
Programming
THE

I

John H. Crawford Patrick P. Gelsinger

^^

'^*^

y

\.

Featuring 80386/387
.* \

^

I.**'

'^>\^ "f^.

Quick Reference to the 80386/87 Instruction Set

Note: A few instructions, such as CALL, have more than one form. In this list, the first reference is to the inte-

ger form and the second is to the multiple-segment form. The MOV instruction has a third reference—to the |

operating-system form. All of the instructions for the 80387 coprocessor begin with the letter F.

Instruction Page Instruction Pago Instruction Page

AAA 125 FCOMP 334 FSIN 370

AAD 127 FCOMPP 334 FSINCOS 371

AAM 128 FCOS 336 FSQRT 372

AAS 129 FDECSTP 337 FST 373

ADC 131 FDIV 338 FSTCW 375

ADD 133 FDIVP 338 FSTENV 376

AND 135 FDIVR 340 FSTP 378

ARPL 293 FDIVRP 340 FSTSW 380

FFREE 342 FSTSW AX 381

BOUND 137 FIADD 328 FSUB 382

BSF 138 FICOM 343 FSUBP 382

BSR 140 FICOMP 343 FSUBR 384

BT 142 FIDIV 338 FSUBRP 384

BTC 144 FIDIVR 340 FTST 386

BTR 146 FILD 345 FUCOM 388

BTS 148 FIMUL 355 FUCOMP 388

FINCSTP 346 FUCOMPP 388

CALL 150 FINIT 347 FXAM 390

CALL 272 FIST 348 FXCH 392

CBW 152 FISTP 349 FXTRACT 393

CDQ 161 FiSUB 382 FYL2X 395

CLC 153 FiSUBR 384 FYL2XP1 397

CLD 154 FLD 350

CLI 155 FLD1 351 HLT 296

CLTS 295 FLDCW 353

CMC 156 FLDENV 354 IDIV 172

CMP 157 FLDL2E 351 IMUL 175

CMPS 159 FLDL2T 351 IN 178

CMPSB 159 FLDLG2 351 INC 179

CMPSD 159 FLDLN2 351 INS 180

CMPSW 159 FLDPI 351 INSB 180

CWD 161 FLDZ 351 INSD 180

CWDE 152 FMUL 355 INSW 180

FMULP 355 INT 274

DAA 163 FNCLEX 333 INTO 276

DAS 165 FNINIT 347 IRET 278

DEC 167 FNOP 357

DIV 168 FNSAVE 367 JA 182

FNSTCW 375 JAE 182

ENTER 170 FNSTENV 376 JB 182

FNSTSW 380 JBE 182

F2XM1 326 FNSTSW AX 381 JC 182

FABS 327 FPATAN 358 JCXZ 182

FADD 328 FPREM 360 JE 182

FADDP 328 FPREM1 362 JECXZ 182

FBLD 330 FPTAN 364 JG 182

FBSTP 331 FRNDINT 365 JGE 182

FCHS 332 FRSTOR 366 JL 182

FCLEX 333 FSAVE 367 JLE 182

FCOM 334 FSCALE 368 JMP 185

Quick Reference to the 80386/87 Instruction Set

Instruction Page Instruction Page Instruction Page

JMP 280 MOVSW 201 SETE 249
JNA 182 MOVSX 203 SETG 249
JNAE 182 MOVZX 205 SETGE 249
JNB 182 MUL 207 SETL 249
JNBE 182 SETLE 249
JNC 182 NEG 209 SETNA 249
JNE 182 NOP 210 SETNAE 249
JNG 182 NOT 211 SETNB 249

JNGE 182 SETNBE 249

JNL 182 OR 212 SETNC 249
JNLE 182 OUT 214 SETNE 249
JNO 182 OUTS 215 SETNG 249

JNP 182 OUTSB 215 SETNGE 249

JNS 182 OUTSD 215 SETNL 249

JNZ 182 OUTSW 215 SETNLE 249

JO 182 SETNO 249

JP 182 POP 217 SETNP 249

JPE 182 POP 286 SETNS 249

JPO 182 POPA 218 SETNZ 249

JS 182 POPAD 218 SETO 249

JZ 182 POPF 220 SETP 249

POPFD 220 SETPE 249

LAHF 187 PUSH 222 SETPO 249

LAR 297 PUSH 287 SETS 249

LDS 282 PUSHA 224 SETZ 249

LEA 188 PUSHAD 224 SGDT 311

LEAVE 189 PUSHF 226 SHL 241

LES 282 PUSHFD 226 SHLD 251

LFS 282 SHR 253

LGDT 300 RCL 228 SHRD 255

LGS 282 RCR 230 SIDT 312

LIDT 301 REP 232 SLOT 313

LLDT 302 REPE 233 SMSW 314

LMSW 303 REPNE 234 STC 257

LOCK 190 REPNZ 234 STD 258

LODS 192 REPZ 233 STI 259

LOOSE 192 RET 235 STOS 260

LODSD 192 RET 288 STOSB 260

LODSW 192 ROL 236 STOSD 260

LOOP 194 ROR 238 STOSW 260

LOOPE 198 STR 315

LOOPNE 196 SAHF 240 SUB 262

LOOPNZ 196 SAL 241

LOOPZ 198 SAR 243 TEST 264

LSL 305 SBB 245

LSS 282 SCAS 247 VERR 316

LTR 308 SCASB 247

SCASD 247

VERW 318

MOV 200 SCASW 247 WAIT 398

MOV 284 SETA 249

MOV 309 SETAE 249 XCHG 265

MOVS 201 SETB 249 XLAT 266

MOVSB 201 SETBE 249 XLATB 266

MOVSD 201 SETC 249 XOR 267

Digitized by the Internet Archive

in 2011

http://www.archive.org/details/programming8038600craw

Programming the I

80386

1

Programming the I

80386

1

John H. Crawford

Patrick P. Gelsinger

SYBEX ' San Francisco • Paris • Diisseldorf • London

Cover design by Thomas Ingalls + Associates

Cover photography by Casey Cartwright

Ashton-Tate and dBASE are trademarks of Ashton-Tate.

IBM, Personal Computer AT, and PS/2 are trademarks of International Business Machines

Corporation.

Intel is a trademark of Intel Corporation.

All mnemonics copyright Intel Corporation 1986, 1987.

Lotus and 1-2-3 are trademarks of Lotus Development Corporation.

MS-DOS is a trademark of Microsoft Corporation.

MultiMate is a trademark of Multimate International, a subsidiary of Ashton-Tate.

UNIX is a trademark ofAT&T Bell Laboratories.

SYBEX is a registered trademark of SYBEX, Inc.

SYBEX is not affiliated with any manufacturer.

Every effort has been made to supply complete and accurate information. However, SYBEX
assumes no responsibility for its use, nor for any infringements of patents or other rights of third

parties which would result.

Copyright ©1987 SYBEX Inc., 2021 Challenger Drive #100, Alameda, CA 94501. World rights

reserved. No part of this publication may be stored in a retrieval system, transmitted, or repro-

duced in any way, including but not limited to photocopy, photograph, magnetic or other record,

without the prior agreement and written permission of the publisher.

Library of Congress Card Number: 87-61 199

ISBN 0-89588-381-3

Manufactured in the United States of America
10 9 8 7 6 5 4

To our wives, Norma and Linda, who were first chip

widows and then book widows.

— John Crawford
— Patrick Gelsinger

Santa Clara, 1987

Acknowledgments |

CREATING A BOOK LIKE THIS ONE IS A COMPLEX AND EXACTING PROJECT.

We would like to thank Intel Corporation for producing the 80386 and

their customers for making the 80386 a success. Thanks to Norma Crawford

for word processing of early drafts. Thanks to David Perlmutter for educating

us in the operation of the 80387.

We would also like to thank the people at SYBEX who helped bring

Programming the 80386 from the early stages of development to the finished

work you see. Our thanks to Dr. R.S. Langer, editor-in-chief, for his

enthusiastic support and his choice of fine restaurants; David Kolodney,

developmental and project editor; Tanya Kucak, editor, for her fine word
chiseling by her red pen that never ran dry; Dan Tauber, technical edi-

tor; Olivia Shinomoto, word processor; Charles Cowens, typesetter;

Jeff Green, proofreader; Jeffrey James Giese, technical illustrator; Suzy

Anger, production coordinator; Evelyn Ong Sy and Jenny Wong, paste-

up artists; and Paula Alston, indexer. We would also like to acknowledge

the work of Skillful Means, typesetters for Chapter 3.

Contents I

Introduction xviii

Chapter 1

The Basics

History of Intel Microprocessors 1

Compatibility with the 8086 and 80286

Data Formats 3

Memory 3

Notation 4

Unsigned Numbers 5

Signed Integers 5

Strings 9

Bits 11

BCD 12

Floating-Point Data Types 14

Introduction to Floating Point 14

IEEE Floating-Point Standard 15

What If die 80387 Is Missing? 16

Data Formats 17

Integer Data Types 18

BCD 19

Real Formats 20

Temporary Reals 23

Special Cases 23

Exceptions 29

XI

Chapter 2 33

Machine State and Memory Addressing

Registers 34

The Genera] Registers 35

The Processor-Control Registers 36

Segment Registers 41

Memory Addressing Concepts 42

Two-Part Addressing 42

Notation 43

Memory Addressing Mechanism 43

The Segment Part: Segment Register 44

The Offset Part: Address Modes 47

Program Stack 48

Pointer Data Type 53

Address Modes and Data Structures 54

Segmentation Strategies 56

Instruction Encoding 59

Immediate Constants 61

Register Operands 63

Memory Operands 66

I/O Space 76

Floating-Point Registers 77

Floating-Point Accumulator Stack 77

Sixteen-Bit Status and Control Registers 80

Error-Pointer Registers 86

Chapter 3 91

Instruction Set

Table of Contents for Chapter 3 91

Alphabetical Index to Instructions 98

Xll

Instruction Description Format 105

Integer 119

Multiple Segment 269

Operating System 290

Floating Point 320

Chapter 4 401

Instruction Set Examples

Syntax 401

Integer Examples 405

Signed Divide 405

Sort 406

Factorial 408

Semaphore 411

String Search 412

Bit Block Transfer 415

Floating-Point Examples 420

Floating-Point Flags 420

Partial Remainder 422

Exponential Computations 422

Matrix Multiplication 423

Statistics 426

Chapter 5 431

Memory Management, Protection, and Tasks

Memory-Management Facilities 433

Address Translation 433

Protection 437

Segmentation 446

Segment Descriptor Tables 448

XIII

Segment Selectors 451

Segment Descriptors 453

Paging 463

Page Table Structure 465

Page Table Entry Format 470

Virtual Memory 473

Page-Level Protection 473

Software Issues in Modifying Page Table Entries 475

Processor-Control Registers and System Segments 477

Processor-Control Registers 477

Segmentation Table Base Registers 481

Task State Segment Format 483

Instructions Sensitive to Privilege Level 488

Privileged Instructions 489

I/O Space Protection 490

Instructions That Change EFLAGS 496

Control-Transfer Methods 497

Same Level, Same Task 497

Different Level, Same Task 498

Outward Returns 504

Segmentation Details 505

Exceptions Summary 506

Memory Data Access Details 509

Control-Transfer Details 528

Task Switches 540

Chapter 6 553

Interrupts and Exceptions

Interrupts 554

INTR Interrupts 555

NMI 555

Exceptions 555

Instruction Restart 557

XiV

Exception Types 557

Exception Summary 563

Priority of Interrupts and Exceptions 564

Masking Interrupts and Exceptions 565

Interrupt/Exception Transfer Methods 566

Interrupt and Trap Gates 569

IRET with NT = 572

Transfers through Task Gates 573

Task vs. Interrupt/Trap Gates 573

Interrupt/Exception Details 574

Interrupt Description 575

IRET Instruction 578

Exception Reporting 580

Coprocessor Error Exceptions 583

Masked vs. Unmasked Exceptions 584

Coprocessor Error Categories 585

Precedence of Coprocessor Error Exceptions 589

Chapter 7 591

Operating System Examples

Syntax 591

Initialization Example 592

Overview of Example 1 593

Details of Initialization Example 602

Coprocessor Exception Handler 624

Overview of Example 2 624

Details of Exception Handler 625

Chapter 8 631

Debugging Support

Terminology 632

XV

Debug Breakpoints 632

Debug Registers 633

Breakpoint Address Recognition 637

Code vs. Data Breakpoints 638

Other Debug Capabilities 639

Debug Trap in TSS 640

INT 3 640

Single-Stepping 641

Chapter 9 643

Executing 8086 and 80286 Programs

Sixteen-Bit Registers and Addressing Modes 644

Executing 8086 Programs 646

Segmentation and Addressing 648

Invalid Instructions 652

8086 Format for FLDENV, FSTENV, and FNSTENV 654

Virtual-8086 Mode Considerations 655

Real Mode Considerations 669

Executing 80286 Protected Mode Programs 675

Appendix A 679

Comparison of the 80386, 80286, and 8086

8086 Compared to the 80386 679

80286 Compared to die 80386 683

Appendix B 687

Comparsion of the 80387, 80287, and 8087

80287 (and 8087) Compared to the 80387 687

Instruction Execution 688

Other Differences 689

XVI

8087 Compared to the 80387 691

Appendix C 695

Binary, Hexadecimal, and Decimal Table

Appendix D 697

Powers of Two

Appendix E 701

ASCII Table

Appendix F 705

80386 Opcode Map

Keys to Abbreviations 705

Codes for Addressing Method 706

Codes for Operand Type 707

Register Codes 707

Appendix G 715

80386 Instruction Format and Timing

80386 Instruction Encoding and Clock Count Summary 715

Instruction Encoding 730

32-Bit Extensions of the Instruction Set 732

Encoding of Instruction Fields 733

Appendix H 745

Machine Instruction Decoding Guide

XVII

Appendix I 753

80387 Extensions to the 80386 Instruction Set

Index 758

Introduction I

THIS BOOK PRESENTS THE ASSEMBLY LANGUAGE PROGRAMMER'S VIEW OF

the 80386, the latest member of the popular Intel 86 family of micro-

computers. Throughout the book we focus on the 32 -bit features of the

chip. The 80386 is entirely compatible with the 8086 and 80286, and we
summarize these features in Chapter 9. In addition to complete coverage

of the 80386, we also cover the 80387, the numerics coprocessor of the

80386. Rather than presenting the 80387 in an appendix or in a separate

chapter, as many books do, we present it in an integrated fashion.

Having spent years developing the chip itself, we are pleased to

present the insider's view of how to program and use the 80386. Through-

out the book, we have strived to be accurate and authoritative, as only

the chip designers could be.

An important question to answer is: why should you be reading this

book? Why will your understanding and programming of the 80386

benefit you for the next decade or two of your programming career? The
answer is in the tremendous cumulative investment in the 86 family. To
design and use a computer, investments are continually made. These

investments are by those designing computers (IBM PC, PC/AT, PS/2),

operating systems (UNIX, MS-DOS), programming languages (C,

FORTRAN), application programs (Lotus 1-2-3, MultiMate, dBASE
III), and additional hardware (graphics, extra disks, network connec-

tions, add-on memory). The investments also include programs you may
write yourself and, of course, your time to learn. Thus, computer fami-

lies, such as the 86, evolve and share compatibility from one generation

to the next. This compatibility allows the use and leverage of massive

investments already made into a computer family.

We assume you have experience in the basic theory of computer oper-

ations. We also assume this is not your first assembly language experi-

ence. We thus purposely avoid these introductory topics and recommend
the less experienced reader in these areas to first read an introductory

XIX

text. The book is divided into roughly three parts. Chapters 1-4 present

the applications programmer's view of the 80386. Applications program-

mers can limii their reading to these chapters with little loss in complete-

ness. Chapters 5-7 present the operating-system programmer's view of

the 80386. These chapters are less tutorial than Chapters 1-4 and con-

clude with reference material on the detailed operation of the operating-

system facilities. Chapters 5-7 are required reading for the

operating-system programmer. Chapters 8 and 9 pick up the loose ends:

debugging and 80386 compatibility with the 8086 and 80286. A more
detailed description of each chapter follows.

In Chapter 1, we give a brief introduction to the 8086 family of pro-

cessors. We also present other introductory items, such as memory orga-

nization and number representations. The bulk of the chapter is

dedicated to the data types supported by the 80386 and 80387.

In Chapter 2, we present the internal machine state, general registers,

processor control registers, and segment registers of the 80386. This is

followed by an introduction to memory addressing. Instruction encodings

and I/O space addressing are next presented. The chapter concludes

with the 80387 internal machine state, general registers, and control

registers.

Chapter 3, the most voluminous of the book, presents every instruc-

tion of the 80386 and 80387. The instruction presentation is broken into

four sections: integer instructions, multiple-segment instructions, instruc-

tions for the operating-system writer, and instructions that operate on

floating-point data.

Chapter 4 presents several examples of the applications programmer's

instructions and machine state. It summarizes the applications program-

mer's view of the 80386 and 80387.

Chapter 5 presents the memory-management, protection, and multi-

tasking facilities of the 80386. Several registers and system segments used

by these facilities are introduced here rather than in Chapter 2. The
chapter includes the exact semantics of all segmentation, memory access,

control-transfer, and task-switching operations.

Chapter 6 presents the interrupts and exceptions of the 80386 and

how they are processed. This includes the priorities of interrupts, how
they are masked, and details of control transfers during interrupt process-

ing. As in Chapter 5, an authoritative presentation of the interrupt and

exception processing details is given. The chapter concludes with the

80387 exception causes and methods of processing.

Chapter 7 presents examples of the operating-system facilities of the

80386. These examples demonstrate many of the segmentation, paging.

XX

and exception facilities discussed in Chapters 5 and 6, and the operating-

system and multiple-segment instructions of Chapter 3.

Chapter 8 presents the facilities included in the 80386 specifically to

support debugging.

Chapter 9 takes a step backward and discusses executing 16-bit code

on the 80386. This includes descriptions of real (8086), virtual-8086, and

protected 16-bit modes of operation.

The following references provide additional material on the 80386 and

80387. Since we make no mention of the hardware aspects of the 80386,

items 2 and 3 below are particularly useful, as they cover this area.

1. 80386 Programmer's Reference Manual, Intel Corporation, Order No.

230985.

2. 80386 Hardware Reference Manual, Intel Corporation, Order No.

231732.

3. 80386 Data Sheet, Intel Corporation, Order No. 231630.

4. 80386 Assembly Language Reference Manual, Intel Corporation, Order
No. 122332.

5. 80387 Data Sheet, Intel Corporation, Order No. 231920.

With this brief introduction, let's begin our study of the 80386. It will

be challenging, but not without reward, as you make an investment in a

very popular microcomputer family.

Chapter

wma^^^mmmm^^^^maaam this chapter begins with a brief His-

torical background of the 86 family of processors developed and manu-
factured by Intel Corporation. The 80386 is the latest and most powerful

member of this 86 family of processors. Following the history lesson, we
describe the data types supported by the 80386. The chapter concludes

with a description of the floating-point data types supported by the

80387.

History of Intel Microprocessors

The first microprocessor, the 4004, was developed in 1971 by Intel. The
4004 was quickly enhanced to the 8008. These devices, very trivial by

today's stamdards, were novel but hardly taken seriously as computers of

any worth. In 1974 Intel's second-generation microprocessor, the 8080, was

introduced. This was the first general-purpose microprocessor and was quite

important to the microprocessor industry. In 1978 the third generation was

introduced—the 8086. This marked the beginning of microprocessors as

"real" computers. This is where the 86 family began.

2 Programming the 80386

The 8086 is a 16-bit processor, the 8080 is 8 bits, and the 4004 is 4

bits. The 8088, the Httle brother of the 8086, was used in the IBM Per-

sonal Computer (introduced in 1981) and this launched the personal

computer revolution. With this and many other designs using the 8086

and 8088, the 8086 architecture became the most important micropro-

cessor architecture then and now.

But the family did not stop with the 8086. In 1982 Intel introduced

the 80186. This component is architecturally identical to the 8086 but

includes several other common system devices on the same component.

Also in 1982, the 80286 was introduced. The 80286 is an architectural

superset of the 8086. This means that it can operate exactly as an 8086

but can also do much more. In particular, it added support for multi-

tasking, which is the ability to execute more than one application pro-

gram, or task, at a time. Multitasking requires the 80286 to support

protection between each task and each task's memory area. Both the

80186 and 80286 are 16-bit components.

Finally, the 80386 was introduced in 1985. The 80386 provides two

major and many minor enhancements over the 80286 and the 8086.

These enhancements are summarized in Appendix A. The two most

important enhancements are 32-bit operations and data types, and pag-

ing as a memory-management technique in addition to the segmentation

technique found in all members of the 86 family. Both paging and seg-

mentation will be discussed in great detail in Chapters 5, 6, and 7. In

addition, the 80386 extends the multitasking capabilities of the 80286.

The 80386 allows simultaneous execution of 8086, 80286, and 80386

tasks and operating systems.

A final historical point deals with numerics coprocessors. A numerics

coprocessor has been associated with each major generation of the 86 family.

The major 86 family components are the 8086, 80286, and 80386, and
their associated numerics coprocessors are the 8087, 80287, and 80387,

respectively. These coprocessors are tighdy coupled with the processor to

provide a computer architecture that supports floating-point operations and

their data types. The minor differences among these generations of floating-

point components are listed in Appendix B.

Compatibility with the 8086 and 80286

Each generation of the 86 famUy has maintained compatibility with each

prior member. Thus, the 80386 can execute any programs that execute on
the 80286 or 8086. Chapter 9 describes how to run 8086 and 80286 pro-

grams on the 80386. But aside from issues of backward compatibility, this

book focuses on the full-scale 3 2 -bit facilities available on the 386, and

The Basics 3

describes how to program the 386 as a 32-bit machine. This book does

not discuss how to program either the 8086 or the 80286. (If you want-

ed to learn how to program the 8086 or 80286, you would be reading an-

other book!)

However, since many readers do have experience programming the

8086 or 80286, we do, where appropriate, point out differences between
these members of the family and the 80386. Appendix A summarizes the

differences between the 8086, the 80286, and the 80386.

Data Formats

The primary purpose of a computer is to store, retrieve, and operate

upon data. Thus, understanding the data types supported by the

machine is a good place to start when learning to program a new com-
puter. The kinds of data types are signed and unsigned integers, BCD
(packed and unpacked binary-coded decimal), strings, bits, and floating

point. Most of these data types can be found in most computers. There-

fore, we emphasize the differences of the 80386 data types from most

other computers or, more importandy, from the 8086 or the 80286.

Memory

Before beginning a detailed discussion of data types, you need to

understand the organization of memory. Memory, as in all traditional

computers, is the prime source and destination of all information. Mem-
ory can be considered simply a sequential array of bytes with each byte

having a unique address. Addresses normally begin with and incre-

ment upward to the maximum address supported by the computer. The
80386 is a 32-bit machine and has a total physical address range of 2^^

bytes or 4G bytes of physical memory. Notice the emphasis on physical

address range. In Chapters 2, 5, and 7, you will learn about segmented

and paged virtual memory. You will find the maximum virtual memory
address to be much larger than 2^^.

If more than 8 bits are needed to represent the values in a data type,

multiple contiguous bytes are used. A word is two contiguous bytes, and

can store 2'^ different values. A dword, or double-word, is four contiguous

bytes, and can store 2^^ different values.

A simple but important issue with multibyte data is whether the low-

order byte is at the lowest address (numerically smaller) or at the highest

address. Figure 1.1 illustrates the two possible ways to store a word

4 Programming the 80386

Datum: 4 C

Address

m + 2

m + 1

m

6 A

. '

X X XX

6 A 4C

4C 6 A

Big endian Little endian

Figure 1.1: Big endian vs. little endian

datum in two bytes of memory. The "big endian" method, on the left,

puts the high-order 8 bits in the lowest addressed byte of the word, and

the low-order 8 bits in the highest addressed byte. If this seems backward

from what you are already familiar with, that is because the 80386 uses

the "little endian" method shown on the right. On the 80386, the low-

order 8 bits of a word are in the byte with the lowest address (m), which

is also the address of the word. The high-order 8 bits of the word are

stored at the highest address (m + 1).

We will not try to settle this sometimes religious debate and always

heated discussion of big vs. little endian, but you might guess our opin-

ion. Figure 1.2 shows how the bytes are stored for a dword in memory
for big and little endian. Again, the 80386 is a litde-endian computer.

Notation

Throughout this book, we will introduce notational conveniences that

allow concise and unambiguous specifications. One convenience is the

specification of numbers. A number followed by h will denote a hexa-

decimal (base 16) number. A number followed by b will denote a binary

(base 2) number. If the number has neither the h nor the b suffix, it is

assumed to be decimal. Thus, 100 is decimal, 100b is binary (with value

4 decimal) and lOOh is hexadecimal (with value 256 decimal). Appendix

C gives a complete list of the binary to hexadecimal and decimal

conversions.

The Basics 5

Datum: 4

Address

m-t-4

m-i-3

m-H2

m-t-1

m

AC B 1 3 9

» * * " '

XX X X

39 4

B 1 A C

AC B 1

40 39

Big endian Little endian

*- Figure 1.2: Big endian vs. little endian for dwords

Unsigned Numbers

As is normally the case for conventional computers, the 80386 sup-

ports the basic unsigned number data type in byte, word, and dword
lengths (8, 16, and 32 bits). Dwords are an addition to the 80386 not

found in prior 86 family members. Appendix D gives a complete list of

the powers of two up to 2^^.

Table 1.1 defines a few common abbreviations that we use throughout

this book. Thus, the unsigned data types can represent numbers in the

range of to 256, to 64K, and to 4G for byte, word, and dword,

respectively.

Figure 1.3 shows the organization of the bits in the unsigned data for-

mat. Above the three data formats is the memory address beginning at

address m as was presented earlier. Bit is the least significant bit

(LSB). The most significant bit (MSB) of the unsigned number is bit 7,

15, and 31 for byte, word, and dword representations, respectively.

Signed Integers

The previous section presented the basic unsigned number data types.

They have one major deficiency, however: they cannot represent negative

6 Programming the 80386

ABBREVIATION POWER OF TWO DECIMAL VALUE

IK 210 1024

4K 2.2 4096

16K 2.4 16,384

32K 2.5 32,768

64K 2.6 65,536

2G 23. 2,147,483,648

4G 232 4,294,967,296

Table 1.1: Abbreviations for powers of two

1

m + 3 m + 2

1

1

m + 1

1

MSB

m Address

MSB

w

Byte7

1

MSB

1

Word15
1

8 7
1

w

Dword31

1

24 23
T-

16 15

F

8 7

'

Figure 1.3: Unsigned byte, word, and dword

The Basics 7

numbers. If you try to keep track of your checking account balance, you
know that signed numbers are essenti2il.

Thus, as is normally the case, negative numbers can be represented in

the 80386. There are several ways to represent negative numbers. These

include biased numbers, sign magnitude, one's complement, and two's

complement. Two's complement is used in the 80386 and all other 86

family members to represent signed integers. Two's complement notation

will be described after a brief digression to describe the alternate methods

for representing negative numbers. You will see some of these alternate

notations later when we present the floating-point data types, so it is

worth describing them here.

Table 1.2 gives a list of several numbers in each of these forms. This

TWOS ONE'S BIAS SIGN

DECIMAL COMPLEMENT COMPLEMENT (BIAS = 127) MAGNITUDE

128 NR NR 11111111b NR
127 01111111b 01111111b 111 11110b Olllllllb

126 01111110b 01111110b 11111101b 01111110b

2 00000010b 00000010b 10000001b 00000010b

1 00000001b 00000001b 10000000b 00000001b

00000000b 00000000b OllllUlb 00000000b

-0 NR 11111111b NR 10000000b

-1 llUllllb 11111110b 01111110b 10000001b

-2 11111110b 11111101b 01111101b 10000010b

-126 10000010b 10000001b 00000001b 11111110b

-127 10000001b 10000000b 00000000b 11111111b

-128 10000000b NR NR NR

Note: NR indicates not representable in this format.

Table 1.2: Negative number formats

8 Programming the 80386

is not a comprehensive hst of representations, but it covers all the for-

mats you will need in this book. The table assumes an 8-bit datum.

Biased Numbers

Biased numbers are used for expressing the exponent of a floating-point

number, because they make numeric comparison (such as less than or

greater than) easy. A biased number is computed by taking the initial

positive or negative number and adding a bias value to it. The bias is

usually such that the most negative number allowed in the representation

becomes and the most positive number becomes the largest value of

the representation. Table 1.2 demonstrates this with -127 being the

most negative number, and a bias of 127 making the biased represen-

tation of -127.

Sign Magnitude

Sign magnitude has a bit representing the sign (0 if positive and 1 if

negative), with the remainder of the bits giving an unsigned integer rep-

resenting the magnitude, or absolute value, of the number. The signi-

ficand of a floating-point number is expressed in a magnitude notation

with a sign bit giving the sign of the entire floating-point number.

One's Compiement

In a one's complement number, the MSB indicates the sign of the num-
ber (0 if positive and 1 if negative). A negative one's complement number
is computed by simply inverting every bit (including the MSB) of the posi-

tive number. One's complement notation was common in earlier computers

because it is so easy to compute (a simple inversion of each bit). It is not,

however, commonly used today.

Two's Complement

Two's complement notation is described below. It is commonly chosen

to represent signed integers because it has the pleasant property that the

simple binary adder used for unsigned numbers will also add two num-
bers in two's complement format with no additional transformations.

This is important in a computer such as the 80386, which supports both

unsigned and two's complement data. Two's complement is formed by

computing the one's complement of the number and adding 1 to the

result. As was the case for one's complement, the MSB is the sign bit.

MSB = indicates a positive number, and MSB = 1 indicates a negative

number. Figure 1.4 displays the two's complement forms of the 80386.

The Basics 9

1

1

1

m + 3

1

m + 2 1

1

1

m + 1 1

1

MSB, Sign

m Address

*
1

7 6 Byte

MSB, Sign

1

^

5 14 ' sj
1

7 Word

MSB, Sign

1

3

'

1 30
I

16
1

15 8
1

7 Dword

Figure 1.4: Two's complement byte, word, and dword

The 80386 can perform various arithmetic computations upon two's

complement numbers. The exact operations that can be performed are

discussed in Chapter 3. Also, as is usually the case with two's comple-

ment, arithmetic operations (addition, for instance) can cause overflows

indicating the result is in error. This is the case when two large positive

numbers are added and the result is a small negative number. Chapter 2

discusses how errors such as this are recorded. These conditions are simi-

lar to those encountered on other 86 family members.

The 80386 can have 8-, 16-, and 32-bit two's complement data types.

These can represent numbers in the ranges -128 to 127, -32K to

32K-1, and -2G to 2G-1, for byte, word, and dword, respectively.

Strings

As was the case in prior 86 family members, the 80386 supports oper-

ations on strings of data. A string is a contiguous sequence of bytes.

10 Programming the 80386

words, or dwords. Support of dword strings is new to the 80386. The

length of a string is from 1 to 2^^ i^G) elements. Figure 1.5 shows the

three kinds of strings.

The 80386 has instructions to move strings from one area of memory
to another, to compare two strings, to fill a string with a fixed element,

to read or write strings from input/output ports, and to search strings for

specific data values.

ASCII

One of the most common forms of strings are ASCII strings. ASCII
data is quite common in an 80386 system, since most data originating

from a terminal is in ASCII (American Standard Code for Information

Interchange). Thus, as was the case in other 86 family members, it is

important for the 80386 to support ASCII. Appendix E gives the com-

plete ASCII table. This includes integers, alphabetic characters, special

characters, and control characters.

The 80386 supports arithmetic operations such as addition and divi-

sion on ASCII numbers. These operations are described in more detail

in Chapter 3.

A + N

A + 4N+3

A + 4N+2

A + 4N + 1

'

i ^

ir A + 4N

• In
•

31

A + 2N + 1

i A + 2N

15

N
7

1

7 7

A + 3 A + 2 A + 1 A

h
13

io
15

A + 1 A Address

Byte String

31
T?

Address

Word String

A + 7 A + 6 A + 5 A + 4 A + 3 A + 2 A + 1 A Address—
'
—

rr-^ Dword String

Figure 1.5: Byte, word, and dword strings

The Basics 11

Bits

Everything we have discussed so far has shown the 80386 operating on

data that is at least 8 bits wide and often larger. The support of opera-

tions on bit strings is new to the 80386, as no other 86 family member
supports it.

Bit support is important, since data can often be represented by a

single bit. A common example is a bitmap display. In a bitmap display,

each pixel, a single dot on the display, is mapped to a single bit in mem-
ory, which is either 1 (the dot or phosphor is lit) or (the dot is dark).

Another example is a semaphore where a single bit indicates whether the

semaphore is free (0) or busy (1). It is possible to dedicate an entire byte

to each pixel or semaphore, but this would waste much storage. In fact,

you would waste 7 bits per data element, or 87.5 percent of memory.
For this reason the 80386 also supports operations on bit data.

The 80386 supports bit strings that contain up to 2^^ bits indexed by a

signed dword. The actual operations are given in Chapter 3.

Figure 1.6 shows the layout of a bit string in memory. Notice that the

bit index is a signed number. Thus, a bit string need not have the least

significant bit referenced as 0. Within a byte, the low-order bit is bit

and the high-order bit is bit 7. This bit numbering is consistent with the

80386 as a little-endian machine.

m + 1 m

7

1

7

'

Bit Number 1514 13 12 11 10 9 87 6 5 4 3 2 1

m + 3 m + 2 m + 1 m

7

1

7

1

7

1

7

1

Bit Number 31302928272625242322212019181716151413121110 9876543210

m + 268,435,455 m - 1

Bit Number 7 6 5 4 3 2 10-1-2-3-4-5-6-7

+ 2,147,483.647 -2,147,483,648

Address

Bit Word

Address

Bit Dword

m - 268,435,456 . Address

Bit String

Figure 1.6: Bit data types

12 Programming the 80386

A 32-bit signed integer is used to address a particular bit within a bit

string. This 32 -bit signed integer is called a bit offset and can have a value

from - 2G to 2G - 1 . The bit offset is divided into a byte address and a

bit remainder. The byte address is the specified bit offset divided by 8,

and the desired bit is within this byte. The bit of interest within this byte

is determined by the bit offset modulo 8. Figure 1.7 gives two bit

examples: bit offset 23 and bit offset -18 within a bit string at address

N. In Chapter 4, Listings 4.5, 4.7, and 4.8 give more extensive

examples of operating with bit data.

BCD

As in other 86 family members, the 80386 supports operations on

BCD (binary-coded decimal) data types. The 80386 contains instructions

m + 2 m + 1

V
7 7

Offset = 23

m - 1 m - 2 m - 3

7 7 6

Offset = -18 7

Example 1 Example 2

Byte Index

23

H- 8

Bit Remainder

23

mod 8

Byte Index

-18

^ 8

Bit Remainder

-18

mod 8

Example

1

Example

2

* Figure 1.7: Bit string offset examples

The Basics 13

(discussed in Chapter 3) that allow the 80386 to add and subtract BCD
data. Table 1.3 summarizes the BCD encodings.

BINARY DECIMAL

0000 0000b 00

0000 0001b 01

0000 0010b 02

0000 0011b 03

0000 0100b 04

0000 0101b 05

0000 0110b 06

0000 0111b 07

0000 1000b 08

0000 1001b 09

0000 1010b OX

0000 101 lb OX

0000 1100b OX

0000 1101b OX

0000 1110b OX

0000 1111b OX

0001 0000b 10

0001 0001b 11

Note: X indicates an illegal

value for BCD representation.

Table 1.3: Binary-coded decimal representations

14 Programming the 80386

The 80386 deals only with byte BCD quantities directly. In Chapter 3,

we will show how multibyte BCD numbers are handled. Two BCD dig-

its fit in a byte, with the low-order digit in bits to 3, and the high-

order digit in bits 4 to 7. Unpacked BCD stores one BCD digit per

byte, in bits to 3.

Floating-Point Data Types

Floating-point data types are supported by the 80386's numerics

coprocessor, the 80387. They are very similar to the 8087 and the 80287,

and their diff'erences are noted in Appendix B.

Introduction to Floating Point

So far, we have discussed various data types: signed and un-

signed integers, strings, bit strings, ASCII, and BCD. None of these can

represent numbers with fractional amounts—for instance, decimal frac-

tions such as $1.21. Nor can such important physical constants as

3.1416, 8.854*10"", 6.02*10^', 9.81, 9.11*10"^', or 1.38*10-^^ be rep-

resented. Numbers with both an integer portion and a fractional portion,

as in the examples above, are mathematically referred to as real numbers

or rational numbers. In this book we will simply refer to these as real

numbers even though this is not mathematically precise. Thus, for our

purposes, a real number is any number that can be written as an integer

and a fractional portion. Note that the integer number set described in

the preceding section is a subset of the real number set in which the

fractional portion is zero.

A computer represents numbers with a fixed number of bits. Thus, a

computer cannot accurately represent all real numbers. In fact, a com-

puter represents a very small subset of all possible real numbers. Fortu-

nately, however, this subset covers most of the cases of practical

importance, since use of the subset entails only a small loss of precision.

The computer representation of a data type for real numbers is termed

floating point. Real numbers is a mathematical term describing a set of num-
bers, and floating point describes the data type for representing a subset of

real numbers in a computer.

Let's consider a few alternatives to floating point to show why floating

point is the way it is. One simple alternative to floating point, for

example, has to do with money. You could simply multiply all your

numbers by 100 and thus convert all information into a range that could

be represented by integers. For example, let's say the numbers 23.41

The Basics 15

were read from a keyboard and converted from ASCII characters into an

internal representation of 2341. All operations internally would be per-

formed with this internal form, and when the results were output, the

number would have to be divided by 100 before printing the results.

This has many problems, one of which is a lack of precision. For

example, if you received 7 percent interest on $23.41, would you have

$25.04 or $25.05? Without taking extra precautions, you would have lost

.01 and have $25.04.

Another solution is to treat numbers as fixed point. Let's imagine that

you dedicated the lower 3 bits of a byte to a fraction. For example

lOllOUOb = 2' + 2' + 2' + 2-' + V = 22.75

This works, but it has a small fixed range of numbers that can be repre-

sented (from to 2^), with increments of 2"\

The solution to these problems is provided by floating-point represen-

tations. This format allows the binary point to float. A portion of the

data representation is dedicated to specifying the location of the binary

point, and the rest of the representation specifies the significant data bits.

As you will see, this allows you to significandy extend the representable

range of numbers while providing good precision over this entire range.

You can represent floating-point numbers with two integers: one to

hold the significant data bits, and a second to specify the location of the

binary point. Floating-point operations can be performed on these inte-

ger pairs using a sequence of integer instructions such as additions, mul-

tiplications, and shifts. This software emulation of floating point can be

quite slow, which motivates the use of specialized hardware for floating-

point arithmetic. Intel provides a numerics coprocessor, the 80387, to

support floating-point arithmetic. The rest of this chapter will discuss the

data types of the 80387.

IEEE Floating-Point Standard

Before diving into the data type details of the 80387, we'll make a few

comments about the IEEE floating-point standard. Before 1979, many
mainframes and minicomputers incorporated floating-point data types.

There were, however, no standards as to what the floating-point represen-

tation looked like. In fact, you could run a FORTRAN program on com-

puter A and later run it on computer B zind get quite different results.

While developing the 8087 (the numerics coprocessor for the 8086 and

8088), Intel also became interested in developing a floating-point stan-

dard, particularly a standard against which the 8087 would perform.

16 Programming the 80386

Shortly after Intel published its proposed standard, the IEEE sanctioned

a committee to develop a standard for floating-point arithmetic. The result

of several years of work by many members of this committee is Draft 10.0

of IEEE Task P754, "A Standard for Binary Floating-Point Arithmetic."

A few purposes of this standard, as stated in the draft, are to

1. "Facilitate movement of existing programs from diverse computers

to those that adhere to this standard.

2. Enhance the capabilities and safety available to programmers who,

though not expert in numerical methods, may well be attempting to

produce numerically sophisticated programs.

3. Encourage experts to develop and distribute robust and efficient

numerical programs portable, via minor editing and recompila-

tion, onto any computer that conforms to this standard."

The IEEE standard is gaining acceptance in the industry. Not only do

Intel chips support this standard, but many other microprocessors, mini-

computers, and mainframe computers support it as well. The 80387

adheres to this standard. In summary, the 80387 provides data support

over a very wide range, good intermediate value support, safe results,

and good performance.

What If the 80387 Is Missing?

It is, unfortunately, possible that you do not have an 80387 in your

system. Remember that the 80386 and 80387 are separate silicon compo-
nents. A system that has an 80386 may not contain its numeric copro-

cessor. As mentioned in the introduction, there are several possible

solutions.

1. You could have an 80387 added to your system. If you anticipate

a large amount of computations, this is probably a wise choice.

Almost all computer makers have an 80387 as an option if your

computer did not come with it.

2. Your computer may have a mathematics emulation package (soft-

ware emulation referred to above). If you do not have an emula-

tion package, you may be able to get one or write one yourself.

So even if you don't have a coprocessor, if you want to do floating-

point arithmetic you will have to use an emulation package and pretend

that you have one. In either case, you will need to use the floating-point

data types and instructions designed for the 80387.

The Basics 17

Your system may also have an 80287 (the numerics coprocessor for the

80286) rather than an 80387. The 80386 can operate with either. If it

has an 80287, refer to Appendix B to see the differences between the

80287 and the 80387.

Data Formats

The 80387 supports seven data types, summarized in Table 1.4.

Notice how large a number can be represented. Remember that the larg-

est integer number supported by the 386 is 2^^, or 4.29*10^ in decimal.

Thus we have substantially extended our range from the data types we dis-

cussed earlier.

Also notice that the 80387 supports integer data types. This may seem

odd since these, except for the 64-bit long integer form, are supported by

the 80386. But if a computation had both real and integer data, the

entire computation could be performed using the 80387. Data transfer

between the 80387 and the 80386 would not be required.

SIGNIFICANT

DIGITS APPROXIMATE

DATA TYPE BITS (DECIMAL) RANGE (DECIMAL)

Word Integer 16 4 -32768 < X < 32767

Short Integer 32 9 -2*10' <X < +2*10'

Long Integer 64 18 -9*10'^ < X < +9*10'**

Packed Decimal (BCD) 80 18 -99.. 99 < X < +99.. 99 (18 digits)

Short Real 32 6-7 -3.39*10"'' <X < 3.39*10''

Long Real 64 15-16 -1.80*10"'°' <X < 1.80*10'''

Temporary Real 80 19 -1.19*10"*'" <X< 1.19*10*'"

Table 1.4: Data types supported by the 80387

18 Programming the 80386

Integer Data Types

The integer data types are represented by the two's complement nota-

tion used by integer data types on the 80386. All the integer types are

common to the two chips, except that the 80386 supports an 8-bit inte-

ger and the 80387 supports a 64-bit integer. The nomenclature is also

different. The following table summarizes the integer data types sup-

ported by the 80386 and 80387. In the table, NR indicates not repre-

sentable in this processor.

Bits 80386 80387

8 Signed Byte NR
16 Signed Word Word Integer

32 Signed Dword Short Integer

64 NR Long Integer

Figure 1.8 shows the integer data types. These three data types can

represent numbers from -32768 to 32767, -2.147*10^ to 2.147*10',

and -9.233*10'^ to 9.223*10"^ in the word, short, and long integer for-

mats, respectively.

m + 7 1 m + 6 m + 5 m + 4 IT

1

+ 3
1

1

m + 2 m +

15

i

1 1
m Address

Word Integer

Sliort Integer

Long Integer

31

S 1

1 Sign, MSB

S i 1 1

63

' Sign MSB

S 1 1 1 1 1 1 1

^
Sign, MSB

Figure 1.8: Integer (two's complement) 80387 data types

The Basics 19

BCD

Again, the 80386 supports BCD, so why should the 80387? The 80387

supports this data type for basically the same reason as the integer argu-

ment given above. The BCD type supported by the 80387 is a packed

decimal type that is 80 bits, which holds 18 decimal digits and one sign

bit. This is shown in Figure 1.9. Why does packed BCD stop at 18 dig-

its and leave 7 unused bits in the representation? At 18 digits it meets

the COBOL standard (one of the prime languages that uses BCD), and
there was no reason to complicate the design past 18 digits.

I I I I I I I I I I

m + 9lm + 8|m + 7|m + 6|m + 5|m + 4|m + 3|m + 2|m + 1| m
I

Address

Unused n Magnitude

; X d17 d16 d15 d14 d13 d12 d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 dO

i

^
Si qn

Decimal Bits

0000

1 000 1

8 1000

9 100 1

(
1010

unused <

(
1111

Figure 1.9: 80387 BCD data type

20 Programming the 80386

Real Formats

The real formats are the floating-point formats mentioned above. Fig-

ure 1.10 gives the general real format. The format is composed of three

parts: significand, exponent, and sign.

The following table gives the bits that are used for each part in the

three real data formats.

Data Type Total Sign Exponent Significand

Short Real 32 1 8 23

Long Real 64 1 11 52

Temporary Real 80 1 15 64

Figure 1.11 gives the detailed bit locations of the three data types.

Let's start with the easy one. The sign is simply that—a sign bit. If this

bit is 1, the number is negative. If this bit is 0, the number is positive.

This is the sign magnitude format that was discussed in the section on

signed integers.

The significand gives the significant bits of the number. In some con-

texts the significand is referred to as the mantissa. If you consider for

just a moment you can convince yourself that it is possible to store the

same number in several different ways. For example (in decimal),

100.0*10', 10.0*10-\ 1.0*10°, 0.1*10', 0.01*10', and 0.001*10' all

represent 1. Now, to make computations always yield the maximum pre-

cision, the results are normalized. In other words, numbers always have

s Exponent Significand

' Sign

Where the value = (-D^'B" * Significand * ;

{Exponent

Figure 1.10: General real format

The Basics 21

their exponent adjusted such that the most significant (leftmost) bit of the

binary significand is 1, with the binary point just "to the right" of this 1

bit. Thus, the correct normalized result for the example above is

1.0*10°.

If you always have l.XXXXX*2" (X indicates 1 or 0), you know that

the bit to the left of the binary point is always 1. The 80387 eliminates

this bit in its short and long real formats to give one more bit of preci-

sion. Thus, in Figure 1.11, notice the "hidden" 1 bit. A significand of

01 11... 01 Ob really corresponds to 1.0111...010b in the short and long
real formats.

The exponent field contains the power of two needed to scale the signi-

ficand to achieve the final result. The exponent is stored in a biased
form (discussed in the signed integers section). This is done to ease

I I I I I I I I I I

m + 9lm + 8lm + 7lm + 6lm + 5lm + 4lni + 3lm + 2lm + ll m I Address

31 23

s ''78)'"' Significand (23)

Hidden 1

63 52

Exponent (11) Significand (52)

Hidden 1

79 64 63

S Exponent (15) 1 Significand (64)

Stiort Real

Long Real

Temporary Real

If normalized

Figure 1.11: 80387 real data types

22 Programming the 80386

numerical comparisons, since a large numerical value is always a large

number—this is not the case for the other representations for signed inte-

gers. The biases are 127, 1023, and 16383 for short, long, and tempo-

rary real formats. Thus, an exponent of 10000000b (short real) is

really 2'.

Now that we have explained all three components of the floating-point

formats, we are ready to summarize them with Figure 1.12 and a few

examples. Compare this with Figure 1.10.

Range in Figure 1.12 gives the largest numbers, positive and negative,

that can be represented by this data type. Precision gives the smallest pos-

sible number that can be represented by this data type. Denormals are dis-

cussed below and are given here for completeness. All examples will be

given in short real, since short real has quite enough bits to make it

difficult to comprehend.

Hidden 1

I Significand

- ^vSIgn '"^5 ^ . ^ -(Exponent -127) ShOft RCal
\-\) n. 023022021 •• og) e.

Range: ± 3.39 * 10^

Precision: ± 1.18 * 10"™ (Denormal: 1.40 • 10'**)

Hidden 1

1 Significand

(-if"" . (i.sXs43„) * z'^^"'"'"*"''
Long Real

Range: ± 1.80 * lo"*

Precision: ± 2.23 * lo"* (Denormal: 4.94 * 10""*)

(-irM1.Se3Se2Sai...So).2'^-'"'"""'

Range: ± 1.19 * 10**"' Temporary Real

Precision: ± 3.36 • lO"**" (Denormal: 3.65 • 10"**^)

Figure 1.12: Short, long, and temporary real numbers

The Basics 23

Sign Exponent Significand Sum Value

100011 10b 000100...Ob (1 +2"*)*2" 34816

1 01111100b 011000.. .Ob -(1 +2"'+2~')*2"' -.17188

01111111b 000000...Ob (1)*2' 1

Temporary Reals

We have discussed the three real formats as if they were all the same
except for the number of bits in each of the three portions of the repre-

sentation. This is almost true, but a few comments need to be made
about the temporary real format.

1. The temporary real format is the internal form used by the

80387. No matter what data type you give (short integer, BCD,
short real, and so on) the 80387 immediately converts it into

temporary real.

2. The temporary re2J format has no hidden bit. Thus, bit 63 of

the temporary real number is always 1 in a normalized number.

Why is temporary real solely used in the 80387? This is done to maxi-

mize the precision and range of computations. Even if you are perform-

ing a computation with short reals, you may have intermediate results

that gready exceed the range of a short real even though the final result

may be representable in a short real.

There is no hidden bit, since the 80387 uses the temporary real format

internally and the bit is needed to perform computations. When the

short or long real given to the 80387 is converted into temporary real,

an explicit 1 bit is inserted.

Special Cases

Tables 1.5 to 1.7 present all possible data representations for the three

formats. We will discuss the following special cases: zeros, infinities,

denormals, pseudo-denormals, and NaNs (signaling and quiet). Note

that all numbers in the three tables are binary.

Zero is simply a biased exponent of 00... 00b and a significand of

00...00b in all three formats. Note that a biased exponent of zero is

reserved. This means that the biased exponent of zero cannot be used to

represent a normal real number. Do note that both positive and negative

zero can be represented. The only case where the 80387 distinguishes

24 Programming the 80386

between the two forms of zero is when dividing by zero, as described in

Chapter 3 in the description of the FDIV instruction.

Infinities are the second special case. The biased exponent value of

11... lib is reserved. As above, this indicates it cannot be used by a nor-

mal real number If the significand is also zero, we have infinity. Again,

both positive and negative infinity can be represented. Infinities will be

discussed in more detail shordy.

BIASED

SIGN EXPONENT SIGNIFICAND CATEGORY

0/1 11. ..11 11. ..11 Quiet NaNs

0/1 11. ..11

0/1 11. ..11 10. ..00

0/1 11. ..11 01. ..11 Signaling NaNs

0/1 11. ..11

0/1 11. ..11 00. ..01

0/1 11. ..11 00... 00 Infinities

0/1 11. ..10 11. ..11 Normals

0/1

0/1 00. ..01 00... 00

0/1 00... 00 11. ..11 Denormals

0/1 00... 00

0/1 00... 00 00. ..01

0/1 00... 00 00. ..00 Zeros

Table 1.5: Short and long real representations

The Basics 25

Denormals are a special case in representing very small numbers.
Denormals allow a representation of gradual underflow or a gradual loss

of precision. Many computers do not gradually underflow as the 80387
does, but abrupdy underflow instead. This means when they get to the

BIASED

SIGN EXPONENT SIGNIFICAND CATEGORY

0/1 11. ..11 111. ..11 Quiet NaNs

0/1 11. ..11

0/1 11. ..11 no. ..00

0/1 11. ..11 101. ..11 Signaling NaNs

0/1 11. ..11

0/1 11. ..11 100. ..01

0/1 11. ..11 100. ..00 Infinities

0/1 11. ..10 111. ..11 Normals

0/1

0/1 00. ..01 100. ..00

0/1 00... 00 111. ..11 Pseudo-Denormals

0/1 00... 00

0/1 00... 00 100. ..00

0/1 00... 00 on. ..11 Denormals

0/1 00... 00

0/1 00... 00 000. ..01

0/1 00... 00 000... 00 Zeros

Table 1.6: Temporary read representations

26 Programming the 80386

least normalizable number, the next smaller representation used is zero.

In contrast, gradual underflow uses representations that are not normal-

ized (denormal). This results in a loss of precision, but significantly

extends the range of very small numbers that can be represented. As
should be obvious, gradual underflow is a far better solution than an

abrupt underflow, even though some precision is lost.

Normally, numbers are required to be normalized (left shifted until the

most significant significand bit is a 1). Denormals, however, do not have

1 as the most significant bit of the significand. The biased exponent of

00... 00 is a special representation for an exponent with value 2'^^,

2'^°^^ and 2"'^^^^
for short, long, and temporary real, respectively. This

is special since the normal biased exponent of 00... 01 also represents

exponents of 2'^*^, 2'^°^^, and 2 "'^^^ Denormals always have a loss of

precision; otherwise, a normal number would be used.

BIASED

SIGN EXPONENT SIGNIFICAND CATEGORY

0/1 11. ..11 Oil. ..11 Pseudo-NaNs

0/1 11. ..11

0/1 11. ..11 000. ..01

0/1 11. ..11 000... 00 Pseudo-Infinities

0/1 11. ..10 on. ..11 Unnormals

0/1

0/1 00. ..01 000. ..01

0/1 11. ..10 000... 00 Pseudo-Zeros

0/1 000... 00

0/1 00. ..01 000... 00

Table 1.7: Unsupported temporary real representations

The Basics 27

As you can see in Figure 1.12, the use of denormals allows significantly

smaller numbers to be represented (sometimes referred to as tininess).

Pseudo-denormals are supported by the 80387 but can never be produced

by the 80387. Denormals normally have as the most significant bit of

the significand. Pseudo-denormals, as seen from Table 1.6, have 1 for

this bit. Pseudo-denormals are unusual since they can be represented in

a normalized form but have not been. This is true since the special-case

biased exponent of 00...00 has the same exponential value as the "nor-

mal" biased exponent of 00...01, as was pointed out above. In addition,

the significand of a pseudo-denormal is normalized; that is, the MSB is a

1. Therefore, all pseudo-denormals can be represented as normals.

The next special cases are the NaNs. NaN stands for Not a Number.

There are two forms of NaNs: signaling and quiet. A signaling NaN
causes an invalid operation exception to be raised when used in an oper-

ation. A quiet NaN does not cause an invalid operation exception to be

raised. Thus, the descriptive naming: signaling and quiet. Exceptions

will be described briefly here and more completely in Chapter 6.

The signaling NaN has a as the most significant significand bit.

This is true except for temporary real, where the second most significant

bit is a and the most significant significand bit (the hidden bit) is a 1.

The signaling NaN can be used, for instance, to make sure that the pro-

gram initializes all variables before use. The programmer or compiler

could initialize each variable in a program to a signaling NaN so that an

exception is raised if an uninitialized value is used. A NaN can have

anything in the remainder of its fraction portion, which can be used to

store information about where or why the NaN was produced, if desired.

The 80387 never produces a signaling NaN.
A quiet NaN has 1 in the most significant significand bit except for

the temporary real case, where the second most significand bit is 1 and

the most significant bit (the hidden bit) is also 1. A quiet NaN is pro-

duced when an invalid operation exception occurs. When this occurs, the

result that is produced is the indefinite (given below). Under all circum-

stances (except for FCOM, FIST, and FBSTP, which are described in

Chapter 3), quiet and signaling NaNs are preserved through operations.

There are several special cases when dealing with NaNs:

1. Any operation that would generate an invalid operation excep-

tion but involves NaNs will yield the indefinite quiet NaN. The
integer, BCD, and real indefinites are given below.

2. When operations involve signaling and quiet NaNs (SNaN and

QNaN), the QNaN will be delivered as the result.

28 Programming the 80386

3. Operations between two SNaNs wiE yield the larger SNaN after

it is converted to a QNaN. Converting an SNaN to a QNaN is

performed by simply setting the most significant significand bit

to 1.

4. Operations between two QNaNs will yield the larger QNaN.

5. Operations between an SNaN and a normal number will yield

the SNaN after conversion to a QNaN.

6. Operations between a QNaN and a normal number will yield

the QNaN as the result.

As this description may be a bit confusing, Table 1.8 summarizes

operations involving NaNs. The table assumes an operation is occurring

with operands 1 and 2 (opi and 0P2).

Indefinites are a special case of quiet NaNs (described above). Each of

the data types supported by the 80387 (word, short and long integer;

packed decimal and short, long, and temporary real) have a single

indefinite representation. This representation is produced by the 80387

whenever an invalid operation exception occurs and none of the input

operands were NaNs. The instructions that generate invalid operation

exceptions are given in Chapter 3; exacdy how invalid operation excep-

tions can be generated is discussed in Chapter 6. Table 1.9 summarizes

the indefinite encodings for each data type. The leftmost bit in the

encoding is the most significant bit. For the real representations from left

to right, the fields are sign, exponent, and significand.

Do note that when we were discussing BCD and integer data types,

we did not tell the whole story since we did not mention indefinites.

When an indefinite is to be generated for an integer data type, the most

negative representation is generated. For BCD, an otherwise unused

encoding is used.

Indefinites can be loaded and stored for real formats. Since the real

indefinite falls within the quiet NaNs, an exception is not raised when
an indefinite is loaded. For integer and BCD, indefinites cannot be

loaded. For integers, the indefinites when loaded are treated as the larg-

est negative number. For BCD, the result of loading an indefinite is

undefined.

The unsupported temporary real representations given in Table 1.7

are exacdy that, unsupported by the 80387 (some were, however, sup-

ported by the 80287). These formats (pseudo-zero, unnormal, pseudo-

infinity, and pseudo-NaN) will cause an invalid operation exception to be

raised by the 80387 if encountered.

The Basics 29

Exceptions

Exceptions indicate that an error of some sort has been detected dur-

ing the current operation. For example, when you go to start your car a

bell may go off if your door is open or your seat belts are not fastened.

In either case, an exception has been detected.

There are many possible exceptions. For example, we described loss of

precision above. Depending upon the machine state, loss of precision

could be treated as an exception. We also described signaling NaNs.
Operating on a signaling NaN will generate yet another exception.

There are many other possible machine exceptions, most of which we

0P2

Q S R

Q >Q Q Q.

opi S Q CQ(>S) CQ(S)

R Q CQ(S) QI

KEY

Q Quiet NaN

s Signaling NaN

R Regular Real (non-NaN , legal number)

>Q The greater quiet NaN of opi and op2

>s The greater signaling NaN of opi and op2

CQ(X) Convert X to a QNaN
Qi The default quiet NaN-—the indefinite real

Table 1.8: Operations involving NaNs

30 Programming the 80386

FORMAT BITS ENCODING

Word Integer 16 100...000b

Short Integer 32 100...000b

Long Integer 64 100...000b

BCD 80 1 1111111 nil nil XX. .XXb

Short Real 32 1 11. ..11 10...00b

Long Real 64 1 11. ..11 10. ..00b

Temporary Real 80 1 11. ..11 no. ..00b

Note: X indicates "don't care."

*- Table 1.9: Indefinite encodings

have not yet developed the background to discuss. Detailed descriptions

of the exception conditions and how they are handled is discussed in

Chapter 6.

Chapter

CHAPTER 1 DESCRIBED THE DATA TYPES REC-

ognized by the 80386 and 80387, and how these data types are stored in

memory. The machine instructions of the 80386 and 80387 operate

directly on these basic data types. Each machine instruction specifies the

operation to be performed, and the locations of the input and output data

participating in the operation. The input/output data are called operands.

This chapter describes where the basic data types can be stored and

accessed by the 80386 as machine instruction operands. An operand can

specify data within the 80386 processor in a register, or outside the pro-

cessor in main memory or I/O memory, or located direcdy in an instruction

as an immediate constant. Main memory provides a very large space for

operand storage, but access to memory is much slower than to registers

or to immediate constants. Furthermore, some operations require some

operands to be in registers rather than memory.

This chapter first describes the three types of registers available to the

applications programmer: for storing 32-bit numbers, for controlling pro-

cessor execution, and for addressing memory segments. Next, we
describe the method used to form memory addresses and the binary

encoding of operands in the instruction set. Then, we introduce the sepa-

rate I/O memory space. Finally, we describe the registers available on

the 80387 floating-point processor for storing floating-point data types,

and for controlling the operation of the floating-point instructions.

34 Programming the 80386

Registers

The register set available to the applications programmer consists of

16 registers divided into three categories, as shown in Figure 2.1. Additional

registers are available to the systems programmer. Chapter 5 describes the

registers that support memory management. Chapter 8 describes

the registers that support program debugging.

GENERAL REGISTER SET

31 16 15 8 7

EAX

ECX

EOX

EBX

ESP

EBP

ESI

EDI

STATUS/CONTROL REGISTERS

31 16 15

EIP

EFLAGS

SEGMENT REGISTERS

15

1

AX

1 AH AL

1

1
" ES

CS

SS

DS

FS

GS

C

1 CH

X

CL
FLAGS

D

1 DH

X

DL

BX

1
BH BL

SP

1

°^

SI

Dl

Figure 2.1: 80386 registers

Machine State and Memory Addressing 35

The three categories are as follows:

1. Eight general-purpose 32-bit registers used for arithmetic and log-

ical operations, and for the base and index register components
of memory addresses.

2. Two 32-bit processor-control registers.

3. Six 16-bit segment registers that address memory segments. Each
register provides immediate access to one segment of memory at

a time. Memory segments will be explained later in this chapter

and in detail in Chapter 5.

The register set of the 80386 is a superset of the register set available on

the previous processors in the 86 family. In cases where a 16-bit register was

extended to provide a 32-bit register on the 80386, the 386 register name
is simply the old 16-bit register name prefixed with an E (for Extended).

For example, the 16-bit AX register from the 8086 was extended to form

the 32-bit EAX register on the 80386, the 16-bit IP {Instruction Pointer)

register was extended to form the 32-bit EIP register on the 386, and

so on.

The General Registers

The 80386 contains eight 32-bit general registers, used for arithmetic

operations such as addition, subtraction, multiplication, and division, and

also to form memory addresses, as described later in this chapter. These

eight registers are named EAX, ECX, EDX, EBX, ESP, EBP, ESI, and
EDI, as shown in Figure 2.1.

The lower 16 bits of these registers can be accessed independently as

16-bit registers, and are named AX, CX, DX, BX, SP, BP, SI, and DI.

These are the eight 16-bit general-purpose registers from the previous 86

family processors, and provide the compatible register set used for exe-

cuting 8086 and 286 code, as described in Chapter 9. If one of these

16-bit registers is accessed, the upper 16 bits of the 3 2 -bit general register

are not disturbed.

The high and low halves of the X registers—AX, BX, CX, and DX

—

can be accessed independently as 8-bit registers. The suffix H or L is added

to the first letter of the name of the 16-bit register to form the 8-bit register

name for the high or low half of the register. For example, the AL register

is the lowest 8 bits of the AX register, and also the lowest 8 bits of the

EAX register. The AH register is the upper 8 bits of the AX register, and

bits 8 through 15 of the EAX register. If one of these 8-bit registers is

accessed, the remaining bits of the general register are not disturbed. You

can see the overlap of the 8-bit, 16-bit, and 32-bit registers in Figure 2.1.

36 Programming the 80386

General Register Characterization

Operands can specify the contents of any general register for address

formation and for the simple arithmetic operations such as addition and

subtraction. Some of the more complex operations, such as string opera-

tions and double-precision multiplication and division, must take one or

more operands from fixed registers. This technique in which an instruc-

tion requires one or more operands to be read from specific registers is

called characterization. It is used in the 80386 to support complex opera-

tions that require more than the two operands provided in the

80386 instruction format. Since the reference to the register is built into

the instruction, it does not have to be named explicidy as an operand.

For example, the ECX, ESI, and EDI registers are used by the string

instructions to hold the string length, the source pointer, and the destina-

tion pointer, respectively. The EAX and EDX registers are designated by

the double-precision multiplication instructions to hold the double-length

result. Detailed examples will be provided in connection with these

instructions in Chapter 3.

With these exceptions, an operand can be any register or memory
address; 80386 operand selection is symmetric.

The Processor-Control Registers

Two registers control the operation of the 80386 processor: EIP, the

instruction-pointer register, and EELAGS, the processor status and con-

trol flags register.

The Instruction-Pointer Register—EIP

The 32-bit EIP register serves only one function: to point to the next

instruction the processor is to execute. As the 80386 executes a program,

it fetches and executes each instruction in the program. It fetches the

instruction pointed to by the EIP register, increments the EIP register by
the length of this instruction, and then executes the instruction. The
incrementing leaves the EIP register pointing to the next instruction in

the sequence of instructions stored in memory. Thus, EIP is always

pointing to the next sequential instruction to be executed. Control-

transfer instructions, described in Chapter 3, can alter this sequential

instruction flow by loading a new value into the EIP register.

The 16-bit IP register is contained in the lower 16 bits of the EIP reg-

ister. This IP register provides the 16-bit instruction pointer used for exe-

cuting 8086 and 80286 code, as described in Chapter 9.

Machine State and Memory Addressing 37

The Processor Status and Control Flags Register—EFLAGS

The 32-bit EFLAGS register contains several status flag and control

flag bits. The program sets the control bits to control the operation of

certain functions of the 80386. The processor itself sets the status bits,

which are tested by the program after arithmetic operations to check for

special conditions. Figure 2.2 shows the individual bit fields in the

EFLAGS register. Each field is briefly described below.

Bits marked as or 1 in Figure 2.2 are reserved. The reserved bits must
be loaded with or 1, as indicated, and must be ignored when examin-

ing the EFLAGS register. This will ensure compatibility with future pro-

cessors, in case Intel decides to use these bits to define more flags in the

EFLAGS register.

One way to change bits in the EFLAGS register that is guaranteed to

work with any future processor is to store the EFLAGS register, modify

just the bits required, and then reload EFLAGS with the modified value.

This way, only the required bits are modified, and the remaining bits

(including any that are defined in future processors) are unchanged.

Arithmetic Status Flags The CF, PF, AF, ZF, SF, and OF bits are set by

most arithmetic and logical instructions.

CF CF is the Carry Flag. It is set (CF = 1) if an arithmetic oper-

ation generates a carry or borrow out of the most signi-

ficant bit, otherwise it is cleared (CF=0). It provides an

overflow indication for unsigned arithmetic, and supports

multiple-precision arithmetic.

3130 29 28 27 26 25 24 23 22 212019 1817161514 1312 1110 9876543210

00000000
V R

OOOOOOMF
N lOP

T L

ODITSZ A P C

F F F F F F F F 1 F

Figure 2.2: EFLAGS register details

38 Programming the 80386

PF PF is the Parity Flag, and indicates the parity of the lower 8

bits of the result. PF is 1 if there are an even number of Is

in the lower 8 bits of the result, and it is if there are an

odd number of Is. This is called odd parity, since there are

always an odd number of Is in the data and parity bits.

AF AF is the Auxiliary carry Flag, and is set if there is a carry

or borrow out of bit 3. It is used in performing BCD
arithmetic.

ZF ZF is the Zero Flag. It is set if the result is 0.

SF SF is the Sign Flag. It is set to the most significant bit of the

result, which is the sign bit in two's complement notation.

OF OF is the two's complement Overflow Flag. OF is set if the

result of an arithmetic operation is too large or too small to

be represented as a two's complement integer in the num-
ber of bits available to store the result. It is set by most

arithmetic instructions if there is a carry into the high-order

bit but no carry out, or if there is no carry into the high-

order bit but there is a carry out.

This set of status flags was chosen so that a single set of arithmetic

instructions could operate on unsigned binary numbers, two's comple-

ment signed binary integers, and BCD digits. Out-of-range results can

be detected by looking at the CF bit after operating on unsigned num-
bers, at the OF bit after operating on signed integers, and at the AF bit

after operating on BCD digits. A less-than relationship between two

numbers can be determined by performing a subtract operation and then

examining

• CF for unsigned numbers

• SF XOR OF (exclusive-or operating on SF and OF) for signed

integers

• AF for BCD digits

By having exclusive-or operate on OF and SF to determine the less-than

relationship for signed integers, the correct indication is obtained even if

the subtract operation results in an overflow.

The following long example illustrates how these flags support

unsigned numbers, two's complement signed integers, and BCD digits

with a single set of instructions. Chapter 3 describes how each machine
instruction affects the flags. Here we will look at the CMP instruction,

Machine State and Memory Addressing 39

which compares two numbers by subtracting one from the other, and set-

ting the status flags accordingly. Let's suppose two 8-bit numbers are to

be compared. The first has the value 85h, which has a base-10 value 133

if considered as £in unsigned number, the base-10 value -123 if consid-

ered as a signed integer, or the base-10 value 5 if the low 4 bits are a

BCD digit. The second number has the value 49h, which is unsigned

73, signed 73, or BCD 9. As shown in detail in Figure 2.3, subtracting

49h from 85h gives the value 3Ch as a result on the 386, and sets the

flags as follows:

• CF is 0, since there is no borrow out of bit 7.

• PF is 1, since there are an even number of Is in the 8-bit result.

• AF is 1 , since there is a borrow out of bit 3

.

• ZF is 0, since the result is not 0.

• SF is 0, since the most significant bit is 0.

• OF is 1, since there was a borrow out of bit 6, but not out of

bit 7.

386 Representation True Result

hex binary unsigned twos comp BCD

borrow out 1 1111

85h 10000101b

subtract - 49li - 01001001b

1

133 -123

- 73 - 73

1

5

- 9

result 3Ch 00111100b

overflow indicator

less than Indicator

60 -196

CF = 0F = 1

CF = (SFXOROF) =

6

AF = 1

1 AF = 1

Figure 2.3: Status flags support multiple data types

40 Programming the 80386

In Figure 2.3, the binary result produced by the 386 is shown on the

left. The right side shows how the binary inputs and result can be inter-

preted either as unsigned numbers, two's complement signed integers, or

BCD digits.

The correct result is produced if the inputs are unsigned numbers,

since CF, the overflow indicator for unsigned numbers, is 0. CF is also

the less-than indicator, so in this example you see that the 386 has cor-

rectly determined that 133 is not less than 73!

If the inputs are signed integers, the value produced (-196) is too large

to fit in 8 bits. The 386 sets OF, the two's complement overflow indicator,

to indicate that the result overflowed the number of bits available. In spite

of the overflow, the 386 can still correctly indicate that -123 is less than

73, since the signed less-than indicator, SF XOR OF, is 1.

If the inputs are BCD numbers, the value produced by the binary

subtract is an invalid decimal digit (C). This is indicated by AF, the

BCD overflow indicator. AF is also the BCD less-than indicator, and

here it indicates that 5 is less than 9.

The CF, ZF, SF, and OF settings depend on the size of the data used

in an operation. Operations on 32-bit data set SF to bit 31 of the result,

set ZF if the 32-bit result is 0, and set CF and OF according to the

carry in and out of bit 31. Operations on 16-bit data set SF to bit 15 of

the result, set ZF if the 16-bit result is 0, and set CF and OF according

to the carry in and out of bit 15. Operations on 8-bit data set SF to

bit 7 of the result, set ZF if the 8-bit result is 0, and set CF and OF
according to the carry in and out of bit 7. The flag settings for 8-bit

data are illustrated in Figure 2.3.

The PF and AF settings are independent of the size of the operation per-

formed. PF is always formed as the odd parity bit over the low 8 bits of the

result. AF is set if there is a carry or borrow out of bit 3 of the result.

Processor-Control Flags The TF, IF, DF, lOPL, NT, RF, and VM bits

can be set by the program to control the operation of the 80386 pro-

cessor. Most of these flags support features of the 80386 described in

later chapters. This section summarizes these flags, and provides forward

references to the chapters containing the details of how these flags are

used. Most of the processor control flags are accessible by all programs,

but three are not: the VM flag, the lOPL field, and the IF flag. Chap-
ter 5 describes how these three control flags are protected.

TF The Trap enable Flag controls the generation of single-step

interrupts to support program debugging (Chapter 8). A
single-step interrupt will occur at the end of every instruc-

tion when TF = 1

.

Machine State and Memory Addressing 41

IF The Interrupt enable Flag enables the recognition of external

interrupts (Chapter 6) signaled on a processor pin. Exter-

nal interrupts are accepted if IF = 1 , and are held pending if

IF=0.

DF The Direction Flag determines whether the string instructions

will post-increment (DF =0), or post-decrement (DF = 1) the

string index registers after each step. See Chapter 3 for

detailed descriptions of the string instructions.

lOPL The I/O Privilege Level field is two bits wide, and supports

the protection model described in Chapter 5. The lOPL
field specifies the privilege level required to perform I/O
instructions. If the current privilege level is numerically less

than or equal to lOPL, I/O instructions can be executed;

otherwise, a protection exception is generated.

NT The Nested Task bit controls the operation of the IRET
instruction (Chapter 3). If NT =0, a normal return from an

interrupt is performed by restoring EFLAGS, CS, and EIP

with values saved on the stack. If NT = 1, the interrupt

return is through a task switch instead (Chapter 5).

RF The Restart Flag controls whether debug faults (Chapter 8)

are accepted (RF=0) or ignored (RF = 1). The RF bit is

also cleared by the processor at the successful completion of

every instruction, and it is set by the processor when a fault

other than a debug fault is signaled.

VM The VM bit is the Virtual 8086 Mode bit. If set, the pro-

cessor will execute in virtual 8086 mode (Chapter 9). If

clear, the processor will operate in the normal protected

mode (Chapter 5).

The RF, NT, DF, and TF bits can be set or cleared by a program

running at any privilege level. The VM and lOPL fields can be changed

only by a program executing at privilege level 0, the most privileged

level. The IF bit can be changed only by a program executing with I/O

privilege (Chapter 5).

The RF and VM bits can be set or cleared only by the IRET instruc-

tion or by a task switch. The other control bits can be set by the POPE
instruction as well.

Segment Registers

The 80386 has six 16-bit segment registers that address memory seg-

ments. These registers are named ES, CS, SS, DS, FS, and GS, and

42 Programming the 80386

are shown in Figure 2.1. FS and GS are new on the 80386.

To access data within a given segment, a program must load one of the

segment registers with a special value that identifies that segment. This spe-

cial value is called a selector, and it is described briefly later in this chapter,

and in detail in Chapter 5. The six segment registers allow a program to

access up to six segments at a time. As the program finishes with one seg-

ment and begins on another, it can load the selector of the new segment

into the segment register used to address the old segment.

Memory Addressing Concepts

The 80386 uses a memory addressing technique called segmentation,

which divides the memory space into one or more separate linear regions

called segments. A memory address consists of two parts: a segment part

that identifies the containing segment, and an offset part that gives a

simple byte offset within that segment. Both a segment part and an offset

part must be specified for every memory reference. This chapter

describes the basic memory addressing mechanisms used in every

instruction that references a memory operand. The options available for

specifying segments and offsets are described in detail.

Many of the memory structuring capabilities provided by segmentation

are visible to the applications programmer, and so these aspects are

appropriate to discuss at this point. The key structuring issue is how pro-

gram units such as code procedures, data areas, and the program stack

are assigned storage within one or more segments.

Chapter 1 introduced physical memory as a one-dimensional (linear)

array of bytes, and described how data types that occupy more than one

byte are placed in memory. In this chapter, we see that memory is

divided into segments that provide a second dimension to the memory
space. Chapter 5 discusses memory addressing from the operating-

systems perspective, describing the memory-management mechanisms
that protect segments and relocate them within the one-dimensional

physical memory space. In Chapter 5, you will see how the

two-dimensional virtual addresses introduced in this chapter are trans-

lated to one-dimensional addresses in physical memory.

Two-Part Addressing

Because of segmentation, a memory address on the 80386 has two

parts, a segment part and an offset part. Both parts must be specified by

Machine State and Memory Addressing 43

an instruction with a memory operand. The segment part is a 16-bit seg-

ment selector, which contains a 14-bit field that identifies one of 16,384

possible segments. The 32-bit offset part gives a byte offset within the

segment. Consecutive byte addresses within segments are obtained by
incrementing the offset part fi"om up to the limit of the segment. Since

the byte offset is 32 bits, the maximum offset that can be specified, and
therefore the maximum size of a segment, is 4G bytes.

Notation

The notation we use for memory addresses in this chapter gives the

segment part on the left, the offset part on the right, and a colon (:) sep-

arating the two parts. The segment part can be either a segment name
or a segment register. If a segment register is given, the segment selector

contained in that register identifies the segment. Offsets are given as

numbers or register names enclosed in square brackets. Offsets can also

be formed by expressions involving register names, scale factors, and
constants, to reflect the addressing modes described later in this chapter.

For example, the address at offset 1234 in a segment named
NEWDATA would be specified with the notation NEWDATA:[1234]. If

the ES segment register contained the selector for the segment

NEWDATA, and the EAX general register contained the value 1234,

the same address could be specified with the notation ES:[EAX]. This

notation is a subset of the assembler notation for memory addresses that

we define and use in Chapter 4.

Figure 2.4 illustrates how two-part addresses are used to access memory.

There are two segments in the figure, Segment A and Segment B.

Segment A contains 11 bytes, so the segment offsets within A range from

to 10. Segment B contains 17 bytes, so its segment offsets range from to

16. The byte at address A: [5]—that is, at offset 5 within

Segment A—contains the value 77. The byte at address B:[12]—that is, at

offset 12 within Segment B—contains the value 88.

Memory Addressing Mechanism

Both a segment part and an offset part must be specified by an instruc-

tion that uses a memory operand. Most programs tend to work on just a

few segments at a time, but generate many different offsets within these seg-

ments. The addressing mechanism on the 80386 is optimized for these pro-

gram characteristics.

44 Programming the 80386

16

15

14

13

12

11

10

88

10

9 9

8

7

6

5

4

8

7

6

5

4

12

77

3 3

2 2

1 1

Segment A Segment B

Figure 2.4: Two-part addressing

The Segment Part: Segment Register

Special registers—the six segment registers introduced earlier in this

chapter—are provided to hold segment selectors used as the segment
parts of addresses. These registers provide access to up to six segments at

any point in a program.

Every memory reference specifies implicitly, explicitly, or by default

the segment register containing the selector for the segment part of the

address. Code references always use the CS register, stack references

always use the SS register, and certain string instructions always use the

ES register for the destination operand. Any of the six segment registers

Machine State and Memory Addressing 45

can be used for all other data references. For example, if the selector for

Segment B in Figure 2.4 is in the FS register, the memory reference

FS:[12] would access the data stored at offset 12 in that segment, at the

address B:[12]. If the selector for B is moved from the FS register to the

DS register, the same data can be accessed with the address DS:[12].

The segment addressed by the CS register at any given time is called

the current Code Segment. The EIP register contains the offset of the next

instruction to execute within the segment addressed by the CS register,

so the address of the next instruction to execute is CS:[EIP]. If the cur-

rent code segment contains both instructions and data, the data can be

referenced using the CS register as the segment part of the address. For

example, a piece of data at an offset of 8 plus the value in the EAX
register can be addressed as CS:[EAX+8] from instructions in the

same segment.

All code references use the CS register, so only one code segment is

addressable at any time. Intersegment control-transfer instructions,

described in Chapter 3, can be used to load a new value into both the

CS and EIP registers to change the locus of execution to a different code

segment. This provides an efficient method to transfer control between

procedures that are stored in different segments. For example, the appli-

cation code is typically in a different segment than operating-system

code, so these intersegment control transfers provide an efficient way for

applications to invoke operating-system services.

The segment addressed by the SS register is called the current Stack

Segment. Stack operations such as PUSH, POP, CALL, and RETURN
use a program stack contained within the segment addressed by SS. The
top of this stack is at the offset contained in the ESP general register that

is reserved for this purpose. The address of the top of the program stack

is SS:[ESP]. This program stack is described in more detail later in

this chapter.

The DS, ES, FS, and GS registers are available to address gen-

eral data segments required by the program. The DS register is the

"main" data segment register, since it is the default segment register for

references other than to the stack. As you will see later in this chapter,

instructions that reference data in segments addressed by CS, SS, ES,

FS, and GS are one byte longer than those addressed by DS. This

makes references to segments other than DS slightly more expensive in

program storage and execution time, but not by much. In general, it is

a good idea to arrange the data in the program so that the DS register

can address the data segment most often referenced, and use the ES, FS,

and GS registers to address segments that are referenced less frequendy.

Figure 2.5 illustrates the use of segment registers. CS points to the

46 Programming the 80386

ss->-^4.

allocated

free

STACK

EIP

CS

CODE

°^ *^
DATAi y< DATA 2 "^ DATA 3 /< DATA 4

to

PS

Gs

Figure 2.5: Segment register usage

current code segment, and EIP gives the offset of the next instruction

within this segment. SS points to the stack segment, and ESP identifies

the top of the program stack within this segment. As explained in a later

section, memory for the stack is allocated by moving ESP toward lower

addresses, so the part of the stack segment above ESP is already allo-

cated to the stack, and the memory below ESP is free for future alloca-

tion as needed. DS points to the primary data segment, named DATA,.
ES, FS, and GS are available to address other data segments, and might

point to DATA2, DATA3, or DATA4, as shown in dotted lines.

Machine State and Memory Addressing 47

The Offset Part: Address Modes

The previoas section described the mechanism for specifying the seg-

ment part of an address. Since every memory reference contains both a

segment part and an offset part, we now need to describe how offset

parts can be specified.

The 80386 provides a flexible mechanism for forming the offset part of

an address. Each instruction that references a memory operand specifies

the method by which the offset part is to be computed. This specification

is called the address mode of the instruction. Address modes on the 80386
specify up to three components to be added to form the offset. A base

register, an index register scaled (multiplied) by 1, 2, 4, or 8, and a con-

stant displacement can be added to form the offset.

Any of the eight 32 -bit general registers can be used as the base regis-

ter, or the base component can be omitted. Any of the eight 32-bit gen-

eral registers except the stack pointer register, ESP, can be used as the

index register, or the index component can be omitted. If an index regis-

ter is specified, the value contained in this register can be scaled by 1, 2,

4, or 8 before it is added into the offset. An 8- or 3 2 -bit constant displace-

ment can be specified, or the displacement can be omitted.

These base -i- (index * scale) -i- displacement address modes provide

a powerful and flexible address mechanism that satisfies the addressing

needs of data structures supported by high-level languages. A later sec-

tion describes how data structures such as records, arrays, and even

arrays of records use these addressing modes.

Use of a memory operand is faster if it is aligned. An operand is aligned if

its offset is a multiple of its size. For example, a dword operand is aligned

if its offset is a multiple of 4, and a word is aligned if its offset is a multiple

of 2. Operands that are not aligned can still be accessed, but may take

longer. We recommend that all operands be aligned.

The default segment register for data references is dependent on the

base register selected. If the base register is ESP or EBP, the default seg-

ment register is changed from the normal DS to SS, since the ESP and

EBP registers were designed to be used with the stack. For all other base

register choices, including no base register, DS remains the default seg-

ment register. Accessing data in a segment addressed by a segment regis-

ter other than the default requires the use of an extra instruction byte to

specify the desired segment register. Use of EBP as an index register

(ESP cannot be an index register) does not affect the choice of default

segment register. The choice of default segment register is affected only

by the base register selected.

Table 2.1 lists the variety of address modes available. Examples on the

use of address modes are given in the following sections.

48 Programming the 80386

BASE SCALE) DISPLACEMENT

Notes:

SS is the default segment register if ESP or EBP is the base

register.

The dashes () signify that ESP cannot be used as an index

register.

Table 2.1: 80386 addressing modes

Program Stack

A program stack supports a LIFO (last in, first out) allocation disci-

pline, which is well suited for nested storage required for subexpression

results and subroutines. The two basic stack operations are PUSH and

POP. The PUSH operation adds a new element to the stack, and

the POP operation removes the last element pushed. A PUSH followed

by a POP leaves the stack unchanged.

The PUSH and POP operations support use of the stack to store tem-

porary values—for example, the intermediate parts of a complex calcula-

tion. As these intermediate parts are computed, their results can be

pushed onto the stack. To compute the final expression value, the results

from the intermediate computations are popped off and combined to

form the final result. The nested storage provided by the stack matches

the natural nesting of subexpression calculation.

The nested storage provided by the stack also supports an efficient and

flexible subroutine call and return mechanism that naturally handles

Machine State and Memory Addressing 49

nested procedures. A procedure CALL instruction pushes a return

address onto the stack where it remains until the matching RET instruc-

tion pops it off. A call to a nested subroutine pushes its return address,

hiding an outer procedure's return address. The return from a nested

subroutine pops its return address off the stack, exposing the return

address of the outer procedure as the top of the stack. Use of the pro-

gram stack to support a complete subroutine call mechanism is described

in a later section.

The stack is in the memory segment addressed by the SS register. The
ESP register contains the offset within this segment of the top of the pro-

gram stack. The two-part address SS:[ESP] points to the current top of

the program stack.

Temporary Storage on the Stack

On the 80386, the stack grows toward lower addresses, and each stack

element is four bytes (32 bits) wide. To push an element onto the 80386

stack, first the ESP register is decremented by 4, and then the new element

is written to the memory location addressed by SS:[ESP]. To pop an ele-

ment off the stack, the memory location addressed by SS:[ESP] is read to

retrieve the element, and then the ESP register is incremented by 4. At any

time, the current top-of-stack element is addressed by SS:[ESP], and inner

stack elements are addressed by positive offsets from SS:[ESP]. The second

stack element is at address SS:[ESP+4], the third is at address

SS:[ESP -1-8], and so on. Operands on the stack can be referenced faster if

the stack is aligned. Since stack elements are four bytes in size, this is easily

done by ensuring that the ESP register always contains a multiple of 4.

Figure 2.6 illustrates how PUSH and POP operate on the 80386 pro-

gram stack. The leftmost stack picture shows the stack after three elements

have been pushed at offsets FCh, F8h, and F4h within the stack segment

that is lOOh bytes in size. ESP contains the value F4h, which is the offset of

the top-of-stack element. The top of the stack is at the bottom of the figure

because the stack grows toward the lower addresses, which are lower in the

figure. The right stack picture shows the stack after the value 12345678h

has been pushed. ESP now contains the value FOh, which is 4 less than the

original value. The original top-of-stack element is now the second stack ele-

ment, and can be addressed at SS:[ESP +4]. A POP operation will return

the stack to the state shown in the left stack, by adjusting the value in the

ESP register by 4.

Subroutines and the Stack

The 80386 program stack supports an efficient subroutine call and return

mechanism. The CALL instruction pushes a return address (the address of

the instruction following the CALL) onto the program stack, and jumps to

50 Programming the 80386

the start of a subroutine. The RET instruction pops the return address

from the stack, then jumps to that address to resume execution with the

instruction after the matching CALL instruction. The program stack is also

used to pass parameters to subroutines, and for storing variables local to the

subroutine. By using a stack, the 80386 efficiently supports nested subrou-

tines, including recursive and reentrant subroutines.

An optimization of this technique is to use the general registers for the

first few parameters and for the most frequently used local variables. Since

registers can be accessed more quickly than memory, this optimization can

speed program execution. The stack can be used to store the remaining

parameters and local variables.

ESP

000000F4

SS

StackSeg

ESP

OOOOOOFO

SS

StackSeg

before PUSH 12345678h

after POP

after PUSH 12345678)1

before POP

Figure 2.6: Stack PUSH/POP operations

Machine State and Memory Addressing 51

Basic Subroutine Linloge The simplest subroutine linkage supports a sub-

routine call with parameter passing and local variable allocation on the pro-

gram stack. A subroutine call proceeds in three steps.

1. Push the parameters onto the program stack.

2. Use a CALL instruction to push the return address onto the stack

and jump to the subroutine.

3. Subtract a constant from the ESP register to reserve room on the

stack for local variables.

Within the subroutine, the parameters and local variables can be ad-

dressed with constant displacements from the ESP register. The address

mode using ESP as a base plus a signed 8-bit displacement can be used

when the size of the local variables and parameters does not exceed 127

bytes. Otherwise, a frill 32 -bit displacement from ESP must be used. These

offsets from ESP must track any changes to ESP within the subroutine,

either as temporary values are pushed and popped on the stack or as

parameters are pushed to be passed to another subroutine. This tracking is

easy for a language compiler to perform, but it can be confrising when writ-

ing an assembler program! An alternative is to use the EBP register as a

stable base register to point to the stack area allocated to the active proce-

dure. This allows variables and parameters to be addressed at fixed offsets

from EBP, but prevents use of EBP as a general register

The ESP and EBP registers were designed to efficiendy support stack

addressing, since using either ESP or EBP as a base register selects SS as

the default segment register. This allows ESP or EBP to address the stack

area for the current procedure without the need for an extra instruction byte

to explicitly specify the stack segment.

Figure 2.7 illustrates the state of the program stack after calling a subrou-

tine with two parameters and 32 bytes of local variables. The subroutine is

in the same segment as the calling procedure, so that an intrasegment

CALL (Chapter 3) is used to push a four-byte return address. The two

parameters pushed onto the stack occupy eight bytes and the return address

occupies four bytes. With 32 bytes of local storage, the total is 44 bytes.

Within the subroutine, the local variables are addressed by SS:[ESP +n],

where n ranges from to 31. The first parameter is at address

SS: [ESP -1-40]. The second parameter is at address SS:[ESP -i-36].

To return from the subroutine, the inverse of the three parts of the

CALL sequence are required.

1. Add a value to ESP to pop the local variables off the program

stack.

52 Programming the 80386

2. Return from the subroutine by popping the return address off the

stack, and jumping to that address.

3. Add a value to ESP to pop the parameters off the stack.

A form of the RET instruction described in Chapter 3 combines the last

two steps.

<
<
<

Memory

^ Address

>
>

SS:[ESP + 40]

SS:[ESP + 36]

SS:[ESP + 16]

SS:[ESP]

>
>
>

SS:[0]

^

Direction

of

Stacl(Growth

^ <

Parameter 1

Parameter 2

Return Address

ESP

ss-

<
<
<

—

i <

Fi§fure2.7: Parameters, return address, and local variables stored in the program

stack

Machine State and Memory Addressing 53

Pointer Data Type

Most data types were described in Chapter 1. We deferred introduction

of pointer data types until now, so we could introduce some basic address-

ing concepts first. A pointer data type contains a value that gives the

address of a datum. Pointers are useful for buUding complex data structures

such as lists and trees that vary dramatically in structure as a program exe-

cutes. Each element in a list or tree structure contains one or more pointers

to other elements, so that elements can be linked and unlinked simply by

storing addresses of other elements in these pointers. Other constructs such

as arrays and records are better suited for data structures that need not vary

in structure, since they are usually more efficient in storage usage and exe-

cution time than structures linked by pointers.

The 80386 supports two types of pointers: a 48-bit full pointer that

contains a full two-part address, and a 32-bit pointer that contains only

the offset part of an address. The 48-bit pointer is used when elements

from different segments are linked by pointers. The offset-only pointer is

more efficient, but can only be used when all the linked elements are

stored in the same segment.

A 48-bit pointer, shown in Figure 2.8, holds both parts of an address.

The offset part is in the low-order 32 bits, and the segment selector is in

1 1 1 1 1

m + 5lm+4lm + 3lm + 2lm + ll m
1 1 1 1 1

48 32 31

Memory Address

Selector Offset 48-bit Pointer

31

Offset 32-bit Pointer

Figure 2.8: 48-bit and 32-bit pointers

54 Programming the 80386

the high-order 16 bits. To address data with a 48-bit pointer, the two

parts must be loaded into registers. The segment selector in the high-

order 16 bits is loaded into one of the segment registers. The offset part

in the low-order 32 bits is loaded into one of the general registers where

it can be used as a base register. Chapter 3 describes the LDS, LES,

LFS, and LGS instructions, which will load these 48-bit pointers into

segment register/general register pairs in a single instruction.

If all the addresses to be stored in pointers have the same segment part,

a useful optimization is to keep the selector for this segment in a segment

register dedicated for this purpose, and store only the offset parts in 32-bit

pointers, also shown in Figure 2.8. To address data with a 32-bit pointer,

only the offset part needs to be loaded into one of the general registers to

be used as a base register, with the segment part taken from the segment

register dedicated to holding the common selector.

A 32-bit offset pointer is more efficient in both storage usage and execu-

tion time than a 48-bit pointer. If all the data for an application, including

the program stack, is stored in one segment, 32-bit pointers can be used. In

this model, the SS, DS, and ES segment registers are loaded with the selec-

tor for the common segment containing all the data and the program stack,

so that all memory references can use the default data segment register.

Note that even though there is only one segment in this model, memory
addresses are still considered to have a segment part, which is implicitly the

single segment containing everything.

Address Modes and Data Structures

The base -i- index -i- displacement addressing modes of the 80386

directly support the addressing needs of high-level languages. Scalar vari-

ables, records, arrays, and even arrays of records and records of arrays

are directly supported by the 80386 address modes. These data structures

can be located in static storage, as required by FORTRAN, or can be

dynamically allocated on a program stack (and referenced relative to

SS:[ESP]) or heap (and referenced indirectly through pointers) as

required by Pascal or C. The base and index registers provide two

dynamic components for the address mode, and the displacement sup-

plies a static component. Statically allocated data is addressed simply by

using a constant displacement within a data segment. Data allocated on

the stack is addressed by using a constant displacement from either the

ESP or EBP register, as discussed in a previous section. Data allocated

in a heap is addressed by loading a pointer to the data into a segment

register/general register pair and then using the general register as a base

Machine State and Memory Addressing 55

register. Table 2.2 correlates language needs with the address modes sup-

plied by the 80386, and gives an example in assembler notation for each

address mode.

To simplify register allocation in language translators, any of the eight

general registers can be used as a base register, and any of the general reg-

isters except ESP can be used as a scaled index register. The index register

value can be used directly (scaled by 1), or can be scaled by a factor of 2,

4, or 8 to support direct indexing of 16-, 32-, and 64-bit data without

requiring shift instructions or use of an extra register.

STORAGE STRUCTURE ADDRESS MODE
TYPE TYPE CATEGORY EXAMPLE

Static Scalar Disp DS:[1000]

Array Index + Disp DS:[ESI*4 + 1004]

Record Disp DS:[1234h]

Array of Records Index + Disp DS:[EDX*8 + 1000h]

Record of Arrays Index + Disp DS:[EBX*2+1048h]

Stack Scalar Base + Disp SS:[ESP+24]

Array Base + Index + Disp SS:[ESP+ESI*4 + 120]

Record Base + Disp SS:[ESP+48]

Array of Records Base + Index + Disp SS:[EBP+EDX*8-256]

Record of Arrays Base + Index + Disp SS:[ESP+EDI*2 + lOOOh]

Heap Scalar Base ES:[EBX]

Array Base + Index FS:[EBX+ESI*4]

Record Base + Disp DS:[EAX + 12]

Array of Records Base + Index + Disp ES:[EBX+EAX*8+6]

Record of Arrays Base + Index + Disp DS:[EAX + EDI*2 + 1800h]

Table 2.2: Data structures and 80386 address modes

56 Programming the 80386

Segmentation Strategies

The 80386 supports a wide range of segmentation strategies, which

determine how program units are allocated storage in one or more mem-
ory segments. A program unit is an individual code procedure or data

area, or the program stack. Each program unit might be contained in its

own segment for the maximum flexibility in relocating, sharing, and pro-

tecting the individual units. At the other extreme, an entire application's

code, data, and stack might be stored in a single segment.

There are two key characteristics that make segments a powerful

mechanism for addressing, protecting, and sharing code procedures, data

areas, and the program stack.

• A segment can be of any size.

• The memory-management mechanism described in Chapter 5

relocates, shares, and protects a segment as a single indivisible

unit, no matter how large or small the segment may be.

Because of the variable size of segments, any program unit can be

accommodated within a single segment, where it can be relocated and

protected by an operating system as a single unit. A small 20-byte proce-

dure can be stored in one segment. A large 100-megabyte data array can

also be stored in a single segment. Or all the code and data for an entire

application can be stored in one segment.

Figures 2.9 and 2.10 illustrate two strategies for storing program units

in segments. The number of segments used to store data differentiates

the two models. The model of Figure 2.10 uses only one segment for

data storage, and so is called the single-segment model (even though

there is a second segment to hold the code). The model of Figure 2.9

stores data for a single application in more than one segment. Alternatively,

the size of pointers required diff'erentiates the two models. The single-

segment model can use 32-bit pointers, since all of the data and stack are

stored in one segment. The multiple-segment model must use 48-bit

pointers, since data areas are stored in several different segments, and each

data pointer must explicitly specify which segment is pointed to.

Figure 2.9 shows how the code, stack, and data for two different ap-

plications can be stored in separate segments. The code for application 1

is contained in the segment named Codci, its stack is in the segment

Stack], and its data is in Datau, and Dataib- It shares a data seg-

ment named Data^ with application 2, which has its code, stack, and

data in segments named Code2, Stack2, and Data2, respectively.

In this multiple-segment strategy, the two applications are stored in eight

different segments, with one segment shared between the two applications.

Machine State and Memory Addressing 57

Each segment can have access restrictions as appropriate. For example, both

code segments, Codei and Code2, can be restricted to execute-only access.

The shared data segment Data^ can be restricted to read-only access to one

Figure 2.9: Multiple-segment segmentation strategy

58 Programming the 80386

or both applications to prevent unauthorized changes to its data. Because

there are multiple data segments, 48-bit full pointers must be used.

Balanced against the desire to put each program unit into a separate

segment for flexibility in relocation and protection is the fact that storing

all of the data and stack for an application in a single segment is more

efficient because it allows use of 32-bit pointers. This single-segment

strategy also supports the application model presented by most mini-

computers and mainframe computers (which do not have segments), and

so supports easy portability of applications from these environments.

Even though segmentation is not used within an individual application

in this model, operating-system software can still use segmentation to

separate and protect each application from other applications in a multi-

tasking environment. In this model, each application is stored in two

segments: one containing all of the code for that application, the other

containing all of the data and stack. The operating system is stored in

two or more other segments, and arranges the segments so that each

application is insulated from all of the other applications, and so that the

operating system is protected from all applications.

Figure 2.10 illustrates this single-segment segmentation strategy.

CODEi holds the code for application 1, SEGi holds the stack and data

Stack

Data

Stack

Data

CODE^ SEG^ SEG2 CODE2

Figure 2.10: Single-segment segmentation strategy

Machine State and Memory Addressing 59

for application 1, CODE2 holds the code for application 2, and SEG2
holds the stack and data for application 2. Since there is only one data

segment per application, each application can use the more efficient

32-bit offset-only pointers. One consequence of the use of 32-bit pointers

is that the two applications can no longer share a data segment, as was
done in Figure 2.9. Also, the common segment must permit read and
write access, with no protection for read-only data as was available in the

multiple-segment model.

There are advantages and disadvantages to both of the segmentation

strategies illustrated above. In many cases, operating-system software dic-

tates the use of one model or the other. If there is a choice, we recom-

mend the single-segment model for most applications, because of its

inherent simplicity. The single-segment model also offers greater

efficiency because it can use simple 32-bit pointers. A few systems need

the flexibility of sharing and protection provided by the multiple-segment

model, but most applications are adequately served by the simpler single-

segment model.

Instruction Encoding

This section describes the instruction encoding, with an emphasis on

the encoding for operands. First, the general instruction encoding is

described at a high level, and then the detailed bit patterns for encoding

immediate, register, and memory operands are given.

You need not understand the topics in this section to program the

80386, even at the assembly language level. The material in the previous

sections described the instruction operands in terms of their symbolic

representation in the assembly language. This section goes a level lower,

to the actual bit patterns used to represent these symbolic operand

choices in the 80386 machine instructions. If you do not need this

detailed information, you can move on to the section that describes the

I/O memory space later in this chapter.

The material presented in this section is aimed primarily at developers

of software translators such as assemblers, compilers, and debuggers.

These software translators need to know the encoding of the instructions.

In fact, their main function is to hide the details of the instruction encod-

ing from the programmer.

Instruction Fields

Figure 2.11 shows the general format of an 80386 instruction. Each

instruction can have up to five fields, with the fields to the left stored at

lower addresses.

60 Programming the 80386

Lower Addressses Higher Addresses

Prefix Opcode IVIODRM Address Immediate

Byte(s) Byte(s) Operand Displacement

Specifier

Constant

(0-4) (1-2) (0-2) (0-4) (0-4)

Figure 2.11: General instruction format

Prefix Bytes Up to four prefix bytes may be specified, or no prefix

bytes may be present in an instruction. As their name impHes, if prefixes

are present they are the first few bytes of an instruction. Prefixes are

used to modify the interpretation of the following instruction only, and

do not apply to any other instructions. Prefixes are used to specify less

frequently used instruction parameters so that the instruction encoding

for the usual cases can be more compact. One example of an instruction

prefix is the segment register override, described later in this section. It

is used to specify the segment register for a memory operand in case the

default segment register is not appropriate. Other examples are the

LOCK and REP prefixes described in Chapter 3.

Opcode Bytes Opcode bytes immediately follow any prefix bytes. At least

one opcode byte must be present in every instruction, and some instructions

require two bytes. A special one-byte instruction form combines an opcode

with a 3-bit register operand specifier (refer to Figure 2.13).

MODRM Operand Specifier A MODRM operand specifier, if present, fol-

lows the opcode byte(s). The opcode determines whether this specifier is

present and whether this field specifies two operands, or one operand

plus extra opcode bits. This field can specify one register operand, one

memory operand, two register operands, or a register operand and

a memory operand. The MODRM field can be one or two bytes long.

Machine State and Memory Addressing 61

Address Displacement An address displacement, if present, follows the

MODRM field. The mod subfield of the MODRM field indicates

whether the displacement is present, and its length. Displacements are

present only for memory operands.

Immediate Constant An immediate constant, if present, is the last field

in an instruction. That is, it is stored in the highest addressed bytes in

the instruction. The opcode determines whether an immediate constant is

present, and defines its length. Up to four bytes of immediate data can

be present in this field.

Immediate Constants

An immediate constant operand is the simplest type of operand specifier,

where the value of the operand is given direcdy in the instruction. The
number of bits in the immediate constant is dependent on the operand

size of the instruction and on the opcode. If present, an immediate con-

stant is always the last field in an instruction, coming after any opcode

fields or address mode fields.

Figure 2.12 illustrates the various forms of immediate constants. Con-
stants can be 8, 16, or 32 bits long, for 8-, 16-, or 32-bit operand sizes.

The 16- and 32-bit immediate forms are stored with the low-order bytes at

lower addresses, and with the high-order bytes at higher addresses. Signed

or unsigned bytes, signed or unsigned words, and signed or unsigned

dwords can all be represented in these three forms. In addition, a small

value for a 16- or 32-bit operand can be represented as a sign-extended

8-bit value to save instruction space. In this case, an 8-bit constant is given

direcdy in the instruction, and is extended to 16 or 32 bits by replicating

the sign bit, bit 7, throughout the high-order 8 or 24 bits. This saves space

for the important frequent cases of signed words or signed dwords with

values between -128 and 127, and also for unsigned words in one of the

ranges to 127 or FF80h to FFFFh, and unsigned dwords in one of

die ranges to 127 or FFFFFF80h to FFFFFFFFh.

Example: The instruction that pushes an immediate constant onto the

stack uses an instruction form that has a one-byte opcode and one or

four bytes of immediate data. This instruction is a good example at this

point because it has only one operand, an immediate constant. In this

example the memory addresses are indicated along the top as m,

m-i-1, ..., m+4. Just below the instruction bits, an indication of their

interpretation is given. Note that the opcode is at the lowest addressed

byte, and the constant is stored with the low-order bytes at lower

addresses.

62 Programming the 80386

PUSH 12345678h would be encoded as:

m m + 1 m + 2 ni + 3

I immediate constant -

opcode 01111000

PUSH 7811

01010110

56h

00110100

34h

m + 4

00010010

12h

m + 3 m + 2

15

m + 1

7

m Memory Address

8-bit Immediate

16-bit Immediate

32bit Immediate

8-bit Immediate,

Sign-extend to 16 bits

8-bit Immediate,

Sign-extend to 32 bits

31

15 7

ssssssss s

31 7

ssssssss ssssssss ssssssss s

Figure 2.12: Immediate operand encoding

Machine State and Memory Addressing 63

PUSH -5 would be encoded as:

m m + 1

opcode 11111011

PUSH FBh

Note the use of the short one-byte immediate constant in the last

example, which permits a short constant in the range -128 to 127 to be

given with a single byte in the instruction. When this instruction is exe-

cuted, the one-byte constant FBh is expanded to 32 bits by sign-

extension to get FFFFFFFBh, the two's complement notation for -5.

Register Operands

An instruction operand can be located in a processor register. The reg-

ister operand specifier selects one of the eight general-purpose registers,

or one of the six segment registers, depending on the opcode. The oper-

and size of the instruction determines whether an 8-, 16-, or 32-bit regis-

ter is accessed for an operand in one of the general registers. The six

segment registers are always accessed as 16-bit registers.

Figure 2.13 illustrates how the register operand specifiers are encoded

7

opcode byte(s)

7

opcode byte(s)

7 3 2

opcode reg

7 6 5 3 2

mod reg R/M

7 6 5 3 2

1 1 reg reg

One-byte Instruction Form

Bits 3.. .5 as Register Specifier

Bits 0...2 Specify Register If mod = 11

Figure 2.13: Register operand encoding

64 Programming the 80386

in an instruction. The one-byte instruction forms use the lower 3 bits of

the instruction to encode one of the eight general registers. The two- and

three-byte instruction forms use a MODRM byte following the one- or

two-byte opcode to encode one or two register operands. This byte con-

tains three fields. The R/M field is in the 3 low-order bits, and specifies

either a register operand or part of a memory operand, depending on

the setting of the mod field. The mod field is a 2-bit field in the upper

2 bits of the byte. It specifies whether the R/M field should be inter-

preted as a 3-bit register name or as a memory operand. If the mod
field has the value lib (both bits are 1), the R/M field specifies a regis-

ter operand, otherwise the R/M field specifies a memory operand. The
R/M name comes from this dual interpretation of this field as either a

Register or Memory operand based on the mod value. This byte is called

the MODRM byte from the first and last field names, which are always

present. The middle 3 bits of this MODRM byte can specify a register

operand, or can provide 3 additional opcode bits, depending on the

opcode in the first byte of the instruction.

In all of these cases, register operands are specified by a 3 -bit code in

the instruction. Table 2.3 gives the encoding of the 8-, 16-, and 32-bit

general registers based on the operand size of the instruction and the

value in one of these 3 -bit register operand specifiers. Table 2.4 gives the

reg field encoding for segment register operands.

32BIT 16-BIT 8-BIT

REG CODE REGISTER REGISTER REGISTER

000b EAX AX AL
001b ECX CX CL
010b EDX DX DL
011b EBX BX BL

100b ESP SP AH
101b EBP BP CH
110b ESI SI - DH
111b EDI DI BH

Table 2.3: General register encoding

Machine State and Memory Addressing 65

Example: The simplest register operand encoding uses the one-byte

instruction form, which puts a register code in the lower 3 bits and the

opcode in the upper 5 bits of the byte.

INC ESI would be encoded as:

reg

ope 110

INC ESI

Example: Instructions that use two register operands use instruction

formats that have the MODRM byte. In this case, the mod field is lib,

indicating that the R/M field contains a second register operand.

MOV DH, DL would be encoded as:

opcode

MOV

m + 1

mod reg reg

11 110 010

DH DL

SEGMENT

REG CODE REGISTER

000b ES

001b CS

010b ss

011b DS

100b FS

101b GS

110b Reserved

111b Reserved

Table 2.4: Segment register encoding

66 Programming the 80386

Example: The instruction that moves an immediate constant into a reg-

ister is useful for initializing loop counters that can be allocated to regis-

ters throughout the loop. It uses the one-byte opcode form that has a

register operand specifier in the lower 3 bits. In these examples, the

memory addresses are indicated along the as m, m-i-1, ..., m+4. Note

that the opcode is at the lowest addressed byte, and the constant is

stored with the low-order bytes at lower addresses.

MOV ECX, 12345678h would be encoded as:

m m + 1 m + 2 m + 3 m + 4

;^_^j:.
te 1

ope 001 01111000 01010110 00110100 00010010

MOV ECX 78h 56h 34h 12h

MOV AH , 37h would be encoded as:

m m + 1

reg eonstant

ope 100 00110111

MOV AH 37h

Memory Operands

An 80386 instruction can specify only one explicit memory operand.

Both the segment part and the offset part of a memory address must be

specified for a memory operand. The segment part is specified by giving

the segment register that contains the selector for the segment containing

the operand. In most cases, the default segment register can be used, so

that no instruction bits are required. If a different segment register is

used, an instruction prefix byte is needed.

The offset part is specified by the address mode, which indicates the

base register, the index register, the scale factor for the index, and the

constant displacement. The address mode is always present for instruc-

tions that specify a memory operand, and is contained in one or more
bytes that follow the opcode bytes. A one- or two-byte MODRM field

specifies the base register, index register, and scale factor, and indicates

the size of the displacement. A one-, two-, or four-byte constant displace-

ment, if indicated, follows the MODRM field. The low-order bytes of

two- or four-byte displacements are stored at lower addresses, with the

high-order bytes at higher addresses.

Machine State and Memory Addressing 67

One-Byte Address Mode Encoding

A special short address specifier is provided for the important special

cases where there is no index register given; that is, when the address

mode specifies at most a base register and a displacement. This saves a

byte when using the simple address modes containing just a base regis-

ter, just a displacement, or both a base register and a displacement.

The format of this one-byte specifier is shown in Figure 2.14. This is the

MODRM byte discussed above in the section on register operand encoding.

The low-order 3 bits (R/M) specify the base register. A code of 100b in this

field is a special escape code that indicates the two-byte form is being used,

with the second byte of the two-byte address mode form in the following

byte. Otherwise, the 3 bits encode the 32 -bit base register using the same

code used for specifying register operands, as given in Table 2.3. Note that

only 32-bit registers can be used in addresses.

7 6 5 3 2

R/M

7 6 5 3 2

1 1

7 6 5 3 2

1 R/M

7 6 5 3 2

1 R/M

R/M / 100b, R/M + 101b

32-bJt Displacement

8-bit Disp. R/M + 100b

32-bit Displacement R/M # 100b

Figure 2.14: One-byte address mode format

68 Programming the 80386

The upper 2 bits {mod) specify the length of the displacement. A code

of 00b indicates no displacement is present. A code of 01b indicates an

8-bit displacement follows. This 8-bit displacement is extended to 32 bits

by replicating the sign bit (bit 7) throughout the upper 24 bits (bits

8 through 31). A code of 10b indicates that a full 32-bit displacement fol-

lows. A code of lib in this field indicates that the R/M field specifies a

register operand rather than a memory operand, which was described in

an earlier section.

Example: If mod = 00b, a register indirect addressing mode is specified,

with the base register given in the R/M field.

ADD EAX, DS:[EDX] would be encoded as:

mod reg R/M

opcode 00 000 010

Example: If mod =01b, a register indirect plus displacement addressing

mode is specified, with the base register given in the R/M field, and an

8-bit displacement following. The 8-bit displacement is sign-extended to

form a 32-bit displacement to add to the base register value.

SUB EDI, DS:[EDI +127] would be encoded as:

mod reg R/M displacement

opcode 01 111 111 01111111

Example: If mod = 10b, a register indirect plus displacement addressing

mode is specified, with the base register given in the R/M field, and a

32-bit displacement following. Here the memory addresses are indicated

as m, m -I- 1,..., m +5, to indicate that the low-order bytes of the 32-bit

displacement are stored at lower memory addresses.

ADD ESI, DS:[EDI +12345678h] would be encoded as:

m + 1

mod reg

m + 2

R/M

m+3 m+4

32 - Bit Displacement

opcode 10 110 111 01111000 01010110 00110100

m + 5

00010010

One special case requires further explanation. The combination of

mod =00b and R/M = 101b does not indicate EBP as the base register, v^th

no displacement. Rather, it encodes the displacement-only case, that is, with

no base register and no index register, but with a fioll 32 -bit displacement.

The special cases are needed since there are really ten "base register"

codes required: one each for the eight general registers, one to encode the

Machine State and Memory Addressing 69

escape to the two-byte form, and one to indicate no base register. Since there

are only 3 bits available for the base register code, the code for ESP was cho-

sen as the escape to the two-byte form (mod =?^ lib and R/M = 100b), and

some coding space was "stolen" from the mod field to permit the base field

to specify "no base register" (mod = 00b and R/M = 101b). This encod-

ing means that the address mode using EBP as a base with no displacement

cannot be specified. Instead, the address mode using EBP as a base with an

8-bit displacement of is used.

Example: A statically allocated variable can be addressed by using the

displacement-only addressing mode, with mod =00b and R/M = 101b.

MOV ESI, ScalarVar would be encoded as:

mod reg R/M

opcode 00 110 101 32-bit disp.

Example: A memory address with EBP as the base register, plus a dis-

placement of 0, is specified with mod = 01b, R/M = 101b, and an 8-bit

displacement containing 0.

MOV ESI, SS:[EBP] would be encoded as:

mod reg R/M

opcode 01 110 101 00000000

If an instruction requires both a displacement field and an immediate

constant, the displacement comes first, as shown in the following

example

.

Example: A statically allocated variable can be initialized with a MOV
instruction that has the displacement-only addressing mode and a 32-bit

immediate field. Note that the immediate field comes after (at higher

memory addresses) the displacement field.

MOV ScalarVar, Bigimm ; would be encoded as:

mod ope R/M

opcode 00 000 101 32-bit disp. 32-bit immed.

Table 2.5 summarizes the encoding of the one-byte address mode
forms. The mod and R/M fields specify the base register and the size of

the displacement, and imply the default segment register The right-hand

column gives the assembly language syntax for specifying the address

mode. Since the assembler programmer normally is not aware of the

70 Programming the 80386

MOD R/M ADDRESS MODE

00b 000b DS:[EAX]

001b DS:[ECX]

010b DS:[EDX]

011b DS:[EBX]

100b escape to 2-byte

101b DS:Disp32

110b DS:[ESI]

111b DS:[EDI]

01b 000b DS:Disp8[EAX]

001b DS:Disp8[ECX]

010b DS:Disp8[EDX]

011b DS:Disp8[EBX]

100b escape to 2-byte

101b SS:Disp8[EBP]

110b DS:Disp8[ESI]

111b DS:Disp8[EDI]

10b 000b DS:Disp32[EAX]

001b DS:Disp32[ECX]

010b DS:Disp32[EDX]

011b DS:Disp32[EBX]

100b escape to 2 -byte

101b SS:Disp32[EBP]

110b DS:Disp32[ESI]

111b DS:Disp32[EDI]

Table 2.5: One-byte address mode encoding

Machine State and Memory Addressing 71

number of bits in the displacement, Disp32 is a placeholder for a vari-

able that requires a 32-bit displacement, and Disp8 is a placeholder for a
variable that requires an 8-bit displacement.

Two-Byte Address Mode Encoding

The most general address mode forms are encoded in two bytes, which
provides the extra room needed to specify an index register and an index

scaling factor This two-byte form also supports the use of the ESP register

as a base register for addressing relative to the top of the program stack.

The two-byte form is illustrated in Figure 2.15. As noted in the

description of the one-byte address mode form, the two-byte form is indi-

cated by the 100b escape code in the R/M field of the first byte. The
mod field of the first byte is exacdy the same as in the one-byte form.

7 6 5 3 2 7 6 5 3 2

1 s index base base # 101b

7 6 5 3 2 7 6 5 3 2

((
1 s index 101 32-bit Displacement \\

7 6 5 3 2 7 6 5 3 2

u

1 1 s index base 8-bit Disp.

7 6 5 3 2 7 6 5 3 2 l(

1 1 s index base 32-bit Displacement \\

)J

Figure 2.15: Two-byte address mode format

72 Programming the 80386

The base field is in bits 0...2 of the second byte, and gives the code for

a 32-bit base register using the same encoding as the register operands

given in Table 2.3. As with the one-byte instruction form, the combi-

nation of mod =00b and base = 101b does not indicate EBP as the base

register, with no displacement. Rather, it encodes the index + dis-

placement case, that is, with no base register, but with a full 32-bit

displacement and an index register.

The "index" field is in bits 3... 5, and specifies the register code for

the 32-bit index register, again from Table 2.3. A code of 100b in the

index field does not specify that the ESP register is an index; rather, it is

used to indicate that no index register is used. The s field is in bits 6... 7,

and specifies the scale factor for the index register, as a shift count. If no

index register is given, the scale factor must be 00b.

Table 2.6 summarizes the encoding of the two-byte address mode
forms. The base and mod fields specify the base register and the size of

the displacement, and determine the default segment register. The index

and scale fields independently modify the address to add an index regis-

ter with a scale factor. As with Table 2.5, the address mode is given as

an assembly language mode. The index register modifier is just concate-

nated to the segment/base/displacement fraction to get the full assembler

syntax. For example, a base of EDX, an 8-bit displacement, plus an

index of ECX scaled by 4 would be given by the assembler syntax

DS:Disp8[EDX][ECX*4]. Alternatively, the index part could be

"added," with the notation DS:Disp8[EDX -hECX*4].

MOD BASE ADDRESS MODE

00 000 DS [EAX]

001 DS [ECX]

010 DS [EDX]

on DS [EBX]

100 SS:[ESP]

101 DS:Disp32

no DS:[ESI]

111 DS:[EDI]

Table 2.6: Two-byte address mode encoding

Machine State and Memory Addressing 73

01 000 DS:Disp8[EAX]

001 DS:Disp8[ECX]

010 DS:Disp8[EDX]

Oil DS:Disp8[EBX]

100 SS:Disp8[ESP]

101 SS:Disp8[EBP]

110 DS:Disp8[ESI]

111 DS:Disp8[EDI]

10 000 DS:Disp32[EAX]

001 DS:Disp32[ECX]

010 DS:Disp32[EDX]

on DS:Disp32[EBX]

100 SS:Disp32[ESP]

101 SS:Disp32[EBP]

no DS:Disp32[ESI]

111 DS:Disp32[EDI]

INDEX ADDRESS MODE

000b [EAX*s]

001b [ECX*s]

010b [EDX*s]

011b [EBX*s]

100b no index

101b [EBP*s]

110b [ESI*s]

111b [EDI*s]

INDEX SCALE

s FACTOR

00b 1

01b 2

10b 4

lib 8

Table 2.6: Two-byte address mode encoding (continued)

74 Programming the 80386

Example: A base + index addressing mode is specified with

mod =00b, and the base and index fields give the base and index regis-

ters, respectively.

MOV EAX, DS:[EBX+ESI*2] would be encoded as:

mod reg 2nd idx bas

opcode 00 000 100 01 110 oil

Example: A fiill three-component base + index -i- displacement ad-

dressing mode is specified with mod = 01b for an 8-bit displacement, and

mod = 10b for a 32 -bit displacement.

MOV EAX, SS:[ESP+24][ESI*8] would be encoded as:

mod reg 2nd idx bas displacement

opcode 01 000 100 11 110 100 00011000

MOV EAX, DS
:

[9999999 + EDI -H EAX* 4] would be encoded as:

mod reg 2nd s idx bas

opcode 10 000 100 10 000 111 32-bit displacement

Example: By specifying a scaled index in combination with a

displacement-only addressing mode, the important case of a single scaled

index into a statically allocated array can be handled. This uses

mod =00b with base = 101b to indicate no base register with a 3 2 -bit dis-

placement, and the index and scale fields are used to specify the index

register and scale factor, respectively.

MOV EAX, TABLE[ESI*4] would be encoded as:

mod reg 2nd Idx bas

opcode 00 000 100 10 110 101 32-bit displacement

Example: Stack-relative addressing is done with the two-byte form by

using ESP as a base register with the null index code (100b), and a

choice of (stack top), 8-bit, or 32-bit (inner stack element references)

displacement.

MOV EDI, 0[ESP] ; would be encoded as:

mod reg 2nd idx bas

opcode 00 111 100 00 100 100

Machine State and Memory Addressing 75

MOV EDI, 24[ESP] ; would be encoded as:

mod reg 2nd s idx bas

opcode 01 111 100 00 100 100 00011000

Segment Override Prefix Byte

An instruction prefix byte can specify the segment register to be used

to address a memory operand in case the default segment register is not

appropriate. As its name implies, it is an 8-bit field that is appended to

the front of the instruction. Since there are six segment registers, there

are six byte codes for segment override instruction prefix bytes, given in

Table 2.7.

Example: To address memory via a pointer, first the pointer is loaded

into a segment register/general register pair. Then an address mode
using the general register as a base, combined with a segment override

prefix specifying the segment register, provides access to the data pointed

to by the pointer.

MOV EDX, ES:[ESI] would be encoded as:

ES: prefix

00100110

mod reg base

opcode 00 010 110

SEGMENT

CODE REGISTER

26h ES:

2Eh CS:

36h SS:

3Eh DS:

64h FS:

65h GS:

Table 2.7: Segment override prefix encoding

76 Programming the 80386

Example: To address data stored in a code segment, the CS override

prefix can be specified. For example, a table of label off"sets can be stored

in the code segment and used to implement a CASE or SWITCH state-

ment. A scaled index + displacement addressing mode, combined with

the CS override prefix, forms the necessary addressing mode to be used

with the indirect jump instruction QMP) that references the table.

JMP CS:24[ESI*4] ; would be encoded as:

CS: prefix mod ope 2nd

00101110 opcode 00 100 100

idx bas

10 110 101 32-bit disp.

I/O Space

The previous sections described the structure of main memory space,

and how operands in main memory are referenced in instructions. A sec-

ond memory space, called the I/O space, is also available. As its name
implies, it is optimized for storage of control ports for input/output (I/O)

devices such as keyboards, disks, CRT displays, printers, and so on. A
separate space for I/O ports is appropriate, because the addressing and

protection of I/O devices is quite different from the addressing and pro-

tection of program code and data. Typically, an I/O device has only a

few control ports, requiring only a small number of bytes of addressable

storage, and there are only a small number of devices in the system. I/O

ports cannot be relocated within the I/O space, and they must be pro-

tected individually so that access to individual devices can be controlled.

On the other hand, program code and data require many thousands,

even millions of bytes of addressable storage, and need a different protec-

tion mechanism.

A separate I/O space is provided on the 80386. The I/O space is not

segmented. It is a simple one-dimensional address space that is 64K
bytes in size. Like main memory, the I/O space is byte addressable. I/O

ports can be one, two, or four bytes in length. As with main memory,

the litde-endian method of byte ordering is used for addressing two or

four byte ports. The lower addressed bytes contain the least significant

bits, and the higher addressed bytes contain the most significant bits.

Special instructions, described in Chapter 3, are provided to transfer

data between I/O space and the processor registers or main memory.
I/O addresses are specified as follows:

• If the I/O address is less than 256, it can be given in an 8-bit

immediate field in the instruction.

Machine State and Memory Addressing 77

• Larger I/O addresses, or I/O addresses computed as the pro-

gram executes, are taken from the DX register.

The 64K I/O space is protected by a mechanism, described in Chap-
ter 5, that allows separate protection of each byte in the I/O space. This

protection mechanism is totally separate from, and completely different

than, the protection mechanism for main memory.

Floating-Point Registers

As noted in Chapter 1, the 80387 coprocessor can be used with the

80386 for high-performance operations on data in one of the floating-

point formats. Even if you don't have an 80387, you will have to use a

software emulation of it in order to work with floating-point data. So

either way—with the chip itself or with an emulator—you will need to be

familiar with the 80387 architecture.

When used with the 80386, the 80387 adds the three sets of registers

shown in Figure 2.16 to support floating-point computations.

1

.

A stack of eight 80-bit accumulators to hold up to eight floating-

point operands.

2. Three 16-bit status and control registers: one for a status word,

one for a control word, and one for a tag word.

3. Four 32-bit error-pointer registers (FIP, FCS, FOO, and FOS) to

identify the instruction and memory operand causing an exception.

Floating-Point Accumulator Stack

Floating-point instructions treat the 80-bit registers as a stack of accu-

mulators rather than as a simple array of eight registers. The top of the

accumulator stack is named ST. Accumulators under ST are addressed

relative to ST with names of the form ST(i), where i ranges from 1 to 7.

ST(0) can be used as a substitute for ST to name the top of the accumu-

lator stack.

ST acts like an accumulator because it is implicidy used as one oper-

and of all floating-point instructions. This was done to provide 64

floating-point opcodes while taking only 8 codes from the 80386 opcode

space. This trick was accomplished by dedicating what otherwise would

be a 3-bit register field to extra opcode bits. In order to avoid most of

the restrictions of the accumulator model, a stack of eight accumulators

was provided along with operand access to "inner" accumulators.

78 Programming the 80386

Instruction

Pointer

Data

Pointer

79 78 64 63

s Exponent Significand ST(6)

ST(7)

ST -•—

r

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

TOP

010b

16 15

F P

00000 Opcode PCS

F()0

OOOOOOOGOOOOOOOO FO S

15

Status Word

Control Word

Tag Word

Figure 2.16: 80387 registers

Machine State and Memory Addressing 79

Although floating-point operations must use ST as one operand, they

may name any floating-point accumulator or a memory operand as a

second operand.

The accumulator stack is really an array of eight physical registers, with a

separate 3-bit field to identify the current stack top. Careful use of the terms

register and accumulator serve to distinguish between the two interpretations

of these floating-point operand locations. The term physical renter refers to

the physical organization of the stack. The term accumulator describes a

floating-point operand location. Thus, we have either an accumulator stack

or a physical register array.

A 3-bit field named TOP in the status word contains the absolute reg-

ister number of the current top of the accumulator stack, ST or ST(0).

A push onto the stack will decrement TOP and store a new value into

the new ST. After a push, the previous ST becomes ST(1), and aU the

stacked accumulators have their ST-relative names incremented by 1. A
pop from the stack will read a value from the current ST and then incre-

ment TOP. After a pop, the accumulator named ST(1) before the pop
becomes the new ST, and all the stacked accumulators have their

ST-relative names decremented by 1.

Incrementing and decrementing the 3-bit TOP field ignores wrap-

around. If TOP = 000b, a push will decrement TOP to 111b and store

the new value into register 7. If TOP = 11 lb, a pop will read a value

from register 7 and then increment TOP to 000b.

The floating-point accumulator stack is illustrated in Figure 2.16.

Assuming that the TOP field contains 010b, the ST-relative accumulator

names on the right correspond to the physical register numbers on the

left. The current top of the accumulator stack, ST, corresponds to physi-

cal register 2. Each 80-bit accumulator in the stack provides storage for a

real number stored in the temporary real format described in Chapter 1.

The high-order bit is the sign bit. Bits 64... 78 provide a 15-bit exponent

field. Bits 0...63 provide a 64-bit significand.

The floating-point instructions, described in Chapter 3, are designed

to work well with this accumulator stack model. Load instructions read

an operand from memory and push it onto the accumulator stack. Store

instructions take the value from the current top of stack and write it out

to memory, and may optionally pop the accumulator stack if the value is

not needed immediately for another computation. Arithmetic operations

such as addition or multiplication take one operand from the ST register,

and the other from another register or memory, and store the result back

into the ST register. A special operate-and-pop form is available that

operates on the top two stack operands, ST and ST(1), pops the stack

once, and puts the result into the new ST. This operate-and-pop

80 Programming the 80386

sequence is equivalent to the classical stack machine operation, which

pops two source operands off the stack, ST and ST(1), performs an

operation, and pushes the result back onto the stack.

The following example illustrates the operation of the accumulator

stack by showing several snapshots of the stack as a sequence of instruc-

tions executes. Another example of the operation of the accumulator

stack is given in Chapter 4.

Suppose you need to compute the dot-product of two vectors, which

requires you to form a sum of products. You can accumulate the sum in

one of the 80387 registers, and form each product in another register If

ST holds the partial sum of products, you can perform one step of the

vector dot-product by loading the next element of one vector into the

accumulator stack, multiplying by the next element of the other vector,

and then adding the result into the partial sum.

Figure 2.17 shows several pictures of the 80387 accumulator stack as

this step of the vector dot-product operation proceeds. The first snapshot

shows the accumulator stack with the partial sum 101.237 stored in ST,

and the other registers empty (illustrated with shading). The physical

register numbers are shown on the left, and the accumulator names are

shown on the right. ST is in physical register 5 at the start of this

example, so the TOP field is shown containing 101b.

The next element of the first vector (which has the value 1.21) is

pushed onto the accumulator stack with a load instruction, leaving the

stack with two elements, as illustrated in the next picture. The new value

is loaded into physical register 4, which becomes the top-of-stack register,

ST. The partial sum could now be addressed as ST(1), and it of course

is still in physical register 5. The third picture shows the stack after mul-

tiplying ST by the next element of the second vector (which has the

value 5.0). This changes the value in ST to 6.05, but does not push or

pop the stack. The last picture shows the stack after an add and pop
instruction (FADDP), which adds the new product into the partial sum
register. This instruction adds ST (the new product) and ST(1) (the old

partial sum), pops one element off the stack, and replaces ST with the

result (107.287), which is the new partial sum. This leaves the stack as it

was at the beginning of this example, with the partial sum in ST, so you

are ready for the next iteration.

Sixteen-Bit Status and Control Registers

Three 16-bit registers (tag word, control word, and status word) con-

trol the operation of the floating-point instructions and provide status

information.

Machine State and Memory Addressing 81

Tag-Word Register

The 16-bit tag-word register, shown in Figure 2.18, contains eight

2-bit fields, one for each of the eight physical floating-point registers.

These fields indicate whether the corresponding physical register holds a

valid, zero, or special floating-point number, or is empty. The fields in

the tag word correspond to the physical registers, rather than being rela-

tive to the stack top, to avoid the need to rotate the tag word as the

accumulator stack is pushed and popped!

'/////^y/y//,

y////,y/////

y////^W/a
V/^/,yy/A
V////.'/M

101.237

y////yy/y//,

v//yV///a

TOP

ST -\ 101b

Initial State of Accumulator Stack

fyyyy
1 #yy%
2 /// ^
3

4 6.05

5 101.237

6

g?yyy
7 ^y//A^

TOP

ST

ST(1)

< 100b

Stack after Multiplying ST by 5

yW^Va
1 y^^////<y
2 y/^^y
3 yy/y/^yV/
4 1.21

5 101.237

6
///myy

7 ^ y

TOP

ST-<—

T

ST(1)

100b

Stack after Loading (Pushing) 1.21

<^WM
1 V/^''^Z'/Z
2
77/
yy^%;^^^

3 yy^:y-.

4 ^Vyyyy^^
5 107.287

6 ^V/Z/Z/y
7 %y/ '//

TOP

ST -<—] 101b
\

Stack after Adding Top Two Stack Elements

Figure 2.17: 80387 accumulator stack operation

82 Programming the 80386

The tag fields are used to detect overflow or underflow of the accumu-

lator stack. A stack overflow occurs if a push operation decrements TOP
to point to a register that is not empty. A stack underflow occurs if an

attempt is made to read or pop an empty register. Stack underflow or

overflow will raise an invalid operation exception.

Control-Word Register

The control-word register can be set by the program to control the

operation of the 80387. There are three fields within the control word,

shown in Figure 2.19.

Each field in the control word is briefly described below.

• Bits 0...5 contain the exception masks for the conditions listed in

Table 2.8. If an exception is detected by the 80387, the mask bit

for that exception is tested to determine if the exception should

be passed to a software error handler (mask =0), or handled by a

default error handler within the 80387 (mask = 1). An exception

is said to be masked if its mask bit is 1

.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

TW (Tag)tag? tag6 tags tag4 tag3 tag2 tagi tagO

-

Tag Field Encoding

Tagj Meaning

00b

01b

10b

lib

Valid

Zero

Special (Infinity, NaN, Denormal)

Empty

Figure 2.18: Tag-word details

Machine State and Memory Addressing 83

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

RC PC 1 PM UIVI OM 2M DtVI IM CW (Control)

Precision Control

PC Precision of Significand

00b 24 bits (Short Real)

01b (Reserved)

10b 53 bits (Long Real)

lib 64 bits (Temporary Real)

Rounding Control

RC Rounding Mode

00b Round toward nearest or even

01b Round toward -infinity

10b Round toward + infinity

lib Chop or truncate toward zero

Figure 2.19: Control-word details

STATUS MASK CONDITION

IE IM Invalid Operation

DE DM Denormal

ZE ZM Zero Divide

OE OM Overflow

UE UM Underflow

PE PM Precision

Table 2.8: Exception status and mask bits

84 Programming the 80386

• Bits 8... 9 contain the Precision Control field, PC. Resuhs of

floating-point addition, subtraction, muhipHcation, division, and

square root are rounded to one of the three precisions given in

Figure 2.19 before being stored in the destination. All other

operations use temporary real precision, or a precision specified

in the instruction.

• Bits 10... 11 contain the Rounding Control field, RC. The four

rounding modes listed in Figure 2.19 are available to round

results of floating-point operations.

The remaining bits in the control word are hard-wired to the values

shown in Figure 2.19. When loading a value into these registers, these

bits should have the values shown, or should be reloaded from a saved

control-word image without change in order to support compatibility

with other numeric coprocessors that may define additional control bits.

Rounding Whenever possible, the 80387 yields the correct result. It is

possible, however, that during intermediate computations or during stores

to a smaller data type a loss of precision may occur. When storing the

internal temporary real format into a short integer, the possibility of pre-

cision loss is evident. When these situations arise, the 80387 will round

the result so it will fit in the smaller operand.

There are four rounding modes on the 80387, specified in the RC
field of the control-word register.

• Round to nearest

• Round down toward -infinity

• Round up toward -i- infinity

• Chop smaller in magnitude

The chop mode is useful when performing integer arithmetic, since it

matches the way the integer divide instruction rounds the quotient.

Round to nearest is suitable to most applications. It is the default

rounding mode, since the 80387 initializes the RC field to 00b when it is

reset. If you are not experienced in numerical methods, this mode should

be sufficient. It yields the most accurate results of the modes and never

introduces bias into the computation.

The round to plus and minus infinity modes are provided for interval

arithmetic. This is useful when you realize the answer is somewhat in

error but would like to place bounds upon that error. By judicious use of

the round to infinity modes, you can correctly establish the error bounds

of the computation.

Machine State and Memory Addressing 85

Infinities Prior members of the 86 family of numerics processors (8087

and 80287) could treat infinities in two modes, affine and projective, and
used bit 12 of the control word to specify the mode. The 80387, per the

IEEE standard discussed in Chapter 1, supports only the affine mode of

infinity processing.

The 8087 and 80287 use 1 in bit 12 of the control-word register to

specify use of affine mode, and to indicate use of projective mode.
These older coprocessors initialize this bit to (projective mode setting)

at reset, or after executing the FINIT instruction. This bit is also initial-

ized to on the 80387, so the control word is initialized to the same
value on all coprocessors. Appendix B describes this and other differences

between the 80387 and the 8087/80287 coprocessors in more detail.

Affine mode distinguishes between plus and minus infinity in compu-
tations. The sign indicates from which direction you reached infinity,

which may be useftil information in some cases. An algorithm, however,

may yield plus or minus zero as the correct result. If you then perform

1/0 or 1/ -0, you get plus infinity or minus infinity, respectively. This

seems like more information, but it may not be useful. In fact, in some

cases it can be considered incorrect. Thus, careful interpretation of the

sign of infinity is important.

Status-Word Register

The 80387 sets bits in the status word that can be tested by the pro-

gram to check for special conditions. The status-word register is shown

in Figure 2.20.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

B C3 TOP C2 CI CO iR SF PE UE OE ZE DE IE SW (Status)

Figure 2.20: Status-word details

86 Programming the 80386

Each field in the status word is briefly described below.

• Bits 0...5 are set if an exception is detected when executing a

floating-point instruction. These bits are sticky. They are set by

the 80387 whenever the condition is detected but must be explic-

itly reset by the program. Table 2.8 lists the correspondence

between these bits and exceptions.

• Bit 6 (SF) is the Stack Fault flag. It is set if an invalid operation

exception is due to overflow or underflow of the accumulator

stack. Otherwise it is reset.

• Bits 8(C0), 9(C1), 10(C2), and 14 (C3) contain the floating-point

condition code bits. A set of floating-point compare instructions

are provided that set these bits to indicate the outcome of the

comparison. These condition code bits are positioned so that they

C2in be moved to the lower 8 bits of the 80386 EFLAGS register,

so that the same set of conditional jumps can be used for

floating-point conditions as for the conditions detected by the

80386. Chapter 4 contains an example that tests the floating-

point condition codes.

• Bits 11... 13 hold the TOP field, which indicates which physical

register corresponds to the top of the accumulator stack.

• Bit 7 (IR) and bit 15 (B) are 1 if any unmasked exception is

indicated by the exception bits in the lower 6 bits of the status

word, as masked by the exception mask in the lower 6 bits of the

control word. Otherwise IR and B are 0.

Error-Pointer Registers

The last set of 80387 registers shown in Figure 2.16 are four 32-bit

registers that hold pointers to the last 80387 instruction executed, and its

data. The first two registers, FIP and FCS, hold a pointer to the 80387

instruction that last executed along with the first two opcode bytes of that

instruction (ignoring prefixes). FCS holds the selector and opcode, and

FIP holds the ofl^set. The second pair of registers, FOO and FOS, point

to the memory operand of this last instruction. FOS holds the selector,

and FOO holds the off"set. If the last coprocessor instruction did not have

a memory operand, the values in FOO and FOS are undefined. The
FLDENV, FSTENV, FNSTENV, FRSTOR, FSAVE, and FNSAVE
instructions, described in Chapter 3, are provided to load and store these

error-pointer registers.

Machine State and Memory Addressing 87

The opcode field is formed by combining the low-order 3 bits of the

first (after prefixes) instruction byte with the second instruction byte, as

illustrated in Figure 2.21. The two bytes selected come after any
instruction prefixes, and so contain the opcode field and the first byte of

the MODRM field. In Figure 2.21, the two instruction bytes are shown
at the top as if they were a 16-bit number, with the low-order bits in the

lower addressed byte. The first instruction byte is shown on the right at

address m and contains bits 10 through 17. The second instruction byte

is shown to the left at address m + 1 and contains bits 18 through 115.

The low-order 3 bits of the first instruction byte (10, II, and 12) are

placed into bits 8 through 10 of the opcode field. All 8 bits of the second

instruction byte (18 through 115) are placed into bits through 7 of the

opcode field. Since the high-order 5 bits of the first instruction byte

(13, 14, 15, 16, and 17) are the same for all floating-point instructions,

they are not stored in the opcode field. The opcode format swaps the

opcode bytes so that the discarded bits are in the high-order bit posi-

tions, rather than being in the middle of the opcode field. (Note that the

early Bl version of the 386 did not store the opcode information.)

m + 1

7 7

m

115 114 113 112 111 no 19 18 17 16 15 14 13 12 11 10

2nd Instruction Byte
J

1st Insi ruction Byte
^

Nr r

10 8 7

^

12 11 10 115 114 113 112 111 no 19 18

Opcode Field

Figure 2.21: Format of opcode field

88 Programming the 80386

The error pointers are useful for analyzing and reporting exceptions

that occur during floating-point instructions. These pointers are necessary

since the 80387 and 80386 can execute in parallel. Once a floating-point

instruction is sent to the 80387, it can process it while the 80386 goes on

to other instructions. If an error occurs in an 80387 instruction, the CS
and EIP registers on the 80386 may be nowhere near the 80387 instruc-

tion that caused the exception. The error-pointer registers permit parallel

processing by the 80386 and 80387, yet still provide necessary informa-

tion to diagnose and recover from floating-point exceptions.

FLDENV, FSTENV, FNSTENV Operand Format

The FLDENV, FSTENV, and FNSTENV instructions described in

Chapter 3 load and store the control-word, status-word, tag-word, and

error-pointer registers from a 28-byte memory block shown in Figure

2.22. Bits shown as in the figure are reserved. These reserved bits must

be loaded as and ignored when stored.

The FRSTOR, FSAVE, and FNSAVE instructions load and store all

of the 80387 registers from a 108-byte memory block. The low 28 bytes

31 16 15

000000000000000 F OS

FOO

Opcode FC S

F 1 P

000000000000000 Tag Word

000000000000000 Status Word

000000000000000 Control Word

24

20

16

12

8

4

Figure 2.22: FLDENV, FSTENV, FNSTENV operand format

Machine State and Memory Addressing 89

of this block have the format shown in Figure 2.22. ST(0) is loaded or

stored from offset 28, ST(1) from offset 38, and so on, with ST(7)

loaded or stored from offset 98. The memory locations that correspond

to accumulators tagged as empty are undefined after executing an

FSAVE or FNSAVE, and are ignored by the FRSTOR instruction.

Chapter

^ Table of Contents

Introduction

Alphabetical Index to Instructions 98

Instruction Description Format 105

Instruction Format 106

Instruction Description 108

Instruction Operation 108

Instruction Examples 109

Instruction Exceptions 109

Instruction Notes 111

Instruction Description Syntax 111

Functions 117

Integer

AAA—ASCII Adjust after Addition 125

AAD—ASCII Adjust before Division 127

AAM—ASCII Adjust after Multiplication 128

92 Programming the 80386

AAS—ASCII Adjust after Subtraction 129

ADC—Add with Carry 131

ADD—Integer Addition 133

AND—And 135

BOUND—Check Array Index against Bounds 137

BSF—Bit Scan Forward 138

BSR—Bit Scan Reverse 140

BT—Bit Test 142

ETC-Bit Test and Complement 144

BTR—Bit Test and Reset 146

BTS—Bit Test and Set 148

CALL—Call Procedure 150

CBW/CWDE—Convert Byte to Word 152

CLC—Clear the Carry Flag 153

CLD—Clear the Direction Flag 154

CLI—Clear the Interrupt Flag 155

CMC—Complement the Carry Flag 156

CMP—Compare 157

CMPS/CMPSB/CMPSW/CMPSD—Compare String 159

CWD/CDQ—Convert Word to Dword 161

DAA—Decimal Adjust after Addition 163

DAS—Decimal Adjust after Subtraction 165

DEC—Decrement 167

DIV—Unsigned Divide 168

ENTER—Create Stack Frame 170

IDIV—Signed Divide 172

IMUL—Signed Multiplication 175

IN—Input from a Port 178

INC—Increment 179

INS/INSB/INSW/INSD—Input String 180

Jcc—Conditional Jump Instructions 182

JMP—Jump 185

LAHF—Load Flags into AH Register 187

LEA—Load Effective Address 188

LEAVE—Procedure Exit 189

LOCK—Bus Lock 190

LODS/LODSB/LODSW/LODSD—Load String 192

LOOP—Loop with ECX Counter 194

LOOPNZ/LOOPNE—Loop with ECX and Not Zero 196

Instruction Set 93

LOOPZ/LOOPE—Loop with ECX and Zero 198

MOV—Move 200

MOVS/MOVSB/MOVSW/MOVSD—Move String 201

MOVSX—Move and Sign Extend 203

MOVZX—Move and Zero Extend 205

MUL—Unsigned Multiplication 207

NEG—Negate 209

NOP—No Operation 210

NOT—Not 211

OR—Inclusive Or 212

OUT—Write to Port 214

OUTS/OUTSB/OUTSW/OUTSD—Output String 215

POP—Pop off Stack 217

POPA/POPAD—Pop All off Stack 218

POPF/POPFD—Pop from Stack into Flags 220

PUSH—Push onto Stack 222

PUSHA/PUSHAD—Push All onto Stack 224

PUSHF/PUSHFD—Push Flags onto Stack 226

RCL—Rotate through Carry Left 228

RCR—Rotate through Carry Right 230

REP—Repeat 232

REPE/REPZ—Repeat whUe Equal 233

REPNE/REPNZ—Repeat while Not Equal 234

RET—Return 235

ROL—Rotate Left 236

ROR—Rotate Right 238

SAHF—Store AH Register into Flags 240

SAL/SHL—Shift Arithmetic Left 241

SAR—Shift Arithmetic Right 243

SBB—Subtract with Borrow 245

SCAS/SCASB/SCASW/SCASD—Scan String 247

SETcc—Byte Set on Condition Code 249

SHLD— Shift Left Double 251

SHR—Shift Logical Right 253

SHRD—Shift Right Double 255

STC—Set Carry Flag 257

STD—Set Direction Flag 258

STI—Set Interrupt Flag 259

STOS/STOSB/STOSW/STOSD—Store String 260

94 Programming the 80386

SUB—Subtract 262

TEST—Logical Compare 264

XCHG—Exchange 265

XLAT/XLATB—Table Lookup Translation 266

XOR—Exclusive Or 267

Multiple Segment

CALL—CaU Procedure 272

INT—Call to Interrupt Procedure 274

INTO—On Overflow Call Interrupt Procedure 276

IRET—Interrupt Return 278

JMP—Jump 280

Lsr—Load pointer 282

MOV—Move to/from Segment Register 284

POP—Pop off" Stack into Segment Register 286

PUSH—Push onto Stack 287

RET—Return 288

Operating System

ARPL—Adjust Requested Privilege Level 293

CLTS—Clear the Task-Switched Flag 295

HLT—Halt 296

LAR—Load Access Rights 297

LGDT—Load Global Descriptor Table 300

LIDT—Load Interrupt Descriptor Table 301

LLDT—Load Local Descriptor Table 302

LMSW—Load Machine Status Word 303

LSL—Load Segment Limit 305

LTR—Load Task Register 308

MOV—Move to/from Special Register 309

SGDT—Store Global Descriptor Table 311

SIDT—Store Interrupt Descriptor Table 312

SLDT—Store Local Descriptor Table 313

SMSW—Store Machine Status Word 314

STR—Store Task Register 315

VERR—Verify Segment for Reading 316

VERW—Verify Segment for Writing 318

Instruction Set 95

Floating point

F2XM1—2^-1 326

FABS—Absolute Value 327

FADD/FIADD/FADDP—Addition 328

FBLD—BCD Load 330

FBSTP—BCD Store and Pop 331

FCHS—Change Sign 332

FCLEX/FNCLEX—Clear Exceptions 333

FCOM/FCOMP/FCOMPP—Compare 334

FCOS—Cosine 336

FDECSTP—Decrement Stack Pointer 337

FDIV/FIDIV/FDIVP—Division 338

FDIVR/FIDIVR/FDIVRP—Division Reverse 340

FFREE—Free Register 342

FICOM/FICOMP—Integer Compare 343

FILD—Integer Load 345

FINCSTP—Increment Stack Pointer 346

FINIT/FNINIT—Initialize Processor 347

FIST—Integer Store 348

FISTP—Integer Store and Pop 349

FLD—Real Load 350

FLDcon—Load Constant 351

FLDCW—Load Control Word 353

FLDENV—Load Environment 354

FMUL/FIMUL/FMULP—Multiply 355

FNOP—No Operation 357

FPATAN— Partial Arctangent 358

FPREM—Partial Remainder 360

FPREMl—Partial Remainder—IEEE 362

FPTAN—Partial Tangent 364

FRNDINT—Round to Integer 365

FRSTOR—Restore State 366

FSAVE/FNSAVE—Save State 367

FSCALE—Power of Two Scaling 368

FSIN—Sine 370

FSINCOS—Sine and Cosine 371

FSQRT—Square Root 372

FST—Real Store 373

FSTCW/FNSTCW—Store Control Word 375

96 Programming the 80386

FSTENV/FNSTENV—Store Environment 376

FSTP—Real Store and Pop 378

FSTSW/FNSTSW—Store Status Word 380

FSTSW AX/FNSTSW AX—Store Status Word into AX 381

FSUB/FISUB/FSUBP—Subtraction 382

FSUBR/FISUBR/FSUBRP—Subtraction Reverse 384

FTST—Test 386

FUCOM/FUCOMP/FUCOMPP—Unordered Compare 388

FXAM—Examine 390

FXCH—Exchange Registers 392

EXTRACT—Extract Exponent and Significand 393

FYL2X—y*log2x 395

FYL2XP1—y*log2(x + 1) 397

"WAIT—Wait for Coprocessor 398

Instruction Set 97

Introduction

Congratulations! YouVe made it through the preparatory material of

Chapters 1 and 2, and now you are ready to understand exactly what the

80386 processor can do for you. So far you have learned of the data types,

the internal machine state, and the method for addressing memory. Now
you are ready to dive into the detailed description of every 386 instruction.

Ifyou quickly leaf through this chapter, you will see that you have quite a

bit of work to do. The 80386 and 80387 have very rich instruction sets. As
we count them in this book, the 80386 has 152 instructions and the 80387

has 74. The 80386 instruction set has evolved from the early microcomputer

days of the 8086 to the 80386: a multiprocessing, multitasking, virtual

memory 32-bit processor. Thus, there are the familiar 8086 instructions as

well as instructions that have been added in various generations to allow

the machine to support some of the more advanced computer architecture

features such as virtual memory.
This evolution leads us to the organization we use to present the

instruction set. Rather than a simple alphabetic presentation, as many
books present an instruction set, we have chosen an improved route that

separates the instructions into categories of uses. We then present the

instructions alphabetically within these categories. The categories we use

are given in the following table.

Start Page Category

119 Integer

269 Multiple Segment

290 Operating System

320 Floating Point

The 80386 applications programmer will want to read and reference the

integer instruction set description. All arithmetic, logical, data movement,

and simple control-flow instructions that an applications programmer

requires are found in this section. This is by far the largest grouping of

instructions.

The second section describes the instructions that are specifically in-

tended for the programmer who is dealing with multiple segments in his or

her programs. The applications programmer who is dealing with a single-

segment or flat programming model (as was briefly presented in Chapter 2)

need not go through the further complexities that this section presents.

98 Programming the 80386

The third section is intended solely for operating-system writers. These

instructions were specifically added to the 80386 to ease the job of writing

an operating system. Again, the applications programmer need not deal

with the complexities of these instructions. In fact, most 80386 systems will

not allow the applications programmer to use these instructions at all!

The fourth and final section contains the floating-point instructions of the

80387. As is the case throughout the book, we include the description of the

80387 as an integral part of the 80386 architecture. However, we separate

the discussion of the floating-point instructions, as many programmers do

not require the use of floating point.

Within these groupings, each instruction (or small group of highly

related instructions) is given a complete page, or more as needed, to give a

concise and complete description. This format, as well as the organization

described above, is useful for reading and understanding the instructions of

the machine. Moreover, this format provides an excellent reference manual
for later use.

Alphabetical Index to Instructions

The following table summarizes the 80386 and 80387 instruction sets in

alphabetic order. The page number and section of this chapter where each

instruction is found is given, along with a brief description.

Instruction

AAA

AAD

AAM
AAS

ADC

ADD
AND

ARPL

BOUND
BSF

BSR

BT

BTC

Section Page Description

Integer 125 ASCII adjust after addition

Integer 127 ASCII adjust before division

Integer 128 ASCII adjust after multiplication

Integer 129 ASCII adjust after subtraction

Integer 131 Add with carry

Integer 133 Integer addition

Integer 135 And

Operating System 293 Adjust requested privilege level

Integer 137 Check array index against bounds

Integer 138 Bit scan forward

Integer 140 Bit scan reverse

Integer 142 Bit test

Integer 144 Bit test and complement

Instruction Set 99

Instruction

BTR

BTS

CALL

CALL

CBW/CWDE

CLC

CLD

CLI

CLTS

CMC
CMP
CMPS/CMPSB/
CMPSW/CMPSD

CWD/CDQ

DAA

DAS

DEC

DIV

ENTER

F2XM1

FABS

FADD/FIADD/
FADDP

FBLD

FBSTP

FCHS

FCLEX/FNCLEX

FCOM/FCOMP/
FCOMPP

FCOS

Section Page Description

Integer 146 Bit test and reset

Integer 148 Bit test and set

Integer 150 Call procedure (intrasegment

Multiple Segment 272 Call procedure (intersegment'

Integer 152 Convert byte to word/

convert word to dword

Integer 153 Clear the carry flag

Integer 154 Clear the direction flag

Integer 155 Clear the interrupt flag

Operating System 295 Clear the task-switched flag

Integer 156 Complement the carr>' flag

Integer 157 Compare

Integer 159 Compare string

Integer

Integer

Integer

Integer

Integer

Integer

Floating Point

Floating Point

Floating Point

Floating Point

Floating Point

Floating Point

Floating Point

Floating Point

Floating Point

161

163

165

167

168

170

326

327

328

330

331

332

333

334

mm

Convert word to dword/

convert dword to qword

Decimal adjust afl;er addition

Decimal adjust after subtraction

Decrement

Unsigned divide

Create stack frame

2^-1

Absolute value

Addition

BCD load

BCD store and pop

Change sign

Clear exceptions

Compare

Cosine

100 Programming the 80386

Instruction Section Page Description

FDECSTP Floating Point 337 Decrement stack pointer

FDIV/FIDIV/FDIVP Floating Point 338 Division

FDIVR/FIDIVR/ Floating Point 340 Division reverse

FDIVRP

FFREE Floating Point 342 Free register

FICOM/FICOMP Floating Point 343 Integer compare

FILD Floating Point 345 Integer load

FINCSTP Floating Point 346 Increment stack pointer

FINIT/FNINIT Floating Point 347 Initialize processor

FIST Floating Point 348 Integer store

FISTP Floating Point 349 Integer store and pop

FLD Floating Point 350 Real load

FLDl Floating Point 351 Load 1

FLDCW Floating Point 353 Load control word

FLDENV Floating Point 354 Load environment

FLDL2E Floating Point 351 Load log2e

FLDL2T Floating Point 351 Load Iog2l0

FLDLG2 Floating Point 351 Load logio2

FLDLN2 Floating Point 351 Load loge2

FLDPI Floating Point 351 Load 7T

FLDZ Floating Point 351 Load zero

FMUL/FIMUL/ Floating Point 355 Multiply

FMULP

FNOP Floating Point 357 No operation

FPATAN Floating Point 358 Partial arctangent

FPREM Floating Point 360 Partial remainder

FPREMl Floating Point 362 Partial remainder— IEEE

FPTAN Floating Point 364 Partial tangent

FRNDINT Floating Point 365 Round to integer

FRSTOR Floating Point 360 Restore state

FSAVE/FNSAVE Floating Point 367 Save state

Instruction Set 101

Instruction Section Page Description

FSCALE Floating Point 368 Power of two scaling

FSIN Floating Point 370 Sine

FSINCOS Floating Point 371 Sine and cosine

FSQRT Floating Point 372 Square root

FST Floating Point 373 Real store

FSTCW/FNSTCW Floating Point 375 Store control word

FSTENV/FNSTENV Floating Point 376 Store environment

FSTP Floating Point 378 Real store and pop

FSTSW/FNSTSW Floating Point 380 Store status word

FSTSW AX/ Floating Point 381 Store status word into AX
FNSTSW AX
FSUB/FISUB/FSUBP Floating Point 382 Subtraction

FSUBR/FISUBR/ Floating Point 384 Subtraction reverse

FSUBRP

FTST Floating Point 386 Test

FUCOM/FUCOMP/ Floating Point 388 Unordered compare

FUCOMPP

FXAM Floating Point 390 Examine

FXCH Floating Point 392 Exchange registers

EXTRACT Floating Point 393 Extract exponent and significand

FYL2X Floating Point 395 y*log2X

FYL2XP1 Floating Point 397 y*log2(x+I)

HLT Operating System 296 Halt

IDIV Integer 172 Signed divide

IMUL Integer 175 Signed multiplication

IN Integer 178 Input from a port

INC Integer vl79 Increment

INS/INSB/ Integer :180 Input string

INSW/INSD

INT Multiple Segment 274 Call to interrupt procedure

INTO Multiple Segment 276 On overflow call interrupt

procedure

102 Programming the 80386

Instruction Section Page Description

IRET Multiple Segment 278 Interrupt return

JB/JNAE/JC Integer 182 Jump below

JBE/JNA Integer 182 Jump below or equal

JCXZ/JECXZ Integer 182 Jump CX/ECX zero

JE/JZ Integer 182 Jump equal

JL/JNGE Integer 182 Jump less

JLE/JNG Integer 182 Jump less or equal

JMP Integer 185 Jump (intrasegment)

JMP Multiple Segment 280 Jump (intersegment)

JNB/JAE/JNC Integer 182 Jump not below

JNBE/JA Integer 182 Jump not below or equal

JNE/JNZ Integer 182 Jump not equal

JNL/JGE Integer 182 Jump not less

JNLE/JG Integer 182 Jump not less or equal

JNO Integer 182 Jump no overflow

JNP/JPO Integer 182 Jump not parity

JNS Integer 182 Jump not sign

JO Integer 182 Jump overflow

JP/JPE Integer 182 Jump parity

JS Integer 182 Jump sign

LAHF Integer 187 Load flags into AH register

LAR Operatinig System 297 Load access rights

LDS Multiple Segment 282 Load pointer to DS

LEA Integer 188 Load effective address

LEAVE Integer 189 Procedure exit

LES Multiple Segment 282 Load pointer to ES

LPS Multiple Segment 282 Load pointer to FS

LGDT Operating System 300 Load global descriptor table

LGS Multiple Segment 282 Load pointer to GS

LIDT Operating System 301 Load interrupt descriptor table

LLDT Operatinig System 302 Load local descriptor table

Instruction Set 103

Instruction Section

LMSW Operating System

LOCK Integer

LODS/LODSB/ Integer

LODSW/LODSD

LOOP Integer

LOOPNZ/LOOPNE Integer

LOOPZ/LOOPE Integer

LSL Operating System

LSS Multiple Segment

LTR Operating System

MOV Integer

MOV Multiple Segment

MOV Operating System

MOVS/MOVSB/ Integer

MOVSW/MOVSD
MOVSX Integer

MOVZX Integer

MUL Integer

NEC Integer

NOP Integer

NOT Integer

OR Integer

OUT Integer

OUTS/OUTSB/ Integer

OUTSW/OUTSD

POP Integer

POP Multiple Segment

POPA/POPAD Integer

POPF/POPFD Integer

Page Description

303 Load machine status word

190 Bus lock

192 Load string

194 Loop with ECX counter

196 Loop with ECX and not zero/

Loop with ECX and not equal

198 Loop with ECX and zero /

Loop with ECX and equal

305 Load segment limit

282 Load pointer to SS

308 Load task register

200 Move

284 Move to/from segment register

309 Move to/from special register

201 Move string

203 Move and sign extend

205 Move and zero extend

207 Unsigned multiplication

209 Negate

210 No operation

211 Not

212 Inclusive or

214 Write to port

215 Output string

217 Pop off stack

286 Pop off stack into segment

register

218 Pop all off stack

220 Pop from stack into flags

104 Programming the 80386

Instruction Section

PUSH Integer

PUSH Multiple Segment

PUSHA/PUSHAD Integer

PUSHF/PUSHFD Integer

RCL Integer

RCR Integer

REP Integer

REPE/REPZ Integer

REPNE/REPNZ Integer

RET Integer

RET Multiple Segment

ROL Integer

ROR Integer

SAHF Integer

SAL/SHL Integer

SAR Integer

SBB Integer

SCAS/SCASB/ Integer

SCASW/SCASD

SETB/SETNAE/ Integer

SETC

SETBE/SETNA Integer

SETE/SETZ Integer

SETL/SETNGE Integer

SETLE/SETNG Integer

SETNB/SETAE/ Integer

SETNC

SETNBE/SETA Integer

SETNE/SETNZ Integer

SETNL/SETGE Integer

SETNLE/SETG Integer

Page Description

222 Push onto stack

287 Push segment register onto

the stack

224 Push all onto stack

226 Push flags onto stack

228 Rotate through carry left

230 Rotate through carry right

232 Repeat

233 Repeat while equal

234 Repeat while not equal

235 Return (intrasegment)

288 Return (intersegment)

236 Rotate left

238 Rotate right

240 Store AH register into flags

241 Shift arithmetic left

243 Shift arithmetic right

245 Subtract with borrow

247 Scan string

249 Set on below

249 Set on below or equal

249 Set on equal

249 Set on less

249 Set on less or equal

249 Set on not below

249 Set on not below or equal

249 Set on not equal

249 Set on not less

249 Set on not less or equal

Instruction Set 105

instruction Section Page Description

SETNO Integer 249 Set on no overflow

SETNP/SETPO Integer 249 Set on not parity

SETNS Integer 249 Set on not sign

SETO Integer 249 Set on overflow

SETP/SETPE Integer 249 Set on parity

SETS Integer 249 Set on sign

SGDT Operating System 311 Store global descriptor table

SHLD Integer 251 Shift left double

SHR Integer 253 Shift logical right

SHRD Integer 255 Shift right double

SIDT Operating System 312 Store interrupt descriptor table

SLDT Operating System 313 Store local descriptor table

SMSW Operating System 314 Store machine status word

STC Integer 257 Set carry flag

STD Integer 258 Set direction flag

STI Integer 259 Set interrupt flag

STOS/STOSB/ Integer 260 Store string

STOSW/STOSD

STR Operating System 315 Store task register

SUB Integer 262 Subtract

TEST Integer 264 Logical compare

VERR Operating System 316 Verify segment for reading

VERW Operating System 318 Verify segment for writing

WAIT Floating Point 398 Wait for coprocessor

XCHG Integer 265 Exchange

XLAT/XLATB Integer 266 Table lookup translation

XOR Integer 267 Exclusive or

Instruction Description Format

The lexicon of our instruction set description is given here. Anything can

be described in several diflferent ways. For instance, you can describe a

106 Programming the 80386

hammer in terms of how it can be used. You can also describe it in terms of

its properties, such as weight or shape, or you can describe what it looks

like. Similarly, in the following instruction set description, each instruction

is described in several ways.

We first give every assembly language syntax allowed with the instruc-

tion. We then give an English description of the instruction, which may be

easier to understand than the formal definition in some cases. This is

followed by a formal operational definition of the semantics of the instruc-

tion. Next, we show an example or two of how the instruction is used and

what the effects of the instruction are. Finally, we give a list of exceptions

(what may have gone wrong) with every instruction. Occasionally, an extra

section of notes is included, where we list items that may be of particular

interest to you. This section ofnotes may also include a reference to other pages

of the book where this instruction is demonstrated or further explained.

Thus, by the various methods of description, we hope to give you a

thorough description of every instruction.

Instruction Format

An example of an instruction format is given below.

ADD op I 0p2

reg reg

reg mem
reg imm
mem reg

mem imm

This indicates that the ADD instruction has five possible forms. It can have

two register operands (reg, reg), a register and a memory (reg, mem) and

so on. The shorthand opi and op2 are used in the formal operational de-

scription that follows. Thus, in the operation section, we can simply refer

to opi = opi + op2 rather than specifically describing each possible form

(i.e., reg = reg + reg, reg = reg + mem, and so on).

The list of all possible operand mnemonics and a briefdescription ofeach

is given below.

reg Any 8-, 16-, or 32-bit general registers as described in Chap-

ter 2, Figure 2.1. The shorthand reg refers to a register of any

size of these three. A particular register size will be referred

to as regS, regl6, or reg32. Some instructions use particular

registers that are implicitly or explicitly specified, and other

instructions allow several possible registers to be used with

the register being specified.

Instruction Set 107

mem Any of the memory addressing forms described in Chapter 2

can be used when mem is given in the instruction format. The
memory forms themselves may reference any 8-, 16-, 32-, 48-,

64-, and 80-bit and 28- and 108-byte memory operand. These
would be referred to as mem8, mem 16, mem32, and so on in

the instruction format description. The shorthand mem re-

fers to mem8, mem 16, or mem32. Any other memory size is

called out explicitly.

imm Again, as described in Chapter 2, immediate constants are

allowed in some instructions. An immediate of any length (8,

16, or 32 bits) is given the shorthand notation imm. An immedi-
ate of a particular length is called out specifically as imm8,
imml6, or imm32.

sreg A segment register is referred to as sreg. A summary of these

can be found in Chapter 2.

ST Many of the floating-point data types use the floating-point

accumulator stack, which was described in Chapter 2. The
top of the stack is called ST or ST(0), and elements beneath
the stack top are ST(n). Refer to Chapter 2 for examples.

;
The ; (semicolon) is used as an assembler comment character.

Thus

ADD EAX, EBX ; This is an add

is an assembly language statement with a comment. You will

see the semicolon in the format section and the example section.

Note that reading across a line ofone of the format statements (ADD reg,

reg, for instance) requires the operands to be of the same length (unless the

operand lengths are specifically called out). Thus, the format

ADD reg, reg

allows: reg8, reg8; regl6, regl6; or reg32, reg32, but not cases such as reg8,

reg32; reg 16, reg8; and so on. This same notion of equivalent operand

lengths across a line in the format statement is also true for memory
mnemonics. Thus,

ADD reg, mem
allows reg8, mem8; reg 16, mem 16; or reg32, mem32.

Also note that two-operand (binary) operations are normally of the form

opi = opi + op2

108 Programming the 80386

where + is the appropriate operator for the instruction. Thus, opi is

normally the destination of the operation. For example,

ADD reg, mem

causes reg to be assigned the value of reg + mem.

Instruction Description

An example of an instruction description follows.

AAA will perform a BCD adjustment (unpacked) of the contents of the

AL register following a byte addition. AAA normally follows a byte

addition of the unpacked BCD contents ofAL, but it can be used for other

BCD conversions.

If a decimal earn,- resulted from the addition, or the contents of the lower

nibble of AL are greater than 9, then AL is incremented by 6, AH is

incremented by 1, and the CF and AF bits are set. If no decimal carry

occurred, then AH is unchanged, CF and AF are cleared to 0, and the

lower 4 bits ofAL are unchanged. If a decimal carry occurred or not, the

upper 4 bits ofAL are cleared.

This English description is from the .^AA. instruction. Where possible, an

alternate algorithm from the one given in the operation section is given.

Where appropriate, the purpose and use of the instruction is also given.

Instruction Operation

An example of the operation section of an instruction is given below.

AL = AL + (10 * .AH) ;

AH = 0;

SF = B (7,AL)
ZF = AL ==
PF = ~(B(7,AL) ''B(6,AL) '^

. . . ''B(0..\L)) ;

AF = OF = CF = LTSfDEFINED;

This is an algorithmic description, from the .A-\D instruction. The order

of statements is part of the semantics of the instruction. Thus, the statement

ZF = AL == 0;

refers to the value ofAL after the first statement

AL = AL + (10 * AH)

has been executed. The operation section describes the complete effects of

the instruction. If a register, flag, or operand is not included in the

description, it is not affected by the instruction.

Instruction Set 109

A description of the syntax used in the operation section (as well as in

other portions of the instruction set description) is given below.

Instruction Examples

Examples are used to further clarify the operation of each instruction. All

examples have been checked on a 386 system, to ensure accuracy. A repre-

sentative instruction example is given below.

OSZAPC
EBX: 76543210 XXXXXX
EBX: 76543210 000010

XXXXXX
110010

ADD EAX, EBX Before: EAX: 01234567
After : EAX: 77777777

ADD mem32, 70000000h Before: Mem: 7FFFFFFF
After : Mem: EFFFFFFF

This example, from the ADD instruction, is broken into two sections. On
the left-hand side is the assembler language source for the instructions. This

assembler syntax is valid on the 386 system we used. Yours may have slight

differences from this, however. On the right-hand side is the state before

and after the instruction execution. The register state is normally given in

hex, even though it does not have an h suffix. The flag state shown on the

far right is in binary. The shorthand column heading OSZAPC refers to

the OF, SF, ZF, AF, PF, and CF bits. In examples, an X in either the regis-

ter state or flag state indicates "don't care" or "unknown." In the exam-

ple above, the state of the flags was unknown prior to the execution of

the ADD instruction. Their state, however, cannot alter the execution of the

ADD instruction. Thus, the flags are a "don't care" for this instruction.

U indicates unchanged. In the following example of the JO (jump on

overflow) instruction, the flags (except for the overflow) are unknown or

don't care prior to the execution of the JO, and the instruction does not

modify them.

JO near labell ; labell is 68h bytes forward in the program
OSZAPC

Before: EIP : 00000300 IXXXXX
After: EIP : 00000368 LUUUUU

After this instruction, all of the flags remain unchanged, as indicated by

the Us in the After picture of the flags.

Instruction Exceptions

Instructions have many possible exception conditions. In the instruction

set description, a shorthand function call is used to summarize a potential

exception condition. For example, any instruction that has a memory oper-

and can generate one of several different exceptions due to the memory

110 Programming the 80386

operand. Thus, a "call" to the Memory() function given below would check

for the possible error conditions. Describing the error conditions in this

shorthand way should eliminate repetitive exception descriptions that add
little to the instruction description.

If an exception does in fact occur, the result is an exception of the level

described below. Note that ifno exceptions are given, the instruction cannot

generate any exceptions. Exceptions are described in Chapter 6.

Memory ()

{

/* All possible exceptions while accessing memory are
embodied in the AccessVirtual () routine defined in Chapter 5.

Please refer to Chapter 5 for further details.
*/

}

Stack ()

{

/* All possible exceptions while accessing the stack are
embodied in the AccessVirtual () routine defined in
chapter 5 with SReg equal to SS. Please refer to Chapter 5

for further details.
*/

}

CodeReference () {

/* The target of the control -transfer instruction is checked.
A segment exception is reported in the control- transfer
instruction if the first byte of the target is beyond
the segment limit. Page exceptions are not reported until the
instruction is fetched, as with segment exceptions in bytes
beyond the first byte of the target instruction.

*/

if (EIP > CS. Limit)
/* The SegmentException() routine is defined in Chapter 6.

Please refer to Chapter 6 for further details.
*/

SegmentException($GP, 0) ;

}

AccessIOO {

/* Defined in Chapter 5 with all possible exception
conditions given. Please refer to Chapter 5 for further details.

*/

}

lOPLSensitiveO {

/* The SegmentExceptionO routine is defined in Chapter 6.

CPL and lOPL are discussed in detail in Chapter 5.

*/

if (CPL > lOPL)

{

SegmentException ($GP, 0)

}

}

Inval idOpcode ()

{

/* Defined in Chapter 6 */

Instruction Set 111

Instruction Notes

The purpose of the instruction notes section is to point out particular

items you should be aware of. For instance, any instruction new to the 386

or 387, or any instruction that operates differently than prior 86 family

members, is specifically mentioned here. A peculiar side effect or unex-

pected result of an instruction is also pointed out here. A reference to an

example or description located elsewhere in the book is often noted.

Instruction Description Syntax

This section gives a description of the syntax used to describe the

instruction in the operation and exception sections. The syntax used is

based on the C programming language. A summary of the C notation we
use and the extensions we've made to it are given below. On several occa-

sions, we may use syntax that is not strictly legal in C. This is done for

further clarity or conciseness than would be allowed obeying strict C
syntax.

Logical Operators

& Bitwise and

I Bitwise inclusive-or

/v Bitwise exclusive-or

« Left shift

» Right shift

~ One's complement (unary), not

Arithmetic Operators

+ Addition

Subtraction

/ Division

% Modulus

-H- Increment

— Decrement

Relational Operators and Logical Connectives

> Greater than

< Less than

112 Programming the 80386

>=

<=

1 I

&&

/*

*/

{

}

&

[a]

a is b

c in (s)

DENORMAL
EMPTY
+ INFINITY

- INFINITY

MSB
NaN

NORMAL
NUMOPS
OPCODE
QUIETNaN
UNDEFINED
UNSUPPORTED

Relational Operators and Logical Connectives

Greater than or equal

Less than or equal

Equality

Not equal

Or (logic connective)

And (logic connective)

Other

Assignment

Begin comment

End comment

Open block of statements

Close block of statements

Address of operand

Operand at the address a

If a is of type b, this is true

If c is within the set specified by s, this is true

Constants

Floating-point denormal number

Floating-point register empty

Floating-point positive infinity representation

Floating-point negative infinity representation

Most significant bit

Floating-point not a number

Floating-point normal number

Number of operands specified

The opcode of this instruction

Floating-point quiet NaN

Undefined result

Unsupported floating-point representation

Instruction Set 113

Register Mnemonics

EAX 32-bit EAX register

ECX 32-bit ECX register

EDX 32-bit EDX register

EBX 32-bit EBX register

ESP 32-bit ESP register

EBP 32-bit EBP register

ESI 32-bit ESI register

EDI 32-bit EDI register

AX 16-bit AX register

CX 16-bit CX register

DX 16-bit DX register

BX 16-bit BX register

SP 16-bit SP register

BP 16-bit BP register

SI 16-bit SI register

DI 16-bit DI register

AL 8-bit AL register

CL 8-bit CL register

DL 8-bit DL register

BL 8-bit BL register

AH 8-bit AH register

CH 8-bit CH register

DH 8-bit DH register

BH 8-bit BH register

CS 16-bit CS (code segment) register

DS 16-bit DS (data segment) register

SS 16-bit SS (stack segment) register

ES 16-bit ES (extra segment) register

FS 16-bit FS (extra segment) register

GS 16-bit GS (extra segment) register

EIP 32-bit instruction pointer

114 Programming the 80386

CRO

CR2

CR3

DRO

DRl

DR2

DR3

DR6

DR7

EFLAGS

MSW
LDTR
IDTR

GDTR
TR
TW
SW
CW
ST

ST(n)

TOP
FIP

FCS

FOO
FOS

CF

PF

AF

ZF

Register Mnemonics

32-bit control register

32-bit control register 2

32-bit control register 3

32-bit debug register

32-bit debug register 1

32-bit debug register 2

32-bit debug register 3

32-bit debug register 6

32-bit debug register 7

32-bit flags register

Machine status word

Local descriptor table register

Interrupt descriptor table register

Global descriptor table register

Task register

Floating-point tag word

Floating-point status word

Floating-point control word

Floating-point stack top

nth register beneath floating-point stack top

Stack top pointer

Floating-point instruction pointer

Floating-point code segment

Floating-point operand offset

Floating-point operand segment

Flag IVInemonics

Carry flag

Parity flag

Auxiliary carry flag

Zero flag

Instruction Set 115

SF

TF

IF

DF

OF
lOPL

NT
RF

VM
CO

CI

C2

C3

CPL

DPL

LOCK
NMI
RPL

PE

immS

imml6

imm32

imm

memS

mem 16

mem32

mem48

mem64

memSO

Sign flag

Trap enable flag

Interrupt flag

Direction flag

Overflow flag

I/O privilege level

Nested task flag

Debug fault enable

Virtual 8086 mode

Floating-point condition code

Floating-point condition code 1

Floating-point condition code 2

Floating-point condition code 3

Other Flags/Bits/Pins

Current privilege level

Descriptor privilege level

The LOCK bus pin

Nonmaskable interrupt pin

Requested privilege level

Protection enable

Other Mnemonics

8-bit immediate

16-bit immediate

32-bit immediate

8-, 16-, or 32-bit immediate

8-bit memory pointer

16-bit memory pointer

32-bit memory pointer

48-bit memory pointer

64-bit memory pointer

80-bit memory pointer

116 Programming the 80386

mem

regS

regis

reg32

reg

sreg

cnt

delta

disp

i

offset

quotient

tmp, temp

shortReal

longReal

tempReal

word In t

shortint

longint

int

if(e) bl

else b2

while (e) b3

for(el;e2;e3) b4

switch (el){case-block}

case cl:

break:

8-, 16-, or 32-bit memory pointer

8-bit register

16-bit register

32-bit register

8-, 16-, or 32-bit register

Segment register

General Variables

Variable used for bit counts

Variable used in string descriptions

Byte displacement

Loop variable

Bit offset

Variable used for temporary quotient storage

Miscellaneous variable

Type Casts

Floating-point short real (32 bits)

Floating-point long real (64 bits)

Floating-point temporary real (80 bits)

80387 word integer (16 bits)

80387 short integer (32 bits)

80387 long integer (64 bits)

Integer

Control Constructs

If expression e is true, execute block bl

Else execute block b2

While expression e is true, execute block b3

Execute el; while e2 execute b4 and e3

Multiway conditions statement

True if constant cl is matched

Immediate exit of one program level

Instruction Set 117

Most of these should be famiHar or self-explanatory. A few, however, can
use further explanation.

The type casts are much like the type casts of C. They allow conversion
from one data type into another. For example

(shortint) Y;

denotes that X is assigned the value of Y after the value of Y has been
converted into the data type of short integer.

The is operator allows for the checking of data types. For example

if (opi is mem)

{

whatever. .

.

}

executes "whatever..." if opi (the first operand) is a reference to memory.
The in operator allows for the notion of sets. For example

if (op, in (mem32, mem64, memSO)) {

Memory ()

;

}

calls the Memory() exception routine if opi is in the set of items given:

mem32, mem64, and memSO.

Functions

Several predefined procedures are used in the instruction set description.

Below we define each of these.

/* Return bit "N" specified by bitN out of op */
B(bitN, op)

{

return((op » bitN) & 01b);

}

/* Return num bits at bit "N" out of op as specified by */

/* bitN and num */

Bits (bitN, num, op)

{

for (mask=0; i=0; i< num; i-H-) {

mask = (mask « 1) II;
}

return((op » bitN) & mask);

}

/* Return the carryO of bitN from the most recent ALU */

/* operation. This assumes the existence of a special */

/* variable that contains the carry bits of the */

/* most recent addition. */

CarryO (bitN)

{

return ((CarryChain » bitN) & 01b);

118 Programming the 80386

/* Return the borrowO of bitN from the most recent ALU*/
/* operation. This assumes the existence of a special */
/* variable that contains the borrow bits of the */
/* most recent subtraction. */
BorrowO (bitN)

{

return ((BorrowChain » bitN) & 01b);

}

/* The length in bits of op is returned. */
/* Note sizeof is a C function that returns the size */
/* of the given data type in terms of number of bytes.*/
Length (op)

{

return (sizeof (op) * 8);

}

/* op of length OpLen is sign-extended to be of length*/
/* as specified by DesLen. */
SignEx(DesLen, OpLen, op)

{

sign = B (OpLen-1, op)

;

tmp = op;

for (i=Oplen; i< DesLen; i-H-) {

tmp = (sign « i) I tmp;

}

re turn (tmp)

;

)

/* op, is concatenated with opa , lenOfRes is the */

/* final length, lenOfOp, is the length of opi . The */

/* lenOfRes minus lenOfOpi gives the length of 0P2 . */

ConCatdenOfRes, opz , lenOfOpi , opi) {

mask = 0;

for(i=0; KlenOfRes; i++) {

mask = (1 « i) I mask;

}

return (mask & ((opz « lenOfOpi) I opi))

;

Push (op)

{

len = Length (op) / 8;

SS: [ESP-len] = op;

ESP = ESP - len;

Pop (op)

{

len = Length (op) /

tmp = SS: [ESP] ;

ESP = ESP + len;
return (tmp)

;

Port (op)

{

/* The port routine is a simplified call to the */

/* AccessIOO routine defined in Chapter 5. */

/* AccessIO (port number, length-of-operation, */

/* address-of-data, wr i te-or-readnot)

;

*/

/* Refer to Chapter 5 for further details. */

Instruction Set 119

if (OPCODE in (OUT, OUTS)) {

AccessIO(op, Length(op) /8, &op2 , 1 /* write */);
} else { /* reading from port */

AccessIO(op, Length(op) /8, &tmp, /* read */);
return (*tmp)

;

}

}

/* Used by string instructions to determine which segment */
/* to use for ESI string element reference. */
SegReg(op)

{

if (op has Segment override)

{

return (segment of op)

} else {

return(DS)

;

}

}

/* The do this forever loop */
StopExecutionO {

while(l)

;

Now that you understand the syntax of our instruction set description lan-

guage, you are ready to tackle the instruction-by-instruction description

of the 80386.

> Integer

The Integer section gives the complete set of instructions used by the

applications programmer. In this section you'll find all arithmetic, bit

manipulation, data transfer, nonprivileged flag operation, high-level lan-

guage, logical, and string instructions.

Each instruction includes one or two examples of how they are used.

Chapter 4 gives more examples for the instructions in this section. Those

examples are program segments consisting of several instructions to per-

form some useful function. Between the description and the examples given

here, and the more extensive examples found in Chapter 4, you should be

able to clearly understand the purpose and operation of these instructions.

The following tables summarize all the instructions in this section

according to these subgroupings. Following the tables of instruction groups,

the page-by-page description of each instruction begins.

Here are the integer arithmetic instructions that operate on signed and

120 Programming the 80386

unsigned integers,

AAA
AAD
AAM
AAS

ADC
ADD
CBW/CWDE
CMP
CWD/CDQ
DAA
DAS

DEC
DIV

IDIV

IMUL
INC

MUL
NEC
SBB

SUB

ASCII data, and BCD data:

Arithmetic

ASCII adjust after addition

ASCII adjust before division

ASCII adjust after multiplication

ASCII adjust after subtraction

Add with carry

Integer addition

Convert byte to word/convert word to dword

Compare

Convert word to dword/convert dword to qword

Decimal adjust after addition

Decimal adjust after subtraction

Decrement

Unsigned divide

Signed divide

Signed multiplication

Increment

Unsigned multiplication

Negate

Subtract with borrow

Subtract

Here are the instructions that operate on bit data types:

Bit

BSF Bit scan forward

BSR Bit scan reverse

BT Bit test

BTC Bit test and complement

BTR Bit test and reset

BTS Bit test and set

Instruction Set 121

The following instructions allow conditional setting of a byte based on
the flag state.

SETB/SETNAE/SETC

SETBE/SETNA

SETE/SETZ

SETL/SETNGE

SETLE/SETNG

SETNB/SETAE/SETNC

SETNBE/SETA

SETNE/SETNZ

SETNL/SETGE

SETNLE/SETG

SETNO
SETNP/SETPO

SETNS

SETO

SETP/SETPE

SETS

Conditional Assignment

Set byte below

Set byte below or equal

Set byte equal

Set byte less

Set byte less or equal

Set byte not below

Set byte not below or equal

Set byte not equal

Set byte not less

Set byte not less or equal

Set byte no overflow

Set byte not parity

Set byte not sign

Set byte overflow

Set byte parity

Set byte sign

The following instructions allow conditional and unconditional transfer

of control from the normal sequential instruction flow.

CALL

JB/JNAE/JC

JBE/JNA

JCXZ/JECXZ

JE/JZ

JL/JNGE

JLE/JNG

JMP
JNB/JAE/JNC

Control Transfer

Call procedure

Jump below

Jump below or equal

Jump CX zero/Jump ECX zero

Jump equal

Jump less

Jump less or equal

Jump

Jump not below

122 Programming the 80386

JNBE/JA

JNE/JNZ

JNL/JGE

JNLE/JG

JNO
JNP/JPO

JNS

JO
JP/JPE

JS

LOOP
LOOPNZ/LOOPNE

LOOPZ/LOOPE

RET

Control Transfer

Jump not below or equal

Jump not equal

Jump not less

Jump not less or equal

Jump no overflow

Jump not parity

Jump not sign

Jump overflow

Jump parity

Jump sign

Loop with ECX counter

Loop with ECX and not zero/Loop with ECX
and not equal

Loop with ECX and zero/Loop with ECX
and equal

Return

The next set of instructions allow data to be moved to and from memory,
the stack, input/output ports, and registers.

Data Transfer

IN Input from a port

LEA Load effective address

MOV Move

MOVSX Move and sign extend

MOVZX Move and zero extend

OUT Write to port

POP Pop ofi' stack

POPA/POPAD Pop all off stack

PUSH Push onto stack

PUSHA/PUSHAD Push all onto stack

XCHG Exchange

Instruction Set 123

These next instructions allow individual flags to be altered and the flags

as a group to be moved to and from the AH register and the stack.

CLC

CLD
CLI

CMC
LAHF
POPF/POPFD

PUSHF/PUSHFD

SAHF

STC

STD

STI

Flag Control

Clear the carry flag

Clear the direction flag

Clear the interrupt flag

Complement the carry flag

Load flags into AH register

Pop from stack into flags

Push flags onto stack

Store AH register into flags

Set carry flag

Set direction flag

Set interrupt flag

The following instructions implement certain commonly performed high-

level language operations.

High-level Language

BOUND Check array index against bounds

ENTER Create stack frame

LEAVE Procedure exit

These instructions implement the standard logical operators.

Logic

AND And

NOT Not

OR Inclusive or

RCL Rotate through carry left

RCR Rotate through carry right

ROL Rotate left

ROR Rotate right

SAL/SHL Shift arithmetic left/

Shift logical left

124 Programming the 80386

SAR Shift arithmetic right

SHLD Shift left double

SHR Shift logical right

SHRD Shift right double

TEST Logical compare

XOR Exclusive or

The next instructions perform operations on the string data types

String

CMPS/CMPSB/CMPSW/CMPSD
INS/INSB/INSW/INSD

LODS/LODSB/LODSW/LODSD

MOVS/MOVSB/MOVSW/MOVSD
OUTS/OUTSB/OUTSW/OUTSD
REP

REPE/REPZ

REPNE/REPNZ

Compare string

Input string

Load string

Move string

Output string

Repeat

Repeat while equal/

Repeat while zero

Repeat while not equal/

Repeat while not zero

Scan string

Store string

Table lookup translation

SCAS/SCASB/SCASW/SCASD

STOS/STOSB/STOSW/STOSD

XLAT/XLATB

Finally, the last instructions do not fit into any of the above categories.

Other

LOCK Bus lock

NOP No operation

Integer Instruction AAA 125

AAA

ASCII Adjust after Addition

Format:

AAA

Description:

AAA will perform a BCD adjustment (unpacked) of the contents of the

AL register following a byte addition. AAA normally follows a byte

addition of the unpacked BCD contents of AL, but it can be used for other

BCD conversions.

If a decimal carry resulted from the addition, or the contents of the lower

nibble of AL are greater than 9, then AL is incremented by 6, AH is

incremented by 1, and the CF and AF bits are set. If no decimal carry

occurred, then AH is unchanged, CF and AF are cleared to 0, and the lower

4 bits ofAL are unchanged. If a decimal carry occurred or not, the upper 4

bits ofAL are cleared.

Integer

Operation:

if ((AL & OFh) > 9) II (AF == 1) {

AL = AL + 6;

AH = AH + 1;

AF = 1;

CF = 1;

} else {

AF = 0;

CF = 0;

}

AL = AL & OFh;

OF = SF = ZF = PF = UNDEFINED;

126 AAA Integer Instruction

Examples:

OSZAPC
ADD AL,BL Before AH 05 AL: 07 BL 09 XXXXXX

After AH 05 AL: 10 BL 09 000100
AAA Before AH 05 AL: 10 BL 09 000100

After AH 06 AL: 06 BL 09 XXXIXI

ADD AL,BL Before AH 05 AL: 07 BL 02 XXXXXX
After AH 05 AL:09 BL 02 000010

AAA Before AH 05 AL:09 BL 02 000010
After AH 05 AL: 09 BL 02 xxxoxo

Exceptions:

None.

Integer Instruction AAD 127

AAD

ASCII Adjust before Division

Format:

AAD

Description:

AAD adjusts the numerator in AL before dividing two unpacked BCD
numbers. The adjustment is done so the produced quotient of the divide

will be a valid BCD result.

The AL register is set to the value: AL + (10 * AH). The AH register is

zeroed. A subsequent divide operation will leave a valid BCD quotient in

AL with the remainder in AH.

Integer

Operation:

AL = AL + (10 * AH) ;

AH = 0;

SF = B (7,AL)
ZF = AL ==
PF = ~(B(7,AL) ''B(6,AL) ^

AF = OF = CF = UNDEFINED;
B(0, AL)

)

Example:

AAD

DIV BL

OSZAPC
Before AH 05 AL:07 BL 09 xxxxxx
After AH 00 AL:39 BL 09 XOOXIX
Before AH 00 AL:39 BL 09 XOOXIX
After AH 03 AL:06 BL 09 XXXIXI

Exceptions:

None.

128 AAM Integer Instruction

AAM

ASCII Adjust after Multiplication

Format:

AAM

Description:

A MUL of two BCD digits may produce an invalid BCD result. AAM
converts this result back into a pair ofBCD digits, which are left in the AX
register (AH and AL, respectively).

Thus, AAM normally follows a multiply operation of two BCD digits.

The AH register receives the value ofAL divided by 10. The new value of

AL is the old value ofAL modulus 10.

Operation:

AH = AL / 10;

AL = AL % 10;

SF = B(7,AL)
ZF = AL == 0;

PF = ~(B(7,AL) '^B(6,AL) ^ . .

OF = AF = CF = UNDEFINED;
B{0, AL)

)

Example:

MUL BL

AAM

OSZAPC
Before AH 00 AL:07 BL 09 XXXXXX
After AH 00 AL:3F BL 09 oxxxxo
Before AH 00 AL: 3F BL 09 oxxxxo
After AH 06 AL: 03 BL 09 XOOXIX

Exceptions:

None.

Integer Instruction AAS 129

AAS

ASCII Adjust after Subtraction

Format:

AAS

Description:

AAS will perform a BCD adjustment (unpacked) of the contents of the

AL register following a byte subtract operation. Thus, AAS should only be

used following a byte subtract of the unpacked contents of AL.

If a decimal borrow resulted from the subtraction operation, then AL is

decremented by 6, AH is decremented by 1 , and the CF and AF bits are set.

If no decimal carr>' occurred, then AH is unchanged, CF and AF are set to

0, and the lower 4 bits ofAL are unchanged. If a decimal carr^^ occurred or

not, the upper 4 bits ofAL are cleared.

Integer

Operation:

if ((AL & OFh) > 9) II (AF

AL = AL - 6;

AH = AH - 1;

AF = 1;

CF = 1;

} else {

AF = 0;

CF = 0;

}

AL = AL & OFh;

OF = SF = ZF = PF

1)

UNDEFINED;

130 AAS Integer Instruction

Examples:

SUB AL,BL Before. AH 05 AL:07 BL:

After AH 05 AL:FE BL:

AAS Before AH 05 AL:FE BL:
After AH 04 AL: 08 BL:

SUB AL,BL Before AH 05 AL:09 BL
After AH 05 AL:02 BL

AAS Before AH 05 AL:02 BL
After AH 05 AL:02 BL

OSZAPC
09 XXXXXX
09 010101
09 010101
09 XXXIXI

07 XXXXXX
07 000000
07 000000
07 XXXOXO

Exceptions:

None.

Integer Instruction ADC 131

Add with Carry

Formats:

ADC op, 0p2

reg reg

reg mem
reg imm
mem reg

mem imm

Integer

Description:

An integer addition is performed on opi, op2, and Ci with the result

placed into op). ADC is normally used as part of a multiple byte, word, or

dword addition.

Operation:

opi
OF =

SF =

ZF =

AF =

PF =

CF =

/*

= opi + 0P2 + CF;

CarryO(MSB) '^ CarryO (MSB-1) ;

B(MSB, op,)

;

opi == 0;

CarryOO) ;

~(B(7,opi) '^B(6,opi)
'^

. . . ''B(0,opi));
CarryO(MSB)

;

+ is defined on a bitwise basis in the table below.

ai and bi are the ith bits of op, and opz . Ci .

1

is the carry out of bit i-1 (which is the same as the

carry into l)it i). ri is the ith result bit and Ci is

the carry out of the ith bit. The bit variable i

takes on values from to MSB. Ci for i-1 == -1

is CF (value prior to ADC) for ADC.

ai bi Ci-1 Ti Ci

1 1

1 1

1 1 1

1 1

1 1 1

1 1 1

1 1 1 1 1

*/

132 AX)C Integer Instruction

Examples:

OSZAPC
ADC EAX, EBX Before: EAX: 01234567 EBX: 76543210 XXXXXl

After : EAX: 77777778 EBX: 76543210 000010

ADC mem32, TOOOOOOOh Before: Mem: 7FFFFFFF xxxxxo
After : Mem: EFFFFFFF 110010

ADC AL, AH Before: AL : F9 AH : 65 XXXXXl
After : AL : 5F AH : 65 000011

Exception:

Memory ;

Integer Instruction ADD 133

Integer Addition

Formats:

ADD op I 0p2

reg reg

reg mem
reg imm
mem reg

mem imm

Integer

Description:

An integer addition is performed on opi and op2 with tlie result placed

into op).

Operation:

OPi = opi + 0P2 ;

OF = CarryO(MSB) '^CarryOdWSB-1)
SF = B(MSB, opi)

ZF = opi == 0;

AF = CarryOO) ;

PF = ~(B(7,opi)
^ B(6 op,)

^
. .

A. B(0 op,));

CF = CarryO(lVISB)

/*
+ is defined on a bitwise basis in the table below,

ai and bi are the ith bits of op, and opz . Ci,,

is the carry out of bit i-1 (which is the same as

carry into bit i). ri is the ith result bit and c

is the carry out of the ith bit. The bit variable
takes on values from to MSB. Ci for i-1 == -1

is for ADD.

the

ai bi Ci-1 ri Ci

1 1

1 1

1 1 1

1 1

1 1 1

1 1 1

1 1 1 1 1

*/

134 ADD Integer Instruction

Examples:

ADD EAX, EBX Before:
OSZAPC

EAX: 01234567 EBX: 76543210 XXXXXX
After : EAX: 77777777 EBX: 76543210 000010

ADD mem32, 70000000h Before: Mem: 7FFFFFFF XXXXXX
After : Mem: EFFFFFFF 110010

ADD AL, AH Before: AL : F9 AH : 65 XXXXXX
After : AL : 5E AH : 65 000001

Exception:

Memory () ;

Integer Instruction AND 135

AND

And

Formats:

AND op, 0p2

reg reg

reg mem
reg imm
mem reg

mem imm

Integer

Description:

A logical AND is performed between opi and op2. The result is stored

in opi.

Operation:

opi = opi & opz

;

OF =0;
SF = B(MSB, opi)

;

ZF = opi ==0;
AF = UNDEFINfED;

PF = ~(B(7,opi) ^8(6, opi)
CF =0;
/*

B(0,opi));

& is defined on a bitwise basis in the table below.

Hi and bi are the bits of opi and opz

.

Fi is the result bit.

The bit variable i takes on values from to MSB.

ai bi Ti

1

1

1 1 1

*/

136 AND Integer Instruction

Examples:

AND EAX, EBX

AND memS, 70h

AND AX, DI

Exception:

Memory ()

;

OSZAPC
Before: EAX: 01234567 EBX: 76543210 XXXXXX
After : EAX: 00000000 EBX: 76543210 001X10

Before: Mem: 7F XXXXXX
After : Mem: 70 000X00

Before: AX : A5A5 DI : FFFF XXXXXX
After : AX : A5A5 DI : FFFF 010X10

Integer Instruction BOUND 137

BOUND

Check Array Index against Bounds

Formats:

BOUND opi , op2

regl6 , mem32
reg32 , mem64

Description:

The signed array index given in opi (opi must be a register) is compared

against the low and high bound data structure given in op2. If the array

index is not within the high and low bounds, an exception level 5 is raised.

The bound data structure is assumed to have two contiguous operands

(either word or dword), where the first operand is the lower bound limit

and the second is the upper bound limit.

Integer

Operation:

if ((opi < opa) M (opi > [&0P2 + sizeof (opi)]))

Interrupt (5)

;

}

Example:

BOUND EAX, mem64 Before: EAX : 000092FD mem: 00000000
[&mem+4] : 00000064

After : Interrupt (5)

Exceptions:

Interrupt (5)

Memory () ;

138 BSF Integer Instruction

BSF

Bit Scan Forward

Formats:

BSF op, 0p2

regl6 regl6

regl6 mem 16

reg32 reg32

reg32 mem32

Description:

The word or dword specified by op2 is scanned from right to left (bit to

bit 15 or 31) for the first 1 bit. The index of the first 1 bit when scanning

right to left is stored into opi.

If the entire word or dword is 0, the ZF bit is set and opi is undefined. If

a 1 bit is found, the ZF bit is reset.

Operation:

if (op2 == 0) {

ZF = 1;

opi = UNDEFINED;
} else { /* op2 is not all zeros: search */

ZF = 0;

temp =0;
while (B(temp, opz)

== 0) {

temp = temp + 1;

}

opi = temp;

}

OF = SF = AF = PF = OF = UNDEFINED;

Examples:

OSZAPC
BSF EAX, EBX Before: EAX: XXXXXXXX EBX: 76543210 XXXXXX

After : EAX: 00000004 EBX: 76543210 XXOXXX

BSF SI, meml6 Before: SI : xxxx mem: 0000 XXXXXX
After : SI : xxxx mem: 0000 XXIXXX

Integer Instruction BSF 139

Integer

Exception:

Memory ()

;

Note:

This instruction is new to the 80386.

140 BSR Integer Instruction

BSR

Bit Scan Reverse

Formats:

BSR op, 0p2

regl6 reglG

regis mem 16

reg32 reg32

reg32 mem32

Description:

The word or dword specified by op2 is scanned from left to right (bit 31

or 15 to bit 0) for the first 1 bit. The index of the first 1 bit when scanning

left to right is stored into opi.

If the entire word or dword is 0, the ZF bit is set and opi is undefined. If

a 1 bit is found, the ZF bit is reset.

Operation:

if (op2 == 0) {

ZF = 1;

opi = UNDEFINED;
} else { /* opa is not all zeros - do search */

ZF = 0;

temp = Length (0P2) - 1;

while (B(temp, opz) == 0) {

temp = temp - 1

;

}

opi = temp;

}

OF = SF = AF = PF = CF = UNDEFINED;

Examples:

OSZAPC
BX, ex Before: BX : xxxx ex : 0030 xxxxxx

After : BX : 0005 ex : 0030 xxoxxx

ESI mem32 Before: ESI: xxxxxxxx mem: OOOFOOOO xxxxxx
After : ESI: 00000013 mem: OOOFOOOO xxoxxx

Integer Instruction BSR 141

Integer

Exception:

Memory ()

;

Note:

This instruction is new to the 80386.

142 BT Integer Instruction

BT

Bit Test

Formats:

BT op, 0p2

regis regl6

mem 16 regl6

regl6 imm
mem 16 imm
reg32 reg32

mem32 reg32

reg32 imm
mem32 imm

Description:

The bit of opi specified by op2 is assigned to the carry flag.

op2 is taken as a signed value. Thus, bit strings of — 32K to 32K — 1 and
— 2G to 2G — 1 can be referenced.

If opi is a register, the bit assigned to CF is op2 taken modulo the register

size. If opi is a memory bit string, the word or dword of interest is found by

adding op2 (the bit index) divided by operand size (16 or 32) to the memory
address of opi. The bit within this word or dword is specified by op2

modulo the operand size (16 or 32).

Operation:

offset = opz % Length(opi);
disp = opa / Length(opi);
if (opi in (regie, reg32))

{

CF = B (offset, opi)

;

} else { /* memory operand */
CF = B(offset, [&opi + disp]);

OF SF = ZF = AF = PF = UNDEFI^fED;

Integer Instruction BT 143

Examples:

OSZAPC
BX, CX Before: BX : 0A50 CX 4218 xxxxxx

After : BX : 0A50 CX 4218 xxxxxo

mem, EAX Before: EAX
[&mem+04A6B48/20]

004A6B48
54BBD231

xxxxxx

After : EAX
[&mem+04A6B48/20]

004A6B48
54BBD231

xxxxxo

Exception:

Memory () ;

Notes:

This instruction is new to the 80386.

If opi is a memory operand, the processor may access the two or four

bytes in memory beginning at

&mem + sizeof (opi) *disp

The programmer must thus be careful not to use BT near illegal por-

tions of the address space. In particular, this instruction should not be used

to reference memory-mapped I/O registers directly. In this case, we rec-

ommend that software use MOV instructions to load from or store

to memory-mapped device registers, and use the register form of BT to

manipulate the device-register image loaded into a processor register.

Ifop2 is an immediate constant, only an 8-bit immediate field is provided

in the instruction. This constant must be less than the operand size (32 or

16 bits), or the resulting bit offset is undefined. This permits specification of

any bit offset in a register, and restricts immediate bit offsets in memory bit

strings to be within the dword (or word) at the specified memory location.

Larger immediate bit offsets in memory bit strings can be supported by an

assembler by placing the low-order 5 bits (4 bits for 16-bit operand size)

into the op2 immediate field, and adjusting the memory byte displacement

field by adding in the upper bits shifted to form a byte displacement.

Integer

144 BXC Integer Instruction

BTC

Bit Test and Complement

Formats:

BTC opi 0p2

regl6 regl6

mem 16 regl6

regl6 imm
mem 16 imm
reg32 reg32

mem32 reg32

reg32 imm
mem32 imm

Description:

The bit of opi specified by op2 is assigned to the carry flag. After CF has

been set, this same bit of opi specified by op2 is complemented.

op2 is taken as a signed value. Thus, bit strings of — 32K to 32K— 1 and
— 2G to 2G— 1 can be referenced.

If opi is a register, the bit assigned to CF and complemented is op2 taken

modulo the register size. If opi is a memory bit string, the word or dword of

interest is found by adding op2 (the bit index) divided by operand size (16

or 32) to the memory address of opi. The bit within this word or dword is

specified by op2 modulo the operand size (16 or 32).

Operation:

offset = opz % Length(opi);
disp = opz / Length(opi);
if (opi in (regie, reg32)){

CF = B (offset, opi)

;

B(offset, opi) = ~ B(offset, opi) ;

} else { /* memory operand */

CF = B(offset, [&opi + disp]);
B(offset, [&op, + disp]) = ~ B(offset, [&opi + disp]);

OF SF = ZF = AF = PF = UNDEFINED;

Integer Instruction BTC 145

Examples:

OSZAPC
BTC EAX, EDX Before: EAX: 0A50FF14 EDX: 00A4CCD4 XXXXXX

After : EAX: 0A40FF14 EDX: 00A4CCD4 XXXXXl

BTC mem, CX Before: CX
[&mem+F4B8/lO]

F4B8
D231

XXXXXX

After : CX
[&mem+F4B8/lO]

F4B8
D331

xxxxxo

Exception:

Memory ()

;

Notes:

This instruction is new to tiie 80386.

If opi is a memory operand, the processor may access the two or four

bytes in memory beginning at

&mem + sizeof (opi) *disp

The programmer must thus be careful not to use BTC near illegal

portions of the address space. In particular, this instruction should not be

used to reference memory-mapped I/O registers directly. In this case, we
recommend that software use MOV instructions to load from or store

to memory-mapped device registers, and use the register form of BTC
to manipulate the device-register image loaded into a processor register.

If op2 is an immediate constant, only an 8-bit immediate field is provided

in the instruction. This constant must be less than the operand size (32 or

16 bits), or the resulting bit offset is undefined. This permits specification of

any bit offset in a register, and restricts immediate bit offsets in memory bit

strings to be within the dword (or word) at the specified memory location.

Larger immediate bit offsets in memory bit strings can be supported by an

assembler by placing the low-order 5 bits (4 bits for 16-bit operand size)

into the op2 immediate field, and adjusting the memory byte displacement

field by adding in the upper bits shifted to form a byte displacement.

Integer

146 B iR Integer Instruction

BTR

Bit Test and Reset

Formats:

BTR op, 0p2

regl6 reg 1

6

mem 16 regl6

regl6 imm
mem 16 imm
reg32 reg32

mem32 reg32

reg32 imm
mem32 imm

Description:

The bit of opi specified by op2 is assigned to the carry flag. After CF has

been set, this same bit of opi specified by op2 is reset to 0.

op2 is taken as a signed value. Thus, bit strings of — 32K to 32K — 1 and
— 2G to 2G— 1 can be referenced.

If opi is a register, the bit assigned to CF and reset is op2 taken modulo
the register size. If opi is a memory bit string, the word or dword of interest

is found by adding op2 (the bit index) divided by operand size (16 or 32) to

the memory address of opi. The bit within this word or dword is specified

by op2 modulo the operand size (16 or 32).

Operation:

offset = opz % Length(opi);
disp = 0P2 / Length(opi);
if (opi in (regie, reg32)

)

{

CF = B (offset, opi)

;

B(offset, opi) = 0;

} else { /* memory operand */
CF = B(offset, [&opi + disp]);
B(offset, [&op, + disp]) = 0;

OF SF = ZF = AF = PF = UNDEFINED;

Integer Instruction BXR 147

Examples:

OSZAPC
BTR AX, 23h Before: AX : 53FE XXXXXX

After : AX : 53F6 XXXXXl

BTR mem, ESI Before: ESI
[&mem+532011D4/20]

532011D4
FFFFFFFF

XXXXXX

After : ESI
[&mem+532011D4/20]

532011D4
FFEFFFFF

XXXXXl

Exception:

Memory ()

;

Notes:

This instruction is new to the 80386. See example 4, page 412.

If opi is a memory operand, the processor may access the two or four

bytes in memory beginning at

&mem + sizeof (opi) *disp

The programmer must thus be careful not to use BTR near illegal

portions of the address space. In particular, this instruction should not be

used to reference memory-mapped I/O registers directly. In this case, we
recommend that software use MOV instructions to load from or store

to memory-mapped device registers, and use the register form of BTR
to manipulate the device-register image loaded into a processor register.

Ifop2 is an immediate constant, only an 8-bit immediate field is provided

in the instruction. This constant must be less than the operand size (32 or

16 bits), or the resulting bit offset is undefined. This permits specification of

any bit offset in a register, and restricts immediate bit offsets in memory bit

strings to be within the dword (or word) at the specified memory location.

Larger immediate bit offsets in memory bit strings can be supported by an

assembler by placing the low-order 5 bits (4 bits for 16-bit operand size)

into the op2 immediate field, and adjusting the memory byte displacement

field by adding in the upper bits shifted to form a byte displacement.

148 BTS Integer Instruction

BTS

Bit Test and Set

Formats:

BTS op, 0p2

regis regl6

mem 16 regl6

regis imm
mem 16 imm
reg32 reg32

mem32 reg32

reg32 imm
mem32 imm

Description:

The bit of opi specified by op2 is assigned to the carry flag. After CF has

been set, this same bit of opi specified by op2 is set to 1.

op2 is taken as a signed value. Thus, bit strings of — 32K to 32K — 1 and
— 2G to 2G— 1 can be referenced.

If opi is a register, the bit assigned to CF and set is op2 taken modulo the

register size. If opi is a memory bit string, the word or dword of interest is

found by adding op2 (the bit index) divided by operand size (16 or 32) to

the memory' address of opi. The bit within this word or dword is specified

by op2 modulo the operand size (16 or 32).

Operation:

offset = opz % Length(opi);
disp = op2 / Length(op,);
if (opi in (regie, reg32)

)

{

CF - B(offset, opi)

;

B(offset, opi) = 1;

} else { /* memory operand */
CF = B(offset, [&opi + disp]);
B(offset, [&op, + disp]) = 1;

}

OF = SF = ZF = AF = PF = UNDEFI>fED;

Integer Instruction BTS 149

Examples:

OSZAPC
BTS EAX, 69h Before: EAX : 0459B820 XXXXXX

After : EAX : 0459BA20 XXXXXO

BTS memie, SI Before: SI

[&mem+3014/l0]
3014
0023

XXXXXX

After : SI

[&mem+3014/l0]
3014
0033

XXXXXO

Exception:

Memory () ;

Notes:

This instruction is new to the 80386. See example 4, page 412.

If opi is a memory operand, the processor may access the two or four

bytes in memory beginning at

&mem + sizeof (opi) *disp

The programmer must thus be careful not to use BTS near illegal

portions of the address space. In particular, this instruction should not be

used to reference memory-mapped I/O registers directly. In this case, we
recommend that software use MOV instructions to load from or store to

memory-mapped device registers, and use the register form of BTS to

manipulate the device-register image loaded into a processor register.

Ifop2 is an immediate constant, only an 8-bit immediate field is provided

in the instruction. This constant must be less than the operand size (32 or

16 bits), or the resulting bit offset is undefined. This permits specification of

any bit offset in a register, and restricts immediate bit offsets in memory bit

strings to be within the dword (or word) at the specified memory location.

Larger immediate bit offsets in memory bit strings can be supported by an

assembler by placing the low-order 5 bits (4 bits for 16-bit operand size)

into the op2 immediate field, and adjusting the memory byte displacement

field by adding in the upper bits shifted to form a byte displacement.

Integer

150 CALL Integer Instruction

CALL

Call Procedure

Formats:

CALL opi

nearJabel

reg32

mem32
Description:

CALL causes instruction execution to continue at the given offset witliin

the current code segment. Only calls within the same code segment are

described here. Calls to different segments are described in the Multiple

Segment section.

Intrasegment call offsets can be specified by a near label, a reg32, or a

mem32, where the memory contents at mem32 give the offset.

Before control transfer occurs, the pointer to the next instruction to be

executed is placed onto the stack. The pushed information can be used by

the RET instruction to resume execution at this point in the program.

Note in the description that EIP is stored on the stack, and not EIP plus

the length of the current call instruction. When the 80386 fetches an

instruction, it increments the instruction pointer by the instruction length

prior to execution. Thus, EIP can be stored directly.

Operation:

if (opi is near_label) {

Push (EIP)

;

EIP = near-label; /* t */

} else if (opi is reg32) {

Push (EIP)

;

EIP = reg32;
} else if (opi is mem32) {

Push(EIP)

;

EIP = mem32;

}

*/

t The near label form is assembled into a simple 32b
immediate offset. This offset is relative to the current
instruction pointer. Thus, a machine description of the EIP
update would be:

EIP = EIP + imm32

Integer Instruction CALL 151

Example:

CALL near_labell ; labell is 32 bytes forward in the program
Before: EIP : 300 ESP : 200
After : EIP : 332 ESP : IFC SS: [ESP] : 300

Exceptions:

Memory ()

;

StackO ;

CodeReference ;

Note:

See example 3a, page 409.

Integer

152 CBW Integer Instruction

CBW / CWDE

Convert Byte to Word / Convert Word to Dword

Formats:

CBW
CWDE

Description:

The signed byte or word in AL or AX is sign-extended to fill the AX or

EAX register. The value of bit 7 ofAX or bit 15 ofEAX is placed in every

bit ofAH or the upper 16 bits of EAX.
Thus, the value of the signed byte in AL or the signed word in AX

becomes the signed word in AX or the signed dword in EAX.

Operation:

if (OPCODE == CWDE) {

EAX = SignEx(32, 16, AX)

} else { /* CBW */

AX = SignEx(16, 8, AL)

;

}

Examples:

CBW Before: AX: XX7F
After : AX: 007F

CWDE Before: EAX: XXXXFDF3
After : EAX: FFFFFDF3

Exceptions:

None.

Note:

CWDE differs from CWD in that CWD uses the DX and AX register

pair rather than EAX.

Integer Instruction CLC 153

CLC

Clear the Carry Flag

Format:

CLC

Description:

The carry flag is set to 0.

Operation:

CF = 0;

Example:

CLC

Exceptions:

None.

Before: CF : 1

After : CF :

Integer

154 CLE) Integer Instruction

CLD

Clear the Direction Flag

Format:

CLD

Description:

The direction flag is set to 0. After the direction flag is set to 0, string

instructions will increment their index registers (ESI and EDI).

Operation:

DF = 0;

Example:

CLD Before: DF : 1

After : DF :

Exceptions:

None.

Note:

See example 5, page 413.

Integer Instruction CLI 155

CU

Clear the Interrupt Flag

Format:

CLI

Description:

The interrupt enable flag is set to 0. The 80386 will ignore interrupts

after the next instruction completes execution until the IF bit is set back to 1.

An exception is raised if the program does not have I/O privilege (see

Chapter 5).

Operation:

IF = 0;

Integer

Example:

CLI Before: IF : 1

After : IF :

Exception:

lOPLSensitiveO ;

Note:

See example 1, page 622.

156 CMC Integer Instruction

CMC

Complement the Carry Flag

Format:

CMC

Description:

The carry flag is complemented.

Operation:

CF = ~CF;

Examples:

CMC

CMC

Before: CF : 1

After : CF :

Before: CF :

After : CF : 1

Exceptions:

None.

Integer Instruction CMP 157

CMP

Compare

Formats:

CMP opi , 0p2

reg reg

reg mem
reg imm
mem , reg

mem , imm

Integer

Description:

op2 is subtracted from opi but the result is not stored anywhere. Only the

flags are modified. CMP is often followed by a conditional jump or set byte

instruction.

Operation:

temp = op, - 0P2 ;

/* - is as defined under the SUB instruction below. */

OF = BorrowO(MSB) '^ BorrowO (MSB-1) ;

SF = B(MSB, temp)

;

ZF = temp ==0;
AF = BorrowO(3) ;

PF = ~(B(7, temp) ^ B(6, temp) ^
.

CF = BorrowO(MSB)

;

B(0, temp)

)

Examples:

OSZAPC

CMP EAX, EBX Before: EAX: 01234567 EBX: 01234568 XXXXXX
After : EAX: 01234567 EBX: 01234568 010111

JZ EQUAL ; The jump is not taken

CMP AX, meml6 Before: AX : 0000 meml6: 0000 XXXXXX
After : AX : 0000 meml6: 0000 001010

JZ EQUAL ; The jump IS taken

158 CMP Integer Instruction

Exception:

Memory ()

;

Note:

See Chapter 4 examples, such as example 5, page 413.

Integer Instruction CMPS 159

CMPS / CMPSB / CMPSW / CMPSD

Compare String

Formats:

CMPSB
CMPSW
CMPSD
CMPS mem J mem2

memS memS
mem 16 mem 16

mem32 , mem32

Description:

CMPS subtracts ES:[EDI] from [ESI]. The result of the subtraction

is not stored, since only the flags are modified. The ESI and EDI registers

are updated to point to the next element of the string. These registers are

updated based upon the direction flag (DF) and the length of the operands

(8, 16, or 32 bits) as indicated by memi and mem2 or by the OPCODE
themselves (CMPSB, CMPSW, and CMPSD). If the DF flag is 0, the

registers are updated by 1 , 2, or 4. If the DF flag is 1 , the registers are

updated by — 1, -2, or -4.

The CMPS operation may be preceded by REPE (REPZ) or REPNE
(REPNZ). If preceded by REPE, the CMPS instruction is repeated while

ECX is not and the string elements are equal (ZF = = 1). If preceded by

REPNE, the CMPS instruction is repeated while ECX is not and the

string elements are not equal (ZF = = 0). In this way, CMPS is useful to

find first matches or mismatches in strings if they exist. Refer to REPE and

REPNE for details of the prefixes.

The assembly language specification of mem
i
and mem2 is used by the

assembler to determine the length of the operation only. The strings are

always taken from [ESI] and ES:[EDI]. CMPS may include a segment

override prefix that affects the segment offset used for mem, ([ESI]). mem2

always comes from ES:[EDI].

Integer

160 CMPS Integer Instruction

Operation:

if

} e

} e

} e

(OPCODE == CMPSB) {

delta = 1;

temp = (byte) DS: [ESI]
Ise if (OPCODE == CMPSB)

{

delta = 2;

temp = (word) DS: [ESI]

Ise if (OPCODE == CMPSB) {

delta = 4;

temp = (dword) DS: [ESI]

- (byte) ES: [EDI]

;

(word) ES: [EDI]

- (dword) ES: [EDI]

;

}

/*

OF
SF
ZF
AF
PF
CF
if

}

ESI
EDI

Ise { /* CMPS */
/* Note that the default for SegReg(memi) is DS */
delta = Length (mem,)

;

temp = SegReg (memi) : [ESI] - ES: [EDI]

- is as defined for the SUB instruction. */
= BorrowO(MSB) '^ BorrowO (MSB-1) ;

= B(MSB, temp)

;

= temp ==0;
= BorrowOO) ;

= ~(B(7, temp) "^ B(6, temp) '^
. . .

'^ B(0, temp)) ;

= BorrowO(MSB)

;

(DF == 1) {

delta = - delta;

ESI + delta;
EDI + delta;

Examples:

OSZAPC
CMPSB Before: ESI 0008 El31: 0016 [ESI] : 67 XXXXXX

ES: [EDI] 65 Dl^ :

After : ESI 0009 El31: 0017 [ESI- I] : 67 000010
ES: [EDI-1] 65 Dl5-

:

REPE CMPS SI S2 ; Note-Sl and S2 aire 16-bi t strings
; [ESI] 1Joints to SI, ES: [EDI] p(lints to S2

Before: ESI 0008 EDI 0016 [ESI] 0023 XXXXXX
[ESI-2] 7923 [ESI-4] 7214 [ESI-6] AA6D
[EDI] 0023 [EDI-2] 7923 [EDI-4] 8215
[EDI-6] AA6D ECX 4 DF 1

After : ESI 0002 EDI 0010 [ESI+6] 0023 001010
[ESH-4] 7923 [ESI+2] 7214 [ESI] AA6D
[EDI+6] 0023 [EDI+4] 7923 [EDI+2] 8215
[EDI] AA6D ECX 1 DF 1

Exception:

Memory ()

;

Note:

See example 5, page 41 3.

Integer Instruction CWD 161

CWD / CDQ

Convert Word to Dword/ Convert Dword to Qword

Formats:

CWD
CWQ

Description:

The signed word in AX or double word in EAX is sign-extended to fill

the DX or EDX register. The value of bit 15 or bit 31 of AX or EAX is

placed in every bit ofDX or EDX.
Thus, the value of the signed word in AX becomes the signed dword in

DX:AX. Or, for 32-bit operands, the signed dword in EAX becomes the

signed qword in EDX:EAX.

Integer

Operation:

if (OPCODE == CDQ) {

if (B(31, EAX) == 1) {

EDX = FFFFFFFFh;

} else {

EDX = OOOOOOOOh;

}

} else {

if (B(15, AX) == 1) {

DX = FFFFh;

} else {

DX = OOOOh;

}

Examples:

CWD

CWD

Before: AX: 7615 DX: XXXX
After : AX: 7615 DX: 0000

Before: AX: F103 DX: XXXX
After : AX: F103 DX: FFFF

162 CWD Integer Instruction

Exceptions:

None.

Note:

CWD is different than CWDE in that CWDE uses the EAX register

rather than the DX and AX register pair.

Integer Instruction DAA 163

DAA

Decimal Adjust after Addition

Format:

DAA

Description:

DAA should only be used following an ADD instruction that operated on

two packed BCD numbers (a packed byte) with the result left in AL.

DAA will take the AL register contents and convert this into a two-digit

packed BCD number left in AL.

If the low nibble ofAL is > 9 or AF was set, then add 6 to AL and set AF.

Otherwise AF is reset. If the high nibble ofAL is > 9F or the CF flag was

set, then add 60h to AL and set CF. Otherwise CF is reset.

Integer

Operation:

if (((AL & OFh) > 9) I I AF)

AL = AL + 6;

CF = CF I CarryO(7)

;

AF = 1;

} else {

AF = 0;

}

if ((AL > 9Fh) I I CF) {

AL = AL + 60h;

CF = 1;

} else {

CF = 0;

}

OF = LINDEFINED;

SF = B(7, AL) ;

ZF = (AL == 0) ;

PF = ~(B(7, AL) '^ B(6, AL) '^
. . B(0, AL)

)

164 DAA Integer Instruction

Examples:

OSZAPC
ADD AL,BL Before AL:77 BL 13 XXXXXX

After AL:8A BL 13 110000
DAA Before AL: 8A BL 13 110000

After AL: 90 BL 13 XlOllO

ADD AL,BL Before AL: 79 BL 35 XXXXXX
After AL: AE BL 35 110000

DAA Before AL: AE BL 35 110000
After AL: 14 BL 35 XOOlll

Exceptions:

None.

Integer Instruction DAS 165

DAS

Decimal Adjust after Subtraction

Format:

DAS

Description:

DAS should only be used following a SUB instruction that operated on

two packed BCD numbers (a packed byte) with the result left in AL.

DAS will take the AL register contents and convert this into a valid

two-digit packed BCD number left in AL.

If the low nibble of AL is > 9 or AF was set, then AL has 6 subtracted

from it and the AF bit is set. Otherwise AF is reset. If the high nibble ofAL
is > 9Fh or the CF bit was set, then AL has 60h subtracted from it and CF
is set. Otherwise CF is reset.

Integer

Operation:

if (((AL & OFh) > 9) I I AF) {

AL = AL - 6;

CF = CF I BorrowO(7)

;

AF = 1;

} else {

AF = 0;

}

if ((AL > 9Fh) I I CF) {

AL = AL - 60h;

CF = 1;

} else {

CF = 0;

}

OF = UNDEFINED;
SF = B(7, AL)

;

ZF = (AL == 0) ;

PF = ~(B(7, AL) '^B(6,AL) '^
. . . B(0, AL)

)

166 DAS Integer Instruction

Examples:

OSZAPC
SUB AL,BL Before AL: 71 BL 13 XXXXXX

After AL:5E BL 13 000100
DAS Before AL: 5E BL 13 000100

After AL: 58 BL 13 XOOIOO
SUB AL,BL Before AL: 35 BL 47 XXXXXX

After AL:EE BL 47 010111
DAS Before AL:EE BL 47 010111

After AL: 88 BL 47 XlOlll

Exceptions:

None.

Integer Instruction DEC 167

DEC

Decrement

Formats:

DEC opi

mem
reg

Integer

Description:

opi has 1 subtracted from it, and the result is placed back into opi.

Operation:

op, = opi - 1;

/* - is defined as it is for the SUB instruction. */

OF = CarryO(MSB) '^ CarryO (MSB-1) ;

SF = B(MSB, opi)

;

ZF = opi ==0;
AF = CarryOO) ;

PF = ~{B(7,opi) '^B(6,opi)
'^

. . . '^BlO.opi)) ;

CF = CF;

Examples:

OSZAPC

DEC EAX Before: EAX: 01234567 XXXXXX
After : EAX: 01234566 OOOOIU

DEC mem16 Before: Mem: 0000 XXXXXX
After : Mem: FFFF OlOllU

Exception:

Memory ()

;

Note:

The carry flag is not affected by the DEC instruction. The SUB instruc-

tion with an operand of 1 should be used if carry flag updates are desired.

168 DI V Integer Instruction

DIV

Unsigned Divide

Formats:

DIV op,

reg

mem

Description:

Unsigned division and remainder operations are performed upon the

given operand (opi) and an implicit register. The impHcit register depends

upon the length ofopi (either 8- AX, 16- AX:DX, or 32-EAX:EDX).
The quotient is placed into AL, AX, or EAX for 8-, 16- and 32-bit

operands, respectively. The remainder is placed into AH, DX, or EDX for

8-, 16-, and 32-bit operands, respectively. Thus, the divisor is specified by

opi, and the dividend, quotient, and remainder always reside in implicit

registers. The registers and operands used are summarized in the follow-

ing table:

Length(opi) Dividend Divisor Quotient Remainder

8 AX opi AL AH
16 DX:AX opi AX DX
32 EDX:EAX opi EAX EDX

Nonintegral quotients are truncated toward 0. Remainders are always

less than the dividend.

If the quotient does not fit within the range of the quotient register

(AL, AX or EAX), a divide by zero error occurs. A divide by zero error is

80386 interrupt 0. If a divide by zero error occurs, the quotient and remain-

der are undefined.

Integer Instruction DIV 169

Operation:

if (opi == 0) Interrupt(O)
;

if (Length(opi) == 8) {

if ((AX / opi) > FFh) Interrupt (0)

;

temp= AX;
AL = temp / op,

;

AH = temp % opi ;

} else if (Length(opi) == 16) {

if ((ConCat(32,DX, 16, AX) / op,) > FFFFh) Interrupt (0)

;

temp= AX;

AX = ConCat(32,DX, 16, temp) / op,;
DX = ConCat(32,DX, 16, temp) % op,;

} else { /* Length(op,) == 32 */
if ((ConCat(64,EDX,32,EAX) / op,) > FFFFFFFFh) Interrupt(O)
temp= EAX;
EAX = ConCat(64,EDX,32, temp) / op,;
EDX = ConCat(64,EDX, 32, temp) % op,;

Integer

OF = SF
/*

ZF AF PF CF UNDEFINED

/ is defined as unsigned division. Both AX or ConCat (DX, AX)
or ConCat (EDX, EAX) and op, are considered to be unsigned
integer numbers.

*/
;, likewise, is defined as unsigned modulus or remainder.

Examples:

DIV EBX Before: EDX
EBX

After : EDX
EBX

76543210
89014573
34DCEE8F
89014573

EAX: 01234567
OSZAPC
XXXXXX

EAX: DD1A57C8 XXXXXX

DIV memS Before: AH: 78 AL: 21 mem: 5C
After : Interrupt (0) ;

AH: XX AL: XX mem: 5C

XXXXXX

XXXXXX

Exceptions:

Memory ()

;

Interrupt (0)

;

170 ENTER Integer Instruction

ENTER

Create Stack Frame

Formats:

ENTER op J 0p2

imml6 immS

Description:

ENTER creates a stack frame. This is normally done by most high-level

languages at every procedure call.

op2 specifies the nesting depth of the routine. The nesting depth deter-

mines the number of stack frame pointers that are copied from the current

stack frame into the new stack frame that is being built by this ENTER
instruction. EBP is used to copy the frame pointers from the current stack

frame into the new stack frame. EBP points to the new stack frame pointer

at the end of the instruction.

opi specifies the number of bytes of local variables for which stack space

is automatically allocated.

Operation:

level = 0P2 % 32;
Push (EBP);
frame = ESP;
if (level > 0) {

while((--level)>0)

{

EBP = EBP - 4;

Push([EBP])

;

}

Push (frame)

;

}

EBP = frame;
ESP = ESP - ConCat(32, OOOOh, 16, op,)

;

Integer Instruction ENTER 171

Example:

ENTER OCh, 4

Before: EBP 00000F38 SS: [EBPl 00000F4C
SS [EBP-4] OOOOIOOB SS: [EBP-81 000010A4
ss [EBP-12] 00001102 ESP 00000F04

After : SS [ESP+28] 00000F38 SS: [ESP+24] OOOOIOOB
ss [ESP+20] 000010A4 SS: [ESP+16] 00001102
ss [ESP+12] OOOOOFOO EBP OOOOOFOO
ESP 00000EE4

Exception:

stack {)

;

Integer

.
Note:

See example 3b, page 410.

172 IDI V Integer Instruction

IDIV

Signed Divide

Formats:

IDIV op,

reg

mem

Description:

Signed division and remainder operations are performed upon the given

operand (opi) and one or more implicit registers. Tlie implicit register

depends upon the length of opi (either 8 — AX, 16 — AX:DX, or

32 - EAX:EDX).
The quotient is placed into AL, AX, or EAX for 8-, 16-, and 32-bit

operands, respectively. The remainder is placed into AH, DX or EDX for

8-, 16-, and 32-bit operands, respectively. The registers and operands used

are summarized by the following table:

Length(opi) Dividend Divisor Quotient Remainder

8 AX opi AL AH
16 DX:AX op. AX DX
32 EDX:EAX opi EAX EDX

Nonintegral quotients are truncated toward 0. Remainders are always

the same sign as the dividend and always have less magnitude than the

divisor. The following table gives all sign combinations of the dividend and

quotient for 4 divided by 3 and the resultant quotient and remainders.

Dividend

OPi

(Divisor) Quotient Remainder

+ 4 + 3 -hi + 1

+ 4 -3 -1 + 1

-4 + 3 -1 -1

-4 -3 + 1 -1

Integer Instruction IDIV 173

The division always obeys the identity

dividend = quotient * divisor + remainder

If opi is or the quotient does not fit within the range of the quotient
register (AL, AX, or EAX) a divide by zero error occurs. A divide by zero

error is 80386 interrupt 0. If a divide by zero error occurs, the quotient and
remainder are undefined.

Operation:

(AX / opi) > 7Fh)
(AX / op,) < 80h)

if (opi == 0) Interrupt(O)
if (Length(opi) == 8) {

if (((AX > 0) &&
((AX < 0) &&

Interrupt (0) ;

temp= AX;
AL = temp / op, ;

AH = temp % opi ;

} else if (Length(opi) == 16) {

if (((ConCat(32.DX, 16, AX) > 0) &&
(ConCat(32,DX, 16, AX) / op,) > 7FFFh) II

((ConCat(32,DX, 16, AX) < 0) &&
(ConCat(32,DX, 16, AX) / opi) < 8000h))

Interrupt (0)

;

temp= AX;

AX = ConCat(32,DX, 16, temp) / op,

;

DX = ConCat(32,DX, 16, temp) % opi

;

} else { /* Length(opi) == 32 */
if (((ConCat(64,EDX,32,EAX) > 0) &&

(ConCat(64,EDX, 32,EAX) / op,) > 7FFFFFFFh) II

((ConCat(64,EDX,32,EAX) < 0) &&
(ConCat(64,EDX,32,EAX) / op,) < SOOOOOOOh))

Interrupt (0)

;

temp=EAX;
EAX = ConCat(64,EDX, 32, temp) / op,;
EDX = ConCat(64,EDX, 32, temp) % op,;

Integer

OF SF ZF AF = PF = CF = UNDEFINED;

/ is defined as signed division. Both AX or ConCat (DX, AX)

or ConCat (EDX, EAX) and opi are considered to be signed
integer numbers.

%, likewise, is defined as signed modulus or remainder.
*/

174 IDI V Integer Instruction

Examples:

IDIV BX

IDIV memS

IDIV BL

Before: DX
BX

After : DX
BX

Before:
After :

3210 AX: 4567
6773
496E AX: 7BE3
6773

OSZAPC
XXXXXX

XXXXXX

AH: D8 AL: D7 mem: AD XXXXXX
AH: BF AL: 78 mem: AD XXXXXX

Before: AH: 87 AL: B2 BL : 19 XXXXXX
After : Interrupt(O)

;

AH: XX AL: XX BL : 19 XXXXXX

Exceptions:

Memory ()

;

Interrupt (0)

;

Note:

See example 1 and discussion, page 406.

Integer Instruction IMUL 175

IMUL

Signed Multiplication

Formats:

IMUL op,

reg

mem

IMUL op. 0p2

regis reg 16

reg 16 mem 16

reg 1

6

imm
reg32 reg32

reg32 mem32
reg32 imm

IMUL op. 0p2 ops

reg 16 reg 16 imm
reg 16 , mem 16 imm
reg32 , reg32 imm
reg32 , mem32 imm

Description:

If the IMUL has only one operand, the second operand is implicitly

taken from AL, AX, or EAX. The 16-, 32-, or 64-bit signed result is stored

into AX, DX:AX, or EDX:EAX, respectively. IfAH, DX, or EDX is only

a sign extension of AL, AX, or EAX, respectively, CF and OF are set to 0.

Otherwise they are set to 1

.

The two-operand case has opi * op^ stored into opi. If the result of

opi * op2 is representable in the range of opi, then CF and OF are set

to 0. Otherwise they are set to 1

.

The three-operand case has op2 * ops stored into op,. If the result of

op2 * op3 is representable in the range of op,, then CF and OF are set

to 0. Otherwise they are set to 1

.

Integer

176 IMUL Integer Instruction

Operation:

if (NUMOPS ==1)
{

if (Length(opi == 8) {

AX = AL * opi

;

if ((AH==00h) II (AH==FFh)){
CF = 0; OF = 0;

} else {

CF = 1; OF = 1;

}

} else if (Length(opi) == 16) (

DX = (AX * opi) » 16;

AX = (AX * opi) & OFFFFh;
if ((DX==0000h) II (DX == FFFFh)) {

CF = 0; OF = 0;

} else {

CF = 1; OF = 1;

}

} else { /* Length(opi) == 32 */

EDX = (EAX * opi) » 32;

EAX = (EAX * opi) & OFFFFFFFFh;
if ((EDX == OOOOOOOOh) I I (EDX == FFFFFFFFh))

CF = 0; OF = 0;

} else {

CF = 1; OF = 1;

} else if (NUMOPS == 2){
doubleTemp = opi * opz

;

opi = opi * op2
;

if (doubleTemp != opi)

{

CF = 1; OF = 1;

} else {

CF = 0; OF = 0;

}

} else { /* NUMOPS == 3 */

opi = op2 * ops;
doubleTemp = opz * opa;
if (doubleTemp != opi)

{

CF = 1; OF = 1;

} else {

CF = 0; OF = 0;

SF = ZF = AF = PF = UNDEFINED;
/* * is defined as signed multiplication. */

Integer Instruction IMUL 177

Examples:

IMUL BX

IMUL ECX, mem32

IMUL CX, meml6,

Before: DX
BX

After : DX
BX

Before:
After :

Before:
After :

XXXX AX: 1862
8536
F44E AX: OEAC
8536

OSZAPC
XXXXXX

IXXXXl

ECX: 00015792 mem32: 00052692 XXXXXX
ECX: E99D9D44 mem32: 00052692 IXXXXl

CX: XXXX meml6: 002A
CX: 0150 meml6: 002A

XXXXXX
OXXXXO

Exception:

Memory ()

;

Note:

See examples, page 3a and 3b, pages 409 and 410.

Integer

178 IN Integer Instruction

IN

Input from a Port

Formats:

IN op I 0p2

AL immS
AX imm8
EAX immS
AL DX
AX DX
EAX DX

Description:

IN transfers a data byte, word, or dword from the specified port into AL,

AX, or EAX, respectively.

I/O ports are in the range to 64K - 1 . Instructions can access ports via

two forms: an immediate byte and indirectly through the DX register.

The immediate-byte forms allow ports to 255 to be accessed. The upper

bits of the port address are always in this case. The register form (DX)

allows the full range of ports (0 to 64K- 1) to be accessed.

An exception occurs if the current task has insufficient privilege to

perform I/O. See Chapter 5 for further details of privilege levels.

Operation:

op, port (opa

)

Examples:

IN AL, 20h

IN EAX, DX

Before:
After :

AL: XX
AL: 4A

port(20): 4A
port(20): XX

Before: EAX: XXXXXXXX
port(4680)

After : EAX: FFA78201
port(4680)

DX

DX

4680
FFA78201
4680
XXXXXXXX

Exception:

AccessIO ()

Integer Instruction INC 179

INC

Increment

Formats:

INC op,

mem
reg

Description:

opi has 1 added to it and the result is placed back into opi. All flags

except CF are set according to the result.

Operation:

OPi = opi + 1

/* + is as defined by the ADD instruction. */

OF = CarryO(MSB) '^ CarryO (MSB-1) ;

SF = B(MSB, opi)

;

ZF = opi == 0;

AF = CarryO(3)

;

PF = ~(B(7,opi) ''B(6,opi)
'^

. . . '^BCO.opi)) ;

CF = CF;

Examples:

OSZAPC

INC AX Before: AX : 22D9 XXXXXX
After : AX : 22DA ooooou

INC mem32 Before: mem: 05621340 XXXXXX

Exception:

Memory (

)

Note:

The carry flag is not affected by the INC instruction. The ADD instruc-

tion with an operand of 1 should be used if carry flag updates are desired.

180 INS Integer Instruction

INS / INSB / INSW / INSD

Input String

Formats:

INSB

INSW

INSD

INS merrii
,

reg?

mem8
,
DX

mem 16
,
DX

mem32
,
DX

Description:

One, two, or four bytes of data (for 8-, 16-, and 32-bit operations) is

transferred from the port specified by DX into ES:[EDI]. After the transfer

is made, EDI is updated to point to the next string location. EDI is up-

dated by 1, 2, or 4 ifDF is 0. IfDF is 1, EDI is updated by - 1, -2, or -4.

The port to be used must be specified in the DX register. Immediate-

port specifications are not allowed.

Note that the memory location is always specified by ES:[EDI]. No
segment override is possible with INS. The memi indication is used for

operand length indication only.

INS can be preceded by the REP prefix. In this case ECX bytes, words, or

dwords are transferred. The REP instruction describes this in more detail.

An exception is raised if the current task has insufficient privilege to

perform I/O. See Chapter 5 for further details of privilege levels.

Operation:

if (OPCODE == INSB) {

ES: [EDI] = (byte) port(DX)
delta = 1;

} else if (OPCODE == INSW) {

ES: [EDI] = (word) port(DX)
delta = 2;

Integer Instruction INS 181

} else if (OPCODE == INSD) {

ES: [EDI] = (dword) port(DX);
delta = 4;

} else { /* INS */
ES: [EDI] = (Length (meirii)) port(DX);
delta = Length (menii) / 8;

}

if (DF == 1) {

delta = - delta ;

EDI EDI + delta;

Examples:

INSD Before: EDI 00000052 ES: [EDI] : XXXXXXXX
DX 004C DF :

port(DX) FFFFD832
After : EDI 00000056 ES: [EDI-4]

:

FFFFD832
DX 004C DF :

port(DX) FFFFD832

REP INS SI, DX; SI is a 16-b it str] ng
Before: EDI 0374 ES: [EDI] XXXX

ES: [EDI-2] xxxx ES: [EDI-4] xxxx
DX 4220 DF 1

port(DX, 1) 6000 port(DX,2) 0455
port(DX,3) 6001 ECX 2

After : DI 0370 ES: [EDI+4] 6000
ES: [EDI+2] 0455 ES: [EDI] XXXX
DX 4220 DF 1

port(DX, 1) 6000 port(DX, 2) 0455
port (1[)X,3) 6001 ECX

Integer

Exceptions:

Memory ()

;

AccessIOO

182 Jcc Integer Instruction

Jcc

^^

Conditional Jump Instructions

Formats:

Jcc near-label

Where the condition code is one of the following:

Mnemonics Condition Codes Description

JB/JNAE/JC CF = =1 Jump below/not above

or equal/carry

JBE/JNA CF = =1 II ZF = =1 Jump below or equal/

not above

JCXZ cx==o JumpCX ==

JE/JZ ZF = =1 Jump equal/zero

JECXZ ECX==0 Jump ECX ==0

JL/JNGE SF! =OF Jump less/not greater

or equal

JLE/JNG SF! =OFII ZF ==1 Jump less or equal/not

greater

JNB/JAE/JNC CF == Jump not below/above

or equal/not carry

JNBE/JA CF == 0«&&ZF == Jump not below or

equal/above

JNE/JNZ ZF = = Jump not equal/not zero

JNL/JGE SF ==OF Jump not less/greater

or equal

JNLE/JG ZF = = 0&& SF ==OF Jump not less or equal/

greater

JNO OF = = Jump no overflow

JNP/JPO PF = = Jump not paritv/parity

odd

Integer Instruction Jcc 183

JNS

JO
JP/JPE

JS

SF ==

OF ==l
PF ==1

SF ==1

Jump not sign

Jump overflow

Jump parity/parity

even

Jump sign

Note that less and greater refer to signed integer comparisons, while above

and below refer to unsigned integer comparisons.

Description:

The flags are tested for the conditions described above. If the flags meet
the conditions stated above, the control transfer occurs to the specified label

within the current code segment (the jump destination must be within the

same segment). Otherwise, execution continues with the next sequential

instruction.

The flags are assumed to have been set in some meaningful way by an

instruction preceding it (not necessarily the instruction immediately prior

to this one, however).

Multiple mnemonics are provided by the assembler allowing convenient

interpretations of the flags. For instance,JA (jump above) andJNBE (jump

not below or equal) are synonymous. The assembler conveniently allows both.

Operation:

if (Condi tionCode) {

EIP = Offset(near_label) ; /* t */

/*

*/

t The near label is assembled into an immediate offset,
which is relative to the current instruction pointer.
Thus, a machine description of the EIP update would be:

EIP = EIP + imm;

The immediate offset can be 8 or 32 bits.

Examples:

JO

JAE

near_labell
Before:
After :

OSZAPC
label 1 is 68h bytes forward in the program
EIP : 00000300 IXXXXX
EIP : 00000368 UUUUUU

near_labell ; labell is 537h bytes backward in the program
Before: EIP : 00000300 XXXXXl
After : EIP : 00000300 UUUUUU

; The next instruction would then be fetched, the EIP

; updated and the next instruction executed.

Integer

184 Jcc Integer Instruction

Exception:

CodeReference ()

;

Notes:

See example 10, page 424.

Integer Instruction JMP 185

JMP

Jump

Formats:

JMP op,

nearJabel

reg32

mem32

Description:

The jump instruction causes instruction execution to continue at the

given offset within the current code segment.

Intrasegment jump offsets can be specified by a near label, a reg32, or a

mem32. The near-label operand form specifies a direct jump to the given

label. The reg32 and mem32 operand forms are indirect jumps, where the

jump offset is taken fi"om the specified register or memory location.

Note that no return information is stored for aJMP instruction as it is for

a CALL instruction.

Integer

Operation:

if (opi is near_label){
EIP = Offset(near_label) ; /* f */

} else if (opi is reg32)

{

EIP = reg32;

} else if (opi is mem32)

{

EIP = mem32;

}

/*

*/

t The near label is assembled into an inunediate offset,

which is relative to the current instruction pointer.

Thus, a machine description of the EIP update would be:

EIP = EIP + imm;

The immediate offset can be 8 or 32 bits.

186 JIMP Integer Instruction

Examples:

JMP near_labell ; labell is 42h bytes forward in the program
Before: EIP : 300
After : EIP : 342

JMP CASETABLE[EAX*4] ; CASETABLE is a jump table, EAX*4 gives an
; index into this table that is jumped to.

Before: EIP : 5022AC
CASETABLE [EAX*4] : 60AA40

After : EIP : 60AA40

Exceptions:

Memory ()

;

CodeReference (

)

Notes:

See also the multiple-segment form of theJMP instruction.

See example 2, page 407.

Integer Instruction LAHF 187

LAHF

Load Flags into AH Register

Format:

LAHF

Description:

The low byte of the flags word is transferred into AH. The flags in

descending order from high bit to low bit are: sign, zero, value 0, auxiliary

carry, value 0, parity, value 1, and carry. The following picture shows the

low 8 flag bits of the EFLAGS register.

7 6 5 4 3 2 10

Integer

S Z A P C

F F F F 1 F

Operation:

AH = (EFLAGS & OFFh)

;

Example:

LAHF Before: AH : XXXXXXXXb
After : AH : 01010110b

OSZAPC
XOlllO
UOlllO

Exceptions:

None.

188 LEA Integer Instruction

LEA

Load Effective Address

Formats:

LEA op,

reg32

regl6

0p2

mem
mem

Description:

The offset part of the address (not the value at that address) of op2 is

computed and placed into opi. op2 must be a memory specification, opi is

always a register. If a 16-bit register is specified, the low-order 16 bits of

the offset are stored into the specified register (this is not very useful!).

The memory address is formed per the guidelines in Chapter 2.

Operation:

OPi &0P2

Examples:

LEA AX, [EBP+20h] Before:
After :

AX: XXXX
AX: 0266

EBP: FFFA0246
EBP: FFFA0246

LEA ECX, [EAX*2+14Ch] Before: EAX: 0548901A ECX: XXXXXXXX
After : EAX: 0548901A ECX: 0A912180

Exceptions:

None.

Notes:

LEA is useful for address arithmetic, such as computing the offset of a

multidimensional array. It is also a versatile arithmetic instruction. It

performs a general three-address register add:

rl = r2 + r3 + constant

The address scaling (described in Chapter 2) can be used to compute small

multipliers.

Integer Instruction LEAVE 189

LEAVE

Procedure Exit

Format:

LEAVE

Description:

LEAVE removes the stack frame that was created by a corresponding

ENTER instruction. The stack space is released by ESP being assigned the

value ofEBP (the frame pointer). The old frame pointer (seen on the top of

the stack following the assignment of ESP to EBP) is popped into EBP to

set up the frame pointer for the calling procedure.

Normally, a RET instruction is used to complete the control transfer

back to the calling procedure. The RET follows the back-link and removes

any parameters that were pushed onto the stack for the procedure that is

now exiting.

Integer

Operation:

ESP
EBP

EBP;
PopO

Example:

LEAVE Before: EBP
ESP

After : EBP
ESP

OOOOOFOO SS: [EBP]

00000EB4
00000F38
00000F04

0000F38

Exception:

StackO ;

Note:

See example 3a, page 409.

190 LOCK Integer Instruction

LOCK

Bus Lock

Format:

LOCK instruction

Description:

The LOCK# pin is asserted for the duration of the specified instruction

to ensure that an indivisible read/modify/write operation takes place. When
there are multiple processors on the bus, this signal is important to ensure

indivisible access to the bus and any memory attached to the bus during

sensitive operations. An example of such an operation is whenever a sema-

phore is being updated.

LOCK can only be used with the following instructions:

ADC, ADD, AND, BT mem, reg/imm

BTS, BTR, BTC, OR mem, reg/imm

SBB, SUB, XOR mem, reg/imm

XCHG reg, mem

XCHG mem, reg

DEC, INC, NEC, NOT mem

If a LOCK is specified with any instruction not in this list, an invalid

opcode exception (described in Chapter 6) is raised.

Operation:

LOCK# = 0;

instruction;
LOCK# = 1;

Example:

; The LOCK# pin is asserted when BTS is executed.
LOCK BTS dword ptr [ESI],ECX

Integer Instruction LOCK 191

Exceptions:

InvalidOpcode () ;

Memory
() exceptions may be generated by the instruction being locked.

Notes:

The list of lockable instructions on the 80386 is different from that of

prior 86 family members. See Appendix A.

See example 4, page 412.

Integer

192 LODS Integer Instruction

LODS / LODSB / LODSW / LODSD

Load String

Formats:

LODSB

LODSW
LODSD
LODS merrij

memS
mem 16

mem32

Description:

One, two, or four bytes of data (for 8-, 16-, and 32-bit operations) is

transferred from [ESI] into the AL, AX, or EAX register. After the

transfer, ESI is updated to point to the next string location. ESI is updated
by 1,2, or 4 if DF is 0. IfDFis 1, ESI is updated by -1, -2, or -4.

memi specifies the length of the operand. The actual transfer is always

done with the address specified in the ESI register. A segment override

prefix can, however, be specified in memi, which is applied to [ESI].

Operation:

if (OPCODE == LODSB) {

AL = (byte) DS: [ESI]

;

delta = 1;

} else if (OPCODE == LODSW)

{

AX = (word) DS: [ESI]

;

delta = 2;

} else if (OPCODE == LODSD)

{

EAX = (dword) DS: [ESI];
delta = 4;

} else { /* LODS */
/* Note that default of SegReg(memi) == DS */
if (Length(memi) == 8) {

AL = SegReg (memi): [ESI]

;

delta = 1;

Integer Instruction LODS 193

} else if (Length (mem 1)
== 16) {

AX = SegReg(memi) : [ESI]

;

delta = 2;

} else if (Length (mem,)
== 32) {

EAX = SegReg(memi)
: [ESI]

;

delta = 4;

if (DF == 1) {

delta = - delta
;

}

ESI = ESI + delta;

Example:

LODSB Before: ESI
AL

After : ESI
AL

00000052 SS: [ESI]

XX DF
00000053 SS: [ESI-1]
BF DF

BF

BF

Exception:

Memory ()

;

Note:

See examples 6a and 6b, pages 415 and 418.

Integer

194 LOOP Integer Instruction

Loop with ECX Counter

Formats:

LOOP shorUabel

Description:

The ECX register is decremented without affecting flags. If the value in

ECX after being decremented is not 0, control is transferred to the location

specified by short label. If the ECX register is 0, the instruction following

the LOOP instruction is next executed. A short label is within + 127 bytes

and - 128 bytes of the LOOP instruction (the offset is - 128 to 127 bytes

from the current EIP).

Operation:

ECX = ECX - 1;

if (ECX != 0)

{

EIP = short-label;

/* No flags are altered */

/* t */

/*

*/

t The short label form is assembled into a simple
8b immediate offset. This offset is relative to the
current instruction pointer, which points to the next
sequential instruction. Thus, a machine description
of the EIP update would be:

EIP = EIP + SignEx(32, 8, imm8)

Example:

LOOP

LOOP

near_labell ; labell is 4Eh bytes backward in the program
Before: EIP: 000DE300 ECX: 00000002
After : EIP: 000DE2B2 ECX: 00000001
near_labell ; labell is 4Eh bytes backward in the program
Before: EIP: 000DE300 ECX: 00000001
After : EIP: 000DE300 ECX: 00000000 ; Execute next

; sequential instruction

Integer Instruction LOOP 195

Exception:

CodeReference () ;

Notes:

The LOOP instruction should be placed at the bottom of the loop, and

the short label should be placed at the top.

See example 2, page 407

.

Integer

196 LOOPNZ - Integer Instruction

LOOPNZ / LOOPNE

Loop with ECX and Not Zero / Loop witli ECX and Not Equal

Formats:

LOOPNZ shorUabel

LOOPNE shorUabel

Description:

The ECX register is decremented without affecting flags. If the value in

ECX after being decremented is not zero and the ZF bit is clear, control is

transferred to the location specified by short label. If the ECX register is

or the ZF bit is set, the instruction following the LOOPNE or LOOPNZ
instruction is next executed. A short label is within + 127 bytes and — 128

bytes of the LOOPNZ/LOOPNE instruction (the offset is -128 to

127 bytes from the current EIP).

Operation:

ECX
if (

}

/*

/*

= ECX - 1; /* no flags are altered */
(ZF==0) && (ECX != 0)) {

EIP = short-label; /* f */

t The short label form is assembled into a simple
8b immediate offset. This offset is relative to the
current instruction pointer, which points to the next
sequential instruction. Thus, a machine description
of the EIP update would be:

EIP = EIP + SignEx(32, 8, imm8)

;

Examples:

OSZAPC
LOOPNE near_label2 ; label2 is 4Eh bytes backward in the program

Before: EIP: 000DE300 ECX: 00000008 XXIXXX
After : EIP: 000DE300 ECX: 00000007 UUIUUU

; next sequential instruction is executed

LOOPNZ near_label3 ; labels is 3Ch bytes backward in the program
Before: EIP: 000C8300 ECX: 00000002 XXOXXX
After : EIP: 000C82C4 ECX: 00000001 UUOUUU

Integer Instruction LOQPNZ 197

Exception:

CodeReference () ;

Notes:

LOOPNE and LOOPNZ are synonymous.

The LOOPNE/LOOPNZ instruction should be placed at the bottom of

the loop, and the short label should be placed at the top.

See example 1 1 ,
page 428

.

Integer

198 LOOPZ Integer Instruction

LOOPZ / LOOPE

Loop with ECX and Zero / Loop with ECX and Equal

Formats:

LOOPZ shortJabel

LOOPE shorUabel

Description:

The ECX register is decremented without affecting flags. If the value in

ECX after being decremented is not zero and the ZF bit is set, control is

transferred to the location specified by short label. If the ECX register is

or the ZF bit is clear, the instruction following the LOOPE or LOOPZ
instruction is next executed. A short label is within + 127 bytes and — 128

bytes of the LOOPZ/LOOPE instruction (the offset is - 128 to + 127 bytes

from the current EIP).

Operation:

ECX = ECX - 1; /* no flags are altered */
if ((ZP==1) && (ECX != 0)){

EIP = short-label; /* f */

/*

/*

t The short label form is assembled into a simple
8b immediate offset. This offset is relative to the
current instruction pointer, which points to the next
sequential instruction. Thus, a machine description
of the EIP update would be:

EIP = EIP + SignEx(32, 8, imm8)

;

Examples:

LOOPE

LOOPZ

OSZAPC
near label2 ; labell is 4Eh bytes backward in the program
Before: EIP: 000DE300 ECX: 00000001 XXOXXX
After : EIP: 000DE300 ECX: 00000000 UUOUUU

; The next sequential instruction is executed

near labels
Before: EIP:
After : EIP:

; labels is SCh bytes backward in the program
000C8300 ECX: 00000002 XXIXXX
000C82C4 ECX: 00000001 UUIUUU

Integer Instruction LOOPZ 199

Exception:

CodeReference ()

;

Notes:

LOOPE and LOOPZ are synonymous.

The LOOPE/LOOPZ instruction should be placed at the bottom of the

loop, and the short label should be placed at the top.

Integer

200 MOV Integer Instruction

MOV

Move

Formats:

MOV op I 0p2

reg reg

reg mem
mem reg

reg imm
mem imm

Description:

The contents of op2 are copied into opi. opi and op2 can be a byte, word,

or dword.

Operation:

opi = 0P2 ;

Examples:

MOV AX, 0A80h

MOV EAX, mein32

MOV memS, AL

Exception:

Memory ()

;

Before: AX : XXXX
After : AX : 0A80

Before: EAX: XXXXXXXX mem: 0892ABDF
After : EAX: 0892ABDF mem: 0892ABDF

Before: AL : 4A
After : AL : 4A

mem: XX
mem: 4

A

Integer Instruction MOVS 201

^^

MOVS / MOVSB / MOVSW / MOVSD

Move String

Formats:

MOVSB
MOVSW
MOVSD
MOVS mem/ , mem2

memS , memS
mem 16 , mem 16

mem32 , mem32

integer

Description:

MOVS moves the byte, word, or dword specified by [ESI] into ES:[EDI].

The ESI and EDI registers are updated to point to the next element

of the string. These registers are updated based upon the direction flag

(DF) and the length of the operands (8, 16, or 32 bits) as indicated by

memi and memg or the OPCODE itself (MOVSB, MOVSW, or

MOVSD). If the DF bit is 0, the registers are updated by 1, 2, or 4. If the

DF bit is 1, the registers are updated by - 1, - 2, or —4.

The MOVS operation may be preceded by the REP prefix. If preceded

by REP, the MOVS instruction is repeated ECX times. Thus, a string of

length ECX bytes, words, or dwords is moved from [ESI] to DS:[EDI].

The specification of memi and mem2 is used by the assembler to

determine the length of the operation, and a possible segment override for

mem2. The strings are always taken from [ESI] and moved to ES:[EDI].

MOVS may include a segment override prefix, which affects the segment

offset used for memg ([ESI]), memi always comes from ES:[EDI].

202 MOVS Integer Instruction

Operation:

if (OPCODE == MOVSB) {

delta = 1;

ES: [EDI] = (byte) DS: [ESI]

;

} else if (OPCODE == MOVSW)

{

delta = 2;

ES: [EDI] = (word) DS: [ESI]

;

} else if (OPCODE == MOVSD)

{

delta = 4;

ES: [EDI] = (dword) DS:[ESI];
} else { /* MOVS */

/* Note that the default for SegReg (meniz) is DS */
delta = Length (meiHi) ;

ES: [EDI] = SegRegCmemz) : [ESI]

;

}

if (DF == 1) {

delta = - delta;

}

ESI = ESI + delta;
EDI = EDI + delta;

Examples:

MOVSD Before : ESI : (36533A40 EDI : 07822CD4
[ESI] : I^-FFFFFFF ES: [EDI] : XXXXXXXX
DF : <}

After : ESI : (36533A44 EDI : 07822CD8
[ESI-4] : 17FFFFFFF ES: [EDI-4 : FFFFFFFF
DF : (3

REP MOVSD
Before: ESI 00000008 EDI 00000010

ECX 00000002 [ESI] 01324567
ES: [EDI] xxxxxxxx [ESI-4] F421890A
ES: [EDI-4] xxxxxxxx DF 1

After : ESI 00000000 EDI 00000008
ECX 00000000 [ESI+8] 01324567
ES: [EDI+8] 01324567 [ESI+4] F421890A
ES: [EDI+4] F421890A DF 1

Exception:

Memory ()

;

Note:

See example 1 ,
page 618.

Integer Instruction MOVSX 203

MOVSX

Move and Sign Extend

Formats:

MOVSX op, 0p2

regis regS

reglG memS
reglG reglG

reglG memlG
reg32 regS

reg32 memS
reg32 reglG

reg32 mem 16

Integer

Description:

The word or dword opi is updated with the sign-extended byte or word

op2. If opi and op2 are both words, a normal move occurs.

Operation:

if (Length(opi) == 16) {

if (Length(op2) == 8) {

opj = SignEx(16, 8, opa)

;

} else {

opi = op2 ; /* A normal move! */

}

} else {
/* Length(opi) == 32 */

if (Length(op2) == 8) {

opi = SignEx(32, 8, opz)

;

} else {

opi = SignEx(32, 16, opa)

;

}

}

Examples:

MOVSX AX, BH

MOVSX EDX, meml6

Before:
After :

AX: XXXX BH: 9E
AX: FF9E BH: 9E

Before: EDX: XXXXXXXX mem: 742D

After : EDX: 0000742D mem: 742D

204 MOVSX Integer Instruction

Exception:

Memory ()

;

Note:

This instruction is new to the 80386.

Integer Instruction MOVZX 205

MOVZX

Move and Zero Extend

Formats:

MOVZX opi op-?

reglG regS

regis memS
regis regis

regis mem IS

reg32 regS

reg32 memS
reg32 regis

reg32 mem IS

Description:

The word or dword opi is updated with the zero-extended byte or word

op2. If opi and op2 are both words, a normal move occurs!

Operation:

if (Length(opi) == 16) {

if (Length(op2) == 8) {

opi = ConCat(16. OOh, 8, opz)

;

} else {

opi = op2 ; /* A normal move! */

} else { /* Length(opi) == 32 */

if (Length (op2) == 8) {

opi = ConCat(32, OOOOOOh, 8, 0P2)

;

} else {

opi = ConCat(32. OOOOh, 16, 0P2)

;

}

}

Examples:

MOVZX AX, BH

MOVZX EDX, meml6

Before: AX: XXXX BH: 9E

After : AX: 009E BH: 9E

Before: EDX: XXXXXXXX mem: 742D
After : EDX: 0000742D mem: 742D

206 MOVZX Integer Instruction

Exception:

Memory ()

;

Note:

This instruction is new to the 80386.

Integer Instruction MUL 207

MUL

Unsigned Multiplication

Formats:

MUL op,

reg

mem

Description:

The MUL instruction takes only one operand; the second is always

implicit, op, is multiplied by the AL, AX, or EAX registers for 8-, 16-, or

32-bit operations, respectively. The 16-, 32-, or 64-bit unsigned result is

stored into AX, DX:AX, or EDX:EAX, respectively. If AH, DX, or EDX
is all Os for 8-, 16-, or 32-bit operations, respectively, CF and OF are set to

0. Otherwise they are set to 1.

Integer

Operation:

8)if (Length (opi)
=

AX = AL * opj

;

if (AH == OOh) {

CF = 0; OF

} else {

CF = 1; OF

}

0;

1;

16)
} else if (Length (opi

)

DX = (AX * opi) » 16;

AX = FFFFh & (AX * opi)

;

if (DX == OOOOh) {

CF = 0; OF = 0;

} else {

CF = 1; OF = 1;

}

} else { /* Length(op,)
=

EDX = (EAX * opi) » 32;

EAX = FFFFFFFFh & (EAX * opi)

;

if (EDX == OOOOOOOOh) {

0; OF = 0;

32 */

CF
else

CF = 1; OF = 1;

SF = ZF = AF = PF = UNDEFINED;

/* * is defined as unsigned multiplication. */

208 MUL Integer Instruction

Examples:

MUL BX Before:
After :

DX: XXXX AX: 229A BX
DX: 1631 AX: 477A BX

A431
A431

MUL memS Before: AH: XX AL: OA mem: 12
After : AH: 00 AL: B4 mem: 12

OSZAPC
XXXXXX
IXXXXl

XXXXXX
oxxxxo

Exception:

Memory ()

;

Integer Instruction NEG 209

NEG

Negate

Formats:

NEG op,

mem
reg

Description:

NEG forms the two's complement of the given operand, opi is subtracted

from 0, with the resuh placed into opj.

The carry flag is set to 1 except when opi (the value of opi prior to the

NEG instruction) was 0.

Integer

Operation:

CF = opi != 0;

opi = - opi ;

/* - is defined as it is for the SLIB instruction. */

OF = CarryO(MSB) ^ CarryO (MSB-1)

;

SF = B(MSB, opi)

;

ZF = opi == 0;

AF = CarryOO) ;

PF = ~(B(7,opi)
^ B(6,opi)

'^
. B(0,opi));

Examples:

NEG EAX

NEG memS

Before:
After :

Before:
After :

OSZAPC
EAX: 01234567 XXXXXX
EAX: FEDCBA99 010111

Mem: 00
Mem: 00

XXXXXX
001010

Exception:

Memory ()

;

210 NOP Integer Instruction

NOP

No Operation

Format:

NOP

Description:

NOP does nothing. The only effect this instruction has is ahering the

address of the next instruction to be executed.

Operation:

Example:

NOP ; Nothing occurs

Exceptions:

None.

Notes:

NOP is useful for timing loops (it uses 3 clocks) and to align labels.

Aligning labels to four-byte boundaries can speed execution, especially in

code that is executed often, such as loops.

Integer Instruction NOT 211

NOT

Not

Formats:

NOT op,

reg

mem

Integer

Description:

A logical NOT or a one's complement is performed on opi. The result is

left in opi. The flags are unaffected.

Operation:

op, opi

~ is defined on a bitwise basis in the table below,

aj is the i th bit of op,, ri is the ith result bit.

The bit variable i takes on values from to MSB.

*/

^i Ti

1

1

Examples:

NOT EAX Before: EAX: 01234567
After : EAX: FEDCBA98

NOT memS Before: mem: 72

After : mem: 8D

Exception:

Memory ()

;

212 OR Integer Instruction

OR

Inclusive Or

Formats:

OR op, 0p2

reg reg

reg mem
reg imm
mem reg

mem imm

Description:

A logical inclusive OR is performed between op] and op2. The result is

left in op).

Operation:

OPi
OF
SF
ZF
AF
PF
CF
/*

opi I 0P2 ;

0;

B(MSB, opi)

;

oPi == 0;

UNDEFINED;
~(B(7,opi) '^B(6,opi)

0;

B(0,opi))

Th

is defined on a bitwise basis in the table below.
,bi are the ith bits of opi and opz , respectively.
is the ith result bit.

e bit variable i takes on values from to MSB.
ai bi Ti

1 1

1 1

1 1 1

/*

Integer Instruction OR 213

Examples:

OR EAX, EBX

OR meml6, 7878h

OR AL, OFFh

OSZAPC
Before: EAX: 01234567 EBX: 76543210 XXXXXX
After : EAX: 77777777 EBX: 76543210 000X10

Before: Mem: 1F90 XXXXXX
After : Mem: 7FF8 000X00

Before: AL : A2 XXXXXX
After : AL : FF 010X10

Exception:

Memory ()

;

Integer

214 OUT Integer Instruction

OUT

Write to Port

Formats:

OUT op, 0p2

immS AL
immS AX
immS EAX
DX AL
DX AX
DX EAX

Description:

The OUT instruction transfers a data byte, word, or dword from AL,
AX, or EAX to the specified port.

The port may be specified via an immediate byte allowing ports to 255

to be accessed; the upper bits of the port address are always in this case.

The port may also be specified by placing the port number into the DX
register. This allows the full range of ports (0 to 64K— 1) to be accessed.

Note that I/O port addresses OOFS through OOFF have been reserved

by Intel.

Operation:

port (opi) = op2 5

Examples:

OUT 0C3h, AX Before: AX: 1C9B port(00C3): XXXX
After : AX: 1C9B port(00C3): 1C9B

OUT DX, EAX Before: EAX: 96238887 DX: 4684
port(4684) xxxxxxxx

After : EAX: 96238887 DX 4684
port(4684) 96238887

Exception:

AccessIOO ;

Integer Instruction OUTS 215

OUTS / OUTSB / OUTSW / OUTSD

Output String

Formats:

OUTSB
OUTSW
OUTSD
OUTS r^gi ,

mem2

DX , memS

DX , mem 16

DX , mem32

Integer

Description:

One, two, or four bytes of data (for 8-, 16-, and 32-bit operations), as

indicated by mem,, or by the OPCODE itself (OUTSB, OUTSW, or

OUTSD), is transferred from memory at [ESIJ to the port specified by DX.

After the transfer is made, ESI is updated to point to the next string

location. ESI is updated by 1, 2, or 4 if DF is 0. If DF is 1, ESI is updated

by -1, -2 or -4.

The port to be used must be specified in the DX register. Immediate port

specifications are not allowed.

mem2 specifies the length of the operand. The actual transfer is always

done with the address specified in the ESI register. A segment override can,

however, be specified in mem2 and applied to [ESI].

OUTS can be preceded by the REP prefix. In this case, ECX bytes,

words, or dwords are transferred. The REP instruction describes this in

more detail.

Operation:

if (OPCODE == OUTSB) {

port(DX) = (byte) DS:

delta = 1;

[ESI]

216 OUXS Integer Instruction

} else if (OPCODE == OUTSW) {

port(DX) = (word) DS:[ESI];
delta = 2;

} else if (OPCODE == OUTSD)

{

port(DX) = (dword) DS: [ESI]

;

delta = 4;

} else { /* OUTS */
/* Note that default of SegReg (meniz) == DS */
if (Length (mema)

== 8) {

port(DX) = (byte) SegReg(mem2) : [ESI]

;

delta = 1;

} else if (Length (meniz)
== 16) {

port(DX) = (word) SegReg (memj) : [ESI]

;

delta = 2;

} else if (Length(mem2) == 32) {

port(DX) = (dword) SegRegdnema) : [ESI] ;

delta = 4;

}

}

if (DF == 1)

delta = delta
;

ESI ESI + delta;

Examples:

OUTSW Before: ESI : 6240 [ESI] FFF6
DX 004C DF
port(DX) : xxxx

After : ESI : 6244 [ESI-4] FFF6
DX 004C DF
port(DX) : FFF6

X, SI ; SI is a byte String
Before: ESI : 00000040 [ESI] F2

[ESI+1] : FF [ESI+2] 00
DX : 20 DF
port(DX) : XX CX 3

After : ESI : 00000043 [ESI-3] F2
[ESI-2] : FF [ESI-1] 00
DX : 20 DF
port(DX, 1) : F2 port(DX, 2) FF
port(DX,3) : 00 CX

Exceptions:

Memory ()

;

AecessIOO
;

Integer Instruction POP 217

POP

Pop off Stack

Formats:

POP opi

mem 16

regl6

mem32
reg32

Description:

POP moves a word or dword from the top of the stack into opi. The top

of stack is pointed to by SS:[ESP]. After the data transfer from the stack to

opi, the stack pointer is adjusted by adding 2 or 4 for 16- or 32-bit operand

lengths, respectively.

Integer

Operation:

if (Length(opi) == 32) {

opi = SS: [ESP]

;

ESP = ESP + 4;

} else {

opi = SS: [ESP] ;

ESP = ESP + 2;

}

Example:

POP AX Before: AX: XXXX SS: [ESP] : F340 ESP: F4320530

After : AX: F430 SS: [ESP-2] : F340 ESP: F4320532

Exceptions:

Memory ()

StackO ;

Note:

Be careful when popping 16-bit operands to avoid misaligning the stack,

which causes performance degradations!

218 POPA Integer Instruction

POPA / POPAD

Pop All off Stack

Formats:

POPA

POPAD

Description:

POPA/POPAD moves eight words or dwords from the top of the stack

into the eight general-purpose registers. Thus, POPA/POPAD ehminates

the need for eight consecutive POP instructions. The order of the registers

popped is: DI^ SI, BP, SP, BX, DX, CX, and AX for word (POPA); or

EDI, ESI, EBP, ESP, EBX, EDX, ECX, and EAX for dword (POPAD).
Note that the value popped for ESP is discarded.

Operation:

if (OPCODE
EDI =

ESI =

EBP =

tmp =

EBX =

EDX =

ECX =

EAX =

ESP =

} else {

DI =

SI =

BP =

tmp =

BX =

DX =

CX =

AX =

ESP =

}

POPAD)

{

[ESP+0]

;

[ESP+4]

;

[ESP+8]

;

[ESP+12]
[ESP+16]
[ESP+20]
[ESP+24]
[ESP+28]

ESP + 32;

SS
SS
SS
SS
SS
SS
SS
SS
ESP

[ESP+0]

;

[ESP+2] ;

[ESP+4]

;

[ESP+6] ;

[ESP+8] ;

[ESP+10]
[ESP+12]
[ESP+14]

16;

/* Value for ESP is discarded */

/* Value for SP is discarded */

Integer Instruction POPA 219

Example:

POPA Before:

After

Exception:

AX: XXXX
SP: 7236

BX: XXXX
BP: XXXX

SS: [07236] : 42FF
SS: [0723A] : B290
SS: [0723E] : 0000
SS: [072421 : FFFF
AX: 2133 BX: FFFF
SP: 7246 BP: B290
SS: [07236]
SS: [0723A]
SS: [0723E]
SS: [07242]

42FF
B290
0000
FFFF

CX: XXXX
SI: XXXX

SS: [07238]
SS: [0723C]
SS: [07240]
SS: [07244]

CX: 0002
SI: AA2C

SS: [07238]
SS: [0723C]
SS: [07240]
SS: [07244]

DX: XXXX
DI: XXXX
AA2C
8861
0002
2133
DX: 0000
DI: 42FF
AA2C
8861
0002
2133

OSZAPC
XXXXXX

uuuuuu

Integer

StackO

220 POPF Integer Instruction

POPF / POPFD

Pop from Stack into Flags

Formats:

POPF

POPFD

Description:

What is currently on the top of the stack is copied into the 32-bit flag

register. After the transfer is complete, the stack pointer is incremented by 2

or 4 (16- or 32-bit operation) to point to the new top of stack.

The following figure shows the 32-bit flag word.

31 30

POPF only alters the low 16 bits of the flag word.

The I/O privilege level flag will only be altered if the current privilege

level is 0. If you are not at level 0, the I/O privilege level flags will not be

altered and no exception will result.

If the current privilege level is as privileged or more privileged than the

current I/O privilege level, the interrupt enable flag will be altered. If not,

the interrupt enable flag will be unchanged and no exception will result.

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

V R

M F

NIOPODITSZ A P

OT L FFFFFFOFOF C

1 F

Operation:

RF = 0;

NT = ([ESP] & 00004000h) » 14;

if (CPL == 00b) {

lOPL = ([ESP] & OOOOaOOOh) » 12;

}

OF = ([ESP] & OOOOOSOOh) » 11;

DF = ([ESP] & 00000400h) » 10;

if (CPL <- lOPL)

{

IF = ([ESP] & 00000200h) » 9;

}

Integer Instruction POPF 221

TF = ([ESP] & OOOOOlOOh) » 8
SF = ([ESP] & OOOOOOSOh) » 7

ZF = ([ESP] & 00000040h) » 6
AF = ([ESP] & OOOOOOlOh) » 4
PF = ([ESP] & 00000004h) » 2

CF = ([ESP] & OOOOOOOlh) »
if (OPCODE =

ESP =
== POPFD)

{

ESP + 4;

} e•Ise {

ESP = ESP + 2;

Example:

POPFD The privilege level is

Before: ESP: 20143110 [ESP]

After : ESP: 20143114
FFF601A5

II

00
VRNfPPODITSZ A P C
MFTLLFFFFFFOFOF 1

F

OXXXXXXXXXXOXOX 1

X

UOOOOOOOllOOOOlll

Integer

Exception:

StackO

222 PUSH Integer Instruction

PUSH

Push onto Stack

Formats:

PUSH opi

imm
mem
reg

Description:

opi is placed in the new top-of-stack position. Tlie new top of stacl^ is

formed by decrementing the stack pointer ESP by 2 or 4 for 16- or 32-bit

data, respectively. Immediate data is always considered to be 32 bits in size,

although it may be encoded in the instruction as an 8-bit signed immediate,

as was discussed in Chapter 2.

Operation:

if (Length (opi) = = 32){
SS: [ESP - 4] == opi ;

ESP = ESP - 4;

} else { /* Length(opi) == 16 */
SS: [ESP - 2] == opi ;

ESP = ESP - 2;

}

Examples:

PUSH 24h Before: ESP FFFFF320 SS: [FFFFF31C]

:

xxxxxxxx
After : ESP FFFFF31C SS: [FFFFF31C]

:

00000024

PUSH AX Before: ESP
AX

FFFFF31C SS:

F799
[FFFFF31A]

:

xxxx

After : ESP
AX

FFFFF31A SS:

F799
[FFFFF31A]

:

F799

Exceptions:

StackO ;

Memory ()

;

Integer Instruction PUSH 223

Note:

Be careful when pushing 16-bit operands to avoid misaligning the stack,

which causes performance degradations!

Integer

224 PUSHA Integer Instruction

PUSHA / PUSHAD

Push All onto Stack

Formats:

PUSHA
PUSHAD

Description:

PUSHA/PUSHAD copies the eight word or dword registers onto the

top of the stack. Thus, PUSHA/PUSHAD ehminates the need for eight

consecutive PUSH instructions. The order of the registers pushed is: AX,
CX, DX, BX, SP, BP, SI, and DI for word; or EAX, ECX, EDX, EBX,
ESP, EBP, ESI, and EDI for dword.

Note that the value pushed for SP or ESP is the original value.

The order of the registers pushed by PUSHA is correct for a subse-

quent POPA.

Operation:

if

original value of ESP */

(OPCODE == PUSHAD >{

ss [ESP-4] = EA!<.;

ss [ESP-8] = EC]«;
ss [ESP-12] = ED]«;
ss [ESP-16] = EB3<.;

ss [ESP-20] = ESI"; /* Note
ss [ESP-24] = EBI3 .

ss [ESP-28] = ES [;

ss [ESP-32] = ED [;

ESP = ESP - 32;
else {

SS [ESP-2] = AX
ss [ESP-4] = cx
ss [ESP-6] = DX
ss [ESP-8J = BX
ss [ESP-10] = SP /* Note:
ss [ESP-12] = BP
ss [ESP-14] = SI
ss [ESP-16] = DI
ESl' = ESP - 16;

original value of SP */

Integer Instruction PUSxlA 225

Example:

PUSHA Before:

After

Exception:

AX: 0000 BX: 1111 CX: 2222
SP: 4444 BP: 5555 SI: 6666
SS: [04442]
SS: [0443E]
SS: [0443A]
SS: [04436]
AX: 0000
SP: 4434 BP: 5555 SI: 6666

XXXX SS: [04440]
XXXX SS: [0443C]
XXXX SS: [04438]
XXXX SS: [04434]

BX: 1111 CX: 2222

SS: [04442]
SS: [0443E]
SS: [0443A]
SS: [04436]

0000 SS: [04440]
2222 SS: [0443C1
4444 SS: [04438]
6666 SS: [04434]

DX: 3333
DI: 7777
XXXX
XXXX
XXXX
XXXX
DX: 3333
DI: 7777
1111
3333
5555
7777

OSZAPC
XXXXXX

uuuuuu

Integer

stack ()

226 PUSrlF Integer Instruction

PUSHF / PUSHFD

Push Flags onto Stack

Formats:

PUSHF

PUSHFD

Description:

The stack pointer is decremented by 2 or 4 (for a 16- or 32-bit flag word,

respectively) to form the new top of stack. What is currently in the 16- or

32-bit flag register is copied into this new top of stack.

The following picture depicts the EFLAGS register.

31 30 19 18 17 16 15 14 13 12 11 10 9876543210
V R

M F

N lOP

T L

ODITSZ A P CFFFFFF0F0F1F

Operation:

if (PUSHF)

{

ESP = ESP - 2
;

SS: [ESP] = (0 «15)
(lOPL «12) I (OF «11)
(SF « 7) I (ZF « 6)

(0 « 3) I (PF « 2)

} else { /* PUSHFD */
ESP = ESP - 4 ;

SS: [ESP] = (OOOOh «16)
(lOPL «12) I (OF «11)
(SF « 7) I (ZF « 6)

(0 « 3) I (PF « 2)

}

(NT «14)
(DF «10)
(0 « 5)

(1 « 1)

(0 «15)
(DF «10)
(0 « 5)

(1 « 1)

(IF

(AF

(CF

«
«
«

(NT «14)
(IF « 9)

(AF « 4)

(CF « 0)

Integer Instruction PUSHF 227

Example:

PUSHED
Before:
After :

[ESP-4]
[ESP]

II

00
VRNPPODITSZ A P C
MFTLLFFFFFFOFOFIF

XXXXXXXX ESP: FFF42104 00100011011000011
000046C3 ESP: FFF42100 00100011011000011

Exception:

stack ()

Note:

See example 1, page 622.

Integer

228 RCL Integer Instruction

RCL

Rotate through Carry Left

Formats:

RCL op} 0p2

reg imm8
mem immS
reg CL
mem CL

Description:

The rotate count is specified in op2. This count is masked to 5 bits

(0-31). This 5-bit quantity is taken modulus the operand length plus 1 to

form the rotate count.

The rotate is performed with opi and the carry flag as part of the rotated

quantity. Thus, a 33-, 17-, or 9-bit quantity is being rotated for the dword,

word, and byte quantities, respectively, by the adjusted rotate count.

The rotate instruction can be thought of as rotate-count left shifts, with

the high-order bit being shifted into the carry and the carry filling in the

least significant bit.

If the rotate count is 1 , the overflow flag is set to if the resulting carry

flag (after this RCL instruction occurs) equals the high bit of the result.

Otherwise it is set to 1. If the rotate count is not 1, the overflow flag is

undefined.

Integer Instruction RCL 229

Operation:

if (Length(opi) == 8) {

cnt = (0P2 & OlFh)
if (cnt>0)

{

9;

emp = (opi « cnt) 1

(CF « (cnt - 1)) 1

(op, » (9 - cnt))

;

CF = (opi » (8 - cnt)) & 01
opi = temp;

else if (Length(opi) == 16)
cnt = (0P2 & OlFh) % 17;
if (cnt>0)

(

emp = (opi « cnt) 1

(CF « (cnt - 1) 1

(op, » (17 - cnt)) ;

CF = (op, » (16 - cnt)) & 01
opi = temp;

} else { /* Length(op,) == 32 */
cnt = 0P2 & OlFh;
if (cnt>0)

{

temp = (op, « cnt) I

(CF « (cnt - 1)) I

(opi » (33 - cnt))

;

CF = (op, » (32 - cnt)) & 01;

opi = temp;

}

}

if (0P2 == 1) {

OF = B (MSB, op,)
"^ CF;

} else {

OF = UNDEFI^fED;

}

Examples:

Integer

OSZAPC
RCL EAX,

1

Before: EAX: 01234567 XXXXXl
After : EAX: 02468ACF OUUUUO

RCL memS.CL Before: mem: 9B CL: 11 XXXXXO
After : mem: 4D CL: 11 XUUUUl

eption:

Memory ()

;

Notes:

Rotates with count equal to (do not alter the carry flag!

RCL of 32 or 33 bits (for dworcd) cannot be (done, since only a count of

to 31 can be specified.

230 RCR Integer Instruction

RCR

Rotate through Carry Right

Formats:

RCR opi 0p2

reg immS
mem imm8
reg CL
mem CL

Description:

The rotate count is specified in op2. Tliis count is masked to 5 bits

(0-31). Tliis 5-bit quantity is taken modulus the operand length plus 1 to

form the rotate count.

The rotate is performed with opi and the carry flag as part of the ro-

tated quantity. Thus, a 33-, 17-, or 9-bit quantity is being rotated for the

dword, word, and byte quantities, respectively, by the masked and modulus
rotate count.

The rotate instruction can be thought of as rotate-count right shifts, with

the low-order bit being shifted into the carry and the carry filling in the

most significant bit.

If the rotate count is 1, the overflow flag is set to if the two high-order

bits of the result are equal. Otherwise it is set to 1. If the rotate count is not

1, the overflow flag is undefined.

Integer Instruction RCR 231

Operation:

if (0P2 == 1){
OF = B(MSB, opi)

'^ CF;
} else {

OF = UNDEFINED;

if (Length(opi)
cnt = (0P2
if (cnt>0)

{

temp

= = 8){
& OlFh) % 9;

}

CF
opi

} else if (Leng
cnt = (0P2
if (cnt>0)

{

temp

CF
OPi

}

= (opi » cnt) I

(CF « (8 - cnt I

(opi « (9 - cnt)) ;

(opi » (cnt - 1)) & 01
= temp

;

th(opi) == 16) {

& OlFh) % 17;

= (opi » cnt) I

(CF « (16 - cnt))

I

(opi « (17 - cnt)) ;

(opi » (cnt - 1)) & 01;
= temp

;

} else
cnt = 0P2
if (cnt>0)

temp

/* Length (opi

)

& OlFh;
32 */

= (opi » cnt) I

(CF « (32 - cnt))

I

(opi « (33 - cnt)) ;

CF = (opi » (cnt - 1)) & 01:

opi = temp;

}

Examples:

Integer

OSZAPC
RCR mem32,

1

Before: mem: 01234567 XXXXXO
After : mem: 0091A2B3 lUUUUl

RCR EDI,CL Before: EDI: A3214551 CL: 11 XXXXXO
After : EDI: 45515190 CL: 11 XUUUUl

Exception:

Memory ()

;

Notes:

Rotates with count equal to do not alter the carry flag!

RCR of 32 or 33 bits (for dword) cannot be done, since only a count of

to 31 can be specified.

232 REP Integer Instruction

REP

Repeat

Formats:

REP String-Operation

INS

MOVS
OUTS
STOS

Description:

REP is a prefix that causes the string operation following it to be repeated

ECX times.

Operation:

while (ECX != 0) {

ECX = ECX - 1;

S tr i ng _ Oper a t i on

;

}

OF, SF, ZF, AF, PF, CF = As defined by String-Operation

Examples:

MOVSD
Before: ESI 00000008 EDI 00000008

ECX 00000002 [ESI] 01324567
ES: [EDIJ XXXXXXXX [ESI-4] F421890A
ES: [EDI-4] XXXXXXXX DF 1

After : ESI 00000000 EDI 00000010
ECX 00000000 [ESI+8] 01324567
ES: [EDI+8] 01324567 [ESI+4] F421890A
ES: [EDI+4J F421890A DF 1

Exceptions:

None as a result of REP, but String-Operation may cause an exception.

Integer Instruction REPE 233

REPE / REPZ

Repeat While Equal / Repeat While Zero

Formats:

REPE/REPZ String-Operation

CMPS
SCAS

Integer

Description:

REPE is a prefix that causes the string operation following it to be

repeated ECX times or until the ZF bit becomes 0. REPZ is synonymous

with REPE.

Operation:

while (ECX != 0) {

ECX = ECX - 1;

String-Operation;
if (ZF==0) break;

}

OF, SF, ZF, AF, PF, CF = As defined by String-Operation

Examples:

CMPSB
Before: ESI : 00000008 EDI 16 ECX 04

[ESI] : 01 [ESI+1] 23 [ESI+2] 45

[ESI+3] : 67 ES: [EDI] 01 ES: [EDI+1] 23

ES: [EDI+2] : 44 ES: [EDI+3] 67 DF
After : ESI : OOOOOOOB EDI 19 ECX 01

[ESI-3] : 01 [ESI-2] 23 [ESI-1] 45

[ESI] : 67 ES: [EDI-3] 01 ES: [EDI-2] 23

ES: [EDI-1] : 44 ES: [EDI] 67 DF

Exceptions:

None as a result of REPE/REPZ, but String_Operation may cause an

exception.

Note:

See example 5, page 413.

234 REPNE Integer Instruction

REPNE / REPNZ

Repeat While Not Equal / Repeat While Not Zero

Formats:

REPNE/REPNZ String-Operation

CMPS
SCAS

Description:

REPNE is a prefix that causes the string operation following it to be

repeated ECX times or until the ZF bit becomes 1. REPNZ is synonymous

with REPNE.

Operation:

while (ECX != 0) {

ECX = ECX - 1;

String -Operation;
if (ZF^=1) break;

OF, SF, ZF, AF, PF, CF As defined by String-Operation

Examples:

fE CMPSB
Before: ESI : 00000008 EDI 16 ECX 04

[ESI] : 01 [ESI+1] 23 [ESI+2] 45

[ESI+3] : 67 ES: [EDI] 01 ES: [EDI+1] 23

ES: [EDI+2] : 44 [EDI+3] 67 DF
After : ESI : 00000009 EDI 17 ECX 03

[ESI-1] : 01 [ESI] 23 [ESI+1] 45
[ESI+2] : 67 ES: [EDI- 1] 01 ES: [EDI] 23

ES: [EDI+1] : 44 ES: [EDI+2] 67 DF

Exceptions:

None as a result of REPNE/REPNZ, but String_Operation may cause

an exception.

Note:

See example 5, page 413.

Integer Instruction RET 235

RET

Return

Formats:

NEAR RET

RET imml6

Integer

Description:

RET causes instruction execution to resume at tlie instruction following a

corresponding CALL instruction. The RET instruction uses the return

address found upon the top of the stack to decide where to return. In other

words, RET performs an indirectjump through the pointer at the top of the

stack. On the top of the stack, the EIP value to be used is found.

An optional imml6 value can be specified. This value is added to the

ESP value. This is useful when you want to remove several bytes of

parameters from the stack.

Operation:

EIP = PopO ;

if (NUMOPS ==1) {

ESP = ESP + imml6;

Examples:

RET Before: EIP
ESP

After : EIP
ESP

804231AA
04260988
032BBD4C
0426098C

SS: [ESP] 032BBD4C

Exceptions:

stack ()

;

CodeReference (

)

236 ROL Integer Instruction

ROL

Rotate Left

Formats:

ROL op, 0p2

reg immS
mem immS
reg CL
mem CL

Description:

The rotate count is specified in op2. This count is masked to 5 bits. Thus,

rotates of to 31 bits are performed.

The rotate is performed upon op
i
with the result being stored back into op

i

.

The rotate instruction can be thought of as rotate-count left shifts, with

the high-order bit being shifted into the least significant bit and the carry at

each shift iteration. Thus, the final carry reflects the least significant bit of

the result.

If the rotate count is 1, the overflow flag is set to if the carry flag (after

this ROL instruction occurs) equals the high bit of op
i
(the result) . Other-

wise it is set to 1. If the rotate count is not 1, the overflow flag is undefined.

Operation:

if (Length(opj) == 8) {

cnt = op2 % 8;

if (cnt>0)

{

opi = (opi « cnt) I

(opi » (8 - cnt))

;

CF = B(0, opi)

;

else if (Length(opi) == 16) {

cnt = op2 % 16;

if (cnt>0)

{

opi = (opi « cnt) I

(opi » (16 - cnt)

)

CF = B(0, opi)

;

}

Integer Instruction ROL 237

} else { /* Length{opi) == 32) */
cnt = 0P2 % 32;
if (cnt>0)

(

opi = (opi « cnt) I

(opi » (32 - cnt))

;

CF = B(0, opi)

;

}

}

if (0P2 == 1){
OF = (MSB,opi) aCF;

} else {

OF = UNDEFINED;
}

Examples:

ROL AL,

1

ROL BP, CL

Before: AL: A6
After : AL: 4D

OSZAPC
XXXXXX
lUUUUl

Before: BP: 6279 CL: OA XXXXXX
After : BP: E589 CL: OA XUUUUl

Integer

Exception:

Memory ()

;

Note:

ROL with rotate count equal to does not alter the carry or overflow flag!

238 ROR Integer Instruction

ROR

Rotate Right

Formats:

ROR op, 0p2

reg immS
mem immS
reg CL
mem CL

Description:

\\\t rotate count is specified in op.;. This count is masked to 5 bits. Thus,

rotates of to 31 bits are performed.

The rotate is performed upon op
i
wath the resuh being stored back into op

i

.

The rotate instruction can be thought of as rotate-count right sliifts, with

the low-order bit being shifted into the most significant bit and the carry at

each shift iteration. Thus, the final carry reflects the most significant bit of

the result.

If the rotate count is 1 , the overflow flag is set to if the top 2 bits of the

result (opi) are equal. Otherwise it is set to 1. If the rotate count is not 1,

the overflow is undefined.

Operation:

if (Length(opj) == 8) {

cnt = op2 % 8;

if (cnt>0)

{

oPi = (opi » cnt) I

(op, « (8 - cnt))

;

CF = B(7, opi)

;

}

} else if (Length(op,) == 16) {

cnt = opa % 16;
if (cnt>0)

{

opi = (op, » cnt) I

(op, « (16 - cnt))

;

CF = B(15, op,)

;

}

} else { /* Length(op,) == 32 */
cnt = 0P2 % 32;
if (cnt>0)

{

opi = (op, » cnt) I

(op, « (32 - cnt))

;

CF = B(31, op,)

;

Integer Instruction ROR 239

} else { /* Length(op,)
== 32 */

cnt = 0P2 % 32;
if (cnt>0)

I

op, = (op, » cnt) I

(op, « (32 - cnt))

;

CF = B(31, op,)

;

if (0P2 == 1) {

OF = (MSB, op,) ^ (MSB-l,opi

)

} else {

OF = UNDEFINED;

}

Examples:

Integer

OSZAPC
ROR rnemie,

1

Before: mem: E4A2 xxxxxx
After : mem: 7251 lUUUUO

ROR EDI ,

7

Before: EDI: 07BDAF21 xxxxxx
After : EDI: 420F7B5E xuuuuo

Exception:

Memory ()

;

Note:

Rotates with rotate count equal to do not alter the carry or overflow flags!

240 SAHF Integer Instruction

SAHF

Store AH Register into Flags

Formats:

SAHF

Description:

AH is transferred into the low byte of the flags word. Bits 7, 6, 4, 2, and

of the AH register are loaded into the sign, zero, auxiliary carry, parity, and

carry flags, respectively. The following figure depicts the low 8 bits of the

EFLAGS register:

7 6 5 4 3 2 10

S Z A P C

F F F F 1 F

Operation:

SF = (AH & 80h) » 7

ZF = (AH & 40h) » 6

AF = (AH & lOh) » 4

PF = (AH & 04h) » 2

OF = (AH & Olh) »

Examples:

SAHF
OSZAPC

Before: AH : lOXlXOXOb XXXXXX
After : AH : lOXlXOXOb UIOIOO

Exceptions:

None.

Note:

See example 7, page 421.

Integer Instruction SAL 241

SAL / SHL

Shift Arithmetic Left / Shift Logical Left

Formats:

SAL/SHL Opi 0p2

reg immS
mem immS
reg CL
mem CL

Description:

The shift count is specified in op2. This count is masked to 5 bits. Thus,

shifts of to 31 bits are performed.

The shift is performed upon opi with the resuk being stored back into

opi. opi is shifted left shift-count times with the low-order bits being filled

with Os. The carry flag becomes the value ofwhat is being shifted out of the

most significant bit.

If the shift count is 1, the overflow flag is set to if the carry flag (after

this SAL/SHL instruction occurs) equals the high bit of op, (the result).

Otherwise it is set to 1 . If the shift count is not 1 , the overflow flag is

undefined.

Note that SAL and SHL are synonyms; arithmetic and logical left shifts

are the same.

Operation:

cnt = opz & OlFh;

if(cnt < Length (op,))

{

if (cnt > 0)

{

CF = B((Length (opi) - cnt), op,)

;

}

opi = opi « cnt;

} else {

CF = 0;

opi = 0;

Integer

242 SAL Integer Instruction

if (0P2 == 1) {

OF = (MSB,opi)
^ CF;

} else {

OF = UNDEFINED;

}

SF = B(MSB, opi)

;

ZF = opi ===0;
AF = UNDEFINED;
PF = ~(B(7.opi)

^ B(6,op,) B(0,opi))

Examples:

SAL BX,

1

Before:
After :

BX: ADF3
BX: 5BE6

OSZAPC
XXXXXX
100X01

SHL mem32.CL Before: mem: A6341209 CL: 09 XXXXXX
After : mem: 68241200 CL: 09 XOOXIO

Exception:

Memory () ;

Note:

Shifts of zero do not alter the flags!

Integer Instruction SAR 243

SAR

Shift Arithmetic Right

Formats:

SAR opi 0p2

reg immS
mem immS
reg CL
mem CL

Integer

Description:

The shift count is specified in op2. This count is masked to 5 bits. Thus,

shifts of to 31 bits are performed.

The shift is performed upon opi with the resuh being stored back into

op,, opi is shifted right shift-count times, with the high-order bits being

filled with the sign bit (most significant bit) of opi. The carry flag becomes

the value of what is being shifted out of the least significant bit.

If the shift count is 1, the overflow flag is set to 0. Otherwise it is

unchanged.

Another way to look at this is that opi is being divided by 2, shift-count

times. The divide in this case rounds to negative infinity, which is different

than IDIV for negative numbers.

Operation:

cnt = opz & OlFh;
if (cnt > 0)

{

CF = B(cnt, opi) ;

}

if (cnt < Length(op,)

{

if (Length(op,) == 8) {

if (B(7,opi) == 1) {

opi = (op, » cnt) I (FFh « (8-cnt))

;

} else (

opi = (opi » cnt)

;

} else if (Length (opi) == 16)

if (B(15,opi) == 1) {

opi = (opi » cnt) I (FFFFh « (16-cnt)) ;

244 SAR Integer Instruction

} else {

opi = (opi » cnt)

;

}

else { /* Length(opi) == 32) */

if (B(31,op,)
== 1) {

opi = (opi » cnt) I (FFFFFFFFh « (32-cnt)

)

} else {

opi = (opi » cnt) ;

else {

if (B (Length (opi) ,opi) ==!){
CF = 1;

if (Lengthiopi)
== 8) {

opi = FFh;

} else {
/* must be 16 */

opi = FFFFh;

}

} else {

CF = 0;

if (Length(op,) == 8) {

opj = OOh;

} else {
/* must be 16 */

opi = OOOOh;

1)

0;

if (op2

OF
} else {

OF = OF;

}

SF
ZF
AF
PF

B(MSB,opi)

;

opi == 0;

UNDEFINED;
~(B(7,opi) '^B(6,opi) B(0,opi))

Examples:

SAR memS,

1

Before: mem: 84
After : mem: C2

SAR EDI.CL Before: EDI: A6
After : EDI: ff:

Exception:

Memory ()

;

OSZAPC
xxxxxx
010X00

A6341209 CL: 13 XXXXXX
FFFFF4C6 CL: 13 XI 0X11

Notes:

Shifts of zero do not alter the flags!

SAR can be used to perform a fast divide by powers of two for unsigned

integers. See example 1, page 406, for an example of this.

Integer Instruction SBB 245

Subtract with Borrow

Formats:

SBB op, 0p2

reg reg

reg mem
reg imm
mem reg

mem imm

Integer

Description:

op2 plus carry is subtracted from opi, with the resuh being placed into

opi. The carry flag (borrow flag) indicates a borrow into the subtraction.

This is equivalent to

opi = 0P2 - (0P2 + CF) ;

The SBB instruction is used as part of a multiple byte, word, or dword

subtraction.

Operation:

OPi
OF
SF
ZF
AF
PF
CF
/*

= opi - (0P2 + CF) ;

= BorrowO(MSB) '^ BorrowO (MSB-1) ;

= B(MSB, opi) ;

= opi ==0;
= BorrowO(3)

;

= ~(B(7,opi) '^BCe.opi) ^
. . . ^B(0,opi));

= BorrowO(MSB) ;

- is defined on a bitwise basis in the table below.

Xi.Yi are the ith bits of opi and opz • bi_i is

the borrow out of the i-1 bit (this is the same as the

borrow into the ith bit), rj is the ith result bit

and bi is the borrow out of the ith bit. The bit

variable i takes on values from to MSB. bj for

i_l == -1 is CF (the borrow flag) for SBB.

246 SBB Integer Instruction

Xi yi bi-1 Ti bi

1 1 1

1 1 1

1 1 1

1 1

1 1

1 1

1 1 1 1 1

*/

Note that subtraction can also be defined in terms of
addition. Comparing this to the addition table earlier:

Xi = Bi

yi = ~bi
bi = Ci

Thus, the carry flag of the 80386 can also be considered
the borrow flag.

Examples:

SBB EAX, EBX

SBB memS, lAh

OSZAPC
Before: EAX: 0743CE21 EBX: 8D4BC956 XXXXXl
After : EAX: 79F804CA EBX: 8D4BC956 010111

Before: mem: 72 XXXXXO
After : mem: 58 000100

Exception:

Memory ()

;

Integer Instruction SCAS 247

SCAS / SCASB / SCASW / SCASD

Scan String

Formats:

SCASB

SCASW
SCASD

SCAS

Description:

mem I

memS
mem 16

mem32

SCAS subtracts ES:[EDI] from AL, AX, or EAX for byte, word, or

dword operations. The result of the subtraction is not stored, only the flags

are modified. The EDI register is updated to point to the next element of

the string, based upon the direction flag (DF) and the length of the

operands (8, 16, or 32 bits) as indicated by memj or by the OPCODE itself

(SCASB, SCASW, or SCANSD). If the DF flag is 0, EDI is updated by 1,

2, or 4. If the DF flag is 1, EDI is updated by - 1, -2, or -4.

The SCAS operation may be preceded by REPE (REPZ) or REPNE
(REPNZ). If preceded by REPE, the SCAS instruction is repeated while

ECX is not and the string elements are equal to AL, AX, or EAX
(ZF== 1). If preceded by REPNE, the SCAS instruction is repeated while

ECX is not and the string element is not equal to AL, AX, or EAX
(ZF == 0). In this way, SCAS is useful to find the first mismatch (REPE)

or match (REPNE) to AL, AX, or EAX in the string if they exist. Refer to

REPE and REPNE for details of the prefixes.

The specification of mem i, if it is present, is used by the assembler to

determine the length of the operation only. The string is always taken from

ES:[EDI]. No segment override is possible for SCAS.

Integer

248 SCAS Integer Instruction

Operation:

I (OPCODE == SCANSB))if ((Length (memi)
== 8)

delta = 1;

temp = AL - (byte) ES: [EDI];

} else if ((Length (memi) == 16) II (OPCODE
delta = 2;

temp = AX - (word) ES: [EDI];

} else { /* (Length (memi) ==32) II (OPCODE
delta = 4;

temp = EAX - (dword) ES: [EDI];

}

/* - is as defined for the SUB instruction.
OF = BorrowO(MSB) '^ BorrowO (MSB-1) ;

SF = B(MSB, temp)

;

ZF = temp ==0;
AF = BorrowO(3)

;

PF = ~(B(7,temp) '^B(6,temp)
CF = BorrowO(MSB)

;

if (DF == 1) {

delta = - delta ;

}

SCANSW)
)

{

SCANSD)*/

*/

B(0, temp))

;

EDI = EDI + delta;

Examples:

SCASW
Before: AX

DF
After : AX

DF

0123

0123

EDI : 0016 ES: [EDI]

EDI : 0018 ES: [EDI-

: 3210

2]: 3210

OSZAPC

XXXXXX

010001

REPNE SCAS SI ; No
Before: EDI

ES: [EDI-1
DF

After : EDI
ES: [EDI+2
DF

te that
: 0008
: 23
:

: 0005
: 23
:

Sl is a byte string
AL : 72 ES:

ES: [EDI-2] : 72 ES:
ECX : 00000008
AL : 72 ES:

ES: [EDI+1] : 72 ES:

ECX : 00000005

[EDI]

[EDI-3]

:

[EDI+3]

:

[EDI]

23
AA

23
AA

XXXXXX

001010

Exception:

Memory () ;

Note:

See example 5, page 413.

Integer Instruction SETcc 249

^"
SETcc

Byte Set on Condition Code

Formats:

SETcc op]

regS

mem8

Integer

Where the condition code is one of of the following:

IVInemonics Condition Codes Description

SETB/SETNAE/
SETC

CF = = 1 Set byte below/not

above or equal/carry

SETBE/SETNA CF = = 1 II ZF ==1 Set byte below or

equal/not above

SETE/SETZ ZF = = 1 Set byte equal/zero

SETL/SETNGE SF! == OF Set byte less/not

greater or equal

SETLE/SETNG SF! == OFII ZF ==I Set byte less or

equal/not greater

SETNB/SETAE/
SETNC

CF = = Set byte not below/

above or equal/

not carry

SETNBE/SETA CF == = 0&& ZF = == Set byte not below or

equal/above

SETNE/SETNZ ZF == = Set byte not equal/

not zero

SETNL/SETGE SF = = OF Set byte not less/

greater or equal

SETNLE/SETG ZF == = 0&& SF = = OF Set byte not less or

equal/greater

SETNO OF =- = Set byte no overflow

250 SETcc Integer Instruction

SETNP/SETPO PF = =

SETNS

SETO
SETP/SETPE

SETS

SF = =

OF = =l

PF = =1

SF = =1

Set byte not parity/

parity odd

Set byte not sign

Set byte overflow

Set byte parity/

parity even

Set byte sign

Note that less and greater refer to signed integer comparisons, while above

and below refer to unsigned integer comparisons.

Description:

The flags are tested for the conditions described above. If the flags meet

the conditions stated above, opi is set to 1. Otherwise opi is set to 0.

Note that the only size operand allowed by the SETcc instructions is a

byte quantity.

Multiple mnemonics are provided by the assembler allowing convenient

interpretations of the flags. For instance, SETA (set byte above) and

SETNBE (set byte not below or equal) are synonymous. The assembler

conveniently allows both.

Operation:

if (Condi tionCode) {

op, = 1;

} else {

opi = 0;

}

Examples:

SETNO memS

SETNBE AL

Exceptions:

Code Reference ();

Memory ()

;

Note:

This instruction is new to the 80386.

OSZAPC
Before: memS: XX IXXXXX
After : memS: 00 lUUUUU

Before: AL : XX XXIXXO
After : AL : 01 UUIUUO

Integer Instruction SHLD 251

SHLD

Shift Left Double

Formats:

SHLD op I 0p2 0p3

regl6 regl6 immS
mem 16 regl6 immS
regis regl6 CL
mem 16 regl6 CL
reg32 reg32 immS
mem32 reg32 immS
reg32 reg32 CL
mem32 reg32 CL

Integer

Description:

The shift count is specified in op3. This count is masked to 5 bits. Thus,

shifts of to 31 bits can be performed.

The shift is performed upon op!:op2 with the result being stored back

into opi. opi is shifted left shift-count times, with the low-order bits being

filled from the high-order bits of op2. The carry flag becomes the value of

what is being shifted out of the most significant bit of opi.

If the shift count is 0, the instruction is equivalent to a NOP. If the shift

count is 1 , the overflow flag gets set to 1 if the most significant bit of the

result does not match the carry flag. Otherwise it is cleared to 0. If a shift

count greater than operand length is specified, the flags and result in opi

are undefined.

Operation:

cnt = op3 & OlFh;

if (cnt == 0) {

/* nop */

} else if (cnt > Length (opi))

{

opi = OF = SF = ZF = PF =

} else {

CF AF = UNDEFINfED;

252 SHLD Integer Instruction

}

CF = B (Length (opi) - cnt,opi);
opi = (opi « cnt) I (opz » (LengthCopz) - cnt)

)

OF = B(MSB, op,) ^ CF)

;

SF = B(MSB,opi) ;

ZF = opi ==0;
PF = (B(7,opi)

^ B(6,opi)
'^

. . .
'^ B(0,opi)) ;

AF = UNDEFINfED;

Examples:

SHLD meml6,AX,3 Before: mem: 0084 AX: 00F3
After : mem: 0420 AX: 00F3

OSZAPC
XXXXXX
000X00

SHLD DI,SI,CL Before:
After :

DI
DI

1209 SI: 8552 CL: OB XXXXXX
4C2A SI: 8552 CL: OB 000X00

Exception:

Memory ()

;

Notes:

Shifts of zero do not alter the flags!

This instruction is new to the 80386.

See example 6b, page 418.

Integer Instruction SHR 253

SHR

Shift Logical Right

Formats:

SHR op, 0p2

reg immS
mem immS
reg CL
mem CL

Integer

Description:

The shift count is specified in op2. This count is masked to 5 bits. Thus,

shifts of to 31 bits are performed.

The shift is performed upon opi with the result being stored back into

opi. opi is shifted right shift-count times, with the high-order bits being

filled with Os. The carry flag becomes the value of what is being shifted out

of the least significant bit.

If the shift count is 1 and the most significant 2 bits of the result are not

equal, the overflow flag is set. Otherwise it is cleared to 0. If the shift count

is not 1, the overflow flag is undefined.

Operation:

cnt = op2 & OlFh;

if(cnt =< Length(opi))

{

if (cnt > 0)

{

CF = B(cnt, opi) ;

op

} else {

opi = 0;

CF = 0;

opi » cnt;

if (op2 == 1) {

OF = B(MSB, opi) '^BdVISB-l, opi) ;

} else {

OF = UNDEFINED;

Z54 SHR Integer Instruct!ion

SF = B(MSB,opi)

;

ZF = op, == 0;
AF = UNDEFI^fED;
PF = ~(B(7,opi) '^ 8(6, op,) ^

. . . '^B(0,opi));

Examples:

OSZAPCSHRDX.l Before: DX: 84 XXXXXX
After

: DX: 42 000X10
SHR mem32,CL Before: mem: F42BBD51 CL: OC XXXXXX

After
: mem: 000F42BB CL: OC XOOXll

Exception:

Memory ()

;

Notes:

Shifts of zero do not alter the flags!

See example 6b, page 418.

Integer Instruction SHRD 255

SHRD

Shift Right Double

Formats:

SHRD op, 0p2 0p3

regl6 regl6 immS
mem 16 regl6 immS
regl6 regl6 CL
mem 16 regl6 CL
reg32 reg32 immS
mem32 reg32 imm8
reg32 reg32 CL
mem32 reg32 CL

Integer

Description:

The shift count is specified in op3. This count is masked to 5 bits. Thus,

shifts of to 31 bits are performed.

The shift is performed upon opi:op2 with the result being stored back

into opi. op, is shifted right shift-count times, with the high-order bits being

filled from the low-order bits of op2. The carry flag becomes the value of

what is being shifted out of the least significant bit of opi.

If the count is 0, the instruction is equivalent to a NOP. The overflow

flag gets set to 1 if the 2 most significant bits of the result are not equal.

Otherwise it is cleared to 0.

If a shift count greater than operand length is specified in op3, the flags

and result in opi are undefined.

Operation:

cnt = opa & OlFh;

if (cnt == 0) {

/* nop */

} else if (cnt > Length(opi))

{

opi = OF = SF = ZF = PF = CF = AF = UNDEFI>fED;

i else {

256 SHRD Integer Instruction

CF = B((cnt - 1) ,opi)

;

opi = (opi » cnt) I (opz « (Length(op2) - cnt));
OF = B(MSB,op,)

^ B(1VISB-1, opi) ;

SF = B(MSB,opi) ;

ZF = opi ==0;
PF = ~(B(7,opj)

^ B(6,opi)
^

. . .
'^ B(0,opi)) ;

AF = UNDEFINED;

Examples:

SHRD meml6,BP,

2

Before: mem: 7AC0 BP: F43D
After : mem: 5EB0 BP: F43D

SHRD EAX,mem32,CL Before: EAX: 663B982F
mem: 9963120A CL:

After : EAX: 82998EE6
mem: 9963120A CL:

OA

OA

OSZAPC
xxxxxx
100X00

xxxxxx

110X10

Exception:

Memory ()

;

Notes:

Shifts of zero do not alter the flags!

This instruction is new to the 80386.

See example 6b, page 418.

Integer Instruction STC 257

STC

Set Carry Flag

Format:

STC

Description:

The carry flag is set to 1

,

Operation:

CF = 1;

Integer

Example:

STC Before: CF :

After : CF : 1

Exceptions:

None.

258 STD Integer Instruction

STD

Set Direction Flag

Format:

STD

Description:

The direction flag is set to 1. After the direction flag is set to 1, string

instructions will decrement their index registers (ESI and EDI).

Operation:

DF = 1;

Examples:

STD Before: DF :

After : DF : 1

Exceptions:

None.

Integer Instruction STI 259

STI

Set Interrupt Flag

Format:

STI

Description:

The interrupt enable flag is set to 1 . The 80386 will respond to interrupts

after the next instruction is executed.

If the current task does not have sufficient privilege to alter the interrupt

flag, an undefined opcode fault is generated. Privilege levels are described

in more detail in Chapter 5.

Operation:

IF = 1;

Integer

Examples:

STI Before: IF :

After : IF : 1

Exception:

lOPLSensitiveO ;

260 STOS Integer Instruction

STOS / STOSB / STOSW / STOSD

Store String

Formats:

ibTOSB

STOSW
STOSD

STOS mew.]

memS
mem 16

mem32

Description:

One. t\%o. or four bytes of data (for 8-, 16-, and 32-bit operations i are

transferred from the AL. -\X, or EAX register into ES:[EDI]. After the

transfer is made. EDI is updated to point to the next string location.

EDI is updated based upon the direction flag (DFi and the length of the

operand 8. 16. 32) as indicated bv memi or bv the OPCODE itself

(STOSB. STOS\V. or STOSD . If DF is n. EDI is updated by 1, 2, or 4.

IfDF is 1. EDI is updated by - 1. -2, or -4.

mem] specifies the length of the op>erand. The actual transfer is always

done with the address specified b\ ES:[EDI]. No segment o\erride is possible.

The STOS instruction can be preceded b> a REP prefix. This allows

a string to be filled (initialized j \v"ith the contents of the .AL, .AX, or

EAX register.

Operation:

if (I Length (meai) ==8)
delta = 1:

ES: [EDI] = AL:

} else if 1 (Length I menii

delta = 2:

ES: [EDI] = AX:

} else *Length imenii I

delta = 4:

ES: [EDI] = EAX:

OPCODE = = STOSB •
i

{

= 16» ' OPCODE == STOSWi»{

32i OPCODE == STOSD M*/

Integer Instruction STOS 261

if (DF == 1) {

delta = - delta;

}

EDI = EDI + delta;

Examples:

STOSW Before: EDI 0052 ES: [EDI] xxxx
AX FFFF DF

After : EDI 0054 ES: [EDI-2] FFFF
AX FFFF DF

Exception:

Memory ()

;

Note:

See example 1, page 619.

Integer

262 SUB Integer Instruction

Subtract

mats:

SUB op I 0p2

reg reg

reg mem
reg imm
mem reg

mem imm

Description:

op2 is subtracted from opi, with the result being placed into opi.

Operation:

OPi = op, - opa

;

OF = BorrowO(MSB) '^ Borr owO(MSB -1);

SF = B(MSB, opi)

;

ZF = op, == 0;

AF = BorrowO(3)

;

PF = ~(B(7,opi)

'^ B(6 op ,)"... ^B(0 op.))

;

CF = BorrowO(MSB) ;

/*
- is defined on a bitwise basis in the table below.
Xi and y, are the i th bits of op, and opa . bi _ , is

the borrow out of the i-1 bit (this is the same as the
borrow into the ith bit), ri is the ith result bit
and bi is the borrow out of the ith bit. The bit
variable i takes on values from to MSB. bj for
i-1 == -1 is for SUB.

Xi yi bi-i Ti bi

1 1 1

1 1 1

1 1 1

1 1

1 1

1 1

1 1 1 1 1

Integer Instruction SUB 263

*/

Note that subtraction can also be defined in terms of
addition. Comparing this to the addition table earlier:

Xj = ai

yi = ~bi
bi = ci

Thus, the carry flag of the 80386 can also be considered
the borrow flag.

Examples:

SUB EAX, EBX

SUB mem8, 3

A

OSZAPC
Before: EAX: 0743CE21 EBX: 8D4BC956 XXXXXX
After : EAX: 79F804CB EBX: 8D4BC956 000101

Before: Mem: 72

After : Mem: 38

XXXXXX
000100

Integer

Exception:

Memory ()

;

264 TEST Integer Instruction

TEST

Logical Compare

Formats:

TEST opi , 0p2

reg
,

reg

reg , mem
reg , imm

Description:

A logical AND is performed between opi and op2. The result is not

stored. Only the flags are modified.

Operation:

temp = opx & 0P2

;

OF = 0;

SF = B(1VISB, temp) ;

ZF = temp ==0;
AF = UNDEFINfED;
PF = ~(B(7,temp) ''B(6,temp)
CF = 0;

/*

B(0, temp))

;

& is defined on a bitwise basis in the table below.
Bi and bi are the bits of opi and opz

.

rj is the i th result bit.
The bit variable i takes on values from to MSB.
ai bi ri

1

1

1 1 1

*/

Examples:

TEST EAX, EBX

TEST memS, 75

OSZAPC
Before: EAX: 01234567 EBX: 76543210 XXXXXX
After : EAX: 01234567 EBX: 76543210 001X10

Before: Mem: 7F XXXXXX
After : Mem: 7F 000X00

Exception:

Memory ()

;

Integer Instruction XCHG 265

XCHG

Exchange

Formats:

XCHG op,
, 0p2

reg , reg

mem , reg

reg , mem

Integer

Description:

The contents of op2 and opi are swapped, opi and op2 can be a byte,

word, or dword, but must always be the same length.

If one of opi or op2 is a mem, the bus transfer is always performed as if a

LOCK prefix is given (the LOCK# pin is asserted), even ifLOCK was not

specified. Thus, XCHG is useful for semaphore operations.

Operation:

temp
opi
op 2

opi

;

0P2 ;

temp;

Examples:

XCHG AX, BX

XCHG memS, AL

Before: AX: 0A8F BX: 9042
After : AX: 9042 BX: 0A8F

Before:
After :

AL: 4A mem: OF
AL: OF mem: 4A

Exception:

Memory (

)

266 XLAT Integer Instruction

XLAT / XLATB

Table Lookup Translation

Formats:

XLATB

XLAT memS

Description:

At the start of the instruction, AL is assumed to be the unsigned index

into a table whose base is at [EBX]. XLAT replaces AL with the table

entry at [EBX + AL]. AL is always taken as an unsigned value. The table is

always based at [EBX] regardless of the mem8. memS does, however, allow

a segment override to be specified rather than the default DS:[EBX].

Operation:

if (OPCODE == XLATB) {

AL = DS: [EBX + ConCat (OOOOOOh, AL)]

;

} else {

AL = SegReg(mem8) : [EBX + ConCat (OOOOOOh, AL)

Examples:

XLPa:B Before: EBX
[EBX+AL]

After : EBX

FOOO AL : 30
7D
FOOO AL : 7D

Exception:

Memory ()

;

Integer Instruction XOR 267

XOR

Exclusive Or

Formats:

XOR opi , 0p2

reg , reg

reg , mem
reg , imm
mem , reg

mem imm

Integer

Description:

A logical exclusive-OR is performed between opi and op2. The result is

stored into opi.

Operation:

OPi
OF
SF
ZF
AF
PF
CF
/*
^ i

ai

va

opi '^ op2

;

0;

B(MSB, opi)

;

opi ==0;
UNDEFINfED;

~(B(7,opi)
'^ B(6,opi)

0;

B(0,opi)

)

s defined on a bitwise basis in the table below.

and bj are the i th bits of opi and op2 . respectively.

is the ith result bit. The bit variable i takes on

lues from to MSB.

ai bi ri

1 1

1 1

1 1

268 XOR Integer Instruction

Examples:

XOR EAX, EBX

XOR mem8, 70

OSZAPC
efore: EAX: 01234567 EBX: FOFOFOFO XXXXXX
fter : EAX: F1D3B597 EBX: FOFOFOFO 010X00

efore: Mem: 7F XXXXXX
fter : Mem: OF 000X10

Exception:

Memory ()

;

Instruction Set 269

Multiple Segment

From the discussion of segmentation in Chapter 2, recall how the

operating system can dictate a single-segment programming model (all

segments are mapped into a single segment) or the operating system may
allow a multiple-segmentation programming model. This choice is up to

the programmer. This is true except that interrupt and exception handling

always require the systems programmer to use the multiple-segment model.

Interrupts and exceptions are described in detail in Chapter 6.

If you have chosen to use multiple segments, this section describes the

particular instructions the 80386 includes to support this programming
model. If you are not interested in this programming model, you can skip

this section of instruction descriptions.

Chapters 5 and 7 describe the use of these instructions in more detail and
give some examples of the use of these instructions. As you will see several

times in the discussion of these instructions, you are referred to Chapter 5

for more details.

All the instructions in this section deal with the loading of selectors into

segment registers. Both selectors and segment registers were described in

Chapter 2, where loading a segment selector into a segment register makes

the segment addressable. Data within the segment can be referenced with

offsets from this segment register (see Chapter 2). The code segment is

implicitly referenced on all instruction fetches, and the offset into this

segment is given by the EIP register.

Function Definitions

At the beginning of this chapter, we defined several functions that

allowed us to use a shorthand notadon in instruction description and

examples. Below is another roudne with a similar purpose. We define it

here, as it is used exclusively in this section of the instruction set description.

/* The IntExecTable routine returns either the */

/* Segment or Offset of the interrupt service routine */

/* that is being called. The actual semantics of */

/* taking an interrupt are more complicated (gates, */

/* task switches, and privilege level changes) than */

/* shown here and are detailed in the interrupt routine*/
I* of Chapter 6. A call to this routine would be: */

/* Interrupt (imm, 1) */

/* where the second operand indicates that privilege */

/* level checks need to be done and the first operand */

/* is the immediate passed on the call to IntTable. */

270 Programming the 80386

IntExecTable (type, imm)

{

if (type= =SEGMENT)

{

return ((word) IDTR.Base + 4);

} else (/* OFFSET */

return ((dword) IDTR.Base + 0)

;

}

}

Exception Routines

At the beginning of this chapter, we defined several exception routines

allowing us to use a shorthand function call to summarize potential

exception conditions. Below are several more exception routines that we did

not define at the start of this chapter, since they are particular to the

multiple-segment instructions.

CodeSegmentLoad ()

{

/* All possible segment exceptions while loading a CS */
/* descriptor are embodied in the CSDescr iptorLoad() */
/* routine defined in Chapter 5. Refer to Chapter 5 for */
/* further details. */

}

SegmentLoad(
)

{

/* All possible segment exceptions while loading a */

/* descriptor are embodied in the DescriptorLoad() */
/* routine defined in Chapter 5. Refer to Chapter 5 */
/* for further details. */

Instruction Set Summary

The following table summarizes the instructions that are found in this

section of the instruction set description.

Multiple-Segment Instructions

CALL Call procedure

INT Call to interrupt procedure

INTO On overflow call interrupt procedure

IRET Interrupt return

JMP Jump

LDS Load pointer to DS

LES Load pointer to ES

LFS Load pointer to FS

Instruction Set 271

LGS Load pointer to GS

LSS Load pointer to SS

MOV Move to/from segment register

POP Pop off stack into segment register

PUSH Push onto stack

RET Return

272 CALL Multiple Segment Instruction

CALL

Call Procedure

Formats:

CALL op,

farJabel

mem48

Description:

CALL causes instruction execution to continue at a specified offset with-

in a new code segment. The given pointer (a 48-bit pointer composed of a

16-bit segment selector and a 32-bit offset, as described in Chapter 2)

points to a procedure in a different segment (intersegment call).

Before control transfer occurs, a 48-pointer to the next instruction to be

executed is placed onto the stack. The pushed information can be used by a

subsequent RET instruction.

Note in the description that the EIP value stored on the stack points to

the instruction following the CALL. The 80386 fetches an instruction and

then increments the instruction pointer prior to execution. Thus EIP can be

stored directly, as it points "after" the CALL.
Note that when CS is pushed onto the stack, a full 32-bit word is pushed.

This is done by the 80386 to keep the stack aligned (see Chapter 2). The
upper 16 bits of this stack location are undefined. Stack alignment improves

80386 performance.

Operation:

/* far_label is assembled into a 48-bit pointer,
composed of a 16-bit code segment selector, which is

returned by the Segment routine below, and an
instruction offset from the beginning of the segment,
which is returned by the Offset routine below.

*/

if (opi is far_label) { /* f */

ESP = ESP - 4 ;

[ESP] = CS ;

CS = Segment (far-label) ;

ESP = ESP - 4 ;

[ESP] = EIP ;

Multiple Segment Instruction CALL 273

}

/*

EIP = Offset (far-label)

;

else if (op, is mem48) { /*
ESP = ESP - 4 ;

[ESP] = CS ;

CS = [&mem+4];
ESP = ESP - 4 ;

[ESP] = EIP ;

EIP = [&inein] ;

t */

*/

t Since the far call instruction loads the CS
register, which may cause privilege level transitions,
gate traversal, and task switching, the exact effect
may not be as described above. These more complicated
forms are described in detail in Chapter 5.

Example:

CALL FAR label; label = 6320: 0F03298A

RET

Before: EIP 00000300 ESP 00000200 CS: 5028
After : EIP 0F03298A ESP 00000198 CS: 6320

[ESP+4] XXXX5028 [ESP] 00000300
Before: EIP 0F03298A ESP 00000198 CS: 6320

[ESP+4] XXXX5028 [ESP] 00000300
After : EIP 00000300 ESP 00000200 CS: 5028

Multiple

Segment

^

Exceptions:

Memory ()

;

Stack ()

;

CodeSegmentLoad (

)

CodeReference ()

;

Note:

For more details, see the description on page 533.

See also the intrasegment form of the CALL instruction (page 150).

274 INT Multiple Segment Instruction

INT

Call to Interrupt Procedure

Formats:

INT imm8

Description:

An INT instruction is basically a software call to an exception handler.

The particular interrupt procedure to be used is specified by immS. immS is

the exception number.

The extended flags register, the code segment register, and the instruc-

tion pointer are pushed onto the stack. Control is transferred to the

exception service routine (handler) for this particular exception number. At

the end of the interrupt service processing, an IRET instruction is typically

used to transfer control back to the interrupted execution location.

Note that when CS is pushed onto the stack, a full 32-bit word is pushed.

This keeps the stack aligned (see Chapter 2). The upper 16 bits of this stack

location are undefined. Stack alignment improves 80386 performance.

This instruction can be used as a "call" to the operating system.

Operation:

= ESP - 4;

= EFLAGS;
= ESP - 4;

= CS; /* t */
= ESP - 4;

= EIP;
= IntExecTable (SEGMENT,
= IntExecTable (OFFSET,
= 0;

=
=

ESP
[ESP]

ESP
[ESP]

ESP
[ESP]

CS = IntExecTable (SEGMENT, immS)

;

EIP = IntExecTable (OFFSET, immS)

;

IF
TF
NT
/*

t Since the INT instruction loads the CS
register, which may cause privilege level transitions,
gate traversal, and task switching, the exact effect
may not be as described above. These more complicated
forms are described in detail in Chapters 5 and 6.

*/

Multiple Segment Instruction INT 275

Examples:

INT 5 Before:

After

ESP : FFFFF388 EIP
EFLAGS: 00004302 CS
IntExecTable (SEGMENT, 5)

IntExecTable (OFFSET , 5)

ESP
EFLAGS
[ESP+8]
[ESP]

FFFFF37C
00000002
00004302
0000FA04

EIP
CS
IESP+41

0000FA04
F244
0400

004AFDDC
004AFDDC

0400
XXXXF244

Exceptions:

StackO ;

CodeSegmentLoad (

)

CodeReference () ;

Note:

The INT 3 instruction is a special single-byte form (the breakpoint

instruction), which is useful for (debugging. See Chapter 8 for details.

Multiple

Segment

276 INTO Multiple Segment Instruction

INTO

On Overflow Call Interrupt Procedure

Format:

INTO

Description:

An INTO instruction is basically a conditional software call to interrupt

procedure 4. The call to exception handler 4 occurs if the overflow flag is set.

The extended flags register, the code segment register, and the instruc-

tion pointer are pushed onto the stack. Control is transferred to the inter-

rupt service routine for the specified interrupt level. At the end of the

interrupt service processing, an IRET instruction is typically used to

transfer control back to the interrupting execution location.

Note that when CS is pushed onto the stack, a full 32-bit word is pushed.

This keeps the stack aligned (see Chapter 2). The upper 16 bits of this stack

location are undefined. Stack alignment improves 80386 performance.

Operation:

if (OF==0)
{

/* t */
ESP ESP - 4;

[ESP] = EFLAGS

;

ESP ESP - 4;

[ESP] = CS;

ESP ESP - 4;

[ESP] = EIP;
CS I ntExecTable (SEGMENT, 4)

EIP IntExecTable (OFFSET, 4)

IF 0;

TF 0;

NT 0;

/*

*/

t Since the INTO instruction loads the CS
register, which may cause privilege level transitions,
gate traversal, and task switching, the exact effect
may not be as described above. These more complicated
forms are described in detail in Chapters 5 and 6.

Multiple Segment Instruction INTO 277

Examples:

INTO Before: ESP FFFFF388 EIP 0F822DDB OSZAPC
EFLAGS : 00006FA7 CS 0008
I ntExecTable (SEGMENT, 4) 4A00
In tExecTable (OFFSET , 4) 004AFDDC

After : ESP FFFFF37C EIP 004AFDDC lUUUUU
EFLAGS 00002CA7 CS 4A00
IESP+8] 00006FA7 [ESP+4] XXXX0008
[ESP] 0F822DDB

Exceptions:

Stack ()

;

CodeSegmentLoad (

)

CodeReference ()

;

Multiple

Segment

278 IRET Multiple Segment Instruction

IRET

Interrupt Return

Format:

IRET

Description:

An IRET reverses the effect of an interrupt procedure entry. The EIP,

CS, and EFLAGS registers are popped from the stack, and control resumes

at the point the interrupt was taken. IRET is thus used at the end of an

interrupt service routine to return control to the point of interrupt.

Note that when CS is popped off the stack, a full 32-bit word is popped.

This is for stack alignment (see Chapter 2). The upper 16 bits of this stack

location are discarded. Stack alignment improves 80386 performance.

Operation:

4;

[ESP]

ESP +
[ESP]

ESP + 4;

[ESP]

;

ESP + 4;

/* t */

EIP
ESP
CS
ESP
EFLAGS
ESP
/*

t Since the IRET instruction loads the CS
register, which may cause privilege level transitions,
gate traversal, and task switching, the exact effect
may not be as described above. These more complicated
forms are described in detail in Chapters 5 and 6.

*/

Examples:

IRET Before: ESP FFFFF3 7C EIP 004B0245
EFLAGS 00000002 CS : 0400
[ESP+8] 00004302 [ESP+4]

:

XXXXF244
[ESP] 0000FA04

After : ESP FFFFF388 EIP : 0000FA04
EFLAGS 00004302 CS : F244

Multiple Segment Instruction IREX 279

Exceptions:

StackO ;

CodeSegmentLoad (

)

CodeReference ()

;

Note:

See example 1 on page 622. See also page 579.

Multiple

Segment

280 JMP Multiple Segment Instruction

JMP

Jump

Formats:

JMP op,

far label

mem48

Description:

The jump instruction causes instruction execution to continue at the

specified offset within another segment. The given pointer (a 48-bit pointer

composed of a 16-bit selector and a 32-bit offset, as described in Chapter 2)

points to a label in a different segment (intersegment jump).

This 48-bit far pointer can be specified directly (as a far label) or indi-

rectly through memory (mem48).

Operation:

/* far_label is assembled into a 48-bit pointer
composed of a 16-bit code segment selector, which is

returned by the Segment routine below, and an
instruction offset from the beginning of the segment,
which is returned by the Offset routine below.

*/
if (opi is far-label) {

CS = Segment (far_label)

;

EIP = Offset (far-label) ;

} else if (opi is mem48) { /* t */

CS = [&mem+4]

;

EIP = [&mem]

;

}

/*

t Since the far jump instruction loads the CS
register, which may cause privilege level transitions,
gate traversal, and task switching, the exact effect
may not be as described above. These more complicated
forms are described in detail in Chapter 5.

*/

Multiple Segment Instruction JMP 281

Example:

JMP FAR labell ; labell = AC40: OOOOOOFB
Before: EIP : 00000300 CS: 2DF0
After : EIP : OOOOOOFB CS: AC40

Exceptions:

Memory ()

;

CodeSegmentLoadO
;

CodeReference ()

;

Note:

See the examples on pages 624 and 530.

282 Lsr Multiple Segment Instruction

Lsr

Load Pointer

; load pointer to DS

; load pointer to ES

; load pointer to FS

; load pointer to GS

; load pointer to SS

Formats:

hsr reg
,

mem48

LDS reg
,

mem48

LES reg
,

mem48

LFS reg
,

mem48

LGS reg
,

mem48

LSS reg
,

mem48

Description:

An Lsr instruction loads a 48-bit full pointer into a segment register/

general register pair. The dword at mem48 is loaded into the register

specified by reg. The word found at the location specified by mem48 plus 4

is loaded into the segment register given in the instruction mnemonic (one

of DS, ES, FS, GS, or SS). Thus, mem48 specifies a complete 48-bit

pointer, the first dword is the offset (which is loaded into the specified

register), and the last word is the segment descriptor (which is loaded into

the specified segment register)

.

Loading a segment register with a selector makes a segment addressable

as described in Chapter 2. Lower-level details of segment register loads are

given in Chapter 5.

CS cannot be loaded by an Lsr instruction (LCS). CS can only be loaded

by far control-flow transfer instructions (CALL far label, IRET, JMP far

label, INT).

Operation:

reg
sr

(dword) [&mem48]

;

(word) [&mem48+4]

Example:

LGS EAX, mein48 Before:

After

EAX
mem48
EAX
mem48

XXXXXXXX GS: XXXX
8034: 0F4BC319
0F4BC319 GS: 8034
8034: 0F4BC319

Multiple Segment Instruction Lsr 283

Exceptions:

Memory ()

;

SegmentLoad ()

;

Notes:

LSS, LFS, and LGS are new to the 80386 instruction set. Use

LSS ESP,mem48

to point to a new stack. Since both SS and ESP are assigned by this

instruction, any potential problems that may arise if they are updated by

separate instructions are eliminated.

See example 1, page 621.

Multiple

Segment

284 MOV Multiple Segment Instruction

MOV

Move to/from Segment Register

Formats:

MOV opi 0p2

sreg reg 16

sreg mem 16

reg 1

6

sreg

mem 16 sreg

Description:

The contents of op2 are copied into op).

If opi is a segment register, a new segment is made addressable by

loading its selector into sreg. In order to access data in a segment, a selector

identifying the segment must be loaded into one of the segment registers.

If opi is SS, interrupts are disabled until the next instruction execution

is complete.

A thorough treatment of segmentation and the loading of segment

registers is given in Chapter 5.

Operation:

opi OP2

Examples:

MOV AX, GS

MOV AX, Segmentl

MOV GS,AX
ADD GS: sum,DX

Before:
After :

AX: XXXX GS: F433
AX: F433 GS: F433

This causes the selector of Segmentl to be
loaded into AX.

The selector is then moved into GS.

The data at location 'sum' within the GS
segment (Segmentl) is now addressable and
used in this ADD instruction.

Multiple Segment Instruction MOV 285

Exceptions:

SegmentLoad() ;

Memory ()

;

Notes:

opi cannot be CS.

See page 517.

Multiple

Segment

286 POP Multiple Segment Instruction

POP

Pop off stack into Segment Register

Formats:

POP op,

DS
ES
ss
FS
GS

Description:

POP moves the word (selector) from the stack into the specified segment

register (DS, ES, SS, FS, or GS). Loading the segment register makes the

segment referred to by the selector on the top of the stack addressable. The
top of the stack is pointed to by SS:[ESP]. After the data transfer from the

stack to opi, the stack pointer is automatically updated by adding 4 to it.

As noted above, the segment register load may entail a complete segment

descriptor load. The semantics of a segment register load are described in

Chapter 5.

POP SS inhibits interrupts until the next instruction completes execution.

It is illegal to specify CS in a POP instruction.

Operation:

opi = SS: [ESP]

ESP = ESP + 4;

Example:

POP ES Before: ES: XXXX SS: [ESP] : F340 ESP: F4320530
After : ES: F430 SS: [ESP-4] : F340 ESP: F4320534

Exceptions:

SegmentLoad()

;

StackO ;

Multiple Segment Instruction PUSH. 287

PUSH

Formats:

PUSH

Push onto Stack

opi

DS
ES
CS
SS

FS
GS

Description:

opi is placed in the new top of stack. The new top of stack is formed by

decrementing the stack pointer (ESP) by 4.

Operation:

Multiple

Segment

SS: [ESP-2] = opi;
ESP = ESP -- 4;

mpie:

PUSH SS Before: SS: 8042 ESP: 0424 [SS:4201 : xxxx
After : SS: 8042 ESP: 0420 [SS:420] : 8042

Exception:

Stack ()

288 RET Multiple Segment Instruction

RET

Return

Formats:

RET
RET imml6

Description:

RET causes instruction execution to resume at the instruction following a

corresponding CALL instruction. The RET instruction uses the return

pointer (a 48-bit pointer composed of CS and EIP, as described in Chap-

ter 2) found on the top of the stack. The far pointer is popped into the

EIP register and CS register. Another way to consider the RET instruction

is as an indirect far jump through the memory pointer at SS:[ESP] with

the appropriate stack updates.

An optional imml6 value can be specified with the RET instruction.

This value is added to ESP to remove several bytes of parameters from

the stack.

Note that when CS is popped off the stack, a full 32-bit word is popped.

This is for stack alignment (see Chapter 2). The upper 16 bits of this stack

location are discarded. Stack alignment improves 80386 performance.

Operation:

EIP = [ESP]

;

ESP = ESP + 4;

CS = [ESP] ; /* t */

ESP = ESP + 4;

if (NUMOPS == 1) {

ESP = ESP + imml6;

}

/*

t Since the RET instruction loads the CS register,
which may cause privilege level transitions, gate
traversal, or task switching, the exact effect may not
be as described above. These more complicated forms
are described in detail in Chapter 5.

*/

Multiple Segment Instruction RET 289

Example:

FAR RET
Before: EIP 0F03429A ESP 00000198 CS: 6320

[ESP-4]

:

XXXX5028 [ESP]

:

00000300
After : EIP 00000300 ESP 00000200 CS: 5028

Exceptions:

Stack () ;

CodeSegmentLoad ()

;

CodeReference ()

;

Note:

See the detailed description on page 539.

Multiple

Segment

290 Programming the 80386

^ Operating System

As has been mentioned several times in this book, the 80386 supports

several advanced operating-system features in hardware. To take advan-

tage of this hardware, the instructions needed to implement multitasking,

multiuser, and virtual-memory operating systems are provided to the operat-

ing-system writer.

This section describes the instructions that are explicitly provided for the

operating-system writer. If you are an applications programmer, you can

skip this section of instructions without any loss of completeness. In fact,

most operating systems will not allow the applications programmer to use

these instructions!

As was the case in the multiple-segment instructions of the last section.

Chapter 5 explains why this set of instructions is provided. Thus, we
recommend you read Chapter 5 before reading this section. After you read

Chapter 5, the operating-system instructions should be clear and easy to

understand. We include a complete instruction description here, however.

All instructions can be executed at all privilege levels unless noted

otherwise by the LevelO() exception.

Rinction Definitions

At the beginning of this chapter, we defined several functions that

allowed us to use a shorthand notation in instruction descriptions and ex-

amples. Below is another routine with a similar purpose. We define it here

because it is used exclusively in this section of the instruction set description.

/* The FetchDescriptor () routine is defined in detail in */

/* Chapter 5. The attributes structure is also defined */

/* in Chapter 5. */

Descr (num, op)

{

FetchDescriptor (op, &dwordl, &dword2, &attributes)

;

if (num==ll return(dwordl)

;

else return (dword2)

;

Exception Routines

At the beginning of this chapter, we defined several exception routines

allowing us to use a shorthand function call to summarize potential

exception conditions. Below are several more exception routines that we did

not define at the start of this chapter, since they are particular to the

operating-system instructions.

Instruction Set 291

SegmentLoadO {

/* All possible segment exceptions while loading a */
/* descriptor are embodied in the DescriptorLoadO routine */
/* defined in Chapter 5. Refer to Chapter 5 for further */
/* details. */

is defined in Chapter 6. */

LevelOO {

/* CPL is defined in Chapter 5.*/
/* The SegmentException() routine
if (CPL != 0)

{

SegmentException($GP, 0)

;

}

}

8086Mode()

{

/* 80861Vlode() signals an Inval idOpcode () exception if the */

/* 80386 is executing in real or virtual-8086 mode, as */

/* described in Chapter 9. The processor is in real mode */

/* if the PE bit in CRO is 0. The processor is in */

/* virtual-8086 mode if PE is 1 and the VM bit in the */

/* EFLAGS register is 1.

if ((CRO & lb == 0) /* real mode */

I I (((CRO & lb) ==1) &&
(EFLAGS. VM == 1)) /* virtual-8086 mode */)

Inval idOpcode ()

;

Instruction Set Summary

The following table summarizes the instructions that are found in this

section of the instruction set descriptions.

Operating-System Instructions

ARPL Adjust requested privilege level

CLTS Clear the task-switched flag

HLT Halt

LAR Load access rights

LGDT Load global descriptor table

LIDT Load interrupt descriptor table

LLDT Load local descriptor table

LMSW Load machine status word

LSL Load segment limit

LTR Load task register

MOV Move to/from special register

292 Programming the 80386

SGDT Store global descriptor table

SIDT Store interrupt descriptor table

SLDT Store local descriptor table

SMSW Store machine status word

STR Store task register

VERR Verify segment for reading

VERW Verify segment for writing

Operating System Instruction ARPL 293

ARPL

Adjust Requested Privilege Level

Formats:

ARPL op, , op2

regl6 , regl6

meml6 , regl6

Description:

ARPL checks the RPL (requested privilege level) of opi against the RPL
of op2. The RPL is specified in the 2 least significant bits of opi and op2. If

RPL of opi is less than RPL of op2, the zero flag is set to 1 and the 2 least

significant bits of opi are set equal to the 2 least significant bits of op2.

Either opi or op2 can be the null selector.

ARPL is not used in application programs; it is normally only used in

operating-system code. Usually, op2 is the code segment selector of the

caller, op i is a selector for a segment that the caller desires the subroutine to

access. This comparison is used to ensure that the caller does not request

more privilege than the caller is allowed.

Operation:

if ((opi & 03h) < (op2 & 03h))

{

ZF = 1;

opi = (opi & FFFCh) I (op2 & 03h) ;

} else {

ZF = 0;

}

Operating

System

Examples:

ARPL meml6, AX

ARPL CX AX

Before:
After :

Before:
After :

OSZAPC
meml6: 6DD3 AX: 456A XXXXXX
meml6: 6DD3 AX: 456A UUOUUU

CX
CX

FF44 AX: 62F1 XXXXXX
FF45 AX: 62F1 UUIUUU

294 ARPL Operating System Instruction

Exceptions:

Memory ()

;

8086Mode()

Operating System Instruction CLTS 295

CLTS

Clear the Task-Switched Flag

Formats:

CLTS

Description:

The task-switched flag in the machine status word (MSW or CRO) is set

to 0. Every time a task switch occurs, this flag is automatically set to 1 (refer

to Chapter 5 for details on task switching). The TS flag is used to minimize

the overhead of context switching when an 80387 is present in the system. If

a task switch has occurred (TS ==1) and the new task attempts to use the

80387, a fault will occur. The corresponding fault routine must then save

the context of the 80387 and execute a CLTS instruction. The new task can

then use the 80387 without destroying any of the data of the prior task.

Thus, only tasks that use the 80387 will incur the overhead of saving the

prior state of the 80387.

CLTS appears only in operating-system code. It can only be executed at

privilege level 0.

Operating

System

Operation:

TS = 0;

Example:

CLTS Before:
After :

TS
TS

Exception:

LevelOO

296 H.LT Operating System Instruction

HLT

Halt

Format:

HLT

Description:

HLT causes the 80386 to stop execution. Following a halt, execution can

only be resumed by the receipt of an enabled interrupt (note that NMI is

always enabled) or by a reset of the computer. Interrupts, and how they can

be enabled, are discussed in detail in Chapter 6.

Example:

HLT ; Execution stops

Exception:

LevelOO ;

Operating System Instruction LAR 297

LAR

Load Access Rights

Formats:

LAR op I 0p2

regis reglG

regis mem 16

reg32 reg32

reg32 mem32

Description:

LAR loads the first operand with the segment attributes field (access

rights) fi"om the descriptor for the segment specified by the selector in the

second operand.

The segment attributes field is simply the high-order four bytes of the

descriptor ANDed with OOFxFFOOh, where x indicates that bits 16 through

19 are undefined in the value loaded by LAR.

The descriptor specified by the selector opi must be within the descriptor

table limits, have a valid Type field, and be accessible at both CPL and

RPL of the selector in op2 compared to DPL. If so, ZF is set to 1 and opi is

loaded with the segment attributes field. Otherwise, ZF is cleared to and

opi is not modified.

Any memory segment descriptor (indicated by a 1 in the DType field)

can have any value in its Type field and be valid for use with LAR.

The valid types for system segments and gates (DType = 0) are given in

the following table:

Descriptor Type Valid?

Undefined Invalid

1 Available286TSS Valid

2LDT Valid

3 Busy286TSS Valid

4 286CallGate Valid

298 LAR Operating System Instruction

5 TaskGate Valid

6 286InterruptGate Invalid

7 286TrapGate Invalid

8 Undefined Invalid

9 Available386TSS Valid

A Undefined Invalid

B Busy386TSS Valid

C 386CallGate Valid

D Undefined Invalid

E 386InterruptGate Invalid

F 386TrapGate Invalid

Operation:

if ((op2 & OFFFCh) == /* Null selector */)

goto ClearZF;

/* Routine FetchDescriptor is defined in Chapter 5. */
/* Returns if descriptor is beyond table limit. */
if (FetchDescriptor (opa , &dwordl, &dword2, &Attributes) == 0)

goto ClearZF;

/* Otherwise descriptor within table limits */
if (Attributes. Diype == 1 /* memory segment */)

switch (Attributes. Type)

{

/* Read-only */
/* Read/write */
/* Read-only, expand-down */
/* Read/write, expand-down */
/* Execute-only */

/* Execute/read */
/* Do privilege check only for nonconforming segments */
if ((Attributes. DPL<CPL) II

(Attributes. DPL<op2 -RPL)

)

goto ClearZF;
break;
/* DPL is ignored for a conforming segment. */

case 12: case 13: /* Execute-only, conforming */
case 14: case 15: /* Execute/read, conforming */

break;
} /* end switch */

else /* DType ==0, system segment or gate */
switch (Attributes. Type) {

case case 1

case 2 case 3

case 4 case 5

case 6 case 7

case 8 case 9

case 1(3: case 11

Case 1 /* Available 286 TSS */
Case 2 /* LDT */

Case 3 /* Busy 286 TSS */
Case 4 /* 286 Call gate */
Case 5 /* Task gate */

Operating System Instruction LAR 299

Case 9: /* Available 386 TSS */
Case 11:/* Busy 386 TSS */
Case 12:/* 386 Call gate */

/* Type is valid, check DPL */
if (Attributes. DPL<CPL II Attributes. DPL<op2 . RPL)

goto ClearZF;
break;

Default: /* other types are invalid */
goto ClearZF;

} /*end switch */

/* Fall out to here only if all checks pass. */
/* Set ZF to 1, load Attributes into opi . */

ZF = 1;

opi = Attributes & OFxFFOOh;
return;

/* Jump to ClearZF if something goes wrong. */
/* Clear ZF to and do not change opi . */

ClearZF:
ZF = 0;

return;

Examples:

OSZAPC
LAR EAX, mem32 ; Assume the descriptor is visible

Before: Descr(0, mem32): IFOFACFE XXXXXX
EAX: XXXXXXXX

After : Descr(0, mem32) : IFOFACFE XXIXXX
EAX: OOOXACOO

LAR EAX, mera32 ; Assume the descriptor is not visible
Before: Descr(0, mem32): IFOFACFE XXXXXX

EAX: XXXXXXXX
After : Descr(0, mem32) : IFOFACFE XXOXXX

EAX: UUUUUUUU

Operating

System

Exceptions:

Memory ()

;

8086Mode()

300 LODT Operating System Instruction

LGDT

Load Global Descriptor Table

Format:

LGDT op,

mem48

Description:

LGDT loads the global descriptor table register from the 48-bit pseudo-

descriptor (mem48) given in the instruction. The pseudo-descriptor has two

components: the limit and the base. The 16-bit limit is stored at the low

word, and the 32-bit base is stored at the high dword.

LGDT appears only in operating-system code; it should never be found

in applications code.

Operation:

GDTR. Limit = mem48;
GDTR.Base = [&mem48+2]

;

/* 16-bit GDT limit */
/* 32-bit GDT Base */

Example:

LGDT mem48 Before: mem48
GDTR. Limit

After : mem48
GDTR. Limit

4132 [&mem48+2]
XXXX GDTR.Base
4132 [&mem48+2]
4132 GDTR.Base

AC405B10
XXXXXXXX
AC405B10
AC405B10

Exceptions:

Memory ()

;

LevelOO ;

Note:

See page 623.

Operating System Instruction LIDX 301

LIDT

Load Interrupt Descriptor Table

Format:

LIDT opi

mem48

Description:

LIDT loads the interrupt descriptor table register from the 48-bit

pseudo-descriptor (mem48) given in the instruction. The pseudo-descriptor

has two components: the limit and the base. The limit is in the lower 16

bits, and the base is in the high-order 32 bits. LIDT loads the interrupt

descriptor table register from the address (mem48) given in the instruction.

The interrupt descriptor table register has two components: the 16-bit limit

is stored at the low word, and the 32-bit base is stored at the high dword.

LIDT appears only in operating-system code; it should never be found in

applications code.

Operating

System

Operation:

IDTR. Limit
IDTR.Base

mem48; /* 16-bit IDT limit */

[&mem48+2] ; /* 32-bit IDT limit */

Example:

LIDT mem48 Before: mem48 : AAC3 [&mem48+2]
IDTR. Limit :XXXX IDTR.Base

After : mem48 : AAC3 [&mem48+2]
IDTR.Limit: AAC3 IDTR.Base

OBF4103D
XXXXXXXX
OBF4103D
OBF4103D

Exceptions:

Memory ()

;

LevelOO
;

Note:

See pages 619 and 620.

302 LLDT Operating System Instruction

LLDT

Load Local Descriptor Table

Formats:

LLDT op,

regl6

mem 16

reg32

mem32

Description:

LLDT loads the local descriptor table register with the selector in opi,

addressing a new LDT segment.

The given selector must point to a global descriptor table (GDT) entry

that is of descriptor type Local Descriptor Table (LDT). If this is the case,

the LDT register is loaded. Chapter 5 describes these checks in detail.

opi may be a null selector, which will cause the LDT to be marked
invalid. Loading a selector naming an LDT segment will raise a segment
load exception ifLDTR contains a null selector.

LLDT appears only in operating-system code; it should never be found

in applications code.

Operation:

LDTR = opi

;

Example:

LLDT AX Before:
After :

AX
AX

OOIC
OOIC

LDTR
LDTR

XXXX
OOIC

Exceptions:

SegmentLoad (

)

Memory ()

;

LevelO()

;

8086Mode()

;

Note:

See page 526.

Operating System Instruction LMSW 303

LMSW

Load Machine Status Word

Formats:

LMSW op,

reglG

mem 16

reg32

mem32

Description:

LMSW loads the MSW register from opi. MSW (the low 16 bits ofCRO)
is described in Chapter 2.

LMSW can be used to enter protected mode by setting the PE bit of

MSW to 1 . If this is done, the LMSW instruction must be immediately

followed by an intrasegment jump instruction.

Also note that for strict 80286 compatibility, the ET bit of MSW is not

altered by the LMSW instruction.

Note that the PE bit of MSW is sticky to the LMSW instruction. This

means that after the PE bit ofMSW has been set to 1 (protected mode has

been entered), the PE bit cannot be cleared (set to 0) by an LMSW instruc-

tion. See Chapter 5 for further details of protected mode and Chapter 9

for further details of real mode.

LMSW appears only in operating-system code; it should never be found

in applications code.

Operation:

MSW = (opi & FFEFh) I (MSW & OOllh)

;

/* CRO = (CRO & FFFFOOllh) I (GOOOFFEFh & opi) ; */

Examples:

operating

System

LMSW AX Before: AX: 0007
After : AX: 0007

MSW: 0010
MSW: 0017

LMSW AX Before: AX: 0010
After : AX: 0010

MSW: 0007
MSW: 0001

304 LMSW Operating System Instruction

Exceptions:

Memory (

)

LevelOO

Note:

The LMSW instruction is provided for strict compatibility with the

80286. When programming the 80386, MOV CRO should be used rather

than LMSW.

Operating System Instruction LSL 305

LSL

Load Segment Limit

Formats:

LSL op, 0p2

regl6 reglG

regis mem 16

reg32 reg32

reg32 mem32

Description:

LSL loads the first operand with the limit field (segment limit) fi"om the

descriptor for the segment specified by the selector in the second operand.

The resultant limit placed into opi is the byte limit. Thus, if the specified

descriptor had a page granular limit (G = 1 , the G bit of the descriptor, is

described in Chapter 5), the limit is shifted left 12 bits and filled with 12 low-

order bits of Is.

The descriptor specified by the selector in op2 must be within the

descriptor table, a valid type for LSL (see the table below), and visible at

the CPL (current privilege level) and the RPL (requested privilege level)

compared against the DPL (descriptor privilege level). If this is the case,

the zero flag is set and opi is modified. If not, the zero flag is cleared and

opi is not modified.

Any memory segment descriptor (indicated by a 1 in the DType field)

can have any value in its Type field and be valid for use with LSL. The
valid types for system segments and gates (DType = 0) are given in the

following table.

Operating

System

Descriptor Type Valid?

Undefined Invalid

1 Available286TSS Valid

2LDT Valid

3 Busy286TSS Valid

4 286CallGate Invalid

306 LSL Operating System Instruction

5 TaskGate

6 286InterruptGate

7 286TrapGate

8 Undefined

9 Available386TSS

A Undefined

B Busy386TSS

C 386CallGate

D Undefined

E 386InterruptGate

F 386TrapGate

Operation:

if ((op2 & OFFFCh)
goto ClearZF;

Invalid

Invalid

Invalid

Invalid

Valid

Invalid

Valid

Invalid

Invalid

Invalid

Invalid

== /* Null selector */)

/* Routine FetchDescr iptor is defined in Chapter 5.*/
/* Returns if descriptor is beyond table limit. */

if (FetchDescriptor (op2 , &dwordl, &dword2, &Attributes) == 0)

goto ClearZF;

/* Otherwise descriptor within table limits */

if (Attributes. DType == 1 /* memory segment */)

switch (Attributes. Type)

{

/* Read-only */

/* Read/write */

/* Read-only, expand-down */
/* Read/Write, expand-down */

/* Execute-only */
/* Execute/read */

/* Do privilege check only for nonconforming segments */

if ((Attributes. DPL<CPL) I I

(Attributes. DPL<op2 RPL))

goto ClearZF;
break;

/* DPL is ignored for a conforming segment. */

case 12: case 13: /* Execute-only, conforming */

case 14: case 15: /* Execute/read, conforming */

break;
} /* end switch */

else /* DType ==0, system segment or gate */
switch (Attributes. Type) {

case case 1

case 2 case 3

case 4 case 5

case 6 case 7

case 8 case 9

case 1 [): case 11

Case 1

Case 2

Case 3

/* Available 286 TSS */
/* LDT */
/* Busy 286 TSS */

Operating System Instruction LSL 307

Case 9: /* Available 386 TSS */

Case 11:/* Busy 386 TSS */
break;

Default: /* other types are invalid */

goto ClearZF;

} /* end switch */

/* Fall out to here only if all checks pass. */

/* Set ZF to 1, load segment limit into opi */

ZF = 1;

if (B(23, dwordl) == 0) { /* A byte granular segment */

opi = (dword2 & OOOFOOOOh) I

(dwordl & OOOOFFFFh) ;

} else { /* A page granular segment */

opi =
(((dword2 & OOOFOOOOh) I

(dwordl & OOOOFFFFh)) « 12) I FFFh ;

return;

/* Jump to ClearZF if something goes wrong.
/* Clear ZF to and do not change opi .

ClearZF:
ZF = 0;

return;

Example:

*/
*/

LSL EAX, mem32 ;

Before

After

OSZAPC
Assume the descriptor is visible

Descr(0, mem32) : IFOFACFE XXXXXX

Operating

System

Descrd, mem32)
EAX: XXXXXXXX
Descr(0, mem32)
Descrd, mem32)
EAX: FACFEFFF

008F8100

IFOFACFE
008F8100

UUIUUU

Exceptions:

Memory ()

;

8086Mode()

308 LTR Operating System Instruction

LTR

Load Task Register

Formats:

LTR opi

regl6

mem 16

reg32

mem32

Description:

LTR loads the task register with the selector in opi, making a TSS
segment addressable. The TSS (task state segment) loaded is marked busy.

The given selector must point to a global descriptor table (GDT) entry

that is of descriptor type TSS. If this is the case, the task register is loaded.

Chapter 5 describes the checks in detail.

LTR appears only in operating-system code; it should never be found in

applications code.

Operation:

TR = opi

;

Example:

LTR mem32 Before: mem32 : XXXX0014 TR : XXXX
After : mein32 : UUUU0014 TR : 0014

Exceptions:

SegmentLoadO
;

Memory ()

;

8086Mode()

;

LevelOO
;

Note:

See pages 527 and 721.

Operating System Instruction MOV 309

MOV

Move to/from Special Register

Formats:

MOV op, 0p2

reg32 CRO
reg32 CR2
reg32 CR3
CRO reg32

CR2 reg32

CR3 reg32

reg32 DRO
reg32 DRl
reg32 DR2
reg32 DR3
reg32 DR6
reg32 DR7
DRO reg32

DRl reg32

DR2 reg32

DR3 reg32

DR6 reg32

DR7 reg32

Operating

System

Description:

The contents of op2 are copied into op).

The control registers and the exact effects of loading them are described

in Chapter 5. The debug registers and the exact effects of loading them are

described in Chapter 8.

Note that only 32-bit register operands can be used with the MOV
special register instruction.

The special register move can only be used when operating at privilege

level 0.

310 MOV Operating System Instruction

Operation:

opi = 0P2 ; /* t */
/*

t Since the loading of these special registers may
have side effects, this description is not complete in
all cases.

*/

Example:

MOV CRO, EAX Before: EAX: 80000003 CRO: XXXXXXXX
After : EAX: 80000003 CRO: 80000003

Exception:

LevelOO ;

Note:

See page 620.

Operating System Instruction SGDT 311

SGDT

Store Global Descriptor Table

Format:

SGDT op,

mem48

Description:

The global descriptor table register contents are stored into the pseudo-

descriptor at the six-byte location specified by opi. The 16-bit limit is stored

at the low word, and the 32-bit base is stored at the high dword.

SGDT appears only in operating-system code; it should never be found

in applications code.

Operation:

mem48 = GDTR. Limit;
[&mem48+2] = GDTR.Base;

Example:

SGDT mem48 Before: GDTR. Limit 0032 GDTR.Base 0BD542FF
mem48 XXXX [&mem48+2] XXXXXXXX

After : GDTR. Limit 0032 GDTR.Base 0BD542FF
mem48 0032 [&mem48+2] 0BD542FF

Exception:

Memory ()

;

Operating

System

312 SIDT Operating System Instruction

SIDT

Store interrupt Descriptor Tabie

Format:

SIDT op,

mem48

Description:

The interrupt descriptor table register contents are stored into the

pseudo-descriptor at the six-byte location specified by op]. The 16-bit limit

is stored at the low word, and the 32-bit base is stored at the high dword.

SIDT appears only in operating-system code; it should never be found in

applications code.

Operation:

mem48 = IDTR. Limit;
[&mem48+2] = IDTR.Base;

Example:

SIDT mem48 Before: IDTR. Limit 0032 IDTR.Base 0BD542FF
mem48 xxxx [&mem48+2] XXXXXXXX

After : IDTR. Limit 0032 IDTR. Base 0BD542FF
mem48 0032 [&mem48+2] 0BD542FF

Exception:

Memory ()

;

Operating System Instruction SLDX 313

SLOT

Store Local Descriptor Table

Formats:

SLDT op I

regl6

mem 16

reg32

mem32

Description:

The local descriptor table register contents are stored into opi. This

register contains a selector that points to the current LDT
SLDT appears only in operating-system code; it should never be found in

applications code.

Operation:

Operating

System

opi = LDTR;

Example:

SLDT meml6 Before:
After :

LDTR
LDTR

5569
5569

[&meml6]
[&meml6]

xxxx
5569

Exceptions:

Memory ()

;

8086IVIode()

314 SMSW Operating System Instruction

SMSW

Store Machine Status Word

Formats:

SMSW op,

regl6

mem 16

reg32

mem32

Description:

SMSW places the contents of the MSW register into opi. MSW (which

corresponds to the low 16 bits of CRO) is described in Chapter 2.

Operation:

op, = MSW;

Example:

SMSW AX Before: AX: XXXX
After : AX: FFIO

MSW: FFIO
MSW: FFIO

Exception:

Memory () ;

Note:

The SMSW instruction is provided for strict compatibility with the

80286. When programming the 80386, MOV CRO should be used rather

than SMSW.

Operating System Instruction STR 315

STR

Store Task Register

Formats:

STR opj

regis

mem 16

Description:

The task register contents are stored into opi.

STR appears only in operating-system code; it should never be found in

applications code.

Operation:

opi = TR;

Example:

STR meml6 Before: TR: FFD5 mem: XXXX
After : TR: FFD5 mem: FFD5

Exceptions:

Memory ()

;

8086Mode()

;

Operating

System

Note:

See example 2, page 627.

316 VERR Operating System Instruction

VERR

Verify Segment for Reading

Formats:

VERR op,

regis

mem 16

reg32

mem32

Description:

The VERR instruction determines if the segment identified by the

selector in opi is suitable for reading.

The selector must be a valid descriptor (within the LDT or GDT) , a mem-
ory segment descriptor, and readable and visible at the current privilege

level. If the segment identified by the selector in opi meets these require-

ments, the zero flag is set to 1. Otherwise the zero flag is cleared to 0.

The verification steps that are executed, with the results left in the zero

flag, are identical to those done if the referenced descriptor were loaded and

a read performed to that segment.

Operation:

if ((op2 & OFFFCh)
goto ClearZF;

== /* Null selector */)

/* Routine FetchDescriptor () is defined in Ch. 5. */

/* Returns if descriptor is beyond table limit. */

if (FetchDescriptor (opa , &dwordl, &dword2, &Attributes)
goto ClearZF;

/* Otherwise descriptor within table limits */
if (Attributes. DType == 1 /* memory segment */)

switch (Attributes. Type)

{

/* Read-only */

/* Read/write */
/* Read-only, expand-down */

/* Read/write, expand-down */

11: /* Execute/read */

0)

case
case 2

case 4

case 6

case 113:

case 1:

case 3:

case 5:

case 7:

Operating System Instruction VERR 317

/* Do privilege check only for nonconforming */
/* segments. */

if ((Attributes. DPL<CPL) I I

(Attributes. DPL<op2 .RPL))

goto ClearZF;
break;
/* DPL is ignored for a conforming segment. */

case 14: case 15: /* Execute/read, conforming */
break;
Default: /* other types are invalid */

goto ClearZF;
} /* end switch */

else /* Diype ==0, system segment or gate */
goto ClearZF; /* all system segments are invalid */

/* Fall out to here only if all checks pass. */
/* Set ZF to 1 */

ZF = 1;

return;

/* Jump to ClearZF if something goes wrong. */
/* Clear ZF to */

ClearZF:
ZF = 0;

return;

Example:

VERR meml6 ; Assume the segment is readable OSZAPC
Before: XXXXXX
After : XXIXXX

Exceptions:

Memory ()

;

8086Mode()

;

318 VERW Operating System Instruction

VERW

Verify Segment for Writing

Formats:

VERW op,

regl6

mem 16

reg32

mem32

Description:

The VERW instruction determines if the segment identified by the

selector in opi is suitable for writing.

The selector must be a valid descriptor (within the LDT or GDT) , a mem-
ory segment descriptor, and writable and visible at the current privilege

level. If the segment identified by the selector in opi meets these require-

ments, the zero flag is set to 1. Otherwise the zero flag is cleared to 0.

The verification steps that are executed, with the results left in the zero

flag, are identical to those done if the referenced descriptor were loaded and

a write performed to that segment.

Operation:

if ((opz & OFFFCh) == /* Null selector */)

goto ClearZF;

/* Routine FetchDescriptor () is defined in Ch. 5. */
/* Returns if descriptor is beyond table limit. */
if (FetchDescriptor (op2 , &dwordl, &dword2, &Attributes) == 0)

goto ClearZF;

/* Otherwise descriptor within table limits */
if (Attributes. DType == 1 /* memory segment */)

switch (Attributes. Type)

{

case 2: case 3: /* Read/write */
case 6: case 7: /* Read/write, expand-down */

/* Do privilege check only for nonconforming */
/* segments */
if ((Attributes. DPL<CPL) I I

(Attributes. DPL<op2 RPL))

goto ClearZF;
break;

Operating System Instruction VERW 319

Default: /* other types are invalid */

goto ClearZF;
} /* end switch */

else /* Diype ==0, system segment or gate */
goto ClearZF; /* all system segments are invalid */

/* Fall out to here only if all checks pass. */

/* Set ZF to 1 */

ZF = 1;

return;

/* Jump to ClearZF if something goes wrong. */
/* Clear ZF to */
ClearZF:

ZF = 0;

return;

Example:

VERW meml6 ; Assume the segment is writable OSZAPC
Before: XXXXXX
After : XXIXXX

Exceptions:

Memory ()

;

8086Mode()

;

Operating

System

320 Programming the 80386

^ Floating Point

This section of instructions gives the complete set of the floating-point

instructions available in an 80386/80387 system. All the arithmetic, data

transfer, comparison, transcendental, constant, and control instructions

supported by the 80387 are described herein.

Each instruction includes one or two examples of how they are used. In

the second halfofChapter 4 are more examples of the use of the instructions

in this section. These examples are program segments consisting of several

instructions to perform some useful functions. Between the description and

the examples given here, and the more extensive examples found in Chap-
ter 4, you should be able to clearly understand the purpose and operation

of these instructions.

Since some of the syntax for floating-point instructions is significantly

different from that used so far to describe the instructions of the 80386, let's

take a few paragraphs to review the syntax used throughout this section.

Instruction Mnemonics

The assembler mnemonics for the floating-point instructions follow a

standard notation.

F All floating-point instructions begin with F (e.g., FADD,
FLD, etc.). No other 86 family instructions begin with F.

FI All instructions that operate upon integer data types begin

with FI (e.g., FIADD, FILD, etc.).

FB All instructions that operate with BCD data types begin with

FB (e.g., FBLD, FBST, etc.).

FxxP All instructions that cause the stack to be popped once end in

P (e.g., FSTP, FADDP, etc.).

FxxPP All instructions that cause the stack to be popped twice end in

PP (e.g., FCOMPP, FUCOMPP, etc.).

FNxx All instructions except those beginning with FN check for

unmasked numeric exceptions prior to execution. The FNxx
instructions do not check for numeric exceptions (e.g.,

FNINIT, FNSAVE, etc.).

Stacl(

As we mentioned in Chapter 2, the 80387 uses an accumulator stack and

almost all operations must have the stack top as one operand. The stack top

Instruction Set 321

is referred to as ST. The otlier accumulators are referenced relative to ST
using the notation ST(n). This indicates the nth stack element beneath the

current top of stack. Thus, ST(3) indicates the third accumulator beneath

the top of stack.

Since many floating-point operations push or pop elements on or off the

stack, it is often helpful to indicate what happens to the stack top in certain

operations. For this, we use the notation TOP in examples. Thus, TOP = 3

indicates that the current top-of-stack register is the third physical floating-

point register.

Example

Below is an example of a floating-point instruction. This is the compare
and pop instruction. The stack top ST is numerically compared against

ST(3), the third element below the stack top, in this case. After the

comparison is complete, the top of stack is popped, as is seen by TOP
changing from 4 to 5.

X CO:

CO:

Note that pushes cause the stack-top pointer to decrement (place a new
item on the stack), and pops cause the stack-top pointer to increment

(remove an item from the stack) as is the case in this example. This was

described in Chapter 2, and you can see a visual representation of it in

Figure 2.24.

FCOMP ST (3) Before: ST 2 4560 * 10«

ST (3) 9 4102 * 10*

TOP 4 C3: X C2:

After : ST (2) 9 4102 * 10*

TOP 5 C3: C2:

Function Definitions

At the beginning of this chapter, we defined several functions that

allowed us to use a shorthand notation in instruction descriptions and

examples. Below are additional routines with similar purpose. We define

them here, as they are exclusively used in this section of the instruction set

description.

/* Pop the floating-point accumulator stack. */

/* Causes stack- top pointer TOP to be incremented. */

FPop ()

{

TOP = TOP + 1;

if (TOP > 7) {

TOP = 0;

Floating

Point

}

322 Programming the 80386

/* Push the floating-point stack. Causes stack to */

/* be decremented. */

FPushO {

TOP = TOP - 1;

if (TOP < 0) {

TOP = 7;

/* Note that the FIP (Floating-point Instruction Pointer) , FCS */

/* (Floating-point Code Segment) , FOO (Floating-point Operand */

/* Offset) , and FOS (Floating-point Operand Segment) are loaded*/
/* beginning at [memp+12]

.

*/

/* Note that the FIP and FCS are just copies of the EIP */

/* and CS value at the most recent floating-point instruction. */

/* FOO and FOS are simply the offset and segment of the ''mem''*/
/* of the most recent floating-point instruction (if one */

/* existed)

.

*/

LdErrorPointer (memp)

{

FIP = [memp + 12]

FCS = [memp + 16]

FOO = [memp + 20]

FOS = [memp + 24]

}

StErrorPointer (memp)

{

[memp + 12] = FIP
[memp +16] = FCS
[memp + 20] = FOO
[memp + 24] = FOS

}

/* The following routines perform the arithmetic */
/* function given by their name. */
abs(op); /* return the absolute value of op */
arctan(op); /* return the arctan of op (op is in radians) */
cos (op); /* return the cos of op (op is in radians) */
log2(op); /* return the log base 2 of op */
sin(op); /* return the sin of op (op is in radians) */
sqrt(op); /* return the square root of op */
tan(op); /* return the tan of op (op is in radians) */

Exception Routines

At the beginning of this chapter, we defined several exception routines

allowing us to use a shorthand function call to summarize potential exception

conditions. Below is another exception routine that we did not define at

the start of this chapter, since it is particular to the floating-point instructions.

Float(Src)

{

if (exception Src not masked)

{

Interrupt (16)

;

}

/* case Src of:

IS: Invalid operation caused by stack
overflow or underflow

Instruction Set 323

Invalid operation for any reason
Denormal operand
Zero divide
Overflow
Underflow
Precision

*/

Instruction Summary

The following tables give a summary of all the instructions in this section

according to subgroupings. Following the tables of instruction groups, the

page-by-page description of each instruction begins.

Data Transfer

FBLD BCD load

FBSTP BCD store and pop

FILD Integer load

FIST Integer store

FISTP Integer store and pop

FLD Real load

FST Real store

FSTP Real store and pop

FXCH Exchange registers

Arithmetic

FABS Absolute value

FADD/FIADD/FADDP Addition

FCHS Change sign

FDIV/FIDIV/FDIVP Division

FDIVR/FIDIVR/FDIVRP Division reverse

FMUL/FIMUL/FMULP Multiply

FPREM Partial remainder

FPREMl Partial remainder—
FRNDINT Round to integer

FSCALE Power of two scaling

FSUB/FISUB/FSUBP Subtraction

Floating

Point

IEEE

324 Programming the 80386

FSUBR/FISUBR/FSUBRP

FSQRT

FXTRACT

FCOM/FCOMP/FCOMPP
FICOM/FICOMP
FTST

FUCOM/FUCOMP/FUCOMPP Unordered compare

FXAM Examine

Subtraction reverse

Square root

Extract exponent and significand

Comparison

Compare

Integer compare

Test

F2XM1

FCOS

FPATAN

FPTAN

FSIN

FSINCOS

FYL2X

FYL2XP1

Transcendental

Cosine

Partial arctangent

Partial tangent

Sine

Sine and cosine

y*log2X

y*log2(x+l)

Note: FCOS, FPTAN, FSIN, and FSINCOS expect their operands and
deliver their results in radians.

Constant

FLDl Load 1

FLDL2E Load log2e

FLDL2T Load Iog2l0

FLDLG2 Load logio2

FLDLN2 Load loge2

FLDPI Load IT

FLDZ Load zero

Control

FCLEX/FNCLEX Clear exceptions

FDECSTP Decrement stack pointer

Instruction Set 325

FFREE

FINCSTP

FINIT/FNINIT

FLDCW
FLDENV
FNOP
FRSTOR
FSAVE/FNSAVE

FSTCW/FNSTCW
FSTENV/FNSTENV

FSTSW/FNSTSW

FSTSW AX/FNSTSW AX
WAIT

Free register

Increment stack pointer

Initialize processor

Load control word

Load environment

No operation

Restore state

Save state

Store control word

Store environment

Store status word

Store status word into AX
Wait for coprocessor

Floating

Point

326 F2XM1 Floating Point Instruction

F2XIVI1

2^-1

Format:

F2XM1

Description:

The item in the top of stack is ST in the computation of 2^^ —1.

The resuk of this computation replaces the initial ST.

Note that the input operand range is bounded by —0.5 and 0.5. If

the operand is out of this range, the results are undefined.

Operation:

if (-0.5 <= ST <= 0.5)
ST = 2^*^ - 1;

} else {

UNDEFINED;

Example:

F2XM1 Before: ST: 3.49921 * 10"

^

After : ST: 2.45512 * 10^

Exception:

FloatdS, I,D,U,P) ;

Note:

The 80287 input range allowed is 0.0 to 0.5, where the 80387 allows input

operands in the range —0.5 to +0.5.

Floating Point Instruction FABS 327

FABS

Absolute Value

Format:

FABS

Description:

The top stack element is changed to its absolute value. The top stack

element is always positive following FABS.

Operation:

if (ST <)

{

ST = - ST;

Example:

FABS Before: ST: -7.324 * lO-**'^

After : ST: 7.234 * lO"^"^

Exception:

Float(IS)

Floating

Point

\

328 FADD Floating Point Instruction

> FADD / FIADD / FADDP
^^

Addition

Formats:

FADD Real addition ST(1), ST

FADD op,

ST(n)

mem32
mem64

Real addition

short real

long real

FIADD op,

mem 16

mem32

Integer addition

word integer

short integer

FADDP op,

ST
ST(n)

op-)

ST(n)

ST

Real addition and pop

FADD op,

ST
ST(n)

0p2

ST(n)

ST

Real addition

Description:

The explicitly or implicitly specified floating-point operands are added

(ST(1) + ST, ST + opi, or opi+op2 when 0, 1, and 2 operands are

specified, respectively), with the result being stored into the destination.

The destination is the stack top in all cases except the two-operand form,

where the destination can be ST(n).

If opi is a memory operand (word or short integer, short or long real), it

is automatically converted to temporary real (the internal format) before

any operations are performed with it.

An FADDP or FADD without any operands causes the stack to be

popped. Thus, FADD with no operands is synonymous with FADDP
ST(1),ST

Operation:

if OfUMOPS == 0) {

ST(1) = ST(1) + ST;

FPop ()

;

/* pop the stack, result in ST */

Floating Point Instruction FADD 329

} else if (NUMOPS == 1){
ST = ST + (tempReal) opi

;

} else { /* NUMOPS == 2 */

opi = op, + 0P2

;

if (OPCODE == FADDP) {

FPop ()

;

/* pop the stack */

}

Example:

FADD mem32 Before: ST: 4.51200 * 10^ mem: 3.664 * 10^

After : ST: 4.54864 * 10'' mem: 3.664 * 10^

Exceptions:

Memory ()

;

FloatdS, I,D,U,0,P) ;

Note:

The following table summarizes the add operation (all varieties) with

infinities.

Original

Operands Results (OPi)

OPi 0P2 Sign Value

+ 00 + 00 + 00

— 00 — 00 — 00

— 00 + 00 Invalid operation

+ 00 — 00 Invalid operation

±z ±00 Sign of 00 00

±00 ±z Sign of 00 00

Floating

Point

where ^ z < oo.

330 FBLD Floating Point Instruction

FBLD

BCD Load

Format:

FBLD memSO

Description:

The ten-byte packed BCD memory operand pointed to by memSO is

converted to a temporary real value and pushed onto the top of the stack.

The conversion is always exact. The BCD digits of memSO are assumed to

be in the range Oh to 9h.

Operation:

FPush () ;

ST = (tempReal) memSO;

Example:

FBLD memSO Before: memSO
After : memSO

ST

-000000000000005698 TOP: 4

-000000000000005698 TOP: 3

-5.698 * 10^

Exceptions:

Float(IS)
;

Memory ()

;

Note:

An attempt to load invalid BCD digits puts an undefined temporary real

value into ST.

Floating Point Instruction FBSTP 331

FBSTP

BCD Store and Pop

Format:

FBSTP memSO

Description:

The stack top is converted to an 18-digit BCD number, which is stored

into the ten-byte location pointed to by memSO. The stack is then popped.

The ST is rounded to an integer using the rounding mode specified by RC.
Thus, a FRNDINT is not needed prior to FBSTP

Operation:

tmp = (BCD) ST;

FPop ()

;

memSO = tmp;

Example:

FBLD memSO Before:

After

ST
memSO
ST
memSO

8.99033 * lO^' TOP:
xxxxxxxxxxxxxxxxxx
8.99033 * 10^ TOP: RC: RD
000000000000008990

; Round Down
RC: RD Floating

Point

Exceptions:

FloatdS, I) ;

Memory ()

;

if (ST is QUIETNaN)

{

Float(I) ;

}

Notes:

ST for FBSTP can be a denormal, where it could not be in the 80287.

This instruction is very slow and may cause an interrupt latency problem.

If ST is a quiet NaN, an invalid operation exception will be generated.

Operations with quiet NaNs do not normally generate exceptions.

332 FCHS Floating Point Instruction

FCHS

Change Sign

Format:

FCHS

Description:

The sign of the top stack element is complemented. If the stack top was
+ 0.0, it is changed to -0.0 by FCHS.

Operation:

ST = - ST;

Example:

FCHS Before: ST: 6.221 * 10*^

After : ST: -6.221 * 10*^

Exception:

Float(IS)

;

Floating Point Instruction FCLEX 333

FCLEX / FNCLEX

Clear Exceptions

Formats:

FCLEX
FNCLEX

Description:

FCLEX/FNCLEX causes the 80387 to clear all exceptions and the busy

bit of the status-word register.

FCLEX checks for unmasked numeric exceptions; FNCLEX does not.

Operation:

SW = SW & 7F00h;

Example:

FCLEX Before: SW: F450
After : SW: 7400

Exceptions:

None.

Floating

Point

334 FCOM Floating Point Instruction

FCOM / FCOMP/ FCOMPP

Compare

Formats:

FCOM

FCOMP

FCOMPP

opi

mem32
mem64
ST(i)

opi

mem32
mem64
ST(i)

; compare

; compare and pop

; compare and pop two

Description:

The given operand is numerically compared with the top of stack. The
condition codes are set according to the following table. If the opcode was
FCOMPP, the operand compared against the top of stack is ST(1).

C3 C2 CO

ST > opi

ST < opi 1

ST =^ = opi 1

Unordered 1 1 1

If the operand was FCOMP, the stack is popped once after comparison.

If the operand was FCOMPP, the stack is popped twice after comparison.

Unordered comparison occurs if either of the two operands were NaNs.
The sign of zero is ignored in comparisons.

Operation:

if (OPCODE == FCOMPP) {

opi = ST(1)

;

Floating Point Instruction FCOM 335

f ((ST is NaN) I I (opi is NaN)

)

C3 = 1; C2 = 1; CO = 1

;

else if (ST > opi)

{

C3 = 0; C2 = 0; CO = 0;

else if (ST < opi)

{

C3 = 0; C2 = 0; CO = 1

;

else if (ST == opi) {

C3 =1; C2 = 0; CO = 0;

f (OPCODE == FCOMP) {

FPop ()

;

else if (OPCODE == FCOMPP)

{

FPop ()

;

FPop ()

;

Example:

FCOMP ST(3) Before: ST : 2.4560 * 10^

ST(3) : 9.4102 * 10^

TOP : 4 C3: X C2: X CO: X
After : TOP : 5 C3: C2: CO:

Exceptions:

FloatdS, I,D) ;

if ((ST is QUIETNaN) II (opi is QUIETNaN)

)

Float(I)

;

}

Notes:

FCOM generates an invalid operation exception if either operancd was a

quiet NaN. Normally, operations with quiet NaNs do not cause operation

exceptions.

An example of jumping on the condition code flags of the 80387 is

given in example 7, page 421.

Floating

Point

336 FCOS Floating Point Instruction

FCOS

Cosine

Format:

FCOS

Description:

The cosine of ST is computed. After the computation is complete, the

stack top is set to the cosine of ST and 1.0 is pushed onto the stack. Thus

ST(1) /ST = cos(ST')

where ST' is the stack top prior to the cosine instruction, ST is always 1 .0,

and ST(1) is the cosine of ST'.

The input operand to FCOS must be in the range of to tt* 2^*^. If the

source operand is within this range, C2 is set to 0. Otherwise C2 is set to 1,

ST is left intact, and the stack-top pointer is also unchanged (TOP).

Operation:

if (ST < 7T * 2''2
) {

ST = cos (ST)

;

FPushO ;

ST = 1.0;
C2 = 0;

} else {

/* Note: no change to ST */

C2 = 1;

Example:

FCOS Before: ST
After : ST

ST(1)

Exception:

FloatdS, I,D,U,P) ;

Note:

This instruction is new to the 80387.

4.51200 * 10=^ TOP: 4 C2: X
1.00000 * 10° TOP: 3 C2:

4.53137 * 10"*

Floating Point Instmction FDECSTP 337

FDECSTP

Decrement Stack Pointer

Format:

FDECSTP

Description:

One is subtracted from the stack-top pointer TOP in tlie status word.

The tag word or the stack top itself is not updated. If an FDECSTP is

executed when the TOP is 0, ST becomes 7. Pushing a new element onto

the stack causes the stack pointer to be decremented, as does FDECSTP.

Operation:

TOP = TOP - 1;

if (TOP < 0)

{

TOP = 7;

}

Example:

FDECSTP Before: TOP: 4

After : TOP: 3

Exceptions:

None.

Notes:

This instruction allows direct control of the stack pointer. This can be

useful if a "virtual" accumulator stack that is larger than the eight hard-

ware accumulators provided on the 80387 is needed. The "virtual" stack

registers would reside in memory, and software would manage the virtual

stack when stack invalid operation exceptions were detected. FDECSTP,
FINCSTP, and FFREE are provided to support a virtual accumula-

tor stack.

Floating ^

Point

338 FDIV Floating Point Instruction

FDIV / FIDIV / FDIVP

Division

Formats:

FDIV Real divide and pop Sr(l), ST

FDIV op,

ST(n)

Real divide

mem32 short real

mem64 long real

FIDIV op, Integer divide

mem 16 word integer

mem32 short integer

FDIVP op. op) Real divide and pop

ST ST(n)

ST(n) ST

FDIV op, op, Real divide

ST ST(n)

ST(n) ST

Description:

The explicitly or implicitly specified floating-point operands are divided

(ST(1)/ST, ST/opi, or opi/op2 when 0, 1, and 2 operands are specified,

respectively), with the result being stored into the destination. The destina-

tion is the stack top in all cases except the two-operand form, where the

destination can be ST(n).

If opi is a memor\' operand (word or short integer, short or long real), it

is automatically converted to temporary real (the internal format) before

any operations are performed with it.

An FDIV without any operands causes the stack to be popped. Thus,

FDIV with no operands is synonymous with FDIVP ST(1),ST.

Operation:

if (NUMOPS =

ST(1) =

FPop ()

;

= 0){
ST(1 / ST;

/* pop the stack, result in ST */

Floating Point Instruction FDIV 339

else if (NUMOPS == 1) {

ST = ST / (tempReal) opi

;

else
{

/* NUMOPS == 2 */

opi = opi / op2 ;

if (OPCODE = FDIVP)

{

FPop ()

;

/* pop the stack */

Examples:

FDIV ST, ST (3) Before: ST
ST (3)

After : ST
ST(3)

2.240 * 10-2

3.664 * 10^

6. 113 * 10"
3.664 * 10^

Exceptions:

Memory ()

;

FloatdS, I,Z,U,P,D,0) ;

Notes:

The following table summarizes the divide operation (all varieties) with

infinities.

Operands

OPi 0P2

±00 ±00

±00 ±z

±z ±00

±00 ±0

±z ±0

Results (opi

Sign Value

Invalid operation

Exclusive-or of operand signs oo

Exclusive-or of operand signs

Exclusive-or of operand signs oo

Exclusive-or of operand signs oo

Floating

Point

where ^ z < oo

See example 1 1, page 428.

340 FDIVR Floating Point Instruction

"

FDIVR / FIDIVR / FDIVRP

^^

Division Reverse

Formats:

FDIVR Real divide reverse, ST(1)/ST

FDIVR op]

ST(n)

mem32
mem64

Real divide reverse

short real

long real

FIDIVR op,

mem 16

mem32

Integer divide reverse

word integer

short integer

FDIVRP op]

ST
ST(n)

op?

ST(n)

ST

Real divide reverse and pop

FDIVR op,

ST
ST(n)

op 9

ST(n)

ST

Real divide reverse

Description:

The explicitly or implicitly specified floating-point operands are divided

(ST/ST(1), opi/ST, or op2/opi when 0, 1, and 2 operands are specified,

respectively), with the result being stored into the destination. The destina-

tion is the stack top in all cases except the two-operand form, where the

destination can be ST(n).

These operations are equivalent to FDIV/FIDIV/FDIVP except numer-
ator and divisor are reversed (op2/opi for FDIVR, rather than opi/op.? for

FDIV, for instance).

If opi is a memory operand (word or short integer, short or long real), it

is automatically converted to temporary real (the internal format) before

any operations are performed with it.

An FDIVR without any operands causes the stack to be popped. Thus,

FDIVR with no operands is synonymous with FDIVRP ST(1),ST.

Floating Point Instruction FDIVR 341

Operation:

if (^^JMOPS == 0) {

ST(1) = ST / ST(1)

;

FPopO; /* pop the stack, result in ST */

} else if (>fUMOPS == 1){
ST = (tempReal) opi / ST;

} else (/* NUMOPS == 2 */

opi = 0P2 / op, ;

if (OPCODE = FDIVRP)

{

FPopO; /* pop the stack */

Example:

FDIVR ST, ST (3) Before: ST
ST (3)

After : ST
ST (3)

2. 240 * 10-2

3.664 * 10^

1. 636 * 10^

3.664 * 10^

Exceptions:

Memory () ;

FloatdS, I,Z,U,P,D,0) ;

Notes:

The following table summarizes the divide reverse operation (all varieties)

with infinities.

Operands Results (opi)

OPi OP2 Sign Value

±00 ±00 Invalid operation

±00 ±z Exclusive-or of operand signs

±z ±co Exclusive-or of operand signs 00

±0 ±05 Exclusive-or of operand signs 00

±0 ±z Exclusive-or of operand signs 00

Floating

Point

where ^ z < co

342 FFREE Floating Point Instruction

FFREE

Free Register

Format:

FFREE ST(n)

Description:

The tag-word bits associated with the specified register are set to lib.

This indicates that the specified stack element is changed to empty. Neither

the floating-point stack nor the floating-point stack pointer is modified.

Operation:

tmp = ((TOP + n) % 8); /* physical register number */

TW = TW I (lib « (tmp * 2));

Example:

FFREE ST(3) Before: TOP: 3 TW: OFCO
After : TOP: 3 TW: 3FC0

Exceptions:

None.

Notes:

The tag word describes the physical stack registers, and FFREE gives an

accumulator stack reference that is relative to the stack top.

Floating Point Instruction FICOM 343

FICOM / FICOMP

Integer Compare

Formats:

FICOM

FICOMP

Description:

The given operand is converted from word or short integer into tempor-

ary real and numerically compared against the top of the stack. The condi-

tion codes are set according to the following table.

op,

mem 1

6

mem32

op J

mem 16

mem32

Integer compare
word integer

short integer

Integer compare and pop

word integer

short integer

C3 C2 CO

ST > opi

ST < opi 1

ST = = opi 1

Unordered 1 1 1

If the operand was FICOMP, the stack is popped.

Unordered comparison occurs if the stack top was a NaN. The sign of

zero is ignored in comparisons.

344 FICOM Floating Point Instruction

Operation:

tmp = (tempReal) opi

;

if (ST is NaN)

{

C3 = 1; C2 = 1; CO = 1

} else if (ST > tmp)

{

C3 = 0; C2 = 0; CO =

} else if (ST < tmp)

{

C3 = 0; C2 = 0; CO = 1

} else if (ST == tmp) {

C3 = 1; C2 = 0; CO =

}

if (OPCODE == FICOMP)

{

FPop ()

;

}

Example:

FICOMP meml6 Before: meml6: 94320 ST : 6.0059 * 10^

TOP : 4 C3: X C2: X CO: X
After : meml6: 94320

TOP : 5 C3: C2: CO: 1

Exceptions:

FloatdS, I,D) ;

if (ST is QUIETNaN)

{

Float(I) ;

}

Note:

An example ofjumping on the condition codes of the 80387 is given in

example 7, page 421.

Floating Point Instruction FILD 345

FILD

Integer Load

Formats:

FILD op,

mem 16 ; word integer

mem32 ; short integer

mem64 ; long integer

Description:

The memory word, short, or long integer given by opi is read from

memory and converted into temporary real format. The stack is pushed,

and the temporary real is placed in the new top of stack.

Operation:

FPush ()

;

ST = (tempReal) opi '

mple:

FILD mem32 Before: mem32: F234D9A1 TOP: 6

After : mem32:
ST :

F234D9A1
-2. 31417439*10*

TOP: 5

Exceptions:

Floating

Point

Float(IS)
Memory ()

;

346 FINCSTP Floating Point Instruction

FINCSTP

Increment Stack Pointer

Format:

FINCSTP

Description:

One is added to the stack pointer in the status word. The tag word (TW)
and the contents of the floating-point stack are not updated. If an

FINCSTP is executed when the stack-top pointer (TOP) is 7, ST becomes

0. Popping an element off the stack causes the stack pointer to be

incremented.

Operation:

TOP = (TOP +1) % 8;

Example:

FINCSTP Before: TOP: 7

After : TOP:

Exceptions:

None.

Notes:

This instruction allows direct control of the stack pointer. This can be

useful if a "virtual" accumulator stack that is larger than the eight

hardware accumulators provided on the 80387 is needed. The "virtual"

stack registers would reside in memory, and software would manage the

virtual stack when stack invalid operation exceptions were detected.

FDECSTP, FINCSTP, and FFREE are provided to support a virtual

accumulator stack.

Floating Point Instruction FINIT 347

FINIT / FNINIT

Initialize Processor

Formats:

FINIT
FNINIT

Description:

FINIT/FNINIT sets all the control-word, status-word, and tag-word

registers to their default values. After this instruction is executed, the

machine rounding control is set to round to nearest, all exceptions are

masked, precision is set to 64 bits, the status word (SVV) is cleared except

for the four condition code bits that are undefined, and all floating-point

stack registers (TW) are set to empty.

FINIT checks for unmasked numeric exceptions; FNINIT does not.

Operation:

CW = 037Fh; /* Round to nearest, mask all exceptions */

/* 64-bit precision */

SW = SW & 4700h;
TW = FFFFh ;

Example:

FINIT Before: CW: 1D7E SW: D401 TW: 3FFC
After : CW: 037F SW: 4400 TW: FFFF

Exceptions:

None.

Floating

Point

348 FIST Floating Point Instruction

FIST

integer Store

Formats:

FIST opi

mem 16 ; word integer

mem32 ; short integer

Description:

The stack top is rounded to an integer whose length matches that of opi:

word or short integer. The rounding is as specified by the round control

(RC) bits of the control word (CW). The integer is then stored into opj.

Negative zero is converted to two's complement positive zero before storing.

Operation:

if (op, is meml6)

{

opi = (wordlnt) ST;

} else { /* mem32 */

opi = (shortint) ST;

Exampie:

FIST meml6 Before: ST
After : ST

meml6

; Round Up
8.90133*10' TOP: 5 RC: RU
8.90133*10* TOP: 5 RC: RU
005A

Exceptions:

FloatdS, I,P) ;

Memory ()

;

if (ST is QUIETNaN)
Float(I)

;

Notes:

FIST cannot store a long integer.

If ST is a quiet NaN, an invalid operation exception is generated. Operat-

ing with a quiet NaN does not normally cause an operation exception.

Floating Point Instruction FISTP 349

FISTP

Integer Store and Pop

Formats:

FISTP op,

mem 16 ; word integer

mem32 ; short integer

mem64 ; long integer

Description:

The stack top is rounded to an integer whose length matches that of opi:

word, short, or long integer. The rounding is as specified by RC. The
integer is then stored into opi. Negative zero is converted to two's comple-

ment positive zero. The stack is popped.

Operation:

if (opi is meml6)

{

}

}

}

FI

OPi
else

OPi
else

opi

if

{

(wordint) ST;

(op, is inein32) {

(shortint) ST;

/* mem64 */

(longint) ST;

'op ()

;

Examples:

FISTP mem64 Before: ST
After : mem64:

Floating

Point

; Round Nearest
-4.32990*10^ TOP: 5 RC: RN
FFFFFFFFFFFFEF16 TOP: 6 RC: RN

Exceptions:

FloatdS, I,P)
;

Memory ()

;

Note:

FISTP can store a long integer, where FIST cannot.

350 FLD Floating Point Instruction

FLD

Real Load

Formats:

FLD op,

mem32
mem64
memSO
ST(i)

short real

long real

temp real

Description:

The stack is pushed. The short, long, or temporary real or stack operand

specified by opi is stored into the new top of stack. If opi is a short or long

real, the operand is converted to a temporary real before being stored into

the new top of stack.

Operation:

FPush() ;

ST = (tempReal) opi ;

Example:

FLD inem32 inem32 is a short real
Before: mem32
After : mem32

ST

3. 2611
3. 2611
3. 2611

10^ TOP:
10^ TOP:
102

Exceptions:

Memory ()

;

if (op, in (mem32,mem64))

{

Float(I,D)
;

}

Float(IS)
;

Note:

The 80287 will flag Float (D) exceptions in all formats including ex-

tended, where the 80387 will only flag Float (D) for short and long reals.

Floating Point Instruction FLDcon 351

FLDcon

Load Constant

Formats:

FLDl ; load 1.0

FLDL2E ; load logac

FLDL2T ; load logs 10

FLDLG2 ; load logio2

FLDLN2 ; load loge2

FLDPI ; load it

FLDZ ; load 0.0

Description:

The stack is pushed. The constant value that is specified by the instruc-

tion itself is loaded into the new top of stack.

Operation:

FPushO ;

switch (OPCODE {

case FLDl ST = + 1. break
case FLDL2E ST = logzC break
case FLDL2T ST = logzlO break
case FLDLG2 ST = logio2 break
case FLDLN2 ST = l0ge2 break
case FLDPI ST = TT break
case FLDZ ST = +0.0 break

}

Examples:

FLDl Before: TOP: 6

After : TOP: 5 ST: 1.0 * 10°

FLDPI Before: TOP:
After : TOP: 7 ST: 3.1416 * 10°

352 FLDcon Floating Point Instruction

Exception:

Float(IS)
;

Note:

See example 9, page 423.

Floating Point Instruction FLDCW 353

FLDCW

Load Control Word

Format:

FLDCW mem 16

Description:

FLDCW loads the control word with the value found in mem 16. An
exception will be flagged if any of the exception flags in SW are unmasked
by the new CW.

Operation:

CW = meml6;

Example:

FLDCW memie Before: CW: XXXX meml6: 1F4F
After : CW: 1F4F meml6: 1F4F

Exception:

Float(I,IS,D,Z,0,U,P,S)

" n*

Floating

Point

"\'i»

354 FLDENV Floating Point Instruction

FLDENV

Load Environment

Format:

FLDENV mem

Description:

FLDENV loads the machine environment from the given memory area.

The environment consists of the control-word, status-word, and tag-word

registers, and the error-pointer registers of the most recent floating-point

instruction executed. The detailed format of the error-pointer registers was
given in Chapter 2. The error-pointer registers contain information on the

most recent opcode and the data referenced.

Operation:

CW = mem;
SW = [&mem+4]

;

TW = [&mem+8]

;

LdErrorPoint (&mem)

;

Example:

FLDENfV mem
Before: CW : XXXX SW : XXXX TW XXXX FIP: XXXXXXXX

FCS: XXXX FDP: XXXXXXXX FDS XXXX
[&mem+0] XXXX137F [mem+4] XXXX0400
[&mem+8] XXXXAOFE [mem+121 OOOOFFDO
[&mem+16] XXXX0241 [mem+20] 005F3DD0
[&mem+24] XXXX3015

After : CW : 137F SW : 0400 TW AOFE FIP: OOOOFFDO
FCS: 0241 FOO: 005F3DD0 FOS 3015
[&mem+0] XXXX137F [mem+4] XXXX0400
[&mem+8] XXXXAOFE [mem+12] OOOOFFDO
[&mem+16] XXXX0241 [mem+20] 005F3DD0
[&mem+24] XXXX3015

Exceptions:

Float (I, IS,D,Z,0,U,P,S)

Floating Point Instruction FMUL 355

FMUL / FIMUL / FMULP

Multiply

Formats:

FMUL
FMUL

FIMUL

FMULP

FMUL

op I

ST(n)

mem32
mem64

op I

mem 16

mem32

op,

ST
ST(n)

op J

ST
ST(n)

; Real multiply, ST(

; Real multiply

op 9

Sf(n)

ST

op 9

Sf(n)

ST

ST

short real

long real

Integer multiply

word integer

short integer

Real multiply and pop

; Real multiply

Description:

The explicitly or implicitly specified floating-point operands are multi-

plied (ST(1)*ST, ST*opi, or opi*op2 when 0, 1, and 2 operands are

specified, respectively), with the result being stored into the destination.

The destination is the stack top in all cases except the two-operand form,

where the destination can be ST(n).

If opi is a memory operand (word or short integer, short or long real), it

is automatically converted to temporary real (the internal format) before

any operations are performed with it.

An FMUL without any operands causes the stack to be popped. Thus,

FMUL with no operands is synonymous with FMULP ST(1),ST

Operation:

if (NUMOPS == 0) {

ST(1) = ST(1)
FPop ()

;

* ST;
/* pop the stack, result in ST */

356 FMUL Floating Point Instruction

} else if (>fUMOPS == 1){
ST = ST * (tempReal) opi

;

} else { /* >fUMOPS == 2 */

opi = opi * 0P2 ;

if (OPCODE == FMULP) {

FPopO; /* pop the stack */

}

}

Examples:

FMULP ST, ST (3) Before: ST
ST (3)

After : ST
ST (2)

8.410 * 10"*^ TOP: 4

9.934 * 10^

8.354 * 10-2 TOP: 3

9.934 * 10^

Exceptions:

Memory ()

;

Float(IS, I,0,P,D,U) ;

Notes:

The following table summarizes the multiply operation (all varieties)

with infinities.

Operands Results (opi)

OPi OP2 Sign Value

±00 ±00 Exclusive-or of operand signs 00

±00 ±x Exclusive-or of operand signs 00

±0 ±00 Invalid operation

±00 ±0 Invalid operation

where < x < 00.

See example 10, page 424.

Floating Point Instruction FNOP 357

FNOP

No Operation

Format:

FNOP

Description:

FNOP stores the stack top to the stack top, which is effectively a NOP.

Operation:

ST = ST;

Example:

FNOP

Exceptions:

None.

358 FPATAN Floating Point Instruction

FPATAN

Partial Arctangent

Format:

FPATAN

Description:

The arctangent of ST(1)/ST is computed. After the computation is

complete, the stack is popped once and the result is placed in the new top of

stack.

The 80387 places no limits on the operand range allowed by the

FPATAN instruction. The results, however, are in the range given by the

following table.

Sign(ST(1)) Sign(ST) IST(1)I<ISTI Result

+ + Yes

+ + No

+ - Yes

+ - No
- + Yes

- + No
- - Yes

— — No

ATAN(ST(1)/ST)

7T/2 - ATAN(ST(1)/ST)

7T - ATAN(ST(1)/-ST)

7T/2 - ATAN(-ST(1)/ST)

- ATAN(ST(1)/ST)

-7T/2 + ATAN(ST(1)/-ST)

-IT + ATAN(— ST(1)/-ST)

-77/2 - ATAN(-ST(1)/-ST)

Operation:

ST(1) = arctan(ST(l) / ST);
FPopO; /* result in ST after FPop */

Example:

FPATAN Before: ST : 4.51200 * 10
ST (1)

:

3.664 * 10
After : ST : 8. 12039 * 10

TOP:

TOP:

Floating Point Instruction FPATAN 359

Exception:

FloatdS, I,D,U,P) ;

Notes:

The 80287 operand range allowed is

^ IST(1)I < IST(0)l < +^

where the 80387 operand range is not restricted.

Floating

Point

360 FPREM Floating Point Instruction

FPREM

Partial Remainder

Format:

FPREM

Description:

FPREM computes the partial remainder of ST/ST(1). The remainder

produced is exact (no precision error is possible). The remainder is

computed by a series of successive scaled subtractions. When the operands

differ greatly in magnitude, this series of subtractions can take a very long

time. To prevent severely degrading interrupt latency, the instruction only

partially computes the remainder, and a software loop is required to

complete the reduction. Thus the mnemonic: partial remainder.

The instruction reduces a magnitude difference up to 2^^* in one execu-

tion. If the reduction is complete, condition code 2 is set to and condition

code bits 0, 3, and 1 reflect the least significant 3 bits of the quotient. If the

reduction was incomplete, condition code 2 is set to 1

.

The result obeys the relation

REM = ST - ST(1) * quotient;

where the remainder always has the sign of the original ST.

FPREM was important on the 80287, since most of the periodic trans-

cendental functions had their range restricted from to 17/4. FPREM
would then reduce the argument to the proper range. Since all such bounds

on the arguments have been removed on the 80387 (hurray!), this instruc-

tion is not as important to the 80387 as it was to the 80287.

Operation:

if (ISTI < IST(l) I * 2*"'
) {

C2 = 0;

quotient = ST / ST(1);
ST = ST % ST (1)

;

/* / and mod result in the sign of ST being */
/* the same as the original ST. */

Floating Point Instruction FPREM 361

if ((quotient % 8) >= 4) CO = 1

if ((quotient % 4) >= 2) C3 = 1

if ((quotient % 2) == 1) CI = 1

} else {

if (ST > 0) {

ST = ST - ST(1) * (2''"* -1);
} else { ST = ST + ST(1) * (2*"»

C2 = 1;

1);

Example:

FPREM Before: ST
ST(1)

After : ST
ST(1)

-4.317 * 10^

6.283 * 10"

-4.443 * 10°

6.283 * 10"

CCCC
3210
xxxx

0000

Exceptions:

FloatdS, I,U,D) ;

Notes:

Tiie condition codes (CO, C3, CI) are reliably set on the 80387, where

they were not on the 80287.

See also FPREM 1.

If ST(1) was initially ^, ST is unchanged and the quotient (condition

codes) is set to 0.

See example 8, page 422.

362 FPREMl Floating Point Instruction

FPREM1

Partial Remainder— IEEE

Format:

FPREMl

Description:

FPREMl computes the partial remainder of ST/ST(1). The remainder

produced is exact (no precision error is possible). The remainder is

computed by a series of successive scaled subtractions. When the operands

differ greatly in magnitude, this series of subtractions can take a very long

time. To prevent severely degrading interrupt latency, the instruction only

partially computes the remainder, and a software loop is required to com-
plete the reduction. Thus the mnemonic: partial remainder.

The instruction reduces a magnitude difference up to 2*^^ in one execu-

tion. If the reduction is complete, condition code 2 is set to and condition

code bits 0, 3, and 1 reflect the least significant 3 bits of the quotient.

If the reduction was incomplete, condition code 2 is set to 1.

The result obeys the relation

REM = ST - ST(1) * quotient;

where the quotient is the integer nearest to the exact value of ST/ST(1).

Whenever

IQ - ST/ST(1)I = 1/2

Q is even. Rounding mode and precision control do not affect the results

except when ST(1) exactly divides into ST. In this case, the result is plus

zero for rounding control of nearest, up, or chop and minus zero for down.
FPREM was important on the 80287, since most of the periodic trans-

cendental functions had their range restricted from to 77/4. FPREM
would then reduce the argument to the proper range. Since all such bounds
on the arguments have been removed on the 80387 (hurray!), FPREM is

not as important to the 80387 as it was to the 80287.

Floating Point Instruction FPREMl 363

Operation:

if (ISTI < IST(l) I * 2''«
) {

C2 = 0;

quotient = ST / ST(1);
ST = ST % ST (1)

;

/* / and % result in ST being in the range */
/* -abs(ST(l) /2) to abs(ST(l)/2) */
if ((quotient % 8) >= 4) CO = 1;

if ((quotient % 4) >= 2) C3 = 1

if ((quotient % 2) == 1) CI = 1

} else {

if (ST > 0) {

ST = ST - ST(1) * (2''^-l);

} else { ST = ST + ST(1) * (2®'*-l);
C2 = 1;

Example:

cccc
3210

FPREMl Before: ST -4 317 * 10^ xxxx
ST(1) 6 283 * 10"

After : ST 1 827 * 10« 0010
ST(1) 6 283 * 10°

eptions:

FloatdS, I,U,D)

Notes:

FPREMl is new to the 87 family. FPREMl is for the purpose of IEEE
compatibility. The example of FPREM and FPREMl emphasizes the

differences of the two instructions.

Note the difference with FPREM. The remainder for FPREMl is always

in the range -abs(ST(l)/2) to abs(ST(l)/2), where FPREM placed the

remainder in the range to abs(ST(l)) and — abs(ST(l)) to for positive

and negative dividends ST, respectively. This may lead to a difference of 1

between the condition code settings ofFPREM and FPREMl.
If ST(1) was initially oo^ ST is unchanged and the quotient (condition

codes) is set to 0.

Floating

Point

364 FPTAN Floating Point Instruction

FPTAN

Partial Tangent

Format:

FPTAN

Description:

The tangent of ST is computed. After the computation is complete, the

stack top is set to the tangent of ST and 1 .0 is pushed onto the stack. Thus

ST(1)/ST = tan(ST')

where ST' is the stack top prior to the tangent instruction, ST is always 1.0,

and ST(1) is the tangent of ST'.

The input operand to FPTAN must be in the range of to it * 2^^. If the

source operand is within this range, C2 is cleared to 0. Otherwise, C2 is set

to 1 and ST is unchanged as well as the stack-top pointer (TOP).

Operation:

if (ST < 7T * 2*'2
) {

ST = tan (ST) ;

FPush ()

;

ST = 1.0;
C2 = 0;

} else {

/* Note that ST and TOP are unaltered */
C2 = 1;

}

Example:

FPTAN Before: ST : 9.47103 * 10^2 TOP: 4 C2: X
After : ST

ST(1)

:

1.00000 * 10"

1.51273 * 10°
TOP: 3 02:

Exception:

FloatdS, I,D,U,P)

Floating Point Instruction FRNDINT 365

FRNDINT

Round to Integer

Format:

FRNDINT

Description:

The top-of-stack element is rounded to an integer. The rounding obeys

the setting of the RC (round control) field in the control word. The four

rounding modes are chop (11), minus infinity (01), plus infinity (10), and

nearest (00).

Operation:

ST (int) ST

Examples:

; Round to nearest
FR^fDINT Before: ST: -4 317 * 10° RC: 00

After : ST: -4 000 * 10° RC:

; Round
00
to -infinity

FRNDINT Before: ST: -4 317 * 10° RC: 01

After : ST: -5 000 * 10° RC: 01

options:

FloatdS ,I,D,P)

;

Floating

Point

366 FRSTOR Floating Point Instruction

FRSTOR

Restore State

Format:

FRSTOR mem

Description:

FRSTOR reloads the complete state of the 80387 from the 108-byte

location given by mem. Included in this is the 80387 environment and the

eight 80b floating-point stack registers.

The format of the load memory is identical with that of the FSAVE
instruction.

Any exception is possible if the combination of the status word and

control word are in an exception combination.

Operation:

CW = mem;
SW = [&mem+4]

;

TW = [&mem+8]

;

LdErrorPoint (&mem)

;

for (i=0; i<8; i++)

{

STi = [&mem+28+i*10] ;

}

Example:

FRSTOR mem ; mem is a 108-byte data location.

Exceptions:

Floatd, IS,D,Z,0,U,P,S)
Memory ()

;

Floating Point Instruction FSAVE 367

FSAVE / FNSAVE

Save State

Formats:

FSAVE mem
FNSAVE mem

Description:

FSAVE/FNSAVE stores the complete state of the 80387 into the memory
location mem. The environment consists of the control-word, status-word,

and tag-word registers; the error-pointer registers; and the complete

floating-point stack (eight 80b registers). The detailed format of the error

pointers and save area was given in Chapter 2. The error pointers contain

information on the most recent instruction executed and any data ad-

dress used.

After storing the 80387 state, FSAVE initializes the 80387, in the same
way the FINIT instruction does.

FSAVE checks for unmasked numeric exceptions, FNSAVE does not.

Operation:

mem = CW;

[&mem+4] = SW;

[&mem+8] = TW;

StErrorPo inter (&mem)

;

for (i=0; i<8; 1++)

{

[&mem+28+i*10] = STi;

}

FINIT;

Floating

Point

Example:

FSAVE mem ; mem is a 108-byte data location.

Exception:

Memory ()

;

368 FSCAXjE Floating Point Instruction

FSCALE

Power of Two Scaling

Format:

FSCALE

Description:

The top of stack is scaled by the power of two given in ST(1). The value

in ST(1) is treated as an integer and is added to the exponent of ST. This is

useful as a quick way of multiplying by powers of two.

FSCALE uses the nearest integer smaller in magnitude than ST(1) (that

is, ST(1) is chopped).

Operation:

ST ST * 2«'^<i'

Examples:

FSCALE Before: ST
ST(1)

After : ST
ST(1)

-1.0111b * 2«

-1.0110b * 2^

-1. 0111b * 2-1^

-1.0110b * 2^

Exception:

FloatdS, I,D,0,U,P)

Notes:

FSCALE on the 80387 has no restriction on the range of ST(1) as the

80287 did. Operands in the range

0< IST(l) I < 1

are treated as zero, where operands in this range on the 80287 gave an unde-

fined result. Operands that cause overflow or underflow signal exceptions.

The following table summarizes the FSCALE operations with infinities.

Floating Point Instruction FSCAL.E 369

Original

Operands Results (ST)

ST ST(1) Sign Value

±00 —00 Invalid operation

±00 -\- 00 Sign of ST 00

±00 ±z Sign of ST ^

±0 ±00 Sign of ST

±X +00 Overflow

±x -00 Underflow

where < x < oo and =^ z < oo

Floating

Point

370 FSIN Floating Point Instruction

FSIN

Sine

Format:

FSIN

Description:

The sine of ST is computed. After the computation is complete, the stack

top is set to the sine of ST and 1.0 is pushed onto the stack. Thus

ST(1) /ST = sin(ST')

where ST' is the stack top prior to the sine instruction, ST is always 1.0,

and ST(1) is the sine of ST'.

The input operand to the FSIN must be in the range of to 11*2*^'. If the

source operand is within this range, C2 is set to 0. Otherwise, C2 is set to 1,

and ST, as well as the stack-top pointer (TOP), is unchanged.

Operation:

if (ST < -7T * 2«2
) {

ST = sin(ST)

;

FPush ()

;

ST = 1.0;
C2 = 0;

} else {

/* Note that ST and TOP are unaltered */

}

C2 = 1;

Example:

FSIN Before: ST
After : ST

ST(1)

8.41229 * 10^ TOP: 4 C2: X
1.00000 * 10° TOP: 3 C2:
7.80288 * 10-1

Exception:

FloatdS, I,D.U,P) ;

Note:

This instruction is new to the 80387.

Floating Point Instruction FSINCOS 371

FSINCOS

Sine and Cosine

Format:

FSINCOS

Description:

The sine and cosine of ST are computed. After the computation is

complete, the stack top is set to the sine of ST. The cosine is then pushed

onto the stack. Thus, at the end of execution, ST(1) = sin (ST') and

ST = cos(ST'), where ST' is the stack top prior to the FSINCOS instruction.

The input operand to the FSINCOS instruction must be in the range of

to -77*2^^. If the source operand is within this range, C2 is set to 0.

Otherwise, C2 is set to 1, and ST, as well as the stack-top pointer (TOP), is

unchanged. The sine result ofFSINCOS may be less precise than the FSIN
and FCOS instructions.

Operation:

if (ST < TT * 2*^2)
{

tmp = cos (ST)

;

ST = sin(ST)

;

FPush ()

;

ST = tmp;

02 = 0;

} else {

/* Note that ST and TOP are unaltered */

C2 = 1;

Floating

Point

Example:

FSINCOS Before: ST
After : ST

ST(1)

2.97421 * 10^ TOP: 4 C2: X
9.86024 * 10-

1 TOP: 3 C2:

1.66602 * 10-^

Exception:

FloatdS, I,D,U,P) ;

Note:

This instruction is new to the 80387.

372 FSQRT Floating Point Instruction

FSQRT
^^

Square Root

Format:

FSQRT

Description:

The top of stack is replaced with the square root of the top of the stack.

Note that

FSQRT(-O) = -0

FSQRT(+cx)) = +00

and FSQRT(— oo) is an invalid operation.

Operation:

ST = sqrt(ST)

;

Example:

FSQRT Before: ST : 8.410 * 10*

After : ST : 2.900 * 10^

Exception:

FloatdS, I,U,P,D) ;

Note:

See example 11, page 428.

Floating Point Instruction FST 373

FST

Real Store

Formats:

FST opi

mem32 ; short real

mem64 ; long real

ST(i)

Description:

The top of stack is stored into opi. If opi is a short or long real, the top of

stack is first converted to the type according to RC (round control). If the

top of stack is a NaN or an infinity, the stack-top exponent and significand

are chopped rather than rounded to fit the destination sizes.

Operation:

if (opi is mem32)

{

opj = (shortReal) ST;

} else if (opi is mem64)

{

opj = (longReal) ST;

} else {

opj = ST;

}

Example:

FST mem64 ; mem64 is a long real

Floating

Point

Before: ST
mem64

After : ST
inem64

2.9921 * 10" TOP:
X.XXXX * lO''

2.9921 * 10" TOP:
2.9921 * 10"

Exceptions:

Memory ()

;

FloatdS, I,0,U,P)

374 FST Floating Point Instruction

Notes:

The D exception is not flagged during FST, to maintain compatibility

with the 80287.

FST cannot store a temporary real operand to memory, where FSTP
can.

Floating Point Instruction FSTCW 375

FSTCW / FNSTCW

store Control Word

Formats:

FSTCW mem 16

FNSTCW mem 16

Description:

FSTCW/FNSTCW stores the control word into meml6. FSTCW checks

for unmasked numeric exceptions; FNSTCW does not.

Operation:

memie = CW;

Example:

FSTCW memie Before: CW: 1F4D meml6: XXXX
After : CW: 1F4D meml6: 1F4D

Exceptions:

None. Floating

Point

376 FSTENV Floating Point Instruction

FSTENV / FNSTENV

Store Environment

Formats:

FSTENV mem

FNSTENV mem

Description:

FSTENV/FNSTENV stores the machine environment into the given

memory location. The environment consists of the control-word, status-

word, and tag-word registers, and the error pointers of the most recent

floating-point instruction executed. The detailed format of the error

pointers was given in Chapter 2. The error pointers contain information

on the most recent instruction executed and any data address used in

that instruction.

FSTENV checks for unmasked numeric exceptions; FNSTENV does not.

Operation:

mem = CW;

[&mem+4) = SW;

[&mem+8] = TW;

StErrorPointer (&mem)

Example:

FSTENV mem
Before: CW : 137F SW : 0400 TW AOFE FIP: OOOOFFDO

FCS: 0241 FOS: 005F3DD0 FOS 3015
[&mem+0] xxxxxxxx [mem+4] XXXXXXXX
[&mem+8] xxxxxxxx [mem+12] XXXXXXXX
[&mem+16] xxxxxxxx [mem+20) xxxxxxxx
[&mem+24] xxxxxxxx

After : CW : 137F SW : 0400 TW AOFE FIP: OOOOFFDO
FCS: 0241 FOS: 005F3DD0 FOS 3015
[&mem+0] XXXX137F [mem+4] XXXX0400
[&mem+8] XXXXAOFE [mem+12] OOOOFFDO
[&mem+16] XXXX0241 [mem+20] 005F3DD0
[&mem+24] XXXX3015

Floating Point Instruction FSTENV 377

Exception:

Memory ()

;

Floating

Point

378 FSTP Floating Point Instruction

FSTP

Real Store and Pop

Formats:

FST op,

mem 3 2 ; short real

mem64 ; long real

memSO ; temp real

ST(i)

Description:

The top of stack is stored into op]. If op
i
is a short or long real, the top of

stack is first converted to this type as specified by RC. If the top of stack is a

NaN or an infinity, the stack-top exponent and significand are chopped

rather than rounded to fit the destination sizes.

FSTP can store a temporary real number to memory, where FST cannot.

Operation:

if (opi is mem32)

{

opj = (shortReal) ST;

} else if (opi is mem64){
opi = (longReal) ST;

else
op, = ST;

FPop ()

;

Example:

FSTP mem64 ; mem32 is a short real
Before: ST

mem64
After : ST

mem64

8.9901 * 10-i°2

X.XXXX * 10^

8.9901 * 10-i"2

8.9901 * 10-1°^

TOP: 7

TOP:

Exceptions:

Memory ()

;

FloatdS, I,0,U,P)

Floating Point Instruction FSTP 379

Notes:

The D exception is not flagged during FSTP, to maintain compatibility

with the 80287.

See example 10, page 424.

Floating

Point
"^

i

380 FSTSW > Floating Point Instmction

FSTSW / FNSTSW

Store Status Word

Formats:

FSTSW mem 16

FNSTSW mem 16

Description:

FSTSW/FNSTSW stores the current status word into mem 16. FSTSW
checks for unmasked numeric exceptions; FNSTSW does not.

Operation:

meml6 = SW;

Example:

FSTSW meml6 Before: SW: FF81 meml6: XXXX
After : SW: FF81 meml6: FF81

Exception:

Memory ()

;

Floating Point Instruction FSTSW AX 381

FSTSW AX / FNSTSW AX

store Status Word into AX

Formats:

FSTSW AX
FNSTSW AX

Description:

FSTSW/FNSTSW stores the current status word into the 80386 AX
register. This instruction is useful for control-flow changes based upon the

condition flag settings of the 80387.

FSTSW checks for unmasked numeric exceptions; FNSTSW does not.

Operation:

AX = SW;

Example:

FSTSW AX Before: SW: 0900 AX: XXXX
After : SW: 0900 AX: 0900

Exceptions:

None.

Note:

See example 7, page 421.

Floating

Point

382 FSUB Floating Point Instruction

FSUB / FISUB / FSUBP

Subtraction

Formats:

FSUB
; Real subtraction, ST(1) -

FSUB op,

ST(n)

mem32
mem64

; Real subtraction

; short real

; long real

FISUB op,

mem 16

mem32

; Integer subtraction

; word integer

; short integer

FSUBP op,

ST
ST(n)

op 9

ST(n)

ST

; Real subtraction and pop

FSUB op I

ST
ST(n)

op 9

ST(n)

ST

; Real subtraction

ST

Description:

The explicitly or implicitly specified floating-point operands are sub-

tracted (ST(1) — ST, ST — opi, or opi — op2 when 0, 1, and 2 operands are

specified, respectively), with the result being stored into the destination.

The destination is the stack top in all cases except the two-operand form,

where the destination can be ST(n).

If opi is a memory operand (word or short integer, short or long real), it

is automatically converted to temporary real (the internal format) before

any operations are performed with it.

An FSUB without any operands causes the stack to be popped. Thus,

FSUB with no operands is synonymous with FSUBP ST(1),ST.

Operation:

if (NUMOPS == 0) {

ST(1) = ST(1) -

FPop ()

;

ST;

/* pop the stack, result in ST */

Floating Point Instruction FSUB 383

} else if (NUMOPS == 1){
ST = ST - (tempReal) op,;

} else { /* ^fUMOPS == 2 */

opi = op, - 0P2 ;

if (OPCODE == FSUBP) {

FPopO; /* pop the stack */

}

}

Example:

FSUB ST, ST (3) ST = ST - ST (3)

Before: ST 8 410 * 10>^ TOP: 7

ST(3) 9 934 * 10^1

After : ST 7 419 * 10'2 TOP: 7

ST (3) 9 934 * IQi'

Exceptions:

Memory () ;

FloatdS, I,0,P,D,U) ;

Notes:

The following table summarizes the subtract operation (all varieties)

with infinities.

Original

Operands Results (opi)

OPi OP2 Sign Value

+ 00 —00 + 00

— 00 +00 — 00

-\-O0 +00 Invalid operation

— 00 —00 Invalid operation

±00 ±z Sign of oc 00

±Z ±00 Sign of z 00

Floating

Point

where ^ z < 00

384 FSUBR Floating Point Instruction

FSUBR / FISUBR / FSUBRP

Subtraction Reverse

Formats:

FSUBR Real subtraction reverse, ST — ST

FSUBR op I

ST(n)

Real subtraction reverse

mem32 short real

mem64 long real

FISUBR op, Integer subtraction

mem 16 word integer

mem32 short integer

FSUBRP op] op? Real subtraction reverse and pop

ST ST(n)

ST(n) ST

FSUBR op I op? Real subtraction reverse

ST ST(n)

ST(n) ST

Description:

The explicitly or implicitly specified floating-point operands are sub-

tracted (ST — ST(1), opi — ST, or op2 — opi when 0, 1, and 2 operands are

specified, respectively), with the result being stored into the destination.

The destination is the stack top in all cases except the two-operand form,

where the destination can be ST(n).

If opi is a memory operand (word or short integer, short or long real), it

is automatically converted to temporary real (the internal format) before

any operations are performed with it.

An FSUBR without any operands causes the stack to be popped. Thus,

FSUBR with no operands is synonymous with FSUBRP ST(1),ST.

Operation:

if (ISfUMOPS =

ST (1) =
FPop ()

;

= 0){
ST - ST (1)

;

/* pop the stack, result in ST */

Floating Point Instruction FSUBR 385

else if (NUMOPS == 1){
ST = (tempReal) opi - ST;

else { /* NUMOPS == 2 */

opi = opz - opi ;

if (OPCODE == FSUBRP) {

FPop ()

;

/* pop the stack */

Example:

FSUBR mem ; ST = mem - ST
Before: mem 9934

ST 8.410 * 10
After : mem 9934

ST -7. 74166 * 10^

Exceptions:

Memory () ;

FloatdS, I,0,P,D,U) ;

Notes:

The following table summarizes the subtract reverse operation (all

varieties) with infinities.

Original

Operands Results (0Pi)

OPi 0P2 Sign Value

+ 00 — 00 — 00

— 00 + 00 + CO

+ 00 + 00 Invalid operation

— 00 — 00 Invalid operation

±00 ±z Sign of z 00

±z ±00 Sign of 00 00

where C) ^ z < 00

Floating

Point

386 FTST Floating Point Instruction

FTST

Test

Format:

FTST

Description:

The stack top is numerically compared against 0. The condition code bits

in the status word are set according to the following table.

C3 C2 CO

ST > 0.0

ST < 0.0 1

ST == 0.0 1

Unordered 1 1 1

Unordered comparison occurs ifST is a NaN. The sign of zero is ignored in

comparisons.

Operation:

if (ST is NaN)

{

€3=1; C2 = 1; €0=1;
} else if (ST > 0.0)

{

€3=0; €2=0; €0=0;
} else if (ST < 0. 0)

{

€3 =0; €2 = 0; €0 = 1;

} else if (ST == 0.0) {

€3=1; €2=0; €0=0;
}

Example:

FTST Before: ST
€3

2.4560 * 10'^

X €2: X €0: X
TOP

After : ST
€3

2.4560 * lO**

€2: €0:

TOP

Floating Point Instruction FTST 387

Exceptions:

FloatdS, I,D) ;

if (ST is QUIETNaN) {

Float(I) ;

}

Floating

Point

388 FUCOM Floating Point Instruction

FUCOM / FUCOMP / FUCOMPP

Unordered Compare

Formats:

FUCOM opi Unordered compare

mem32 short real

mem64 long real

ST(i)

FUCOMP opi Unordered compare and pop

mem32 short real

mem64 long real

ST(i)

FUCOMPP Unordered compare and pop

Description:

The given operand is numerically compared with the top of stack. The
condition codes are set according to the following table. If the opcode was

FUCOMPP, the operand compared against the top of stack is ST(1).

C3 C2 CO

ST > opi

ST < opi 1

ST = — opi 1

Unordered 1 1 1

If the operand was FUCOMP, the stack is popped once. If the operand

was FUCOMPP, the stack is popped twice.

Unordered comparison occurs if either of the two operands are NaNs.

The sign of zero is ignored in comparisons.

Floating Point Instruction FUCOM 389

Operation:

if (OPCODE == FUCOMPP) {

opi = ST(1)

;

}

if ((ST is NaN) II (opi is NaN)
)

{

C3 = 1

else if
C3 =

else if
C3 =

else if
C3 = 1

}

; C2 = 1; CO = 1

(ST > opi){
; C2 = 0; CO =
(ST < opi){
; C2 = 0; CO = 1

(ST == opi) {

; C2 = 0; CO =

if (OPCODE
FPop ()

;

} else if (OPCODE
FPop ()

;

FPop ()

;

}

FUCOMP)

{

FUCOMPP)

Example:

FUCOMPP Before: ST
ST(1)
TOP

After : TOP

6. 1224 * 10"*

5.3210 * 10"
4 C3: X C2: X CO:

6 C3: C2: CO:

Exception:

FloatdS, I,D)

Notes:

FUCOM (and all variant pop forms) are identical to FCOM (and its

variants), except that FUCOM does not cause an exception on either

operand being a quiet NaN, where FCOM does.

Floating

Point

390 FXAM Floating Point Instruction

FXAM

Examine

Format:

FXAM

Description:

The stack top is examined. The condition codes of the status word are

modified according to the following table.

C3 C2 CI CO ST Value

+ Unsupported

1 + NaN
— Unsupported

1 - NaN

1 + Normal

1 1 + 00

1 — Normal

1 1
— 00

+

1 + Empty

-

1 — Empty

1 + Denormal

1 1 + Empty

1 — Denormal

1 1 — Empty

The Unsupported entry in the table refers to any of the following: pseudo-

NaN, pseudo-infinity, unnormal, or pseudo-zero, as described in Chapter 1.

Floating Point Instruction FXAM 391

Operation:

if (ST < 0.0)

{

CI = 1;

if (ST is UNSUPPORTED { C3 = C2 == CO =

else if (ST is NaN { C3 = C2 == CO = 1

else if (ST is NORMAL { C3 = C2 == 1 CO =

else if (ST is INFINITY { C3 = C2 == 1 CO = 1

else if (ST = = 0.0 { C3 = 1 C2 == CO =

else if (ST is DENORMAL { C3 = 1 C2 == 1 CO =

else if (ST is EMPTY { C3 = 1 C2 == CO = 1

Example:

FXAM Before: ST
C3

After : ST
C3

3.21950 * 10-13 1 TOP: 2

X C2: X CI: X CO: X
3.21950 * 10-*=" TOP: 2

C2: 1 CI: CO:

Exceptions:

None.

Note:

See the floating-point section of Chapter 1 for further (details of these

data types.

Floating

Point

392 FXCH Floating Point Instruction

FXCH

Exchange Registers

Format:

FXCH
FXCH op,

ST(n)

Description:

The contents of opi are exchanged with the contents of the top of stack.

Since many 80387 instructions operate only on the stack top (for example:

FSQRT, FSIN, FPATAN), FXCH provides a convenient way to use these

instructions on other stack elements.

Operation:

if (NUMOPS == 1) {

tmp = ST;

ST = ST(n)

;

ST(n) = tmp;

} else {

tmp = ST;

ST = ST (1)

;

ST(1) = tmp;

}

Example:

FXCH ST (3) Before: ST
ST (3)

After : ST
ST(3)

Exception:

Float(IS)
;

Note:

See example 1 1, page 428.

9.99321 * 10"^ TOP: 3

7. 22964 * 10^^

•7. 22964 * 10^^ TOP: 3

9.99321 * 10"^

Floating Point Instruction FXTRACT 393

FXTRACT

Extract Exponent and Significand

Format:

FXTRACT

Description:

The exponent (unbiased) of the original stack top is placed in the stack

top as a real number. The significand and sign are pushed onto the stack

(the new top of stack). Thus, the original stack top is decomposed into a

true exponent (ST(1))— unbiased— and a significand (ST) portion. The
significand has an exponent of zero.

Operation:

tmp = ST;

if (tmp = = 0){
ST = -INFINITY;

} else {

/* Note that the bias
ST = (tempReal) ((tm

(16383) is subtracted out */

((tmp » 64) & 7FFFh) - 16383;

}

FPush ()

;

/* 64 bits */

ST = (tempReal) (tmp & FFFFFFFFFFFFFFFFh/2^^) ;

i f (tmp < .) {

ST = -ST;

}

Floating

Point

Example:

EXTRACT Before: ST
After : ST

ST(1)

1. 1001101b * 23» TOP
1. 1001101b * 2° TOP
1.00111b * 2^

Exception:

FloatdS, I,Z,D)

394 FXTRACT Floating Point Instruction

Notes:

If the operand was 0, ST(1) (exponent) is set to — oo and ST (significand)

is set to with the same sign as the original stack top. This differs from the

setting by the 80287. If the operand was oo, the ST(1) exponent is +oo and

ST (significand) is oo with the sign of the original stack top.

Floating Point Instruction FYL2X 395

FYL2X

y*log2X

Format:

FYL2X

Description:

The top two stack elements are used in the computation of the function

ST(1) *log2ST

The stack is popped, and the new stack top is replaced with the result of

this computation.

The ST must be in the range of to + ^. The ST(1) operand can be - ^

to + 00. If the operands are not in this range, the instruction will produce an

undefined result and no exception will be detected.

FYL2X works well to calculate the log to any base other than two

because a multiplication is always required. You can see this in the

following equation, which computes lognX:

log„x = (l/log2n)*log2X

Operation:

if ((0 =£ ST < +INFINITY) &&
(-INFINITY < ST(1) < +INFINITY)

)

{

tmp = ST(1) * log2 (ST)

;

FPop ()

;

ST = tmp;

} else {

UNDEFINED;

Floating

Point

Example:

FYL2X Before: ST : 9 87311 * 10''

ST (1)

:

-2 79022 * 10-3

After : ST : -9 26377 * 10-^

396 FYL2X Floating Point Instruction

Exception:

FloatdS, I,D,U,P)
;

Note:

See example 9, page 423.

Floating Point Instruction FYL2XP1 397

FYL2XP1

y*log2(x + 1)

Format:

FYL2XP1

Description:

The top two stack elements are used in the computation of the function

ST(1) *log2(ST+1.0)

The stack is popped, and the new stack top is replaced with the result of

this computation.

The ST must be in the range of

-(I-V2/2) to + (I-V2/2)

ST(1) operand can be —00 to +oc. If the operands are not in this range, the

instruction will produce an undefined result and no exception will be

detected.

Operation:

if ((-(l-sqrt(2) /2) < ST < { 1-sqrt (2) /2)) &&
(-INFINITY < ST(1) < +INFINITY)){
tmp = ST(1) * log2(ST + 1.0);
FPop ()

;

ST = tmp;

} else {

UNDEFINED;

}

Floating

Point

Example:

1 Before: ST : 1.17230 * 10°

ST(1)

:

2.99013 * 10^3

After : ST : -7.58600 * 10^3

Exception:

FloatdS, I,D,U,P)

398 WA.IT Floating Point Instruction

WAIT

Wait for Coprocessor

Format:

WAIT

Description:

WAIT causes suspension of 80386 operation until the numerics co-

processor becomes not busy.

This instruction is useful in that it allows the main processor and its

numerics coprocessor to become synchronized.

Operation:

while (80387 is busy)

{

}

Example:

WAIT ; Nothing occurs

Exceptions:

None.

Notes:

This instruction is needed only after floating-point stores to memory
(e.g., FST(P), FIST(P), and FBSTP), before the stored data is used by an

80386 instruction. This ensures that the data is stored by the 80387 before it

is accessed by the 80386. No WAIT is required after a floating-point store if

another 80387 instruction is executed before the 80386 accesses the stored

data. The 8086/8087 and 80286/80287 required use of the WAIT instruc-

tion in more cases.

*<.«!*X\.*-«»'*

Chapter

^^^m^mmmmmmmma^a^ this chapter presents a set of examples
to further explain the instructions described in Chapter 3 as well as the

niateri2il of Chapters 1 and 2. We only cover the integer and floating-

point examples in this chapter. Examples for the multiple-segment and

operating-system instructions are in Chapter 7.

It may seem rather surprising, but in eleven examples— six integer

and five floating-point—we will show at least one example of every class

or group of instructions provided in the integer and floating-point por-

tions of the 80386. The classes of integer instructions are arithmetic, bit,

control transfer, data transfer, flag control, high-level language, logic, and

string. The classes of floating-point instructions are data transfer,

arithmetic, comparison, transcendental, constant, and control.

Syntax

In Chapter 2, the assembly language syntax used to address registers

and memory was presented. Chapter 3 developed this syntax further,

presenting multiple-operand forms of instructions as well as all possible

assembly language instructions allowed by an 80386 and 80387 assem-

bler. In this chapter, we present complete instruction sequences that

implement some common or demonstrative subroutines. Thus, we need

to extend the assembly language syntax we have developed so far with

other assembler directives and formats.

402 Programming the 80386

The assembler syntax given here may not be exactly the same as the

syntax on the machine you are using. Since we have assembled and
tested all examples given here, they are valid on the assembler we are

using. You may find slight differences with your assembler.

Types

All variables and memory references have a type associated with them.

The type of a variable or reference identifies the number of bytes that

are being referenced. Type information allows the assembler to generate

the correct instruction. Sometimes the type information can be inferred

from the instruction or other operands, and in other cases the program-
mer must explicidy give the type. For example

INC [ESI]

is ambiguous, as the pointer [ESI] does not specify if this is a byte,

word, or dword. This is called an anonymous pointer. Any of the following

would be valid:

INC byte ptr [ESI]
INC word ptr [ESI]
INC dword ptr [ESI]

The following case is also ambiguous

MOV [EBX] , 5

because the immediate does not imply type. The following is a valid

form:

MOV word ptr [EBX] , 5

Two-operand forms need to have a type specified by only one of the

operands, however. For example

MOV [EBX] , EAX
MOV [EBX] , AX
MOV [EBX] , AL

are all valid, as the type of the first operand is implied by the second.

Valid types are listed in Table 4.1.

Note that ptr, short for pointer, is misleading. For example, byte ptr

gives the type of the memory operand (for example, [EBX]). It in no

way denotes that [EBX] is a memory pointer. You can see this in the

two-operand forms, where the memory operand is anonymous in MOV
[EBX], EAX.

Instruction Set Examples 403

TYPE DESCRIPTION

byte 1 byte

word 2 bytes

dword 4 bytes

pword 6 bytes

qword 8 bytes

tword 10 bytes

short label within segment, within +127 and -128 bytes

near label within segment (short or long)

far label in different segment

* Table 4.1: Valid types

Data Allocation

To reserve storage, you can use db, dw, or dd to reserve bytes, words,

or dwords of storage. The general form allows you to specify a variable

(a symbolic name to reference it by), a size, and an initial value for the

storage.

fred db 1

joe dw 10, 8.

7

dd ?

define 1 byte of storage named fred with
initial value of 1

define 3 words of storage named joe with
initial values of 10,8,7

define 1 dword of storage with no name and
no initial value

There are two special forms of data allocation. The first form allows a

character string to initialize consecutive bytes in a db. The second form

aUows the special DUP construct to initialize multiple units of storage.

The DUP statement can be nested, as it is in the last example here.

stringl db 'Hello World'
stack dd 50 dup (0) ; 50 dwords, all initialized to

funny dw 2 dup (3, 2 dup (?), 4) ; initialize 8 words to

; 3, ?, ?, 4, 3, ?, ?, 4

404 Programming the 80386

Offset

The offset operator returns the offset of a variable or label from the

base of the segment that it is defined in. Here's an example.

stringl db 'Hello World'
stringl_end db
string2 db 'Goodbye World'
string2_end db
< . . . >
MOV ESI, offset stringl
MOV EAX, offset stringl - offset string2

This code segment moves the offset of stringl from the base of the

segment in which it is defined into the ESI register. The second example

shows that you can use the offset operator in arithmetic computations to

form an immediate constant.

Labels

Labels are a symbolic reference to a location in a code sequence.

Labels provide a convenient means to jump to certain locations.

label 1: MOV EAX, 1

LOOPNZ labell

PROC/ENDP

The PROC directive is an alternative means of defining a label as well

as a means to define a sequence of instructions that are interpreted as a

subroutine. The sequence of instructions that represent this subroutine is

terminated with the ENDP directive. The subroutine is normally refer-

enced in a CALL instruction.

JunkProc PROC

JunkProc ENDP

call JunkProc

EQU

The EQU assembler directive allows you to equate a symbol to some

other expression. You can use the expression to provide a different mne-

monic to specify a constant, label, address, or register. For instance

regl EQU EAX
reg2 EQU EBX

Instruction Set Examples 405

allows you to use regl and reg2 rather than the normal register names.

Other examples follow:

Length EQU 100
My_word EQU word ptr [ESI + EBP]

In this chapter, you will see the EQU directive being used to mne-
monically reference stack-relative temporary or local variables, as shown
below.

Error EQU SS: byte ptr [EBP-1]

This defines a byte Error, which is located in the stack segment
addressed by SS at the offset given by the contents of the EBP register

minus 1.

Integer Examples

In this section, we will give examples of the integer instructions.

Signed Divide

In the description of the SAR (shift arithmetic right) instruction in

Chapter 3, we noted that SAR is equivalent to a signed divide by a

power of two, except that the rounding of the quotient is toward minus

infinity rather than toward 0, as is the case for the IDIV instruction. For

example, dividing -17 by 4 yields a quotient of -4 using the IDIV
instruction. If, however, a SAR of 2 were used to divide -17 by 4, the

resultant quotient would be -5. This difference is displayed below.

IDIV ECX Before: EDX
ECX

FFFFFFFF
00000004

EAX: FFFFFFEF

After : EDX
ECX

FFFFFFFF
00000004

EAX: FFFFFFFC

SAR EAX,CL Before: EAX FFFFFFEF ECX: 00000002
After : EAX FFFFFFFB ECX: 00000002

Since IDIV is a rather slow instruction, you could write more efficient

code if you could avoid the use of IDIV for power-of-two divisors. It is

important, however, that all integer divides operate the same! The code

in Listing 4.1 detects the condition when incorrect rounding will occur

(a negative non-power-of-two dividend). It also adjusts the dividend so

correct rounding occurs when the shift is actually done, if needed.

406 Programming the 80386

Use SAR for power-of-two divisions. Need to be careful with
quotient rounding, though, which is checked by the following

|

rou tines. The first example is quicker when no adjustment is
required. The second is faster when adjustment is needed. |

N the power of two to be divided by
EAX: dividend

SAR divide routine 1:

OR EAX. EAX
LEA EAX. [EAX+2^ - 1]

JL Adj
SUB EAX,2'' - 1

Adj:
SAR EAX.N

SAR divide routine 2:

OR EAX, EAX
JGE NoAdj
ADD EAX, 2^-1

NoAdj
SAR EAX.N

* Listing 4.1: Example 1—Signed divide

The normal IDIV instruction for a register source takes 43 clocks.

The routines in Listing 4.1 compute the quotient in 12 or 15 clocks if

the dividend was positive, and in 17 or 10 clocks if the dividend was

negative. Thus, the SAR routines are significandy faster than IDIV or

power-of-two division, and they round correcdy.

Note that we do not show the SAR divide as a subroutine. Because of

the clocks needed to perform a call and return, a subroutine would

negate almost all the savings of the fast power-of-two SAR divide. Thus,

to get the desired performance improvement, the SAR routines need to

be executed as in line code. To save on typing and to have a nice con-

cise form of this, you may be able to use assembler equates (EQU) or

macros (if your assembler supports them).

Sort

A common operation performed on a sequence of numbers is sorting

the list. The function in Listing 4.2 will sort the list of numbers pointed

Instruction Set Examples 407

Sort: Sort the list of numbers pointed to by ESI. The length of
the list is given in ECX. Length is one less than the actual count
since you start counting from (e.g., [0:ECX]). The smallest number
of the list is stored at ESI, and the largest number is stored
at [ESI+ECX*4] . The sort algorithm used is a simple bubble sort.
The list is assumed to be a list of dword numbers.

ESI: pointer to the start of number string
ECX: count of the number of elements of the list.

SORT PROC
OutLoop:

MOV EDX,0
InnerLoop:
CMP EDX,ECX
JGE Bottom
MOV EAX, [ESI+EDX*4+4]
CMP [ESI+EDX*4], EAX
JGE NoSwap
; [ESI+EDX*4] > [ESI+EDX*4+4] thus they need to be swapped
XCHG [ESI+EDX*4+4] , EAX
MOV [ESI+EDX*4J, EAX

NoSwap
INC EDX
JMP InnerLoop

Bottom:
LOOP OutLoop

Done:
RET

SORT ENDP

Listing 4.2: Example 2—Sort

to by ESI upon the call. The length of the list is given in ECX. The

algorithm used to sort the list is a bubble sort.

A bubble sort has two nested loops (execution time is 0(n^)). The inner

loop compares each entry with the one immediately above it in the list. If

an entry is larger than the one above it, the two entries are switched. Thus,

the larger datum "bubbles" to the top of the list. This inner loop is

repeated the number of data element times. Each succeeding inner loop

need only operate on data array items from up to the value of the outer

loop counter minus 1. The outer loop counter counts down from the initial

length of the list. After the first execution of the inner loop, the largest

datum will be at the highest entry in the data array. After the second itera-

tion, the largest entry is at the highest address, the second largest entry is

at the second highest address, and so on for each subsequent iteration.

408 Programming the 80386

Thus, the second inner loop iteration need not compare the second highest

address item to the highest address, since the highest address is guaranteed

to be the largest entry. Similarly, on the third iteration the two highest

address data elements need not be compared, and so on.

Factorial

The example in Listing 4.3 gives a routine that receives its parameter

in the EAX register, then computes the factorial of this number and
returns the result in the EAX register. The mathematical equation

describing a factorial is

n! = n*(n-l)*(n-2)*...*(l)

The routine given uses a recursive procedure call. The initial proce-

dure (Fact) performs some initial checks and calls the recursive procedure

_Fact. _Fact checks if the argument given is 0. If the argument is not 0,

_Fact is recursively called with the argument minus 1 . If the argument is

0, then the result register (EAX minus partial factorial results computed

so far) is set to 1 and the procedure returns to the caller. On each return

to caller, the factorial partial product computed so far is multiplied by

the value of the argument given to _Fact at this recursive call. Thus,

_Fact is called n + 1 recursive times, with the n + T' call receiving as its

argument. On the return, the multiplications are performed (1*1, 1*2,

2*3, 6*4,...).

In this example, _Fact is termed a dummy procedure of Fact. _Fact is

never seen by the caller of Fact. Fact eases the writing of the code for

the recursive procedure, _Fact. A dummy procedure such as _Fact is

common in recursive programming.

The factorial is a powerful mathematical function. In fact, it turns out

that 13! is the largest factorial that can be computed whose result is rep-

resentable in the range of a 32-bit signed integer. Thus, it is important

to have careful error checking for overflow, as this routine does.

Note the PUSH and POP of EBX and ECX at the beginning and

end of the subroutine in Listing 4.3. This guarantees that the register

state of the caller is unaltered by the callee. In general, there are two

choices.

1. Always have the caller save the registers it needs kept intact.

2. Have the callee save any registers it uses.

Each of these may save more registers than needed, since the caller may
save registers the callee doesn't use or the callee may save registers the

caller doesn't care about. You may also want to keep other machine state

Instruction Set Examples 409

Fact: Recursively compute the factorial of the value given in
the EAX register. The result of the factorial computation is

returned in the EAX register. If an error is encountered
while computing the factorial of the given number, -1 is
returned in the EAX register.

EAX: number to compute the factorial of. After the
execution, EAX holds the result.

Dummy recursive procedure of Fact: -Fact
Error EQU SS: byte ptr [EBP-1]
-Fact PROC
CMP ECX,
JZ done
PUSH ECX
DEC ECX
CALL -Fact
POP ECX
IMUL EAX, ECX
SETO BL
OR Error, BL
RET

done:
MOV EAX,

1

RET
-Fact ENDP

; The actual procedure to compute factorial. Perform a

; check and call the recursive procedure -Fact.
FACT PROC
ENTER 4 ,

PUSH EBX
PUSH ECX ; Save EBX and ECX, as they are used in this routine

and we do not want to alter register
state of caller.

MOV Error ,

MOV ECX, EAX
CMP ECX,
JB Fail
CALL -Fact

; Finished with factorial computation
CMP Error,

1

JNZ Done
Fail:
MOV EAX, -1

Done:
POP ECX
POP EBX
LEAVE
RET

FACT ENDP

Listing 4.3: Example 3a—Recursive factorial

410 Programming the 80386

intact, such as the flag state. The rest of the examples in this chapter do

not deal with register state and the saving of it. You do need to consider

this, however.

It is often the case in recursive routines such as _Fact that recursion is

not needed. You can convert some recursive procedures to simple itera-

tion, as you can see in the example in Listing 4.4.

The iterative factorial turns out to be significantly faster than the

recursive factorial procedure. The actual speed increase depends on the

data value for which the factorial is being computed. On a couple of test

cases, we had a speed increase of almost 50 percent. Some sophisticated

Fact: Iteratively compute the factorial of the value given in
the EAX register. The result of the factorial computation is

returned in the EAX register. If an error is encountered
while computing the factorial of the given number, -1 is

returned in the EAX register.
EAX: number to compute the factorial of

Error EQU SS: byte ptr [EBP -1]

FACT PROC
ENTER 4 ,

MOV Error,
MOV ECX,EAX
CMP ECX,
JB Fail
MOV EAX,

1

JE Done
top:

IMUL EAX, ECX
SETO BL
OR Error BL
LOOP top

Done:
; Finished wi th factor ial c omputation
CMP Error,

1

JZ Fail
LEAVE
RET

Fail:
MOV EAX, -1

LEAVE
RET

FACT ENDP

Listing 4.4: Example 3b— Iterative factorial

Instruction Set Examples 411

high-level language compilers will analyze recursive procedure calls and

determine if they can be replaced with iteration.

Semaphore

A common problem of multitasking systems is the allocation of system

resources between tasks. For instance, if two processes are requesting a

disk, tape, or file, you want to be sure that both do not attempt to use it

at the same time. The result of not guaranteeing mutual exclusion

between system resources can be disastrous. One solution to this problem

is semaphores. Semaphores are special flags that are accessed and/or

changed in an indivisible operation.

Imagine the use of a memory byte that is a semaphore flag. A pro-

cessor will read this byte when it needs to use a system resource, deter-

mine if the resource is free, and then mark the flag as being busy. This

is wonderful as long as the read/modify/write of the flag is indivisible. If

this were not the case, two processors could read the same flag, and each

could determine the semaphore flag was free and conclude it could use

the system resource—disaster! Thus, when the semaphore flag is read,

no other processor in the system can be allowed to access memory until

the read/modify/write cycle is complete. The 80386 supports this via the

LOCK instruction prefix, described in Chapter 3. An instruction with

a LOCK prefix locks the memory for the duration of the instruction to

guarantee that the read/modify/write cycle is indivisible. No other pro-

cessor in the system can access memory until this instruction is complete.

Thus the indivisible nature is met. The LOCK prefix is demonstrated in

the routines in Listing 4.5. These routines give examples of Get (have

this process become the owner) and Free (allow other process to become

the owner) operations.

The following piece of code shows use of the basic operators GetSem
and FreeSem.

MOV ESI, offset SemWord
MOV ECX, SemBitWeNeed
CALL GetSem

< critical code requiring exclusive >
< use of semaphored resource >

MOV ESI, offset SemWord
MOV ECX, SemBitWeNeed
CALL FreeSem

The above code works correctly. Unfortunately, it does not work

efficiently. If the semaphore is not free when Get is entered, it loops

412 Programming the 80386

GetSem (get Semaphore): the semaphore bit is when
the semaphore is busy, thus loop until CF is set
when BTR is encountered.

Semaphore=0 Busy
Semaphore=l Free

ECX: bit location in semaphore
ESI: address (in DS) of semaphore

GetSem PROC
LoopGet:

LOCK BTR dword ptr [ESI],ECX
JNC LoopGet
RET

GetSem E>fDP

FreeSem: mark semaphore free. If it was already free
(freeing a free semaphore) an error code of -1 is

returned in the EAX register.
FreeSem PROC

LOCK BTS dword ptr [ESI],ECX
JNC Done
MOV EAX,-1 ; error: freeing a free semaphore
Done: RET

FreeSem ENDP

Listing 4.5: Example 4—Semaphore

without end until the semaphore is free. This is termed busy waiting.

Now a busy loop such as this is expensive, since it does no useful work

but ties up CPU and memory resources while waiting. You can often

redefine the semaphore operators (which we won't do here) to place a pro-

cess waiting for a free semaphore into a waiting queue and then call the

scheduler to execute a different process whUe waiting for the semaphore.

String Search

A common procedure is to search for a substring within a string.

Functions such as this are often performed by command interpreters,

text editors, and database management systems. Searching for a sub-

string is such a common function that it has become one of a standard

set of benchmarks called the EDN benchmarks. Most computer manu-
facturers use this set of benchmarks to compare their processors against

the competitors. The routine given in Listing 4.6 is the EDN string-

search benchmark coded for the 80386.

Instruction Set Examples 413

EDN Benchmark E: String Search.
Find a substring within a string and return the starting
position in the EAX register. EAX is -1 if the substring
was not found in the string.

Parameters:
ESI = PTR (in DS) to Substring to search for.
EDI = PTR (in ES) to String to search for substring.
ECX = Length of string.
EDX = Length of substring.

Srch_Len EQU SS: dword ptr [EBP-4] ; Str ingLen-SubStrLen

BENCHE PROC
PUSH EBP ; Fast enter code. .

.

MOV EBP, ESP
SUB ESP, 4 ; Local Frame Size
CLD

; Need to scan for first byte only for StrLen-SubStr len+1 (assume > 0)

LODSB
MOV EBX, ESI
DEC EDX
SUB ECX, EDX

AL = first byte of SubStr
EBX points to 2nd byte of SubStr. for CMPS
Length of remainder of substring.
Length for SCAS

MOV Srch_Len, ECX ; Save for final offset computation.

; Scan for first byte of target string.
Scan_Loop:

JECXZ SHORT NotFnd ; Test for completion of subsequent iterations
REPNE SCASB
J^fE SHORT NotFnd ; Failed to match first Character

; First Byte matched. If SubStrLen was 1, we're done,
; otherwise do a CMPS on rest of SubStr.
CMP EDX.
JE SHORT Match

; Save current Scan Ptr (points to next char for SCAS if CMPS fails)
PUSH ECX
PUSH EDI

; Load ESI with addr. of 2nd byte of SubStr (stored in EBX).
MOV ESI, EBX ; Addr. of source for CMPS
MOV ECX, EDX ; Length for CMPS
REPE CMPSB ; See if SubStr matches
POP ECX
POP EDI ; Restore pointers/count for SCAS
JNE Scan-Loop ; Continue with SCAS (if any left)

; Fall through if SubStr matched. ECX points to 2nd byte of substr,
; Srch_Len holds original search length-1, so SRCH_LEN-ECX is offset.
Match:

MOV EAX, Srch_Len
SUB EAX. ECX

Listing 4.6: Example 5—String search

414 Programming the 80386

JMP Epilogue
; If no match, set EAX to -1 and return.
NotFnd:

MOV EAX, -1

Epilogue:
LEAVE
RET

BENCHE ENDP

Listing 4.6: Example 5—String search (continued)

The algorithm used in the string search first uses a SCAS instruction

to search for the first byte of the substring to be found in the string. The
REPNE SCASB instruction is quite efficient in this case, as it compares

up to the first matching byte or until the string is exhausted. When the

first byte of the substring is found, the entire string is compared against

the potential matching substring by a REPE CMPSB instruction. The
CMPSB instruction is also quite efficient in this case, as it compares up

to the first mismatch or until the substring is exhausted. If this turns out

not to be a matching substring (even though the first byte matched), the

string is searched again for the first matching first byte of the substring.

This process continues until a match is found or the string being

searched is exhausted. One special case of the routine is when the sub-

string being searched for is only one byte in length. When this is the

case, the CMPS portion of the routine is not needed. If a matching sub-

string is found, the offset to the start of the string is returned in the

EAX register. If no matching substring is found, a - 1 is returned in

the EAX register.

This procedure serves as a good example of the string instructions

using the LODS, SCAS, and CMPS string instructions. Whenever you

are programming using strings of byte, word, or dword data, you will

find the string instructions (LODS, CMPS, SCAS, STOS, MOVS) to

be useful and efficient.

Also notice the "fast" enter code:

PUSH EBP ; Fast enter code. .

.

MOV EBP, ESP
SUB ESP, 4 ; Local Frame Size

The ENTER instruction, when used for level operation, uses 10

clocks to execute. The above code, which specifically performs a level

entry, requires only 6 clocks to execute. The speed increase is possible

because ENTER is a general-purpose instruction. The 80386 must first

Instruction Set Examples 415

perform checks to determine level operation. You the programmer can

"skip" these checks as is done here when only level operation

is needed.

Also notice the use of SHORT directives in Listing 4.6. Most assem-

blers use a single pass over the source code to generate instructions that

implement the program you have specified. But forward references, such

as the

JNE SHORT NotFnd

instruction, are jumps to a label (NotFnd) that has not been encountered

yet. So the assembler cannot determine if the label is in fact short (+ 127

to -128 bytes from the JNE). Thus, the single-pass assembler will insert

a full 32-bit displacement jump rather than attempt to use a short jump.

The specification of a SHORT directive, as is done here, allows the pro-

grammer to override the assembler and force it to generate code for a

short label jump.

Bit Block Transfer

Graphics operations, as well as others, often deal with data that is a

simple sequence of bits. One of the most common operations to perform

on bit data is the transfer of a string (or block) of bits from one location

to another. The routine in Listing 4.7 performs a bit transfer from a

BitBlt: move arbitrarily located source bit string pointed
to by ESI into the aligned destination pointed to by
EDI. The amount to be moved needs to be an exact multiple
of 32 bits.
ESI: offset of the source string, assumed visible by DS.

EDI: offset of the destination string, assumed visible by ES.

EBX: dword count of bits to be moved (thus, bits to be moved
is a multiple of 32).

ECX: offset from within the source string.
BitBlt PBGC

MOV EDX, dword ptr [ESI]

ADD ESI, 4

CLD
Bi tLoop:

LCDS
SHRD EDX, EAX, CL
XCHG EAX, EDX
STOS
DEC EBX
JA Bi tLoop
RET

BitBlt ENDP

new high-order part
EDX gets aligned dword
swap high and low order
write out next result portion

Listing 4.7: Example 6a—Simple bit block transfer

416 Programming the 80386

source string pointed to by ESI into a destination string pointed to by

EDI. This routine requires the destination to be ahgned on a dword
boundary, and the length of the bit string to be moved is exactly a mul-

tiple of 32 bits. This simplifies the example to illustrate the heart of the

BitBlt operation. The source string can be at any arbitrary bit offset

within the source string. The bit string is processed from the low-order

address to higher order. The shift right double works best to process the

string in this manner.

The routine in Listing 4.7 shows one use for and a particular benefit of

the 80386 's double-wide shift instruction. In the example, the loop can pro-

cess 32 bits upon each iteration. If a double-wide shift were not present in

the 80386, the best that could be done would be 16 bits per iteration using

a 32 -bit shift rather than the double shift. Thus, the double-wide shift allows

the performance of bit block transfers to be doubled.

This example demonstrates how bit block transfers are performed as

well as how the double-wide right shift of the 80386 can be used to facili-

tate the transfer. Unfortunately, this simple procedure is not very useful,

since bit strings are not normally only multiples of 32 bits in length, and

the destination strings are not always aligned on a dword boundary. The
procedure in Listing 4.8 gives a general and far more useful bit block

transfer routine. This routine allows bit strings of any length to be trans-

ferred. The source and destination strings can be aligned on any arbi-

trary bit offset. Unfortunately, this more general procedure is

significantly more complicated!

The procedure is really composed of three parts: prelude, main, and

postlude. The prelude aligns the destination onto a dword boundary.

This was also a requirement of the first simple bit block transfer proce-

dure. The destination alignment requires transferring the first bits from

source to destination while keeping intact any destination string bits

before the starting offset of the destination string. The prelude, as well as

the postlude, follows slightly different algorithms depending on whether

the source offset or the destination offset is greater. This is required since

if the destination offset is greater than the source offset, the prelude con-

sumes all bits of the first dword of the source string.

After the prelude, the main loop is entered. The main loop first com-

putes the shift-count, which is the difference of the offset between the

source and destination strings. The main loop is similar to the routine

given in Listing 4.7. The two requirements of the simple bit block trans-

fer routine are the same as the conditions on the main loop here. The
prelude and postlude accounts for aligning the destination on a dword
boundary, as well as accounting for nonmultiples of 32 bits to be trans-

ferred. Each iteration of the loop processes 32 bits of data from the

source string to the destination string.

Instruction Set Examples 417

General BitBlt: Move any length bit string from any bit location in

the source string into any bit location of the destination string.
EAX: (BitCount) the number of bits to be moved.
ESI: dword address of the source string.
EDI: dword address of the destination string.
ECX: (SrcOff) bit offset into the dword of the source string

specified by ESI.
EDX: (DestOff) bit offset into the dword of the destination string

specified by EDI.
dword ptr [EBP-4]
dword ptr [EBP-8]
dword ptr [EBP- 12]

dword ptr [EBP-16]

BitCount EQU SS
SrcOff EQU SS
DestOff EQU SS
SrcOffFlg EQU SS

BitBlt PROC
ENTER 16,0
CLD

; ****

; ** PRELUDE

:

; ****

16 bytes of local temporaries

Start-up portion of BitBlt

MOV BitCount, EAX
MOV SrcOff, ECX
MOV DestOff, EDX
MOV EDX, dword ptr
MOV EAX, dword ptr

Save parameters passed in registers into
local stack temporaries

[ESI]

[ESI+4]
load of high-
string bits

and low-order source

Determine first dword of destination.
SHRD EDX, EAX, CL

MOV EAX, dword ptr
MOV ECX, DestOff
ROR EAX, CL
SHLD EDX, EAX, CL
MOV EBX, 32
SUB EBX, DestOff
SUB EBX, BitCount
JBE DestMoreThanl
MOV ECX, 32
SUB ECX, EBX
MOV EBX, ECX
JMP CommonEnd

Des tMoreThanl

:

MOV dword ptr
ADD EDI,

4

JZ Done

; At this point EDX contains the first 32 bits
of the source string.

[EDI] ; Now grab residual bits from destination
that are not to be affected by this bit
string, move and include them into the
dword of the destination.

This code checks the case where the entire
string is within a single (the first

and only) dword. If it is within the
first destination dword, jump to the end
for cleanup, which will include any high-
order residual bits.

[EDI], EDX ; store first dword result

: Exact fit into first dword of destination.

Compute correct shift count
SUB ECX, SrcOff ; If SrcOff > DestOff then CL=SrcOff-DestOff
JL SrcLrgStr ; Else CL = 32 - (DestOff-SrcOff

)

MOV BL, 32
SUB BL, CL
MOV CL, BL
JMP BeginBitBlt

Listing 4.8: Example 6b—Bit block transfer

418 Programming the 80386

SrcLrgStr:
MOV ECX, SrcOff
SUB ECX, Des toff
ADD ESI,

4

MOV SrcOffFlg,

1

Since DestOff <= SrcOff all of first Src
dword has been consumed.

Simple flag denoting the SrcOff > DestOff

** MAIN: Body of BitLoop

Body of BitBlt.
boundary. CL ho
and EDI to dest
main bit string

BeginBitBlt:
MOV EBX.BitCoun
ADD EBX, Des toff
SUB EBX, 32
MOV EDX, dword p
ADD ESI,

4

Loop portion of
the destination
loop stops when

BitLoop:
SUB EBX, 32
JLE FixEnd
LODSD
SHRD EDX,EAX,CL
XCHG EDX,EAX

STOSD
JMP BitLoop

At this point Dest is aligned to a 32-bit
Ids the shift amount, ESI points to source
ination at the correct point to begin the
transfer.

; EBX holds the # of bits still to be moved
tr [ESI]

BitBlt. 32 bits are moved from the source into
bit strings on each iteration of the loop. The
less than 32 bits remain to be moved.

EAX: aligned part for Dest string, EDX is

residual portion of source string for next
shift loop iteration.

Store EAX into Dest string.

; ****

; ** POSTLUDE: Tail end portion of BitBlt
; ****

FixEnd:
JZ Done
CMP SrcOffFlg,

1

JZ SrcLrgEnd
LODSD
SHRD EDX, EAX, CL
JMP CommonEnd

SrcLrgEnd:
SHR EDX,CL

CommonEnd:

If no bits in tail portion, we are done!

MOV EAX, dword ptr
MOV CL,BL
ROR EDX,CL

At this point EDX contains final residual
source string bits aligned to the
destination.

EDI]

Listing 4.8: Example 6b— Bit bloclc transfer (continued)

Instruction Set Examples 419

ROR EAX,CL
MOV BL,32
SUB BL,CL
MOV CL,BL
SHRD EDX,EAX,CL ; Perform final shift putting the destination

; bits after the end of the bit string along
; with final source string bits into EDX

XCHG EAX,EDX
STOSD ; Store the final dword into destination.

Done:
LEAVE
RET

BitBlt ENfDP

Listing 4.8: Example 6b—Bit block transfer (continued)

The postlude handles the transfer of the final bits into the destination

string, while maintaining any bits after the final destination bit string

intact. A special case that needs to be considered (checked for in the

prelude) is when the entire destination bit string fits within a single

dword. The number of bits transferred to the destination string by the

postlude is given by:

(BitCount - DestOffset) % 32

Even though the general bit block transfer routine in Listing 4.8 is

significantly more complicated than the short example given in Listing

4.7, decomposing the routine into the three sections (prelude, main, and

postlude) and analyzing each of these separately can lead to a clear

understanding of its function.

As is often the case, this procedure uses local storage on the stack.

This allows recursion and in general provides a convenient way to man-

age local temporary variables, since storage is only required as it is used.

As mentioned in Chapter 2, the EBP register is often used as a frame

pointer onto the stack, and ESP provides a dynamic top-of-stack pointer

Thus, local temporary variables are often addressed via the EBP register,

as you have seen in this procedure:

BitCount EQU SS: dword ptr [EBP-4]

Thus, you can use a mnemonic BitCount that equates to a stack-based

temporary value referenced indirectly via the EBP register

420 Programming the 80386

The model of using EBP as a stack frame pointer is supported by the

ENTER and LEAVE instructions, which are also demonstrated in this

example. The ENTER 16,0 instruction here creates a level stack frame

with room for 16 bytes of local variables. A level stack frame indicates

that no display is built in the new stack frame. A display is often used

when nested procedures and variable scoping within the nested proce-

dures (as seen in some high-level languages such as Pascal) are sup-

ported. The complement of ENTER is a LEAVE instruction that

destroys the stack frame just before returning to the caller.

Floating-Point Examples

In this section, we will give several examples of the floating-point

instructions.

Floating-Point Flags

The floating-point condition codes were discussed in Chapter 2. These

four condition codes are part of the status-word register of the 80387. In

Chapter 3, when we discussed the floating-point instructions of the

80387, we also gave several instructions that modify these condition

codes as part of their operation. For example, the

FCOM opi

instruction numerically compares the given operand (opi) to the top of

the stack and sets the condition codes as given in the following table.

C3 C2 CO

ST > opi

ST < op2 1

ST = opi 1

Unordered 1 1 1

Now let's discuss how you can use these condition codes to alter the flow of

execution. A special instruction of the 80386 and 80387 pair is the FSTSW
AX instruction. This instruction copies the status word of the 80387 into

the AX register of the 80386. If the FSTSW AX instruction is followed by

a SAHF instRiction (store the AH register into the flags), the conditional

jumps of the 80386 can be used to jump on the condition flags of the

Instruction Set Examples 421

80387. If FSTSW AX is foUowed by SAHF, the diagram in Figure 4.1

depicts the upper part of the status word and the associated flag bits of

the 80386.

The code sequence in Listing 4.9 shows a jump table based on the set-

tings of the 80387 condition codes after a FCOM instruction. The first

accumulator beneath the stack top is compared against the stack top with

the appropriate jump taken as a result of the comparison.

A similar sequence can be used for the FTST, FICOM, FUCOM,
and all pop variants of these instructions.

80386

Flags

80387

Status

Word

7 6 5 4 3 2 1

S Z A P c

F F F F 1 F

15 14 13 12 11 10 9 8

C -TOP- C C C

B 3 2 1 2 1

Figure 4.1: Flags transfer from 80386 to 80387

; Comparison and jump table
FCOM ST(1) perform comparison
FSTSW AX move status word to AX register of 80386
SAHF move condition codes into flags register
JP Error ST or ST (1) is a NaN - Error condition
JE STeqSTl ST = ST(1)
JB STltSTl ST < ST(1)
JA STgtSTl ST > ST(1)

Listing 4.9: Example 7—Floating-point flags

422 Programming the 80386

Partial Remainder

In the presentation of the partial remainder instructions in Chapter 3

(FPREM, FPREMl), we pointed out that because these instructions

may have very long execution times, they stop partway through the

reduction. This allows interrupts to be taken at these boundaries. The
routine in Listing 4.10 presents a short instruction loop that will check

for the completion of the reduction and iterate if needed.

In this example, notice the use of the flag transfer instruction sequence

as was demonstrated by an earlier example.

; Complete partial reminder
RemLoop:

FPREM
FSTSW AX
SAHF
JP RemLoop ; If C2^1 reduction was incomplete,

; try again.

Listing 4. 10: Example 8—Partial remainder

Exponential Computations

Recall from Chapter 3 that the F2XM1 instruction computes

ST = 2^''-l

Notice that there is not an FlOXMl instruction. The three examples

in Listing 4.11 implement algorithms to compute three other exponential

computations using F2XM1 as a basis. The conversion equations are

given below.

10^ _ 2" * '°S2"^

gX _ 2" * '°^'*^

Y^ _ ox * logjY

Note in the last example how convenient the FYL2X instruction is for

this case. Remember that FYL2X implements the function

ST = ST(1) * logaST ; pop ;

Instruction Set Examples 423

; Exponential computations for other than 2"-!

;
10''

; ST = X
FLDL2T
FMULP ST,ST(1) ; ST = X * logzlO
F2XM1 ; ST = 2" * log^io _ 1

FLDl
FADDP ST,ST(1) ; ST = 2" * '"g^'" = 10"

; e" ; ST = X
FLDL2E
FMULP ST,ST(1) ; ST = X * logzC
F2XM1 ; ST = 2" * '"^^e _ ^

FLDl
FADDP ST,ST(1) ; ST = 2" * ^"^2^ = e"

; Y**X ; ST = Y, ST(1) = X
FYL2X ; ST = X * logzY
F2XM1 ; ST = Y" - 1

FLDl
FADDP ST,ST(1) ; ST = Y"

Listing 4.11: Example 9—Exponential computations

Matrix Multiplication

Mathematical data is commonly stored in matrices. One of the com-

mon functions performed on matrices is to multiply two matrices

together to form a third matrix. Matrix multiplication takes two matri-

ces, X and Y, where X is of dimension i*k and Y is of dimension k*j.

The result matrix, Z, is of dimension i*j. The k dimension of the X and

Y matrices must be the same. The elements of the Z matrix obey

the relation

Z, = X (X„ * Y„,)

for all result elements of the Z matrix.

The routine in Listing 4.12 performs matrix multiplication. The loca-

tions of two input matrices are passed in the ESI and EDI registers,

424 Programming the 80386

This routine performs a matrix multiplication of two matrices
X and Y to produce a resultant matrix Z. Matrix X is of
dimension i*k, matrix Y is of dimension k*j , and the result
matrix Z is of dimension i*j . Note that the matrices are
assumed to be stored in row-major form.

ESI
EDI
EAX
ECX
EBX
EDX

offset of X in the DS segment
offset of Y in the DS segment
Di, i dimension
Dk, k dimension
Dj , j dimension
offset of Z in the DS segment

The Loops used are:
for (iCnt = 0; iCnt < D? ; iCnt ++)

{

for (jCnt = 0; jCnt < Dj ; jCnt ++)

for (ECX = Dk; ECX >= 0; ECX--)(
load element from X
load element from Y
multiply; add to partial sum

}

store into Z

Di EQU SS
Dk EQU SS
Dj EQU SS
Zoff EQU SS
iCnt EQU SS
jCnt EQU SS

dword ptr
dword ptr
dword ptr
dword ptr
dword ptr
dword ptr

[EBP-4]
[EBP-8]
[EBP-12]
[EBP-16]
[EBP-20]
[EBP-24]

MatMult PROC
ENTER 24,0
MOV Di ,EAX
MOV Dk ,ECX
MOV Dj ,EBX
MOV Zoff, EDX
CMP EAX,

'^

JZ Done
CMP ECX.O
JZ Done
CMP EBX.
JZ Done
MOV iCnt,0
MOV EDX,
Loop_i

:

mov jCnt,0
Loop_j

:

MOV EAX, iCnt
IMUL EAX,Dk
MOV EBX,jCnt
FLDZ ; zero

No display copied, 24 bytes of local parameters
Save contents of registers before using

Make sure no dimensions are zero

i Loop variable
z element pointer

j Loop variable

Z sum

Listing 4. 12: Example 10—Matrix multiplication

Instruction Set Examples 425

MOV ECX, Xk
Loop_k:
DEC ECX
FLD qword p tr [ESI + EAX*8] ; fetch X array element
INC EAX
FLD qword p tr [EDI + EBX*8] ; fetch Y array element
ADD EBX, Dj

FMULP ST (1)

,

ST
FADDP ST (1)

,

ST
CMP ECX,
JA Loop-k

MOV EAX,Zoff
FSTP qword ptr [EAX+EDX*8] ; Store into z array
INC EDX ; Next z element
INC jCnt
MOV EAX.Dj
CMP EAX.jCnt
JA Loop_j

INC iCnt
MOV EAX,Di
CMP EAX, iCnt
JA Loop_i

Done:
LEAVE
RET

MatMult ENDP

Listing 4.12: Example 10—Matrix multiplication (cominued)

respectively. The location where the results are to be stored is passed in

the EDX register. All three are in the segment addressed by the DS reg-

ister All three matrices are stored in row-major format.

Row-major format dictates how a two-dimensional array gets mapped
into a one-dimensional memory (remember the discussion of memory
organization in Chapter 1). If you have an array A with elements A,,,

does Aoi or A; o follow Aqo? In a row-major form, sequential elements of

a row are stored in sequential memory locations, with sequential column

elements stored a stride apart in memory. Note that in row-major format

Ao,n, An,i, Ao,2,...Ao.n (row 0)

426 Programming the 80386

are stored sequentially, followed by

Ai,o, Ai,i, Ai,2,...Ai,n (row 1)

and so on.

The / and k dimensions of the X matrix are passed in the EAX and

ECX registers, and the k and j dimensions of the Y matrix are passed in

the ECX and EBX registers. The k dimension of the X and Y matrices

must be the same to allow matrix multiplication to occur

Note that this routine can multiply matrices of any size and does not

know the size of the matrices to be multiplied prior to being called.

Matrix multiplications that operate on fixed-size matrices can be coded

more eflftciently than this general one. Every element of the X and Y
matrices is loaded k times. A fixed-size matrix-multiply routine could

limit the loading of one of the matrix elements (the X matrix elements,

for example) to once, and use the element repetitively from the accumu-

lator stack, rather than loading it k times.

The procedure uses a triply nested loop. The outermost loop repeats

i times, the second loop repeats j times, and the innermost loop repeats k

times. The inner loop is the one computing the Z,^ elements. The second

loop runs down the rows of X, and thus fills the rows of Z while travers-

ing each column of Y The outer loop is repeated for each row of X and

Z. Thus, the Z matrix is filled sequentially in memory, since it is in row-

major format.

Statistics

A common operation is computing statistics on a set of numbers. For

instance, an instructor, when reporting the grades for a class, may give

the mean and standard deviation of test scores. The mean statistic gives

the average of the class scores. The equation for mean is given by

! =

n

where Z is the summation operator computing the sum of all x, from i

equals to n-\. In the remainder of the discussion, we will use the

shorthand notation for the summation operator: Zx.

The standard deviation gives a measure of the average dispersion

Instruction Set Examples 427

about the mean. The following equation gives the standard deviation:

s =V n-1

If you wanted to compute the standard deviation of a set of numbers,

this equation would require you to first compute the mean of the num-
bers, and then to make a second pass over the list of numbers to com-

pute the standard deviation. A better equation to use in a statistics

procedure would require only a single pass over the set of data. Fortu-

nately, the standard deviation equation can be proven equivalent (we will

not repeat the proof here) to the following equation:

X -

n-1

The fijnction in Listing 4.13 uses this second equation in computing the

standard deviation. The main loop of the following function computes Xx
and Zx^. At the conclusion of the loop, the standard deviation and mean
are computed with the results left in ST and ST(1), respectively.

The later portion of the procedure makes extensive use of the floating-

point accumulator stack. In fact, it may be a bit difficult to follow

exactly what is occurring on the stack at each instruction through the

sequence. Table 4.2 gives a horizontal stack trace, which may help you

to understand the exact operation on the stack at each point. The stack

trace given on the right shows the contents of the floating-point accumu-

lator stack after the operation given on the left of the same line is com-

plete. For conciseness, the following identity is used in the table:

(^f

428 Programming the 80386

Stat: the following procedure computes the standard deviation
and the mean of a list of numbers. The list of numbers is a

list of long real numbers in memory pointed to by ESI. The
length of the list is given by ECX. The standard deviation is
computed and returned in the stack top. The mean is computed and
returned in ST(1)

.

The standard deviation is given by the following equation:
s=sqr t ((sum(x^) - sum (x) ^/n) / (n-1)

)

The mean is given by the equation: u=sum(x)/n
ECX: number of long reals
ESI: pointer (in DS) to list of long reals

Count EQU SS: dword ptr [EBP-4]
STAT PROC
ENTER 4 ,

MOV Count, ECX ; save the count for later use
FLDZ ; zero sum(x)
FLDZ ; zero sum(x^)

; The following loop computes sum(x)
; and sum(x^), which is left in ST.

LoopTop:
[ESI+ECX*81
add to sum(x)
create x^

add to sum(x^)

which is left in ST(1),

FLD qword ptr
FADD ST (2) , ST
FMUL ST.ST(O)
FADDP ST (1) , ST
LOOPNZ LoopTop

; At this point ST=sum(x^) and ST(l)=sum(x)
FLD ST (1)

FMUL ST, ST(1) compu te sum(x)^
FILD Count After ST=n
FDIV ST (1) , ST After ST(l)=sum(x)2/n
FXCH ST, ST(1)
FSUBP ST (2) , ST After ST(l)=sum(x^) -sum(x)^/n
FLDl
FSUBR ST, ST(1) After ST=n-l
FDIVP ST(2) ,ST After ST(l)=(sum(x2) -sum(x)2/n) / (n-1)
FDIVP ST(2) , ST After ST(l)=u=sum(x) /n
FSQRT After ST=s

; ST=s ST (1) =u
LEAVE
RET
STAT ENDP

Listing 4.13: Example 11— Statistics

Instruction Set Examples 429

STACK AFTER EXECUTION

INSTRUCTION ST ST(1) ST(2) ST(3) ST(4)

Ix^ Ix

FLD ST(1) Ix J.x' Ix

FMUL ST,ST(0) (L.f Ix^ Ix

FILD Count n (Ix)^ Ix' Ix

FDIV ST(1),ST n (Ix)Vn Ix' Ix

FXCH ST,ST(1) (Ix)Vn n Ix' Ix

FSUBP ST(2),ST n a Ix

FLDl 1 n a Ix

FSUBR ST,ST(1) n-1 n a Ix

FDIVP ST(2),ST n s^ Ix

FDIVP ST(2),ST s^ M
FSQRT s t^

Table 4.2: Horizontal stack trace

Chapter

^IB^H^B^^^^^^^^H THIS CHAPTER AND CHAPTER 6 DESCRIBE THE
80386 features that support operating systems. These chapters are less

tutorial than the previous chapters, which described the 80386 facilities

available to the applications programmer. In this chapter, we assume you

are familiar with the basic concepts incorporated in a multitasking oper-

ating system that supports virtual memory. We provide a brief introduc-

tion to review the relevant concepts and to acquaint you with our

terminology. This chapter is aimed primarily at developers of operating-

system software. However, applications programmers may find the first

half of this chapter helpful in understanding the concepts behind 80386

memory management, protection, and task support. Applications pro-

grammers who use the multiple-segment model discussed in Chapter 2

may find this information especially helpful.

Operating systems, even for single-user personal computers, must be

able to work on several things at once in order to make the most of the

computer's hardware facilities as well as the user's time. A computer

with a 386 has enough computing power to do several things in the

background, and it will even allow you to run your word processor or a

game program while you wait for the background programs to complete.

Alternatively, while using the word processor you may need to call up
the spreadsheet program to cook up some numbers for your report. You
can freeze the word processor in a background window while you run

432 Programming the 80386

the spreadsheet. Once you have fudged the numbers to your satisfaction,

you can transfer the data from the spreadsheet to the word processor,

and continue editing your report. You can switch back and forth from

spreadsheet to word processor as needed.

Each program constitutes a separate task, whether it is a spreadsheet

recalculation or download operation from a mainframe database running

unattended in the background, or a word processor or game program
requiring continuous interaction. Each task is the "sequential thread of

execution" of a single program. Within a task, the program executes

sequentially. However, the tasks themselves share processor time in a

fashion that makes the different tasks appear to simultaneously execute

asynchronously to each other. One task may suspend execution to wait

for a disk access to complete, permitting another task to use the pro-

cessor. Later an interrupt will arrive to signal completion of the disk

access. The task then executing is suspended so the interrupt can be

processed, which may indicate that another task is to resume execution.

Or you may control the task switching, as when you switch from one

window to another to suspend one application and resume another.

The operating system uses the facilities described in this chapter and

Chapter 6 to allocate and protect the computer's resources: main mem-
ory space, execution time, and peripheral devices. The operating system

allocates these resources to the tasks in the system so that all tasks run

efficiently to completion. The resource allocation and protection policies

of the operating system are enforced by the 80386 hardware memory-
management and protection mechanisms. The operating system uses the

80386 memory-management and protection mechanisms to ensure that

each task is protected from every other task. For example, the operating

system typically uses the memory-management mechanisms to ensure

that the memory areas allocated to the different tasks do not overlap

(unless they purposely share memory), and it uses the protection mecha-

nisms to ensure that none of the tasks can access memory allocated to

the operating system.

Most of the facilities described in this chapter and Chapter 6 are used to

allocate and protect resources. These facilities can be divided into three

groups, which mirror the three categories of resources defined above: main

memory space, processor time, and peripheral devices. Memory-
management facilities support the allocation and protection of memory
space. These memory-management facilities, along with the interrupt and

exception mechanism described in Chapter 6, support the allocation of pro-

cessor time. An I/O management facility supports the allocation and protec-

tion of peripheral devices. The memory-management and I/O-management

facilities are the topics of the remainder of this chapter.

Memory Management, Protection, and Tasks 433

Exceptions are an important operating-system facility, but they will not

be described in detail until Chapter 6. Certain key aspects of exceptions

are covered in this chapter to allow the remaining operating-system facili-

ties to be presented. An exception is like an invisible CALL instruction

that is executed any time an unusual or invalid operation occurs. The
target of the invisible CALL is a predefined operating-system procedure

written to handle the occurrence of the exception. This procedure may
either terminate the program raising the exception, or fix the cause of

the exception and return to resume the program at the point where the

exception occurred. Exceptions are used to report unusual or invalid

events to operating-system software. As you shall see, exceptions are the

enforcement mechanism that allows the operating system to keep control

of resources. If a program attempts to use or obtain resources it does not

own, an exception occurs to report the attempt to the operating system.

Memory-Management Facilities

There are two key parts to any complete memory-management sys-

tem: protection and address translation. Protection is provided to prevent

a task from accessing memory belonging to another task or the operating

system. Address translation gives the operating system flexibility in allo-

cating memory to tasks, and it is also a key protection mechanism.

Address Translation

As defined in Chapter 1, the physical memory in a computer is a lin-

ear array of bytes, each byte having a unique address known as its physi-

cal address. Chapter 2 defined the addresses used by programs to access

memory. These addresses had two parts to address the two-dimensional

segmented memory used by the 80386. This two-part address is not used

direcdy to access physical memory. Instead, program addresses are trans-

lated, or mapped, into physical memory addresses by an address transla-

tion mechanism. This translation mechanism supports the concept of a

virtual address, which is a two-part address generated by a program. The

term virtual address is used since these addresses do not correspond directly

to physical memory locations, but only indirectly through the virtual-to-

physical address mapping function.

Note that every address generated by a program is a two-part virtual

address, whether in the inner sanctum of the operating system or in the

most mundane application program. No matter what kind of program is

434 Programming the 80386

running, the memory-management mechanism operates to translate vir-

tual addresses into physical memory addresses.

The virtual-to-physical address translation also provides for memory
protection, since you can arrange that certain physical addresses are not

mapped from any virtual address. In addition to this basic protection,

the address translation function is extended so that virtual addresses can

be identified as invalid. Rather than generating a physical address when
presented with an invalid virtual address, the translation mechanism
reports an exception so that operating-system software can take appropri-

ate action.

Segmentation and Paging

To minimize the amount of information needed to specify the address

translation function, large seqential blocks of memory are mapped as

single units. This permits the mapping to be specified once for an entire

block of memory rather than requiring a separate specification for each

byte. Segmentation and paging are two widely used address translation

techniques. They differ in how virtual memory is organized into blocks

for mapping, how the translation information is specified, and how the

programmer views their operation.

Both segmentation and paging use memory-resident tables to specify

their respective translation functions. These tables are stored in memory
accessible only by the operating system, to prevent modification by appli-

cation programs. This is important, since changing the contents of the

translation tables changes the translation function, which in turn has the

eff'ect of changing the virtual address space. Typically, the operating sys-

tem will maintain a diff"erent set of translation tables for each task. This

allows each task to use addresses that span the entire virtual address

space. The eff'ect is that each task has a diff'erent virtual address space,

and the tasks are isolated from each other.

The 80386 uses both segmentation and paging in a two-stage virtual-

to-physical address translation mechanism, illustrated in Figure 5.1. The
first stage uses segmentation to translate a two-part address in the virtual

address space into an address in an intermediate address space, called

the linear address space. The second stage uses paging to translate this lin-

ear address to a physical address. Segmentation is always enabled, but

paging can be enabled or disabled as required. If paging is disabled, the

linear addresses produced by the segmentation translation stage are used

directly as physical addresses, as if the page translation function was the

identity map. This is illustrated as a bypass path around the paging

function in Figure 5.1. So if paging is disabled, the physical address is

the linear address. Otherwise, it is translated with the page table.

Memory Management, Protection, and Tasks 435

The linear address space has the same structure as the physical address

space. Both are one-dimensionaJ address spaces, in contrast to the two-

dimensional virtual address space. The virtual address space contains up
to 16K segments, each of which can be up to 4G in size, making the

virtual address space 64 terabytes (2'^^) in size. Both the linear and physi-

cal address spaces are 4G (2^^) bytes in size. In fact, if paging is turned

off, the linear address space is the physical address space!

The two translation mechanisms, segmentation and paging, are dis-

tinct mechanisms, each providing a separate stage of the overall address

translation function. Although both mechanisms make use of translation

tables stored in main memory, they use separate table structures. In fact,

the segment tables are stored in the linear address space, whereas the

page tables are stored in the physical address space. One consequence of

this is that the segment translation tables can be relocated by the paging

mechanism without the knowledge or cooperation of the segmentation

mechanism! The segment translation mechanism translates virtual

addresses into linear addresses, and accesses its tables at linear addresses,

but is not aware that the paging mechanism translates these linear

addresses into physical addresses.

Similarly, the paging mechanism knows nothing about the virtual

address space that is used by programs to generate addresses. Paging

Segmentation Paging

15 31

Selector Offset]=^
Virtual Address

31

=^
Linear Address

tt)
31

=rj
Ptiysical Address

(Paging Disabled)

Figure 5.1: Virtual-to-physical address translation function

436 Programming the 80386

simply translates linear addresses to physical addresses, and accesses its

translation tables in physical memory, unaware that the virtual address

space exists, or even that a segment translation mechanism exists.

The next section contains a brief digression on virtual memory, includ-

ing a brief discussion of the relative merits of segmentation and paging.

After that, we introduce some basic protection concepts before returning

to describe segmentation and paging individually.

Virtual Memory

Virtual memory is a technique used to provide the illusion of a mem-
ory space that is much larger than the physical main memory available

in a computer system. This illusion allows programs to be written with-

out regard to the exact size of physical memory. One benefit is that a

program can easily run on a wide range of configurations with radically

diff'erent physical memory sizes. Another benefit is that you can write a

program that uses a virtual memory size that is much larger than the

physical memory on any configuration.

The virtual memory illusion is supported by the memory translation

mechanism, in conjunction with a large amount of fast hard-disk storage.

At any time, the virtual address space is mapped such that a small part

is in main memory, with the rest stored on the disk. Since only the

part of the virtual memory that is stored in main memory is available to

the processor, this technique relies on locality of reference within a pro-

gram to ensure that only a small amount of the total virtual memory
needs to be in main memory at any instant during the execution of a

program. As the program executes, the neighborhood of memory refer-

ences changes, necessitating that some parts of the virtual memory be

brought in from the disk to main memory, while other parts of the vir-

tual memory can be moved from main memory out to disk storage.

For example, a large application program might provide a large menu
of functions. As you select one function from the menu, you would exe-

cute several subroutines specific to that function, but would not reference

the subroutines that implement the remaining functions. In a virtual

memory system, the execution of the selected menu function would be

supported by bringing the code and data for the selected function into

main memory (if not already there). Code and data for the inactive

functions could be moved out to (or remain on) the disk. As long as the

physical memory was large enough to hold the code and data for any

single function, the total size of the physical memory could be much
smaller than the total size of the application.

The address translation mechanism supports virtual memory in two

ways. First, it is used to mark only the parts of the virtual memory actu-

ally in main memory as valid, and it is set up to translate virtual

Memory Management, Protection, and Tasks 437

addresses corresponding to the resident parts of the virtual memory to

their respective physical memory addresses. If a program references a

virtual address corresponding to a part of the virtual memory that is not

resident, the reference will cause an exception due to invalid mapping
information. The operating system can handle this exception by reading

the missing part into main memory from the disk, and updating the

address translation tables as needed. After the cause of the exception has

been removed, the program can be resumed by returning from the excep-

tion handler. This will reexecute the instruction that raised the exception,

and the instruction should now complete successfully.

The address translation mechanism also supports virtual memory by
collecting usage statistics on the parts of the virtual memory that are resi-

dent in main memory. These usage statistics help the operating system

decide what can be moved back to the disk when main memory space

is tight.

On the 80386, paging is the best choice for supporting virtual mem-
ory. As described in later sections, paging uses fixed-size blocks and seg-

mentation uses variable-size blocks to manage memory. The fixed-size

blocks used by paging turn out to be better suited for managing physical

memory, whether it is in main memory or on the disk. This superiority

in handling the physical side of the virtual memory illusion makes pag-

ing the technique of choice for supporting virtual memory.

On the other hand, the variable-size blocks used by segmentation

make it better suited for handling the logical partitioning of a complex

system. Units of memory can be defined as appropriate to their logical

meaning without regard for artificial constraints imposed by fixed-size

pages. Each segment can be handled as a single unit, simplifying the

protection and sharing of segments.

Protection

There are two broad classes of protection supported by the 80386. One is

the ability to completely separate tasks by giving each task a different virtual

address space. This is done by giving each task a different virtual-to-

physical address translation map. The other protection mechanisms oper-

ate within a task to protect operating-system memory segments and

special processor registers from access by application programs.

Protection between Tasics

An important aspect of protection is the ability to protect application

tasks from each other. On the 80386, this is accomplished by putting

each task in a diff'erent virtual address space, by giving each task a

438 Programming the 80386

different virtual-to-physical address translation map. The address transla-

tion function in each task is defined so that the virtual addresses in one

task map to one part of the physical memory, while the virtual addresses

in another task map to different areas in the physical memory. Since one

task cannot generate any virtual address that maps to a part of physical

memory used by the other task, the tasks are isolated from each other.

Each task is given a different address translation function simply by
having a separate set of mapping tables for each task. On the 80386,

each task has its ov^n segment tables and page tables. When the pro-

cessor switches to execute a new task, a key part of this task switch is

switching to the translation tables for the new task.

The operating system could be stored in a separate task, in order to

isolate it from all of the applications. However, the protection mechanism
described in the next section, which operates within a task, is better

suited to protecting the operating system from applications. This mecha-

nism allows the operating system to be shared by all tasks, and accessed

from within each task, while still protecting the operating system from

the applications. The operating system is shared by all tasks by arrang-

ing to have a part of the virtual-to-physical address map the same in all

tasks, and storing the operating system within this common part of the

virtual address space. This part of the virtual address space that is com-

mon to all tasks is called the global address space.

The part of the virtual address space that is unique to a single task

—

that is, the part that is not shared with any other task— is called the local

address space. The local address space contains the code and data private

to the task that needs to be isolated from the other tasks in the system.

One consequence of having a different local address space in each task

is that a reference to the same virtual address in two different tasks will

translate to different physical addresses. This allows the operating system

to give each task memory at common virtual addresses, yet ensure task

isolation. On the other hand, a reference to the same virtual address in

the global address space will translate to the same physical address in all

tasks. This supports sharing of common code and data, such as the oper-

ating system. The global and local address spaces will be discussed in

more detail, with examples, in the sections of this chapter that describe

the segmentation and paging mechanisms in detail.

The initialization example in Chapter 7 demonstrates how the global

and local address spaces can be defined as suggested here. In that

example, the operating system is in the global address space and is

shared by all tasks. The application code and data for each task is stored

in the local address space.

Memory Management, Protection, and Tasks 439

Protection within a Tasl(

Within a task, four execution privilege levels are defined to restrict

access to the segments in the task according to the sensitivity of the data

contained in the segment and the degree to which different parts of the

program in the task can be trusted. The most sensitive data is assigned

to the most privileged level, where it can be accessed only by the most

trusted part of the task. Less sensitive data is assigned to lesser privileged

levels, where it can be accessed by the less trusted parts of the task.

The levels are numbered from to 3, with the most privileged and

3 the least privileged. The numeric assignment of the levels from to 3

makes sense, as long as you remember that a level with a higher number
has a lower privilege! To avoid this ambiguity, we will not use the terms

greater than or less than when comparing privilege levels. Instead, we will

use the terms inner to mean more privileged, with lower numeric level,

and outer to mean less privileged, with higher numeric level. Level is

known as the innermost privilege level, and level 3 is the outermost

level. This four-level hierarchy is illustrated in Figure 5.2 as a set of con-

centric circles.

Each memory segment is associated with a privilege level. This privi-

lege level limits access to the segment to programs with sufficient

privilege. Recall from Chapter 2 that the processor fetches and executes

instructions from the segment addressed by the CS register. The Current

Privilege Level, or CPL, is simply the privilege level of this currently active

code segment, and it defines the level of privilege of the program cur-

rently executing. The CPL determines which segments can be accessed

by the program.

Whenever the program attempts to access a segment, the current priv-

ilege level is compared to the privilege level of the segment to determine

if the access is permitted. A program executing at a given CPL is per-

mitted access to a data segment in the same level, or in an outer level.

An attempt to reference a segment at an inner level is illegal, and raises

an exception to report the violation to the operating system.

Each privilege level has its own program stack (Chapter 2), to avoid

protection problems associated with a shared stack. As a program
switches execution from one privilege level to another, the stack segment

is changed to the stack for the new level. The method used to switch

from one level to another is described later in this chapter, in the section

on control-transfer methods.

Typical usage of privilege levels is to put the kernel of the operating

system in level 0, the rest of the operating system at level 1, and applica-

tions at level 3. This leaves level 2 free for use by intermediate software

440 Programming the 80386

Figure 5.2: Four levels of privilege

Memory Management, Protection, and Tasks 441

levels. Given this allocation of privilege levels, the operating-system (OS)

kernel at level has access to every segment in the task. The rest of the

operating system in level 1 has access to all segments except those at

level 0. The application at level 3 can only access its own segments,

which are also at level 3. This allocation protects the OS kernel from the

rest of the operating system, and prevents the application program from

accessing any operating-system segments.

Figures 5.3, 5.4, and 5.5 illustrate the four privilege levels, the assign-

ment of segments to privilege levels, and the access rules for segments

based on the current execution privilege level, CPL. The OS kernel at

level is stored in a level code segment named CodCk and a level

data segment named Data^. The rest of the operating system at level 1 is

stored in the segments CodCos and Dataos, and the application is stored at

level 3 in CodCap and Dataap. These examples do not use level 2. When
the application code in the segment CodCap is executing, CPL is 3, and

only the application segments Code^p and Dataap are accessible, as shown

in Figure 5.3.

Figure 5.4 illustrates how the operating system executes with CPL = 1,

and can access its own segments as well as the application segments.

Figure 5.5 illustrates how the OS kernel can access all six segments in

this small system as it executes at CPL =0.

Combined Protection Levels

The two previous sections detailed the two aspects of protection pro-

vided on the 80386: protection between tasks, and protection within a

task. This section describes how these two aspects work together to pro-

tect applications from each other, to allow all applications to share the

operating system, yet to protect the operating system from all of the

applications.

Each application is put into a separate task, with the code and data

specific to that application stored in segments at level 3 that are local to

the task. The operating system is stored in level 1 segments that are

global to all tasks. The kernel is stored in global level segments.

This mapping of applications and operating system is illustrated in

Figure 5.6, where the concentric circles illustrate protection levels, and

the radial lines through the level 3 ring indicate task boundaries. This

arrangement has the operating system and kernel shared by all tasks,

since they are mapped in the global address space, signified by the

absence of radial lines through levels and 1. Yet the operating system

is protected from each application, since the applications are at level 3,

and the operating system is at levels and 1 . Although all of the appli-

cations are at level 3, they are stored in different virtual address spaces

in different tasks to provide protection between applications.

442 Programming the 80386

Figure 5.3: Segments accessible at privilege level 3

Memory Management, Protection, and Tasks 443

Figure 5.4: Segments accessible at privilege level 1

444 Programming the 80386

Figure 5.5: Segments accessible at privilege level

Memory Management, Protection, and Tasks 445

Figure 5.6: Protection between and within tasks

446 Programming the 80386

Segmentation

Segmentation organizes virtual memory as a collection of variable-size

units, called segments. The 80386 segmentation model uses a two-part vir-

tual address: a segment part and an offset part. Chapter 2 introduced

these two-part virtual addresses, described the segment registers provided

to hold the segment parts of addresses, and detailed the address modes
available to generate the offset parts of addresses. This chapter describes

the segment part of the virtual address in detail by describing how seg-

ments are defined and how virtual addresses are translated to linear

addresses. Chapter 3 described the instructions available for loading

selectors into segment registers to make segments addressable. This chap-

ter describes in detail the process used to make a segment addressable

when a segment register is loaded.

Segments form the basis of the virtual-to-linear address translation

mechanism. Each segment is defined by three parameters, two of which

relate virtual addresses given by offsets within the segment to linear

addresses:

1. The base address of the segment specifies the starting address of

the segment in the linear address space. The base address is the

linear address corresponding to the virtual address at offset

within the segment.

2. The segment limit, which is the largest offset that can be used

with the segment in a virtual address. This defines the size of the

segment.

3. Attributes of the segment, which indicate segment characteristics such

as whether the segment can be read from, written to, or executed

as a program; the privilege level of the segment; and so on.

The segment limit defines the size of the segment in the virtual

address space. The base address and limit define the range of linear

addresses mapped by the segment. Virtual addresses within the segment

at offsets ranging from to limit correspond to linear addresses ranging

from base to base + limit. A virtual address in the segment with an offset

larger than the segment limit makes no sense, and if used, will cause an

exception. An exception also occurs if an access is not permitted by the

segment's attributes. For example, the 80386 detects an exception if you

attempt to write into a read-only segment.

Figure 5.7 illustrates how segments are relocated from the virtual

address space to the linear address space. The virtual address space is

shown on the left. There are three segments defined—A, B, and C

—

Memory Management, Protection, and Tasks 447

Virtual Address Space I Linear Address Space

Limitfl

Segment

B

LimitA

Segment

A

-t

Limitr

Segment

C

-r

+

Basen + Limitp

Base.

Base^ + LimitA

BaseA

Basec + Li mite

Baser

Figure 5.7: Virtual-to-linear address translation

448 Programming the 80386

with sizes given by LimitA, Limitfi, and Limitc- The virtual-to-hnear

translation is defined by the segment base addresses BascA, Basen, and
Basec- This translation is shown symbolically by dotted lines connecting

segments A, B, and C in the virtual space to the corresponding regions

of the linear space defined by BaseA to BascA + LimitA for segment A,

BascB to Bases + Limits for segment B, and Basec to Bascc + Limitc

for segment C. Note that segment A is stored just above segment C.

This means that BascA = Basec + Limitc + L There is a gap between

the end of segment A and the beginning of segment B.

Because each memory reference checks to ensure that the offset part of

an address is within the segment limits, a very large offset in segment C
(an offset larger than Limitc) does not address memory in segment A,

but instead will raise an exception to report the segment limit violation

to the operating system. This limit check permits the operating system to

allocate segment A to privilege level 3 and segment C to an inner privi-

lege level, and ensure that a level 3 program cannot use an "illegal"

offset within segment A to access memory in segment C, even though

the segments are close together in the linear address space.

The base address, limit, and protection attributes for a segment are

stored in a segment descriptor, which is referenced during the virtual-to-

linear address translation process. Segment descriptors are stored in

memory in descriptor tables, which are simply arrays of segment descrip-

tors. The segment selector introduced in Chapter 2 identifies a segment

by specifying the location of the descriptor for the segment. Descriptor

tables, selectors, and descriptors are described in more detail in the fol-

lowing sections.

Segment Descriptor Tables

The Global Descriptor Table (GDT) and the Local Descriptor Table (LDT)
are special segments that contain the segment descriptor tables. Descrip-

tor tables are stored in special segments that are maintained by the oper-

ating system and referenced by the memory-management hardware in

the processor. These segments should be stored in protected memory
accessible only by operating-system software to prevent application soft-

ware from modifying the address translation information.

The virtual address space is divided into two equal halves: one half is

mapped by the GDT, the other half by the LDT. The total virtual

address space consists of 2^'^ segments. Half of this space, or 2' seg-

ments, is the global virtual address space mapped by the GDT. The
other half is the local virtual address space mapped by the LDT. A seg-

ment descriptor is located by indicating a descriptor table (GDT or

LDT), along with a descriptor number within the indicated table.

Memory Management, Protection, and Tasks 449

When a task switch occurs, the LDT is changed to the LDT for the

new task, but the GDT is unchanged. Consequently, the half of the vir-

tual address space mapped by the GDT is common to all tasks in the

system, but the half mapped by the LDT is changed at a task switch.

Segments shared by all tasks in the system are mapped by the GDT.
Such segments would include the segments containing the operating sys-

tem, and the LDT segments for all of the tasks in the system. The LDT
segment can be thought of as data belonging to the operating system.

The LDT contains descriptors for the segments private to a single

task. Several tasks can share a common LDT. In this case the same set

of segments are available to all of these tasks, since they have the same
LDT, and all tasks share a single GDT. Two tasks can also have a

descriptor for a shared segment in both of their LDTs, in order to share

a segment without having to put its descriptor in the GDT for all tasks

to share. In this case, the shared segment must be treated specially by

the operating system, since it has two descriptors in two different LDTs
that must be updated together.

Figure 5.8 illustrates how the segments in a task can be split between

the GDT and LDT. There are eight segments that hold two application

programs (A and B) plus the operating system and kernel. There are

two tasks in the system, one for each application program, and each task

has its own LDT. Application A runs in Task A, which has LDTa map-

ping the segments CodcA and DataA, which contain the code and data

for application A. Similarly, application B runs in Task B, with Codes

and DataB mapped by LDTb. The two segments that hold the operating

system. Codecs and Dataos, and the kernel segments CodcK and Datax

are mapped by the GDT so they can be shared by both tasks. The LDT
segments LDTa and LDTb are also mapped by the GDT.
The set of segments accessible when Task A is executing include

CodcA and DataA rnapped by LDT^, plus the operating-system segments

Codecs, Dataos, Codex, and Datax, mapped by the GDT. When Task B
is executing, the set of addressable segments changes to Codes and Datan

mapped by LDTb, plus the operating-system and kernel segments

mapped by the GDT.
This example illustrates how the virtual address space can be struc-

tured to isolate application tasks from each other by use of separate

LDTs per task. When Task A is executing, the segments for Task B are

not part of the virtual address space, so there is no way for Task A to

access memory in Task B. Similarly, when Task B is executing, the seg-

ments for Task A cannot be addressed. This use of LDTs isolates appli-

cation tasks from each other, meeting one of the key protection

requirements oudined earlier in this chapter.

450 Programming the 80386

Figure 5.8: Global and local address spaces

Memory Management, Protection, and Tasks 451

Segment Selectors

The segment selector was introduced in Chapter 2 as the segment part of

a two-part virtual address. A segment selector identifies a segment, and can

be thought of as the name of the segment. As shown in Figure 5.9, a seg-

ment selector is 16 bits in size, and contains three subfields. The RPL
(requested privilege level) field is in the low-order 2 bits. It provides a key

part of the segment protection model, and is described in more detail

below. The TI bit in bit 2 identifies the descriptor table containing the

descriptor of the segment. TI =0 indicates that the descriptor for the seg-

ment is in the GDT TI = 1 indicates that the descriptor is in the LDT The
index field is in the high-order 13 bits of the selector, and it gives the index

of the descriptor for the segment within the GDT or LDT.
As you can see, a selector names a segment by locating the descriptor

for the segment. The TI bit identifies the descriptor table containing the

descriptor, and the index field identifies the descriptor within the indi-

cated table. The descriptor holds all of the information needed to access

a segment, such as the segment base address, size, and attributes. Seg-

ment selectors can be thought of as placeholders for descriptors, or as

indirectly specifying the descriptor.

For example, the following selector identifies segment 3 within the

GDT, with RPL=0. The index field is lib, or 3, and the TI bit is 0,

indicating the GDT.

index TI RPL

0000000000011 00

15 3 2 10

Descriptor Index
T

1

RPL

Figure 5.9: Selector format

452 Programming the 80386

The following selector identifies segment 8191 within the LDT, with

RPL=3. The index field is 11111111111 lib, or 8191, and the TI bit is

1, indicating the LDT. Note that this is the largest index that can be

given.

index TI RPL

1111111111111 1 11

Null Selector

The following selector is a special value called the null selector. It has

TI =0 and index =0, but it can have any value in the RPL field. As
noted in the detailed descriptions given in the section on Memory Data

Access Details later in this chapter, any memory reference that uses a

segment register containing the null selector will raise an exception. The
null selector is a useful value that can be used when a placeholder selec-

tor is needed, but when no segment makes sense. Note that a selector

that has TI = 1 and index = is not a null selector, but instead identifies

the segment described by the first descriptor in the LDT.

index TI RPL

0000000000000 RPL

Because the null selector has TI =0 and index =0, it occupies the first

descriptor slot in the GDT When the operating system builds descriptor

tables, it must build in a "dummy" descriptor in the first GDT descrip-

tor slot to account for the null selector. This descriptor is never refer-

enced by the processor.

RPL Field Usage

Whenever the program attempts to access a segment, the current priv-

ilege level (GPL) is compared to the privilege level of the segment to

determine if the access is permitted. The RPL field of the selector

modifies this privilege level test by checking as if the program was exe-

cuting at a privilege level given by the outermost of GPL and RPL.
RPL allows the operating system to "weaken" its GPL when operat-

ing with selectors passed in as parameters by outer-level routines. The
operating system simply sets the RPL of all selector parameters to the

GPL of the program that passed the selector. This is elficiendy done by

using the ARPL instruction described in Ghapter 3. Then, when the

operating system uses the selector to access a segment, the privilege level

Memory Management, Protection, and Tasks 453

checks will be done using the CPL of the calling program (stored in

RPL) rather than the CPL of the operating system. This ensures that

the operating system does not access a segment on behalf of a calling

program unless that program itself has access to the segment.

CPL is stored in the RPL field of the CS register. Whenever a code

segment selector is loaded into the CS register, the processor automati-

cally stores CPL into the RPL field of CS. A program can examine
CPL by storing the CS selector into a general register or memory.

Segment Descriptors

Previous sections have introduced the descriptor tables that contain

descriptors, and the segment selectors that identify segments by locating

their descriptors. Now it is time to describe the descriptors themselves.

Before we give the exact format of a segment descriptor, we will

abstracdy describe the key fields of a descriptor. (If you are impatient,

you can look ahead to Figure 5.10 to see the detailed format of a seg-

ment descriptor). Each segment descriptor is eight bytes in size, and con-

tains three fields: a segment base address, a segment limit, and segment

attributes.

Base and Limit

The base address is 32 bits, in order to allow a segment to start at

any byte address in the 32-bit linear address space. The limit is also 32

bits, but is specified with only 20 bits in the descriptor. Segment limits

can be byte granular or 4K byte granular, as defined by one of the 12

attribute bits. Therefore, the 20-bit limit permits specification of segment

sizes from one byte to one megabyte in one-byte increments, or sizes

from 4K bytes to 4G bytes in 4K byte increments. Use of 4K granular-

ity permits specification of large segment limits, but leaves 12 bits avail-

able for segment attributes, described below.

For example, a segment with

Base = 012345678

Limit =

Granularity = (byte granular)

describes a segment that is one byte long, at linear address 12345678.

Within this segment the only valid offset is 0, to access the single byte in

the segment, and all other offsets will generate exceptions.

When a 4K granular limit is specified, the full limit is computed from

454 Programming the 80386

the 20-bit limit stored in the descriptor using the following formula:

Segment Limit = Descriptor Limit * 4K + 4095
= Descriptor Limit « 12 + OFFFh

In other words, the 20 bits in the descriptor limit field give the upper

20 bits of the segment limit, with the bottom 12 bits set to OFFFh. The
bottom 1 2 bits of the segment limit are set to OFFFh so that a descriptor

limit of specifies a 4K segment. More importandy, the largest descrip-

tor limit, 2^°-l (OFFFFFh), specifies a segment that is 4G in size.

For example, a segment with

Base = 12345000h

Limit =

Granularity = 1 (4K granular)

describes a segment that starts at linear address 12345000h, and is 4K
long. Offsets from to OFFFh are valid in this segment, and translate to

linear addresses from 12345000h to 12345FFFh.

Another good example is a segment with

Base =

Limit = OFFFFFh

Granularity = 1 (4K granular)

which describes a segment that encompasses all 4G of the linear space.

The limit is OFFFFFh 4K chunks, so the largest offset that can be spe-

cified is OFFFFFh * lOOOh + OFFFh, or OFFFFFFFFh. If you count the

Fs in that offset correctly, you will see that this results in a segment that

is exactly 4G in size. Since the base address is 0, this large segment is

mapped directly on top of the entire 4G linear address space.

Segments can be extended in size by increasing the segment limit

(which may require moving segments within the linear address space to

make room for the larger segment!). This works well for data segments

that can grow "up" in memory, but is no help for the segment contain-

ing a stack. Recall from Chapter 2 that the program stack is stored in

the segment addressed by the SS segment register, the ESP register holds

the offset of the top of the stack, and the stack grows toward lower

offsets within this segment as elements are pushed. Because the program

stack grows "down," it is usually allocated so that it starts at the top of

the segment (at the segment limit), and grows down toward offset in

the segment. Expand-down segments are provided to support expansion

of stacks in the natural direction for stacks: down!

Memory Management, Protection, and Tasks 455

An expand-down segment has the role of the limit reversed. In a

normal segment, the limit field divides the 4G range of possible offsets

into two subranges: from to the limit are the legal offsets, and from

limit + 1 to 4G - 1 are the illegal offsets. In an expand-down segment, the

legal vs. illegal interpretation is reversed. The offsets from to the limit

are illegal offsets (which will signal exceptions), and offsets from limit + 1

to 4G-1 are the legal offsets.

The expansion direction for the segment is another segment attribute

that is stored in the segment descriptor. This attribute is referenced to

determine how to use the limit field to check for limit violations.

Segment Attributes

The segment privilege level is stored in the attribute field in every

type of segment descriptor, and so is named the Descriptor Privilege Level, or

DPL. This field is 2 bits in size in order to hold a privilege level that is

a number from to 3.

The Present (P) bit is a second attribute bit common to all descriptor

types. If set, it indicates that the descriptor is valid for use in translating

virtual addresses to linear addresses. If it is clear, it indicates that the

descriptor is not valid for address translation, and any attempt to use

the descriptor should report an exception.

Another attribute bit common to all descriptors is the DType bit, which

distinguishes two kinds of descriptors. If the DType bit is 1, the descrip-

tor is for a memory segment. If it is 0, the descriptor is for a system seg-

ment or a gate. The LDT is one system segment that has already been

introduced. Gates will be described later in this chapter.

The following sections describe the encoding of descriptors for memory
segments, system segments, and gates. Although the format of memory seg-

ments and system segments is similar, they have different attributes, and so

are discussed in separate sections. The format of gate descriptors is quite

different from memory or system segment descriptors.

Memory Segment Descriptor Format

Memory segments hold all of the code and data that can be accessed

directly by a program. Figure 5.10 illustrates the format of a memory
segment descriptor. The eight-byte descriptor is shown with the lowest

addressed byte (assumed to be at address m) on the right, with the rela-

tive byte addresses shown along the top. The attributes stored in the

bytes at offsets 5 and 6 are shown in a magnified view that includes bit

offsets as well as byte offsets. The DType bit is bit 4 of the byte at offset

5. It is 1 for memory segments (labeled as DTI in Figure 5.10) and

for system segments and gates.

456 Programming the 80386

The base address is spHt into two pieces: bits 23... are stored in three

bytes beginning at offset 2, and bits 31... 24 are stored in the byte at

offset 7. The hmit field is also split into two parts: bits 15... are stored

in the two bytes at offset 0, and bits 19... 16 are stored in the low-order

4 bits of the byte at offset 6. Segment attributes are stored in the two

bytes at offset 5 and 6, and are discussed separately in the following list.

G The G bit is the limit Granularity attribute discussed above.

G = indicates a byte granular limit. G = 1 indicates a 4K
granular limit. Note that the G bit only affects the granular-

ity of the segment limit. The segment base is always byte

granular.

D The D bit should always be 1 for 80386 software. As dis-

cussed in Chapter 9, 80286 software should have this bit set

to 0. This bit gives a Default for segments that are executable

or expand-down, or that are addressed by the SS register, as

follows:

1. Executable segments use the D bit to set the default

size for addresses and operands referenced by the

instructions in the segment. D = 1 indicates that the

m + 7 m + 6 m + 5 m + 4 m + 3 m + 2 m + 1

Base

31...24

F

Attributes

•

Segment Base

23...0

1 1

Segment Limit

15.. .0

1

m + 6 m + 5
1

7654321076543210|
A Limit D

G D V

L 19.. .16

P DPL T

1

TYPE

* Figure 5.10: Memory segment descriptor format

Memory Management, Protection, and Tasks 457

default is 32-bit addresses and 32-bit or 8-bit operands,

the normal setting for 80386 programs. D=0 indicates

the default is 16-bit addresses and 16-bit or 8-bit oper-

ands, for compatibility with the 286. An instruction

prefix can be used to get a size other than the default.

2. Expand-down segments use the D bit to determine the

upper bound of the segment. D = 1 indicates a 4G upper

limit for the segment. D = indicates a 64K upper limit

for compatibility with the 286.

3. Segments addressed by the SS register use the D bit to

determine whether to use the 32-bit ESP register

(if D = 1) for implicit stack references such as the

PUSH and POP instructions, or to use the 16-bit SP
register (D = 0) for 286 compatibility.

AVL The Available-to-Sojiware bit is available for software use. The
80386 does not interpret this bit, and Intel promises that all

future processors compatible with the 80386 will not define a

use for this bit.

P The Present bit is discussed above. P = 1 indicates that the

descriptor is valid for address translation. P =0 indicates that

the descriptor is not valid, and use of the descriptor will

cause an exception.

DPL The Descriptor Privilege Level defines the privilege level associ-

ated with the segment.

DT The DType bit distinguishes memory segments (DType = 1)

from the system segments and gates (DType =0). This field

is labeled DTI in Figure 5.10.

Type The 4-bit Type field defines the type of the memory descrip-

tor. The codes are given in Table 5.1. The read, write, and

execute attributes in Table 5.1 need no further explanation.

The expand-down limit attribute was discussed above, and

the conforming attribute for code segments will be discussed

in a later section. A descriptor is marked as "accessed" by

the 80386 when the corresponding selector is loaded into a

segment register. The "accessed" attribute can be examined

by operating-system software to see if a descriptor has been

accessed by the processor since the last time software cleared

the bit to 0.

400 l^rogramming the oUJbb

System Segments and Gates

System segments are special segments used by the 80386 segmentation

mechanism. Gates do not describe segments, but instead contain

pointers. System segments and gates are described in detail later in this

chapter. The definition of their descriptor format is included here as ref-

erence information.

Figure 5.11 illustrates the format for system segment descriptors. The
base and limit fields are the same as for memory segment descriptors, as

are the limit granularity (G) bit, the present (P) bit, the DPL field, the

DType bit, and even the Available-to-Software (AVL) field. The Type field

is present, but is encoded differendy. Only the default (D) bit is missing,

and is ignored (labeled as X in Figure 5.11). The DType bit is (labeled

as DTO), identifying this as a system segment or gate descriptor.

TYPE DEFINES

Read-only

1 Read-only, accessed

2 Read/write

3 Read/write, accessed

4 Read-only, expand-down limit

5 Read-only, expand-down limit, accessed

6 Read/write, expand-down limit

7 Read/write, expand-down limit, accessed

8 Execute-only

9 Execute-only, accessed

A Execute/read

B Execute/read, accessed

C Execute-only, conforming

D Execute-only, conforming, accessed

E Execute/read, conforming

F Execute/read, conforming, accessed

Table 5.1: Memory segment descriptor types

Memory Management, Protection, and Tasks 459

As with memory segment descriptors, the byte at offset 5 contains a

4-bit Type field, which determines whether the descriptor is for a system

segment or a gate. The Type field codes for both system segments and

gates are given in Table 5.2. The LDT system segment type has already

been introduced. The busy and available 386 TSS system segment types,

the 386 call gate type, and the task gate type will be described later in

this chapter. The 386 trap and interrupt gate types will be described in

Chapter 6. The 286 TSS types and the 286 gate types are the 16-bit

counterparts of the 386 types and will be discussed in Chapter 9.

Figure 5.12 illustrates the format for gate descriptors. Gates contain a

48-bit full pointer, plus 16 bits of attributes. The 48-bit pointer has the

same information as the full pointer data type introduced in Chapter 2,

but is stored with the offset split into two pieces. The selector part of the

pointer is stored in bytes at offset 2 and 3. The 32-bit offset is stored in

two different pieces. The low-order 16 bits of the offset are stored at

offset 0, and the high-order 16 bits are stored at offset 6.

m + 7 m+6 m+5 m + 4 m + 3 m + 2 m + 1 m

Base

31. ..24

Attributes

•

Segment Base

23.. .0

1 1

1

Segment Limit

15.. .0

r"
——— L .

1

m + 6 m + 5
1

17654321076543 2 1

A Limit D

G X V

L 19.. .16

P DPL T TYPE

Figure 5.11: System segment descriptor format

460 Programming the 80386

TYPE DEFINES

Undefined

1 Available 286 TSS

2 LDT
3 Busy 286 TSS

4 286 Call Gate

5 Task Gate

6 286 Interrupt Gate

7 286 Trap Gate

8 Undefined

9 Available 386 TSS

A Undefined

B Busy 386 TSS

C 386 Call Gate

D Undefined

E 386 Interrupt Gate

F 386 Trap Gate

Table 5.2: Type field encoding for system segments and gates

m + 7 m + 6 m + 5 m+4 m + 3 m + 2 m + 1

r
Offset Attributes

I

Selector

1- "
Offset

31. ..16

1 1
•

15...0

n
1

7 6 5

m + 5

4 3 2 10 7 6 5

m + 4 1

4 3 2 10

P DPL T TYPE

Dword

Count

Figure 5.12: Gate descriptor format

Memory Management, Protection, and Tasks 461

In a gate descriptor, the attributes are stored in the bytes at offset 4

and 5, as follows:

P This is the Present bit. P = 1 indicates that the gate is

valid. P =0 indicates that it is not valid, and use of

the gate should cause an exception.

DPL This is the Descriptor Privilege Level, which defines the

privilege level associated with the gate.

DT This is the DType bit, which distinguishes memory
segments (DType = 1) from systems segments and
gates (DType =0).

Type This 4-bit field defines the type of the gate, given in

Table 5.2 above.

Dword Count This field gives the number of dwords (4 bytes) of

parameters to copy from one stack to another if use

of the gate results in a level transition and a stack

change. As described later, this allows procedure

parameters to be passed on the program stack, as

described in Chapter 2, even if a level transition

and stack change occur.

Descriptor Shadow Registers

To avoid referencing the descriptor table to read and decode a seg-

ment descriptor for every memory reference, each segment register has

associated with it a set of descriptor shadow registers. These registers

hold the descriptor information for the segment identified by the selector

in the segment register. The segment register is visible to the program-

mer, either as one of the six segment registers defined in Chapter 2, or

as one of the registers described later in this chapter. The associated reg-

isters that hold the descriptor are not visible to the programmer, and so

are called shadow registers. Figure 5.13 shows the six segment registers with

their shadow registers. The segment registers are drawn with solid lines,

to indicate that they are visible to the programmer. The shadow registers

are drawn with dashed lines to indicate they are not visible.

The shadow registers hold the base, limit, and attributes for the seg-

ment addressed by the corresponding segment register They are loaded

with the descriptor information whenever the corresponding segment reg-

ister is loaded with a selector. This allows the descriptor to be loaded

only once for many references to the segment. Since the shadow registers

are stored on-chip on the 80386, they can be accessed rapidly by the seg-

mentation hardware. High-performance execution is achieved, since most

462 Programming the 80386

instructions reference data in segments whose selectors have already been

loaded into segment registers.

The instructions in the Multiple Segment section of Chapter 3 each

load a new selector into a segment register. Each of these instructions

will also load the corresponding descriptor information into the shadow

registers. Chapter 3 described these instructions as viewed by the pro-

grammer; that is, as instructions tliat load selectors into segment regis-

ters. Later sections of this chapter expand on this definition to detail how
the corresponding descriptors are checked by these instructions, and, if

all checks pass, how they are loaded into the shadow registers. If any of

the checks fail, an exception is raised and none of the selector or shadow

registers are modified.

Because the shadow registers contain a copy of the descriptor informa-

tion, the operating system must take care to ensure that changes to the

descriptor table are reflected in the shadow registers. Otherwise, a seg-

ment might have its base address or limit changed in the descriptor table

Segment Register

Visible to Programmer

ES Selector

CS Selector

SS Selector

DS Selector

FS Selector

GS Selector

Base

Base

Base

Base

Base

Base

Descriptor Shadow Register

Invisible to Programmer

n—:"—

r

H
H

H

H

H
J,

Limit

Limit

Limit

Limit

Limit

Limit

h

f
f
f
h

Attributes

Attributes

Attributes

Attributes

Attributes

Attributes

Figure 5.13: Descriptor shadow registers

Memory Management, Protection, and Tasks 463

but not in the shadow registers. The easiest way to handle this is to

reload all six segment registers after changing any descriptors in the

descriptor table. This will reload the shadow registers with the latest

information from the descriptor table.

*^ Paging

Paging is the second part of the 80386 memory-management mecha-
nism. It operates underneath segmentation to complete the virtual-to-

physical address translation process. Segmentation translates virtual

addresses to linear addresses. Paging translates the linear addresses put

out by segmentation to physical addresses.

The paging mechanism is enabled by the PG bit in CRO. If PG = 1,

paging is enabled and linear addresses are translated to physical

addresses using the mechanism described in this section. If PG =0, pag-

ing is disabled and the linear addresses generated by the segmentation

mechanism are used directly as physical addresses.

Unlike segmentation, which operates with variable-size chunks of

memory, paging operates with fixed-size chunks of memory called pages.

Paging divides both the linear and physical address spaces into pages.

Any page in the linear address space can map to any page in the physi-

cal address space. Figure 5.14 illustrates how paging divides both the lin-

ear and physical address spaces into pages and provides an arbitrary

mapping between the spaces. The linear address space is illustrated on

the left as a sequence of fixed blocks representing pages. The physical

address space is shown on the right, also as a sequence of pages. The
arrows in the figure connect a page in the linear space to the correspond-

ing page in the physical space. Note the arbitrary correspondence of

pages in the linear space to pages in the physical space.

The 80386 uses a 4K byte page size. Every page is 4K bytes in size,

and is aligned to a 4K boundary. This means that the paging mechanism

divides the 2^^ byte (4G) linear address space into 2^° pages each 2'^

bytes (4K) in size. Paging operates by relocating pages from the linear

address space into the physical address space. Since an entire 4K page is

mapped as a unit and pages are aligned at 4K boundaries, the lower 12

bits of the linear address are passed through the paging mechanism
directly as the lower 12 bits of the physical address. The relocation func-

tion performed by paging can be thought of as a function that translates

the upper 20 bits of a linear address to the upper 20 bits of the corres-

ponding physical address.

464 Programming the 80386

Linear

Address

Space

Physical

Address

Space

Figure 5.14: Paging translates linear addresses to physical addresses

Memory Management, Protection, and Tasks 465

The linear-to-physical address translation function is extended to per-

mit a linear address to be marked as invalid rather than producing a

physical address. A page can be marked invalid either because it is sim-

ply a linear address not supported by the operating system, or because it

corresponds to a page in a virtual memory system that is stored on disk

rather than in physical memory. In the first case, the program generating

the invalid address must be terminated. In the second case, the invalid

address is really a request to the virtual memory manager of the operat-

ing system to move the page from the disk into physical memory so it

can be accessed by the program. Because invalid pages are usually asso-

ciated with a virtual memory system, they are known as not-present

pages, and are identified by an attribute in the page table called the

present attribute.

Page Table Structure

The paging translation function is described by a memory-resident

table called the page table, which is stored in the physical address space.

The page table can be thought of as a simple array of 2^° physical

addresses. The linear-to-physical mapping function is simply an array

lookup. The upper 20 bits of the linear address form the index into this

array, which selects the correponding physical address of the page. The
lower 12 bits of the linear address give an off^set into this page, which is

added to the base address to obtain the final physical address. Since the

page base addresses are aligned at 4K boundaries, the lower 12 bits of

the page base address are 0. This means that the 12-bit offset is not

really added, but is simply concatenated with the upper 20 bits of the

page base address. That is, the base address provides the upper 20 bits

of the physical address and the off"set provides the lower 12 bits.

Each page table entry is 32 bits in size. Since only 20 bits of the 32-

bit entry are needed to store the physical address, 12 bits are left over

for page attributes, such as whether the page is present. If the page table

entry indexed by the linear address is marked present, the entry is valid

and the physical address is obtained from another field in the entry. If

the entry is tagged as not present, a page exception is raised to report

the invalid address to operating-system software.

Two-Level Page Table Structure

The page table contains 2^° entries, each of which is four bytes wide.

If stored as one table, it would occupy 4 megabytes of contiguous physi-

cal memory! Rather than dedicate this amount of memory to the page

466 Programming the 80386

table, the table is stored as a two-level table. Furthermore, the linear-to-

physical address translation of the upper 20 address bits is done in two

steps, with each step using 10 bits.

The first level of the table is called the page directory. It is stored in a

single 4K byte page and has 2^° (IK.) four-byte entries that point to

second-level tables. The high-order 10 linear address bits (bits 31... 22)

are used to index this first-level table to select one of the 2'*' second-level

tables.

The second-level tables are called page tables and are also exactly one

page in size and contain IK four-byte entries. Each four-byte entry con-

tains the physical base address of a page. The second-level page tables

are indexed by the middle 10 linear address bits (bits 21... 12) to obtain

the page table entry containing the physical base address of a page. The
upper 20 bits of this physical address are combined with the low-order 12

bits (the page offset) from the linear address to form the final physical

address that is the output of the page translation process.

Figure 5.15 illustrates this two-level table lookup process. Register

Linear Address Physical Address

31 22 21 12 11

Dir Page

31

Offset

12 11 I

Page Frame

CR3

Directory

Entry

Page Table

Entry

Offset

Page Directory Page Table

Figure 5.15: Two-level page table structure

Memory Management, Protection, and Tasks 467

CR3, described in a later section, roots the page table structure by point-

ing to the directory page. The upper 10 bits of a linear address are used
to index this directory to obtain a pointer to the appropriate second-level

page table. The middle 10 bits of the linear address are used to index

this second-level table to obtain the upper 20 bits of the resulting physi-

cal address. The low-order 12 bits of the linear address pass through the

paging mechanism unchanged, and are concatenated to the upper 20
physical address bits obtained from the page table to form the full physi-

cal address.

Not-Present Page Tables

By using a two-level table structure, we have not solved the problem

of needing 4 megabytes of memory to store the page table. In fact, we
have made the storage problem slightly worse, since we need an extra

page for the directory! However, the two-level structure allows the page

table to be scattered in pages throughout memory rather than being

stored in one contiguous 4-megabyte chunk. Furthermore, second-level

tables need not be allocated for nonexistent or unused parts of the linear

address space. The directory page must always be present in physical

memory, but the second-level tables can be allocated only as needed.

This allows the size of the page table structure to correspond to the size

of the linear address space actually used.

Every entry in the directory has a present attribute that is analogous to

the present attribute in page table entries. The present attribute in a

directory entry indicates if the corresponding second-level table is avail-

able for use in page translation. If the directory entry indicates that the

second-level table is present, the second level of table lookup proceeds as

described above by accessing the second-level table. If the present bit

indicates that the second-level table is not present, a page exception is

raised to report the use of an invalid linear address to operating-system

software. The present attribute in directory entries allows the operating

system to allocate only as many second-level tables as are needed to

cover the linear address range that is actually used.

The present attribute in directory entries can also be used to store

second-level page tables in virtual memory. This means that only a sub-

set of the second-level tables need be in physical memory at any time,

with the rest stored on disk. Directory entries for tables in physical mem-
ory would be marked present to indicate they are valid for page transla-

tion. Directory entries for tables on disk would be marked not present to

indicate they are invalid for address translation. A page exception due to

a not-present second-level page table would signal the operating system

468 Programming the 80386

to bring in the missing table from disk. Storing the page tables in virtual

memory minimizes the amount of physical memory required to store the

paging translation tables.

Global vs. Local Page Tables

Unlike the segment table structure, there is no provision for splitting

the page table into a global table and a local table. However, by arrang-

ing for each task to share a part of the linear-to-physical address map-
ping function, a global part of the linear address space can be defined.

This part of the linear address space is mapped the same in every task in

the system because the same linear-to-physical mapping information is

used in each task. Pages in this part of the linear address space are

called global pages, since they are mapped to the same physical addresses

in all tasks. The remaining part of the linear address space is local to

each task. The table structure is set up so that a different address map-

ping function is used for the local part of the linear address space. Pages

within this local part of the linear address space are called local pages.

The two-level page table structure supports the efficient sharing of

parts of the linear address space by sharing second-level page tables as

well as the global pages themselves. Figure 5.16 illustrates this technique.

The figure shows the page table structure for two tasks, A and B. DIRa
is the directory page for task A, and DIRb for task B. The first entry (at

off'set 0) of each directory points to a global page table, which maps up
to 2'^ (IK.) global pages. The second entry (at offset 4) of each directory

points to a local page table unique to each task, each of which maps up
to 2'*^ local pages.

This simple example has the lowest 4 megabytes of the linear address

space global to both tasks, and has the next 4 megabytes local to each

task. Additional page tables can be allocated to the global area as

required, providing expansion of the global part of the linear address

space in 4-megabyte chunks. Also note that the shared page tables are

pointed to by the same directory entries in both page directories. This is

important, since it ensures that the same linear address range in both

tasks will map to this global area. In this example, the first 4 megabytes

of the linear address space (addresses to 3FFFFFh) are in the global

linear address space.

Sharing second-level tables that map the global part of the linear

address space has several benefits. First, only one set of second-level page

tables needs to be allocated to map the global pages. These page tables

are then shared by all tasks rather than requiring a duplicate copy in

each task. A second advantage is that if the status of a shared page

changes, there is only one page table entry that needs to be updated to

Memory Management, Protection, and Tasks 469

Figure 5.16: Global and local page tables

470 Programming the 80386

reflect the change in status. If a global page is swapped to or from disk

in a virtual memory system, only one page table entry needs to change.

As with segmentation, such things as the operating-system code and

data and the segment descriptor tables would normally be stored in

global pages. Code and data unique to a task would be stored in the

local pages. The segment and page tables should be set up so that the

segments mapped by the GDT are stored in global pages, and segments

mapped by the LDT are stored in pages local to a task.

Page Table Entry Format

The entries at both the directory and page table levels use the format

shown in Figure 5.17. Bits 31... 12 contain the upper 20 bits of a physi-

cal address to locate a page "frame" in the physical address space. The
lower 12 bits contain page attributes. The present attribute has been dis-

cussed already. The remaining attributes are briefly described here, and

are discussed in detail in the following sections. Bit positions indicated as

are reserved by Intel for use in future processors and must be set to

to ensure upward compatibility.

P Bit is the Present bit introduced above, which indicates

whether the entry is valid for address translation (P = 1) or

not (P=0). An exception is raised if an invalid entry is

encountered in either the directory or the page table during

the page translation process. If P=0, the remaining bits in

the entry are available for software use, as illustrated in Fig-

ure 5.18. The 80386 does not interpret any other bits for

entries that have P =0.

R/W Bit 1 is the R/W {Read/Write) bit. If it is 1, the page can be

read, written, or executed. If it is 0, the page can be read or

executed, but not written. As discussed below, the R/W bit

is ignored if the procesor is executing at one of the supervisor

privilege levels (0, 1, or 2). The R/W bit in a directory

entry applies to all pages mapped by that entry.

U/S Bit 2 is the U/S {User/Supervisor) bit. If it is 1, the page is

accessible to programs executing at any privilege level includ-

ing the user level (level 3). If it is 0, the page is accessible

only to programs executing at one of the supervisor privilege

levels (0, 1, or 2). The U/S bit in a directory entry applies

to all pages mapped by that entry.

Memory Management, Protection, and Tasks 471

D

AVL

Bit 5 is the A or Accessed bit. The A bit in a page table entry

is set to 1 by the processor before any access to the page
mapped by the entry. The A bit in a directory entry is set to

1 by the processor before any access to any of the pages

mapped by the entry. The A bit is never cleared by the pro-

cessor, but can be cleared periodically by operating-system

software to obtain page usage statistics.

Bit 6 is the D or Dirty bit. The D bit in the second-level

page table entry is set to 1 by the processor before any v^rite

access to the page mapped by the entry. The processor does

not modify the D bit of entries in the page directory.

The AVL field is available for use by software. It is not

modified by the processor, and it is not reserved for use by
future processors.

31 12 11 9 8 7 6 5 4 3 2 1

Page Frame Address

31...12
AVL 00 D A

U

S

R

W
p

Figure 5.17: Page directory/table entry format

Figure 5.18: Not-present page directory/table entry format

472 Programming the 80386

The following example illustrates in detail how a linear address is

translated to a physical address by traversing the two levels of the page

table. Suppose you want to translate the linear address 11111678h to a

physical address, and CR3 contains the value 8000h. The 32-bit linear

address 11111678h is first split into three fields:

31 22 21 12 11

0001000100 0100010001 011001111000

Bits 31... 22 are used to index the directory page. Bits 21... 12 index

the second-level page table pointed to by the selected directory entry. Bits

11... give the byte offset into the page pointed to by the selected page

table entry.

The four-byte directory entry is addressed by extracting the directory

index, bits 31... 22 of the linear address, and then shifting left by 2 (mul-

tiply by 4) to get the byte offset into the directory page:

0001000100b =44h shifted left 2 is 0100010000b = 11 Oh. This byte offset

is added to the physical base address of the directory page contained in

CR3—in this case, the value 8000h. So the directory entry is read from

physical address 8110h.

The page table is addressed by the upper 20 bits of this directory

entry. If the directory entry at address 8110h contained the value

0002302 Ih, the page table base is 00023000h, and the P bit and A bits

are 1, indicating the second-level page table is present, and the directory

entry has been accessed before. The address of the page table entry is

addressed by using bits 21... 12 of the linear address as an index into the

page table at address 00023000h. The table index is 100010001b or

lllh. This is shifted left 2 to form a byte offset 444h into the page table.

The page table entry is then read from physical address 00023444h. If it

contains the value 12345021h, the page frame address is 12345000h, and

the page is present and accessed.

The physical address corresponding to the original linear address is

formed by adding the lower 12 bits of the linear address to the page

frame address from the page table entry:

page frame address 12345000h

page offset + 678h = 011001111000b

physical address 12345678h

In this example, the linear address 11111678h was translated to the

physical address 12345678h by traversing the two levels of the page

table. Register CR3 pointed to the page directory at physical address

Memory Management, Protection, and Tasks 473

8000h. The directory entry was read from address 8110h, and it pointed

to a page table at physical address 23000h. The page table entry was
read from address 23444h, and it pointed to the page frame at physical

address 12345000h. The final physical address was formed by adding the

page offset from the linear address to this page frame address, yielding

12345678h as the final physical address.

Virtual Memory

The P bit provides the critical attribute for supporting virtual memory
with paging. Pages in the linear address space that are present in physi-

cal memory will be marked present (P = 1), with the corresponding phys-

ical address available in the entry. Pages that are not present in physical

memory will of course be marked not present (P =0). If a program
accesses a not-present page, a page exception occurs so that the operating

system can bring the missing page in from the disk, store the corres-

ponding physical address in the entry, and then mark it present before

resuming the program that raised the exception.

The A and D bits assist the efficient implementation of virtual mem-
ory. By periodically examining and clearing all of the A bits, the operat-

ing system can determine which pages have not been referenced recently.

These pages might be good candidates to move out to disk storage. If

the D bit is set to when a page is read in from disk, and it is still

when the page is to be moved out to disk, the page need not be written.

If the D bit is 1, the page must be written, since at least one write has

occurred to the page since the last time it was moved in from the disk.

Another important consideration for virtual memory systems is not

visible in the page table structure. All instructions are restartable after a

paging exception. Once the cause of the exception is fixed, for example,

by reading in a not-present page from disk and marking it present, the

instruction raising the exception can be resumed simply by returning

from the interrupt handler for the page exception. The mechanisms used

to report and return from exceptions are covered in Chapter 6. The
causes of page exceptions, and the information made available to the

page exception handler, are covered later in this chapter.

Page-Level Protection

The R/W and U/S bits provide a subset of the protection attributes sup-

ported by segmentation. These page-level protection attributes are summa-
rized in Table 5.3. Only two privilege levels are recognized by paging.

474 Programming the 80386

Privilege levels 0, 1, and 2 are grouped together as a supervisor privi-

lege level. Privilege level 3 is known as the user privilege level. Pages at the

user level can be marked as read/execute-only or as read/write/execute.

Supervisor level pages are always read/write/execute to the supervisor, but

no user access is allowed. As with segmentation, a program executing at the

outer user level can only access user-level pages, but a program executing at

any supervisor level (0, 1, 2) can access user-level pages as well as

supervisor-level pages. Unlike segmentation, a program executing at the

inner supervisor level has read/write/execute access to any page, even to

those marked read/execute-only at the user level. This allows a page to

be restricted to read/execute-only access at the user level, but allows

read/write/execute access by the supervisor.

Just as paging operates after segmentation in the overall 80386 address

translation mechanism, page-level protection operates after the protection

provided by segmentation. First, all of the segment-level protection checks

are tested. If these pass, the page-level protection checks are tested. For

example, a byte of memory is accessible to a program executing at privilege

level 3 only if it is in a segment accessible to level 3, and in a page marked

as a user-level page. It is writable only if both segmentation and paging per-

mit writing. If the segment is typed as a read/write segment, but the page

is marked read/execute-only, no write access is permitted. If the segment is

typed read/execute-only, no write access is permitted regardless of the page

protection assigned.

The protection attributes for a page are computed as the combination

of the attributes at the directory and page level. The U/S and R/W bits

from a page table entry apply to the single page mapped by that entry.

The U/S and R/W bits from a directory entry apply to all IK pages

mapped by that entry. Table 5.4 defines the combined page protection

U/S R/W USER-PERMITTED ACCESS SUPERVISOR-PERMITTED ACCESS

None Read/write/execute

1 None Read/write/execute

1 Read/execute Read/write/execute

1 1 Read/write/execute Read/write/execute

Table 5.3: Page-level protection attributes

Memory Management, Protection, and Tasks 475

attributes from the attributes at both levels of the page tables. The com-
bined attributes are formed by performing the AND operation on the

attributes from the two levels, and so are the more restrictive of the two
levels. For example, suppose the directory entry has U/S = 1 and
R/W = 1 indicating a user read/write/execute page, but the page table

entry had U/S = 1 and R/W=0 indicating a user read/execute-only

page. In this case, the combined protection attribute would be U/S = 1

and R/W =0, indicating a user read/execute-only page.

Software Issues in Modifying Page Table Entries

This section provides some guidelines for operating-system software to

follow when modifying page table entries. The use of a paging transla-

tion cache requires all systems to adhere to certain guidelines. Multipro-

cessor systems where one processor can change the page table entries of

another concurrently executing processor must adhere to additional

guidelines.

DIRECTORY PAGE COMBINED

U/S U/S U/S

1

1

1 1 1

DIRECTORY PAGE COMBINED

R/W R/W R/W

1

1

1 1 1

Table 5.4: Combined page protection attributes

476 Programming the 80386

Coherency of the Paging Translation Cache

To increase speed by avoiding accesses to the memory-resident page

tables for every memory reference, the most recently used linear-to-

physical address translations are stored in a page translation cache within

the processor. This cache is consulted before the memory-based page

tables are referenced. Only if the necessary translation is not in the cache

are the two levels of the page table traversed. The page translation

cache is the paging counterpart of the shadow descriptor registers,

described earlier in this chapter, which are used to speed up segment

translations. Another term for the paging translation cache used in other

computers is Translation Lookaside Buffer, or TLB.
Coherence between the data in the paging translation cache and the data

in the page table is not maintained by the 80386 processor, but must be

guaranteed by operating-system software. That is, the processor does not

recognize when page tables are modified by software, for example, to

change the base address of a page, or to mark a page not present. In a rea-

sonable system, the page tables can be modified only by the operating sys-

tem, which can straightforwardly ensure coherence by flushing the cache

after any software modification of the page tables. The cache is flushed sim-

ply by loading the processor control register CR3, described in a later sec-

tion of this chapter. This can be accomplished with the following code

sequence, which reloads CR3 with its current value:

MOV EAX, CR3 ; Move CR3 value to EAX
MOV CR3, EAX ; And move it back to flush the cache

One important special case of modifying a page table entry does not

require the page translation cache to be flushed. That is when any part

of a not-present entry is changed, even if the P bit is changed from to

1 to mark the entry as valid for page translation. Since invalid entries

are never cached, there is no need to flush the cache when an invalid

entry is changed. This means that you do not need to flush the cache

after reading in a page from disk to make it present.

IVIultiple-Processor Considerations

In a system with multiple processors, special care must be taken if a

program executing on one processor modifies a page table that may be

accessed simultaneously by a second processor. The 80386 processor sup-

ports this configuration by using indivisible read/modify/write cycles

whenever it updates a page table entry to set the D or A bits. Software

updates to the page table will work properly provided the LOCK prefix

(see Chapter 3) is used to ensure use of indivisible read/modify/write

cycles on instructions that modify the page table. Before changing a page

Memory Management, Protection, and Tasks 477

table entry that may be used by another procesor, software should use a

locked AND instruction to clear the P bit to in an indivisible opera-

tion. Then the entry can be changed as required, and made available by
later setting the P bit to 1.

At some point in the modification of a page table entry, all processors

in the system that may have the entry cached must be notified (usually

with an interrupt) to flush their page translation caches to remove any

old copies of the entry. Until these old copies are flushed, these pro-

cessors can continue to access the old page, and may also set the D bit

in the entry being modified. If this may cause the modification of the

entry to fail, the paging caches should be flushed after the entry is

marked not present, but before the entry is otherwise modified.

Processor-Control

Registers and System Segments

This section describes the registers and memory segments that control

the operation of the segmentation and paging mechanisms. The registers

contain the base addresses of the segment and page translation tables,

and bits that control the operation of the processor. The registers are

accessible only to programs at privilege level 0, the innermost level. If a

program at an outer privilege level attempts to write into these registers,

an exception is raised so the operating-system kernel can take appropri-

ate action.

Figure 5.19 illustrates the control registers of the 80386. There are four

32-bit control registers, named CRO, CRl, CR2, and CR3. There are

two 48-bit registers named GDTR and IDTR, and two 16-bit selector reg-

isters named LDTR and TR. The figure also illustrates the descriptor

shadow registers associated with LDTR and TR, which are drawn in

dashed lines to indicate that they are not visible to the programmer.

Processor-Control Registers

CRO, CRl, CR2, and CR3 are the four 32-bit control registers. CRl
is reserved for ftiture processors, and is undefined for the 80386. Use of

an instruction that encodes CRl as the register will result in an invalid

opcode exception, as described in Chapter 6. CRO contains bits that

enable and disable paging and protection, and bits that control the oper-

ation of the floating-point coprocessor. CR2 and CR3 are used by the

paging mechanism. Bits 30 through 5 of CRO, and bits 11 through of

CR3 are reserved and must be loaded with Os.

478 Programming the 80386

The processor-control registers can be loaded and stored only by pro-

grams executing at privilege level 0, by using special forms of the MOV
instruction described in Chapter 3.

CRO Coprocessor Control Bits

Four CRO bits named ET, TS, EM, and MP control the operation of

the 80387 floating-point coprocessor. The ET bit selects the protocol to

use when communicating with the coprocessor. The TS, MP, and EM
bits determine if floating-point or WAIT instructions should raise a Device

Not Available (DNA) exception, which is described in Chapter 6. The
coprocessor exception handler example in Chapter 7 illustrates how the

DNA exception can be used to save and restore the floating-point regis-

ters only for tasks that use floating-point arithmetic. This expedites task

switches between tasks that do not use floating-point.

ET The Extension Type bit controls the protocol used to send

floating-point instructions to the coprocessor ET = 1 indicates

CRO

CR1

CR2

CR3

GDTR

IDTR

LDTR

TR

31 43210

11

I

Attributes

• AttributesJ

Q 000000000000000
ETEMP

00000000000
^3^p^

Reserved

000000000000

31 15

Base Limit

Base Limit

15 31 31

Selector Base

Base

1
Limit

1
LimitSelector

Figure 5.19: Processor-control registers

Memory Management, Protection, and Tasks 479

the presence of an 80387 coprocessor, indicating that the high-

performance 32-bit coprocessor protocol is to be used. ET=0
indicates the use of 16-bit protocol to communicate to an 80287

coprocessor. This field is ignored if the EM bit is 1

.

TS The Task-Switched bit is used to speed task switches by allow-

ing the coprocessor registers to be swapped only when neces-

sary. The processor sets TS to 1 whenever a task switch

occurs. A floating-point instruction will raise a DNA excep-

tion if TS = 1. The WAIT instruction will raise a DNA
exception if TS = 1 and MP = 1

.

MP The Math Present bit controls whether WAIT instructions will

raise a DNA exception if TS = 1 . If MP = 1 , a WAIT exe-

cuted with TS =1 will raise an exception. If MP =0, the

WAIT instruction will ignore the TS bit.

EM The Emulate bit controls whether floating-point instructions

will raise a DNA exception (EM =1), or will be sent to the

coprocessor (EM=0). Note that the WAIT instruction

ignores the setting of the EM bit.

Table 5.5 summarizes the use of the EM, TS, and MP bits to raise

DNA exceptions. WAIT instructions use the MP bit to qualify the TS
bit and are not affected by the EM bit. Floating-point instructions ignore

the MP bit, but are aff'ected by the EM bit.

CRO BIT INSTRUCTION TYPE

EM TS MP FLOATINGPOINT WAIT

Execute Execute

1 Execute Execute

1 DNA Exception Execute

1 1 DNA Exception DNA Exception

1 DNA Exception Execute

1 1 DNA Exception Execute

1 1 DNA Exception Execute

1 1 1 DNA Exception DNA Exception

Table 5.5: EM, TS, and MP bit summary

480 Programming the 80386

The ET bit is initialized when the processor is reset to indicate the type

of numeric coprocessor in the system. If a 387 coprocessor is present, the

ET bit is set to 1. Otherwise, if a 287 is present or if no coprocessor is

present, ET is cleared to 0. Refer to the Intel data sheets for the 80386,

80387, and 80287 for more information about hardware reset.

CRO Protection Control Bits

The PE bit (bit 0) and the PG bit (bit 31) control the operation of the seg-

mentation and paging mechanisms. PE controls the segmentation

mechanism. If PE = 1, the processor operates with the segmentation mecha-

nism enabled and operating as described in this chapter. When PE = 1

,

the processor is said to be executing in protected m^ode. If PE =0, the

segmentation mechanism is turned off, and the processor operates in real

mode as an 8086, as described in Chapter 9. PG controls the pag-

ing mechanism. If PG =1, paging is enabled and operates as described

in this chapter. If PG=0, paging is disabled and the linear addresses

produced by the segmentation mechanism are passed through as

physical addresses.

lable 5.6 summarizes the processor modes that can be selected using

the PE and PG bits. Note that only three of the four possible combina-

tions are legal. Loading CRO with a value that has PG = 1 and PE=0
will raise a general protection exception.

Care must be taken when the PG and PE bits are changed. The PG
bit should be changed only when executing a program that has its code

PG PE

1

1

1 1

EXECUTION MODE

Real mode (see Chapter 9)

Protected mode, paging disabled

Illegal combination, do not use

Protected mode, paging enabled

Table 5.6: Processor modes selected by PG and PE bits

Memory Management, Protection, and Tasks 481

and at least some of its data in pages that have the same address in both

the Hnear and physical address spaces, as illustrated in Chapter 7. This

code provides a bridge between the paged and nonpaged worlds that has

the same address whether paging is on or not. Also, the paging cache

must be flushed before setting PG to 1.

The program must execute a jump instruction immediately after chang-

ing the value of the PE bit in order to flush the execution pipeline of any
instructions that may have been fetched in the wrong mode. Before setting

the PE bit, the program must initialize the system segments and control

registers. The processor is initialized with PE = and PG = (real mode) to

permit bootstrap code to initialize the registers and data structures needed to

support segmentation and paging before these mechanisms are enabled.

Refer to Chapter 7 for an example of how to initialize the processor, and to

Chapter 9 for more information about real mode.

CR2 and CR3

CR2 and CR3 are used by the paging mechanism. CR3 contains the

physical address of the page containing the first level of the page table,

the directory. Because the directory is page-aligned, only the top 20 bits

of this register are significant. The bottom 12 bits are reserved for use in

future processors. They must be when loading a new value into CR3,
and must be ignored when storing CR3.

Loading CR3 using the MOV CR3, reg instruction described in Chap-

ter 3 has the side eff"ect of invalidating the paging cache. CR3 can be

loaded even if the PG bit in CRO is off". This permits initialization of the

paging mechanism. CR3 is also changed by task switches, but if the new
task has the same CR3 value as the old task, the processor need not

flush the paging cache. This permits faster execution when tasks share

page tables.

CR2 is used to report error information when a page exception is

raised. The processor stores the linear address that caused the exception

into CR2 when reporting a page exception. The page exception handler

in the operating system can examine the contents of CR2 to determine

which page in the linear address space caused the exception.

Segmentation Table Base Registers

GDTR, IDTR, LDTR, and TR are the base registers for the seg-

ments that contain tables important to the segmentation system. GDTR,
IDTR, and LDTR address segments that contain descriptor tables, and

TR addresses a special Task State Segment (TSS), described in the next sec-

tion, which contains important information about the task that is cur-

rently executing.

482 Programming the 80386

The GDTR points to the GDT. The 48-bit GDTR defines the base and

limit of the GDT directly with a 32-bit linear address, and a 16-bit limit.

The GDTR provides the "root" for the segment table structure. Descriptors

for the LDT and for the TSS current task are stored in the GDT, so these

system segments can be identified with selectors, just like all other segments.

Since the GDT cannot be defined by a descriptor within itself, the GDTR
provides a pseudo-descriptor for this special system segment to root the seg-

ment table structure in the linear address space.

The IDTR contains a 48-bit pseudo-descriptor for the Interrupt Descriptor

Table (IDT). The IDT is rooted directly in the linear address space with

a pseudo-descriptor, rather than with a descriptor in the GDT, in order

to avoid a level of indirection when accessing interrupt descriptors. The
IDT, and descriptor types unique to the IDT, are described in detail in

Chapter 6.

The memory format of a 48-bit pseudo-descriptor is shown in Figure

5.20. The high-order 32 bits contain the base address of the segment

within the linear address space. The low-order 16 bits contain the limit

field, which is a byte granular limit providing a table size from one byte

to 64K bytes. Since descriptors are eight bytes in size, the operating sys-

tem should ensure that the limit field for a table containing N descriptors

is set to the value 8*N— 1.

The LDTR register contains the selector for the LDT of the current

task. This selector must identify a segment of type LDT mapped by the

1 ! 1 1 1

m + 5 1 m + 4 1 m + 3 1 m + 2 1 m + 1 1 m
1 1 1 1 1

47 16 15

Memory Address

1 1 1

Linear Base Address Limit

Figure 5.20: Pseudo-descriptor format

Memory Management, Protection, and Tasks 483

GDT. That is, the TI bit in this selector must be to indicate that the

associated descriptor is stored in the GDT, and the type field in this

descriptor must indicate a segment of type LDT
It is possible to load LDTR with a null selector to indicate that the

current task has no LDT. In this case, an exception is raised if an
address is generated with a selector that has the TI bit set to 1, indica-

ting that it is stored in the LDT. If LDTR is loaded with a null selector,

all addresses must use selectors for segments mapped through the GDT.
The TR register contains the selector for the task state segment (TSS)

of the current task. The TSS is described in the next section. This selec-

tor must identify a segment mapped by the GDT, with TI cleared to 0.

This selector cannot be null, and must identify a segment of type TSS.
The TSS addressed by the TR register contains important information

about the task currently executing on the processor.

Note that all of these system segments are defined as contiguous

regions of the linear address space, just like all other segments. Because

they are in the linear address space, these system tables can be relocated

by the paging mechanism. Furthermore, in a virtual memory system

with many tasks, the LDT and TSS segments for inactive tasks can be

paged out to disk, to be brought back on demand. Since the IDT and
GDT are referenced by every task, these system segments should always

be resident in physical memory.

None of these system segments can be referenced directly by a pro-

gram, not even by the operating-system kernel at level 0. The special

descriptor types used for the LDT and TSS segments will cause faults if

an attempt is made to load a selector naming one of them into one of

the six segment registers. The GDT and IDT segments don't even have

selectors or segment descriptors! To permit the operating-system kernel to

inspect or modify the contents of these segments, read-only or read/write

segments must be defined with the same base address and limits, but

with attributes suitable for loading into one of DS, ES, FS, or GS for

program access. These extra segments are known as aliases, since they

provide a diff^erent name for the same area of the linear address space.

Task State Segment Format

The task state segment, or TSS, is a special segment that contains

important information about a task. The TSS for the active task is

addressed by the TR register. The TSS for an inactive task contains a

"frozen" view of the task. The TSS supports task suspension and
resumption by holding a complete image of the register state of the task.

When a task is suspended, the current processor register values are writ-

ten into fields in the TSS. When a task is resumed, the registers are

484 Programming the 80386

loaded from the values saved in the TSS to reestablish the state of the

task, and thus to permit execution to continue as if the task was never

suspended. The layout of a TSS is shown in Figure 5.21, and contains

five different types of information:

• Link field

• Inner-level stack pointers

• Address mapping base registers

• Register sav^e area

• Miscellaneous fields

The 80386 processor defines the format of the first 104 bytes of the

TSS. The operating system can store additional information about the

task above this hardware-defined area. As described above, an alias

memory segment must be defined for the TSS to permit the operating

system to read or write fields in the TSS.

Since the TSS is stored in the linear address space, it can be relocated

by the paging mechanism, and can even be paged out to disk in a vir-

tual memory system. The only special requirement on paging a TSS is

that a page exception cannot occur in the middle of a task switch. A
page exception can be handled properly on the first reference to a paged-

out TSS, so a few simple strategies suffice to satisfy this restriction. One
strategy, of course, is to never page out a TSS, or otherwise mark it not

present. Another strategy is to ensure that if a TSS is swapped, either

the entire TSS is present, or the entire TSS is not present, by ensuring

that no TSS crosses a page boundary. This can easily be done by align-

ing each TSS at a 128-byte boundary in the linear address space, since

only the first 104 bytes of a TSS are referenced by the processor during

a task-switch operation. If the base of the TSS is aligned on a 128-byte

boundary, the first 104 bytes cannot cross a page (4K) boundary.

Link Field

The link field is at off"set in the TSS, and it is a 32-bit field with a

selector in the low-order 16 bits, with the upper 16 bits undefined. It is

used together with the NT bit in the EFLAGS register to link the TSSs
for tasks suspended by CALL instructions or interrupts. Tasks can be

suspended by executing a CALL instruction that references a task, as

described in the Task-Switch Details section later in this chapter. Or, a

task can be suspended if an interrupt is received that specifies handling

with a task switch, as described in Chapter 6. If the current task was

activated by a CALL instruction or interrupt, the link field in its TSS

Memory Management, Protection, and Tasks 485

31

I/O Permission Bitmap OHset 000000000000000 T 64h

60h

5Ch

58h

54h

50h

4Ch

48h

44h

40h

3Ch

38h

34h

30h

2Ch

28h

24h

20h

ICh

18h

14h

lOh

OCh

8

4

0000000000000000 LDT

0000000000000000 GS

0000000000000000 FS

0000000000000000 OS

0000000000000000 SS

0000000000000000 CS

0000000000000000 ES

EDI

ESI

EBP

ESP

EBX

EDX

ECX

EAX

EFLAGS

EIP

CR3

0000000000000000 SS2

ESP2

0000000000000000 SSI

ESP1

0000000000000000 SSO

ESPO

0000000000000000 LINK

Figure 5.21: Task state segment format

486 Programming the 80386

contains the selector for the TSS of the suspended task, and the NT bit

is set to 1 to indicate that the hnk field is valid. An IRET instruction

executed with the NT bit in the EFLAGS register set to 1 will follow

this back-link field to resume execution of the previous task on the link,

as described in Chapter 6.

Figure 5.22 illustrates a chain of tasks linked by the back-link chain.

The TSS for the current task (described by TSSc) is addressed by the

TR register. The TSSs for the suspended tasks (TSSb and TSSa) are

linked via the link field, as shown in the figure. As described in a later

section, the NT bit in the EFLAGS register would be 1 when task C is

executing, indicating it is a nested task. Also, the NT bit of the

EFLAGS register image in TSSb would be 1, indicating that task B was

nested inside another task. The NT bit in TSSa would be 0, indicating

that task A is not nested within another task. Note that having NT=0
indicates the end of the link chain in task A, and the link field of TSSa
is not referenced.

The chain of linked TSSs illustrated in Figure 5.22 would be built by

a series of nested task switches caused by CALL instructions or inter-

rupts. A CALL or interrupt received when task A was executing spe-

cifies a task-switch to task B. This causes task A to be suspended, task B
to be activated, and the link field in task B to point to TSSa. During the

execution of task B, another CALL or interrupt specifies a task-switch to

Figure 5.22: Chain of linked TSSs

Memory Management, Protection, and Tasks 487

task C, causing task B to be suspended, task C to be activated, and the

link field in TSSc to point to TSSr. This results in the TSS link chain

shown in the figure.

Inner-Level Stack Pointers

Previous sections have described how each privilege level has a sepa-

rate stack to avoid protection problems with a shared stack. When a level

change to an inner level occurs, the stack for that inner level is initialized

by loading the appropriate stack pointer fi-om this area of the TSS. The
stack pointer from the outer level is pushed onto this inner stack so that

the outer-level stack can be restored upon return. Privilege level changes

and associated stack switches are described in the Control-Transfer

Methods section later in this chapter.

The stack pointers are simply full 48-bit pointers to the tops of the

stacks for levels 0, 1, and 2. They are stored at offsets 4, 12, and 20,

respectively, within the TSS. When a transition to an inner level occurs,

the appropriate pointer is loaded into the SS and ESP registers to switch

to the inner stack. There is no stack pointer for level 3, the outermost

level, since it is not possible to enter level 3 during a transition to an

inner level! If a task is suspended at level 3, the pointer to its stack will

be held in the SS and ESP register images, which are saved in another

part of the TSS.

The 80386 processor reads the inner stack pointers from this area, but

never writes into this area. This means that inner-level transitions always

initialize the inner stack to the same point, always starting with a

"fresh" stack on each inner transition. This is correct, since it is not

possible for inner-level transitions to be recursive. Once an inner-level

transition occurs, the only way to get back to an outer level is through a

matching outer-level return, which pops the inner-level stack back to its

initial configuration.

Address Mapping Base Registers

When a task switch into a task occurs, the LDTR and CR3 registers

are loaded from fields in the TSS of the new task. The LDTR register is

loaded with a selector at offset 60h in the TSS, and CR3 is loaded with

the dword at offset ICh.

Loading CR3 with a new value changes the page table to that of the

new task, which changes the linear-to-physical translation function. Simi-

larly, loading the LDTR register changes the LDT to that of the new

task, changing the virtual-to-linear mapping function of the half of the

virtual address space mapped by the LDT. As described above, this abil-

ity to change the address translation function between tasks is the part of

488 Programming the 80386

the protection mechanism that serves to isolate tasks from each other.

Note that the 80386 processor reads these fields in the TSS to load the

appropriate registers during a task switch into the task, but the processor

never writes these fields even when a task switch out of the task occurs.

Because of this, if a program changes either LDTR or CR3, the new
value must also be stored in the TSS for the currently executing task.

Register Save Area

The register save area of the TSS is a save area for the general regis-

ters, processor-control registers, and segment registers. When the task

described by this TSS is the currently executing task, these fields are

undefined. When a task switch out of a task occurs, the current values of

these registers are stored in this area, so that when a task switch into the

task occurs later, the register values can be restored from this area to

resume execution.

The register save area occupies offsets 20h through 5Fh, as shown in Fig-

ure 5.21. The segment registers are saved in 3 2 -bit fields that have the

upper 16 bits undefined, and the selector is saved in the lower 16 bits.

Miscellaneous Fields

The offset within the TSS of the I/O permission bitmap is stored in

the word at offset 66h. As described in a later section, the I/O permis-

sion bitmap is stored in the TSS, and it defines the I/O addresses that

can be accessed by this task. The I/O permission bitmap itself is another

field in the TSS.

The word at offset 64h is intended to supply special attributes for the

task. In the 80386, only one attribute is defined, a Debug Trap (T) attrib-

ute, which is stored in the low-order bit of this word. The remaining bits

must be for compatibility with future processors. If a task switch occurs

into a task that has the debug trap bit set to 1, a debug trap is taken

after the task switch is complete, but before the first instruction of the

new task is executed. This debug trap bit allows software to efficiently

share the debug registers between tasks as required, without burdening

the standard task switch with this function. Debug traps and the debug

registers are described in Chapter 8.

Instructions Sensitive to Privilege Level

Certain 80386 instructions execute differently depending on the privilege

level of the program that executes them. Privileged instructions can only be

executed at privilege level 0, and wUl raise an exception if executed at other

Memory Management, Protection, and Tasks 489

privilege levels. I/0-sensitive instructions can only be executed at the same or

an inner privilege level relative to the lOPL field in the EFLAGS register

(Chapter 2), or if they access an address in the I/O space marked accessible

to the current task by the I/O permission bitmap, a special data structure

stored in the TSS. Finally, the instructions that modify the EFLAGS regis-

ter will not change the values of certain fields unless executing at privilege

level 0, or other fields unless executing at the same or an inner privi-

lege level relative to lOPL.

Privileged Instructions

The instructions that access key protection-model registers are privileged

instructions. These instructions restrict access to these registers only to pro-

grams that execute at privilege level 0. These registers must be protected

from unauthorized access to ensure the integrity of the protection model.

Table 5.7 lists the privileged instructions on the 80386. Note that the

instructions that bad the GDTR, IDTR, LDTR, TR, and MSW (low 16

bits of CRO) are privileged, but the instructions that store these registers are

not privileged. This means that any program can store these registers, but

only level programs can change them. In contrast, the instructions that

store the control registers and the debug registers (Chapter 8) are privileged,

along with the instructions that load these registers.

MNEMONIC FUNCTION

CLTS Clear TS bit in CRO

HLT Halt

LGDT Load GDTR
LIDT Load IDTR

LLDT Load LDTR
LMSW Load MSW (low 16 bits of CRO)

LTR Load TR
MOV CRn , reg Load Control Register n

MOV reg, CRn Store Control Register n

MOV DRn , reg Load Debug Register n

MOV reg, DRn Store Debug Register n

Table 5.7: Privileged instructions

490 Programming the 80386

I/O Space Protection

Two mechanisms control access to the I/O address space and I/O-

related instructions:

1. The lOPL field in the EFLAGS register.

2. The I/O permission bitmap in the TSS.

The lOPL field in the EFLAGS register defines the outermost privi-

lege level that can execute all I/O-related instructions and access all

addresses in the I/O space. The I/O permission bitmap contained in the

TSS defines which addresses in the I/O space can be accessed by pro-

grams executing at any privilege level.

Programs executing at the I/O privilege level (lOPL) or an inner level

can execute all of the instructions listed in Table 5.8. The CLI and STI
instructions will raise an exception if they are executed at an outer level.

The IN, INS, OUT, and OUTS instructions will raise an exception at

outer levels only if the I/O address is marked inaccessible in the I/O

permission bitmap. That is, if one of these I/O instructions is executed

at an outer level relative to lOPL, an appeal is made to the I/O permis-

sion bitmap before an exception is generated. If access to the specific I/O

addresses referenced by the instruction is granted by the bitmap, the

instruction operates normally. Otherwise an exception is raised.

MNEMONIC FUNCTION

CLI Clear IF bit in EFLAGS

STI Set IF bit in EFLAGS

IN Read data from I/O address

INS Read string from I/O address

OUT Write data to I/O address

OUTS Write string to I/O address

Table 5.8: I/O-sensitive instructions

Memory Management, Protection, and Tasks 491

Since each task has its own TSS and EFLAGS register, each task can

have a different lOPL and can define a different I/O permission bitmap.

For example, a task executing a game program may have a bitmap that

allows access to a joystick. A task executing a communications applica-

tion might have a bitmap that allows access to networking hardware.

I/O Permission Bitmap

The I/O permission bitmap defines which addresses in the 64K byte

I/O space can be accessed by programs executing at any privilege level.

A 64K bit string is stored in the current TSS. Each bit in the bit string

corresponds to a single byte-wide I/O address. Bit corresponds to I/O
address 0, bit 1 to address 1, and so on. A in the bitmap indicates

that the corresponding I/O address is accessible to programs at any priv-

ilege level. A 1 in the bitmap indicates that the I/O address is only

accessible to programs at lOPL or an inner level. An exception will be

raised if a program attempts to access an I/O address corresponding to a

1 in the bitmap while executing at an outer level relative to lOPL.
Since the I/O address space is byte-addressable and up to four bytes

can be accessed in one instruction, multiple-byte transfers must check the

bits for all I/O addresses referenced. If all the referenced bits are 0, the

I/O will be allowed. If any of the permission bits are 1, the I/O opera-

tion will raise an exception.

This multiple-bit check must work for any possible length and align-

ment combination. This requires that two bytes be read from the bitmap

in the worst case. To access the bitmap as quickly as possible, the 80386

always reads two bytes whether needed or not. To avoid problems at the

highest I/O address mapped by the bitmap, there must always be a byte

containing all Is after the last bitmap byte that contains valid mapping
information but before the TSS limit. This provides a filler byte that

allows the processor to read two bytes from the bitmap, even at the top

of the I/O address space.

The I/O permission bitmap can be stored anywhere within the first

64K bytes of the TSS, and can be any length that is a multiple of 8 bits.

The word at offset 66h in the current TSS defines the starting offset of

the I/O permission bitmap, which must be less than 56K. Thus, the bit-

map can start anywhere in the first 56K of the TSS. The end of the

bitmap is either this offset plus 8K or the TSS limit, whichever is

smaller. A full 8K bitmap can be defined by making the TSS limit larger

than the starting offset plus 8K. Or, the TSS limit can be made closer to

the starting offset to dedicate less storage to the bitmap. Bits beyond the

TSS limit are taken as Is to raise exceptions if the corresponding I/O
addresses are accessed at levels outside lOPL. The bitmap can be made

492 Programming the 80386

empty by having the TSS Hmit less than or equal to the starting offset of

the bitmap.

For example, setting the TSS limit to

BitMapOffset + 32

provides a bitmap for the first 256 I/O addresses, and will raise an
exception if an I/O address greater than 255 is used. This eliminates the

commitment of 8K of memory when it's not required, while allowing the

fully general case if desired.

I/O Address Space References The detailed description of references to

the I/O address space is given in our C-like notation in the routine

AccessIO() in Listing 5.1. This description makes use of the Access-

Linear() routine defined later in this chapter (Listing 5.4) to read data

from the TSS. Also, the TR.Base register is referenced to obtain the lin-

ear address of the base of the current TSS. The SegmentException(
)

routine is called to report a segment exception if necessary. Refer to the

detailed descriptions of memory references and exceptions given later in

this chapter.

The AccessIO() routine first compares CPL against lOPL, since if

GPL is at the same or an inner level relative to lOPL, all I/O addresses

are accessible and the bitmap is not checked. Otherwise, the bitmap
is checked.

The offset of the start of the bitmap is read from the word at offset 66h

in the current TSS. The location of the needed bits within the bitmap is

computed by obtaining the byte and bit offset from the I/O address to be

checked. The byte off"set is the I/O address shifted right by 3. The bit off^set

within this byte is the I/O address modulo 8. Two bytes are read at the

indicated byte off"set within the bitmap to ensure that the necessary bits are

read for all possible I/O address alignments and lengths. If these bytes are

beyond the segment limit, an exception is raised. This supports the defini-

tion of a bitmap less than the fiill 8K byte size.

The length mask is formed based on the size of the I/O reference. It

can be from 1 to 4 bits long for one- to four-byte I/O references. This

length mask is shifted left by the bit off'set to align the low-order mask
bit with the bitmap bit corresponding to the lowest I/O address. The
AND operates on the length mask with the bytes read from the bitmap

to clear the irrelevant bits. If the result is 0, the I/O access is allowed. If

the result is nonzero, one or more of the I/O addresses spanned by the

reference are not accessible, and a segment exception is raised.

If the I/O access is allowed, it is carried out by a call to the routine

AccessPhysicalIO(). This routine abstracts the operation of accessing

Memory Management, Protection, and Tasks 493

AccessIOdOAddress, Length, RW, Data)
int lOAddress, /* I/O Address to check for accessibility */

Length, /* number of bytes to check */

RW, /* if read, 1 if write */

Data; / pointer to data to read or write */

{

shortint ptr2, ptrbits;
int Bi toffset, ByteOffset, Mask, Result;

/* If CPL <= lOPL, all I/O addresses are accessible. */
/* If CPL > lOPL, check the I/O permission bitmap. */
if (CPL > lOPL) {

/* Read offset of bitmap from offset 66h in TSS */

AccessLinear (TR.Base + 66h, 2, /* PL */, /* Read */, &ptr2)

/* compute bit and byte offset within bitmap */

ByteOffset = lOAddress » 3;

Bi toffset = lOAddress & 0111b;

/* Mask is formed by shifting a field of 1, 2, or 4 bits */

/* left by the BitOffset within the map. */

Mask = (01111b » (4-Length)) « BitOffset;

/* Read two bytes containing 1 to 4 bits we need for test */

/* Test TSS limit to see if indicated bits are beyond the */

/* end of the bitmap. */

if (TR. Limit < ptr2 + ByteOffset + 1)

SegmentException($GP, 0);
AccessLinear (TR. Base+ptr2+By teOffset,

2, /* PL */, /* Read */, &ptrbits);

/* If Mask anded with permission bits is not zero, */

/* access is denied so generate an exception. */

/* Otherwise access is OK so return to caller. */

Result = ptrbits & Mask;
if (Result != 0)

Segmen tExcep t i on ($GP ,) ;

} /* end CPL>IOPL */

/* Fall through to here only if I/O access is allowed. */

AccessPhysicallOdOAddress, Length, RW, &Data)
;

Listing 5.1: AccessIO() subroutine

494 Programming the 80386

physical I/O addresses. It is not described in this book, since the opera-

tion in the memory system is external to the 80386 processor. The rou-

tine takes the same parameters as the AccessIO() routine.

The bitmap shown in Figure 5.23 is used in the following examples to

illustrate the operation of the I/O permission bitmap. The bitmap is

stored within the TSS for the current task beginning at the offset given

in the word at offset 66h in the TSS. In this example, the offset is m.

The I/O addresses mapped by each dword are shown on the right, along

with the address of the dword relative to the start of the bitmap at offset

m. The bit offsets within bytes are tabulated at the top, as are the byte

offsets within dwords. This bitmap contains 17 bytes plus one filler byte

at the highest address. The 17 significant bytes map I/O addresses from

to 135.

This bitmap permits access to I/O addresses 2... 9, 12... 13, 15,

20. ..24, 27, 33. ..34, 40.. .41, 48, 50, 52. ..53, 58. ..60, 62. ..63, and

I

+3
I

+2
I

+1
I

+0
I

7 7 7 7

TSS Limit > 11111111 11111111

00000000 00000000 00000000 00000000

11111111 11111111 11111111 11111111

00100011 11001010 11111100 11111001

11110110 00001111 01001100 00000011

(Byte Offset)

(Bit OHset)

m + 16 I/O 128.. .135

m + 12 I/O 96.. .127

m + 8 I/O 64.. .95

m + 4 I/O 32.. .63

m 1/0 0.. .31

00000000000000000 64h

Sample TSS

Figure 5.23: Sample I/O permission bitmap

Memory Management, Protection, and Tasks 495

96... 127. The other I/O addresses are accessible only to programs exe-

cuting at a level that is the same or inner relative to lOPL. Note that

the last byte before the TSS limit is a filler byte that must be all Is.

For example, suppose a program executing at an outer level relative to

lOPL has the sample bitmap in Figure 5.23, and tries to access a dword
at I/O address 7. This means that the bits for I/O addresses 7, 8, 9, and
10 must be checked. Using the algorithm above, we form a mask that

has four 1 bits shifted by 7 modulo 8, or 7. The AND operates on this

mask with the two bytes read from the bitmap at offset 7/8, or 0. Since

I/O address 10 is not accessible, indicated by a 1 in bit position 10 in

the map, the result is not zero and so an exception is generated. This

process is illustrated algorithmically below:

Offset = Byte 0, bit 7

Mask = (1111b » (4-Length))« 7

= (1111b » 0) « 7

= 1111b « 7 = 78h

BitString 0100110000000011 (See map)
AND Mask 0000011110000000

Result 0000010000000000 (Not equal to zero)

Exception!

This example illustrates a case where the bits to check span two bytes

in the bitmap. The bit for I/O address 7 is in the byte at offset from

the start of the bitmap, and the bits for addresses 8, 9, and 10 are in the

next sequential byte.

For another example, suppose a program executing at an outer level

relative to lOPL has the sample bitmap in Figure 5.23, and tries to

access a word at I/O address 33. This means that the bits for I/O
addresses 33 and 34 must be checked. Using the algorithm above, we
form a mask that has two 1 bits shifted by 33 modulo 8, or 1. The
AND operates on this mask with the two bytes read from the bitmap at

offset 33/8, or 4. In this example, both bits are 0, and so the access is

permitted.

Offset = Byte 4, bit 1

Mask = (1111b » (4-Length))« 1

= (1111b » 2) « 1

= lib « 1 = 110b

BitString 1111110011111001 (See map)

AND Mask 0000000000000110
Result 0000000000000000 (Zero)

I/O allowed!

496 Programming the 80386

Instructions That Change EFLAGS

Certain fields in the EFLAGS register are handled differently, depend-

ing on the privilege level of the program that tries to access or modify
them. As mentioned in Chapter 2, the IF, lOPL, and VM bits are

handled diff'erendy from the other fields in EFLAGS. The IRET, CLI,
STI, and POPF instructions (Chapter 3) are available to change these

fields in EFLAGS.
The lOPL and VM bits can only be modified by programs executing

at privilege level 0. The IF bit can only be modified by programs exe-

cuting at the same or an inner level relative to lOPL. A program at an
outer privilege level that executes a POPF or IRET that attempts to

modify one of these fields does not generate an exception. Instead, these

fields are simply not modified, with no special notification given. Table

5.9 summarizes the handling of these special flags.

In addition to this special handling of these fields, the POPF instruc-

tion does not modify the VM bit, and the PUSHF instruction always

pushes a in the VM bit position. This is necessary to prevent pro-

grams from testing the VM bit to determine if they are in virtual 8086

mode or real mode. These modes are described in Chapter 9.

EXECUTION EFLAGS FIELD

PRIVILEGE VM IGPL IF

CPL=0 Modified' Modified Modified

0<CPL<IOPL Unchanged Unchanged Modified

IOPL<CPL Unchanged Unchanged Unchanged

VM is not modified by the POPF instruction.

Table 5.9: Special handling of EFLAGS fields

Memory Management, Protection, and Tasks 497

Control-Transfer Methods

This section describes the methods used by intersegment jumps, calls,

and returns to transfer control between programs in different code seg-

ments. We present two views of these control transfers. The first view is

discussed in this section. The different methods for transferring control

include a direct transfer to an offset in another code segment, a transfer

through a gate to an entry point in another code segment, or a trans-

fer through a task gate to another task. In this view, we introduce the

concepts needed to understand all of the different ways to transfer control

outside of the current code segment. The second view, given in later sec-

tions, considers the JMP, CALL, and RET instructions that can be used

to transfer control by one or more of these methods. Chapter 6 describes

how interrupts and IRET instructions use the same methods to transfer

to and return from interrupts.

The "methods" view of task switches, the transfer of control from one

task to another, is deferred to a later section, which also includes the

detailed description. Task switches are the most complex part of the

80386 segmentation model, but are not needed by every 80386 system.

By deferring the description of task switches, we hope to provide a

clearer view of the other control-transfer methods that must be used in

every 80386 system.

Chapter 3 included a description of the JMP, CALL, and RET
instructions in which the transfer to another code segment was described

as changing the CS and EIP registers to point to an instruction in a

different code segment. This is the effect seen by the applications pro-

grammer, who sees the program execute the control-transfer instruction

and then start executing in a different code segment. More activity is

visible to the systems programmer. The CS descriptor shadow registers

are loaded with the descriptor for the new code segment after many pro-

tection checks are applied to the CS selector and the associated descrip-

tor. The transfer may even go to a code segment at a different privilege

level within the same task, or to a code segment in a different task.

Same Level, Same Task

The simplest intersegment transfer uses a JMP, CALL, or RET
instruction to transfer to a code segment at the same privilege level in

the same task. This transfer is specified by having the new CS selector

identify a present executable memory segment with DPL=CPL, or

a present conforming executable segment (described below) with

498 Programming the 80386

DPL < CPL. This kind of control transfer is similar to loading a data

segment register with a selector for a data segment, and can be thought

of as the method used to load the CS register. Several tests are applied to

the new CS selector, and if these pass, the associated descriptor is read

from the descriptor table and more tests are applied to the descriptor. If

these tests also pass, the descriptor is loaded into the CS shadow regis-

ters, the new selector is loaded into CS, and a new offset is loaded into

EIP to successfully complete the control transfer.

Conforming executable segments are a special type of memory seg-

ment provided to support sharing of subroutines by programs at more
than one privilege level without requiring changes in privilege. For

example, a numerics library might be shared by programs executing at

different levels by putting the library subroutines in a conforming seg-

ment. Then a program at any level could call a routine in the library

using an intersegment call, and the routine would execute with the privi-

lege level of the caller.

A control transfer to a conforming segment will execute the conform-

ing segment at the privilege level of the caller rather than the DPL of

the conforming segment. Instead, the DPL of a conforming segment is

used to specify the innermost privilege level that can transfer to the con-

forming segment. This interpretation of DPL is the opposite of the nor-

mal interpretation of DPL. Normally, DPL is used to specify the

outermost privilege level permitted to access a segment. Conforming seg-

ments use DPL to specify the innermost privilege level permitted to

transfer to the segment. This means that a level 3 program can transfer

to any conforming segment, but level routines can only transfer to con-

forming segments that have DPL =0.

Different Level, Same Task

The ability to transfer between segments at the same privilege level is

important, but is not sufficient, since there are four privilege levels on

the 80386, not just one! The CALL instruction permits transfer to an

inner level through use of a call gate. The RET instruction permits

transfer to a segment at an outer level to return from an inner-level

CALL. The JMP instruction cannot transfer to a different level.

Inward calls and outward returns are supported to allow applications

to directly call operating-system subroutines in inner levels to obtain nec-

essary services such as memory allocation or file accesses. Outward calls

and inward returns are not supported, since it is unlikely that the operat-

ing system will call an application-level program to obtain a service. In

the few cases where the operating system must transfer to an outer level

Memory Management, Protection, and Tasks 499

other than returning from a call, the pointer to the appropriate segment
and offset at the outer level can be pushed onto the stack and the RET
instruction executed. This technique is useful for transferring to a pro-

gram just after it is loaded so it can begin to execute, as illustrated in

the initialization example in Chapter 7.

Transfers to inner levels must be carefully controlled to ensure the

integrity of the protection mechanism. Outer levels are permitted to

transfer to inner levels only through entry points defined by the operat-

ing system. The operating system must control both the segment and the

offset of the entry points. Otherwise, if only the segment part is con-

trolled, an application may transfer to any offset in the segment. For

example, it could specify an offset that is just past the code that checks

the parameters passed to the inner level. Worse yet, the outer level might

specify an offset that lies in the middle of an instruction!

Call Gates

Call gates provide the mechanism needed to control access to inner-

level routines. Call gates are special descriptor types that contain pointers

to entry points. The gate descriptor contains a full 48-bit pointer to the

entry point, including both the segment part and the offset part. A
CALL through a call gate is like an indirect CALL through the gate. To
use the gate, the outer-level routine specifies a selector for the gate as the

selector to be "loaded" into CS. When the CALL instruction checks the

new CS descriptor and discovers a call gate instead of an executable

memory segment, the pointer is retrieved from the gate and used as the

pointer for the control transfer. The offset from the gate is used instead

of the offset given in the instruction to control the entry point of the

inner-level segment. The selector from the gate is used to read another

descriptor, which must be an executable segment that is the actual target

of the call. Gates to gates are not permitted!

Figure 5.24 illustrates how the call gate indirectly specifies the target of

a call. Note that the offset from the instruction is discarded and the offset

from the gate is used instead. The selector in the gate is used to access

another descriptor, which must be for an executable segment.

The DPL field in the gate descriptor controls access to the gate using

the same privilege rules as for data access. Only procedures that execute

at the same level or an inner level relative to the gate DPL can use the

gate. The RPL field of the selector for the gate is also checked to ensure

it is at the same level or an inner level relative to the gate DPL. Thus,

the gate is placed at the outermost level for which access to it will

be permitted.

500 Programming the 80386

A different set of privUege-level checks is appHed to the descriptor of

the executable segment pointed to by the selector in the gate. The RPL
field of the selector in the gate is ignored. Only the DPL field of the exe-

cutable segment is used in these privilege-level checks. If DPL =CPL, or

if the segment is conforming with DPL ^ CPL, the gate transfers are

within the same level. JMP and CALL instructions can use call gates to

transfer to a segment at the same level. If DPL is less than CPL,
a transfer to an inner level is performed. Only CALL instructions can

use call gates to transfer to inner levels. DPL>CPL is not permitted, to

prevent calls to outer levels. RET instructions cannot use call gates,

regardless of privilege levels.

Not Used

CALL

Instruction
CALL Offset Selector

Gate

Code

Segment

Limit
1

Entry Point

Selector DwordCount Offset -^

*
>•

<

4
>>

<

Base Limit ^ Attributes

^
Target Code

Segment

*- Figure 5.24: Transfer through a call gate

Memory Management, Protection, and Tasks 501

Figure 5.25 illustrates the permissible relationships for a CALL
instruction between CPL, the level of the gate, and the level of the exe-

cutable segment pointed to by the gate. A program executing at level 2

Figure 5.25: Privilege levels and gates

502 Programming the 80386

in the segment CodeA can access the gates at levels 2 and 3. These gates

must point to executable segments at level 2 or inner levels (0 or 1). The
permissible relationships are illustrated with solid arrows. The illegal rela-

tionships are illustrated with dotted lines.

Gates at level 2 points to an executable segment at level 2 (Codefi), so

use of GatCB from level 2 results in no change in privilege level. In fact,

CodcB is accessible directly without the gate, as shown in the figure.

Gatec at level 3 points to a level segment Codec, so use of GatCc from

level 2 results in a privilege-level transition. Codec is not accessible

directly, but only indirectly through Gatec- Similarly, GatCo at level 2

points to a level 1 code segment Codco, which is not directly accessible

from level 2. Use of GatCo from level 2 also results in a privilege-level

transition. GatCz at level 1 is not accessible from level 2, nor is the seg-

ment Codcz accessible at level 0.

Stack Switch A CALL through a call gate to an inner level not only

switches the privilege level and transfers control to a new code segment,

but it also switches to the stack segment for the inner level. The stack

remains unchanged if the CALL is to the same level, even if the CALL
is through a gate. Recall that the TSS contains pointers to stacks for lev-

els 0, 1, and 2. During an interlevel CALL, the SS and ESP registers

are initialized with the appropriate pointer from the TSS. This sets up
an empty stack at the new level, since the ESP pointer in the TSS is

typically set to point to the upper limit of the new stack segment. How-
ever, the stack does not stay empty for long!

When the SS register is loaded with the selector for the inner-level

stack segment, the same privilege checks are applied as if a MOV SS,

selector instruction was executed at the inner privilege level. This means
that the segment must be a read/write segment, and must have

RPL =DPL =CPL at the inner level.

After initializing the stack with the pointer from the TSS, the old SS
and ESP register values are pushed onto the inner-level stack to permit

the matching outer return to restore the stack of the outer level. After

this, to 31 dwords (124 bytes) can be copied from the outer-level stack

to the inner-level stack. This copies parameters that were pushed onto

the outer stack before the call, but that need to be on the new stack to

be easily accessed by the inner-level procedure. The number of dwords

to copy is given in the DwordCount field of the call gate descriptor.

Figure 5.26 illustrates the stack-switch operation that occurs as part of a

gated CALL to an inner level. The outer-level stack is shown on tiie right

as containing four dword parameters (PI, P2, P3, and P4) pushed before

the CALL instruction. The inner-level stack is shown on the left after suc-

cessfial completion of the CALL. The SS and ESP values for the outer stack

Memory Management, Protection, and Tasks 503

are pushed onto the inner stack first. Then, the four dword parameters are

copied fi-om the outer stack to the iimer stack, assuming the gate has four

in its DwordCount field. Finally, the return address is pushed as the CS
and EIP values for die outer-level program. After the CALL instruction, SS
addresses the stack segment for the inner level, and ESP points within this

segment to the EIP value pushed by the CALL.
Although gates are most useful to transfer to an inner level, a gate can

specify a code segment that is at the current privilege level, or is con-

forming. In this degenerate usage of call gates, no privilege-level switch

is performed, and no stack switch occurs. Both CALL and JMP instruc-

tions can use gates to transfer to a segment at the same privilege level.

This use of a gate is similar to an indirect CALL or JMP instruction.

Stack

Grows

Down

Limit

ESP after CALL

before RET

Outer SS

Outer ESP

P1

P2

P3

P4

Outer CS

Outer EIP

Inner Stack

Inward CALL

Outward RET

^Limit

P1

P2

P3

P4

ESP after RET

ESP before CALL

Outer Stack

Figure 5.26: Switching to inner-level stack

504 Programming the 80386

Transparency An important property of gates is that they are transpar-

ent to the calling program. That is, the calling program uses the stan-

dard intersegment CALL instruction to transfer to a different segment
and cannot tell whether the selector given in the call identifies the mem-
ory segment, or identifies a gate that indirectiy specifies the new segment

and substitutes a new offset. Because the operating system controls the

contents of the descriptor tables, it can use gates to intercept transfers to

routines placed at different privilege levels.

Using gates to directly call operating-system procedures fits very well

into the multiple-segment programming model, and is a major benefit of

the use of that model. However, since the single-segment programming
model does not use intersegment calls, the benefit of tranparency is not

evident. In the single-segment model, a call to an operating-system pro-

cedure is typically an intrasegment call to a utility library routine that

contains an intersegment call that can go through a gate.

Outward Returns

CALLs through call gates transfer control from outer-level routines to

inner-level routines. This section describes how the RET instruction can

be used to return from the inner level to the outer level. The interseg-

ment RET instruction pops the return pointer from the stack, and can

also adjust ESP to remove parameters pushed on the stack before the

corresponding call. The selector part of the return pointer identifies the

segment to return to. The RPL field of this selector identifies the privi-

lege level to return to. Note that the RPL field of this selector is used,

and not the DPL field of the corresponding descriptor. This is necessary

because the return may be to a conforming segment that may execute at

a level other than that given in its DPL field.

If the RPL field of the selector specifies an outer level relative to CPL,
an outward return occurs. The pointer to the outer-level stack is popped

off the inner-level stack, and loaded into SS and ESP to restore the outer

stack after CPL is adjusted to the outer level. ESP is then adjusted to

remove parameters pushed on the outer stack before the matching call.

Before resuming execution at the outer level, the data-segment registers

DS, ES, FS, and GS are checked to ensure that the segments they

address are accessible at the outer level. If a segment register addresses a

segment that is not accessible at the outer level, it is loaded with a null

selector to avoid a protection hole upon return.

Note that the parameter bytes are popped off both the inner-level and

outer-level stacks by the outward return. This makes sense, since there

are two copies of the parameters! The parameters copied to the inner-

Memory Management, Protection, and Tasks 505

level stack must be popped off in order to access the stack pointer to the

outer-level stack. The parameters must be popped off the outer-level

stack to adjust the stack used after the return completes.

Figure 5.26, used to illustrate the stack-switch operation in an
interlevel call, also illustrates the stack switch that occurs during the

matching outward return. Just before the RET instruction executes, the

inner stack contains the return address, the four dword parameters cop-

ied during the inner-level call, and the SS:ESP pointer to the outer-level

stack. The outer-level stack has the four dword parameters pushed before

the inner-level call executed. A RET instruction with a parameter count

of 16 will undo the effects of the interlevel call. The CS:EIP return

address is popped from the inner stack, and the inner ESP adjusted by
16 to remove the parameter bytes. This leaves ESP pointing to the

SS:ESP pointer to the outer-level stack. The RPL field of the return CS
selector indicates an outer level, so these SS and ESP values are popped
from the stack, CPL is changed to the outer level, and then the outer

ESP is adjusted by 16 to remove the original parameters. After the

return, the inner-level stack is discarded, SS addresses the outer-level

stack, and ESP points just above the four parameters, as shown.

Segmentation Details

The next several sections describe the operation of the segmentation

mechanism in detail with our C-like notation. In these sections and in the

corresponding sections in Chapter 6, we will present a collection of sub-

routines that precisely describe the memory-management model of the

80386. These subroutines are presented in an order that provides a good

progression of concepts, but does not always define terms before using

them as a C compiler would require! These subroutines are dependent

upon and build upon each other. For example, most of the subroutines

call other subroutines to handle memory references. The subroutines that

describe task switches reference several levels of subroutines to describe

these complex operations. We believe that the subroutine approach is best

for presenting this material because it lets you digest a concept embodied

in a subroutine, and then use it as a higher-level abstraction to build more
complex operations. The collection of subroutines provides a complete

description of the exact 80386 actions when referencing memory, loading

segment registers, and executing intersegment control transfers.

A key part of the following description is the exceptions that are raised

to report protection violations to the operating system. Although most of

the details of exceptions are covered in Chapter 6, this chapter details the

506 Programming the 80386

conditions that cause exceptions, and what information is reported with

an exception. We give a brief overview of how exceptions are described

in this chapter before we dive into the detailed descriptions.

The descriptions are divided into three major parts:

1. Access to data in memory data segments

2. Intersegment control transfers

3. Task switches

The first section expands our C-Iike notation to include structure

definitions and pointer dereferencing operators, and then includes

a definition of the structure types and global variables used throughout

the rest of this chapter. It also includes a description of the paging mech-

anism, which is a key part of referencing memory.
The detailed descriptions in these sections provide a formal specifica-

tion of the operation of the memory-management model on the 80386

that supplements the descriptive material presented earlier in this chapter.

The detailed descriptions provide a concise, exact specification of the

80386 memory-management mechanism, whereas the descriptive material

presented earlier in the chapter is more verbose and glosses over some of

the less important details. If you're reading this material for the first

time, you may want to read Chapters 6 and 7 to get a better idea of the

entire set of operating system facilities available in the 80386 before

returning to these detailed descriptions. Other readers may find these

descriptions most useful as reference material.

Exceptions Summary

In the following detailed instruction descriptions, several different types

of segment exceptions can occur if a program attempts an operation that

violates the segmentation protection model. If paging is enabled, page

exceptions can also occur even during operations primarily involving the

segmentation mechanism. Chapter 6 describes how exceptions interrupt

the program sequence. The detailed instruction descriptions in this chap-

ter describe the conditions that cause segment and page exceptions, and

the information made available to software when these exceptions are

reported.

Segment Exceptions

The segment exceptions referenced in this chapter and their names as

used in the detailed descriptions are as follows:

Task Switch $TS

Memory Management, Protection, and Tasks 507

Not Present $NP

Stack Segment $SS

General Protection $GP

A segment exception reports an error code that can be used by excep-

tion handler software to discover and fix the cause of the exception, or to

provide diagnostic information when terminating the offending program.

The format of the error code is shown in Figure 5.27. The error code is

a 16-bit value formed from the selector value that caused the exception,

or if no selector is involved. Operations that load a selector into a seg-

ment register take the upper 14 bits directly from the selector: bit 2 is

the TI bit, and bits 15... 3 are the index field. Other operations, for

example a data access, use a zero-error code, since no selector is directly

involved in the operation. The RPL field from the selector is discarded,

and replaced with two bits that indicate the operation that caused the

exception. Bit is the EXT bit and is set to 1 if the exception occurred

when processing another exception, or an external interrupt. Bit 1 is the

IDT bit and is set if the exception occurred reading an entry from

the IDT, which occurs only during interrupt or exception processing,

described in Chapter 6. The detailed descriptions in this chapter specify

exactly how the error code is formed for each possible exception.

15 3 2 1

Index
T

1

1

D

T

E

X

T

Figure 5.27: Segment-exception error-code format

508 Programming the 80386

In the detailed descriptions below, exceptions are indicated by calls to

the subroutine SegmentException(), defined in Chapter 6, which takes

two parameters:

1. The vector number to use when reporting the exception. These

are indicated mnemonically with the predefined names $TS,
$NP, $SS, and $GP. The correspondence of vector numbers to

exceptions is covered in Chapter 6.

2. The selector to use in the error code reported with the exception.

Page Exceptions

Page exceptions are also raised by the operations described in this

chapter. Whereas segment exceptions have several types, there is only

one type of page exception. When a page exception occurs, the processor

loads CR2 with the linear address causing the exception. Page exceptions

also report an error code, to help operating-system software diagnose

the exception.

The error code for a paging exception has only 3 significant bits, as

shown in Figure 5.28. Bit is the P bit, which indicates whether the

exception was due to a not-present page (P = 0) or to a page protection

violation (P = 1). Bits 1 and 2 indicate the type of access that caused the

exception. Bit 1 is the W bit, which is 1 if the access was a write, and is

for reads. Bit 2 is the U bit and is 1 if the access came from a pro-

gi^am executing at privilege level 3 (user level), and is for programs at

levels 0, 1, and 2.

15 3 2 10
Reserved U W P

Figure 5.28: Page-exception error-code format

Memory Management, Protection, and Tasks 509

In the detailed descriptions below, page exceptions are indicated by
calls to the subroutine PageException(), defined in Chapter 6, which
takes four parameters:

1. The linear address causing the exception.

2. The privilege level of the attempted access. This is used to form

the U bit of the error code.

3. The W bit of the error code (1 if a write, if a read).

4. The P bit of the error code (1 if a protection exception, if a

not-present exception).

Aborting Execution of Instruction Descriptions

Unlike the other subroutines used in the detailed descriptions, the

PageException() and SegmentException() routines do not return to

their caller. Instead, they abort the "execution" of the instruction

description, terminating all subroutines backward along the chain of

nested procedure calls. This allows us to more concisely describe the nor-

mal cases yet still precisely describe exception handling.

Memory Data Access Details

As described in Chapter 2, both the segment part and the offset part

of a virtual address must be specified in order to access data in memory.

The segment part is given as a segment register that has been loaded

with a selector for the segment containing the desired data. The offset is

a simple byte offset within this segment, and can be generated from the

sum of a base register, a scaled index register, and a constant displace-

ment. This means that accessing data in memory is a two-step process.

First, a segment register must be loaded with a selector for the segment

containing the data. Then, the data can be referenced by specifying the

segment register along with the components of the offset (base register,

index register, displacement).

The description of a memory access is split into three parts. The first

part introduces the types and global variables, such as those used to

describe registers. The second part describes a memory reference using a

segment register that is assumed to be already loaded. Finally, we
describe the process of loading a segment register in detail to conclude

this section on memory data access. We describe memory references first,

since the operation of loading a segment register itself requires several

memory references.

510 Programming the 80386

Notation, Struct Definitions, and Global Variables

Before diving into the descriptions, we need to extend the C notation

introduced in Chapter 3 with two new key constructs. We use the struct

construct to build structures or records as composites of several basic

data types such as int (for integer), char (for characters), or other structs.

The struct operator lets us define our own data types for complex struc-

tures such as segment descriptors and selectors. We also use the pointer

dereference operator (*) to reference data in memory whose address is

obtained from a pointer variable. If ptr is a pointer to an integer, the

construct *ptr can be used to name the integer pointed to by ptr. In

variable definitions, the * operator is used to define a pointer, as in the

following example. The code declares I and J as integers and PTR as a

pointer to an integer, then assigns PTR the address of J, and assigns the

value in I to J by dereferencing PTR to access J.

int I, J, *PTR; /* I, J are integers, PTR points to an
integer. */

PTR = &J; /* PTR now points to J. */

PTR =1; / Same effect as J = I ; */

The detailed descriptions of data accesses and segment register loads

rely on the struct definitions and global variables defined in Listing 5.2.

The struct definitions make use of two built-in types that are not stan-

dard C constructs. The Bit type is assumed to define a struct field as a

given number of bits. Within a struct definition, the bit fields are

assigned from the low-order bit position to the high-order bit position.

The filler type is defined to reserve bits of space in the structure, to

reflect bits that are not used.

The structure of a selector is defined by the struct definition Selector-

Type, which details the allocation of bits to the RPL field, the TI bit,

and the index field. This definition matches the graphical presentation of

the selector format given in Figure 5.9. The structure of the segment

attributes is described by the struct definition SegAttributes. It describes

the layout of the second dword (at off"set 4) of a descriptor. It includes all

of the possible attribute fields, the combination of the fields for gates and

segment descriptors illustrated in Figures 5.10, 5.11, and 5.12. The
DType and Type fields determine which of the remaining attribute fields

are valid.

The structure of a segment register and associated shadow registers is

described by the struct definition SegmentRegister. It contains four sub-

fields to reflect the structure illustrated in Figure 5.13: a selector defined

to have the struct type SelectorType, an attributes field defined to have

the struct type SegAttributes, and two 3 2 -bit integers to describe the base

Memory Management, Protection, and Tasks 511

struct SelectorType{
Bit (2) RPL;
Bit(l) TI; /* if GDT. 1 if LDT */

Bit (13) Index; /* Index into GDT or LDT of descriptor */

}

/* The following structure maps the second dword of descriptors.
/* The DType and Type fields control which other fields are valid,
struct SegAttributes{

/* Parameter count for call gates only */Bit (5) DwordCount;
filler (3)

;

Bit(4) Type;
Bit(l) DType;
Bit (2) DPL;
Bit(l) P;

filler (6)

;

Bit(l) D;

Bit(l) G;

/* if System Segment or Gate,

/* Present Bit */

1 if Memory Segment */

/* Default size (16 vs. 32), see Chapter 9 */

/* Limit Granularity. 0=byte, 1=4K byte granular */

struct SegmentRegister {

SelectorType Selector; /* visible selector register */

SegAttributes Attributes; /* invisible shadow registers */

int Base,
Limit;

}

SegmentRegister CS, SS, DS, ES, FS, GS, /* Segment registers */

TR, LDTR, /* System Segment registers */

IDTR, GDTR; /* use only base and limit fields */

int CRO, CR2, CR3;
int CPL;

/* 32-bit processor-control registers */

/* Current Privilege Level */

/* 32-bit general registers */

int EAX, EBX, ECX, EDX, ESP, EBP, ESI, EDI;

/* Processor-control registers */

struct EflagsType {

Bit(l) CF;

f iller (1)

;

Bit(l) PF;

filler (1)

;

Bit(l) AF;

f iller (1)

;

Bit(l) ZF, SF, TF, IF, DF, OF;

Bit(2) lOPL;
Bit(l) NT;

filler (1)

;

Bit(l) RF, VM;

filler (14)

;

EflagsType EFLAGS;
int EIP;

*- Listing 5.2: Struct definitions and global variables

512 Programming the 80386

and limit. The segment limit is stored as a full 32-bit byte-granular limit.

Segment-register loads will translate 4K byte-granular limits to byte lim-

its before storing into the limit register.

Given the above predefined types, the six segment registers CS, SS,

DS, ES, FS, and GS are defined as having the struct type Segment-
Register. The system registers LDTR, TR, IDTR, and GDTR are also

defined as having the struct type SegmentRegister. IDTR and GDTR do

not use the selector or attributes fields. GPL is defined as a 32-bit inte-

ger. The control registers CRO, CR2, and CR3 are defined as 32-bit

integers, as are the general registers EAX, EBX, ECX, EDX, ESP,

EBP, ESI, and EDI.

The structure of the EFLAGS register is given by the struct definition

EflagsType, which matches the graphic definition given in Figure 2.2.

The EFLAGS register is, of course, of this type. The EIP register is

defined as a 3 2 -bit integer.

Data References

Assuming a selector has been loaded into a segment register and the

corresponding descriptor into the shadow registers, data within the seg-

ment addressed by the register can be referenced. Every data reference

makes several protection checks, given in detail in the routine Access-

Virtual() in Listing 5.3. Most protection checks are done when the seg-

ment register is loaded. The number of checks made at each memory
reference is minimized to ensure high performance, since there are typi-

cally many more memory references than segment register loads.

The operation section of many detailed instruction descriptions in

Chapter 3 contained references to instruction operands stored in memory.
These memory references are all "calls" to the routine AccessVirtual(),

even though none of the notations used in Chapter 3 make any mention

of this routine. The AccessVirtual() routine contains the detailed

description of the memory reference, which is abstracted in Chapter 3.

Within the AccessVirtual() routine, first the segment register is

checked to see if it contains a null selector by testing the Attributes.P bit

in the shadow descriptor registers. The off^set is checked to ensure it is

within the segment limit. Two different limit tests are required: one for

normal (expand-up) segments, and a second for expand-down segments.

The type of reference is checked against the segment attributes to pre-

vent a write into a read-only segment, or a read or write to an execute-

only segment. If any check fails, an exception is reported and no
memory reference is made. If all checks pass, the memory reference is

allowed by segmentation and is passed down to the paging mechanism
by calling the AccessLinear() routine, passing the linear address of the

Memory Management, Protection, and Tasks 513

/* Access data in a segment addressed by a Segment Register SReg */

AccessVirtual (SReg, Offset, Length, RW, IntNumber, Data)
SegmentRegister SReg;
int Offset, Length, /* offset in segment, and length of data */

RW, /* if read, 1 if write */

IntNumber, /* $SS for SS access, $GP for other registers */

Data; / Pointer to Data to read or write */

{

if (SReg. Attributes. P == 0) /* Invalid Segment register (Null) */

SegmentException (IntNumber, 0);

switch (SReg. Attributes. Type /* Ignore Accessed attribute */) {

case 0: case 1: /* Read-only */

case 10: case 11: /* Execute/Read */

case 14: case 15: /* Execute/Read, Conforming */

/* Test for writing a read-only segment, */

/* then fall through to limit test. */

if (RW == 1)

SegmentException (IntNumber, 0);

case 2: case 3: /* Read/Write */

/* Test for normal (expand-up) segment limit */

if ((Offset+Length-1) > SReg. Limit)

SegmentException (IntNumber, 0);
break;

case 4: case 5: /* Read-only, Expand-Down */

/* Test for writing a read-only segment, */

/* then fall through to limit test. */

if (RW == 1)

SegmentException (IntNumber, 0);

case 6: case 7: /* Read/Write, Expand-Down */

/* Test for expand-down segment limit */

if ((Offset <= SReg. Limit) II ((Offset+Length-l)>=4G))

SegmentException (IntNumber, 0);

break;

case 8: case 9: /* Execute-only */

case 12: case 13: /* Execute-only, Conforming */

/* Can't read or write an execute-only segment */

SegmentException (IntNumber, 0);

break;
} /* end switch */

AccessLinear (SReg. Base+Offset. Length, CPL, RW, Data);

} /* end AccessVirtual */

Listing 5.3: AccessVirtual() subroutine

514 Programming the 80386

data obtained by adding the segment base to the indicated offset of

the data. If aU of the paging access checks pass, the instruction can com-
plete normally. Note that for these data references generated direcdy by

the program, CPL is used as the privilege level of the access.

Paging The operation of the paging mechanism is encapsulated into

two subroutines: AccessLinear() and TranslateLinear(). AccessLinear(),

shown in Listing 5.4, calls TranslateLinear() to translate the linear

addresses to physical addresses, and then calls the routine AccessPhysical(
)

described below to actually reference physical memory. AccessLinear() also

handles the case where a reference is split across two pages. For

example, referencing the dword at address OFFFh would cross two pages;

the first byte of the dword is in page 0, at address OFFFh. The last three

bytes of the dword are stored in page 1, at address lOOOh through

1003h. In cases such as these, AccessLinear() splits the reference into

two references on the two different pages.

The heart of the paging mechanism is encapsulated in the routine

TranslateLinear(), shown in Listing 5.5. It first checks the PG bit in

CRO to see if paging is enabled. If paging is disabled, it simply returns

the input linear address as the output physical address. If paging is

enabled, it reads both levels of the page table to translate a linear

address to a physical address. It tests both the directory and page table

entries, and detects an exception if the entry at either level is marked not

present, or if a page protection violation is detected. This description is

written to always read both levels of the page table for all memory ref-

erences. As described earlier in this chapter, the real 80386 has a

paging cache to ensure that the memory-resident page tables need be

read only infrequently.

Access to Physical Memory The subroutine AccessPhysical() abstracts

the operation of accessing physical memory in our instruction descrip-

tions. We don't include a detailed description of this routine, since this

operation occurs in the memory system external to the 80386 processor.

This routine takes four parameters:

1. The physical address to access.

2. The length of the data to reference.

3. Whether to read or write.

4. A pointer to the data to access.

Memory Management, Protection, and Tasks 515

/* The following routines AccessLinear and TranslateLinear */

/* encapsulate the page translation mechanism. */

/* TranslateLinear performs 1 inear- to-physical address translation. */

/* AccessLinear uses this function to support read and write access */

/* to the Linear Address space. */

AccessLinear (LAddress, Length, PL, RW, Data)
int LAddress, Length, /* Linear address and length of data */

PL, /* Privilege level of access */

RW. /* if read, 1 if write */

Data; / Pointer to Data to read or write */

{

int PAddress,
LAddress2, PAddress2,
Lenl

,

Len2

;

/* Check for split references */

if (((LAddress % 4096) + Length) > 4096)

{ /* Access split into two pieces, on two different pages. */

/* First piece of data is at address LAddress, */

/* and extends to the end of the page. */

Lenl = 4096 - (LAddress % 4096);
PAddress = TranslateLinear (LAddress, PL, RW)

;

/* Second piece of data is on next page (LAddress+Lenl) , */

/* of length Length-Lenl */

LAddress2 = LAddress + Lenl;
Len2 = Length-Lenl;
PAddress2 = TranslateLinear (Laddress2, PL, RW) ;

/* Both pieces are accessible (an exception will abort */

/* in TranslateLinear) , so access physical memory. */

AccessPhysical (PAddress, Lenl, RW, Data);
AccessPhysical (Paddress2, Len2, RW, Data+Lenl);

} /* end Split-page access */

else { /* access lies entirely within one page */

PAddress = TranslateLinear (Laddress, PL, RW) ;

AccessPhysical (PAddress, Length, RW, Data);

} /* end single page access */

} /* end AccessLinear */

Listing 5.4: AccessLinear() subroutine

516 Programming the 80386

TranslateLinear (LAddress, PL, RW)
int LAddress,

PL, /* Privilege Level of access */

RW; /* if read, 1 if write */

{ /* The PTE structure defines the format of page table entries at */

/* both levels of the page table. */

struct PTE {bit(l) P
bit(l) RW
bit(l) SU
filler (2)

bit(l) A
bit(l) D
filler (5)

Bit (20) PageFrame

/* 1 if valid for translation */

/* 1 if writable */

/* 1 if accessible to PL 3 */

/* Accessed bit */
/* Dirty bit */

/* Physical Address 31.. 12 */

PTE DEntry, /* Directory (1st level) entry */

PEntry; /* Page Table (2nd level) entry */

int PAddress;

/* Test PG bit in CRO to see if paging is enabled. If not, simply */

/* return the linear address as the physical address. */

if ((CRO & SOOOOOOOh) == 0)

return (LAddress)

;

/* If PG=1, read Directory Entry using top 10 bits of Laddress as */

/* an index into the Page Directory Table pointed to by CR3. */

/* Note that page attributes are not checked until both levels of */

/* the page table have been read in. */

PAddress = (CR3 & OFFFFFOOOh) + ((LAddress»20) & OFFCh) ;

AccessPhysical (PAddress, 4, /* Read */, &DEntry)

;

if (DEntry. P == 0) /* Not Present */

PageException(LAddress, PL, RW, DEntry. P);

/* update A bit for present entries */

DEntry. A = 1;

AccessPhysical (PAddress, 4, 1 /* Write */, &DEntry)

;

/* Read Page Table Entry using middle 10 bits of LAddress as an */

/* index into the Page table pointed to by the Directory Entry */

PAddress = (DEntry & OFFFFFOOOh) + ((LAddress»10) & OFFCh);
AccessPhysical (Paddress, 4, /* Read */, &PEntry)

;

if ((PEntry. P == 0) /* Not Present */

II ((PL == 3) &&
(/* Check for page protection violations */

(DEntry. U == 0)

1 1 (PEntry. U == 0)

1 1 ((DEntry. RW == 0) && (RW == 1))

1 1 ((PEntry. RW == 0) && (RW ==

)

1))

)

PageException (LAddress, PL, RW, PEntry. P);

Listing 5.5: TranslateLinear() subroutine

Memory Management, Protection, and Tasks 517

/* If translation is valid, update D and A bits */
PEntry.A = 1;

if (Rw == 1) /* Write */
PEntry.D = 1;

AccessPhysical (Paddress, 4, 1 /* Write */. &PEntry);

Re turn ((PEntry & OFFFFFOOOh) /* bits 31.. 12 from Page Table */
+ (LAddress & OFFFh) /* bits 11.. from linear address */);

} /* end TranslateLinear */

Listing 5.5: TranslateLinear() subroutine (continued)

Loading a Segment Register

Before data in a memory segment can be accessed by a program, the

segment must be made addressable by loading the selector for the seg-

ment into one of the segment registers (for example, by a MOV). This

section describes in detail how a segment register is loaded, including

how the segment descriptor is loaded into the associated shadow descrip-

tor registers.

Only the DS, ES, FS, GS, and SS registers can be loaded with the

simple load instructions described here. CS is loaded only by interseg-

ment control transfers, which are described later in this chapter. Note

that data within the current code segment can be referenced by giving

CS as the segment register and specifying the offset of the desired data

in this segment. Because segments loaded into CS must either be

execute-only or execute/read, only read access is supplied to the current

code segment.

The detailed description of a segment register load is given in the rou-

tine SRegLoad(), shown in Listing 5.6. It takes three parameters:

1. SReg, the segment register to be loaded.

2. Selector, the selector to load.

3. GPorTS, which selects whether certain exceptions wUl be reported

as $GP exceptions or as $TS exceptions. Segment loads in the

instructions MOV, POP, and Lsr use $GP. Segment loads in task

switches (the subroutine TaskSwitch() described later) use $TS.

The SRegLoad() routine only loads the descriptor shadow registers if

all protection checks pass. It is the responsibility of the caller to load the

518 Programming the 80386

/* SRegLoad loads SS, DS, ES, FS, or GS shadow registers with a */

/* descriptor. */

SRegLoad (SReg, Selector, GPorTS)
SegmentRegister SReg;
SelectorType Selector;
int GPorTS; /* 13 or 10 to select GP or TS exceptions for all but */

/* Not Present Exceptions. */

{

SegAttributes Attributes;
SelectorType GSelector;
int Base, Limit, GOffset;

/* One set of tests for SS, another for DS, ES, FS, GS */

if (SReg == SS) {

if (((Selector & OFFFCh) == /* Null */)

I I (Selector. RPL != CPL))

SegmentExcept ion (GPorTS, 0);

/* If Selector tests pass, read Descriptor and test it */

ReadDescr ip tor (Selector, &At tributes, &Base, &Limit, &GSe lee tor , &GOffset)
if ((Attributes. DPL != CPL)

I I (Attributes. DType == 0) /* System segment or Gate */)

SegmentException (GPorTS, 0);

switch (Attributes. Type /* Ignore Accessed attribute */){

case 2: case 3: /* Read/Write */

case 6: case 7: /* Read/Write, Expand-down */

/* Type is OK, check Present bit */

if (Attributes. P == 0)

SegmentException (12, Selector);
break;

case 0: case 1: /* Read-only */

case 4: case 5: /* Read-only, Expand-down */

case 8: case 9: /* Execute-only */

case 10: case 11: /* Execute/read */

case 12: case 13: /* Execute-only, Conforming */

case 14: case 15: /* Execute/read, Conforming */

/* Type is no good, report segment violation */

SegmentException (GPorTS, 0);

} /* end switch */

} /* end SS tests

else {/* DS, ES, FS, or GS load */

if ((Selector & OFFFCH) == /* Null */)

{/* Mark descriptor invalid (not present) and return */

SReg. Attributes. P = 0;

Return;

}

Listing 5.6: SRegLoad() subroutine

Memory Management, Protection, and Tasks 519

case case 1

case 2 case 3

case 4 case 5

case 6 case 7

case 1(): case

/* If Selector is not Null, load Descriptor and test it */
ReadDescriptor (Selector , &Attributes, &Base, &Limi t, &GSelec tor , &GOffset)
if (Attributes. DType == 0) /* System segment or Gate */

SegmentException(GPorTS, 0);
switch (Attributes. Type /* Ignore Accessed attribute */){

/* Read-only */

/* Read/Write */

/* Read-only, Expand-down */

/* Read/Write, Expand-down */

11: /* Execute/read */

/* Type is OK, check DPL against RPL and CPL */

if ((Attributes. DPL<CPL) II (Attributes. DPL<Selector. RPL))

SegmentException(GPorTS, Selector)

;

/* DPL is ignored when loading a conforming segment as */

/* a data segment. */

case 14: case 15: /* Execute/read, Conforming */

/* Check Present bit last. */

if (Attributes. P == 0)

SegmentException (11, Selector);
break;

case 8: case 9: /* Execute-only */

case 12: case 13: /* Execute-only, Conforming */

/* Type is no good, report segment violation */

SegmentException (GPorTS, 0);

} /* end switch */

} /* end DS, ES, FS, GS */

/* Fall out to here only if all checks pass.
/* Set Accessed bit in descriptor.
/* Load descriptor into shadow registers.

SetAccessed(Selector)

;

SReg. Attributes = Attributes;
SReg.Base = Base;
SReg. Limit = Limit;

} /* end SRegLoad */

Listing 5.6: SRegLoad() subroutine (continued)

520 Programming the 80386

visible part of the segment register, the selector part. Two different sets

of protection checks are used: one for selectors loaded into DS, ES, FS,

and GS, and a stricter set of tests for selectors loaded into the SS (stack

segment) register.

When a selector is loaded into a segment register, first the selector is

checked for validity. If these checks fail, an exception is raised and the

segment register is not modified. A null selector is valid for loading into

the DS, ES, FS, and GS registers, but not SS. If a null selector is

loaded, no descriptor is loaded and the P bit is set to in the segment

attributes field in the shadow descriptor register to indicate an invalid

descriptor. Then any subsequent memory reference that uses the segment

register will raise an exception.

If the selector is valid and not null, the corresponding descriptor is

retrieved from the memory-resident segment descriptor table, and
another set of checks is applied. If these checks fail, an exception is

raised and the segment register is not modified. If the descriptor checks

pass, the descriptor is stored into the corresponding shadow registers.

Then, when the segment register is specified in an address, the descrip-

tor is available on-chip in special registers for efficient processing.

A segment-register load can have one of three outcomes. First, an

exception can be raised if there is a problem with either the selector or

the descriptor. Second, a null selector can be loaded into DS, ES, FS, or

GS (but not SS). Third, the segment register can be successfully loaded

with the selector, and the descriptor can be successfully stored in the

shadow registers. If an exception is raised, neither the segment register

nor the shadow registers are modified.

Selector Tests Recall that selectors have three fields: 1 bit specifies the

table (LDT or GDT) containing the associated descriptor, 13 bits specify

the index in this table for the descriptor, and 2 bits specify RPL, which

can be used to "weaken" the current privilege level (GPL).

The selector is first checked to see if it is null. Null selectors can be

loaded into the DS, ES, FS, and GS registers. No exceptions are raised

when one of these registers is loaded with a null, but any subsequent

memory references that use the register will cause an exception. Attempt-

ing to load the SS register with a null selector will raise an exception at

the load rather than waiting for the first stack reference after the load.

Selectors loaded into the SS register are checked to ensure RPL is

equal to GPL. The other segment registers do not require this RPL
check.

Descriptor CtieckS If the selector is valid, and is not null, the index field

is used to read the descriptor from the indicated descriptor table. The
ReadDescriptor() routine in Listing 5.7 describes the descriptor read in

Memory Management, Protection, and Tasks 521

/* Routine to read a descriptor from a descriptor table. */
/* Returns attributes field, plus unscrambled base, limit, */
/* and Gate selector and offset fields. */
/* Caller must examine attributes field to determine whether */
/* to use base and limit (memory or system segments), or */
/* Gate selector and offset fields. */
ReadDescriptor (Selector, Attributes, Base, Limit, GSelector, GOffset)

SelectorType Selector; /* Selector to load */
SegAttributes ^Attributes; /* return attributes here */
int *Base, /* return segment base here */

Limit; / return segment limit here */
SelectorType *GSelector; /* return gate selector here */
int *GOffset; /* return gate offset here */

{

int DTBase, Dwordl, Dword2;

if (Selector. TI == 1 /* LDT */) {

if (LDTR. Attributes. P == /* Null LDT */)

I I (((Selector. Index * 8) + 7) > LDTR. Limit)
)

SegmentException($GP, Selector);
DTBase = LDTR. Base;

}

else /* GDT */ {

if (((Selector. Index * 8) + 7) > GDTR. Limit)
SegmentException($GP, Selector);

DTBase = GDTR. Base;

}

/* Table limits are OK, read descriptor entries in Linear Space. */
/* Read descriptor table using privilege level regardless of CPL. */
AccessLinear (DTBase+Selector . Index*8, 4, /* PL */, /* Read */,

&Dwordl)

;

AccessLinear (DTBase+Selector . Index*8 +4, 4, /* PL */, /* Read */,

&Dword2)

;

/* unscramble base and limit fields. */

*Limit = (Dwordl & OFFFFh) I (Dword2 & OFOOOOh)

;

*Base = (Dwordl»16) I ((Dword2 & 0FFh)«16) I (Dword2 & OFFOOOOOOh)
;

Attributes = Dword2;
if (*Attributes.G == 1)

*Limit = (*Limit « 12) I OFFFh; /* 4K granular limit */

/* unscramble Gate selector and offset */

*GSelector = Dwordl » 16;

*GOffset = (Dwordl & OFFFFh) I (Dword2 & OFFFFOOOOh)

;

} /* end ReadDescriptor */

Listing 5.7: ReadDescriptor() routine

522 Programming the 80386

detail. This descriptor read itself can raise an exception for any of the

following reasons:

1. If the LDT was indicated, and the LDTR register contains a

null selector, a $GP exception is raised, with the new selector as

the error code.

2. If the index field specifies a descriptor that is partially or wholly

outside the descriptor table limit, a $GP exception is raised, with

the new selector as the error code.

3. If part or all of the descriptor is stored in a page that is not

present, a page exception is raised.

The first two checks are made by the ReadDescriptor() routine. Note

that unlike the SRegLoad() routine, ReadDescriptor() has no parame-

ter for choosing a $GP exception or a $TS exception. Only $GP excep-

tions are reported when reading descriptors, even during task switches.

Page exceptions are possible when reading descriptors, since descriptor

tables are stored in the linear address space just like all other segments.

This means that a call to the AccessLinear() routine is required to read

the descriptor, which may result in a page exception. Note that when
ReadDescriptor() calls the AccessLinear() routine to read the descriptor,

it uses as the privilege level of the read. This means that all descriptor

table reads are performed at privilege level 0, regardless of the privilege

level (CPL) of the current program. This permits the descriptor tables to

be stored in pages not accessible to level 3 programs, but still permit

level 3 programs to load segment registers.

The FetchDescriptor() routine in Listing 5.8 is similar to the Read-

Descriptor() routine. FetchDescriptor() is used in Chapter 3 in the

detailed description of instructions that test segment attributes. Instead of

reporting an exception if the descriptor is outside the segment limits,

FetchDescriptor() returns the value to indicate that the descriptor can-

not be read. Otherwise, the value 1 is returned, along with the two

dwords containing the descriptor, as well as the second dword formatted

as a struct of type SegAttributes.

After returning to the SRegLoad() subroutine but before the descrip-

tor is loaded, many checks are made to ensure that the segment is valid

for use at the current privilege level and in the manner implied by the

segment register loaded. These checks are done once when the segment

register is loaded, rather than every time a memory reference uses the

segment. As with the selector tests, the checks applied depend on

the segment register loaded: the DS, ES, FS, and GS segment registers

have one set of checks, and SS has a separate set of stricter tests.

Memory Management, Protection, and Tasks 523

/* Routine to read a descriptor from a descriptor table. */

/* Returns both dwords of the descriptor, plus the second dword */

/* as a SegAttr ibutes struc type. Returns if there are any */

/* problems reading the descriptor, otherwise returns 1. */

/* No segment exceptions can occur, but page exceptions can */

/* occur (see AccessLinear routine)

.

*/

FetchDescriptor (Selector, Dwordl, Dword2, Attributes)

SelectorType Selector; /* Selects desired descriptor */

int *Dwordl, *Dword2; /* return both dwords of descriptor */
SegAttr ibutes ^Attributes; /* return attributes here */

{

int DTBase;

if (Selector. TI == 1 /* LDT */) {

if (LDTR. Attributes. P == /* Null LDT */)

I I (((Selector. Index * 8) + 7) > LDTR. Limit)
)

return(O)

;

DTBase = LDTR. Base;

}

else /* GDT */ {

if (((Selector. Index * 8) + 7) > GDTR. Limit)
return(O)

;

DTBase = GDTR. Base;

}

/* Table limits are OK, read descriptor entries in Linear Space. */

/* Read descriptor table using privilege level regardless of CPL. */

AccessLinear (DTBase+Selector. Index*8, 4, /* PL */, /* Read */,
&Dwordl)

;

AccessLinear (DTBase+Selector. Index*8 + 4, 4, /* PL */, /* Read */,

&Dword2)

;

*Attributes = Dword2;
return(l)

;

} /* end FetchDescriptor */

Listing 5.8: FetchDescriptor() subroutine

524 Programming the 80386

A privilege-level test is done for all descriptors loaded. The SS register

requires that the descriptor privilege level (DPL) be equal to CPL. Since

RPL was checked earlier to ensure it was equal to CPL, for loads into

SS we require DPL = RPL = CPL. The other segment registers require

that both CPL and RPL specify an inner level relative to DPL. This is

specified as:

DPL > CPL && DPL > RPL

Since we report an exception if this condition is not met, the

SRegLoad() routine negates this test to see if an exception occurs,

resulting in the test

DPL < CPL
I I

DPL < RPL

A segment with execute/read access can be loaded into the DS, ES,

FS, or GS register, but not SS. Conforming segments omit the privilege-

level test. Conforming segments with execute/read access can be read

from any privilege level.

The Type field in the descriptor is checked to ensure it is appropriate.

Loads into SS require that the segment be typed as a read/write segment,

since presumably the stack will be written to at least once! Loads into the

other segment registers only require that the segment be readable.

If any of the above tests fail, either a $GP exception or a $TS excep-

tion is reported, as determined by the third parameter to SRegLoad().

If all of these tests pass, the present attribute bit is tested. If the segment

is not present (P = = 0), a $SS exception is reported for loads into the SS

register, and a $NP exception is reported for loads into other registers.

If all of the protection tests pass, the accessed attribute in the Type
field is set by calling the routine SetAccessed() shown in Listing 5.9.

Then, the shadow registers are loaded with the descriptor information

read earlier. The segment-register load is successful!

Loading LDTR with the LLDT Instruction

The routine LLDT() in Listing 5.10 contains the detailed description

of the LLDT instruction. It takes one parameter, the selector for the new
LDT segment. The LLDT instruction is a privileged instruction, and so

can only be executed at level 0. First, the selector is tested to ensure that

it identifies a segment with a descriptor in the GDT It is possible to

load a null selector into the LDTR. If this is done, any subsequent

segment-register loads with selectors identifying segments in the LDT
will cause segment exceptions. Otherwise, the descriptor for the new
LDT segment is read and tested. It must be a system segment or gate,

iviemory ivianagemem, rroieciion, ana lasKs \3t.o

with type LDT, and it must be present. If all of these checks pass, the

descriptor is loaded into the LDTR shadow registers, and the selector is

loaded into the visible LDTR selector register.

Loading TR with the LTR Instruction

The routine LTR() in Listing 5.11 contains the detailed description of

the LTR instruction. It takes one parameter, the selector for the new
TSS segment. The LTR instruction is a privileged instruction, and so

can only be executed at level 0. Next, the selector is tested to ensure that

it identifies a segment with a descriptor in the GDT, and is not null. If

/* Routine to set the Accessed bit in segment descriptors. */
SetAccessed (Selector)

SelectorType Selector; /* selector for descriptor to change */

{int DTBase, Dword2;

/* simply read the second Dword of a descriptor, */

/* set the low order bit of the Type field to 1, then write the */

/* modified Dword back. No type checking is done in this routine.*/
/* The caller is responsible for type checking. */

/* Determine linear address of base of descriptor table containing */

/* the descriptor to modify. */

if (Selector. TI == 1 /* LDT */) {

if (LDTR. Attributes.? == /* Null LDT */)

II (((Selector. Index * 8) + 7) > LDTR. Limit)
)

SegmentException($GP, Selector);
DTBase = LDTR. Base;

}

else /* GDT */ {

if (((Selector. Index * 8) + 7) > GDTR. Limit)
SegmentException($GP, Selector);

DTBase = GDTR. Base;

}

AccessLinear (DTBase+Selector . Index*8 + 4, 4, /* PL */, /* Read */,

&Dword2)

;

Dword2 = Dword2 I lOOh; /* set low bit of type field */

AccessLinear (DTBase+Selector . Index*8 + 4, 4, /* PL */, 1 /* Write */,

&Dword2)

;

}

Listing 5.9: SetAccessed() subroutine

526 Programming the 80386

/* Detailed description of the LLDT instruction */

LLDT(Selector)
SelectorType Selector;

{

SegAttributes Attributes;
SelectorType GSelector;
int Base, Limit, GOffset;

/* Must be at level to execute the LLDT instruction */

if (CPL != 0)

SeginentException($GP, 0);

/* Selector tests */

if (Selector. TI == 1 /* descriptor in LDT */)

Segmen tExcep t i on ($GP ,) ;

if ((Selector & OFFFCh) == /* Null */)

/* Can load a Null selector into LDTR to indicate no LDT */

{LDTR. Selector = Selector;
LDTR. Attributes. P = 0;

return;

}

/* If Selector tests pass, read Descriptor and test it. */

/* Must be a system segment or gate, of type LDT. */

ReadDescriptor (Selector, &Attributes, &Base, &Limi t, &GSelector, &GOffset)
if ((Attributes. DType == 1) /* Memory segment */

I I (Attributes. Type != 2 /* LDT */))

Segmen tExcepti on ($GP, 0);

if (Attributes. P == 0)

Segment Exception ($NP, 0);

/* Load descriptor into shadow registers, */

/* selector into visible part of LDTR. */

LDTR. Attributes = Attributes;
LDTR. Base = Base;
LDTR. Limit = Limit;
LDTR. Selector = Selector;
} /* end LLDT */

Listing 5.10: Detailed description of LLDT instruction

Memory Management, Protection, and Tasks 527

/* Detailed description of the LTR instruction */

LTR(Selector)
SelectorType Selector;

{

SegAttributes Attributes;
SelectorType GSelector;
int Base, Limit, GOffset;

/* Must be at level to execute the LTR instruction */

if (CPL != 0)

SegmentException($GP, 0);

/* Selector tests */

if ((Selector. TI == 1 /* descriptor in LDT */)

I I ((Selector & OFFFCh) == /* Null */))

SegmentException($GP, 0);

/* If Selector tests pass, read Descriptor and test it. */

/* Must be a system segment or gate, and of type Available 286 TSS */

/* or Available 386 TSS. */

ReadDescriptor (Selector , &At tributes, &Base, &Limi t, &GSe lee tor , &GOffset)

;

if ((Attributes. DType == 1) /* Memory segment */

I I ((Attributes. Type != 1 /* Available 286 TSS */)

&& (Attributes. Type != 9 /* Available 386 TSS */)))

SegmentException($GP, 0);

if (Attributes. P == 0)

Segment Exception($NP, 0);

/* Mark TSS as busy by changing type field in descriptor */

AccessLinear (GDT.Base+Selector. Index*8 + 4, 4, /* PL */, /* Read */,

&Dword2)

;

Dword2 = Dword2 I 200h; /* set bit 1 of type field */

AccessLinear (GDT.Base+Selector. Index*8 + 4, 4, /* PL */, 1 /* Write */,

&Dword2)

;

/* Load descriptor into shadow registers, */

/* selector into visible part of TR. */

TR. Attributes = Attributes;
TR.Base = Base;
TR. Limit = Limit;
TR. Selector = Selector;
I /* end LTR */

Listing 5.11: Detailed description of LTR instruction

528 Programming the 80386

so, the descriptor for the new TSS is read and tested. It must be a sys-

tem segment or gate, with type available 286 TSS or available 386 TSS,

and it must be present. If all of these checks pass, the descriptor is

loaded into the TR shadow registers, and the selector is loaded into the

visible TR selector register after the descriptor type is modified to busy

286 TSS or busy 386 TSS.

Control-Transfer Details

This section describes each of the intersegment control-transfer instruc-

tions with programs in our C-like notation. This description presents an

orthogonal view to the description of intersegment control-transfer meth-

ods presented earlier in this chapter. These descriptions make use of

some of the routines given in the detailed description of paging and

segment-register loads given in previous sections.

The subroutine CSDescriptorLoad(), shown in Listing 5.12, is used

by all of the control-transfer instructions to check a descriptor to be

loaded into the CS shadow registers. CSDescriptorLoad() only loads the

CS shadow registers. The calling routine is responsible for loading the

selector part of the CS register.

The CSDescriptorLoad() subroutine checks the Type field and DPL
of the descriptor against CPL and the RPL field of the selector to deter-

mine if the descriptor is valid. The checks are for a direct transfer to a

present executable memory segment, with the privilege-level test depen-

dent on whether a normal or conforming segment is given. This test is

appropriate for JMP and CALL instructions directly to executable seg-

ments, and for RET instructions that do not change privilege levels. The
more complex transfers will change privilege levels or tasks before calling

this routine, so these tests are still appropriate.

CSDescriptorLoad() includes a test of the RPL of the CS selector.

Since transfers through gates ignore the RPL field of the selector read

from the gate, the descriptions of these transfers will set this RPL field to

before calling CSDescriptorLoad().

The JMP Instruction

The routine JMP() shown in Listing 5.13 contains the detailed

description of the JMP instruction. It takes two parameters, the selector

and the offset of the target of the jump. If the selector is not null, the

associated descriptor is read with the routine ReadDescriptor() shown in

Listing 5.7. The descriptor checks are split into two parts, based on the

DType bit.

Memory Management, Protection, and Tasks 529

/* Common Subroutine to load a descriptor into CS shadow registers,
/* provided it defines an executable memory segment with DPL=CPL
/* and DPL>=RPL, or a conforming segment with DPL<=CPL. Only the
/* CS shadow registers are loaded (base, limit, attributes).
/* CS selector must be loaded by the caller.
CSDescriptorLoad(Selector , Attributes, Base, Limit, GPorTS)

SelectorType Selector;
SegAttributes Attributes;
int Base, Limit,

GPorTS; /* $GP or $TS exception for exceptions */

/* other than not-present. */

{

/* Tests vary depending on Type of memory segment */

switch (Attributes. Type /* Ignore Accessed attribute */){

case 8: case 9: /* Execute-only */

case 10: case 11: /* Execute/read */

/* Non-conforming segment, check DPL against CPL and RPL */

if ((Attributes. DPL != CPL) I! (Attributes. DPL < Selector . RPL)

)

SegmentExcept ion (GPorTS, Selector)

;

break;

case 12: case 13: /* Execute-only, Conforming */

case 14: case 15: /* Execute/read, Conforming */

/* Conforming segment, check DPL against CPL */

if (Attributes. DPL > CPL)
SegmentException (GPorTS, Selector)

;

break;

case 0: case 1: /* Read-only */

case 2: case 3: /* Read/Write */

case 4: case 5: /* Read-only, Expand-down */

case 6: case 7: /* Read/Write, Expand-down */

/* Type is no good, report segment violation */

SegmentException (GPorTS, 0);

} /* end switch */

/* Check Present bit last. */

if (Attributes. P == 0)

SegmentException ($NP, Selector);

/* Get to here only if all checks pass. Set Accessed bit,

/* load descriptor into shadow registers, and return.

SetAccessed(Selector)

;

CS. Attributes = Attributes;
CS.Base = Base;
CS. Limit = Limit;

} /* end CSDescriptorLoad */

*/

*/

*/

*/

*/

*/

Listing 5.12: CSDescriptorLoad() subroutine

530 Programming the 80386

/* Detailed description of JMP instruction. */

JMP(Selector, Offset)
SelectorType Selector;
int Offset;

{

SegAttributes Attributes;
SelectorType GSelector;
int Base, Limit, GOffset;

/* Selector tests for JMP */

if ((Selector & OFFFCh) == 0) /* Null */

SegmentException($GP, 0);

/* Read and test descriptor */

ReadDescriptor (Selector, &At tributes, &Base, &Limit, &GSe lee tor , &GOffset) ;

if (Attributes. DType == 1) /* Memory Segment */ {

/* Call common routine to complete CS Descriptor load. */

CSDescriptorLoad(Selector, Attributes, Base, Limit, $GP)

;

/* Verify target is within segment limit */

if (Offset > CS. Limit)
SegmentException($GP, 0);

/* Get to here only if all protection checks pass. */

/* Complete instruction with "visible" register loads. */

CS. Selector = Selector;
CS. Selector. RPL = CPL;
EIP = Offset;
} /* end Memory Segment */

else /* System segment or Gate */ {

/* check DPL against CPL and RPL */

if ((Attributes. DPL < CPL) I I (Attributes. DPL < Selector. RPL))

SegmentException($GP, Selector);

switch (Attributes. Type)

(

case 1: /* Available 286 TSS */

if (Attributes. P == 0)

SegmentException($NP, Selector);
TaskSwitch286 (Selector, Attributes, Base, Limit, /* NoLink */)

/* See Chapter 9. */

break;

case 5: /* Task Gate */

if (Attributes. P == 0)

SegmentException($>nP, Selector);
TaskGate (GSelector, /* NoLink */);
break;

case 9: /* Available 388 TSS */

if (Attributes. P == 0)

SegmentException($NP, Selector);
TaskSwi tch(Selector , Attributes, Base, Limit, /* NoLink */);
break;

Listing 5.13: Detailed description of JMP instruction

Memory Management, Protection, and Tasks 531

case 4: /* 286 Call Gate */
if (Attributes.? == 0)

SegmentException($NP, Selector);
JumpGate286(GSelector, GOffset, $GP) ; /* See Chapter 9. */
break;

case 12: /* 386 Call Gate */
if (Attributes.? == 0)

SegmentException($NP. Selector);
JumpGate(GSelector, GOffset, $GP)

;

break;

Default: /* Other Types raise $GP exceptions */
SeginentException($GP, Selector);

} /* end switch */
/* end System segment or Gate */

/* end JMP */

Listing 5.13: Detailed description of JMP instruction (continued)

If DType = l, a memory segment is indicated, and the routine

CSDescriptorLoad() in Listing 5.12 is called to complete the descriptor

checks. It returns if the descriptor was loaded successfully. If the new
offset is within the CS limit, the instruction completes by loading the CS
selector register, setting RPL of this CS selector to CPL, and loading

EIP with the offset from the instruction.

If DType=0, a system segment or gate is indicated. First, the DPL
field is tested to ensure it is at the same level or an outer level relative to

both CPL and RPL. Then the Type field is tested, with different actions

for each of the valid types provided that the P bit is set to 1, indicating

that the descriptor entry is valid.

If the descriptor Type field indicates an available 286 TSS, available

386 TSS, or task gate, a task switch occurs without linking or unlinking

a task from the suspended task chain. The detailed descriptions of task

switches are given in three other routines. Both TaskGate() and
TaskSwitch() are described later in this chapter. We do not include a

detailed description of the TaskSwitch286() subroutine, which performs a

task switch through a 286 TSS. Chapter 9 discusses how a task switch

through a 286 TSS differs from the 80386 task switch described in the

TaskSwitch() routine.

532 Programming the 80386

Jump through Call Gate A descriptor type of 286 call gate or 386 call

gate specifies a jump through a call gate. The routine JumpGate()

shown in Listing 5.14 describes a jump through an 80386 call gate. It

takes three parameters:

1. The selector from the gate.

2. The offset from the gate.

3. GPorTS, which indicates if a $GP or $TS exception is to be sig-

naled for certain exceptions. GPorTS permits this routine to also

be used by the detailed description of task switches.

First, the selector is tested to ensure it is not null. Then, the descriptor

is read from the descriptor table. If its DType field indicates it is a mem-
ory segment, it is passed to the common routine CSDescriptorLoad(

)

JumpGate (Selector, Offset, GPorTS)
SelectorType Selector;
int Offset,
int GPorTS; /* 13 or 10 to select GP or TS exceptions for all but */

/* Not Present Exceptions. */

{

SegAttributes Attributes;
SelectorType GSelector;
int Base, Limit, GOffset;

/* Selector tests for JMP */
if ((Selector & OFFFCh) == 0) /* Null */

SegmentExcept ion (GPorTS, 0);

/* Read and test descriptor */

ReadDescriptor (Selector, &Attributes, &Base, &Limi t, &GSelec tor , &GOffset) ;

if (Attributes. DType == 0) /* Can't be System segment or gate */
SegmentExcept ion (GPorTS, Selector)

;

/* Call common routine to complete CS descriptor load */
Selector. RPL = 0; /* ignore RPL in selector read from gate. */

CSDescriptorLoad(Selector , Attributes, Base, Limit, GPorTS);
/* Verify target is within segment limit */
if (Offset > CS. Limit)

SegmentException (GPorTS, 0);

/* Visible part of JMP instruction follows! */
CS. Selector = Selector;
CS. Selector. RPL = CPL;
EIP = Offset;
} /* end JumpGate */

Listing 5.14: JumpGate() subroutine

Memory Management, Protection, and Tasks 533

shown in Listing 5.12. Since the RPL field in the selector from the gate

is ignored, the RPL field of the selector is set to to nullify the RPL
test in that routine. If CSDescriptorLoad() succeeds in loading the

descriptor, it returns. If the new offset is within the CS limit, the instruc-

tion completes by loading the CS selector register, setting RPL of this

CS selector to CPL, and loading EIP with the off"set from the gate.

We do not include a detailed description of the JumpGate286() rou-

tine, which performs a jump through a 286 call gate. Chapter 9 discusses

how a jump through a 286 call gate differs from a jump through a 386

call gate described in the JumpGate() routine.

The CALL Instruction

The routine CALL() in Listing 5.15 contains the detailed description

of the CALL instruction. It is similar in structure to the JMP() routine

/* Detailed Description of Inter -Segment CALL instruction. */

CALL (Selector, Offset)
SelectorType Selector;
int Offset;

{

SegAttributes Attributes;
SelectorType GSelector;
int Base, Limit, GOffset;

/* Selector tests for CALL */

if ((Selector & OFFFCh) == 0) /* Null */

SegmentException($GP, 0);

/* Read and test descriptor */

ReadDescriptor (Selector , &Attributes, &Base, &Limi t, &GSelector , &GOffset)

;

if (Attributes. DType == 1) /* Memory Segment */
{

/* Call common routine to complete CS Descriptor load */

CSDescriptorLoad(Selector , Attributes, Base, Limit, $GP)

;

/* Verify target is within segment limit */

if (Offset > CS. Limit)
SegmentException($GP, 0);

/* Get to here only if all protection checks pass. */

/* Push return pointer onto stack, then load CS selector and EIP */

ESP = ESP-4;
/* push 4 bytes, with CS selector in low 2 */

AccessVirtual (SS, ESP, 4, 1 /* Write */, $SS, &CS. Selector)

;

ESP = ESP-4;
AccessVirtual (SS, ESP, 4, 1 /* Write */, $SS, &EIP)

;

CS. Selector = Selector;
CS. Selector. RPL = CPL;
EIP = Offset;

} /* end Memory Segment */

Listing 5.15: Detailed description of CALL instruction

534 Programming the 80386

else /* System segment or Gate */ {

/* check DPL against CPL and RPL */

if ((Attributes. DPL < CPL) II (Attributes. DPL < Selector . RPL))

SegmentException($GP, Selector);

switch (Attributes. Type)

{

case 1: /* Available 286 TSS */

if (Attributes. P == 0)

SegmentException($NP, Selector);
TaskSwitch286 (Selector, Attributes, Base, Limit, 1 /* Link */)

/* See Chapter 9. */

break;

case 5: /* Task Gate */

if (Attributes. P == 0)

SegmentException($NP, Selector);
TaskGate(GSelector, 1 /* Link */);
break;

case 9: /* Available 386 TSS */

if (Attributes. P == 0)

SegmentException($NP, Selector);
TaskSwitch (Selector, Attributes, Base, Limit, 1 /* Link */);
break;

case 4: /* 286 Call Gate */

if (Attributes. P == 0)

SegmentException($NP, Selector);
CallGate286(GSelector, GOffset, Attributes. DwordCount)

;

/* See Chapter 9. */

break;

case 12: /* 386 Call Gate */

if (Attributes. P == 0)

SegmentException($NP, Selector);
CallGate(GSelector, GOffset, Attributes. DwordCount) ;

break;

Default: /* Other Types raise $GP exceptions */

SegmentException($GP, Selector);
} /* end switch */

} /* end System segment or Gate */

} /* end CALL */

Listing 5.15: Detailed description of CALL instruction (continued)

Memory Management, Protection, and Tasks 535

described above. It takes two parameters: the selector and the offset of

the target of the call. If the selector is not null, the associated descriptor

is read and tested based on the setting of the DType bit.

If DType = 1, a memory segment is indicated, and the routine

CSDescriptorLoad() shown in Listing 5.12 is called to complete the

descriptor checks. If it returns, the descriptor was loaded successfully. If

the new offset is within the CS limit, the instruction completes by per-

forming the "visible" part of the instruction. The old CS selector is

pushed, then EIP is pushed to provide the return address. Finally, the

CS selector register is loaded, its RPL is set to CPL, and EIP is loaded

with the offset from the instruction.

If DType =0, a system segment or gate is indicated. First, the DPL
field is tested to ensure it is at the same level or an outer level relative to

both CPL and RPL. Then the Type field is tested, with different actions

for each of the valid type fields provided that the P bit is set to 1 , indica-

ting that the descriptor entry is valid.

If the descriptor Type field indicates an available 286 TSS, available

386 TSS, or task gate, a task switch occurs, which links the current task

to the new task on the suspended task chain. The detailed descriptions of

task switches are given later in this chapter.

We do not include a detailed description of the TaskSwitch286() sub-

routine, which performs a task switch through a 286 TSS. Chapter 9 dis-

cusses how a task switch through a 286 TSS differs from the 80386 task

switch described in the TaskSwitch() routine.

Call through Call Gale A descriptor type of 286 call gate or 386 call gate

specifies a call through a call gate. The routine CallGate() shown in

Listing 5.16 describes a call through a 386 call gate. It takes three

parameters:

1. The selector from the gate.

2. The offset from the gate.

3. The dword count from the gate, which gives the number of

dwords to copy if a stack switch is required.

First, the selector is tested to ensure it is not null. Then the descriptor

is read from the descriptor table, and its DType field checked to ensure

it is a memory segment and not a system segment or gate. Next, the

descriptor attributes are checked to see if a privilege-level change is

required. If the descriptor indicates a present nonconforming executable

segment with DPL at an inner level relative to CPL, a privilege-level

switch is indicated.

536 Programming the 80386

CallGate(Selector, Offset, DwordCount)
SelectorType Selector;
int Offset,

DwordCount; /* number of parameter dwords to copy */

/* for inter-level Calls. */

{

SegAttributes Attributes;
SelectorType GSelector;
int Base, Limit, GOffset;

/* Selector tests for CALL */

if ((Selector & OFFFCh) == 0) /* Null */

Segmen tExcep t i on ($GP ,)

;

/* Read and test descriptor */

ReadDescriptor (Selector , &At tributes, &Base, &Limit, &GSe lee tor, &GOffset)

if (Attributes. DType == 0) /* Can't be System segment or gate */

SegmentException($GP, Selector);

/* CALL to inner level non-conforming executable present segment */

/* is OK, but requires switch to inner stack and inner CPL. */

if ((Attributes. Type>=8) && (Attributes. Type<=ll)
&& (Attributes. DPL < CPL) && (Attributes. P == 1))

InnerStack (Attributes. DPL, DwordCount, Selector);

/* Call common routine to finish CS descriptor load */

Selector. RPL = 0; /* ignore RPL in selector read from gate. */

CSDescriptorLoad(Selector , Attributes, Base, Limit, $GP)

;

/* Verify target is within segment limit */

if (Offset > CS. Limit)
SegmentException($GP, 0);

/* Get to here only if all protection checks pass. */
/* Push return pointer onto stack, then load CS selector and EIP */

ESP = ESP-4;
/* push 4 bytes, with CS selector in low 2 */

AccessVirtual (SS, ESP, 4, 1 /* Write */, $SS, &CS. Selector)

;

ESP = ESP-4;
AccessVirtual (SS, ESP, 4, 1 /* Write */, $SS, &EIP)

;

CS. Selector = Selector;
CS. Selector. RPL = CPL;
EIP = Offset;
} /* end CallGate */

Listing 5. 16: CallGate() subroutine

Memory Management, Protection, and Tasks 537

We do not include a detailed description of the CallGate286() routine,

which performs a call through a 286 call gate. Chapter 9 discusses how a

call through a 286 call gate differs from a call through a 386 call gate

described in the CallGate() routine.

Privilege-Level and Stack-Switch Details The privilege-level change and
the associated stack switch is described in the routine InnerStack(

)

shown in Listing 5.17. It takes three parameters:

1. NewCPL gives the new privilege level.

2. The DwordCount field from the gate gives the number of

dwords of parameters to copy.

3. The NewCSSelector gives the CS selector from the gate, which is

only needed to pass as an error code for exceptions.

First, the inner-level stack is initialized by reading the stack pointer for

this level from the TSS. Before loading SS with the selector and descrip-

tor for the inner stack, the old SS selector and descriptor registers and
the outer CPL are saved for the stack copy operation. Then CPL is

changed to the inner level, and SS is loaded by calling the routine SReg-
Load(). CPL must be changed before the call to SRegLoad(), so that

the protection checks in that routine work properly.

The pointer to the outer-level stack is saved on the inner stack by push-

ing the old SS and ESP values. Then the dword parameters are copied

from the outer stack to the irmer stack. The copy operation is illustrated as

running in the same order as the original pushes onto the outer stack, but

the order is not significant. What is significant is that the reads from the

outer stack are done with CPL set to the outer CPL, and the writes to

the inner stack are done with CPL set to the inner CPL. This is necessary

to ensure that the paging protection checks will operate properly, and it

avoids a protection hole that might occur if the outer stack were read using

the inner privilege level. At the end of the parameter copy loop, ESP is set

to point to the last parameter pushed, and the routine InnerStack() returns

with the privilege-level transition complete.

Completing the Call Gate Once the privilege level and stack have been

changed, if necessary, the routine CSDescriptorLoad() shown in Listing

5.12 is called to complete the descriptor checks. The RPL field of the

selector from the gate is ignored by setting it to before calling

CSDescriptorLoad(). If it returns, the descriptor was loaded successfully.

If the new offset is within the CS limit, the instruction completes by per-

forming the "visible" part of the instruction. The old CS selector is

pushed, then EIP is pushed to provide the return address. Finally, the

CS selector register is loaded, its RPL is set to CPL, and EIP is loaded

with the offset from the gate.

538 Programming the 80386

/* Routine to switch stacks for inter-level transitions. */

InnerStack(NewCPL, DwordCount, NewCSSelector

)

int NewCPL, /* Switch to stack for this privilege level */
DwordCount; /* Count of parameter dwords to copy to new stack */

SelectorType NewCSSelector; /* need CS selector for error code. */

{

SelectorType NewSSSelector

;

SegmentRegister OldSS;
int TSSOffset, NewESP, tempESP, OldCPL, Dwordl;

/* Read new SS and ESP from TSS. */
TSSOffset = NewCPL*8 + 4;

if ((TSSOffset + 7) > TR. Limit)
SegmentException($TS, NewCSSelector)

;

AccessLinear (TR.Base+TSSOffset, /* PL
AccessLinear (TR.Base+TSSOffset+4, /* PL

/. / Read */, &NewESP)

;

/* Read */,

&NewSSSelector)

/* Save old SS and CPL to use during parameter copy loop. */

OldSS = SS;

OldCPL = CPL;

/* Load SS with selector for new stack after changing to new CPL */
/* and loading descriptor into shadow registers. */

CPL = NewCPL;
SRegLoad(SS, NewSSSelector, $TS) ;

/* return if SS load was successful. */

SS. Selector = NewSSSelector;

/* Push old SS and ESP. */

NewESP = NewESP - 4;

AccessVirtual (SS, NewESP, 4, 1 /* Write */, $SS, &OldSS. Selector) ;

NewESP = NewESP - 4;

AccessVirtual (SS, NewESP, 4, 1 /* Write */, $SS, &ESP)

;

/* Copy parameters. Writing to new stack uses new CPL. */
/* Reading from old stack uses old CPL. */
/* Order of parameter copying is irrelevant, but is illustrated */
/* as the same order as originally pushed on the outer stack by */
/* pointing tempESP at the opposite end of the parameter block */
/* from ESP. With this order, we exit the loop with NewESP */
/* pointing to the top of the new stack. */
tempESP = ESP + DwordCount*4;
for (i=l; i<=DwordCount; i-H-) {

CPL = OldCPL;
tempESP = tempESP - 4;

AccessVirtual (OldSS, tempESP, 4, /* Read */, $SS, &Dwordl);
CPL = NewCPL;
NewESP = NewESP - 4;

AccessVirtual (SS, NewESP, 4, 1 /* Write */, $SS, &Dwordl);
} /* end parameter copy loop */

ESP = NewESP; /* exit loop with NewESP pointing to new stack top */

} /* end InnerStack */

Listing 5.17: InnerStack() subroutine

Memory Management, Protection, and Tasks 539

The RET Instruction

The routine RET() shown in Listing 5.18 contains the detailed

description of the RET instruction. It takes one parameter, which is the

number of bytes of parameters to remove from the stack after popping

/* Detailed description of inter -segment RET */

RET(ParmCount)
int ParmCount; /* number of parameter bytes to remove */

/* from stack. */

{

SelectorType Selector, GSelector;
SegAttributes Attributes;
int Base, Limit, Offset, GOffset;

/* Pop return address from stack */

AccessVirtual (SS. ESP, 4, /*Read*/, $SS, &Offset)

;

ESP = ESP + 4;

AccessVirtual (SS, ESP, 4, /* Read */, $SS, &Selector)

;

ESP = ESP + 4;

/* Remove parameter bytes from the stack */

ESP = ESP + ParmCount;

/* Selector tests for RET */

if (((Selector & OFFFCh) ==0) II (Selector . RPL < CPL)

)

SegmentException($GP, 0);

if (Selector. RPL > CPL) {

/* Inter-level RET is required if Selector. RPL > CPL. */

/* Call subroutine to restore (outer level) stack from */

/* SS:ESP stack pointer now at top of (inner level) stack. */

OuterStack (Selector. RPL, ParmCount)

;

}

/* Read and test CS descriptor */

ReadDescriptor (Selector, &At tributes, &Base,&Limit, &GSelec tor, &GOffset)

if (Attributes. DType == 0) /* Can't be System segment or gate */

SegmentException($GP, Selector);

/* Call common routine to complete CS descriptor load. */

CSDescriptorLoad(Selector, Attributes, Base, Limit, $GP) ;

/* Verify target is within segment limit */

if (Offset > CS. Limit)
Segmen tExcep t i on ($GP ,)

;

/* Get to here if all protection tests pass. Complete visible */

/* part of instruction by loading CS selector and EIP. */

CS. Selector = Selector;
EIP = Offset;

} /* end RET */

• Listing 5.18: Detailed description of RET instruction

540 Programming the 80386

off the return address. There are two forms of the intersegment RET
instruction. One form includes a 16-bit immediate field containing this

parameter byte count. The other form has no immediate field, so

its parameter byte count is taken as 0.

First, the return pointer is popped off the stack, and ESP is adjusted

by adding the parameter byte count. Then, the CS selector popped from

the stack is tested. Its RPL field defines the privilege level to return to.

An exception is raised if the selector is null, or if its RPL field specifies

an inner level relative to CPL. If its RPL field indicates an outer level

relative to CPL, a return to an outer level is indicated.

Privilege Level and Stack Switch The routine OuterStack() shown in

Listing 5.19 is called to switch stacks and privilege levels. OuterStack(
)

takes two parameters:

1. NewCPL gives the new privilege level.

2. ParmCount gives the parameter byte count to pop from the

outer-level stack after switching stacks.

First, the outer-level stack pointer is popped from the inner-level stack.

Then CPL is changed to the outer level, and the SS register is loaded by

calling the routine SRegLoad(). CPL is changed before calling SReg-

Load() so that the privilege-level checks in that routine work properly.

Then, ESP is loaded with the value popped from the inner stack after

adding the parameter byte count to remove parameters from the outer

stack. Finally, the segments addressed by the DS, ES, FS, and OS regis-

ters are tested to be sure they are accessible at the outer level. Each reg-

ister that is not accessible is loaded with a null selector, and the P bit in

the shadow register is cleared to prevent access through that register untU

a new selector is loaded.

Completing the RET Instruction Once the privilege level and stack have

been changed, if necessary, the routine CSDescriptorLoad() shown in List-

ing 5.12 is called to complete the descriptor checks. Since CPL was assigned

from the RPL field of the selector, the RPL test in CSDescriptorLoad() is

guaranteed to pass. If the routine returns, the descriptor was loaded success-

fully If the new offset is within the CS limit, the instruction completes by

performing the "visible" part of the instruction, loading CS and EIP with

the selector and offset popped from the stack.

Task Switches

CALL and JMP instructions can also transfer control to a different

task, as can interrupts and the IRET instruction described in Chapter 6.

Memory Management, Protection, and Tasks 541

/* Subroutine to switch to outer level stack. */

OuterStack(NewCPL, ParmCount)
int NewCPL, /* CPL of outer level we're returning to */

ParmCount; /* number of parameter bytes to remove */

/* from stack. */

{

SelectorType NewSSSelector

;

int NewESP;

/* Pop outer SS and ESP from (inner level) stack. */

AccessVirtuaKSS, ESP, 4, /* Read */, $SS, &NewESP)
;

ESP = ESP + 4;

AccessVirtual (SS, ESP, 4, /* Read */, $SS, &NewSSSelector)

;

ESP = ESP + 4;

/* Load SS with selector for outer-level stack after changing CPL */

CPL = NewCPL;
SRegLoad(SS, NewSSSelector, $GP)

;

/* return if SS load was successful. */

SS. Selector = NewSSSelector;

/* Load ESP with outer ESP adjusted by removing parameter bytes. */

ESP = NewESP + ParmCount;

/* Verify that segments addressed by DS, ES, FS, and GS */

/* are accessible at the new privilege level. A segment */

/* is accessible if it is conforming regardless of DPL, */

/* otherwise if DPL ^ the new CPL. If not, load Null */

/* to avoid a protection hole. No need to check RPL, */

/* since the register could not be loaded at the inner */
/* level if RPL > new CPL > old CPL. */
if ((DS. Attributes. Type < 12) && (DS. Attributes. DPL < CPL))

{DS. Selector = 0; DS. Attributes. P = 0;}
if ((ES. Attributes. Type < 12) && (ES. Attributes. DPL < CPL))

{ES. Selector = 0; ES. Attributes. P = 0;}
if ((FS. Attributes. Type < 12) && (FS. Attributes. DPL < CPL))

{FS. Selector = 0; FS. Attributes. P = 0;}
if ((GS. Attributes. Type < 12) && (GS. Attributes. DPL < CPL))

{GS. Selector = 0; GS. Attributes. P = 0;}
} /* end OuterStack */

Listing 5. 19: OuterStack() subroutine

542 Programming the 80386

The 80386 processor can perform a complete task switch as part of exe-

cuting these instructions. The TSS system segment type described earher

supports this task switching by encapsulating the state of a task. The
TSS contains a register save area, a field to link tasks, and pointers to

the segmentation and paging tables. This permits the 80386 to save and

load the processor registers, link suspended tasks, and change the virtual-

to-physical address mapping to implement a full task switch.

The ability to switch tasks in a single instruction does not add any capa-

bility to the 80386 over what is available from the rest of the instruction set.

The task-switch operations described here can be implemented in software

using a sequence of simpler instructions. The hardware-supported task-

switch operation is more efficient than software solutions if there is a close

match between the task model of the 80386 and that of the operating sys-

tem. If there is a large difference between the task models, a software task-

switching mechanism may be a better choice.

If the selector for the target of an interrupt, or a JMP, CALL, or

IRET instruction identifies a TSS or a task gate, a task switch occurs to

the indicated TSS, or the TSS pointed to by the task gate. Task gates

are similar to call gates in that they indirectly specify the target of the

control transfer. Only the selector part of the pointer in the task gate is

used, which must identify a TSS.

Privilege checks are applied to task switches to ensure the TSS or task

gate is accessible. Task switches use the same privilege checks as call gates

and data segment loads. The TSS or task gate must have its DPL at the

same or an outer level relative to both CPL and RPL. The DPL of the

TSS pointed to by a task gate is not checked.

The type of the TSS descriptor must be appropriate to the kind of

transfer. A TSS can be either busy or available, as indicated in the Type
field of its descriptor. A task is busy if it is the current task, or if it is

linked to the current task along the list of suspended tasks with the link

field of each TSS. Otherwise a task is available. A CALL, JMP, or

interrupt must be to an available TSS. An IRET transfers to the pre-

vious task on the list of suspended tasks, which must be a busy task.

As described earlier in this chapter, the link field in the TSS is used to

build a list of suspended tasks. The current task is suspended and added

to the front of the suspended task list if a call or interrupt to another

task occurs. A task is removed from the suspended list when the match-

ing IRET is executed. This IRET follows the back link to resume the

most recently suspended task.

Task switches cannot be recursive. A CALL or interrupt must be to

an available TSS, and these operations leave the old TSS busy, prevent-

ing recursive tasks. An interrupt source that can generate nested inter-

rupts cannot be handled with a task switch. After receipt of an interrupt

Memory Management, Protection, and Tasks 543

handled by a task switch, the interrupt task must complete and execute a

JMP or IRET instruction to mark the interrupt task available, before the

next interrupt from the same source can be accepted.

The NT bit in the EFLAGS register is used to indicate when there is

a suspended task linked to the current TSS. This bit is referenced by the

IRET instruction to determine if a task switch is required to return, or if

the return is to a program in the current task. If NT = 1, IRET will fol-

low the link field to resume the most recently suspended task. If NT =0,

the IRET pops a return address off the stack to return to a program in

the current task.

A program at any privilege level can alter the value in the NT bit. If a

program sets the NT bit to 1 and then executes an IRET, a task switch to

the TSS pointed to by the link field of the current TSS will occur If the

link field has not been set by a corresponding call or interrupt, unpredict-

able results may occur. Therefore, the operating system should take care to

initialize the link field of every TSS before a jump to that TSS occurs. This

way, a malicious or erroneous program can set the NT bit and execute an

IRET, and the operating system can stay in control.

Task Gate Details

The routine TaskGate() shown in Listing 5.20 contains the detailed

description of transfers through task gates. It takes two parameters:

1. The selector from the task gate descriptor.

2. A linkage indication, which controls how the list of suspended

tasks is handled.

The selector must not be null, and must indicate a descriptor in the

GDT. If so, the descriptor is read and tested. The descriptor must spec-

ify a system segment or gate descriptor by having a in the DType
field. Next, the Type field is tested according to the setting of the linkage

parameter. If the Type field is appropriate, and the P bit is 1, the appro-

priate Taskswitch() routine is called to complete the task switch.

We do not include a detailed description of the TaskSwitch286() sub-

routine, which performs a task switch through a 286 TSS. Chapter 9 dis-

cusses how a task switch through a 286 TSS differs from the 80386 task

switch described in the TaskSwitch() routine.

Task-Switch Details

The routine TaskSwitch() shown in Listing 5.21 contains the detailed

description of a task switch through a 386 TSS. Before calling this rou-

tine, the detailed instruction descriptions must verify that the current

program has sufficient privilege to switch to the new task, and that the

544 Programming the 80386

TaskGate (Selector , Linkage)
SelectorType Selector; /* Selector from task gate descriptor */

int Linkage; /* 0=NoLink, l=Link, -l=UnLink on chain */

/* of nested tasks. */

{

SegAttributes Attributes;
SelectorType GSelector;
int Base, Limit, GOffet;

/* Selector must identify a TSS, stored in GDT */

if (((Selector & OFFFCh) == /* Null */)

I I (Selector. TI == 1 /* in LDT */))

SegmentException($GP, Selector);

ReadDescriptor (Selector , &Attributes, &Base, &Limi t, &GSelec tor , &GOffset) ;

if (Attributes. DType == 1) /* Memory Segment */

SegmentException($GP, Selector);

switch (Attributes. Type) {

case 1: /* Available 286 TSS */

if (Linkage == -1 /* UnLink */)

Segmen tExcep t i on ($GP , Se 1 ec tor)

;

if (Attributes. P == 0)

SegmentException($>fP, Selector);
TaskSwitch286 (Selector , Attributes, Base, Limit, Linkage);
break;

case 3: /* Busy 286 TSS */
if (Linkage != -1 /* Unlink */)

Segmen tExcep t i on ($GP , Se 1 ec tor)

;

if (Attributes. P == 0)

Segmen tExcep ti on ($NP, Selector);
TaskSwitch286 (Selector , Attributes, Base, Limit, Linkage);
break;

case 9: /* Available 386 TSS */

if (Linkage == -1 /* UnLink */)

SegmentException($GP, Selector);
if (Attributes. P == 0)

SegmentException($NP, Selector);
TaskSwi tch(Selector , Attributes, Base, Limit, Linkage);
break;

case 11: /* Busy 386 TSS */

if (Linkage != -1 /* Unlink */)

SegmentException($GP, Selector);
if (Attributes. P == 0)

SegmentException($NP, Selector);
TaskSwi tch (Selector , Attributes, Base, Limit, Linkage);
break;

Default: /* Other system segment or gate types are illegal */

SegmentException($GP, Selector);
} /* end switch */

I /* end TaskGate */

Listing 5.20: TaskGate() subroutine

Memory Management, Protection, and Tasks 545

TaskSwitch(Selector, Attributes, Base, Limit, Linkage)
SelectorType Selector;
SegAttributes Attributes;
int Base, Limit,

Linkage; /* 0=NoLink, l=Link, -l=UnLink on chain */
/* of nested tasks. */

{

if (Limit < 103)
SegmentException($TS, Selector);

/* Save current machine state in old task's TSS */
AccessTSSStated /* Write */);

/* Point TR and Shadow registers to new TSS */
TR.Base = Base;
TR. Limit = Limit;
TR. Attributes = Attributes;
OldTSS = TR. Selector; /* Save old task's TSS selector for link*/
TR. Selector = Selector;

/* Load machine state from new task's TSS */
AccessTSSState(0 /* Read */);

/* Handle differences in Linkage */

if (Linkage == 1 /* Link */) {

/* Save old TSS selector in new TSS, set NT bit. Leave old */
/* TSS descriptor marked as busy. */

AccessLinear (TR.Base, 2, /* Level */, 1 /* Write */, &OldTS)

;

EFLAGS.NT = 1;

SetTSSBusy (Selector, 1); /* Mark new TSS descriptor busy */

} /* end Link */

else if (Linkage == -1 /* UnLink */) {

SetTSSBusy (OldTSS, 0); /* Mark old TSS descriptor not busy */

} /* end UnLink */

else if (Linkage == /* NoLink */) {

SetTSSBusy (OldTSS, 0); /* Mark old TSS descriptor not busy */
SetTSSBusy (Selector, 1); /* Mark new TSS descriptor busy */

} /* end NoLink */

CRO.TS =1; /* Set Task Switched bit */
~

CPL = CS. Selector. RPL; /* Get CPL from RPL field of CS selector */

/* Visible state now restored. Load descriptors into shadow */
/* registers for LDTR and segment registers. */
/* Mark all descriptors invalid for fault handling. */
LDTR. Attributes. Present = 0;

CS. Attributes. Present = 0;

SS. Attributes. Present =
DS. Attributes. Present =
ES. Attributes. Present =
FS. Attributes. Present =
OS. Attributes. Present =

Listing 5.21: TaskSwitch() subroutine

546 Programming the 80386

new task has a valid TSS descriptor. Any exceptions detected there will

be taken in the current task, not the new task. The remaining steps of a

task switch are described in TaskSwitch():

1. Call the routine AccessTSSState(), shown in Listing 5.22, to

store the current values of the general registers, segment regis-

ters, EIP, and EFLAGS into the current TSS. The EIP value

/* Must load LDTR first */
if (LDTR. Selector. TI == 1 /* in LDT */)

SegmentException($TS. LDTR. Selector) ;

if ((LDTR. Selector & OFFFCh) = /* Null */) {

/* OK if LDTR is null. */
LDTR. Attributes. P = 0;

}

else {/* Read and test descriptor if selector is not null */

ReadDescriptor (LDTR. Selector , &Attributes, &Base, &Limi t,

&GSelector,&GOffset)

;

if ((Attributes. DType == 1)

I I (Attributes. Type != 2 /* LDT */)

I I (Attributes. Present == 0))

SegmentException($TS, LDTR. Selector)

;

/* Load LDTR shadow registers if all checks pass */

SetAccessed(LDTR. Selector)

;

LDTR. Attributes = Attributes;
LDTR. Base = Base;
LDTR. Limit = Limit;
} /* end LDTR. Selector not Null */

/* Load remaining shadow registers */

/* CS load is same as a jump through a call gate */

JumpGate(CS. Selector, EIP, $TS) ;

SRegLoad(SS, SS. Selector, $TS)
SRegLoad(DS, DS. Selector, $TS)
SregLoad(ES, ES. Selector, $TS)
SRegLoad(FS, FS. Selector, $TS)
SregLoad(GS, GS. Selector, $TS)

/* Clear local enable bits in DR7. See Chapter 8 */

DR7.L0 = 0;

DR7.L1 =
DR7.L2 =
DR7.L3 =
DR7.L0 =

} /* end TaskSwitch */

Listing 3.21: TaskSwitch() subroutine (continued)

Memory Management, Protection, and Tasks 04/

/* Save or restore machine state from TSS. */
AccessTSSState (RW)

int RW; /* if Read, 1 if Write */

{

if (TR. Limit < 103)
SegmentException($TS, TR. Selector)

;

cessLinear (TR. Base+ 20h, 4, /* Level */, RW, &EIP)
cessLinear (TR Base+ 24h, 4, /* Level */, RW, &EFLAGS)

;

cessLinear (TR Base+ 28h, 4, /* Level */, RW, &EAX)
cessLinear (TR Base+ 2Ch, 4, /* Level */, RW, &ECX)
cessLinear (TR Base+ 30h, 4, /* Level */, RW, &EDX)
cessLinear (TR Base+ 34h, 4, /* Level */, RW, &EBX)
cessLinear (TR Base+ 38h, 4, /* Level */, RW, &ESP)
cessLinear (TR Base+ 3Ch, 4, /* Level */, RW, &EBP)
cessLinear (TR Base+ 40h, 4, /* Level */, RW, &ESI)
cessLinear (TR Base+ 44h, 4, /* Level */, RW, &EDI)
cessLinear (TR Base+ 48h, 2, /* Level */, RW, &ES. Selector)
cessLinear (TR Base+ 4Ch, 2, /* Level */, RW, &CS. Selector)
cessLinear (TR Base+ 50h, 2, /* Level */, RW, &SS. Selector)
cessLinear (TR Base+ 54h, 2, /* Level */, RW, &DS. Selector)
cessLinear (TR Base+ 58h. 2, /* Level */, RW, &FS. Selector)
cessLinear (TR Base+ 5Ch, 2, /* Level */, RW, &GS. Selector)

// CR3 and LDTR. Selector are only accessed if reading
if (RW == /* Read */) {

AccessLinear (TR.Base+ 60h, 2, /* Level */

AccessLinear (TR. Base+ ICh, 4, /* Level */

if (NewCR3 != CR3) {

/* Avoid flush of TLB if new CR3 is same as old CR3 */

FlushTLB;
CR3 = NewCRS;
} /* end CR3 load */

} /* end Read special cases */

} /* end AccessTSSState */

RW, &LDTR. Selector)
RW, &NewCR3);

Listing 5.22: AccessTSSState() subroutine

04O Programming the 80386

saved points to the instruction after the one that caused the task

switch. This freezes the state of the current task so it can be

resumed later.

2. Load TR (the task register) with the selector for the TSS of the

new task, and load the descriptor into the shadow registers.

From this point on, any exceptions that occur are taken in the

new task.

3. Call AccessTSSState() to load the general registers, segment regis-

ters, EFLAGS, and EIP from the new TSS. To properly handle

exceptions that occur while loading segment registers for the new
task, all of the selector registers are loaded before any of the

descriptors are loaded. All of the descriptor shadow registers are

marked not present at this point, since no descriptors are loaded yet.

4. AccessTSSState() wUl also load LDTR and CR3 from the new
TSS. This changes the virtual-to-physical address mapping to

that of the new task. Note that neither of these registers was

written into the old TSS during the state-saving in step 1. Since

CR3 is changed in the middle of accessing the new TSS, the

page mapping must ensure that TSSs are mapped the same way
in all tasks.

5. Call the routine SetTSSBusy(), shown in Listing 5.23, to update

the Type fields in the descriptors for both the old and new TSS
to be busy or available, based on the linkage type requested. If

the linkage parameter indicates that we are to link to the sus-

pended task chain, the NT bit in the EFLAGS register (just

loaded from the new TSS) is set to 1 and the selector for the old

TSS is stored into the link field of the new TSS.

6. Set the TS bit in CRO. This will cause the next coprocessor

instruction to trap so that the coprocessor registers can be saved

to the old task, and reloaded from the new task. Coprocessor

state save/restore is illustrated in Chapter 7. The CPL of the

new task is taken from the RPL field of the CS selector in

the new TSS. A task switch can occur from any level in one task

(provided the new TSS or a task gate to the new TSS is acces-

sible) to any level in the other task.

7. Load the descriptors corresponding to the selectors loaded previ-

ously. If an exception occurs loading a descriptor, the exception

may be raised before all of the descriptors are loaded. In this

case, these segment registers will contain the selectors, but the P
bit will be to prevent access. Exception handlers need to take

care to handle this case properly.

Memory Management, Protection, and Tasks 549

8. The local enable bits in debug register DR7 are set to to clear

any breakpoints, or exact mode, local to the old task. The debug
registers are described in Chapter 8.

Segment Register Loads during Tasl(Switches As noted above, the seg-

ment register values are loaded from the new TSS in two stages. This

two-stage process is necessary because an exception raised during the

loading of one segment register will abort the task switch, leaving the

rest of the segment registers with undefined values.

The first stage in step 3 loads the selector registers with the values

read from the TSS without checking these selectors or the associated

descriptors. To avoid problems with stale values, the P bit is cleared to

in all of the shadow registers to ensure the segment registers cannot be

used to address memory until either the task switch completes success-

fully, or a new selector is successfully loaded.

The second stage in step 6 loads the descriptors for each segment reg-

ister and performs protection checks on the selectors and descriptors.

Exceptions at this point will abort the task switch, leaving one or more
segment registers with the selector part containing an untested selector

read from the TSS, but with P =0 to prevent any access. These untested

selectors act like null selectors for subsequent accesses, but may have
values other than null.

/* Routine to change the type in a TSS descriptor. */

SetTSSBusy (Selector, Busy)
SelectorType Selector; /* Selector for TSS descriptor. */

int Busy; /* to set Available, 1 to set Busy. */

{

int dwordl;

/* Caller has verified selector is not null and is in the GDT. */
/* Simply read descriptor and modify bit 2 of the Type field. */

AccessLinear (GDT. Base+Selector. Index*8 + 4, 4, /* PL */,

/* Read */, &dwordl);
dwordl = dwordl & OFFFFFDFFh; /* Clear bit 2 of type field, */

dwordl = dwordl I (Busy « 9) ; /* and set to value in Busy. */

AccessLinear (GDT. Base+Selector. Index*8 + 4, 4, /* PL */,

1 I* Write */, &dwordl);
} /* end SetTSSBusy */

Listing 5.23: SetTSSBusy() subroutine

550 Programming the 80386

Most 80386 systems will simply abort a task if the TSS contains a bad

selector value. Only systems that may mark segments not present will need

to recover from segment exceptions during a task switch.

Two methods can be used to resume or complete the task-switch oper-

ation. The simplest is to handle these exceptions with task gates, as

described in Chapter 6. Then, after the cause of the exception is fixed,

the IRET will perform a task switch back to the aborted task to restart

the task switch. These interrupt handlers should verif\' all of the segment

register values in the faulting task to ensure that the task switch can

complete successfully.

The second method is to handle the exceptions with trap gates (Chap-

ter 6), but have the interrupt routine push all of the segment register

values on the stack at entry, and pop them off just before the IRET.
When the bad selector is popped off before the interrupt return, it will

load successfully, assuming the cause of the exception was fixed. Other

selectors may cause exceptions when they are popped if they were not

processed before the exception aborted the task switch. The only con-

straint here is that the operating system must be able to tolerate recur-

sive exceptions just before the IRET from these exceptions.

v^e<^^

Chapter

^mm^^^^^^^^^^^^m interrupts and exceptions are special

control-transfer methods that operate outside of the normal programmed
instruction stream. Rather than transfer control from one procedure to

another by executing a CALL instruction, interrupts and exceptions

transfer control without executing an instruction, as if a CALL instruc-

tion were inserted between two instructions. Control is transferred to

an interrupt or exception handler procedure, which can return to the

interrupted program by executing an IRET instruction (described in

Chapter 3). The process of transferring control to the handler is termed

handling the interrupt or exception.

Interrupts are caused by external events and have no relation to the

instruction executing when an interrupt is received. Typically, an inter-

rupt is used to indicate that an I/O device such as a disk drive or a key-

board has finished with the last operation, or has data for the processor.

These external events are unrelated to the instruction executing at the

time the interrupt is received. The interrupt causes a control transfer to

an interrupt handler in the operating system that starts the next opera-

tion for the I/O device, reads data, checks status, and so on. When the

interrupt handler is finished, it resumes the interrupted program at the

point of interrupt by executing an IRET instruction.

554 Programming the 80386

Exceptions are unusual or invalid conditions detected during the execution

of an instruction, and are directly associated with that instruction. For

example, the segment and page exceptions outlined in Chapter 5 are

detected during execution of an instruction and prevent the successful com-

pletion of this instruction. The "software interrupt" instructions INT n and

INTO are classified as exceptions rather than interrupts, since the execution

of these instructions wUl cause an exception. Other examples of exceptions

are the debugging facilities described in Chapter 8.

Interrupts and exceptions are normally handled between instructions.

The repeated string instructions (Chapter 3) are defined to update the

pointer and count registers and handle internipts after each repeat step

to provide good interrupt response while ensuring that the instruction

will eventually complete. Repeated string instructions also permit an

exception to be reported without losing the results of the steps completed

already. If an exception occurs on step 1902 of a repeated string move
with a count of 2000, the exception is reported with the pointer and

count registers having the values held after the 1901" iteration, the last

step to complete successfully. After the cause of the exception is fixed, the

instruction can be resumed to complete the unfinished 99 steps.

Each interrupt and exception has an 8-bit number associated with it

called a vector number. Exceptions have preassigned vector numbers in the

range of to 31. For example, the divide error exception has vector

number 0, and the page exception has vector number 14. You can assign

interrupts to any vector number in the range to 255, but they should

be restricted to the range 32 to 255 to avoid conflicts with the pre-

assigned exception vector numbers. The vector number selects the han-

dler for a given interrupt or exception from the interrupt descriptor

table, described later in this chapter.

Interrupts and exceptions can normally occur between any two instruc-

tions. However, mechanisms described in this chapter can be used to

mask interrupts and certain exceptions so that they are ignored until they

are later unmasked. Only the exceptions that support program debug-

ging described in Chapter 8 can be masked. The other exceptions,

including the segment and page exceptions described in Chapter 5, can-

not be masked and so can occur at any time.

Interrupts

As defined above, interrupts are caused by asynchronous external

events. Special processor pins are used by external hardware to signal

interrupts to the 80386 processor. Two classes of interrupts, each corres-

ponding to a pin, are supported by the 80386: INTR and NMI.

Interrupts and Exceptions DOO

INTR Interrupts

INTR interrupts are maskable interrupts and can have any vector

number. When external hardware signals an INTR interrupt, it supplies

the 8-bit interrupt vector number. The Intel 8259A Programmable Inter-

rupt Controller is designed to work with the 80386 to multiplex up to 64

interrupt lines onto the single INTR pin provided on the 80386. A
single 8259A can support up to eight interrupts. Up to nine 8259A
Interrupt Controllers can be used to support up to 64 interrupt lines,

each of which can be assigned a different vector number. In addition to

supplying the vector number to the 80386, the 8259As can be used to

assign and arbitrate priorities of interrupts. This is an important func-

tion, since the 80386 recognizes only one priority for INTR interrupts.

INTR interrupts can be masked by the IF bit in the EFLAGS regis-

ter. If IF = 1, INTR interrupts can occur between any two instructions.

If IF =0, INTR interrupts are masked. If an INTR interrupt is signaled

when IF =0, it is held pending until either IF is set to 1 or the external

hardware removes the INTR request. IF can be used to mask interrupts

during critical regions of code that must be guaranteed to execute in

sequence with no interruptions.

NMI

The Nonmaskable Interrupt (NMI) is not masked by the IF bit, and uses

a preassigned vector number of 2 rather than receiving its vector number
from external hardware. An NMI is typically used to signal serious sys-

tem conditions such as bus time-outs, power-fail detection, and so on.

NMI interrupts are masked only during the execution of the NMI han-

dler. Unlike INTR interrupts, which are masked by the IF bit, there is

no NMI mask visible to software. Upon receipt of an NMI, the 80386

internally masks further NMIs until an IRET instruction is executed,

which is normally used to return from the NMI handler.

Exceptions

Exceptions are unusual or invalid conditions associated with the execu-

tion of a particular instruction. The 80386 recognizes several different

classes of exceptions, and assigns a different vector number to each class.

Each exception is further classified as a fault, trap, or abort, depending

on when it is reported, and whether the program causing the exception

can be resumed.

00b Programming the 80386

A fault is an exception that is reported before the instruction that

causes the exception. The CS and EIP values saved when transferring

control to the handler for the fault will point to the instruction causing

the fault. Faults are fully restartable on the 80386. This means that once

the cause of the exception has been fixed, the faulting program can be

resumed by executing an IRET instruction to return to the instruction

causing the fault.

Faults are detected either before an instruction begins to execute or

during the execution of an instruction. If detected in the middle of an

instruction, the faulting instruction is canceled by restoring any source

operands of the instruction to the values held before the instruction

began to execute. This way, when the faulting program is resumed, the

faulting instruction will be reexecuted with exacdy the same input condi-

tions to guarantee the proper results are obtained.

A trap is an exception that is reported after the instruction causing the

exception. The CS and EIP values saved when transferring control to

the handler for the trap point to the instruction dynamically after

the instruction causing the trap. Because CS and EIP point to the next

instruction, the instruction causing the trap cannot generally be iden-

tified. Before a trap is reported, the instruction causing the trap com-

pletes normally, which may result in changes to registers or memory.

An abort is an exception that is reported under severe conditions such

as hardware failures or illegal or inconsistent values in system tables. The
instruction causing the abort may not be identifiable. The program exe-

cuting when an abort is reported cannot be resumed. Upon receipt of an

abort, the handler may need to restart the operating system after rebuild-

ing system tables.

The segment and page exceptions introduced in Chapter 5 are

examples of faults. If one of these exceptions is detected during execution

of an instruction, the instruction is canceled as described above and the

exception is reported with CS and EIP pointing to the faulting instruc-

tion. The single-step and data breakpoint exceptions described in Chap-

ter 8 are good examples of traps. If these exceptions are detected during

the execution of an instruction, the instruction completes normally and

reports the trap with CS and EIP pointing to the next instruction.

The misnamed software interrupt instructions INT n and INTO described

in Chapter 3 are really programmed trap instructions rather than inter-

rupts. They will generate a trap as part of their execution, which results

in a control transfer to the trap handler with CS and EIP pointing to the

following instruction.

Interrupts and Exceptions 557

Instruction Restart

All instructions are restartable after a fault. Operating-system software

need not participate in the restart process, as the processor will report a

fault with the machine in a state that permits clean restart of the faulting

instruction after correcting the condition causing the fault. The CS and

EIP values saved at a fault will point to the instruction that faulted.

After the operating system has corrected the cause of the fault, the fault-

ing instruction can be restarted simply by executing an IRET instruction

to return from the fault handler.

Exception Types

This section lists the exception types by vector number, with a brief

description included with each type. Each exception is classified as a

fault, trap, or abort. Some of the exceptions provide additional informa-

tion in the form of an error code passed to the exception handler.

Most exceptions are fairly simple and are adequately described in this

brief format. Chapter 5 has more detail on segment and page exceptions,

and Chapter 8 has more detail on debug exceptions. Coprocessor error

exceptions are discussed in a special section later in this chapter.

Exception 0—Divide Error

The divide error is a fault that occurs if a DIV or IDIV instruction is

executed with a divisor of 0, or if the quotient is too big to fit in the

result operand. At entry to the divide error handler, the saved CS and

EIP values point to the faulting instruction. No error code is provided

with the divide error.

Exception 1—Debug Exceptions

The debug exceptions described in Chapter 8 use vector number 1. Some
debug exceptions are faults, others are traps. Register DR6, described in

Chapter 8, can be referenced by the debug exception handler to determine

the condition(s) causing the debug exception and whether these exceptions

cire faults or traps. More than one debug exception can be detected in an

instruction, resulting in several bits being set in DR6. Debug faults, but not

debug traps, are masked if the RF bit in the EFLAGS register is set to 1.

No error codes are provided to the debug exception.

000 Programming the 80386

Exception 3—Single-Byte INT 3

A special one-byte form of the INT n instruction is provided for

INT 3. This can be used by debuggers to support code breakpoints, as

described in Chapter 8. This INT 3 instruction is a programmed trap,

not an interrupt. At entry to the exception handler, the saved CS and

EIP values point to the instruction immediately following the INT 3, one

byte past the INT 3 instruction. No error code is provided with the

INT 3 trap.

Exception 4—Overflow

The overflow trap is reported through vector 4. The INTO instruction

provides a conditional trap through vector 4. INTO will trap if the

OF bit in the EFLAGS register is 1. If OF =0, no trap is taken and ex-

ecution continues with the instruction following INTO. At entry to the

overflow exception handler, the saved CS and EIP values point to

the instruction following the INTO. No error code is provided with the

overflow trap.

Exception 5—Bounds Check

The bounds check fault occurs if a BOUND instruction finds that the

tested value is outside the specified range. At entry to the bounds check

handler, the saved CS and EIP values point to the faulting BOUND
instruction. No error code is provided with the bounds check fault.

Exception 6— Invalid Opcode

The invalid opcode fault occurs if CS and EIP point to a bit pattern

that is not recognized as an instruction by the 80386. This may happen

if the opcode field specifies a code that is not a valid 80386 instruction,

or if a register operand is specified for an instruction that requires a

memory operand, or if the LOCK prefix is used on an instruction that

cannot be locked. At entry to the invalid opcode fault handler, the saved

CS and EIP values point to the first byte of the invalid instruction. No
error code is provided with the invalid opcode fault.

Exception 7—Device Not Available

The device not available fault supports the 80387 numerics coproces-

sor. You can use it to substitute a software emulator in systems that do

not include the 80387 coprocessor hardware. You can also use it to delay

context switching of the 80387 (hardware or emulated) register state after

a task switch until another task uses a floating-point instruction. The CS

Interrupts and Exceptions 559

and EIP values saved at entry to the device not available fault point to

the faulting instruction. No error code is provided with this fault.

The device not available fault is caused by the following conditions:

1. A floating-point instruction is executed, and either the EM bit or

the TS bit in control register CRO is a 1

.

2. A WAIT instruction is executed, and both the TS and MP bits

in CRO are 1.

Refer to Chapter 5 for a discussion of the EM, TS, and MP bits in

CRO.

Exception 8—Double Fault

If a segment or page exception is detected while reporting another

exception, the processor will attempt to report a double fault rather than

the second exception. Double faults are classified as aborts. That is, the

CS and EIP values saved at entry to the double fault handler may not

point to the instruction causing the double fault, and instruction restart is

not supported for double faults. An error code of is provided for

double faults.

Double faults usually indicate serious problems in systems tables such

as the segment descriptor tables, page tables, or the interrupt descriptor

table. The double fault exception can be useful when debugging an oper-

ating system that may not yet handle system tables properly. In a pro-

duction system, the double fault handler will probably have to restart the

operating system after rebuilding the system tables.

It is possible to get a page fault while attempting to report a segment

fault. In this case, a page fault is reported rather than a double fault.

However, a segment fault detected when reporting a segment or page

fault will cause a double fault, and a page fault when reporting a

page fault will also cause a double fault.

If a segment or page exception is detected in the process of reporting a

double fault exception, the processor will stop executing instructions and

will enter the shutdown mode. The shutdown mode is similar to the state

of the processor after executing a HLT instruction: no instructions are

fetched, and no processor activity occurs. The processor will remain in

this idle state until an NMI is received or the processor is reset. INTR
interrupts are masked while in the shutdown state.

Exception 9—Coprocessor Segment Overrun

The coprocessor segment overrun is an abort that occurs if a floating-

point instruction operand exceeds the segment limit. No error code is

provided for this exception.

DbU Programming the 80386

For example, if a floating-point instruction has an eight-byte operand

stored at off'set OFFFFFFFCh in a segment that is OFFFFFFFDh in size,

this exception will be reported.

The coprocessor segment overrun is an abort, since the instruction

causing the exception cannot be restarted. The 80387 coprocessor must

be reinitialized with the FNINIT instruction before returning from the

coprocessor segment overrun handler. The CS and EIP values saved at

entry to the exception handler will point to the aborted instruction to

assist in diagnosing the problem. This exception only affects the program

executing when the condition is detected.

Exception 10— Invalid TSS

The invalid TSS fault occurs if a segment exception other than the

not-present exception is detected when loading a selector from the TSS.

It provides an error code containing the selector of the segment causing

the exception. The format of this error code and the conditions that

cause invalid TSS faults are detailed in Chapter 5, where the exception

is referenced with the symbol $TS.

Since this exception is a fault, the CS and EIP values saved at entry

to the exception handler will point to the instruction causing the fault, or

to the first instruction of a task if the fault occurs as part of a task

switch.

Exception 11—Segment Not Present

The segment not-present fault occurs when the processor finds the P
bit when accessing an otherwise valid descriptor that is not to be

loaded into the SS register. If the SS descriptor has P=0, a stack seg-

ment exception is reported instead of a segment not-present fault. The
segment not-present fault provides an error code containing the selector

for the segment causing the exception. The format of this error code and

the conditions that cause segment not-present faults are detailed in Chap-

ter 5, where the exception is referenced with the symbol SNP.

Since this exception is a fault, the CS and EIP values saved at entry

to the exception handler will point to the instruction causing the fault, or

to the first instruction of a task if the fault occurs as part of a task

switch.

Exception 12—Stack Segment

The stack segment fault occurs when the processor detects certain

problems with the segment addressed by the SS segment register. It pro-

vides an error code whose value depends upon the detected condition.

Interrupts and Exceptions 561

The format of the error code and the conditions that cause stack segment

faults are detailed in Chapter 5, where the exception is referenced with

the symbol $SS. The conditions that can cause this exception can be

summarized in the following three categories.

1

.

A limit violation in the segment addressed by the SS register will

cause a stack segment fault with an error code of 0.

2. A limit violation in the inner stack during an interlevel call or

interrupt will cause a stack segment fault with an error code that

contains the selector for the inner stack.

3. If a descriptor to be loaded into the SS register has its present bit

0, a stack segment fault is reported with an error code that con-

tains the selector for the not-present segment.

The last two conditions result in faults with nonzero error codes. The
stack segment fault handler can examine the descriptor for the segment

identified by the selector in the error code to distinguish between the two

conditions. If the present bit is 1 in this descriptor, the limit violation in

the inner stack is indicated. Otherwise, a not-present stack segment

exception is indicated.

The stack segment exception is a fault, so the CS and EIP values

saved at entry to the exception handler will point to the instruction that

caused the exception, or to the first instruction of the new task if the

exception is detected as part of a task-switch operation. This exception is

restartable.

Faults with a error code can be used to indicate when to expand the

stack segment in systems that support expandable stack segments.

Exception 13—General Protection

A segment exception that is not one of the previous categories is

reported as a general protection fault. It provides an error code whose

value depends upon the detected condition. The format of the error code

and the conditions that cause general protection faults are detailed in

Chapter 5, where the exception is referenced with the symbol SGP.

Since this exception is a fault, the CS and EIP values saved at entry

to the exception handler will point to the instruction causing the fault, or

to the first instruction of a task if the fault occurs as part of a task

switch.

The conditions that can cause this exception can be grouped into two

classes, based on the possible responses by the general protection excep-

tion handler.

562 Programming the 80386

1

.

The exception can indicate a violation of the protection model by

an application program executing a privileged instruction or I/O
reference. Systems that support virtual 8086 programs (Chapter 9)

or virtual I/O references will need to emulate these instructions

and restart the interrupted program after the faulting instruction.

These exceptions are all reported with an error code of 0.

2. The exception can indicate a violation of the protection model
that should result in termination of the faulting program. These

cases may have an error code of 0, or they may include a selec-

tor value in the error code.

These two cases can be distinguished by examining the instruction

causing the fault along with the error code. Because the general protec-

tion exception is a fault, the CS and EIP saved at entry to the fault han-

dler will point to this faulting instruction. If the error code is and the

instruction is one for which emulation is supported, the handler will

emulate it and return to the following instruction. If the instruction is

not one for which emulation is supported, the faulting program may
need to be terminated.

Exception 14—Page Exceptions

A page fault occurs if paging is enabled (PG = 1 in register CRO) and

an instruction makes a memory reference to a linear address in a not-

present page or to a page with attributes that are not appropriate to the

type of access. The processor loads register CR2 with the linear address

causing the fault, and also provides an error code that indicates the type

of memory access that caused the page fault. The format of the error

code and the conditions that cause page faults are detailed in Chapter 5.

Page exceptions are faults, so the CS and EIP values saved at entry to

the page fault handler point to the faulting instruction. More impor-

tantiy, page exceptions are restartable so that once the cause of the page

fault has been fixed, the faulting instruction can be restarted simply by

executing an IRET instruction to return from the page fault handler.

Exception 16—Coprocessor Error

A coprocessor error fault is reported with a vector number 16. It indi-

cates that an unmasked numeric error such as overflow or underflow has

occurred. It is reported as a fault on the next floating-point instruction

or WAIT after the floating-point instruction that caused the problem. No
error code is provided. A more detailed description of the coprocessor

error exception is given later in this chapter.

Interrupts and Exceptions 563

Exception Summary

Table 6.1 summarizes the exception conditions discussed in this sec-

tion. The exceptions are ordered by their associated vector number. The

VECTOR EXCEPTION EXCEPTION ERROR SIGNALING

NUMBER TYPE CLASS CODE INSTRUCTION

Divide Error Fault NO DIV, IDIV

1 Debug Exceptions Fault/Trap NO Any instruction

3 Single-byte INT 3 Trap NO INT 3

4 Overflow Trap NO INTO

5 Bounds Check Fault NO BOUND
6 Invalid Opcode Fault NO An invalid instruction

encoding or operand

7 Device Not Available Fault NO Floating-point

instruction or WAIT

8 Double Fault Abort YES Any instruction

9 Coprocessor

Segment Overrun

Abort NO Floating-point

instruction that

references memory

10 Invalid TSS Fault YES JMP, CALL, IRET,

interrupt

11 Segment Not

Present

Fault YES Any instruction that

loads a segment

register

12 Stack Segment Fault YES Any instruction that

loads SS or references

memory in the

segment addressed by

the SS register

13 General Protection Fault YES Any privileged

instruction, or any

instruction that

references memory

14 Page Exception Fault YES Any instruction that

references memory

16 Coprocessor Error Fault NO Floating-point

instruction or WAIT

0-255 Software Interrupt Trap NO INT n

Table 6.1: Exception summary

004 Programming the 80386

table lists the instructions that can cause the given exception, categorizes

each exception as a fault, trap, or abort, and indicates if an error code is

provided with the exception.

Priority of Interrupts and Exceptions

This section details how interrupts are ordered for processing if more
than one interrupt or exception is detected during the execution of an

instruction. Table 6.2 lists the interrupts and exceptions recognized by the

80386 in order from highest priority to lowest priority. If more than one

interrupt or exception is detected, the one with the highest priority is

reported. Lower priority exceptions are discarded, and lower priority inter-

rupts are held pending. An exception discarded when reporting a higher

priority exception will probably be detected again when the instruction is

reexecuted after the cause of the higher priority exception is fixed.

For example, if both an NMI and INTR are signaled, the NMI is

taken since it has higher priority, and the INTR interrupt is held pend-

ing. A more complex example is if a debug trap and a page fault are

detected in the same instruction. In this case, the page fault is reported

and the debug trap is discarded. After the page fault is fixed and the

instruction is restarted, the debug trap will occur again and will be

reported, assuming no higher priority exception occurs.

INTERRUPT/EXCEPTION TYPE PRIORITY

Debug Faults Highest

Non-debug Faults

Trap Instructions INT n, INTO
Debug Traps

NMI Interrupt

INTR Interrupt Lowest

Table 6.2: Simultaneous interrupt/exception priority

Interrupts and Exceptions 565

Note that these cases of multiple exceptions and interrupts detected in

a single instruction are quite different from the double fault exception.

The cases described here determine which exception to report if more
than one occurs during the execution of an instruction. Only one of

these simultaneous exceptions or interrupts will be reported. If a segment

or page exception occurs while reporting the highest priority exception or

interrupt, the selected exception or interrupt is discarded and a double

fault is reported. Double faults do not arise from the presence of multiple

fault conditions occurring in a single instruction. Instead, a double fault

occurs if a segment or page exception occurs when transferring control to

the exception handler.

^ Masking Interrupts and Exceptions

Certain conditions and processor flag settings will cause interrupts and

debug exceptions to be ignored, or masked. In these cases, the interrupts

are held pending and the debug exceptions are discarded.

1

.

INTR interrupts are masked if the IF bit in the EFLAGS regis-

ter is 0.

2. An STI instruction executed with IF=0 will mask INTR inter-

rupts until after the next instruction.

3. Debug faults (but not traps) are masked if the RF bit in the

EFLAGS register is 1.

4. After reporting an NMI, further NMIs are masked until an

IRET instruction is executed.

5. A MOV or POP instruction with the SS register as the destina-

tion will mask interrupts and debug exceptions until after the

next instruction.

The first three cases were mentioned earlier in this chapter. The last

condition supports an indivisible load of a new stack pointer into the SS

and ESP registers with a pair of instructions. If a MOV or POP into

SS is followed by a MOV or POP into ESP, no interrupts or debug

exceptions will be reported between the two instructions, allowing the full

stack pointer to be updated safely. As long as no segment or page excep-

tions occur on the load of ESP in the second instruction, the two in-

structions will be executed without interruption. The LSS instruction

described in Chapter 3 is a new instruction on the 80386 that loads both

SS and a general register (usually ESP) from a 48-bit pointer in mem-
ory. If possible, the LSS instruction should be used to load a new stack

566 Programming the 80386

pointer rather than the old method using two instructions, since it loads

both SS and ESP in a single instruction.

Interrupt/Exception Transfer Methods

Two views of the interrupt and exception control transfers are pre-

sented in this chapter. The result of these transfers is to begin execution

of the handler selected by the vector number for the interrupt or excep-

tion. The first view, given in this section, is a high-level view of the

methods used for these transfers. The second view, given in later sec-

tions, is a detailed description of the mechanism presented in our C-like

notation. The methods and mechanism are similar to those used for

intersegment CALLs through call and task gates presented in Chapter 5.

You should thoroughly understand that material before reading the next

several sections of this chapter.

Interrupts and exceptions use the interrupt descriptor table (IDT),

which is pointed to by the IDTR register, as described in Chapter 5.

The vector number is used to index the IDT to obtain an eight-byte gate

descriptor. Figure 6.1 illustrates the format of a gate descriptor. Gates

m + 7 m + 6 m + 5 m + 4 m + 3 m + 2 m + 1

1

Offset

31. .16

1

1

Attributes

1

1

Selector

1

1

Offset

15. ..0

1

m + 5 m + 4

7654321076543210
D Dword

p DPL T Type Count

> Figure 6.1: Gate descriptor format

Interrupts and Exceptions 567

contain a 48-bit full pointer, plus 16 bits of attributes. The 48-bit pointer

has the same information as the full pointer data type introduced in

Chapter 2, but it is stored with the offset split into two pieces. The selec-

tor part of the pointer is stored in bytes at offset 2 and 3. The 32-bit

offset is stored in two different pieces. The low-order 16 bits of the offset

are stored at offset 0, and the high-order 16 bits are stored at offset 6.

In a gate descriptor, the attributes are stored in the bytes at offset 4

and 5, as follows:

P P is the Present bit. P = 1 indicates that the gate is

valid. P =0 indicates that it is not valid, and use of

the gate should cause an exception.

DPL DPL is the Descriptor Privilege Level, which defines the

privilege level associated with the gate. The Gate

DPL is checked only for the INT n and INTO pro-

grammed trap instructions to prevent an application

program from executing an INT n to any vector

number, such as the vector number assigned for

disk interrupts. The Gate DPL is ignored for all

other exceptions and interrupts.

DT DT is the DType bit, which distinguishes memory
segments (DType = 1) from system segments and
gates (DType =0). It is to indicate a gate.

Type The 4-bit Type field defines the type of the gate,

given in Table 6.3.

Descriptors in the IDT must have one of the follow-

ing types:

• Task gate

• 286 Interrupt gate

• 286 Trap gate

• 386 Interrupt gate

• 386 Trap gate

DwordCount The DwordCount field is not used in task, inter-

rupt, or trap gates.

The 286 interrupt and trap gates are discussed in Chapter 9. This

chapter describes transfers through task gates and 80386 interrupt and

trap gates. Transfers through task gates transfer to a handler located in a

different task. Transfers through interrupt and trap gates transfer to a

handler located in the current task. As we shall see, the interrupt and

568 Prosjammine the 80386

trap gate names do not directlv correspond to their uses, which is fortu-

nate since there is no fault or abort gate type! Interrupts, faults, traps.

and aborts can be handled by any oi the three kinds of gates: task, inter-

i"upt. or trap.

Transfers through task gates perform a complete task switch to begin

executing a handler in a different task. This task switch is identical to

the method used when executing a CALL through a task gate. Interrupt

and trap gates perform a much simpler transfer to a handler procedure

located in the current task. This transfer is similar, but not identical, to

the method used %vhen executing a CALL through a call gate.

TYPE DEFINES

Undetined

1 Available 286 TSS

2 LDT
3 Busy 286 TSS

4 286 Call Gate

5 Task Gate

6 286 Interrupt Gate

7 286 Trap Gate

8 Undefined

9 Available 386 TSS

A Undefined

B Busy 386 TSS

C 386 Call Gate

D L'ndefined

E 386 Interrupt Gate

F 386 Trap Gate

Table 6.3: Svstem segment and gate descriptor types

Interrupts and Exceptions 569

Interrupt and Trap Gates

If the IDT descriptor indexed by the vector number is a gate of type

386 interrupt gate or 386 trap gate, a transfer to a handler procedure in

the current task is indicated. Like a CALL through a call gate, the

48-bit pointer to the handler procedure is obtained from the interrupt or

trap gate. Figure 6.2 illustrates how an interrupt or trap gate in the IDT
specifies the interrupt handler procedure. The selector from the gate is

used to access a descriptor in the GDT or LDT, which must specify an

executable memory segment. The offset in the gate descriptor specifies the

offset of the entry point of the handler procedure within this segment.

IDT

- Selector Attributes nilrot ^

Entry Point

GDT or LDT

Base T Limit ' Attributes

Linear Address Space

Figure 6.2: Transfer through an interrupt or trap gate

570 Programming the 80386

The gate DPL is checked only for the INT n and INTO programmed
trap instructions to prevent an apphcation program from executing an

INT n to any vector number, such as the vector number assigned for

disk interrupts. The gate DPL is ignored for all other exceptions and
interrupts.

The selector from the gate must specify a present, executable memory
segment. The Type and DPL fields of the descriptor for this segment

determine if the interrupt or exception is to a procedure at the current

privilege level, or if a transfer to a new privilege level is required. Inter-

rupts and exceptions can transfer to a procedure at the same
privilege level, or to an inner privilege level. The matching IRET
instruction can transfer to the same privilege level or to an outer privi-

lege level. This matches the inward call, outward return rules for CALL
and RET instructions.

If the selector from the gate identifies a conforming segment with DPL
at the same or an inner level relative to CPL, or a nonconforming seg-

ment with DPL = CPL, then a transfer to a procedure at the current

privilege level is indicated. A nonconforming segment with DPL at an

inner level relative to CPL indicates a transfer to the inner level given by

DPL of this segment. As with a CALL through a call gate, the stack

segment is switched to the stack for this inner level as part of this

privilege-level switch. The initial SS and ESP values for the new stack

are obtained from fields in the current TSS, as described in Chapter 5.

The old SS and ESP values are pushed onto the new stack so the match-

ing IRET can restore the outer-level stack pointer. Unlike a CALL
through a call gate, no parameters are copied from the old stack to the

new stack for transfers through interrupt or trap gates. The DwordCount
field of interrupt and trap gates is ignored.

Once the privilege level and stack have been switched, if needed, the

rest of the interrupt or exception processing can proceed. The EFLAGS
register is pushed onto the stack so it can be restored by the matching

IRET instruction. Then the NT and TF bits in the EFLAGS register

are set to 0. TF=0 indicates that the handler is entered with single-

stepping disabled (see Chapter 8). NT =0 indicates that an IRET should

return within the same task rather than to a nested task. If the transfer

is through an interrupt gate, the IF bit in EFLAGS is also set to so

the handler will be entered with INTR interrupts masked. If the transfer

is through a trap gate, the IF bit is unchanged.

Next, the return pointer is pushed onto the stack by pushing the cur-

rent value of CS and EIP. CS is then loaded with the selector from the

gate, after setting its RPL field to CPL. EIP is loaded with the off'set

from the gate to complete the transfer to the handler procedure.

Interrupts and Exceptions 571

The last part of exception processing is to push an error code onto the

stack, if required. Error codes are provided only for certain exceptions,

as described earlier and summarized in Table 6.1. The error code is a

16-bit value whose format is described in Chapter 5. To keep the stack

aligned, the error code is pushed as a 32-bit value that has its upper 16

bits undefined.

Interrupt and trap gates are identical except for the setting of the IF

bit in the EFLAGS register after transfer through the gate. Interrupt

gates set IF to to mask INTR interrupts at entry to the handler, but

trap gates leave IF unchanged. As their name implies, interrupt gates

are best for handling INTR interrupts, since they will mask interrupts

before entering the interrupt handler. Trap gates are best for handling

exceptions (including software traps), since they will not change the state

of the IF bit.

Figure 6.3 illustrates the stack switch operation that occurs during an

Inward Interrupt

Outward IRET

Stack

grows

down

ESP before IRET

ESP after Interrupt

SS

Limit
Outer SS - —

1

Limit

L

<
<
<

> ^
EFLAGS > >
Outer CS > >
Outer EIP

Error Code

IP 0,

Outer Stack

ESP before Interrupt

after IRET

SS

Inner Stack

Figure 6.3: Interrupt or trap gate to inner level

572 Programming the 80386

inter-level transfer through an interrupt or trap gate for an exception that

provides an error code. The outer-level stack addressed by the SS and
ESP registers is shown to the right. The new stack for the inner level is

shown on the left, at entry to the handler. The first item pushed (at the

highest address) is a pointer to the outer-level stack given by the old SS
and ESP values. Next, the old EFLAGS value is pushed. Then the

return address is pushed as the outer level CS and EIP values. The error

code is pushed last. At entry to the handler, SS addresses the stack seg-

ment for the inner level and ESP gives the offset of the error code,

which is at the top of this stack.

IRET with NT =

The IRET instruction is used to return from the interrupt or excep-

tion handler. A handler entered with an interrupt or trap gate will have

NT =0 in the EFLAGS register when the IRET instruction is executed,

which indicates that IRET can find the return information on top of the

current stack. IRET with NT = can return to a procedure at the same
privilege level, or to an outer level.

IRET pops the EIP and CS return pointer from the top of the stack,

then pops the EFLAGS value. The RPL field of the popped CS selector

identifies the privilege level to return to. As with the RET instruction

described in Chapter 5, the RPL of the return CS selector is used rather

than DPL of the segment identified by that selector, in order to permit

return to a conforming segment that may execute at a level other than

that given in its DPL field.

If the return selector RPL is the same as CPL, no privilege-level change

is required. If RPL specifies an outer level, a privilege-level change is

needed. In this case, the ESP and SS values needed to restore the outer

stack are popped from the inner stack to complete the IRET.

IRET expects to find the return pointer and saved EFLAGS value on

top of the stack, so handlers for exceptions that provide error codes must

remove the error code from the stack before executing the IRET
instruction.

Figure 6.3, used to illustrate the inner-level transfer through an inter-

rupt or trap gate, also serves to illustrate the stack before and after an

inter-level IRET is executed. The outer-level stack is shown on the right.

The current stack is the inner-level stack shown on the left. Before exe-

cuting the IRET instruction, the handler procedure must pop the error

code from the stack so that ESP points to the EIP part of the return

address pointer pushed by the transfer through the corresponding inter-

rupt or trap gate. The return pointer's EIP and CS are popped from the

Interrupts and Exceptions 573

stack to resume the interrupted program, and the EFLAGS register is

restored by popping the saved EFLAGS value from the stack. The RPL
field of the popped CS selector is examined to determine if an outer-level

return is required. In this example, RPL specifies an outer level relative

to GPL, so the outer-level stack is restored by popping the saved ESP
and SS values into the corresponding registers. The interrupted program
is resumed with the SS, ESP, EFLAGS, CS, and EIP values saved when
the corresponding interrupt or exception was reported. The figure illus-

trates that SS and ESP address the outer stack after the IRET instruc-

tion completes.

Transfers through Task Gates

If the IDT descriptor indexed by the vector number is a gate of type

task gate, a transfer to a handler procedure in a different task is indi-

cated. Like a GALL through a task gate, the gate contains a 16-bit

selector of the TSS segment describing the handler task. This selector

must identify a segment of type available 286 TSS or available 386 TSS.

A transfer through a 286 TSS is discussed in Ghapter 9. A transfer to an

interrupt or exception handler through a task gate to an available

386 TSS is identical to a GALL through a task gate to an avail-

able 386 TSS, as described in Ghapter 5. The only difference is that

exceptions providing error codes will push the error code onto the stack

of the new task after the task switch is complete. To keep the stack

aligned, the 16-bit error code is pushed as a 32-bit value with the upper

16 bits undefined.

The transfer through a task gate will enter the interrupt or exception

handler with NT = 1 in the EFLAGS register to indicate that the match-

ing IRET instruction must return to a nested task. The IRET instruc-

tion will reference the link field in the current TSS to obtain the selector

of the TSS for the task to return to. Refer to Ghapter 5 for more details

about task switches and the nested task chain defined by the link field in

the TSS.

Task vs. Interrupt/Trap Gates

The 80386 allows an interrupt or exception to be handled by a

procedure within the current task by use of an interrupt or trap gate, or to

be handled by a separate task by use of a task gate. Handler procedures

within the current task are simpler and result in faster transfers to the

handler, but the handler procedure is responsible for saving and restoring

574 Programming the 80386

the processor registers. Handler tasks take longer to get to the handler,

but include the overhead of saving and restoring registers as part of the

task switch. Use of a handler procedure provides direct access to the

state of the task executing when an interrupt or exception is signaled,

but requires that every task contain a handler procedure. Use of a sepa-

rate task provides better isolation of the handler, but may complicate

access to the state of the task signaling the interrupt or exception.

Invalid TSS exceptions must be handled by a task gate to ensure a

valid task context for the handler. Other exceptions are generally best

handled in the context of the task in which they are detected and do not

need to mask interrupts, and so should use trap gates. The exception

handler pointed to by the trap gate is a procedure shared by all tasks,

and so it should be located in the global address space. If a different

handler is required for each task, the global exception handler can keep a

table of these handlers and call the appropriate one for the task causing

the exception.

Interrupts are usually unrelated to the task executing when the inter-

rupt is received, and they may benefit from the task isolation provided

by use of a task gate. Interrupts that require fast response may be better

handled by an interrupt gate. Systems that do not use the built-in 386

task-switching mechanism will also use interrupt gates. Since an inter-

rupt can occur at any time, interrupt handlers accessed through interrupt

gates must be located in the global address space so they are addressable

in all tasks. Chapter 7 contains a long example that illustrates the use of

interrupt gates and how the handler is placed in the global

address space.

Use of a task gate provides an automatic dispatch of the handler task

when an interrupt or exception is received. This task dispatch is per-

formed directly by the 80386 hardware and bypasses the software task

dispatcher contained in the operating system. This provides a faster

task switch to the handler, but may require the handler to call the soft-

ware dispatcher to notify it of the task switch.

Interrupt/Exception Details

The following sections present the second view of interrupt and excep-

tion control-transfer methods: the detailed description of interrupt and

exception handling presented in our C-like notation. These descriptions

reference subroutines, global variables, and global types defined in

Chapter 5.

Interrupts and Exceptions 575

Interrupt Description

The routine Interrupt() in Listing 6.1 contains the detailed description

/* Process an Interrupt or Exception. */

Interrupt (VecNumber, CheckDPL)

int VecNumber, /* Vector Number */

CheckDPL; /* = ignore DPL of gate in IDT, */

/* 1 = check DPL of IDT gate against CPL */

{ SegAttributes Attributes;
SelectorType Selector;
int Dwordl, Dword2, Offset, Base, Limit;

/* Read IDT entry for indicated vector number, */

/* switch on the type of the descriptor obtained. */

if (VecNumber*8+7 > IDTR. Limit)
SegmentException($GP, VecNumber*8+2) ;

AccessLinear (IDTR.Base+VecNumber*8, 4, /* PL */, /* Read *

&Dwordl)

;

AccessLinear (IDTR. Base+VecNumber*8+4, 4, /* PL */, /* Read *,

&Dword2)

;

Attributes = Dword2; /* Gate attributes are in high-order dword. */

/* Unscramble Gate selector and offset. */

Selector = Dwordl » 16;

Offset = (Dwordl & OFFFFh) I (Dword2 * OFFFFOOOOh)

;

/* Test descriptor DType and Type fields. */

if (

(Attributes. DType == 0) /* Memory Segment */

I I /* Check DPL of gate if CheckDPL parameter is 1. */

((CheckDPL ==1) && (Attributes. DPL < CPL))

I I (Attributes. Type < 5) /* Type must be 5, 6, 7, 14, or 15. */

I I ((Attributes. Type > 7) && (Attributes. Type < 14))

)

SegmentException($GP, VecNumber*8+2) ;

/* General Protection violations checked before Not Present. */

if (Attributes. P == /* Not Present IDT entry */)

SegmentException($NP, VecNumber*8+2) ;

switch (Attributes. Type) {

5: /* TaskGate */

TaskGate (Selector, 1 /* Link */) ; /* See Chapter 5 */

break;
6: /* IntGate286 */

IntTrapGate286 (Selector, Offset, 1 /* Clear IF */);

break;
7: /* TrapGate286 */

IntTrapGate286 (Selector, Offset, /* IF Unchanged */) ;

break;

Listing 6.1: Detailed description of interrupt handling

576 Programming the 80386

14: /* IntGate386 */

IntTrapGate (Selector, Offset, 1 /* Clear IF */) ;

break;
15: /* TrapGate386 */

IntTrapGate (Selector, Offset, /* IF Unchanged */) ;

break;

} /* end switch */

} /* end Interrupt */

Listing 6.1: Detailed description of interrupt handling (continued)

of interrupt and exception handling. It takes two parameters:

1

.

The vector number associated with the interrupt or exception.

2

.

A flag to indicate whether to check the DPL of the gate in the IDT.

The vector number is used to index the IDT to obtain a gate descrip-

tor. The DType field must be 0, indicating a system segment or gate

descriptor. The Type field must be 5, 6, 7, 14, or 15, indicating a task

gate, 286 interrupt gate, 286 trap gate, 386 interrupt gate, or 386 trap

gate. If the CheckDPL parameter is 1, the IDT gate DPL is checked to

ensure it is at the same or an outer level relative to CPL. If any of these

tests fail, a $GP (general protection) segment exception is reported. The
P bit must be 1, indicating a valid descriptor. Otherwise, a $NP (not-

present) segment exception is reported. The $GP and $NP exceptions

provide an error code containing the vector number in the selector index

field, with bit 1 of the error code set to 1 to indicate the error code

refers to the IDT.

The Type field in the gate determines how the interrupt is handled. A
task gate indicates handling with a task switch to the task described by

the TSS identified by the selector in the gate. The description of this

task switch is contained in the TaskGate() routine in Chapter 5. A 286

interrupt or trap gate indicates handling within the current task using a

16-bit transfer compatible with 286 interrupt handling. Transfers through

these gates are discussed in Chapter 9.

Interrupt and Trap Gates

A 386 interrupt or trap gate indicates handling within the current task

with a control transfer that is similar to a CALL through a call gate.

The routine IntTrapGate() in Listing 6.2 contains the detailed descrip-

tion of this control transfer. It takes three parameters:

1. A selector for the code segment cont2iining the handler procedure.

Interrupts and Exceptions 577

IntTrapGate (Selector, Offset, ClearIF)
/* Similar to CallGate routine in Chapter 5. */

SelectorType Selector;
int Offset,

ClearIF; /* if 1, clear IF before entering handler. */

/* if 0, leave IF unchanged. */

{

SegAttributes Attributes;
SelectorType GSelector;
int Base, Limit, GOffset;

/* Selector test */

if ((Selector & OFFFCh) == 0) /* Null */

SegmentException($GP, 0);

/* Read and test descriptor */

ReadDescriptor (Selector, &At tributes, &Base,&Limit, &GSe lee tor, &GOffset) ;

if (Attributes. DType == 0) /* Can't be System segment or gate */

SegmentException($GP, Selector);

/* Interrupt to inner level nonconforming executable present
/* segment is OK, but requires switch to inner stack and inner CPL.

*/

*/

if (lAttributes.Type>=8) && (Attributes. Type<=ll)
&& (Attributes. DFL < CPL) && (Attributes.? == 1))

InnerStack (Attributes. DPL, 0, Selector);

/* Call common routine to finish CS descriptor load. */

Selector. RPL = 0; /* Ignore RPL in selector read from gate. */

CSDescriptorLoad(Selector, Attributes, Base, Limit, $GP)

;

/* Verify target is within segment limit. */

if (Offset > CS. Limit)
SegmentException($GP, 0);

/* Get to here only if all protection checks pass. */

/* Push EFLAGS and return pointer, */

/* then modify EFLAGS and load CS selector and EIP. */

ESP = ESP-4;
AccessVirtuaKSS, ESP, 4, 1 /* Write */, $SS, &EFLAGS) ;

ESP = ESP-4;
/* Push 4 bytes, with CS selector in low-order 2 bytes. */

AccessVirtuaKSS, ESP, 4, 1 /* Write */, $SS, &CS. Selector) ;

ESP = ESP-4;
AccessVirtuaKSS, ESP, 4, 1 /* Write */, $SS, &EIP) ;

EFLAGS. TF = 0; /* Turn off single stepping (Chapter 8). */

EFLAGS. NT = 0; /* Interrupt not handled by nested task. */

if (ClearIF == 1)

EFLAGS. IF = 0;

CS. Selector = Selector;
CS. Selector. RPL = CPL;

EIP = Offset;

} /* end IntTrapGate */

Listing 6.2: IntTrapGate() subroutine

578 Programming the 80386

2. The offset of the handler procedure in this segment.

3. A flag to indicate whether to set IF to 0, or leave it unchanged
before transfer to the handler.

First, the selector is tested to ensure it is not null. Then the descriptor is

read from the descriptor table with a call to the routine ReadDescriptor(
)

defined in Chapter 5. The DType field must be 1, indicating a memory
segment. If the descriptor indicates a present nonconforming executable seg-

ment with DPL at an inner level relative to CPL, a privilege-level change

is indicated. This privilege-level transition includes a change to a differ-

ent stack and is handled by a call to the routine InnerStack() defined in

Chapter 5.

Once the privilege level and stack have been changed, if necessary, the

routine CSDescriptorLoad() defined in Chapter 5 is called to complete

the descriptor checks. The RPL of the selector from the gate is ignored

by setting it to before calling CSDescriptorLoad(). It returns if the

descriptor was loaded successfully. If the new offset is within the CS
limit, the "visible" part of interrupt handling is performed by pushing

EFLAGS, CS, and EIP, clearing certain EFLAGS fields, and loading CS
and EIP with the selector and offset from the gate.

IRET Instruction

The routine IRET() shown in Listing 6.3 contains the detailed

description of the IRET instruction, which enlarges upon the description

of IRET given in Chapter 3. First, the NT bit in the EFLAGS register

is tested to see if a return to a nested task is indicated (NT = 1), or if the

return is within the current task (NT=0). If NT = 1, a return to

a nested task is performed by reading the selector for the TSS of the

nested task from the link field at offset in the current TSS, and calling

the routine TaskGate() to perform the task switch.

If NT =0, a return within the current task is indicated, and the return

information (EIP, CS, and EFLAGS) is popped off the stack. The RPL
field of the popped CS selector determines the privilege level to return

to. If it indicates an outer level relative to CPL, a return to an outer

level is indicated. This privilege-level transition includes a change of the

stack segment and is handled with a call to the routine OuterStack(
)

defined in Chapter 5. Then the CS descriptor is read, tested, and loaded

into the shadow registers by calls to two routines defined in Chapter 5:

ReadDescriptor() and CSDescriptorLoad(). Finally, if the return offset

is within the CS limit, the "visible" part of the IRET instruction is exe-

cuted by loading EFLAGS, CS, and EIP with the values popped from

the stack earlier.

Interrupts and Exceptions 579

/* Detailed description of the IRET instruction. */

IRETO
{

SelectorType Selector, GSelector;
SegAttributes Attributes;
int Base, Limit, Offset, GOffset;

/* Test NT bit to see if we do a Task return. */

if (EFLAGS.NT == 1)

{/* Return through Task identified in Link field of current TSS. */

AccessLinear (TR.Base, 2, /* PL */, /* Read */, &Selector);
TaskGate (Selector , -1 /* Unlink */); /* see Chapter 5. */

}

else {

/* Otherwise pop interrupt return information from the stack. */

AccessVirtual (SS, ESP, 4, /* Read */, $SS, &Offset)

;

ESP = ESP + 4;

AccessVirtual (SS, ESP, 4, /* Read */, $SS, &Selector)

;

ESP = ESP + 4;

AccessVirtual (SS, ESP, 4, /* Read */, $SS, &NewEFLAGS)

;

ESP = ESP + 4;

/* Selector tests for IRET */

if (((Selector & OFFFCh) ==0) II (Selector . RPL < CPL)

)

SegmentException($GP, 0);
if (Selector. RPL > CPL) {

/* Inter-level IRET is required if Selector. RPL > CPL. */

/* Call subroutine to restore (outer level) stack from */

/* SS:ESP stack pointer now at top of (inner level) stack. */

OuterStack(Selector.RPL, 0);

}

/* Read and test CS descriptor */

ReadDescriptor (Selector , &At tributes, &Base, &Limi t, &GSe lee tor , &GOffset)
if (Attributes. DType == 0) /* Can't be System segment or gate */

SegmentException($GP, Selector);

/* Call common routine to complete CS descriptor load. */

CSDescriptorLoad(Selector , Attributes, Base, Limit, $GP)

;

/* Verify target is within segment limit. */

if (Offset > CS. Limit)
SegmentException($GP, 0);

/* Get to here if all protection tests pass. Complete visible */

/* part of instruction by loading EFLAGS, CS selector, and EIP. */

EFLAGS = NewEFLAGS;
CS. Selector = Selector;
EIP = Offset;
} /* end NT=0 */

} /* end IRET */

Listing 6.3: Detailed description of IRET

580 Programming the 80386

Exception Reporting

These sections provide detailed descriptions of the SeginentException(
)

and PageException() routines used in Chapter 5 to report segment and

page exceptions. Before diving into these descriptions, a few more global

variables and a basic instruction fetch-execute loop shown in Listing 6.4

need to be introduced. The global variable EXT is used to form the

error code for segment exceptions. It is normally 0, and is set to 1 when
processing an external interrupt or an exception other than the INT n or

INTO software trap instructions. OldEIP saves the offset of the current

instruction within the current code segment addressed by the CS register.

If a fault occurs, OldEIP is moved back into EIP so the exception is

reported with the saved EIP (saved on the stack or in the TSS for a

nested task) pointing to the instruction causing the fault.

The loop headed by the label Dispatchlnstruction is a basic fetch-

execute loop. Before each instruction, EXT is cleared to 0, and EIP is

copied to OldEIP. Then, the FetchInstruction() routine (not given in

this book) is called to fetch the instruction pointed to by EIP. This rou-

tine will also increment EIP to point to the next sequential instruction.

After the instruction is fetched, it is executed by a call to the routine

Execute(), which is a placeholder for any of the routines given in this

chapter or Chapter 5 that contain the detailed descriptions of instructions

(for example, the IRET() routine). This "execute" routine will return if

the instruction executed successfully (without faulting), and then the loop

is traversed again.

/* EXT and OldEIP are global variables that are assigned whenever */

/* a new instruction is fetched and executed. This fragment */

/* specifies the handling of EXT, EIP, and OldEIP at an */

/* Instruction Boundary. */

int EXT, /* 1 if processing external interrupt or exception, */

/* used to form error code for segment exceptions. */

OldEIP; /* Save EIP of current instruction here to support */

/* exception handling. */

/* Actions when fetching and executing an instruction. */

/* Exception handling routines jump here to abort an instruction */

/* and resume with first instruction of the exception handler. */

Dispatchlnstruction:
EXT = 0;

OldEIP = EIP; /* Save pointer to current instruction. */

FetchInstruction()

;

/* Increments EIP to next instruction. */

ExecuteO; /* "Calls" proper routine to execute instruction. */

goto Dispatchlnstruction; /* Fetch-Execute loop. */

Listing 6.4: Global variables and fetch-execute loop

Interrupts and Exceptions 581

As noted in Chapter 5, the routines PageException() and Segment-

Exception() do not return to their caller, but instead abort the "execu-

tion" of an instruction description. This abort is handled by a jump to

the label Dispatchlnstruction, hardly a standard C construct, but one

that should be familiar to most programmers. This jump will "unwind"
the procedure-call stack to terminate any nested procedures before

resuming at the Dispatchlnstruction label.

The detection and reporting of double faults are not included in these

detailed descriptions to avoid complicating the descriptions. Double faults

were discussed earlier in this chapter.

SegmentException() Routine

Segment exceptions are reported with the routine Segment-

Exception(), shown in Listing 6.5, which takes two parameters:

1

.

The vector number used to report the exception.

2. The selector used to form the error code provided with the

exception.

SegmentException(VecNumber , ErrorCode)
/* Raise a Segmentation exception. */

int VecNumber, /* Exception Number */

ErrorCode; /* Top 15 bits of error code */

{

/* Compute error code before processing the interrupt, to permit */

/* EXT to be set to 1 here without affecting this exception code. */

ErrorCode = (ErrorCode & OFFFEh) I EXT;

EXT =1; /* EXT=1 for subsequent exceptions. */

/* Back up EIP so i t points to faulting instruction. */

/* Recall that EIP is incremented after fetching every instruction. */

/* EIP of the current (faulting) instruction is saved in OldEIP. */

EIP = OldEIP;

/* Signal exception with vector number given in VecNumber. */

Interrupt (VecNumber, /* Don't check DPL of IDT gate */);

/* Push error code onto stack after processing interrupt. */

ESP = ESP-4;
AccessVirtual (SS, ESP, 4, 1 /* Write */, $SS, &ErrorCode)

;

/* Abort processing of faulting instruction, */

/* continue with first instruction of exception handler. */

GOTO Dispatchlnstruction;
} /* end SegmentException */

Listing 6.5: SegmentException() subroutine

582 Programming the 80386

The error code for the exception is formed by concatenating the upper

15 bits passed as the second parameter with the EXT bit. The error

code format for segment exceptions is described in Chapter 5. Then, EIP

is backed up to point to the faulting instruction by copying OldEIP
(saved in the fetch-execute loop) to EIP. After the exception is processed

as described by the routine Interrupt(), the error code is pushed onto

the stack. Finally, the faulting instruction is aborted by jumping to the

Dispatchlnstruction label, where the fetch-execute loop will resume with

the first instruction of the exception handler.

PageException() Routine

The routine PageException() shown in Listing 6.6 is similar to Seg-

mentException() except for two things: how the error code is formed,

and the vector number passed to the Interrupt() routine. The format of

PageException(LAddress, U, W, Present) {

int LAddress,
U, /* 1 if user access, if supervisor */
W, /* 1 if write access, if read */
Present; /* 1 if entry present, if not present */

{int ErrorCode;

/* Set up error information. Store Linear Address into CR2, and */
/* prepare error code based on attempted access plus present bit. */
CR2 = LAddress;
if (U==3)

ErrorCode = 4 + 2*W + Present;
else ErrorCode = 2*W + Present;
EXT =1; /* EXT=1 for subsequent exceptions. */

/* Back up EIP so i t points to faulting instruction. */
/* Recall that EIP is incremented after fetching every instruction. */
/* EIP of the current (faulting) instruction is saved in OldEIP. */
EIP = OldEIP;

/* Signal exception with vector number 14. */
Interrupt(14, /* Don't check DPL of IDT gate */) ;

/* Push error code onto stack after processing interrupt. */
ESP = ESP-4;
AccessVirtual (SS, ESP, 4, 1 /* Write */, $SS, &ErrorCode)

;

/* Abort instruction processing, */
/* continue with first instruction of exception handler. */
GOTO Dispatchlnstruction;
} /* end PageException */

Listing 6.6: PageException() subroutine

Interrupts and Exceptions 583

the error code for page exceptions is described in Chapter 5. PageExcep-

tion() takes four parameters:

1. The linear address causing the exception.

2. The privilege level of the attempted access, used to form the U
bit of the error code.

3. The W bit of the error code (1 if a write, if a read).

4. The P bit of the error code (1 if a protection exception, if a

not-present exception).

Coprocessor Error Exceptions

The following sections describe the exceptions detected by the 80387

numerics coprocessor. Chapter 2 described the 80387 status-word and
control-word registers, which contain fields important to the handling of

these exceptions. Chapter 3 listed the exceptions that can be raised for

each instruction.

Coprocessor error exceptions are grouped into the six categories listed

in Table 6.4. Each category is discussed in detail below. This table gives

the code used for the exception in the instruction descriptions in Chapter

3, the name of the corresponding status bit in the status-word register,

and the corresponding mask bit in the control-word register.

CODE STATUS MASK CONDITION

I, IS IE IM Invalid operation (numeric, stack)

D DE DM Denormal

Z ZE ZM Zero divide

O OE OM Overflow

U UE UM Underflow

P PE PM Precision (IEEE inexact)

Table 6.4: Coprocessor error exception summary

bo4 Programming the 80386

Masked vs. Unmasked Exceptions

The mask bit in the control-word register determines the action taken

if an exceptional condition is detected. If the mask bit is 1, the exception

is masked, and it is handled within the 80387 by returning a reasonable

result value and continuing without reporting the exception. If the mask
bit is 0, the exception is unmasked and is reported using vector

number 16.

Note that the status bit is set for a masked exception even though a

coprocessor error exception is not reported. This permits software to

determine if a masked exception occurs during a sequence of numeric

calculations by clearing the status bits, setting the mask bits, performing

the computations, and then examining the status bits for the masked
exceptions to determine if any exception occurred during the intervening

computations.

If an unmasked exception occurs, it is reported as a fault on the next

floating-point or WAIT instruction to be executed. This means that the

CS and EIP values saved at entry to the coprocessor error handler point

to the next floating-point instruction, not to the floating-point instruction

causing the exception. The 80387 error-pointer registers can be read

using the FSTENV or FSAVE instructions to obtain a pointer (in FCS
and FIP) to the instruction causing the coprocessor error exception, the

opcode of that instruction, and its memory operand (in FOS and FOO),
if any.

Unmasked exceptions are further classified as pre-execution or post-

execution exceptions. A pre-execution exception is reported before a result is

stored, so it leaves the source operands unchanged. A post-execution excep-

tion is reported after a value is stored, which may change one or more
of the source operands. A pre-execution exception is analogous to a fault,

except that the saved CS and EIP values do not point to the instruction

causing the exception. Similarly, a post-execution exception is analogous

to a trap.

The I, IS, D, and Z exceptions are always pre-execution exceptions.

The P exception is always a post-execution exception. The U and O
exceptions are pre-execution exceptions for store instructions (FST(P),

FIST(P), and FBST(P)) to memory. Otherwise, U and O are post-

execution exceptions, including stores to the accumulator stack.

The coprocessor error handler may simply report the error to the screen

or a debugger and terminate the program causing the exception. If the

coprocessor error handler wishes instead to resume the program causing the

exception, it must complete the floating-point instruction causing the excep-

tion either by interpreting the instruction (for pre-execution exceptions)

Interrupts and Exceptions 585

or adjusting the result (for post-execution exceptions) before returning.

The exception handler can read the status-word register to determine

which unmasked exception occurred, and can read and decode the

instruction by using the instruction-pointer registers FCS and FIR Before

returning from the coprocessor error handler, the unmasked status-word

exception status bits must be cleared by executing an FCLEX,
FLDENV, or FRSTOR instruction.

The masked exception response provided by the 80387 is best in most

cases. We recommend that all exceptions except invalid operation be

masked. An invalid operation exception occurs only when a reasonable

result cannot be provided that would permit the computation to con-

tinue, such as adding +00 and -00, or dividing by 0.

Coprocessor Error Categories

The six categories of coprocessor error exceptions are described in the

following sections. These descriptions divide the floating-point instruc-

tions into two classes: computational and noncomputational. The compu-
tational instructions are those in the data transfer, arithmetic,

comparison, and transcendental instruction subgroupings defined in

Chapter 3, except that the following instructions are in the noncomputa-

tional class:

1. FLD with a register or temporary real memory source operand.

2. FST(P) with a register or temporary real memory destination

operand.

3. FXCH, FABS, FCHS, and FXAM.

Invalid Operation Exceptions

There are two categories of invalid operation exceptions: those that are

due to numerics errors, and those due to overflow/underflow of the

80387 accumulator stack. The SF bit in the status-word register distin-

guishes invalid operation exceptions due to stack underflow/overflow

(SF = 1) from those due to numerics exceptions (SF=0). The invalid

operation exception is a pre-execution exception, so unmasked exceptions

are reported before a result is stored.

Invalid Numeric Operation (SF = 0) An invalid operation exception is trig-

gered for any of the cases listed in Table 6.5. If the invalid operation

exception is masked, the indefinite quiet NaN value is returned (except

FIST(P) stores the integer indefinite, and FBSTP stores the BCD

586 Programming the 80386

indefinite). For operations that return two resuks, both are returned

as indefinite quiet NaNs. Special cases are marked with footnotes.

If the invaUd operation exception is unmasked, a coprocessor error

exception is raised and no result is stored. The source operands are

available to the exception handler.

Accumulator Stack Underflow/Overflow (SF = 1) An invalid operation

exception is also triggered if an instruction attempts to read an accumu-

lator tagged as empty (underflow), or to push a result onto the accu-

mulator stack when the new stack top is not tagged as empty (overflow).

Note that the destination register of FST(P) or FXCH is not considered

as a push on the stack, so these instructions can write to a non-empty

register. The CI condition code bit in the status-word register indicates

whether an underflow (CI =0) or overflow (CI =1) occurred.

INVALID OPERATION CONDITIONS

Operand of a computational instruction is in an unsupported format

Operand of a computational instruction is a signaling NaN
Operand of FCOM or FTST is a signaling or quiet NaN
Operand of FUCOM is a signaling NaN'

Operands of FADD are infinities with opposite signs

Operands of FSUB are infinities with the same sign

Operands of FMUL are zero and infinity

Operands of FDIV are both infinity or both zero

Divisor is zero or dividend is infinity for FPREM or FPREMl
Operand of FCOS, FPTAN, FSIN, or FSINCOS is infinity

Operand of FSQRT or FYL2X is less than

Operand of FYL2XP1 is less than -1

Operand of FIST or FBSTP is a NaN or infinity, or will not fit in destination

If the invalid operation exception is masked, condition codes are set to

"unordered": C3, C2, CO all set to 1.

If the invalid operation exception is masked, C2 is set to 1.

- Table 6.5: Invalid numeric operation summary

Interrupts and Exceptions 587

Denormal Exception

The denormal exception is reported if a source operand of a computa-

tional instruction is a denormal. If this exception is masked, the DE bit

in the status-word register is set and the instruction proceeds using the

denormal number. If masked, use of a denormal short or long real mem-
ory operand results in a conversion to a normal temporary real. Due to

its expanded range, a normalized temporary real can hold a denormal

short or long real.

If the exception is unmasked, the DE bit in the status-word register is

set, a coprocessor exception is raised, and no result is stored, since the

denormal exception is a pre-execution exception.

Since denormals have fewer significant bits than normal numbers, you

may have to avoid denormals in certain algorithms. However, in most

cases this exception should be masked so that the computation proceeds

using the denormal operand.

Zero Divide Exception

The zero divide exception is reported if an FDIV or FYL2X instruction

attempts to divide a finite operand by 0, or if the EXTRACT instruc-

tion has its operand 0. If the exception is masked, the result for EDIV or

FYL2X is infinity with a sign that is the exclusive-or of the signs of the

input operands. The masked result for EXTRACT is -°o. In all cases, the

ZE bit in the status word is set. If the exception is not masked, the ZE bit

is set, a coprocessor exception is raised, and no result is stored, since the

zero divide exception is a pre-execution exception.

Overflow Exception

The overflow exception is reported if the true result is too large to fit

into the destination format. If this exception is masked, the OE bit in

the status-word register is set, and the result that is stored depends on

the rounding mode selected by the RC field in the control-word registers,

as given in Table 6.6.

If the exception is unmasked, the OE bit is set and a coprocessor

exception is reported. If an overflow occurs in an EST instruction with a

memory destination, no result is stored. This allows the exception han-

dler to take appropriate action with the source data still available in the

accumulator stack.

A result is stored before reporting the coprocessor error exception if the

destination is the accumulator stack. The value stored is the true result

divided by 2^^'"^ after rounding the significand. Note that 24,576 =

3 * 2'^ This extends the exponent range by "rebiasing" the exponent.

588 Programming the 80386

Underflow Exception

The underflow exception is reported if the true result is too small to fit

into the destination format. If this exception is masked, the true result is

denormalized and stored into the destination operand. If the exception is

masked, the UE bit in the status-word register is set only if the denor-

malization results in a loss of precision, in which case the precision

exception is also raised. This masked response supports gradual under-

flow through the use of denormals.

If the underflow exception is unmasked, the UE bit is set whether or

not a loss of precision occurs, and a coprocessor exception is reported. If

an underflow occurs in an FST instruction with a memory destination,

no result is stored. This allows the exception handler to take appropriate

action with the source data still available in the accumulator stack.

A result is stored before reporting the coprocessor error exception if the

destination is the accumulator stack. The value stored is the true result mul-

tiplied by 2^*"*' after rounding the significand. Note that 24,576 = 3 * 2'^

This extends the exponent range by "rebiasing" the exponent.

Precision (IEEE Inexact) Exception

The precision exception is reported if the result cannot be represented

exacdy in the destination format, or if an underflow results in a loss of

ROUNDING RESULT MASKED
MODE SIGN RESULT

To nearest + + 00

- _oo

Toward - <» + Largest finite positive number

- _oo

Toward + °° + + 00

- Largest finite negative number

Toward + Largest finite positive number

Largest finite negative number

^ Table 6.6: Masked overflow results

Interrupts and Exceptions 589

accuracy. Note that the CI condition code bit in the status-word register

indicates the direction of the last rounding in computational instructions.

CI =0 indicates that the last operation rounded down, so the result

delivered is smaller than the true result. CI =1 indicates that the last

operation rounded up, so the result delivered is larger than the true

result. If the exception is masked, the PE bit is set in the status-word
register, and the rounded result is stored into the destination. If the

exception is unmasked, the PE bit is set, the rounded result is stored

into the destination, and a coprocessor error exception is raised.

The precision exception provides notice when a computation is inex-

act. This is important in few cases, such as when operating with money.

This exception should be masked in most applications.

Precedence of Coprocessor Error Exceptions

If more than one exception condition is detected in an instruction,

only one is reported. Which exception is reported is determined by the

exception precedence listed in Table 6.7. Note that a precision exception

can be reported with an underflow or overflow exception.

EXCEPTION PRECEDENCE

Invalid operation Highest

• Stack underflow

• Stack overflow

• Unsupported format

• Signaling NaN
• Other

Zero divide

Denormal

Overflow/underflow

Precision Lowest

Table 6.7: Coprocessor error exception precedence

Chapter

CHAPTER 4 PRESENTED A SET OF EXAMPLES
demonstrating the features and instructions of the 80386 available to the

applications programmer. These features were presented in Chapters 1

and 2, and part of Chapter 3. Chapters 5 and 6, and part of Chapter 3,

presented features and instructions of the 80386 intended for the

operating-system programmer. This chapter will present examples on the

use of these operating-system features.

Syntax

As in Chapter 4, we need to present a bit more syntax of the assembly

language. Most of the new constructs relate to the definition of segments.

SEGMENT/ENDS

SEGMENT and ENDS are assembler directives that define the begin-

ning and end of a segment. Directives such as these do not generate any

code; rather, they tell the assembler how to generate code.

592 Programming the 80386

USE32/USE16

USE is an assembler directive that indicates whether the contents of

this segment are 32-bit or 16-bit code or data. A USE32 segment will

cause the assembler to generate code assuming the descriptor for this seg-

ment has the D bit equal to 1. Note that the programmer could have

made an error (the assembler does not check) and not set the D bit for

this descriptor. In this case, the program would fail, since the code or

data in this segment is of incorrect size.

ORG

ORG is an assembler directive that defines an offset within a segment.

ASSUME

ASSUME is the final directive presented here. ASSUME is only

meaningful for code segments. It indicates what to assume the segment

register contents are within this segment. Without this directive, the

assembler will issue messages warning that the addressed segment may
not be currently addressable. This directive does not generate any code

to load the indicated segment register with the specified segment.

Syntax Example

Below is a brief example demonstrating all the above directives.

Test_Code_Seg SEGMENT USE32
ASSUME DS:My_Seginent

MOV AX, My_Segment_Sel
MOV DS, AX
; Code
ORG OFFOh
; More Code

Test_Code_Seg ENDS

A segment name Test_Code_Seg is defined by the SEGMENT and

ENDS directives. It is a 3 2 -bit segment as indicated by the USE32 direc-

tive. The segment is assembled assuming that DS addresses the segment

named My_Segment. The first two lines of code in the segment satisfy

this assumption. Finally, part of the code is given an origin in the seg-

ment of OFFOh.

Initialization Example

The first example is an initialization example that takes the machine

from its reset state to a 3 2 -bit flat machine, with paging enabled to run

multiple tasks.

Operating System Examples 59o

Overview of Example 1

Before beginning a detailed description of the code, it is helpful to first

present a picture of what we want the final machine state to be. After

this is presented, the details of how the machine gets into this state

should be easier to understand.

This initialization example provides a simple core of an operating sys-

tem. A real operating system is composed of thousands, if not millions,

of lines of code (and we certainly aren't going to explain a million-line

example here). Many, many things are missing, but enough of the basics

remain to demonstrate most of the operating-system and multiple-

segment instruction semantics.

Assumptions

We make a few assumptions about the underlying hardware.

1. The operating-system code resides in a ROM (read-only mem-
ory) in highest physical memory. The ROM is assumed to be at

least 64K bytes in size (begins at FFFFOOOOh and ends at

FFFFFFFFh).

2. RAM (random access memory) begins at address 0, and the

machine has at least 48K bytes of memory. Our example does

not try to figure out exactly how much memory the hardware

provides (a necessary thing for a complete operating system to

do). It simply assumes at least 48K bytes are present.

Other than these assumptions, the example is complete and self-

contained.

Multitasking and Protection

At the conclusion of the example, the necessary operating-system

tables will have been developed and a single user task will be invoked.

We've taken care, however, to allow multiple tasks to be executing on

this machine at one time. Two protection levels are used in the example:

for the operating system and 3 for the application program. The oper-

ating system, however, is typically shared by all tasks within the system.

Each task has its own private code and data regions, which are stored in

the local address space and so are not visible to other tasks within the

system. The operating system is shared by all tasks and is therefore

stored in the global address space. Figure 7.1 demonstrates this. The
concentric circles represent the protection levels (we make use of only

and 3), and the radial lines distinguish between tasks within the system.

594 Programming the 80386

Task 2

Protection

Level

Task N
Task 3

Figure 7.1: Multiple-task system

Operating System Examples 595

Each radial slice of the pie indicates a task boundary. Except for the

global address regions of each task's virtual address space, an address in

task 1 is unrelated to an equal-value address in task 2.

Virtual Address Space

Figure 7.2 depicts the virtual address space of each task. The virtual

address space is composed of the global address space mapped by the

GDT and the local address space mapped by the LDT. The global

address space contains five segments.

1. The GDT itself, which contains descriptors that define the other

four segments in this global address space.

2. The TSS of the first task. When many tasks are executing, a

TSS would be defined for each.

3. The operating-system data segment.

4. The operating-system code segment.

5. The LDT of the first task, which maps the segments in the local

address space. When many tasks are executing, a LDT would be

defined for each.

The local address space contains two segments.

1. The user code segment.

2. The user data segment containing data and stack.

Applications see a single-segment model containing a single data seg-

ment and a single code segment, as discussed in Chapter 5.

Linear Address Space

The linear address space is shown in Figure 7.3. There are four seg-

ments in the linear address space, which are described below.

1. Operating-system data (OS Data), a 16M segment beginning at

linear address and continuing to OOFFFFFFh. This segment

contains the system segment tables (GDT, IDT, TSS), the page

tables (directory and second-level tables), local data for the oper-

ating system, and the stack for the operating system.

2. User code, a IM segment beginning at OlOOOOOOh and continu-

ing to OlOFFFFFh. The choice of IM in size is arbitrary. When
the task is actually loaded, the code segment size will be known
exactly and the segment limit can be adjusted appropriately.

596 Programming the 80386

OS

Data

(16IVI)

User

Data

(4G - 16M -

1M - 64K)

TSS

(216

bytes)

Null

OS

Code

(60K)

User

Code

(IM)

GOT LOT

V_

Global Local

Figure 7.2: Virtual address space

Operating System Examples 597

FFFFFFFFh
16-bit OS

Boot Code

(4K) FFFFFOOOh

^FFFFEFFFh
«» "^ Limit = OOOOEh G 1" ' OS Code

' "

Base = FFFFOOOOh DPL = OOb
(60K)

Table = GOT TYPE = Ah
FFFFOOOOh

^FFFEFFFFh^^^ -*<

' "

User Data Limit = FEEEFh G = 1

(4G - 16M - Base = OHOOOOOh DPL = 11b

1M - 64K)

OHOOOOOh

OlOFFFFFh

Table = LOT TYPE = 2

^ -N
Limit = OOOFFh G = 1

' User Code
"

Base = OlOOOOOOh DPL = lib

(IM)
Table = LOT TYPE = Ah

OlOOOOOOh

^ OOFFFFFFh
Limit = OOFFFh G = 1.

OS Data
' "

Base = OOOOOOOOh DPL = OOb

(16IVI)

Table = GOT TYPE = 2

OOOOOOOOh

Figure 1 .?>: Linear address space of each task

598 Programming the 80386

3. User data. All memory not required by the operating system or

by the user's code is given to the user's program in one enor-

mous data segment. The segment begins at linear address

OllOOOOOh and continues to FFFEFFFh. Thus, the size of this

segment is

4G - 16M - IM - 64K

(quite a large data array indeed!). In this segment, the stack

starts at the top and grows down, and the data starts at the bot-

tom and grows up.

4. Operating-system code (OS Code). This segment begins at linear

address FFFFOOOOh and ends at FFFFEFFFh (the top of a task's

virtual memory space). The example assumes that all code

within the operating system fits within a 64K ROM (not likely

for a real operating system, but fine for this example).

5. The boot code segment begins at linear address FFFFFOOOh and

continues to FFFFFFFFh. Thus, the upper 4K of the boot ROM
are dedicated to the 16-bit start-up code. Note that this segment

is not addressable in the example after protection has been

enabled.

The choice of where these segments reside in the linear address space

is completely arbitrary except for the boot code, which must begin at

physical address FFFFFFFOh. The mapping for both the operating-

system code and data are chosen so their linear and physical addresses

are the same. We'll give a thorough explanation of this in the detailed

discussion of the initialization code below. The linear address location of

the application code and data segment is somewhat arbitrary.

Page Mapping

The linear address space—the address space after translation by the

segmentation mechanism— is mapped by the page tables, as shown in

Figure 7.4. The figure shows the linear address space divided into 4M
regions. This is the amount of memory that is mapped by a page table

(IK page entries with 4K bytes per page). Five tables with pointers from

the page directory are set up. A sixth directory entry points back to the

page directory itself. A directory entry pointing to the directory is a

simple means of mapping the page tables back into the linear address

space to allow access to them, as explained in detaU below. The six-page

directory entries and page tables that are set up are:

1. Common operating-system data. GDT, IDT, and TSS tables in

particular.

Operating System Examples 599

FFCOOOOOh

FFSOOOOOh

01400000h

OlOOOOOOh

OOCOOOOOh

OOSOOOOOh

00400000h

OOOOOOOOh

OS Code

1

3FFh

Page

Directory

User Stack 3FEh

'
'

User Code + Data 4

Private OS Data,Stacl< 3 -

//// Unallocated ////
y////////////A

Page Directory + Tables

Common OS Data

Figure 7.4: Page tables map linear address space

600 Programming the 80386

2. Page directory and page tables.

3. Private operating-system data. Miscellaneous operating-system

data and the operating-system stack.

4. User code and data.

5. User stack.

6. Operating-system code.

Physical Address

The physical address space is given in Figure 7.5. A total of 28 pages

(each page is 4K) have been allocated. The lower 12 pages are defined

in the RAM area beginning at address 0, continuing up to the page

starting at address OBOOOh. Sixteen pages are allocated in high memory,
beginning at address OFFFFOOOOh. These pages match exactly the 64K
ROM area in high memory, which we discussed earlier in this chapter.

Now that we've discussed both linear and physical address spaces, it is

very interesting to compare them and make several observations.

1. The operating-system code region is at the high 64K bytes in

both. As the machine is being initialized, this is helpful, as we
will see in the detailed code below. The code could have been at

different addresses in the different address spaces, but this would

have made the example more difficult to understand as well as

write! This is particularly true when protection and, later, paging

are enabled.

2. The GDT, IDT, TSS, and LDT tables are located at the same

address in both. If this were not the case, these tables would
have to be re-created or moved, and descriptors reloaded after

protection was enabled and again after paging was enabled. To
avoid this complication, we have kept them at the same address.

Thus, we only need to load and build them once.

3. The physical addresses for the remainder of the pages do not

match the linear addresses. This is done to minimize the amount
of physical memory required to map the linear address space.

This is one of the major benefits of paging: a linear address

space that is larger than physical memory is allowed. We have,

however, kept the physical pages in approximately the same
order as they appear in the linear address space. Except for

points 1 and 2 above, the location of the pages in physical mem-
ory is arbitrary. In fact, these pages could be moved later, as the

paging mechanism replaces certain inactive pages with other

Operating System Examples 601

FFFFEOOOh
OS Code

FFFFIOOOh
OS Code

FFFFOOOOh
OS Code

« -

OOOOBOOOh
User Stack

OOOOAOOOh
User Data

00009000h
User Code

OOOOBOOOh
OS Stack

00007000h
OS Private Data

ooooeoooh
Page Table 3FFh

OOOOSOOOh
Page Table 3FEh

00004000h
Page Table 4

00003000h
Page Table 3

00002000h
Page Table

00001 OOOh
Page Directory

OOOOOOOOh
IDT,GDT,TSS,LDT

Figure 7.5: Physical address space

602 Programming the 80386

active pages. Not only can we swap portions of the hnear address

space by paging, we can even page the page tables (this may be

necessary to minimize the amount of physical memory dedicated

to the operating system, since the page tables can get quite

large). To page the page tables, some care has to be taken in

updating the invalid page table entries and distinguishing them

from simple page entries. The page directory needs to remain in

the same location and must always be present. Changing the

location of the page directory requires the page directory base

register (CR3) to be updated.

Task Switch

We do not go through the details of building and switching to a new
task (such as the second task in the system), but it is helpful to point out

what is needed to accomplish this.

1. An LDT needs to be built for the new task. It would be identical

to the one in the example except for the different code space sizes

possible. A GDT entry would have to be created for this LDT.

2. A TSS would have to be built. It is similar to the one built in

the example, except that the LDT is the one described above. A
GDT entry would have to be created for this TSS.

3. A page directory needs to be built. The page tables that map
the global address space are identical to the first task, and these

page directory entries are shared by both (and all future) tasks.

The directory entries for the local page tables (user code and

data and stack) are, of course, different.

4. Page tables for the local address space for the new task need to

be built. They are the same as the page tables for the first task,

except that they map to different physical pages.

5. To switch to the new task requires the loading of TR, LDTR,
and CRO. The actual task switch can be accomplished by the

techniques described in Chapter 5.

Details of Initialization Example

With the overview of the desired final machine state given above, we
are now ready to dig into the details of the example. The example in

Listing 7.1 (beginning on page 614) can actually be considered many
short examples that are executed in the proper sequence to form a com-
plete initialization sequence.

Operating System Examples 603

Equates

The first section of the example simply defines some mnemonics for

later use. All seven selectors (five in the GDT and two in the LDT) are

defined. The physical addresses of aU pages are also defined. Since the

linear addresses and physical addresses for these tables do not all match,

we define the physical address mnemonics here. Note that these physical

addresses do match Figure 7.5, which shows the physical address space.

Segment Definitions

The four segments of the example are defined next (OS_Data_Seg,
User_Code_Seg, User_Data_Seg and OS_Code_Seg). These segment

definitions exactly match the picture of virtual and linear address spaces

given in Figures 7.2 and 7.3, respectively. The segment definitions given

here enable us to use symbolic references to the segments throughout the

remainder of the example. Declaring the segments in this way does not

initialize these memory segments.

Also note that the OS_Code segment does not cover the upper 4K of

memory. The upper 4K of operating-system code is contained within a

separate segment (BootRomlG). This segment is a 16-bit segment,

whereas OS_Code_Seg is a 32-bit segment. Since the 80386 begins in a

16-bit mode of operation, we need at least a small region of code to take

us from 16-bit mode into the 32-bit mode of operation. After protected

mode is entered, this 16-bit segment is not addressable. The example

minimizes the amount of time spent in this backward-compatible 16-bit

mode of operation. The goal of minimizing 16-bit code matches the

theme of the book—focus on the 32-bit 80386.

Code Sequence 1—Cold Start

At reset, the 80386 begins operation in what is termed real mode. This

mode is defined in detail in Chapter 9. For our purposes, real mode is

simply a 16-bit machine where the maximum size of a segment is 64K
bytes. In real mode, the selector is shifted left by 4 and added to the

off"set within the segment to form the physical address (see Figure 9.2).

Thus, the maximum physical address is OFFFFFh or a total address

space of IM byte. The machine state at reset is given in Table 9.3. Ref-

erence is made to the initial machine state in the following sections.

At reset, the CS register is initialized to FOOOh and IP is initialized to

FFFOh. Thus, the first instruction fetch after reset would be done to

address FFFFOh. In addition, the 80386 keeps the address bits A31 to

A20 asserted such that the first instruction fetch is done to address

FFFFFFFOh. So the 16-bit code segment is located at address

604 Programming the 80386

FFFFOOOOh to match the initial CS value, and the ORG of the cold start

code QMP Startle, on page 624) is to offset OFFFOh. Address bits A31
to A20 remain asserted until the first intersegment control transfer. It is

common practice for machines to begin execution at the highest memory
location, as the 80386 does. This allows a boot ROM to be placed in

high memory.

Code Sequence 2—Miscellaneous

This sequence begins at the Start!6 label (see page 622). The first

instruction clears the IF (interrupt enable) bit, masking all maskable

interrupts. Clearing IF is not really needed, since the 80386 reset

sequence clears IF also, but it is shown here for emphasis. The IDT
(interrupt descriptor table) is also set to have a limit of 0. This causes

any nonmaskable interrupts to generate a shutdown (discussed in Chap-
ter 6). Since the LIDT instruction requires a memory operand, we need

to first initialize the DS register to point at the OS_Data_Seg. Since the

DS register is initialized to and OS_Data_Seg is at address 0, this was

not needed. But since in most cases (except a few like this one) loading a

segment register is needed prior to addressing a segment, we do so here.

Code Sequence 3— Build GDT, LGDT

The third section of code builds the GDT (global descriptor table) and

loads the GDT pseudo-descriptor into the processor.

The first step is to fill the GDT with the appropriate information. In

the example, we have five GDT entries (Null, OS Code, OS Data,

LDT, and TSS). Table 7.1 summarizes the contents of these five descrip-

tors. The code shows the appropriate decomposition of this information

into the descriptor format (given in Figure 5.10). Table 7.2 summarizes

the descriptor types used here.

The last step is to build a pseudo-descriptor in memory. The low word

is the limit of the GDT. The limit is eight times the number of GDT
entries minus 1 , the largest valid offset within the GDT. The upper

dword of the pseudo-descriptor is the linear address of the GDT. This

pseudo-descriptor is then loaded into the processor with the LGDT
instruction.

Code Sequence 4—Enter Protected Mode

The next step is to set the PE (protection enable) bit of the machine

status word. After the PE bit is set, it is important to immediately per-

form a jump. This causes the on-chip prefetch and decode queues to be

flushed (set to empty). This is necessary because any prefetched and pre-

decoded information pertains to real mode, which is no longer valid.

Operating System Examples 605

The machine is now in 16-bit protected mode. For our purposes, this

mode is similar to what we have discussed so far in the book, except that

all data and offsets are 16 bits. This mode is discussed in more detail in

Chapter 9.

After protected mode has been entered, a far JMP is executed. The

JMP references the Start32 location within the OS Code segment. Since

NAME TABLE LIMIT BASE TYPE DT DPL P D G

Null GDT 00000 00000000

OS Code GDT OOOOE FFFFOOOO A 1 1 1

OS Data GDT FFFFF 00000000 2 1 1 1

User Code LDT OOOFF 01000000 A 1 3 1 1

User Data LDT FEEEF 01100000 2 1 3 1 1

TSSl GDT 000D7 OOOOOOBO 9 0*

LDTl GDT OOOOF 00000188 2 0*

• Note: The D bit for a system segment has no meaning

Table 7.1: Summary of descriptor contents

TYPE DT DESCRIPTION

2 1 Memory Segment—Read/Write

A 1 Memory Segment—Execute/Read

9 System Segment—Available 386 TSS

2 System Segment—LDT

*- Table 7.2: Descriptor types

606 Programming the 80386

the GDT entry for the OS Code segment defines a 32-bit code segment

(as indicated by the D bit of the descriptor), the machine will be execut-

ing as a 32-bit machine when the JMP is completed. At this point, the

machine is (finally) in the state assumed by Chapters 1 through 6.

Code Sequence 5—Load Segment Descriptors

This sequence begins at the label Start32 on page 617. Since the

machine is now in protected mode, it is necessary to reload the segment

registers to make the data segments addressable. Note the difference

between the load of the DS register performed here and the one done in

Code Sequence 2, when the machine was still in real mode. In the load

of the DS register in real mode, the selector value loaded into DS is sim-

ply shifted left by 4 and added to the offset to form the final physical

address. Now that we have enabled protected mode, loading a selector

into DS causes the descriptor given in the GDT to be loaded (as dis-

cussed in Chapter 5). The selector is also loaded into ES for use by
string instructions. SS will be loaded with this selector later.

Code Sequence 6— Build LDT, LLDT

The local address space of the task is mapped by the LDT (local

descriptor table). The LDT contains two entries, one for the user code

segment and one for the user data segment, as seen in Figure 7.2. When
the GDT was built, an LDT entry was included that defined an LDT of

two entries. The LDT segment is defined as a piece of the OS_Data
segment. The initialization example uses alias locations in the

OS_Data segment to access the LDT, while the 80386 uses the actual

LDT segment. The first part of this example fills this LDT with the

appropriate information for these two segments (user code and data).

The code shows the appropriate decomposition of the descriptor informa-

tion into the descriptor format. Table 7.1 summarizes the descriptor

information for the two segments mapped by the LDT. After the LDT is

built, the selector for the LDT is loaded into the LDTR.
Much of the protected model initialization (GDT, IDT, TSS) can be

done either before or after entering protected mode. Since our goal was

to minimize the amount of 16-bit code written, all of these except for the

GDT are done after entering protected mode. Since loading of the

LDTR can only be done in protected mode, we did not have a choice

where to perform it.

Code Sequence 7— Build IDT

A very important part of initialization is building the IDT (interrupt

descriptor table). In our example, after user mode (level 3) execution

Operating System Examples 607

begins, the only way for the task to access the operating-system services

is via the exception processing mechanism. Gates, as discussed in Chap-

ter 5, allow levels of lesser privilege to access levels of greater privilege,

but we have defined no gates in our example.

The IDT entries themselves are interrupt gates. Since in our flat

machine model the entire operating system is visible to the current task,

we need not use a task gate for the IDT entries. The format for gate

descriptors is given in Figure 5.12. The basic contents of our interrupt

gate descriptor are summarized in the following table. If an exception or

interrupt is taken from level 3, a privilege-level change to level will

occur. As discussed in Chapter 5, each protection level (0-3) has a sepa-

rate stack. Thus, as part of the transition from level 3 to 0, the stack is

switched to the level stack.

Field Value

Off"set offset Default_Hand

Selector OS_Code_Sel

DwordCount 0, copy no parameters

Type E, 386 Interrupt Gate

DPL

Aliases in the OS_Data segment are used to access the IDT. Initially,

all 17 interrupt gates are filled with the same information. These 17

interrupt levels are those predefined by the 80386, and we don't define

any additional ones at this point. After the 17 descriptors have been set

to the default, we explicitly replace this information for interrupts that

have specific handlers provided for them by the operating system. In this

way, many interrupts that the operating system has no interest in distin-

guishing between go to the same default handler. The exception handlers

given at the start of the OS_Code_Seg are obviously trivial, and are for

the purpose of demonstrating the declaration of an exception handler.

A more elaborate example of an exception handler (a coprocessor device

not available—exception 7) is the subject of the second example in

this chapter.

Code Sequence 8— Build Page Directory

Now that the segmentation model is built, we are ready to begin set-

ting up the paging mechanism of the 80386. As discussed in Chapter 5,

the paging mechanism has two levels of memory-resident translation

tables: the page directory and page tables (see Figure 5.15 for details of

the two-level paging mechanism). This code sequence discusses building

608 Programming the 80386

the page directory, and the following section discusses building the indi-

vidual page tables. The format for the page table entries is given in

Figure 5.17.

Each entry (of the 1024 possible) in the page directory points to a

page table. Since each page table has 1024 entries, each pointing to a

4096-byte page, each page directory entry is mapping up to 4M of

memory. If the page directory entry is marked not present, the corres-

ponding 4M of the linear address space is not present (unmapped). The
first step of this code sequence marks all tables not present (bit of each

entry is the P or present bit, which is set to 0). Each page direc-

tory entry that is to map a valid section of the linear address space is

then updated with the pertinent information. This information is:

1. Present bit (= 1)

2. User/supervisor privilege level

3

.

Read/write

4. Physical address of the page table this entry points to

All entries are marked supervisor read-only except the user code and

data and user stack directories, which are marked user-writable. The
page table address inserted into each of these is the physical address of

the page table.

The second page table entry is particularly interesting. This directory

entry points to the directory itself. This may seem a bit confusing at

first, but this is a convenient means to map the page directory and page

tables into the linear address space. Figure 7.6 demonstrates this. Page

directory entry 0000000001b points to the page directory.

A linear address of OOCOOOlOh

31 22 21 1211

0000000011 0000000000 000000010000

is a normal access through page directory entry 3, through page table

to address lOh within this page, as is seen in the first part of Figure 7.6.

The second example shows that linear address 00403000h

31 22 21 1211

0000000001 0000000011 000000000000

will access the first entry (dword) in page table 3, as seen in the second

part of Figure 7.6.

Operating System Examples 609

Linear Address

OOCOOOIOh

Page

Directory

31 22 21 12 11

3h Oh lOh

I A >\ y

^ T T

,

1 lOh

•

Ch

8h

4h

Oh

3"

2
n

^
1

8

31

Linear Address

00403000h

22 21 12 11

1h 3h Oh

Page

Directory

* Figure 7.6: Page directory pointing to self

610 Programming the 80386

Linear Address

0040100Ch

31 22 21 12 11

1h 1h Ch

Page

Directory

1 r

Figure 7.6: Page directory pointing to self (continued)

The third example shows how linear address 0040100Ch

31 22 21 1211

0000000001 0000000001 000000001100

will access the fourth entry (dword) in the page directory, as seen in the

third part of Figure 7.6.

Code Sequence 9— Build Page Tables

After the page directory is built, tables need to be built for each valid

directory entry. As was the case for building the directory, the first thing

to do is fill the entire table with not-present entries and then selectively

insert valid entries into the tables. As discussed above, making the linear

Operating System Examples 611

address space identical to the physical is an important consideration in

building the page table. At this point, we need to keep the following

addresses the same in the linear and physical address spaces:

1. The operating-system code executing out of ROM, 16 pages start-

ing at physical address FFFFOOOOh, FFFF1000h...FFFFF000h, are

given identical locations in the linear and physical address spaces.

Otherwise, a ma^ jump will be executed when paging is enabled.

Magic means that the next instruction will be fetched from the linear

address that maps to a different physical address than the one prior

to enabling paging.

2. The GDT, IDT, and TSS are stored in the page beginning at

physical address OOOOOOOOh, which is also given the same linear

address. Otherwise, we need to reload these registers and rebuild

the associated tables after paging is enabled.

Refer to Figure 7.5 (the physical address space) and compare the page

table entries that are filled to the allocated pages in the figure. Table 7.3

summarizes the pages allocated and the access allowed to them.

DIRECTORY TABLE

ENTRY ENTRY USER WRITE COMMENT

No No IDT, GDT, TSS

No No Page Table

1 No No Page Directory

3 No No Page Table 3

4 No No Page Table 4

3FEh No No Page Table 3FE

3FFh No No Page Table 3FF

3 No No OS Private Data

3 3FFh No No OS Stack

4 Yes No User Code

4 lOOh Yes Yes User Data

3FEh 3FFh Yes Yes User Stack

3FFh 3F0-3FFh No No OS Code

Table 7 .3: Allocated pages

612 Programming the 80386

Code Sequence 10—Enable Paging

The page directory and tables are ready. All that is needed to enable

paging is to set the PG bit of CRO. After paging is enabled, it is impor-

tant to perform a jump that will flush both the prefetch queue and the

instruction decode queue. As was the case when protection was being

enabled above, the information in these queues was prefetched and
decoded when paging was disabled and is no longer valid.

Code Sequence 11—Load Operating-System Stacl< Pointer

This code segment simply loads the operating-system stack pointer. As
discussed in Chapter 5, each protection level (0-3) has a diff'erent stack.

Since our example only uses levels and 3, only two stacks are required.

Note the use of the LSS instruction. LSS avoids any of the difficulties

that may arise when SS and ESP are loaded separately. In this case,

interrupts are disabled and no possible exceptions can occur, so using

LSS would not be needed. Nevertheless, it is good practice to always

use LSS rather than two separate instructions.

Code Sequence 12— Build TSS

During privilege-level changes or task switches, the TSS will be refer-

enced to retrieve or store information for later use. For example, the first

exception (maybe a page fault, for instance) will require a privilege-level

transition from 3 (the user level) to (the operating-system level). As
part of this change, stacks will be changed. The 80386 expects to find

the level stack selector and off'set at the appropriate locations in the

TSS. The only information we need to put in the TSS is

1. Level stack off'set

2. Level stack selector

3. Page directory base (CR3)

4. LDT
5. Off'set of I/O Bit Map

6. Debug Trap bit (set to 0)

The I/O Bit Map off'set is set to 8000h, which is beyond the TSS limit,

to specify an empty map.
The TR (task register) is then loaded to make the TSS visible to the

processor.

Also note that the TSS has room allocated for floating-point state. The
uppermost byte of the TSS is set to to indicate this task has not yet

used the coprocessor.

Operating System Examples 613

Load User Task

Almost all aspects of initialization are now complete, and we are ready

to load the user's task. The example assumes the existence of a proce-

dure loader, which takes the selectors for the code segment and data seg-

ment for the task. The loader routine will then read the code and data

for the task from disk (for instance) into memory. Since the task may be

quite large, the first page of code and data are loaded into memory
while the rest of the task is kept in virtual storage on the swapping disk

until the appropriate page faults force them to be read into memory. The
loader routine returns the offset of the start of the task (the first instruc-

tion to be executed in the task) in the EAX register.

When the local descriptors were built (Code Sequence 6), we arbitrar-

ily made the user code area IM in size and gave the rest of memory
(most of the 4G of linear address space) to the user data area. The
loader would readjust the User_Code_Seg limit and User_Data_Seg base

appropriately, as the task was loaded.

Prepare for User Task Invocation

As discussed in Chapter 5, calls to outer levels are not allowed.

Instead, returns are done to outer levels. Thus, we put an image on the

stack composed of

• Stack selector

• Stack off'set

• Flags

• Code selector

• Code off"set (returned by loader)

for the user task. When a subsequent IRET is done, it will return to the

user program at level 3 to begin execution of the first user task of the

system.

Note that interrupts are enabled by setting the IF bit in the flags

image on the stack. As part of the IRET, interrupts will be enabled, not

prematurely as would be the case if a STI would be executed while still

in the operating-system code.

Invoke User Task

Finally, we reach the magic IRET. The first user-level task is invoked,

and our example is complete. The IRET will retrieve the information

just pushed onto the stack and change machine state appropriately. In

this case, the protection level, stack, CS:EIP, and flags are changed.

614 Programming the 80386

* Take the machine from its reset state to completely
initialized as a flat machine and invoke the first
user task. Major portions of this program are building the
appropriate segmentation tables and building the paging
tables.

*

*

*

*

*

*

*

*

*

*

*

*

*

*

The example is composed of 15 steps:
I) Boot Address cold start

Misc: Disable interrupts, load DS, null IDTR
Build GDT. LGDT
Enter protected mode/32b code
Load segment registers
Build LDT, LLDT
Build IDT, LIDT
Build page directory
Build page tables

10) Enable paging
II) Load OS stack
12) Build TSS, LTR
13) Load user task
14) Prepare for user task invocation
15) Invoke user task!

NAME Initial
; Miscellaneous Constants
IDT_En tries EQU 17
GDT_En tries EQU 5

LDT_En tries EQU

Null, OS Data, LDT
OS Code, TSS
User Code, User Data

Page-Size EQU 4096
Page-Entries EQU 1024
Not-Present EQU
PE EQU 1

PG EQU SOOOOOOOh
Int-Flag EQU 0200h

; GDT Selectors
Null EQU Oh
OS-Code-Sel EQU 8h
OS-Da ta-Sel EQU lOh
LDTl-Sel EQU 18h
TSSl-Sel EQU 20h

; LDT Selectors
User-Code-Sel EQU 7h ;

User-Da ta-Sel EQU OFh

1,GDT,RPL=00
2,GDT,RPL=00
3,GDT,RPL=00
4,GDT,RPL=00

0,LDT,RPL=11
1,LDT,RPL=11

Listing 7.1: Initialization code

Operating System Examples 615

Physical Address Constants,
the page tables.

Use these to initialize

P_OS_GData EQU OOOOOh
P_Page_Dir EQU OlOOOh
P_Page_TabO EQU 02000h
P_Page_Tab3 EQU OSOOOh
P_Page_Tab4 EQU 04000h
P_Page_Tab3FE EQU OSOOOh
P_Page_Tab3FF EQU oeoooh
P_OS_PData EQU 07000h
P_OS_Stack EQU OSOOOh
P_User_Code EQU 09000h
P_User_Data EQU OAOOOh
P_User_Stack EQU OBOOOh

TSS-Size EQU 104
FP_Save EQU 112

Minimum TSS size
Save area is 108+4 (extra
word for flag that FP used)

** OS Data Segment

Contains the segmentation and paging tables.
Locate this segment at linear address 0.

OS_Data_Seg SEGMENT RW USE32 ; Locate AT OOOOOOOOh

IDT_Table at Offset 0, GDT immediately above it,

TSS immediately above GDT, LDT immediately
above TSS.

IDT-Table db IDT_Entr ies*8 DUP (?)

GDT-Table db GDT_Entr ies*8 DUP (?)

TSSl_Table db (TSS_Size+FP_Save) DUP (?)

LDT 1-Table db LDT_Entr ies*8 DUP (?)

pdescr db 6 dup(?) ; Bui Id Pseudo-descriptor for IDTR, GDTR here.

** Page Directory and Page tables area in the physical address space,
** used to initialize the page tables before enabling paging.

ORG OOOOlOOOh
Page_Dir dd Page-Entries DUP(?)
Page-TabO dd Page-Entries DUP(?)
Page-Tab3 dd Page-Entries DUP(?)
Page-Tab4 dd Page-Entries DUP(?)
Page-Tab3FE dd Page-Entries DUP(?)
Page-Tab3FF dd Page-Entries DUP(?)

Physical Address

OS Common Data (IDT, GDT, TSS)
OS Private (stack)
User Code and Data
User Stack
OS Code

Listing 7.1: Initialization code (continued)

616 Programming the 80386

** Page Directory and Page tables area in the linear address
** 4M linear space for full directory and tables.

ORG 00400000h
L_Page_TabO dd Page-Entries DUP (?)

L_Page_Dir dd Page-Entries DUP (?)

ORG 00403000h
L-Page-Tab3 dd Page-Entries DUP
L_Page_Tab4 dd Page-Entries DUP

ORG 007FE000h
L-Page-Tab3FE dd Page-Entries DUP
L-Page-Tab3FF dd Page-Entries DUP

(?)

(?)

(?)

(?)

space.

OS Common Data (IDT, GDT, TSS)
Page Directory

OS Private (stack)
User Code and Data

User Stack
OS Code

* OS data. 4M linear space. Not used in example.

ORG OSOOOOOh

** OS data. 4M linear space for data and stack private to OS.

ORG OCOOOOOh ; Linear Address
Unshared-OS-Data dd ?

; Unshared OS Data Area, Temps, etc.

temp db 10 dup (?)

fptss dw ?

Top of OS stack

** User Code Segment

Locate this segment at linear address lOOOOOOh.
User-Code_Seg SEGMENT ER USE32 ; Locate AT lOOOOOOh.

; Start of User's code segment in linear address space.

; Define a 1 Megabyte region.
User-Code-Seg ENDS

** User Data Segment

Locate this segment at linear address llOOOOOh.
User_Data-Seg SEGMENT RW USE32 ; Locate AT llOOOOOh

; *****

; ** OS Stack.
; *****

ORG OFFFFFCh
Top-OS-Stack dd ?

OS-Da ta-Seg ENDS

Listing 7.1: Initialization code (continued)

Operating System Examples 617

; Start of User's code segment in linear address space.
; The rest of memory (enormous) is defined for user data.
ORG OFEEEFFFCh
Top_User_Stack dd ?

User_Data_Seg ENDS

** 32-bit OS Code Segment

32-bit OS code.
Locate this segment at linear address OFFFFOOOOh.

OS_Code_Seg SEGMENT ER USE32 ; Locate AT OFFFFOOOOh
Extrn loader: NEAR

Default-Hand:
; < Default Handler Code >
IRET

DNA_Hand:
; < DNA Handler Code: Example 2 >
IRET

Page_Faul t_Hand:
; < Page Fault Handler Code >
IRET

Debug-Hand:
; < Debug Handler Code >
IRET

Start32:

** [5] Make OS-Data segment addressable by loading
** it into DS and ES segment registers.

MOV AX, OS-Da ta-Sel
MOV DS, AX
MOV ES, AX
ASSUME DS: OS-Da ta-Seg

** [6] Build LDT, LLDT

MOV EAX, offset LDTl-Table
; entry --> User Code Descriptor
; Base=00100000h, Limi t=OOOFFh, G=l , D=l , Type=A, DPL=3

Limit[15. . 0]

Base[15. .0]

Base[23. . 16]

Type = data
descriptor, DPL=11
G,D,Limit[19. . 16]

Base[31. . 24]

MOV word ptr [EAX] , OOOFFh
MOV word ptr [EAX+2] OOOOh
MOV byte ptr [EAX+4] OOOh
MOV byte ptr [EAX+5] OFAh

MOV byte ptr [EAX+6] OCOh
MOV byte ptr [EAX+7] Olh
ADD EAX, ii

Listing 7.1: Initialization code (continued)'

618 Programming the 80386

; onLiy 1 -- • User Data Descriptor
; Base 001 lOOOOh, Limi t-FKEEFh, G=l , D=l , Type=A, DPL=3
MOV word ptr | KAX | , OKKKFh LimitllS. .01

MOV word ptr [KAXI 2 | . OOOOh Hase 1 15. . 0|

MOV byte ptr |KAXt4|,010h Base 123. .16)

MOV by tc p tr | KAX t 5 | , 0K2h Type da ta

descriptor, DPL=11
MOV byte ptr |KAXf 6| , OCFh G,D,Limit|19. . 16)

MOV byte ptr |KAX+7|,01h Base 131. . 24]

MOV AX, LDTl_Sel
LLDT AX

; *****

; ** 1 7 1 lUii Id IDT

; *****

; Fill ill first Hi entries in IDT. First fill with the

; Default Handler, then eome baek and update.
MOV FAX, offset IDT.Table
MOV FHX, offset Default-Hand
MOV word ptr |FAX| , HX ; Of fset | 1 .'">..

|

MOV word ptr |FAX(2|, OS_('ode_Sel
MOV byte ptr IFAXI1|, OOh ; WordCnt=0
MOV byte ptr |FAX)r>|, 8Fh ; Type=E, DIM- 00
Sim Kijx, n>

MOV w«»rd ptr |FAXl(J|. »X ; Of fset | :n . . 1 |

; Now that one is built, eopy into rest.
MOV FSI, offset II)T_Tabl<>

MOV KDI, (offset IDT-Table 1 H)

MOV i;('X, (IDT-Fntr i«>s-1)*2

WV.V MOVSI)

; Now come back and fill nondefaul t pointers.
; entry I : I)ebun«er
MOV FAX, («»ffset II)T_Table 1 (1 * H))

MOV FHX, offset Debuj^-Hand
MOV w<»rd ptr IFAX|, HX ; Of fse 1 1 1 .^> . . |

suit FHX, l<)

MOV word ptr |FAXI(i|. HX ; Of fse t | ai . . !<> |

; entry 7: Device Not Available
MOV FAX, (olfset IDT.Table 1 (7*8))
MOV FHX, olfset DNA-Hand
MOV w<»rd ptr |FAX|, HX ; Of (s«' t | 1 .^>

. . |

suit FHX, l(i

MOV wor«l ptr |FAXI(>|, HX ; Of f s«> I | :n .. 1 (i
|

; entry II: I'a.ne fault handler
MOV FAX, (offset ID'I'.rable 1 (II * H))

MOV i:hx, offset I'aue.laul t_Hand
MOV word ptr |FAX|, HX ; Of f set | 1 .^>

. . |

Sillt FHX, Mi

MOV woid ptr 1 FAX Mil, HX ; Of f se 1 1 :n . . Mi
|

Listing 7.1: Iiiiliali/alion code (contiiuicd)

Operaiinc S\"STeni Examples 619

: load IPTR
MOV »ord ptr pdescr. i IDT-Zntries » S - 1>

MOV d»ord ptr pdescr [21- offset IDT_Table
LIDT pword ptr pdescr

** [S] Build Page Directory

MOV EL\X . No t_Pr e s en

t

MOV ECX. Page-Entries
CUD
MOV EDI. offset Page_Dir
REP STOSr : nark entire directory not present

: Entry 0: OS Shared Data Table. No user -level access.
: Locate at so 1 inear^^hysical and the loaded GDT. IDT.

: and TSS . are still valid after pagiag is enabled.
MOV Page_Dir[0]. P_Page_TabO OK OOlh
: Entry 1: Pointer to Directory. No user-level access-
: This Haps the PageDir and PageTables into the linear
; address space.
MOV Page_Dir[4]. P_Page_Dir OK OOlh

: Entry 3: OS Private Data Table. No user-level access.
MOV Page_Dir[12). P_Page_Tab3 OR OOlh

: Entry 4: User code and Data. User read write access.
MOV Page_Dir(161. P-Page-Tab4 OR OOTh

: Entry 3FEh: User Stack, put at highest area of user
: data space. User read write access.
MOV Page«Dir [40SS1 . P_Page_Tab3FE OR OOTh

Entry SFFh: OS Shared Code Table. No user- level access.
It is very important this entry is at high H««ory to aap
to the saae address as is currently being executed.

MOV Page_I>ir [40921 . P_Page_Tab3FF OR OOlh

•frtrfri/rti

** [9] Build Tables: Directory has been built. no» »e aust
^t build each page table.

: Page Table 0: OS cooBon data
: First thing is to clear entire table.
MiH E-\X. Not-Present
MOV ECX. Page-Entries
OLD
MOV EDI. offset Page-TabO
REP STOSD
: No» allocate page for IDT. t^T. TSS. ...

MOV Page-TabOt Ohl . P-OS_GPata iH? OOlh

• Listing 7.1: Imtiolizacion cvxk ^contuiuexl^

620 Programming the 80386

; Page Table 3: OS private data
; First thing is to clear entire table.
MOV EAX, Not-Present
MOV ECX, Page-Entries
CLD
MOV EDI, offset Page-Tab3
REP STOSD
; Allocate pages for private data and OS stack.
MOV Page-Tabs [OOOOh] , (P-OS-PData OR OOlh)
MOV Page-Tabs [OFFCh] , (P-OS-Stack OR OOlh)

; Page Table 4: User code, data and stack
; First thing is to clear entire table.
MOV EAX, Not-Present
MOV ECX, Page-Entries
CLD
MOV EDI, offset Page-Tab4
REP STOSD
; Allocate pages for user code and data.
MOV Page-Tab4[0000] , (P_User-Code OR 005h)
MOV Page-Tab4[1024] , (P_User_Data OR 007h)

; Page Table 3FE: User Stack
; First thing is to clear entire table.
MOV EAX, Not-Present
MOV ECX, Page-Entries
CLD
MOV EDI, offset Page_Tab3FE
REP STOSD
; Allocate page for user stack: highest linear address.
MOV Page-Tab3FE[4092] , (P-User-Stack OR 007h)

Page Table SFFh: OS code. All pages are readable to

user, the upper 64K of memory is mapped such that
physical and linear addresses match.

MOV EAX, OFFFFFOOSh ; highest PTE,
MOV ECX, Page-Size
LoopTop:

SUB ECX, 4

MOV Page-TabSFF [ECX] , EAX
SUB EAX, lOOOh
CMP ECX, 4032
JNZ LoopTop

** [10] Enable Paging

MOV EAX, P-Page-Dir
MOV CR3, EAX
MOV EAX, CRO
OR EAX, PG
MOV CRO, EAX
JMP pflush

pfiush:

Listing 7.1: Initialization code (continued)

Operating System Examples 621

** [11] Load the OS Stack pointer

MOV dword ptr temp [0] , offset Top_OS_stack
MOV word ptr temp [4] , OS_Data_Sel
LSS ESP,pword ptr temp

** [12] Build TSS. Only load up the parts referenced
** by OS. All other parts are written over on first
** transition to inner-level or unneeded. Also load
** the task register.

; Level stack offset
MOV dword ptr TSSl_Table[4], offset Top_OS_stack
; Level stack selector
MOV dword ptr TSSl_Table[8] , OS_Data_Sel
; CR3
MOV EAX, CR3
MOV dword ptr TSSl-Table [ICh] , EAX
; LDT
MOV dword ptr TSSl-Table [60h] ,

; I/O Bit Map Offset
MOV word ptr TSSl-Table [66h] , 8000h
; Debug Trap Bit
MOV word ptr TSSl-Table [64h] ,

MOV AX, TSSl-Sel
LTR AX

; Initialize floating-point status bytes needed by example 2.

; These are discussed in detail in that example.
MOV byte ptr TSSl-Table [TSS-Size + FP-Save - 1] ,

MOV fptss,

** [13] Load User Task

MOV EAX, User-Code_Sel ; Selector for user code
MOV ECX, User-Data-Sel ; Selector for user data

The loader will fetch the first user task from disk
and load it into the locations as specified by the

selectors passed to it. The loader routine returns
the offset of the start of the user task in the EAX
register.

CALL loader

** [14] Prepare for user task invocation. Push user's
** SS:ESP, push the flags, push the CS:EIP, and IRET
** will invoke the user code.

MOV ECX, User-Data-Sel ; Stack for user routine,
: as data selector.

Listing 7.1: Initialization code (continued)

622 Programming the 80386

PUSH ECX
; Stack pointer for user.

MOV ECX, offset Top_User_Stack
PUSH ECX

PUSHF
; Set IF on the stack.

OR SS: dword ptr [ESP] , Int_Flag

MOV ECX, User_Code_Sel ; Code Segment of user routine.
PUSH ECX
PUSH EAX ; Offset to start in user task.

** [15] Invoke user task

; The magic IRET, switch to user routine as indicated
; on the stack. *

IRET

OS_Code_Seg ENDS

16-bit Bootstrap code.
Segment origin is at OFFFFOOOOh, to match addressing through CS just
after reset. ORG to offset OFOOOh to assemble boot code in top 4K
of memory.

BootRomie SEGMENT EO USE16; Locate AT OFFFFOOOOh
ORG OFOOOh ; 16-bit OS code is in upper 4K of memory.

Startl6:

** [2] Misc: CLI, DS, null IDT

CLI ; disable interrupts
MOV AX, ; initial Data segment in real mode.
MOV DS, AX
ASSUME DS:OS_Data_Seg ; tell assembler DS addresses OS data.

; Set up empty IDT, will cause shutdown on any interrupts.
MOV word ptr pdescr[0],0

; set up for zero limit IDT, Base
MOV dword ptr pdescr[2],0
LIDT pword ptr pdescr

** [3] Set up GDT

MOV EAX, offset GDT-Table
; entry --> Null
MOV dword ptr [EAX] ,

MOV dword ptr [EAX+4],0
ADD EAX,

8

Listing 7.1: Initialization code (continued)

Operating System Examples 623

; entry 1 --> OS Code Descriptor
; Base=FFFFOOOOh, Limi t=OOOOEh G=l , D=l , Type=A, DPL=0
MOV word ptr [EAX] , OOOOEh Limit[15. .0]

MOV word ptr [EAX+2] , OOOOh Base[15. .0]

MOV byte ptr [EAX+4],0FFh Base[23. . 16]

MOV byte ptr [EAX+5],09Ah Type = code
descriptor, DPL=0

MOV byte ptr [EAX+6],0C0h G,D,Limit[19. . 16]

MOV byte ptr [EAX+7],0FFh Base[31. .24]

ADD EAX,

8

; entry 2 --> OS Data Descriptor
; Base=000OOOO0h, Limi t=OFFFFFh, G=l, D=l, Type=9, DPL=0
; Map entire data space into OS Address Space --> this provides
; access to memory to load a user task, for instance.
MOV word ptr [EAX] , OFFFFh Limit[15. . 0]

MOV word ptr [EAX+2] , OOOOh Base[15. . 0]

MOV byte ptr [EAX+4],00h Base[23. . 16]

MOV byte ptr [EAX+5],092h Type = data
; descriptor, DPL=0

MOV byte ptr [EAX+6],0CFh G,D,Limit[19. . 16]

MOV byte ptr [EAX+7],00h Base[31. . 24]

ADD EAX,

8

; entry 3 --> LDT
; Base=(offset LDTl_Table) , Limi t=(LDT_Entries * 8),

; G=0, Type=LDT, DPL=00
MOV word ptr [EAX], (LDT_Entries * 8 - 1) ; Limit[15..0]
MOV EBX, offset LDTl_Table
MOV word ptr [EAX+2], BX ; Base[15. .0]

SHR EBX, 16
MOV byte ptr [EAX+4] , BL Base[23. . 16]

MOV byte ptr [EAX+5],082h Type=LDT
MOV byte ptr [EAX+6] , OOOh Limit[19. . 16]

MOV byte ptr [EAX+7] , BH Base [31. . 24]

ADD EAX,

8

; entry 4 --> TSS for this tas k

; Base= (offset TSSl_Table) , Limi t= (TSS_Size + FP-Save)

,

; G=0, Type=Available 386 TSS, DPL=00
MOV word ptr [EAX], (TSS_Size + FP_Save - 1) ; Limit[15..0]
MOV EBX, offset TSSl-Table
MOV word ptr [EAX+2], BX ; Base[15. . 0]

SHR EBX, 16
MOV byte ptr [EAX+4] , BL ; Base[23. . 16]

MOV byte ptr [EAX+5],089h ; Type=AvaiIable 386 TSS
MOV byte ptr [EAX+6] , OOOh ; Limit[19. . 16]

MOV byte ptr [EAX+7], BH ; Base [31. .24]

; Set up GDT pseudo-descriptor (limit and base), and load it into GDTR.
MOV word ptr pdescr [0] , (GDT_]Entries*8 - 1)

MOV dword ptr pdescr [2] , offse t GDT -Table
LGDT pword ptr pdescr

• Listing 7.1: Initialization code (continued)

624 Programming the 80386

; ** [4] Enter Protected Mode
* ^^^^^

SMSW AX
OR AX,PE
LMSW AX ; Set protection enable bit
JMP Flush

Flush:
JMP far ptr Start32 ; Jump through GDT to 32-bit

; OS code.
; *****

; ** [1] Cold Start Code!
: ^i;^:^:^;:^

ORG OFFFOh
JMP Startle

BootRomie ENDS

END

>- Listing 7.1: Initialization code (continued)

Coprocessor Exception Handler

The second example is a coprocessor Device Not Available (DNA) excep-

tion handler. This example is an extension of the first. The exception

handler is given in Listing 7.2 (beginning on page 627).

Overview of Example 2

This example will demonstrate the details of a fault handler and speci-

fically the coprocessor device not available handler. A device not avail-

able exception (vector number 7) can be generated for any of the

following reasons (these were discussed in Chapter 6).

1

.

A floating-point instruction is executed and the EM bit in control

register CRO is a 1. EM indicates that a math coprocessor is to

be emulated.

2. A floating-point instruction is executed and the TS bit in control

register CRO is a 1. TS indicates the fast task-switch mode dis-

cussed below.

3. A WAIT instruction is executed and both the TS and MP bits in

CRO are 1.

Operating System Examples 625

In our example, we deal with the fast task-switch mode. If the system

is to emulate the coprocessor (discussed in Chapter 1), a simple call to

the routine DNA_Emulate is done. It is the responsibility of this routine

to emulate the operation of the coprocessor

The fast task-switch mode is an optimization that allows the state of

the coprocessor to be saved only when it is accessed by a task. If most

tasks in the system do not use the coprocessor, this can be a large

benefit, since unloading and reloading the coprocessor state is quite time-

consuming.

When a DNA exception occurs, the coprocessor device not available

handler would be called. This handler is written to be inserted directly

into the first example of this chapter, the initialization example. In fact,

you could insert the DNA handler exactly at the location in the first

example seen as:

<DNA Handler Code - Example 2>

Several items in example 1 are exclusively for the purpose of this

example. For example, the TSS has enough space allocated in it to allow

the floating-point state to be stored into it.

On an exception, if a task had been using the coprocessor, the copro-

cessor state is stored into the TSS of the task using it (if there was one).

The current task's coprocessor state (if it already made use of it) is then

loaded into the coprocessor The operating system keeps a variable con-

taining the selector for the TSS of the last task using the coprocessor.

This is updated as part of loading the coprocessor with its new state.

Throughout this example, interrupt latency is a concern, and will be fur-

ther discussed below.

Details of Exception Handler

Before anything else is done, interrupts are enabled. Since loading and

storing coprocessor state can take a while, we will disable interrupts only

when absolutely needed. Interrupts need to be enabled, since all the han-

dlers from example 1 are interrupt gates that disable interrupts as they

are taken.

Code Sequence 1—Emulation

If the exception was caused by the EM bit being set in CRO, the

emulator is called. An emulator is not part of the example. After emula-

tion, simply return.

626 Programming the 80386

Code Sequence 2—Current Task Base

The fptss variable contains the selector for the TSS of the task whose

state is currently in the coprocessor. The coprocessor state is stored in the

upper part of the TSS. Thus, we need to determine the selector and the

base of the current task's TSS. This is done rather nicely by working

backward, beginning at the TR. The TR gives the selector for the cur-

rent TSS, accessing the GDT and unscrambling the base from the

descriptor. The selector is kept in SI and the base in ECX for

future use.

Code Sequence 3—Save Old State

The initialization sequence clears the fptss variable to 0. This is done

to indicate that no task has yet used the coprocessor. If this is the case,

the current coprocessor state need not be stored anywhere, and the

coprocessor will be initialized with the FNINIT instruction below. If fptss

was not zero, the coprocessor state is stored into the TSS of the old task

at the appropriate location. As above, this location is determined by fol-

lowing the fptss selector to determine the base of the TSS. Another opti-

mization is if the last task to use the coprocessor is the current task. If

this is the case, do nothing and return.

Code Sequence 4—Load New State

While the new state is being loaded into the coprocessor, it is neces-

sary to disable interrupts, since the machine is not in a valid state. Con-

sider the case when the coprocessor state has been stored into the prior

task's TSS and the state for the new task is loaded into the coprocessor,

but fptss has not yet been updated. In this case, the coprocessor state

and fptss are inconsistent. If an interrupt were taken at this point, a sub-

sequent invocation of this fault handler (prior to return to this invoca-

tion) could corrupt the old task's coprocessor state.

It is unfortunate that interrupts are disabled during the loading of a

new coprocessor state: interrupt latency suffers, since the FRSTOR
instruction is very long. You can avoid the disabling of interrupts

throughout this instruction, but you'd need two semaphores, and the

exception handler becomes much trickier to write. Rather than compli-

cate this example handler to the point of being unintelligible, this exer-

cise is left to the interested and able reader.

The highest byte in the coprocessor state portion of the TSS is a byte

indicating that the coprocessor state has been saved in this TSS. The
part of the operating system that initiates tasks takes care to zero this

byte (we did so in our initialization example). If this byte is 0, the

Operating System Examples 627

coprocessor state need not be restored from the current task, as the cur-

rent task has never used the coprocessor rand the coprocessor is simply

reset by the FNINIT instruction. If this byte is 1, this task has state to

be loaded into the coprocessor. Finally, the fptss variable is updated, and
the highest byte of the TSS coprocessor state is set to 1 to indicate the

new status of the coprocessor and this task's use of it.

**
* Example 2 - Device Not Available Handler.
*

* Several items are assumed (Example 1 meets these assumptions):
* 1. fptss is a selector of the TSS of the most recent task
* that used the coprocessor (the state from this task is still
* in the coprocessor). If none, it is 0.

* 2. The TSS has a floating-point save area immediately above
* the minimal TSS.
* 3. The floating-point save area of the TSS is 108 (normal save
* area) plus 4 bytes. The highest addressed byte is a flag,

* indicating if the task has coprocessor state (0 indicates
* no state)

.

:i;****:tc^;(c

DNA_Hand:

STI

* [1] Determine if fault is caused by Emulation

Remember CRO layout: 3

1 ... 43210
P E T E M P
G T S M P E

MOV EAX, CRO
BT EAX, 2

JNC DNA_Task_Ex
CALL DNA_Emulate
IRET

* [2] Determine current task TSS base

DNA_Task_Ex:
XOR ESI, ESI
STR SI ; ESI holds TSS selector of current task
MOV ECX, [ESI + offset GDT-Table + 0]

MOV EDX, [ESI + offset GDT-Table + 4]

SHRD ECX, EDX, 16
AND ECX, OOOFFFFFFh
AND EDX,0FF000000h
OR ECX, EDX ; ECX now holds base of current task

Listing 7.2: Device not available exception handler

628 Programming the 80386

If state of old task needs* [3] Fault is caused by task switch.
* to be saved, do so.

XOR EDI, EDI
MOV DI, fptss
CMP DI,

JE DNA_Restor ; No prior task used Coprocessor.
CMP DI,SI ; If the last user is the current task

; we don't need to save and restore.
JNE DNA_Save
IRET

DNA_Save

:

; determine base of TSS of last task
MOV EAX, [EDI + offset GDT-Table + 0]

MOV EDX, [EDI + offset GDT-Table + 4]

SHRD EAX, EDX, 16
AND EAX, OOOFFFFFFh
AND EDX, OFFOOOOOOh
OR EAX, EDX ; EAX now holds base of prior task TSS

FNSAVE [EAX + TSS-Size] ; Save old task's coprocessor state.

* [4] Now set fptss to this task. If needed, load up the
* prior coprocessor state of this task. Interrupts
* must be disabled throughout.

DNA_Restor:
CLI
; This byte indicates that this task had prior
; coprocessor state.
CMP byte ptr [ECX + (TSS-Size + FP-Save - 1)],1
JNE DNA-Init
FRSTOR [ECX + TSS-Size]
JMP DNA-Done

DNA-Init:
FNINIT

DNA-Done:
MOV fptss, SI ; Store this task's TSS selector into
; fptss, set byte indicating coprocessor has been used
; by this task, clear TS, and set IF.

MOV byte ptr [ECX + (TSS-SIZE + FP-Save - 1)],1
CLTS
STI
IRET

Listing 7.2: Device not available exception handler (continued)

^^

Chapter

wmmmmmmm^^^m^^^m^ as all programmers are aware, programs
need to be debugged. Debugging has traditionally been more art than

science. To take some of the magic out of debugging, software debuggers

have been developed to assist programmers in finding the exact location

of their bug(s—we all know there is more than one!). Software debug-

gers have such features as stepping through code one instruction at a

time, setting breakpoints at certain locations in the program (stop at the

start of this statement), and stopping when variable xyz becomes the

value 0FA445h. Software debuggers have played no small part in getting

many major programs functioning correcdy.

In this chapter, we do not present a specific 80386 software debugger.

Instead, we present the basic debug facilities the 80386 supports. These

basic features can have a software debugger built on top of them to

develop a full software debugging facility.

The debugging facilities of the 80386 include a one-byte trap intruc-

tion (INT 3), trap on task switch, single-step by instniction, and detec-

tion of four simultaneous breakpoint conditions for instruction fetch, data

write, and data read or write. The remainder of this chapter describes

these facilities in more detail. The breakpoint facilities of the 80386 pro-

vide a significant extension to the debug facilities found in prior 86 fam-

ily members.

632 Programming the 80386

Terminology

Before beginning our description, we need to clarify the terminology

used in this chapter.

Chapter 6 has described the possible exceptions of the 80386 in some
detail. This chapter wUl describe in more detail the debug exception, which

is detected as part of executing an instruction. A debug handler is the rou-

tine that receives control when a debug interrupt or an enabled debug
exception is detected.

A debug exception is classified as a fault or a trap, depending on
when the exception is raised. A debug fault is raised at the instruction

boundary immediately before the execution of the instruction raising the

exception. Thus, the exception handler is entered with the saved CS:EIP
pointing to the instruction that raised the fault. A debug trap is raised at

the instruction boundary immediately after the execution of the instruc-

tion causing the exception. Therefore, the CS:EIP value stored at entry

to the exception handler points to the instruction after the one causing

the exception. Faults occur "before," and traps occur "after" the

instruction raising the exception. The following list summarizes which

exception types are traps and which are faults.

1

.

Traps

Task switch

Single-step

Data breakpoints

2. Faults

Debug register protection

Instruction breakpoints

Debug Breakpoints

A breakpoint allows the programmer to set a specific condition at a

particular linear address that causes program execution to jump into the

exception handler. The 80386 supports four simultaneous breakpoint con-

ditions. Thus, the programmer can set up to four locations in a program
for which the 80386 will jump to the exception handler. The four

Debugging Support 633

breakpoints can each be of three different types:

• Instruction execution only

• Data writes

• Data reads or writes (but not instruction execution)

Debug Registers

To support the four breakpoints, eight additional registers are added to

the 80386. These registers can only be read or written at privilege level

0. Attempted access at any other privilege level will raise an invalid

opcode exception. Additionally, the registers can be further protected

from reading or writing even at level by the BD and GD bits in DR6
and DR7, which are described below. Access to these registers is pro-

vided by the move to/from debug register instructions

MOV reg,DRi
MOV DRi,reg

where DRi may be any of DRO, DRl, DR2, DR3, DR6, or DR7.
These instructions are described in more detail in the operating-system

section of Chapter 3.

Figure 8.1 displays the eight debug registers. The subsequent para-

graphs explain these registers in detail.

DR0-DR3 Registers DRO through DR3 contain the linear

address associated with each of the four breakpoint

conditions. Additional breakpoint qualifiers are

given in DR7. Since the linear address is used, the

breakpoint facilities operate the same (and correcdy)

whether paging is enabled or not.

DR4-DR5 The DR4 and DR5 registers are reserved for future

use by Intel.

DR6 The DR6 register is the debug status register. When
a debug exception is raised, the processor sets DR6
to indicate the exception type and/or breakpoints

that raised the exception.

DR7 DR7 is the debug control register. The bits in this

register allow each breakpoint register to be

enabled, as well as the type of breakpoint (instruc-

tion, data write, and data read or write) to be

selected. The protection of all breakpoint registers is

specified in this register.

634 Programming the 80386

DR6

Upon entry to the debug handler, the DR6 register indicates what

exception was detected. Note that the bits of DR6 do not indicate

whether the breakpoint condition was enabled (which is indicated by

DR7). The bits simply indicate that the condition was detected. Thus,

31

Breakpoint Linear Address

Breakpoint 1 Linear Address

Breakpoint 2 Linear Address

Breakpoint 3 Linear Address

Reserved

Reserved

0000000000000000 B

T

B

S

B

D
000000000 B

3

B

2

B

1

B

LEN RWE

3

LEN RWE

2

LEN RWE

1

LEN RWE G

D

G

E

L

E

G

3

L

3

G

2

L

2

G

1

L

1

G L

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

DRO

DR1

DR2

0R3

DR4

DR5

DR6

DR7

Figure 8.1: Debug registers

Debugging Support 635

the programmer needs to verify that the condition was detected as indi-

cated in DR6, and the condition was enabled as specified in DR7.
Debug exceptions for two different instructions can be reported simul-

taneously. A fault on one instruction may be reported at the same time

as a trap on the previous instruction. For example, an instruction break-

point detected in one instruction may be reported at the same time as a

data breakpoint on the previous instruction. The debug handler can

examine the status bits in DR6 to determine which condition, or combi-

nation of conditions, were detected at the instruction boundary where a

debug exception is raised.

B0-B3 The BO through B3 bits indicate that the breakpoint

condition specified by the corresponding breakpoint

linear address register was detected. Note that these

bits are set even if the breakpoint condition has not

been enabled by DR7.

BD The BD bit is set at an instruction boundary if the

next instruction will read or write to one of the

eight debug registers (debug register protection). BD
will be set whenever a read or write to the debug
registers is about to occur. The condition need not

be enabled by the GD bit of DR7.

BS The BS bit is set if a single-step exception occurs.

The single-step condition is enabled by the TF bit

in the EFLAGS register, as described in Chapter 2.

The BS bit in DR6 is set if the program enters the

debug handler because of a single-step condition.

Unlike the other bits in DR6, the BS bit is set only

if a single-step trap actually occurs, not if a single-

step condition (enabled or not) was detected.

BT The BT bit indicates that the cause for the debug
exception was a task switch into a task where the

debug trap bit in the TSS is enabled. There is not

an enable bit for this condition in DR7.

Note that the bits of DR6 are never cleared by the processor. Thus,

the debug exception handler, before returning, should clear DR6 to

avoid false interpretation of DR6 when the next exception condition is

detected.

636 Programming the 80386

DR7

The bit definitions of the various fields of DR7, the debug control reg-

ister, are given below.

The four 2 -bit LEN fields indicate the length of the

breakpoint for each of the four breakpoint registers.

The encoding is

LEN Description

LEN

RWE

GE/LE

00 One-byte length

01 Two-byte length

10 Reserved

11 Four-byte length

Note that the breakpoint linear address needs to be

aligned on a multiple of the length field. If the corres-

ponding breakpoint is an instruction execution break-

point (denoted by RWE =00), LEN must be 00.

The four 2-bit RWE fields indicate the type of access

that will cause a breakpoint exception to be raised.

The encoding is

RWE Description

00 Instruction execution only

01 Data writes only

10 Reserved

11 Data reads or writes

The GE/LE bits indicate exact data breakpoints

(global and local, respectively). If GE or LE is set, the

processor will slow execution such that data break-

points are reported on exactly the instruction that

causes them. If these bits are not set, the processor

may get slightly ahead of the reporting of the break-

point conditions on instructions that perform data

writes near the end of their execution. We recommend
that either LE or GE be enabled whenever data

breakpoints are enabled. Slowing processor execution

in this way should not cause any problems besides a

slight performance loss, except for regions of code

Debugging Support 637

where speed is critical. In such speed-critical portions

of code, GE and LE will need to be disabled and

some minor inaccuracies in debug exception reporting

win have to be tolerated.

L0-L3/G0-G3 The LO through L3 and GO through G3 bits are the

local and global enable signals for the four debug
breakpoint registers. If either the local or global enable

(Li or Gi) is set, the breakpoint specified by the cor-

responding breakpoint register DR? is enabled.

GD The GD bit enables the debug register protection con-

dition that is flagged by BD of DR6. Note that GD is

cleared at entry to the debug exception handler by the

processor. This allows the handler free access to the

debug registers.

Note that the L bits (LE, LO, LI, L2, L3) are local bits to a task. They
allow debug conditions to be enabled for a particular task, whereas the G
bits (GD, GE, GO, Gl, G2, G3) are global and should be used for debug

conditions that are true for all tasks in the system. The L bits are automati-

cally cleared at each task switch by the processor, as described in Chapter 5.

Breakpoint Address Recognition

The combination of the LEN field and the breakpoint linear address

specify the four linear address ranges that are checked for debug excep-

tions. As mentioned above, the breakpoint linear address must be

aligned at addresses that are multiples of the length specified in LEN. In

fact, the processor ignores low-order linear address bits when checking

for breakpoints, depending on the LEN specification. For example, if

LEN = 11 (length of 4), the low 2 bits of the linear address are ignored.

If LEN =01 (length of 2), the low bit of the linear address is ignored.

An access of the correct type of any byte in the address range specified

by the breakpoint linear address and LEN will cause an exception. Every

data access and instruction fetch is checked against all four breakpoint

address ranges. If any byte of the breakpoint address range matches and the

type of access matches (for instance, data read), a breakpoint exception is

reported.

Table 8.1 gives several examples of data breakpoint recognition. Assume

that all breakpoints are enabled and set for the correct type of access.

638 Programming the 80386

To set a breakpoint on an unaligned address, you must define two
breakpoint conditions such that the combination of the two correcdy cov-

ers the desired range of addresses. For instance, if there is a four-byte

data item that you want to break on at address OOFFFEh, you will need

to set a breakpoint at address OOFFFEh with LEN =01 (two bytes) and a

second breakpoint at address OlOOOOh with LEN =01.

Code vs. Data Breakpoints

There are several differences between instruction access breakpoints (code)

and data reference breakpoints. First, and most obvious, is the different set-

tings in the RWE field for each. Second, the only valid LEN setting for

ADDRESS LENGTh BREAKPOINT

DRO 00FF02 1, LEN = 00

REGISTER DR1 00CC32 2, LEN = 01

CONTENTS DR2 0D0004 4, LEN = 11

DR3 OlFFOO 4, LEN = 11

ACCESSES 00FF02 1 B0 = 1

THAT CAUSE

EXCEPTIONS
00CC33

0D0007

OOFEFF

OlFFOO

01FF03

1

2

4

4

4

Bl =1

B2=l

B0 = 1

B3=l

B3=l

ACCESSES NOT OOFFOl 1

CAUSING

EXCEPTIONS
OOFFOO

00CC34

OlFEFF

ODOOOO

2

1

1

4

—

Table 8.1: Examples of breakpoint recognition

Debugging Support 639

instruction breakpoints is 00 (or one byte). Instruction breakpoints must be

set on the first byte of the instruction (instructions may be from 1 byte to

15 bytes in length). Theory/ byte includes any prefix bytes that may be

present with this instruction.

The third and most significant difference is that instruction breakpoints

are classified as faults, whereas data breakpoints are traps. Recalling the dis-

cussion at the beginning of this chapter, this means that instruction break-

point faults are detected and reported prior to the execution of the

instruction, and data breakpoint traps are reported after they read or write

to the breakpoint location. This difference has two important points. First, a

data breakpoint does not protect the data location from writes. If you want

to protect the data location from writes, the debug handler can save a copy

of the old data, since a data write occurs before the debug handler

is invoked.

Since instruction breakpoints are reported prior to instruction execution,

it is obvious that the instruction cannot simply be "restarted"; on its second

(or more) execution it will simply fault again. This sounds like an infinite

loop unless the debug handler disables the breakpoint. But the debug han-

dler need not disable the breakpoint because the 80386 has the RF bit of

the EFLAGS register, described in Chapter 2. The RF bit, when set, causes

any instruction breakpoint fault to be ignored. Note that nondebug faults

will still be reported, however. The RF bit is automatically cleared by the

processor at the successful completion of any instruction. Thus, the RF bit

will allow the processor to not report an instruction breakpoint fault on the

second (or more) execution of the instruction causing the instruction break-

point fault, but will begin reporting instruction breakpoint faults on any

subsequent instruction. RF also allows the second execution of the instruc-

tion to report other kinds of faults that may occur on this instruction. Note

that RF will remain set until the instruction successfully completes, at which

time it is automatically cleared by the processor.

But how does RF get set? It must be set by the debug handler before it

returns, but it is also set for all other faults by the processor. Whenever a

fault handler, not only a debug fault handler, is entered, the processor sets

this bit in the image of the flags that is pushed onto the stack. Thus, when
the fault handler exits, normally with the IRET instruction, the flags image

is popped off the stack and placed into the EFLAGS register with RF set.

Also note that the RF bit, when set, inhibits the setting of any of the

debug status bits in DR6 for instruction breakpoints.

Other Debug Capabilities

The breakpoint facility is not the only resource the 80386 provides for the

debugger, even though it is probably the most important. The remainder of

640 Programming the 80386

the 80386 debug features are summarized below.

Debug Trap in TSS

The T bit in the TSS described in Chapter 5 causes the debug handler

to be invoked whenever a task switch through this TSS occurs. This pro-

vides a convenient way for the debugger to monitor the activities of certain

tasks. The BT bit of DR6 notes that this condition was detected. There is

no specific enable bit for this condition in DR7.
If the debug handler (interrupt 1) is serviced by a task gate (which is a

valid thing to do) it is important that the debug trap flag of the correspond-

ing TSS not be set, as an infinite loop of attempts to invoke the debug han-

dler will occur.

INT 3

The one-byte breakpoint instruction INT 3 provides another means to

debug programs. The first byte of the instruction where a break is desired

can be replaced with the INT 3 instruction. Thus, when the INT 3 instruc-

tion is encountered, the interrupt 3 handler is entered.

There are several cases where INT 3 is not sufficient and the break-

point registers are preferable.

1. You cannot insert an INT 3 instruction into code that is present

in ROM.
2. When INT 3 is used, the code area is modified, and thus any

task executing this code is interrupted. With the breakpoint facili-

ties, you can have a particular task break on an instruction in

shared code.

3. INT 3 cannot, of course, perform any data breakpointing.

INT 3 is quite useful in several situations.

1. Single-stepping and breakpoints enter the debug handler, which

is interrupt 1. How can the debug handler be debugged? The
INT 3 instruction provides the only convenient way to debug it.

2. You can insert an unlimited number of INT 3 instructions into

the code, whereas there are only four breakpoint registers.

3. Earlier 86 family members did not contain the breakpoint regis-

ter facilities the 80386 does. Thus, the INT 3 instruction played

Debugging Support 641

a very important role in these processors, since it provided the

only way to perform any breakpointing.

In summary, except for the special cases noted above, we recommend
the unlimited use of the INT 3 instruction to perform breakpointing in

code. We also recommend that the limited debug registers be saved for

data breakpoints.

Single-Stepping

Single-stepping provides a convenient means for debuggers to slowly

step through a section of a program. The single-step trap is enabled by

the setting of the TF bit of the EFLAGS register, described in Chapter

2. If TF = 1 at the start of the instruction, a debug exception is taken at

the end of the instruction (a trap), and the debug handler is entered.

Note that TF must be set when execution of the instruction begins for

the trap to be taken. Thus, the trap is not taken on the instruction that

sets the TF flag. The TF bit is cleared prior to entering the debug han-

dler. TF is also cleared when an interrupt or exception is taken. If an

external interrupt occurs at the same time a single-step interrupt occurs,

the single step is processed first, which clears the TF bit. Before the first

instruction of the debug handler is executed, the interrupt, if still pend-

ing, is t2iken. Thus, interrupt processing is done without single-stepping

enabled. If you wanted to single-step through an interrupt handler, you

could set a breakpoint at the first instruction of the interrupt handler,

and then enable single-stepping after that break occured.

Chapter

^Kmmmmmaa^^^^^mmmm the first eight chapters of this book
have described the 80386 as a 32-bit processor. This chapter looks at the

compatibility features of the 80386 that let it execute programs written

for the earlier 16-bit processors: the 8086, 8088, 80186, 80188,

and 80286.

As described in Chapter 1, the 8086, 8088, 80186, and 80188 share a

common architecture. The 80286 added a complete memory-management
and protection model to this architecture. The 80286 has two modes of opera-

tion distinguished by the use of the new protection facilities. It is possible to

use the 80286 without using the new protection features. In this mode,

called real mode, the 80286 behaves just like an 8086. WTien the protection

features are turned on, the 80286 behaves quite differently. This mode of

execution is called protected mode.

Because the 8086, 8088, 80186, 80188, and the 80286 in real mode
look alike to a programmer, we describe these processors in this chapter

by taking the 8086 as representative of the group. The minor differences

between these processors are summarized in Appendix A. Since the use

of the 80286 in protected mode results in a very different programming
model, this is treated separately.

First, we describe the basic machine registers and addressing modes
available to 16-bit programs. This provides a brief equivalent of Chapter

2 for the 16-bit registers and address modes. Next, we describe how
8086 programs can be run on the 80386. There are two processor modes

644 Programming the 80386

available for running 8086 programs: real mode and virtual-8086 mode.

Real mode on the 80386, as with the 80286, is the mode of execution

when the protection mechanism described in Chapter 5 is not used.

Virtual-8086 mode is a new mode on the 80386 that supports execution

of 8086 programs within the protection model. Finally, we discuss the

execution of 80286 programs.

Sixteen-bit Registers and Addressing Modes

Sixteen-bit programs use the low-order 16 bits of the registers defined in

Chapter 2. Figure 9.1 illustrates these registers. There are eight 16-bit regis-

ters: AX, CX, DX, BX, SP, BP, SI, and DI. These are the low-order 16

bits of the 32-bit general registers described in Chapter 2. The high and low

halves of the AX, CX, DX, and BX registers can be accessed as 8-bit reg-

isters. There are two 16-bit processor-control registers: IP and FLAGS.
These are simply the low-order 16 bits of the EIP and EFLAGS registers

described in detail in Chapter 2. The same six 16-bit segment regi-

sters described in Chapter 2 are available to 16-bit programs. The FS and

OS registers are new on the 80386, so 16-bit programs written to execute

on an 8086 or 80286 will not use these registers.

Memory addressing is similar to the memory addressing mechanism
discussed in Chapter 2. Each memory reference specifies a segment part

and an offset part. Since 16-bit programs use 16-bit offsets, the maxi-

mum segment size is 64K. Table 9.1 lists the address modes available to

16-bit programs for generating segment offsets. A 16-bit offset is formed

by adding together a 16-bit base register, a 16-bit index register, and an
8- or 16-bit displacement. These additions use 16-bit arithmetic, so that

carries out of bit 15 are ignored. Appendix G describes the encoding of

the 16-bit address modes.

The 16-bit address modes are less general than the 32-bit address

modes, although they have almost the same components. Index scaling is

not available. Only the BX and BP registers can be used as base regis-

ters, and only the SI and DI registers can be used as index registers.

When BP is used as a base register, the default segment register is SS.

Otherwise the default is DS.

Use of 16-bit registers is controUed by the operand size of an instruc-

tion. Use of 16-bit address modes is controlled by the address size of an

instruction. Recall from Chapter 5 that the D bit in a code segment

descriptor sets the default size for both operands and addresses. A 16-bit

default size is used for 16-bit 80286 programs by clearing the D bit to

in the descriptors of all 16-bit code segments. Programs executing in real

Executing 8086 and 80286 Programs 645

15 8 7

AX

CX

DX

BX

SP

BP

SI

Dl

IP

FLAGS

ES

CS

SS

DS

FS

GS

AH AL

CH CL

DH DL

BH BL

Figure 9.1: 16-bit registers

646 Programming the 80386

BASE + INDEX + DISPLACEMENT

^None
"

,

^None

"

1

mone \

{bx Lsi > + <8 bits S

iBP') (di .
' (l6 bits)

SS is the default segment register if BP is the base register

Table 9.1: 16-bit address modes

mode or virtual-8086 mode have a 16-bit default size. As described in

Appendix G, an instruction prefix can be used to override the default

size for either operands or addresses on any instruction.

The floating-point registers are the same on the 80387 as on the 8087

and 80287. Any 16-bit programs written for the 8086/8087 or 80286/80287

will use the floating-point register set described in Chapter 2.

Executing 8086 Programs

Two execution modes are available on the 80386 for executing 8086

(and 8088, 80186, 80188, and real mode 80286) programs: real mode
and virtual-8086 mode. When executing in these modes, the 80386 sup-

ports the same programming model as the 8086, except for some minor

differences listed in Appendix A.

Real mode on the 80386 is the same as real mode on the 80286.

When executing in real mode, the 80386 behaves just like an 8086,

directly supporting the execution of 8086 programs. The 80386 executes

in real mode when the memory-management, protection, and task mech-

anisms described in Chapter 5 are disabled by clearing the PE bit in reg-

ister CRO to 0. Because the protection mechanism is disabled in real

mode, the 80386 executes as if it were at privilege level 0, the innermost

or most privileged level. When the 80386 is executing in real mode,
interrupts and exceptions are handled with a different mechanism than

that described in Chapter 6. This interrupt mechanism is described later

in this chapter, in the section on interrupt handling in real mode.

Executing 8086 and 80286 Programs 647

When the 80386 is initialized by a hardware reset, it begins execution

in real mode, as described in a later section on 80386 state at initializa-

tion. This allows bootstrap code to initialize system tables before enabling

protection, as shown in Chapter 7.

Virtual-8086 mode is new to the 80386. It supports the execution of

8086 programs within the context of the memory-management, protec-

tion, and task mechanisms described in Chapter 5. Special operating-

system software known as a virtual-machine monitor can create a task

that executes an 8086 program in virtual-8086 mode to support the illu-

sion that the program is executing on an 8086 with full access to all 8086

resources. It is possible to execute an 8086 program in one task in

virtual-8086 mode, a 16-bit protected mode 80286 program in another

task, and a 3 2 -bit protected mode 80386 program in a third task. The
80386 tasking mechanism described in Chapter 5 supports this flexibility

in program execution.

A program executing in virtual-8086 mode runs at privilege level 3, the

outermost or least privileged level. Paging can be used to allocate and pro-

tect memory for programs executing in virtual-8086 mode. If an interrupt is

received, or if an exception is generated when a program is executing in

virtual-8086 mode, the interrupt or exception is handled by switching to the

normal protected mode described in Chapter 5, and then handling

the interrupt or exception with the mechanism described in Chapter 6. The
switch from virtual-8086 mode to protected mode is described in detail in a

later section on entering and leaving virtual-8086 mode.

A virtual-machine monitor can support the execution of several

8086 programs "at once" by creating several tasks that execute in virtual-

8086 mode, and running an 8086 program in each task. Because of the

illusion presented by the combination of the virtual-machine monitor

software and the virtual-8086 hardware facilities, each of these 8086 pro-

grams executes as if it had access to a full 8086. Other tasks in the sys-

tem can execute protected mode 16-bit 80286 programs, or 32-bit

protected mode 80386 programs, and ordinary task switches used to sus-

pend one task and resume another This makes it possible for the 80386

to run a diverse collection of tasks, some in virtual-8086 mode and oth-

ers in protected mode, and smoothly task-switch between them. This is a

powerful mechanism that combines the large base of 16-bit PC (8086

and 80286) programs with more sophisticated 32-bit applications origi-

nally written for minicomputers and mainframe computers. Virtual-8086

mode, in conjunction with the 80386's task-management facilities

described in Chapter 5, provides the key hardware facilities to support

this powerful software model.

In contrast to the powerful multitasking model supported in protected

mode and virtual-8086 mode, real mode has no task support, and so can

648 Programming the 80386

only support one 8086 program. This 8086 program will have direct

access to the 80386 processor, with no protection, no memory manage-
ment, and no multitasking support.

The next several sections discuss the mechanisms that are common to

real mode and virtual-8086 mode. After the common features are cov-

ered, we will discuss the facilities unique to virtual-8086 mode and then

real mode.

Segmentation and Addressing

The 8086 programming model uses segmentation to support a two-

dimensional memory addressing model that is the same as the model
described in Chapter 2. 8086 programs use the same two-part memory
addresses as protected mode programs. These two-part addresses consist

of a segment part and an offset part. The offset part is generated using

one of the 16-bit address modes given in Table 9.1. The segment part of

an address is taken from a segment register that must have been previ-

ously loaded to address the desired segment. Although the segment part

of an address is taken from a segment register as in protected mode, seg-

ment parts of addresses are handled quite differently in 8086 programs.

8086 memory addressing does not use the segment descriptor tables

described in Chapter 5 to define the base address, limit, and attributes of

segments. Instead, segments are fixed in size at 64K bytes, and allow

read, write, or execute access. Segments in real mode implicitly have a

DPL of 0, since real mode programs execute as if they were at privilege

level 0. Segments in virtual-8086 mode have a DPL of 3, since virtucil-

8086 mode programs execute at privilege level 3. Segments addressed by

CS implicitly have their D {Default) bit 0, so that 8086 programs have

the default operand and address size set to 16. Segments addressed by

SS implicitly have their D bit 0, so that stack references use the 16-bit

ESP register.

The segment register value is used to specify the base address of the

segment in the linear address space as the numeric value of the segment

register multiplied by 16 (or shifted left 4 bit positions). Because the 16-

bit segment register holds a number up to 2'^, the largest segment base

address is 2^° after multiplying by 16 (2*). This means that a segment

can start at any 16-byte boundary within the first megabyte of the linear

address space.

The segment base address is added to the offset specified in the

address mode of an instruction to obtain the linear address of the spe-

cified memory location. As illustrated in Figure 9.2, 32-bit arithmetic is

used. This addition yields a 21 -bit result on the 80386, where the

Executing 8086 and 80286 Programs 649

twenty-first bit is the carry out of bit 20. Since segment limits are fixed

at 64K, the largest oflfset that can be generated is OFFFFh, and the seg-

ment offset is shown as 16 bits in Figure 9.2.

Because segment register values are treated simply as 16-bit numbers,

it is not possible to get an exception when loading a value into a seg-

ment register. There is no check made on the value loaded into a seg-

ment register, so any 16-bit number can be used. For example, the value

can be used, which would be treated as a null selector when protection

is enabled.

For example, suppose a memory reference specifies a segment register

that contains the value 1234h, and specifies a 16-bit address mode that

gives an offset of 5. The resulting linear address is computed as

12340h

5h

segment register value multiplied by 16

offset given by address mode

12345h resulting linear address

31 20 19 4 3

000000000000 Segment Part

15

Offset Part

31 21 20

[
[00000000000 Linear Address

Figure 9.2: Real and virtual-8086 linear address formation

650 Programming the 80386

As another example, the largest linear address that can be generated

results when a memory address is formed using a segment register vcdue

of OFFFFh, and an offset of OFFFFh. The resulting linear address is

computed as

FFFFOh segment register value multiplied by 16

+ FFFFh offset given by address mode

lOFFEFh resulting linear address

The segment base addition yields the linear address of a memory
operand. In real mode this is also the physical address, since paging can-

not be used in real mode. In virtual-8086 mode, paging can be used to

translate this linear address to a physical address, or if paging is disabled

this linear address is passed through as the physical address. In real

mode, or in virtual-8086 mode when paging is disabled, the largest phys-

ical address that can be generated is lOFFEFh, or slighdy above 1 mega-

byte. If paging is used in virtual-8086 mode, any page in the 1 -megabyte

linear address range can be mapped to any page in the 4G physical

address space.

Exceptions When Referencing Memory

When the 80386 is executing in real mode or virtual-8086 mode, stack

segment and general protection exceptions can be reported for references

to memory operands that are outside the fixed 64K segment limits. An
offset generated using a 32-bit address mode can exceed 64K. Use of a

32-bit address mode requires use of an address size prefix. 8086 pro-

grams use only 16-bit address modes. These can generate a reference

that is outside the fixed 64K limit if the offset is close to 64K and a two-

or four-byte operand is referenced. For example, a four-byte operand at

offset OFFFEh will generate an exception, since the last two bytes are

beyond 64K. Note that the 8086 does not generate exceptions in these

cases. Instead, the address wraps around the segment limit to reference

part of the operand at offset 0.

The exception reported when a memory reference exceeds the fixed

64K limit depends on the segment register used in the reference. If SS is

the segment register, a stack segment exception is reported. Otherwise a

general protection exception is reported.

If paging is enabled, a program executing in virtual-8086 mode can

also generate a paging exception if it generates a linear address that is

invalid or violates the protection model. Chapter 5 details the causes of

paging exceptions.

Other exceptions can also occur when executing in real mode or

Executing 8086 and 80286 Programs 651

virtual-8086 mode. For example, a divide error will be reported if a DIV
or IDIV instruction is executed with a divisor of 0. Most of the excep-

tions described in Chapter 6 can occur when executing an 8086
program. Only the exceptions that occur when loading segment registers

cannot occur in real mode or virtual-8086 mode, since segment

registers are treated simply as 16-bit values.

Memory References in Real and Virtual-8086 Modes

The instructions that load segment registers execute differently in real

mode and virtual-8086 mode than in protected mode. Instead of the

semantics described in Chapter 5 for these instructions, the simpler

descriptions given in Chapter 3 suffice to describe the actions of the

instructions that load segment registers.

The routine AccessVirtual() described in Chapter 5 is changed to the

routine Access8086VirtuaI() shown in Listing 9.1 when the processor is

executing in real mode or virtual-8086 mode. In these modes, no refer-

ences are made to the shadow descriptor registers. Instead, the segment

base is obtained by multiplying the value in the visible segment selector

register by 16. Also, the segment offset and length are checked to ensure

/* Access data in a segment addressed by a Segment Register SReg */

/* 8086 mode version for real and virtual-8086 modes. */

Access8086Virtual (SReg, Offset, Length, RW, IntNumber, Data)
SegmentRegister SReg;
int Offset, Length, /* offset in segment, and length of data */

RW, /* if read, 1 if write */

IntNumber, /* $SS for SS access, $GP for other registers */

Data; / Pointer to Data to read or write */

{

/* Check to ensure access is within 64K segment boundary. */

if (Offset+Length > lOOOOh)
SegmentException (IntNumber, 0);

/* If Offset is within limit, access in linear space. */
AccessLinear (SReg. Selector*16 + Offset, Length, CPL, RW, Data);

/* end Access8086Virtual */

Listing 9.1: Access8086Virtual() subroutine

652 Programming the 80386

that the reference hes totally within the 64K segment limit. In these

modes, all segments are readable, writable, and executable.

Emulating the 8086 20-bit Address Arithmetic

The 8086 supports a 20-bit physical address space, but the 80386 uses

32-bit arithmetic when computing linear addresses. 8086 programs may not

work properly unless the carry into the twenty-first bit is handled properly.

If executing in real mode, or in virtual-8086 mode with paging disabled, the

21 -bit linear address is used directly as the physical address driven to exter-

nal hardware by the 80386. In this case, external hardware is required to

simulate the 20-bit address space of the 8086. The simplest hardware solu-

tion is to use only the low 20 address pins, ignoring the upper 12 address

bits to support only a megabyte of physical memory. Another solution

involves using external logic to force a onto address bit 20 (the twenty-first

address bit) when executing 8086 programs.

Paging can be used in virtual-8086 mode to simulate the 20-bit linear

address wraparound by mapping the pages in the linear address range

from lOOOOOh to lOFFEFh to the same physical addresses as the pages in

the linear address range from to FFEFh. This technique simulates 20-

bit address arithmetic by mapping the addresses in pages above 1 mega-

byte to the corresponding pages that have the same linear address

modulo 2^*^. This technique supports the 20-bit address arithmetic needed

by 8086 programs without requiring any external hardware.

This use of paging to simulate 20-bit addressing is illustrated in

Figure 9.3. For simplicity, the identity page map is used in the lower 1

megabyte of the linear address space. This is illustrated by having the

linear address range from to OOFFFFh map to the physical address

range from to OOFFFFh, as well as mapping the linear address range

OlOOOOh to OFFFFFh to the physical address range 010000 to OFFFFFh.
The linear address range from lOOOOOh to lOFFFFh is mapped to the

physical address range to OOFFFFh to simulate the 20-bit address

arithmetic required by 8086 programs.

Invalid Instructions

The instructions listed in Table 9.2 are not supported in real mode or

virtual-8086 mode. If one of these instructions is used in these modes, an

invalid opcode exception (Chapter 6) occurs. None of these instructions

are supported by the 8086. Furthermore, they manipulate protected

mode segment selectors and descriptors that have no meaning in real or

virtual-8086 modes.

Executing 8086 and 80286 Programs 653

Linear Page Mapping Physical

Address \ Address

Space

lOFFFFIi

lOOOOOh

OFFFFFIi

OlOOOOh

OOFFFFh

Space

Figure 9.3: Paging simulates 20-bit address arithmetic

OFFFFFIi

OOFFFFh

ARPL
LAR
LLDT
LSL

LTR
SLDT
STR
VERR
VERW

Table 9.2: Invalid instructions in real mode and virtual-8086 mode

654 Programming the 80386

8086 Format for FLDENV, FSTENV, and FNSTENV

The FLDENV, FSTENV, and FNSTENV instructions described in

Chapter 3 load or store the control-word, status-word, tag-word, and
error-pointer registers from memory. Chapter 2 described the memory
format used by these instructions when executed in protected mode. Fig-

ure 9.4 illustrates the format used if these instructions are executed with

an operand size of 16 (the default size) in real mode or virtual-8086

mode. Programs that execute on an 8086 specify a 16-bit operand size

for these instructions. A 32-bit operand size can be used on the 80386

but is neither useful nor recommended.

The format of the control-word, status-word, and tag-word register

values is unchanged from the format given in Chapter 2, but the error

pointers are stored in a different form. Instead of providing a two-part

address for the error pointers, they are provided as 20-bit linear

addresses. Refer to Chapter 2 for the format of the opcode.

The FRSTOR, FSAVE, and FNSAVE instructions load and store the

15 12 11 8 7 4 3

Data Pointer 15.. .0
•

D19...16

Instruction Pointer 15.. .0

I19...16 Opcode 10.. .0

Control Word

Status Word

Tag Word

12

10

8

6

4

2

Figure 9.4: 8086 format for FLDENV, FSTENV, and FNSTENV

Executing 8086 and 80286 Programs 655

floating-point accumulators in addition to the registers handled by
FLDENV, FSTENV, and FNSTENV. If executed with the 16-bit oper-

and size used by 8086 programs, the control-word, status-word, tag-

word, and error-pointer registers are stored in the format given in Figure

9.4. Then ST(0) is loaded or stored from offset 14, ST(1) from off'set 24,

ST(2) from off'set 34, up through ST(7), which is loaded or stored from

off'set 84. ST(0) through ST(7) are stored in 80-bit temporary real format

in all modes.

Virtual-8086 Mode Considerations

The following sections describe the features that are specific to virtual-

8086 mode. As described in a later section on entering and leaving

virtual-8086 mode, the processor executes in virtual-8086 mode when the

VM bit in the EFLAGS register is 1. First, the changes to instructions

that are sensitive to the I/O privilege level are described. Then, the

methods used to switch between protected mode and virtual-8086 mode
are described, to complete the treatment of virtual-8086 mode.

lOPL in Viilual-8086 Mode

When the 80386 is in virtual-8086 mode, instructions that access the

EFLAGS register are sensitive to the I/O privilege level (lOPL)
described in Chapter 5. The CLI and STI instructions are sensitive to

lOPL in all modes (real, virtu2il-8086, and protected) of the 80386. The
PUSHF, POPE, INT n, and IRET instructions are changed to cause a

general protection exception with an error code of if executed

in virtual-8086 mode when lOPL is less than 3, the privilege level of

virtual-8086 mode programs. This ensures that all instructions that can

change or store the IF bit in EFLAGS will be sensitive to lOPL. As
described in the next section, this allows operating-system software to

support a "virtual EFLAGS" register.

When the I/O instructions IN, OUT, INS, or OUTS are executed in

virtual-8086 mode, they do not check lOPL before testing the I/O bit-

map, as described in Chapter 5 for protected mode programs. Instead,

these I/O instructions always reference the I/O permission bitmap stored

in the current TSS to determine whether to allow the I/O reference (per-

mission bits are 0) or to generate a general protection exception (one or

more permission bits are 1 or beyond the TSS limit). The I/O instruc-

tions ignore the lOPL field when executed in virtual-8086 mode.

Because the I/O instructions do not check lOPL when executing in

virtual-8086 mode, and the PUSHF, POPE, INT n, and IRET instruc-

tions do check lOPL (as do CLI and STI), the lOPL field is interpreted

656 Programming the 80386

quite differently in virtual-8086 mode than in protected mode. In virtual-

8086 mode, lOPL is used to protect the IF bit in the EFLAGS register,

and has nothing to do with the I/O instructions. In protected mode,
lOPL affects the I/O instructions as well as some of the instructions that

can change IF (CLI and STI).

Virtual-8086 Mode with lOPLO Operating-system software can set lOPL
to a value less than 3 so that a virtual-8086 mode program will generate

an exception whenever it executes an instruction that might modify or

store the IF bit. The general protection exception handler can then sup-

port a virtual EFLAGS register that is different from the actual

EFLAGS register in the 80386. The virtual EFLAGS register has IF set

as directed by the virtual-8086 mode program, while typically the actual

EFLAGS register would have IF = 1 (interrupts enabled) when executing

the virtual-8086 program. Operating-system software can use the IF bit

in the virtual EFLAGS register to determine if interrupts should be

reported to a virtual-8086 task (virtual IF = 1), or held pending (virtual

IF=0). The PUSHF instruction generates an exception so that the

exception handler can emulate it by pushing the virtual EFLAGS regis-

ter on the stack, rather than the actual EFLAGS register.

Virtual-8086 Mode with I0PL = 3 You can execute a program in virtual-

8086 mode with lOPL set to 3. This allows the instructions that access

the IF bit to execute without raising an exception, giving the virtual-

8086 program direct control over INTR interrupt masking. This sup-

ports full-speed execution of an 8086 program that executes a large

number of instructions sensitive to lOPL. If such a program is executed

with lOPL less than 3, many general protection exceptions will be gener-

ated, causing a great deal of overhead in repeatedly executing the gen-

eral protection exception handler to emulate these instructions. With
lOPL set to 3, these instructions execute at full speed.

One danger of this approach is that an erroneous or malicious virtual-

8086 program could then mask INTR interrupts for a long period of

time. This could cause the operating system to fail because it could not

service interrupts in time.

To avoid this failure, you could use a watchdog timer to generate

an NMI if INTR interrupts are disabled for too long. For example, the

NMI timer could be set to interrupt on a period that is twice the length

of the normal system timer tied to an INTR interrupt. The system timer

handler would reinitialize the NMI watchdog timer every time it exe-

cuted in response to an INTR interrupt. In this configuration, the NMI
watchdog timer would generate an NMI only if the normal system timer

INTR did not get serviced for a dangerously long period of time.

Executing 8086 and 80286 Programs 657

Another problem with executing a virtual-8086 program with lOPL
set to 3 is that the INT n software trap instruction will not generate a

general protection exception. Instead, a trap will occur with the given

vector number n unless the DPL of the IDT gate is less than 3, in

which case a general protection exception will be generated. For vector

numbers that must have their IDT gates set to 3, the use of an INT n

instruction in virtual-8086 mode to enter the handler can be detected

simply by looking at the VM bit in the EFLAGS image saved when the

handler is entered.

Entering and Leaving Virtual-8086 Mode

The 80386 can switch between protected mode and virtual-8086 mode
using the mechanisms described in the next several sections. As with

interrupts and exceptions, these mode transfers can occur within a single

task, or as part of a task-switch operation. A switch from protected mode
to virtual-8086 mode occurs under the following circumstances:

1. An IRET executed in protected mode with NT=0 in the

EFLAGS register will pop EIP, CS, and EFLAGS values from

the stack to return to an interrupted procedure within the same

task. If the VM bit is 1 in the popped EFLAGS value, and if

the IRET is executed with CPL =0, the interrupted procedure is

resumed in virtual-8086 mode. As described in Chapter 5, if the

IRET is executed with CPL other than 0, the VM bit is not

changed, and so the return is to a protected mode program. Also

note that the operand size for the IRET must be 32. An IRET
with an operand size of 16 will only restore the lower 16 bits of

EFLAGS, and will set (leave) VM =0.

2. A task switch to a task described by a 386 TSS will resume the

new task in virtual-8086 mode if the EFLAGS image loaded

from the new TSS has VM = 1 . A JMP or CALL instruction to

a task gate or TSS, an interrupt through a task gate, or an

IRET with NT = 1 in the EFLAGS register can cause a task

switch. Since a 286 TSS only stores the low-order 16 bits of

EFLAGS, the VM bit is loaded as a during a task switch that

uses a 286 TSS.

A switch from virtu2il-8086 mode to protected mode occurs when an

interrupt is signaled or an exception occurs. The interrupt or exception is

handled by switching from virtUcJ-8086 mode to protected mode, and

then handling the interrupt or exception in protected mode using the

interrupt mechanism described in Chapter 6. This mechanism uses the

658 Programming the 80386

IDT (Interrupt Descriptor Table) to vector to the handler for the inter-

rupt or exception using one of two methods:

1. The interrupt or exception can be handled in the same task if the

IDT entry for the interrupt or exception contains a 386 trap gate or

a 386 interrupt gate. The 386 gate types must be used so that the

full 32-bit EFLAGS register is saved (which wUl have VM = 1) to

be restored by the matching IRET The interrupt or exception han-

dler must be at privilege level 0, or else a general protection excep-

tion is raised with the new CS selector in the error code. This

implies that the matching IRET will be executed at privilege level

to allow the VM bit to be changed back to 1.

2. The interrupt or exception is handled in a separate task if the

IDT entry contains a task gate. In this case, the current TSS
must have the 386 TSS format to ensure that the full 32-bit

EFLAGS value can be saved. The new task can be of any

type. The new task might contain a 16-bit protected mode pro-

gram described by a 286 TSS, or a 32-bit protected mode
program described by a 386 TSS with VM =0, or even another

virtual-8086 task described by a 386 TSS with VM = 1

.

Because the NT bit in the EFLAGS register is ignored when execut-

ing in virtual-8086 mode, it is not possible to use IRET to perform a

task switch out of a virtual-8086 mode task. An IRET executed in

virtual-8086 mode will pop the saved IP, CS, and FLAGS registers to

resume an interrupted program, regardless of the value in the NT bit.

Mode Transitions within a Tasic If an interrupt or exception handled by a

386 trap or interrupt gate is received when the processor is executing

in virtual-8086 mode, the 80386 changes modes within the same task

from virtual-8086 mode to protected mode. The matching IRET instruc-

tion wUl resume the interrupted virtual-8086 mode program by switching

modes from protected mode back to virtual-8086 mode. As noted above,

these mode transitions also involve a privilege-level transition. The
virtual-8086 mode program executes at privilege level 3, and the handler

must execute at level 0.

Interrupt/Exception tlirougli a 386 Trap or Interrupt Gate The transfer to the

handler uses the same mechanism detailed in Chapter 6 for transitions

through trap and interrupt gates, except that the virtual-8086 program's

GS, FS, DS, and ES segment registers are pushed onto the new (level 0)

stack before the normal interrupt processing begins. To keep the stack

aligned, these are pushed as 32-bit values with the segment register in

the low-order 16 bits, and the high-order bits undefined. These segment

Executing 8086 and 80286 Programs 659

registers are then loaded with nuU selectors before the interrupt or excep-

tion handler is entered.

The four data segment registers GS, FS, DS, and ES are saved on the

stack and loaded with null selectors before entering the protected mode
interrupt handler, to permit the handler to save and restore the segment

registers as valid protected mode values, regardless of the mode of the

program executing when the handler is entered. If the handler is entered

from a protected mode program, the segment registers will contain valid

selectors that can be pushed at entry to the handler and then popped

before the IRET. However, if the handler is entered from a virtual-8086

mode program, the segment registers might contain values that are

invalid selectors in protected mode. By saving the virtual-8086 segment

values on the stack, and loading the data segment registers (GS, FS, DS,

and ES) with null selectors, the segment registers will contain valid pro-

tected mode values when the interrupt handler is entered.

Figure 9.5 illustrates the stack-switch operation that occurs during an

interrupt or exception through a 386 trap or interrupt gate from a

virtual-8086 mode program at level 3 to a protected mode interrupt han-

dler, which has to be at level 0. The outer-level stack is addressed by the

SS and SP registers, where SS contains an 8086 segment register value,

not a protected mode segment selector. The new stack for the inner level

is shown on the left at entry to the handler. The GS, FS, DS, and ES
registers are pushed onto the new stack, in that order. Then the pointer

to the outer-level stack is saved by pushing SS and ESP. Next, the old

EFLAGS value is pushed, which will have its VM bit set to 1. Then,

the return address is saved by pushing CS and EIP Finally, an error

code is pushed.

At entry to the handler, SS addresses the inner stack segment, and

ESP points to the error code. Because the handler executes in protected

mode, the SS register contains a selector for the inner-level stack, and

the SS shadow descriptor registers are loaded from the descriptor for this

segment. Similarly, the new CS selector addresses a protected mode code

segment, and the CS shadow descriptor registers are loaded from the

descriptor for this segment.

The interrupt or exception handler can examine the EFLAGS image

saved on the stack to determine the mode of the interrupted program. If

the VM bit in this saved EFLAGS image is 1, the interrupted program

was executing in virtual-8086 mode. Otherwise, it was executing in pro-

tected mode. The EFLAGS register is always at the same offset from the

ESP register, regardless of the mode of the interrupted program. As
shown in Figure 9.5, the EFLAGS image is located at offset 12 from

ESP if an error code was pushed. Otherwise, EFLAGS is at offset 8.

660 Programming the 80386

31

SS:[ESP + 12]

ESP before IRET

ESP after Interrupt

16 15

Limit GS

FS

DS

ES

SS

ESP

EFLAGS

CS

EIP

Error Code

Inner Stacl(

jnward Interrupt

Outward IRET

15

64K

2,

SP

SS
Virtual-8086

Stack

Figure 9.5: Stack switch from virtual-8086 mode through trap or interrupt gate

Executing 8086 and 80286 Programs 661

The changes to the interrupt mechanism described in Chapter 6 to

accommodate interrupts out of virtual-8086 mode are described in List-

ings 9.2 and 9.3. Listing 9.2 contains the modified version of the

/* Complete IntTrapGate routine, including virtual-8086 mode. */

/* Changes are highlighted. Original version is in Chapter 6. */

IntTrapGate' (Selector, Offset, ClearIF)
SelectorType Selector;
int Offset,

ClearIF; /* if 1, clear IF before entering handler. */

/* if 0, leave IF unchanged. */

{

SegAttributes Attributes;
SelectorType GSelector;
int Base, Limit, GOffset;

/* Selector test */

if ((Selector & OFFFCh) == 0) /* Null */

SegmentException($GP, 0);

/* Read and test descriptor */

ReadDescriptor (Selector , &Attributes, &Base, &Limit, &GSelector , &GOffset)

;

if (Attributes. DType === 0) /* Can't be System segment or gate */

SegmentException($GP, Selector);

/* Interrupt to inner-level nonconforming executable present */

/* segment is OK, but requires switch to inner stack and inner CPL. */

if ((Attributes. Type>=8) && (Attributes. Type<=ll)
&& (Attributes. DPL < CPL) && (Attributes. P == 1))

InnerStack(Attributes.DPL, 0, Selector);

/* If coming from virtual-8086 mode, transition must be to level 0. */

if ((CPL != 0) && (EFLAGS.VM == 1) >

SegmentException($GP, Selector);

/* Call common routine to finish CS descriptor load. */

Selector. RPL = 0; /* Ignore RPL in selector read from gate. */

CSDescriptorLoad(Selector, Attributes, Base, Limit, $GP)

;

/* Verify target is within segment limit. */

if (Offset > CS. Limit)
SegmentException($GP, 0);

/* Get to here only if all protection checks pass. */

/* Push EFLAGS and return pointer, */

/* then modify EFLAGS and load CS selector and EIP. */

ESP = ESP-4;
AccessVirtual (SS, ESP, 4, 1 /* Write */, $SS, &EFLAGS)

;

ESP = ESP-4;
/* Push 4 bytes, with CS selector in low-order 2 bytes. */

AccessVirtual (SS, ESP, 4, 1 /* Write */, $SS, &CS. Selector)

;

ESP = ESP-4;
AccessVirtual (SS, ESP, 4, 1 /* Write */, $SS, &EIP)

;

Listing 9.2: IntTrapGate'() subroutine

662 Programming the 80386

EFLAGS.VM = 0; /* Handler executes in protected mode. */
EFLAGS.TF = 0; /* Turn off single stepping (Chapter 8). */

EFLAGS.NT = 0; /* Interrupt not handled by nested task. */
if (ClearIF == 1)

EFLAGS. IF = 0;

CS. Selector = Selector;
CS. Selector. RPL = CPL;
EIP = Offset;
} /* end IntTrapGate' */

Listing 9.2: IntTrapGate'() subroutine (continued)

IntTrapGate() routine given in Chapter 6. The changes for virtual-8086

mode are highlighted. The first change is to check the value of CPL just

after the normal test for an inter-level transition. The handler must exe-

cute at level if it can be entered from a virtual-8086 program. At the

point where this test is inserted, CPL has been adjusted in the routine

InnerStack() if necessary, so this is the place to test the CPL of the han-

dler. If it is not at level 0, a $GP exception is raised with the CS selector

of the handler as the error code.

The other change to IntTrapGate() is to set the VM bit in EFLAGS
to before entering the handler. This makes the handler execute in pro-

tected mode, even if entered from a virtual-8086 program.

Listing 9.3 shows the InnerStack() subroutine modified for interrupts

out of virtual-8086 mode, with the changes highlighted. In this routine,

the GS, FS, DS, and ES registers are pushed after the new stack is

addressed by the SS and ESP registers, but before the old stack pointer

is pushed. As the segment registers are pushed, they are loaded with null

selectors.

IRET with NT = to a Virtual-8086 Program The IRET instruction, if exe-

cuted with NT = in the EFLAGS register, will pop information from

the stack to return to the interrupted program in the same task. If the

IRET returns to a virtual-8086 mode program, the ES, DS, FS, and GS
registers are popped off the stack after the normal IRET processing is

complete. These values, along with the values loaded into SS and CS,

are loaded as 8086 values, not as protected mode selectors.

Figure 9.5 also illustrates the stack before and after an inter-level

IRET back to a virtual-8086 program in the same task. The current

stack is the inner-level stack shown on the left, addressed as a protected

Executing 8086 and 80286 Programs 663

/* Routine to switch stacks for inter-level transitions. */

/* Changed from original version in Chapter 5 to include */

/* virtual-8086 actions, which are highlighted. */
InnerStack' (NewCPL, DwordCount, NewCSSelector

)

int NewCPL, /* Switch to stack for this privilege level */

DwordCount;/* Count of parameter dwords to copy to new stack */

SelectorType NewCSSelector; /* need CS selector for error code. */

{

SelectorType NewSSSelector

;

SegmentRegister OldSS;
int TSSOffset, NewESP, tempESP, OldCPL, Dwordl;

/* Read new SS and ESP from TSS. */

TSSOffset = NewCPL*8 + 4;

if ((TSSOffset + 7) > TR. Limit)
SegmentException($TS, NewCSSelector)

;

AccessLinear (TR.Base+TSSOffset, /* PL */, /* Read */, &NewESP) ;

AccessLinear (TR.Base+TSSOffset+4, /* PL */, /* Read */,

&NewSSSelector)

/* Save old SS and CPL to use during parameter copy loop.
OldSS = SS;

OldCPL = CPL;

*/

/* Load SS with selector for new stack after changing to new CPL */

/* and loading descriptor into shadow registers. */

CPL = NewCPL;
SRegLoad(SS, NewSSSelector, $TS)

;

/* return if SS load was successful. */

SS. Selector = NewSSSelector;

/* Push old SS and ESP.
NewESP = NewESP - 4;

AccessVirtual (SS, NewESP, 4,

NewESP = NewESP - 4;

AccessVirtual (SS, NewESP, 4,

1 /* Write */, $SS, &OldSS. Selector)

;

1 /* Write */, $SS, &ESP)

;

Listing 9.3: InnerStack'() subroutine

664 Programming the 80386

/* Copy parameters. Writing to new stack uses new CPL. */
/* Reading from old stack uses old CPL. */
/* Order of parameter copying is irrelevant, but is illustrated */
/* as the same order as originally pushed on the outer stack by */
/* pointing tempESP at the opposite end of the parameter block */
/* from ESP. With this order, we exit from the loop with NewESP*/
/* pointing to the top of the new stack. */
tempESP = ESP 4 DwordCount*4

;

for (i=l; i<=DwordCount; i-l-f) {

CPL = OldCPL;
tempESP = tempESP - 4;

AccessVirtual (OldSS, tempESP, 4, /* Read */, $SS, &Dwordl);
CPL = NewCPL;
NewESP = NewESP - 4;

AccessVirtual (SS, NewESP, 4, 1 /* Write */, $SS, &Dwordl)

;

} /* end parameter copy loop */

ESP = NewESP; /* exit loop with NewESP pointing to new stack top */

} /* end InnerStack' */

Listing 9.3: InnerStack'() subroutine (continued)

mode segment with a selector in SS. Before executing the IRET instruc-

tion, the handler must adjust the stack by popping the error code so that

ESP points to the return pointer. The IRET instruction pops EIP, CS,

and EFLAGS from the inner stack. If VM = 1 in the EFLAGS value

popped, and the IRET is executed at privilege level 0, the return is to a

virtual-8086 program and CS is loaded as an 8086 segment register

vcilue. Since a return to virtual-8086 mode is a privilege-level transition

(to level 3), and requires a change of stacks, the outer stack pointer is

restored by popping ESP and then SS as an 8086 segment value. Finally,

the ES, DS, FS, and GS registers are popped as 8086 segment values to

complete the IRET.

Listing 9.4 contains the detailed description of IRET, modified to

include a return to a virtual-8086 mode program. If the IRET is exe-

cuted at level 0, and the VM bit is 1 in the new EFLAGS image

popped from the stack, the return is to virtual-8086 mode. Instead of

loading CS and SS as protected mode segments, only the visible segment

selector registers are loaded. In addition, the ES, DS, FS, and GS regis-

ters are popped off the stack as 8086 segment register values.

Transfers to Different Tasks An interrupt or exception received in virtual-

8086 mode will transfer to a different task if the IDT entry contains a

Executing 8086 and 80286 Programs 665

/* Detailed description of the IRET instruction, modified to */

/* include returning to a virtual-8086 mode program. */

/* Changes from original version in Chapter 6 are highlighted. */

IRET' ()

{

SelectorType Selector, GSelector;
SegAttributes Attributes;
EFLAGSType NewEFLAGS;
int Base, Limit, Offset, GOffset, NewESP, NewSS;

/* Test NT bit to see if we do a Task return. */

if (EFLAGS.NT == 1)

{/* Return through Task identified in link of current TSS.*/
AccessLinear (TR.Base, 2, /* PL */, /* Read */, &Selector)

;

TaskGate (Selector, -1 /* Unlink */); /* see Chapter 5. */

}

else {

/* Otherwise pop interrupt return information from the stack. */

AccessVirtual (SS, ESP, 4, /* Read */, $SS, &Offset)

;

ESP = ESP + 4

AccessVirtual
ESP = ESP + 4

AccessVirtual
ESP = ESP + 4

(SS, ESP, 4, /* Read */, $SS, &Selector)

;

(SS, ESP, 4, /* Read */, $SS, &NewEFLAGS)

;

if ((NewEFLAGS . VM ==1) && (CPL == 0))

{/* Return to a virtual-8086 program. */

/* Pop old stack pointer from stack, load tc SS:ESP below. */

AccessVirtual (SS, ESP, 4, /* Read */, $SS, &NewESP)

;

ESP = ESP - 4;

AccessVirtual (SS, ESP, 4, /* Read */, $ss, &NewSS)

;

ESP = ESP - 4;

/* Pop 8086 ES, DS, FS, and GS segment values from stack. */

AccessVirtual (SS, ESP, 4, /* Read */, $ss. &ES. Selector)

;

ESP = ESP - 4;

AccessVirtual (SS, ESP, 4, /* Read */, $ss, &DS. Selector)

;

ESP = ESP - 4;

AccessVirtuaKSS, ESP, 4. /* Read */, $ss, &FS. Selector)

;

ESP = ESP - 4;

AccessVirtual (SS, ESP, 4, /* Read */, $ss. &GS. Selector)

;

/* Point to outer-level vir<tual-8086 stack. resume at CPLr=3 */

ESP = NewESP;
SS. Selector ^ NewSS; /* 8086 segment value */

CPL =3; /* Virtual-8086 program resumes at level 3. */

} /* end virtual-8086 mode IRET. */

else {

/* Selector tests for IRET to protected mode */

if (((Selector & OFFFCh) ==0) II (Selector . RPL < CPL))
SegmentException($GP, 0);

if (Selector. RPL > CPL) {

Listing 9.4: Detailed description of IRET'

666 Programming the 80386

/* Inter-level IRET is required if Selector. RPL > CPL. */

/* Call subroutine to restore (outer level) stack from */

/* SS:ESP stack pointer now at top of (inner-level) stack. */

OuterStack (Selector. RPL. 0);

}

/* Read and test CS descriptor */

ReadDescr ip tor (Selector , &At tributes, &Base, &Limit, &GSe lee tor , &GOffset)
if (Attributes. DType == 0) /* Can't be System segment or gate */

SegmentException($GP, Selector);

/* Call common routine to complete CS descriptor load. */

CSDescriptorLoad(Selector, Attributes, Base, Limit, $GP)

;

/* Verify target is within segment limit. */

if (Offset > CS. Limit)
SegmentException($GP, 0);

} /* end protected mode IRET. */

/* Get to here if all protection tests pass. Complete visible */

/* part of instruction by loading EFLAGS, CS selector, and EIP. */

EFLAGS = NewEFLAGS;
CS. Selector = Selector;
EIP = Offset;
} /* end NT=0 */

/* end IRET' */

Listing 9.4: Detailed description of IRET' (continued)

task gate. Also, a JMP, CALL, or IRET (w^ith NT = 1) instruction exe-

cuted in protected mode can perform a task switch. A task switch can be

from a virtual-8086 mode program to a protected mode program or to

another virtual-8086 program. Or a protected mode task can switch

to another protected mode task or to a virtual-8086 mode task. If a task

switch out of a virtual-8086 mode task occurs, the EFLAGS image saved

in the old TSS will have a 1 in the VM bit position. A task switch to a

task that has a 1 in the VM bit position in the EFLAGS image in the

new TSS will switch to a virtual-8086 task.

A switch to or from a virtual-8086 task is the same as a switch to a

protected mode task, except for the loading of the segment registers. A
switch to a virtual-8086 mode task will load the segment registers (CS,

SS, DS, ES, FS, and GS) as 8086 segment registers, not as protected

mode selectors. Otherwise, the task switch is the same, including the

loading of the LDTR with a protected mode selector for the task's LDT
segment.

Listing 9.5 contains the TaskSwitch() routine introduced in Chapter

5, modified to include task switches to tasks containing a virtual-8086

Executing 8086 and 80286 Programs 667

/* TaskSwitch routine from Chapter 5 modified to include */

/* virtual-8086 mode tasks. Changes are highlighted. */

TaskSwi tch' (Selector , Attributes, Base, Limit, Linkage)
SelectorType Selector;
SegAttributes Attributes;
int Base, Limit,

Linkage; /* 0=NoLink, l=Link, -l=UnLink on chain */

/* of nested tasks. */

{

if (Limit < 103)
SegmentException($TS, Selector);

/* Save current machine state in old task's TSS */
AccessTSSStated /* Write */);

/* Point TR and Shadow registers to new TSS */

TR.Base = Base;
TR. Limit = Limit;
TR. Attributes = Attributes;
OldTSS = TR. Selector; /* Save old task's TSS selector for link*/
TR. Selector = Selector;

/* Load machine state from new task's TSS */

AccessTSSState(0 /* Read */);

/* Handle differences in Linkage */

if (Linkage == 1 /* Link */) {

/* Save old TSS selector in new TSS, set NT bit. Leave old */

/* TSS descriptor marked as busy. */

AccessLinear (TR.Base, 2, /* Level */, 1 /* Write */, &OldTSS)

;

EFLAGS.NT = 1;

SetTSSBusy (Selector, 1); /* Mark new TSS descriptor busy */

} /* end Link */

else if (Linkage == -1 /* UnLink */) {

SetTSSBusy (OldTSS, 0); /* Mark old TSS descriptor not busy */

} /* end UnLink */

else if (Linkage == /* NoLink */) {

SetTSSBusy (OldTSS, 0); /* Mark old TSS descriptor not busy */

SetTSSBusy (Selector, 1); /* Mark new TSS descriptor busy */

} /* end NoLink */

CRO.TS = 1; /* Set Task-Switched bit */

if (EFLAGS.VM == 1)

CPL = 3; /* virtual-8086 mode runs at level 3. */

else CPL = CS. Selector . RPL; /* CPL from RPL field of CS selector */

/* Visible state now restored. Load descriptors into shadow */

/* registers for LDTR and segment registers. */

/* Mark all descriptors invalid for fault handling. */
/* Present Attribute is ignored in virtual-8086 mode. */

LDTR. Attributes. Present = 0;

CS. Attributes. Present = 0;

Listing 9.5: TaskSwitch'() subroutine

668 Programming the 80386

SS. Attributes. Present =

DS. Attributes. Present =

ES. Attributes. Present =

FS. Attributes. Present =

GS. Attributes. Present =

/* Must load LDTR first. LDTR loaded even in virtual-8086 mode. */

if (LDTR. Selector. TI == 1 /* in LDT */)

SegmentException($TS, LDTR. Selector)

;

if ((LDTR. Selector & OFFFCh) = /* Null */) {

/* OK if LDTR is null. */

LDTR. Attributes. P = 0;

}

else { /* Read and test descriptor if selector is not null */

ReadDescriptor (LDTR. Selector , &At tributes, &Base, &Limi t,

&GSe 1 ec tor , &GOffse t)

;

if ((Attributes. DType == 1)

I I (Attributes. Type != 2 /* LDT */)

I I (Attributes. Present == 0))

SegmentException($TS, LDTR. Selector)

;

/* Load LDTR shadow registers if all checks pass */

SetAccessed(LDTR. Selector)

;

LDTR. Attributes = Attributes;
LDTR. Base = Base;
LDTR. Limit = Limit;
} /* end LDTR. Selector not Null */

if (EFLAGS.VM == 0) {

/* Load remaining descriptor shadow registers if in protected */
/* mode. CS load is same as a jump through a call gate. */
JumpGate(CS. Selector, EIP, $TS)

;

SRegLoad(SS, SS. Selector, $TS)
SRegLoad(DS, DS. Selector, $TS)
SRegLoad(ES, ES. Selector, $TS)
SRegLoad(FS, FS. Selector, $TS)
SRegLoad(GS, GS. Selector, $TS)

} /* end protected mode descriptor shadow register loads. */

/* Clear LE bits in DR7. See Chapter 8 */

DR7.LE0 = 0;

DR7.LE1 =
DR7.LE2 =
DR7.LE3 =

} /* end TaskSwitch' */

I

Listing 9.5: TaskSwitch'() subroutine (continued)

Executing 8086 and 80286 Programs 669

mode program. The first change is that the privilege level of the new
task is 3 if it is in virtual-8086 mode, instead of coming from the RPL
field of the CS selector. A new LDT is addressed even if the task is exe-

cuting in virtual-8086 mode. This is necessary since the task may switch

out of virtual-8086 mode, for example, to handle an interrupt or excep-

tion through a trap or interrupt gate. These interrupt or exception han-

dlers can expect to address segments mapped by the LDT.
The other change to the TaskSwitch() routine is that the descriptor

shadow registers are not loaded if the new task is in virtual-8086 mode.

Instead, only the segment selectors are needed, as loaded by the Access

TSSState() routine.

Real Mode Considerations

The foUowing sections describe features specific to programs that exe-

cute in real mode. First, the machine state at initialization is described.

The 80386 is in real mode when it is turned on. A short bootstrap pro-

gram, such as that shown in Chapter 7, is required to initialize the sys-

tem segments and control registers before entering protected mode. Next,

the methods available to transfer from real mode to protected mode and

back to real mode are described. The third aspect of real mode is the

difference in interrupt handling. A different interrupt mechanism is used

when the processor is in real mode.

80386 State at Initialization

When the 80386 is reset, the processor begins execution in real mode,

with the registers initialized with the values given in Table 9.3. Registers

not listed in Table 9.3 are undefined after reset, and must be initialized

by software. The 80386 Data Sheet from Intel (cited in the Introduction)

details the process of resetting the processor.

The EAX register contains a self-test signature if a self-test was

selected as part of the reset process. This signature is if the self-test

passed. The value in EAX is undefined if the self-test was not selected at

reset (and probably will not be 0). Refer to the 80386 Data Sheet for

details of how to select self-test at reset, and what is tested.

The EDX register is initialized with a component/revision ID. The
component ID is in the DH register and is 3 for the 80386. Future pro-

cessors in the 386 family will use different component IDs. Previous 86

family processors do not support this component/revision ID. Instead,

they initialize DX to an undefined (random) value. The revision ID is in

the DL register. This is a unique number for each major revision of the

processor.

670 Programming the 80386

REGISTER INITIAL VALUE

EAX Self-test signature

ECX Undefined

EDX Component/revision ID

EBX Undefined

ESP Undefined

EBP Undefined

ESI Undefined

EDI Undefined

EFLAGS 00000002h

EIP OFFFOh

ES

CS FOOOh

SS

DS

FS

GS

IDTR Base=0, fimit=3FFh

CRO or lOh

DR7

• Table 9.3: Initial register values

Executing 8086 and 80286 Programs 671

The CS and EIP registers are initialized to OFOOOh and OFFFOh. Also,

until the first intersegment control transfer occurs, references to the CS
register go to a physical address that has Is in the upper 12 address bits

(A31 to A20). This means that after reset, the first instruction is fetched

from physical address OFFFFFFFOh, and intrasegment jumps can be

used to execute code from the upper 64K (addresses OFFFFOOOOh to

OFFFFFFFFh) of the physical address space. If the processor is still in

real mode when the first intersegment transfer occurs (an intersegment

CALL, JMP, RET, or IRET instruction, or an interrupt or exception),

the transfer will reload the CS register and clear the upper 12 address

bits to 0. Most 80386 systems will include a bootstrap ROM at the high

end of memory, which will contain the bootstrap code as well as parts of

the operating system.

The data segment registers SS, DS, ES, FS, and GS are initialized to

0, to address data in the lower 64K of memory (addresses to OFFFFh).

The EFLAGS register is initialized to 2, so that interrupts (IF=0) and

single-stepping (TF=0) are disabled. IDTR is initialized to have a base

address of and a limit of 3FFh. This is compatible with the 8086, which

stores its interrupt table at address 0. The interrupt table contains 256 four-

byte entries, as described later in this chapter in the section on interrupt

handling in real mode. CRO is initialized to or lOh, with all bits but the

ET bit cleared to 0. ET is set to 1 if an 80387 is sensed by the 80386 at

reset. Otherwise, if an 80287 or no coprocessor is present, the ET bit is 0.

The initial value of CRO has PE = (protection disabled) and PG = (pag-

ing disabled), so the processor is executing in real mode. DR7 is initialized

to to disable all debug breakpoints.

Software must initialize the stack by loading SS and SP with initial

values before executing any instructions (or interrupts) that use the stack.

Also, before interrupts are enabled, the interrupt table must be initial-

ized. Although the 80386 is reset with interrupts disabled, NMIs are

always enabled and might occur immediately after reset unless external

hardware is provided to mask NMI.

Transfers from Real Mode to Protected Mode

After reset, a bootstrap program can be used to initialize system seg-

ments and control registers, and to set the PE bit in CRO to 1 to begin

execution in protected mode. Refer to Chapter 7 for a complete example

of a transfer from real mode to protected mode. Immediately after you

load CRO with a 1 in the PE bit position, an intrasegment jump must

be executed to flush the execution pipe of instructions that may have

been fetched and decoded in real mode. This jump is typically to the

next instruction.

672 Programming the 80386

After you enter protected mode, the segment registers should be

reloaded with valid protected mode selectors (or null selectors). CS can

be "reloaded" with an intersegment control transfer such as a JMP or

CALL instruction. The TR register must be loaded with a selector for a

system segment of type available TSS, and the LDTR must be loaded

with a null selector or a system segment of type LDT.
The GDTR and IDTR must be loaded with the base and limit

addresses of the GDT and IDT. Unlike the segment registers and the

LDTR and TR registers, these registers can be loaded before entering

protected mode. The IDT must be in the format used by protected

mode interrupts, described in Chapter 6.

Transfers from Protected Mode to Real Mode

It is possible to transfer from protected mode to real mode in two

ways:

1. Use external hardware to reset the 80386.

2. Load CRO with a value that has a in the PE bit position.

The first method is described in an earlier section of this chapter on

machine state at initialization. The second method provides a software

mode switch, but you must follow these guidelines:

1. The transfer must occur from a program executing in a code

segment that is exacdy 64K in size (limit =OFFFFh).

2. Before loading CRO to set PE to 0, the SS, DS, ES, FS, and OS
segment registers miist be loaded with selectors for a present

read/write expand-up data segment, with DPL =0, that is exactly

64K in size.

3. CRO must be loaded with a value that has a in the PE bit

position.

4. Finally, a direct intersegment JMP instruction must be executed

immediately after loading CRO. This JMP will flush the pro-

cessor pipeline and transfer to the real mode program in the

lower megabyte of physical memory.

During this mode transition, interrupts (including NMI) should be dis-

abled until the IDTR is reloaded to point to an interrupt table in the

format used in real mode. An alternative to switching back to real mode
is to use virtual-8086 mode to execute 8086 programs.

Before you make the transition from protected mode to real mode,

Executing 8086 and 80286 Programs 673

paging must be turned off. This is best done by executing in a code seg-

ment that is identity-mapped (has the same address in both the Unear

and physical address spaces), and using data that is also identity-

mapped. Within this context, paging can be disabled by loading CRO
with a value that has a in the PG bit position, executing an intra-

segment jump to flush the processor pipeline, and finally, loading CR3
to flush the paging cache.

interrupt Handling in Real IVIode

Interrupts and exceptions that occur when the processor is executing in

real mode are handled with a mechanism different fi"om the method used

in protected mode, which was described in Chapter 6. In real mode,
interrupts and exceptions are handled using the simpler method fi:-om the

8086. The IDT has a different format in real mode, and interrupts and
exceptions are handled using a method that is somewhat similar to the

use of interrupt gates as described in Chapter 6.

In real mode, the interrupt descriptor table is an array of four-byte

entries addressed by the IDTR register. Each entry contains a 32-bit

pointer to the first instruction of the interrupt handler. As illustrated in

Figure 9.6, each pointer contains an off"set in the low-order 16 bits, and
a segment register value in the upper 16 bits. This pointer gives the

values to load into IP and CS to begin execution of the real mode inter-

rupt handler.

In real mode, interrupts and exceptions are handled using a 16-bit

version of the semantics given in Chapter 3 for the INT instruction.

First, the 16-bit FLAGS register is pushed onto the stack, followed by
the CS and IP registers. Then, the interrupt table is consulted to find

the pointer to load into CS and IP to begin execution of the handler.

31 16 15

CS IP

Figure 9.6: Real mode interrupt table entry format

674 Programming the 80386

Finally, the TF and IF bits in EFLAGS are set to to disable single-

stepping and interrupts at entry to the handler. No error code is pushed

for exceptions that occur in real mode.

The IRET instruction described in Chapter 3 can be used to return

from real mode interrupt and exception processing. When executed in

real mode, IRET uses the semantics detailed in Chapter 3, not the

extended semantics described in Chapter 6 for protected mode IRET.
IRET pops the IP, CS, and FLAGS values from the stack to resume the

interrupted real mode program.

Figure 9.7 illustrates the values pushed during a real mode interrupt,

and popped during a real mode IRET. The stack is illustrated as 16 bits

wide to match the 8086 stack. The FLAGS register is pushed first, at the

highest address. Then, the CS and IP registers are pushed. At entry to

the interrupt or exception handler, SP points to the pushed IP image.

No error code is pushed when handling real mode exceptions. The
matching IRET will pop the IP, CS, and FLAGS values from the stack

to resume execution, with SP restored to the value it had before the

interrupt or exception.

SP before Interrupt -

SP after Interrupt -

15

64K

FLAGS

CS

IP

* Figure 9.7: Stack usage by real mode interrupts/exceptions, and IRET

Executing 8086 and 80286 Programs 675

Listing 9.6 details the handling of interrupts and exceptions in real

mode. Note that the routine Access8086Virtual is used to access memory
in the real mode stack. If the interrupt table entry for the given interrupt

or exception is beyond the IDTR limit value, a general protection excep-

tion is raised. Double faults can occur if the IDTR limit value is smaller

than required to access the interrupt table entry for the exception. If the

IDTR limit is less than 35, the double fault entry cannot be accessed

and the processor enters the shutdown state described in Chapter 6.

Executing 80286 Protected Mode Programs

Programs that execute in protected mode on the 80286 will also exe-

cute on the 80386. You can run both 80286 application programs and

/* Process an Interrupt or Exception in real mode. */
InterruptREAL(VecNumber

)

int VecNumber; /* Vector Number */

{

/* Push 16-bit FLAGS, CS, and IP. */
SP = SP-2;
Access8086Virtual (SS, SP, 2, 1 /* Write */, $SS, &FLAGS)

;

SP = SP-2;
Access8086Virtual (SS, SP, 2, 1 /* Write */, $SS, &CS. Selector)

;

SP = SP-2;
Access8086Virtual (SS, SP, 2, 1 /* Write */, $SS, &IP)

;

EFLAGS.TF = 0; /* Turn off single-stepping (Chapter 8). */
EFLAGS.IF = 0; /* Disable INTR interrupts. */

/* Read interrupt table entry for indicated vector number, */
/* and load CS and IP with the pointer to the handler. */
if (VecNumber*4+3 > IDTR. Limit)

SegmentException($GP, 0);

AccessLinear (IDTR. Base+VecNumber*4, 2, /* PL */, /* Read */,
&IP) ;

AccessLinear (IDTR. Base+VecNumber*4+2, 2, /* PL */, /* Read */,
&CS. Selector)

;

} /* end InterruptREAL */

Listing 9.6: Interrupt and exception handling in real mode

676 Programming the 80386

operating systems on the 80386 with no change. There are two options

for running 80286 appHcation programs:

1. Run an 80286 operating system on the 80386, and run the

80286 appHcation on this operating system. This method uses

only the 16-bit subset of the 80386, in effect using the 80386 as a

fast 80286.

2. Run a 32-bit operating system on the 80386, and run the 80286

application by interposing a 16-bit interface library between

the application and the 32-bit operating system. This library

translates the calls to 16-bit operating-system functions used by

the 80286 application into calls to the 32-bit functions in the

80386 operating system.

The 80386 can run 80286 operating systems because the memory-
management, protection, and tasking model of the 80286 is a subset of

the 80386 model described in Chapter 5, just as the 80286 registers,

address modes, and instructions are a subset of those on the 80386. The
80286 supports the same memory segments as the 80386, but with a

smaller range of base addresses and segment limits. The 80286 supports

system segments and gates with types less than 8 (available 286 TSS,
LDT, busy 286 TSS, 286 call gate, task gate, 286 trap gate, and 286

interrupt gate).

The 80286 supports memory segments using descriptors of the same
format as the 80386 descriptors shown in Figure 5.10, except that the

high-order 16 bits are 0. This provides the following subset of 80386

memory segments.

1

.

The upper 8 bits of the base address are Os, limiting the physical

address space to 24 bits.

2. The G bit is 0, specifying a byte-granular limit.

3. The D bit is 0, providing a 16-bit default for code segments,

stack segments, and expand-down segments.

4. The upper 4 bits of the limit are 0. Combined with the restric-

tion to byte granularity, this provides a maximum segment limit

of OFFFFh to support a 64K segment size.

System segment descriptors (shown in Figure 5.11) share the same
restrictions as memory segments. Gates (shown in Figure 5.12) are simi-

larly restricted to have their high-order 16 bits equal to 0, limiting the

offset field to 64K. 286 call gates also interpret the DwordCount field as

a word count, not a dword count, so that use of a 286 call gate in an

interlevel CALL will copy 2*DwordCount bytes of parameters.

Executing 8086 and 80286 Programs 677

The 286 call, trap, and interrupt gates push 16-bit data that is the

lower 16 bits of the 32-bit data pushed by the 386 call, trap, and inter-

rupt gates. Otherwise, they operate the same as the 386 gates, described

in Chapter 5. The RET and IRET instructions can be used with a 16-

bit operand size to return from procedures entered with these 286 gates.

The 286 task mechanism is the same as the 386 mechanism, except

that only the 16-bit register state is saved and restored when switching

from or to a task described by a 286 TSS. The 286 TSS format provides

the low-order 16 bits of the fields in the 386 TSS, and also omits the

CR3 field and the I/O permission bitmap.

The FLDENV, FRSTOR, FSTENV, FNSTENV, FSAVE, and
FNSAVE instructions described in Chapter 3 load or store the control-

word, status-word, tag-word, and error-pointer registers from memory. If

these instructions are executed with a 16-bit operand size, the format

used to save or restore this data is simply the lower 16 bits of each

dword in the 32-bit format shown in Figure 2.22. This limits the off^set

parts of the error pointers to 16 bits, and omits the opcode field.

Appendix

^^^^^^^^^^^^^^^ THIS APPENDIX DETAILS THE DIFFERENCES

between the 8086, 80286, and 80386. The contents of this appendix do

not repeat the details of register set, memory addressing, instruction

encoding, 80286 segmentation, real mode segmentation, and real mode
interrupt handling differences between the 80386 and 80286/8086, which

were described in Chapter 9.

8086 Compared to the 80386

Table A.l summarizes the instructions in the 80386 that are not in the

8086.

The entire protection model (four levels of protection, descriptors and

their tables, tasks, and gates) and paging, and the instructions to support

them, are not in the 8086 and are in the 80386. Table A. 2 summarizes

the protection model instructions in the 80386 that are not in the 8086.

In addition to these new instructions, the semantics of all instructions

that affect segment registers (PUSH, POP, MOV, LES, LDS) and all

instructions that alter control flow (CALL, INT, INTO, IRET, JMP,
RET) are significantly different on the 80386 when in protected mode
than they are in the 8086.

680 Programming the 80386

Below are differences in execution between the 8086 and 80386 of cer-

tain instructions.

Divide Exceptions

The CS:IP value for a divide error points to the next instruction on
the 8086. The CS:EIP points to the instruction that caused the exception

on the 80386.

INSTRUCTION DESCRIPTION

PUSH imm Push immediate data onto the stack

PUSHA and POPA Push and pop all eight general registers

IMUL reg,imm Signed multiply with immediate

IMUL reg,reg/mem,imm Signed multiply with immediate

IMUL reg,reg/mem Uncharacterized signed multiply

RCR/RCL reg/mem,imm Rotate by an immediate

ROR/ROL reg/merr ,imm Rotate by an immediate

SAL/SAR reg/mem, mm Shift by an immediate

SHL/SHR reg/mem imm Shift by an immediate

INS/OUTS String input and output to a port

ENTER/LEAVE Procedure entry and exit

BOUND Array bounds checking

LSS/LFS/LGS Segment load instructions

Jcc 32-bit displacement Long-displacement conditional jumps

BT/BTC/BTR/BTS Bit operations

BSF/BSR Bit scan

SHRD/SHLD Double shift instructions

SETcc Set byte on condition

MOVSX/MOVZX Move and sign/zero extend

MOV DRx,reg;reg,DRx Move to/from debug register

MOV CRx,reg;reg,CRx Move to/from control register

FS and GS prefixes Segment prefixes for FS and GS

Table A. 1: 80386 application instructions not in the 8086

Comparison of the 80386, 80286, and 8086 681

Undefined Opcodes

Opcodes that are not defined in the 8086 either cause invalid opcode

exceptions (exception 6) in the 80386 or execute one of the new instructions.

Value of PUSH SP

The value pushed by PUSH SP is the post-incremented version for

the 8086 and the pre-incremented version for the 80386.

Shifts and Rotates

The shift count of the 8086 for all shift and rotate instructions is 8

bits. The shift count is 5 bits on the 80386 (that is, counts are truncated

modulo 32 on the 80386).

INSTRUCTION DESCRIPTION

ARPL Adjust requested privilege level

CLTS Clear the task-switched flag

LAR Load access rights

LGDT Load global descriptor table

LIDT Load interrupt descriptor table

LLDT Load local descriptor table

LMSW Load machine status word

LSL Load segment limit

LTR Load task register

SGDT Store global descriptor table

SIDT Store interrupt descriptor table

SLOT Store local descriptor table

SMSW Store machine status word

STR Store task register

VERR Verify segment for reading

VERW Verify segment for writing

Table A. 2: 80386 protection model instructions not in the 8086

682 Programming the 80386

Redundant Prefixes

The 8086 has no instruction length hmit. The 80386 Hmits the instruc-

tion length to 15 bytes. Thus, redundant prefixes may result in invalid

opcode exceptions.

Accesses above 64K

The 8086 wraps around at 64K segment boundaries to address 0. This

causes a limit violation if the segment is 64K, as it is in real address

mode, in the 80386. This is true for memory operand accesses and

sequential code accesses.

LOCK

LOCK is restricted to certain instructions on the 80386, as described

in Chapter 3. The use of LOCK is not limited in the 8086.

Single-Stepping

The priority of the single-step exception is higher than external inter-

rupts. Thus, an external interrupt handler will not be single-stepped.

FLAGS Register

The FLAGS register is different in bits 12 to 15, as detailed in Chap-
ter 2.

NIVII Interrupt

NMI cannot interrupt an NMI handler on the 80386 as it can on the

8086.

Coprocessor Error

Coprocessor errors use vector number 16 on the 80386. Any vector

number can be used by the 8086.

Prefixes on Coprocessor Instructions

When a coprocessor exception handler is called, the value saved for

CS:IP by the 8086 does not include prefixes, if there were any. The
80386 points to the start of the coprocessor instruction, including

prefixes, if present.

Comparison of the 80386, 80286, and 8086 683

One-Megabyte Wraparound

The 8086 has only 20 bits of physical address space. Segment + offset

physical addresses that exceed 1 megabyte would wrap around (be trun-

cated) to a 20-bit address. The 80386, having 32 bits of physical

addresses, does not wrap around in this manner.

Repeated String Instructions

The CS:IP saved by the 8086 for repeated string instructions does not

include prefixes, if there were any. The 80386 points to the start of the

repeated string instruction, including prefixes.

80286 Compared to the 80386

The most significant differences between the 80286 and the 80386 are

the 3 2 -bit addresses and data types, and paging and memory manage-
ment. To support these items, several instructions have been added to

the 80386. In addition, several other application instructions have been

added to the 80386. The diff'erences in segmentation support and
operand addressing were detailed in Chapter 9. Table A. 3 summarizes

the 80386 instructions that are not in the 80286.

INSTRUCTION DESCRIPTION

LSS/LFS/LGS Segment load instructions

Jcc 3 2 -bit displacement Long-displacement conditional jumps

BT/BTC/BTR/BTS Bit operations

BSF/BSR Bit scan

SHRD/SHLD Double shift instructions

SETcc Set byte on condition

MOVSX/MOVZX Move and sign/zero extend

IMUL reg,reg/mem Uncharacterized signed multiply

MOV DRx,reg;reg,DRx Move to/from debug register

MOV CRx,reg;reg,CRx Move to/from control register

FS and GS prefixes Segment prefixes for FS and GS

» Table A. 3: 80386 instructions not in the 80286

684 Programming the 80386

Below are differences in execution between the 80286 and 80386 of

certain instructions.

LOCK

LOCK is restricted to certain instructions on the 80386, as described

in Chapter 3. The use of LOCK is not hmited in the 80286.

»*.;t:^^
to^^;^^%^

Appendix

^mmmmmmammmii^^^^mm this appendix details the differences
between the 8087, 80287, and 80387.

80287 (and 8087) Compared to the 80387

This section hsts the differences between the 80387 and the 80287.

The same differences also exist between the 80387 and the 8087. The
next section details additional differences between the 80387 and the

8087 that do not exist between the 80387 and the 80287. Table B.l sum-
marizes the instructions in the 80387 that are not in the 80287/8087.

688 Programming the 80386

INSTRUCTION DESCRIPTION

FPREMl Partial remainder—IEEE

FUCOM/FUCOMP/FUCOMPP Unordered compare

FSIN Sine

FCOS Cosine

FSINCOS Sine and cosine

Table B.l: 80387 application instructions not in the 80287/8087

Instruction Execution

In addition to the new instructions in Table B.l are the following

changes in certain instruction execution.

Extended Ranges

The ranges of the FSCALE, FPTAN, FPATAN, and F2XM1 instruc-

tions have been increased. The details of the new (and old) instruction

ranges are given with the detailed instruction descriptions in Chapter 3.

FPTAN

Bit 10 of the status word (C2) is set to indicate incomplete FPTAN,
where this bit is undefined for the 80287/8087.

Denormal Operations

FBSTP, FDIV, FIST, FISTP, FPREM, and FSQRT can operate on

denormal operands on the 80387, where they cannot on the 80287/8087.

FPREM Condition Codes

The condition codes (CC3-CC0) are not reliably set on the 80287/

8087, where they are on the 80387.

Comparison of the 80387, 80287, and 8087 689

FLD Extended-Real Denormal

A denormal does not generate a denormal exception on the 80387,
where it does on the 80287/8087.

FXTRACT

An operand of generates the zero divide exception and sets ST(1) to

minus infinity on the 80387, where the 80287/8087 sets ST(1) to and
no exception is reported. An operand of plus infinity generates no excep-

tion on the 80387, where an invalid operation exception is generated on
the 80287/8087.

FLD Constant

The rounding control is in effect on the 80387, where it is not on the

80287/8087.

FLD Short Real/Long Real

Loading a denormal causes the number to be converted to extended

precision on the 80387, where it is converted to an unnormal on the

80287/8087. When loading a signaling NaN, an invalid operation excep-

tion is raised on the 80387, where none is raised on the 80287/8087.

FSETPM

FSETPM is an 80287 instruction that is a FNOP on the 80387.

Transcendentals

The round-up bit of the status word is generated by the 80387, where

it is undefined on the 80287/8087.

Other Differences

The following list summarizes other diff^erences that do not deal with

particular instructions but rather with initialization, data types, exception

reporting, and the tag, status, and control words.

RESET

At reset, the IE and ES bits of the status word are set and the IM bit

of the control word is reset to indicate that an 80387 is present, thus

allowing the 80386 to determine whether an 80387 or the 80287 is

present.

690 Programming the 80386

Quiet NaN

The 80287 has only one kind of NaN, a signaling NaN. The 80387

also supports a quiet NaN, which does not generate an exception.

Unsupported Formats

The 80387 generates an invalid operation exception whenever one of

the unsupported formats is encountered (Table 1.7): pseudo-NaN,
pseudo-zero, pseudo-infinity, and unnormal. The 80287/8087 supports

these and does not generate an exception when encountered. Also, the

80287 defines pseudo-zero and unnormal as valid (00b in the tag word),

where all are classified as special data (10b in the tag word) on
the 80387.

Invalid Operation

An FSQRT, FDIV, and FPREM or conversion to BCD or integer

will not raise an invalid operation exception on the 80387, as it does on

the 80287/8087.

Denormal Exception

Transcendental instructions and EXTRACT will flag a denormal
exception on the 80387, where they did not on the 80287.

Overflow Exception

When rounding mode is set to chop, the masked response to an

overflow exception is the most positive or negative valid number on the

80387, where it is plus or minus infinity on the 80287/8087. If the

overflow exception is not masked, the precision error will be flagged on
the 80387, where it is not on the 80287. Also when unmasked, the result

stored on the stack is rounded per precision control or opcode on the

80387, where it is not rounded on the 80287/8087.

Underflow Exception

When the underflow exception is masked, the 80387 will flag the

underflow exception only when the underflow causes a loss in accuracy.

The 80287 will flag the underflow exception on underflow when the

rounding control is set to round-to-zero even if no loss of accuracy

occurs. When the underflow exception is unmasked and the result is to

be stored on the stack, the result is rounded per the precision control or

opcode on the 80387, where it is not rounded on the 80287/8087.

Comparison of the 80387, 80287, and 8087 691

Exception Precedence

The denormalization exception has the same precedence if masked or

unmasked on the 80387, whereas it takes precedence over all other

exceptions when unmasked on the 80287/8087. This saves unneeded nor-

malizing of a denormal on the 80387.

Infinity Control

The 80387 supports only the affine interpretation of infinity, where the

80287/8087 supports both the affine and projective.

Stack Overflow/Underflow

In the case of a stack fault, bit 6 of the status word is set and bit 10 is

set to denote stack underflow in addition to the invalid exception (bit 0)

on the 80387. The 80287/8087 only signals invalid exception.

Status-Word Condition Bits

The status-word condition bits are set to by FINIT, incomplete

FPREM, and hardware reset on the 80387. The 80287 does not modify

these bits by these operations.

Tag Word

It is possible to load tag values that are inconsistent with the contents in

the register with the FLDENV and FRSTOR instructions. The 80387 only

relies on the empty/non-empty bits (value 11 for empty and 00, 01, and 10

for non-empty) of the tag word and analyzes the non-empty register con-

tents for all other cases. The 80287/8087 relies on the tag value to deter-

mine the operand class and does not analyze the register contents.

8087 Compared to the 80387

In addition to the changes between the 80287/8087 and the 80387

described above, the 8087 has additional diff"erences compared to the

80387. Exception processing between the 80387 and the 8087 is the most

significant area of change. 8087 exception handlers will, most likely, have

to be rewritten to execute on the 80387. The applications code of the

8087 can, most likely, execute without change on the 80387.

FENI/FNENI and FDISI/FNDISI

The FENI/FNENI and FDISI/FNDISI instructions are ignored by the

692 Programming the 80386

80387 (no 80387 state is altered). 8087 exception handling code making
use of these instructions is probably not compatible on the 80387.

Numeric Exceptions

As noted in Appendix A, the means of exception processing in the

8087 and the 80387 is quite different. The 8087 can process interrupts

via any interrupt vector, where interrupts must be processed as interrupt

vector 16 on the 80387. Additionally, the 8087 interrupts are processed

via a separate interrupt controller device. This means of processing

numeric exceptions is not valid on the 80387.

Exception Pointer

As detailed in Chapter 9, the format for the saved instruction and data

pointers is different on the 8087 and 80387.

Segmentation

It is possible to generate a segmentation fault on the 80387 if the

instruction lies outside the bounds of the segment (exception 13) or if the

operand lies outside the segment (exception 9 or 13). Neither of these are

possible on the 8087.

Exception 7

When executing a floating-point instruction, it is possible to generate

an exception indicating emulation or task-switched (EM and TS bits of

the 80386 CRO) on the 80387. Neither of these are possible on the 8087.

Prefixes on Coprocessor Instructions

When a coprocessor exception handler is called, the value saved for

CS:IP by the 8087 does not include prefixes, if there are any. The 80387

points to the start of the coprocessor instruction, including prefixes if

present.

WAIT Instruction

As discussed in Chapter 3, the 80387 and 80386 are automatically

synchronized and do not require the programmer to include explicit

WAIT instructions to force synchronization except after instructions that

store data from the 80387 into memory. Programs including unnecessary

WAITs execute properly, but are wasteful in code space and execution

time, on the 80387.

Appendix

HEX BINARY DECIMAL

1 1 1

2 10 2

3 11 3

4 100 4

5 101 5

6 no 6

7 111 7

8 1000 8

9 1001 9

A 1010 10

B 1011 11

C 1100 12

D 1101 13

E 1110 14

F nil 15

10 10000 16

11 10001 17

Appendix

POWER DECIMAL VALUE

20 1

f 2

2' 4

2' 8

2' 16

25 32

26 64

2' 128

t 256

f 512

olO
1,024

2" 2,048

212 4,096

213 8,192

698 Programming the 80386

POWER DECIMAL VALUE

2.4 16,384

215 32,768

216 65,536

217 131,072

2l8
262,144

219 524,288

220 1,048,576

221 2,097,152

222 4,194,304

223 8,388,608

224 16,777,216

225 33,554,432

226 67,108,864

227 134,217,728

228 268,435,456

229 536,870,912

030
1,073,741,824

23. 2,147,483,648

232 4,294,967,296

Appendix

HIGH 3 BITS

LOW 4 BITS 000 001 010 Oil 100 101 110 111

0000 NUL DLE SP @ p)

P

0001 SOH DCl 1
1 A Q a q

0010 STX DC2 > J

2 B R b r

0011 ETX DC3 # 3 C S c s

0100 EOT DC4 $ 4 D T d t

0101 ENQ NAK % 5 E U e u

0110 ACK SYN & 6 F V f V

0111 BEL ETB)

7 G W g w

1000 BS CAN (8 H X h X

1001 HT EM
)

9 I Y i y

1010 LF SUB *
J Z J z

1011 VT ESC +
?

K
[

k {

1100 FF FS
5

< L \ 1

1

1

1101 CR GS - = M
]

m }

1110 SO RS > N /v n
-

1111 SI US /
? O o DE

702 Programming the 80386

Key

NUL NuU DLE Data Link Escape

SOH Start of Heading DCl Device Control 1

STX Start of Text DC2 Device Control 2

ETX End of Text DCS Device Control 3

EOT End of Transmission DC4 Device Control 4

ENG Enquiry NAK Negative Acknowledge

ACK Acknowledge SYN Synchronous Idle

BEL BELL (audible) ETB End of Transmission Block

BS Backspace EM End of Medium

HT Horizontal Tabulation SUB Substitute

LF Line Feed ESC Escape

VT Vertical Tabulation FS File Separator

FF Form Feed OS Group Separator

CR Carriage Return RS Record Separator

SO Shift Out US Unit Separator

SI Shift In DEL Delete

Appendix

^m^^^^^^mm^^mmmmm the opcode tables in this appendix aid in

interpreting 80386 object code. Use the high-order 4 bits of the opcode

as an index to a row of the opcode table; use the low-order 4 bits as an

index to a column of the table. If the opcode is OFH, refer to the two-

byte opcode table and use the second byte of the opcode to index the

rows and columns of that table.

Keys to Abbreviations

Operands are identified by a two-character code of the form Zz. The
first character, an uppercase letter, specifies the addressing method. The
second character, a lowercase letter, specifies the type of operand.

Adapted and reprinted by permission of Intel Corporation, copyright 1986.

706 Programming the 80386

Codes for Addressing Method

A Direct address; the instruction has no MODRM field; the

address of the operand is encoded in the instruction; no base

register, index register, or scaUng factor can be appHed; e.g.,

far JMP (EA).

C The reg field of the MODRM field selects a control register;

e.g., MOV (0F20, 0F22).

D The reg field of the MODRM field selects a debug register;

e.g., MOV (0F21, 0F23).

E A MODRM field follows the opcode and specifies the operand.

The operand is either a general register or a memory address.

If it is a memory address, the address is computed from a seg-

ment register and any of the following values: a base register,

an index register, a scaling factor, a displacement.

F Flags register.

G The reg field of the MODRM field selects a general register;

e.g., ADD (00).

I Immediate data. The value of the operand is encoded in sub-

sequent bytes of the instruction.

J The instruction contains a relative offset to be added to the

instruction-pointer register; e.g., JMP short, LOOP.

M The MODRM field may refer only to memory; e.g.,

BOUND, LES, LDS, LSS, LFS, LGS.

O The instruction has no MODRM field; the offset of the oper-

and is coded as a word or dword (depending on address size

attribute) in the instruction. No base register, index register, or

scaling factor can be applied; e.g., MOV (A0-A3).

R The mod field of the MODRM field may refer only to a gen-

eral register; e.g., MOV(0F20-0F24, 0F26).

S The reg field of the MODRM field selects a segment register;

e.g., MOV (8C, 8E).

T The reg field of the MODRM field selects a test register; e.g.,

MOV (0F24, 0F26).

X Memory addressed by DS: SI; e.g., MOVS, COMPS, OUTS,
LODS, SCAS.

Y Memory addressed by ES:DI; e.g., MOVS, CMPS, INS,

STOS.

80386 Opcode Map 707

Codes for Operand Type

a Two one-word operands in memory or two dword operands in

memory, depending on operand size attribute (used only by
BOUND).

b Byte (regardless of operand size attribute).

c Byte or word, depending on operand size attribute.

d Dword (regardless of operand size attribute).

p 32-bit or 48-bit pointer, depending on operand size attribute.

s Six-byte pseudo-descriptor.

V Word or dword, depending on operand size attribute.

w Word (regardless of operand size attribute).

Register Codes

When an operand is a specific register encoded in the opcode, the reg-

ister is identified by its name; e.g., AX, CL, or ESI. The name of the

register indicates whether the register is 32, 16, or 8 bits wide. A register

identifier of the form eXX is used when the width of the regi-

ster depends on the operand size attribute. For example, eAX indicates

that the AX register is used when the operand size attribute is 16, and

the EAX register is used when the operand size attribute is 32.

708 Programming the 80386

One-Byte Opcode Map

2 3 4 5

ADD PUSH
ES

POP
ESEb.Gb Ev.Gv Gb.Eb Gv.Ev AL.Ib eAXJv

ADC PUSH
SS

POP
SSEb.Gb Ev.Gv Gb.Eb Gv.Ev ALJb eAXJv

AND
SEG
= ES DAA

Eb.Gb Ev.Gv Gb.Eb Gv,Ev ALJb eAXJv

XOR
SEG
= SS AAA

Eb.Gb Ev.Gv Gb.Eb Gv.Ev AL.Ib eAXJv

INC general register

eAX eCX eDX eBX eSP eBP eSI eDI

PUSH general register

eAX eCX eDX eBX eSP eBP eSI eDI

PUSHA POPA BOUND
Gv.Ma

ARPL
Ew.Rw

SEG
= FS

SEG
= GS

Operand
Size

Address
Size

Short-displacement jump on condition (Jb)

JO JNO JB JNB JZ JNZ JBE JNBE

Immedi ate GrpI
GrpI

Ev,lb

TEST XCHG

Eb.lb Ev.lv Eb.Gb Ev.Gv Eb.Gb Ev.Gv

NOP
XCHG word or double-word register with eAX

eCX eDX eBX eSP eBP eSI eDI

MOV MOVSB
Xb.Yb

MOVSW/D
Xv.Yv

CMPSB
Xb.Yb

CMPSW/D
Xv.Yv

AL.Ob eAX.Ov Ob.AL Ov.eAX

MOV immediate byte into byte register

AL CL DL BL AH CH DH BH

Shift Grp2 RET near
LES

Gv.Mp
LDS
Gv.Mp

MOV

Eb,lb Ev.lb Iw Ebjb Ev.lv

Shift Grp2
AAM AAD XLAT

Eb,1 Ev,1 Eb,CL Ev.CL

LOOPNE
Jb

LOOPE
Jb

LOOP
Jb

JCXZ
Jb

IN OUT

ALJb eAXJb Ib.AL Ib.eAX

LOCK REPNE REP
REPE

HLT CMC
Unary Grp3

Eb Ev

80386 Opcode Map 709

One-Byte Opcode Map

B C

OR PUSH
CS

2-byte

escapeEb.Gb Ev.Gv Gb.Eb Gv.Ev AL.Ib eAX.Iv

SBB PUSH
DS

POP
DSEb.Gb Ev.Gv Gb.Eb Gv.Ev AL.Ib eAX.Iv

SUB SEG
=CS

DAS
Eb.Gb Ev.Gv Gb,Eb Gv.Ev AL.Ib eAX.Iv

CMP SEG
= CS

AAS
Eb.Gb Ev.Gv Gb.Eb Gv.Ev AL.Ib eAX.Iv

DEC general register

eAX eCX eDX eBX eSP eBP eSI eDI

POP into general register

eAX eCX eDX eBX eSP eBP eSI eDI

PUSH
lb

IMUL
GvEvIv

PUSH
lb

IMUL
GvEvlb

INSB
Yb.DX

INSW/D
Yv.DX

OUTSB
DX.Xb

OUTSW/D
DX.Xv

Short-displacement jump on condition (Jb)

JS JNS JP JNP JL JNL JLE JNLE

MOV MOV
Ew.Sw

LEA
Gv.M

MOV
Sw.Ew

POP
Ev

Eb.Gb Ev.Gv Gb.Eb Gv.Ev

CBW CWD CALL
Ap

WAIT
PUSHF

Fv

POPF
Fv

SAHF LAHF

TEST STOSB
Yb,AL

STOSW/D
Yv.eAX

LODSB
AL.Xb

LODSW/D
eAX.Xv

SCASB
AL.Xb

SCASW/D
eAX.Xv

AL.Ib eAX.Iv

MOV immediate word or double into word or double register

eAX eCX eDX eBX eSP eBP eSI eDI

ENTER
Iw.lb

LEAVE
RET far

INT

3

INT

lb
INTO IRET

Iw

ESC (Escape to coprocessor instruction set)

CALL
Av

JMP IN OUT

Jv Ap Jb AL,DX eAX.DX DX.AL DX.eAX

CLC STC CLI STI CLD STD
INC/DEC
Grp4

Indirct

Grp5

710 Programming the 80386

Two-Byte Opcode Map (First Byte Is OFH)

2 3 4 5

Grp6 Grp7
LAP
Gv.Ew

LSL
Gv.Ew

CLTS

MOV
Cd.Rd

MOV
Dd.Rd

MOV
Rd.Cd

MOV
Rd,Dd

MOV
Td.Rd

MOV
Rd.Td

Long-displacement jump on condition (Jv)

JO JNO JB JNB JZ JNZ JBE JNBE

Byte Set on condition (Eb)

SETO SETNO SETB SETNB SETZ SETNZ SETBE SETNBE

PUSH
FS

POP
FS

BT
Ev.Gv

SHLD
EvGvlb

SHLD
EvGvCL

LSS
Mp

BTR
Ev.Gv

LFS
Mp

LGS
Mp

MOVZX

Gv.Eb Gv.Ew

80386 Opcode Map 711

Two-Byte Opcode Map (First Byte Is OFH)

A B C D

Long-displacement jump on condition (Jv)

JS JNS JP JNP JL JNL JLE JNLE

SETS SETNS SETP SETNP SETL SETNL SETLE SETNLE

PUSH
GS

POP
GS

BTS
Ev.Gv

SHRD
EvGvlb

SHRD
EvGvCL

IMUL
Gv.Ev

Grp-8

Ev.lb

ETC
Ev,Gv

BSF
Gv.Ev

BSR
Gv.Ev

MOVSX

Gv.Eb Gv.Ew

712 Programming the 80386

Opcodes Determined By Bits 5,4,3 OF IVIODRIVI Field

mod nnn R/M

000 001 010 oil 100 101 110 111

ADD OR ADC SBB AND SUB XOR CMP

ROL ROR RCL RCR SHL SHR SAR

TEST
Ib/lv

NOT NEG MUL
AL/eAX

IMUL
AL/eAX

DIV

AL/eAX
IDIV

AL/eAX

INC
Eb

DEC
Eb

INC
Ev

DEC
Ev

CALL
Ev

CALL
eP

JMP
Ev

JMP
Ep

PUSH
Ev

Opcodes Determined By Bits 5,4,3 OF MODRIVI Field

mod nnn R/M

000 001 010 Oil 100 101 110 111

SLDT
Ew

STR
Ew

LLDT
Ew

LTR
Ew

VERR
Ew

VERW
Ew

SGDT
Ms

SIDT
Ms

LGDT
Ms

LIDT
Ms

SMSW
Ew

LMSW
Ew

BT BTS BTR BTC

Appendix

^m^^^^^am^mmmammam this appendix describes the 80386 instruc-

tion set. Table G.l lists all instructions along with instruction encoding

diagrams and clock counts. Further details of the instruction en-

coding are then provided in the following sections, which completely

describe the encoding structure and the definition of all fields occurring

within 80386 instructions.

80386 Instruction Encoding

and Clocl(Count Summary

To calculate elapsed time for an instruction, multiply the instruction

clock count, as listed in Table G.l, by the processor clock period (e.g.,

62.5 ns for an 80386-16 operating at 16 MHz CLK signal).

For more detailed information on the encodings of instructions, refer

to the section on Instruction Encodings.

Adapted and reprinted by permission of Intel Corporation, copyright 1986.

716 Programming the 80386

Table G.I: 80386 Instruction Set Clock Count Summary

INSTRUCTION FORMAT

CLOCK COUNT NOTES 1

Real

Address
Mode or

Virtual

8086
Mode

Protected

Virtual

Address
Mode

Real

Address
Mode or

Virtual

8086
Mode

Protected

Virtual

Address
Mode

GENERAL DATA TRANSFER
MOV = Move:

Register to Register/Memory

Register/Memory to Register

Immediate to Register/Memory

Immediate to Register (short form)

Memory to Accumulator (short form)

Accumulator to Memory (short form)

Register Memory to Segment Register

Segment Register to Register/Memory

MOVSX = Move With Sign Extension

Register From Register/Memory

MOVZX = Move With Zero Extension

Register From Register/Memory

PUSH = Push:

Register/Memory

Register (short form)

Segment Register (ES, CS, SS or OS)

(short form)

Segment Register (ES, CS, SS. DS,

FS or GS)

Immediate

PUSHA = Push All

POP = Pop

Register/Memory

Register (short form)

Segment Register (ES, CS, SS or DS)
(short form)

Segment Register (ES, CS. SS or DS
FS or GS)

POPA = Pop All

XCHG = Exchange

Register/Memory With Register

Register With Accumulator (short form)

IN = Input from:

Fixed Port

Variable Port

OUT = Output to:

Fixed Port

Variable Port

LEA = Load EA to Register

immediate data

2/2

2/4

2/2

2

4

2

2/5

2/2

3/6

3/6

5

2

2

2

2

18

5

4

7

7

24

3/5

3

12

13

10

11

2

2/2

2/4

2/2

2

4

2

18/19

2/2

3/6

3/6

5

2

2

2

2

18

5

4

21

21

24

3/5

3

6'/26"

7V27"

4V24"

5V25"

2

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b,f

h

h

h

h

h

h,i,j

h

h

h

h

h

h

h

h

h

h

h

h.i,i

h.i.j

h

f, h

m

m

m

m

1 1 w 1 mod reg r/m

1 1 1 w 1 mod reg r/m

1 1 1 1 w 1 mod r/m

1 1 1 w reg
1
Immediate data

1 1 w 1 full displacement

1 1 1 w 1 full displacement

10001110 1 mod sreg3 r/m

10 0110 1 mod sreg3 r/m

00001 111 1 1 01 1 1 1 1w mod reg r/m
|

00001 111 1 1011011W mod reg r/m
|

Clk Count
Virtual

8086 Mode

11111111
I
mod 110 r/m

10 10 reg
1

sreg2 1 1
|

1111 1 1 sreg3

1 1 1 s 1 immediate data

01 1 00000
\

10 1111 1 mod r/m

010 11 reg
1

sreg 2 1 1 1
|

1111 1 1 sreg 3 1

01 1 00001 1

1 1 1 w 1 mod reg r/m

10 10 reg
1

1 1 1 1 w
1 port number t26

t27

t24

t25

1 1 1 01 1 Ow 1

1 1 1 1 1 w 1 port number

1 1 1 01 1 1w 1

10 110 1 1 mod reg r/m

If CPL <. lOPL If CPL > lOPL

80386 Instruction Format and Timing 717

Table G.1: 80386 Instruction Set Clock Count Summary (continued)

INSTRUCTION FORMAT

CLOCK COUNT NOTES 1

Real

Address
Mode or

Virtual

8086
Mode

Protected

Virtual

Address
Mode

Real

Address
Mode or

Virtual

8086
Mode

Protected

Virtual

Address
Mode

SEGMENT CONTROL

LOS= Load Pointer to OS

LES = Load Pointer to ES

LFS = Load Pointer to FS

LGS = Load Pointer to GS

LSS = Load Pointer to SS

FLAG CONTROL

CLC = Clear Carry Flag

CLO = Clear Direction Flag

CLI = Clear Interrupt Enable Flag

CLTS = Clear Task Switched Flag

CMC = Complement Carry Flag

LAHF = Load AH Into Flag

POPF = Pop Flags

PUSHF = Push Flags

SAHF = Store AH Into Flags

STC = Set Carry Flag

STD = Set Direction Flag

STI = Set Interrupt Enable Flag

ARITHMETIC

ADD = Add

Register to Register

Register to Memory

Memory to Register

Immediate to Register/Memory

Immediate to Accumulator (short form)

ADC = Add With Carry

Register to Register

Register to Memory

Memory to Register

Immediate to Register/Memory

Immediate to Accumulator (short form)

INC = Increment

Register/Memory

Register (short form)

SUB = Subtract

Register from Register

7

7

7

7

7

2

2

3

5

2

2

5

4

3

2

2

3

2

7

6

2/7

2

2

7

6

2/7

2

2/6

2

2

22

22

25

25

22

2

2

3

5

2

2

5

4

3

2

2

3

2

7

6

2/7

2

2

7

6

2/7

2

2/6

2

2

b

b

b

b

b

c

b

b

b

b

b

b

b

b

b

h, i,i

h.i.j

h.i.i

h, i.j

h.i.i

m

1

h, n

h

m

h

h

h

h

h

h

h

110 101 1 mod reg r/m
|

110 10 1 mod reg r/m
|

00001111 1 10110100 1 mod reg r/m
|

00001111 1 10110101 1 mod reg r/m
|

00001111 1 10110010 1 mod reg r/m
|

11111 000 1

11111100 1

11111010 1

00001 1 1 1
I
000001 1 1

11110101 1

10011111 1

10011101 1

10011100 1

10011110 1

11111001 1

11111001 1

11111011 1

OOOOOOdw 1 mod reg r/m
|

OOOOOOOw 1 mod reg r/m
|

1 w 1 mod reg r/m
|

1 s w 1 mod r/m
|
immediate data

1 w 1 immediate data

1 d w 1 mod reg r/m
|

000 1 OOOw 1 mod reg r/m
|

OOOIOOIw 1 mod reg r/m
|

1 s w 1 mod 10, r/m
|
immediate data

1 1 w
{

immediate data

1 1 1 1 1 1 1 w 1 mod r/m
1

10 reg
1

1 1 d w
1
mod reg r/m

|

718 Programming the 80386

Table G.1: 80386 Instruction Set Clock Count Summary (continued)

INSTRUCTION FORMAT

CLOCK COUNT NOTES 1

Real

Address
Mode or

Virtual

8086
Mode

Protected

Virtual

Address
Mode

Real

Address
Mode or

Virtual

8086

Mode

Protected

Virtual

Address
Mode

ARITHMETIC {Continued)

Register from Memory

Memory trom Register

Immediate from Register/Memory

Immediate from Accumulator (short form)

SBB = Subtract with Borrow

Register from Register

Register from Memory

Memory from Register

Immediate from Register/Memory

Immediate from Accumulator (sfiort form)

DEC = Decrement

Register/ Memory

Register (short form)

CMP = Compare

Register with Register

Memory wilh Register

Register with Memory

Immediate with Register/Memory

Immediate with Accumulator (short form)

NEG - Change Sign

AAA '- ASCII Adjust for Add

AAS = ASCII Adjust for Subtract

DAA Decimal Adjust for Add

DAS ^ Decimal Adjust for Subtract

MUL = Multiply (unsigned)

Accumulator with Register/Memory

Multiplier-Byte

-Word

-Doubleword

IMUL = Integer Multiply (signed)

Accumulator with Register/Memory

Mulliplier-Byle

-Word

-Doubleword

Register with Regisler'Memory

-Word

-Doubleword

Register/Memory with Immediate to Reg

-Word

-Doubleword

7

6

2/7

2

2

7

6

2/7

2

2/6

2

2

5

6

2/5

2

2/6

4

4

4

4

9-14/12-17

9-22/12-25

^-38/12-41

9-14/12-17

9-22/12-25

9-38/12-41

9-22/12-25

9-38/12-41

9-22/12-25

9-38/12-41

7

6

2/7

2

2

7

6

2/7

2

2/6

2

2

5

6

2/5

2

2/6

4

4

4

4

9-14/12-17

9-22/12-25

9-38/12-41

9-14/12-17

9-22/12-25

9-38/12-41

9-22/12-25

9-38/12-41

9-22/12-25

9-38/12-41

b

b

b

b

b

b

b

b

b

b

b

b.d

b. d

b, d

b.d

b.d

b.d

b.d

b.d

b.d

b.d

h

h

h

h

h

h

h

h

h

h

h

d, h

d, h

d, h

d, h

d, h

d.h

d. h

d.h

d.h

d.h

1
00101 OOw mod reg r/m|

1
001 01 01 w mod reg r/m|

1
1 OOOOOsw mod 1 1 r/m| immediate data

immediate data
1
00101 1 Ow

1
000 1

1

Odw mod reg r/m|

1
000 1

1

OOw mod reg r/m|

1
0001 1 1 w mod reg r/m|

1
1 OOOOOsw modO 1 1 r/m| immediate data

immediate data
1
0001 1 1 Ow

1
1 1 1 1 1 1 1 w regO 1 r/m|

1
1 1 reg

1
001 1

1

Odw mod reg r/m|

1
00 1 1

1

OOw mod reg r/m|

1
00 1 1 1 1

w

mod reg r/m|

1
1 OOOOOsw mod 111 r/m| immediate data

immediate data
1
00 1 1 1 1 Ow

1
1 1 1 1 1 1 w mod 1 1 r/m|

1
00110111

1
00111111

1
00100111

1
00101111

1
1 1 1 1 1 1 w |mod 1 r/m|

1
1 1 1 1 1 1 w |mod 1 r/m|

1
00001111 1 10101111 1 mod reg r/m|

ster
1

1 1 1 s 1 | mod reg r/m| immediate data

80386 Instruction Format and Timing 719

Table G.1: 80386 Instruction Set Clock Count Summary (continued)

CLOCK COUNT NOTES 1

Real Real

INSTRUCTION FORMAT Address Protected Address Protected

Mode or Virtual Mode or Virtual

Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode

ARITHMETIC (Continued)

DIV = Divide (Unsigned)

Accumulator by Register/Memory 1 1 1 1 1 1 w |mod 1 1 r/m|

Divisor—Byte 14/17 14/17 b,e e.h

—Word 22/25 22/25 b,e e,h

—Doubleword 38/41 38/41 b.e e,h

lOIV = Integer Divide (Signed)

Accumulator By Register/Memory 1 1 1 1 01 1 w |mod1 1 1 r/m|

Divisor—Byte 19/22 19/22 b,e e.h

—Word 27/30 27/30 b.e e.h

—Doubleword

AAD = ASCII Adjust for Divide

AAM = ASCII Adjust for Multiply

CBW = Convert Byte to Word

CWD = Convert Word to Double Word

43/46

19

17

3

2

43/46

19

17

3

2

b,e e.h

11010101 1 00001 01
1

11010100
1
00001 01 1

1001 1000
1

1001 1001
1

LOGIC

Shift Rotate Instructions

Not Through Carry (ROL, ROR, SAL, SAR

Register/Memory by 1

Register/Memory by GL

Register/Memory by Immediate Count

, SHL, and SHR)

3/7

3/7

3/7

3/7

3/7

3/7

b

b

b

h

h

h

1 1 01 OOOw |modTTT r/m|

1 1 01 001 w |modTTT r/m|

1 1 w 1 mod TTT r/m| immed 8-bit data

Through Carry (RCL and RCR)

Register/Memory by 1

Register/Memory by CL

Register/Memory by Immediate Count

9/10

9/10

9/10

9/10

9/10

9/10

b

b

b

h

h

h

1 1 1 000 w |modTTT r/m|

1 1 01 001 w |modTTT r/m|

1 1 w |mod TTT r/m|immed 8-bit data

TTT Instruction

ROL
1 ROR

1 RCL

1 1 RCR

1 SHL/SAL

1 1 SHR
111 SAR

SHLD = Shift Left Double

Register/Memory by Immediate

Register/Memory by CL

SHRD = Shift Right Double

Register/Memory by Immediate

Register/Memory by CL

3/7

3/7

3/7

3/7

3/7

3/7

3/7

3/7

00001111 1 1 01 001 00 |modreg r/m|immed 8-bit data

00001111 1
10100101 |modreg r/m|

00001111 1 10101100 |mod reg r/m|immed 8-bit data

1
00001111

1
10101101 |mod reg r/m|

AND = And

Register to Register 2 2
1

1 d w
1
mod reg r/m|

720 Programming the 80386

Table G.1: 80386 instruction Set Clocl(Count Summary (continued)

INSTRUCTION FORMAT

CLOCK COUNT NOTES 1

Real

Address
Mode or

Virtual

8086
Mode

Protected

Virtual

Address
Mode

Real

Address
Mode or

Virtual

8086
Mode

Protected

Virtual

Address
Mode

LOGIC (Continued)

Register to Memory

Memory to Register

Immediate to Register/Memory

Immediate to Accumulator (Short Form)

TEST = And Function to Flags, No Result

Register/Memory and Register

Immediate Data and Register/ Memory

Immediate Oaia and Accumulator

(Short Form)

OR = Or

Register lo Register

Register ;o Memory

Memory io Register

Immediate to Register/Memory

Immediate to Accumulator (Short Form)

XOR --^ Exclusive Or

Register to Register

Register to Memory

Memory to Register

Immediate to Register/Memory

Im.Tiediate to Accumulator (Short Form)

NOT = Invert Register/Memory

STRING MANIPULATION

CMPS = Compare Byte Word

INS = Input Byte/Word from DX Port

LOOS = Load Byte/Word to AL/AX/EAX

MOVS = Move Byte Word

OUTS = Output By<e/Word toDX Port

SCAS = Scan Byte Word

STOS = Store Byte/Word from

AL/AX/EX

XLAT ^ Translate String

REPEATED STRING MANIPULATION

Repeated by Count in CX or ECX

REPE CMPS = Compare String

(Find Non-Match)

7

6

2/7

2

2/5

2/5

2

2

7

6

2/7

2

2

7

6

2/7

2

2/6

10

15

5

7

14

7

4

5

5 + 9n

7

6

2/7

2

2/5

2/5

2

2

7

6

2/7

2

2

7

6

2/7

2

2/6

10

9V29**

5

7

8V28"

7

4

5

5 + 9n

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

h

h

h

h

h

h

h

h

h

h

h

h

h

h, m

h

h

h, m

h

h

h

h

1 w
1
mod reg r/m

|

1 1 w
1
mod reg r/m

|

1 w
1
mod 10 r/m| immediate data

1 1 w
1
immediate data

1 0000 1 Ow |modreg r/m|

1 1 1 1 1 1 w
1
mod r/m| immediate data

1 1 1 w
1
immediate data

0000 1 Od w |modreg r/m|

0000 1 00 w
1
mod reg r/m|

1 1 w
1
mod reg r/m

|

1 w
1
mod 1 r/m

|
immediate data

1 1 w
1
immediate data

00 1 1 OOd w |modreg r/m|

00 1 1 000 w |mod reg r/m|

00 1 1 00 1 w |modreg r/m|

1 w
1
mod 1 1 r/m| immediate data

1 1 1 w
1
immediate data

1 1 1 1 01 1 w |modO 1 r/m|
Clk

Count
Virtual

1 AOfifi
1 1 1 1 w

1 u^.

1 1 1 1 w
1 1

t29

1 01 01 1 Ow
1

1 01 001 Ow
1

1 1 1 1 1 w
1 1

t28

1 1 01 1 1 w
1

1 1 01 01 w
1

110 10111 1

11110011 1 1 01 001 1 w
1

If CPL ^ lOPL If CPL > lOPL

80386 Instruction Format and Timing 721

Table G.1 : 80386 Instruction Set Clock Count Summary (continued)

INSTRUCTION FORMAT

CLOCK COUNT NOTES 1

Real

Addreaa
Mode or

Virtual

8086
Mode

Protected

Virtual

Addreaa
Mode

Real

Addreaa
Mode or

Virtual

8086
Mode

Protected

Virtual

Addreaa
Mode

REPEATED STRING MANIPULATIO

REPNE CMPS = Compare String

(Find Match)

REP INS = Input String

REP LODS = Load String

REP MOVS = Move String

REP OUTS = Output String

REPE SCAS = Scan String

(Find Non-AL/AX/EAX)

REPNE SCAS = Scan String

(Find AL/AX/EAX)

REP STOS = Store String

BIT MANIPULATION

BSF = Scan Bit Forward

BSR = Scan Bit Reverae

BT = Teat Bit

Register/Memory, Immediate

Register/Memory, Register

BTC = Teat Bit and Complement

Register/ Memory, Immediate

Register/Memory, Register

BTR = Teat Bit and Reaet

Register/Memory, Immediate

Register/Memory, Register

BTS = Teat Bit and Set

Register/ Memory, Immediate

Register/Memory, Register

CONTROL TRANSFER

CALL = Call

Direct Within Segment

Register/Memory

Indirect Within Segment

Direct Intersegment

N (Continued)

Clk Count
Virtual

8086 Mode 5 + 9n

13 + 6n

5-H6n

7-1- 4n

12-^5n

5-(-8n

5-1- 8n

5-H5n

10-t-3n

10-1- 3n

3/6

3/12

6/8

6/13

6/8

6/13

6/8

6/13

7-l-m

7-1- m/
10-t-m

17-l-m

5-t-9n

7-h6nV27-l-6n*'

5-1- 6n

7-1- 4n

6-f5nV26-t-5n"

5-1- 8n

5-1-80

5-1- 5n

10-1- 3n

10-K3n

3/6

3/12

6/8

6/13

6/8

6/13

6/8

6/13

7-Hm

7-t-m/

lO-t-m

34-l-m

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

h

h, m

h

h

h, m

h

h

h

h

h

h

h

h

h

h

h

h

h

r

h, r

i,k.r

1 1 1 1 001 1
101001 1 w

1

1 1 1 10010
1
01 1 01 lOw

1 1 t27 + 6n

1 1 1 10010
1
101 01 lOw 1

1 1 1 1 001 1 1 01 001 Ow
1

1 1 1 10010
1
01 1 01 1 1w

1
1 t26 + 5n

1 1 1 1 001 1 1 1 0101 1 1w
1

1 1 1 1 001 1
10101 1 1w

1

1111001o|l010101w|

00001111
1
10111100 |mod reg r/ml

00001111 1 10111101 [mod reg r/m|

00001111 1
10111010 |mod1 r/m|immed e-bit data|

00001111
1
10100011 |mod reg r/m|

00001111
1
10111010 |mod1 1 1 r/m|immed 6-bit data]

00001111
1
10111011 [mod reg r/m|

00001111 1 10111010 |mod1 1 r/m|immed 8-bit data|

00001111
1
10110011 |mod reg r/m|

00001111
1
10111010 |mod1 1 r/m|immed 8-bit data|

00001111
1
10101011 Imodreg r/m|

1 1 1 1 1 full displacement

11111111 |mod0 1 r/m|

10 1 10 10 {unsigned full offset, selector

Notes
t Clock count shown applies if I/O permission allows I/O to the port in virtual 8086 mode. If I/O bit map denies permission

exception 13 fault occurs; refer to clock counts for INT 3 instruction.

•
If CPL <. lOPL ••

If CPL > lOPL

722 Programming the 80386

Table G.1: 80386 Instruction Set Clock Count Summary (continued)

CLOCK COUNT NOTES 1

Real Real
INSTRUCTION FORMAT Address Protected Address Protected

Mode or Virtual Mode or Virtual

Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode

CONTROL TRANSFER (Continued)

Protected Mode Only (Direct Intersegment)

Via Call Gate to Same Privilege Level 52 + m h,i,k,r

Via Call Gate to Diflerent Privilege Level,

(No Parameters) 86 + m h,j,k,r

Via Call Gate to Different Privilege Level,

(x Parameters) 94 + 4x + m h,j,k,r

From 286 Task to 286 T3S 273 h.i,k.r

From 286 Task to 386 TSS 298 h,j,k,r

From 286 Task to Virtual 8086 Task (386 TSS) 217 ti,j,k,r

From 386 Task to 286 TSS 273 h,j,k,r

From 386 Task to 386 TSS 300 h,j,k,r

From 386 Task to Virtual 8086 Task (386 TSS)

22 + m

217

38 + m b

h.i,k,r

h,i,k,rIndirect Intersegment | 11111111 |mod0 11 r/m|

Protected Mode Only (Indirect Intersegment)

Via Call Gate to Same Privilege Level 56 + m h,j,k,r

Via Call Gate to Different Privilege Level,

(No Parameters) 90 + m h,j,k,r

Via Call Gate to Different Privilege Level,

(x Parameters) 98 + 4x + m h,j,k,r

From 286 Task to 286 TSS 278 h,j,k,r

From 286 Task to 386 TSS 303 h,j,k,r

From 286 Task to Virtual 8086 Task (386 TSS) 221 h,j,k,r

From 386 Task to 286 TSS 278 h,j,k,r

From 386 Task to 386 TSS 305 h,j,k,r

From 386 Task to Virtual 8086 Task (386 TSS) 221 h,i.k,r

JMP = Unconditional Jump

7 + m

7 + m

7 + m/
10 + m

12 + m

7 + m

7 + m

7 + m/
10 + m

27 + m

b

r

r

h.r

j,k,r

Short 1 11101001 1 8-bit displacement!

Direct witfiin Segment | 1110 10 1 | full displacement

Register/Memory Indirect witfiin Segment
|
11111111 |mod 100 r/m|

Direct Intersegment | 1110 10 10
|
unsigned full offset, selector

Protected Mode Only (Direct Intersegment)

Via Call Gate to Same Privilege Level 45 + m fi,j,k,r

From 286 Task to 286 TSS 274 h,i,k,r

From 286 Task to 386 TSS 301 h,j,k.r

From 286 Task to Virtual 8086 Task (386 TSS) 218 h,j,k,r

From 386 Task to 286 TSS 270 h,),k,r

From 386 Task to 386 TSS 303 h,j,k,r

From 386 Task to Virtual 8086 Task (386 TSS)

17 + m

220

31 +m b

h,j,k,r

h,j,k,rIndirect Intersegment | 11111111 |mod 1 1 r/m|

Protected Mode Only (Indirect Intersegment)

Via Call Gate to Same Pnvilege Level 49 + m h,j,k,r

From 286 Task to 286 TSS 279 h.i,k.r

From 286 Task to 386 TSS 306 h,j,k,r

From 286 Task to Virtual 8086 Task (386 TSS) 222 h,j,k,r

From 386 Task to 286 TSS 275 h,i,k,r

From 386 Task to 386 TSS 308 h,j,k,r

From 386 Task to Virtual 8086 Task (386 TSS) 224 h,j,k,r

80386 Instruction Format and Timing 723

Table G.1: 80386 Instruction Set Clock Count Summary (continued)

INSTRUCTION

CLOCK COUNT

RmI
Address
Mode or

Virtual

8086

Mode

Protected

Virtual

Address
Mode

Real

Address
Mode or

Virtual

8086
Mode

Protected

Virtual

Address
Mode

CONTROL TRANSFER (Continued)

RET = Return from CALL

Within Segment

Within Segment Adding Immediate to SP

Intersegment

Intersegment Adding Immediate to SP

Protected Mode Only (RET):

to Different Privilege Level

Intersegment

Intersegment Adding Immediate to SP

CONDITIONAL JUMPS

NOTE; Times Are Jump "Taken or Not Taken'

JO = Jump on Overflow

8-Bit Displacement I

1
1 100001 1 1

1 110000 10 1 16-bit displ 1

1
11001011

1

1
11001010 1 16-bit displ |

0111 0000 8-bit displ

Full Displacement

JNO = Jump on Not Overflow

8-Blt Displacement

00001 1111 0000000

8-bit displ

Full Displacement
|
00001111

JB/JNAE = Jump on Below/Not Above or Equal

8-Bit Displacement |
01110010

Full Displacement

8-bit displ

1 000001

JNB/JAE = Jump on Not Below/Above or Equal

8-Bit Displacement 01110011

Full Displacement

JE/JZ = Jump on Equal/Zero

8-Bit Displacement

Full Displacement

00001 1 1

1

00001 1 1 1

JNE/JNZ = Jump on Not Equal/Not Zero

8-Bit Displacement 1110101

Full Displacement

JBE/JNA = Jump on Below or Equal/Not Above

8-Bit Displacement
|

1110

Full Displacement

JNBE/JA = Jump on Not Below or Equal/Above

8-Bit Displacement 01110111

Full Displacement

JS = Jump on Sign

8-Bit Displacement

Full Displacement

00001 1 1 1

00001 1 1 1

8-bit displ

1 000001 1

8-bit displ

8-bit displ

e-bit displ

8-bit displ

8-blt displ J
1 0001000

lull displacement

full displacement

full displacement

full displacement

full displacement

full displacement

full displacement

full displacement

10 -1^ m 10 -t- m

10 + m 10 -1- m

18 -H m 32H-m

18 + m 32-t^m

full displacement

7 -t- m or 3

7 -I- m or 3

7 + m or 3

7 + mor3

7 -I- m or 3

7 ^- m or 3

7 -I- m or 3

7-1- m or 3

7 + m or 3

7 -(- mor3

7 -t- m or 3

7 -t- m or 3

7 -t- m or 3

7 -I- m or 3

7-1- m or 3

7 -t- m or 3

7 -I- m or 3

7 -t- m or 3

7 -I- m or 3

7 -(- m or 3

7 -t- m or 3

7 -I- mors

7 + m or 3

7 -I- m or 3

7-1- m or 3

7 + m or 3

7 -I- m or 3

7 -t- m or 3

7 -I- m or 3

7 -I- m or 3

7 -I- m or 3

7 -I- m or 3

7 -(^ mor3

7 + m or 3

7 -t- m or 3

7 -^ m or 3

b g, h, r

b g, h, r

b g. h, j, R, r

b g. h,
i.

k, r

h. j, k, r

h, j. k, r

724 Programming the 80386

Table G.1: 80386 Instruction Set Clock Count Summary (continued)

INSTRUCTION FORMAT

CLOCK COUNT NOTES 1

Real

Address
Mode or

Virtual

8086

Mode

Protected

Virtual

Address
Mode

Real

Address
Mode or

Virtual

8086
Mode

Protected

Virtual

Address
Mode

CONDITIONAL JUMPS (Continued)

JNS = Jump on Not Sign

full displacement

full displacement

full displacement

full displacement

full displacement

full displacement

full displacement

7 -1- m or 3

7 + m or 3

7 -f m or 3

7 -H m or 3

7 + m or 3

7 + mor3

7 + m or 3

7 + m or 3

7 + m or 3

7 -1- m or 3

7 + m or 3

7 -t- m or 3

7 + m or 3

7 + m or 3

9 + m or 5

9-1- m or 5

11 -(- m

11 -1- m

11 -1- m

4/5

4/5

4/5

7 -t- m or 3

7 -1- m or 3

7 -1- m or 3

7 + m or 3

7 -1- m or 3

7 + mor3

7 -1- m or 3

7 -(- m or 3

7 + m or 3

7 + m or 3

7 + mor3

7 + mor3

7 -1- m or 3

7 -1- m or 3

9 + m or 5

9 + m or 5

11 -1- m

11 -1- m

11 -1- m

4/5

4/5

4/5

h

h

h

e-Bit Displacement | 11110 1 | 8-bit displ

Full Displacement | 1111 | 10001001

JP/JPE = Jump on Parity/Parity Even

8-Bit Displacement | 11110 10
|

8-bit displ

Full Displacement
|

1111 | 1 0001 01

JNP/JPO = Jump on Not Parity/Parity Odd

8-Bit DisDiacement | 11110 11 |
8-bit displ

Full Displacement | 1111
|

1 0001 01 1

JL/JNGE = Jump on Less/Not Greater or Equal

8-Bit Displacement | 111110 | 8-bit displ

Full Displacement | 1111
|

1 0001 100

JNL/JGE = Jump on Not Less/Greater or Equal

8-Bit Displacement | 111110 1
|

8-bit displ

Full Displacement | 1111 | 1 0001 1 01

JLE/JNG = Jump on Less or Equal/Not Greater

8-Bit Displacement | 1111110 | 6-bit displ

Full Displacement | 1111 | 1 0001 1 1

JNLE/JG = Jump on Not Less or Equal/Greater

8-8it Displacement | 1111111 | 8-bit displ

Full Displacement | 1111 | 1 0001 1 1 1

JCXZ = Jump on CX Zero
|
1110 11

|
8-bit displ

JECXZ = Jump on ECX Zero
|
1110 11

|
8-bit displ

(Address Size Prefix Differentiates JCXZ from JECXZ)

LOOP = Loop CX Times
|
1110 10

|
8-bit displ

Zero/Equal | 1110 1 | 8-bit displ

Not Zero
|
1110 | 8-blt displ

CONDITIONAL BYTE SET

NOTE: Times Are Register/Memory

SETO = Set Byte on Overflow

To Register/Memory
|

001111 | 1 001 0000 mod r/m
|

SETNO = Set Byte on Not Overflow

To Register/Memory
|

1111 | 1 001 0001 mod r/m
|

SETB/SETNAE = Set Byte on Below/Not Above or Equal

To Register/Memory
|
00001 1 1 1 | 10010010 mod r/m

|

80386 Instruction Format and Timing 725

Table G.1: 80386 Instruction Set Clock Count Summary (continued)

INSTRUCTION FORMAT

CLOCK COUNT { NOTES 1

Real

Address
Mode or

Virtual

8086

Mode

Protected

Virtual

Address
Mode

Real

Address
Mode or

Virtual

8086
Mode

Protected

Virtual

Address
Mode

CONDITIONAL BYTE SET (Continued)

SETNB = Set Byte on Not Below/Above or Equal

4/5

4/5

4/5

4/5

4/5

4/5

4/5

4/5

4/5

4/5

4/5

4/5

4/5

10

12

15 +

4(n - 1)

4

4/5

4/5

4/5

4/5

4/5

4/5

4/5

4/5

4/5

4/5

4/5

4/5

4/5

10

12

15 +

4(n - 1)

4

b

b

b

b

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

To Register/Memory
|
00001111

| 10010011 mod r/m
|

SETE/SETZ = Set Byte on Equal/Zero

To Register/Memory
|
00001111 | 10010100 mod r/m

|

SETNE/SETNZ = Set Byte on Not Equal/Not Zero

To Register/Memory
|
00001111 | 10010101 mod r/m

SETBE/SETNA = Set Byte on Below or Equal/Not Above

To Register/Memory
1
00001111 | 10010110 mod r/m

|

SETNBE/SETA = Set Byte on Not Below or Equal/Above

To Register/Memory
|
00001111 | 10010111 mod r/m

|

SETS = Set Byte on Sign

To Register/Memory
|
00001111 | 10011000 mod r/m

|

SETNS = Set Byte on Not Sign

To Register/Memory
|
00001111 | 10011001 mod r/m

|

SETP/SETPE = Set Byte on Parity/Parity Even

To Register/ Memory
|
00001111 | 10011010 modOOO r/m

|

SETNP/SETPO = Set Byte on Not Parity/Parity Odd

To Register/Memory
1
00001111 | 10011011 mod r/m

1

SETL/SETNGE ^ Set Byte on Less/Not Greater or Equal

To Register/Memory
1
00001111 | 10011100 mod r/m

|

SETNL/SETGE = Set Byte on Not Less/Greater or Equal

To Register/Memory
1
00001111 | 01111101 mod r/m

|

SETLE/SETNG = Set Byte on Less or Equal/Not Greater

To Register/Memory
1
00001111 | 10011110 mod 00 r/m

1

SETNLE/SETG = Set Byte on Not Less or Equal/Greater

To Register/Memory
1
00001111 |

10011111 mod 00 r/m
1

ENTER = Enter Procedure
|
110 10 | i6-bit displacem*3nt, 8-bit level {

L =

L= 1

L> 1

LEAVE = Leave Procedure
|
110 10 1

{

726 Programming the 80386

Table G.1: 80386 Instruction Set Clock Count Summary (continued)

CLOCK COUNT NOTES 1

Real Real
INSTRUCTION FORMAT Address Protected Address Protected

Mode or Virtual Mode or Virtual

Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode

INTERRUPT INSTRUCTIONS

INT = Interrupt:

37

33

b

b

Type Specified | 110 1101 [type |

Type 3 | 1 1 1 1 |

INTO = Interrupt 4 If Overflow Flag Set
|
110 1110 |

If OF = 1 35 b.e

If OF = 3 3 b,e

Bound = Interrupt S if Detect Value { 110 10
|
mod reg r/m

|

Out of Range

If Out of Range 44 b.e e, g, h, j, k, r

If In Range 10 10 b.e e. g, h,
i,

k, r

Protected Mode Only (INT)

INT: Type Specified

Via Interrupt or Trap Gate

to Same Privilege Level 59 g, i,
k, r

Via Interrupt or Trap Gate

to Different Privilege Level 99 g, j, k, r

From 286 Task to 286 TSS via Tasl(Gate 282 g. j, k, r

From 286 Task to 386 TSS via Task Gate 309 g, j, k. r

From 268 Task to virt 8086 md via Task Gate 226 g, j, k, r

From 386 Task to 286 TSS via Task Gate 284 g. j. k, r

From 386 Task to 386 TSS via Task Gate 311 g.i. k, r

From 368 Task to virt 8086 md via Task Gate 228 g.j. k, r

From virt 8086 md to 286 TSS via Task Gate 289 g.i.k.r

From virt 8086 md to 386 TSS via Task Gate 316 g, j, k, r

From virt 8086 md to priv level via Trap Gate or Interrupt Gate 119

INT: TYPE 3

Via Interrupt or Trap Gate

to Same Privilege Level 59 g.i.k.r

Via Interrupt or Trap Gate

to Different Privilege Level 99 g. j, k, r

From 286 Task to 286 TSS via Task Gate 278 g, j, k. r

From 286 Task to 386 TSS via Task Gate 305 g, i,
k, r

From 268 Task to Virt 8086 md via Task Gate 222 g. i.
k, r

From 386 Task to 286 TSS via Task Gate 280 g. i. k, r

From 386 Task to 386 TSS via Task Gate 307 g. j, k, r

From 368 Task to Virt 8086 md via Task Gate 224 g.i.k.r

From virt 8086 md to 286 TSS via Task Gate 285 g.j.k.r

From virt 8086 md to 386 TSS via Task Gate 312 g, i,
k, r

From virt 8086 md to priv level via Trap Gate or Interrupt Gate 119

INTO:

Via Interrupt or Trap Grate

to Same Privilege Level 59 g. i,
k. r

Via Interrupt or Trap Gate

to Different Privilege Level 99 g, j, k, r

From 286 Task to 286 TSS via Task Gate 280 g, j, k, r

From 286 Task to 386 TSS via Task Gate 307 g, j, k. r

From 268 Task to virt 8086 md via Task Gate 224 g. i.
k, r

From 386 Task to 286 TSS via Task Gate 282 g.j.k.r

From 386 Task to 386 TSS via Task Gate 309 g,i,k,r

From 368 Task to virt 8086 md via Task Gate 226 g.j.k.r

From virt 8086 md to 286 TSS via Task Gate 287 g, i.
k. r

From virt 8086 md to 386 TSS via Task Gate 314 g, i,
k, r

From virt 8086 md to priv level via Trap Gate or Interrupt Gate 119

80386 Instruction Format and Timing 727

Table G.1: 80386 Instruction Set Clock Count Summary (continued)

CLOCK COUNT NOTES 1

Real Real
INSTRUCTION FORMAT Address Protected Address Protected

Mode or Virtual Mode or Virtual

Virtual Address Virtual Address
8086 Mode S086 Mode
Mode Mode

INTERRUPT INSTRUCTIONS (Continued)

BOUND:

Via Interrupt or Trap Gate

to Same Privilege Level 59 g. j. k, r

Via Interrupt or Trap Gate

to Different Privilege Level 99 g. 1. k, r

From 286 Task to 286 TSS via Task Gate 254 g, j. k, r

From 286 Task to 386 TSS via Task Gate 284 g, i.
k, r

From 268 Task to virt 8086 Mode via Task Gate 231 g, i, k, r

From 386 Task to 286 TSS via Task Gate 264 g. i.
k, r

From 386 Task to 386 TSS via Task Gate 294 g, i.
k, r

From 368 Task to virt 8086 Mode via Task Gate 243 g, j, k, r,

From virt 8086 Mode to 286 TSS via Task Gate 264 g, i, k, r

From virt 8086 Mode to 386 TSS via Task Gate 294 g.j, k, r

From virt 8086 md to priv level via Trap Gate or Interrupt Gate 119

INTERRUPT RETURN

22 g, h, j, k. rIRET = Interrupt Return
|
110 1111 |

Protected Mode Only (IRET)

To the Same Privilege Level (within task) 38 g.h,i,k,r

To Different Privilege Level (within task) 82 g, h, j, k, r

From 286 Task to 286 TSS 232 h.i, k, r

From 286 Task to 386 TSS 265 h,j, k, r

From 286 Task to Virtual 8086 Task 214 h, j, k, r

From 286 Task to Virtual 8086 Mode (within task) 60

From 386 Task to 286 TSS 271 h,j, k, r

From 386 Task to 386 TSS 275 h,j, k. r

From 386 Task to Virtual 8086 Task 224 h, j, k, r

From 386 Task to Virtual 8086 Mode (within task) 60

PROCESSOR CONTROL

5 5 1
HLT = HALT

| 11110 10 |

MOV = Move to and From Control/Debug/Test Registers

10/4/5

6

22

16

14

22

12

12

3

6

10/4/5

6

22

16

14

22

12

12

3

6

CR0/CR2/CR3 from register | 1111 | 10 10 | 1 1 eee reg
|

Register From CRO-3 | 1111 | 10 | 1 1 eee reg
|

DRO-3 From Register | 1111 | 10 11 | 1 1 eee reg
|

DR6-7 From Register | 001111 | 00100011
| 1 1 eee reg

|

Register from DR6-7 | 0001111 | 00 1000 1 |
1 1 eee reg

|

Register from DRO-3 | 1111 | 10 1 |
1 1 eee reg

|

TR6-7 from Register | 001111 | 00100110 | 1 1 eee reg
|

Register from TR6-7 | 1111 | 10 10 | 1 1 eee reg
|

NOP = No Operation | 10 10 |

WAIT = Walt until BUSY # pin Is negated
|
10 110 11

|

728 Programming the 80386

Table G.1: 80386 Instruction Set Clock Count Summary (continued)

INSTRUCTION FORMAT

CLOCK COUNT NOTES 1

Real

Address
Mode or

Virtual

eOS6
Mode

Protected

Virtual

Address
Mode

Real

Address
Mode or

Virtual

8086
Mode

Protected

Virtual

Address
Mode

PROCESSOR EXTENSION INSTRUCTIONS

See

80287/80387

data sheets for

clock counts

N/A

N/A

11

11

N/A

10/13

N/A

N/A

N/A

9

20/21

15/16

11

11

20/24

10/13

20/21

25/26

23/27

9

a

a

b, c

b, c

a

b.c

a

a

a

b,c

h

m

h

g.h.j.p

h.l

h, 1

g,h,),i

h.l

9. h.i.P

g. h.
i. p

g.h.i.i

h

Processor Extension Escape | 1 1 1 1 T T T | mod L L L r/m
|

TTT and LLL bits are opcode

information for coprocessor.

PREFIX BYTES

Address SUe Prefix | 110 111
|

LOCK = Bus Lock Prefix
|
11110 |

Operand Size Prefix | 110 110
|

Segment Override Prefix

CS: 1 1 1 1 1 1

DS: 1 1 1 1 1 1 1

ES: 1 1 1 1 1

FS: 1 1 1 1 1

GS: 1 1 1 1 1 1

SS: 1 1 1 1 1 1

PROTECTION CONTROL

ARPL = Adjust Requested Privilege Level

From Register/Memory
|

1100011 | mod reg r/m
|

LAR = Load Access Rights

From Register/Memory
|
00001111 | 00000010 | mod reg r/m

|

lGDT = Load Global Descriptor

Table Register | 00001111 | 00000001 | mod 1 r/m
|

LIDT = Load Interrupt Descriptor

Table Register | 00001111 | 00000001 |mod0 11 r/m
|

LLDT = Load Local Descriptor

Register/Memory
|
00001111 | 00000000 |mod0 10 r/m

|

LMSW = Load Machine Status Word

From Register/Memory
|
00001111 | 00000001 | mod 1 1 r/m

|

LSL = Load Segment Limit

From Register/Memory
|
00001111 | 00000011 | mod reg r/m

|

Byte-Granular Limit

Page-Granular Limit

LTH = Load Task Register

From Register/Memory
|
00001111 | 00000000 | mod 1 r/m

|

SGDT = Store Global Descriptor

Table Register
|
00001111 | 00000001 | mod 000 r/m

|

80386 Instruction Format and Timing 729

Table G.1: 80386 Instruction Set Clock Count Summary (continued)

INSTRUCTION FORMAT

CLOCK COUNT NOTES 1

Real

Address
Mode or

Virtual

8086
Mode

Protected

Virtual

Address
Mode

Real

Address
Mode or

Virtual

8086
Mode

Protected

Virtual

Address
Mode

SIDT

SLOT

SMSW

STR

VERR

VERW

= Store Interrupt Descriptor

Table Register

= Store Local Descriptor Tab

To Register/Memory

= Store Machine
Status Word

= Store Task Register

To Register/Memory

= Verify Read Accesss

Register/Memory

= Verify Write Accesss

9

N/A

10/13

N/A

N/A

N/A

9

2/2

10/13

2/2

10/11

15/16

b.c

a

b,c

a

a

a

h

h

h. 1

h

g. h, j, p

g. h,
i, p

00001 1 1

1

1
00000001 mod 1 r/m

le Register

00001 1 1 1
1
00000000 mod 000 r/m

1

00001 1 1 1
1
00000001 modi r/m|

00001 1 1 1
1
00000000 mod 1 r/m|

00001 1 1 1
1
00000000 mod 1 r/m I

00001 1 1 1
1
00000000 mod 1 1 r/m|

NOTES

Notes a through c apply to 80386 real address mode only:

a. This is a protected mode instruction. Attempted execution in real mode will result in exception 6 (invalid

opcode).

b. Exception 13 fault (general protection violation) will occur in real mode if an operand reference is made
that partially or fully extends beyond the maximum CS, DS, ES, FS or GS limit, FFFFh. Exception 12 fault

(stack segment limit violation or not present) will occur in real mode if an operand reference is made that

partially or fully extends beyond the maximum SS limit.

c. This instruction may be executed in real mode. In real mode, its purpose is primarily to initialize the CPU
for protected mode.

Notes d through g apply to 80386 real address mode and 80386 protected virtual address mode:

d.The 80386 uses an early-out multiply algorithm. The actual number of clocks depends on the position of

the most significant bit in the operand (multiplier).

Clock counts given are minimum to maximum. To calculate actual clocks, use the formula
Actual Clock = if m <> then max ([log2 1 m

|
],3) + 6 clocks:

if m = then 9 clocks

where m is the multiplier.

e. An exception may occur, depending on the value of the operand.

f. LOCK* is automatically asserted, regardless of the presence or absence of the LOCK# prefix.

g. LOCK# is asserted during descriptor table accesses.

Notes h through r apply to 80386 protected virtual address mode only:

h. Exception 13 fault (general protection violation) will occur if the memory operand in CS, DS, ES, FS, or GS
cannot be used due to either a segment limit violation or access rights violation. If a stack limit is violated,

an exception 12 (stack segment limit violation or not present) occurs.

i. For segment load operations, the CPL, RPL, and DPL must agree with the privilege rules to avoid an
exception 13 fault (general protection violation). The segment's descriptor must indicate "present" or

exception 1 1 (CS, DS, ES, FS, GS not present) will occur. If the SS register is loaded and a stack segment
not present is detected, an exception 12 (stack segment limit violation or not present) occurs.

j. All segment descriptor accesses in the GDT or LDT made by this instruction will automatically assert

LOCK# to maintain descriptor integrity in multiprocessor systems.

k. JMP CALL, INT RET and IRET instructions referring to another code segment will cause an exception 13
(general protection violation) if an applicable privilege rule is violated.

I. An exception 13 fault occurs if CPL is greater than (0 is the most privileged level).

m. An exception 13 fault occurs if CPL is greater than lOPL.

730 Programming the 80386

n. The IF bit of the flag register is not updated if CPL is greater than lOPL. The lOPL and VM fields of the

flag register are updated only if CPL = 0.

0. The PE bit of the MSW (CRO) cannot be reset by this instruction. Use MOV into CRO if desiring to reset the

PE bit.

p. Any violation of privilege rules as applied to the selector operand does not cause a protection exception;

rather, the zero flag is cleared.

q.lf the coprocessor's nnemory operand violates a segment limit or segment access rights, an exception 13
fault (general protection violation) will occur before the ESC instruction is executed. An exception 12 fault

(stack segment limit violation or not present) will occur if the stack limit if violated by the operand's starting

address.

r The destination of a JMR CALL, INT RET or IRET must be in the defined limit of a code segment, or an
exception 13 (general protection violation) will occur.

The instruction clock count assumptions are as follows:

1. The instruction has been prefetched and decoded, and is ready

for execution.

2. Bus cycles do not require wait states.

3. There are no local bus HOLD requests delaying processor access

to the bus.

4. No exceptions are detected during instruction execution.

5. If an effective address is calculated, it does not use two general

register components. One register, scaling, and displacement can

be used within the clock counts shown. However, if the effective

address calculation uses two general register components, add 1

clock to the clock count shown.

Conventions for instruction clock count notation are as follows:

1. If two clock counts are given, the smaller refers to a register

operand and the larger refers to a memory operand.

2. n = number of times repeated.

3. m = number of components in the next instruction executed,

where the entire displacement (if any) counts as one component,

the entire immediate data (if any) counts as one component, and

each of the other bytes of the instruction and prefix(es) each count

as one component.

Instruction Encoding

All instruction encodings are subsets of the general instruction format

shown in Figure G.l. Instructions consist of one or two primary opcode

80386 Instruction Format and Timing 731

data32 16 8 noneTTTTTTTT TTTTTTTT mod T T T R/M ss index base d32 16 8 none

7 7 0765320765320
V J

Y V V
V J

Y Y
Opcode MODRM Address Immediate

(1 or 2 bytes) Field Displacement
V J

V (4, 2, 1 bytes

Data

(T represents an (4, 2, 1 bytes

(Register and address
opcode bit)

^ ^ or none) or none)

mode specifier)

r

t

*• Figured: General instruction format

bytes, possibly an address specifier consisting of the one- or two-byte

MODRM field and a displacement if required, and possibly an immedi-

ate data field.

Within the primary opcode or opcodes, smaller encoding fields may be

defined. These fields vary according to the class of operation. The fields

define such information as direction of the operation, size of the displace-

ments, register encoding, or sign extension.

Almost all instructions referring to an operand in memory have a one-

or two-byte MODRM field following the primary opcode byte(s).

Addressing modes can include a displacement immediately following

the MODRM field. If a displacement is present, the possible sizes are 8,

16, or 32 bits.

If the instruction specifies an immediate operand, the immediate op-

erand follows any displacement bytes. The immediate operand, if spe-

cified, is always the last field of the instruction.

Figure G.l illustrates several of the fields that can appear in an

instruction, such as the mod field and the R/M field, but the figure does

not show all fields. Several smaller fields also appear in certain instruc-

tions, sometimes within the opcode bytes themselves. Table G.2 is a

complete list of all fields appearing in the 80386 instruction set. Follow-

ing Table G.2 are detailed tables for each field.

732 Programming the 80386

FIELD NAME DESCRIPTION NUMBER OF BITS

w Specifies if data is byte or full size (full size

is either 16 or 32 bits)

1

d Specifies direction of data operation 1

s Specifies if an immediate data field must be

sign-extended

1

reg General register specifier 3

MODRM Address mode specifier (effective address can 2 for mod;

be a general register) 3 for R/M
ss Scale factor for scaled index address mode 2

base General register to be used as base register 3

index General register to be used as index register 3

sreg2 Segment register specifier for OS, SS, DS,

ES
2

sregS Segment register specifier for CS, SS, DS,

ES, FS, GS
3

tttn For conditional instructions, specifies a

condition asserted or a condition negated

4

Note: Table G.l shows encoding of individual instructions.

Table G. 2: Fields within 80386 instructions

32-Bit Extensions of the Instruction Set

With the 80386, the 86/186/286 instruction set is extended in two

orthogonal directions: 32-bit forms of all 16-bit instructions are added to

support the 32-bit data types, and 32-bit addressing modes are made
available for all instructions referencing memory. This orthogonal instruc-

tion set extension is accomplished by having a default (D) bit in the code

segment descriptor, and two instruction prefixes.

Whether the instruction defaults to operations of 16 bits or 32 bits

depends on the setting of the D bit in the code segment descriptor, which

gives the default length (either 32 bits or 16 bits) for both operands and

80386 Instruction Format and Timing 733

effective addresses when executing that code segment. In real mode or

virtual 8086 mode, no code segment descriptors are used, but a D value

of is assumed internally by the 80386 when operating in those modes
(for 16-bit default sizes compatible with the 8086/80186/80286).

Two prefixes, the operand size prefix and the effective address size

prefix, allow overriding individually the default selection of operand

size and effective address size. These prefixes may precede any opcode

bytes and affect only the instruction they precede. If necessary, one or

both of the prefixes may be placed before the opcode bytes. The pres-

ence of the operand size prefix and the effective address prefix will toggle

the operand size or the effective address size, respectively, to the value

"opposite" from the default setting. For example, if the default operand

size is for 32-bit data operations, then presence of the operand size prefix

toggles the instruction to 16-bit operation. As another example, if the

default effective address size is 16 bits, presence of the effective address

size prefix toggles the instruction to use 32-bit effective address

computations.

These 32-bit extensions are available in all 80386 modes, including

real mode or virtual 8086 mode. In these modes, the default is always 16

bits, so prefixes are needed to specify 3 2 -bit operands or addresses.

Unless specified otherwise, instructions with 8-bit and 16-bit operands

do not affect the contents of the high-order bits of the extended registers.

Encoding of Instruction Fields

Within the instruction are several fields indicating register selection,

addressing mode, and so on. The exact encodings of these fields are

defined here.

Encoding of Operand Length (w) Field

For any given instiTiction performing a data operation, the instruction

is executing a 32-bit operation or a 16-bit operation. Within the con-

straints of the operation size, the w field encodes the operand size as

either one byte or the full operation size, as shown in the table below.

Operand Size Operand Size

w Field during 16-bit during 32-bit

Data Operations Data Operations

8 bits 8 bits

1 16 bits 32 bits

734 Programming the 80386

Encoding of the General Register (reg) Field

The general register is specified by the reg field, which may appear in

the primary opcode bytes, or as the reg field of the MODRM byte, or

as the R/M field of the MODRM byte. Table G.3 shows the encoding

of the reg field when the w field is not present in the instruction, and
Table G.4 shows the reg-field encoding when w is present.

REGISTER SELECTED REGISTER SELECTED

REG FIELD DURING 16-BIT DURING 32-BIT

DATA OPERATIONS DATA OPERATIONS

000 AX EAX
001 CX ECX
010 DX EDX
oil BX EBX
100 SP ESP

101 BP EBP

no SI ESI

111 DI EDI

Table G.3: Encoding of reg field when w field is not present in instruction

80386 Instruction Format and Timing 735

REGISTER SPECIFIED BY REG FIELD

DURING 16-BIT DATA OPERATIONS:

REG FIELD FUNCTION OF w FIELD

(WHEN w = 0) (WHEN w = 1)

000 AL AX
001 CL cx
010 DL DX
oil BL BX
100 AH SP

101 CH BP

no DH SI

111 BH DI

REGISTER SPECIFIED BY REG FIELD

DURING 32-BIT DATA OPERATIONS:

REG FIELD FUNCTION OF w FIELD

(WHEN w = 0) (WHEN w = 1)

000 AL EAX
001 CL ECX
010 DL EDX
on BL EBX
100 AH ESP

101 CH EBP

no DH ESI

111 BH EDI

Table G.4: Encoding of reg field when w field is present in instruction

736 Programming the 80386

Encoding of the Segment Register (sreg) Field

The sreg field in certain instructions is a 2 -bit field allowing one of the

four 80286 segment registers to be specified (see Table G.5). The sreg

field in other instructions is a 3-bit field, allowing the 80386 FS and GS
segment registers to be specified (see Table G.6).

SEGMENT

2-BIT REGISTER

sreg2 FIELD SELECTED

00 ES

01 CS

10 ss

11 DS

Table G.5: 2 -bit sreg2 field

SEGMENT
3-BIT REGISTER

sregS FIELD SELECTED

000 ES

001 CS

010 ss

oil DS

100 FS

101 GS

110 do not use

111 do not use

Table G.6: 3 -bit sreg3 field

Encoding of Address IVIode

Except for special instructions, such as PUSH or POP, where the

addressing mode is predetermined, the addressing mode for the current

80386 Instruction Format and Timing 737

instruction is specified by a one- or two-byte MODRM field, which fol-

lows the opcode byte(s).

A two-byte MODRM field is specified when using 32-bit addressing

mode and the MODRM field has R/M = 100 and mod = 00, 01, or

10. The 32-bit addressing mode is then a fiinction of the mod, ss, index,

and base fields.

The MODRM field also contains 3 bits (shown as TTT in Figure G.l)

sometimes used as an extension of the primary opcode. The 3 bits, how-

ever, may also be used as a register field (reg).

When calculating an effective address, either 16-bit addressing or

32-bit addressing is used. The 16-bit addressing uses 16-bit address com-

ponents to calculate the effective address, whereas 3 2 -bit addressing uses

32-bit address components to calculate the effective address. When 16-bit

addressing is used, the MODRM byte is interpreted as a 16-bit address-

ing mode specifier. When 32-bit addressing is used, the MODRM byte

is interpreted as a 3 2 -bit addressing mode specifier.

Table G.7 defines all encodings of all 16-bit addressing modes, and

Tables G.8 and G.9 define all encodings of 32-bit addressing modes.

MODRM EFFECTIVE ADDRESS MODRM EFFECTIVE ADDRESS

GO 000 DS:[BX+SI] 10 000 DS:[BX+SI+dl6]

00 001 DS:[BX+DI] 10 001 DS:[BX+DI+dl6]

00 010 SS:[BP+SI] 10 010 SS:[BP+SI+dl6]

00 on SS:[BP+DI] 10 on SS:[BP+DI+dl6]

00 100 DS:[SI] 10 100 DS:[SI+dl6]

00 101 DS:[DI] 10 101 DS:[DI+dl6]

00 no DS:dl6 10 no SS:[BP+dl6]

00 111 DS:[BX] 10 111 DS:[BX+dl6]

01 000 DS:[BX+SI+d8] 11 000 register—see below

01 001 DS:[BX+DI+d8] n 001 register—see below

01 010 SS:[BP+SI+d8] 11 010 register—see below

01 on SS:[BP+DI+d8] 11 on register—see below

01 100 DS:[SI+d8] 11 100 register—see below

01 101 DS:[DI+d8] 11 101 register—see below

01 no SS:[BP+d8] 11 no register—see below

01 in DS:[BX+d8] 11 111 register—see below

Table G.7: Encoding of 16-bit address mode with MODRM byte

738 Programming the 80386

MODRM

REGISTER SPECIFIED BY R/M

DURING 16-BIT DATA OPERATIONS:

FUNCTION OF w FIELD

(WHEN w = 0) (WHEN w = 1)

11 000 AL AX
11 001 CL CX
11 010 DL DX
11 on BL BX
11 100 AH SP

11 101 CH BP

11 no DH SI

11 111 BH DI

REGISTER SPECIFIED BY R/M

DURING 32-BIT DATA OPERATIONS:

MODRM FUNCTION OF w FIELD

(WHEN w = 0) (WHEN w = 1)

11 000 AL EAX
n 001 CL ECX
11 010 DL EDX
11 on BL EBX
11 100 AH ESP

11 101 CH EBP

11 no DH ESI

11 111 BH EDI

Table G. 7: Encoding of 16-bit address mode with MODRM byte (continued)

80386 Instruction Format and Timing 739

MODRM EFFECTIVE ADDRESS MODRM EFFECTIVE ADDRESS

00 000 DS:[EAX] 10 000 DS:[EAX+d32]

00 001 DS:[ECX] 10 001 DS:[ECX+d32]

00 010 DS:[EDX] 10 010 DS:[EDX+d32]

00 on DS:[EBX] 10 on DS:[EBX+d32]

00 100 escape to two-byte 10 100 escape to two-byte

00 101 DS:d32 10 101 SS:[EBP+d32]

00 no DS:[ESI] 10 no DS:[ESI+d32]

00 111 DS:[EDI] 10 111 DS:[EDI+d32]

01 000 DS:[EAX+d8] 11 000 register—see below

01 001 DS:[ECX+d8] 11 001 register—see below

01 010 DS:[EDX+d8] 11 010 register—see below

01 on DS:[EBX+d8] 11 on register—see below

01 100 escape to two-byte 11 100 register—see below

01 101 SS:[EBP+d8] 11 101 register—see below

01 no DS:[ESI+d8] 11 no register—see below

01 111 DS:[EDI+d8] 11 111 register—see below

REGISTER SPECIFIED BY REG OR R/M

DURING 16-BIT DATA OPERATIONS:

MODRM FUNCTION OF w 1=IELD

(WHEN w = 0) (WHEN w = 1)

11 000 AL AX
11 001 CL CX
11 010 DL DX
11 on BL BX
11 100 AH SP

11 101 CH BP

11 no DH SI

11 111 BH DI

Table G.8: Encoding of 32-bit address mode with one-byte MODRM field

740 Programming the 80386

REGISTER SPECIFIED BY REG OR R/M

DURING 32-BIT DATA OPERATIONS:

MODRM FUNCTION OF w FIELD

(WHEN w = 0) (WHEN w = 1)

11 000 AL EAX
11 001 CL ECX
11 010 DL EDX
11 on BL EBX
11 100 AH ESP

11 101 CH EBP

11 no DH ESI

11 111 BH EDI

Table G.8: Encoding of 32-bit address mode with one-byte MODRM field (continued)

MOD BASE EFFECTIVE ADDRESS

00 000 DS
:
[EAX + (scaled index)]

00 001 DS: [ECX + (scaled index)]

00 010 DS:[EDX -h (scaled index)]

00 on DS:[EBX+ (scaled index)]

00 100 SS: [ESP + (scaled index)]

00 101 DS:[d32-H (scaled index)]

00 no DS :[ESI -h (scaled index)]

00 111 DS: [EDI + (scaled index)]

01 000 DS: [EAX + (scaled index) -hd8]

01 001 DS :[ECX -H (scaled index) -t-dS]

01 010 DS:[EDX -h (scaled index) -^d8]

01 on DS:[EBX + (scaled index) -Hd8]

01 100 SS: [ESP + (scaled index) -^dS]

01 101 DS:[EBP -h (scaled index) +d8]

01 no DS:[ESI -(-(scaled index) -^d8]

01 111 DS:[EDI -^ (scaled index) +d8]

Table G.9: Encoding of 32-bit address mode with two-byte MODRM field

80386 Instruction Format and Timing 741

10 000 DS:[EAX + (scaled index) +d32]

10 001 DS:[ECX + (scaled index) +d32]

10 010 DS:[EDX + (scaled index) +d32]

10 on DS:[EBX + (scaled index) +d32]

10 100 SS:[ESP + (scaled index) +d32]

10 101 DS: [EBP + (scaled index) +d32]

10 no DS:[ESI + (scaled index) +d32]

10 111 DS:[EDI + (scaled index) +d32]

SS SCALE FACTOR

00 xl

01 x2

10 x4

11 x8

INDEX INDEX REGISTER

000 EAX
001 ECX
010 EDX
on EBX
100 no index reg"

101 EBP

no ESI

111 EDI

**
Important Note:

When 1ndex field is 100, indicating "no index register,"

then SS field MUST equal 00. If index is 100 and ss does

not equ al 00, the effective address is undefined.

Table G. 9: Encoding of 3 2 -bit address mode with two-byte MODRM field (commued)

742 Programming the 80386

Encoding of Operation Direction (d) Field

In many two-operand instructions, the d field is present to indicate

which operand is considered the source and which is the destination.

d Direction of Operation

Register/Memory"*-Register

"reg" field indicates source operand;

"mod R/M" or "mod ss index base" indicates destination

operand

1 Register'*-Register/Memory

"reg" field indicates destination operand;

"mod R/M" or "mod ss index base" indicates source operand

Encoding of Sign-Extend (s) Field

The s field occurs primarily in instructions with immediate data fields.

The s field has an effect only if the size of the immediate data is 8 bits

and is being placed in a 16-bit or 32-bit destination.

Effect on Effect on

s Immediate DataS Immediate Data 16/32

None None

1 Sign-extend Data8 to fill 16-bit or None
32-bit destination

Encoding of Conditional Test (tttn) Field

For the conditional instructions (conditional jumps and set on condition),

tttn is encoded where n means use the condition (n =0) or its negation

(n = 1), and ttt gives the condition to test, as shown in Table G.IO.

Encoding of Control or Debug Register (eee) Field

For the loading and storing of the control, debug, and test registers,

the encoding is as follows:

1. When interpreted as a control register field

eee Code Reg Name

000 CRO
010 CR2

Oil CR3

80386 Instruction Format and Timing 743

2. When interpreted as a debug register field

eee Code Reg Name

000 DRO
001 DRl

010 DR2
on DR3
no DR6
111 DR7

3. When interpreted as a test register field

eee Code Reg Name

no TR6
111 TR7

Do not use any other encoding.

MNEMONIC CONDITION tttn

O Overflow 0000

NO No Overflow 0001

B/NAE Below/Not Above or Equal 0010

NB/AE Not Below/Above or Equal 0011

E/Z Equal/Zero 0100

NE/NZ Not Equal/Not Zero 0101

BE/NA Below or Equal/Not Above Olio

NBE/A Not Below or Equal/Above 0111

S Sign 1000

NS Not Sign 1001

P/PE Parity/Parity Even 1010

NP/PO Not Parity/Parity Odd 1011

L/NGE Less Than/Not Greater or Equal 1100

NL/GE Not Less Than/Greater or Equal 1101

LE/NG Less Than or Equal/Not Greater Than 1110

NLE/G Not Less Than or Equal/Greater Than nil

Table G. 10: Encoding of conditional test field

i<«*S.\

>»*!> '^*

Appendix

1st Byte

2nd Byte Bytes 3-7
ASM386 Instruction

Format
Hex Binary

D8 1101 1000 MOD 000 R/M SIB, displ FADD single-real

D8 1101 1000 MOD 001 R/M SIB, displ FMUL single-real

D8 1101 1000 MOD 010 R/M SIB, displ FCOM single-real

D8 1101 1000 MOD Oil R/M SIB, displ FCOMP single-real

D8 1101 1000 MOD 100 R/M SIB, displ FSUB single-real

D8 1101 1000 MOD 101 R/M SIB, displ FSUBR single-real

D8 1101 1000 MOD 110 R/M SIB, displ FDIV single-real

D8 1101 1000 MOD 111 R/M SIB, displ FDIVR single-real

D8 1101 1000 1100 REG FADD ST,ST(i)

D8 1101 1000 1100 1 REG FMUL ST,ST(i)

D8 1101 1000 1101 OREG FCOM ST(i)

D8 1101 1000 1101 1 REG FCOMP ST(i)

D8 1101 1000 11100REG FSUB ST,ST(i)

D8 1101 1000 11101 REG FSUBR ST,ST(i)

D8 1101 1000 1111 OREG FDIV ST,ST(i)

D8 1101 1000 11111 REG FDIVR ST,ST(i)

D9 1101 1001 MOD 000 R/M SIB, displ FLD single-real

D9 1101 1001 MOD 001 R/M reserved

D9 1101 1001 MOD 010 R/M SIB, displ FST single-real

D9 1101 1001 MOD Oil R/M SIB, displ FSTP single-real

D9 1101 1001 MOD 100 R/M SIB, displ FLDENV 14 or 28 bytes***

D9 1101 1001 MOD 101 R/M SIB, displ FLDCW 2 bytes

D9 1101 1001 MOD 110 R/M SIB, displ FSTENV 14 or 28 bytes***

D9 1101 1001 MOD 111 R/M SIB, displ FSTCW 2 bytes

D9 1101 1001 1100 OREG FLD ST(i)

Reprinted by permission of Intel Corporation, copyright 1987.

746 Programming the 80386

1st Byte

2nd Byte Bytes 3-7
ASM386 Instruction

Format
Hex Binary

D9 1101 1001 1100 1 REG FXCH ST(i)

D9 1101 1001 1101 0000 FNOP
D9 1101 1001 1101 0001 reserved

D9 1101 1001 1101 001- reserved

D9 1101 1001 1101 01— reserved

D9 1101 1001 1101 1 REG *(1)

D9 1101 1001 1110 0000 FCHS
D9 1101 1001 1110 0001 FABS
D9 1101 1001 1110001- reserved

D9 1101 1001 11100100 FTST
D9 1101 1001 11100101 FXAM
D9 1101 1001 1110011- reserved

D9 1101 1001 1110 1000 FLD1
D9 1101 1001 1110 1001 FLDL2T
D9 1101 1001 11101010 FLDL2E
D9 1101 1001 11101011 FLDPI
D9 1101 1001 1110 1100 FLDLG2
D9 1101 1001 11101101 FLDLN2
D9 1101 1001 1110 1110 FLDZ
D9 1101 1001 1110 1111 reserved

D9 1101 1001 1111 0000 F2XM1
D9 1101 1001 1111 0001 FYL2X
D9 1101 1001 1111 0010 FPTAN
D9 1101 1001 1111 0011 FPATAN
D9 1101 1001 1111 0100 EXTRACT
D9 1101 1001 1111 0101 FPREM1
D9 1101 1001 1111 0110 FDECSTP
D9 1101 1001 1111 0111 FINCSTP
D9 1101 1001 1111 1000 FPREM
D9 1101 1001 1111 1001 FYL2XP1
D9 1101 1001 1111 1010 FSQRT

80387 Machine Instruction Decoding Guide 747

1st Byte

2nd Byte Bytes 3-7
ASM386 Instruction

Format
Hex Binary

D9 1101 1001 1111 1011 FSINCOS
D9 1101 1001 1111 1100 FRNDINT
D9 1101 1001 1111 1101 FSCALE
D9 1101 1001 1111 1110 FSIN
D9 1101 1001 1111 1111 FCOS
DA 1101 1010 MOD 000 R/M SIB, displ FIADD short-integer

DA 1101 1010 MOD 001 R/M SIB, displ FIMUL short-integer

DA 1101 1010 MOD 010 R/M SIB, displ FICOM short-integer

DA 1101 1010 MOD Oil R/M SIB, displ FICOMP short-integer

DA 1101 1010 MOD 100 R/M SIB, displ FISUB short-integer

DA 1101 1010 MOD 101 R/M SIB, displ FISUBR short-integer

DA 1101 1010 MOD 110 R/M SIB, displ FIDIV short-integer

DA 1101 1010 MOD 111 R/M SIB, displ FIDIVR short-integer

DA 1101 1010 110 reserved

DA 1101 1010 1110 reserved

DA 1101 1010 1110 1000 reserved

DA 1016 1010 1110 1001 FUCOMPP 1

DA 1101 1010 1110 101- reserved

DA 1101 1010 1110 11— reserved

DA 1101 1010 1111 reserved

DB 1101 1011 MOD 000 R/M SIB, displ FILD short-integer

DB 1101 1011 MOD 001 R/M SIB, displ reserved

DB 1101 1011 MOD 010 R/M SIB, displ FIST short-integer

DB 1101 1011 MOD Oil R/M SIB, displ FISTP short-integer

DB 1101 1011 MOD 100 R/M SIB, displ reserved

DB 1101 1011 MOD 101 R/M SIB, displ FLD extended-real

DB 1101 1011 MOD 110 R/M* SIB, displ reserved

DB 1101 1011 MOD 111 R/M SIB, displ FSTP extended-real

DB 1101 1011 110 reserved

DB 1101 1011 1110 0000 "(1)

DB 1101 1011 1110 0001 "(2)

748 Programming the 80386

1st Byte

2nd Byte Bytes 3-7
ASM386 Instruction

Format
Hex Binary

DB 1101 1011 11100010 FCLEX
DB 1101 1011 11100011 FINIT

DB 1101 1011 11100100 "(3)

DB 1101 1011 11100101 reserved

DB 1101 1011 1110011- reserved

DB 1101 1011 11101 reserved

DB 1101 1011 1111— reserved

DC 1101 1100 MOD 000 R/M SIB, displ FADD double-real

DC 1101 1100 MOD 001 R/M SIB, displ FMUL double-real

DC 1101 1100 MOD 010 R/M SIB, displ FCOM double-real

DC 1101 1100 MOD Oil R/M SIB, displ FCOMP double-real

DC 1101 1100 MOD 100 R/M SIB, displ FSUB double-real

DC 1101 1100 MOD 101 R/M SIB, displ FSUBR double-real

DC 1101 1100 MOD 110 R/M SIB, displ FDIV double-real

DC 1101 1100 MOD 111 R/M SIB, displ FDIVR double-real

DC 1101 1100 1100 REG FADD ST(i),ST

DC 1101 1100 1100 1 REG FMUL ST(i),ST

DC 1101 1100 1101 OREG *(2)

DC 1101 100 1101 1 REG *(3)

DC 1101 1100 11100REG FSUBR ST(i),ST

DC 1101 1100 11101 REG FSUB ST(i),ST

DC 1101 1100 1111 OREG FDIVR ST(i),ST

DC 1101 1100 11111 REG FDIV ST(i),ST

DD 1101 1101 MOD 000 R/M SIB, displ FLD double-real

DD 1101 1101 MOD 001 R/M reserved

DD 1101 1101 MOD 010 R/M SIB, displ FST double-real

DD 1101 1101 MOD Oil R/M SIB, displ FSTP double-real

DD 1101 1101 MOD 100 R/M SIB, displ FRSTOR 94 or 1 08 bytes***

DD 1101 1101 MOD 101 R/M SIB, displ reserved

DD 1101 1101 MOD 110 R/M SIB, displ FSAVE 94 or 1 08 bytes***

DD 1101 1101 MOD 111 R/M SIB, displ FSTSW 2 bytes

80387 Machine Instruction Decoding Guide 749

1st Bvte

2nd Byte Bytes 3-7
ASM386 Instruction

|

Format
Hex Binary

DD 1101 1101 1100 REG FFREE ST(i)

DD 1101 1101 1100 1 REG *{4)

DD 1101 1101 1101 OREG FST ST(i)

DD 1101 1101 1101 1 REG FSTP ST(i)

DD 1101 1101 11100REG FUCOM ST(i)

DD 1101 1101 1110 1 REG FUCOMP ST(i)

DD 1101 1101 1111 reserved

DE 1101 1110 MOD 000 R/M SIB, displ FIADD word-integer

DE 1101 1110 MOD 001 R/M SIB, displ FIMUL word-integer

DE 1101 1110 MOD 010 R/M SIB, displ FICOM word-integer

DE 1101 1110 MOD Oil R/M SIB, displ FICOMP word-integer

DE 1101 1110 MOD 100 R/M SIB, displ FISUB word-integer

DE 1101 1110 MOD 101 R/M SIB, displ FISUBR word-integer

DE 1101 1110 MOD 110 R/M SIB, displ FIDIV word-integer

DE 1101 1110 MOD 111 R/M SIB, displ FIDIVR word-integer

DE 1101 1110 1100 OREG FADDP ST(i),ST

DE 1101 1110 1100 1 REG FMULP ST(i),ST

DE 1101 1110 1101 *{5)

DE 1101 1110 1101 1000 reserved

DE 1101 1110 1101 1001 FCOMPP
DE 1101 1110 1101 101- reserved

DE 1101 1110 1101 11-- reserved

DE 1101 1110 11100REG FSUBRP ST(i),ST

DE 1101 1110 1110 1 REG FSUBP ST(i),ST

DE 1101 1110 1111 OREG FDIVRP ST(i),ST

DE 1101 1110 11111 REG FDIVP ST(i),ST

DF 1101 1111 MOD 000 R/M SIB, displ FILD word-integer

DF 1101 1111 MOD 001 R/M SIB, displ reserved

DF 1101 1111 MOD 010 R/M SIB, displ FIST word-integer

DF 1101 1111 MOD Oil R/M SIB, displ FISTP word-integer

DF 1101 1111 MOD 100 R/M SIB, displ FBLD packed-decimal

750 Programming the 80386

1st Byte

2nd Byte Bytes 3-7
ASM386 Instruction

Format
Hex Binary

DF 1101 1111 MOD 101 R/M SIB, displ FILD long-integer

DF 1101 1111 MOD 110 R/M SIB, displ FBSTP packed-decimal

DF 1101 1111 MOD 111 R/M SIB, displ FISTP long-integer

DF 1101 1111 1100 REG *(6)

DF 1101 1111 1100 1 REG *(7)

DF 1101 1111 1101 OREG *(8)

DF 1101 1111 1101 1 REG *(9)

DF 1101 1111 1110 0000 FSTSW AX
DF 1101 1111 1110 0001 reserved

DF 1101 1111 1110001- reserved

DF 1101 1111 111001— reserved

DF 1101 1111 1110 1 reserved

DF 1101 1111 1111 reserved

NOTES

The marked encodings are not generated by the language translators. If, however, the 80387 encounters one of these

encodings in the instruction stream, it will execute it as follows:

(1) FSTP ST(i)

(2) FCOfVI ST(i)

(3) FCOMP ST(i)

(4) FXCH ST(i)

(5) FCOMP ST(i)

(6) FFREE ST(i) and pop stack

(7) FXCH ST(i)

(8) FSTP ST(i)

(9) FSTP ST(i)

The marked encodings can be generated by the language translators; however, the 80387 treats them as FNOP They cor-

respond to the following 8087 or 80287 instructions:

(1) FENI

(2) FDISI

(3) FSETPM

The size of operand transferred depends on the 80386 operand size attribute in effect for the instruction.

Appendix

^^^^^^1 INSTRUCTIONS FOR THE 80387 ASSUME ONE OF

the five forms shown in Table I.l. In all cases, instructions are at least

two bytes long and begin with the bit pattern 11011b, which identifies

the floating-point instructions. Instructions that refer to memory oper-

ands specify addresses using the 80386 addressing modes.

The instruction summaries in Table 1.2 assume the following:

1. The instruction has been prefetched and decoded, and is ready

for execution.

2. Bus cycles do not require wait states.

3. There are no local bus HOLD requests delaying processor access

to the bus.

4. No exceptions are detected during instruction execution.

5. If an effective address is calculated, it does not use two general

register components. One register, scaling, and displacement can

be used within the clock counts shown. However, if the effective

address calculation uses two general register components, add 1

clock to the clock count shown.

Adapted and reprinted by permission of Intel Corporation, copyright 1987.

754 Programming the 80386

Table 1.1 80387 Instruction Forms

Instruction Optional

Fields
First Byte Second Byte

11011 OPA 1 MOD 1 OPB R/M SIB DISP

11011 MF OPA MOD OPB R/M SIB DISP

11011 d P OPA 1 1 OPB ST(i)

11011 1 1 1 1 OP

11011 1 1 1 1 1 OP

15-11 10 4 3 2 10

NOTES

OP = Instruction opcode, possibly split into two
fields, OPA and OPB

MF = Memory Format
00—32-bit real

01—32-bit integer

10—64-bit real

11—64-bit integer

P = Pop
0—Do not pop stack

1—Pop stack after operation

ESC = 11011

d = Destination

0— Destination is ST(0)

1— Destination is ST(i)

R XOR d = 0— Destination (op) Source

R XOR d = 1—Source (op) Destination

ST(i) = Register stack element /

000 = Stack top

001 = Second stack element

111 = Eighth stack element

MOD (mode field) and R/M (register/memory speci-

fier) have the same interpretation as the corres-

ponding fields of 80386 instructions (refer to

Appendix G).

SIB (Scale Index Base) byte and DISP (displace-

ment) are optionally present in instructions that have
MOD and R/M fields. Their presence depends on
the values of MOD and R/M, as for 80386 instruc-

tions.

80387 Extensions to the 80386 Instruction Set 755

Table 1.2 80387 Extensions to the 80386 Instruction Set

Instruction

Encoding Clock Count Range {

Byte Byte
1

Optional
Bytes 2-6

32-Bit

Real
32-Bit

Integer
64-Bit

Real
16-Bit

Integer

DATA TRANSFER

FLD = Loada

Integer/real memory to ST(0)

Long integer memory to ST(0)

Extended real memory to ST(0)

BCD memory to ST(0)

ST(i) to ST(0)

FST = Store

ST(0) to integer/real memory

ST(0) to ST(i)

FSTP = Store and Pop

ST(0) to Integer/ real memory

ST(0) to long integer memory

ST(0) to extended real

ST(0) to BCD memory

ST(0) to ST(i)

FXCH = Exctiange

ST(i) and ST(0)

COMPARISON

FCOM = Compare

Integer/real memory to ST(0)

ST(i) to ST(0)

FCOMP = Compare and pop

Integer/real memory to ST

ST(i) to ST(0)

FCOMPP = Compare and pop twice

ST(1)toST(0)

FTST = Test ST(0)

20

44

44

26

26

45-52 25

56-67

44

266-275

14

79-93 45

11

79-93 45

80-97

53

512-534

12

18

56-63 31

24

56-63 31

26

26

28

61-65

82-95

82-95

71-75

71-75

ESC MF 1 MOD 000 R/M SIB/DISP

ESC 1 11 MOD 101 R/M SIB/DISP

ESC Oil MOD 101 R/M SIB/DISP

ESC 1 1

1

MOD 100 R/M SIB/DISP

ESC 001 IIOOOST(i)

ESC MF 1 MOD 010 R/M SIB/DISP

ESC101 11010ST(i)

ESC MF 1 MOD Oil R/M SIB/DISP

ESC 1 1

1

MOD 111 R/M SIB/DISP

ESC 01

1

MOD 111 R/M SIB/DISP

ESC 1 11 MOD 110 R/M SIB/DISP

ESC 101 11001 ST(i)

ESC 001 11001 ST{i)

ESC MF MOD 010 R/M SIB/DISP

ESC 000 IIOIOST(i)

ESC MF MOD 011 R/M SIB/DISP

ESC 000 11011 ST(i)

ESC 110 1101 1001

ESC 001 11100100

FUCOM = Unordered compare

FUCOMP - Unordered compare

arKlpop

FUCOMPP = Unordered compare
arKi pop twice

ESC101 mOOSTfi) 24

26

26

ESC101 11101 ST(i)

ESC 010 11101001

FXAM = Examine ST(0)

CONSTANTS

FLDZ = Load + 0.0 into ST(0)

FLD1 = Load + 1 .0 into ST(0)

FLDPI = Load pi into ST(0)

FLDL2T = Load Iog2(10) into ST(0)

ESC 001 11100101 30-38

20

24

40

40

ESC 001 11101110

ESC 001 1110 1000

ESC 001 11101011

ESC 001 11101001

Shaded areas indicate instructions not available in 80287/8087.

NOTE

a. When loading single- or double-precision zero from memory, add 5 clocks.

756 Programming the 80386

80387 Extensions to the 80386 Instruction Set (Continued)

Instruction

Encoding Clock Count Range |

Byte Byte
1

Optional

Bytes 2-6
32-Blt

Real

32-Blt

Integer

64-Blt

Real

16-Bit

Integer

CONSTANTS (Continued)

FLDL2E = Load legale) into ST(0)

FLDLG2 = Load logio(2) into ST(0)

FLDLN2 = Load loge(2) into ST(0)

ARITHMETIC

FADD = Add

Integer/real memory with ST(0)

ST(i) and ST(0)

FSUB = Subtract

Integer/real memory with ST(0)

ST(i) and ST(0)

FMUL = Multiply

Integer/real memory with ST(0)

ST(i) and ST(0)

FDIV = Divide

Integer/real memory with ST(0)

ST(i) and ST(0)

FSQRTi = Square root

FSCALE = Scale ST(0) by ST(1)

FPREM = Partial remainder

40

41

41

24-32 57-72 29-37

23-31"

24-32 57-82 28-36

26-34d

27-35 61-82 32-57

29-578

89 120-127' 94

88h

122-129

67-86

74-155

71-85

71 -83C

76-87

136-1409

ESC 001 11101010

ESC 001 11101100

ESC 001 11101101

ESC MF MODOOOR/M SIB/DISP

ESC d P IIOOOST(i)

ESC MF MOD10RR/M SIB/DISP

ESC d P 1110RR/M

ESC MF MOD 001 R/M SIB/DISP

ESC d P 1100 1 R/M

ESC MF MOD 11 RR/M SIB/DISP

ESC d P 1111 RR/M

ESC 001 1111 1010

ESC 001 1111 1101

ESC 001 1111 1000

F1>REIIt ==" Partial remainder

(IEEE) 95-18SESC 001 11110101

FRNDINT = Round ST(0)

to integer

FXTRACT = Extract components
of ST(0)

FABS = Absolute value of ST(0)

FCHS = Change sign of ST(0)

66-80

70-76

22

24-25

ESC 001 1111 1100

ESC 001 1111 0100

ESC 001 1110 0001

ESC 001 1110 0000

Shaded areas indicate instructions not available in 80287/8087.

NOTES

b. Add 3 docks to the range when d = 1

.

c. Add 1 clock to each range when R = 1

.

d. Add 3 clocks to the range when d = 0.

e. typical = 52 (When d = 0, 46-54, typical = 49).

f. Add 1 clock to the range when R = 1

.

g. 135-141 when R = 1.

h. Add 3 clocks to the range when d = 1.

i. -0<ST(0)< +0O.

80387 Extensions to the 80386 Instruction Set 757

80387 Extensions to the 80386 Instruction Set (Continued)

Instruction

Encoding
Clock Count RangeByte Byte

1

Optional

Bytes 2-6

TRANSCENDENTAL

re0S'< = Cosine of ST(0) ESC 001 1111 1111 123-772)

FPTAN'< = Partial tangent of ST(0)

FPATAN = Partial arctangent

ESC 001 1111 0010 191-4971

314-487ESC 001 1111 0011

l=SINk = SineofST(O)

FSINCOS* = Sine and cosine of ST(0)

ESC 001 1111 1110 122-77li

194-809iESC 001 1111 1011

F2XM1" = 2ST(0) -
1

FYL2Xn' = ST(1) • log2(ST(0))

FYL2XPin = ST(1) • log2(ST(0) + 1.0)

PROCESSOR CONTROL

FINIT = Initialize NPX

FSTSW AX = Store status word

FLDCW = Load control word

FSTCW = Store control word

FSTSW = Store status word

FCLEX = Clear exceptions

FSTENV = Store environment

FLDENV = Load environment

FSAVE = Save state

FRSTOR = Restore state

FINCSTP = Increment stack pointer

FDECSTP = Decrement stack pointer

FFREE = Free ST(i)

FNOP = No operations

ESC 001 1111 0000 211-476

120-538

257-547

33

13

19

15

15

11

103-104

71

375-376

308

21

22

18

12

ESC 001 1111 0001

ESC 001 1111 1001

ESC 011 11100011

ESC 1 1

1

1110 0000

ESC 001 MOD 101 R/M SIB/DISP

ESC 101 MOD 111 R/M SIB/DISP

ESC 101 MOD 111 R/M SIB/DISP

ESC 01 1 11100010

ESC 001 MOD 110 R/M SIB/DISP

ESC 001 MOD 100 R/M SIB/DISP

ESC 101 MOD 110 R/M SIB/DISP

ESC 101 MOD 100 R/M SIB/DISP

ESC 001 1111 0111

ESC 001 1111 0110

ESC 101 IIOOOST(i)

ESC 001 1101 0000

Shaded areas indicate instructions not available in 80287/8087

NOTES

J.
These timings hold for operands in the range

|
x

|

< nl4.

ands not in this range, up to 76 additional clocks nnay be
reduce the operand,

k. <
I

ST(0)
I

< 2^3

I. -1.0<ST(0)<1.0.
m.O<ST(0) < -oo, -00 < ST(1) < +0O

n. 0< |ST(0)| < (2 - SQRT(2))/2, -«> < ST(1) < +<».

For oper-

needed to

Index I

Index 759

$GP, 507-508, 522, 561, 576

$NP, 507-508, 560, 576

$SS, 507-508, 561

$TS, 506-508, 560

2''-l (F2XM1) instruction, 376, 422

80386

compared to 8086, 679-683

compared to 80286, 683-684

and coprocessor, 16-17

executing 8086 programs, 646-674

executing 80286 programs, 675-677

initialization example, 592-623

instruction decoding guide, 705-715

instruction encoding and clock count

summary, 715-743

integer instructions, 119-267, 405-420

multiple-segment instructions, 269-289

operating-system instructions, 290-319

real mode, 657-658

registers of, 77-80

state at initialization, 669-671

virtual-8086 mode, 655-658

80387, 2, 16

BCD, 19

compared to 8087/80287, 687-692

coprocessor segment overrun exception,

559-560

CRO bits, 478-480

data types, 17

detailed operation, 745-750, 753-757

DNA (device not available) exception,

558-559

DNA exception handler, example of,

624-628

error exceptions, 583-589

exceptions, 558-560

floating-point instructions, 320-398,

420-429

instruction decoding guide, 745-750

instruction encoding and clock count

summary, 753-757

integer data types, 18

registers of, 77-87

saving/restoring register state, 624-628

8259A Programmable Interrupt

Controller, 555

A (Accessed) bit, 471, 473

AAA (ASCII Adjust after Addition)

instruction, 125-126

AAD (ASCII Adjust before Division)

instruction, 127

AAM (ASCII Adjust after Multiplication)

instruction, 128

AAS (ASCII Adjust after Subtraction)

instruction, 129-130

Abort exceptions, 556

Aborting execution of instruction

descriptions, 509

Absolute Value (FABS) instruction, 327

Accessed (A) bit, 471, 473

AccessIO() subroutine, 492-493

AccessLinear() subroutine, 512-515,

522-523

760 Programming the 80386

AccessPhysicaI() subroutine, 514

AccessTSSState() subroutine, 546-549

AccessVirtual() subroutine, 512-513

AccessVirtual8086() subroutine, 651-652

ADC (Add with Carry) instruction,

131-132

ADD (Integer Addition) instruction,

133-134

Add with Carry (ADC) instruction,

131-132

Addition (FADD/FIADD/FADDP)
instructions, 328-329

Address arithmetic, 20-bit, 652-653

Address displacement, 47, 51, 54-55, 61

Address modes, 47, 54-55, 67-75, 644,

736-742

Address translation, 433-437, 446-477

Adjust Requested Privilege Level (ARPL)

instruction, 293-294, 452

AF (auxiliary flag), 38-40

Affine mode of infinity processing, 85

AND instruction, 135-136

Anonymous pointer, 402

Arithmetic instructions (floating point),

list of, 323

Arithmetic instructions (integer), list of,

120

Arithmetic operators, 1 1

1

Arithmetic status flags, 37-40

Arithmetic status register (EFLAGS),

37-41,496, 512

ARPL (Adjust Requested Privilege Level)

instruction, 293-294, 452

ASCII Adjust after Addition (AAA)

instruction, 125-126

ASCII Adjust after Multiplication (AAM)
instruction, 128

ASCII Adjust after Subtraction (AAS)

instruction, 129-130

ASCII Adjust before Division (AAD)

instruction, 127

ASCII strings, 10

ASCII table, 701-702

Assembly language directives, 591-592

ASSUME directive, 592

Asterisk, use of, 510

Auxiliary flag (AF), 38-40

AVL (available to software) bit, 457, 471

AX register, 35, 644-645

B bit, 86

B0-B3 (breakpoint condition) bits, 635

Base addresses, 446-448, 453-456

Base register, 47, 54-55, 67, 72

BCD (binary-coded decimal), 12-14, 19,

30

BCD Load (FBLD) instruction, 330

BCD Store and Pop (FBSTP) instruction,

331

BD bit, 635

Biased numbers, 8, 21

Big-endian method, 4

Binary numbers, 4, 695

Binary-coded decimal (BCD), 12-14, 19,

30

Bit block transfers, 415-420

Bitoff'set, 11-12

Bit instructions (integer), list of, 120

Bit Scan Forward (BSF) instruction,

138-139

Bit Scan Reverse (BSR) instruction,

140-141

Bit strings, 11-12

Bit Test (BT) instruction, 142-143

Bit Test and Complement (BTC)

instruction, 144-145

Bit Test and Reset (BTR) instruction,

146-147

Bit Test and Set (BTS) instruction,

148-149

Bit type, 510

Bits, 11-12

Boot code segment, 598

Booting up system, 603-604

BOUND (Check Array Index against

Bounds) instruction, 137, 558

Bounds check (exception 5), 558

BP register, 35, 644-645

Breakpoint address recognition, 637-639

Breakpoints, debugging, 632-633, 636

BS bit, 635

Index 761

BSF (Bit Scan Forward) instruction,

138-139

BSR (Bit Scan Reverse) instruction,

140-141

BT (Bit Test) instruction, 142-143

BT bit, 635

BTC (Bit Test and Complement)

instruction, 144-145

BTR (Bit Test and Reset) instruction,

146-147

BTS (Bit Test and Set) instruction,

148-149

Bubble sort, 407

Bus Lock (LOCK) instruction prefix,

190-191

Busy waiting, 412

BX register, 35, 644-645

ByteoflFset, 11-12

Byte Set on Condition Code (SETcc)

instructions, 121, 249-250

C0-C3 (condition code) bits, 86, 420

CALL (Intrasegment Call) instruction,

49-52, 150-151

CALL (Intersegment Call) instruction,

272-273, 497-504, 533-537

CALL() subroutine, 533-534

Call gates, 499-502

format for, 458-460

transparency, 504

Call through call gate, 499, 502, 504, 535,

676-677

Call to Interrupt Procedure (INT)

instruction, 274-275, 556, 570

CallGate() subroutine, 535-537

Carry flag (CF), 37-40

CBW (Convert Byte to Word) instruction,

152

CDQ (Convert Dword to Qword)

instruction, 161-162

CF (carry flag), 37-40

Change Sign (FCHS) instruction, 332

Check Array Index against Bounds

(BOUND) instruction, 137, 558

CLC (Clear the Carry Flag) instruction,

153

CLD (Clear the Direction Flag)

instruction, 154

Clear Exceptions (FCLEX/FNCLEX)
instructions, 353

CLI (Clear the Interrupt Flag)

instruction, 155

CLTS (Clear the Task-Switched Flag)

instruction, 295

CMC (Complement the Carry Flag)

instruction, 156

CMP (Compare) instruction, 157-158

CMPS/CMPSB/CMPSW/CMPSD
(Compare String) instructions,

159-160, 414

Code breakpoints, 638-639

Code segment, 45-46

Cold start, 603-604

Compare (CMP) instruction, 157-158

Compare (FCOM/FCOMP/FCOMPP)
instructions, 334-335

Compare String

(CMPS/CMPSB/CMPSW/CMPSD)
instructions, 159-160, 414

Comparison instructions (floating point),

list of, 324

Complement the Carry Flag (CMC)
instruction, 156

Computational instructions (floating

point), 585

Condition code bits (C0-C3), 86, 420

Conditional Jump (Jcc) instructions,

182-184

Conforming segments, 524, 570, 572

Constant instructions (floating point), list

of, 324

Constants, 61-63, 1-7

Control instructions (floating point), list

of, 324-325

Control constructs, 116

Control registers (CR0-CR3), 477-483,

512, 562

Control transfer instructions (integer), list

of, 121-122

Control transfer methods (intersegment),

497-505, 553-554

Control-word register, 82-84, 584

762 Programming the 80386

Convert Byte to Word (CBW) instruction,

152

Convert Dword to Qword (CDQ)
instruction, 161-162

Convert Word to Dword (CWD)
instruction, 161-162

Convert Word to Dword (CWDE)
instruction, 152

Coprocessor error (exception 16), 562,

583-589

Coprocessor error handler, 584-585

Coprocessor segment overrun (exception 9),

559-560

Coprocessor, numeric, 2, 16, 77-87,

558-560. See also 80387

Cosine (FCOS) instruction, 336

CPL (current privilege level), 439, 452,

512, 570-571

CR0-CR3 (control registers), 477-483,

512, 562

Create Stack Frame (ENTER)
instruction, 170-171, 414,420

CS register, 41-42, 44-45, 497-498, 512,

517, 566

CSDescriptorLoad() subroutine, 528-529

Current privilege level (CPL), 439, 452,

512, 570-571

CW (floating-point control-word) register,

82-84, 584

CWD (Convert Word to Dword)

instruction, 161-162

CWDE (Convert Word to Dword)

instruction, 152

CX register, 35, 644-645

D (Default) bit, 456-457, 644

D (Dirty) bit, 471,473

D exception, 584

DAA (Decimal Adjust after Addition)

instruction, 163-164

DAS (Decimal Adjust after Subtraction)

instruction, 165-166

Data allocation directives, 403

Data breakpoints, 638-639

Data segments, 45-46

Data transfer instructions (integer), list of,

122

Data types, 3

ASCII strings, 10

BCD, 12-14, 19, 29-30

bit strings, 11-12

floatingpoint, 14-15

integer, 5-8, 18, 29-30

pointer, 53-54, 567

signed integers, 5-8

strings, 9-12

unsigned numbers, 5

DE bit, 86, 587

Debug (exception 1), 557, 632

Debug breakpoints, 632-633

Debug faults, 632, 639

Debug handler, 632

Debug registers (DR0-DR3), 633-637

Debug trap (T) attribute, 488

Debug traps, 632, 639-640

Debugging, 631, 641

DEC (Decrement) instruction, 167

Decimal Adjust after Addition (DAA)

instruction, 163-164

Decimal Adjust after Subtraction (DAS)

instruction, 165-166

Decimal numbers, 4, 695

Decrement (DEC) instruction, 167

Decrement Stack Pointer (FDECSTP)
instruction, 337

Default (D) bit, 456-457

Default segment register, 47

Denormals, 27, 587-589

Descriptor checks, 520-524

Descriptor privilege level (DPL), 455,

457, 461, 567

Descriptor shadow registers, 461-463

Descriptor tables, 448-450

Device not available (exception 7),

558-559, 624-628

DF (direction flag), 40-41

DI register, 35, 644-645

Dirty (D) bit, 471,473

Dispatchlnstruction label, 580

DIV (Unsigned Divide) instruction,

168-169, 557

Index 763

Divide error (exception 0), 557

Division (FDIV/FIDIV/FDIVP)

instructions, 338-339, 587

Division Reverse

(FDIVR/FIDIVR/FDIVRP)
instructions, 340-341

DNA (device not available) exceptions,

558-559, 624-628

Double fault (exception 8), 559

Double-wide right shift (SHRD)
instruction, 255-256, 416

Double-word (dword), 3

DPL (descriptor privilege level), 455, 457,

461, 567

DR0-DR7 (debug registers), 633-637

DS register, 41-42, 45-46

DType (DT) bit, 455, 457, 461 , 567

Dword Count field, 461, 567

Dword, 3

DX register, 35, 644-645

Dynamically allocated storage, 54-55

FAX register, 35-36, 512

EBP register, 35, 51, 419-420, 512

EBX register, 35, 512

ECX register, 35-36, 512

EDI register, 35-36, 512

EDN string benchmark, 412-415

EDX register, 35-36, 512

EFLAGS register, 37-41, 496, 512

EIP register, 36, 512,580

EM (emulate) bit, 479, 625

ENDP directive, 404

ENDS directive, 591

ENTER (Create Stack Frame)

instruction, 170-171, 414, 420

EQU assembler directive, 404-405

Error codes, 507-509, 563, 571, 581-582

Error exceptions (80387), 583-589

Error-pointer registers, 86-89, 654-655

ES register, 41-42, 44-46

ESI register, 35-36

ESP register, 35, 49, 51, 419-420,

504-505

ET (extension type) bit, 478-480

Examine (EXAM) instruction, 390-391

Exception routines, 109-110

and multiple-segment instructions, 270

and operating-system instructions,

290-291

Exceptions

classes of, 555-556

control-transfer methods, 566-568

definition of, 30-31, 554-564

and floating-point instructions, 322-323

handling of, 574-575

instruction, 109-110

masking, 554-555, 565

mode transitions, 657-658

priorities of, 564-565

summary of, 563

through a trap or interrupt gate,

566-571,658-662

vector numbers, 554, 557-564

Exchange (XCHG) instruction, 265

Exchange Registers (FXCH) instruction,

392

Exclusive Or (XOR) instruction,

267-268

Executable segments, 456-457

Execute() subroutine, 580

Expand-down segments, 447-448,

454-455, 457

Exponent, 8, 20-22

Exponential computation, 422

EXT variable, 580

Extension type (ET) bit, 478-480

Extract Exponent and Significand

(EXTRACT) instruction, 393-394, 587

F2XM1 (2"-!) instruction, 326, 422

FABS (Absolute Value) instruction, 327

Factorial examples, 408-41

1

FADD/FIADD/FADDP (Addition)

instructions, 328-329

Fault exceptions, 556, 559-562

FBLD (BCD Load) instruction, 330

FBSTP (BCD Store and Pop) instruction,

331

FCHS (Change Sign) instruction, 332

FCLEX/FNCLEX (Clear Exceptions)

instructions, 333

764 Programming the 80386

FCOM/FCOMP/FCOMPP (Compare)

instructions, 334-335

FCOS (Cosine) instruction, 336

FCS (floating-point code segment)

register, 78, 86

FDECSTP (Decrement Stack Pointer)

instruction, 337

FDIV/FIDIV/FDIVP (Division)

instructions, 338-339, 587

FDIVR/FIDIVR/FDIVRP (Division

Reverse) instructions, 340-341

Fetch-execute loop, 36, 580

FetchDescriptor() subroutine, 522-523

FFREE (Free Register) instruction, 342

FICOM/FICOMP (Integer Compare)

instructions, 343-344

FILD (Integer Load) instruction, 345

FIP (floating-point instruction pointer)

register, 78, 86

Filler type, 510

FINCSTP (Increment Stack Pointer)

instruction, 346

FINIT/FNINIT (Initialize Processor)

instructions, 347

FIST (Integer Store) instruction, 348

FISTP (Integer Store and Pop)

instruction, 349

Flag control instructions (integer), list of,

123

Flag mnemonics, 114-115

Flag results, unexpected cases

DEC instruction, 167

INC instruction, 179

RCL instruction, 228-229

RCR instruction, 230-231

ROL instruction, 236-237

ROR instruction, 238-239

SAL instruction, 241-242

SAR instruction, 243-244

SHLD instruction, 251-252

SHR instruction, 253-254

SHRD instruction, 255-256

Flags, arithmetic status, 37-40

Flags, processor control, 40-41

FLD (Real Load) instruction, 350

FLDcon (Load Constant) instructions,

351-352

FLDCW (Load Control Word)

instruction, 353

FLDENV (Load Environment)

instruction, 88-89, 354, 654-655

Floating-point accumulator stack, 77-81,

320-321, 427, 429

overflow/underflow, 82, 586

physical registers, 79, 81

Floating-point condition code bits, 86

Floating-point condition codes, flags,

85-86, 420-421

Floating-point data types

alternatives to, 14-15

comparisons, 22

examples of, 22

exponent of, 8

format of, 20-21

integer, 18

Floating-point exception masks, 82

Floating-point exception status, 82-83

Floating-point flags (example), 421

Floating-point standard (IEEE), 15-16

FMUL/FIMUL/FMULP (Multiply)

instructions, 355-356

FNOP (No Operation) instruction, 357

FOO (floating-point operand off'set)

register, 78, 86

FOS (floating-point operand segment)

register, 78, 86

FPATAN (Partial Arctangent) instruction,

358-359

FPREM (Partial Remainder) instruction,

360-361, 422

FPREM 1 (Partial Remainder—IEEE)

instruction, 362-363

FPTAN (Partial Tangent) instruction,

364

Free Registers (FFREE) instruction, 342

FRNDINT (Round to Integer)

instruction, 361

FRSTOR (Restore State) instruction,

88-89, 366, 654-655

FS register, 40-41, 45-46

FSAVE/FNSAVE (Save State)

instructions, 88-89, 367, 584, 654-655

FSCALE (Power of Two Scaling)

instruction, 368-369

Index 765

FSIN (Sine) instruction, 370

FSINCOS (Sine and Cosine) instruction,

371

FSQRT (Square Root) instruction, 372

FST (Real Store) instruction, 373-374

FSTCW/FNSTCW (Store Control Word)

instructions, 375

FSTENV/FNSTENV (Store

Environment) instructions, 88-89, 376-

377, 584, 654-655

FSTP (Real Store and Pop) instruction,

378-379

FSTSW/FNSTSW (Store Status Word)

instructions, 380

FSTSW AX/FNSTSW AX (Store Status

Word into AX) instructions, 381,

420-421

FSUB/FISUB/FSUBP (Subtraction)

instructions, 382-383

FSUBR/FISUBR/FSUBRP (Subtraction

Reverse) instructions, 384-385

FTST (Test) instruction, 386-387

FUCOM/FUCOMP/FUCOMPP
(Unordered Compare) instructions,

388-389

Function definitions, 117-119

floating-point instructions, 321-322

multiple-segment instructions, 269-270

operating-system instructions, 290

FXAM (Examine) instruction, 390-391

FXCH (Exchange Registers) instruction,

392

EXTRACT (Extract Exponent and

Significand) instruction, 393-394, 587

FYL2X (y*log2x) instruction, 395-396,

422, 587

FYL2XP1 (y*log2(X + 1)) instruction,

397

G (granularity) bit, 456

G0-G3 (global enable) bits, 637

Gates, 458-461, 497-502, 532-533, 535,

566-578, 658-662

GD bit, 637

GDT (global descriptor table), 448-450,

595-596, 604

GDTR register, 481-483, 512

GE/GL bits, 636-637

General instruction format, 59-60,

715-743

General protection fault (exception 13),

561-562

General registers, 35, 106

General variables, 116

Global address space, 438, 448-450, 595

Global descriptor table (GDT), 448-450,

595-596, 604

Global pages, 468-470

Global variables, 510-512, 580

Gradual underflow, 27

Granularity attributes, 453-454, 456

GS register, 41-42, 45-46

Halt (HLT) instruction, 296

Handler procedure, 573-574

Handling interrupts/exceptions, 553-554

Hexadecimal numbers, 4

High-level language instructions (integer),

list of, 123

HLT (Halt) instruction, 296

I exception, 584

I/O permission bitmap, 488, 490-495

I/O privilege level field (lOPL), 40-41,

655-657

I/O-sensitive instructions, 489-490

I/O space, 76-77, 490-495

IDIV (Signed Divide) instruction,

172-174, 405-406, 557

IDT (interrupt descriptor table), 482,

566-567, 606-607

IDTR register, 481-483, 512

IEEE floating-point standard, 15-16

IF (interrupt enable flag), 40-41, 555, 604

Immediate constant operands, 61-63, 107

IMUL (Signed Multiplication)

instruction, 175-177

IN (Input from a Port) instruction, 178

INC (Increment) instruction, 179

Inclusive Or (OR) instruction, 212-213

Increment (INC) instruction, 179

Increment Stack Pointer (FINCSTP)

instruction, 346

Index register, 47, 54-55, 72

766 Programming the 80386

Indefinite quiet NaN, 30, 585

Infinities, 27-30, 85

Initialization, 592-624, 669-671

Initialize Processor (FINIT/FNINIT)

instructions, 347, 560

Inner-level IRET, 572

Inner-level stack pointer, 487, 572

Inner-level transfers, 498-505, 570-572

InnerStack() subroutine, 537-538,

662-664

Input from a Port (IN) instruction, 178

Input String (INS/INSB/INSW/INSD)

instructions, 180-181

Input/output (I/O) space, 76-77,

490-495

INS/INSB/INSW/INSD (Input String)

instructions, 180-181

Instruction access breakpoint (code),

638-639

Instruction-pointer (EIP) register, 36

Instructions

clock count summary, 715-730, 753-757

description syntax, 111-117

encoding, 59-63, 67-75, 730-743

example descriptions of, 108-109

exceptions, 109-110, 270, 290-291,

322-323

floating-point set, 77-86, 320-398, 401

format of, 59-60, 106-111

functions for instruction sets, 117-119,

269-270, 290,

321-322handling

handling interrupts/exceptions, 553-554

integer set, 119-267, 401

invalid in real or virtual-8086 mode,

652-653

I/O-sensitive, 489-490

list of, 98-105

multiple-segment set, 269-289

operating-system set, 290-319

privileged, 488-489

restarting, 556-557

INT (Call to Interrupt Procedure)

instruction, 274-275, 554, 556, 570

INT 3 instruction, 274-275, 640

Integer Addition (ADD) instruction,

133-134

Integer Compare (FICOM/FICOMP)
instructions, 343-344

Integer data types, 18, 29-30

Integer instruction set, 1 19-267, 401

Integer Load (FILD) instruction, 345

Integer Store (FIST) instruction, 348

Integer Store and Pop (FISTP)

instruction, 349

Interrupt() subroutine, 575-576

Interrupt descriptor table (IDT), 482,

566-567, 606-607

Interrupt enable flag (IF), 40-41, 555

Interrupt gates, 566-567, 569-574,

576-578, 658-662

Interrupt latency, 626

FBSTP instruction, 331

FPREMl instruction, 360

Interrupt Return (IRET) instruction,

278-279, 553, 572-573, 657, 662-664

Interrupts, 553-555

control-transfer methods, 566-568

disabling, masking, 565-566, 604

handling of, 574-575, 673-675

INTR, 555, 656

mode transition, 657-658

NMI 555, 656

priorities of, 564-565

through an interrupt or trap gate,

566-571, 658-662

through a task gate, 573-574, 658-660

vector numbers, definition of, 554

Intersegment transfers, 497-499, 671

INTO (On Overflow Call Interrupt

Procedure) instruction, 276-277, 554,

570

INTR interrupts, 555, 656

Intrasegment jump, 185, 671

IntTrapGate() subroutine, 576-577,

661-662

Invalid Opcode (exception 6), 558,

585-586

Invalid operation exceptions, unexpected cases

categories of, 585-586

Index 767

FIST instruction, 348

Invalid TSS (exception 10), 560

Invalid numeric operator, 585-586, 589

lOPL field (I/O privilege level), 40-41,

490-491, 655-657

IP register, 36

IR bit, 86

IRET (Interrupt Return) instruction,

278-279, 553, 572-573, 657, 662-664

IRET() subroutine, 578-579

IRET() subroutine, 665-666

IS exception, 584

Iteration, 410-411

Jcc (Conditional Jump) instructions,

182-184

JMP (Intrasegment Jump) instruction,

185-186

JMP (Intersegment Jump) instruction,

280-281, 495-504, 503,

528-533

JMP() subroutine, 528, 530-531

JMPGateO subroutine, 532-533

Jump through call gate, 532-533

L0-L3 (local enable) bits, 637

Labels, 404-405

LAHF (Load Flags into AH Register)

instruction, 187

LAR (Load Access Rights) instruction,

297-299

LDT (local descriptor table), 448-451,

595, 606

LDT segment, 448-450, 524, 527

LDTR register, 481-483, 512, 606

LEA (Load Effective Address)

instruction, 188

Least significant bit (LSB), 5

LEAVE (Procedure Exit) instruction,

189, 420

LEN field, 636-637

LGDT (Load Global Descriptor Table)

instruction, 300, 604

LIDT (Load Interrupt Descriptor Table)

instruction, 301

Linear address space, 434-436, 446-448,

463-465, 468-470, 472-473, 595-598

Link field, 484-487

List structures, 53

Little-endian method, 4

LLDT (Load Local Descriptor Table)

instruction, 302, 524-526

LLDT() subroutine, 524-526

LMSW (Load Machine Status Word)

instruction, 303-304

Load Access Rights (LAR) instruction,

297-299

Load Constant (FLDcon) instructions,

351-352

Load Control word (FLDCW)
instruction, 353

Load Effective Address (LEA)

instruction, 188

Load Environment (FLDENV)
instruction, 88-89, 354, 654-655

Load Flags into AH Register (LAHF)
instruction, 187

Load Global Descriptor Table (LGDT)
instruction, 300, 604

Load Interrupt Descriptor Table (LIDT)

instruction, 301

Load Local Descriptor Table (LLDT)
instruction, 302, 524-526

Load Machine Status Word (LMSW)
instruction, 303-304

Load Pointer (Lsr) instructions, 282-283,

565-566,612

Load Segment Limit (LSL) instruction,

305-307

Load String

(LODS/LODSB/LODSW/LODSD)
instructions, 192-193, 414

Load Task Register (LTR) instruction,

308, 525, 527-528

Local address space, 438, 448-450, 595,

606

Local descriptor table (LDT), 448-450,

595, 606,614-624

Local pages, 468-470

Local variables, 51

LOCK (Bus Lock) instruction prefix,

190-191,411-412

LODS/LODSB/LODSW/LODSD
(Load String) instructions, 192-193, 414

768 Programming the 80386

Logic instructions (integer), list of,

123-124

Logical Compare (TEST) instruction,

264

Logical connectives, 111-112

Logical operators, 1 1

1

Long real, 20-22, 24

LOOP (Loop with ECX Counter)

instruction, 194-195

LOOPE (Loop with ECX and Equal)

instruction, 198-199

LOOPNE (Loop with ECX and Not

Equal) instruction, 196-197

LOOPNZ (Loop with ECX and Not

Zero) instruction, 196-197

LOOPZ (Loop with ECX and Zero)

instruction, 198-199

LSB (least significant bit), 5

LSL (Load Segment Limit) instruction,

305-307

Lsr (Load Pointer) instructions, 282-283

LTR (Load Task Register) instruction,

308, 525, 527-528

LSS (Load Pointer) instruction, 282-283,

565-566,612

Magic jumps (IRET), 611

Math present (MP) bit, 479

Masked exceptions, 584-585

Masking interrupts/exceptions, 554-555,

565-566

Matrix multiplication, 423-426

Mean calculations, 426-428

Memory, organization of, 3, 33, 433-434

Memory addressing

accessing data, 509-528

instruction format description, 107

notation, 43

offset part, 42-43, 47, 66, 648

segment part, 42-46, 66, 451-453, 648

two-part, 42-43

Memory management facilities, 433-477

Memory operands, 59-63, 66

Memory references, types of, 402

Memory segment descriptors, 455-458

Microprocessors (Intel), history of, 1-3

Mod field, 64, 72, 706

Mode transitions, 657-658

MODRM operand specifier, 60, 64-65,

67-71

Most significant bit (MSB), 5

MOV (Move) instruction, 200

MOV (Move to/from Segment Register)

instruction, 284-285

MOV (Move to/from Special Register)

instruction,309-3 10

MOVS/MOVSB/MOVSW/MOVSD
(Move String) instructions, 201-202

MOVSX (Move and Sign Extend)

instruction, 203-204

MOVZX (Move and Zero Extend)

instruction, 205-206

MP (math present) bit, 479

MSB (most significant bit), 5

MUL (Unsigned Multiplication)

instruction, 207-208

Multiple processors, considerations of,

476-477

LOCK prefix, 190

XCHG instruction, 265

Multiple-segment instruction set, 269-289

Multiple-segment segmentation strategy,

56-59

Multiple stacks, 612

Multiply (FMUL/FIMUL/FMULP)
instructions, 355-356

Multitasking, 2, 411-412, 593-595

NaNs (Not a Number), 27-29

indefinite quiet, 585

quiet, 27-28

signaling, 27-28

NEC (Negate) instruction, 209

Negative numbers, 7-9

Nested storage, 48-49

Nested task (NT) bit, 40-41, 483-485,

543, 572-573

NMI (nonmaskable interrupts), 555-656

No Operation (FNOP) instructon, 357

NOP (No Operation) instruction, 210

Not a Number (NaN), 27-29

NOT instruction, 211

Index 769

NT (nested task bit), 40-41, 483-485,

543, 572-573

Null selectors, 452, 483, 512, 520, 524

Numbers

biased,

8

floatingpoint, 14-15

negative, 7-9

notation of, 4

real, 14

Numeric coprocessors. See Coprocessors,

numeric

O exception, 584

OE (overflow exception) bit, 86, 587

OF (overflow flag), 38-40

Offset operator, 404

Offset part (memory addressing), 42-43,

47, 66, 648

On Overflow Call Interrupt Procedure

(INTO) instruction, 277, 554, 570

One's complement, 8

One-byte address mode encoding, 67-71

Opcode bytes, 60, 708-712, 745-750

Opcode field, 87

Operand specifiers, 60-61

Operands, 33

aligned, 47, 49

encoding, 59-76, 731-743

immediate constant, 61-63

memory, 66-76

register, 63-66

Operating system

initialization example, 592-623

modifying page tables, 476

segmentation strategies, 58-59, 437-445

Operating-system instruction set, 290-319

OR (Inclusive Or) instruction, 212-213

ORG directive, 592

OUT (Write to Port) instruction, 214

Outer-level transfers, 504-505, 540. See

also IRET instruction

OuterStack() subroutine, 540-541

OUTS/OUTSB/OUTSW/OUTSD
(Output String) instructions, 215-216

Overflow (integer exception 4), 558

Overflow (floating-point exception), 587,

589

Overflow flag (OF), 38-40

P (present) bit, 455, 457, 461, 470, 473,

567

Page directory, 466, 471, 481, 598-600,

607-610

Page exceptions, 508-509, 562, 582

Page tables, 435, 465-477, 598-600,

607-611

PageException() subroutine, 582-583

Paging, 434-437, 463-477, 514, 598-600,

612, 647, 652

Paging translation cache, 476

Parameter pushing, 51

Parity flag (PF), 38-40

Partial Arctangent (FPATAN) instruction,

35S-559

Partial Remainder (FPREM) instruction,

360-361, 422

Partial Remainder—IEEE (FPREM 1)

instruction, 362-363

Partial Tangent (FPTAN) instruction,

364

PC (precision control) field, 84

PE (protection enabled) bit, 480-481,

604-606

PE (precision exception) bit, 86, 588-589

PF (parity flag), 38-40

PGbit, 463, 480-481,612

Physical address, 3, 433-435, 470

Physical address space, 434-436,

463-465, 470-473, 600-602

Physical registers (80387), 79-80

Pointer data types, 53-54, 567

32-bit pointers, 53-54, 56

48-bit full pointers, 53-54, 56, 459, 567

Pointer dereference operator, 510

POP (Integer Pop off Stack) instruction,

48-49, 217

POP (Multiple Segment Pop off Stack

into Segment Register) instruction, 286

POPA/POPAD (Pop All off" Stack)

instruction, 218-219

POPF/POPFD (Pop from Stack into

Flags) instruction, 220-221

Power of Two Scaling (FSCALE)

instruction, 368

770 Programming the 80386

Power of two table, 697-698

Precision control (PC) field, 84

Precision exception (PE) bit, 86, 588-589

Precision (IEEE inexact) exception,

588-589

Pre-execution/post-execution exceptions,

584

Prefix bytes, 60, 75-76

Present attributes, 465, 467

Present (P) bits, 455, 457, 461, 470, 473,

567

Privilege levels

numbering of, 439-440

and paging, 473-475

stack switching, 487, 502-503, 537, 540,

571,659-660

transferring between levels, 497-505,

535-540, 570-572, 577-579, 659-664

Privileged instructions, 488-489

PROC directive, 404

Procedure Exit (LEAVE) instruction,

189, 420

Processor status and control flags register

(EFLAGS), 37-41

Processor-control flags, 40-41

Processor-control registers, 35-41,

477-483

Program stacks, 48-52, 439, 487

Program unit, 56-59

Programmable Interrupt Controller, 555

Projective Mode, 85

Protected mode, 480-481, 643, 669-677

Protection

between tasks, 437-438

combining levels, 441

page level, 473-475

within tasks, 439

Protection enable (PE) bit, 480-481,

604-606

Pseudo-denormals, 27

Pseudo-descriptors, 482

PUSH (Push onto Stack) instruction,

48-49, 222-223

PUSH (Push Segment Register onto

Stack) instruction, 287

PUSHA/PUSHAD (Push All onto Stack)

instruction, 224-225

PUSHF/PUSHFD (Push Flags onto

Stack) instruction, 226-227

Quiet NaN, 27-28

R/M field, 64

R/W (read/write) bit, 470, 473-475

RC (rounding control) field, 83-84,

587-588

RCL (Rotate through Carry Left)

instruction, 228-229

RCR (Rotate through Carry Right)

instruction, 230-231

ReadDescriptor() subroutine, 520-522

Real formats, 20-22. See also

Floating-point data types

Real mode, 603, 643, 646-647, 667-675

Real Load (FLD) instruction, 350

Real numbers, 14

Real Store (EST) instruction, 373-374

Recursion, 49-52, 408-409

Register characterization, 36

Register operands, 63-66

Registers

categories of, 34

codes for, 63-64, 707

control-word (CW), 82-84, 584

debugging, 633-637

error-pointer, 86-89

floating-point, 77-80

general, 35, 106

initialization of, 669-670

instruction-pointer (EIP), 36

processor-control, 35-41, 477-483

save area (TSS), 488

segment, 35, 41-42, 44-46, 461-463,

517-524, 549-550

status-word (SW), 85-86

tag-word(TW), 81-82

Relational operators, 111-112

REP (Repeat) instruction, 232

REPE (Repeat While Equal) instruction, 233

REPNE(Repeat While Not Equal)

instruction , 234

Index 771

REPNZ (Repeat While Not Zero)

instruction, 234

REPZ (Repeat While Zero) instruction,

233

Requested privilege level (RPL),

451-453, 504-505, 572

Restart flag (RF), 40-41, 639

Restarting instructions, 556-557

Restore state (FRSTOR) instruction,

88-89, 366, 654-655

RET (Intrasegment Return) instruction,

50-52, 235

RET (Intersegment Return) instruction,

288-289, 495-499

RET() subroutine, 539-540

RF (restart flag), 40-41, 639

ROL (Rotate Left) instruction, 236-237

ROR (Rotate Right) instruction,

238-239

Rotate through Carry Left (RCL)

instruction, 228-229

Rotate through Carry Right (RCR)
instruction, 230-231

Round to Integer (FRNDINT)
instruction, 368

Rounding control (RC) field, 83-84,

587-588

Rounding modes, 83-84, 587-588

Row-major format, 425

RPL (requested privilege level), 451-453,

504-505, 572

RWE field, 636

SAHF (Store AH Register into Flags)

instruction, 240

SAL (Shift Arithmetic Left) instruction,

241-242

SAR (Shift Arithmetic Right) instruction,

243-244, 405

Save State (FSAVE/FNSAVE)
instructions, 88-89, 367, 584, 654-655

SBB (Subtract with Borrow) instruction,

245-246

Scale factor, 72

SCAS/SCASB/SCASW/SCASD (Scan

String) instructions, 247-248, 414

Segment aliasing, 483, 606-607

Segment attributes, 446

Segment base address, 446-448, 453-456

Segment descriptors, 453-463, 520-524

SEGMENT directive, 591

Segment exceptions, 506-508

Segment limit, 446

expand-down segments, 447-448,

454-455, 457

Segment not-present fault (exception II),

560

Segment override prefix bytes, 75-76

Segment part (memory addressing),

42-46, 66, 451-453, 648

Segment registers, 35, 510-512

definition of, 41-42, 44-46

loading, 517-524, 549-550

shadow, 461-463

Segment tables, 435

Segmentation, 42-43, 446-462, 505-506

8086 programming, 648-650

introduction to, 434-437, 446-448

strategies, 56-59

SegmentException() subroutine, 581-582

Segments, 42-43, 56-59, 446, 449-451

executable, 456-457

expand-down, 447-448, 454-455, 457

Selectors, testing of, 520

null, 452, 483, 512, 520, 522, 524

Self-test, selecting, 669

Semaphores, 11, 411-412

and LOCK instruction, 190

and XCHG instruction, 265

SetAccessed() subroutine, 524-525

SetTSSBusyO subroutine, 548-549

Set Carry Flag (STC) instrucdon, 257

Set Direction Flag (STD) instruction, 258

Set Interrupt Flag (STI) instruction, 259

SETcc (Byte Set on Condition code)

instructions, 121, 249-250

SF (sign flag), 38-40

SF Flag (stack fault), 86, 585-586

SGDT (Store Global Descriptor Table)

instruction, 311

Shadow registers, 461-463, 510-512

Shift Arithmetic Right (SAR) instruction,

243-244, 405

772 Programming the 80386

Shift Arithmetic Left/Shift logical Left

(SAL/SHL)instruction, 241-242

Shift Left Double (SHLD) instruction,

251-252

Shift Logical Left (SHL) instruction,

241-242

Shift Logical Right (SHR) instruction,

253-254

Shift Right Double (SHRD) instruction,

255-256, 416

SHL (Shift Logical Left) instruction,

241-242

SHLD (Shift Left Double) instruction,

251-252

SHORT directive, 415

Short real, 20-22, 24

SHR (Shift Logical Right) instruction,

253-254

SHRD (Shift Right Double) instruction,

255-256, 416

Shutdown mode, 559

SI register, 35, 644-645

SIDT (Store Interrupt Descriptor Table)

instruction, 312

Sign bit, 8-9, 20

Sign flag (SF), 38-40

Sign magnitude, 8, 20

Signaling NaN, 27-28

Signed Divide (IDIV) instruction,

172-174, 405-406, 557

Signed integers, 5-8

Signed Multiplication (IMUL)
instruction, 175-177

Significand, 20-21

Sine (FSIN) instruction, 370

Sine and Cosine (FSINCOS) instruction,

371

Single-byte INT 3 (exception 3), 558

Single-segment segmentation strategy,

56-59, 595

Single-step interrupts, 40, 641

SLDT (Store Local Descriptor Table)

instruction, 313

SMSW (Store Machine Status Word)

instruction, 314

Sort, 406-407

SP register, 35, 644-645

Square Root (FSQRT) instruction, 372

SRegLoad() subroutine, 517-520

SS register, 41-42, 44-46, 49

ST (accumulator stack), 77-81, 107

Stack alignment, 47, 49, 217, 223

Stack fault flag (SF), 86

Stack segment, 45-46

Stack segment fault (exception 11),

560-561

Stack switching, 487, 502-503, 537, 540,

571, 659-660

Stacks

and subroutines, 49-52

floating-point, 77-81, 320-321

pointers in TSS format, 487

program, 48-52

switching, 502-503, 537-540, 659-660

Standard deviation calculation, 426-428

Statically allocated storage, 54-55

Statistics computations, 426-428

Status-word (SW) register, 85-86

STC (Set Carry Flag) instruction, 257

STD (Set Direction Flag) instruction, 258

STI (Set Interrupt Flag) instruction, 259

Store AH Register into Flags (SAHF)

instruction, 240

Store Control Word (FSTCW/FNSTCW)
instructions, 375

Store Environment

(FSTENV/FNSTENV) instructions,

88-89, 376-377, 584, 654-655

Store Global Descriptor Table (SGDT)
instruction, 311

Store Interrupt Descriptor Table (SIDT)

instruction, 312

Store Local Descriptor Table (SLDT)

instruction, 313

Store Machine Status Word (SMSW)
instruction, 314

Store Status Word (FSTSW/FNSTSW)
instructions, 380

Store Status Word into AX (FSTSW
AX/FNSTSW AX) instructions, 381,

420-421

STOS/STOSB/STOSW/STOSD (Store

String) instructions, 260-261

STR (Store Task Register) instruction, 315

Index 773

String instructions, 412-415, 554

String instructions (integer), list of, 124

Strings, 9-12

Struct definitions, 510-512

SUB (Subtract) instruction, 262-263

Subroutines, 49-52

AccessIOO, 492-493

AccessLinearQ, 512-515, 522-523

AccessPhysical(), 514

AccessTSSState(), 546-549

AccessVirtualO, 512-513

AccessVirtual8086(), 651-652

CALLQ, 533-534

CallGateO, 535-537

CSDescriptorLoad(), 528-529

Execute(), 580

FetchDescriptor(), 522-523

InnerStack(), 537-538, 662-664

Interrupt(), 575-576

IntTrapGateQ, 576-577, 661-662

IRETQ, 578-579, 664-666

IRETQ, 665-666

JMPQ, 528, 530-531

JumpGate(), 532-533

LLDT(), 524-526

OuterStackO, 540-541

PageExceptionO, 582-583

ReadDescriptor(), 520-522

RET(), 539-540

SegmentException(), 581-582

SetAccessedO, 524-525

SetTSSBusyO, 548-549

SRegLoadQ, 517-520

TaskGateO, 543-544

TaskSwitchO, 543-546, 666-669

TranslateLinear(), 514, 516-517

Subtract (SUB) instruction, 262-263

Subtract with Borrow (SBB) instruction,

245-246

Subtraction (FSUB/FISUB/FSUBP)

instructions, 382-383

Subtraction Reverse

(FSUBR/FISUBR/FSUBRP)
instructions, 384-385

SW (status-word) register, 85-86

Syntax

assembly language, 401-405, 591-592

instruction description. 111, 510

memory addresses, 43

System segment descriptors, 458-461,

477-483

Table Lookup Translation

(XLAT/XLATB) instructions, 266

Tag-word (TW) register, 81-82

Task gate, 567-568, 573-574

Task state segment (TSS), 483-488,

542-549,612,640

Task switched (TS) bit, 479

TaskGateO subroutine, 543-544

TaskSwitch() subroutine, 543-546,

666-669

Tasks

isolating, 487-488

loading, 613

mode transitions, 658

and privilege levels, 439-440

protection of, 437-445

switching, 531, 542-549, 602, 664-667

Temporary real format, 20-23, 25-26

TEST (Logical Compare) instruction,

264

Test (FTST) instruction, 386-387

TF (trap enable flag), 40-41, 641

Tininess, 27

TOP (stack-top pointer) field, 79-80

TR (task register), 481-483,

Transcendental instructions

(floating-point), list of, 324

TranslateLinear() subroutine, 514,

516-517

Trap enable flag (TF), 40-41

Trap exceptions, 556

Trap gates, 566-567, 569-574, 576-578,

658-662

Tree structures, 53

TS (task-switched) bit, 479

TSS (task state segment), 483-488,

542-549, 612, 640

TW (tag-word) register, 81-82

Two's complement, 8-9, 18

774 Programming the 80386

Two-byte address mode encoding, 71-75

Two-part addressing, 42-43

Type casts, 116

Type field, 457-458, 461, 567

U exception, 584

UEbit, 86, 588

U/S (user/supervisor) bit, 470, 473-475

Underflow (gradual), 27

Underflow exception, 588-589

Unmasked exceptions, 584-585

Unordered Compare

(FUCOM/FUCOMP/FUCOMPP)
instructions, 388-389

Unsigned Divide (DIV) instruction,

168-169, 557

Unsigned Multiplication (MUL)
instruction, 207-208

Unsigned numbers, 5

USE32/USE16 directives, 592

User/Supewisor (U/S) bit, 470, 473-475

Variables, types of, 402

Vector numbers, 554, 557-564, 566

VERR (Verify Segment for Reading)

instruction, 316-317

VERW (Verify Segment for Writing)

instruction, 318-319

Virtual-8086 mode, 655-667

Virtual-8086 mode (VM) bit, 40-41,

643-644, 655-667

Virtual addresses, 433-434, 446-448,

595-596

Virtual machine monitor, 647

Virtual memory, 436-437, 473, 592

VM (virtual-8086 mode) bit, 40-41,

643-644, 655-667

WAIT (Wait for Coprocessor) instruction,

398

Word (two bytes), 3

Write to Port (OUT) instruction, 214

XCHG (Exchange) instruction, 265

XLAT/XLATB (Table Lookup

Translation) instructions, 266

XOR (Exclusive Or) instruction,

267-268

y*log2x (FYL2X) instruction, 395-396,

422, 582

y*Iog2(x + 1) (FYL2XP1) instruction, 397

Z exception, 584

ZE bit, 86, 587

Zero, 23, 27

Zero divide exception

floatingpoint, 587, 589

integer, 557

ZF (zero flag), 38-40

'SYBEX'
TO JOIN THE SYBEX MAILING LIST OR ORDER BOOKS

PLEASE COMPLETE THIS FORM

NAME

STREET

STATE _

COMPANY

CITY

ZIP

D PLEASE MAIL ME MORE INFORMATION ABOUT SYBEX TITLES

ORDER FORM (There is no obligation to order)

PLEASE SEND ME THE FOLLOWING:

TITLE QTY PRICE

TOTAL BOOK ORDER

SHIPPING AND HANDLING PLEASE ADD $2.00

PER BOOK VIA UPS

FOR OVERSEAS SURFACE ADD $5,25 PER
BOOK PLUS $4,40 REGISTRATION FEE

FOR OVERSEAS AIRMAIL ADD $18,25 PER
BOOK PLUS $4,40 REGISTRATION FEE

CALIFORNIA RESIDENTS PLEASE ADD
APPLICABLE SALES TAX

TOTAL AMOUNT PAYABLE

D CHECK ENCLOSED D VISA
D MASTERCARD D AMERICAN EXPRESS

ACCOUNT NUMBER

EXPIR, DATE DAYTIME PHONE

CUSTOMER SIGNATURE

CHECK AREA OF COMPUTER INTEREST

D BUSINESS SOFTWARE

D TECHNICAL PROGRAMMING

D OTHER:

THE FACTOR THAT WAS MOST IMPORTANT IN

YOUR SELECTION:

D THE SYBEX NAME

D QUALITY

D PRICE

D EXTRA FEATURES

D COMPREHENSIVENESS

D CLEAR WRITING

D OTHER

OTHER COMPUTER TITLES YOU WOULD LIKE

TO SEE IN PRINT:

OCCUPATION

D PROGRAMMER

D SENIOR EXECUTIVE

D COMPUTER CONSULTANT

n SUPERVISOR

D MIDDLE MANAGEMENT

D ENGINEER/TECHNICAL

D CLERICAL/SERVICE

D BUSINESS OWNER/SELF EMPLOYED

D TEACHER

D HOMEMAKER

D RETIRED

D STUDENT

D OTHER:

CHECK YOUR LEVEL OF COMPUTER USE OTHER COMMENTS:

D NEW TO COMPUTERS

D INFREQUENT COMPUTER USER

D FREQUENT USER OF ONE SOFTWARE

PACKAGE:

NAME

D FREQUENT USER OF MANY SOFTWARE

PACKAGES

n PROFESSIONAL PROGRAMMER

PLEASE FOLD, SEAL, AND MAIL TO SYBEX

SYBEX, INC.

2021 CHALLENGER DR. #100

ALAMEDA, CALIFORNIA USA
94501

SYBEX

SEAL

SYBEX Computer Books
are different

Here is why . . .

At SYBEX, each book is designed with you in mind. Every manuscript is

carefully selected and supervised by our editors, who are themselves

computer experts. We publish the best authors, whose technical expertise

is matched by an ability to write clearly and to communicate effectively

Programs are thoroughly tested for accuracy by our technical staff. Our

computerized production department goes to great lengths to make
sure that each book is well-designed.

in the pursuit of timeliness, SYBEX has achieved many publishing firsts.

SYBEX was among the first to integrate personal computers used by

authors and staff into the publishing process. SYBEX was the first to

publish books on the CP/M operating system, microprocessor interfacing

techniques, word processing, and many more topics.

Expertise in computers and dedication to the highest quality product

have made SYBEX a world leader in computer book publishing. Trans-

lated into fourteen languages, SYBEX books have helped millions of

people around the world to get the most from their computers. We hope

we have helped you, too.

For a complete catalog of our publications:

SYBEX, Inc. 2021 Challenger Drive, #100, Alameda, CA 94501

Tel: (415) 523-8233/(800) 227-2346 Telex: 33631

1

CO

"5.

flD

cO

a D

Si
gS

(0

2
CO

5
o o

o

UJ

z
u.
X
3 o «

CO

a UJ

o

s
x"
a

</) to
I
</></> So 28

CO 11

CD £,cog
"", ^^ u

X O < S^30
0.

3 Q
a.

CO' II

«
o° si5 5 e z X

o CJ O
z

Q
S

> > > >
a a.

S.X
-1 <s CL >Ou

a.

5k l^' Q.
XQ o

1 5 < < CD m ^ UJ >-

-J CD

CO X
8? B

01 i-
f

X
< co

D
O 1

Z

<

5
< <

1

0-
co 1

0.
CO So -I §12|

u.
I ^
^-
a

O J
2< O

c

CO gco

i

X
Q
-J
<

o
-J
o

1

£ Ol o Q.

IT
O

>

>

; >
O

03 1

CD
3
CO

>
UJ
>

1 >
UJ

0-
i

5
O

UJ
Q

CD
00

o

a.
O
Q.

X
i| z >

CD

<
s5
CO a>

CO

o
D
O

CD

Ul

8
O

I
s
Ul

^ CO

fl _l
CD _| S to

Ul
0.Ul

' a
UJ UJ a

a
O 'l^s Q.

->
Ul

d ;^^ Ss
s^s

t Q i < -1
(Jo C3 o l'^

0. O
>
O

"^

>
O
2

2

> > >
CD

>
CD X X il CO

> D _>

x'
X
C1

>
< > o

LU UJ UJ Ul
a a>

=^CD

c
g

-n
Ul "

1-
eo
Ul

01 UJ CO

§

§
a
e

O CD

Ul

X
<

X
<

I

Q.

CO CD

Ul

1
O

jg

<
5

111 -O

Ul

-1

CJ

o
d

C o

2i2
<<
<

5
*

Q

1

UJ
ID
z

CD
I
O
X

5
>'

UJ

Q

o

X
ID

5

>

3
X

o

d
1

>
UJ

r
tn <n3 LU
a

I
03 CO
3 CO
Q.

OCO
UJ UJ

CO 1

2S^
CO II

CO

1^
CO UJ

CQ

£1

q
UJ

CO I
a d

Ul

_i
<
id

z>

UJ

1
j <

1

Q
> >

1 1 ii
a.
CD

Q.
CD

o <o
acD
CO II

Z
Ul 2

Q.
CD
<D

o

X
o

CD

Q
x'
<

o
CJ

CO
UJ

^'

t
z

<
-f
< < <

S

1

Q. 1

?
a.
CO

CD O
UJ u
co II

N
X3
O
d
UJ

3

CO OS o
I
<

a
CO 5

"^CD

5
<
< -J

<
t-
_l
I

1
o
z

•D

o §
>
Ul
>

UJ UJ
>
CD 1

X
CO

I
CO 1

_j i
0. cc CD

Z
CDfi 1

X
OD

X

1
F

_l q
Ul

X £1

II

8
<

8
<

o
z
< OX

I
o .1 ?

O K
O CO

i CC
1

Ul
Ul UJ Ul

d
Ul
d o

o
o (D O < -J J q 8^ CL

UlO O O CD O
?{

UJ -J

S CD

2 t

,?i

>n ,%
>
cn X X < O ^ X 6

,
f

CO
,-

g -^
>
uu Ul

>
Ul

>
UJ V •i oa Q.

o
UJ

"^

i
o

e

>
Ul .5

m CD

?
n

d
Ul

n zO
lU

L.._.

o
Ul

CD

iS

CD
£1
UJ

^ i CO

a
o fc o

z
q
<

^ d
UJ S §' §

o O
o.O .<2

CO a>
eo -e
CO >*

"5.^

M

1—^f-]

z
-5

z
LU
0)

_i >

15
X
>

UJ

5

—'M

UJ
S

"*

(O

<(

z
z
1-
Lll

"^ uJ
CD<5

1»

-
-J

(0 03 ul
<d5

rt

Q.
CL z «o

<n <^z o i3

J,

Q.
a.

t
to

8-?
0"J

>i

v>
</) z 9^<n

^ z t u<5
"^

W if

I
(0 OJ

UJ
Q.

h

C

F Ui m 4
nt ^

X
D — >

n })

h 5

o
CD

UJ
>"

))

tM
N
2 3d ^ a.

0) ^§ 32

ft u
J3

2? 1

i

UJ

of
<n ui

U5 Q.

i2

o 25
1
OQ

1
Z (/)

z 1-0 .5

m
"

5^ m
CO
1-

05
532

«

a,

O 5S
z

Z
UJ
0)

Q.

«

25
n

X
05 0)

a.

((

in

E

a

oo

CO

I
(0 >
oui
Q. 5" fe

1- p 00

1- UJ UI
>

2U) (0

§2

-J
-J >
< UJ

5*
§1

§^ 1^

i-
I-"

Q.

s
cc
<

X

55
<

X

X
>%
<

CD

05

cc
I
CO 2rr~ <

Z
<

I
X

sir
<

ID
(D

a:

z

8
<

-J

ir

KVi,-

c
§ §s

< oc u,e
Oil
zui

Programming
™' 80386
John H. Crawford, chief architect of the 80386, and Patrick R
Gelsinger, one of the 80386 logic designers, here expand on the

programming capabilities of Intel's new generation of processors:

the 80386 and the 80387 numerics coprocessor.

This is an indispensable programming handbook for engineers,

system designers, programmers, and advanced users of

80386-based systems—anyone seeking detailed information on the

capabilities of the 80386 and 80387. Topics include:

• registers, data types, and instruction classes

• memory management (segmentation and paging)

• multitasking, interrupts, and exceptions

• debugging support

• executing 8086 and 80286 programs

You'll also find:

A comprehensive reference guide to the 80386 and 80387

instruction set, fully indexed and cross-referenced, with in-depth

discussion and examples. The operation of each instruction under

every possible condition is explicitly presented. Entries are

organized alphabetically under four headings: integer,

multiple-segment, operating-system and floating-point instructions.

Two full chapters devoted to invaluable programming examples,

including an extensive initialization routine and a coprocessor

exception handler.

Complete technical appendices, including detailed comparisons of

the first-, second-, and third-generation processors and

coprocessors; plus an instruction set summary and an 80386

opcode map, for quick reference.

"//ere is an 'everything

you always wanted to know '

book about the Intel 80386

microprocessor. Recommended"
—Science & Technology Annual

Reference Review

"We recommend this as the best

machine-independent book for
learning 80386 assembly language

...more comprehensive than other

books on the subject.''

—Computer Literacy

"A complete and indispensable

reference for system designers

and experienced programmers.''

—Computer Book Review

About the Authors

During his four years on the project,

chief architect John H. Crawford

specified the 386 instruction set

architecture and supervised the

microprogrammers and test

developers. Patrick P. Gelsinger, a

member of the 80386 design team for

three and a half years, worked on

many aspects of the project. His

initials are microscopically embedded

in the chip itself.

SYBEX books bring you skills—
not just information.

90000

SYBEX COMPUTER BOOK SHELF CATEGORY

ADV. PROGRAMMING: Assembly Language

9 780895"883810'

ISBN a-flTSflfl-3fll-3 U.S. $26.95

