bits dedicated to conditional instructions and distributed them for these 

other purposes.

Hence, in the ARM’s 64-bit mode, there are only a handful of branch 

type instructions that can conditionally execute. If you plan to port your 

Assembly code to 64 bits one day, it will be a lot less work if it isn’t full of 

conditional instructions.

�Improved Pipeline
In this chapter, we promote conditional instructions as a solution to 

branches causing the instruction pipeline to stall and cause performance 

to suffer. Won’t this cause 64-bit code to be much slower than 32-bit code? 

The ARM engineers mitigated this problem by making the instruction 

pipeline more sophisticated. They created a table that keeps a record of 

where recent branch instructions go, with most loops branching back to 

the loop 90% of the time and advancing 10%. Knowing this, the instruction 

pipeline can make an informed guess and continue working as if the 

branch will take place. This way, the branch will only interrupt the pipeline 
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when it takes its less travelled route. This is called branch prediction. 

There are other improvements to caching and the pipeline to generally 

speed things up.

The key takeaway is that the conditional instructions presented in 

this chapter will help code running on older Raspberry Pis more than 

newer ones.

�About Conditional Code
We can add any condition code from Chapter 4’s Table 4-1 to nearly any 

Assembly instruction. The only exceptions include setting a breakpoint, 

halting the processor and a couple of other instructions. When the 

condition is not met, then the instruction performs a no operation and 

executes the next instruction, for example:

      ADDEQ      R2, R3, R4

only performs the addition if the Z flag is set. If the Z flag isn’t set, then this 

instruction is skipped, but it still takes one instruction cycle.

We can combine this with the S modifier

      ADDEQS     R2, R3, R4

in which case the CPSR is updated if the ADD instruction is executed. The 

S must come last, or you will confuse the Assembler.

�Optimizing the Uppercase Routine
Our original uppercase routine implements the pseudo-code

      IF (R5 >= 'a') AND (R5 <= 'z') THEN

            R5 = R5 - ('a'-'A')

      END IF
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with the following Assembly code:

@ If R5 > 'z' then goto cont

      CMP  R5, #'z'       @ is letter > 'z'?

      BGT  cont

@ Else if R5 < 'a' then goto end if

      CMP  R5, #'a'

      BLT  cont           @ goto to end if

@ if we got here then the letter is lower-case, so convert it.

      SUB  R5, #('a'-'A')

cont: @ end if

This code implements the reverse logic of branching around the SUB 

instruction if R5 < ‘a’ or R5 > ‘z’. This was fine for a chapter teaching branch 

instructions, since it demonstrated two of them. In this chapter, we look at 

eliminating branches entirely, so let’s see how we can improve this code 

one step at a time.

�Simplifying the Range Comparison
A common way to simplify range comparisons is to shift the range, so we 

don’t need a lower comparison. If we subtract ‘a’ from everything, then our 

pseudo-code becomes

      R5 = R5 - 'a'

      IF (R5 >= 0) AND R5 <= ('z'-'a') THEN

            R5 = R5 + 'A'

      END IF

If we treat R5 as an unsigned integer, then the first comparison does 

nothing, since all unsigned integers are greater than 0. In this case, we 

simplified our range from two comparisons to one comparison that is R5 

<= (‘z’-’a’).
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This leads us to the first improved version of our upper.s file. This new 

upper.s is shown in Listing 13-1.

Listing 13-1.  Uppercase routine with simplified range comparison

@

@ Assembler program to convert a string to

@ all uppercase.

@

@ R1 - address of output string

@ R0 - address of input string

@ R4 - original output string for length calc.

@ R5 - current character being processed

@ R6 - minus 'a' to compare < 26.

@

.global toupper   @ Allow other files to call this routine

toupper:    PUSH  {R4-R6}   @ Save the registers we use.

      MOV   R4, R1

@ The loop is until byte pointed to by R1 is non-zero

loop: LDRB  R5, [R0], #1   @ load character and incr

@ Want to know if 'a' <= R5 <= 'z'

@ First subtract 'a'

      SUB   R6, R5, #'a'

@ Now want to know if R6 <= 25

      CMP   R6, #25        @ chars are 0-25 after shift

      BHI   cont

@ if we got here then the letter is lower case, so convert it.

      SUB   R5, #('a'-'A')

cont: @ end if

      STRB  R5, [R1], #1 @ store character to output str

      CMP   R5, #0     @ stop on hitting a null
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      BNE   loop       @ loop if character isn't null

      SUB   R0, R1, R4  �@ get the length by subtracting the 

pointers

      POP    {R4-R6}   @ Restore the register we use.

      BX     LR        @ Return to caller

All the examples in this chapter use the same main.s from Listing 6-3, 

except the third which skips needing a main.s. Listing 13-2 is a makefile for 

all the code in this chapter. Comment out any programs that you haven’t 

gotten to yet, or you will get a compile error.

Listing 13-2.  Makefile for the uppercase routine version in this 

chapter

UPPEROBJS = main.o upper.o

UPPER2OBJS = main.o upper2.o

UPPER3OBJS = upper3.o

UPPER4OBJS = main.o upper4.o

all: upper upper2 upper3 upper4

%.o : %.s

      as -mfpu=neon-vfpv4 $(DEBUGFLGS) $(LSTFLGS) $< -o $@

upper: $(UPPEROBJS)

      ld -o upper $(UPPEROBJS)

upper2: $(UPPER2OBJS)

      ld -o upper2 $(UPPER2OBJS)

upper3: $(UPPER3OBJS)

      ld -o upper3 $(UPPER3OBJS)

upper4: $(UPPER4OBJS)

      ld -o upper4 $(UPPER4OBJS)
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This is an improvement and a great optimization to use when you 

need range comparisons. Let’s use a conditional instruction to remove 

another branch.

�Using a Conditional Instruction
The obvious instruction to make conditional is the subtraction that does the 

conversion to uppercase. Listing 13-3 is the upper2.s version of the routine.

Listing 13-3.  Uppercase routine using a conditional SUBLS instruction

@

@ Assembler program to convert a string to

@ all uppercase.

@

@ R1 - address of output string

@ R0 - address of input string

@ R4 - original output string for length calc.

@ R5 - current character being processed

@ R6 - minus 'a' to compare < 26.

@

.global toupper      @ Allow other files to call this routine

toupper:    PUSH   {R4-R6}      @ Save the registers

      MOV   R4, R1

@ The loop is until byte pointed to by R1 is non-zero

loop: LDRB R5, [R0], #1    @ load character and incr

@ Want to know if 'a' <= R5 <= 'z'

@ First subtract 'a'

      SUB   R6, R5, #'a'

@ Now want to know if R6 <= 25

      CMP   R6, #25      @ chars are 0-25 after shift
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@ if we got here then the letter is lowercase, so convert it.

      SUBLS R5, #('a'-'A')

      STRB  R5, [R1], #1  @ store character

      CMP   R5, #0     @ stop on hitting a null char

      BNE   loop       @ loop if character isn't null

      SUB   R0, R1, R4  �@ get the length by subtracting the 

pointers

      POP   {R4-R6}         @ Restore the registers

      BX    LR         @ Return to caller

We use the SUBLS instruction here. LS is for lower or same which 

is the suffix for unsigned <=. The SUBLS instruction will only do the 

subtraction if R5 is less than or equal to 25 which is where we shifted ‘z’.  

In Listing 13-3, the only branch instruction is for the loop.

Note I f the SUBLS instruction doesn’t do anything, it still takes a 
cycle to execute. This means it only makes sense to use this instead 
of a branch, if we place the condition on up to three instructions. 
Otherwise, branching around the code is faster.

�Restricting the Problem Domain
When optimizing code, the best optimizations arise from restricting the 

problem domain. If we are only dealing with alphabetic characters, we can 

eliminate the range comparison entirely. If we look at Appendix E, “ASCII 

Character Set,” we notice that the only difference between upper- and 

lowercase letters is that lowercase letters have the 0x20 bit set, whereas 

uppercase letters do not. This means we can convert a lowercase letter to 

uppercase by performing a Bit Clear (BIC) operation on that bit. If we do 

this to special characters, it will mess up quite a few of them.
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Often in computing, we want our code to be case insensitive, meaning 

that you can enter any combination of case. The Assembler does this, so it 

doesn’t care if we enter MOV or mov. Similarly, many computer languages 

are case insensitive, so you can enter variable names in any combination 

of upper- and lowercase and it means the same thing. AI algorithms that 

process text always convert them into a standard form, usually throwing 

away all punctuation and converting them to all one case. Forcing this 

standardization saves a lot of extra processing later on.

Let's look at an implementation of this for our code—Listing 13-4 goes 

in upper3.s.

Listing 13-4.  Uppercase routine as a macro, using BIC for 

alphabetic characters only

@

@ Assembler program to convert a string to

@ all uppercase. Assumes only alphabetic

@ characters. Uses bit clear blindly without

@ checking if character is alphabetic or not.

@

@ R0 - address of input string

@ R1 - address of output string

@ R2 - original output string for length calc.

@ R3 - current character being processed

@

.global _start     @ Provide program starting address

.MACRO toupper inputstr, outputstr

      LDR   R0, =\inputstr      @ start of input string

      LDR   R1, =\outputstr     @ addr of output string

      MOV   R2, R1
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@ The loop is until byte pointed to by R1 is non-zero

loop: LDRB  R3, [R0], #1    @ load character and incr

      BIC   R3, #0x20       @ kill the lower-case bit

      STRB  R3, [R1], #1    @ store character

      CMP   R3, #0          @ stop on hitting a null

      BNE   loop       @ loop if character isn't null

      SUB   R0, R1, R2 @ get the length by subtracting

.ENDM

_start:

      toupper    instr, outstr

@ Set up the parameters to print our hex number

@ and then call Linux to do it.

      MOV   R2,R0 @ return code is the string len

      MOV   R0, #1          @ 1 = StdOut

      LDR   R1, =outstr @ string to print

      MOV   R7, #4          @ linux write system call

      SVC   0         @ Call linux to print the string

@ Set up the parameters to exit the program

@ and then call Linux to do it.

      MOV     R0, #0      @ Use 0 return code

      MOV     R7, #1      @ command code 1 terminates

      SVC     0           @ Call linux to terminate

.data

instr:  .asciz  "ThisIsRatherALargeVariableNameAaZz@[`{\n"

      .align 4

outstr:     .fill 255, 1, 0
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This file contains the _start entry point and print Linux calls, so no 

main.s is needed. Here is the output of building and running this version:

pi@raspberrypi:~/asm/Chapter 13 $ make

as -mfpu=neon-vfpv4   upper3.s -o upper3.o

ld -o upper3 upper3.o

pi@raspberrypi:~/asm/Chapter 13 $ ./upper3

THISISRATHERALARGEVARIABLENAMEAAZZ@[@[

pi@raspberrypi:~/asm/Chapter 13 $

There are a few special characters at the end of the string to show how 

some are converted correctly and some aren’t.

Besides using this BIC instruction to eliminate all conditional 

processing, we implement the toupper routine as a macro to eliminate 

the overhead of calling a function. We change the register usage, so we 

only use the first four registers in the macro, so we don’t need to save any 

registers around the call.

This is a quick and dirty conversion routine, showing how we can save 

instructions if we narrow our problem domain, in this case, to just working 

on alphabetic characters rather than all ASCII characters.

�Using Parallelism with SIMD
In Chapter 12, “NEON Coprocessor,” we looked at performing operations 

in parallel and mentioned that this coprocessor can process characters, 

as well as integers and floats. Let’s see if we can use NEON instructions to 

process 16 characters at a time—16 characters fit in a Q register.

First let’s look at the code in upper4.s shown in Listing 13-5.

Note T his code won’t run until we make an adjustment to main.s at 
the end of this section in Listing 13-6.

Chapter 13  Conditional Instructions and Optimizing Code



260

Listing 13-5.  Uppercase routine using the NEON coprocessor

@

@ Assembler program to convert a string to

@ all uppercase.

@

@ R0 - address of input string

@ R1 - address of output string

@ Q0 - 8 characters to be processed

@ Q1 - contains all a's for comparison

@ Q2 - result of comparison with 'a's

@ Q3 - all 25's for comp

@ Q8 - spaces for bic operation

.global toupper      @ Allow other files to call

      .EQU  N, 4

toupper:

      LDR   R3, =aaas

      VLDM    R3, {Q1}  @ Load Q1 with all a's

      LDR   R3, =endch

      VLDM  R3, {Q3}    @ Load Q3 with all 25's

      LDR   R3, =spaces

      VLDM  R3, {Q8}    @ Load Q8 with all spaces

      MOV   R3, #N

@ The loop is until byte pointed to by R1 is non-zero

loop: VLDM R0!, {Q0}    @ load 16 characters and incr

      VSUB.U8    Q2, Q0, Q1 @ Subtract 'a's

      VCLE.U8    Q2, Q2, Q3 @ compare chars to 25's

      VAND.U8    Q2, Q2, Q8 @ and result with spaces

      VBIC.U8    Q0, Q0, Q2 �@ kill the bit that makes it lower 

case

      VSTM  R1!, {Q0}  @ store character to output str
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      SUBS  R3, #1     @ decrement loop counter and set flags

      BNE   loop       @ loop if character isn't null

      MOV   R0, #(N∗16)      @ Set the length
      BX    LR         @ Return to caller

.data

aaas:   .fill 16, 1, 'a'    @ 16 a's

endch:  .fill 16, 1, 25  @ after shift chars are 0-25

spaces: .fill 16, 1, 0x20  @ spaces for bic

.align 4

This routine uses the Q registers to process 16 characters at a time. 

There are more instructions than some of our previous routines, but the 

parallelism makes it worthwhile. We start by loading our constants into 

registers. You can’t use immediate constants with NEON instructions, 

so these must be in registers. Additionally, they need to be duplicated 16 

times, so there is one for each of our 16 lanes.

We then load 16 characters to process into Q0 with a VLDM 

instruction.

Note T he ! performs a writeback to move the pointer to the next set 
of characters for when we loop.

Figure 13-1 shows the processing through the NEON coprocessor 

for the first four lanes. We use VBIC, but we could have just as easily 

used VSUB to do the conversion. We test that the character is lowercase 

alphabetic before doing this, so it is correct for all ASCII characters.
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The VCLE is our first encounter with a NEON comparison instruction. 

It compares all 16 lanes at once. It places all 1s in the destination lane if the 

comparison is true, otherwise 0. All 1s is 0xFF hex. This is convenient since 

we can VAND it with a register full of 0x20s. Any lanes that don’t have a 

lowercase alphabetic character will result in zero.

This means lanes with 0, there are no bits for VBIC to clear. Then the 

lanes that still have 0x20 will clear that 1 bit doing the conversion.

For this routine to work, we need to make a change to main.s. We need 

to add a “.align 4” between the two strings. This is because we can only 

load or store NEON data to word aligned memory locations. If we don’t do 

this, we will get a “Bus Error” when the program runs. The updated code is 

shown in Listing 13-6.

Listing 13-6.  Changes required in main.s

instr:  .asciz  �"This is our Test String that we will convert. 

AaZz@[`{\n"

      .align 4

outstr:    .fill 255, 1, 0

Figure 13-1.  The parallel processing steps to convert to uppercase
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I also added edge case characters to the end of the string; this ensures 

we don’t have any off-by-one errors in our code.

This code runs fine, but that is partly because of the way our .data 

section is set up. Notice there is no test for the string NULL terminator. This 

routine just converts fixed length strings, and we have set the fixed length 

at 4∗16 by making the loop perform four iterations. The NEON processor 

has no easy way to detect a NULL terminator. If we looped through the 

characters outside of the NEON processor to look for the NULL, we do 

nearly as much work as our last toupper routine. If we are going to do 

string processing in the NEON coprocessor, here are some notes:

•	 Don’t use NULL-terminated strings. Use a length field 

followed by the string. Or use fixed length strings, 

for instance, every string is just 256 characters and 

contains spaces beyond the last character.

•	 Pad all strings so they use data storage in multiples of 

16. This way you won’t ever have to worry about NEON 

processing past the end of your buffer.

•	 Make sure all the strings are word aligned.

�Summary
In this chapter, we looked at how to add condition codes to any instruction 

and why and when we should do this. We noted that this isn’t supported 

in the 64-bit ARM instruction set and that newer ARM processor pipelines 

make this technique less useful than it was in the early days of ARM.

We then performed several optimizations on our toupper function. We 

looked at simplifying range comparisons, using conditional instructions, 

bit manipulations, and finally the NEON coprocessor.

In Chapter 14, “Reading and Understanding Code,” we will examine 

how the C compiler generates code and talk about understanding 

compiled programs.
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CHAPTER 14

Reading and 
Understanding Code
We’ve now learned quite a bit of ARM 32-bit Assembly language; one of 

the things we can do is read another programmer’s code. Reading other 

programmer’s code is a great way to add to our toolkit of tips and tricks 

and improve our own coding. We’ll review some places where you can find 

Assembly source code for the ARM32. Then we’ll look at how the GNU C 

compiler writes Assembly code and how we can analyze it. We’ll look at 

the NSA’s Ghidra hacking tool that can convert Assembly code back into C 

code—at least approximately.

We’ll use our uppercase program to see how the C compiler writes 

Assembly code and then examine how Ghidra can take that code and 

reconstitute the C code. We’ll also look at how the C compiler deals with 

the lack of an integer division instruction in older ARM processors.

�Raspbian and GCC
One of the many nice things about working with the Raspberry Pi and 

GNU Compiler Collection is that they are open source. That means you 

can browse through the source code and peruse the Assembly parts 

contained there.
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They are available in the following Github repositories:

•	 Raspbian Linux kernel: https://github.com/
raspberrypi/linux

•	 GCC source code: https://github.com/gcc-mirror/gcc

Clicking the “Clone or download” button and choosing “Download ZIP” 

is the easiest way to obtain it. Within all this source code, a couple of good 

folders to peruse ARM 32-bit Assembly source code are

•	 Raspbian Linux kernel:

•	 arch/arm/common

•	 arch/arm/kernel

•	 arch/arm/crypto

•	 GCC:

•	 libgcc/config/arm

Note  The arch/arm/crypto has several cryptographic routines 
implemented on the NEON coprocessor.

The Assembly source code for these are in ∗.S files (note the 
uppercase S). Raspbian is based on Debian Linux. Both Debian Linux 
and GCC support dozens of processor architectures, so when looking 
for Assembly source code, make sure you look for ∗.S files in an 
arm folder. If you are interested, you could compare the ARM 32-bit 
Assembly files to the files for other processors.

The source code for these use both GNU Assembler directives like 
.MACRO and C preprocessor directives like #define and #ifdef. 
If you are going to read this source code, it helps to brush up on the C 
preprocessor.

Chapter 14  Reading and Understanding Code

https://github.com/raspberrypi/linux
https://github.com/raspberrypi/linux
https://github.com/gcc-mirror/gcc


267

The GNU compiler supports older ARM processors than contained in 
any Raspberry Pi, as well as configurations of the ARM processor that 
the Raspberry foundation never used. For instance, there is a library 
to implement IEEE 754 floating-point for ARM processors without an 
FPU. However, all Raspberry Pis do have an FPU, so this isn’t used.

�Division Revisited
In Chapter 10, “Multiply, Divide, and Accumulate,” we assumed we had a 

newer Raspberry Pi and used the newer ARM processor’s SDIV or UDIV 

instructions. We just left a comment that if you wanted to divide on older 

Pi, then use the FPU or roll your own. We never covered how to roll our 

own. Another approach is to see what the C compiler does. Consider 

Listing 14-1, the simple C program.

Listing 14-1.  Simple C program that divides two numbers

#include <stdio.h>

int main()

{

      int x = 100;

      int y = 25;

      int z;

      z = x / y;

      printf("%d / %d = %d\n", x, y, z);

      return(0);

}

We can compile this with

gcc -o div div.c
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Note  We can’t use any of the -O flag options, because any 
optimization will remove the expression and the compiler will just 
plug 4 in for z.

We can look at the generated Assembly code with

objdump -d div

Because we didn’t compile with an -O option, there is a lot of code, but 

in the middle of the main routine, we see

   10454:  e51b100c   ldr   r1, [fp, #-12]

   10458:  e51b0008   ldr   r0, [fp, #-8]

   1045c:  eb00000b   bl    10490 <__divsi3>

   10460:  e1a03000   mov   r3, r0

which sets up and calls a division routine called _divsi3. The Assembly for 

the _divsi3 routine is also present in the output from objdump. It is very 

long and contains code like

   104e0:  e1530f81   cmp   r3, r1, lsl #31

   104e4:  e0a00000   adc   r0, r0, r0

   104e8:  20433f81   subcs r3, r3, r1, lsl #31

and repeated 32 times. What’s going on here? Since we can download the 

source code for gcc and all its libraries, we can look at the source code. If 

we search for the definition of _divsi3, we will find it in libgcc/config/arm/

lib1funcs.S. This source code is confusing, because it contains versions of 

its routines for different generations of ARM, as well as having versions that 

use thumb code. We’ll cover thumb code in Chapter 15, “Thumb Code,” 

but until then we can ignore those parts.

Listing 14-2 is the main part of the division routine.
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Listing 14-2.  Main part of the gcclib division routine

      ARM_FUNC_START divsi3

      ARM_FUNC_ALIAS aeabi_idiv divsi3

      cmp   r1, #0

      beq   LSYM(Ldiv0)

LSYM(divsi3_skip_div0_test):

      eor   ip, r0, r1  @ save the sign of the result.

      do_it mi

      rsbmi r1, r1, #0  @ loops below use unsigned.

      subs  r2, r1, #1  @ division by 1 or -1 ?

      beq   10f

      movs  r3, r0

      do_it mi

      rsbmi r3, r0, #0          @ positive dividend value

      cmp   r3, r1

      bls   11f

      tst   r1, r2              @ divisor is power of 2?

      beq   12f

      ARM_DIV_BODY r3, r1, r0, r2

      cmp   ip, #0

      do_it mi

      rsbmi r0, r0, #0

      RET

The routine starts by checking for division by 0, which is an error. It 

then looks for the easy cases of division by 1 or –1, then the other cases of 

dividing by a power of 2. It also saves the sign bits so the answer can be set 

properly at the end.

There are a lot of macros used in this code. Listing 14-3 is the one that 

generates the actual division is ARM_DIV_BODY.
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Listing 14-3.  Main body of the division routine

.macro ARM_DIV_BODY dividend, divisor, result, curbit

      clz   \curbit, \dividend

      clz   \result, \divisor

      sub   \curbit, \result, \curbit

      rsbs  \curbit, \curbit, #31

      addne \curbit, \curbit, \curbit, lsl #1

      mov   \result, #0

      addne pc, pc, \curbit, lsl #2

      nop

      .set  shift, 32

      .rept 32

      .set  shift, shift - 1

      cmp   \dividend, \divisor, lsl #shift

      adc   \result, \result, \result

      subcs \dividend, \dividend, \divisor, lsl #shift

      .endr

.endm

Within this macro is

.set  shift, 32

      .rept 32

      .set  shift, shift - 1

      cmp   \dividend, \divisor, lsl #shift

      adc   \result, \result, \result

      subcs \dividend, \dividend, \divisor, lsl #shift

      .endr

which generates the repetitive code we see. This is a form of optimization 

called loop unrolling, where if a loop executes a fixed number of times, 

we just duplicate the code that many times. This saves us an expensive 

branch instruction, as well as the arithmetic calculating the loop index. 

Chapter 14  Reading and Understanding Code



271

Division will be used often enough that we want the code as fast as 

possible, and we can spare the extra code space to achieve this.

The algorithm for this division is basically the same long division 

algorithm you learned in elementary school. It is just a bit simpler in binary 

since there can only be two answers at each step, whether to put a 1 in the 

result or not.

Note  If we included the -march=“armv8-a” compiler switch, then 
the compiler would use a SDIV instruction instead of this function call. 
GCC will use advanced ARM features if it knows they are available.

Sadly, the Assembly source code contained in gcc and Linux isn’t 

always as well documented as we would like, but it does give us quite a bit 

of source code to ponder and learn from.

You might want to look at ieee754-sf.S and ieee754-df.S in the 

same folder as lib1funcs.S, gcc/libgcc/config/arm. These are the 

implementations of floating-point in single and double precision for ARM 

processors that don’t have an FPU. It’s interesting to see all the work the 

FPU does for us.

�Code Created by GCC
In the last section, we looked at some code generated by gcc to see how 

it handles the lack of a SDIV instruction. Let’s look at how gcc would 

write our code. We’ll code our uppercase routine in C and compare the 

generated code to what we wrote. For this example, we want gcc to do 

as good a job as possible, so we will use the -O3 option to get maximal 

optimization.

We create upper.c from Listing 14-4.
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Listing 14-4.  C implementation of our mytoupper routine

#include <stdio.h>

int mytoupper(char *instr, char *outstr)

{

      char cur;

      char *orig_outstr = outstr;

      do

      {

            cur = *instr;

            if ((cur >= 'a') && (cur <='z'))

            {

                  cur = cur - ('a'-'A');

            }

            *outstr++ = cur;

            instr++;

      } while (cur != '\0');

      return( outstr - orig_outstr );

}

#define BUFFERSIZE 250

char *tstStr = "This is a test!";

char outStr[BUFFERSIZE];

int main()

{

      mytoupper(tstStr, outStr);

      printf("Input: %s\nOutput: %s\n", tstStr, outStr);

      return(0);

}
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We can compile this with

      gcc -O3 -o upper upper.c

then run objdump to see the generated code

      objdump -d upper >od.txt

We get Listing 14-5.

Listing 14-5.  Assembly code generated by the C compiler for our 

uppercase function

00010318 <main>:

   10318:  e59f2048 ldr    r2, [pc, #72]  ; 10368 <main+0x50>

   1031c:  e59f3048 ldr    r3, [pc, #72]  ; 1036c <main+0x54>

   10320:  e92d4010 push   {r4, lr}

   10324:  e5921000 ldr    r1, [r2]

   10328:  e1a02001 mov    r2, r1

   1032c:  e4d24001 ldrb   r4, [r2], #1

   10330:  e2833001 add    r3, r3, #1

   10334:  e2440061 sub    r0, r4, #97    ; 0x61

   10338:  e3500019 cmp    r0, #25

   1033c:  e2440020 sub    r0, r4, #32

   10340:  95430001 strbls r0, [r3, #-1]

   10344:  9afffff8 bls    1032c <main+0x14>

   10348:  e3540000 cmp    r4, #0

   1034c:  e5434001 strb   r4, [r3, #-1]

   10350:  1afffff5 bne    1032c <main+0x14>

   10354:  e59f2010 ldr    r2, [pc, #16]  ; 1036c <main+0x54>

   10358:  e59f0010 ldr    r0, [pc, #16]  ; 10370 <main+0x58>

   1035c:  ebffffe1 bl     102e8 <printf@plt>

   10360:  e1a00004 mov    r0, r4

   10364:  e8bd8010 pop    {r4, pc}
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   10368:  00021028 .word  0x00021028

   1036c:  00021030 .word  0x00021030

   10370:  0001050c .word  0x0001050c

A few things to notice about this listing are as follows:

•	 The compiler automatically inlined the mytoupper 

function like our macro version.

•	 The compiler knows about the range optimization and 

shifted the range, so it only does one comparison.

•	 The compiler made good use of the registers and didn’t 

create a stack frame. It only uses five registers, so it only 

needs to push/pop R4.

•	 The compiler knows how to use conditional 

instructions.

•	 The compiler took a slightly different approach to 

adding the conditional, putting it on a store instruction, 

so the converted character is only stored if the 

character is lowercase. It then jumps to loop since it 

knows if it’s lowercase, it can’t be NULL. Otherwise, it 

falls through, stores the unconverted character, checks 

for NULL, and loops if it isn’t.

Overall, the compiler did a good job of compiling our code, just taking 

a couple extra instructions over what we wrote in the last chapter. GCC has 

supported the ARM processor for 20 years now. ARM Holdings has made 

major contributions to GCC to improve the ARM support. All the work over 

this time has led to a robust and performant system, and the best part is 

that it is all open source.
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This is why many Assembly language programmers start with C 

code, then only recode in Assembly if the C code isn’t efficient. This 

usually happens when the complexity is higher and the need for speed is 

greater, such as the code in the gcclib for floating-point arithmetic and 

division, where speed is crucial, and pure Assembler is better at bit-level 

manipulations than C.

In Chapter 8, “Programming GPIO Pins,” we looked at programming 

the GPIO pins using the GPIO controller’s memory registers. This sort 

of code will confuse the optimizer. Often it needs to be turned off, or it 

optimizes away the code that accesses these locations. This is because 

we write to memory locations and never read them and read memory 

we never set. There are keywords to help the optimizer, but in the end, 

Assembler can result in quite a bit better code, because you are working 

against the C optimizer, that doesn’t know what the GPIO controller is 

doing with this memory.

�Reverse Engineering and Ghidra
In the Raspbian world, most of the programs you encounter are open 

source that you can easily download the source code and study it. There 

is documentation on how it works, and you are actively encouraged to 

contribute to the program, perhaps fix bugs or add a new feature.

Suppose we encounter a program that we don’t have the source code 

for, and we want to know how it works. Perhaps we want to study it to see if 

it contains malware. It might be the case that we are worried about privacy 

concerns and want to know what information the program sends on the 

Internet. Maybe it's a game, and we want to know if there is a secret code 

we can enter to go into God mode. What is the best way to go about this?

We can examine the Assembly code of any Linux executable using 

objdump or gdb. We know enough about Assembly that we can make 

sense of the instructions we encounter. However, this doesn’t help us form 

a big picture of how the program is structured and it’s time-consuming.

Chapter 14  Reading and Understanding Code



276

There are tools to help with this. Until recently there were only 

expensive commercial products available; however, the NSA, yes, that 

NSA, released a version of the tool that their hackers use to analyze code. 

It is called Ghidra, named after the three-headed monster that Godzilla 

fights. This tool lets you analyze compiled programs and includes the 

ability to decompile a program back into C code. It includes tools to show 

you the graphs of function calls and the ability to make annotations as you 

learn things.

Sadly, Ghidra doesn’t run properly on the Raspberry Pi anymore, 

even though it is written in Java. The NSA states that Ghidra won’t be 

supported running on 32-bit operating systems anymore. However, Ghidra 

still supports analyzing 32-bit programs. It also has full support for the 

ARM processor. This means we need to transfer our executable file to a 

computer running a 64-bit operating system, whether it is Linux, macOS, 

or Windows.

You can download Ghidra from https://ghidra-sre.org/. To install 

it, you unzip it, then run the ghidraRun script if you are on Linux. Ghidra 

requires the Java runtime; if you don’t have this already installed, you will 

need to install it for your operating system.

Decompiling an optimized C program is difficult. As we saw in the last 

section, the GCC optimizer does some major rewriting of our original code 

as part of converting it to Assembly language. Let’s take the upper program 

that we compiled from C in the last section, give it to Ghidra to decompile, 

and see whether the result is like our starting source code.

If we create a project in Ghidra, import our upper program, then run 

the code browser we get the window shown in Figure 14-1.
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Listing 14-6 is the C code that Ghidra generated. I added the lines above 

the definition of the main routine, so the program will compile and run.

Listing 14-6.  C code created by Ghidra for our upper C program

#include <stdio.h>

#define BUFFERSIZE 250

char *tstStr = "This is a test!";

char outStr[BUFFERSIZE];

typedef unsigned int uint;

typedef unsigned char byte;

typedef void undefined;

#define true 1

Figure 14-1.  Ghidra analyzing our upper program
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uint main(void)

{

  byte bVar1;

  undefined *puVar2;

  byte *pbVar3;

  byte *pbVar4;

  puVar2 = tstStr;

  pbVar3 = tstStr;

  pbVar4 = outStr;

  do {

    while( true ) {

      bVar1 = *pbVar3;

      if (0x19 < (uint)bVar1 - 0x61) break;

      *pbVar4 = bVar1 - 0x20;

      pbVar3 = pbVar3 + 1;

      pbVar4 = pbVar4 + 1;

    }

    *pbVar4 = bVar1;

    pbVar3 = pbVar3 + 1;

    pbVar4 = pbVar4 + 1;

  } while (bVar1 != 0);

  printf("Input: %s\nOutput: %s\n",puVar2,outStr);

  return (uint)bVar1;

}

If we run the program, we get the expected output:

pi@raspberrypi:~/asm/Chapter 14 $ make

gcc -O3 -o upperghidra upperghidra.c

pi@raspberrypi:~/asm/Chapter 14 $ ./upperghidra

Input: This is a test!

Output: THIS IS A TEST!

pi@raspberrypi:~/asm/Chapter 14 $
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The code produced isn’t pretty. The variable names are generated. It 

knows tstStr and outStr, because these are global variables. The logic is 

in smaller steps, often each C statement being the equivalent of a single 

Assembly instruction. When trying to figure out a program you don’t have 

the source code for, having a couple of different viewpoints is a great help.

Note  This technique only works for true compiled languages like 
C, Fortran, or C++. It does not work for interpreted languages like 
Python or JavaScript; it also doesn’t work for partially compiled 
languages that use a virtual machine architecture like Java or C#. 
There are other tools for these and often these are much more 
effective, since the compile step doesn’t do as much.

�Summary
In this chapter, we reviewed where we can find some sample Assembly 

source code in the Raspbian Linux kernel and the GCC runtime library. 

We looked at how GCC compiles the division operator from C and what 

happens when the ARM processor doesn’t support a division instruction. 

We wrote a C version of our uppercase program, so we could compare the 

Assembly code that the C compiler produces and compare it to what we 

have written.

We then looked at the sophisticated Ghidra program for decompiling 

programs to reverse the process and see what it produces. Although it 

produces working C code from Assembly code, it isn’t that easy to read.

In Chapter 15, “Thumb Code,” we’ll look at thumb code where we 

reduce the Assembly instruction size from 32 bits to 16 bits.
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CHAPTER 15

Thumb Code
The Assembly code we’ve been developing produces compact code 

compared to high-level languages due to not needing a runtime and each 

instruction only taking 32 bits. However, in the early days of the ARM 

processor, there were a lot of complaints that this was too large. People 

used ARMs in small embeddable devices with very limited RAM and 

needed more compact programs. Others created systems with a 16-bit 

memory bus that allowed 64K of memory—tiny by today’s standards and 

took two memory cycles to load each 32-bit instruction slowing down the 

processor.

ARM took these concerns and applications seriously and developed 

a 16-bit version of the instruction set, called thumb code. The original 

thumb code was expanded, and we’ll be looking at the slightly newer 

Thumb-2 code available on the Raspberry Pis. The smallest Raspberry Pi 

has 512 MB of memory and a 32-bit bus. However, there is a lot of thumb 

code around; it is supported by GCC and provides smaller programs.

Thumb code is implemented in the ARM processor as part of the 

instruction load and decode part of the pipeline. The ARM instruction 

decoder converts each 16-bit instruction into a 32-bit counterpart in the 

CPU, so the execution unit doesn’t know the difference.

In this chapter, we will look at the basics of Thumb-2 code, how we get 

useful 16-bit instructions, and how we can interoperate between Thumb 

and normal code.
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Note  In the 64-bit instruction world, there is no similar concept. 
There is no 32-bit Thumb mode. In the 64-bit instruction world, all 
instructions are 32 bits long without exception.

�16-Bit Instruction Format
We’ve battled with how ARM packs information into 32 bits, giving us 

problems loading registers with immediate values; we often need two 

instructions to load a 32-bit value. Won’t this just get worse in 16-bit 

instructions? The big savings to reduce the number of instruction bits are

•	 Eliminate conditional instructions; this saves 4 bits. 

There is a way to do conditional instructions in some 

cases using the IT instruction.

•	 Only access to the lower eight registers. This reduces 

each register encoding from 4 to 3 bits.

•	 Reduce the number of registers in an instruction.

•	 Reduce the size of immediate constants, usually to 

whatever is left over; it can be as small as 3 bits.

•	 Eliminate all the pre- and post-indexing addressing 

modes. You must do this in separate instructions.

•	 The S suffix to say whether an instruction updates the 

CPSR is fixed either on or off.

Let’s look at three forms of the 16-bit ADD instruction:

•	 ADDS Rd, Rn, #imm  

@ imm can be 0–7

•	 ADDS Rd, #imm  

@ imm can be 0–255

•	 ADDS Rd, Rn, Rm
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In the first example, if we add an immediate to a register and put it 

in a separate destination register, then there are only 3 bits left for the 

immediate code, so it must be in the range 0–7.

The second example is adding an immediate to a register; since 

there is one less register, there are more bits available for the immediate 

operand, allowing it to be in the range 0–255.

The registers in all these three examples have to be in the range R0–R7, 

though there are forms of the ADD instruction for adding to SP and adding 

an immediate constant to PC.

Note A ll three examples have the S flag set; it is not optional.

�Calling Thumb Code
In Chapter 4, “Controlling Program Flow,” we noted that the CPSR 

contained a bit that indicates if the processor is running in Thumb mode. 

The ARM processor supports running some code in Thumb mode and some 

as the normal ARM 32-bit instructions we’ve been studying up until now.

In Chapter 6, “Functions and the Stack,” we mentioned that the BX 

instruction can switch between processor states when it executes. If we 

want to return from a function written with Thumb instruction to one that 

isn’t, then we must use the BX instruction; we can’t just POP the return 

address into PC—if we do, we’ll get an “Illegal Instruction” exception.

There is a matching BLX instruction to call between ARM32 and 

Thumb code. Both these instructions can go either way between Thumb 

and ARM32 instructions.

How do the BLX and BX instructions know whether they are 

branching to Thumb or ARM32 code? The ARM processor uses a trick. All 

ARM32 instructions must be word aligned, and all Thumb instructions 

have to be aligned to a 16-bit boundary. That means any address pointing 

to an instruction must be even, which means the low-order bit isn’t used. 
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The ARM processor uses the low-order bit of an instruction address to 

indicate if the pointer is to an ARM32 or a Thumb instruction.

This means if you are going to call BLX to call Thumb code, you need 

to add one to the address. When you do this, LR will be set with the correct 

address for BX to do the right thing when it returns. This is a bit of a hack, 

but the ARM processor works hard to get functionality out of every bit.

This holds if you pass these instructions as a register. If you use the 

form of BLX where you pass a label, then BLX will always change modes, 

whether from Thumb to ARM32 or vice versa. This is partly because the 

label is represented by an offset from the PC in words, so the even/odd 

trick won’t work.

To see how the Assembler helps us, consider the following code:

@ ARM Code

_start:

l1:  LDR   R0, =myfunc

     BLX   R0

...

.thumb_func

myfunc:

L2:  ADDS  R2, R1, #2

...

The ARM code will compile as

00010054 <_start>:

   10054:  e59f001c    ldr   r0, [pc, #28]   ; 10078 <L4+0x6>

   10058:  e12fff30    blx   r0

...

00010068 <myfunc>:

   10068:  1c8a        adds  r2, r1, #2

...

  10078:   00010069    .word 0x00010069
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We see that the LDR instruction loads 0x00010069 from the location 

pc+28 (0x10078) which is the address of myfunc (00010068) plus 1.

�Thumb-2 Is More than 16 Bits
The original Thumb instruction set was limited to 16-bit instructions 

except for a handful of exceptions. The newer Thumb-2 variant allows 

many 32-bit instructions, so you can do much more in Thumb mode. It also 

adds a new IT instruction which provided limited conditional execution.

Within Thumb code if we want to force an instruction to be 32 bits, 

we can add a .W suffix, for wide, or if we want to force the instruction to 

be 16 bits, we can add a .N suffix, for narrow. There are still limitations on 

these .W instructions compared to what we have done, like no conditional 

instructions without an IT instruction.

To enable this syntax, we start our source file with a

.syntax unified

Assembler directive.

This tells the Assembler this file is using all the Thumb-2 features.  

If we wanted only the old Thumb-1 instructions, then we would start the 

file with a .Thumb directive.

�IT Blocks
Thumb code doesn’t support conditional execution; however, with 

Thumb-2 it was considered important enough to add a new instruction  

If-Then (IT) to make the following instruction conditional, for example:

IT    EQ

ADDEQ R2, R1
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Instructions in Thumb-2 are only allowed condition codes when 

following an IT instruction, and the conditions in the two instructions 

must be the same.

Note O riginally IT supported IF-THEN-ELSE and allowed up to four 
following instructions. This functionality is deprecated, meaning it 
may not be supported in future generations of the ARM processor, so 
we won’t mention it.

The 16-bit version of the ADD instruction is either ADDS or 
ADD<condition code>. Other versions will generate a 32-bit 
instruction.

�Uppercase in Thumb-2
How this all works will become clearer with an example. Let’s convert our 

upper2.s file from Chapter 13, “Conditional Instructions and Optimizing 

Code,” to Thumb code. The way we do this is add the Assembly directives 

to the top of the file. We add “.syntax unified”, then “.thumb_func” after the 

.global directive. The “.thumb_func” directive tells the Assembler that the 

following function is in Thumb code, so assemble it accordingly. It also 

handles the details of switching between Thumb-2 and ARM32 mode, so 

we don’t have to.

If we do this to the original upper2.s and compile, we get the error 

message

pi@raspberrypi:~/asm/Chapter 15 $ make

as -march="armv8-a" -mfpu=neon-vfpv4   upper2.s -o upper2.o

upper2.s: Assembler messages:

upper2.s:27: Error: thumb conditional instruction should be in 

IT block -- `subls R5,#(97-65)'
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make: *** [makefile:14: upper2.o] Error 1

pi@raspberrypi:~/asm/Chapter 15 $

This is expected since we know Thumb code doesn’t support 

conditional execution. If we add

      IT   LS

before the SUBLS instruction, then it will compile. Listing 15-1 is our first 

attempt at Thumb code.

Listing 15-1.  Our first attempt at converting upper2.s to Thumb code

@

@ Assembler program to convert a string to

@ all uppercase.

@

@ R1 - address of output string

@ R0 - address of input string

@ R4 - original output string for length calc.

@ R5 - current character being processed

@ R6 - minus 'a' to compare < 26.

@

.syntax unified

.global toupper    @ Allow other files to call this

.thumb_func

toupper:    PUSH  {R4-R6}    @ Save the registers

      MOV   R4, R1

@ The loop is until byte pointed to by R1 is non-zero

loop: LDRB  R5, [R0], #1     @ load character

@ Want to know if 'a' <= R5 <= 'z'
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@ First subtract 'a'

      SUB   R6, R5, #'a'

@ Now want to know if R6 <= 25

      CMP   R6, #25     @ chars are 0-25 after shift

@ if we got here then the letter is

@ lowercase, so convert it.

      IT    LS

      SUBLS R5, #('a'-'A')

      STRB  R5, [R1], #1    @ store character

      CMP   R5, #0          @ stop on hitting a null

      BNE   loop       @ loop if character isn't null

      SUB   R0, R1, R4  @ get the length

      POP   {R4-R6}         @ Restore the registers

      BX    LR         @ Return to caller

We have to make one modification to main.s; we have to change

      BL   toupper

to

      BLX  toupper

Because we placed “.thumb_func” in front of the definition calling, it 

will be handled correctly by the Assembler.

Now we can compile and run the program, then get the expected 

output

pi@raspberrypi:~/asm/Chapter 15 $ make

as -march="armv8-a" -mfpu=neon-vfpv4   upper2.s -o upper2.o

ld -o upper2 main.o upper2.o

pi@raspberrypi:~/asm/Chapter 15 $ ./upper2

THIS IS OUR TEST STRING THAT WE WILL CONVERT. AAZZ@[`{

pi@raspberrypi:~/asm/Chapter 15 $
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That was too easy. Listing 15-2 is the generated Assembly code using 

objdump.

Listing 15-2.  Objdump output of our uppercase program

Disassembly of section .text:

00010074 <_start>:

   10074:  e59f002c    ldr   r0, [pc, #44]   ; 100a8 <_start+0x34>

   10078:  e59f102c    ldr   r1, [pc, #44]   ; 100ac <_start+0x38>

   1007c:  e3a0400c    mov   r4, #12

   10080:  e3a0500d    mov   r5, #13

   10084:  fa000009    blx   100b0 <toupper>

   10088:  e1a02000    mov   r2, r0

   1008c:  e3a00001    mov   r0, #1

   10090:  e59f1014    ldr   r1, [pc, #20]   ; 100ac <_start+0x38>

   10094:  e3a07004    mov   r7, #4

   10098:  ef000000    svc   0x00000000

   1009c:  e3a00000    mov   r0, #0

   100a0:  e3a07001    mov   r7, #1

   100a4:  ef000000    svc   0x00000000

   100a8:  000200e0    .word 0x000200e0

   100ac:  00020120    .word 0x00020120

000100b0 <toupper>:

   100b0:  b470        push  {r4, r5, r6}

   100b2:  460c        mov   r4, r1

000100b4 <loop>:

   100b4:  f810 5b01   ldrb.w    r5, [r0], #1

   100b8:  f1a5 0661   sub.w r6, r5, #97    ; 0x61

   100bc:  2e19        cmp   r6, #25

   100be:  bf98        it    ls

   100c0:  3d20        subls r5, #32

   100c2:  f801 5b01   strb.w     r5, [r1], #1
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   100c6:  2d00        cmp   r5, #0

   100c8:  d1f4        bne.n 100b4 <loop>

   100ca:  eba1 0004   sub.w r0, r1, r4

   100ce:  bc70        pop   {r4, r5, r6}

   100d0:  4770        bx    lr

We see the main program at _start contains normal 32-bit code. The 

only change from the Chapter 13 version is calling BLX instead of BL. The 

call to BLX will change the processor from ARM32 mode to Thumb mode.

If we look at the toupper part of the program, we see that nine 

instructions are 16 bits, but four instructions are 32 bits. As a result, we 

saved 18 bytes over the Chapter 13 version, but it seems we can do better.

There are two SUB instructions that are 32 bits; they look simple 

enough, but why are they 32 bits? The reason is that ADD and SUB 

instructions can either have the S suffix or be part of an IT block. If we add 

the S to these instructions, they will become 16 bits and won’t affect the 

operation of this routine.

The LDRB and STRB instructions are wide because Thumb mode 

doesn’t support post-index updates. We have to move these to separate 

ADDS instructions. The result is two 16-bit instructions rather than one  

32-bit instruction, so we go from one instruction to two instructions, 

but use the same space. We will make this change to show we can make 

toupper all 16 bits. When we go to force

      SUB   R6, R5, #'a'

to be 16 bits, we run into the problem that the immediate constant is 

limited to 3 bits so ‘a’ doesn’t fit. To get around this, we add

      MOVS  R7, #'a'

near the top and subtract R7 instead. Since we had to break this 

instruction into two, we don’t save any space here. The S is required to 

keep this MOV instruction 16 bits.
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If we make these changes, we get upper3.s, shown in Listing 15-3.

Listing 15-3.  Modified toupper routine that is all 16-bit instructions

@

@ Assembler program to convert a string to

@ all uppercase.

@

@ R1 - address of output string

@ R0 - address of input string

@ R4 - original output string for length calc.

@ R5 - current character being processed

@ R6 - minus 'a' to compare < 26.

@

.syntax unified

.global toupper      @ Allow main.s to call.

.thumb_func

toupper:    PUSH  {R4-R7}    @ Save the registers

      MOV   R4, R1

      MOVS  R7, #'a'

@ The loop is until byte pointed to by R1 is non-zero

loop: LDRB  R5, [R0]  @ load character

      ADDS  R0, #1    @ increment pointer

@ Want to know if 'a' <= R5 <= 'z'

@ First subtract 'a'

      SUBS  R6, R5, R7

@ Now want to know if R6 <= 25

      CMP   R6, #25     @ chars are 0-25 after shift

@ if we got here then the letter is

@ lowercase, so convert it.

      IT    LS
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      SUBLS R5, #('a'-'A')

      STRB  R5, [R1]    @ store character to output str

      ADDS  R1, #1      @ increment output pointer

      CMP   R5, #0      @ stop on hitting a null

      BNE   loop        @ loop if character isn't null

      SUBS  R0, R1, R4  @ get the length

      POP   {R4-R7}     @ Restore the registers we use.

      BX    LR          @ Return to caller

To prove it is all 16-bit instructions, we run objdump to get Listing 15-4.

Listing 15-4.  Objdump output of our fully 16-bit toupper function

000100b0 <toupper>:

   100b0:  b4f0      push  {r4, r5, r6, r7}

   100b2:  460c      mov   r4, r1

   100b4:  2761      movs  r7, #97    ; 0x61

000100b6 <loop>:

   100b6:  7805      ldrb  r5, [r0, #0]

   100b8:  3001      adds  r0, #1

   100ba:  1bee      subs  r6, r5, r7

   100bc:  2e19      cmp   r6, #25

   100be:  bf98      it    ls

   100c0:  3d20      subls r5, #32

   100c2:  700d      strb  r5, [r1, #0]

   100c4:  3101      adds  r1, #1

   100c6:  2d00      cmp   r5, #0

   100c8:  d1f5      bne.n 100b6 <loop>

   100ca:  1b08      subs  r0, r1, r4

   100cc:  bcf0      pop   {r4, r5, r6, r7}

   100ce:  4770      bx    lr
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In summary, the sizes of our various toupper functions are given in 

Table 15-1.

Overall, we made the routine about a third smaller, which is what you 

typically attain using Thumb mode code.

�Use the C Compiler
The GNU C compiler can generate Thumb code. There is a switch:

-mthumb

to generate thumb code when compiling. If you switch this on, you will 

get an error message because the C runtime uses the FPU by default and 

Thumb-1 instructions don’t have the ability to access the FPU. We need to 

add the switch

-march="armv8-a"

or at least v6 to have the ability to use Thumb-2 instructions. When we 

do this, we can compile our C program from Listing 14-4 and compare 

the code sizes. The code generated by the C compiler is different based 

on the optimization levels. Table 15-2 is a comparison of the code size of 

the toupper routine under different compiler options, no optimization, 

optimized for speed, and optimized for size.

Table 15-1.  Comparison of the sizes 

of our three toupper routines

Function version Size (bytes)

Original 32 bits 48

Quick port 34

All 16 bits 32
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We see that the thumb code saves us memory. In the 16-bit optimized 

for size case, the compiler could save another 2 bytes; it does the following:

subs   r3, #32

uxtb   r3, r3

UXTB is zero extend byte. The compiler is worried the SUBS 

instruction results in a negative number, so it zeros the upper 3 bytes in R3 

to keep it as an unsigned byte. However, this can’t happen since we only 

execute the subtraction if R3 is between ‘a’ and ‘z’.

The code generation is interesting. Unoptimized, almost all the Thumb 

instructions are 16 bits, but as you turn up the optimization level, more 

32-bit instructions creep in. I won’t include the generated Assembly code 

here, but you can easily change the compile options on the Chapter 14 

code to see the results.

Table 15-2.  Sizes of toupper routine 

generated by the C compiler

Instruction set Optimization Size (bytes)

ARM None 148

-O3 56

-Os 48

Thumb-2 None 78

-O3 44

-Os 36
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�Summary
This chapter was a quick overview of the ARM processor’s Thumb mode. 

This mode allows extremely compact code for devices with limited 

memory. Raspberry Pi have lots of memory compared to embedded 

devices; still saving memory is always worthwhile. You can generate 

Thumb code from either Assembly or C source code. The new Thumb-2 

instruction set lets you do almost anything you can do in ARM32 code.

Keep in mind that most instructions execute in one cycle whether 16 or 

32 bits. This means each 16-bit instruction takes less memory but uses the 

same processing time as matching 32-bit instructions that can do more in 

a single instruction.
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CHAPTER 16

64 Bits
The ARM processors used in the Raspberry Pi have supported a 64-bit  

mode of operation since the Raspberry Pi 2. Raspbian, the official 

supported version of Linux for the Raspberry Pi, is a 32-bit operating 

system and cannot run 64-bit programs. You cannot switch to 64-bit mode, 

like you can switch to Thumb mode. If you boot the chip into 64-bit mode, 

run a 64-bit operating system, then you can run either 32-bit or 64-bit 

programs, but the switch between the modes can only be performed by the 

operating system.

The Raspberry Pi foundation’s public statement is that they are only 

going to support one operating system for all their products. The Raspberry 

Pi 1 and Raspberry Pi Zero cannot support 64-bit operation, and since 

these are still manufactured and supported, the Raspberry Pi foundation 

says they will keep the entire ecosystem at 32 bits. Therefore, the majority 

of this book is dedicated to 32-bit ARM Assembly programming.

�Ubuntu MATE
But all is not lost; there are other operating systems available for the 

Raspberry Pi. One of these is Ubuntu MATE, which has separate 32-bit  

and 64-bit version available. In this chapter, we will work with the  

64-bit version of Ubuntu MATE on a Raspberry Pi 3 to see what is involved 

with 64-bit ARM Assembly language programming. The good news is 

that most of the concepts we’ve been dealing with up until this point still 



298

directly apply in the 64-bit world. Ubuntu MATE works fine, but it isn’t as 

refined and adapted to the Raspberry Pi as Raspbian, largely because the 

community contributing to it isn’t as large.

�About 64 Bits
The key limitation of 32 bits is memory addressing. In the 32-bit world, 

our program uses 32-bit registers to address memory; this gives us a 

limitation of addressing 4 GB or memory in our program. Typically, 

operating systems use some of this memory space for its own purposes, so 

realistically you only have 2 GB of memory available to your program. The 

operating system can physically access more memory and allow different 

parts of memory to be swapped in and out of the virtual address space, but 

this comes with the cost of having programs needing to do this with Linux 

system calls. Modern computers usually contain 4 GB or more of memory, 

and managing this with 64-bit addresses is far easier and more efficient.

A downside of 64-bit operating systems is that they take more memory, 

since all memory addresses now take 64 bits of memory. All the registers 

become 64 bits in size, so there is a temptation to make all integers 64 

bits, and now storing these are all twice as large as in 32 bits. Before the 

Raspberry Pi 4, all Raspberry contained either 512MB or 1Gig of RAM. This 

memory isn’t enough to run 64-bit Linux kernels, then a selection of 64-bit 

programs. To have a 64-bit Linux run well, you need 4 GB of memory.

In 64-bit mode, instructions are still 32 bits in length. In 64-bit mode, 

the ARM engineers used the same tricks they used in 32-bit mode to pack 

as much information into those 32 bits as possible. This is good, since 

we’ve studied these and much of what we’ve done will be similar, usually 

only differing in the number of bits dedicated to an operand.
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One goal of the ARM 64-bit instruction set is to make life easier for 

compiler developers. Generating code with conditional instructions, 

constructing operand2’s, and dealing with overlapping registers all make 

their jobs harder. A lot of the changes that you see in the ARM 64-bit 

instruction set are designed to make it easier for compilers to generate 

efficient code.

Another goal is to make it easier for the ARM hardware engineers to 

create a more efficient execution pipeline—to greatly reduce pipeline 

execution stalls and to allow more instructions to be executed in parallel. 

Many of the “features” that were removed are to accomplish this goal.

�More and Bigger Registers
Not only are the registers each 64 bits in size, but now we have 31 general 

purpose registers labeled X0–X30. You can access the lower 32 bits of each 

of these registers with W0–W30. Whenever you use an instruction that 

writes to one of these, the upper 32 bits of the same X register is set to zero.

Note I n 64 bits, the idea of multiple registers overlapping a larger 
register goes away. There is no W register that maps to the upper 32 
bits.

X30 is the Link Register (LR), and the same rules apply as to the 
LR in 32 bits.

The Program Counter (PC) is not part of this register set. It is 
separate and not accessible like the other registers. Only certain 
instructions can alter it. This greatly simplifies optimization of the 
execution pipeline to prevent stalling.
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�SP and Zero Register
Register X31 is the Stack Pointer (SP). However, the number of instructions 

that can access SP is greatly restricted. The following instructions can 

access SP:

•	 All loads and stores can use SP as the base register.

•	 AND, OR, and EOR (with immediate and without the S 

suffix) can use SP as the destination.

•	 ADD/SUB with immediate can use SP as the 

destination.

•	 ADD/SUB extend can use SP as destination or first 

operand.

All other instructions will see X31 as the zero register. This register 

will always read zero, and if you write to it, nothing happens. You refer to 

the zero register as either XZR or WZR. Using X31 as the name will result 

in an error.

The zero register doesn’t benefit programmers that much, but it 

lets the ARM designers squish a bit more information in each 32-bit 

instruction. For example, in 64 bits

      CMP   X1, X2

is really an alias for

      SUBS  XZR, X1, X2

since writing to the zero register doesn’t do anything. This saves an 

opcode.
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�Function Call Interface
With more registers there are more registers available for function 

parameters. Here is the function of each register at a function call 

boundary and who is responsible for saving it:

•	 X0–X7: Up to eight parameters passed in these registers, 

any additional parameters are passed on the stack.

•	 X0: For returning a single 64-bit result.

•	 X0–X1: For returning a 128-bit result in X1:X0.

•	 X8: Referred to as XR, used to pass a pointer to a 

structure that will contain the results.

•	 X0–X18: Corruptible registers that a function is free 

to use without saving. If a caller needs these, then it is 

responsible for saving them.

•	 X19–X30: These are callee saved, so must be pushed to 

the stack if used in a function.

•	 X29: The frame pointer (FP). Has the same purpose as 

the FP in 32 bits.

•	 X30: The Link Register (LR). Has the same rules as in  

32 bits.

Note T he stack pointer must always be 16-byte aligned.

In 32 bits we could return from a function using any of

•	 MOV	 PC, LR

•	 POP	 {PC}

•	 BX	 LR
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This made it hard for the execution pipeline to know what the next 

instruction will be and would cause the pipeline to stall, wasting precious 

cycles. In the 64-bit world, access to the PC is greatly reduced. To return 

from a function, you use

      RET

This way the execution pipeline knows to look in LR to see where the 

next instruction is, and the function return won’t stall the execution pipeline.

�Push and Pop Are Gone
The PUSH and POP instructions are replaced with the Load Pair (LDP) 

and Store Pair (STP) instructions. These aren’t as handy as PUSH and POP 

as they will only process a pair of registers at a time. Table 16-1 shows the 

equivalent instructions in 32 bits vs. 64 bits.

Note  Not only are they restricted to two registers at a time, but you 
must put in the correct SP processing, which leaves room for bugs 
to be introduced. I suggest using macros for these.

It is best to always process pairs of X registers, even if you need to 
add one that doesn’t need to be saved. The hardware requires SP 
maintain 128-bit alignment, and this is the easiest way to do it.

Table 16-1.  Comparison of the  

PUSH/POP to STP/LDP instructions

A32 A64

PUSH {R0–R1} STP X0, X1, [SP, #-16]!

POP {R0–R1} LDP X0, X1, [SP], #16
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�Calling Linux Services
Since all programs need to be recompiled for 64 bits and some porting is 

required, Linux took the opportunity to clean up its system services. This 

affects us, since all the Linux system service numbers are different. You can 

check them out at

      /usr/include/asm-generic/unistd.h

The services are grouped together by category, and many of the 

duplicates are removed.

Note I n Ubuntu MATE, you need to install these. You do this with

      sudo apt-get install build-essential

Note T o exit a program is now service 93 and writing to a file is 
service 64.

They also took advantage of the additional registers. You now place the 

service number in register X8 (in 32 bits it was R7) and can use registers 

X0–X7 for passing parameters before you need to use the stack.

�Porting from 32 Bits to 64 Bits
The GNU Assembler contains quite a few differences between 32 bits and 

64 bits. Here are a few notes:

•	 You cannot use “@” as a comment character. You must 

use C style comments:

•	 // meaning ignore everything to the end of the line

•	 /∗ … ∗/ to comment out everything between them
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•	 The error messages are mostly better, but some are 

misleading.

•	 You can’t omit redundant registers. For instance, we 

could say “SUB R1, #2” in 32 bits, but we must say “SUB 

R1, R1, #2” in 64 bits.

•	 You need to change all R registers to X or W registers:

•	 Addresses are 64 bits and must be in an X register.

•	 Integers can go in either, but if you don’t need 64 

bits, you should use a W register.

•	 PUSH and POP instructions need to be converted to 

STP and LDP instructions.

•	 Function returns must be changed to use the RET 

instruction.

•	 If function parameters spill to the stack, some can now 

go in registers.

•	 The integer divide instruction is standard in 64 bits.

•	 The use of shift operations in operands is greatly reduced, 

and in fact eliminated in many cases. This might require 

some code rework with larger immediate constants.

•	 If you use tricks like adding constants to the PC, this 

won’t work anymore and will need to be rewritten.

�Porting Uppercase to 64 Bits
We apply all these notes and rules to our uppercase program from  

Chapter 13, “Conditional Instructions and Optimizing Code,” and convert 

it to 64 bits. Listing 16-1 is main.s.
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Listing 16-1.  64-bit version of our uppercase main.s file

//

// Assembler program to convert a string to

// all uppercase by calling a function.

//

// X0-X2 - parameters to linux function services

// X1 - address of output string

// X0 - address of input string

// W5 - current character being processed

// X8 - linux function number

//

.global _start    // Provide program starting address

_start: LDR X0, =instr // start of input string

      LDR  X1, =outstr // address of output string

      BL   toupper

// Set up the parameters to print our hex number

// and then call Linux to do it.

      MOV   W2, W0      // return code is the length

      MOV   W0, #1          // 1 = StdOut

      LDR   X1, =outstr // string to print

      MOV   X8, #64         // linux write system call

      SVC   0           // Call linux to output

// Set up the parameters to exit the program

// and then call Linux to do it.

      MOV     W0, #0      // Use 0 return code

// Service command code 93 terminates this program

      MOV     X8, #93

      SVC     0         // Call linux to terminate
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.data

instr:  .asciz  "This is our Test String that we will convert. 

AaZz@[`{\n"

      .align 4

outstr:      .fill 255, 1, 0

This code should look quite familiar. We use X registers for addresses 

and then W registers for everything else. The big changes are the global 

search and replace of “@” to “//” and then changing the register names. 

Notice the changes of the Linux service numbers.

Listing 16-2 is the upper.s file.

Listing 16-2.  The toupper function in 64 bits

//

// Assembler program to convert a string to

// all uppercase.

//

// X1 - address of output string

// X0 - address of input string

// X4 - original output string for length calc.

// W5 - current character being processed

// W6 - minus 'a' to compare < 26.

//

.global toupper           �// Allow other files to call this 

routine

toupper:

      MOV   X4, X1

// The loop is until byte pointed to

// by R1 is non-zero

loop: LDRB  W5, [X0], #1    // load character

// Want to know if 'a' <= R5 <= 'z'
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// First subtract 'a'

      SUB   W6, W5, #'a'

// Now want to know if R6 <= 25

      CMP   W6, #25         // chars are 0-25 after shift

      BHI   cont

// if we got here then the letter is

// lowercase, so convert it.

      SUB   W5, W5, #('a'-'A')

cont: // end if

      STRB  W5, [X1], #1    // store character

      CMP   W5, #0          // stop on hitting a null character

      BNE   loop      // loop if character isn't null

// get the length by subtracting the pointers

      SUB   X0, X1, X4

      RET         // Return to caller

Notice the RET instruction at the end and that we had to change

      SUB   W5, #('a'-'A')

to

      SUB   W5, W5, #('a'-'A')

We used X register for the addresses and then W registers for 

manipulating the characters. Besides this, the code is all the same.

The makefile is shown in Listing 16-3.

Listing 16-3.  The makefile for our uppercase program

UPPEROBJS = main.o upper.o

ifdef DEBUG

DEBUGFLGS = -g

else

DEBUGFLGS =
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endif

LSTFLGS =

all: upper

%.o : %.s

      as $(DEBUGFLGS) $(LSTFLGS) $< -o $@

upper: $(UPPEROBJS)

      ld -o upper $(UPPEROBJS)

Note  make isn’t installed by Ubuntu MATE by default so you need 
to install either build essentials as mentioned previously or install 
make separately using

      sudo apt-get install make

Moving this program to 64 bits was painless and shows that almost all 

of what we learned for 32 bits applies in the 64-bit world.

�Conditional Instructions
In 32 bits, we could add a condition code to any instruction, and in 

Thumb-2 mode, we could use the IT instruction. These all saved us using 

branch instructions. Besides the problem with branches interrupting the 

execution pipeline, littering our code with branches makes it harder to 

read. In 64 bits, neither of these previous methods are supported, but the 

ARM64 instruction set does include a couple of instructions to help us out. 

First consider conditional select:

•	 CSEL	 Xd, Xn, Xm, cond
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This statement implements

      IF cond is true then

            Xd = Xn

      else

            Xd = Xm

This is like the C conditional operator which is

      Xd = cond ? Xn : Xm

Note  You can use either W or X registers with the CSEL 
instruction, but all the registers must be the same type.

There are a few variations on this instruction; a typical one is 

conditional select increment

•	 CSINC Xd, Xn, Xm, cond

which implements

      IF condition is true then

            Xd = Xn

      else

            Xd = Xm + 1

�Example with CSEL
Listing 16-4 is our upper2.s file from Chapter 13, “Conditional Instructions 

and Optimizing Code,” modified to use a CSEL instruction in place of the 

conditional subtraction.
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Listing 16-4.  Toupper function using a conditional CSEL instruction

//

// Assembly program to convert a string to

// all uppercase.

//

// X1 - address of output string

// X0 - address of input string

// X4 - original output string for length calc.

// W5 - current character being processed

// W6 - minus 'a' to compare < 26.

// W6 - char minus 0x20, potentially uppercased

//

.global toupper       // Allow other files to call

toupper:

      MOV   X4, X1

// The loop is until byte pointed to by R1 is zero

loop: LDRB  W5, [X0], #1    // load character

// Want to know if 'a' <= W5 <= 'z'

// First subtract 'a'

      SUB   W6, W5, #'a'

// Now want to know if W6 <= 25

      CMP   W6, #25    // chars are 0-25 after shift

// perform lower case conversion to W6

      SUB   W6, W5, #('a'-'A')

// Use W6 if lower case, otherwise

// use original character in W5

      CSEL    W5, W6, W5, LS

      STRB  W5, [X1], #1    // store character

      CMP   W5, #0          // stop on hitting a null
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      BNE   loop            // loop if character isn't null

      SUB   X0, X1, X4      // get the length

      RET                   // Return to caller

In this example, we perform

      SUB   W6, W5, #('a'-'A')

into a different result register W6. Now, we have the original character in 

W5 and the converted character in W6. We perform

      CSEL    W5, W6, W5, LS

This places W6 into W5 if the LS condition is true—the character is 

an alphabetic lowercase character; else, it puts W5 into W5—the original 

character.

This code is more structured; it isn’t a spaghetti of branch instructions; 

once you are used to using these operators, following the logic is easier. 

This sequence is easier on the execution pipeline, since branch prediction 

isn’t required to keep things moving.

�FPU and the NEON Coprocessors
Both the FPU and NEON SIMD processor become integral parts of the 

CPU in the 64-bit world. They aren’t optional coprocessors anymore. This 

allows much tighter integration with the instruction set.

�Registers
These processing units still share their own set of registers, but now there 

are 32 128-bit registers. If you are treating these as integer registers, then you 

refer to them as Q0–Q31. If you are referring to them as floating-point, then 

they are V0–V31. There are 32 64-bit D registers for double-precision floating-

point operations and 32 32-bit S registers for single-precision floating-point.
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However, these registers don’t overlap like they did in the 32-bit 

world. Compiler developers complained about the complexity of the 

32-bit scheme, so it’s simplified in the 64-bit world. Now, it’s like how the 

W registers are just half of the matching X registers. This means that D0 

is half of V0, and D1 is half of V1 all the way up to D31 being half of V31. 

Similarly, S0 is half of D0, or a quarter of V0, then all the way up to S31 

being half of D31, or a quarter of V31. Both the FPU and NEON units see 

all these registers, so we don’t have the strange dichotomy we had in 32 

bits, where the FPU can see one set and NEON a slightly different set.

Figure 16-1 shows how the registers share the space in the 64-bit world.

There are H and B registers for 16-bit and 8-bit values, respectively, but 

these are used for conversions and not by FPU calculations.

With the instruction sets integrated into the main CPU, we can load 

and store these registers with our standard LDR and STR instruction, 

which means we can use all the supported addressing modes.

�Instructions
With the instruction sets unified, we can now use the same instruction 

mnemonics as we use for integer instructions, so for floating-point, we 

can use

•	 ADD	 D2, D1, D0

•	 ADD	 S2, S1, S0

Figure 16-1.  How register V15 can be used for 128-, 64-, or 32-bit 
values
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This simplifies our coding for floating-point operations. For NEON 

SIMD versions, we need to specify the size of the lanes; we do this by 

specifying the number of lanes for each operand. For instance:

      ADD   V2.16B, V0.16B, V1.16B

will treat the registers as 16 lanes and separately add all the lanes in V0 

and V1 putting the results in V2. The valid values for the lane type specifier 

are 8B, 16B, 4H, 8H, 2S, 4S, or 2D. This is represented graphically in Figure 

16-2.

�Comparisons
The FPU and NEON instructions now update the CPSR directly. This 

means we no longer need to copy the FPSR over manually to the CPSR.

This makes life easier, but beware the set of comparison operators is 

different between 32 bits and 64 bits. This can be a nuisance porting our 

programs as we shall see shortly.

�Example Using NEON
Listing 16-5 is the NEON version of our uppercase program from Chapter 13, 

“Conditional Instructions and Optimizing Code,” ported to 64 bits. This is 

the upper4.s file.

Figure 16-2.  The lane configurations for register V1
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Listing 16-5.  64-bit NEON version of our toupper function

//

// Assembler program to convert a string to

// all uppercase.

//

// X0 - address of input string

// X1 - address of output string

// X2 - use as indirection to load data

// Q0 - 8 characters to be processed

// Q1 - contains all a's for comparison

// Q2 - result of comparison with 'a's

// Q3 - all 25's for comp

// Q8 - spaces for bic operation

.global toupper       // Allow other files to call

      .EQU  N, 4

toupper:

      LDR X2, =aaas

      LDR  Q1, [X2]   // Load Q1 with all as

      LDR X2, =endch

      LDR  Q3, [X2]  // Load Q3 with all 25's

      LDR X2, =spaces

      LDR  Q8, [X2] // Load Q8 with all spaces

      MOV  W3, #N

// The loop is until byte pointed to by R1 is zero

// load 16 characters and increment pointer

loop: LDR Q0, [X0], #16

      SUB   V2.16B, V0.16B, V1.16B // Subtract 'a's

// compare chars to 25's

      CMHI  V2.16B, V2.16B, V3.16B
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// no CMLO so need to not

    NOT     V2.16B, V2.16B

// and result with spaces

      AND V2.16B, V2.16B, V8.16B

// kill the bit that makes it lowercase

      BIC  V0.16B, V0.16B, V2.16B

      STR  Q0, [X1], #16       // store character

// decrement loop counter and set flags

      SUBS  W3, W3, #1

      BNE   loop       // loop if character isn't null

      MOV   X0, #(N∗16)       // return length
      RET         // Return to caller

.data

aaas:   .fill  16, 1, 'a'    // 16 a's

endch:  .fill   16, 1, 25    // after shift, chars are 0-25

spaces: .fill 16, 1, 0x20    // spaces for bic

Notice that we now load and store the NEON registers like any others. 

The instructions that operate on the lanes use the regular mnemonics, but 

have the lane specifiers on each operand. There is no CMLS instruction to 

compare the registers the way we want. Rather than rework the algorithm, 

I used a CMHI comparator, followed by a NOT operator to get the same 

result. Otherwise, this was a straightforward port of our 32-bit code.

�Summary
This chapter gave a quick overview of the ARM 64-bit Assembly instruction 

set, along with how it is like the ARM 32-bit world. There are quite a few 

differences and we covered a selection of these.

Chapter 16  64 Bits



316

If you’ve read this far, you should have a good idea of how to write 32-

bit Assembly programs for your Raspberry Pi under Raspbian. You know 

how to write basic programs, as well as use the FPU and the advanced 

NEON processor to execute SIMD instructions. You are aware of what will 

work in the 64-bit world and know how to write your Assembly code with 

the future in mind.

Now it's up to you to go forth and experiment. The only way to 

learn programming is by doing. Think up your own Assembly language 

projects—perhaps controlling a robot connected to the GPIO pins. You 

could optimize an AI object recognition algorithm with Assembly code, 

even using the NEON processor. You could contribute to the ARM-specific 

parts of the Linux kernel to improve the operating system’s performance or 

enhance GCC to generate more efficient ARM code. Or think of something 

original that might be the next great thing, the next killer application.
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APPENDIX A

�The ARM  
Instruction Set
This appendix lists the core ARM 32-bit instruction set, with a brief 

description of each instruction.

Instruction Description

ADC, ADD Add with Carry, Add

ADR Load program or register-relative address (short range)

AND Logical AND

ASR Arithmetic Shift Right

B Branch

BFC, BFI Bit Field Clear and Insert

BIC Bit Clear

BKPT Software breakpoint

BL Branch with Link

BLX Branch with Link, change instruction set

BLXNS Branch with Link and Exchange (Non-secure)

BX Branch, change instruction set

BXNS Branch and Exchange (Non-secure)

(continued)
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Instruction Description

CBZ, CBNZ Compare and Branch if {Non}Zero

CDP Coprocessor Data Processing operation

CDP2 Coprocessor Data Processing operation

CLREX Clear Exclusive

CLZ Count leading zeros

CMN, CMP Compare Negative, Compare

CPS Change Processor State

CRC32 Cyclic Redundancy Check 32

CRC32C Cyclic Redundancy Check 32C

CSDB Consumption of Speculative Data Barrier

DBG Debug

DCPS1 Debug switch to exception level 1

DCPS2 Debug switch to exception level 2

DCPS3 Debug switch to exception level 3

DMB, DSB Data Memory Barrier, Data Synchronization Barrier

DSB Data Synchronization Barrier

EOR Exclusive OR

ERET Exception Return

ESB Error Synchronization Barrier

HLT Halting breakpoint

HVC Hypervisor Call

ISB Instruction Synchronization Barrier

IT If-Then

(continued)
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Instruction Description

LDAEX, LDAEXB Load-Acquire Register Exclusive Word, Byte

LDAEXH Load-Acquire Register Exclusive Halfword

LDAEXD Load-Acquire Register Exclusive Doubleword

LDC, LDC2 Load Coprocessor

LDM Load Multiple registers

LDR Load Register with word

LDA, LDAB Load-Acquire Register Word, Byte

LDAH Load-Acquire Register Halfword

LDRB Load Register with Byte

LDRBT Load Register with Byte, user mode

LDRD Load Registers with two words

LDREX, LDREXB Load Register Exclusive Word, Byte

LDREXH Load Register Exclusive Halfword

LDREXD Load Register Exclusive Doubleword

LDRH Load Register with Halfword

LDRHT Load Register with Halfword, user mode

LDRSB Load Register with Signed Byte

LDRSBT Load Register with Signed Byte, user mode

LDRSH Load Register with Signed Halfword

LDRSHT Load Register with Signed Halfword, user mode

LDRT Load Register with word, user mode

LSL, LSR Logical Shift Left, Logical Shift Right

MCR Move to Coprocessor from Register

(continued)
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Instruction Description

MCRR Move to Coprocessor from Registers

MLA Multiply Accumulate

MLS Multiply and Subtract

MOV Move

MOVT Move Top

MRC Move from Coprocessor to Register

MRRC Move from Coprocessor to Registers

MRS Move from PSR to Register

MSR Move from Register to PSR

MUL Multiply

MVN Move Not

NOP No Operation

ORN Logical OR NOT

ORR Logical OR

PKHBT, PKHTB Pack Halfwords

PLD Preload Data

PLDW Preload Data with intent to Write

PLI Preload Instruction

PUSH, POP PUSH registers to stack, POP registers from stack

QADD, QDADD Saturating arithmetic

QDSUB, QSUB Saturating arithmetic

QADD8 Parallel signed saturating arithmetic

QADD16, QASX Parallel signed saturating arithmetic

(continued)
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Instruction Description

QSUB8 Parallel signed saturating arithmetic

QSUB16 Parallel signed saturating arithmetic

QSAX Parallel signed saturating arithmetic

RBIT Reverse Bits

REV, REV16 Reverse byte order

REVSH Reverse byte order

RFE Return from Exception

ROR Rotate Right Register

RRX Rotate Right with Extend

RSB Reverse Subtract

RSC Reverse Subtract with Carry

SADD8, SADD16 Parallel Signed arithmetic

SASX Parallel Signed arithmetic

SBC Subtract with Carry

SBFX, UBFX Signed, Unsigned Bit Field eXtract

SDIV Signed Divide

SEL Select bytes according to APSR GE flags

SETEND Set Endianness for memory accesses

SETPAN Set Privileged Access Never

SEV Set Event

SEVL Set Event Locally

SG Secure Gateway

SHADD8 Parallel Signed Halving arithmetic

(continued)
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Instruction Description

SHADD16 Parallel Signed Halving arithmetic

SHASX, SHSUB8 Parallel Signed Halving arithmetic

SHSUB16 Parallel Signed Halving arithmetic

SHSAX Parallel Signed Halving arithmetic

SMC Secure Monitor Call

SMLAxy Signed Multiply with Accumulate

SMLAD Dual Signed Multiply Accumulate

SMLAWy Signed Multiply with Accumulate

SMLSD Dual Signed Multiply Subtract Accumulate

SMLSLD Dual Signed Multiply Subtract Accumulate Long

SMMLA Signed top word Multiply with Accumulate

SMMLS Signed top word Multiply with Subtract

SMMUL Signed top word Multiply

SMUAD Dual Signed Multiply, and Add products

SMUSD Dual Signed Multiply, and Subtract products

SMULxy Signed Multiply

SMULL Signed Multiply

SMULWy Signed Multiply

SRS Store Return State

SSAT Signed Saturate

SSAT16 Signed Saturate, parallel halfwords

SSUB8, SSUB16 Parallel Signed arithmetic

SSAX Parallel Signed arithmetic

(continued)
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Instruction Description

STC Store Coprocessor

STM Store Multiple registers

STR Store Register with word

STRB Store Register with Byte

STRBT Store Register with Byte, user mode

STRD Store Registers with two words

STREX, STREXB Store Register Exclusive Word, Byte

STREXH,STREXD Store Register Exclusive Halfword, Doubleword

STRH Store Register with Halfword

STRHT Store Register with Halfword, user mode

STL, STLB, STLH Store-Release Word, Byte, Halfword

STLEX, STLEXB Store-Release Exclusive Word, Byte

STLEXH, STLEXD Store-Release Exclusive Halfword, Doubleword

STRT Store Register with word, user mode

SUB Subtract

SUBS pc, lr Exception return, no stack

SVC Supervisor Call

SXTAB Signed extend, with Addition

SXTAB16 Signed extend, with Addition

SXTAH Signed extend, with Addition

SXTB, SXTH Signed extend

SXTB16 Signed extend

SYS Execute System coprocessor instruction

(continued)
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Instruction Description

TBB, TBH Table Branch Byte, Halfword

TEQ Test Equivalence

TST Test

TT, TTT, TTA Test Target (Alternate Domain, Unprivileged)

TTAT Test Target (Alternate Domain, Unprivileged)

UADD8 Parallel Unsigned arithmetic

UADD16, UASX Parallel Unsigned arithmetic

UDF Permanently Undefined

UDIV Unsigned Divide

UHADD8 Parallel Unsigned Halving arithmetic

UHADD16 Parallel Unsigned Halving arithmetic

UHASX Parallel Unsigned Halving arithmetic

UHSUB8 Parallel Unsigned Halving arithmetic

UHSUB16 Parallel Unsigned Halving arithmetic

UHSAX Parallel Unsigned Halving arithmetic

UMAAL Unsigned Multiply Accumulate Long

UMLAL, UMULL Unsigned Multiply Accumulate, Unsigned Multiply

UQADD8 Parallel Unsigned Saturating arithmetic

UQADD16 Parallel Unsigned Saturating arithmetic

UQASX Parallel Unsigned Saturating arithmetic

UQSUB8 Parallel Unsigned Saturating arithmetic

UQSUB16 Parallel Unsigned Saturating arithmetic

UQSAX Parallel Unsigned Saturating arithmetic

(continued)
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Instruction Description

USAD8 Unsigned Sum of Absolute Differences

USADA8 Accumulate Unsigned Sum of Absolute Differences

USAT Unsigned Saturate

USAT16 Unsigned Saturate, parallel halfwords

USUB8 Parallel Unsigned arithmetic

USUB16, USAX Parallel Unsigned arithmetic

UXTAB Unsigned extend with Addition

UXTAB16 Unsigned extend with Addition

UXTAH Unsigned extend with Addition

UXTB, UXTH Unsigned extend

UXTB16 Unsigned extend

V∗ Advanced FPU or SIMD Instructions

WFE, WFI Wait For Event, Wait For Interrupt

YIELD Yield
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APPENDIX B

�Linux System Calls
This appendix lists the system call numbers for all Raspbian’s Linux system 

services and the error codes that they could return. This is a listing of 

unistd.s from the source code that accompanies this book.

�Linux System Call Numbers
@

@ Defines for the Linux system calls.

@ This list is from Raspbian Buster

@

.EQU sys_restart_syscall,   0  @ restart a system call

.EQU sys_exit,              1  @ cause normal process termination

.EQU sys_fork,              2  @ create a child process

.EQU sys_read,              3  @ read from a file descriptor

.EQU sys_write,             4  @ write to a file descriptor

.EQU sys_open,              5  @ open and possibly create a file

.EQU sys_close,             6  @ close a file descriptor

.EQU sys_creat,             8  @ create a new file

.EQU sys_link,              9  @ make a new name for a file

.EQU sys_unlink,           10  @ �delete a name and the file it 

refers to

.EQU sys_execve,           11  @ execute program
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.EQU sys_chdir,            12  @ change working directory

.EQU sys_mknod,            14  @ create a special or ordinary file

.EQU sys_chmod,            15  @ change file mode bits

.EQU sys_lchown,           16  @ �change the owner/group of a 

symbolic link

.EQU sys_lseek,            19  @ reposition read/write file offset

.EQU sys_getpid,           20  @ get process identification

.EQU sys_mount,            21  @ mount filesystem

.EQU sys_setuid,           23  @ set user identity

.EQU sys_getuid,           24  @ get user identity

.EQU sys_ptrace,           26  @ process trace

.EQU sys_pause,            29  @ wait for signal

.EQU sys_access,           33  @ check user's permissions for a file

.EQU sys_nice,             34  @ change process priority

.EQU sys_sync,             36  @ commit filesystem caches to disk

.EQU sys_kill,             37  @ send signal to a process

.EQU sys_rename,           38  @ �change the name or location of a 

file

.EQU sys_mkdir,            39  @ create a directory

.EQU sys_rmdir,            40  @ delete a directory

.EQU sys_dup,              41  @ duplicate a file descriptor

.EQU sys_pipe,             42  @ create pipe

.EQU sys_times,            43  @ get process times

.EQU sys_brk,              45  @ change data segment size

.EQU sys_setgid,           46  @ set group identity

.EQU sys_getgid,           47  @ get group identity

.EQU sys_geteuid,          49  @ get user identity

.EQU sys_getegid,          50  @ get group identity

.EQU sys_acct,             51  @ switch process accounting on or off

.EQU sys_umount2,          52  @ unmount filesystem

.EQU sys_ioctl,            54  @ control device
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.EQU sys_fcntl,           55   @ manipulate file descriptor

.EQU sys_setpgid,         57   @ set process group

.EQU sys_umask,           60   @ set file mode creation mask

.EQU sys_chroot,          61   @ change root directory

.EQU sys_ustat,           62   @ get filesystem statistics

.EQU sys_dup2,            63   @ duplicate a file descriptor

.EQU sys_getppid,         64   @ get the parent process ID

.EQU sys_getpgrp,         65   @ get process group

.EQU sys_setsid,          66   @ Sets the process group ID

.EQU sys_sigaction,       67   @ examine and change a signal action

.EQU sys_setreuid,        70   @ set real and/or effective user ID

.EQU sys_setregid,        71   @ set real and/or effective group ID

.EQU sys_sigsuspend,      72   @ wait for a signal

.EQU sys_sigpending,      73   @ examine pending signals

.EQU sys_sethostname,     74   @ set hostname

.EQU sys_setrlimit,       75   @ �control maximum resource consumption

.EQU sys_getrusage,       77   @ get resource usage

.EQU sys_gettimeofday,    78   @ get time

.EQU sys_settimeofday,    79   @ set time

.EQU sys_getgroups,       80   @ get list of supplementary group IDs

.EQU sys_setgroups,       81   @ set list of supplementary group IDs

.EQU sys_symlink,         83   @ make a new name for a file

.EQU sys_readlink,        85   @ read value of a symbolic link

.EQU sys_uselib,          86   @load shared library

.EQU sys_swapon,          87   @ start swapping to file/device

.EQU sys_reboot,          88   @ reboot

.EQU sys_munmap,          91   @ unmap files or devices into memory

.EQU sys_truncate,        92   @ �truncate a file to a specified 

length

.EQU sys_ftruncate,       93   @ �truncate a file to a specified 

length
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.EQU sys_fchmod,          94   @ change permissions of a file

.EQU sys_fchown,          95   @ change ownership of a file

.EQU sys_getpriority,     96   @ get program scheduling priority

.EQU sys_setpriority,     97   @ set program scheduling priority

.EQU sys_statfs,          99   @ get filesystem statistics

.EQU sys_fstatfs,        100   @ get filesystem statistics

.EQU sys_syslog,         103   @ �read/clear kernel message ring 

buffer

.EQU sys_setitimer,      104   @ set value of an interval timer

.EQU sys_getitimer,      105   @ get value of an interval timer

.EQU sys_stat,           106   @ get file status

.EQU sys_lstat,          107   @ get file status

.EQU sys_fstat,          108   @ get file status

.EQU sys_vhangup,        111   @ �virtually hang up the current 

terminal

.EQU sys_wait4,          114   @ wait for process to change state

.EQU sys_swapoff,        115   @ stop swapping to file/device

.EQU sys_sysinfo,        116   @ return system information

.EQU sys_fsync,          118   @ �synch a file's in-core state with 

storage

.EQU sys_sigreturn,      119   @ return  from  signal handler

.EQU sys_clone,          120   @ create a child process

.EQU sys_setdomainname,  121   @ set NIS domain name

.EQU sys_uname,          122   @ �get name and info about current 

kernel

.EQU sys_adjtimex,       124   @ tune kernel clock

.EQU sys_mprotect,     125   @ �set protection on a region of 

memory

.EQU sys_sigprocmask,    126   @ examine and change blocked signals

.EQU sys_init_module,    128   @ load a kernel module

.EQU sys_delete_module,  129   @ unload a kernel module
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.EQU sys_quotactl,       131   @ manipulate disk quotas

.EQU sys_getpgid,        132   @ get process group

.EQU sys_fchdir,         133   @ change working directory

.EQU sys_bdflush,        134   @ �start, flush, or tune  

buffer-dirty-flush

.EQU sys_sysfs,          135   @ get filesystem type information

.EQU sys_personality,    136   @ set the process execution domain

.EQU sys_setfsuid,       138   @ �set user identity used for filesys 

checks

.EQU sys_setfsgid,       139   @ �set group ident used for filesys 

checks

.EQU sys__llseek,        140   @ reposition read/write file offset

.EQU sys_getdents,       141   @ get directory entries

.EQU sys__newselect,     142   @ synchronous I/O multiplexing

.EQU sys_flock,          143   @ �apply an advisory lock on an 

open file

.EQU sys_msync,          144   @ �synchronize a file with a memory map

.EQU sys_readv,          145   @ read data into multiple buffers

.EQU sys_writev,         146   @ write data into multiple buffers

.EQU sys_getsid,         147   @ get session ID

.EQU sys_fdatasync,      148   @ �sync a file's in-core state with 

storage

.EQU sys__sysctl,        149   @ read/write system parameters

.EQU sys_mlock,          150   @ lock memory

.EQU sys_munlock,        151   @ unlock memory

.EQU sys_mlockall,       152   @ lock memory

.EQU sys_munlockall,     153   @ unlock memory

.EQU sys_sched_setparam,  154   @ set scheduling parameters

.EQU sys_sched_getparam,  155   @ get scheduling parameters

.EQU sys_sched_setscheduler, 156 @ set scheduling policy/params

.EQU sys_sched_getscheduler, 157 @ get scheduling policy/params
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.EQU sys_sched_yield,        158   @ yield the processor

.EQU sys_sched_get_priority_max, 159 @ get static priority max

.EQU sys_sched_get_priority_min, 160 @ get static priority min

.EQU sys_sched_rr_get_interval, 161 @ get  the  SCHED_RR  interval

.EQU sys_nanosleep,          162   @ high-resolution sleep

.EQU sys_mremap,             163   @ remap a virtual memory address

.EQU sys_setresuid,          164   @ �set real, effective and  

saved user ID

.EQU sys_getresuid,          165   @ �get real, effective and  

saved user ID

.EQU sys_poll,               168   @ �wait for some event on a file 

descriptor

.EQU sys_nfsservctl,         169   @ �syscall interface to kernel nfs 

daemon

.EQU sys_setresgid,          170   @ �set real, effective and  

saved group ID

.EQU sys_getresgid,          171   @ �get real, effective and  

saved group ID

.EQU sys_prctl,              172   @ operations on a process

.EQU sys_rt_sigreturn,       173   @ �return  from  signal and  

cleanup stack

.EQU sys_rt_sigaction,       174   @ examine and change a signal action

.EQU sys_rt_sigprocmask,     175   @ �examine and change blocked 

signals

.EQU sys_rt_sigpending,      176   @ examine pending signals

.EQU sys_rt_sigtimedwait,    177   @ �synchronously wait for  

queued signals

.EQU sys_rt_sigqueueinfo,    178   @ queue a signal and data

.EQU sys_rt_sigsuspend,      179   @ wait for a signal

.EQU sys_pread64,            180   @ �read from a file desc at a 

given offset
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.EQU sys_pwrite64,       181   @ �write to a file descriptor at a 

given offset

.EQU sys_chown,          182   @ change ownership of a file

.EQU sys_getcwd,         183   @ get current working directory

.EQU sys_capget,         184   @ get capabilities of thread(s)

.EQU sys_capset,         185   @ set capabilities of thread(s)

.EQU sys_sigaltstack,    186   @ set and/or get signal stack context

.EQU sys_sendfile,       187   @ �transfer data between file 

descriptors

.EQU sys_vfork,          190   @ �create a child process and  

block parent

.EQU sys_ugetrlimit,     191   @ get resource limits

.EQU sys_mmap2,          192   @ map files or devices into memory

.EQU sys_truncate64,     193   @ �truncate a file to a specified 

length

.EQU sys_ftruncate64,    194   @ �truncate a file to a specified 

length

.EQU sys_stat64,         195   @ get file status

.EQU sys_lstat64,        196   @ get file status

.EQU sys_fstat64,        197   @ get file status

.EQU sys_lchown32,       198   @ change ownership of a file

.EQU sys_getuid32,       199   @ get user identity

.EQU sys_getgid32,       200   @ get group identity

.EQU sys_geteuid32,      201   @ get user identity

.EQU sys_getegid32,      202   @ get group identity

.EQU sys_setreuid32,     203   @ set real and/or effective user ID

.EQU sys_setregid32,     204   @ set real and/or effective group ID

.EQU sys_getgroups32,    205   @ get list of supplementary group IDs

.EQU sys_setgroups32,    206   @ set list of supplementary group IDs

.EQU sys_fchown32,       207   @ change ownership of a file
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.EQU sys_setresuid32,    208   @ �set real, effective and  

saved user ID

.EQU sys_getresuid32,    209   @ �get real, effective and  

saved user ID

.EQU sys_setresgid32,    210   @ �set real, effective and  

saved group ID

.EQU sys_getresgid32,    211   @ �get real, effective and  

saved group ID

.EQU sys_chown32,        212   @ change ownership of a file

.EQU sys_setuid32,       213   @ set user identity

.EQU sys_setgid32,       214   @ set group identity

.EQU sys_setfsuid32,     215   @ �set user ident used for  

filesystem checks

.EQU sys_setfsgid32,     216   @ �set group ident used for  

filesys checks

.EQU sys_getdents64,     217   @ get directory entries

.EQU sys_pivot_root,     218   @ change the root filesystem

.EQU sys_mincore,        219   @ �whether pages are resident  

in memory

.EQU sys_madvise,        220   @ give advice about use of memory

.EQU sys_fcntl64,        221   @ manipulate file descriptor

.EQU sys_gettid,         224   @ get thread identification

.EQU sys_readahead,      225   @ �initiate file readahead into  

page cache

.EQU sys_setxattr,       226   @ set an extended attribute value

.EQU sys_lsetxattr,      227   @ set an extended attribute value

.EQU sys_fsetxattr,      228   @ set an extended attribute value

.EQU sys_getxattr,       229   @ retrieve an extended attribute 

value

.EQU sys_lgetxattr,      230   @ �retrieve an extended attribute value
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.EQU sys_fgetxattr,     231    @ �retrieve an extended attribute 

value

.EQU sys_listxattr,     232    @ list extended attribute names

.EQU sys_llistxattr,    233    @ list extended attribute names

.EQU sys_flistxattr,    234    @ list extended attribute names

.EQU sys_removexattr,   235    @ remove  an  extended attribute

.EQU sys_lremovexattr,  236    @ remove  an  extended attribute

.EQU sys_fremovexattr,  237    @ remove  an  extended attribute

.EQU sys_tkill,         238    @ send a signal to a thread

.EQU sys_sendfile64,    239    @ �transfer data between file 

descriptors

.EQU sys_futex,         240    @ fast user-space locking

.EQU sys_sched_setaffinity, 241 @ set a thread's CPU affinity mask

.EQU sys_sched_getaffinity, 242 @ get a thread's CPU affinity mask

.EQU sys_io_setup,      243    @ create an asynchronous I/O context

.EQU sys_io_destroy,    244    @ destroy an asynchronous I/O context

.EQU sys_io_getevents,  245    @ �read async I/O events from compl 

queue

.EQU sys_io_submit,     246    @ �submit async I/O blocks for 

processing

.EQU sys_io_cancel,     247    @ �cancel an outstanding async I/O 

operation

.EQU sys_exit_group,    248    @ exit all threads in a process

.EQU sys_lookup_dcookie, 249    @ return a directory entry's path

.EQU sys_epoll_create,  250    @ open an epoll file descriptor

.EQU sys_epoll_ctl,     251    @ �control interface for an epoll  

file desc

.EQU sys_epoll_wait,    252    @ �wait  for  an I/O event on an  

epoll fd

.EQU sys_remap_file_pages, 253 @ create a nonlinear file mapping

.EQU sys_set_tid_address, 256  @ set pointer to thread ID
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.EQU sys_timer_create,    257  @ create a POSIX per-process timer

.EQU sys_timer_settime,   258  @ �arm/disarm state of per-process 

timer

.EQU sys_timer_gettime,   259  @ �fetch state of POSIX per-process 

timer

.EQU sys_timer_getoverrun, 260  @ �get overrun count for a per-proc 

timer

.EQU sys_timer_delete,    261  @ delete a POSIX per-process timer

.EQU sys_clock_settime,   262  @ clock and timer functions

.EQU sys_clock_gettime,   263  @ clock and timer functions

.EQU sys_clock_getres,    264  @ clock and timer functions

.EQU sys_clock_nanosleep, 265  @ �high-res sleep with specifiable 

clock

.EQU sys_statfs64,        266  @ get filesystem statistics

.EQU sys_fstatfs64,       267  @ get filesystem statistics

.EQU sys_tgkill,          268  @ send a signal to a thread

.EQU sys_utimes,          269  @ �change file last access and mod 

times

.EQU sys_arm_fadvise64_64, 270  @ �predeclare access pattern for file 

data

.EQU sys_pciconfig_iobase, 271  @ pci device information handling

.EQU sys_pciconfig_read,  272  @ pci device information handling

.EQU sys_pciconfig_write, 273  @ pci device information handling

.EQU sys_mq_open,         274  @ open a message queue

.EQU sys_mq_unlink,       275  @ remove a message queue

.EQU sys_mq_timedsend,    276  @ send a message to a message queue

.EQU sys_mq_timedreceive, 277  @ �receive a message from a message 

queue

.EQU sys_mq_notify,       278  @ �reg for notif when a message is 

available

.EQU sys_mq_getsetattr,   279  @ get/set message queue attributes
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.EQU sys_waitid,        280    @ �wait for a child process to change 

state

.EQU sys_socket,      281    @ �create an endpoint for 

communication

.EQU sys_bind,          282    @ bind a name to a socket

.EQU sys_connect,       283    @ initiate a connection on a socket

.EQU sys_listen,        284    @ listen for connections on a socket

.EQU sys_accept,        285    @ accept a connection on a socket

.EQU sys_getsockname,   286    @ get socket name

.EQU sys_getpeername,   287    @ get name of connected peer socket

.EQU sys_socketpair,    288    @ create a pair of connected sockets

.EQU sys_send,          289    @ send a message on a socket

.EQU sys_sendto,        290    @ send a message on a socket

.EQU sys_recv,          291    @ receive a message from a socket

.EQU sys_recvfrom,      292    @ receive a message from a socket

.EQU sys_shutdown,      293    @ �shutdown part of a full-duplex 

connection

.EQU sys_setsockopt,    294    @ set options on sockets

.EQU sys_getsockopt,    295    @ get options on sockets

.EQU sys_sendmsg,       296    @ �send msg on a socket using a msg 

struct

.EQU sys_recvmsg,       297    @ receive a message from a socket

.EQU sys_semop,         298    @ System V semaphore operations

.EQU sys_semget,        299    @ �get a System V semaphore set 

identifier

.EQU sys_semctl,        300    @ �System V semaphore control 

operations

.EQU sys_msgsnd,        301    @ XSI message send operation

.EQU sys_msgrcv,        302    @ XSI message receive operation

.EQU sys_msgget,        303    @ �get a System V message queue 

identifier
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.EQU sys_msgctl,        304    @ System V message control operations

.EQU sys_shmat,         305    @ XSI shared memory attach operation

.EQU sys_shmdt,         306    @ XSI shared memory detach operation

.EQU sys_shmget,        307    @ �allocates a System V shared memory 

seg

.EQU sys_shmctl,        308    @ System V shared memory control

.EQU sys_add_key,       309    @ �add key to kernel's key mngment 

facility

.EQU sys_request_key,   310    @ �req key from kernel's key 

management fac

.EQU sys_keyctl,        311    @ �manipulate kernel's key  

management fac

.EQU sys_semtimedop,    312    @ System V semaphore operations

.EQU sys_vserver,       313    @ Unimplemented

.EQU sys_ioprio_set,    314    @ �set I/O scheduling class and 

priority

.EQU sys_ioprio_get,    315    @ �get I/O scheduling class and 

priority

.EQU sys_inotify_init,  316    @ initialize an inotify instance

.EQU sys_inotify_add_watch, 317 @ �add watch to initialized  

inotify inst

.EQU sys_inotify_rm_watch, 318 @ �remove existing watch from  

inotify inst

.EQU sys_mbind,         319    @ �set memory policy for a memory 

range

.EQU sys_get_mempolicy, 320   @ �retrieve NUMA memory policy for  

a thread

.EQU sys_set_mempolicy, 321   @ �set def NUMA memory policy for  

a thread

.EQU sys_openat,        322    @ �open file relative to dir file 

descriptor
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.EQU sys_mkdirat,       323    @ create a directory

.EQU sys_mknodat,       324    @ create a special or ordinary file

.EQU sys_fchownat,      325    @ �change owner and grp of a file rel 

to dir

.EQU sys_futimesat,     326    @ �change timestamps of file rel  

to a dir

.EQU sys_fstatat64,     327    @ get file status

.EQU sys_unlinkat,      328    @ �del name and possibly the file it 

refs to

.EQU sys_renameat,      329    @ �change the name or location  

of a file

.EQU sys_linkat,        330    @ make a new name for a file

.EQU sys_symlinkat,     331    @ make a new name for a file

.EQU sys_readlinkat,    332    @ read value of a symbolic link

.EQU sys_fchmodat,      333    @ change permissions of a file

.EQU sys_faccessat,     334    @ �det accessibility of file relative 

to dir

.EQU sys_pselect6,      335    @ synchronous I/O multiplexing

.EQU sys_ppoll,         336    @ �wait for some event on a file 

descriptor

.EQU sys_unshare,       337    @ �run prog with namespace unshared 

from par

.EQU sys_set_robust_list, 338  @ set list of robust futexes

.EQU sys_get_robust_list, 339  @ get list of robust futexes

.EQU sys_splice,        340    @ splice data to/from a pipe

.EQU sys_arm_sync_file_range, 341 @ sync a file segment with disk

.EQU sys_tee,           342    @ duplicating pipe content

.EQU sys_vmsplice,      343    @ splice user pages to/from a pipe

.EQU sys_move_pages,    344    @ �move ind pages of a proc to  

another node

.EQU sys_getcpu,        345    @ determine CPU and NUMA node
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.EQU sys_epoll_pwait,   346    @ �wait for I/O event on epoll file desc

.EQU sys_kexec_load,    347    @ �load a new kernel for later execution

.EQU sys_utimensat,     348    @ �chg file timestamps with nanosecond 

prec

.EQU sys_signalfd,      349    @ �create a file desc for accepting 

signals

.EQU sys_timerfd_create, 350   @ �timers that notify via file 

descriptors

.EQU sys_eventfd,       351    @ create a file descr for event notif

.EQU sys_fallocate,     352    @ manipulate file space

.EQU sys_timerfd_settime, 353  @ �timers that notify via file 

descriptors

.EQU sys_timerfd_gettime, 354   @ �timers that notify via file 

descriptors

.EQU sys_signalfd4,     355    @ �create a file desc for accepting 

signals

.EQU sys_eventfd2,      356    @ �create a file desc for event 

notification

.EQU sys_epoll_create1,  357   @ open an epoll file descriptor

.EQU sys_dup3,          358    @ duplicate a file descriptor

.EQU sys_pipe2,         359    @ create pipe

.EQU sys_inotify_init1,  360   @ initialize an inotify instance

.EQU sys_preadv,        361    @ read data into multiple buffers

.EQU sys_pwritev,       362    @ write data into multiple buffers

.EQU sys_rt_tgsigqueueinfo, 363 @ queue a signal and data

.EQU sys_perf_event_open, 364  @ set up performance monitoring

.EQU sys_recvmmsg,      365    @ �receive multiple messages on a 

socket

.EQU sys_accept4,       366    @ accept a connection on a socket

.EQU sys_fanotify_init, 367    @ �create and initialize fanotify group

.EQU sys_fanotify_mark, 368    @ �add, remove, or modify fanotify mark
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.EQU sys_prlimit64,     369    @ get/set resource limits

.EQU sys_name_to_handle_at, 370 @ obtain handle for a pathname

.EQU sys_open_by_handle_at, 371 @ open file via a handle

.EQU sys_clock_adjtime,  372    @ tune kernel clock

.EQU sys_syncfs,         373    @ commit filesystem caches to disk

.EQU sys_sendmmsg,       374    @ send multiple messages on a socket

.EQU sys_setns,          375    @ �reassociate thread with a 

namespace

.EQU sys_process_vm_readv, 376  @ �trans data betwn process address 

spaces

.EQU sys_process_vm_writev, 377 @ �trans data between proc address 

spaces

.EQU sys_kcmp,           378    @ �comp 2 procs to det if share kern 

res

.EQU sys_finit_module,   379    @ load a kernel module

.EQU sys_sched_setattr,   380   @ �set scheduling policy and 

attributes

.EQU sys_sched_getattr,   381   @ �get scheduling policy and 

attributes

.EQU sys_renameat2,      382    @ �change the name or location of a 

file

.EQU sys_seccomp,        383    @ operate on Secure Computing state

.EQU sys_getrandom,      384    @ obtain a series of random bytes

.EQU sys_memfd_create,   385    @ create an anonymous file

.EQU sys_bpf,            386    @ �perform a command on an extended 

BPF map

.EQU sys_execveat,       387    @ �execute program relative to a dir fd

.EQU sys_userfaultfd,    388    @ create fd for handling page faults

.EQU sys_membarrier,     389    @ �issue memory barriers on a set of 

threads

.EQU sys_mlock2,         390    @ lock memory
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.EQU sys_copy_file_range, 391    @ �Copy rng of data frm one file to 

another

.EQU sys_preadv2,        392    @ read data into multiple buffers

.EQU sys_pwritev2,       393    @ write data into multiple buffers

.EQU sys_pkey_mprotect,  394    @ �set protection on a region of 

memory

.EQU sys_pkey_alloc,     395    @ �allocate a protection key

.EQU sys_pkey_free,      396    @ free a protection key

.EQU sys_statx,          397    @ get file status (extended)

.EQU sys_rseq,           398    @ restartable sequences

�Linux System Call Error Codes
@

@ Assembler version of the C errno.h files.

@ All the Linux error codes for the Raspbian Buster release.

@

.EQU  EPERM,          1    @ Operation not permitted

.EQU  ENOENT,         2    @ No such file or directory

.EQU  ESRCH,          3    @ No such process

.EQU  EINTR,          4    @ Interrupted system call

.EQU  EIO,            5    @ I/O error

.EQU  ENXIO,          6    @ No such device or address

.EQU  E2BIG,          7    @ Argument list too long

.EQU  ENOEXEC,        8    @ Exec format error

.EQU  EBADF,          9    @ Bad file number

.EQU  ECHILD,        10    @ No child processes

.EQU  EAGAIN,        11    @ Try again

.EQU  ENOMEM,        12    @ Out of memory

.EQU  EACCES,        13    @ Permission denied
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.EQU  EFAULT,        14    @ Bad address

.EQU  ENOTBLK,       15    @ Block device required

.EQU  EBUSY,         16    @ Device or resource busy

.EQU  EEXIST,        17    @ File exists

.EQU  EXDEV,         18    @ Cross-device link

.EQU  ENODEV,        19    @ No such device

.EQU  ENOTDIR,       20    @ Not a directory

.EQU  EISDIR,        21    @ Is a directory

.EQU  EINVAL,        22    @ Invalid argument

.EQU  ENFILE,        23    @ File table overflow

.EQU  EMFILE,        24    @ Too many open files

.EQU  ENOTTY,        25    @ Not a typewriter

.EQU  ETXTBSY,       26    @ Text file busy

.EQU  EFBIG,         27    @ File too large

.EQU  ENOSPC,        28    @ No space left on device

.EQU  ESPIPE,        29    @ Illegal seek

.EQU  EROFS,         30    @ Read-only filesystem

.EQU  EMLINK,        31    @ Too many links

.EQU  EPIPE,         32    @ Broken pipe

.EQU  EDOM,          33    @ �Math argument out of domain of func

.EQU  ERANGE,        34    @ Math result not representable

.EQU  EDEADLK,       35    @ Resource deadlock would occur

.EQU  ENAMETOOLONG,  36    @ File name too long

.EQU  ENOLCK,        37    @ No record locks available

.EQU  ENOSYS,        38    @ Invalid system call number

.EQU  ENOTEMPTY,     39    @ Directory not empty

.EQU  ELOOP,         40    @ �Too many symbolic links encountered

.EQU  ENOMSG,        42    @ No message of desired type

.EQU  EIDRM,         43    @ Identifier removed

.EQU  ECHRNG,        44    @ Channel number out of range

.EQU  EL2NSYNC,      45    @ Level 2 not synchronized
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.EQU  EL3HLT,        46    @ Level 3 halted

.EQU  EL3RST,        47    @ Level 3 reset

.EQU  ELNRNG,        48    @ Link number out of range

.EQU  EUNATCH,       49    @ Protocol driver not attached

.EQU  ENOCSI,        50    @ No CSI structure available

.EQU  EL2HLT,        51    @ Level 2 halted

.EQU  EBADE,         52    @ Invalid exchange

.EQU  EBADR,         53    @ Invalid request descriptor

.EQU  EXFULL,        54    @ Exchange full

.EQU  ENOANO,        55    @ No anode

.EQU  EBADRQC,       56    @ Invalid request code

.EQU  EBADSLT,       57    @ Invalid slot

.EQU  EBFONT,        59    @ Bad font file format

.EQU  ENOSTR,        60    @ Device not a stream

.EQU  ENODATA,       61    @ No data available

.EQU  ETIME,         62    @ Timer expired

.EQU  ENOSR,         63    @ Out of streams resources

.EQU  ENONET,        64    @ Machine is not on the network

.EQU  ENOPKG,        65    @ Package not installed

.EQU  EREMOTE,       66    @ Object is remote

.EQU  ENOLINK,       67    @ Link has been severed

.EQU  EADV,          68    @ Advertise error

.EQU  ESRMNT,        69    @ Srmount error

.EQU  ECOMM,         70    @ Communication error on send

.EQU  EPROTO,        71    @ Protocol error

.EQU  EMULTIHOP,     72    @ Multihop attempted

.EQU  EDOTDOT,       73    @ RFS specific error

.EQU  EBADMSG,       74    @ Not a data message

.EQU  EOVERFLOW,     75    @ �Value too large for defined data type

.EQU  ENOTUNIQ,      76    @ Name not unique on network

.EQU  EBADFD,        77    @ File descriptor in bad state
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.EQU  EREMCHG,       78    @ Remote address changed

.EQU  ELIBACC,       79    @ �Cannot access a needed shared library

.EQU  ELIBBAD,       80    @ �Accessing a corrupted shared library

.EQU  ELIBSCN,       81    @ .lib section in a.out corrupted

.EQU  ELIBMAX,       82    @ �Attempting to link too many shared 

libs

.EQU  ELIBEXEC,      83    @ Cannot exec a shared library directly

.EQU  EILSEQ,        84    @ Illegal byte sequence

.EQU  ERESTART,      85    @ �Interrupted sys call should be 

restarted

.EQU  ESTRPIPE,      86    @ Streams pipe error

.EQU  EUSERS,        87    @ Too many users

.EQU  ENOTSOCK,      88    @ Socket operation on non-socket

.EQU  EDESTADDRREQ,  89    @ Destination address required

.EQU  EMSGSIZE,      90    @ Message too long

.EQU  EPROTOTYPE,    91    @ Protocol wrong type for socket

.EQU  ENOPROTOOPT,   92    @ Protocol not available

.EQU  EPROTONOSUPPORT, 93  @ Protocol not supported

.EQU  ESOCKTNOSUPPORT, 94  @ Socket type not supported

.EQU  EOPNOTSUPP,    95    @ �Operation not sup on transport 

endpoint

.EQU  EPFNOSUPPORT,  96    @ Protocol family not supported

.EQU  EAFNOSUPPORT,  97    @ �Address family not supported by 

protocol

.EQU  EADDRINUSE,    98    @ Address already in use

.EQU  EADDRNOTAVAIL, 99    @ Cannot assign requested address

.EQU  ENETDOWN,      100   @ Network is down

.EQU  ENETUNREACH,   101   @ Network is unreachable

.EQU  ENETRESET,     102   @ �Network dropped conn because of reset

.EQU  ECONNABORTED,  103   @ Software caused connection abort

.EQU  ECONNRESET,    104   @ Connection reset by peer
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.EQU  ENOBUFS,       105   @ No buffer space available

.EQU  EISCONN,       106   @ �Transport endpoint is already 

connected

.EQU  ENOTCONN,      107   @ �Transport endpoint is not connected

.EQU  ESHUTDOWN,     108   @ �Cannot send after trans endpoint 

shutdown

.EQU  ETOOMANYREFS,  109   @ Too many references: cannot splice

.EQU  ETIMEDOUT,     110   @ Connection timed out

.EQU  ECONNREFUSED,  111   @ Connection refused

.EQU  EHOSTDOWN,     112   @ Host is down

.EQU  EHOSTUNREACH,  113   @ No route to host

.EQU  EALREADY,      114   @ Operation already in progress

.EQU  EINPROGRESS,   115   @ Operation now in progress

.EQU  ESTALE,        116   @ Stale file handle

.EQU  EUCLEAN,       117   @ Structure needs cleaning

.EQU  ENOTNAM,       118   @ Not a XENIX named type file

.EQU  ENAVAIL,       119   @ No XENIX semaphores available

.EQU  EISNAM,        120   @ Is a named type file

.EQU  EREMOTEIO,     121   @ Remote I/O error

.EQU  EDQUOT,        122   @ Quota exceeded

.EQU  ENOMEDIUM,     123   @ No medium found

.EQU  EMEDIUMTYPE,   124   @ Wrong medium type

.EQU  ECANCELED,     125   @ Operation Canceled

.EQU  ENOKEY,        126   @ Required key not available

.EQU  EKEYEXPIRED,   127   @ Key has expired

.EQU  EKEYREVOKED,   128   @ Key has been revoked

.EQU  EKEYREJECTED,  129   @ Key was rejected by service

.EQU  EOWNERDEAD,    130   @ Owner died

.EQU  ENOTRECOVERABLE, 131 @ State not recoverable

.EQU  ERFKILL,        132   @ Operation not possible due to RF-kill

.EQU  EHWPOISON,     133   @ Memory page has hardware error
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APPENDIX C

�Binary Formats
This appendix describes the basic characteristics of the data types we have 

been working with.

�Integers
The following table provides the basic integer data types we have used. 

Signed integers are represented in two’s complement form.

Table C-1.  Size, alignment, range, and C type for the basic integer types

Size Type Alignment 
in bytes

Range C type

8 Signed 1 –128 to 127 signed char

8 Unsigned 1 0 to 255 char

16 Signed 2 –32,768 to 32,767 short

16 Unsigned 2 0 to 65,535 unsigned short

32 Signed 4 –2,147,483,648 to 2,147,483,647 int

32 Unsigned 4 0 to 4,294,967,295 unsigned int

64 Signed 8 –9,223,372,036,854,775,808 to 

9,223,372,036,854,775,807

long long

64 Unsigned 8 0 to 18,446,744,073,709,551,615 unsigned long 

long
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Note  In 32-bit mode, only the NEON processor can process 64-bit 
integers. However, you can process them yourself as we indicated 
with instructions like ADDS followed by ADDC.

�Floating-Point
The ARM floating-point and NEON coprocessors use the IEEE 754 

standard for representing floating-point numbers. All floating-point 

numbers are signed.

Note  The ARM implementation of 16-bit half precision floating-point 
differs from the standard by not supporting infinity or NaNs.

Table C-2.  Size, alignment, positive range, and C type for floating-

point numbers

Size Alignment in bytes Range C type

16 2 0.000061035 to 65504 half

32 4 1.175494351e-38 to 3.40282347e+38 Float

64 8 2.22507385850720138e-308 to 

1.79769313486231571e+308

double

Note  Not all C compilers support 16-bit floating-point numbers.

These ranges are for normalized values; the ARM processor will allow 
floats to become unnormalized to avoid underflow.
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�Addresses
All addresses or pointers are 32 bits. They point to memory in the 

processes’ virtual address space. They do not point directly to physical 

memory.

Table C-3.  Size, alignment, range, and C type of a pointer

Size Alignment in bytes Range C type

32 4 0 to 4,294,967,295 void ∗

�64 Bits
The two differences in 64 bits are

	 1.	 All addresses (pointers) are 64 bits and must be 64-

bit aligned.

	 2.	 The C long data type is 64 bits, and the main CPU 

can perform 64-bit arithmetic.
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APPENDIX D

�Assembler Directives
This appendix lists a useful selection of GNU Assembler directives.  

It includes all the directives used in this book, and a few more that are 

commonly used.

Directive Description

.align Pads the location counter to a particular storage boundary

.ascii Defines memory for an ASCII string with no NULL terminator

.asciz Defines memory for an ASCII string and adds a NULL terminator

.byte Defines memory for bytes

.data Assembles following code to the end of the data subsection

.double Defines memory for double floating-point data

.else Part of conditional assembly

.elseif Part of conditional assembly

.endif Part of conditional assembly

.endm End of a macro definition

.endr End of a repeat block

.equ Defines values for symbols

.fill Defines and fills some memory

.float Defines memory for single-precision floating-point data

(continued)
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Directive Description

.global Makes a symbol global, needed if reference from other files

.hword Defines memory for 16-bit integers

.if Marks the beginning of code to be conditionally assembled

.include Merges a file into the current file

 .int Defines storage for 32-bit integers

.long Defines storage for 32-bit integers (same as .int)

.macro Defines a macro

.octa Defines storage for 64-bit integers

.quad Same as .octa

.rept Repeats a block of code multiple times

.set Sets the value of a symbol to an expression

.short Same as .hword

.single Same as .float

.text Generates following instructions into the code section

.word Same as .int
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APPENDIX E

�ASCII Character Set
Here is the ASCII Character Set. The characters from 0 to 127 are standard. 

The characters from 128 to 255 are taken from code page 437, which is the 

character set of the original IBM PC.

Dec Hex Char Description

 0 00 NUL Null

 1 01 SOH Start of Header

 2 02 STX Start of Text

 3 03 ETX End of Text

 4 04 EOT End of Transmission

 5 05 ENQ Enquiry

 6 06 ACK Acknowledge

 7 07 BEL Bell

 8 08 BS Backspace

 9 09 HT Horizontal Tab

10 0A LF Line Feed

11 0B VT Vertical Tab

12 0C FF Form Feed

(continued)
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Dec Hex Char Description

13 0D CR Carriage Return

14 0E SO Shift Out

15 0F SI Shift In

16 10 DLE Data Link Escape

17 11 DC1 Device Control 1

18 12 DC2 Device Control 2

19 13 DC3 Device Control 3

20 14 DC4 Device Control 4

21 15 NAK Negative Acknowledge

22 16 SYN Synchronize

23 17 ETB End of Transmission Block

24 18 CAN Cancel

25 19 EM End of Medium

26 1A SUB Substitute

27 1B ESC Escape

28 1C FS File Separator

29 1D GS Group Separator

30 1E RS Record Separator

31 1F US Unit Separator

32 20 space Space

33 21 ! Exclamation mark

34 22 " Double quote

(continued)
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Dec Hex Char Description

35 23 # Number

36 24 $ Dollar sign

37 25 % Percent

38 26 & Ampersand

39 27 ' Single quote

40 28 ( Left parenthesis

41 29 ) Right parenthesis

42 2A ∗ Asterisk

43 2B + Plus

44 2C , Comma

45 2D - Minus

46 2E . Period

47 2F / Slash

48 30 0 Zero

49 31 1 One

50 32 2 Two

51 33 3 Three

52 34 4 Four

53 35 5 Five

54 36 6 Six

55 37 7 Seven

56 38 8 Eight

57 39 9 Nine

(continued)
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Dec Hex Char Description

58 3A : Colon

59 3B ; Semicolon

60 3C < Less than

61 3D = Equality sign

62 3E > Greater than

63 3F ? Question mark

64 40 @ At sign

65 41 A Capital A

66 42 B Capital B

67 43 C Capital C

68 44 D Capital D

69 45 E Capital E

70 46 F Capital F

71 47 G Capital G

72 48 H Capital H

73 49 I Capital I

74 4A J Capital J

75 4B K Capital K

76 4C L Capital L

77 4D M Capital M

78 4E N Capital N

79 4F O Capital O

(continued)
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Dec Hex Char Description

80 50 P Capital P

81 51 Q Capital Q

82 52 R Capital R

83 53 S Capital S

84 54 T Capital T

85 55 U Capital U

86 56 V Capital V

87 57 W Capital W

88 58 X Capital X

89 59 Y Capital Y

90 5A Z Capital Z

91 5B [ Left square bracket

92 5C \ Backslash

93 5D ] Right square bracket

94 5E ^ Caret/circumflex

95 5F _ Underscore

96 60 ` Grave/accent

 97 61 a Small a

 98 62 b Small b

 99 63 c Small c

100 64 d Small d

101 65 e Small e

(continued)

APPENDIX E  ASCII Character Set



358

Dec Hex Char Description

102 66 f Small f

103 67 g Small g

104 68 h Small h

105 69 i Small i

106 6A j Small j

107 6B k Small k

108 6C l Small l

109 6D m Small m

110 6E n Small n

111 6F o Small o

112 70 p Small p

113 71 q Small q

114 72 r Small r

115 73 s Small s

116 74 t Small t

117 75 u Small u

118 76 v Small v

119 77 w Small w

120 78 x Small x

121 79 y Small y

122 7A z Small z

123 7B { Left curly bracket

124 7C | Vertical bar

(continued)
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Dec Hex Char Description

125 7D } Right curly bracket

126 7E ~ Tilde

127 7F DEL Delete

128 80 Ç

129 81 ü

130 82 é

131 83 â

132 84 ä

133 85 à

134 86 å

135 87 ç

136 88 ê

137 89 ë

138 8A è

139 8B ï

140 8C î

141 8D ì

142 8E Ä

143 8F Å

144 90 É

145 91 æ

146 92 Æ

147 93 ô

(continued)
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Dec Hex Char Description

148 94 ö

149 95 ò

150 96 û

151 97 ù

152 98 ÿ

153 99 Ö

154 9A Ü

155 9B ¢

156 9C £

157 9D ¥

158 9E Pts

159 9F ƒ

160 A0 á

161 A1 í

162 A2 ó

163 A3 ú

164 A4 ñ

165 A5 Ñ

166 A6 ª

167 A7 °

168 A8 ¿

169 A9 ⌐

(continued)
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Dec Hex Char Description

170 AA ¬

171 AB ½

172 AC ¼

173 AD ¡

174 AE «

175 AF »

176 B0 ░

177 B1 ▒

178 B2 ▓

179 B3 │

180 B4 ┤

181 B5 ╡

182 B6 ╢

183 B7 ╖

184 B8 ╕

185 B9 ╣

186 BA ║

187 BB ╗

188 BC ╝

189 BD ╜

190 BE ╛

191 BF ┐

(continued)
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Dec Hex Char Description

192 C0 └

193 C1 ┴

194 C2 ┬

195 C3 ├

196 C4 ─

197 C5 ┼

198 C6 ╞

199 C7 ╟

200 C8 ╚

201 C9 ╔

202 CA ╩

203 CB ╦

204 CC ╠

205 CD ═

206 CE ╬

207 CF ╧

208 D0 ╨

209 D1 ╤

210 D2 ╥

211 D3 ╙

212 D4 ╘

213 D5 ╒

(continued)
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Dec Hex Char Description

214 D6 ╓

215 D7 ╫

216 D8 ╪

217 D9 ┘

218 DA ┌

219 DB █

220 DC ▄

221 DD ▌

222 DE ▐

223 DF ▀

224 E0 α

225 E1 ß

226 E2 Γ

227 E3 π

228 E4 Σ

229 E5 σ

230 E6 μ

231 E7 τ

232 E8 Φ

233 E9 Θ

234 EA Ω

235 EB δ

(continued)
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Dec Hex Char Description

236 EC ∞

237 ED φ

238 EE ε

239 EF ∩

240 F0 ≡

241 F1 ±

242 F2 ≥

243 F3 ≤

244 F4 ⌠

245 F5 ⌡

246 F6 ÷

247 F7 ≈

248 F8 °

249 F9 ∙

250 FA ·

251 FB √

252 FC ⁿ

253 FD 2

254 FE ■

255 FF
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A
Accumulate operation

accumulate  
instructions, 199, 200

dual multiply/accumulate,  
201, 207, 209

LDR, 210
multiply 3x3 matrices

matrix elements, 205
matrix  

multiplication, 201–204
registers, 206
SMLAL instruction, 206

Ra operand, 200
.short Assembler directive, 206

ADC instruction, 45–50, 68, 173
ADD instructions, 45–50
ADDS instruction, 68, 71, 173
Advanced RISC Machine (ARM) 

processor, 1, 2, 13, 190, 281
Arithmetic Logic Unit (ALU), 34
ARM Assembly Instructions

clock cycle, 15
CPU Registers, 12, 13
instruction format, 13, 14
memory, 15, 16
RISC, 11

ARM32 bit instruction set, 317–325
ASCII character set, 353–364
.asciz directive, 173
asm statement, 183, 184
Assembly language, 1

CPU registers, 5
memory addressing, 5
usage, 5, 7

B
Barrel shifter, 34
Bi-endian, 32
Big-endian, 31
Binary formats

integers, 347
floating-point, 348–349

Bit Clear (BIC) operation, 76–77, 256
BLX instruction, 283
Branch and Exchange (BX) 

instruction, 111, 283
Branch instruction, 70

condition codes, 70, 71
performance, 83, 84

Branch prediction, 251
Branch with Link (BL)  

instruction, 111
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C
Carry flag, 33, 68
Closed loop branch instruction, 68
CMP instruction, 71, 84–85
Code, pack

shared library, 179–181
static library, 178, 179

Computers
byte, 9
decimal number, 9
hexadecimal numbers, 11

Conditional instructions, 64-bit, 250
Conditional statements, 46, 48
Condition code, 24, 70, 251
Condition flags, 68
Coprocessors

comparison, 313
instruction, 312
NEON version, 313, 315
registers, 311, 312

C routines
add with carry, 173, 175
Assembly function

compile and run, 177
parameters, 177
toupper function, 176

embedding Assembly code
asm statement, 183, 184
GNU C compiler, 182
registers, 184

inputs and outputs, print, 174
ld command, 170
print debug information

call Printf, 172
printf function, 170, 171
string, 173

_start label, 169
CSEL instruction, 309–311
Current Program Status Register 

(CPSR)
bits, 68
condition flags, 68
interrupt flags, 69

D
Design patterns, 77, 78
Division

ARM Cortex-A53  
processors, 194

GNU Compiler Collection, 196
instructions, 194, 195
SDIV and UDIV  

instructions, 195, 196
Division routine, 270

E
.ENDM directive, 128
.EQU Assembler directive, 124

F
File to uppercase, conversion

case conversion  
program, 137, 138

error checking
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.asciz, 141
error message, 141, 142
error module, 142
looping, 142
MOVS instruction, 141
strlen() function, 141

file I/O library, 135
Linux open service, 140
makefile, 139
read and write files, 135, 136

Flashing LEDs
.EQU directive, 166, 167
GPIO pins, control, 149, 150
main program, 151, 152
mapped memory, 159–163
pin direction, 165, 166
resistors, 148
root access, 164
table lookup, 164

Floating-Point comparison
maincomp.s, 228–230
makefile, 230
rounding error, 231
routine, tolerance, 227, 228
VCMP instruction, 226
VMRS instruction, 226

Floating-Point conversions
from integer, 224
rounding method, 225
to integer, 225
VCVT, 224

Floating-point coprocessor  
(FPU), 3, 211

Floating-point numbers

arithmetic operations, 218, 219
coprocessor instructions, 216
defined, 212, 214
distance function, 220–222
gcc, 217
IEEE 754 standard, 212
NaNs, 212
normalization, 213
protocol, 216, 217
rounding errors, 213, 214
VLDM instruction, 223
VMOV instruction, 223

Floating-Point Status Control 
Register (FPSCR), 225

for loop, 72, 73
FPU registers, 214, 215

load and save, 217, 218
Frame Pointer (FP), 122, 123
Functions, 109

branch with link, 111, 112
call algorithm, 115, 116
parameters and return  

values, 114
uppercase, 116, 118–120

G
GCC Assembler, 16, 17
General Purpose I/O  

(GPIO) pins
GPIO controller, 153
libraries, control, 147
Linux device driver, 146
memory
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ARM32 instruction, 154
locations, 155
registers, 154

overview, 145, 146
Raspberry Pi 4 RAM, 154
registers (see Registers in bits)
virtual memory, 153

Ghidra, 276
C code, 277
upper program, 277

Git, 63, 64
Gnome programmer’s  

calculator, 29, 30
GNU Assembler, 53, 110
GNU Assembler directives, 351–352
GNU C compiler, 182

Thumb code, 293
GNU compiler collection  

(GCC), 7, 266, 271, 274
Assembly code, 274
C code, 275
code creation, 271

GNU Debugger (GDB), 7, 43, 51, 56
breakpoint command, 59
commands, 63
debug flag, 57
delete command, 61
HelloWorld program, 56
info breakpoints, 61
info registers, 60
makefile, 57
movexamps program, 58

step command, 60
x /Nfu addr format, 61, 62

GNU Make
Hello World makefile, 54, 55
Linux utility, 53
rebuilding file, 54
.s file, rule, 54, 55
variables defining, 55, 56

goto statement, 67, 84
Graphics processing unit (GPU), 3

H
Hello World

.ascii statement, 22
assembly instructions, 21
bash-x, 18
.data, 22
disassembly, 23
LDR instruction, 25
Linux system, 22, 23
MOV instruction, 24, 25
objdump command-line, 23
program, 17, 18
_start, 21
starting comment, 20
terminal command, 18

I
If/Then/Else statements, 67, 74, 75
If-Then (IT) blocks, 285–286
Instruction set flags, 69
Integers to ASCII conversion

General Purpose I/O  
(GPIO) pins (cont.)
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decimal, 83
expressions, 82
pseudo-code, print register, 79
register, printing, 79–81
register to memory, storing, 82

Interrupt flags, 69

J, K
Jenkins, 64–65

L
LIFO (last in first out) queue, 110
Link Register (LR), 111
Linux Gnome calculator, 10, 11
Linux linker/loader, 53
Linux open service, 140
Linux system call error  

codes, 341–346
Linux system call numbers, 327–342
Linux system services, 131, 132, 303

calling convention
file descriptor, 133
structures, 133, 134
system calls, 132, 133

file to uppercase (see File to 
Uppercase, conversion)

GNU Assembler’s macro, 134
wrappers, 134

Little-endian format, 31, 32
Load Multiple (LDM), 110
Load Pair (LDP) instructions, 302
Load register with byte (LDRB) 

instructions, 290, 319

Logical operators
AND, 75
BIC, 76
EOR, 76
NOT, 40
ORR, 76

Loops, 46
for loop, 72, 73
unrolling, 270
while, 73

M
.MACRO directive, 128
Macros

BX branch to return, 130
definition, 128
directive, 128
labels, 129
performance, 130
toupper function, 125–127
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instruction, 82

Store Multiple (STM), 110, 323
Store Pair (STP)  

instructions, 302, 304
STP/LDP instructions, 302
STRB instructions,  

104, 290, 323
strlen() function, 141
SUB instructions, 290
SUBS instruction, 71, 294

Index



374

T
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Thumb code, 268

ARM processor, 281, 283
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UMULL instruction, 190, 324
Unconditional branch, 67–68
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