~ 1 y e
et ' - 4 : '//)/

Foundations of ARM64
Linux Debugging,
Disassembling, and
Reversing

Analyze Code, Understand Stack
Memory Usage, and Reconstruct
Original C/C++ Code with ARM64

Dmitry Vostokov

ApPress’

Foundations of
ARMG64 Linux
Debugging,
Disassembling, and
Reversing
Analyze Code, Understand
Stack Memory Usage,

and Reconstruct Original C/C++
Code with ARM64

Dmitry Vostokov

Apress’

Foundations of ARM64 Linux Debugging, Disassembling, and Reversing:
Analyze Code, Understand Stack Memory Usage, and Reconstruct Original
C/C++ Code with ARM64

Dmitry Vostokov
Dublin, Ireland

ISBN-13 (pbk): 978-1-4842-9081-1 ISBN-13 (electronic): 978-1-4842-9082-8
https://doi.org/10.1007/978-1-4842-9082-8

Copyright © 2023 by Dmitry Vostokov

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image by Susan Wilkinson on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY
10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub (https://github.com/Apress). For more detailed information,
please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-9082-8

Table of Contents

About the AUROrc.cccemmssmmmmsnsmmssssmsssssnssssnsssssasssssnsssssnnssssnnssssnnnnns ix
About the Technical REVIEWETcssusssssnsssssnsssssnsssssnsssssnsssssnsssssnnssss xi
Prefaceccousmmmsssmmmsssnnmsssnsmsssnssssssnnssssnnssssnsssssnsnssansssssnssnssnnnnssnnnnsns xiii
Chapter 1: Memory, Registers, and Simple Arithmetic.........c.ccoeeenrrinns 1
Memory and Registers Inside an Idealized Computerccvvevrvvierievnsensensenens 1
Memory and Registers Inside ARM 64-Bit COMPULEr..........ccvverrevrrerseriererensersenes 2
“Arithmetic” Project: Memory Layout and Registerscccceevivnnvninennscnicnnens 3
“Arithmetic” Project: A Computer Program.........cccccoveerrenmrnsesnsesessesesssesenesenns 5
“Arithmetic” Project: Assigning Numbers to Memory Locations...........c.ccccvvennne. 5
Assigning Numbers 10 RegISterS.........ccuverrrenrnsnnesne e 8
“Arithmetic” Project: Adding Numbers to Memory CellS........ccccovvvrvrieriereniensenens 9
Incrementing/Decrementing Numbers in Memory and Registers.........cccuvvveruene 12
Multiplying NUMDEIS ..o 15
SUMMANY.....eieeercrere s r e e s e nr e e 18
Chapter 2: Code Optimization.........occcememmmmmnmssssssssssssnnsnsssssssssssssssnnens 19
“Arithmetic” Project: C/C++ Programccoveevnnenesnnesnsesssesessssesessessssssessenes 19
Downloading GDBccovverrmenmrenerrsesesessssse s sns e ssssesessesesessesens 20
GDB Disassembly Output — No Optimization..........cccceeevvvnveniennnnsensenenessensennens 21
GDB Disassembly Output — Optimizationccccvverrevvrnrerierers s seserenees 27
SUMMAIY....eiviii e s r e e s bbb e e aenrin 28

iii

TABLE OF CONTENTS

Chapter 3: Number Representations..........ccccuseemnrsssssnnnmsssssssssssssnnnnes 29
Numbers and Their Representations...........ccccoevvrvniniinninsncnssnsne e 29
Decimal Representation (Base Ten)ccoveererercrnsererenereseresseseseses e seeenenns 30
Ternary Representation (Base Three).........ccccvvvrrnnernsenensnmsessesesesessnesessssesseens 30
Binary Representation (Base TWO)cccuceeeverenrnsesnsesssesesssessssesesesessesessssesenns 31
Hexadecimal Representation (Base SiXt€en)cceevveverrerserernnenserseresessensenaens 32
Why Are Hexadecimals USEA?.........cvvvrrrerenennensesessessssessessesssssssessessesssssssessees 32
11T 111 T O 34

Chapter 4: PoOINters.....ccccmrmmssnnnmmsssssnnssssssssssssssssssssssssssssssssnnnssssssnnnnes 35
A DEfiNITION....cececeeceee e e 35
“Pointers” Project: Memory Layout and Registers..........ccuerrrenernserensesesenenennes 36
“Pointers” Project: Calculations...........ccccovevernnennesennse s 38
Using Pointers to Assign Numbers to Memory Cells.........cccvvevevnirierienensenienens 39
Adding Numbers Using POINTEIS ... sesses e 46
Incrementing Numbers Using POINTErS ..o ssssessennens 51
Multiplying Numbers Using PoInters...........ccocvivnvninnnnnsnnens e ssssessesnens 54
RS0 111 T o S 58

Chapter 5: Bytes, Halfwords, Words, and Doublewords..........ccoususnaes 59
Using Hexadecimal NUMDErS ..o e 59
BYE GranUIANILYccoeveererierererirserie s s s sse s s s se s e sse e s e saesaeses e saesnees 60
51T T T R 60
MeMOrY LAYOULcoeierere et s en 61
SUMIMANY....eieeerereree e e e se e e re e e e e 64

iv

TABLE OF CONTENTS

Chapter 6: Pointers t0 MemOory........cccrrussennnmsssssnssssssssnssessssssnssssssnnnnes 65
Pointers REVISITEAcccoveerereereer e 65
AdAresSing TYPES ...ccevreriiririrere s s 65
Registers REVISITEAccoucvvererenernsersesese s sessesenns 70
NULL POINTEIS ...cueevveeerreerrsesssesssese e sessess s e s s s e s e s sss e ssssessssassssasesssssssnns 70
INVAlId POINTEISc.coviicccrirs s 70
Variables AS POINTEIS ... 71
Pointer INtIalizationccoveererereerr e 71
Initialized and Uninitialized Data...........c.coooreenrerrnrerereserese e 72
More PSeudo NOtatioN..........cocueeverenernsernesese s s senns 72
“MemoryPointers” Project: Memory Layout..........c.ccccvveernnenenesennsesnsesessnensens 73
1] 4= S 87

Chapter 7: Logical Instructions and PGcccivnseemnnnsssnnnnsnsssnnnnnnn 89

Instruction FOrmat...........cooocninrnn s 89
Logical Shift INSErUCHIONScccoerecrecerrer e 90
Logical Operationscccuerininiinienenn s s s ssesnens 90
Zeroing Memory or REJISTErS.......cuucrveernneseresessse s sesssnens 91
Program COUNTET........ccccceriverrnesrrese s 92
C0dE SECLION ... s 93
1T304 7 94
Chapter 8: Reconstructing a Program with Pointers..........ccccrnssannnnns 95
Example of Disassembly Output: No Optimization..........ccccooeervvevrienncccrnccnnnn 95
Reconstructing C/C++ Code: Part 1...........cccvivnvninennsnnenens s ssssesesnens 98
Reconstructing C/C++ Code: Part 2..........cccvvevmnenenenernsesenesesssesessesessesensnnes 100
Reconstructing C/C++ Code: Part 3..........ccccvvvvnenmnnnesnsesenesesssesessesessesessnnes 102

TABLE OF CONTENTS

Reconstructing G/C++ Code: C/C++ Programccceevvevverseresesserseressssessessenes 103
Example of Disassembly Output: Optimized Program..........cccoovvnirierniensennenn 104
SUMIMANY....eeeerercreree e re e e e e e s re e e e e 106
Chapter 9: Memory and Stacksccccuumsesmmmmssssnnnmssssssssssssssssnsssssnns 107
Stack: A DEfinitioN........cceeernserenseserese s 107
Stack Implementation in MEMOIY.......cccccoverresninsesnes s 108
Things t0 REMEMDET......cceiecercerere e s sr e enes 110
Stack Push Implementationc.ccoovvvvrrerevnnnsensesesessessese s sessesessesessessessens 111
Stack Pop Implementation...........ccoccrrvvncnncsrn e 111
RegiSter REVIBWcccevecrercrereee s 111
Application Memory SImplified ... 112
STACK OVEITIOW......ccerieeeceerse e s 113
B 11T] 0L SRS 114
07 3RS 115
(07 1110 - TS 116
Exploring STack in GDBccccoreeerrereeee e 118
SUMMANY....ceiieerereresese e se s sr s s e nenssnenns 121
Chapter 10: Frame Pointer and Local Variablescccoussssssnennnnnnnas 123
STACK USAQE ...vuerveeerrreesree s ss s sr s s 123
ReGISIEr REVIBW ...ccueiviicerere ettt e s st e s 124
Addressing Array EIEMENtS.........cccvvirnininnn s 124
Stack Structure (No Function Parameters)coccvvenriesrnscrneneseserensenenns 126
FUNCLION PrOI0Q.....ccecceeecresce et 127
Raw Stack (No Local Variables and Function Parameters)cocueerererereanes 127
FUNCLION EPIlOG ..veviveeriee s 129

TABLE OF CONTENTS

“Local Variables” ProjeCtccucvrerreriensenien s rsesses e ssesseessesessesseesaesaessenns 130
Disassembly of Optimized Executable..........cccccoveeerecerncennescrecers e 133
SUMIMANY....eieeerercreree e e e s e nre e re e e e e 134
Chapter 11: Function Parameters........cccccivvnnssssssmssnmnnnnsssssssssssssnnnns 135
“FunctionParameters” Projectccvvvnnenniesnsssnssssse s 135
STACK STIUCTUIE ...t e 136
Function Prolog and EPilogccccvrerenenrnieniennsensense s sesesse e sessessessssessessenes 138
Project Disassembled Code with COMMENtSccccevrvvevvrierinnensenserenessensensenes 139
Parameter Mismatch Problem ... 144
SUMIMANY....eeeerercreree e s e e e e nre e re e e e e 145
Chapter 12: More InStructions.........cccceeemmrrrssssssssssssnnsssesssssssssssnnnnnnas 147
PSTATE FIAQS......ccrereeeeessssssssssnssssssssssssssesesesesesesesssssssssssssssssssssssssssssssssssnsnes 147
TESHING FOF 0 ...uvveerieeriresire e e 147
TST — Logical COMPACEcccervererrerirnerseressesessesessessssessessessesessessessesssssssessesnes 148
CMP — Compare TWO OPErands........ceerevrerrerereesersessersssessessessessssessessesssssssessees 149
TST OF CMIP? ... s s 150
Conditional JUMPS ..o e s 150
Function Return ValUE.........ccveeernsmrnesersse s e sessssesnnnes 151
SUMMANY....ceiviierinerirese e r e e e e e nrn e 152
Chapter 13: Function Pointer Parametersocccememnnnnnssssssssssnsnnnnnas 153
“FunctionPointerParameters” ProjecCt.........cccccvvrierevensnienienssensesessesessesessens 153
Commented DiSaSSEMDBIYcccvverrerererrrrererssessese s s s s ssesessesessees 154
11T 111 T OO 161

vii

TABLE OF CONTENTS

Chapter 14: Summary of Code Disassembly Patterns...........ccevrssnns 163
Function Prolog/Epilog........ccocveeernvernenennscrssesise st sessssessenes 163
ADR (AQAIESS)cveeerueerreerenesessesessesesessesessesesssesessesessssessssssssssssssssessssssssssens 164
PasSing Parameters........ccucvvenrnnmsnesesnse s s s snens 164
Accessing Saved Parameters and Local Variables............coouevvienenenernsesenienens 165
SUMMAIY.c..eitetrerere s serse e s s e s s e e s s sae e e e s e e s sae e s e saesae e e e nannnens 166

INA@X . iiiiisssnnnnnnnnnnnasssssssnnnnnnnnnsssssssssnnnnnnnsssssssssnnnnnnnnsssssssssnnnnnnnnnsnssssnnn 167

viii

About the Author

Dmitry Vostokov is an internationally
recognized expert, speaker, educator, scientist,
and author. He is the founder of the pattern-
oriented software diagnostics, forensics,

and prognostics discipline and Software
Diagnostics Institute (DA+TA: DumpAnalysis.
org + TraceAnalysis.org). Vostokov has also

authored more than 50 books on software
diagnostics, anomaly detection and analysis,
software and memory forensics, root cause analysis and problem solving,
memory dump analysis, debugging, software trace and log analysis,
reverse engineering, and malware analysis. He has more than 25 years

of experience in software architecture, design, development, and
maintenance in various industries, including leadership, technical, and
people management roles. Dmitry also founded Syndromatix, Anolog.

io, BriteTrace, DiaThings, Logtellect, OpenTask Iterative and Incremental
Publishing (OpenTask.com), Software Diagnostics Technology and
Services (former Memory Dump Analysis Services; PatternDiagnostics.
com), and Software Prognostics. In his spare time, he presents various
topics on Debugging TV and explores Software Narratology, its further
development as Narratology of Things and Diagnostics of Things (DoT),
Software Pathology, and Quantum Software Diagnostics. His current
areas of interest are theoretical software diagnostics and its mathematical
and computer science foundations, application of formal logic, artificial
intelligence, machine learning and data mining to diagnostics and anomaly
detection, software diagnostics engineering and diagnostics-driven

ix

ABOUT THE AUTHOR

development, and diagnostics workflow and interaction. Recent areas

of interest also include cloud native computing, security, automation,
functional programming, and applications of category theory to software
development and big data.

About the Technical Reviewer

Sundar Pandian has more than three
years of experience in embedded software
development, including development of device
drivers, middleware software, and application
services for the infotainment system on the
Android platform. He’s also developed CAN
protocol drivers for the automotive braking
system on the Autosar platform.

He’s developed software with C, C++,

and Java and worked in the automotive,
semiconductor, and telecom industries. He has
a bachelor’s in electronics and communication engineering. Currently, he
serves as a firmware/middleware engineer for audio DSPs.

Preface

The book covers topics ranging from ARM64 assembly language
instructions and writing programs in assembly language to pointers, live
debugging, and static binary analysis of compiled C and C++ code.

Diagnostics of core memory dumps, live and postmortem debugging
of Linux applications, services, and systems, memory forensics, malware,
and vulnerability analysis require an understanding of ARM64 assembly
language and how C and C++ compilers generate code, including
memory layout and pointers. This book is about background knowledge
and practical foundations that are needed to understand internal Linux
program structure and behavior, start working with the GDB debugger, and
use it for disassembly and reversing. It consists of practical step-by-step
exercises of increasing complexity with explanations and many diagrams,
including some necessary background topics.

By the end of the book, you will have a solid understanding of how
Linux C and C++ compilers generate binary code. In addition, you will be
able to analyze such code confidently, understand stack memory usage,
and reconstruct original C/C++ code.

The book will be useful for

o Software support and escalation engineers, cloud
security engineers, SRE, and DevSecOps

o Software engineers coming from JVM background
o Software testers

e Engineers coming from non-Linux environments, for
example, Windows or Mac OS X

xiii

PREFACE

o Engineers coming from non-ARM environments, for

example, x86/x64

e Linux C/C++ software engineers without assembly
language background

e Security researchers without assembly language
background

o Beginners learning Linux software reverse engineering

techniques

This book can also be used as an ARM64 assembly language and Linux
debugging supplement for relevant undergraduate-level courses.

Source Code

All source code used in this book can be downloaded from github.com/
apress/arm64-linux-debugging-disassembling-reversing.

Xiv

CHAPTER 1

Memory, Registers,
and Simple Arithmetic

Memory and Registers Inside an
Idealized Computer

Computer memory consists of a sequence of memory cells, and each cell
has a unique address (location). Every cell contains a “number.” We refer
to these “numbers” as contents at addresses (locations). Because memory
access is slower than arithmetic instructions, there are so-called registers
to speed up complex operations that require memory to store temporary
results. We can also think about them as stand-alone memory cells. The
name of a register is its address. Figure 1-1 illustrates this.

© Dmitry Vostokov 2023
D. Vostokov, Foundations of ARM64 Linux Debugging, Disassembling, and Reversing,
https://doi.org/10.1007/978-1-4842-9082-8_1

https://doi.org/10.1007/978-1-4842-9082-8_1

CHAPTER 1 MEMORY, REGISTERS, AND SIMPLE ARITHMETIC

Register 1
Address (Location): 100 0
Address (Location): 101 0

Register 2
Address (Location); 102]_]_O
Address (Location): 103 1
Address (Location): 104 2
Address (Location): 105 0

Figure 1-1. Computer memory represented as a sequence of memory
cells and locations

Memory and Registers Inside ARM
64-Bit Computer

Here, addresses for memory locations containing integer values usually
differ by four or eight, and we also show two registers called X0 and X1.
The first halves of them are called W0 and W1 as shown in Figure 1-2.

CHAPTER 1 MEMORY, REGISTERS, AND SIMPLE ARITHMETIC

Register X0
Address (Location): 100 0
Address (Location): 104 0 0
Wo
Address (Location): 108 1
Register X1
Address (Location): 112]_
Address (Location): 116 2 l 0
I o
Address (Location): 120 0

Figure 1-2. Typical ARM 64-bit memory and register layout

Because memory cells contain “numbers,” we start with simple
arithmetic and ask a processor to compute the sum of two numbers to see
how memory and registers change their values.

“Arithmetic” Project: Memory Layout
and Registers

For our project, we have two memory addresses (locations) that we call
“a” and “b.” We can think about “a” and “b” as names of their respective
addresses (locations). Now we introduce a special notation where (a)

CHAPTER 1 MEMORY, REGISTERS, AND SIMPLE ARITHMETIC

means contents at the memory address (location) “a” If we use the C
or C++ language to write our project, we declare and define memory
locations “a” and “b” as

static int a, b;

By default, when we load a program, static memory locations are filled
with zeroes, and we can depict our initial memory layout after loading the
program, as shown in Figure 1-3.

Register X0
Location: a O O
(Address 00000000004b2b00)
wo
Location: b O
(Address 00000000004b2b04)
Address (Location): 0 Register X1
00000000004h2b008
Wi

Figure 1-3. Initial memory layout after loading the program

CHAPTER 1 MEMORY, REGISTERS, AND SIMPLE ARITHMETIC

“Arithmetic” Project: A Computer Program

We can think of a computer program as a sequence of instructions for
the manipulation of contents of memory cells and registers. For example,
addition operation: add the contents of memory cell Ne12 to the contents
of memory cell Ne14. In our pseudo-code, we can write

[14] <- [214] + [12]

Our first program in pseudo-code is shown on the left of the table:

[a] <- 1 Here, we put assembly instructions corresponding to
[b] <- 1 pseudo-code

[b] <- [b] + [a]

[a] <- [a] +1

[b] <- [b] * [a]

“<-” means moving (assigning) the new value to the contents of a
memory location (address). “//” is a comment sign, and the rest of the line
is a comment. “=” shows the current value at a memory location (address).

To remind, a code written in a high-level programming language is
translated to a machine language by a compiler. However, the machine
language can be readable if its digital codes are represented in some
mnemonic system called assembly language. For example, ADD X1, X1, #1

is increment by one of what is stored in the register memory cell X1.

“Arithmetic” Project: Assigning Numbers
to Memory Locations

We remind that “a” means the location (address) of the memory cell,
and it is also the name of the location (address) 00000000004b2b00 (see

()

Figure 1-3). [a] means the contents (number) stored at the address “a.

CHAPTER 1 MEMORY, REGISTERS, AND SIMPLE ARITHMETIC

wu_n

If we use the C or C++ language, “a” is called “the variable a,” and we
write the assignment as

a=1;
In ARM64 assembly language, we write several instructions for that:

adr x0, a
mov wl, #1
str wi, [x0]

In the GDB disassembly output, we may see the following code:

adrp x0, 0x4b2000

add X0, X0, #0xb0o
mov wl, #0x1
str wl, [x0]

We show the translation of our pseudo-code into assembly language in
the right column:

[a] <- 1 // x0 = a adr xo0, a
// w1 =1 mov wi, #1
/1 [a] =1 str w1, [xo0]

[b] <- 1 /7 x0 = adr xo0, b
// w1 = mov wi, #1
/1 [b] =1 str w1, [xo0]

[b] <- [b] + [a]
[a] <- [a] + 1

[b] <- [b] * [a]

adrp x0, 0x4b2000, and subsequent add x0, x0, #0xb00 is how the

compiler generates code to calculate the address “a” instead of specifying it
directly. Such code is required for addressing large regions of memory, and

CHAPTER 1 MEMORY, REGISTERS, AND SIMPLE ARITHMETIC

the compiler uses it even for smaller regions where just one adr instruction
is sufficient.

Literal constants have the # prefix, for example, #0x1. The 0x prefix
means the following number is hexadecimal. We explain such numbers
in Chapter 3. Please also notice that the movement direction is the same
in both the disassembly output and the pseudo-code: from right to left
(except for the str instruction).

After executing the first three assembly language instructions, we have
the memory layout shown in Figure 1-4A.

Register X0
Location: a 1
(Address 00000000004b2b00) 4b2b00
Wo
Location: b O
(Address 00000000004b2b04)
Address (Location): 0 Register X1
00000000004b2b08
W1

Figure 1-4A. Memory layout after executing the first three assembly
language instructions

CHAPTER 1 MEMORY, REGISTERS, AND SIMPLE ARITHMETIC

After executing the next three assembly language instructions, we have
the memory layout shown in Figure 1-4B.

Register X0
Location: a 1
(Address 00000000004b2b00) 4b2b04
Wo
Location: b 1
(Address 00000000004b2b04)
Address (Location): 0 Register X1
00000000004b2b08
w1

Figure 1-4B. Memory layout after executing the next three assembly
language instructions

Assigning Numbers to Registers

In the previous section, we saw that assigning numbers was a part of
memory assignments. We can write in pseudo-code:

register <- 1
register <- [a]

CHAPTER 1 MEMORY, REGISTERS, AND SIMPLE ARITHMETIC

Note that we do not use brackets when we refer to register contents.
The latter instruction means assigning (copying) the number at the

u_n

location (address) “a” to a register.

In assembly language, we write

mov wil, #1 // 1 is copied to the first half of X1
register

mov x1, #1 // full contents of X1 register are
replaced with 1

adr xo0, a // copy the location (address) "a" to
X0 register

ldr w1, [x0] // copy the number at the location

stored in X0 to
// the first half of X1 register
Ldr x1, [x0] // copy the number at the location
stored in X0 to X1

In the GDB disassembly output, we may see the output where one
adr instruction is replaced by adrp/add instructions with parts of the
address value:

adrp x0, 0x4b2000 // 0x4b2000 + 0xb00 = 0x4b2b00
("a" address)

add x0, x0, #0xb0O

ldr w1, [x0]

“Arithmetic” Project: Adding Numbers
to Memory Cells

Now let's look at the following pseudo-code statement in more detail:

[b] <- [b] + [a]

CHAPTER 1 MEMORY, REGISTERS, AND SIMPLE ARITHMETIC

To recall, “a” and “b” mean the names of locations (addresses)
00000000004b2b00 and 00000000004b2b04, respectively (see Figures 1-4A
and 1-4B). [a] and [b] mean contents at addresses “a” and “b,” respectively,
simply some numbers stored there.

In the C or C++ language, we write the following statement:

b=>b+a;
b += a;

In assembly language, we use the instruction ADD. Because of ARM
architecture limitations, we cannot use memory addresses in one step
(instruction), for example, add b, b, a. We can only use the add registerl,
registerl, register0 instruction to add the value stored in the register0 to
the value stored in the registerl and move the result to the registerl. So,
first, we need to load (1dr) contents at addresses “a” and “b” to registers
and store (str) the result back to the memory location “b” after addition.
Recall that a register is like a temporary memory cell itself here:

Register2 <- [b]
Register1 <- [a]
Register2 <- register2 + registeri
[b] <- register2

In assembly language, we write

adr x0, b
ldr w1, [x0]
adr xo0, a

ldr wo, [x0]
add w1, wi, woO
adr x0, b

str wi, [x0]

In the GDB disassembly output, we may see the following code:

10

CHAPTER 1 MEMORY, REGISTERS, AND SIMPLE ARITHMETIC

adrp x0, 0x4b2000
add x0, x0, #0xb0O
ldr w1, [x0]

adrp x0, 0x4b2000
add x0, x0, #0xbo4
ldr wo, [x0]

add wi, wi, wo
adrp x0, 0x4b2000
add x0, x0, #0xbo4
str w1, [x0]

Now we can translate our pseudo-code into assembly language:

[a] <- 1 // x0 = a adr x0, a
// wl =1 mov wil, #1
// [a] =1 str w1, [x0]
[b] <- 1 // X0 =D adr x0, b
// wl =1 mov wil, #1
// [b] =1 str w1, [x0]
[b] <- [b] + [a] // x0 =D adr xo0, b
//wi=1 ldr w1, [xo0]
// %0 = a adr x0, a
// wo = 1 ldr wo, [xo0]
// w1 =2 add wi, wi, wo
// x0 = b adr x0, b
/7 [b] = 2 str w1, [xo0]

[a] <- [a] +1

[b] <- [b] * [a]

After executing ADR, LDR, ADD, and STR instructions, we have the
memory layout illustrated in Figure 1-5.

11

CHAPTER 1 MEMORY, REGISTERS, AND SIMPLE ARITHMETIC

Register X0
Location: a 1
(Address 00000000004b2b00) 4b2b04
|
Wo
Location: b 2
(Address 00000000004b2b04)
Address (Location): 0 Register X1
00000000004b2b08
W1

Figure 1-5. Memory layout after executing ADR, LDR, ADD, and STR
instructions

Incrementing/Decrementing Numbers
in Memory and Registers

In pseudo-code, it looks simple and means increment (decrement) a
number stored at the location (address) “a”:

[a] <- [a] + 1

[a] <- [a] -1

In the C or C++ language, we can write this using three possible ways:

12

CHAPTER 1 MEMORY, REGISTERS, AND SIMPLE ARITHMETIC

a=a+1;
++a;
a++;
b=>b-1;
--b;
b--;

In assembly language, we use instructions ADD and SUB and write

add xo0, x0, #1
sub x0, x0, #1

adr xo0, a

ldr w1, [x0]
add w1, wi, #1
str w1, [x0]

adr x0, b

ldr w1, [x0]
sub wi, wi, #1
str w1, [x0]

In the GDB disassembly output, we may see the similar instructions:

adrp x0, 0x4b2000
add x0, x0, #0xb0O
ldr wo, [x0]

add wi, wo, #0x1
adrp x0, 0x4b2000
add x0, x0, #0xb0O
str w1, [x0]

13

CHAPTER 1 MEMORY, REGISTERS, AND SIMPLE ARITHMETIC

Now we add the assembly language translation of increment:

[a] <- 1 // x0 = adr x0, a

// wl =1 mov wil, #1

// [a] =1 str wi, [x0]
[b] <- 1 // X0 =b adr x0, b

// wl =1 mov wil, #1

// [b] =1 str wi, [x0]
[b] <- [b] + [a] // x0 =D adr x0, b

/] wl =1 ldr w1, [x0]

// X0 = a adr xo0, a

// wo =1 ldr wo, [x0]

/] wl = 2 add wi, wi, wo

// X0 =b adr x0, b

// [b] =2 str wi, [x0]
[a] <-[a] +1 // x0=a adr x0, a

// vl =1 ldr w1, [xo0]

// w1 =2 add w1, wi, #1

/7 [a] = 2 str w1, [xo0]

[b] <- [b] * [a]

After the execution of the ADD instruction, we have the memory layout
illustrated in Figure 1-6.

14

CHAPTER 1 MEMORY, REGISTERS, AND SIMPLE ARITHMETIC

Register X0

Location: a 2
(Address 00000000004b2b00) 4b2b00
Wo
Location: b 2
(Address 00000000004b2b04)
Address (Location): O Register X1
00000000004b2b08
W1

Figure 1-6. Memory layout after the execution of the ADD instruction

Multiplying Numbers
In pseudo-code, we write
[b] <- [b] * [a]

It means that we multiply the number at the location (address) “b” by
the number at the location (address) “a.”
In the C or C++ language, we can write that using two ways:

15

CHAPTER 1 MEMORY, REGISTERS, AND SIMPLE ARITHMETIC
In assembly language, we use instruction MUL and write

adr x0, b

ldr w1, [x0]
adr xo0, a

ldr wo, [x0]
mul wi, wi, wO
adr x0, b

str wi, [x0]

In the GDB disassembly output, we may see the following code:

adrp x0, 0x4b2000
add x0, x0, #0xbo4
ldr w1, [x0]

adrp x0, 0x4b2000
add x0, x0, #0xb0O
ldr wo, [x0]

mul wl, wi, wO
adrp x0, 0x4b2000
add x0, x0, #0xbo4
str wi, [x0]

Now we add additional assembly instructions to our pseudo-code
assembly language translation:

16

CHAPTER 1

MEMORY, REGISTERS, AND SIMPLE ARITHMETIC

[a] <- 1 //
//
//
[b] <- 1 //
//
//
[b] <- [b] + [a] //
//
//
//
//
//
//
[a] <- [a] +1 //
//
//
//
[b] <- [b] * [a] //
//
//
1/
//
//

/7 [b] = 4

X0 = a

wl =
[a]
X0 =
wl =
[b]
X0 =
wl =
X0 =
wo =
wl =
X0 =
[b]
X0 =
wl =
wl =
[a]
X0 =
wl =
X0 =
Wo =
wl =
X0 =

= SN R Yo =

N

S A N O N T

adr
mov
str
adr
mov
str
adr
ldr
adr
ldr
add
adr
str
adr
ldr
add
str
adr
ldr
adr
1dr

adrx
str

X0,
wi,
wi,
X0,
wi,
wi,
X0,
wi,
X0,
wo,
wi,
X0,
wi,
X0,
wi,
wi,
wi,
X0,
wi,
X0,
wo,
mul
X0,
wi,

a

#1

[x0]

b

#1

[x0]

b

[x0]

a

[x0]
wl, wo
b

[x0]

a

[x0]
wl, #1
[x0]

b

[xo]

a

[xo]
wi, wi, WO
b

[xo]

After the execution of the STR instruction, we have the memory layout

illustrated in Figure 1-7.

17

CHAPTER 1 MEMORY, REGISTERS, AND SIMPLE ARITHMETIC

Register X0

Location: a 2
(Address 00000000004b2b00) 4b2b04
] Wo
Location: b 4
(Address 00000000004b2h04)
Address (Location): 0 Register X1
00000000004b2b08 i
W1

Figure 1-7. Memory layout after the execution of the STR instruction

Summary

This chapter introduced CPU registers and explained the memory layout
of a simple arithmetic program. We learned basic ARM64 commands,
including loading values from and storing values in memory. We also
manually translated C and C++ code to assembly language.

The next chapter looks at assembly language code produced by a
debugger via disassembling binary code. Then, we reverse it to C and C++
code. We also compare the disassembly output of nonoptimized code to
optimized code.

18

CHAPTER 2

Code Optimization

“Arithmetic” Project: C/C++ Program

Let's rewrite our “Arithmetic” program in C/C++. Corresponding assembly

language instructions are put in comments:

int a, b;

int main(int argc, char* argv[])

a =1,

b = 1;

b=>b+ a;
© Dmitry Vostokov 2023

//
//
//

//
//
//

//
//
//
//
//
//
//

adr
mov
str

adr
mov
str

adr
ldr
adr
ldr
add
adr
str

X0,
wi,
wi,

X0,
wi,
wi,

X0,
wi,
X0,
wo,
wi,
X0,
wi,

wl, wo

D. Vostokov, Foundations of ARM64 Linux Debugging, Disassembling, and Reversing,
https://doi.org/10.1007/978-1-4842-9082-8_2

19

https://doi.org/10.1007/978-1-4842-9082-8_2

CHAPTER 2 CODE OPTIMIZATION

++a; // adr x0, a
// ldr wi, [x0]
// add w1, wi, #1
// str wi, [x0]

b=">b*%*a; // adr x0, b
// ldr wi, [x0]
// adr x0, a
// ldr wo, [

// mul wi, wi, w0

// adr x0, b

// str wi, [x0]

// results: [a] = 2 and [b] = 4
return O;

Downloading GDB

We used one of the free ARM64 Linux compute instances available from
cloud providers. In our case, GDB was already available after provisioning.
If, in your case, GDB is not available, you need to install it together with
basic build tools. For example, in Debian:

$ sudo apt install build-essential
$ sudo apt install gdb

You may also need to download git to clone source code:

$ sudo apt install git

$ cd ™

$ git clone github.com/apress/arm64-linux-debugging-
disassembling-reversing .

20

CHAPTER 2 CODE OPTIMIZATION

On our RHEL-type system, we updated the tools (git included)
and GDB via

$ sudo yum group install "Development Tools"
$ sudo yum install gdb

GDB Disassembly Output — No Optimization

The source code can be downloaded from the following location:

github.com/apress/arm64-1linux-debugging-disassembling-
reversing/Chapter2/

If we compile and link the program in no optimization mode (default):
$ gcc ArithmeticProjectC.cpp -o ArithmeticProjectC

we get the binary executable module we can load in GDB and inspect
assembly code.
First, we run GDB with the program as a parameter:

$ gdb ./ArithmeticProjectC

GNU gdb (GDB) Red Hat Enterprise Linux 7.6.1-120.0.2.el7
Copyright (C) 2013 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/
licenses/gpl.html>

This is free software: you are free to change and
redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type
"show copying"

and "show warranty" for details.

This GDB was configured as "aarch64-redhat-linux-gnu".

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...

21

CHAPTER 2 CODE OPTIMIZATION

Reading symbols from /home/coredump/pflddr/A64/Chapter2/
ArithmeticProjectC...(no debugging symbols found)...done.

(gdb)

Next, we put a breakpoint at our main C/C++ function to allow the
program execution to stop at that point and give us a chance to inspect
memory and registers. Symbolic names/function names like "main" can be
used instead of code memory locations:

(gdb) break main
Breakpoint 1 at 0x4005bc

Then we start the execution of the program (let it run). The program
then stops at the previously set breakpoint:

Starting program: /home/coredump/pflddr/A64/Chapter2/./
ArithmeticProjectC

Breakpoint 1, 0x00000000004005bc in main ()
Missing separate debuginfos, use: debuginfo-install
glibc-2.17-325.0.2.el7_9.aarch64

Now we disassemble the main function:

(gdb) disass main
Dump of assembler code for function main:

0x00000000004005b8 <+0>: sub sp, sp, #0x10

=> 0x00000000004005bc <+4>: str wo, [sp,#12]
0x00000000004005¢c0 <+8>: str x1, [sp]
0x00000000004005¢c4 <+125: adrp x0, 0x420000
0x00000000004005¢c8 <+165: add X0, x0, #0x20
0x00000000004005cC <+20>: mov Wi, #o0x1 // #1
0x00000000004005d0 <+24>: str wi, [xo0]

0x00000000004005d4 <+28>: adrp X0, 0x420000
0x00000000004005d8 <+32>: add X0, x0, #0x24

22

CHAPTER 2 CODE OPTIMIZATION

0x00000000004005dc <+36>: mov wi, #o0x1 /1 #1
0x00000000004005€0 <+40>: str wi, [xo0]
0x00000000004005e4 <+44>: adrp X0, 0x420000
0x00000000004005e8 <+48>: add x0, x0, #0x24
0x00000000004005€ec <+52>: ldr wi, [xo0]
0x00000000004005F0 <+56): adrp X0, 0x420000
0x00000000004005f4 <+60>: add X0, X0, #0x20
0Xx00000000004005f8 <+64>: ldr wo, [xo0]
0x00000000004005fc <+68>: add wl, wli, wo
0x0000000000400600 <+72>: adrp X0, 0x420000
0x0000000000400604 <+76>: add x0, x0, #0x24

0x0000000000400608 <+80>: str wi, [xo0]

0x000000000040060C <+84>: adrp x0, 0x420000
0x0000000000400610 <+88>: add x0, x0, #0x20
0x0000000000400614 <+92>: ldr wo, [xo0]

0x0000000000400618 <+965 : add wi, w0, #o0x1
0x000000000040061c <+100>: adrp x0, 0x420000
0x0000000000400620 <+104>: add X0, x0, #0x20

0x0000000000400624 <+108>: str wi, [x0]
---Type <return» to continue, or q <return» to quit---
0x0000000000400628 <+112>: adrp x0, 0x420000
0x000000000040062¢c <+1165: add x0, x0, #0x24
0Xx0000000000400630 <+120>: ldr wi, [x0]
0x0000000000400634 <+124>: adrp x0, 0x420000

0x0000000000400638 <+128>: add X0, x0, #0x20
0x000000000040063c <+132»: ldr wo, [xo0]
0x0000000000400640 <+136>: mul wi, wi, WO

0x0000000000400644 <+140>: adrp x0, 0x420000
0x0000000000400648 <+144>: add X0, x0, #0x24
0x000000000040064c <+148»: str wi, [xo0]

23

CHAPTER 2

End of assembler dump.

0x0000000000400650
0x0000000000400654
0x0000000000400658

We repeat the part of the formatted disassembly output here that

CODE OPTIMIZATION

<+152>:
<+156>:
<+160>:

corresponds to our C/C++ code:

24

0x00000000004005c4
0x00000000004005¢c8
0x00000000004005cc
0x00000000004005d0
0x00000000004005d4
0x00000000004005d8
0x00000000004005dc
0x00000000004005€e0
0x00000000004005¢e4
0x00000000004005e8
0x00000000004005ec
0x000000000040050
0x00000000004005F4
0x000000000040058
0x00000000004005f¢
0x0000000000400600
0x0000000000400604
0x0000000000400608
0x000000000040060C
0x0000000000400610
0x0000000000400614
0x0000000000400618
0x000000000040061¢
0x0000000000400620

<+12>:
<+16>:
<+20>:
<+24>:
<+28>:
<+32>:
<+36>:
<+40>:
<+44>:
<+48>:
<+52>:
<+56>:
<+60>:
<+64>:
<+68>:
<+72>:
<+76>:
<+80>:
<+84>:
<+88>:
<+92>:
<+96>:
<+100>:
<+104>:

mov
add
ret

adrp
add
mov
str
adrp
add
mov
str
adrp
add
ldr
adrp
add
ldr
add
adrp
add
str
adrp
add
ldr
add
adrp
add

wo,
sp,

X0,
X0,
wi,
wi,
X0,
X0,
wi,
wi,
X0,
X0,
wi,
X0,
X0,
wo,
wi,
X0,
X0,
wi,
X0,
X0,
wo,
wi,
X0,
X0,

#0x0
sp, #0x10

0x420000
x0, #0x20
#0ox1

[x0]
0x420000
x0, #0x24
#ox1

[x0]
0x420000
X0, #0x24
[x0]
0x420000
X0, #0x20
[x0]

wl, wo
0x420000
x0, #0x24
[x0]
0x420000
x0, #0x20
[x0]

w0, #0x1
0x420000
x0, #0x20

// #0

0x0000000000400624
0x0000000000400628
0x000000000040062c¢
0x0000000000400630
0x0000000000400634
0x0000000000400638
0x000000000040063C
0x0000000000400640
0x0000000000400644
0x0000000000400648
0x000000000040064c¢

<+108>:
<+112>:
<+116>:
<+120>:
<+124>:
<+128>:
<+132>:
<+136>:
<+140>:
<+144>:
<+148>:

str
adrp
add
ldr
adrp
add
ldr
mul
adrp
add
str

CHAPTER 2

wl, [x0]

X0, 0x420000
x0, X0, #0x24
wl, [x0]

X0, 0x420000
x0, X0, #0x20
w0, [x0]

wl, wl, wO
X0, 0x420000
x0, x0, #0x24
wl, [x0]

We can directly translate it to bare assembly code we used in the

previous chapter and put corresponding pseudo-code in comments

(memory addresses may be different on your system):

//

//

//

0x00000000004005¢c4
[a] <- 1
0x00000000004005¢8
0x00000000004005cc
0x00000000004005d0
0x00000000004005d4
[b] <- 1
0x00000000004005d8
0x00000000004005dc
0x00000000004005e0
0x00000000004005¢e4
[b] <- [b] + [a]
0x00000000004005e8
0x00000000004005ec
0x00000000004005f0
0x00000000004005f4

<+12>:

<+16>:
<+20>:
<+24>:
<+28>:

<+32>:
<+36>:
<+40>:
<+44>:

<+48>:
<+52>:
<+56>:
<+60>:

adrp

add
mov
str
adrp

add
mov
str
adrp

add
ldr
adrp
add

X0, 0x420000

x0, X0, #0x20
wl, #0x1
wl, [x0]
X0, 0x420000

X0, X0, #0x24
wl, #0x1
wl, [x0]
X0, 0x420000

x0, x0, #0x24
wl, [x0]

X0, 0x420000
x0, x0, #0x20

CODE OPTIMIZATION

25

CHAPTER 2

//

//

0x00000000004005F8
0x00000000004005fc
0x0000000000400600
0x0000000000400604
0x0000000000400608
0x000000000040060c¢
[a] <- [a] +1
0x0000000000400610
0x0000000000400614
0x0000000000400618
0x000000000040061c¢
0x0000000000400620
0x0000000000400624
0x0000000000400628
[b] <- [b] * [a]
0x000000000040062c
0x0000000000400630
0x0000000000400634
0x0000000000400638
0x000000000040063cC
0x0000000000400640
0x0000000000400644
0x0000000000400648
0x000000000040064¢

Now we can exit GDB:

(gdb) g

A debugging session is active.

Inferior 1 [process 11103] will

CODE OPTIMIZATION

<+64>:
<+68>:
<H72>:
<+76>:
<+80>:
<+84>:

<+88>:
<+92>:
<+96>:

<+100>:
<+104>:
<+108>:
<+112>:

<+116>:
<+120>:
<+124>:
<+128>:
<+132>:
<+136>:
<+140>:
<+144>:
<+148>:

Quit anyway? (y or n) y

$

26

ldr
add
adrp
add
str
adrp

add
ldr
add
adrp
add
str
adrp

add
ldr
adrp
add
ldr
mul
adrp
add
str

[x0]
wl, wO

wo,
wi,
X0,
X0,
wl, [x0]
X0,

X0,
w0, [x0]
wi,
X0,
X0,
wl, [x0]

X0,

X0,
wl, [x0]
X0,
X0,
[x0]

wl, wo

wo,
wi,
X0,
X0,

wl, [x0]

be killed.

0x420000
x0, #0x24

0x420000
X0, #0x20
w0, #0x1
0x420000
x0, #0x20
0x420000
x0, #0x24
0x420000

x0, #0x20

0x420000
X0, #0x24

CHAPTER 2 CODE OPTIMIZATION

GDB Disassembly Output — Optimization

If we compile and link the program in optimization mode:

$ gcc ArithmeticProjectC.cpp -01 -o ArithmeticProjectC

and after repeating the same steps in GDB, we get the following output:

(gdb) disass main

Dump of assembler code for function main:

0x00000000004005b8
0x00000000004005bc
0x00000000004005c0
= 0x00000000004005c4
0x00000000004005c8
0x00000000004005cc
0x00000000004005d0
0x00000000004005d4

<+0>
<+4>:
<+8>:
<+12>:
<+16):
<+20>:
<+24>:
<+28>:

adrp
add
mov
str
mov
str
mov
ret

X0, 0x420000
x1, x0, #0x20

w2, #Hox2 /] #2
w2, [x0,#32]
wo, #Hoxq /] #4
wo, [x1,#4]
w0, #0x0 // #0

This corresponds to the following pseudo-code:

[a] <- 2
[b] <- 4

The calculation of memory addresses is a bit more complex:

0x00000000004005b8 <+0>:
0x00000000004005bc <+4>:

0x00000000004005c0 <+8>:
=> 0x00000000004005c4 <+12>:

0x00000000004005C8 <+16>:
0x00000000004005¢C <+20>:

adrp xo,
add «x1,
mov - w2,
str w2,
mov wo,
str wo,

0x420000

X0, #0x20 // x1 = x0 +
0x20 = a

#0Ox2 /] w2 =2

[x0,#32] // #32 in 0x20
// [a] = [x0
+ 0x20] = 2

#ox4 // WO = 4

[x1,#4] // [b] = [a
+4] =4

27

CHAPTER 2 CODE OPTIMIZATION

What happened to all our assembly code in this executable? This
code seems to be directly placing the end result into “a” and “b” memory
cells if we observe. Why is this happening? The answer lies in compiler
optimization. When the code is compiled in optimization mode, the
compiler can calculate the final result from the simple C/C++ source
code itself and generate only the necessary code to update corresponding

memory locations.

Summary

In this chapter, we looked at assembly language code produced by a
debugger via disassembling binary code. Then, we reversed it to C and C++
code. We also compared the disassembly output of nonoptimized code to
optimized code and understood why.

The next chapter refreshes number representations, especially the
hexadecimal one.

28

CHAPTER 3

Number
Representations

Numbers and Their Representations

Imagine a herder in ancient times trying to count his sheep. He has a
certain number of stones (twelve):

However, he can only count up to three and arranges the total into
groups of three:

© Dmitry Vostokov 2023
D. Vostokov, Foundations of ARM64 Linux Debugging, Disassembling, and Reversing,
https://doi.org/10.1007/978-1-4842-9082-8_3

29

https://doi.org/10.1007/978-1-4842-9082-8_3

CHAPTER 3 NUMBER REPRESENTATIONS

The last picture is a representation (a kind of notation) of the number
of stones. We have one group of three groups of three stones plus a
separate group of three stones. If he could count up to ten, we would see a
different representation of the same number of stones. We would have one
group of ten stones and another group of two stones.

Decimal Representation (Base Ten)

Let’s now see how twelve stones are represented in arithmetic notation if
we can count up to ten. We have one group of ten numbers plus two:

120c=1%10+20r1*10' + 2 * 10°

Here is another exercise with 123 stones. We have 1 group of ten by
ten stones, another group of 2 groups of ten stones, and the last group of
3 stones:

1234, =1*10*10+2*10 + 3 or 1 *10°+2* 10" + 3 * 10°
We can formalize it in the following summation notation:

Ngee = a,10" + @,,*10™! + ... + a,¥10% + a,*10" + a,*10°

O<=a<=9
Using the summation symbol, we have this formula:

n
Ndec = Z ai*loi
i=0

Ternary Representation (Base Three)

Now we come back to our herder’s example of twelve stones. We have
1 group of three by three stones, 1 group of three stones, and an empty
(0) group (which is not empty if we have one stone only or have thirteen

30

CHAPTER 3 NUMBER REPRESENTATIONS

stones instead of twelve). We can write down the number of groups
sequentially: 110. Therefore, 110 is a ternary representation (notation) of
twelve stones, and it is equivalent to 12 written in decimal notation:

1240c = 1¥32 + 1#31 + 0*3°
Ngec = a,*3" + 2, ¥ 3™ + ... + 2,*3% + 2,3 + a,*3°
a,=0orlor2

n
Ndec = z ai*31
i=0

Binary Representation (Base Two)

In the case of counting up to two, we have more groups for twelve stones:
1100. Therefore, 1100 is a binary representation (notation) for 12 in

decimal notation:
124ec = 1¥23 4+ 1%22 4 0*21 4 0*2°
12340 = 126 + 1%25 + 1%2% + 1%23 + 0%22 + 1*21 + 1*20 or
1111011,

Ngec = a,%2% + @, 2™ + ... + 2,*2% + 2,%2! + a,*2°

a;=0or1l
n

Ndec = Z ai*2i
i=0

31

CHAPTER 3 NUMBER REPRESENTATIONS

Hexadecimal Representation (Base Sixteen)

If we can count up to sixteen, twelve stones fit in one group, but we
need more symbols: A, B, C, D, E, and F for ten, eleven, twelve, thirteen,
fourteen, and fifteen, respectively:

124.. = C in hexadecimal representation (notation)
123dec = 7Bhex
12340 = 7*16" + 11*16°

n
Ndec = z 31*161
i=0

Why Are Hexadecimals Used?

Consider this number written in binary notation: 110001010011,. Its
equivalent in decimal notation is 3155:

31554 = 1¥211 + 1¥210 4 0%29 + 0*28 4 0*27 + 1¥26 4 0*25
+ 1%2% 4 0%23 + 0%22 + 1*21 4+ 1*2°

Now we divide the binary number digits into groups of four and write
them down in decimal and hexadecimal notation:

110001010011
1 2dec édec 3dec
Chex éhex 3hex

We see that hexadecimal notation is more compact because every
four binary digit group number corresponds to one hexadecimal number.
Table 3-1 lists hexadecimal equivalents for every four binary digit
combination.

32

CHAPTER 3 NUMBER REPRESENTATIONS

Table 3-1. Hexadecimal Equivalents for Every Four
Binary Digit Combination

Binary Decimal Hexadecimal
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F

In GDB and other debuggers, memory addresses are displayed in
hexadecimal notation.

33

CHAPTER 3 NUMBER REPRESENTATIONS

Summary

This chapter refreshed different representations of a number, including
hexadecimal notation.

The next chapter introduces pointers. We rewrite our arithmetic
program from Chapter 1 using pointers to memory and use the GDB
debugger to execute instructions one by one and watch changes
to memory.

34

CHAPTER 4

Pointers

A Definition

The concept of a pointer is one of the most important to understand
thoroughly to master Linux debugging. By definition, a pointer is a
memory cell or a processor register that contains the address of another
memory cell, as shown in Figure 4-1. It has its own address as any memory
cell. Sometimes, a pointer is called an indirect address (vs. a direct address,
the address of a memory cell). Iteratively, we can define another level

of indirection and introduce a pointer to a pointer as a memory cell or a
processor register that contains the address of another memory cell that
contains the address of another memory cell, and so on.

© Dmitry Vostokov 2023 35
D. Vostokov, Foundations of ARM64 Linux Debugging, Disassembling, and Reversing,
https://doi.org/10.1007/978-1-4842-9082-8_4

https://doi.org/10.1007/978-1-4842-9082-8_4

CHAPTER 4 POINTERS

0 Register X0
Location: a 4 00000000
(Address 0000000000402000) " 00402000
Location: b 1 l
(Address 0000000000402004)
Address (Location): N 0 Register X1
0000000000428508
0 00000000
00402004
00000000
00402008

Figure 4-1. Example pointers and memory layout

“Pointers” Project: Memory Layout
and Registers

In our debugging project, we have two memory addresses (locations), “a”
and “b.” We can think about “a” and “b” as names of addresses (locations).
We remind that notation (a) means contents at the memory address

(location) “a”

36

CHAPTER 4 POINTERS

We also have registers X0 and X1 as pointers to “a” and “b.” These
registers contain addresses of “a” and “b,” respectively. The notation [X0]
means the contents of a memory cell whose address is in the register XO.

In C and C++ languages, we declare and define pointers to “a”
and “b” as

int *a, *b;

Our project memory layout before program execution is shown in
Figure 4-2. Addresses always occupy 64-bit memory cells or full 64-bit
registers like X0 or X1 (they cannot fit in W0 or W1 or a 32-bit memory
cell). We also use lower halves of X2-X4 registers (W2-W4) to hold
temporary integer values if necessary.

37

CHAPTER 4 POINTERS

Location: a
(Address 00000000004 100£0)

Location: b
(Address 00000000004100£4)

Register W2

Register W3

0

Register W4

0

Register X0

Register X1

Figure 4-2. Project memory layout before program execution

“Pointers” Project: Calculations

In order to understand pointers better from a low-level assembly language

perspective, we perform our old arithmetic calculations from Chapter 1

using pointers to memory instead of direct memory addresses:

38

CHAPTER 4 POINTERS

X0 <- address a

[X0] <- 1
X1 <- address b
[X1] <- 1

[X1] <- [X1] + [X0]
[X0] <- [Xo] + 1
[X1] <- [X1] * [X0]

Using Pointers to Assign Numbers
to Memory Cells

First, the following sequence of pseudo-code instructions means that we
interpret the contents of the X0 register as the address of a memory cell
and then assign a value to that memory cell:

X0 <- address a
[X0] <- 1

In C and C++ languages, it is called “dereferencing a pointer,” and
we write

int a;

int *pa = &a; // declaration and definition of a pointer

*pa = 1; // get a memory cell (dereference a pointer)
// and assign a value to it

In assembly language, we write

adr xo0, a // load the address "a" into x0

mov w3, #1 // set the temporary register to 1

str w3, [x0] // use x0 as a pointer and store 1 at the memory
address in x0

39

CHAPTER 4 POINTERS

In the GDB disassembly output, we see something like this:

0x00000000004000b0 <+0>: adr X0, 0x4100f0
0x00000000004000b4 <+4>: mov w3, #0x1
0x00000000004000b8 <+8>: str w3, [x0]

The source code for this chapter can be downloaded from

github.com/apress/arm64-1linux-debugging-disassembling-
reversing/Chapter4/

To illustrate some instructions and not to be dependent on how
the compiler translates C/C++ code, we wrote the program in assembly
language. We need to compile and link it first before loading it into GDB
and then disassemble its main function as described in Chapter 2.

$ as PointersProject.asm -o PointersProject.o
$ 1d PointersProject.o -o PointersProject

$ gdb ./PointersProject

GNU gdb (GDB) Red Hat Enterprise Linux 7.6.1-120.0.2.el7
Copyright (C) 2013 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/
licenses/gpl.html>

This is free software: you are free to change and
redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type
"show copying"

and "show warranty" for details.

This GDB was configured as "aarch64-redhat-linux-gnu".

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...

40

CHAPTER 4 POINTERS

Reading symbols from /home/coredump/pflddr/A64/Chapters/
PointersProject...(no debugging symbols found)...done.

(gdb)

We put a breakpoint on the main function, run the program until GDB
breaks in, and then disassemble the main function:

(gdb) break main
Breakpoint 1 at 0x4000b0

(gdb) run
Starting program: /home/coredump/pflddr/A64/Chapters/./
PointersProject

Breakpoint 1, 0x0000000000401000 in _start ()

(gdb) disass main
Dump of assembler code for function start:

=> 0x00000000004000b0 <+0>: adr x0, 0x4100f0
0x00000000004000b4 <+4>: mov w3, #ox1 // #1
0x00000000004000b8 <+8>: str w3, [x0]
0x00000000004000bc <+12>: adr x1, 0x4100f4
0x00000000004000C0 <+16>: str w3, [x1]
0x00000000004000c4 <+20>: ldr w2, [x0]
0x00000000004000C8 <+24>: ldr w3, [x1]
0x00000000004000cC <+28>: add w4, w3, w2
0x00000000004000d0 <+32>: str w4, [x1]
0x00000000004000d4 <+36>: add w2, w2, #ox1
0x00000000004000d8 <+40>: str w2, [x0]
0x00000000004000dcC <+44>: mul w3, w4, w2
0x00000000004000€0 <+48>: str w3, [x1]
0x00000000004000€4 <+52>: mov X0, #0x0 // #0
0x00000000004000e8 <+56>: mov w8, #0x5d // #93
0x00000000004000eC <+60>: svC #oxo

End of assembler dump.

41

CHAPTER 4 POINTERS

Now we examine variables “a” and “b” to verify the memory layout
shown previously in Figure 4-2 using the info variables GDB command:

(gdb) info variables
All defined variables:

Non-debugging symbols:
0x00000000004100f0 a
0x00000000004100f4 b
0x00000000004100f8 _ bss end__
0x00000000004100f8 _ bss start
0x00000000004100f8 bss start
0x00000000004100f8 __end
0x00000000004100f8 _bss_end
0x00000000004100f8 edata

0x00000000004100f8 _end

We also verify that the values of X0 and X1 registers are in accordance
with Figure 4-2:

(gdb) info registers x0 x1
X0 0x0 0
X1 0x0 0]

We instruct GDB to automatically display the current instruction to be
executed; the values of registers X0, X1, W2, W3, and W4; and the contents
of variables “a” and “b”:

(gdb) display/i $pc
1: x/i $pc
=> 0x4000b0 <main>: adr X0, 0x4100f0

(gdb) display/x $x0
2: /x $x0 = 0x0

42

(gdb) display/x $x1
3: /x $x1 = 0x0

(gdb) display/x $w2
4: /x $w2 = 0x0

(gdb) display/x $w3
5: /x $w3 = 0x0
(gdb) display/x $w4
6: /x $w4 = 0x0

(gdb) display/x (int)a
7: /x (int)a = 0x0

(gdb) display/x (int)b
8: /x (int)b = ox0

CHAPTER 4 POINTERS

Now we execute the first five instructions that correspond to our pseudo-

code using the stepi GDB command or si (shorter command version):

X0 <- address a adr

mov
[Xo] <- 1 /! [a] = 1 str
X1 <- address b adr
[Xa] <- 2 /7 [b] = 1 str

[X1] <- [X1] + [X0]
[X0] <- [X0] + 1
[X1] <- [X1] * [X0]

x0,
w3,
w3,
x1,
w3,

0x4100f0
#ox1
[xo]
0x4100f4

[xa]

(gdb) si

0x00000000004000b4 in main ()
8: /x (int)b = ox0

7: /x (int)a = ox0

6: /x $w4 = Ox0

43

CHAPTER 4 POINTERS

5: /x $w3 = 0x0

4: /x $w2 = 0x0

3: /x $x1 = 0x0

2: /x $x0 = 0x4100f0

1: x/1 $pc

=> 0x4000b4 <main+4>: mov w3, #ox1
(gdb) si

0x00000000004000b8 in main ()

/x $w3 =
/X $w2
/x $x1
/x $x0
x/1 $pc
0x4000b8

(gdb) si
0x00000000004000bc in main ()
/x (int)b = 0x0
/x (int)a = ox1

8:
7:

B N W B~ U1 O

]
v

44

/x $wh =
/X $w3 =
/X $w2 =
/x $x1 =
/x $x0

: x/1 $pc

0x4000bc

: /x (int)b = ox0
: /x (int)a = 0x0
D /X $wh =

0x0
ox1
0x0
0x0
0x4100f0

<main+8>: str w3, [x0]

0x0
ox1
0x0
0x0
0x410010

<main+12>: adr X1, 0x4100f4

// #1

CHAPTER 4 POINTERS

(gdb) si
0x00000000004000c0 in main ()

8: /x (int)b = ox0

7: /x (int)a = ox1

6: /x $w4 = 0x0

5: /x $w3 = Ox1

4: /x $w2 = 0x0

3: /x $x1 = 0x4100f4

2: /x $x0 = 0x4100f0

1: x/i $pc

=> 0x4000c0 <main+16>: str w3, [x1]
(gdb) si

0x00000000004000c4 in main ()
8: /x (int)b = oxa

7: /x (int)a = ox1

6: /x $w4 = 0x0

5: /x $w3 = Ox1

4: /x $w2 = 0x0

3: /x $x1 = 0x4100f4

2: /x $x0 = 0x4100f0

1: x/1 $pc

=> 0x4000c4 <main+20>: ldr w2, [x0]

All this corresponds to a memory layout shown in Figure 4-3.

45

CHAPTER 4 POINTERS

Location: a
(Address 00000000004 10010)

Location: b
(Address 00000000004100£4)

Register W2

0

Register W3

1

Register W4

0

Register X0

00000000
004100£0

Register X1

00000000
004100f4

Figure 4-3. Memory layout after executing the first five instructions

Adding Numbers Using Pointers

Now we look at the next pseudo-code statement:

[X1] <- [X1] + [X0]

46

CHAPTER 4 POINTERS

Recall that [X0] and [X1] mean contents of memory cells whose
addresses (locations) are stored in X0 and X1 CPU registers. The preceding
statement is equivalent to the following C or C++ language expression

Ugn

where the “*” operator means to get memory contents pointed to by the pa

or pb pointer (also called pointer dereference):

*pb = *pb + *pa;

(o)

In assembly language, we use the instruction ADD for the “+” operator,
but we cannot use memory addresses in one step instruction:

add [x1], [x0] // invalid instruction

We can only use registers, and, therefore, we need to employ two
registers as temporary variables:

RegisterA <- [Xo0]
RegisterB <- [X1]
RegisterC <- RegisterB + RegisterA
[X1] <- RegisterC

We cannot use W0 and W1 to hold values since they are contained in
X0 and X1; the addresses would be overwritten, so we use W2, W3, and W4.
In assembly language, we write this sequence of instructions:

ldr w2, [x0]
ldr w3, [x1]
add w4, w3, w2
str w4, [x1]

In the GDB disassembly output, we see these instructions indeed:

0x00000000004000c4 <+20>: ldr w2, [x0]
0x00000000004000C8 <+24>: ldr w3, [x1]
0x00000000004000cC <+28>: add Wh, w3, w2
0x00000000004000d0 <+32>: str w4, [x1]

47

CHAPTER 4 POINTERS

We add them to our pseudo-code table:

X0 <- address a adr x0, 0x4100f0
mov W3, #O0x1

[X0] <- 1 // [a] =1 str w3, [x0]

X1 <- address b adr x1, 0x4100f4

[X1] <- 1 // [b] = str w3, [x1]

[Xa] <- [X1] + [Xo] // [b]

ldr w2, [xo0]
ldr w3, [x1]
add w4, w3, w2
str w4, [x1]
[X0] <- [Xo] + 1

[X1] <- [X1] * [X0]

Now we execute these four instructions (we remind that the output of
the si command shows the next instruction to be executed when we use

the si command again):

[From the previous output]

8: /x (int)b = ox1

7: /x (int)a = ox1

6: /x $w4 = 0x0

5: /x $w3 = Ox1

4: /x $w2 = 0x0

3: /x $x1 = 0x4100f4

2: /x $x0 = 0x4100f0

1: x/1 $pc

=> 0x4000c4 <main+20>: ldr w2, [x0]
(gdb) si

0x00000000004000c8 in main ()
8: /x (int)b = ox1

7: /x (int)a = ox1

6: /x $w4 = 0x0

5: /x $w3 = Ox1

48

4: /x $w2 = ox1

3: /x $x1 = 0x4100f4

2: /x $x0 = 0x4100f0

1: x/1 $pc

=> 0x4000c8 <main+24>: ldr
(gdb) si

0x00000000004000cc in main ()
8: /x (int)b = ox1

7: /x (int)a = ox1

6: /x $w4 = 0x0

5: /x $w3 = ox1

4: /x $w2 = Ox1

3: /x $x1 = 0x4100f4
2

1

: /x $x0 = 0x4100f0

: x/1 $pc
=> 0x4000cc <main+28>: add
(gdb) si
0x00000000004000d0 in main ()
8: /x (int)b = ox1
7: /x (int)a = ox1
6: /x $wq = Ox2

5: /x $w3 = ox1

4: /x $w2 = Ox1

3: /x $x1 = 0x4100f4

2: /x $x0 = 0x4100f0

1: x/i $pc

=> 0x4000d0 <main+32>: str
(gdb) si

0x00000000004000d4 in main ()
8: /x (int)b = ox2
7: /x (int)a = ox1

w3, [x1]

w4, w3, w2

w4, [x1]

CHAPTER 4 POINTERS

49

CHAPTER 4 POINTERS

6: /x $w4 = 0x2

5: /x $w3 = Ox1

4: /x $w2 = 0ox1

3: /x $x1 = 0x4100f4

2: /x $x0 = 0x4100f0

1: x/1 $pc

=> 0x4000d4 <main+36>: add w2, w2, #0x1

All this corresponds to a memory layout shown in Figure 4-4.

! Register X0

0 |
Location: a 1 . 00000000
(Address 00000000004 100£0) ; 004100£0
Location: b 2 !
(Address 00000000004 100f4) I
Register W2 | [
] 0 i Register X1
i
0 | 00000000
Register W3 ; 004100f4
|
|
i
1 i
Register W4
0 |

Figure 4-4. Memory layout after executing the next four instructions

50

CHAPTER 4 POINTERS

Incrementing Numbers Using Pointers

In pseudo-code, it means increment (decrement) a number stored at the
memory location which address is stored in X0:

[X0] <- [Xo] + 1
In the C or C++ language, we can write this using three possible ways:

*a = *a + 1;
++(*a);
(*a)++;
In assembly language, we use instructions LDR, ADD, and STR
and write

ldr w2, [x0] // this can be omitted since we already
loaded w2 previously

add w2, w2, #ox1

str w2, [x0]

In the GDB disassembly output, we see the same instructions:

0x00000000004000d4 <+36>: add w2, w2, #ox1i
0x00000000004000d8 <+40>: str w2, [x0]

Now we add the assembly language translation of increment:

51

CHAPTER 4 POINTERS

X0 <- address a adr x0, 0x4100f0
mov w3, #0x1

[X0] <- 1 // [a] =1 str w3, [x0]

X1 <- address b adr x1, 0x4100f4

[X1] <- 1 // [b] =1 str w3, [x1]

[X1] <- [X1] + [X0] // [b] =2 1dr w2, [x0]

ldr w3, [x1]

add w4, w3, w2
str w4, [x1]

add w2, w2, #oxi
str w2, [xo0]

[X0o] <- [Xo0] + 1 // [a]

1]
N

[X1] <- [X1] * [Xo]

Now we execute these two instructions (we remind that the output of
the si command shows the next instruction to be executed when we use
the si command again):

[From the previous output]

8: /x (int)b = ox2

7: /x (int)a = ox1

6: /x $w4 = 0x2

5: /x $w3 = Ox1

4: /x $w2 = Ox1

3: /x $x1 = 0x4100f4

2: /x $x0 = 0x41000

1: x/1 $pc

=> 0x4000d4 <main+36>: add w2, w2, #ox1
(gdb) si

0X00000000004000d8 in main ()
8: /x (int)b = ox2
7: /x (int)a = ox1

52

CHAPTER 4 POINTERS

6: /x $wq = 0x2

5: /x $w3 = Ox1

4: /x $w2 = Ox2

3: /x $x1 = 0x4100f4

2: /x $x0 = 0x4100f0

1: x/1 $pc

=> 0x4000d8 <main+40>: str w2, [x0]
(gdb) si

0x00000000004000dc in main ()

8: /x (int)b = ox2

7: /x (int)a = ox2

6: /x $w4 = 0x2

5: /x $w3 = Ox1

4: /x $w2 = 0x2

3: /x $x1 = 0x4100f4

2: /x $x0 = 0x4100f0

1: x/i $pc

=> 0x4000dc <main+44>: mul w3, W4, w2

After the execution of ADD and STR instructions, we have the memory
layout illustrated in Figure 4-5.

53

CHAPTER 4 POINTERS

Location: a
(Address 00000000004 100£0)

Location: b
(Address 00000000004100£4)

Register W2

2

Register W3

1

Register W4

2

Register X0

00000000
00410010

Register X1

00000000
004100f4

Figure 4-5. Memory layout after the execution of ADD and STR

instructions

Multiplying Numbers Using Pointers

Our next pseudo-code statement does multiplication:

[X1] <- [X1] * [Xo]

54

CHAPTER 4 POINTERS

This statement means that we multiply the contents of the memory
cell whose address is stored in the X1 register by the value stored in the
memory cell whose address is in the X0 register. In the C or C++ language,
we write a similar expression as the addition statement we have seen in
wsn

the previous sections (note that we have two distinct meanings of the
operator: pointer dereference and multiplication):

*pb = *pb * *pa;
*pb *= *pa;

The latter is a shorthand notation. In assembly language, we use
instruction MUL and registers that hold values to multiply. Registers
W2 and W4 already hold values from [X0] and [X1] from the previous
code, so we don’t need load instructions, but we use W3 to hold the
multiplication result:

mul w3, w4, w2
str w3, [x1]

In the GDB disassembly output, we see this:

0x00000000004000dc <+44>: mul w3, w4, w2
0x00000000004000e0 <+48>: str w3, [x1]

We add instructions to our pseudo-code table:

55

CHAPTER 4 POINTERS

X0 <- address a adr x0, 0x4100f0
mov w3, #0x1

[X0] <- 1 // [a] =1 str w3, [x0]

X1 <- address b adr x1, 0x4100f4

[X1] <- 1 // [b] =1 str w3, [x1]

[X1] <- [X1] + [X0] // [b] =2 1ldr w2, [x0]
ldr w3, [x1]
add w4, w3, w2
str w4, [x1]
[X0] <- [X0] + 1 // [a] =2 add w2, w2, #ox1
str w2, [x0]
mul w3, wq, w2
str w3, [x1]

[Xa] <- [Xa] * [Xo] // [b]

1]
=

Now we execute these two instructions (we remind that the output of
the si command shows the next instruction to be executed when we use

the si command again):

[From the previous output]

/x (int)b = ox2

/x (int)a = ox2

/x $wq = 0x2

/x $w3 = 0x1

/X $w2 = 0x2

/x $x1 = 0x4100f4

/x $x0 = 0x4100f0

: x/1 $pc

0x4000dc <main+44>: mul w3, w4, w2

B N W s U1 O

1
v

(gdb) si
8: /x (int)b
7: /x (int)a

0x2
0x2

56

6: /x $wa
5: /x $w3
4: /x $w2
3: /x $x1
2
1

: /X $x0 =
: x/1 $pc
=> 0x4000€e0

(gdb) si
0x0000000000
8: /x (int)b
/x (int)a
/x $wh =
/x $w3
/X $w2
/x $x1
/x $x0
: x/1 $pc
0x4000e4

R N W B U1 O

]
v

All this corresponds to a memory layout shown in Figure 4-6.

0x2
ox4
0x2
0x4100f4
0x4100f0

<main+48>: str

4000e4 in main ()
0x4
0x2

0x2
0x4
0x2
0x4100f4
0x4100f0

<main+52>: mov

CHAPTER 4

w3, [x1]

X0, #0x0

POINTERS

// #0

57

CHAPTER 4 POINTERS

Location: a
(Address 00000000004100£0)

Location: b
(Address 00000000004100f4)

Register W2

2

Register W3

4

Register W4

2

Register X0

00000000
0041000

Register X1

00000000
004100£4

Figure 4-6. Memory layout after execution of the last two

instructions

Summary

This chapter introduced pointers. We rewrote our arithmetic program from
Chapter 1 using pointers, used the GDB debugger to execute instructions
individually, and watched changes to memory. We also learned GDB

commands to show the contents of registers and variables.

The next chapter introduces the bit- and byte-level memory

granularity, corresponding layout, and integral C and C++ types.

58

CHAPTER 5

Bytes, Halfwords,
Words, and
Doublewords

Using Hexadecimal Numbers

If we want to use hexadecimal numbers in the C/C++ language, we prefix
them with 0x, for example:

a

12; // 124ec

a = 0xC; // Cu

In the GDB disassembly output, and when entering commands,
numbers are interpreted as decimals by default. If we want a number to be
interpreted as hexadecimal, we prefix it with 0x, for example:

mov X0, #12
mov X0, #0xC

© Dmitry Vostokov 2023 59
D. Vostokov, Foundations of ARM64 Linux Debugging, Disassembling, and Reversing,
https://doi.org/10.1007/978-1-4842-9082-8_5

https://doi.org/10.1007/978-1-4842-9082-8_5

CHAPTER 5 BYTES, HALFWORDS, WORDS, AND DOUBLEWORDS

Byte Granularity

Figure 5-1 shows the difference between bytes, halfwords, words, and
doublewords in terms of byte granularity. We see that each successive size
is double the previous.

Byte Byte

Halfword Byte | Byte
Word Byte | Byte = Byte | Byte

Doubleword @ Byte Byte Byte | Byte Byte Byte Byte Byte

Figure 5-1. Difference between bytes, halfwords, words, and
doublewords

Bit Granularity

Every byte consists of eight bits. Every bit has a value of zero or one. Here
are some examples of bytes, halfwords, words, and doublewords shown
as bit strings (we can also clearly see the correspondence between 4-bit
sequences and hexadecimal numbers, Table 3-1):

¢ DByte
C/C++: unsigned char
8 bits
Values 04e.—2554ec OT Opex—FFpey
Example: 124, 00001100,;, 0C,,,
o Halfword

C/C++: unsigned short

60

CHAPTER 5 BYTES, HALFWORDS, WORDS, AND DOUBLEWORDS

16 bits
Values 04..~65535 4 OF Opex—FFFF, o«
Example: 0000000000001100,;, 000C,,.,
¢ Word
C/C++: unsigned int, unsigned
32 bits
Values 04..-4294967295,. 01 0y,.,~FFFFFFFF,,
Example: 00000000000000000000000000001100,;,
0000000C;,
e Doubleword
C/C++: long, unsigned long long
64 bits

Values 04..~184467440737095516154, Oor

0.~ FEFFFFFFFFFFFFFF, .

Example: 00000000000000000000000000000000
00000000000000000000000000001100,,;,

000000000000000C;

Memory Layout

The minimum addressable element of memory is a byte. The maximum
addressable element is a word on 32-bit machines and a doubleword on
64-bit machines. All general registers are 32-bit on 32-bit CPUs and can

contain word values. On 64-bit CPUs, all general registers are 64-bit and

61

CHAPTER 5 BYTES, HALFWORDS, WORDS, AND DOUBLEWORDS

can contain doubleword values. Figure 5-2 shows a typical memory layout,
and Figure 5-3 shows the byte layout of some general CPU registers.

Address 0000000000402000 Byte

Address 0000000000402001 Byte

DOUBLEWORD

Address 0000000000402004 Byte

Byte

Byte

Byte

Address 0000000000402008 Byte

Figure 5-2. Typical memory layout

62

CHAPTER 5 BYTES, HALFWORDS, WORDS, AND DOUBLEWORDS

Wo

8 8 3 8 g 8 8 g
Y I B

X0 & & & &4 & & & &

W1

= 3

- aia] as] Mm =] ai] aia] [a's] =

w2
. 8 8 2 2 2 8 2 g
X2 = = = e = = = =
ai] /M /m /M as] a's] jaa] A

W3
4] 4] V) o @O o) i) Q
+ + +— o prct = = +—
W ¢) : - s
X3 & A & @) & 3 &

Figure 5-3. Typical registry layout

Remember that memory addresses are always 64-bit, and memory
addresses to 32-bit memory cells like integers are also 64-bit.

63

CHAPTER 5 BYTES, HALFWORDS, WORDS, AND DOUBLEWORDS

Summary

This chapter discussed the bit- and byte-level memory granularity,
corresponding layout, and integral C and C++ types.

The next chapter looks at pointers in greater detail, considering
different byte memory granularity. We also discuss issues related to
abnormal defects, such as uninitialized, invalid, and NULL pointers.
Finally, we disassemble and trace a program that uses variables as
pointers.

64

CHAPTER 6

Pointers to Memory

Pointers Revisited

The pointer is a memory cell or a register that contains the address of
another memory cell. Memory pointers have their own addresses because
they are memory cells too. On 32-bit Linux, pointers are 32-bit, and on 64-
bit Linux, pointers are 64-bit.

Addressing Types

As we have seen in Chapter 5, memory cells can be of one byte, halfword,
word, or doubleword size. Therefore, we can have a pointer to a byte, a
pointer to a halfword, a pointer to a word, and a pointer to a doubleword.
If we want to load or store a byte, we use LDRB/STRB and W-registers
for data, a halfword - LDRH/STRH and W-registers for data, a word -
LDR/STR and W-registers for data, a doubleword - LDR/STR and
X-registers for data. We always use X-registers for memory addresses.
Here are some illustrated examples:

mov wl, #OxFF

ldrb wi, [x0] // load one byte

strb wi, [x0] // stores one byte

str wi, [x0] // stores one word

ldr x1, [x0] // loads one doubleword

© Dmitry Vostokov 2023 65

D. Vostokov, Foundations of ARM64 Linux Debugging, Disassembling, and Reversing,
https://doi.org/10.1007/978-1-4842-9082-8_6

https://doi.org/10.1007/978-1-4842-9082-8_6

CHAPTER6 POINTERS TO MEMORY

We prefix OxFF with the # sign to differentiate it from 0xFF as a memory
address. The layout of memory before strb instruction execution is
shown in Figure 6-1, and the layout of memory after execution is shown in

Figure 6-2.
Byte =
Byte
Address 0000000000402000 0x00 <« 0000000000402000
Address 0000000000402001 0x01
0x02
0x03 W1
Address 0000000000402004 Byte_
0x000000FF
Byte

Figure 6-1. The layout of memory before strb instruction execution

66

CHAPTER6 POINTERS TO MEMORY

X0
Byte
Byte
strb
Address 0000000000402000 0xFF « | 0000000000402000
Address 0000000000402001 0x01
0x02
0x03 w1
Address 0000000000402004 Byte
0x000000FF
Byte

Figure 6-2. The layout of memory after strb instruction execution

The layout of memory after the execution of the str instruction is
shown in Figure 6-3. The instruction replaces all 4 bytes of a word in
memory because we specify the destination as 4 bytes (W1 source register)
and OxFF is 0x000000FF as a word. It is stored as FF 00 00 00 sequence of
bytes in memory (little-endian system).

67

CHAPTER6 POINTERS TO MEMORY

Byte

Byte

Address 0000000000402000 0xFF

Address 0000000000402001 0x00

0x00

0x00

Address 0000000000402004 Byte

Byte

X0

str
0000000000402000

Wi

0x000000FF

Figure 6-3. The layout of memory after the execution of str

instruction

Figure 6-4 shows a summary of various addressing modes.

68

CHAPTER6 POINTERS TO MEMORY

Register X1
Register X2
00000000000000FF
0000000000402000
Register X0
str x1, [x2] strb w1, [x0]
» -
Address 0000000000402000 4 Byte 0000000000402000
strh, w1, [x5]
Address 0000000000402001 Byte <«
B}'te
Byte Register X5
str wl, [x6]
Address 0000000000402004 Byte h)
Register X6 0000000000402001
Byte) '
Byte
Byte 0000000000402004
Address 0000000000402008 Byte

Figure 6-4. A summary of various addressing modes

69

CHAPTER6 POINTERS TO MEMORY

Registers Revisited

X0-X30 64-bit registers can be used as pointers to memory. They contain
32-bit registers W0-W30.

If an instruction uses W0-W30 registers, the size of operations is 32-bit.
Otherwise, it is 64-bit.

NULL Pointers

The first addresses starting from 0x0000000000000000 are specifically
made inaccessible on Linux. On my ARM64 system, it is the range
0x0000000000000000-0x0000000000007FFE. The following code will force
an application crash or kernel panic if executed inside a driver:

mov X0, #0
str x1, [x0] // Access violation

Invalid Pointers

There are different kinds of invalid pointers that cause an access violation
when we try to dereference them:

o NULL pointers
» Pointers to inaccessible memory
o Pointers to read-only memory when writing

Other pointers may or may not cause an access violation, and some of
them are discussed in subsequent chapters:

o Pointers pointing to “random” memory

o Uninitialized pointers having random value inherited

from past code execution

e Dangling pointers

70

CHAPTER6 POINTERS TO MEMORY

The latter pointers are similar to pointers pointing to “random”
memory locations and arise when we forget to set pointer variables to zero
(NULL) after disposing of the memory they point to. By nullifying pointers,
we indicate that they no longer point to memory.

Variables As Pointers

Suppose we have two memory addresses (locations) “a” and “b” declared
and defined in C and C++ as

int a, b;

These are normal variables “a” and “b.” Also, we can have another two
memory addresses (locations) “pa” and “pb” declared and defined in C
and C++ as

int *pa, *pb;

Here, pa is a pointer to an int, or, in other words, the memory
cell pa contains the address of another memory cell that contains an
integer value.

Pointer Initialization

In order to have pointers to point to memory, we need to initialize them
with corresponding memory addresses. Here is a typical C or C++ code
that does what we need:

int a; // uninitialized variable

int *pa; // uninitialized pointer

pa = &a; // (pa) now contains the address a
int b = 12; // initialized variable

int *pb = &b; // initialized pointer

71

CHAPTER6 POINTERS TO MEMORY

We see that pointers are also variables and can change their values
effectively pointing to different memory locations during program

execution.

Initialized and Uninitialized Data

Here is a bit of additional information about initialized and uninitialized
variables that is useful to know: an executable program in Linux is divided
into different sections. One is called .data, where all global and static
variables (including pointers) are put.

Consider this C or C++ data definition:

int array[1000000]; // size 4,000,000 bytes or 3.8Mb

We would expect the size of an executable file to be about 4Mb.
However, the program size on a disk is only 16Kb. It is because the
uninitialized array contains only information about its size. When we
launch the program, this array is recreated from its size information and
filled with zeroes. The size of the program in memory becomes about 4Mb.

In the case of the initialized array, the program size on disk is 4.01Mb:

int array[1000000] = { 12 };

This is because the array was put into a .data section and contains the
following sequence of integers { 12,0, 0, 0,0 ... }.

More Pseudo Notation

We remind that [a] means contents of memory at the address a, and [x0]
means contents of a 32-bit or 64-bit memory cell at the address stored in
the X0 register (here, X0 is a pointer).

72

CHAPTER6 POINTERS TO MEMORY

We also introduce an additional notation to employ in this and
subsequent chapters: *[pa] means contents at the address stored at the
address pa and is called dereferencing a pointer whose address is pa. The

corresponding C/C++ code is similar:

int *pa = &a;
int b = *pa;

“MemoryPointers” Project: Memory Layout

This project is very similar to the “Pointers” project from Chapter 4.
We have the following data declaration and definition in the C or C++

language:

int a, b;
int *pa, *pb = 8b;

The project code corresponds to the following pseudo-code and
assembly language:

73

CHAPTER6 POINTERS TO MEMORY

[pa] <- address a adr x0, a
adr x1, pa
str x0, [x1]

*[pa] <- 1 ; [al =1 adr xo, pa

ldr xo0, [x0]

mov w2, #1

str w2, [x0]
*[pb] <- 1 ; [b] =1 adr x1, pb
ldr x1, [x1]
str w2, [x1]
ldr w2, [x0]
ldr w3, [x1]
add w3, w3, w2
str w3, [x1]

1
N

*[pb] <- *[pb] + *[pa] ; [b]

The source code for this chapter can be downloaded from

github.com/apress/armé64-linux-debugging-disassembling-reversing/
Chapter6/

We compile and link it and load the executable into GDB as described
in Chapter 4. We get the following output:

$ as MemoryPointers.asm -o MemoryPointers.o
$ 1d MemoryPointers.o -o MemoryPointers

$ gdb ./MemoryPointers

GNU gdb (GDB) Red Hat Enterprise Linux 7.6.1-120.0.2.el7
Copyright (C) 2013 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/
licenses/gpl.html>

This is free software: you are free to change and
redistribute it.

74

CHAPTER6 POINTERS TO MEMORY

There is NO WARRANTY, to the extent permitted by law. Type
"show copying"

and "show warranty" for details.

This GDB was configured as "aarch64-redhat-linux-gnu".

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...

Reading symbols from /home/crashdump/pflddr/A64/Chapter6/
MemoryPointers...(no debugging symbols found)...done.

(gdb)

Then we put a breakpoint on the main function and run the program
until GDB breaks in:

(gdb) break main
Breakpoint 1 at 0x4000b0

(gdb) run
Starting program: /home/crashdump/pflddr/A64/Chapter6/./
MemoryPointers

Breakpoint 1, 0x00000000004000b0 in main ()
We disassemble the main function:

(gdb) disass main

Dump of assembler code for function main:

=> 0x00000000004000b0 <+0>: adr X0, 0x4100f4
0x00000000004000b4 <+4>: adr x1, 0x4100fc
0x00000000004000b8 <+8>: str x0, [x1]
0x00000000004000bc <+12>: adr X0, 0x4100fc
0x00000000004000C0 <+16>: ldr X0, [x0]
0x00000000004000c4 <+20>: mov w2, #0x1 // #1
0x00000000004000C8 <+24>: str w2, [x0]
0x00000000004000CC <+28>: adr x1, 0x410104

75

CHAPTER6 POINTERS TO MEMORY

End of assembler dump.

0x00000000004000d0
0x00000000004000d4
0x00000000004000d8
0x00000000004000dc
0x00000000004000€0
0x00000000004000e4
0x00000000004000e8
0x00000000004000ec
0x000000000040000

<+32>:
<+36>:
<+40>:
<+44>:
<+48>:
<+52>:
<+56>:
<+60>:
<+64>:

ldr
str
ldr
ldr
add
str
mov
mov
svc

x1, [x1]

w2, [x1]

w2, [x0]

w3, [x1]

w3, w3, w2

w3, [x1]

X0, #0X0 /] #0
w8, #0x5d // #93
#0x0

Then we clear X0-X3 registers to set up a memory layout that is easy

to follow:

(gdb) set $x0 = 0
(gdb) set $x1 =0
(gdb) set $x2 =0
(gdb) set $x3 =0

(gdb)

X0 0x0
x1 0x0
X2 0x0
X3 0x0

info registers x0 x1 x2 x3

0

0
0
0

We also instruct GDB to automatically display the current instruction

to be executed, the values of registers X0-X3, and the contents of variables

H ” Ilb ” «

76

pa,” and “pb”:

CHAPTER 6

(gdb) display/i $pc
1: x/1 $pc
=> 0x4000b0 <main>: adr X0, 0x4100f4

(gdb) display/x $x0
2: /x $x0 = 0x0

(gdb) display/x $x1
3: /x $x1 = 0x0

(gdb) display/x $x2
4: /x $x2 = 0x0

(gdb) display/x $x3
5: /x $x3 = 0x0

(gdb) display/x (int)a
6: /x (int)a = ox0

(gdb) display/x (int)b
7: /x (int)b = 0x0

(gdb) display/x (long)pa
8: /x (long)pa = 0x0

(gdb) display/x (long)pb
9: /x (long)pb = 0x4100f8

POINTERS TO MEMORY

We see that the pb variable contains the address 0x4100f8. We
then check the addresses of (variables) memory locations “a,” “b,” “pa,”

and “pb”:
(gdb) print 8a

$1 = (<data variable, no debug info> *) 0x4100f4

(gdb) print &b

$2 = (<data variable, no debug info> *) 0x4100f8

77

CHAPTER6 POINTERS TO MEMORY

(gdb) print 8pa
$3 = (<data variable, no debug info> *) 0x4100fc

(gdb) print &pb
$4 = (<data variable, no debug info> *) 0x410104

We also check the value stored at the address 0x4100£8 (value of pb that
is the address of b):

(gdb) x 0x4100f8
0x4100f8: 0x00000000

This output corresponds to the memory layout before executing the
first ADR instruction, and it is shown in Figure 6-5.

78

CHAPTER6 POINTERS TO MEMORY

Register X0

Location : a
(Address 00000000004 100£4) 0
Laocation : b
(Address 00000000004 100f8) » 0
Register X1
Location: pa 0
(Address 00000000004 100fc)
Register W2
Location: pb | 00000000
(Address 0000000000410104) 004100f8
Register W3
0

0

Figure 6-5. Memory layout before executing the first ADR instruction

We then execute our code step by step (changes are in bold):

(gdb) si
0x00000000004000b4 in main ()
(long)pb = 0x4100f8

(Long)pa

9:
8: /x
7:

6: /x

/X

/X

(int)b
(int)a

= 0x0
0x0
0x0

79

CHAPTER 6 POINTERS TO MEMORY
5: /x $x3 = Ox0

4: /x $x2 = 0x0

3: /x $x1 = 0x0

2: /x $x0 = 0x4100f4

1: x/1 $pc

=> 0x4000b4 <main+4>: adr
(gdb) si

0x00000000004000b8 in main ()
9: /x (long)pb = 0x4100f8
8: /x (long)pa = 0x0

7: /x (int)b = ox0

6: /x (int)a = ox0

5: /x $x3 = 0x0

4: /x $x2 = 0x0

3: /x $x1 = 0x4100fc

2: /x $x0 = 0x4100f4

1: x/i $pc

0x00000000004000bc in main ()

>

9:

B N W s U1 O

>

: /x (int)b

0x4000b8 <main+8>:

str

/x (long)pb = 0x4100f8
/x (long)pa = 0x4100f4

0x0
0x0

/x (int)a
/x $x3 = 0x0
/x $x2 = 0x0
/x $x1 = 0x4100fc
/x $x0 = 0x4100f4

: x/1 $pc

0x4000bc <main+12>:

(gdb) si

80

adr

X1, 0x4100fc

x0, [x1]

X0, 0x4100fc

CHAPTER 6

0X00000000004000c0 in main ()
: /x (long)pb = 0x4100f8

/x (long)pa = 0x4100f4

/x (int)b = 0x0

/x (int)a = ox0

/x $x3 = 0x0

/x $x2 = 0x0

/x $x1 = 0x4100fc

2: /x $x0 = 0x4100fc

1: x/i $pc

=> 0x4000c0 <main+16>: ldr x0, [x0]

w H U1 O N 0 L

(gdb) si
0x00000000004000c4 in main ()

9: /x (long)pb = 0x4100f8

8: /x (long)pa = 0x4100f4

7: /x (int)b = ox0

6: /x (int)a = ox0

5: /x $x3 = Ox0

4: /x $x2 = 0x0

3: /x $x1 = 0x4100fc

2: /x $x0 = 0x4100f4

1: x/1 $pc

=> 0x4000c4 <main+20>: mov w2,
#0x1 // #1
(gdb) si

0x00000000004000c8 in main ()
: /x (long)pb = 0x4100f8

: /x (long)pa = 0x4100f4

: /x (int)b = 0x0

/x (int)a = 0x0

e

(o2 N BN o]

POINTERS TO MEMORY

81

CHAPTER6 POINTERS TO MEMORY

5: /x $x3 = Ox0

4: /x $x2 = ox1

3: /x $x1 = 0x4100fc

2: /x $x0 = 0x4100f4

1: x/1 $pc

=> 0x4000c8 <main+24>: str w2, [x0]
(gdb) si

0x00000000004000cc in main ()
9: /x (long)pb = 0x4100f8
8: /x (long)pa = 0x4100f4

7: /x (int)b = ox0

6: /x (int)a = ox1

5: /x $x3 = 0x0

4: /x $x2 = ox1

3: /x $x1 = 0x4100fc

2: /x $x0 = 0x4100f4

1: x/i $pc

=> 0x4000cc <main+28>: adr x1, 0x410104
(gdb) si

0x00000000004000d0 in main ()
9: /x (long)pb = 0x4100f8

8: /x (long)pa = 0x4100f4

7: /x (int)b = 0x0

6: /x (int)a = ox1
5
4

: /x $x3 = 0x0
:/x $x2 = 0x1
3: /x $x1 = 0x410104
2: /x $x0 = 0x4100f4
1: x/1 $pc
=> 0x4000d0 <main+32>: ldr x1, [x1]

82

CHAPTER 6

(gdb) si

0x00000000004000d4 in main ()
/x (long)pb = 0x4100f8

/x (long)pa = 0x4100f4

/x (int)b = ox0

/x (int)a = ox1

/x $x3 = 0x0

/x $x2 = 0x1

3: /x $x1 = 0x4100f8

2: /x $x0 = 0x4100f4

1: x/1 $pc

=> 0x4000d4 <main+36>: str w2, [x1]

A U1 OV N o0 O
n]
noon

(gdb) si

0x00000000004000d8 in main ()
9: /x (long)pb = 0x4100f8

8: /x (long)pa = 0x4100f4

7: /x (int)b = ox1

6: /x (int)a = ox1

5: /x $x3 = 0x0

4: /x $x2 = 0x1

3: /x $x1 = 0x4100f8

2: /x $x0 = 0x4100f4

1: x/i $pc

=> 0x4000d8 <main+40>: ldr w2, [x0]
(gdb) si

0x00000000004000dc in main ()
: /x (long)pb = 0x4100f8

: /x (long)pa = 0x4100f4

: /x (int)b = ox1

/x (int)a = ox1

e

(o2 N BN o]

POINTERS TO MEMORY

83

CHAPTER6 POINTERS TO MEMORY

5: /x $x3 = Ox0

4: /x $x2 = ox1

3: /x $x1 = 0x4100f8

2: /x $x0 = 0x4100f4

1: x/1 $pc

=> 0x4000dc <main+44>: ldr w3, [x1]
(gdb) si

0x00000000004000e0 in main ()

9:

A N oo

R, N WD

=>

/x (long)pb = 0x4100f8
/x (long)pa = 0x4100f4
/x (int)b = ox1

/x (int)a = ox1

/x $x3 = ox1

/x $x2 = 0x1

/x $x1 = 0x4100f8

/X $x0 = 0x4100f4

: x/1 $pc

0x4000e0 <main+48>: add w3, w3, w2

(gdb) si
0x00000000004000e4 in main ()

84

: /x (long)pb = 0x4100f8
: /x (long)pa = 0x4100f4

/x (int)b
/x (int)a
/x $x3 = ox2

/x $x2 = 0ox1

/x $x1 = 0x4100f8

/X $x0 = 0x4100f4

x/1 $pc

0x4000e4 <main+52>: str w3, [x1]

0ox1
0ox1

CHAPTER6 POINTERS TO MEMORY

(gdb) si

0x00000000004000e8 in main ()
9: /x (long)pb = 0x4100f8

8: /x (long)pa = 0x4100f4

7: /x (int)b = ox2

6: /x (int)a = ox1

5: /x $x3 = Ox2

4: /x $x2 = Ox1

3: /x $x1 = 0x4100f8

2: /x $x0 = 0x4100f4

1: x/1 $pc

=> 0x4000e8 <main+56>: mov X0, #0x0 // #0

The final memory layout and registers are shown in Figure 6-6.

85

CHAPTER6 POINTERS TO MEMORY

Location : a
(Address 00000000004 100f4) ¥ 1

Location : b

(Address 00000000004100£8) | 2 “«
Location: pa A 00000000
(Address 00000000004100fc) 004100f4
Location: pb L 00000000
(Address 0000000000410104) 0041008
0

Figure 6-6. The final memory layout and registers

86

Register X0

- 00000000

00410014

Register X1

00000000
00410018

Register W2

Register W3

CHAPTER6 POINTERS TO MEMORY

Summary

This chapter looked at pointers in greater detail, considering different byte
memory granularity. We also discussed issues related to abnormal defects,
such as uninitialized, invalid, and NULL pointers. Finally, in the GDB
debugger, we disassembled and traced a program that used variables as
pointers and learned additional commands to display memory addresses
and contents.

The next chapter introduces logical instructions, the zero register, and
the program counter register. We also learn an additional GDB command
to get program code and data section addresses.

87

CHAPTER 7

Logical Instructions
and PC

Instruction Format

We have seen that most assembly language instructions have a uniform
format, for example:

Opcode operand
Opcode destination operand, source_operand
Opcode destination operand, source operandl, source_operand2

STR-family of instructions have this format:
Opcode source operand, destination operand

Operands can be registers (reg), memory labels (mem), or some
numbers, called immediate values (imm). Typical notational examples:

add reg, reg, reg
add reg, reg, imm
mov reg, imm

adr reg, mem

ldr reg, [reg]
str reg, [reg]

© Dmitry Vostokov 2023
D. Vostokov, Foundations of ARM64 Linux Debugging, Disassembling, and Reversing,
https://doi.org/10.1007/978-1-4842-9082-8_7

https://doi.org/10.1007/978-1-4842-9082-8_7

CHAPTER 7 LOGICAL INSTRUCTIONS AND PC
and some concrete assembly language examples:

add w0, wi, w2
str x0, [x1]
adr x1, a

ldr w4, [x8]
mov w7, #2

Logical Shift Instructions

In addition to arithmetic instructions, there are so-called logical shift
instructions that just shift a bit string to the left or the right.
Shift to the left:

11111110 <- 11111111 ; shift by 1
11110000 <- 11111110 ; shift by 3
1sl regDst, regSrc, regShiftValue

mov x0, #3

1sl X2, X1, X0

Shift to the right:
01111111 <- 11111111 ; shift by 1
00001111 <- 01111111 ; shift by 3

lsr regDst, regSrc, regShiftValue
mov X0, #3
Isr X2, X1, X0

Logical Operations

Here, we recall logical operations and corresponding truth tables. We
abbreviate True as T and False as F.
AND

90

CHAPTER 7 LOGICAL INSTRUCTIONS AND PC

land 1 =1 Tand T=T
1and 0=0 Tand F=F
Oand 1 =0 FandT-=F
Oand 0 =0 FandF =F
OR
l1ori1=1 TorT=T
10r0=1 Tor F=T
Oor1-=1 ForT=T
Oor0=20 ForF=F

Zeroing Memory or Registers

There are several ways to put a zero value into a register or a memory
location:

1. Move avalue to a register:

mov x0, #0
mov wl, #0

2. Use the XOR (Exclusive OR) logical operation:

eor regDst, regSrci, regSrc2
eor x0, x0, X0

XOR
1xor 1 =0 Txox T=F
1 xor 0 =1 Txor F=T
O0xor1=1 Fxor T=T
0 xor 0 =0 F xor F = F

91

CHAPTER 7 LOGICAL INSTRUCTIONS AND PC

This operation clears its destination operand because the source
operands are the same, and the same bits are cleared.

1. Move a value from a zero register (XZR/WZR) to a
register:

mov X0, Xzr
mov W1, wWzr

Program Counter

Consider these two execution steps from the previous chapter project:

(gdb) si
0x00000000004000dc in main ()

9: /x (long)pb = 0x4100f8
8: /x (long)pa = 0x4100f4
7: /x (int)b = ox1

6: /x (int)a = ox1

5: /x $x3 = 0x0

4: /x $x2 = 0x1

3: /x $x1 = 0x4100f8

2: /x $x0 = 0x4100f4

1: x/i $pc

> 0x4000dc <main+44>: ldr w3, [x1]

(gdb) si

0x00000000004000e0 in main ()
9: /x (long)pb = 0x4100f8

8: /x (long)pa = 0x4100f4

7: /x (int)b = ox1

6: /x (int)a = ox1

5: /x $x3 = 0x1

92

4: /x $x2 = Ox1

3: /x $x1 = 0x4100f8
2: /x $x0 = 0x4100f4
1: x/i $pc

=> 0x4000e0 <main+48»:

CHAPTER 7 LOGICAL INSTRUCTIONS AND PC

add w3, w3, w2

When the LDR instruction at the 00000000004000dc address is being

00000000004000d6
00000000004000d7
00000000004000d8
00000000004000d9
00000000004000da
00000000004000db
00000000004000de
00000000004000dd
00000000004000de
00000000004000dt
00000000004000e0
00000000004000e1
00000000004000e2
00000000004000e3
00000000004000e4

Code Section

Recall that in Chapter 6, we discussed the .data section where program

a0
b9
0z
00
40
b9
23
00
40

ho

63
a0
02
0Ob

executed, another CPU register PC points to the next instruction at the
00000000004000e0 address to be executed. This output is shown in
Figure 7-1.

PC

00000000
004000e0

Current executing instruction: ldr w3, [x1]

< Next instruction: add w3, w3, w2

Figure 7-1. Memory layout and PC when executing LDR instruction

data is put. The program code is put into the .text section.

The following GDB command lists various program sections and their

information:

93

CHAPTER 7 LOGICAL INSTRUCTIONS AND PC

(gdb) maintenance info sections
Exec file:

“/home/coredump/pflddr/A64/Chapter6/MemoryPointers’, file
type elf64-littleaarch64.

0x004000b0->0x004000f4 at 0x000000b0: .text ALLOC LOAD
READONLY CODE HAS CONTENTS

0x004100f4->0x0041010c at 0x000000f4: .data ALLOC LOAD DATA
HAS_CONTENTS

Summary

In this chapter, we learned logical operations and instructions, the
so-called zero register, the program counter, and an additional GDB
command to get program code and data section addresses.

In the next chapter, we use our assembly language knowledge and
reconstruct C and C++ code that uses pointers.

94

CHAPTER 8

Reconstructing
a Program
with Pointers

Example of Disassembly Output:
No Optimization

The ability to reconstruct approximate C or C++ code from code
disassembly is essential in memory dump analysis and debugging.
The project for this chapter can be downloaded from
github.com/apress/arm64-linux-debugging-disassembling-reversing/
Chapter8/
We compile and link it, load executable into GDB, put a breakpoint
on the main function, and run the program until GDB breaks in, then
disassemble its main function:

$ gcc PointersAsVariables.cpp -o PointersAsVariables

$ gdb ./PointersAsVariables
GNU gdb (GDB) Red Hat Enterprise Linux 7.6.1-120.0.2.el7
Copyright (C) 2013 Free Software Foundation, Inc.

© Dmitry Vostokov 2023 95
D. Vostokov, Foundations of ARM64 Linux Debugging, Disassembling, and Reversing,
https://doi.org/10.1007/978-1-4842-9082-8_8

https://doi.org/10.1007/978-1-4842-9082-8_8

CHAPTER 8 RECONSTRUCTING A PROGRAM WITH POINTERS

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/
licenses/gpl.html>

This is free software: you are free to change and
redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type
"show copying"

and "show warranty" for details.

This GDB was configured as "aarch64-redhat-linux-gnu".

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...

Reading symbols from /home/coredump/pflddr/A64/Chapter8/
PointersAsVariables...(no debugging symbols found)...done.

(gdb) break main
Breakpoint 1 at 0x4005bc

(gdb) run
Starting program: /home/coredump/pflddr/A64/Chapter8/./
PointersAsVariables

Breakpoint 1, 0x00000000004005bc in main ()
Missing separate debuginfos, use: debuginfo-install
glibc-2.17-325.0.2.el7_9.aarch64

(gdb) disas main
Dump of assembler code for function main:

0x00000000004005b8 <+0>: sub sp, sp, #0x10
=> 0x00000000004005bc <+4>: str wo, [sp,#12]
0x00000000004005¢c0 <+8>: str x1, [sp]
0x00000000004005c4 <+125: adrp x0, 0x420000
0x00000000004005c8 <+165: add X0, x0, #0x30
0x00000000004005cC <+205: adrp x1, 0x420000
0x00000000004005d0 <+24>: add x1, x1, #0x28

96

0x00000000004005d4
0x00000000004005d8
0x00000000004005dc
0x00000000004005€0
0x00000000004005e4
0x00000000004005¢e8
0x00000000004005ec
0x00000000004005f0
0x0000000000400514
0x0000000000400518
0x00000000004005fc
0x0000000000400600
0x0000000000400604
0x0000000000400608
0x000000000040060c
0x0000000000400610
0x0000000000400614
0x0000000000400618
0x000000000040061c
0x0000000000400620
0x0000000000400624
0x0000000000400628
0x000000000040062c
0x0000000000400630
0x0000000000400634
0x0000000000400638
0x000000000040063¢
0x0000000000400640
0x0000000000400644

CHAPTER 8 RECONSTRUCTING A PROGRAM WITH POINTERS

<+28»:
<+32>:
<+36>:
<+405:
<+44>:
<+48>:
<+52>:
<+56>:
<+60> :
<+64>:
<+68>:
<+72>:
<+76>:
<+80>:
<+84>:
<+88>:
<+92>:
<+96>:
<+1005>:
<+104>:
<+1085:
<+112>:
<+1165:
<+1205:
<+124>:
<+1285:
<+132>:
<+136>:
<+140>:

str
adrp
add
adrp
add
str
adrp
add
ldr
mov
str
adrp
add
1dr
mov
str
adrp
add
1dr
adrp
add
1dr
1dr
adrp
add
1dr
ldr
add
str

x1,
x0,
X0,
x1,
x1,
x1,
x0,
x0,
X0,
wi,
wi,
X0,
x0,
x0,
wi,
wi,
x0,
X0,
x0,
x1,
x1,
x1,
w2,
x1,
x1,
x1,
wi,
wi,
wi,

[xo]
0x420000
x0, #0x38
0x420000
x1, #0x2c
[xo]
0x420000
x0, #0x30
[xo]

#ox1

[xo]
0x420000
x0, #0x38
[xo]

#ox1

[xo]
0x420000
x0, #0x38
[xo]
0x420000
x1, #0x38
[xa]

[xa]
0x420000
x1, #0x30
[xa]

[xa]

w2, wi

[xo]

/71 #1

/] #1

97

CHAPTER 8 RECONSTRUCTING A PROGRAM WITH POINTERS

---Type <return> to continue, or q <return>

0x0000000000400648
0x000000000040064c
0x0000000000400650
0x0000000000400654
0x0000000000400658
0x000000000040065c¢
0x0000000000400660
0x0000000000400664
0x0000000000400668
0x000000000040066¢
0x0000000000400670
0x0000000000400674
0x0000000000400678
0x000000000040067c¢
0x0000000000400680
0x0000000000400684
0x0000000000400688
0x000000000040068¢
0x0000000000400690
0x0000000000400694
0x0000000000400698
0x000000000040069¢C

<+144>:
<+148>:
<+152>:
<+1565:
<+1605:
<+164>:
<+168»:
<+172>:
<+1765:
<+1805:
<+1845:
<+188>:
<+192>:
<+196>:
<+2005> ¢
<+204>:
<+2085:
<+212):
<+2165:
<+220>:
<4+224>:
<+228>:

adrp
add
1dr
1dr
add
str
adrp
add
1dr
adrp
add
1dr
1dr
adrp
add
1dr
ldr
mul
str
mov
add
ret

x0,
X0,
x0,
wi,
wi,
wi,
x0,
X0,
x0,
x1,
x1,
x1,
w2,
x1,
x1,
x1,
wi,
wi,
wi,
wo,

sp,

to quit---
0x420000
X0, #0x30
[xo]

[xo]

wi, #0x1
[xo]
0x420000
x0, #0x38
[xo]
0x420000
x1, #0x38
[x1]

[x1]
0x420000
x1, #0x30
[x1]

[xa]

w2, wi
[xo]

#0x0

sp, #0x10

Reconstructing G/C++ Code: Part 1

Now we go from instruction to instruction highlighted in bold on the
previous page and try to reconstruct pseudo-code which is shown as

comments to assembly language code.

98

// #0

adrp
add
adrp
add
str
adrp
add
adrp
add
str
adrp
add
ldr
mov
str
adrp
add
ldr
mov
str
adrp
add
ldr
adrp
add
ldr
ldr
adrp
add
ldr
ldr

X0,
X0,
X1,
x1,
x1,
X0,
X0,
x1,
X1,
x1,
X0,
X0,
X0,
wl,
wi,
X0,
X0,
X0,
wi,
wl,
X0,
X0,
X0,
X1,
x1,
x1,
w2,
x1,
x1,
X1,
wi,

CHAPTER 8

0x420000
X0, #0x30
0x420000
x1, #0x28
[x0]
0x420000
X0, #0x38
0x420000
x1, #0x2c
[x0]
0x420000
X0, #0x30
[x0]
#0x1
[x0]
0x420000
x0, #0x38
[x0]
#0x1
[x0]
0x420000
X0, #0x38
[x0]
0x420000
X1, #0x38
[x1]
[x1]
0x420000
x1, #0x30
[x1]

[x1]

RECONSTRUCTING A PROGRAM WITH POINTERS

// %0 ¢- address

//

// x1 <- address
// [x0] <- x1

//

// %0 ¢- address

// x1 ¢- address
// [x0] <- xa

// x0 <- address
// x0 <- [x0]

// wl -1

/7 [x0] <- w1

// x0 <- address
// x0 <- [x0]

// wl ¢- 1

// [x0] <- w1

// %0
// %0

// xa
// xi
// w2

// xa
// x1
// wi

<
<-

<
<-
<-

<
<-
¢~

address

[xo]

address
[xa]
[x1]

address
[x1]
[x1]

varl (0x420030)

var2 (0x420028)

var3 (0x420038)

var4 (0x42002c)

varl (0x420030)

var3 (0x420038)

var3 (0x420038)

var3 (0x420038)

varl (0x420030)

99

CHAPTER 8 RECONSTRUCTING A PROGRAM WITH POINTERS

add wl, w2, wl
str wl, [x0]

adrp x0, 0x420000
add X0, x0, #0x30
ldr x0, [x0]

ldr wl, [x0]

add wl, wl, #0x1
str wl, [x0]

adrp x0, 0x420000
add X0, x0, #0x38
ldr X0, [x0]

adrp x1, 0x420000
add X1, x1, #0x38
ldr x1, [x1]

ldr w2, [x1]

adrp x1, 0x420000
add x1, x1, #0x30
ldr x1, [x1]

ldr wl, [x1]
mul wl, w2, wl
str wl, [x0]

// Wl <= W2 + wl
// [x0] <- w1

// x0 <- address vari (0x420030)
// x0 <- [x0]

// w1 <- [x0]

// Wl <= wl + 1

// [x0] <- w1

// x0 <- address var3 (0x420038)
// x0 <- [x0]

// x1 <- address var3 (0x420038)
// x1 <- [x1]
// w2 ¢- [x1]

// x1 ¢- address vari (0x420030)
// x1 <~ [x1]

// wi ¢- [xa]

// wi ¢- w2 * wl

// [x0] <- w1

Reconstructing C/C++ Code: Part 2

Now we group pseudo-code together with possible mixed C/C++ and

assembly language equivalents:

X0 <- address vari (0x420030)
x1 <- address var2 (0x420028)
[x0] <- x1

X0 <- address var3 (0x420038)

100

// int *varij;
// int var2;
// varl = &var2;

// int *var3;

X1 <- address
[x0] <- x1

X0 <- address
X0 <- [x0]

wl <-1

[x0] <- w1

X0 <- address
X0 <- [x0]

wl <-1

[x0] <- w1

X0 <- address
X0 <- [x0]

X1 <- address
x1 <- [x1]

w2 <- [x1]

X1 <- address
x1 <- [x1]

wl <- [x1]

wl <- w2 + wl
[x0] <- w1

X0 <- address
X0 <- [x0]

wl <- [x0]

Wl <- wl + 1
[x0] <- w1

X0 <- address
X0 <- [x0]

X1 <- address
x1 <- [x1]

var4

varl

var3

var3

var3

varl

varl

var3

var3

CHAPTER 8 RECONSTRUCTING A PROGRAM WITH POINTERS

(0x42002c¢)

(0x420030)

(0x420038)

(0x420038)

(0x420038)

(0x420030)

(0x420030)

(0x420038)

(0x420038)

//
//

//
//
//
//

//
//
//
//

//

//
//

//
//
//
//

//
//
//
//

//

//

int varsg;

var3 = &varg;

x0 = &vari;

x0 = *(&vari) = vari;
wi=1;

*varl = wi;

x0 = &var3;

x0 = *(&var3) = var3;
wi=1;

*vaxr3 = wi;

X0 = var3;
X1 = var3;
w2 = *var3;
x1 = vari;
wl = *vari;
wl = W2 + wi;
*vaxr3 = wi;

X0 = vari;

wl = *vari;
++Wl;

*varl = wi;

X0

var3;

x1 = var3;

101

CHAPTER 8 RECONSTRUCTING A PROGRAM WITH POINTERS

w2 <- [x1] // w2 = *var3;
x1 <- address varl (0x420030)

x1 <- [x1] // x1 = varij

wl <- [x1] // wi = *varij;
Wl <- w2 * wi // Wi = w2 * wij
[x0] <- w1 // *var3 = wij

Reconstructing C/C++ Code: Part 3

Next, we combine more mixed statements into C/C++ language code:

int *vari;
int var2;
varl = &var2;

int *var3;
int varg;
var3 = &var4;

x0 = &vari,

x0 = *(&var1l) = vari;

wl = 1;

*varl = wi; // *vari = 13
X0 = &var3;

x0 = *(&var3) = var3;

wl = 1;

*var3 = wi; // *var3 = 1;
X0 = var3;

x1 = var3;

w2 = *var3;

x1 = vari;

102

CHAPTER 8 RECONSTRUCTING A PROGRAM WITH POINTERS

wl = *vari;
Wl = w2 + wi;
*var3 = wi; // *var3 = *var3 + *vari;

X0 = varil;
wl = *vari;

++W1;

*varl = wi; // ++*vari;
X0 = var3;

x1 = var3;

w2 = *var3;

x1 = vari;

wl = *vari;
wl = w2 * wi;
*var3 = wi; // *var3 = *var3 * *vari;

Reconstructing G/C++ Code:
C/C++ Program

Finally, we have something that looks like a complete C/C++ code:

int *vari; // int *pa;
int varz; // int aj

varl = &var2; // pa = &a;
int *var3; // int *pb;
int vars; // int b;

var3 = &var4; // pb = &b;
*varl = 1; // *pa = 13
*var3 = 1; // *pb = 13

103

CHAPTER 8 RECONSTRUCTING A PROGRAM WITH POINTERS

*var3 = *var3 + *vari; // *pb = *pb + *pa;
++*vari; /] ++*pa;
*var3 = *var3 * *vari; // *pb = *pb * pa;

And we get the following code after renaming and rearranging:

int a, b;
int *pa, *pb;

pa = &a;

pb = 8&b;

*pa = 1;

*pb = 1;

*pb = *pb + *pa;
++*pa;

*pb = *pb * *pa;

If we look at the project source code PointersAsVariables.cpp,
we see the same code compiled into the executable file that we were
disassembling.

Example of Disassembly Output:
Optimized Program

The optimized program (compiled with -02) contains fewer CPU
instructions:

(gdb) disass main
Dump of assembler code for function main:
0x0000000000400450 <+0>: adrp X1, 0x420000

104

CHAPTER 8 RECONSTRUCTING A PROGRAM WITH POINTERS

0x0000000000400454 <+4>: add X0, x1, #0x28
0x0000000000400458 <+8>: add X3, x0, #0x8
0x000000000040045C <+12>: str x3, [x1,#40]
0x0000000000400460 <+16>: mov wl, #0x2 /1 #2
0x0000000000400464 <+20>: add X2, x0, #0x18
0x0000000000400468 <+24>: str wl, [x0,#8]
0x000000000040046C <+28>: mov wl, #0x4 1/ #4
0x0000000000400470 <+32>: str X2, [x0,#16]
0x0000000000400474 <+36>: str wl, [x0,#24]
0x0000000000400478 <+40>: mov w0, #0x0 // #0
0x000000000040047C <+44>: ret

End of assembler dump.

In this code, we also see instructions in the format str regSrc, [regDst,
#offset]. It means that the offset value is added to the address in the regDst
register. The value from the regSrc register is moved to the memory cell
pointed by the combined address regDst + offset:

[regDst + offset] <- regSrc

We see that the compiler was able to figure out the result of
computation: a = 2; b = 4. However, one question remains: Why did the
compiler not optimize away instructions initializing pa and pb variables?
The answer lies in the nature of a separate compilation model in C and
C++. We can compile several compilation unit (.c or .cpp) files separately
and independently. Therefore, there is no guarantee that another
compilation unit would not reference our globally declared and defined pa
and pb variables.

105

CHAPTER 8 RECONSTRUCTING A PROGRAM WITH POINTERS

Summary

In this chapter, we used our assembly language knowledge to reconstruct
C and C++ code that uses pointers. We also compared the disassembly of
the optimized code.

The next chapter looks at the stack memory layout and its operations,
branch instructions, and function calls. We also explore a call stack using
the GDB debugger.

106

CHAPTER 9

Memory and Stacks

Stack: A Definition

A stack is a simple computational device with two operations, push and
pop, that allows us to pile up data to remember it in LIFO (Last In First
Out) manner and quickly retrieve the last piled data item as shown in

Figure 9-1.

© Dmitry Vostokov 2023 107
D. Vostokov, Foundations of ARM64 Linux Debugging, Disassembling, and Reversing,
https://doi.org/10.1007/978-1-4842-9082-8_9

https://doi.org/10.1007/978-1-4842-9082-8_9

CHAPTER9 MEMORY AND STACKS

Push operation

" 1
<Empty Stack>

3
3 >
2 2
1 1

Figure 9-1. Stack operations illustrated

3
> 3
2 2
1 1
Pop operation
2
1
1l >

<Empty Stack>

Stack Implementation in Memory

The CPU SP register (Stack Pointer) points to the top of a stack. As shown

in Figure 9-2, a stack grows toward lower memory addresses with every

push operation, and this is implemented as the SP register decrements by
16 (the ARM64 stack address must be aligned by 16 bytes), then moving
avalue or a pair of values using STR or STP instructions with the so-

called preindexing. We can read the top stack value using the following

instruction:

ldr xo, [sp]

108

CHAPTER9 MEMORY AND STACKS

PUSH
0
3
> 3 3
2 I L
> 2 2 2
l 1 1 1 1
0
SP SP SP

0000 FFFF 0000 FFFf 0000 FFFF
FFFFf2ce FFFFf2be fffff2ae

Figure 9-2. Memory layout during push operations

00ROFf FFFFFFF290

000OFFFFF{ff2a0

000OFFFFFFFF2bO

00BOFfFFFF{Ff2cO

0BOBFFFFFFFFF2d0

The opposite pop operation increments the value of the SP register, as

shown in Figure 9-3.

109

CHAPTER9 MEMORY AND STACKS
POP
000OF fFFF{{FF290
3
3 > eeeafffffffff2ae
2
2 2 00eRffFFfffff2be
1 1 1 eooefFfffifffaco
oooRffFFFfffade
Sp Sp Sp
0000FFFf 0000FFFf 000 fff
FEFFF2b0 Ffff2co

fffff2ae

Figure 9-3. Memory layout during pop operations

Things to Remember

Here is the summary of what we have learned about stacks with the last
three points covered in the subsequent chapters of this book:

o Stack operations are LIFO - Last In First Out.
e The stack grows down in memory.

o The SP register points to the top of a stack.

o SP must be aligned by 16 bytes.

o Stacks are used for storing a return address for the BL
instruction.

o Stacks are used for passing additional parameters to
functions.

110

CHAPTER9 MEMORY AND STACKS

o Stacks are used for storing function parameter values
and local and temporary variables.

Stack Push Implementation

Push is implemented via these instructions:

str x0, [sp, #-16]! // sp <- sp - 16
// [sp] <- x0

stp xo0, x1, [sp, #-16]! // sp <- sp - 16
// [sp] <- x0

/7 [sp+8] <- x1

Stack Pop Implementation

Pop is implemented via these instructions:

ldr xo, [sp], #16 /1 x0 <- [sp]
/] sp <- sp + 16
ldp x0, x1, [sp] #16 // x0 <- [sp]

/1 x1 <- [sp+8]
/] sp <- sp + 16

Register Review

So far, we have seen and used general-purpose CPU registers:

o« X0/WO
o XI1/W1
o X2/W2
e X3/W3

111

CHAPTER9 MEMORY AND STACKS

o X4/W4

e« X30/W30

We also have special-purpose registers:
o XZR/WZR (Zero Register)
e PC (Instruction Pointer)

e SP (Stack Pointer)

Application Memory Simplified

When an executable file is loaded into memory, its header and sections are

mapped to memory pages. Some data and code are copied unmodified,
but some data is initialized and expanded. The first stack is also created at

this stage. The PC register is set to point to the first program instruction,
and SP points to the top of the stack. This simplified process is shown in

Figure 9-4.

112

CHAPTER9 MEMORY AND STACKS

ELF&4 Header Header
< PC
text » Code
data »
Data
Stack
< P

Figure 9-4. Application memory layout

Stack Overflow

By default, the stack size is limited (system and limit dependent, and it
is 8192KDb or 8388608 bytes) on our system. If a stack grows beyond the
reserved limit, a stack overflow occurs (segmentation fault). It can be
caused by an unlimited recursion, deep recursion, or very large local
variables:

int func()

{
func();

return 0;

}

int func2()

{

int array[10000000] = { 1 };

113

CHAPTER9 MEMORY AND STACKS

printf("%d", array[10000000-1]);

Jumps

Another instruction we need to know and understand before we look
deeper into C/C++ functions is called B (branch). Figure 9-5 shows
instructions in memory and corresponding values of the PC register.

PC
0000000000400600 —» Some code ’ 0000000000400604 |
0000000000400604 B 400800 = | 0000000000400608 > : 0000000000400800
0000000000400608 Some code
0000000000400800 Some code -« I OOO0DODO000L00804 _
0000000000400804 L B 400600 [0000000000400808 » | 0000000000400600
0000000000400808 Some code

Figure 9-5. Example memory and register layout for B instruction
execution

We see that the B instruction changes PC to point to another memory
address, and the program execution continues from that location. The
code shown in Figure 9-5 loops indefinitely: this can be considered a hang
and CPU spike.

114

CHAPTER9 MEMORY AND STACKS

There is also a BR indirect branch instruction to the address located in

a register. It is illustrated in Figure 9-6.

0000000000400600

0000000000400604

OOO0O0ODO0M400G08

0000000000400800

OOOGO0OD0OL00804

GO00DON0O0400808

pPC

ADR X0, 400800 | 0000000000400604 |

BR X0

QOO00D0000400608 »

GOODCOO0DOL00S00

ADR X0, 40085600 -

Some code

0G00000000400804

BR X0

OG00000000400308 »

QOODO00000400600

Some code

Figure 9-6. Example memory and register layout for BR instruction

execution

Calls

We discuss two essential instructions that make the implementation of

C and C++ function calls. They are called BL/BRL and RET. The return
address is saved in the so-called Link Register (LR, X30). Figure 9-7 shows
instructions in memory and corresponding values of PC and LR registers.

115

CHAPTER9 MEMORY AND STACKS

PC LR
00400600 ADR X0, 400800 | 00400604 ‘ 00000000
00400604 BRL X0 L 00400608 | 00400800 00400608

00400608 . el 0040060¢ |

00400800 Some code - | 00400804

00400804 RET | oowosos | —» | oo100608

00400608 Some code

Figure 9-7. Example memory and register layout for BL/BRL and
RET instruction execution

We see that the BRL instruction saves the current value of PC to LR
and changes PC to point to another memory address. Then the program
execution continues from the new location. The RET instruction restores
the saved PC value from LR to the PC register. Then the program execution
resumes at the memory location after the BRL instruction. If you need
nested calls, you need to save the current LR on the stack manually.

Call Stack

If one function (the caller) calls another function (the callee) in C and C++,
the resulting code is implemented using BL/BRL instructions, and during
its execution, the return address is saved in LR. If the callee calls another

116

CHAPTER9 MEMORY AND STACKS

function, the previous LR value would be lost, so it is saved on the stack,
and so on. Therefore, we have the so-called call stack of return addresses.
Let us see this with a simple but trimmed-down example.

Suppose we have three functions with their code occupying the
following addresses:

func 0000000140001000 - 0000000140001100
func2 0000000140001101 - 0000000140001200
func3 0000000140001201 - 0000000140001300

We also have the following code where func calls func2, and func2
calls func3:

void func()

{

func2();

}

void func2()

{
func3();

When func calls func2, the caller's return address is saved on the stack,
and SP points to some value in the 0000000140001000-0000000140001100
range, say 0000000140001020. When func2 calls func3, the caller's return
address is also saved on the stack, and SP points to some value in the
0000000140001101-0000000140001200 range, say 0000000140001180. If
we interrupt func3 with a debugger and inspect the PC register, we would
find its value in the range of 0000000140001201-0000000140001300, say
0000000140001250. Therefore, we have the idealized memory and register
layout shown in Figure 9-8 (the usual function prolog is not shown; we will
learn about it in the next chapter).

117

CHAPTER9 MEMORY AND STACKS

SP > 0000000140001180 PC 0000000140001250

0000000140001020

Figure 9-8. Example memory and register layout for call stack

The debugger examines the value of the PC register and the values on
top of the stack and then reconstructs this call stack:

func3
func2
func

The debugger gets address ranges corresponding to func, func2, and
func3 from the so-called symbolic information, which may be either
stored inside an executable file or in some external file that needs to be
referenced explicitly.

Exploring Stack in GDB

To see the call stack in real action, we have a project called “SimpleStack,’
and it can be downloaded from

github.com/apress/armé64-linux-debugging-disassembling-
reversing/Chapter9/

We compile the files and load the executable into GDB:

$ gcc SimpleStack.c func.c func2.c func3.c -o SimpleStack

118

CHAPTER9 MEMORY AND STACKS

$ gdb ./SimpleStack

GNU gdb (GDB) Red Hat Enterprise Linux 7.6.1-120.0.2.el7
Copyright (C) 2013 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/
licenses/gpl.html>

This is free software: you are free to change and
redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type
"show copying"

and "show warranty" for details.

This GDB was configured as "aarch64-redhat-linux-gnu".

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...

Reading symbols from /home/coredump/pflddr/A64/Chapter9/
SimpleStack...(no debugging symbols found)...done.

Then we put a breakpoint on the main function and run the program
until GDB breaks in:

(gdb) break main
Breakpoint 1 at 0x4005c0

(gdb) run
Starting program: /home/coredump/pflddr/A64/Chapter9/./
SimpleStack

Breakpoint 1, 0x00000000004005c0 in main ()
Missing separate debuginfos, use: debuginfo-install
glibc-2.17-325.0.2.el7 9.aarch64

The function func3 has a breakpoint instruction inside that allows a
debugger to break in and stop the program execution to inspect its state.
We resume our program execution from our breakpoint in the main

119

CHAPTER9 MEMORY AND STACKS

function to allow the main function to call func, func to call func2, func2 to

call func3, and inside func3 to execute the explicit breakpoint:

(gdb) continue
Continuing.

Program received signal SIGTRAP, Trace/breakpoint trap.
0x0000000000400600 in func3 ()

(gdb) info registers $pc $sp
pc 0x400600 4195840

sp oxfffffffff290 281474976707216

(gdb) x/i $pc

=> 0x400600 <func3>: brk #ox3

Now we can inspect the top of the stack:

(gdb) x/10g $sp

oxfffffffff290: oxoooofffffffff2ao 0x00000000004005e4
oxfffffffff2ao: oxoooofffffffff2bo 0x00000000004005cC
oxfffffffff2bo: oxoooofffffffff2do 0x0000fffff7€22668
oxfffffffff2co: oxoooofffffffff418 0x0000000100000000
oxfffffffff2do: 0x0000000000000000 0x000000000040049c

The data is meaningless for us, and we use another command variant
to dump memory with corresponding symbols:

(gdb) x/10a $sp

OxXFFFFFFFFF290:
OxFFFFFFFFF2a0:
OxXFFFFFFFFF2bO:

main+236>

OxFFFFFFFFF2c0:
OxFFFFFFFFF2dO:

120

OxFFFFFFFFF2a0
OxXFFFFFFFFF2b0
OxFFFFFFFFF2d0

oxfffffffff418
0x0

0x4005e4 <func+12»
0x4005cc <main+20»
oxfffff7e22668 <_ libc_start_

0x100000000

0x40049c <_start+76>

CHAPTER9 MEMORY AND STACKS

The current value of PC points to func3, and return addresses on the
stack are shown in bold. GDB is able to reconstruct the following call stack,
stack trace, or backtrace (bt):

(gdb) set backtrace past-main on

(gdb) bt

#0 0x0000000000400600 in func3 ()

#1 0x00000000004005f8 in func2 ()

#2 0x00000000004005e4 in func ()

#3 0x00000000004005cc in main ()

#4 0x0000fffff7e22668 in _ libc_start main () from /1ib64/
libc.so.6

#5 0x000000000040049c in _start ()

We don'’t see the func2 return address on the stack, but we can get it
from the current value of the LR register:

(gdb) x/a $1lr
0x4005f8 <func2+12>: 0xd65f03c0a8c17bfd

Summary

In this chapter, we looked at the stack memory layout and stack operations,
branch and branch and link instructions, and function call memory layout.
We also explored a call stack using the GDB debugger commands.

In the next chapter, we look into further details of the stack layout
of the more complex code, for example, arrays, local variables, function
prolog, and epilog. Finally, we disassemble and analyze code that uses
local variables.

121

CHAPTER 10

Frame Pointer
and Local Variables

Stack Usage

In addition to storage for return addresses, a stack is used to pass
additional parameters to functions (if you have more than eight
parameters) and store local variables. The stack is also used to save and
restore values held in registers when we want to preserve them during
some computation or across function calls. For example, suppose we
want to call some function, but at the same time, we have valuable data in
registers X0 and X1. The function code may overwrite X0 and X1 values, so
we temporarily save their current values on the stack:

mov X0, #10
mov x1, #20

// now we want to preserve

X0 and X1
stp x0, x1, [sp, #-16]! // store the pair at once
bl func
ldp xo, x1, [sp], #16 // restore the pair at once
© Dmitry Vostokov 2023 123

D. Vostokov, Foundations of ARM64 Linux Debugging, Disassembling, and Reversing,
https://doi.org/10.1007/978-1-4842-9082-8_10

https://doi.org/10.1007/978-1-4842-9082-8_10

CHAPTER 10 FRAME POINTER AND LOCAL VARIABLES

Register Review

So far, we have encountered these registers:

X0/WO0 (among its specific uses are to contain function
return values)

X1/W1-X29/W29
XZR/WZR (X31, zero register)
LR (X30, Link Register, stores the return address)

PC (Instruction Pointer, points to the next instruction to
be executed)

SP (Stack Pointer, points to the top of the stack)

We come to the next important register on Linux platforms called Base

Pointer register or sometimes as Stack Frame Pointer register. It is X29, and

it is used for stack reconstruction.

Addressing Array Elements

We can also consider stack memory as an array of memory cells, and

any general-purpose register can be used to address stack memory

elements in the way shown in Figure 10-1, where it slides into the frame

of stack memory called a stack frame. The first diagram depicts 64-bit

(doubleword) memory cells, and the second depicts 32-bit (word) memory

cells. Offsets for addresses are in hexadecimal, but for accessing values,

offsets are in decimal, like we usually see in GDB disassembly.

124

CHAPTER 10 FRAME POINTER AND LOCAL VARIABLES

Address of the Value of the
element element
0 0010001000 X0-0x20 [XO, -#32]
0 0010001008 X0-0x18 [XO, -#24]
0 0010001010 X0-0x10 [XO, -#16]
0 0010001018 X0-0x08 X0, -#8]
NO 0 0010001020 XO [NO]
0 0010001028 XO0+0x08 X0, #8]
0 0010001030 XO+0x10 [NO, #16]
0 0010001038 NO+0x18 [XO, #24]
0 0010001018 X0-0x08 [X0. #8]
0 001000101C X0-0x04 [X0. 4]
XO —» 0 0010001020 X0 [X0]
0010001024 NO+0x04 [X0, #4]
0010001028 KO0+0x08 [X0. #8]
0 0010001020 X0+0x0C [X0. #12]

Figure 10-1. Example memory layout when addressing array
elements

125

CHAPTER 10 FRAME POINTER AND LOCAL VARIABLES

Stack Structure (No Function Parameters)

Suppose the following function is called:

void func()

{
int vari, varz;
// body code
/...

}

Before the function body code is executed, the following pointers are set up:
e [SP, #8] contains local variable varl (word).
e [SP, #12] contains local variable var2 (word).

Itis illustrated in Figure 10-2. Stack room space needs to be aligned by
16 bytes by ARM64 specification.

SP »

SP+8 » Local variable 2
SP+12 —» Local variable 1

Caller’s local
variable

Caller's local
variable

Figure 10-2. Stack memory layout without function parameters

126

CHAPTER 10 FRAME POINTER AND LOCAL VARIABLES

Function Prolog

The sequence of instructions resulting in the initialization of the SP
register, saving X29/LR (if there are further calls inside), and making
room for local variables is called the function prolog. One example of it
is Figure 10-3, where func calls func2, which has one local variable var.
Sometimes, saving necessary registers is also considered as part of a
function prolog.

func() { func20);} func2() {long var; call func3(); }

stp x29, x30, [sp #-32]!

g F) -
bl funcz mov x29. sp

0 [0 SP—» X29

0 0 X30 (LR)

SP —» | 0x10001000 SPoo» . 0x10001000 0x10001000

Figure 10-3. Example memory layout for function prolog

Raw Stack (No Local Variables
and Function Parameters)

Now we can understand additional data that appear on the raw stack
together with function return addresses that we saw in Chapter 9 project

“SimpleStack”:

127

CHAPTER 10 FRAME POINTER AND LOCAL VARIABLES

(gdb) info registers $sp $x29 $lr

sp oxfffffffff280 281474976707200
X29 oxfffffffff280 281474976707200
1r 0x4005f8 4195832

(gdb) x/10a $sp

oxfffffffff280: oxfffffffff290 0x4005e4 <func+12>
oxfffffffff290: oxfffffffff2a0 0x4005cc <main+20>
oxfffffffff2ao: oxfffffffff2aco Oxfffff7e22668 < libc start
main+236>

oxfffffffff2bo: oxfffffffff408 0x100000000

oxfffffffff2co: 0xo 0x40049c < start+76>

(gdb) disas func2
Dump of assembler code for function func2:

0x00000000004005eC <+0>: stp x29, x30, [sp,#-16]!
0x00000000004005F0 <+4>: mov x29, sp
0x00000000004005F4 <+8>: bl 0x400600 <func3>
0x00000000004005F8 <+12>: ldp X29, x30, [sp],#16
0x00000000004005fC <+16>: ret

End of assembler dump.

(gdb) disas func
Dump of assembler code for function func:

0x00000000004005d8 <+0>: stp x29, x30, [sp,#-16]!
0x00000000004005dc <+4>: mov x29, sp
0x00000000004005€0 <+8>: bl 0x4005ec <func2>
0x00000000004005e4 <+12>: ldp X29, x30, [sp],#16
0x00000000004005€8 <+16>: ret

End of assembler dump.

(gdb) disas main
Dump of assembler code for function main:

128

0x00000000004005b8
0x00000000004005bc
0x00000000004005¢c0
0x00000000004005¢c4
0x00000000004005¢c8
0x00000000004005cc
0x00000000004005d0
0x00000000004005d4

CHAPTER 10

<+0>:
<+4>:
<+8>:

<+12>:
<+16>:
<+20>:
<+24>:
<+28>:

Function Epilog

Before the function code returns to the caller, it must restore the previous

stp
mov
str
str
bl

mov
ldp
ret

FRAME POINTER AND LOCAL VARIABLES

x29, x30, [sp,#-32]!
X29, sp

w0, [x29,#28]

x1, [x29,#16]

0x4005d8 <func>

w0, #0x0 // #0
x29, x30, [sp],#32

values of X29 and X30 (LR) registers to allow the caller to resume its

execution from the correct address, previously saved in LR, and continue

addressing its own stack frame properly. This sequence of instructions is

called the function epilog, and it is shown in Figure 10-4.

ldp

SP —» X29

X30 (LR}

0x10001000

x29, x30, [sp] #32

SP

X29

ret

X29

N30 (LR) X30 (LR)

0

0x10001000 SP —» | 0x10001000

Figure 10-4. Example memory layout for function epilog

129

CHAPTER 10 FRAME POINTER AND LOCAL VARIABLES

“Local Variables” Project

The project for this chapter can be downloaded from

github.com/apress/arm64-1linux-debugging-disassembling-
reversing/Chapter10/

We compile the file and load the executable into GDB:

$ gcc LocalVariables.cpp -o LocalVariables

$ gdb ./LocalVariables

GNU gdb (GDB) Red Hat Enterprise Linux 7.6.1-120.0.2.el7
Copyright (C) 2013 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/
licenses/gpl.html>

This is free software: you are free to change and
redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type
"show copying"

and "show warranty" for details.

This GDB was configured as "aarch64-redhat-linux-gnu".

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...

Reading symbols from /home/coredump/pflddr/A64/Chapter10/
LocalVariables...(no debugging symbols found)...done.

Then we put a breakpoint to the main function and run the program
until GDB breaks in:

(gdb) break main
Breakpoint 1 at 0x4005c0

(gdb) run

130

CHAPTER 10 FRAME POINTER AND LOCAL VARIABLES

Starting program: /home/coredump/pflddr/A64/Chapter1o/./
LocalVariables

Breakpoint 1, 0x00000000004005c0 in main ()
Missing separate debuginfos, use: debuginfo-install
glibc-2.17-325.0.2.el7_9.aarch64

Next, we disassemble our main function:

(gdb) disas main
Dump of assembler code for function main:

0x00000000004005b8 <+0>: sub sp, sp, #0x10
0x00000000004005bc <+4>: mov w0, #0x1 // #1

=> 0x00000000004005c0 <+8>: str wo, [sp,#12]
0x00000000004005¢C4 <+12>: mov w0, #Hox1 // #1
0x00000000004005¢c8 <+16>: str w0, [sp,#8]
0x00000000004005cC <+20>: ldr wl, [sp,#8]
0x00000000004005d0 <+24>: ldr wo, [sp,#12]
0x00000000004005d4 <+28>: add w0, wl, wO
0x00000000004005d8 <+32>: str w0, [sp,#8]
0x00000000004005dc <+36>: ldr wo, [sp,#12]
0x00000000004005€0 <+40>: add w0, w0, #0x1
0x00000000004005€4 <+44>: str wo, [sp,#12]
0x00000000004005€8 <+48>: ldr wi, [sp,#8]
0x00000000004005eC <+52>: ldr w0, [sp,#12]
0x00000000004005f0 <+56>: mul w0, wl, wO
0x00000000004005F4 <+60>: str wo, [sp,#8]
0x000000000040058 <+64>: mov w0, #0x0 // #0
0x00000000004005fC <+68>: add sp, sp, #0x10
0x0000000000400600 <+72>: ret

End of assembler dump.

131

CHAPTER 10 FRAME POINTER AND LOCAL VARIABLES

Its source code is the following:

int main()
{
int a, b;
a=1;
b =1,
b=">b+a;
++a;
b=>b*a;
return 0;
}

The following is the same assembly language code but with comments

showing operations in pseudo-code and highlighting the function prolog

and epilog:

0x00000000004005b8 <+0>:
// establishing stack frame
0x00000000004005bc <+4>:
#0x1 // wo <- 1
=> 0x00000000004005c0 <+8>:
// [a] <- wo

0x00000000004005¢c4 <+12>:

#ox1 // wo <- 1

0x00000000004005¢c8 <+16>:

// [b] <- woO

0x00000000004005cC <+20>:

// wil <- [b]

132

sub

mov

str

mov

str

ldr

sp,

wo,

wo,

wo,

wo,

wi,

sp, #ox10

[sp,#12]

[sp,#8]

[sp,#8]

//

//

//

//

//

//

//

//

//

//

0x00000000004005d0
wo <- [a]
0x00000000004005d4
WO <- wl + wO
0x00000000004005d8
[b] <- wo
0x00000000004005dc
wo <- [a]
0x00000000004005e0
WO <- w0 + 1
0x00000000004005¢e4
[a] <- wO
0x00000000004005e8
wl <- [b]
0x00000000004005ec
wo <- [a]
0x00000000004005f0
WO <- w1l * wo
0x00000000004005f4
[b] <- wo
0x00000000004005F8

CHAPTER 10

<+24>:

<+28>:

<+32>:

<+36>:

<+40>:

<+44>:

<H+H48>:

<+52>:

<+56>:

<+60>:

<+64>:

/1 wo <- 0 (return value)

0x00000000004005fc

<+68>:

// xestoring previous frame

0x0000000000400600

// return

<+72>:

ldr

add

str

ldr

add

str

ldr

ldr

mul

str

mov

add

ret

FRAME POINTER AND LOCAL VARIABLES

wo,

wo,

wo,

wo,

wo,

wo,

wi,

wo,

wo,

wo,

wo,

sp,

[sp,#12]
wl, wo
[sp,#8]
[sp,#12]
w0, #0x1
[sp,#12]
[sp,#8]
[sp,#12]
wl, wO
[sp,#8]
#oxo

sp, #ox10

Disassembly of Optimized Executable

If we compile LocalVariables.cpp with the -O1 option, we see a very simple

code that just returns zero:

133

CHAPTER 10 FRAME POINTER AND LOCAL VARIABLES

(gdb) disas main

Dump of assembler code for function main:
0x00000000004005b8 <+0>: mov w0, #0x0 // #0
0x00000000004005bc <+4>: ret

End of assembler dump.

Where is all the code we have seen in the previous version? It was
optimized away by the compiler because the results of our calculation
are never used. Variables a and b are local to the main function, and their
values are not accessible outside when we return from the function.

Summary

In this chapter, we looked into the stack layout of the more complex code:
addressing arrays, local variables, and compiler-emitted code for the
function prolog and epilog. Finally, we disassembled and analyzed code
that used local variables and compared it to the optimized version.

The next chapter looks at function parameters and their stack layout.
Finally, we disassemble and analyze another project with function
parameters and local variables.

134

CHAPTER 11

Function Parameters

“FunctionParameters” Project

This chapter teaches how a caller function passes its parameters via
registers and how a callee (the called function) accesses them. We use the
following project that can be downloaded from this link:

github.com/apress/armé64-linux-debugging-disassembling-
reversing/Chapter11/

Here is the project source code:

// FunctionParameters.cpp
int arithmetic (int a, int b);

int main(int argc, char* argv[])

{

int result = arithmetic (1, 1);
return 0;
}

// Arithmetic.cpp
int arithmetic (int a, int b)

b=">b+a;
++a,;
© Dmitry Vostokov 2023 135

D. Vostokov, Foundations of ARM64 Linux Debugging, Disassembling, and Reversing,
https://doi.org/10.1007/978-1-4842-9082-8_11

https://doi.org/10.1007/978-1-4842-9082-8_11

CHAPTER 11 FUNCTION PARAMETERS

b=>b* a;
return b;

}

Stack Structure

Recall from the previous chapter that X0-X29 registers are used to address
stack memory locations. It was illustrated in Figure 10-1 for X0. Here, we
provide a typical example of the stack memory layout for the following
function where the X29 register is used:

void func(int Parami, int Param2)

{
int vari, var2;
// stack memory layout at this point, X29 = SP
// [X29] = previous X29
// [x29, #8] = LR
// [x29, #24] = Saved Param2 (word)
// [x29, #28] = Saved Param1i (word)
// [x29, #40] = var2 (word)
// [x29, #44] = varl (word)
/1 ...

}

The typical stack frame memory layout for the function with two
arguments and two local variables is illustrated in Figure 11-1.

136

CHAPTER 11 FUNCTION PARAMETERS

SP
X29 X29

Previous

LR

Saved

Param 2

Saved
Param 1

Local
variable 2

Local
variable 1

Previous
X29

Local

variable

Loeal
variable

Figure 11-1. Stack memory layout for the function with two
arguments and two local variables

137

CHAPTER 11 FUNCTION PARAMETERS

Function Prolog and Epilog

Now, before we try to make sense of the FunctionParameters project
disassembly, we look at the simple case of one function parameter of type
long and one local variable of type long to illustrate the standard function
prolog and epilog sequence of instructions and corresponding stack

memory changes.
fune() { fune2(1); } func2(long 1) { long var; }
mov x0, #1 sub sp, sp, #0x20 str - x0, [sp#8]
call func2
| | i
] | 0 [0 |]
I | :
| | |
] | 0 | 0 |]
| | |
i | !
0 | 0 | SP —» 0 | Sp—» 0
' '!
0 0 | 0 1
| |
| | |
0 | 0 0 | 0
{ —
| |
0 | 0 0 | 0
|
| i |
SP —» | 0x10001000 [SP —> | 0x10001000 0x10001000 | Dx10001000
] J |

Figure 11-2. Memory layout for the prolog with one function
parameter and one local variable

The function prolog is illustrated in Figure 11-2, and the function
epilog is illustrated in Figure 11-3.

Here, the function parameter is passed via the X0 register. It is saved
on the stack because the register may be used later in calculations or the
function parameter passing to other functions. Generally, the first eight
parameters of a function are passed via X0-X7 registers from left to the

138

CHAPTER 11 FUNCTION PARAMETERS

right when parameters are doublewords like pointers or long values and
via WO-W7 registers when parameters are words like integers. Additional
parameters are passed via the stack locations using STR/STP instructions.

add sp.sp. #0x20 ret
0 0 0
0 0 0
[0 0 0
1 1 1
0 0 0 |
0 0 0
0x10001000 SP —» | 0x10001000 SP —» | 0x10001000 :

Figure 11-3. Memory layout for the epilog with one function
parameter and one local variable

We also see that local variables are not initialized by default when their
storage space is allocated via the SUB instruction and not cleared during
the epilog. Whatever memory contents were there before allocation, it
becomes the local variable values, the so-called garbage values.

Project Disassembled Code with Comments

Here is a commented code disassembly of main and arithmetic with
memory addresses removed for visual clarity:

139

CHAPTER 11 FUNCTION PARAMETERS

main:

mov X29, sp

str wo, [x29,#28]

str x1, [x29,#16]

mov w0, #0x1

mov wl, #0x1

bl 0x4005e4 <_Z10arithmeticii>
str w0, [x29,#44]

mov w0, #0x0

1dp x29, x30, [sp],#48
ret

arithmetic:

sub sp, sp, #ox10

140

/1

/1l

//

/1

//

//

//

//

//

//
/1l

//

/1

/1

establishing stack
frame for
parameters and local
variables
saving the first main
parameter
saving the second main
parameter
setting the first
parameter
for arithmetic
function
setting the second
parameter
for arithmetic
function

setting the result
local variab;e
main should return 0
restoring the previous
stack frame,
frame and link
registers
return from main

establishing stack
frame for

str

str

ldr
ldr
add
str
ldr
add
str
ldr
ldr
mul
str
ldr

add

ret

wo,

wi,

wi,
wo,
w0,
wo,
wo,
w0,
wo,
wi,
w0,
wo,
wo,
w0,

Sp»

[sp,#12]
[sp,#8]

[sp,#8]
[sp,#12]
wl, wO
[sp,#8]
[sp,#12]
w0, #Ox1
[sp,#12]
[sp,#8]
[sp,#12]
wl, wO
[sp,#8]
[sp,#8]

sp, #0x10

CHAPTER 11 FUNCTION PARAMETERS

/1

//

/1l

//
//
//
//
//
//
//
//
//
//
//
//
//
//

/1

parameters and local
variables
saving the first
arithmetic parameter (a)
saving the second
arithmetic parameter (b)

wl <- [b]

wo <- [a]

WO <- Wl + wO
[b] <- wo

wo <- [a]

wo <- wo + 1
[a] <- wO

wl <- [b]

wo <- [a]

WO <- w1l * wo
[b] <- wo

wo <- [b]

return result
restoring the previous
stack frame
return from arithmetic

We can put a breakpoint on the first arithmetic calculation address and

examine raw stack data pointed to by the SP register:

$ gcc FunctionParameters.cpp Arithmetic.cpp -o
FunctionParameters

$ gdb ./FunctionParameters

GNU gdb (GDB) Red Hat Enterprise Linux 7.6.1-120.0.2.el7
Copyright (C) 2013 Free Software Foundation, Inc.

141

CHAPTER 11 FUNCTION PARAMETERS

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/
licenses/gpl.html>

This is free software: you are free to change and
redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type
"show copying"

and "show warranty" for details.

This GDB was configured as "aarch64-redhat-linux-gnu".

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...

Reading symbols from /home/coredump/pflddr/A64/Chapteri1/
FunctionParameters...(no debugging symbols found)...done.

(gdb) break main
Breakpoint 1 at 0x4005c0

(gdb) run
Starting program: /home/coredump/pflddr/A64/Chapteri1/./
FunctionParameters

Breakpoint 1, 0x00000000004005c0 in main ()
Missing separate debuginfos, use: debuginfo-install
glibc-2.17-325.0.2.el7_9.aarch64

(gdb) disas arithmetic
Dump of assembler code for function _Zi0arithmeticii:

0x00000000004005e4 <+0>: sub sp, sp, #0x10
0x00000000004005€8 <+4>: str wo, [sp,#12]
0x00000000004005ec <+8>: str wl, [sp,#8]
0x00000000004005F0 <+125: ldr wi, [sp,#8]
0x000000000040054 <+16>: ldr wo, [sp,#12]
0x000000000040058 <+20>: add w0, wl, wO
0x00000000004005fC <+24>: str w0, [sp,#8]

142

0x0000000000400600
0x0000000000400604
0x0000000000400608
0x000000000040060C
0x0000000000400610
0x0000000000400614
0x0000000000400618
0x000000000040061c¢
0x0000000000400620
0x0000000000400624

<+28>:
<+32>:
<+36>:
<+40>:
<+44>:
<+48>:
<+52>:
<+56>:
<+60>:
<+64>:

End of assembler dump.

(gdb) break *0x00000000004005f0

Breakpoint 2 at 0x4005f0

(gdb) continue
Continuing.

CHAPTER 11 FUNCTION PARAMETERS
ldr wo, [sp,#12]
add w0, w0, #ox1
str wo, [sp,#12]
ldr wl, [sp,#8]
ldr wo, [sp,#12]
mul w0, wl, wO
str w0, [sp,#8]
ldr w0, [sp,#8]
add sp, sp, #0x10
ret

Breakpoint 2, 0x00000000004005f0 in arithmetic(int, int) ()

(gdb) info registers $sp

sp
(gdb) x/a $1lr

0x4005d4 <main+28>:

oxfffffffff270

(gdb) x/10a $sp-0x20

OXFFFFFFFFF250:

libc_csu_init>

OxXFFFFFFFFF260:
OXFFFFFFFFF270:
OxXFFFFFFFFF280:

main+236>

OxXFFFFFFFFF290:

oxfffff7fcee54 < dl fini>

OXFFFFFFFFF270
OXFFFFFFFFF2b0
OXFFFFFFFFF2b0

OXFFFFFFFFF3F8

281474976707184

0x52800000b9002fa0

0x400628 <
0x400680 < libc_csu_init+88>
0x100000001 /1 (b, a)
oxfffff7e22668 < libc_start_

0x1f7e22628

143

CHAPTER 11

FUNCTION PARAMETERS

(gdb) x/20x $sp-0x20

oxfffffffff250:
oxf7fcees54
oxfffffffff260:
oxfffff270
oxfffffffff270:
oxfffff2bo
oxfffffffff280:
oxfffff2bo
oxfffffffff290:
oxfffff3f8

Parameter Mismatch Problem

0x0000ffff

0x0000ffff

0x0000f

0x0000ffff

0x0000ffff

0x00400628

0x00400680

0x00000001

0xf7e22668

0xf7e22628

0x00000000

0x00000000

0x00000001

0x0000ffff

0x00000001

Consider this typical ABI (Application Binary Interface) mismatch

problem. The function main calls func with two parameters:

// main.c
int main ()

{

long locVar;
func (1, 2);

return O;

The caller passes 1 in X0 and 2 in X1. However, the callee expects three

parameters instead of two:

// func.c

int func (int a, int b, int ¢)

144

CHAPTER 11 FUNCTION PARAMETERS

// code to use parameters
return 0;

We see that the parameter on the raw stack gets its value from some
random value in X2 that was never set by the caller. It is clearly a software
defect (bug).

Summary

This chapter looked at function parameters and their stack layout.
We disassembled and analyzed the stack structure of the project with
function parameters and local variables. Finally, we looked at a parameter
mismatch problem.

The next chapter is about CPU state flags, comparison instructions,
conditional branches, and function return values.

145

CHAPTER 12

More Instructions

PSTATE Flags

In addition to registers, the CPU also contains a 32-bit PSTATE where four
individual bits N, Z, C, and V (Figure 12-1) are set or cleared in response
to arithmetic and other operations. Separate machine instructions can
manipulate some bit values, and their values affect code execution.

31 15 [0

Figure 12-1. PSTATE flags

These flags have their own special register NZCV.

Testing for 0

The Z bit in the NZCV register is set to one if the instruction result is zero
and cleared otherwise. This bit is affected by

e Arithmetic instructions with the S suffix (e.g., ADDS,
SUBS, MULS)

© Dmitry Vostokov 2023 147
D. Vostokov, Foundations of ARM64 Linux Debugging, Disassembling, and Reversing,
https://doi.org/10.1007/978-1-4842-9082-8_12

https://doi.org/10.1007/978-1-4842-9082-8_12

CHAPTER 12 MORE INSTRUCTIONS

e Logical compare instruction (TST)

o “Arithmetical” compare instruction (CMP)

TST - Logical Compare

This instruction computes bitwise logical AND between both operands
and sets flags (including Z) according to the computed result (which is
discarded):

TST reg, reg
TST reg, #imm

Examples:
TST Xo, #4
Suppose the X0 register contains 4 (100y,):
100,;, AND 1005, = 100y, I= 0 (Z is cleared)
TST Wi, #1
Suppose W1 contains 0 (0y;,):
Opin AND 1pin = Opin == 0 (Z is set)

Here is the TST instruction in pseudo-code (details not relevant to the
Z bit are omitted):

TEMP <- OPERAND1 AND OPERAND2
IF TEMP = 0 THEN

Z<-1
ELSE

Z<-0

148

CHAPTER 12 MORE INSTRUCTIONS

CMP - Compare Two Operands

This instruction compares the first operand with the second and sets flags
(including Z) according to the computed result (which is discarded). The
comparison is performed by subtracting the second operand from the first
(like the SUBS instruction: sub xzr, x1, #4).

CMP reg, reg
CMP reg, #imm

Examples:
CMP X1, #0

Suppose X1 contains 0:
0-0 ==0 (Zis set)
CMP WO, #0x16

Suppose W0 contains 4y,,:

Bhex — 16pey FFFFFFEE) e I= 0 (Z is cleared)
Agec = 224ec = '18dec

Here is the CMP instruction in pseudo-code (details not relevant to the
Z bit are omitted):

TEMP <- OPERAND1 - OPERAND2
IF TEMP = 0 THEN

Z<-1
ELSE

Z<-0

149

CHAPTER 12 MORE INSTRUCTIONS

TST or CMP?

Both instructions are equivalent if we want to test for zero, but the CMP
instruction affects more flags than TST:

TST X0, X0
CMP X0, #0

The CMP instruction is used to compare for inequality (the TST
instruction cannot be used here):

CMP X0, #0 // > 0o0r<O0?
The TST instruction is used to see if individual bits are set:

TST Xo, #2 // 2 == 0010,;, or in C language: if
(var & ox2)

Examples where X0 has the value of 2:

TST X0, #4 # 0010,;, AND 0100,;,
TST X0, #6 # 0010,;, AND 0110,;,

0000,;, (ZF is set)
0010,;, (Z is cleared)

Conditional Jumps

Consider these two C or C++ code fragments:

if (a == 0) if (a !'= 0)
{ {

++a; ++a;
} }
else else
{ {

--a; --a;
} }

150

CHAPTER 12 MORE INSTRUCTIONS

The CPU fetches instructions sequentially, so we must tell the CPU
that we want to skip some instructions if some condition is (not) met, for
example, ifa!=0.

B.NE (jump if not zero) and B.EQ (jump if zero) test the Z flag and
change PC if the Z bit is cleared for B.NE or set for B.EQ. The following
assembly language code is equivalent to the preceding C/C++ code:

ADR X0, A ADR X0, A

LDR X1, [X0] LDR X1, [X0]
CMP X1, #0 TST X1, X1
B.NE label1 B.EQ label1
ADD X0, X0, #1 ADD X0, X0, #1
B label2 B label2

labela: SUB Xo, X0, #1 labela: SUB Xo, X0, #1
label2: STR X1, [Xo] label2: STR X1, [XO]

Function Return Value

Many functions return values via the X0 register. For example:
long func();
The return value is in X0.

bool func();

The return value is in WO0.
Bool values occupy one byte in memory, so the compiler uses W0
instead of XO0.

151

CHAPTER 12 MORE INSTRUCTIONS

Summary

In this chapter, we learned about CPU state flags, comparison instructions,
conditional branches, and function return values - usually present in real
binary code that we may need to disassemble to understand program logic
during debugging.

The next chapter is our “graduating” project - we disassemble and
analyze a project that uses function parameters which are pointers.

152

CHAPTER 13

Function Pointer
Parameters

“FunctionPointerParameters” Project

It is our final project, and it can be downloaded from

github.com/apress/arm64-linux-debugging-disassembling-
reversing/Chapter13/

A summary of the project source code:

// FunctionParameters.cpp
int main(int argc, char* argv[])

{
int a, b;
printf("Enter a and b: ");
scanf("%d %d", &a, &b);
if (arithmetic (a, &b))
{
printf("Result = %d", b);
}
© Dmitry Vostokov 2023 153

D. Vostokov, Foundations of ARM64 Linux Debugging, Disassembling, and Reversing,
https://doi.org/10.1007/978-1-4842-9082-8_13

https://doi.org/10.1007/978-1-4842-9082-8_13

CHAPTER 13 FUNCTION POINTER PARAMETERS

return 0;

}

// Arithmetic.cpp
bool arithmetic (int a, int *b)

{
if ('b)
{
return false;
}
*b = *b + a;
++a;
*p = *p * a;
return true;
}

Commented Disassembly

Here is the commented disassembly we get after compiling the project and
loading it into GDB:

$ gcc FunctionParameters.cpp Arithmetic.cpp -o
FunctionParameters

$ gdb ./FunctionParameters

GNU gdb (GDB) Red Hat Enterprise Linux 7.6.1-120.0.2.el7
Copyright (C) 2013 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/
licenses/gpl.html>

This is free software: you are free to change and
redistribute it.

154

CHAPTER 13 FUNCTION POINTER PARAMETERS

There is NO WARRANTY, to the extent permitted by law. Type
"show copying"

and "show warranty" for details.

This GDB was configured as "aarch64-redhat-linux-gnu".

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...

Reading symbols from /home/coredump/pflddr/A64/Chapter13/
FunctionParameters...(no debugging symbols found)...done.

(gdb) break main
Breakpoint 1 at 0x400660

(gdb) run
Starting program: /home/coredump/pflddr/A64/Chapter13/./
FunctionParameters

Breakpoint 1, 0x0000000000400660 in main ()
Missing separate debuginfos, use: debuginfo-install
glibc-2.17-325.0.2.el7_9.aarch64

(gdb) disas main
Dump of assembler code for function main:

0x0000000000400658 <+0>: stp x29, x30, [sp,#-48]!
0x000000000040065C <+4>: mov X29, sp

=> 0x0000000000400660 <+8>: str w0, [x29,#28]
0x0000000000400664 <+12>: str x1, [x29,#16]
0x0000000000400668 <+16>: adrp X0, 0x400000
0x000000000040066C <+20>: add X0, x0, #0x7c0
0x0000000000400670 <+24>: bl 0x4004e0 <printf@Eplt>
0x0000000000400674 <+28>: adrp X0, 0x400000
0x0000000000400678 <+32>: add X0, x0, #0x7d0
0x000000000040067C <+36>: add x1, x29, #ox2c
0x0000000000400680 <+40>: add X2, x29, #0x28

155

CHAPTER 13

0x0000000000400684
0x0000000000400688
0x000000000040068c¢
0x0000000000400690

<+44>:
<+48>:
<+52>:
<+56>:

<+60>:
<+64>:
<+68>:
<H72>:
<+76>:
<+80>:
<+84>:
<+88>:
<+92>:
<+96>:

0x0000000000400694
0x0000000000400698
0x000000000040069c
0x00000000004006a0
0x00000000004006a4
0x00000000004006a8
0x00000000004006ac
0x00000000004006b0
0x00000000004006b4
0x00000000004006b8
End of assembler dump.

(gdb) x/s 0x400000+0x7cO
0x4007cO0: "Enter a and b:

(gdb) x/s 0x400000+0x7d0
0x4007d0: "%d %d"

(gdb) x/s 0x400000+0x7d8
0x4007d8: "Result = %d"

(gdb) disas arithmetic

FUNCTION POINTER PARAMETERS

bl 0x4004a0 <scanf@plt>

ldr w0, [x29,#44]

add X1, Xx29, #0x28

bl 0x4006bc <
Z10arithmeticiPi>

uxtb w0, w0

cmp W0, wzr

b.eq 0x4006b0 <main+88>

ldr wl, [x29,#40]

adrp X0, 0x400000

add X0, X0, #0x7d8

bl 0x4004e0 <printf@plt>

mov w0, #0x0 // #0

1dp X29, x30, [sp],#48

ret

Dump of assembler code for function Zi0arithmeticiPi:

0x00000000004006bc <+0>:
0x00000000004006C0O <+4>:
0x00000000004006c4 <+8>:
0x00000000004006C8 <+12>:

156

sub sp, sp, #0x10
str w0, [sp,#12]
str x1, [sp]

ldr X0, [sp]

710

End
mai

stp

0x00000000004006cC
0x00000000004006d0

0x00000000004006d4
0x00000000004006d8
arithmeticiPi+96>

0x00000000004006dc
0x00000000004006€0
0x00000000004006€e4
0x00000000004006e8
0x00000000004006€ec
0x00000000004006f0
0x0000000000400614
0x000000000040068
0x00000000004006fc
0x0000000000400700
0x0000000000400704
0x0000000000400708
0x000000000040070cC
0x0000000000400710
0x0000000000400714
0x0000000000400718
0x000000000040071c
0x0000000000400720

of assembler dump.

n:

<+16>:
<+20>:

<+24>:
<+28>:

<+32>:
<+36>:
<+40>:
<+44>:
<+48>:
<+52>:
<+56>:
<+60>:
<+64>:
<+68>:
<+72>:
<+76>:
<+80>:
<+84>:
<+88>:
<+92>:
<+96>:
<+100>:

x29, x30, [sp,#-48]!

CHAPTER 13

cmp
b.ne

mov

ldr
ldr
ldr
add
ldr
str
ldr
add
str
ldr
ldr
ldr
mul
ldr
str
mov
add
ret

/1

FUNCTION POINTER PARAMETERS

X0, Xzr
0x4006dc <_

Z10arithmeticiPi+32>
// #0

w0, #0x0
0x40071C <_
x0, [sp]

[x0]
[sp,#12]
wl, wo
[sp]

[x0]
[sp,#12]
w0, #0x1
[sp,#12]
[sp]

[x0]
[sp,#12]
wl, wo
[sp]

[x0]

#0ox1

sp, #0x10

wi,
wo,
wi,
X0,
wi,
wo,
wo,
wo,
X0,
wi,
wo,
wi,
X0,
wi,
wo,

sp,

establishing stack
frame for

/] #1

157

CHAPTER 13 FUNCTION POINTER PARAMETERS

mov
str
str
adrp
add

bl

adrp
add

add

add

bl

ldr

add

bl

158

X29, sp

wo, [x29,#28]
x1, [x29,#16]
X0, 0x400000
X0, X0, #0x7c0

0x4004e0 <printf@plt>

X0, 0x400000
X0, X0, #0x7d0

x1, x29, #0x2c

X2, X29, #0x28

0x4004a0 <scanf@plt>

w0, [x29,#44]

x1, x29, #0x28

0x4006bc < Z10arithmeticiPi>

/7

/7

/1

//

//

//

//
//

//

//

//

//

//

//
//

//

//

//

parameters and
local variables

saving the first main

parameter

saving the second

main parameter

the address of printf
string parameter

printf("Enter a

and b: ")

the address of scanf
string first
parameter

the address of a

relative to sp = x29
scanf second
parameter

the address of b

relative to sp = x29
scanf third
parameter

scanf("%d

%d", &a, &b)

44=0x2c, w0 <- [a]
arithmetic first
parameter

the address of b

relative to sp = x29
arithmetic second
parameter

arithmetic (a, 8&b)

CHAPTER 13 FUNCTION POINTER PARAMETERS

uxtb w0, w0 // zero-extends a byte
result value to wo

cmp w0, Wzr // compares w0 with 0
// wzr zero register

always contains 0

b.eq 0x4006b0 <main+88> // if equals zero goto
function epilog
ldr wl, [x29,#40] // 40=0x28 wl <- [b]
adrp x0, 0x400000 // the address of printf
add x0, x0, #0x7d8 // string parameter
bl 0x4004e0 <printf@plt> // printf("Result
= %d", b)
0x00000000004006b0 <+88>:
mov w0, #0x0 // main should return 0
1dp x29, x30, [sp],#48 // restoring the
previous stack frame
ret // return from main
arithmetic:
sub sp, sp, #0x10 // establishing stack
frame for

// parameters and
local variables

str wo, [sp,#12] // saving the first
arithmetic
parameter, p1

str x1, [sp] // saving the second
arithmetic
parameter, p2

ldr x0, [sp] /1 x0 <- [p2]

cmp X0, Xzr // if (x0 != 0)

159

CHAPTER 13 FUNCTION POINTER PARAMETERS

b.ne 0x4006dc < _Zi0arithmeticiPi+32> // goto
0x00000000004006dc

mov w0, #0x0 // else { wo <- 0,
return value

b 0x40071c <_Z10arithmeticiPi+96> // goto epilog }

0x00000000004006dc <+32>:

ldr x0, [sp] // x0 <- [p2]

ldr wl, [x0] // x1 <- [x0], p2 is a
pointer, wil <- *[p2]

ldr wo, [sp,#12] // wo <- [p1]

add wl, wl, wo // wl <- wl + wo

ldr x0, [sp] /7 x0 <- [p2]

str wl, [x0] // [x0] <- wi,
*[p2] <- wi

ldr wo, [sp,#12] // wo <- [p1]

add w0, w0, #0x1 // WO <- wO + 1

str wo, [sp,#12] // [p1] <- wo

ldr x0, [sp] /7 x0 <- [p2]

ldr wl, [x0] // 1 <- [x0], wi
<- *[p2]

ldr wo, [sp,#12] // wo <- [a]

mul wl, wl, wo // wl <- wl + w0

ldr X0, [sp] // x0 <- [p2]

str wl, [x0] // [x0] <- w1,
*[p2] <- w1

mov w0, #0x1 // w0 <- 1,

return result
0x000000000040071C <+96>:
add sp, sp, #0x10 // restoring the
previous stack frame
ret // return from
arithmetic

160

CHAPTER 13 FUNCTION POINTER PARAMETERS

Summary

In this chapter, we disassembled and analyzed a project that used function
parameters which are pointers.
The next, final chapter of the book summarizes various basic

disassembly patterns.

161

CHAPTER 14

Summary of Code
Disassembly Patterns

This final chapter summarizes the various patterns we have encountered
during the reading of this book.

Function Prolog/Epilog

Function prolog

stp x29, x30, [sp,#-48]!
mov x29, sp

Some code may omit stp if there are no nested calls inside:
sub sp, sp, #0x10
Function epilog

ldp x29, x30, [sp],#48
ret

Some code may omit to restore X29/X30 if there are no nested
calls inside:

add sp, sp, #0x10
ret

© Dmitry Vostokov 2023 163
D. Vostokov, Foundations of ARM64 Linux Debugging, Disassembling, and Reversing,
https://doi.org/10.1007/978-1-4842-9082-8_14

https://doi.org/10.1007/978-1-4842-9082-8_14

CHAPTER 14 SUMMARY OF CODE DISASSEMBLY PATTERNS

Knowing the prolog can help identify situations when symbol files or
function start addresses are not correct. For example, suppose we have the
following backtrace:

f003+0x5F
f002+0x8F
f0040x20

If we disassemble the foo2 function and see that it does not start with
the prolog, we may assume that backtrace needs more attention:

(gdb) x/i foo2
0X0000000000455165: 1dr x0, [x1]

ADR (Address)

The following instructions

adrp x0, 0x400000
add x0, x0, #0x7d0

are equivalent to the following instruction for smaller addresses:

adr x0, 0x4007d0

Passing Parameters

The first eight function parameters are passed from left to right via

X0 - X7

164

CHAPTER 14 SUMMARY OF CODE DISASSEMBLY PATTERNS

Note Although we haven’t seen examples for more than eight
function parameters, they are passed via the stack, for example, via
STR or STP instructions. Passed parameters are saved on the stack
by the callee.

Static/global variable address (or string constant)

adrp x0, 0x400000
add x0, x0, #0x7do

Local variable value

ldr xo0, [reg] // local variable value
call func

Local variable address

add x0, x29, #offset // local variable address
call func

Accessing Saved Parameters
and Local Variables

Local word (int) variable value
ldr wo, [sp, #offset]

Local doubleword (long) variable value
ldr xo, [sp, #offset]

Local variable address

add x0, sp, #offset

165

CHAPTER 14 SUMMARY OF CODE DISASSEMBLY PATTERNS
Dereferencing a pointer to a doubleword value

ldr xo, [sp, #offset]
ldr x1, [x0]

Dereferencing a pointer to a word value

ldr xo0, [sp, #offset]
ldr w1, [x0]

Optimized code may not use stack locations to address function
parameters (use only registers through which the parameters were passed)
as can be seen in the previous chapter’s example compiled with
the -O2 switch:

(gdb) disas arithmetic(int, int*)
Dump of assembler code for function _Zi0arithmeticiPi:

0x00000000004006b0 <+0>: cbz x1, 0x4006d0
<_Z10arithmeticiPi+32>
0Xx00000000004006b4 <+4>: 1ldr w2, [x1]
0x00000000004006b8 <+8>: add w3, w0, #0x1
0x00000000004006bc <+12>: add wo, wO, w2
0x00000000004006€0 <+16>: mul wo, w0, w3
0x00000000004006C4 <+20>: str wo, [x1]
0x00000000004006C8 <+24>: mov w0, #0x1 // #1
0x00000000004006CC <+28>: ret
0x00000000004006d0 <+32>: mov w0, wil
0x00000000004006d4 <+36>: ret

End of assembler dump.

Summary

This chapter can be used as a reference to basic disassembly patterns.

166

Index

A

Access violation, 70

ADD, 5,9, 10, 13-15, 47, 151

Address (ADR), 7,9, 10, 13, 16, 17,
78,79, 164

Address of another memory cell,
35,65,71

ADDS, 147

ADRP, 9, 164

AND, 90, 148

Application Binary Interface (ABI)
mismatch problem, 144

Application crash, 70

Arithmetic, 139

Arithmetic Project, 3, 19

Array elements, 124

Assembly code, 21, 25, 28

Assignment, 6

B

B, 114, 151

Base pointer, 124

B.EQ, 151

Binary notation, 32
Binary representation, 31
BL, 110

© Dmitry Vostokov 2023

BL/BRL, 115,116

B.NE, 151

BR, 115

Break command, 75

Breakpoint, 22, 41, 75, 95, 119,
130, 141

bt command, 121

Byte, 60

C

Callee, 116, 135, 144
Caller, 116, 117, 129, 144
CMP, 148-150
Code reconstruction, 95
Commented disassembly, 154
Compiler optimization, 28
Computer memory, 1
Computer program, 5
Conditional jumps, 151
Contents at the memory
address, 4, 36
Continue command, 120

D

Dangling pointer, 70
.data, 72, 93

D. Vostokov, Foundations of ARM64 Linux Debugging, Disassembling, and Reversing,

https://doi.org/10.1007/978-1-4842-9082-8

167

https://doi.org/10.1007/978-1-4842-9082-8

INDEX

Data declaration and definition, 73
Decimal notation, 31, 32
Decimal representation, 30
Decrement, 12, 51, 108
Deep recursion, 113
Dereference, 39
Dereferencing, 73

Direct address, 35

Disass command, 75
Disassemble command, 22
Display command, 77
Disposing of memory, 71
Doubleword, 60, 166
Driver, 70

E

EOR, 91
Epilog, 139

F

Function epilog, 129, 138, 139, 163

FunctionParameters project,
135,138

FunctionPointerParameters
project, 153-161

Function prolog, 127, 138, 163, 164

Functions return values, 151

G

GDB, 6,9, 10, 13, 16, 20, 21, 27, 33,
40-43, 47,51, 55, 59, 74, 75,
95,118, 119, 121, 130

168

GDB disassembly, 6, 9, 10, 13, 16,
40,47, 51, 55, 59
General purpose CPU register, 111

H

Halfword, 60

Hexadecimal notation, 32, 33
Hexadecimal number, 32, 59
Hexadecimal representation, 32

,J,K

Inaccessible addresses, 70
Increment, 5, 12, 51
Increment by one, 5
Indirect address, 35

Info registers command, 76
Instruction pointer, 112, 124
Invalid pointer, 70

L

LDP, 123

LDR, 10, 13,16, 17, 51, 65, 108
LDRB, 65

LDRH, 65

LIFO, 107,110

Local variables, 123, 127, 136
LocalVariables project, 133
Logical shift instruction, 90
LR, 115,116, 124, 129

LSL, 90

LSR, 90

main, 19, 22, 40, 41, 75, 95, 119,
130-132, 134, 135, 139,
144, 153

Memory layout, 4, 7, 8, 11, 14, 17,
37,42, 45,50, 53, 57, 62, 76,
78,79, 85, 86, 136

MemoryPointers project, 73

MOV, 9, 59,91,92,111, 123, 165

MUL, 16, 55

MULS, 147

Multiplication, 54, 55

N

Next instruction to be executed, 48,
52,56, 124

NULL pointer, 70

Number representations, 29

NZCV register, 147

O

Opcode, 89
OR, 91

P,Q

Panic, 70

Parameter passing order, 164
Parameters to functions, 110, 123
Passed parameters, 165, 166
Passing parameters, 165

PC, 93,112,114-118, 121, 124, 151

INDEX

Pointer, 35, 39, 47, 55, 65,
71-73, 166
Pointer initialization, 71
Pointer to a pointer, 35
Pointer to read-only memory, 70
Print command, 77
printf, 114, 153, 159
Program sections, 72
Pseudo-code, 5, 8, 9, 12, 16, 25, 27,
39, 43, 46, 48, 51, 54, 55, 73,
98, 100, 132, 148, 149
Pseudo-code reconstruction, 98
PSTATE, 147
PSTATE flags, 147

R

Random memory, 70, 71
Raw stack, 127
Register as a temporary
variable, 47
Register contents, 9
Register preservation, 123
RET, 115,116
Return address, 110, 116,117, 123
Run command, 75

S

scanf, 153, 158

Set command, 76

Si command, 48, 52, 56, 79, 92
SimpleStack project, 118, 127
SP,108-110, 112,117, 124, 127, 141

169

INDEX

Stack, 107, 108, 110, 112, 113, 117,

118, 120, 121, 123, 124, 129,

136-138, 140, 141
Stack frame, 124, 140, 157, 159
Stack frame pointer, 124
Stack memory layout, 136, 137
Stack overflow, 113
Stack pointer, 108, 112, 124
Stack reconstruction, 121
Static memory locations, 4
Stepi command, 43
STP, 123
STR, 7,10-12, 17, 18, 39, 51, 53, 65
STRB, 65
STRH, 65
STR/STP, 139
SUB, 13
SUBS, 147, 149
Summation notation, 30
Summation symbol, 30
Symbolic names, 22

T

Temporary memory cell, 10
Ternary representation, 31
.text, 93

TST, 148, 150

U,V
Uninitialized pointers, 70, 71
Uninitialized variable, 71

170

Unlimited recursion, 113
Unsigned, 60, 61
Unsigned char, 60
Unsigned int, 61
Unsigned long, 61
Unsigned long long, 61
Unsigned short, 60

W

W0, 2, 149, 151
W1, 2,9, 148
Word, 60, 126, 166

XY

X0, 2,10,13,16,17,37,39, 42,47,
55,772,109, 123, 124, 148,
150, 151

[X0], 10, 13, 20, 37, 47, 51, 72

X1,2,5,37,42,47, 55,123, 149

[X1], 47

X29, 124,129, 136

X30, 124

x command, 77, 78

XOR, 91

0x prefix, 59

XZR/WZR, 124

Y4

7 bit, 147
Z flag, 148-151

	Table of Contents
	About the Author
	About the Technical Reviewer
	Preface
	Chapter 1: Memory, Registers, and Simple Arithmetic
	Memory and Registers Inside an Idealized Computer
	Memory and Registers Inside ARM 64-Bit Computer
	“Arithmetic” Project: Memory Layout and Registers
	“Arithmetic” Project: A Computer Program
	“Arithmetic” Project: Assigning Numbers to Memory Locations
	Assigning Numbers to Registers
	“Arithmetic” Project: Adding Numbers to Memory Cells
	Incrementing/Decrementing Numbers in Memory and Registers
	Multiplying Numbers
	Summary

	Chapter 2: Code Optimization
	“Arithmetic” Project: C/C++ Program
	Downloading GDB
	GDB Disassembly Output – No Optimization
	GDB Disassembly Output – Optimization
	Summary

	Chapter 3: Number Representations
	Numbers and Their Representations
	Decimal Representation (Base Ten)
	Ternary Representation (Base Three)
	Binary Representation (Base Two)
	Hexadecimal Representation (Base Sixteen)
	Why Are Hexadecimals Used?
	Summary

	Chapter 4: Pointers
	A Definition
	“Pointers” Project: Memory Layout and Registers
	“Pointers” Project: Calculations
	Using Pointers to Assign Numbers to Memory Cells
	Adding Numbers Using Pointers
	Incrementing Numbers Using Pointers
	Multiplying Numbers Using Pointers
	Summary

	Chapter 5: Bytes, Halfwords, Words, and Doublewords
	Using Hexadecimal Numbers
	Byte Granularity
	Bit Granularity
	Memory Layout
	Summary

	Chapter 6: Pointers to Memory
	Pointers Revisited
	Addressing Types
	Registers Revisited
	NULL Pointers
	Invalid Pointers
	Variables As Pointers
	Pointer Initialization
	Initialized and Uninitialized Data
	More Pseudo Notation
	“MemoryPointers” Project: Memory Layout
	Summary

	Chapter 7: Logical Instructions and PC
	Instruction Format
	Logical Shift Instructions
	Logical Operations
	Zeroing Memory or Registers
	Program Counter
	Code Section
	Summary

	Chapter 8: Reconstructing a Program with Pointers
	Example of Disassembly Output: No Optimization
	Reconstructing C/C++ Code: Part 1
	Reconstructing C/C++ Code: Part 2
	Reconstructing C/C++ Code: Part 3
	Reconstructing C/C++ Code: C/C++ Program
	Example of Disassembly Output: Optimized Program
	Summary

	Chapter 9: Memory and Stacks
	Stack: A Definition
	Stack Implementation in Memory
	Things to Remember
	Stack Push Implementation
	Stack Pop Implementation
	Register Review
	Application Memory Simplified
	Stack Overflow
	Jumps
	Calls
	Call Stack
	Exploring Stack in GDB
	Summary

	Chapter 10: Frame Pointer and Local Variables
	Stack Usage
	Register Review
	Addressing Array Elements
	Stack Structure (No Function Parameters)
	Function Prolog
	Raw Stack (No Local Variables and Function Parameters)
	Function Epilog
	“Local Variables” Project
	Disassembly of Optimized Executable
	Summary

	Chapter 11: Function Parameters
	“FunctionParameters” Project
	Stack Structure
	Function Prolog and Epilog
	Project Disassembled Code with Comments
	Parameter Mismatch Problem
	Summary

	Chapter 12: More Instructions
	PSTATE Flags
	Testing for 0
	TST – Logical Compare
	CMP – Compare Two Operands
	TST or CMP?
	Conditional Jumps
	Function Return Value
	Summary

	Chapter 13: Function Pointer Parameters
	“FunctionPointerParameters” Project
	Commented Disassembly
	Summary

	Chapter 14: Summary of Code Disassembly Patterns
	Function Prolog/Epilog
	ADR (Address)
	Passing Parameters
	Accessing Saved Parameters and Local Variables
	Summary

	Index

