

Assembly Language
Programming and
‘Organization of
the IBM PC

Ytha Yu

Department of Mathematics and Computer Science
California State University, Hayward, California

-

Charles Marut . o
Department of Mathematics and Computer Science
California State University, Hayward, California

-

!.‘ " 4 Mitchell McGRAW-HILL

New York St. Louis San Francisco Auckland Bogotd Caracas

l}. ' Lisbon London Madrid Mexico Milan Montreal New Delhi
- Hy

Paris San Juan Singapore Sydney Tokyo Toronto Watsonville

ASSEMBLY LANGUAGE PROGRAMMING & ORGANIZATION OF THE IBM PC
Intemational Editions 1992

Exclusive nghts by McGraw-Hill Book Co-Singapore for manufacture and export. This book cannot
be re-exported from the country to which it is consigned by McGraw-Hill.

Copyright © 1992 by McGraw-Hill, Inc. All rights reserved. Except as permitied
under the United States Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written permission of the publisher.

567890 KKP 98765

ISBN 0-07-072692-2

Sponsoring editor; Stephen Mitchell
LEditonrial assistant: Dernuse Nickeson
Director of Production: Jane Somers
Production assistant: Richard De Vitto
Project management: BMR

Library of Congress Catalog Card Number 91-66269

IBM 15 a registered Uademark of Intemational Business Maclunes, Inc
intel is a registered trademark of Microsoft Corporation.

When ordering this title, use ISBN 0-07-112896-4

Printed 1n Singapore

Dedication

In memory of my father, Ping Chau
To my mother, Monica
To my wife, Joanne and our children

Alan, Yolanda, and Brian .

For my parents, George and Ruth Marut

For Beth

Contents

Preface xiii

Chapter 1 1.1 The Components of a Microcomputer System 3.
Microcomputer Systems 1.1.1 Memory. 4 .
3 . 1.1.2 The CPU 7

1.1.3 I/O Ports . 9
1.2 Instruction Executlon 9
1.3 1/O Devices 11 .
1.4 Programmmg Languages 12
1.5 An Assembly Language Program 14
Glossary 15
Exercises 17

awter 2 2.1 Number Systems 19
k‘ resentation 2.2 Conversion Between Number Systems 22
of Numbers and 2.3 Addition and Subtraction 24
Characters 2.4 How Integers Are Represented in the Computer 26
19 2.4.1 Unsigned Integers 26

2.4.2 Signed Integers 26 |

2.4.3- Decimal Interpretation 28
2.5 Character Representation 30
‘Summary 33

Glossary 34 "
Exercises 34
Chapter 3 3.1 The Intel 8086 Family of Microprocessors 37
Organization 3.2 Organization of the 8086/8088 Microprocessors 39
3.2.1 Reglsters 39
Zf the IBM Personal 3.2.2 Data Registers: AX, BX, CX, DX 39
3;’""““’" ‘ 3.2.3 Segment Registers: CS, DS, S, ES 41

3.2.4 Pointer and Index Registers: SP, BP, SI, DI 44
' 3.2.5 Instruction Pointer: IP 45
3.2.6 FLAGS Reyister 4s -
"33 Organ\mtlon of the PC 45 .
3.3.1 The Operating System 46 ,
3.3.2 Memory Orgunization of the PC 47
3.3.3 1/O Port Addresses 49 -
3.3.4 " Start-up Qperation’ 49
“ Summary 49
Glossary 50
Exercises 51

viii Contents

Chapter 4

Introduction to IBM PC
Assembly Language

53

4.1

Assembly Language Syntax s$4

4.1.1 Name Field 54

4.1.2 Operation Field 55
4.1.3 Operand Field 55
4.1.4 Comment Field 55

.2 Program Data 56
3 Variables 57
4.3.1 Byte Variables 57
4.3.2 Word Variables 57
4.3.3 Arrays 58
4.4 Named Constants 59
4.5 A Few Basic Instructions 60
4.5.1 MOV and XCHG 60
4.5.2 ADD, SUB, INC, und DEC 62
4.5.3 NEG 64
.6 Translation of High-Level Language to Assembly Language 64
7 DProgram Structure 65
4.7.1 Memory Modcls 65
4.7.2 Data Segment 66
4.7.3 Stack Segment 66
4.7.4 Code Segment 66
4.7.5 [Putting It Togcther 67
4.8 Input and Output Instructions 67
4.8.1 INT 21hy467
"4.9 A First Progranv,
4.10 Creating and Running a Program 70
4.11 Displaying a String 73.
4.12 A Case Conversion Program 73
Summary 76
Glossary 77
. Exercises 78
B Programming Exercises 80

Chapter 5 5.1 The FLAGS Register 81

The Processor Status and 5.2 Overflow 83
the FLAGS Register 5.3 How Instructions Affect the Flags 85
5.4 The DEBUG Program 87

81

Summary 90

Glossary 91

Exercises 97
Chapter 6 6.1 An Example of a Jump 93
Flow Control 6.2 Conditional Jumps 94
Instructions 6.3 ‘The JMP Instruction -58

93 6.4 High-Level Languagc Structurge 98
: 6.4.1 Branching Structures 68
6.4.2 Looping Structures 104
6.5 Programming with High-level Structures 108
Summary 112
Glossary 113
Exercises 113
Programming Excrcises 115

Logic Instructions 118
__71.1_AND, OR,.and XOR Instructionsw119-
77712 NOT Instruction 124
7.1.3 TEST Instruction 122

7.2 Shift Instructions 722

Chapter 7 7.1
Logic, Shift, and
Rotate Instructions
117

Contents ix

4

7. 2 1 Left Shift Instructions 123
7.2.2 'Right Shift Instructions 125
7.3 Rotate Instructions 1274
7.4 Binary and Hex-1/O 130
Summary 134
Glossary 135
Exercises 13§ .
Programming Exercises 136

%am.tsn.&-
e Stack and Introduction

to Procedures

8.1 The Stack 139

8.2 A Stack Application. 144

8.3 Terminology of Procedures 146
8.4 CALL and RET 147-

8.5 An Example of a Procedure 150

Progranuning Exercises 159

139.
© Summary 157
Glossary 158
Exercises 158
Chaptel; 9

Multiplication and Division
Instructions
161

MUL and IMUL 161)

Simple Applications of MUL and IMUL 164
DIV and IDIV 165

Sign Extension of the Dividend 166
Decimal Input and Output Procedures 167
Summary 175

Exercises 176

Programming Exercises 177

Y00V
U W IN -

Zhapter 10 .-
Arrays and Addressing
Viodes

10.1 One-Dimensional Arrays 179
10.2 Addressing Modes 1871
10.2.1 Register Indirect Mode 182
10.2.2 Based ansd-Indexed Addressing Modes- 184
10.2.3 The PIR Operator and the LABEL I’scmlu -op 186
10.2.4 Segnent Override 188
10.2.5 "Accessing the Stack 189
10.3 An Application: Sorting an Array 189
10.4 Two-Dimensional Arrays 192
10.5 Based Indexed Addressing Mode 194
10.6 An Application: Averaging Test Scores 195
10.7 The XLAT Instruction 197

Programming Exercises ‘203

11.1 The Direction Flag 20s

179
Summary 200
Glossary 2071
Fxercises 201
hapter 11

he String Instructions
5 -

11.2. Moving a String 206.
11.3 Store String 209
11.4 Load String 211
11.5 Scan String 214
11.6 Compare String 217~
11.6.1 Finding a Substring of a String 219
11.7 General Form of the String Instructions. 223
Summary 224
Glossary 225
Exercises 225
Prograiniming Exercises 226

b Contents

Chapter 12 12.1 The Monitor 2371
Text Display and Keyboard i%% \{_ideto h?g(ajpt;rs and Display Modes 232
: 3 Tex e Programming 234
5;‘;9"""”""9 1231 The Attribute Byte 235
12.3.2 A Display Page Demonstration 237
12.3.3 INT 10H 238
12.3.4 A Comprehensive Example 243
12.4 The Keyboard 244
12.5 A Screen Editor 247
Summary 252
Glossary 253
Exercises 254
Programming Exercises 254

Chapter 13 13.1 Macro Definition and Invocation 257

Macros . 13.2 local Labels 262
257 13.3 Macros That Invoke Other Macros 263

13.4 A Macro Library 264 Yo
13.5 Repetition Macros 268 :

13.6 An Output Macro 270

13.7 Conditionals 272

13.8 Macros and Procedures 276

Summary 276

Glossary 277

Exercises 278

Chapter 14 14.1 .COM Programs 281
Memory Management 14.2 Program Modules 285 .
281 14.3 Full Segment Dcfinitions 291
14.3.1 Form of an .EXE Program with Full Segment Definitions 295
14.3.2 Using the Full Segment Definitions 295
14.4 More About the Simplified Segment Definitions 299
14.5 Passing Data Between Procedures 300
14.5.1 Global Variables 300
14.5.2 Passing the Addresses of the Data 302
14.5.3 Using the Stack 303
Summary 306
Glossary 306
Exercises 307
Programming Exercises 307

Chapter 15 15.1 Interrupt Service 309
BIOS and DOS 15.1.1 Interrupt Vector 310
15.1.2 Interrupt Routines 312
;notgerrupts 15.2 BIOS Interrupts 312
15.3 DOS Interrupts 316
15.4 A Time Display Program 316
15.5 User Interrupt Procedures 318
15.6 Memory Resident Program 322
Summary 329
Glossary 329
Exercises 330.
Programming Exercises 330

Contents

~—

16.1 Graphics Modes 337

16.2 CGA Graphics 333

16.3 EGA Graphics 339

16.4 VGA Graphics 340

16.5 Animation 3471

16.6 An Interactive Video Game 347
16.6.1 Adding Sound 347
16.6.2 Adding a Padidle 350

Programming Exercises 356

17.1 The ldea of Recursion 357

17.2 Recursive Procedures 358

17.3 Passing-Parameters on the Stack 360

17.4 The Activation Record 361

17.5 lImplementation of Recursive Procedures 363
17.6 “More Complex Recursion 367

Programming Exercises 370

Chapter 16

Color Graphics

331
Summary 355
Glossary 356
‘Lxercises 356

Chapter 17

Recursion

357
Summary 369
Glossary 369
Exercises 370

Chapter 18

Advanced Arithmetic
371

18.1 Double-Precision Numbers 371
18.1.1 Doile-Precision Addition, Subtraction, and Negation 372
18.1.2 Dauble-Precision Mudtiplication and Division 374
18.2 Binary-Coded Decimal Numbers 374
18.2.1 Packed and Unpacked BCD 375
~ 18.2.2' BCD Addition and the AAA Instruction 375
' 18.2.3 BCD Subtraction and the AAS Instruction 377
18.2.4 BCD Multiplication and the AAM Instruction 378
18.2.5 BCD Division and the AZD Instruction 378
18.3 Floating-Point Numbers 379-
18.3.1 Canverting Decimal Fractions into Binary 379
18.3.2 Floating-Point Representation 380
18.3.3 Floating-Point Qperations 380
18.4 The 8087 Numeric Processor 381
18.4.1 Data Types 381
18.4.2 8087 Registers 382
18.4.3 lIustructions 382
18.4.4 Multiple-Precision Integer 1/0 384
18.4.5 Real-Number 1/O 389
Summary 391
Glossary 392
Lxercises 393
Programming Exercises 394°

Chapter 19
Disk and File
Operations
395

19.1 Kinds of Disks 395
19.2 Disk Structure 397
19.2.1 Disk Capacity 398
19.2.2 Disk Access 399
19.2.3 File Allocation 399
19.3 File Processing 402 .
19.3.1 File Handle 402
19.3.2 File Lriors 403
19.3.3 Opening and Closing o File 403
19.3.4 Reading a File 405

xi

xi Contents

19.3.5 Writing u File 406
19.3.6 A Progra:n to Read and Display a File 406
19.3.7 The Filc Pointer 410
19.3.8 Changing a File's Attribute 414
19.4 Direct Disk Operations 415
19.4.1 INT 25hh and INT 26h 415
Summary 418
Glossary 419 .
Excrcises 420
Programming Exercises 420

Chapter 20
Intel’s Advanced
Microprocessors
421

20.1 The 80286 Microprocessor 421
20.1.1 Extended Iustruction Set 422
20.1.2 Real Address Mode 423
20.1.3 Protected Mude 424
20.1.4 Extended Memory 426

20.2 Protected-Mode Systems 429
20.2.1 Windows and 0S/2 430
20.2.2 Programming 431

20.3 80386 and 80486 Microprocessors 433
20.3.1 Real Address Mode 433
20.3.2 Protected Mode 433
20.3.3 Programming the 80386 434

Summary 437

Glossary 437

Exercises 438

Programmiing Exercises 438

Appendicies
439

.

Appendix A 1BM Display Codes 447
Appendix B DOS Commands 445
Appendix C BIOS and DOS Interrupts 449
Appendix D MASM and LINK Options 461
Appendix E DEBUG and CODEVIEW 477
Appendix F Assembly Instruction Set 489
Appendix G Assembler Directives 517
Appendix H o Keyboard Scan Codes 527

index
531

- Preface

Hardware and Software
Requirements

This book is the outgrowth of our experience in teaching assembly

‘language at California State University, Hayward. Our goal is to write a text-

book that is easy to read, yet covers the topics fully. We present the material
in a logical order and explore the organization of the IBM PC with practical
and interesting examples.

Assembly language is really just a symbolic form of machine lan-
guage; the language of the computer, and because of this, assembly language
instructions deal with computer hardware in o very intimate way. As you
learn to program in assembly language you also learn about computer orga-
nization. Also because of their close connection with the hardware, assembly
language programs.can run faster and take up less space in memory than
high-level language prograins—a vital consideration when writing computer
game programs, for instance..

While this book is intended to be used in an assembly language
programming class taught in a university or community college, it is written

-in a tutorial style and can be read hy anyone who wants to learn about the

IBM PC and how to get the most out of it. Instructors will find the topics
covered in a pedagogical fashion with' numerous examples and exercises.

It is not necessary to. have prior knowledge of computer hardware
or programming to read this book, although it helps if you have written
programs in some high-level language like Basic, Fortran, or Pascal.

N

To do the programming assignments and demonstrations, you need to own
or have access to the following:

An IBM PC or compatible.

The MS-DOS or PC-DOS operating system.

3. fAccess to assembler and linker software, such as Microsoft’s
MXASM and LINK, or Borland’s TASM and TLINK. C

4. &n editor or word processing program.

19

xiii

xiv Preface

Balanced Presentation The wortld of IBM PCs and compatibles consists of many different computt’
models with different processors and structures. Similarly, there are differcent
versions of assemblers and debuggers. We have taken the following approach
to balance our presentation:

1. Empbhasis is on the architecture and instruction set for the
8086/8088 processors, with a separate chapter on the advanced
processors. The reason is that the methods learned in program-
ming the 8086/8088 are common to all the Intel 8086 family be-
cause he instruction set for the advanced processors is largely
just an extension of the 8086/8088 instruction set. Programs writ-
ten for the 8086/8088 will execute without modification on the
advanced processors.

2. Simplified segment definitions, introduced with MASM 5.0, are
used whencever possible.

3. The DOS environment is used, because it is still the most popular
operating system on PCs.

4. DEBUG is used tor debugging demonstrations because it is part of
DOS and its general features are common to all assembly debug-
gers. Microsoft’s CODEVIEW is covered in Appendix E.

Features of the Book All the materials have been classroom tested. Some of the features that we
believe make this book special are:

Writing programs early

You- are naturally eager to start writing programs as soon as possible.
However, because assembly language instructions refer 1o the hardware, you,
first need to know the essentials of the machine architecture and the basics
of the binary and hexadecimal number systems. The first program appears
in Chapter 1, and by the end of Chapter 4 you will have the necessary tools
to write simple but interesting programs.

Handling input and output

Input and output in assembly language are difficult because the in-
struction set is so basic. Our approach is to program input and output by
using DOS function calls. This enables us to present completely functioning
programs carly in the book. :

Structured code

The advantages of structured progranmuning in high-level languages
carry over to asseinbly language. In Chapter 6, we show how the standard
high-level branching and looping structures cail be implemented in assembly
language; subsequent programs are developed from a high-level pseudocode
in a top-down manner.

Definitions

To have a clear understanding of the ideas of assembly language
programming, it's important to have a finn grasp of the terminology. To
facilitate this, new terms appear in boldface the tirst time they are used, and
are included in a glossary at the end of the chapter.

i

Note to Instructors -

Exeicises

Instructor’s Manual

Student Data Disk

Preface XV

' Advanced applications . i

One of the fun things that can easily be done in assemb]y]anguage
is manipulating the keyboard and screen. Two chapters are devoted to this
topic; the high point is the development of a video game similar to Pong.
Another interesting application is the development of a memory resident
program that displays and updates the time.

Numeric processor

The operatlons and instructions of the numeric processor are given
detailed treatment.

.

Advanced processors .

The structure and operations of the advanced processors are covered
in a separate chapter. Because DOS is still the dominant operating system
for the PC, most examples are DOS applications.

The book is divided into two parts. Part One covers the topics that are basic
to all applications of assembly language; Part Two is a collection of advanced
topics. The following table shows how chapters in Part Two depend on ma-
terial from earlier chapters:

Chapter Uses material from chapters
12 1-10

13 1-11, 12 (some exercises)
14 1-10

15 1-12, 14

16 1-15

17 1-10

18 1-10, 13

19 1-10

20 1-11, 13, 14

The chaptcrs in Part One should be covered in sequence. if the stu-
dents have strong backgrounds in computer science, Chapter 1 can be cov-
ered lightly or be assigned as independent reading. In a ten-weck course that
meets four hours a week, we are usually able to cover the first four chapters
in two weeks, and make the first programming assignment at the end of the
sccond week or the beginning of the third wecek. In ten weeks we are usually
able to cover chapters 1-12, and then o on to choose topics from chapters
13-16 as time and interest atlow. “

Every chapter ends with numerous exercises to reinforce the concepts and
principles covered. The exercises are grouped into practice exercises and pro-
gramming cxerciscs.

A comprehensive instructor’s manual is available. It includes general com-
ments, programming hints, and solutions to the practice exercises. it also
includes a sct of transparency masters for figuges and program llSUn&S.

A student data disk containing the source code for the programs in the text
is available with the accompanying instructor’s manual.

xvi Preface

Acknowledgments

We would like to thank our editor, Raleigh Wilson, and the staff at Mitchell
McGraw-Hill, including Stephen Mitchell, Denise Nickeson, Jane Semers,
and Richard de Vitto, for thcir support in this project. We would like to
thank the staff at BMR, especially Matt Lusher, Jim Love, and Alex Leason
for their outstanding work in producing this book.

We would also like to thank our students for their patience, support,
and criticism as the manuscript developed. Finally, our thanks go to the
following reviewers, whose insights helped to make this a much better book:

David Hayes, San jose State University, San Jose, Cahforma

Jim Ingram, Amarillo College, Amarillo, Texas

Linda Kieffer, Cheney, Washington

Paul LeCoq, Spokanc Falls Community College, Washington
Thom Luce, Ohio University, Ohio

Lric Lundstrom, Diablo Valley College, Plcasant Hill, California
Mike Michaclson, Palomar College, San Marcos, California

Don Myers, Vincennes University, Vincennes, Indiana

Loren Radford, Baptist College, Charleston, Soutli Carolina
Francis Rice, Oklahoma State University, Oklahoma

David Roscnlof, Sacramento City College, California

Paul W. Ross, Millersville State University, Pennsylvania

R.G. Shurtleff, Colorado ‘technical College, Colorado

Mel Stone, St. Petershurg Jr. College, Clearwater Campus, Florida
James VanSpevboeck, St Ambrose College, Davenport, lowa
Richard Weisgerber, Mankato State University, Mankato, Minnesota

W would appreciate any comments that you, the reader, may offer.
Correspondence should be addressed to Ytha Yu or Charles Marut, Depart-
et of Matbematics and Computer Science, Calitornia State Unliversity,
Havward, Hayward Calitoria 94542, Internet electronic mail should be ad-
dressed to yyuwseq.csuhayward.edu or cmaruteseq.csuhayward.edu.

Part One

Elements of
Assembly Language
Programming

Mlcrocomputer

Systems

Overview

This chapter provides an introduction to the architecture of micro-
computers in general and to the IBM PC in particular. You will learn about
the main hardware components: the central processor, memory, and the
peripherals, and their relation to the software, or programs. We'll see exactly
what the computer does when it executes an instruction, and discuss the
main advantages (and disadvantages) of assembly language programming. It
you are an experienced microcomputer user, you are already familiar with
most of the ideas discussed here; if you are a novice, this chapter introduces
many of the important terms used in the rest of the book.

1.1 _

The Components
of a Microcomputer
System

Figure 1.1 shows a typical microcomputer system, consisting of a
system unit, a keyboard, a display screen, and disk drives, The system unit
is often referred to as “the computer,” because it houses the circuit boards
of the computer. The keyboard, display screen, and disk drives are called 1/0
devices because they perform input/output operations for the computer
They are also called peripheral devices or peripherals.

integrated-circuit (IC) chips are used in the construction of romputer

circuits. g hIC cnig may con;axg wndreds or even thousands of transistors.
These IC circuits are known as digital circuits because they operate on

discrete voltage signal levels, iypicalgy, ﬁigh voltage and a low voltage. We

use the symbols 0 an to represent the low- and high-voltage signals,
respectively. These symbols are called ‘binary digits, or bits, All information
processed by the computer is represented by strings of Os and 1's; that is,

by bit strings.

4 1.1 The Components of a Microcomputer System

Figure 1.1 A Microcomputer
System

Functionally, the computer circuits consist of three parts: the cen-
tral processing unit (CPU), the memory circuits, and the 1/O circuits. In
a microcomputer, the CPU is a single-chip. Processor ¢ called 2 mlcrop
sor. The CPU is the brain of the computer, and it controls ali operations. It

uses the memory circuits to store information, and the 1/O drcults to com-
munlcate with 1/0 devices. - :

The System Board

Inside the system unit is a main circuit board called the. system”
board, which contains the microprocessor and memory circuits. The sysiem
board is also cailed a motherboard because it contains expansion slots,
which are connectors for additional circuit boards called add-in boards or

add-in cards. 1/Q circuits are usually located on add-in cards. Figure 1.2
shows the picture of a motherboard.

1.1.1
Memory

Bytes and Words :

Information processed by the computer is stored in its memory. A
memory circuit_element_can store one bit of data. Howeves, the memory
circuits are usually organized into groups that can store eight bits of dags,
and a string of eight bits is called a byte. Each memory byte circuit—or
memory byte, for short—is identified by a number that is called its ad-

*ress, like the street address of a house. The first memory byte has address

-~

“Figwe 12 A Motherboard

Chapter 1 Microcomputer Systems 5.

- : . v

0. The data wured in a memory byte are called its ggntents. When the
contents of a memory byte are treated as a single number, we often use the
term vglue to denote them. - o : :

It is important to understand the difference between address and
contents. The address of a memory byte is fixed and is different from the
address of any other memory byte in the computer. Yet the contents of a
memory byte arc not unique and are subject to change, because they denote

the data currently being stored. Figure 1.3 shows the organization of memory

bytes; the contents are acbitrary. -) _
Another distinction between address and contents is that while the
contents of a memory byte are always eight bits, the numbeér of bits in an

Figure 1.3 Memory
Represented as Bytes

~ Address Contents
7 00101 v 01
6 110011 10
S 00001 101
a 1110 1 01
3 000000O0O0OU0
2 LI T IR T S B B |

R 010111 10
0 01100001

6 -1.1 The Components of a Microcomputer System

address depends on the processor. For example, the Intel 8086 microprocessor
assigns a 20-bit address, and the Intel 80286 microprocessor uses a 24-bit
address. The number of bits used in the address determines the number of _
bytes that can be accessed by the processor.)

Example 1.1 Suppose a processor uses 20 bits for an address. How
many memory bytes can be accessed?

Solution: A bit can have two possible values, so in a 20-bit address
there can be 2% = 1,048,576 different values, with each value beiny the
potential address of a memory byte. In computer terminology, the num-
ber 2% is called 1 mega. Thus, a 20-bit address can be used to address

1 megabyte or 1 MB.

In a typical microcomputer, two bytes form a word. To accommo-
date word data, the IBM PC aljows any pair of successive memory bytes to
be treated as a single unit, called a memory word. The lower address of
the two memory bytes is used as the address of the memory word. Thus the
memory word with the address 2 is made up of the memory bytes with the
addresses 2 and 3. The microprocessor can always tell, by other information
contained in each instruction, whether an address refers to a byte or a word.

In this book, we use the term memory location to denote either
a memory byte or a memory word.

Bit Position”

Figure 1.4 shows the bit positions in a microcomputer word and a
byte. The positions are numbered from right to left, starting with 0, In a
word, the bits 0 to 7 form the low byte and the bits 8 16 15 form the high
byte. Tor a word stored in memory, its low byte comes from the memory

Lyte with the lower address and its high byte is from the memory byte with
the higher address.

Memory Operations .-

v
The processor can perfornin two operations on memory: read (fetch)
the contents of a location and write (store) data at a location. In a read
operation, the processor only gets a copy of the data; the original contents

Figure 1.4 8it Positions in a
Byte and a Word

a4 3

HENEREEN

Byte bit
position

Weord bit ‘
position

15 14 13 12 11 10 9 8 7 &6 S 4 3 2

HREEELEERNEEEE

f————— High byte

L]

Low byte

2

Chapter 1 Microcomputer Systems 7

I?iaure 1.5 Bus Connections
of a‘Microcomputer

. Address bus)
CPU Memory o
{T “ Control bus II “ “ W
. ‘Data bus

of the location are unchanged. In a write operatiqn, the data written becoine
the new contents of the Iocation, the origmal cofntents are thus lost.

W&

: There are two kinds of memory circuits; random access memory
(RAM) and rcad-only memory (ROM). The difference is that RAM loca-
tions can be read and written, while, as the name implies, ROM locations
can only be read. This is because the contents of ROM memery;-ange Ini-
tialized, cannot be changed.)

Program instructions and data are normally loaded into RAM mein-
ory. However, the contents of RAM memory are lost when the machine is
turned off, so anything valuable in RAM must be saved on a disk or printed
out beforchand. ROM ciscuits retain thelr values even when the power is off.
Conscquently, ROM is used by computer manufacturers to store systefn pro-
grams. These ROM-based programs are known as firmware. Théy are ret

sponsible for IE#L'EM‘DS from disk as well as for self-testing -
the computer When it is turned ong

Buses

" A processor communicates with memory and 1/Q.circults by using
signals that travel along a set of wires or connections calied huses that
connect the different components. There are three kinds of signals: address,

-data, and control. And there are three buses: nddress bus, data bus, and

control bus. For example to read the contents of a memory location, the
CPU places the address of the memory location on the address bus, and it
receives the data, sent by the memory circuits, on the data bus.: A control
signal ic required to inform the memory to perform a read operation. The
CPU sends the contyol signal on the control bus. Figure 1.5 is a diagram of

_the bus connections for a microcomputer.

112
The CPU

_As stated, the CPU is the brain of the computer. It controls the com-
puter. by executinx, programs stored in memory. A program might be a system
program or an application program.written by a user. In any case, each
insttuction that the CPU executes is a bit string (for the Intel 8086, instruc-
tions are from one to six bytes long). This language of 0's and 1’s is called
machine language. 4

. 1.1 The Comyanents of a Mirocomputer System - |

Fgure 1.6 Intel 8086
Microprocessor Organization

-

Execution Unit (EU) Bus lnterfaco- Unit.
AX I '
BX |
x .
) DX I L
General registers T I
5P CS
o >
DI ! =
| P
AL T
T
|

D o

control (:::> External bus

logic

< - Internal bus
TE ¥

b’emporary registers_] l

!
i Instruction queue
|
|

‘The instructions perfornied by a CPU are called its instruction sct,
and the instruction set for each CPU is unique. To keep the cost of computers
down, machine language instructions are designed to be simple; for example,
adding two numbers or moving a number from one location to another. The
amazing thing about computers is that the incredibly complex tasks they
perform are, in the end, just a sequence of very basic operations.

In the following, we will use the Intel 8086 microprocessor as an
example of a CPU. Figure 1.6 shows its organization. There are two main
components: the execution unit and the bus interface unit.

Executibn Unit (EU)

As the name implies, the purpose of the execution unit (EU) is to
execute instructions. It contains a circuit called the arithmetic and logic
unit (ALU). The ALU can'perform arithmetic (+, -, x ,/) and logic (AND,
OR, NQT) operations. The data for the operations are stored in circuits called
registers. A register is like a memory location except that we normally refer
to it by a name rather than a number. The EU has eight registers for storing
data; their names are AX, BX, CX, DX, SI, DI, BP, and SP. We’ll become
Zcquainted with them in Chapter 3. In addition, the EU contains temporary
registers for holding-operands for the ALU, and the FLAGS register whose
individual bits reflect the result of a computation.

" Chapter 1 Microcomputer Systems 9

Bus Interface Unit (BIU)1n,

) The bus interface unit (BlU) facilitates communication betv,uzcl ‘he

EU and the memory or J/O circuits. It is responsible for transmittir~ ad-
dresses, data, and control signals on the buses. Its registers are named CS,
DS, ES, SS, and IP; they hold addresses of memory locations. The IP
(instruction pointcr) contdins the address of the next instruction to be
executed by the EU.
: The EYJ and the BIU are connected by an internal bus; and they work
together. While the EU is executing an instrucuon the BIU fetches up to six
bytes of the next instruction and places them in the instruction queue. This
operation is called instructiongrefetch. The purpose is to speed up the pro-
cessor. If the EU needs to communicate with memory or the peripherals, the
BIU suspends instruction prefetch and performs the needed aneratiansa™

1.1.3
110 Ports

. 1/O devices are connected to the computer through 170 circuits. Each
of these circuits contains several registers called I/0 ports. Some are used
for data while others are used for control commands. Like memory locations,
the I/O ports have addresses and are connected to the bus system. However,
these addresses are known as I/O adidresses and can only be used in input or
output instructions. This allows the CPU to distinguish between an 1/O port
and a memory location.

I/O ports function as transfer points between the CPU and 1/0 de-
vices. Data to be input from an I/O device are sent to a port where they can

_be read by the CPU. On output, the CPU writes data to an 1/O port The 1/O

circuit then transmlts the data to the 1/0O device.

Serial and Parallel Ports

The data transfer between an 1/O port and an I/O device can be 1
bit at a time (serial), or 8 or 16 bits at a time (parallel). A parallel port requircs
more wiring conneéctions, while a serial port tends to be slower. Slow devices,
like the keyboard, always connect 1o a serial port, and fast devices, like the

- disk drive, always connect to a paralicl port. But some devices, like the

printer, can connect to either a serial or a parallel port.

1.2
Instruction
Execution

To understand how the CPU operates, let’s look at how an instruction
is executed. First of all, a machine instruction has two parts: an opcode and
operands. The opcode specifies the type of operation, and the operands are
often given as memory addresses to the data to be operated on. The CPU
goes through the following steps to execute a machine instruction (the
fctch-exccute cycle):

Fetch
1. Fetch an instruction from memory.

2. Decode the instruction to determine the 6petation.
3. Fetch data from memory if necessary.

.

1.2 Instruction Execution

Execute

4. Perform the operation on the data.
5. Store the result in memory if needed.

To see what this entails, let's trace through the execution of a typical machine
language instruction for the B086. Suppose we look at the instruction that
adds the contents of register AX to the contents of the memory word at
address 0. The CPU actually adds the two numbers in the ALU and then
stores the result back to memory word 0. The machine code is

00000001 00000110 00000000 006000000
Before cxecuti_bn, we assumc that the first byte of the instruction is stored

" at the location indicated by the IP.
1.

Fetch the instruction. To start the cycle, the BIU places a mem-
ory rcad requcst on the control bus and the address of the in-
struction on the address bus. Memory responds by sending the
contents of the location specified—namely, the instruction

.code just given—over the data bus, Because the instruction

code is four bytes and the 8086 can only rcad a word at a
time, this involves two read operations. The CPU accepts the
data and adds four to the IP so that the IP will contain the ad-
dress of the next instruction.

Decode the instruction. On receiving the instruction, a decoder
circuit in the EU decodes the instruction and determines that it is
an ADD operation involving the word at address 0.

Fetch data from memory. The EU informs the BIU to get the con-
tents of memory word 0. The BIU sends address O over the ad-
dress bus and a memory read request is again sent over the
control bus. The contents of memory word 0 are sent back over
the data bus to the EU and are placed in a holding register.
Perform the operation. The contents of the holding register and
the AX register are sent to the ALU circuit, which performs the re-
quired addition and holds the sum.

Store the result. The LU dirccts the BIU to store the sum at ad-
dress 0. To do so, the BIU sends out a memory write request over
the control bus, the address 0 over the address bus, and the sum
to be stored over the data bus. The previous contents of memory
word 0 are overwritten by the sum.

The cvcle is now repeated for the instruction whose address is con-

tained in the 11

Timing
The preceding example shows that even though machine instructions

are very simple, their execution is actually quite complex. To ensure that the
steps are carried out in an orderly fashion, a clock circuit controls the processor

‘fgure 1.7 Train of Clock
‘ulses

Voltage

Mo

-

1 period ¥

Chapter 1 Microcomputer Systems 1

by generating a train of clock pulses as shown in Figure 1.7. The time interval
between two pulses is known as a clock period, and the number of pulses per
second is called the clock rate or clock speed, measured in megahertz
(MHz). Onc megahertz is 1 million cycles (pulses) per second. The original
IBM IC had a clock rate of,4.77 MHz, but the latest PS/2 model has a clock
rate of 33 MHz.

i The computer cu'cuxts are acuvated by the clock pulses; that is, the
circuits perform an operation only when a clock pulse is present. Each step
in the instruction fetch and execution cycle requires one or more clock pe-
riods. For example, the 8086 takes four clock periods to do a memory read
and a multiplication operation may take more than seventy clock periods.
If we speed up the clock circuit, a processor can be made to operate faster.

. However, each processor has a rated maximum clock specd beyond which

it may not function properly. .

137
1/0 Devices

I/0 devices are needed to get information into and out of the com-
puter. The primary /O devices are magnetic disks, the keyboard, the display

monitor, and the printer.

" Magnetic Disks

We've seen that the contents of RAM are lost when the computer
is turned off, so magnetic disks are used for permanent storage of programs
and data. There are two Kinds of disks: floppy disks (also called diskettes)
and hard disks. The device that rcads and writes data on a disk is called

" a disk drive.

Floppy disks come in 5Va-inch or 314-inch diamcter sizes. They are
lightweight and portable; it is casy to put a diskette away for safekeeping or
use it on different computers. The amount of data a floppy disk can hold
depends on the l)g(, it anges from 360 kilobytes to 1.44 megabytes. A
kilebyte (KB) is 2" bytes. .

. A hard disk and its disk drive arc enclosed in a hermetically sealed
container that is not removable from the computer; thus, it is also called a
fixed disk. It can hold a lot more data than a floppy disk—typically 20,
40, to over 100 megabytes. A program can also access information on a hard
disk much faster than a floppy disk.

. Disk operations are covered in Chapter 19.

4

Keyboard

" The keyboard allows the user to enter information into the computer.
It has the keys usually found on a typewriter, plus a number of control and
function keys. It has its own microprocessor that sends a coded signal to the
computer whencver a key is pressed or released.

When a key is pressed, the corresponding key character normally
appcars on the screen. But interestingly cnough, there is no direct conncction
between the keyboard and the screen. The data from the keyboard are re-
ceived by the current running program. The program must send the data to
the screen before a character is displayed. In Chapter 12 you will learn how
to control the keyboard.

12 1.4 Programming Languages

Display Monitor

The display monitor is the standard output device of the computer.
The information displayed on the screen is generated by a circuit in the com-
puter called a vidco adaptcr. Most adapters can gencrate both text characters
and graphics images. Some monitors are capable of isplaying in color.

We discuss text mode operations in Chapter 12, and cover graphics
mode in Chapter 16.

_ Printers

Although monitors give fast visual feedback, the information is not
permanent. Printers, however, are slow but provide more permanent output.
Printer outputs are known as hardcopies.

The three common kinds of printers are daisy wheel, dot matrix, and
laser printers. The output of a daisy wheel printer is similar to that of a typewriter.
A dot matrix printer prints characters composed of dots; depending on the
number of dots used per character, some dot matrix printers can generate
near-letter-quality printing. The advantage of dot matrix printers is that they
can print characters with different fonts as well as graphics.

The laser printer also prints characters composed of dots; however,
the resolution is so high (300 dots per inch) that it has typewriter quality.
The laser printer is expensive, but in the field of desktop publishing it is
indispensable. It is also quiet compared to the other printers.

14
Programming
Languages

.

The operations of the computer’s hardware are controlled by its
software. When the computer is on, it Is always in the process of executing
instructions. To fully understand the computer’s operations, we must also
study its instructions.

Machine Language

A CPU can only exccute machine language instructions. As we’ve
scen, they are bit strings. The {ollowing Is a short machine language program
for the IBM PC: ‘

Machine instruction Operation :

10100001 000CO0CH 00000000 Fetch the contents of memory word
and put it in register AX. -

00000101 00000100 00000000 Add 4 to AX. ks

10100011 00000000 00000000 Store the contents of AX in rnemory
word 0.

As you can well imagine, writing programs in machine language is
tedious and subject to error!

Assembly Language .

A more convenient language to use is assembly language. in as-
sembly language, we use symbolic naines to represent operations, registers,
and memory locations. If location 0 is symbolized by A, the preceding pro-

gram expressed in IBM PC assembly language would look like this:

Chapter 1 Microcgmputer Systems 13

Assembly language instruction Comment

MOV .AX,A ;fetch the contents of
- ;location A and
;put it in- register AX
ADD AX, 4 ;add 4 to Ax .
MOV A, AX ;move the contents of AX
: : ;into location A

A program written in assembly language must be converted to machine lan-
guage before the CPU can execute it. A program called the assembler trans-
lates each assembly language statement into a single machine language
mstructlon -

High-LeveI [anguages

Y

Even though it's easier to write programs in assembly language than
machine language, it's still difficult because the instruction set is so primitive.
That is why high-level languages such as I,QJ.{'LRAN Pascal, C, and others
were developed. Different high-level languages are desx;,nqd for different ap-
plications, but they generally allow programmers to write programs that look
.more like natural language text than is possible in assembly language.

A program called a compiler is needed to-translate a high-level lan-
guage program into machine code. ¢ wi.pilation is more involved than assem-
bling because it entails the translation of compiex mathematical expressions and
natural language commands into simple machine operations. A high-level lan-
guage statement typically translates into many machine language instructions.

Advantages of High-Level Languages),

There are many reasons why a programmer might choose to write
a program in a high-level language rather than in assembly language.

First, becausc high-level languages are closer to natural languages,
it's easier to convert a natural language algorithm to a high-level language
program than to an assembly language program. For the same reason, it’s
easier to read and -understand a high-level language program than an assem-
bly language program.

Second, an assembly language program generally contains more
statements than an equivalent high-level language program, so more time
is nceded to code the assembly language program.

Third, because each computer has its own unique assembly language,
assembly language programs are limited to one machine, but a high-level
language program can be executed on any machine that has a compiler for
that language.

Advantages of Assembly Languages

The main reason for writing assembly language programs is effi-
clency: because assembly language is so close to machine .language, a well-
written assembly language program produces a faster, shorter machine
language program. Also, some operations, such as reading or writing to spe-
cific memory locations and 1/O ports, can be done easily in assembly lan-
. guage but may be impossible at a higher level.

Actually, it is not alway$ necessary for a programmer to choose be-
tween assembly language and high-level Janguages, because many high-level
languages accept subprograms written in assembly language. This means that

14

1.5 An Assembly Language Program

crucial parts of a program can be written in assembly language, with the rest
written in a high-level language.

In addition to these considerations, there is another reason for
learning assembly language. Only by studying assembly language is it
possible to gain a feeling for the way the computer “thinks” and why
certain things happen the way they do inside the computer. High-level
languages tend to obscure the details of the compiled machine language

' program that the computer actually executes. Sometimes a slight change

in a program produces a major increase in the run time of that program,
or arithmetic overflow unexpectedly occurs. Such things can be under-
stood on the assembly language level.

Even though here you will study assembly language specifically for,
the IBM PC, the techniques you will learn are typical of those used in any
assembly language. Learning other assembly languages should be relatwely
easy after you have read this book.

b
MAssembly
nguage Program

- MAIN .

To give an idea of what an assembly language program looks like, here
is a simple example. The following program adds the contents of two memory
locations, symbolized by A and B. The sum is stored in location SUM.

Program Listing PGM1_1.ASM
TITLE PGM1_1: SAMPLE PROGRAM

.MODEL SMALL
.STACK 100H
.DATA

A DW 2

B DW 5

SUM DW 2
.CODE

MAIN PROC

;initialize DS
MOV AX,@CATA
MOV DS, AX
;add the numbers
MOV AX,A
ADD AX,B
MOV SUM, AX
to DOS
MOV AX, 4CGOH
INT 21H
“ENDP
END MAIN

;AX has A

;AX has A+B
;SUM = A+B
jexit

Assembly language prog,rams consist of statéments. A statement is
either an instruction to be cxecuted when the program is run, or a directive
for the assembler. For example, MODEL SMALL is an assembler directive
that specifies the size of the progrdth. MOV AX,A is an instruction. Anything
that follows a semicolon is a comment, and is ignored by the assembler.

Chapter 1 Microcomputer Systems 15

The preceding program consists of three parts, or segments: the stack
segment, the data segment, and the code segment. They begin with the directives
STACK, .DATA, and .CODE, respectively.

The stack segment is used for temporary storage of addresses and
data. If no stack segment is declared, an error message is generated, so there
must be a stack segiment even if the program doesn’t utilize a stack.

Variables are declared in the data segment. Each variable is assigned

- space in memory and may b€ initialized. For example, A DW 2 sets aside a
memory word for a variable called A and initializes it to 2 (DW stands for,
“Define Word"). Similarly, B DW § sets aside a word for variable B and ini-
tializes it to 5 (these initial values were chosen arbitrarily). SUM DW ? sets
aside an uninitialized word for SUM.

. Aprogram’s instructions are placed in the code segment. Instructions
are usually organized into units called prgcedyrgs. The preceding program has
only one procedure, called MAIN, which begins with the line MAIN PROC

B and ends with line MAIN ENDP.

The main procedure begins and ends with instructions that are
needed to initialize the DS reglster and to return to the DOS operating system.
Their purpose is explained in Chapter 4. The instructions for adding A and
B and puttmg the answer in SUM are as follows:

MOV-AX, A ,Ax has A .
ADD AX,3 ;AX has A+B
MOV- SUM AX ;SUM = A+B

MOV AX,A copies the contents of word A mto register AX. ADD AX,B adds
the contents of B to it, so that AX now holds the total rL MOV SUM,AX
stores the answer in variable SUM.'

. Before this program could be run on the computer, it would have
to be assembled into a.machine language program. The steps are explained
in Chapter 4. Because there were no output instructions, we could not see
the answer on the screen, but we-could trace the program’s execution in a
debugger such as the DEBUG program.

Glossary
_add-in board or card) Circuit board that connects to the
. " motherboard, usually contains 1/O cit-
cuits or additional memory
address A number that identifies a memory location
address bus The set of electrical pathways for address
_ signals)
arithmctic and logic unit, CPU circuit where arithmetic and logic
" ALU operations are done
asscmblcr A program that translates an assembly lan-
L. guage program into machine language
assembly language Symbolic representation of machine lan-
e - guage
‘binary digit A symboi that can have value 0 or 1
bit s : Binary digit
bus | A set of wires or connections connecting

the CPU, memory, and I/Q ports

16

Glossary

bus interface unit, BIU

byte
central processing unit,
Ccru

clock period
clock pulse

clock rate

clock speced
compiler

contents

control bus
data bus
digital circuits

disk drive

cxccution unit, EU
expansion slots

fetch-execute cycle
firmware

fixed disk
floppy disk
hardcopy
hard disk
1/0 devices

1/0 ports
instruction pointer, IP

instruction sct

kilobyte, KB
machine language

Part of the CPU that facilltates communi-
cation between the CPU, memory, and
1/0 ports ’

8 bits

The main processor tircuit of a computer

The time interval between two clock pulses
An electrical signal that rises from a low
voltage to a high voltage and down again
to a low voltage, used to synchronize
computer circuit operations

The number of clock pulses per second,
measured in megahertz (MFiz)

Clock rate

A program that translates a high-level lan-
guage to machine language

The data stored in a register or memory
location

The set of electrical paths for control signals
The set of electrical paths for data signals
Circuits that operatc on discrete voltage

levels

The device that reads and writes data on
a disk

Part of the CPU that executes instructions
Connectors in the motherboard where
other circuit boards can be attached
Cycle the CPU goes through to execute
an instruction”

Software supplied by the computer manu-
facturer, usually stored in ROM

_Nonremovable disk, made of metal

Removable, flexible disk

Printer output

Fixed disk

Devices that handle input and output
data of the computer; typical 1/0 devices
are display monitor, disk drive, and
printer

Circuits that function as transfer points
between the CPU and 1/0 devices

A CPU register that contains the address
of the next instruction

" The instructions the CPU is capable of

performing
2'% or 1024 bytes

Instructions coded as bit strings: the lan-
guage of the computer

_ mega

megabyte, MB
megahcertz, MHz
memory byte (circuit)
mcmory location
memory word
microprocessor

motherboard

opcode

.

operand

Chapter 1 Microcomputer Systems 17

A unit that usually denotes 1 million, but
in computer terminology 1 mega is 2%
(or 1,048,576)

22% or 1,048,576 bytes

1,000,000 cycles per second

A memory circuit that can store one byte
A memory byte or memory word

Two memory bytes

A processing unit fabricated on a single
circuit chip

The main circuit board of the computer
Numeric or symbolic code denoting the
type of operation for an instruction

The data specified in an instruction

1/O device

random access memory, Memory circuits that can be read or
RAM written

rcad-only memory, ROM Memory circuits that can only be read
i A CPU circuit for storing information
Motherboard

Computer circuit that converts computer
data into video signals for the display
monitor

word _ 16 bits

peripheral (device)

register
system board
video adapter

Exercises

1. Suppose memory bytes 0-4 have the following contents:

Address Contents
0 01101010
1 11011101
2 00010001
3 IRRRRRRE!
1 01010101

a. Assuming that a word is 2 bytes, what are the contents.of

the memory word at address 27
the memory word at address 37
¢ the memory word whose high byte is the byte at address 2?

b. What is
o tit 7 of byte 27
¢ bit O of word 3?
e bit 4 of byte 2?
e bit 11 of word 2?

18

Exercises

.

A nibble is four bits. Each byte is composed of a high nibble and
a low nibble, similar to the high and low bytes of a word. Using
the data in exercise 1, give the contents of

a. the low nibble of byte 1.

b. the high nibble of byte 4.

The two kinds of memory are RAM and ROM. Which kind of
memory

a. holds a user’s program?

b. holds the program used to start the machine?

c. can be changed by the user?

d. retains its contents, even when the power is turned off?

What is the function of

a. the microprocessor?

b. the buses?)

The two parts of the miéroprocessor are the EU and the BIU.
a. What is the function of the EU?

b. What is the function of the BIU?

In the microprocessor, what is the function of
a. theIP? ’
b. the ALU?

" a. What are the 1/O ports used for?

b. How are they different from memory locations?

What is the maximum length (in bytes) of an instruction for the
8086-based [BM PC?

Consider a machine language instruction that moves a copy of
the contents of register AX in the CPU to a memory word. What
happens during

a. the fetch cycle?

b. the execute cycle?

" Give

a. three advantages of high-level language programming.
b. the primary advanlaﬁ'ge vt assembly language programming.

'Representation of
Numpers and
Characters

Overview

You saw in Chapter 1 that computer circuits are capable of processing

"only binary information. In this chapter, we show how numbers can be

expressed in binary; this is called the binary number system. We also
introduce a very compact way of representing binary information called the
hexadeccimal number system.

Conversions between binary, decimal, and hexadecimal numbers are
covered in section 2.2. Section 2.3 treats addition and subtraction in these

number systems.
Section 2.4 shows how negative numbers are represented and what
effects the fixed physical size of a byte or word has on number representation.
We conclude the chapter by exploring how characters are encoded

and used by the computerse

2.1
Number Systems

Before we look at how numbers are represensed in Rinary. it is in-

structive to look at the familiar decimal system. It is an exainple of a positional

munber system; that is, cach digit in the number is associated with a power
of 10, according to its position in the number. For example, the decimal
number 3932 represents 3 thousands, 9 hundreds, 3 tens, and 2 ones. In
other words, ' -

3,932=3x10°+9x 107 +3x 10" +2x10°

19

20

2.1 Number Systems

MM O N @ > OO NOWVE WN - O

In a positional system, some number b is selected as the base and symbols
are assigned to numbers between 0 and b — 1. For example, in the decimal
system there are ten basic symbols (digits): 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The
base ten is represented as 10. -

Binary Number System

In the binary number system, the base is two and there are dnly two
digits, 0 and 1. For example, the binary string 11010 represents the number

Ix2te1x284+0x2241x2' +0x2%=26

The base two is represented in binary as 10.

Hexadecimal Number System

Numbers written in binary tend to be long and difficult to express.
For example, 16 bits are needed to represent the contents of a memory word
in an 8086-based computer. But decimal numbers are difficult to convert
into binary. When we write assembly language programs we tend to use both
binary, decimal, and a third number system called hexadecimmal, or hex for
short. The advantage of using hex numbers is that the conversion between
binary and hex is casy.

‘The hexadecimal (hex) system is a base sixteen system. The hex digits
are0,1,2,3,4,5,6,7,89,A,B,C, D, E, and F. The hex letters A through
¥ denote numbers ten to fifteen, respectively. After F comes the base sixteen,
represented in hex by 10.

Because sixteen is 2 to the power of 4, each hex digit corresponds
to a unique four-bit number, as shown in Table 2.1. This means that the
contents of a byte—eight bits—may be expressed neatly as two hex digits,
which makes hex numbers useful with byte-oriented computers.

Table 2.2 shows the relations among binary, decimal, and hexadec-
imal numbers. It is a good idea to take a few minutes and memcrize the first

Table 2.1 Hex Digits and Binary Equivalent
Hex Digits Binary
0000
0001
0010
oon
0100
010
0110
0111
1000
1001

1010
1011
1100
1101
1147
1111

Chapter 2 Representation of Numbers and Characters. 21 .

Table 2.2 Decimal, Binary, and Hexadecimal Numbers

Decimal - Binary ‘ Hexadecimal

0 0 0

1 1 1

2 10 2

3 11 3

4 100 4

5 101 . 5

6 110 6

7. 111 7

8 1000 8

[= 1001 9

10 4010 = A

11 1011 B
12 1100 Toc
13 1101 1))

o 14 . 1110 E
15 1111 F
16 10000 10

17 10001 11

18 10010 12

19 10011 13
20 . 10100 14

21 10101 15
122 10110 16
.23 10111 17
24 11000 18
25 11001 19
26 -11010 1A
27 11011 1B
.28 11100 1C
29 11101 1D
30 - 11110 1
31 11111 1F
32 100000 20
256 100000000 100
1024 400
32767 7FFF
32768 8000
65535 : . . FITF

1 Kilobyte (1 K8) = 1024 = 400h
64 Kilobytes (64 KB) = 65536 = 10000h
1 Megabyte (1 MB) = 1,048,576 = 100000h-

22 2.2 Conversion Between Number Systems

16 or so lines of the table, because you will often need to express smdll’
numbers in all three systems.

A problem in working with different number systems is the meaning
of the symbols used. For example, as you have scen, 10 means ten in the
decimal system, sixteen in hex, and two in binary. In this book, the following
convention is used whenever confusion may arise: hex numbers are followed
by the letter h; for example, 1A34h. Binary numbers are followed by the
letter b; for example, 101b. Decimal numbers are followed by the letter d;

for example, 79d.

2.2 :

Conversion Between in wo:-king with assembly language, it is often necessary to take a
Y

Number systems number expressed in one system and write it in a different system.

Converting Binary and Hex to Decimal

Consider the hex number 82AD. It can be written as

8A2Dh=8x 163+ Ax16%2+2x 16 +D x 16°
=8x163+10x162+2x 16"+ 13 x 16" =35373d

Similarly, the binary number 11101 may be written as
11101b=1x24+1x2>+1x2%2+0x2" + 1x2°=29d

This gives one way to convert a binary or hex number to decimal, but an
easier way is to use nested multiplication. For example,

8A2D=8x16"+Ax16%2+2x16' +D x 16°
=((Bx16+A)x16+2)x16+D
=((8x16+10)x 16+ 2)x 16+ 13
=35373d

This can be easily implemented with a calculator: Multiply the first hex «ligit
by 16, and add the second hex digit. Multiply that result by 16, and add the
third hex digit. Multiply the result by 16, add the next hex digit, and so on.

The same procedure converts binary to decimal. Just multiply cuch
result by 2 instead of 16. :

Example 2.1 .Convert 11101 to decimal.

Solution: ! 1 1 0 1
=1x2+1-3%x2+1-57x2+0—-14x2+1=29d

Example 2.2 Convert 2BD4h to decimal.

Solution: 2 B D 4
='2<<]6+ll —-43x16+13 5701 x16+4=11220

where we haye_uscq.the fact _that Bh = 11 and Dh = 13.

Chapter 2 Representation of Numbers and Characters 23

Converting Decimal to Bmary and Hex

Suppose we want to convert 11172 to hex The answer 2BA4h may -
be obtained as follows. First, dxvnde 11172 by 16 We get:a; quotxent of 698
and a remainder’ of 4. Thus

11172 698x 16+4

The remainder 4 is the unit’s digit in hex representatlon of 11172. Now
dxvnde 698 by 16. The quotxcnt is 43,’and the remainder is 10 Ah. Thus

- © 698= 43x16+Ah S

"The rermainder Ah is the sixteen’s dlg)t in the hex representation of 11172.
We just continue this process, each time dividing the most recent quotient
by 16, until we get a 0 quotient. The remainder each time is a digit in the
hex representation of 11172. Here are the calculations: "

11172 = 698 x 16 + 4
698 = 43x16+10(Ah)
43 = 2xl6+ll(Bh)

2= 0x16+2

Now just convert the remamders to hex and put them together in reverse
order to get 2BA4h.
This same process may be used to convert decimal to binary. The
_ only difference is that we repeatedly divide by 2.

Example 2.3 Convert 95 to binary.

Solution:) 95=47x2+ 1

47=23x2+1

23=11x2+1

11=5x2+1
S5=2x2+1
2=1x2+0
1=0><2-v_-1

Taking the remainders in reverse order, we get 95 = 1011111b.

Conversions Between Hex and Binary

. To convert a héx number to binary, we need only express each hex
digit in binary.

Example 2.4 Convert 2B3Ch to binary._.

Solution: . 2 B 3 C
’ =0010 1011 0011 1100
= 0010101100111100
To go from binary to hex, 1ust reverse this process; that is, group the bi-
nary digits in fours starting: from the nght Then convert each group to
a hex digit.\""’

Example 2.5 Convert 1110 0 0to hex

—

Solution: 1110101010= 111010 1010 = 3AAh.

24 2.3 Addition and Subtraction

2.3

Addition and Sometimes you will want to do binary or hex addition and subtrac-
Subtraction tion. Because these operations are done by rote in decimal, let’s review the
; process to see what is involved.
Addition
Consider the following decimal addition
2546
+1872:
4418

To get the unit’s digit in the sum, we just compute 6 + 2 = 8. To get the ten’s
digit, compute 4 + 7 = 11. We write down 1 and carry 1 to the hundred’s’
column. In that column we compute 5 + 8 + 1 = 14. We write down 4 and
carry 1 to the last column. In that column we compute 2 + 1 + 1 = 4 and
write it down, and the sum is complete.

A reason that decimal addition is easy for us is that we memorized
the addition table for small numbers a long time ago. Table 2.3A is an ad-
dition table for small hex numbers. To compute Bh + 9h, for example, just
intersect the row containing B and the column containing 9, and rcad 14h.

By using the addition table, hex addition may be done in cxactly
the same way as decimal addition. Suppose we want to con:pute the fol-
lowing hex sum:

Table 2.3A Hexadecimal Addition Table

0o 1 2 3 5 6 7 8 9 A B C D E F
0 0 1 2 3 4 5 6 —7 8 9 A B C D E F
1791 2 3 4 5 6 7 8 9 A B C D E F 10
212 3 4 5 6 7 8 9 A B C D E F 101
33 4 5 6 7 8 9 A B C D E 1 10 11 12
4 |4 S 6 7 8 9 A B C D E | 10 11 12 13
515 6 7 8 9 A B C D E F 10 11 12 13 14
6 16 7 8 9 A B C D E F 10 11 12 13 14 1S
717 8 9 A B C D E F 10 11 12 {3 14 15 16
8 {8 9 A B C€C D E F 10 11 12 13 14 15 16 17
919 A B C D E F 10 11 12 13 14 15 16 17 18
AJA B C D E F 10 11 12 13 14 15 16 17 18 i9
BB C D L F 10 11 12 13 14 15 16 17 18 19 1A
Cc |[C D E } 10 11 12 13 14 15 16 17 18 19 lA 1B
D |D E I 10 11 12 13 14 15.16 17 18 19 1A 1B 1C
E |[E F 10 11 12 13 14 5 16 17 18 19 1A 1B 1C iD
F |t 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D iE

Table 2.38 Binary Addition Table
N B P e e

0 0 1
1 1 10

Chapter 2 Representation of Numbers and Chsracters 25

\

1
5B3%h
+ 7AF4h

D62Dh

In the unit’s column, we compute $h + 4h = 13d = Dh. In the next column,
we get 3h + Fh = 12h. Write down 2 and carry 1 to the next column. In that
column, compute Bh + Ah + 1 = 16h. Write 6, end carry 1 to the last column.
There we compute Sh + 7h + 1 = Dh, and we are done.

Binary addition is done the same way as decimal and hex addition,
but is a good deal easier because the binary addition table is so small (Table

2.3B). To do the sum
) Wy

100101111 °
+ 110110

161100101

Compute 1 + 0 = 1 in the unit’s column. In the next column, add 1 + 1 =
10b. Write down 0 and carry 1 to the next column, where we get 1+ 1 + 1
= 11b. Writc down 1, carry 1 to the next column, and so on.

Subtraction
Let’s begin with the decimal subtraction
bb
9145
- 7283
1862 -
in the unit’s column, we compute S - 3 = 2. To do the ten’s. we first borrow 1
from the hundred’s column (to remember that we have done this, we may place
a “b” above the hundred’s column), and compute 14 - 8 = 6. In the hundred's
column, we must again borrow 1 from the next columin, and compute 11 - 2
- 1 (the previous borrow) = 8. In the last column, we get 9 -7 -1 = 1, -
Hex subtraction may be done the same way as decimal subtraction.
To compute the hex ditference
bb
D26F°
- BAY94
) 17DB
we start with Fh - 4h = Bh. To do the next (sixteen’s) column, we nust
borrow 1 from the thitd column, and compute
16h - 9%h =7
The ecasy way to figure this is to go to row 9 in Table 2.3A, and notice that
16 appears in column D. This means that 9h + Dh = 16h, so 16h - 9h = Dh.
In the third column, after borrowing, we must compute 12k - Ah -1 =11h
— Ah. In row A, 11 appears in column 7 so 11h - Ah = 7h. Finally in the last
column, we have Ch - Bh = 1.
-+ Now let us look at binary subtraction, for.example,

bb
1001
-0111

0010
The unit’'s column is easy, 1 - 1 = 0. We must borrow to do the two's column,
getting 10 -1 = 1. To do the four’s column, we must again borrow, computirg
10 - 1 - 1 (since we borrowed from this column) = 0. Finally in (-e Jast
column, we have 0 -0 = 0.

26 2.4 How Integers Are Represented in the Computer

2.4

How Integers Are
Represented in the
Computer

The hardware of a computer necessarily restricts the size of numbers
that can be stored in a register or memory location. In this section, we will
sec how intcgers can be stored in an 8-bit byte or a 16-bit word. In Chapter
18 we talk about how real numbers can be stored.

In the following, we’ll need to refer to two particular bits in a byte
or word: the most significant bit, or msb, is the leftmost bit. In a word,
the msb is bit 15; in a byte, it is bit 7. Similarly, the lcast significant bit,
or Isb, is the rightmost bit; that is, bit O.

2.8
Unsingned Integers

An unsigned integer is an integer that represents a magnitude, so
it is never negative. Uns'{gned integers are appropriate for representing quan-
tities that can never be negative, such as addresses of memory locations,
counters, and ASCII character codes (see later). Because unsigned integers
are by definition nonnegative, none of the bits are needed to represent the
sign, and so all 8 bits in a byte, or 16 bits in a word, arc available to represent
the number.

The largest unsigned integer that can be stored in a byteis 11111111
= FFh = 255. This is not a very big number, so we usually store integers in
words. The biggest unsigned integer a 16-bit word can hold is
1111111111111111 = } FFFh = 65535. This is big enough for most purposes.
If not, two or more words may be used.

Note that if the least significant bit of an integer is 1, the number
is odd, and it’s even if the Isb is 0.

2.4.2
Signed Integers

A signed integer can be positive or negative. The most significant
it is reserved for the sign: 1 means negative and 0 means positive. Negative
integers are stored in the computer in a special way known as two’s com-
plemcent. To explain it, we (irst define one’s complement, as follows.

One’s Complement

. The one’s complement of an integer is obtained by complementing
each bit; that is, replace cach 0 by a 1 and each 1 by a 0. In the following,
we assume numbers are 16 bits.

Example 2.6 Find the one’s complement of 5 = 0000000000000101.

Solution: S = 00000000000(00101
One’s complementof 5=1111111111111010

Note that if we add 5 and its one’s complement, we get
1111111131111111.

Chapter 2 Representation of Numbers and Characters 27

Two's Complement

To get the two's complement of an integer, just add 1 to its one’s
complement.

Example 2.7 Find the two’s complement of S.

Sblution: From above,

onc’s complement of 5 = 1111111111111010
+ L

two’s complement of 5= 1111111111111011 = FFTBh

Now look what happens when we add S and its two's complement:

5 = 0000000000000101
two’s complement of 5= 1111111111111011

10000000000VB000V

We end up with a 17-bit number. Because a coniputer word circuit can
only hold 16 bits, the 1 carvied out from the most significant bit is lost,
and the 16-bit result is 0. As § and 1ts two's coniplement add up to 0, the
two's complement of 5 must be a correct representation of -35.

It is casy to sce why the two's complement ot any integer N must
represent -N: Adding N and its one’s complement gives 16 ones; adding 1
to this produces 16 zevos with a 1 carried out and lost. Jhe result stored s
always 000000000000000X). - ’

The folloviing example shows what happens when a number is coms-
plemented two tines.,

Example 2.8 Find the two's complement of the two's complement of S.

Solution: We would guess that after complementing 5 two times, the re-
sult should be 5. To verify this, from above,

two'’s complement of 5=1111111111111011 ~
one’s complement of 1111111111111011 = 0000000000000100

+ 1
two’s complement of 1111111111111011 = 0000000000000101 = §

‘ .
Example 2.9 Show how the decimal integer ~97 would be represented
(@) in 8 Lits, and (b) in 16 bits. Express the answers in hex.

Solution:. A decimal-to-hex conversion using repeated division by 16 yields

97 =6x16+1

6=0x16+6
Thus 97 = 61h. To rc[);csc.'nl =97, we need to express 611 in binory and
take the two's complement., :

28 2.4 How integers Are Represented in the Computer

a. In 8 bits, we get

61h =0110 0001
one’s complement = 1001 1110
+1

two's complement = 1001 1111 = 9Fh

b. In 16 bits, we get

. 1

61h = 0000 0000 0110 0001 -

one’s complement = 1111 1111 1001 111Q-~
+1

1111 1111 1001 111‘1=Fl:9}-‘h

Subtraction as Two's Complement Addition

The advantage ol two's complement representation of negative in-

" tegers in the computicer is that subtraction can be done by bit complemen-

tation and addition, and circuits that add and complement bits are easy to
design. ’

Example 2.10 Supposc AX contains SABCh and BX contains 21FCh.
Find the difference of AX minus BX by using complementation and addi-
tion.

Solution: AN contairis SABCh = 0101 1010 1011 1100
BX contains 21FCh = 00100001 1111 1100

SABCh = 010110101011 1100

+ one’s complement of 21FCh = 1101 1116 0000 GO11

+1

Diffcience = 1031 1069 1100 0000 = 38C0h

|

A one is carried out of the most dynatioant Lit and is lost. The answer
stored, 38COR, is correct, as may be verified by hex subtraction.

2.4.3

Decimal Interpretation In the last section, we saw how signed and unsigned decimal integers
may be represented in the computer. The reverse problemn is to interpret the
contents ot a byte or word as a signed or unsigned decimal integer.

e Unsivned decimal interpretation: Just do a binary-to-decimal
conversion. It's usually easier to convert binary to hex first,
and then convert hex to decimal.

o Sigued decimal interpretation: 1f the most significant bit is 0,
the number is positive, and the signed decimal is the same as
the unsigned decimal. If the msb is 1, the number is nega-
tive, so call it -N. fo find N, just take the twos’ complement
and then convert to decimal as before.

Example 2.11 Suppose AX contains FEOCh. Give the unsigried and
signed decimal interpretations.

Chapter 2 Represenrarioryéf Numbers and Characters 29

Table 2.4A Signed and Unsighed Decimal Interpretations of 16-Bit
Register/Memory Contents

Hex Ursigned decimal Signed decimal
0000 0 0
0001 1 1
0002 2 2
0009 9 ' 9
000A 10) 10
7FFE 32766 32766
TEFF : 32767 32767
8000 32768 -32768
8001 ’ 32769 -32767
FFFE 65534 - -2
FEFF 65535 -1

\

Solution: Conversion of FEOCh to decimal yields 63036, which is the
unsigned decimal interpretation.

For the signed interpre'tatiori, FEOCh = 1111111000001100. Since the sign
bit is 1, this is a negative number, call it -N. To find N, get the two’s com-
plement.
FEOCh =1111 11100000 1100
one’s complement = 0000 0001 1111 0011
+1

N = 0000 0001 1111 0100 = 01F4h = 500

Thus, AX contains -500.
Tables 2.4A and 2.4B give 16-bit word and 8-bit byte hex values and
their signed and unsigned decimal interpretations. Note the following:

1. Because the most significant bit of a positive signed integer is O,
the leading hex digit of a positive signed integer is 0 = 7; integers
beginning with 8-Fh have 1 in the sign bit, so they are negative.

2. The largest 16-bit positive signed integer is 7FFFh = 32767; the
smallest negative integer is 8000h = -32768. For a byte, the larg-

. est positive integer is 7Fh = 127 and the smallest is 80h = -128.

" . 3..Thefollowing relationship holds between the unsigned and
signed decimal interpretations of the contents of a 16-bit word:

30 2.5 Character Representation

Table 2.4B Signed and Unsigned Decimal Interpretations of a Byte

Hex Unsigned decimal Signed decimal
00 0 : 0
o1 T 1 1
02 2 2
09 9 9
0A 10 10
7t 126 126
7F 127 : 127
80 128 -128 7
81 129 -127
FE 254 -2
FF 255 -1

For 0000h-7FFFh, signed decimal = unsigned decimal.
For 8000h-FFFFh, signed decimal = unsigned decimal - 65536.

There are similar relations for the contents of an cight-bit byw:
For 00h-7Fh, signed decimal = unsigned decimal.

For 80h-FFh, signed decimal = unsigned decimal - 256.

Example 2.12 Use observation 3, from the above, to rework example
2.11.

Solution: We saw that the unsigned decimal interpretation of FEOCh is
65036. Because the leading hex digit is Fh, the content is negative in a
signed sense. To interpret it, just subtract 65536 from the unsigned deci-
mal. Thus

signed decimal interpretation = 65036 - 65536 = -500

2.5 ' .

Character ~ - . ASCli Code
-Representation : - e

. . Not all data processed by the computer are treated as numbers. e g
devices such as the video monitor and printer are character oriented, and
programs such as word processors deal with characters exclusively. Like all

Chapter 2 Representation of Numbers and Characters 31

data, characters must be coded in binary in order to be processed by the
computer. The most popular encoding scheme for characters is ASCII
(American Standard Code for Information Interchange) code.
Originally used in communications by teletype, ASCII code is used by all
personal computers today.

The ASCII codc system uses seven bits to code each character, so
there are a total of 2’ = 128 ASCII codes. Table 2.5 gives the ASCH codes and
the characters associated with them.

Notice that only 95 ASCII codes, from 32 to 126, are considered to
be printable. The codes 0 to 31 and also 127 were used for communication
control.purposes and do not produce printable characters. Most microcom-
puters use only the printable characters and a few control characters such
as LF, CR, BS, and Bell.

Because each ASCII character is coded by only seven bits, the code
of a single character fits into a byte, with the most significant bit set to zero.
The printable characters can be displayed on the video monitor or printed
by the printer, while the control characters are used to control the operations
of these devices. For example, to display the character A on the screen, a
program sends the ASCII code 41h to the screen; and to move the cursor
" back to the beginning of the line, a program sends the ASCII code ODh,
which is the CR character, to the screen.

A computer may assign special display characters to some of the
non-printed ASCII codes. As you will see later, the screen controller for the
IBM PC can actually display an extended set of 256 characters. Appendix A
shows the 256 display characters of the IBM PC.

Example 2. ;’-! ~w j1ow the character string “RG 22" is stored in mem-
ory, starting .. address O.

Solution: From Table 2.5, we have .

Character - ASCll Code (hex) ASCll Code (binary)
R h 52 0101 0010
G . . 47 0100 0111
space ’ 20 . 0010 0000
2 S 32 0011 0010

z . 7A ’ 0111 1010
So memory would look like this: | .

Address Contents

0 01010010
1 22101000111
2 . 00100000
3 ‘do11b010
4 01111010

The Keyboard

It's reasonable to guess that the keyboard identifies a key by gener-
ating an ASCIl code when the key is presscd. This was true for a class of
keyboards known as ASCIH keyboards used by some early microcomputers.

32

2.5 Character Representation

Table 2.5 ASCIl Code

Dec Hex Char

NV E WN - O

R Ve
[V SR VY I NI e |

—

WNRNNKNNKNNRNNN 2 o o
O WO NGOWVDHWN-= O WO

N

00
01

02

03
04
CS
06
07

08
09
0A
0B
0oC
00
Ot

o]

10
11

12
13
14
15
16
17
18
19
1A
18
1C
1D
1€

1F

<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>

<CC>,

<CC>
<CC>

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50 °
51
52
53
54
55
56
57
58
59
60
61
62
63

20
21

22

23
24

25

26
27

28
29
2A
28
2C
2D
2E

2F

30
3N

32
33
34
35
36
37
38
39
3A
3B
3C
3D
3t

3F .

SP
!

WO NN D WN - O~

~ v

<CC> denotes a control character

SP = blank space

Special Control Characters

Dec
7

8

9
10
12
13

Hex
07
08
[01°]
0A
ocC
ob

64
65
66
67
68
69
70
71

72
73
74
75
76
77
78
79
80
81

82
83
84
85
86
87
88
89
90
91

92
93
94
95

Char
BEL
8s
HT
LF

FF
CR

40
a4
42
43
44
a5
46
a7

48

49
aA
4B
ac
4D
4E

af

50
51

52
53
54
55
56
57
58
59
5A
58
5¢C
5D
SE
SF

@

> S TNXKXgEg<CAVMDOOVOZTIC AT TIOTMON® D

i

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
m
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

Meaning

bell

backspace

60
61
62
63
64
65
66
67
68
69
6A
68
6C
60
6E
6F
70
ra
72
73
74
7%
76
77
78
79
7A
78
7C
70
7€
7F

Dec Hex Char Dec Hex Char Dec Hex Char

WK MO A nNn T o

-~ 0 v 0 3 3 T x®—

— NN X g < con

<CC>

horizontal tab
line feed

form feed

carriage return

Chapter 2 Representation of Numbers and Characters a3

However, modern keyboards have many control and function keys in addi-

,tion to ASCII character keys, so other encoding schemes are used. For the
IBM PC, each key is assigned a unique number called a scan code; when a
key is pressed, the keyboard sends the key’s scan code to the computer. Scan
codes are discussed in-Chapter 12.

SUMMARY - . L

Numbers are represented in different ways, according to the basic

. symbols used. The binary system uses two symbols, 0 and 1. The

deciinal system uses 0-9. The hexadecimal system uses 0-9, A-F.

Binary and hex numbers can be converted to decimal by a pro-
cess of nested muitiplication.

A hex number can be converted to decimal by a process of re-
peated division by 16; simllarly, a binary number can be con-
verted to decimal by a process of repeated division by 2.

Hex numbers can be converted to binary by converting each hex
digit to binary; binary numbers are converted to hex by grouping
the bits in fours, starting from the right, and converting cach
group to a hex digit. -

The process of adding and subtracting hex and binary numbers is

. the same as for decimal numbers, and can be done with the help

of the appropriate addition table.

Negative numbers are stored in two’s complement form. To get
the two’s complement of a number, complement cach bit and
add 1 to the result.

If Aand B arc,stpj,eg,mlegezs Ahc.p:occssor computes A - B by
adding the two's complement of B to A.

The range of unsigned integers that can be stored in a byte is 0-
255; in a 16-bit word, if is 0-65535.

For signed numbers, the most significant bit is the sign bit; 0
means positive and 1 means negative. The range of signed num-
bers that can be stored in a byte is 128 to 127; in a word, it is
-32768 10 32767.

The unsigned decimal interpretation of a word is obtained by con-
verting the binary value to decimal. If the sign bit is 0, this is

also the signed decimal interpretation. If the sign bit is 1, the
signed decimal interpretation may be obtained by subtracting
65536 from the unsigned decimal interpretation.

The standard cncoding scheme f{or characters is the ASCII code.

A character requires scven bits to code, so it can be stored in a

o bytc

The 1BM screen controller can gencrate a character for cach of the
256 possible numbers that can be stored in a byte.

34

Glossary

Glossary

ASCIT (American Standard < The encoding scheme for characters used

Code for Infermation .-
Interchangc).codes: .

binary number system

hexadecimal number
system: .

least significant bi¢, Isb .

most significant bit, msb. .

one’s complement of a .
binary number -

scan code

signed h'\tcgcx. .
two's complementef a ..
binary number

unsigned integer

on all.personal computers

r

Base two system in which the digits are 0
and'1 .

Base sixteen system in which the digits.
are0,1,2,3,4,5,6,7,89,A,B,C/D/

E, and F

The rightmost bit in a word or byte; that. -
is, bit 0

The leftmost bit in a word or byte; that -

is, bit 15 in a word or bit 7 in a byte -
Obtained by replacing each 0 bit by 1

and each 1 bit by O

A number-used to identify a key on the..
keyboard: ‘
An integer that.can be positive or negative
Obtained by adding 1 to the one’s com- -
plement -

An integer representing a magnitude; that .
is, always pasitive

Exercises - -

In. many -applications, it saves time to memorize the conversions .
among small binary, decimal, and -hex numbers. Without refer. ‘-
ring to Table 2.2, fill.in the blanks in.the following table:-

Binary .
teel
1C10
b
10}
1110
0

Decimal. . Hex >
9 B
L &
u D

12 &_
§) L
4 8

2. Convert the following binary.and hex numbers to decimal:.

1110 -
b. 100101011101 °
c. 46Ah
d.. FAE2Ch .

627 to binary
921 to hex
d. 76120 to hex

C
a.. 97-to.binary.
b.
C

onvert the following decimal numbers: -

4. Convert the following numbers:

Chapter 2 Representation of Numbers and Characters . 35

4. 1001011 in hex
b, 1001010110101110 to hex
¢ A2Ch lu.bi.n_u'ry\ ‘
d. B34Dh to binary
5. TPerform the following additions:
| a.” 100101b + 10111b
~b. 100111101b + 10001111001b
c. -B23CDK + 17912h
d. FEFFEh + FBCADQ
6. Perform the following sublractions:
‘a. 11011b - 10110b
b. 10000101b - 111011b -
¢. SFCi12h - 3ABD1h
d. FOO1th - 1FF3Fh
7. Give the 16-bit representation of-cach of the following decimal in-
tegers. Write the answer in hex.

a. 234 -
.b. -16

¢. 31634

d. -32210

8. Do the following binary and hex subtractions by two's comple-
ment addition,

a. 10110100 - 10010111 .
b. 10001011 - 11110111-
¢. FEOFh - 1ZABh
d. : 1ABCh -[B3EAh
9. Give the unsigned and signed decimal interpretations of each of

the following 16-bit or 8-bit numbers. »
a. 7FFEh
b, 8543h
¢. FEh
d. 7Fh
10. Show how the decimal integer -120 would be represented
a. in 16 bits. '
b. in 8 bits.

11. For each of the following decimal numbers, tell whether it could
be stored (a) as a 16-bit number (b) as an 8-bit number.

a. 32767
b. —10000
C. 65536
d. 2574

Q.J—IZB

12, Yor each ot the following 16-bit signed numbers, tell whether it is
positive or negative.

a. J1010010010010100b
b. 78E3h ' -

36

Exercises

13.

14.

15.

16.

17.

c¢. CB33h
d. 807Fh

e. 9AC4h

If the character string “$12.75” is being stored in memory start-
ing at address 0, give the hex contents of bytes 0-5.

Translate the following secret message, which has been encoded
in ASCII as 41 74 74 61 63 6B 20 61 74 20 44 61 77 6E.
Suppose that a byte contains the ASCII code of an uppercate let-
ter. What hex number should be added to it to convert it to
lower case?

Suppose that a byte contains the ASCII code of a decimal digit;
that is, “0”. .. “9.” What hex number should be subtracted from
the byte to convert it to the numerical form of the characters? -
It is not really necessary to refer to the hex addition table to do
addition and subtraction of hex digits. To compute Eh + Ah, for
example, first copy the hex digits:

0123456789ABCDEFTF

Now starting at Eh, move to the right Ah = 10 places. When you
go off the right end of the line, continue on from the left end
and attach a 1 to cach number you pass:

10 11 12 13 14 15 16 17 189 ABCDEF
STOP ~ START #

You get Eh + Ah = 18h. Subtraction can be done similatly. For ex-
ample, to compute 15h — Ch, start at 15h and move left Ch = 12
places. When you go off the left end, continue on at the right:

10 11 12 13 14 1§ 6 7 8 9 AB CDTEF
A START ~ STOP

You get 15h - Ch = 9h.
Rework exercises S(c) and 6(c) by this method.

Organization-
of the IBM Personal
Computers

I.
vaerview

Chapter 1 described the organization of a typical microcomputer
system. This chapter takes a closer look at the IBM personal computers. These
machines are based on the Intel 8086 family of microprocessors.

" After a brief survey of the 8086 family in section 3.1, section 3.2
concentrates on the architecture of the 8086. We introduce the registers and
mention some of their special functions. In section 3.2.3, the important idea
of segmented memory is discussed.

In section 3.3, we look at the overall structure of the IBM PC; the
meimory organization, 1/O ports, and the DOS and BIOS routines.

3.1

The Intel 8086
Family of
Microprocessors

r

The 1BM personal computer family consists of the IBM PC, PC XT,
PC AT, PS/1, and PS/2 models. They are all based on the Intel 8086 family
of microprocessors, which includes the 8086, 8088, 80186, 80188, 80286,
80386, 80386SX, 80486, and 80486SX. The 8088 is used in the PC and PC
XT; the 80286 is uséd in the PC AT and PS/1. The 80186 is used in some
PC-compatible lap-top modcls. The PS/2 models use either the 8086, 80286,
80386, or 80486.) B -

37

38

3.1 The Intel 8086 Family of Microprocessors

The 8086 and 8088 Microprocessors

Intel introduced the 8086 in 1978 as its first 16-bit microprocesso
(a 16-bit processor can opcrate on 16 bils of data at a time). The 8088 was
introduced in 1979. Internally, the 8088 is essentially the same as the 8086.
Externally, the 8086 has a 16-bit data bus, while the 8088 has an &bit.data
bus. The 8086 also has a faster clock rate,;and thus has belter performance.
IBM chose the 8088 over the 8086 for the.original PC .becausc it was less
expensive to build a computer around the 8088.
**The 8086 and 8088 have theisame iastruction set, ‘and it-forms the
basic-set-of thstructions fot the' other microprocessors in the family.

The 80186 and 80188 Micrapracessors .

The 80186 ard 80188 are enhanced versions of the 8086 and 8088,
respectively. Their advantage is that they incorporate all the functions of the
8086 and 8088 microprocessors plus those of some support chips. They can
also execute somie new instructions called the extended instruction sct. How-
ever, these processors offered no significant advantage over the 8086 and
8088 and were soon cvershadowed by the development of the 80286.

The 80286 Microprocessor

The 80286, introduced in 1982, is also a 16-bit microprocessor. How-
ever, it can operate faster than the 8086 (12.5 MHz versus 10 MHz) and offers
the following important advances over its predecessors:

1. Two mwdes of operation. The 80286 can operate in either. real ad-
dress mode or protected virtual address mode. In real ad-
dress mode, the 80286 behaves like the 8086, and programs for
the 8086 can he¢ executed in this mode without modification. In
protected virtual address mode, also called protected mode, the
80286 supports multitasking, which is the ability to execute
several programs (tasks) at the same time, and memory protec-

. tion, which is the ability to protect the memory used by one pro-
gram from the actions of another program.
© 2. More addressable memory. The 80286 in protected mode can ad-
dress 16 megabytes of physical memory (as opposed to 1 mega-
byte for the 8086 and 8088).

3. . Virtual emory in protected mode. This means that the 80286 can
treat external storage (that is, a disk) as it it were physical mem-
ory, and theretore exccute programs that are too large ‘to be eon-
tained in physical memory; such programs can be up-to 1
gigabyte (2% bytes).

The 80386 and 803865X Microprocessors

Intel introduced its:ﬁvr‘st 32-bit microprocessor, the 80386 (or 386},
in 1985. 1t is much faster than the 80286 because it has a 32-bit data path,
high clock rate (up to 33 Mtiz), and the ability to exccute instructions in
tewer clock cycles than the 80286,

Like the 80286, tie 386 can operate in cither real or protected mode.
in real mode, it behaves like an 8086. In protected mode, it can emulate the
80286. it also has a virtual 8086 mode designed to run mulitiple 8086 app71
cations under memory protection. The 386, in protected mode, can address
4 gigabytes of physical memory, and 64 terabytes @ 16 bytes) of virtual memory.

Chapter 3 Organization of the IBM Personal Computers ~39

The 3865X has cssenbally the same internal structure as the 386,
but it has only a 16-bit data bus.

The 80486 and 80486SX Microprocessors

Introduced in 1989, the 80486 (or 486), is another 32-bit micropro-
cessor. It is the fastest and most powerful processor in the family. It incor-
porates the functions of the 386 together with those of ather support chips,
including the 80387 numeric processor, which performs floating-point num-
ber operations, and an 8-KIl cache memory that serves as a fast memory arca
to bufter data coming from the slawer memory unit. With its numeiric pro-
cessor, cache memory, and more advanced design, the 486 is three times
faster than a 386 running at the:same clock speed. The 4868X is similar to

the 486 but without the tloating-point processor.

3.2 -
Organization of.the
8086/8088

In the rest of this chapter we'll concentrate on the organization of
the 8086 and 8088. These processors have the simplest structure, and most
of the instructions we will study are 8086/8088 instructions. They also pro-
vide insight to the organization of the more advanced processors, discussed

Because the 8086 and 8088 have essentially the same internal struc-
ture, in the following, the name “8086” applies to both 8086 and 8088.

- As noted in Chapter 1, information inside the microprocessor is
stored in registers. The registers are classified according to the functions they
perform. In general, data registers hold data for an operation, address registers
hoid the address of an inStTUCioN or data,
CUTTeRT STIVUS OF tIT Processor.

The 8086 has four general data registers; the address registers are
divided into segment, pointer, and index registers; and lmm
called the FLAGS Tegister. In total, there are fourteen 16-bit registers, which
we now briefly describe. See Figure 3.1. Note: You don’t need to memorize

the special functions of these registers at this time. They will become familiar
with use. :

a- smTs egisier keeps the

Microprocessors
in Chapter 20.
3.2.1
Registers
3.2.2

Data Registers: AX, BX,
CX;.DX

These four registers are available to the programmer tor general data
manipulation. Even though the processor can operate on data stored in mem-
ory, the same instruction is faster (requires fewer clock cycles) if the data are
stored in registers. This is why modern processors tend to have a lot of
registers. :

‘The high and low bytes of the data registers can be accessed sepa-
rately. The high byte of AX is called AH, and the low byte is AL. Similarly,
the high and low bytes of BX, €X, and DZ(are BH and BL, CH and CL, DH

. and,DL, respectively. This arrangement gives us more régisters to usé when

dealing with byte-size data.
These four registers, in addition to being general-purpose registers,

“also perform special functions such as the following.

40 3.2 Organization of the 8086/8088 Microprocessors

Figure 3.1 8086 Registers
Data Registers
AH AL

BH BL =
BX

“H - cL

DH DL
DX

Segment Registers

cs

DS

ss

ES

Pointer and Index Registers

St

[s]]

SP

BP

FLAGS Register

'AX (Accumulator Register)

AX is the preferred register to use in arithmetic, logic, and ¢
transfer instructions because its use generates the shortest michine co

Chapter 3 Organization of the IBM Personal Computers 41

In multiplication and division operations, one of the numbers involved must
be in AX cr AL. Input and output operations also require the use of AL and AX.

BX (Base Register)

BX also serves as an address register; an example is a table look-up
. instruction called XLAT (translate).

' CX (Count Register)

. ¢ Program loop constructions are facilitated by the use of CX, which
serves as a loop counter. Another examiple of using CX as counter is REP
(repeat), which controls a spécial class of instructions called string operations.
CL is used as a count in instructions that shift and rotate bits.

DX (Data Register)
DX is used in multiplication am_f division. It is also used in /O

operations
3.23 »
Segment Registers: Address registers store addresses of instructions and data in memory.
CS. DS, SS, ES These values are used by the processor to access memory locations. We begin

with the memory organization~f

Chapter 1 explained that memory is a collection of bytes. Fach mem-
ory byte has an address, starting with 0. The 8086 processor assigns a 20-bit
physical address to its memory locations. Thus it is possible to address
220" 1,048,576 bytes (one megabyte) of memory. The first five bytes in

memory have the followir?gl fx'd'dlrss'sle'si‘ WEotrr s

‘ 0
00000000000000000001
00000000000000000010
0000000000000000001 1
000006000000000000100

Because addresses are so cumbersome to write in binary, we usually express
them as five hex digits, thus

00000
00001 -
00002

00009 *-
0000A -
00008

and so on. The highest address is FFFFFhX -

) In order to explain the function of the segment registers, we first
necd to introduce the idea of memory segments, which is a direct conse-
quence of using a 20-bit address in a 16-bit processor. The addresses are too

4

-

3.2 Organization of the 8086/8088 Microprocessors

.. big to fit in a-16-bit register:or memory word. The 8086.gets around this
- problem by partitioning-its' memory-into segments.

* Memory Segment

- Axmemory segment is a block of 2°7 (or 64 K) cousecutive memory
bytes. Each segment is.identificd by a segment numbeer, starting with. 0.
A segment number is 16 bits, so the highest segment number is FFFfh.
T withina segment, a memory location is specified by g.ving-an ‘off-
sct. This is the number of bytes from the beginning of the segment. With
a 64-KB segment, the: offsct can be given as a 16-bit number The first bytc
in a segment has offset 0. The last offset in a segment is FFFFh.

216

" Segment:Offset Address

A memory location may be specified by: providing a segment number
and an offset, written in the formn segmentoffset; this is known as 2 logical
addrcss. For example, A4FB:4872h means offset 4872h within segment A4FBh.
To obtain a 20-bit physical address, the 8086 microprocessor first shifts the
segment address 4 bits to the left (this is equivalent to multiplying by 10h), and
then adds the offset. Thus the physical address for A4FB:4872 is

A4FBOh
+4872h

A9822h (20-bit physical address)

Location of Segments

It is instructive to sce the layout of the segments in memory. Segment
0 starts at address 0000:0000 = 00000h and ends at 0000:FFFF = OFFFFh.
Segment 1 starts at address 0001:0000 = 00010h af¥ ends at 0001:FFFF =
1000Fh. As we can see, therc'is a lot of overlapping between segments. Figure
3.2 shows the locations of the first three memory segments. The segments
start every 10h = 16 bytes and the starting address of a segment always ends
with a hex digit 0. We call 16 bytes a paragraph. We call an'address that
is divisible by 16 (ends with a hex digit 0) a.paragraph baundary.
. Because segments may overlap, the segment:offset form of an address
is not unique, as the following example shows.

" Example 3.1 For the memory location whose physical address is speci-

fied by 1256Ah, give the address in segment:offset form for segments
1256h and 1240h.

Solution: Let X be the offset in segment 1256h and Y the offset in seg-
ment 1240h. We have
1256Al = 12560h + X and 1256Ah = 12400h + Y

and so
= 1256Ah - 12560h = .‘\il and Y= 1256Ah - 12400h = 16Ah

thus-

1256Ah = 1256:000A = 1240:016A

Chapter 3 Organization' of thé 18M:Personal Computers

iz

Figure 3.2 «Location of
Memory Segments

.

.f:'

el e e 1001E

. Address

b=~ 410021
. - 10020
Segment 2 ends —— 1001F

' ...
' 10010
Segment 1 ends - ——>» 1000F

1000E

! 10000
Segment 0 ends ———» OFFFF
OFFFE

00021
Segment 2 begins — 00020
0001F
00011
Segment 1 begins-——— 00010°
0000F
00003
00002

- 00001
Segment 0 begins —— 00000

11010101
01001001

© 11110011

10011100

. 01111000

11101011
10011101

01010001
1111110
10011111

01000000
01101010
10110101

01011001
ARRARRRR]

© 10001110

10101011 .
00000010 -

10101010
00111000

address and the offsct are given.

43

1t is also possible to calcuiate the segment number when the physical

segment does it have offset BFD2h?

Solution: “We'know that

physical address = segment x 10h + offset

Thus

©in this example

So the segment must be 7500h.

o

physical address = 80FD2h
Yo~ offset 2

sepment x 10h = physical address - offsct -

scgment x 10h = ,75000h

BrD2h

. Example 3.2 A miemory location has physical address BOFD2h. In what

44 3.2 Organization of the 8086/8088 Microprocessors

figure 3.3 Segment Registers

8086 Processor Address Mamory
s 0F8Ah + 0F8A:0000 |— Code segment &gins —
DS 0F89h -+ O0F89:0000 |— Data segment begins ~—
131 OF6Sh +» 0F69:0000 I— Stack segment begins -—)
€S .

Program Segments

Now let us talk ahout the registers CS, 1S, 88, and ES. A typical
machine language prograni consists of instructions (code) and data. There
is also a data structure called the stack used by the processor to implement
procedure calls. The program’s code, data, and stack arc loaded into different
memory segnents, we call them the code segment, data scgment, and
stack segmcent.

To keep track of the various program segments, the 8086 is équipped
with four segment registers to hold scgment numbes. The CS, DS, and SS
registers contamn the cade, data, and stack segment numbers, respectively. If
a program needs to access a second data segment, it can use the ES (extra
segment) register.

A program segment nced not occupy the entire 64 kilobytes in a
memory scgment. The overlapping nature of the memory segments permits
program segments that arc less than 64 KB to be placed close together=Figure
3.3 shows a typical layout of the program segments in memory (the segment
numbers and the relative placement of the program scgments shown are
arbitrary). -

At any given time, only those memory locations addressed by the
four segment registers are accessible; that is, only four memory segn‘iehts are
active. However, the contents of a segment register can be modified by a
program to address different segments.

3.24
Pointer and Index
Registers: SP, BF, Si, DI

The registers SP, BP, SI, and DI normally point to (contain the offset
addresses of) memory locations. Unlike segment registers, the pointer and
index registers can be used in arithmetic and other operations.

SP (stack Pointer)

; The SP (stack pointer) register is used in conjunction with SS for access-
ing the stack segment. Opérations of the stack are covered in Chapter 8.

Al

Chapter 3 Organization of the IBM Personal Computers 45

BP (Base Pointer)
I’hc BP (base pointer) register is used primarily to access data on the

“stack. However, unlike SP, we can also use BP to access data in the other
. segments.

SI (Source Index)

The S! (source mdex) register is used to point tomemory locahons
in the data segment addressed by DS. By incrementing the contents of SI,
we can easily access consecutive memory locations. '

* N . e .

DI (Destination Index)

The DI (destmation index) regnster performs the same functions as
SI. There is a class of instructions, called string operations, that use DI to access
memory locations addressed by ES.

3.25
Instruction Pointer: IP

The memory registers ‘covered so far are for data access. To access
instructions, the 8086 uses the registers CS and IP. The CS register contains

- the segment number of the next instruction, and the IP contains the offset.

IP is updated each time an instruction is executed so that it will point to
the next instruction. Unlike the other registers, the IP cannot be directly
manipulated by an instruction; that is, an instruction may not contain 11’
as its operand. ‘

3.2.6 -
FLAGS Register

The purpo;c of the FLAGS regiSlcr is to indicate the status of the

" _microprocessor. It does this by the setting of individual bits called flags.

There are two kinds of flags: status flags and control flags. The status
flags reflect the result of an instruction exccuted by the processor. For exam-
ple, when a subtraction operation results in a 0, the ZF (zero flag) is set to
1 (true).’A subsequent instruction can examine the ZF and branch to some
code that handics a zero resuit. ’

" The control flags enable or disable certain operations of the proces-
sor; for example, if the IF (interrupt flag) is cleared (set to 0), inputs from
the keyboard are ignored by the processor. The status flags are covered in
Chapter S, and the control flags are discussed in Chapters 11 and 15.

3.3
Organization of
the PC

A computer system is made up of both hardware and software. It is
the software that controls the hardware operations. So, to fully understand
the operanons of the' computcr, you also’ study the software that controls
the computdr.

46 3.3 -Organization of the PC

3.3.1:
THe Operating Systensn

The most impartant piece of software for a computefr is the oper-
ating system. The purpose of the operating system is to coordinate the
operations of all the devices that make.up the computer system. Some of
the operating system functions are

1. reading and executing the commands typed by the user
2. performing I/O operations
3. generating error messages- -
4. managing memory and other resources _'

At present, the most popular operating system for the IBM PC is the
disk opcrating system (DOS), also referred to as PC DOS or MS DOS.
DOS was designed tor the 8086/8088-based computers. Because of this, it
can manage only 1 megabyte of memory and it does not support multitask-
ing. However, it can be used on 80286, 80386, and 80486-based machines
when they run in rcal address mode.

One of the many functions performed by DOS is reading and writing
information on a disk. Programs and other information stored on a disk arc
organized into files. Fach file has a file name, which is made up of one
to cight characters followed by an optional file.cxtension of a period fol-
lowed by one to three characters. The extension is commonly used to identify
the type of file. For example, COMMAND.COM has a file name COMMAND
and an extension .COM.

There are several versions of DOS, with caciy new version having
mote capabilities. Most commercial programs require the use of version 2.1
or later. DOS is not just one program;.it consists of a number of service
routines. The user requests a service by typing a command. The latest version,
DOS 5.0, also supports a graphical user interface (gui), allowing the use
of a mouse.

The DOS routine that services user commands is called COM: .
MAND.COM..It is responsible for generating the DOS prompt-—that is, C>-—
and reading uscr commands. There are two types of user-commands;.
internal and external...

" Internal commands are performed by DOS routines that have been -
loaded into memory, external commands may refer to DOS routines that
have not been loaded or to application programs. In normal operations,
many DOS routines are not loaded into memory so as to save memory space.

Because DOS routines reside on disk, a progrum must be operating
when the computer is powered up to read the disk. In Chapter 1 we men-
tioned that there are system routines stored in ROM that are not destroyed
when the power is off. In the PC, they are called BIOS (Basic Input/Out-
puat Systcm) routines.

BlOS -

The BIOS routines perform 1/O operations for the PC. Unlike the -
DOS routings, which operate over the entire PC tamily, the BIOS routines
are machine specific. Each PC model has its own hardware configuration
and its own BIOS routines, which invoke the machine’s 1/0O port registers.
for input.and output. The DOS I/O operations are ultimately carried out by
the BIOS routines. »

Other impdrtant functions performed by BIOS are circuit checking
and loading of the DOS routines. In section 3.3.4, we discuss the loading of

DOS routines.

Chapter 3 Organization of the IBM-Personal Computers 47

o
Figire 3.4.-Memory-
Partitioned into: Disjojnti::
Segments::

Address . . . Y~ Segment
FFFFFH A .
FOOOh
FOO00h .
EFFFFh- = =
. £000h
£0000h —~ - ——
e
20000h
OFFFFh -
L 1000h
10000h
OFFFFh g
- L. . 000Ch
00000h

To let DOS and other programs use the BIOS routines, the addresses
of the BIOS routines, called interrupt vectors, arc placed in memory, start-
ing at 00000h. Some DOS routines also have their addresses stored there.

Because IBM has copyrighted its BIOS routines, 1BM compatibles use
their own BIOS routines. The degree of compatibility has to do with how
well their BIOS routines match the 1BM BIOS.

3.3.2°

Meumocy prggmzatlon of

the PC

. As indicated in-section 3.2.3, the 8086/6088 processor is capable of
addressing 1 megabyte of memory. However, not all the memory can be used
by an application program. Some meinory locations have special meaning
for the processor. For example, the flrst kilobyte (00000 to 003FFh) is used
for interrupt vectors.

Other memory locations are reserved by IBM for special purposes,
such as for BIOS routines and video display memory. The display memory
holds the data that are being displayed on the monitor.

- To show the memory map of the IBM PC, it is useful to partition

. the. memory into disjoint scgments. We start with segment 0, which ends at

location OFFFFh, so the next disjoint segment would begin at 10000h =
1000:0000. Similatly, segment 1000h ends at 1FI'FIh and the next disjoint
segment begins at 20000h = 2000:0000. Theretore the disjoint segments are
0000h, 1000h, 2000h, . .. FOOOh, and so moemory may be partitioned into
16 disjoint segments. Sce Figure 3.4.

Only the first 10 disjoint memory segments are used by DOS for
loading and running application programs. These ten segments, 0000h to
9000h, give us 640 KB of memory. The memory sizes of 8086/8088-based
PCs are given in terms of these memory segments. For example, a PC with
a 512-KB fmemory has only eight of these memory segments.

T

48 3.3 Organization of the PC

Figure 3.5 Memory Map of

the PC Address
BIOS
FO000h
Reserved
= EQOQ0h
Reserved
©0000h
Reserved
C0000h
Video
B00OOh
Video
A0000h

Application program area

DOS -
B1OS and DOS data
00400h
Interrupt vectors
00000h

Segments AOOOh and B0OOOb are used for video display mermory. Seg-
ments CO00h to EOOCh are reserved. Segment FOOOh is a special segment
because its circuits are ROM instead of RAM, and it contains the BIOS routines
and ROM BASIC. Figure 3.5 shows thc memory layout.

Table 3.1 Some Common I/0 Ports for the PC

Port Address Description
20h-21h interrupt controller
60h—-63h keyboard controller
200h-20Fh game controller
2F8h-2FFh serial port (COM 2)
320h-32Fh hard disk
378h-37Fh ' parallel printer port 1
3Coh-3CFh . tGA

3D0h-30Fh CGA

3F8h-3FFh serial port (COM1)

Chapter 3 Organization of the IBM Personal Computers 49

3 3. 3
1/0 Port Addnesses

“The 8086/8088 supports’ 64 KB of I/O ports. Some common port
addresses are given in Table 3.1.’In general, direct programming of 1/O ports
is not recommended because 1/O port address usage may vary amonyg com-
puter models.

3.34 .
Start-up Operation

‘Summary - o

When the PC.is powered up, the 8086/8088 processor is put in a
reset state, tife CS register is set to FFFFh, and 1P is set to 0000h. So the first
instruction it executes is located at FFFFOh. This memory location is in ROM,
and it contains an instruction that transfers control to the starting point of
the BIOS routines.

The BIOS routines first check for system and memory errors, and
then initialize the interrupt vectors and BIOS data area. Finally, BIOS loads
the operating system from the system disk. This is done in two steps; first,
the BIOS loads a small program, called the boeot program, then the boot
program loads the actual operating system routines. The boot program is so
named because it is pan of the operating system; having it load the operating
systeri is like the computer pulling itself up by the bootstraps. Using the
boot program isolates the BIOS from any changes made to the operating
system and lets it be smaller in size. After the operating system is loaded
into memory, COMMAND.COM is then given control.

e The IBM personal computer fdmxlly consists of the PC, PC X1, PC
AT, PS/1, and the PS/2 models. They use the Intel 8086 family of °
mlcroprocessors

. The 8086 family of mxcroprocessors consists of the 8086, 8088,
80186, 80188, 80286, 80386, 803865X, 80486, and 804865X.

¢ The 8086 and 8088 have .the same instruction set, and this forms
the basic set of instructions for the other microprocessors.

e The 8086 microprocessor contains 14 registers. They may be classi-
fied as data registers, segment registers, pointer and index regis-
ters, and the FLAGS register. .,

* The data registers are AX, BX, CX, and D%. These registers may
be used for general purposes, and they also perform special func-
tions. The high and low bytes can be addressed separately.

e Each byte in memory has a 20-bit =75 hex-digit address, starting
‘with 00000h. :

¢ Asegment is a 64-KB block of memory. Addresses in memory
may be given in segment ‘offset form.. The physical address is ob-
tained by mulnplymg the segmem numoer by 10h, and adding
" the offset.

¢ The segment reysiers are CS, DS SS and ES. When a machine

language program’ is'execiiting,' these registers contain the seg-
ment numbers of the code, data, stack, and extra data segments.

The pointer and index registers are SP, BP, SI, DI, and IP. SP is
used exclusiveiy for the stack segment. BP can be used to access
the stack segment. S1 and DI may be used to access data in arrays.

The IP contains the offset address of the next instruction to be
executed.

The FLAGS register contains the status and control flags. The sta-
tus flags are set according to the result of an operation. The con-
trol flags may be used to enable or disable certain operations of
the microprocessor.

DOS is a collection of routines that coordinates the operations of

the computer. The routine that executes user commands is

COMMAND.COM.

* [nformation stored on disk is organized into files. A file has a
name and an optional extension. .

* The BIOS routines are used to perform 1/O operations. The com-
patibility of PC clones with the IBM PC depends on how well
their BIOS routines match those of. the IBM PC. .

¢ The BIOS routines are responsible for system testing and loading
the operating system when the machine is turned on.

Glossary

basic input/output
system, BIOS

boot program
code scgment

COMMAND.COM
control flags

data segment
disk opcrating system,
DOS

external commands

file

file extension

file name

_flags
graphical user interface,
gui

Routines that handle input and output
operations

The routine that loads the operating
system during start-up

Memory segment containing a machine
language program’s instructions

The command processor for DOS

Flags that enable or disable certain
actions of the processor

Memory segment containing a machine
language program’s data

The operating system for the IBM PC

Commands that correspond to routines
residing on disk .

An organized, named collection of data
items treated as a single unit for storage
on devices such as disks

A period followed by one to three charac-
ters; used to identify the kind of file

A one- to eight-character name of a file

Bits of the FLAGS register

A user interface with pointers and graphi-
cal symbols

Chapter 3 Organization of the 1BM Personal Computers 51

internal commands

interrupt vectors - -
logical address
memory protection

memoi-y segment
mu]ti‘ta._sking
offset (of a inemory

location)
opcrating system

paragraph
paragraph boundary
physical address

protected (virtual address)
mode

rcal address mode
segment number
stack

stack scgmént

status flags
video display memory

virtual memory

DOS commands that are executed by
routines that are present in memory
Addresses of the BIOS and DOS routines
An address given in the form segment:offset
The ability of a processor to protect the
memory used by one program from being
used by another running program

A 64-KB block of memory

The ability of a computer to execute sev-
eral programs at the same time

The number of bytes of the location from
the beginning of a segment

A collection of programs that coordinate
the operations of the devices that make
up a computer system

16 bytes

" A hex address ending in 0

Address of a memory location; 8086-
based machines have 20-bit addresses

A processor mode in which the memory
used by one program is protected from
the actions of another program

. A processor mode in which the addresses

used in a program correspond to a physi-
cal memory address

Number that identifies a memory segment
A data structure used by the processor to
implement procedure calls

Memory segiment containing a machine
language program’s stack

Flags that retlect the actions of the processor
Memory used for storing data for display
on the monitor

The ability of the advanced processors to
treat external storage as if it were real in-
ternal memory, and therefore execute pro-
gramns that are too large to be contained
in internal memory

Exercises

1. What are the main differences between the 80286 and the 8086

processors?

. What are the differences between a register and a memory location?
3. List one special function for each of the data registers*AX, BX,

CX, and DX.

52

E.cercises

10.

Determine the physical address of a memory location given by
0AS51:CDS0Oh.

A memory location has a physical address 4A37Bh. Compute
a. the offset address if the segment number is 40FFh.
b. the segment number if the offset address is 123Bh.

What is a paragraph boundary?

What determines how compatible an IBM PC clone is with an au-
thentic IBM PC?

What is the maximum amount of memory that DOS allocates for
loading run files? Assume that DOS occupies up to the byte
OFFFFh.

For the following exercises, refer to Appendix B.

Give DOS commands to do the following. Suppose that A is the
logged drive.

a. Copy FILEL in the current directory to FILE1A on the disk in
drive B.]

Copy all files with an..ASM extension to the disk in drive B.
Erase all files with a .BAK extension

List all file names in the current directory that begin with A.
Set the date to September 21, 1991.

f. Print the file FILE5S.ASM on the printer.

Suppose that (a) the root directory has subdirectories A, B, and C;
(b) A has subdirectories Al and A2; (c) Al has a subdirectory A1Ag
Give DOS commands to

a. Create the preceding directory tree.

b. Make AlA the current airectory.

¢. Have DOS display the current directory.

d. Remove the preceding disectory tree.

R

Introduction to IBM
PC Assembly

Language

Overview

This chapter covers the essential steps in creating, assembling, and .
cxecuting an assembly language program. By the chapter's end you will be
able to write simple but interesting programs that carry.out useful tasks, and
run them on the computer. . .

As with any programming language, the first step is to learn the
svniax, which for assembly language is relatively simple. Next we show how
variables are declared, and introduce basic data movement and arithmetic
instructions. Finally, we cover program organization; you'll see that assembly
language programs are comprised of code, data, and the stack, just like a
machiine language program.

Because assembly language instructions are so basic, input/output is
much harder in assembly language than in high-level languages. We use DOS
functions for I/O; they are easy to invoke and are fast enough for all but the
most demanding applications.

An assembly language program must be converted to a machine
language program before it can be executed. Scction 4.10 explains the steps.
To demonstrate, we'll create sample programs: They illustrate some standard
assembly language programming techniques and scerve as models for the
exercises.

53

54 4.1 Assembly Language Syntax

4.1
Assembly Language
Syntax

Assembly language programs are translated into machine language
instructions by an assembler, so they must be written to conform to the
assembler’s specifications. In this book we use the Microsoft Macro Assembler
(MASM). Assembly language code is generally not case sensitive, but we use
upper case to differentiate code from the rest of the text.

Statements

Programs consist of statements, one per line. Each statement is either
an instruction, which the assembler translates into machine code, or an
asscmbler directive, which instructs the assembler to perform some spe;,
cific task, such as allocating memory space for a variable or creating a pro-
cedure.. Both instructions and directives have up to four fields:

name operation operand(s) comment

At least one blank or tab character must separate the fields. The fields do
not have to be aligned in a particular column, but they must appear in the
above order.
An example of an instruction is
START: MOV CX,5 iinitialize counter
Here, the name field consists of the label START:. The operation is
MOV, the operands are CX and 5, and the comment is ;initialize counter.
An example of an assembler directive is

MAIN PROC

r
MAIN is the name, and the operation field cohitains PROC. This particular
directive creat.'s a procedure called MAIN.

411 _
Name Field

The name field is used for instruction labels, procedure names, and
variable names. The assembler translates names into memory addresses.

Names can be from 1 to 31 characters long, and may consist of
letters, digits, and the special characters ? . @ _ $ %. Embedded blanks arejy
not allowed. If a pericd is used, it must be the tirst character. Names may
not begin with a digit. The assembler does not differentiate between upper
and lower case in a name.

Examples of legal names

CCUNTERI
totaractos

SU OF LITDIT3
& me

Chapter 4 Introduction to IBM PC Assembly Language 55

' Examples of illegal names _

TWO WORDS contains a blank

2abc " begins with a digit
A45.28 . not first character
YOU&ME contains an illegal character

4.1.2
Operation Field

.. For an instruction, the operation field contains a symbolic operation
code (opcode). The assembler translates a symbolic opcode into a machine
language opcode. Opcode symbols often describe the operation’s function;
for example, MOV, ADD, SUB.

In an assembler directive, the operation field contains a pseudo-op-
eration code (pseudo-op). Pseudo-ops are not translated into machine code;
rather, they simply tell the assembler to do something. For example, the
PROC pseudo-op is used to create a procedure.

4.1.3
Operand Field

4.1.4
C_omment Field

For an instruction, the operand ficld specifies the data that are to

be acted on by the operation. An instruction may have zero, one, or two

operands. For example,

NOP ' , : no operands, does nothing
INC AX one operand; adds 1 1o the contents
. ~of AX
Y e
ADLC WORD1, 2 . two operands; adds 2 io the contents

of memory word WORD1

In 3 two-operand instruction, the first operand is the destination operand’

It is the register or memory location where the result is stored (note: some
instructions don't store the result). The second operand is the source op-
crand. The source is usually not modified by the instruction

For an asserbler directive, the operand field_usually contains more
information about the directive.

The comment field of a statement is used by the programmer to say
something about what the statement does. A semicolon marks the beginning
of this field, and the assembler ignores anything tvped after the semicolon.
Comimnents are optional, but because assembly language is so low-level, it is
almost impossible to understand an assembly language program without
comments. In fact,'good programming practice dictates a comment on al-
most every lin€. The art of good commentary is developed through practice.
Don't say something obvious, like this:

MOV CX, G : ;move .0 to CX
Instead, use comments to put the instruction into the context of the program:

MOV CX. 0 ;CX counts ter~~, initially 0O

56 4.2 Program Data

It is also permissible to make an entire line a comment, and 10 use them to
create space in a program:

;iritialize registers
MOV AX, 0

MOV BX, 0

4.2
Program Data

)

The processor operates only on binary data. Thus, the assembler
must translate all data representation into binary numbers. However, in an
assembly language program we may express data as binary, decimal, or hex
numbers, and even as characters.

Numbers

A binary nuinber is written as a bit string fo]lowed by the letter “B”
or “b”; forrexample, 1010B.

A decimal number is a string of decimal digits, endmg with an op-
tional “D” or “d”.

A hex number must begin with a decimal digit and end with the
letter “H” or “h”; for example, OABCH (the reason for this is that the assem-
bler would be unable to tell whether a symbol such as “ABCH” represents
the variable name “ABCH"” or the hex number ABC).

Any of the preceding numbers may have an optional sign.

Here are examples of legal and illegal numbers for MASM:

_Number Type
13I1 decimal
1.511B : binary
£4223 decimal
-21843D decimal
1,224 illegal—contains a nondigit character
13424 hex
184D) illegal hex number—doesn‘t end in "H”

FEFFH iliegal hex number—doesn’t begin with
a decimal digit

OFFrFH hex

Characters

Characters and character strings must be enclosed in single or double
quotes: for example, “A” or ‘hello’. Characters are translated into their ASCII
codes by the assembler, so there is no difference bctween using “A” and 41h
(the ASCII code for “A™) in a program. :

Chapter 4 Introduction to I1BM PC Assembly Language - 57

.. Table 4.1 Data-Defining Pseudo-ops

Pseudo-op Stands for
DB . . define byte
oW - ~ define word
DD : - S ~define doubleword (two consecutive
: words)
DQ . define quadword (four consecutive
words) .
DT define tenbytes (x’en consecutive bytes)

4.3
Variables

Variables play the same role in assembly language that theyv do in
high-level languages. Each variable has a data type and is assigned a memory
address by the program. The data-defining pseudo-ops and their nteanings
are listed in Table 4.1. Each pseudo-op can be used to set aside one or more
data items of the given type. ‘

In this section we use DB and DW to define byte variables, word
variables, and arrays of bytes and words. The other data-defining pseudo-ops
are used in Chapter 18 in connection with multiple-precision and noninteger
operations.

"

4.3.1 i
Byte Variables

The assembler directive that defincs a byte variable takes the follow-
ing form: :

name DB iﬁitial_value

where the ﬁseudo.ol) DB stands for ”D'cﬁnc Byte”.
For example,

ALPHA DB 4

This directive causes the assembler.to associate a memory byte with the name

- ALPHA, and initialize it to 4. A question mark (“?”) used in place of an initial

value sets aside an uninitialized byte; for example,

_ BYT DB 2

. , : . s
The decimal range of initial values that can be specified is -128 to 1271f a
signed interpretation is being given, or O to 255 for an unsigned irterpreta-

tion. These are the ranges of values that fit in a byte.

4.3.2
Word Variables

The assembler directive for defining a word variable has the follow-
ing form: o :

name DW '’ initial_valus

58

4.3 Variables

The pseudo-op DW means "D’e_ﬁne Word.” For example,

WRD DW -2

as with byte variables, a question mark in place of an initial value means an
uninitialized word. The decimal range of initial values that can be specified
is -32768 to 32767 for a signed interpretation, or 0 to 65535 for an unsigned
interpretation.

4.3.3
Arrays

In assembly language, an array is just a sequence of memory bytcs
or words. For example, to define a three-byte array called B ARR/\Y whose
initial values are 10h, 20h, and 30h, we can write,

B_ARRAY bB 10H, 20H, 30H

The name B_ARRAY is associated with the first of these bytes, B_ARRAY+1
with the second, and B_ARRAY+2 with the third. If the assembler assigns the
offset‘addres_s\OZOOh to B_ARRAY, then memory would look like this:

Symbol Address . Contents
B_ARRAY 200h 10h
B_ARRAY+1 20th 20h

B_ARRAY+2 202h 30h

In the same way, an array of words may be defined. For example,

W_ARRAY DW 1000, 40,29887, 329

sets up an array of four words, with initial values 1000, 40, 29887, and 329.
The initial word is associated with the name W_ARRAY, the next one with
W_ARRAY + 2, the next with W_ARRAY + 4, and so on. If the array starts at
0300h, it will look like this: |

Symbol Address - Contents
W_ARKAY 0300h 1000d
W_ARRAY+Z 0302h 40d
W_ARRAY+4 0304 29887d
W_ARRAY+6 0306h 329d

High and Low Bytes of a Word

Sometimes we nced to refer to the high and low bytes of a word
variable. Suppose we define

WORD1 CwW - 1234E

‘The low byte of WORD1 contains 34h, and the high byte contains 12h. The
low byte has symbolic address WORD], -and the high byte has symbolic-

. address WORD1+1. -

Character Strings

An array of ASCII codes can be initialized with a string of characters.
For example,

Chapter 4 Introduction to IBM PC Assembly Language 59

" LETTERS DB ’ ‘ABC’

is equivalent to
LETTERS DB 41H,42H, 43H

Inside a string, the assembler differentiates between upper and lower
case. Thus, the string “abc” is translated into three bytes with values 61h,

62h, and 63h. :
It is possible to combine characters and numbers in one definition;

for example, :
MSG DB ‘HELLO’, OAH, ODH, ‘s

is equivalent to

MSG DB . © 48H, 45H, 4CH, 4CH, 4FH, CAH, GDH, 24K

«

4.4 ‘
Named Constants

To make aszembly language code easier to underg;tand, it is often
desirable to usc a symbolic name for a constant quantity.

EQU (Equates)

To assign a name to a constant, we can use the EQU (equates)
pseudo-op. The syntax is
name (RO constant
lor exampie, the statement ®

T . LA aey
[. SR

assigns the name Li to 0Al, the ASCI code of the line teed character. The
name LF may now be used in place of OAh anywhore in the program. Thus,
the assembler translates the instructions

MOV DL, UAH
and
MOV DL, LE

into the same machine instruction.
The symbol on the right 6f an EQU can also be a string. For example,

PROMET EZU TYPFE YOUR RAME’
Then instead of
MSG DB ‘TY;TE.\"O:_IR NAME’

we could say

Note: no memory is allocated for EOU nause.

60 4.5 A Few Basic Instructions

Figure 4.1 MOV AX,WORD1 Before After

0006 . 0008

AX AX

0008 0008

WORD1 ' WORD1 *

4.5
A Few Basic There are over a hundred instructions in the instruction set for the
Instrudctions 8086 CPU; there are also instructions designed especially for the more ad-

vanced processors (see Chapter 20). In this section we discuss six of the most
useful instructions for transferring data and doing arithmetic. The instruc-
tions we present can be used with either byte or word operands.

In the following, WORD1 and WORD2 are word variables, and
BYTE1 and BYTE2 are byte variables. Recall from Chapter 3 that AH is the
high byte of register AX, and BL is the low byte of BX.

4.5.1
MOV and XCHG The MOV instruction is used to transfer data between registers, be-
tween a register and a memory location, or to move a number directly into
a register or memory location. The syntax is
MOV destination, source
Here are some examples:
MGV AX,WORD1 .
This reads “Move WORD1 to AX”. The contents of register AX are replaced
by the contents of memory location WORD1. The contents of WORD1 are
unchanged. In other words, a copy of WORD1T is sent to AX (Figure 4.1).
MOV kK, B y ’
AX gets what was previously in BX. BX is unchanged.
MOV AH, ‘A’
.
Figure 4.2 XCHG AH.BL F Before After
l[_ 1A, 00 0s 00 l
AH AL AH AL .

ENEY

BH BL ~ BH BL

Chapter 4 Introduction to IBM PC Assembly Language 61

Table 4.2 Legal Combinations of Operands for MOV and XCHG
mov
Destination Operand

General Segment Memory

Source Operand | register register location Constant
’General register yes . yes yes no
Slegmént register | yes . - no yes_l no
Mehoq location yes . yes no . no .
Constant yes no yes no
XCHG .

- ' Destination Operand

' ’ General 'Memory

Source Operand | register location
General register yes yes
Memory location yes > no

This is a move of the number 041h (the ASCII code of “A”) into register AH.
The previous value of AH is overwritten (replaced by new value)~/
The XCHG (exchange) operation is used to exchange the contents
. of two registers,_or 4 register and a'memory location. The syntax is

XCHG destination,source
. An example is -

XCHG AH,BL

This instruction swaps the contents of AH and BL, so that AH contains what
was previously in BL ahd BL contains what was originally in AH (Figure 4.2).
Another example is) ' h

XCHG - AX,WORD1 ,

which swaps the contents of AX and Enemory location WORD1Y"

Restrictions on MOV and XCHG

Yor technical reasons, there are a few restrictions on the use of MOV
and XCHG. Table 4.2 shows the allowable combinations. Note in particular that
a MOV or XCHG between memory locations is not allowed. For example,

ILLEGAL: MOV WORDI1, WORD2

but we can gét around this restricticn by using a register:

MOV AX, WORD2Z
HOV WORD1, AX

62 4.5 A Few Basic Instructions

Figure 4.3 ADD WORD1,AX

Before -After
018C ’ 018C -
AX AX
0523 ° . 06DF
WORD1 WORD1

4.5.2
ADD, SUB, INC, and DEC

The ADD and SUB instructions are used to add or subtract the con-
tents of two registers, a register and a memory location, or to add (subtract)
a number to (from) a register or memory location. The syntax is

ADD destination, source
SUB destination, source
For example,

ALD WORD1, AX

This instruction, “Add AX to WORD1,” causes the contents of AX and mem-
ory word WORDI to be addéd, and the sum is stored in WORDI. AX is
unchanged (Figure 4.3).

SUB AX,DX

In this example, “Subtract DX from AX," the value of DX is subtracted from
the value of AX, with the difference being stored in AX. DX is unchanged

(Figure 4.4).

Table 4.3 Legal Combinations of Operands for ADD and SUB

-

Destination Operand

Figure 4.4 SUB AX,DX

Source Operand General register Memory location
General register yes yes
Memory location yes no
Constant yes yes
Before After
0000 FFFF
AX AX
0001 : 0001
DX ' DX

Chapter 4 Introduction to I8M PC Assémb/y Language 6’3.
1

Figure 4.5 INC WORD1

Before After
0002 0003
WORD1 WORD1 .
ADD BL,S

This is an addition of the number 5 to the contents of register BL.

As was the case with MOV and XCHG, there are some restrictions
on the combinations of operands allowable with ADD and SUB. The legal
ones are summarized in Table 4.3. Direct addition or subtraction between

memory locations is illegal; for example,

ILLEGAL: ADD BYTE1l,BYTE2
A solution is to move BYTE2 to a register before adding, thus

MOV AL,BYTE2 = : ;AX gets BYTE2

-ADD BYTE1, AL ;add it to BYTEl

INC (increment) is used to add 1 to the contents of a register or
memory location and DEC (decrement) subtracts 1 from a register or memory
location. The syntax is

-INC destination -
- DEC destination

For example,

INC WORD1

adds 1 to the contents of WORD1 (Figure 4.5;.‘
DEC BYTE1l A
subtracts 1 from variableé BYTE1 (Figure 4.6).

figure 4.6 DEC BYTET

Before) After

FFFE FFFD

BYTEN 8YTE

64 4.6 Translation of High-Level Language to Assembly Language

Figure 4.7 NEG BX

Before After
0002 FFFE
B8X BX

NEG is used to negate the contents of the destination. NEG does
this by replacing the contents by its two's complement. The syntax is *
NEG destination i

The destination may be a register or memory location. For example,

A
negates v.hg contents of BX (Figure 4.7).

Type Agreement of Operands

Thie operands of the preceding two-operand jnstruction must be of
the same type; that is, both bytes or words. Thus an instruction such as

r

MOV AX,BYTEL ;illagal

Ry
is not allowed. However, the assembler will accept both of the following

In the former case, the assemuler recsons that since the destination A is a_
byte, the source must be a byte, and it moves 411 into AH. In the lattercase1
it assumes that because the destination is a word so is the-source, and it

moves 0041h into AX. . -

4.5.3

NEG
HEG BX
instructions:
A0V AHL A
and
MCV AKX, A

Translation of
High-Level Language
to Assembly
Lanquage

To give you a feeling for the preceding instructions, we'll translate
some high-level language assignment statements into assembly language.
. Only MOV, ADD, SUB, INC, DEC, and NEG are used, although in some cases
a better job could be done by using instructions that are covered later. In
the discussion, A and B are word variables.

Statement Translation
8= R MOV AX, A ;move A into AX
MOV B, AX ;and then into B

% .
As was pointed out earlier, a direct memr.ory-memory move is illegal, so we
must move the contents of A into a register before moving it to B.

Chapter 4 Introduction to IBM PC Assembly Language 65

A=5-A : MOV AX, 5" ;jput 5 in AX
- SUB AX,A ;AX contains 5 - A
MOV "A,AX . vput it in A

This example illbstrqles one approach to translating assignment statements:
do the arithmetic in a register—for example, AX—then move the result into

tt}e des}matnon vanable In this case, there is another, shorter way:
NEG A. | ;A = -A

ADD A,S5S 7R = 5.- A

The next example shows how to do multiplication by a constant.

A=B-2xA - MOV AX,B ;AX has B
L sSuUB AX,A ;AX has B - A
SUB AX, A ;AX has B - 2 < A

MOV A, AX . ;move result to A

4.7

Program Structure

1

" “Chapter 3 noted that machine language programs consist of code,
data, and stack. Each part occupies a memory segment. The same organiza-
tion is reflected in an assembly language program. This time, the code, data,

~ and stack are structured as program segments. Each program segment is trans-

lated into a memory segment by the assembler.

We will use the simplified segment definitions that were introduced
for the Microsoft Macro Assembler (MASM), version 5.0. They are discussed
further in Chaptez 14, along with the full segment definitions.

4.7.1
Memory Models

The size of code and data a program can have is determined b:
specifying a memory model using the MODEL directive. The syntax is

.MODEL : memuéy_moue]

.The.most frequently used memory models are SMALL, MEDIUM, COMPACT,
and LARGE. They are described in Table 4.4. Unless there is a lot of code or
data, the appropriate model is SMALL. The MODEL difective shoulé come

before any segment definition.

Table 4.4 Memory Models

, Model Description
SMALL code i one segrnent
E data in one segment

MEDIUM code in more than one segment
data in one segment

COMPACT code in.one segment -
data in more than one segment

LARGE - code in more than one segment“

data.in imore than orie,segmen
no array larger than 64k byte:
HUGE code in more than one segment
data in more than“one segment
arrays may be larger than 64k bytes

\

66 4.7 Program Structure

4.7.2
Data Segment

A program'’s data segment contains all the variable definitions.
Constant definitions are often made here as well, but they may be placed
elsewhere in the program since no memory allocation is involved. To declare

a data segment, we use the directive .DATA, followed by varlable and constant
declarations. For example, '

.DATA
WORD1 DW 2

' WORD2 DW 5 _
MSG DB ‘THIS IS A MESSAGE’
MASK EQU 10010010B .

4.7.3.
Stack Segment

The purpose of the stack segment declaration is to set aside.a block
of memory (the stack area) to store the stack. The stack area should be big
enough to contain the stack at its maximum size. The declaration syntax is

+STACK . " size

where sizd is an optional number that specifies the stack area size in bytes.
For example,

.STACK - 100H ' ’ ‘

sets aside 100h bytes for the stack area (a reasonable size for most applica-
tions). If size is omitted, 1 KB is set aside for the stack area.

- 4,74
Code Segment

- The codé segment contains a program’s instructions. T-he'-dec-

laration syntax is

.CODE name

_ where name is the optional name of the segment (there is no need for a

name in a SMALL program, because the assembler will generate an error).

Inside a code segment, instructions are organized as procedures The
simplest procedure deﬂnition is

name PROC

ibody of the procedure
name ENDP. -~

where name is the name of the procedure, PROC and ENDP are pseudo-ops
that delineate the procedure

Here ls an example of a code segment definition:
.CODE
MAIN PROC _
;imain procedure instructions

- MAIN ENDP

;jother procedures go here

.o

Chapter 4 Introduction to IBM PC Assembly Languag.e 57

4.7.5
Putting It Together

Now that you have seen all the program segment;, we can construct
the general form of a .SMALL model program. With minor variations, this
form may be used in most applications:

.MODEL SMALL

.STACK 100H”

.DATA ~

;data definitions go here
.CODE)

MAIN PROC

;instructions go -here
MAIN ENDP

;othex procedures go here

-END MAIN

The last line in the program should be the END directive, followed by name
of the main procedure.

4.8
‘Input and Output
Instructions

" In Chapter 1, you saw that the CPU communicates with the periph:
erals through 1/O registers called I/O ports. There are two instructions, IN and
OUT, that access the potrts directly. These instructions are used when fast [/O
is essential; for example, in a game program. However, most applications
programs do not use IN-and OUT because (1) port addresses vary among
computer models, and (2) it’s much easier to program /O with the service
routines provided by the manufacturer.

There are two categories of 1/O service routines: (1) the Basic In-
put/Output System (BIOS) routines and (2) the DOS routines. The BIOS rou-
tines are stored in ROM and interact directly with the 1/O ports. In Chapter
12, we use them to carry out basic screen operations such as moving the
cursor and scrolling the screen. The DOS routines can carry out more com-
plex tasks; for example, printing a character string; actually they use the
B1OS routines to perform direct I/O operations.

The INT Instruction

To invoke a DOS or BIOS routme the INT (mterrupt) instruction is
used. It has the format

INT interrupt_number

where interrupt_nuimnber is a number that specifies a routine. For example.
INT 16h”invokes a BIOS routine that performs keyboard input. Chapter 15

. covers the INT instruction in more detall. In the following, we use a particular

DOS routine, INT 21h.

4.8.1 -
INT 21h

INT 21h may be used to invoke a large number of DOS functions
(see Appendix C); a particular function is requested by placing a function
number in the AH register and invoking INT 21h. Here we are mterested in

"the following functions:

68 4.8 Input and Qutput instructions

Function number Routine

] single-key input

2 single-character output”
9 character string output

INT 21h functions expect input values to be in certain registers and retur
output values in other registers. These are listed as we describe each functior

Function 1:

Single-Key Input

Input: AH =1

Output: AL = ASCII code if character key is pressed
= 0 if non-character key is pressed

.

To invoke the routine, execute these instructions:

MOV AH,1 ;input key function
INT 2ih ;ASCII code in AL

‘The processor will wait for the ‘user to hit a Key if necessary. If a characted
key is pressed, AL gets its ASCI] code; the character is also displayed on th¢
screen. If any other key is pressed, such as an arrow key, F1-F10, and so on|
AL will contain 0. The instructions following the INT 21h can examine Al
and take appropriate action. l

Because INT 21h, function 1, doesn’t prompt the user for input, he
or she might not know whether the computer is waiting for input or it
occupied by some computation. The next function can be used to gene?me
an input prompt.

Function 2: ~ .
Display a character or execute a control function

Input: AH /=2 : .
DL - = ASCII code of the display characier or
control character ’
Odtput: AL - = ASCII ¢ode of the display charactier or
control character

To display a character with this function, we put its ASCII code in DL. Fos
example, the following instructions cause a question mark to appcar on tfic

screen:

MCV AH,2 ;display character function

MCV DL, '?¢ ;character is ‘2, ’
v INT 21h, ;displey character

After the character is displayed, the cursor advances to the next position or;
the line (if at the end of the line, the cursor moves to the beginning of the
next line).

Function 2 may also be used to perform control functions. If D!

contains the ASCIT code of 3 control character, INT 21h causes the contro
function to be performed. The principal control characters are as folldws:

Chapter 4 Introduction to IBM PC Assembly Language 69

o,
<
ASCll code {Hex) : Symbol Function
7 BEL beep (sounds a tone)
8" : - BS backspace
9 “HT tab
A W line feed (new line)
D CR carriage return (start of
: current line)
' On execution, AL gets the ASCII code of the control character.
1.9

4 First Program

Our first program will read a character from the keyboard and display
it at the beginning of the next line.
We start by displaying a question mark:

MOV AH, 2 '~ "';display character function
MOV DL, *?’ ;character is ‘2
INT 21h : ;display character

The second instruction moves 3Fh, the ASCII code for “?”, into DL.
- - Next we read a character:

MOV BAH, 1 . :read character function
INT 21h ..,° icharacter in AL

Now we would like to display the character on the next line. Before
doing so, the character must be saved in another register. (We'll see why in
a moment.) . - ’

s . .
MOV BL, AL ;save it in BL

r .
To move the cursor to the beginning of the next line, we must execute a
carriage return and line fced. We can perform these functions by putting the
ASCII codes for them in DL and executing INT 21h.

MOV AR, 2 . ;display character function
MOV DL, ODH ’ ;carriage return '

INT 21h) ;execute carriage return
MOV DL, ORH ;line feed (7

INT 21h ;iexecute line feed

The reason why we had to move the input character from AL to BL is that
the INT 21h, function 2, changes AL.
Final]y'wg are ready to display the character:

MCV DL,BL | ' .. iget character
INT 21h T "7 7 :and display it

Here is the complete program:

. Program Listing PGM4_1.ASM

TITLE bGMd_l: ECHC PROGRAM

" MODEL SMALL .

.STACK 100H ’

--.CODE

MAIN PROC

;display ‘prompt-
MOV AH, 2 ;display character function

70 4.10 Creating and Running a Program

MOV DL, 2’ ;character is '?2’
INT 21H ;display it
;input a character
MOV AH‘,l ;read character function
INT 21H-- ;character in AL
MOV BL, AL ;save it in BL
;go to a new line: .
MOV AH, 2 ;display character function
MOV DL, QDH :carriage return
INT 21H ;execute carriage return
MOV DL, OAH ;1line feed
INT 21H " ;execute lire feed
;display character
MOV DL, BL/ ;retrieve character
INT 21H . ;and display it
;return to DOS
MOV AH, 4CH. ;DOS exit function
INT 2/1H‘ ;exit to DOS
MAIN ENDP .
END MAIN 7 ’

Because no variables were used, the data segment was omitted.
Terminating a Program

The last two lines in the MALN procedure require some explanation.
When a program terminates, it should return control to DOS. This can 4e
accomplished by executing INT 21h, function 4Ch.

4.10
Creating and
Running a Program

We are now ready to look at the steps involved in creating and
running a program. The preceding program is used to demonstrate the pro-
cess. The four steps are (Figure 4.8):

1. Use a text editor or word processor to create a source prografn
file. ’
2. Use an assembler to create a machine language object file.
3. Use the LINK program (see description later) to link one or more
object files to create a run file.
4. Execute the run file.]
In this demonstratiori, the system files we need (assembler and linker,
are in drive C and the programmer’s disk is in drive A. We make A the defaul’
drive so that the files created will be stored on the programmer’s disk.

Step 1. Create the Source Program File

We used an editor to create the preceding program, with ﬁlg namlf
PGM4_1.ASM. The .ASM extension-is'the conventional extension used t(
identify an assembly language source file.

Chapter 4 Introduction to IBM PC Assembly Language 71

Figure 4.8 Programming
Steps

create source brogram
4
’ ASM
file
- y
* Assembler assembie source
- program
S '
.08J
file N
L 4
 Linker link object program
EXE
. file
*

Step 2. Assemble the Program

We use the Microsoft Macro Assemblér (MASM) to translate the
source file PGM4_1.ASM into a machine language object file called PGM

" 4_1.0B]. Tbe ;implest;commaﬁd is [user’s response appears in boldface):

1.

72 4.10 Creating and Running a Program

A>C:MASM PGM4_1;
Microsoft (R) Macro Assembler Version 5.10
Copyright (C) Microsoft. Corp 1981, 1988. All rights reserved.
50060 + 418673 Bytes symbol space free
0 Warning Errors
0 Severe Errors

After printing copyright information, MASM checks the source fije
for syntax errors. If it finds any, it will display the line number of each error
and a short description. Because there are no errors here, it ‘translates the
assembly language code into a machine language object file named
PGM4_1.0Bj.

i The semicolon after the preceding command means that we don't
want certain optional files generated. Let’s omit it and see what happens:

~>C:MASM PGM4_1)
Microsaf. (R) Macro Assembler Version 5.10
Copyrisht (C) Microsoft Corp 1981, 1%38. All rights reserved.
Okbject filzname {PGM4_.1.CBJ]:
Scurce listing (NUL.LST}: PGM4_1
i risss-refercnce [NUL.CRF}: PGM4_1
500606 - 418673 Bytes symbcel spave {ree
G Warnung Errors
C Severe Er:ors

This time MASM prints the names of the files it can create, then waits for
us to supply names for the files. The default names are enclosed in square
brackets. To accept a name, just press return. The default name NUL means
that no file will be created unless the user does specify a name, so we reply
with the name PGMJ4_1.

The Source Listing File

The source listing file {.IST file) is a linc-numbered text file that dis-
plays assembly language cude and the corresponding machine code side bv side,
and gives other information about the program. It is especially helpful for de-
bugging purposcs, because MASM's error messages refer to Line numbers.

The Cross-Reference File

The cross-refercnce file ((CRF file) is a listing of names that uppear
in the program and the line numbers on which they occur. It is useful in
locating variables and labels in a Jarge program.

Examples of .LST and .CRF files are shown in Appendix D, along ¥
with other MASM options.)

Chapter 4 Introduction to IBM PC Assembly Language 73

Step 3. Link the Program

. The ,OBJ fite created in step 2 is a machine language file, but it cannot’
be executed because jt doesn’t have the proper run file format. In particular,

1. because it is not known where a program will be loaded in mem-
ory for execution, some machme code addresses may not have
been filled in.

2. some names used in the program may not have been defined in
the program. For example, it may be necessary to create scveral
files for a large program-and a procedure in onc file may refer 1o

+ a name dcfined in another file. e

The LINK program takes one or more object files, fills in any missing

addresses, and combines the object files into a single executable file (EXE

file). This file can be loaded into memeory and run.
To link the program, type

2>C:LINK PGM4 1

As befare, if the scmiceton is omitted, the linker wil) prompt you tor names
of the cutput fiies generated. See Appendix D.

' Step 4. Run the Program

To run it, just type the run file name, witli or without the [EXE
extension.

A>PGMA_1

3 N

A

The peoviam prinds o 7" andt wails for us 1o enter a chajacter. We enter “A”
and the pregroe cehoes it on the next line.

4.11
Displaying a String

In our hm program. we llsed INY Z21h, functions 1 and 2, to read
and display a single character. Heee is anothier INT 21k fum'-(n that can be
used to display a cha:acte steing: - -

1 4 - -

INT 21h, Function 9:
Display a String

" Input: DX = offset address of string.
. The string must end with a ‘S’ character.

The “$” marks the end of the string and is not displaycd. If the siring contains
the ASCII code of a control character, the control function is performed.

" To demonstrate this function, we will write a progsa,. that prints
“HELLO!” on the screen. This message is defined in the data segment as

MSG DB ‘HELLO!S’

74 4.11 Displaying a-String

The LEA Instruction

INT 21h, function 9, expects the offset address of the character string
to be in DX. To get it there, we use a new instruction: 7

LEA destination, source

where destination is a general register and source is a memory location. LEA
stands for “Load Effective Address.” It puts a copy of the source ofiset address
into the destination. For example,

LEA DX, MSG

puts the offset address of the variable MSG into DX,

Because our second program contains a data segment, it will begin
with instructions that initialize DS. The following paragraph explains wh
these instructions are needed.

Program Segment Prefix

When a program is loaded in memory, DOS prefaces it with a 256-
byte program segment prefix (I’'SP). The PSP contains information about
the program. So that programs may access this area, DOS places its segment
number in both DS and ES before executing the program. The result is that
DS does not contain the segment number of the data segment. To correct
this, a program containing a data segment begins with these two instructions:

MOV AX, @DATA

MOV DS, AX
~. @Data is the name of the data segment defined by .DATA. The assembler
- translates the name @DATA into a segment number. Two instructions are
- needed because a number (the data segment number) may not be moved

—directly into a segment register.
With DS initialized, we may print the "HELLO!” message by placing

its address in DX and executing IN‘I‘ 21h:

LEA DX,MSG ;get message
MOV AH, 9 ;display string function
INT 21h ;display string

Here is the complete program:

Program Listing PGM4_2.ASM
TITLE PGM4_2: PRINT STRING PROGRAM
.MODEL SMALL
.STACK 100H
.DATA
MSG DB 'HELLO! S’
.CODE
MAIN PROC
;initialize DS
MOV AX, @DATA

) MOV DS, AX ;initialize DS
;display message]
“LEA DX, MSG o ;get message
. MOV AH,9 . _' .. ;display string function
: INT 21h ;display message

sreturn to DOS
MOV AH, 4CH

Chapter 4 Introduction to IBM PC Assembly Language 75

INT 21h ’ - :DOS exit
MAIN ENDP
END MAIN

And here is a sample execution:

A> PGM4-2
HELLO!

4.12
"A Case Conversion
Program

, .

We will now combine most of the material covered in this chapter
into a single program. This program begins by prompting the user to enter
a lowercase letter, and on the next line displays another message with the

letter in uppercase. For example,

ENTER A LOWERCASE LETTER:
IN UPPER CASE IT IS: A

We use EQU to define CR and LF as names for the constants ODH
and OAH. - .

CR EQU ODH

LF EQU OAR

The messages and the input character can be stored in the data seg-

- ‘ment like this:

MSG1 DB ‘ENTER A LOWERCASE LETTER: S’
MSG2 DB CR,LF, ‘IN UPPER CASE IT IS: '’

CHAR DB’ ?,'§’

In defining MSG2 and CHAR, we have used a helpful trick: because
the program is supposed to display the second message and the letter (after
conversion to upper case) on the next line, MSG2 starts with the ASCII codes
for carriage return and line feed; when MSG2 is displayed with INT 21h,
function 9, these control functions are executed and the output is displayed
on the next line. Because MSG2 does not end with ‘$’, INT 21h goes on and
displays the character stored in CHAR.

Our.program begins by displaying the first message and reading the
character: ‘

LEA DX,MSG1 ;get first message

MOV AH, 9 ;display string function

‘INT 21h . . idisplay first message

MOV AH,1 . ;read character function

INT 21h ;read a small letter into AL

- Having read a lowercase letter, the program must convert it to upper case.

.

In the ASCII character sequence, the lowercase letters begin at 61h and the
uppercase letters start at 41h, so subtraction of 20h from the contents of AL

does the conversion:

SUB AL, 20H -; -,iconvert it to upper case

- MOV CHAR,AL .- ;iand store it

._No;y' the program displays the second message and the uppercase letter:

76 4.12 A Case Conversion Program

LEA D«,MSG2 ;get second message
MOV AH,9 ;display string function
INT 2lh ;display message and uppercase letter

Here is the complete program:

Program Listing PGM4_3.ASM
TITLE PGM4__3: CASE CONVERSION PROGRAM
.MODEL SMALL

TACK 1N3R
.DATA
CR “EQU ODH
LF EQU 0AH
MSGl1 DB *ENTER A LOWEP. CASE LETTER: §$°
MSG2 DB ODH,CAY,’IN UPPER CASE IT IS: °’
CHAR DB 7,78
.CODE

MATN PROC
;initialize DS .
MoV AX, ®DATA ;get data segment

MOV DS,aX. . sinitialize DS
;print user rrompt
LEA DY, SGL ;get firrt message
MOV AH, ;display string function
inNT 214 - ;display first message
;input 4 character and convert tc upper case
MOV AH,1 sread character functicn
INT 21H ;read a small letter into AL
5UB AL, 20H ;convert it to upper case
MCV CHAR,AL ~ ;and store it
;display on the .next ltine
LEA = DX, MSG2 :get second message
MOV A, 9, ;display string functicn
INT ZlHyO ' ;display messagye and upper case
;D08 exit ’ ;letter in front
MoV AH, 4CH
INT 21H ;DOS exit
MAIN . END2 { . -
END MAIN®
.k
Summary

¢ Assembly language programs are made up of statements. A state-
ment is either an instruction to be executed by the computer, or
a directive tor the asscinbler.

e Statements have name, operation, operand(s), and comment
fields. - :

. * A symbolic name can contain up to 31 characters. The characters
can be letters, digits, and certain special symbols. :

Numbers may be written in binary, decimal, or hex.

¢ Characters and character strings must be enclosed in single or
double quotes.

Chapter 4 Introduction to IBM PC Assembly Language .?7

- Directives DB and DW are used to define byte and word variables,
respectively. EQU can be used to give names to constants.

A program generally contains a code segment, a data segment,
and a stack segment. s

MOV and XCHG are used to transfer data. There are some restric-
tions for the use of these instructions; for example, they may not
operate directly between memory locations.

ADD, SUB, INC, DEC, and NEG are some of the basic arithmetic
instructions. .

There are two ways to do input and output on the IBM PC: (1) by
direct communication with 1/O devices, (2) by using BIOS or DOS
interrupt routines.

The direct method is fastest, but is tedious to program and
depends on specific hardware circuits.

Input and output of cﬁamctéfs and strings may be done by the
DOS routine INT 21h.,

INT 21h, function 1, causes a keyboard character to be read into AL.

INT 21h, function 2, causes the character whose ASCII code is in

DL to be displayed. if DL contains the code of a control charac-
ter, the control function is performed.

e INT 21h, function 9, causes the string whose offset address is in
DX to be displayed. The string must ¢nd with a “$” character.

Glossary

- array
assembler dircctive

code segment

.CRF file

data scgment
dcstination opcrand -«

EXE file
instruction

<

Y

.LST file

mcmory modcl

A scquence of memory bytes or words

Directs the assembler to perform some
specific task

-Part of the program that holds the

instructions

A file created by the assembler that lists
namesthat appear in a program and line

- numbers where they occur

Part of the program that holds variables
First operand in an instruction—receives
the result

Same as run file

A statement that the assembler translates
to machine code

A line-numbered tile created by the assem-
bler that displays assembly language
code, machine code, and other informa-
tion about a program

Organization of a program that indicates
the amount of code and data

78

Glossary

object file

Program scgment prefix,

rsp

’

" pecudo-op

run file

source operand
source program file
stack4egment

variable

' The machine language file created by the

assembler from the source program file

The 256-byte area that precedes the pro-
gram in memory~—contains information
about the program

Assembler directive

The executable machine language file
created by the LINK program

Second operand in an instruction—-
usually not changed by the instruction
A program text file' created with a word
processor or text editor .

Part of the program that holds the run-
time stack '
Symbolic name for a memory location
that stores data

New Instructions

g T =

ADD INT 'NEG
DEC LEA SuB
INC MOV XCHG
New Pseudo-Ops
.CODE .MODEL EQU
.DATA . STACK
Exercises
1. Which of the following names are legal in IBM PC assembly

language?

a. TWO_WORDS

b. 21

¢. Two words

d. .e?

e. $145

f. LET’S_GO

2. Which of the following are legal numbers? If they are legal, tell
whether they are binary, decimal, or hex numbers. :

246
246h
1001
1,101
2A3h
FFEEh

L]
-0 Q0 o

Chapter 4 Introduction to IBM PC Assembly Language - 79

g. OAh
h. Bh
i. ‘1110

3. Hfitis legal give data definition pseudo-ops 10 define each cf the
following.
~a. A word variable A initialized to 52
A word variable WORD1, uninitialized
A byte variable B, initialized to 25h
A byte variable C1, uninitialized
A word variable WORDZ2,.initialized to 65536
A word array ARRAY], initialized to the first five positive
integers (i.e. 1-5)
g- A constant BELL equal to 07h
‘h. A constant MSG equal to ‘THIS IS A MESSAGES’

4. Suppose that the following data are loaded starting at offset 0000h:

-0 an o

A DB -7
B DW " 7 1ABCh
c DB L ‘HELLO'

_Give the offset address assigned to variables A, B, and C.
Give the contents of the byte at offset 0002h in hex.
“Give the contents of the byte at offset 0004h in hex.
Give the offset address of the character “O” in “HELLO.”

S. 'l”ell whether each of the following instructions is legal or illegal.
W1 and W2 are word variables, and Bl and B2 are byte variables.

a. MOV DS,AX
MOV DS, 1000h
MOV CS,ES
MOV W1, DS
XCHG W1,W2
SUB 5, B1

ADD B1,B2
ADD AL, 25%
MOV W1,Bl

6. Using only MOV, ADD, SUB, INC, DEC, and NEG, translate the
following high-level language assignment statements into assem-
bly language. A, B, and C are word variables.

S

- Fm - AN o

a. A=B-A
b. A——(A+l)
[ohy C=A+B

d B=3xB+7 '
e. A=B-A-1
7. Wirite instructions (not a complete program) to do the following.
a. Read a character, and display it at the rnext position on the
same line.
b. Read an uppercase letter (omit error checking), and display it
at the next position on the same line in lower case.

80

Programming Exercises

Programming Exercises

8.

10.

11.

12.

Write a program to (a) display a “?”, (b) read two decimal digits
whose sum is less than 10, (¢) display them and their sum on the
next line, with an appropriate message.

Sample execution:

227 ‘

THE SUM OF 2 AND 7 IS 9

Write a program to (a) prompt the user, (b) read first, middle, and
last initials of a pcrson’s name, and (c) display them down the
left margin.

Sample execution:

ENTER THREE INITIALS: JFK

J

£

K .

Write a program to rcad one of the-hex digits A-I, and display it
on the next line in decimal.

Sample execution:

"ENTER A HEX CLLIGIT: C

IN DECIMAL IT IS 12

Write a program to display a 10 x 10 solid box of asterisks.
Hint: declare a string in the data segment that specifies the box,
and display it with INT 21h, function 9h.

Write a program to (a) display “?”, (b) read three initials, (c) dis-
play them in the middle of an 11 x 11 box of astcrisks, and (d)
beep the computer. .

The Processor Status
and the FLAGS

Register

Overview

One important feature that distinguishes a computer from other ma-
chines is the computer’s aljlity to make decisions. The circuits in the CPU
can perform simple decision making based on the current state of the pro-
cessor. For the 8086 processor, the processor state is implemented as nine
individual bits called flags. Each decision made by the 8086 is based on the
values of these flags.

The flags are placed in the FLAGS register and they are clussified as
cither status flags or control tlags. The status flays reflect the result of a
computation. In this chapter, you will see how ey are affected by the
machine instructions. In Chapter 6, you will sc: how they are used to im-
plement jump instructions that allow progr ..s to have multiple branches
and loops. The control flags are -used to en.ole or disable certain operations
of the processor; they are covered in later ci apters.

In section 5.4 we introduce the DOS prcgram DEBUG. We'll show
how to use DEBUG 10 trace through a user progruin and to display registers,
flags, and memory locations.

5.1 .
The FLAGS Register

Figure 5.1'shows the FLAGS rceygister. The status flags are located
in Lits 0, 2, 4, 6, 7, and 11 and the control flags are located in bits §, 9, and
10. The other bits have no significance. Nole: it's not important to remember

81

82 5.1 The FLAGS Register

Figure 5.1 The FLAGS
Register

15 14 13 12 11 10 9 8 7 6 S5 4 3 2

L1 1 | lorloe[w]re]sefze] far] fe] ‘]:F]

which bit is which flag—Table 5.1 gives the names of the flags and their

symbols. In this chapter, we concentrate on the status flags.-

The Status Flags

As stated earlier, the processor uses the status flags to reflect the
result of an operation. For example, if SUB AX,AX is executed, the zero flag
becomes 1, thereby indicating that a zero result was produced. Now let’s get

*to know the status flags.

Carry Flag (CF)

CF = 1 if there is a carry out from the most significant bit (msb) on
addition, or there is a borrow into the msb on subtraction; otherwise, it is
0. CF is also affected by shift and rotate instructions (Chapter 7).

Parity Flag (PF)

PF = 1 if the low byte of a result has an even number of one bits
(even parity). It is O if the low byte has,odd parity. For exampl®, if the result
of a word addition is FFFEh, then the low byte contains 7 one bits, so PF = Q.

Table 5.1 Flag Names and Symbols

Status Flags

Bit . Name Symbol
0 Carry flag CF
2 Parity flag PF
4 Auxiliary carry flag AF
6 Zero flag ZF
7 . Sign flag) SF
1 . Overflow flag QF
-Control Flags ;
Bit Name “Symbo#
8 Trap flag TF
9 Interrupt flag IF

10 ’ Direction flag DF

Chapt\er' 5 The Processor Status and the FLAGS Register . 83

Auxiliary Carry Flag (AF)

AF = 1 if there is a carry out from bit 3 on addition, or a borrow intc
bit 3 on subtraction. AF is used in binary-coded decimal (BCD) operations

(Chapter 18).

Zero Flag (ZF)
ZF = 1 for a zero resuit, and ZF = O for a nonzero result.i

‘Sign Flag (SF)

SF = 1 if the msb of a result is 1; it means the result is negative if
you are giving a signed interpretation. SF = O if the msb is O.

.Overflow Flag (OF) . o)
OF =1 if signed overflow occurred, otherwise it is 0. The meaning

-of overflow is discussed next.

5.2

Overflow

The phenomenon of overflow is associated with the fact that the
range of numbers that can be represented in a computer is limited.
Chapter 2 explained that the (decimal) range of signed numbers that

‘can be represented by a 16-bit word is -32768 to 32767; for an 8-bit byte
-the range is ~128 to 127. For unsigned numbers, the range for a word is 0

to 65535; for a byte, it is 0 to 255. If the result of an operation falls outside
these ranges, overflow occurs and the truncated result that is saved will be

X incorrect.

Examples of Overflow

Signed and unsigned overflows are indgpendent phenomena. When
we perform an arithmetic operation such as addition, there are four possible
outcomes: (1) no overflow, (2) signed overflow only, (3) unsigned overflow
only, and (4) both signed and unsigned overflows.

As an example of unsigned overflow but not signed overﬂow sup-
pose AX contains FFFFh, BX contains 0001h, and ADD AX,BX is executed.

" The binary result is

S 111111111111 111
+ 0000 0000 0000 0001

* 1 0000 0000 000G (60O

If we.are g:vm;, an unsigned interpretation, the correct answer is
10000h 65536, but this is oul of range for a word operation. A 1 is cariied
out of the msb and the answer stored in AX, 0000h, is wrong, so unsigned
overflow occurred. But the stored anbwer is correct as a signed number, for
FFFFh = -1, 0001h = 1, and FFFFh + 0001h = -1 + 1 = 0, so signed overflow

did not occur.
As an example of signed but not unsigned overflow, suppose AX and

- BX both contain 7FFFh, and we execute ADD AX BX. The bmary result is

84

5.2 Overflow

0111 1111 1111 1111
+ 0111 1111 11111111

11111117 1111 1110 = FFFEh

The signed and unsigned decimal interpretation of 7FFFh is 32767. Thus for
both signed and unsigned addition, 7FFFh + 7FFFh = 32767 + 32767 = 65534.
This is out of range for signed numbers; the signed interpretation of the
stored answer FFFEh is -2, so signed overflow occurred. However, the un-
signed interpretation of FFFEh is 65534, which is the right answer, so there
is no unsigned overflow.

There are two questions to be answered in connection with overflow:

(1) how does the CPU indicate overflow, and (2) how does it know that
overflow occurred?

How the Processor Indicates Overflow

The processor sets OF = 1 for signed overflow and CF = 1 for unsigned
overflow. It is then up to the program to take appropriate action, and if
nothing is done immediately the result of a subsequent instruction may
cause the overflow flag to be turned off.

in determining overflow, the processor does not interpret the result
as aither signed or unsigned. The action it takes is to use both interpretations
for cach operation and to turn on CF or OF for unsigned overflow or signed
overflow, respectively.

It is the programmer who is mterprctm;, the results. if a-signed in-,
terpretation is being given, then only OF is of interest and CF can be ignored;
conversely, for an unsigned interpretation CF is important but not OF.

How the Processor Determines that Overflow Occurred

Many instructions can cause overflow; for simplicity, we’ll limit the
discussion to addition and subtraction.

Ur;signed Overflow

On addition, unsigned overflow occurs when there is a carry out of
the msb. This means that the correct answer is larger than the biggest un-
signed number; that is, FFFFh for a word and FFh for a byte. On subtraction,
unsigned overflow occurs when there is a borrow into the msb. This means
that the correct answer is smailer than Q.

Signed Overflow

_ On addition of numbers with the same sign, signed ovérflow occurs
when.the sum has a different sign. This happened in the preceding example
when we were adding 7FFFh and 7FFFh (two positive numbers), but got
FEFEL (2 negative result), '

Subtraction of numbers with different signs is like adding numbers
of the same sign. For example, A - (-B) = A + B and -A -(+B) = -A + -B.
Signed overflow occuss if the. result has a. dix’ferem sign than expected. See
example 5.3, in the next section:

In addition of numbers with different signs, “overflow is imposslb!e,
because a sum like A + { -B) is really A - B, and because A and B are small
enough to fit in the destination, so is A - B. For exactly the same reason,
subtraction of numbers with the'same sign cannot give overflow.

Chapter 5 The Processor Status and the FLAGS Register 85

’

Actually, the processor.uses the following method to set the OF: If
the carries into and out of the msb don’t matgh—that is, there js a carry into
the msb but no carry out, or if there is a carry out but no cagry in—then
signed overflow has occurred, and OF is set to 1. See example 5.2, in the
next section.

5.3
How Instructions
- Affect the Flags

. / .

In general, each time the processor executes an instruction, }lfc tlags .
are altered to reflect the result. Howc.'\lcr, some instructions don’t affect any
of the flags, affect only some of them, br may leave them undefined. Because
the jump instructions studled in Chapter 6 dependdon the flag settings, it’s
important to know what each instruction does to the flags. Let's return to

the seven basic instructions introduced in Chapter 4. They affect the flags
as follows: ' .

v

Instruction . ‘Affects flags

MOV /XCHG,) none

ADD/SUB ' alt

INb{DEC all except CF

NEX " all (CF = 1 unless result is 0,

OF = 1 if word aperand 1s 800Ch,
or byte operand is 80h)
To,_get you used to seeing how these instructions affect the flags, we will do
several examples. In each example, we give an instruction, the contents of
the operands, and predict the result and the settings of CF, PE, ZI; SF, and
OF (we ignore AF because it is used only for BCD arithmetic).

‘Example §.1 ADD AX,BX, where AX contains FEFFh, BX contains

FFFFh.

Solution: }FFFh
+ I-’F_I-'l’h
1 FFYth

The result stored In AX is FFFEh = 1111 141y i1l 1 .

SF = 1 because the msb is 1.

PF = 0 because there are 7 (odd number) of 1 bits in the low byte
of the result.

ZF = 0 because the result is nonzero.
CF = 1 because there is a carry out of the msb on addition.

OF = 0 Because the sign of the stored result is the same as that of
tho_ nuinbers being added (as a binary addition, there is a
carry into the msh and also a carry out).

Example §.2 ADD AlBL, where AL contains 80h, B contains 80h.

Solution: " 80h - '
+ R0h.
1 0Ch

86 5.3 How Instructions Affect the Flags

The result stored in Al is OOh.

SF = 0 because the msb is 0.

PF = 1 because all the bits in the result are 0.

ZF = 1 becausc the result is 0.

CF = 1 because there is a carry out of the msb on addition.

OF = 1 because the numbers being added are both negative, but
the result is O (as a binary addition, there is no carry into
the msb but there is a carry out).

Example §.3 SUB AX,BX, where AX contains 8000h and BX contains
0001h.

Solution: s 8000h
-0001h

7FFFh=0111 1111 1111 1111

The result stored in AX {% fm
SF = 0 because the msb is 0.

PF = 1 because there are 8 (even number) one bits in the low byte
of the result.

ZF = 0 because the result is nonzero.

CF = 0 because a smaller unsigned number is being subtracted
from a larger one.

Now for OF. In a signed sense, we are subtracting a positive number from
a negative one, which is like adding two ncgatives. Because the result is
positive (the wrong sign), OF = 1.

Example 5.4 INC Al, where AL contains FFh.

Solution: FFh
+ 1h

) T00h
The result stored in AL is 00h. SF = 0, PF = 1, ZF = 1. Even though there

is a carry out, CF is unatfected by INC. This means that if CF = 0 before |
the execution of the instruction, CF will still be 0 afterward.

OF = 0 becausé numbers of unlike sign are bemg added (there is a carry
into the msb and also a carry out). .
Example 5.5 MOV AX, -5

Solution: The result stored in AX is =5 = FFFBh.

None of the flags are aifected by MOV.

Example 5.6 NEG AX, where AX contains 8000h.

A

Chapter 5 The Processor Status and the FLAGS Register &7

Solution: 8000h = 1000 0000 0000 0000.
one’s complement- 011111111111 1111
’ +1

. 1000 0000 0000 0000 = 8000h
The result stored in AX is 8000h : [
SF=1,PF=1,ZF = 0.

.CF = 1, because for NEG CF is always 1 unless the result is 0.

OF = 1, because the result is 8000h; when a number is negated,
we would expect a sign change, but because 8000h is
its own two’s complement, there is no sign change.

In the next section, we mtroduce a program that lets us see the actual
settmg of the flags. .

7>

‘5.4
The DEBUG Program

. The DEBUG progrém provides an environment in which a program
may be tested. The user can step through a program, and display and change

" the registers and memory. It is also possible to enter assembly code directly,

which DEBUG converts to machine code and stores in memory. A tutorial
for DEBUG and CODEVIEW a more sophisticated debugger, may be found
in Appendix E.

We use DEBUG to demonstrate the way instructions affect the flags.
To that end, the following program has been created.

Program Listing PGMS5_1.ASM

TITLE PGMS 1:CHECK FLAGS

;used in DEBUG to: check flag settxnga
.MODEL SMALL

.STACK 100H

.CODE

MAIN PROC o

T Mov AX, 4000H ;AX = 4000h
ADD - AX,AX- ihX = 8000h
SUB. AX,OFFFFH ;ax ='8001h
NEG AX - iAX =]FFFh
INC- AX : :AX .8000h
MOV AH, 4CH

, INT - 21H ;:DOS exit

MAIN ENDE .
END ~ MAIN

We ‘assemble and link the program, producing the run file

; PGMS 1.EXE, which is on a disk in drive A. In the following, the user’s

responses are in boldface.
The DEBUG piogram is on the DOS disk, which is in drive C. To

., enter DEBUG with our demonstration program, we type

'C>DEBUG A:PGMS_1.EXE

"DEBUG tesponds by'its prompt, “ =¥, and waits for a commagd to be entered)
First, we can view the registers by typing “R”. :

88

5.4 The DEBUG Program

_R -

AX=0000 BX=0000 CX=001F DX=0000 SP=000A BP=0000 SI1=0000 DI=0000
DS=QEDS5 ES=0EDS SS=0EES CS=0EE6 IP=0000 NV UP DI PL NZ NA PO NC
QEE6:0000 BB0040 MOV AX, 4000

The display shows the contents of the registers in hex. On the third line of
the display, we see

OEE6:0000 B80Q40 MOV AX,4000

OEE6:0000 is the address of the next instruction to be executed, in segs
ment:offset form. B80040h is the machine code of that instruction. Segment
OEE6h is where DOS decided to load the program; if you try this demonstra-
tion, you will &robably see a different segment number.

. The eight pairs of letters appearing on the sccond line at the right
are the current flag settings. The flags appear in this order: OF, DF, IF, SF, ZF,
AT, PE, and CF. Table 5.2 gives the symbols DEBUG uses for the flags. You
can see that they have been cleared by DEBUG. The meaning of the control
flag symbols are explained in Chapters 11 and 15.

To step through our program, we use the “7” (trace) command. Be-
fore doing so, let’s display the registers again.

-R

AX=0000 BX=0000 CX=001F DX=0000 SP=000A BP=0000 SI=0000 DI=0000
DS=QEDS ES=0EDS SS=0EES CS=0EE6 IP=0000 NV UP DI PL NZ NA PO NC
OEE6:0000 B30040 MOV AX, 4000

The first instruction is MOV AX,4000h.

~

~-T

AX=4000 EX=CC00 CX=J01F DX=0000 SP=0C0A EP=C000 SI=0000.0I=3000
28=0FEDS% ES=CEDS SS=0EES CS=0EE$ IF=0003 NV UP DI PL NZ & PO NC
CEE6:5003 T3TC ALD L AXK,AX

Execution of MOV AX,4000h puts 4000h in AX. The flags are un-
changed since a MOV doesn’t affect them. Now let’s execute ADD AX,AX:

-7

AX=8000 BX=0(J0 CX=001F DX=0000 $P=000A BP=0000 SI=0000 pI=2000
DS=0EDS ES=0EDS5 S$S=0EES CS=0EE6 IP=0005 OV UP DI NG Nz NA PE NC
OEE6:0005 2DFFFF SuUB AX, FFFF

Chapter 5 The Processor Status and the FLAGS Register 89

Table 5.2 DEBUG Flag Symbols

Status Flag i Set (1) Symbol Clear (0) Symbol
CF . ‘CY A{carry) NC (no carry)
PF PE (even parity) PO (odd parity)
AF AC (auxiliary carry) NA (no auxiliary carry)
ZF ZR (zero) NZ (nonzero)
SF NG (negative) PL (plus)
OF . . OV (overfiow) NV (no overfiow)
" Control Flag
DF . DN ‘(down) UP (up)
IF ' " €l (enable interrupts) DI (disable interrupts)

AX now contains 4000h + 4000h = 8000h. SF becomes 1 (NG) to indicate
a negative result. Signed overflow is indicated by OF = 1 (OV) because we
added two positive numbers and got a negative result. PF = 1 (PE) because
the low byte of AX contains no 1's.

Next we trace SUB AX,0FFFFh:

-T

AX=8001 BX=0000
DS=CEDS> ES=QED5
OEE6:0008 F7D8

CX=001F DX=0000 SP=000A BP=0000 SI=00C0 DI=0000
5S=0EES CS=QE£6 1P=0008 NV UP DI NG NZ AC PO CY
NEG AX

AX gets 8000h - FFFFh = 8001h, OF changes back to 0 (NV), because we are

. subtracting numbers of like sign, so signed overtiow is impossibie. However,

CF =1 (CY) indicates that we got unsigned overflow, because we have sub-

tracted a bigger unsigned number from a smaller one, which requires a bor-

row into the msb. PF = 0 (PO) because the low byte of AX has a single 1.
Now let's trace NEG AX:

-T

AX=T7FfEF BX=0000
DS=JEDS ES=0EDS
OEE6:000A 49

CK=001F DX=OOOQ SP=000A BP=0000 SI=0000 DI=0000
$S=0LES CS=0Ek% 1P=000A NV UP DI PL NZ AC PE CY
INC AX

.

AX gets the two's complement of 8001h = 7FFFh. For NEG, CF = 1 (CY)
unless the result is 0, which is not the case here. OF = 0 (NV) because the
result is not-8000h.

Finally, we execute INC AX:

90

Summary

-T
AX=8000 BX=0000 CX=001F DX=0000 SP=000A BP=0000 SI=0000 DI=0000
DS=0ED5 ES=0EDS SS=0QEES CS=0EE6 IP=000B OV UP DI NG NZ AC PE CY

OEE6:000B B44C MOV AH, 4C

OF changes back to 1 (OV) because we added two positives (7FFFh and 1),
and got a negative result. Even though there was no carry out of the msb,
CF stays 1 because INC doesn’t affect this flag.

To complete execution of the program, we can type “G” (go):

-G .
Program terminated normally

and to exit DEBUG, type “Q” (quit)

-Q
Cc>

Summary \

* The FLAGS register is one of the registers in the 8086 microproces-
sor. Six of the bits are called status flags, and three are control flags.

e The status flags reflect the result of an operation. They are the
carry flag (CF), parity flag (PF), auxiliary carry flag (AF), zero flag
(ZF), sign flag (SF), and overflow flag (OF).

* CFis 1 if an add or subtract operation generates a carry out or
borrow into the most significant bit position; otherwise, it is 0.

s PFis 1 if there is an even number of 1 bits in the result; other-
wise, it is 0.)
e AFis1ifthereisa carry out or borrow into bit 3 in the result;
otherwise, it is 0.
o ZF is 1 if the result is O; otherwise, it is O.
e SFis 1 if the most significant bit of the result is 1; otherwise, it is 0.

e OFis 1 if the correct. signed result is too big to fit in the destina-
- tion; otherwise,:it is.0,.-..- -~ — - :

Chapter 5 The Processor Status and the FLAGS Register 91

Overflow occurs when the correct result is outside the range of
values represented by the computer. Unsigned overflow occurs if
an unsigned interpretation is being given to the result, and
signed overflow happens if 4 signed interpretation is being given.

The processor uses CF and OF to indicate overflow: CF = 1 means
that unsigned overflow occurred, and OF = 1 indicates signed
overflow.

The processor sets CF if there is a carry out of the msb on addi-

tion, or a borrow into the msb on subtraction. In the latter case,
this means that a larger unsigned number is being subtracted

* from a smaller one.

The processor sets OF if there is a carry into the msb but no carry
out, or if there is a carry out of the msb but no carry in.

There is another way to tell whether signed overflow occurred on ad-
dition and subtraction. On addition of numbers of like sign, signed
overflow occurs if the result has a different sign; subtraction of num-
bers of different sign is like adding numbers of the same sign, and
signed overflow occurs if the result has a different sign.

On addition of numbers of different sign, or subtraction of num-
bers of the same sign, signed overflow is impossible.

Generally the execution of each instruction affects the flags, but
some instructions don't affect any of the flags, and some affect
only some of th2 flags.

The settings of the flags is part of the DEBUG display.

The DEBUG program may be used to trace a program. Some of its
commands are “R”, to display registers; “T”, taetrace an instsuc-
tion; an? “G”, to execute a program.

. flags

1.

Glossary -
control flags Flags that are used to’e nable or disable
) certain operations of the CPU

Bits of the FLAGS register that represent a

LT " condition of the CPU

FLAGS register Register in the CPU whose bits are Tlags

‘status flags . Flags that reflcct the result of an instruc-
tion executed by the CPU

Exercises

For cach of the following instructions, give the new destination
contents and the new settings of CE SE ZE PE, and OF. Suppose

-that the flags are initially 0 in each part of this question.

a. ADD aX,BX where AX contains 7FFFh and BX
contains 0001h

b. sus AL,BL wl;;ere AL contains 01h and BL contams
FF

¢. DEC AL where AL contains 00h

92

Exercises

. NEG AL where Al contains 7Fh
e. XCHG AX,BXx where AX contains 1ABCh and BX
contains 712Ah .
f. ADD AL,BL where AL contains 80h and BL contains
FFh
g. SUB AX,BX where AX contains 0000h and BX
contains 8000h

h. NEG 'Ax where AX contains 0001h

a. Suppose that AX and BX both contain positive numbers, and

ADD AX,BX is executed. Show that there is a carry into the
" msb but no carry out of the msb if, and only if, signed over-
flow occurs.

b. Suppose AX and BX both contain negative numbers, and
ADD AX,BX is executed. Show that there is a carry out of the
msb but no carry into the msb if, and only if, signed over-
flow occurs. '

Suppose ADD AX,BX is executed. In each of the following parts,

the first number being added is the contents of AX, and the sec-

ond number is the contents of BX. Give the resulting value of AX
and tell whether signed or unsigned overflow occurred.

-

a. 512Ch
+4185h

b. FEI12h
+ 1ACBh

c. ElL4h
+ DAB3h

d. 7132h
+7600h

e. 638%h
+1176h

Suppose SUB AX,BX is executed. In cach of the following parts,
the first number is the initial contents of AX and the second
nuinber is the contents of BX. Give the resulting value of AX and
tell whether signed or unsigned overflow occurred.

a. 2143h -
- 1986h

b. 81FEh
- 1986h

c. 19BCh
- 81FLh

d. 0002h
- FEOFh

e. 8BCDh
- 71ABh

Flow Control
Instructions

Owerview For assembly language programs to carry out useful tasks, there must
‘be a way to make decisions and repeat sections of code. In this chapter we
show how these things can be accomplished with the jump and loop in-
structions.

_The jump and loop instructions transfer control to another part of
lM&rarrT’Thls transfer can be unconditional or can depend on 2 partic-
ular combination of status flag settings.

- After introducing the jump instructions, we’ll use them to 1mplement
high-level language decision and looping structures. This application will make
it much easier to convert a pseudocode algorithm to assembly code,

.1
in Exa'n'wp'le of To get an idea of how the jump instructions work, we will write a
) Jump program to display the entire IBM character set.

R .'Program "Listing PGM6_1.ASM
1: TITLE FPGM6_1: 1BM CHARACTER DISPLAY

2: .MODELS SMALL

3: .STACK’ 100H

4: .CODE *

5: MAIN- PROC

6:. MOV ~ AH,2% ;display char function

7 MOV CX,256" ino. of chars to"display

8: MOV DL, 0 ;DL .has ASCII code of null che
9: PRINT_LOOP: ' :

93

94 6.2 Conditional Jumps

6.2
Conditional Jumps

10: " INT 21h ;jdisplay a char

11: INC DL ;sincrement ASCII code
12: DEC CX ;decrement counter

13: JN2 PRINT_LOOP +keep going if CX not 0
14: ;DOS exit :

15: MOV AH, 4CH

16: " CINT 21h

17: MAIN ENDP

18: ~ END MAIN

There are 256 characters in the IBM character set. Those with codes 32
to 127 are the standard ASCII display characters introduced in Chapter 2. IBM
also provides a set of graphics characters with codes 0 to 31 and 128 to 255

To display the characters, we use a loop (lines 9 to 13). Before en-
tering the loop, AH is initialized to 2 (single-character display) and DL is set
to 0, the initial ASCII code. CX is the loop counter; it is set t0 256 before
entering the loop and is decremented after each character is dlsplayed

The instruction that controls the loop is JNZ (Jump if Not Zero). If
the result of the preceding instruction (DEC CX) is not zero, then the JNZ
instruction transfers control to the instruction at label PRINT_LOOP. When
CX finally contains 0, the program goes-on to execute the DOS return in-
structions. Figure 6.1 shows the output of the program. Of course, the ASCHI
codes of backspace, carriage return, and so on cause a control function to
be performed, rather than displaying a symbol.

Note: PRINT_LOOP is the first statement label we’ve used in a pro-
gram. Labels are needed in situations where one instruction refers to another,
as is the case here. Labels end with a colon, and to make labels stand out,
they are usually placed on a line by themselves. If so, they refer to the

instruction that follows.

JNZ is an example of a cunditional jump instruction. The syntax is

JIXXX destination_label

Figure 6.1 Output of PGM6._1

C: \BIN>pyne_L 7

Cavee
Dov 1MGgtivere Y 28S/8° (Ine, -, 7B123456789: : <=)>T@ABCDEFGHI SKLINOPORS TUUUXYZL S

~” abcdelght JkInnopqretuvuxyzCl 3~ 00t 6RAAE S AEDY § MABEMOGOID UG DVRT 1 ELIRAR LK}
""°».| 1 Har {8y Ur - HIB St ol il Mo nEosrdonseaensz2< Tl 4= I

C \BIN>

Chapter 6 Flow Control Instructions 95’

If the condition for the jump is true, the next instruction to be executed is
the one at destination_label, which may precede or follow the jump instruc-
tion itself. If the condition is false, the instruction immediately following

" the jump is done next. For JNZ, the condition is that the result of the previous
operation is not zero,

Range of a Conditional Jump

The structure of the machine code of a conditional jump requires
-that destination_label must precede the jump instruction by no more than
126 b§es, or follow it by no more than 127 bytes (we'll show how to get
around this restriction later).

How the CPU Implements a Conditional Jump

To implement a conditional jump, the CPU looks at the FLAGS reg-
ister. You already know it reflects the result of the last thing the processor
did. {f the conditions for the jump (expressed as a combination of status tag

. settings) are true; the CPU adjusts the IP to point to the destination label, -

so that the instruction at this label will be done next. If the jump condition
» Is false, then IP is not altered; this means that the next instruction in line
will be done.
In the preceding program, the CPU executes JNZ PRINT_LOOP by
. inspecting ZF. If ZF = 0, control transfers to PRINT_LOOP; if ZF = 1, the
program goes on to execute MOV AH,4CH.
Table 6.1 shows the conditional jumps. There are three categories:
(1) the signed jumps are used when a signed interpretation is being given
to results, (2) the unsigned jumps are used for an unsigned interpretation,
and (3) the single-flag jumps, which operate on settingsfof individual
flags. Note: the jump instructions themselves do not affect the flags. \
The first column of Table 6.1 gives the opcodes for the jumps. Many

of the jumps have two opcodes; for example, JG and JNLE. Both opcodes
produce the same machine code. Use of one opcode or its alternate uafE"h

determined by the context in which the jump appears.

The CMP Instruction

The jump condition is often provided by the CMP (compare) instruc-
tion. It has the form .

CMP- destination, source .

This instruction compares destination and source by computing destination
contents minus source contents. The result is not stored, but the flags are
affected. The operands of CMP may not both be memory locations. Desti-
nation may not be a constant. Note: CMP is just like SUB, except that des-
tination is not changed?)

For example, suppose a-program contains these lines:

CMP AX, BX
JG BELOW
where AX = 7FFFh, and BX = 0001. The result of CMP AX,BX is 7FFFh ~

0001h = 7FFEh. Table 6.1 shows that the jump condition for)G s satisfied,
because ZF = SF = OF = 0, so control transfers to label BELOW.

96

6.2 Conditional Jumps

Table 6.1 Conditional Jumps

Signed Jumps
Symbol

JG/NLE

JGEANL

JUINGE

JLEING

Description

jumg if greater than
jump if not less than
or equal to

jump if greater than
or equal to

jump if not less than
or equal to

jump if less than
jump if not greater than
cr equal

Conditian for Jumps
Zf = 0 and SF = OF°

SF = OF

SF <> OF

jumnp if less than or equal ZF = 1 or SF <> OF

jump if not greater than

| Unsigned Conditional Jumps

Symbol
JA/INBE

JAE/INB.
JBINAE

IBE/INA

| Single-Flag Jumps

Symbol
19574

INESINZ

IC

INC

JO

INO

)5

INS
JPHPE
INP/IPO

Description
jump it above

Condition for Jumps
(F=0and ZfF =0

jump if not below or equal

jump if above or equal
jump if not below
jump if below

jump if not above or equal

jump if equat
jump if not above

Description

yjump if equal

jump if equal to zero
jump if not equal
jump it not zero
jump if carry

jump if no carry
jump if overflow
jump if no overfiow
jump if sign negative
jump if nonnegative sign
jump tf panty even
jump if parity odd

CF=0

CF =1

CF=1or2F=1

Condition for Jumps
2F =1

F=0
CF=1
CF=0
OF =1
Of =0
SF =1
SF=0.
PF =1
PF=0

V Chapter 6 Flow Controf Instrucuons 97

ingerpreting the Conditional Jumps

In the example just given, we determined by looking at the flags
after CMP was executed that control transfers to label BELOW. This is how
the CPU implements a conditional jump. But it’s not necessary for a pro-
grammer to think about the fags; you can just use the name of the jump
to decide if control transfers to the destination label. In the following,

" CMP AX,BX
JG BELOW

if AX i§ greater than BX (in a signed sense), hen JG (jump if greater than)

transfers to BELOW.
Even though CMP is specifically ‘esigned to be used with the con-
ditional jumps, they may be preceded by other instructions, as in PGM6_1.

Another example is

DEC 2X

JL THERE

Here, if the contents of AX in a signed sense, is fess than O, control transfers
to THERE.

Signed Versus Unsigned Jumps

Each of the signed jumps corresponds to an analogous unsigned
jump; for example, the signed jump JG and the unsigned jump JA. Whether
to use a signed or unsigned jump depends on the interpretation being given.
in fact, Table 6.1 shows that these jumps operatc on different flags: the signed

‘jumps operate on ZF, SF, and OF, while the unsigned jumps operate on ZF
and CF. Using the wrong kind of jump can lead to incorrect results.

For example, suppose we're giving a signed interpretation. If AX =
7FFFh, BX = 8000h, and we execute

CvMP AX,BX
JA BELOW

then even though 7FFFh > 8000h in a signed sense, the program does not jump -
to BELOW. The reason is that 7FFFh < 8000h in an unsq;ned sense, and we are
using the unsigned jump JA.

Working with Characters

In working with the standard ASCH character sct, either signed or
unsigned jumps may be used, because the sign bit of a byte containing a
character code is always zero. However, unsigned juinps should be used when
comparing extended ASCH characters (codes 80h to FIh).

?ﬂﬂple 6.1 Suppose AX and BX contain signed numbers. Write some
ode to put the biggest one in CX..)

Solution:

MoV OX,AX ;put BRX ip TX

CWP EX,CX.. ;is BX bigger?

JLE- HNEXT ~ ;n0, 3O on

MOV CX, By ;yes, put BX in CX

NEXT:

Bl 0.3 ihe JMP Instruction

6.3
The JMP Instruction

TheJMP Gjump) }nstmction causes an unconditional transfer of con-
trol (unconditional jump). The syntax is

JMP destination

where destination is usually a label in the same segment as the JMP itself
(see Appendix F for a more general description).

JMP can be used to get around the range restriction of a conditional
jump. For example, suppose we want to implement the following loop:

TOP:

;body of the leccyp

DEC CX ;decrement counter
JNZ TOP | ;keep looping if CX > 0
MOV AX,EX

and the loop body contains so many instructions that label TOP is out of
range for JNZ (more than 126 bytes before JMP TOP). We can do this:

TOP: .

;body of the locp

DEC CX . :decrement counter
JINZ BOTTOM skeep looping 1if CX > 0
JMP EXIT /
BOTTOM: - : -
JMP TOP
EXIT: .
MOV . AX,BX

6.4
High-Level Language
Structures

We’ve shown that the jump instructions can be used to implement
branches and Joops. However, because the jumps are so primitive, it is dif-
ficult, especially for beginning programmers, to code an algorithm with therd

without some guidelines.
Because you have probably had some experience with high-level lan-

* guage constructs—such as the IF-THEN-ELSE decision structure or WHILE

loops—we’ll show how these structures can be simulated in assembly language.
In each case, we will first express the structure in 2 high-level pseudocode.

6.4.1
Branching Structures

In high-level languages, branching structures enable a program to
take different paths, depending on conditions. In this section, we’ll look at

three structures.

IF-THEN
The 1F-THEN structure may be expressed in pseudocode as follows:

Chapter 6 Fiow Control Instructions - 99

IF condition is true v; =
THEN .
execute true-branch statements '

END_IF
See Figure 6.2,

The condition is an expression,that is true or false. If it is true, the
true-branch statements are executed. If it is false, nothing is done, and the -
program goes on to whatever follows.

L]

Example 6.2 Réplace.the number in AX by its absolute value.

’

Solution: A pseudocode algorithm is * °

IF AX < O

THEN

replace AX by -AX
END_IF

It can be coded as follows:

;if AX < O :
: CMP AX,0 JAX < 0 2
JNL END_IF ino, exit
;then R
A B NEG AX ;yes, change sign
END__IF: ’ -

The condition AX < 0 is expressed by CMP AX,0. If AX is not less than 0,
there is nothing to do, so we use a JNL (jump if not less) to jump around
the NEG AX. If condition AX < 0 is true, the program goes on to exccute

NEG AX.

-
LJure 6.2 IF-THEN

|

|
False @ ‘ True .

True-branch
statements *

100 6.4 -High-Level Language Structures

IF-THEN-ELSE

IF condition is'true

THEW

execute true-branch statements
ELSE

execute false-branch statements
END_IF
See Figure 6.3.

In this structure, if condition is true, the true-branch statements are
executed. If conditivn is false, the false-branch statements are done.

Example 6.3 Suppose AL and BL contain extended ASCII characters.
Display the one that comes first in the character sequence.

Solution:

IF AL <= BL

THEN
diszplay the character in AL
ELSE o
display the character in BL
END_IF
It can be coded like this:
MOV AH,2 ;prepare to dJdisplay
;if AL <= BL
CMP AL,BL ;AL <= BL?
. JNBE ELSE_ ;no, display char in BL
;then ;AL <= BL
MOV DL, AL ;move char to be displayed
JMP CISPLAY ;go to display
ELSE_: ;BL < AL

MOV DL, BL

Figure 6.3 IF-THEN-ELSE

False @ True

A 4

faise-branch True-branch
statements . statements

Chapter 6 Flow Control Instructions * 104

DISPLAY:
INT 21h ;display it

END_IF

) Note: the label ELSE_ is used because ELSE is a reserved word.

The condition AL <= BL is expressed by CMP AL BL. If it's false, the pro-
gram jumps around the true-branch statements to ELSE_. We use the un-
signed jump JNBE (jump if not below or equal), because we’re comparing

extended characters.
If AL <= BL is true, the true-branch statements are done. Note that

JMP DISPLAY is needed to skip the false branch. Thls is different from the
high-level language IF-THEN-ELSE, in which the false'branch statemnents are
automaucally skipped if the true-branch statements are done.

- CASE

A CASE is a multiway branch structure that tests a register, variable,
or expression for particular values or a range of values. The general form is
as follows:

CASE expression
values_l: statecments_1
values_2: statements_2

values_n: statements_n
END_CASE o . ’ .
See Figure 6.4. :
In this structure, expression is tested; if its value is a member of the set
values_i, then statements_i are executed. We assume that sets values_1,..,val-
ues_n are disjoint.

Example 6.4 If AX contains a negative number, put -1 in Bx,; if AX
contains 0, put 0 in BX; if AX contains a positive number, put 1 in BX.*

Figure 6.4 CASE

values_1 - values_2 vaiues_n

statements_1 “statements_2 statements_n

102

6.4 High-level Language Structures

Solution:

CASE AX
<0:
=0:
>0:

END_CASE

put

-1 in BX
put 0 in BX
put-1 in BX

It can be coded as follows:

;case AX
CMP
JL
JE
. JG
NEGATIVE:
MOV
JMP
ZERO:
. MoV
JMP
POSITIVE:
Mov
END_CASE:

Note: only one CMP is needed, because jump instructions do not affect the

I'{ PR

Examplc 6.5 If AL contains 1 or 3, display “o”; if AL contains 2 or 4,

display “e”
Solution:
CASE AL
1,3: display ‘e’
2,4: display ‘e’
END_CRSE
The code is
;jcase AL
;1,3
CMP AL,1
JE coc
cuMp AL, 2
) JE DT
;2,4 .
SME - nL, 2
. JE EVEN
Cup RI,d
‘ JET evEN’
T JMP T END_CASE’
CDD:)
MOV DL, ‘o’
*. .JMP DISPLAY
EVEN:
MOV DL, ‘e’

DISPLAY:

AX, 0
NRGATIVE
2ERO
PSSITIVE

BX,-1
END_CASE

BX, 0
END_CASE

EY, 1

AL =

;test ax

;AX < 0

;AX = 0

;AX > 0

;put -1 in BX
;and exit
;put 0 in BX
;and exit
;jput 1 in BX

1?2

display
vy

display

;AL =
iyes,
tAL =
iyes,

;AL =
;yes,

2?
display
4?

;yes, display-

snot 1..4

;display ‘o’
;get ‘o

;go .to display
;display ‘e’
;get ‘e’

Chapter 6 Flow Control Instructions 103

.t

MOV AH, 2 '
INT 21H -7+ :display char
END_CASE:-
o
Branches with Compound Conditions
Sometimes the branching condition in an IF or CASE takes the form
condition’ 1' AND coadition 2- ‘
ot

condition_1 Ok condition_2

"where condmon 1 and condmon 2 are either true or false. We will refer to the
first of these as'an AND condition and to the second as an OR condition.

’ AND__ Conditions

An AND condition is true if and only if condition_1 and condition_2
are both true. Likewise, if either condition is false, then the whole thir. g 1s false.

Evample 6.6 Read a character, and if it's an uppercase letter, display it.

+ Solution:

Read a character (into AL)

IF ('A’ <= character) and I(character <= ‘Z')
THEN :
display character
END_IF ’

To code this, we first see if the character in Al follows “A" (or is “A”) in the .
character sequence. If not, we can exit. If so, we still inust see if the character
precedes “2” (or is “Z") before displaying it. Here is the code:

sread a chavacter

IV AR, 1 ,pr:pa e read
INT 21H ;jchar in i-.L

;if (CAC <= char) and (char <= ‘'2')
CMP AL, schax >= ‘A"?
SNGE END_IF ;no, exit
CiP AL, ‘2’ ;jchar <= '2°'?
CKLE "END:IF ;NO, €xit

;then display char

- ' MOV DL, AL- ;jget char

14V AH, 2 iprepare to display
INT- 21H . sdisplay char

END_IF:) .

OR Conditions

o Condition_1 OR condition_2 is true if at least one of the conditions
is true; it is only false when both conditions are false.

.
. L

+ Example 6.7 Read a character. If it's “y” or “Y”, display it; otherwise,
.-terminate the program. - :

104 64 High‘-l.evé/ Language Structures

Solution:

Read a character (into AL)
IF (character = ‘y’) OR (character = ‘Y’)
THEN
display it
ELSE]
terminate the >program
END_IF

To code this, we first see if character = “y”. If so, the OR condition is true
and we can execute the THEN statements. If not, there is still a chance

.the OR condition will be true. If character = “Y”, it will te true, and we

execute the THEN statements; if not, the OR condition is false and we dm
the ELSE statements. Here is the che

;read a character

MOV AH,1 ;prepare to read -
INT 21H schar in AL
;if (character = ‘y’) or ‘(character = ‘Y’)
cMP AL, ‘y’ ijchar = ‘y'?
JE THEN ;yes, go to display it
CMP AL, ‘Y’ ;char = ‘'Y'?
JE THEN ;yes, go to display it
JMP ELSE_ ino, terminate
TYEN:
MOV AH, 2 ;prepare to display
MOV CL,AL ;:get char
INT 21K sdisplay it
JMP END_IF sand exit
ELSE_ .
MOV AH,4CH
INT 21H ;DOS exit
END_IF:

6.4.2
Looping Structure:

A loop is a sequence of instructions that is repeated. The numbeY
of times to repeat may be known in advance, or it may depend on conditions

FOR LOOP
This is a loop structure in which the loop statements are repeated a
known number of times (a count-controlled loop). In pseudocode,
FOR locp count times DO
statements
END _FOR

See Figure 6.5.
‘The LOOP mslructuon can be used to implement a FOR loop. It has

the form
LOOP destination_label

The counter for the loop is the register CX which is initialized to loop_count.
Execution of the LOOP instruction causes CX to be decremented automatically,

Chapter 6 Flow Control Instructions 10!

Figure 6.5 FOR LOOP

Initialize
count

Statements

count = count - 1

True

“g:lliij’. False

and if CX is not 0, control transfers to destination_label. If CX = 0, the niext
instruction after LOOP is done. Destination_label must precede the LOOP
instruction by no more than 126 bytes.

Using the instruction LOOP, a FOR loop can be implemented as

follows:

;jinitialize CX to loop_count

TOP:

;body of the loop
LOOP TOP

Example 6.8 Write a count-controlled loop to display a row of 80 stars.

Solution:

FOR 80 times DO

display *‘*’

END_FOR
The code is
MOV
MOV
MoV
- TCP:
) INT
Loop

CX, 80 ;number of stars to display
AH, 2 ;display characteér function
DL, '+’ ;character to.display

21h ;display a star '

'1‘013 ;repear 30 times

You may have noticed that a FOR loop, as impiémented with z LOOP in-

struction, is executed at least once. Actually, if CX contains 0 when the loop
is entered, the LOOP instruction causes CX to be decremented to FFFFn, and

106 6.4 High-Level Language Structures

the loop is then executed FFFFh = 65535 more times! To prevent this, the
struction JCXZ (jump if CX is zero) may be used before the loop. Its syntax

JCcxz destination_label

If CX contains 0, control transfers to the destination label. So a loop i
plemented as follows is bypassed if CX is O:

JCX2 SKIP

TOP:
;body of the loop
LOOP TOP
SKIP: -
WHILE LOOP

This loop depends on a condition. In pseudocode,

WHILE condition DO
statements
END_WHILE

See Figure 6.6.

The condition is checked at the top of the loop. If true, the stat ments -
executed; if false, the program goes on to whatever follows. It is p »ssible '
the condition will be false initially, in which case the loop body is n t execu ¢
at all. The loop executes as long as the condition is true.

Example 6.9 Write some code to count the number of chara ters in . n
input line.

Solution:

initialize count to 0

read a character

WHILE character <> carriage_return DO
count = count + 1

read a character

END_WHILE

Figure 6.6 WHILE LOOP

Statements

The code is

WHILE_

LIRS

. END_WHILE::

MOV
MOV
INT

cMpP
JE

INC
INT

JMmp’

v

-, -Chapter 6 Flow Control Instructions 107

DX, 0
AH,1
21H

‘AL, ODH

¢:DX counts characters
;prepare to read
;character in AL

'

:CR?

END_WHILE ;yes, exit

DX
21H

e

WHILE

;not CR, increment count
sread a ch?racter
;loop back:

Note that because a WHILE loop checks the terminating condition at the
" top of the loop, you must make sure that any variables involved in the
conamon are initialized befofe the loop is entered. So vou read a charac-
ter before éntering the loop, and read another one at the bottom. The la-
bcl WHILE_: is used because WHILE is a reserved word. *

oy . '

PR

REPEAT LOOP _
Another conditional loop is the REPEAT LOOP. In pseudocode,

REPEAT
statements

UNTIL condition

See Figure 6.7.

In a REPEAT . ..

'UNTIL‘loop, the statements are exccuted, and then

-the condition is checked. If true, the loop terminates; if false, control branches
- to thetop of the loop. *

Lt

Example 6.10 Write some code to read characters until a blank is read.

Solution:

REPEAT
read a charac

ter

UNTIL character 3

s a blank

Figure 6.7 ‘REPEAT.LOOP

.
<
y

-Statements .

108 6.5 Programming with High-Level Structures

The code is

MOV AH,1 ;prepare to read
REPEAT: :

INT 21H ;char in AL

suntil
' CMP AL, ‘' ' ;a blank?
JNE REPEAT ;no, keep reading

WHILE Versus REPEA]

In many situations where a conditional loop is needed, use of a
WHILE loop or a REPEAT loop is a matter of personal preference. The ad-
vantage of a WHILE is that the loop can be bypassed if the terminating,
tondition is initially false, whereas the statements in a REPEAT must be done

. at least once. However, the code for a REPEAT loop is likely to be a little

shorter because there is only a conditional jump at the end, but a WHILE
loop has two jumps: a conditional jump at the top and a JMP at the bottom,

6.5
Programming
with High-Level
Structures

To show how a program may be developed from high-level pseudo-
code to assembly code, let’s solve the following problem.

Problem

Prompt the user to enter a line of text. On the next line, display the
capital letter entered that comes first alphabetically and the one that comes
last. If no capital letters are entered, display “No capital letters”. The execu-
tion should look like this:

Type a ling of text:
THE QUICK BROWN FOX JUMPED.
First capital = B Last capitali = X

To solve this problem, we will use the method of top-down program
design that you may have encountered in high-level language program-
ming. In this method, the original problem is solved by solving a series of
subproblems, each of which is easier to solve than the original problem. Each
subproblem is in turn broken down further until we reach a leve! of sub-
problems that can be coded directly. The use of procedures (Chapter 8) may
enhance this method.

First refinement
1. Display-the opening message.
2. Read and process a line of text.
3. Display the results. -

« . Chapter 6. Flow Control Instructions 109

Step 1. Display the opening message.

This step can be coded immediately

MOV AH, 9 ! ;display string function
LEA DX,PROMPT ~° ;get opening message
INT 21H ;display it

The message will be stored in the data segment as
PROMPT DB ‘Type a line of text:’,O0DH, OAH, ‘'S

We include a carriage return and line feed to move the cursor to the next
“line so the user can type a full line of text.

Step 2. Read and proceéss a line of text.

This step does most of the work in the program. It takes input from
the keyboard, and returns the first and last capital letters read (it should also
. ind;cate if no capitals were read). Here is a breakdown:

Read a characcer) ' ;
WHILE character is not a carrxage return DO
IF character is a capltal letter (*)
THEN
IF character précedes first capital
THEN
first capital = character
END_IF
IF character follows last capital
THEN
last capital = character
END_IF ‘
END_IF
Read a character
END_WHILE

Line (*) is actually an AND condition:
IF (‘A’ <= character) AND (character <= ‘'2')
Step 2 can be coded as follows:

MOV AH, 1 ;read char function
INT 21H . schar in AL

WHILE_: . :

;while character ic not a carriage return do
CMP AL, ODH ;CR?

JE END_WHILE ;yes, exit .
;if character is a capital letter

CMP AL, ‘A’ ;char >= ‘aA’'?

JNGE END_1F ;not a capital letter

CMP AL, ‘2’ ;char <= ‘Z2'?

JNLE END_IF ;not a capital letter
sthen
; if character precedes first capital
CMP AL,FIRST ;char < FIRST?
JNL CHECK_LAST ;no, »>=
;then first capital = character
) MOV FIRST,AL ;FIRST = char
; end if -
CHECK_LAST:

110 6.5 Programming with High-Level Structures

.:; "if character follows last capital

CMP AL,LAST ;char > LAST?
“ JNG END_IF sno, <=
;then last capital = character

MOV LAST,AL ;LAST = char

; end_if
END_IF:
;read a characte.
INT 21H ;char in AL
JMP WHILE_ ;repeat loop
END_WHILE:

Variables FIRST and LAST must have values before the WHILE loop is
executed the first time. They can be initialized in the data segment as follows:

FIRST _ DB ‘i

LAST . DB ‘e

The initial values “])” and “@” were chosen because “}J” follows “Z” in the
ASCII sequence, and “@” precedes “A”. Thus the first capital entered will

replace both of these values.
With step 2 coded, we can proceed to the final step.

Step 3. Display the results.

I¥ no capitals were typed,
THEN
display "“No capitals”
CLSE
display first capital and last capital
END_IF
This step will display one of two possible messages; NOCAP_MSG if

no capitals are entered, and CAP_MSG if there are capitals. We can declare
them in the data segment as follows:

NCCAP_MSG DB *‘No capitals $’
CAP_MSG i ‘First capital = '
FIRST cB A

OB * lLast capital = '
LAST OB - ‘e s’

When CAP_MSG is displayed, it will display “First capital =", then the value
of FIRST, then “Last capital =", then the value of LAST. We used this same
technique in the last program of Chapter 4.
The program decides, by inspecting FIRST, whether any capitals were
read. If FIRST contains its initial value “}”, then no capitals were read.
Step 3 may be coded as follows:

MOV AH,S ;display string function
;1€ no capitals were typed
CMP FIRST, ')’ ;FIRST = ‘'}’?
JNE CAPS ;no, display results
;then
LEA DX,NOCAP_MsG
JMP DISPLAY
CAPS:
: "LEA DX,CAP_MSG
DISPLAY:

INT 21H ;display message
;end_if -

Chapter 6 Flow Control Instructions 11

‘Here is the complete program:

* Program Listing PGM6_2.ASM

TITLE PGM6_2: FIRST AND LAST CAFITALS
.MODEL SMALL

.STACK 100H

.DATA
- PROMPT DB 'Type a line of text',ODH,OAH,’S’
NPCAP_MSG DB ODH, CAH, ‘Mo capitals §’

. CAP_MSG B - © CCH,0AH, First caepital =
FIRST DB BN -

DB ‘ Last capital = *

LAST DB MR-

.CODE

MAIN PROC

;initialize DS
MOV AX, @DATA

MOV DS, AX
;display opening message
MOV, _AH, 9 ~ sdisplay string function
.LEA: DX, PROMPT. . :get opening message
CINT 21H sdisplay it
iread and process a line of text
MOV AH,1 ;readd char function
INT 21H ;char in AL
WHILE_! " ' '
;while character is not a carriage return do
CMP: AL, ODH - ;CR? h
. © =JE - END_WHILE _iyes, exit
;if character is a capital letter
CMP AL,'A’ ‘;char >= ‘A’?
JNGE END_IF ;not a capital letter
CMP AL,‘’Z’ ;char <= '2'?
JNLE END, IF inot a capital letter
;then s
. 71f character precedes first capital
CMP - AL,FIRST .. ;char < first capital?
JNL CHECK_LAST ;/no, >=

; ' then first capital ‘= character .

MOV FIRST,AL '* ~;FIRST = char

;end_if
CHECK_LAST:
;" if character followshlést capital
CMP _ AL, LAST ;char > last capital?
.. JNG END_IF " ‘ino, <=
; 'then "last"capital ‘character
<t MOV’ LAST,AL " ;LAST = char

;i end_if .
END_IF:
;read 'a character . .

- INT 21H . schar in AL

- . JMP WHILE_ _;repeat loop
END_WHILE:

:display results

112

Summary

;sthen

MOV AH,9 ¢ ;display string function
";if no capitals were typed

CMP FIRST,’])’ s first = *)’

JNE CAPS ;no, display recsults

LEA DX,NNCAP_MSG ;no capitals
JMP DISPLAY

CAPS: :

LEA DX, CAP_MSG ;capitals
DISPLAY:

INT 21H ;display message
send_if

;dos exit

MOV AH, 4CH

INT 21H
MAIN ENDP

END MAIN
Summary

The jump instructions may be divided into unconditional and
conditional jumps. The conditional jumps may be classified as
signed, unsigned, and single-flag jumps.

The conditional jumps operate on the settings of the status flags.
The CMP (compare) instruction is often used to set the flags just
before a jump instruction.

The destination label of a conditional jump must be less than
126 bytes before or 127 bytes after the jump. A JMP can often be
used to get around this restriction.

In an IF-THEN decision structure, if the test condition is truc,
then the true-branch statements are done; otherwise, the next
statement in line is done.

In an IF-THEN-ELSE decision structure, if the test condition is
true, then the true-branch statements are done; otherwise the
false-branch statements are done. A JMP must follow the true-
branch statements so that the false-branch will be bypassed.

In a CASE structure, branching is controlléq by an expression; the
branches correspond to the possible values of the expression.

A FOR loop is exccuted a known number of times. It may be im-
plemented by the LOOP instruction. Before entering the loop, CX
is initialized to the number of times to repeat the loop statements.

In a WHILE loop, the loop condition is checked at the top of the
loop. The loop statéments are repeated as long as the condition is
true. If the condition is initially false, the loop statements are not
done at all.

In a REPEAT loop, the loop condition is checked at the bottom of
the loop. The statements are repeated until the condition is true.

" Because the condition is checked at the buttom of the loop, the

statements are done at least once.

Chapter 6 Flow Control Instructions - 113

Glossary
AND condition

conditional jump
instruction

Ioop
OR condition
signed jump

single-flag jump
top-down program design

unconditional jump
unsigned jump

A logical AND of two conditions

A jump instruction whose execution
depends on status flag settings

A sequence of instructions that is répeated

- A logical OR of two conditions

A conditjonal jump instruction used with
signed numbers

A conditional jump that operates on the
setting of an individual status flag

Program development by breaking a large
problem into a series of smaller problems

An unconditional transfer of control

A conditional jump instruction used with
unsigned numbers

New Instructions

cMmp JCX2 JLE/JING
JA/JNBE JE/JZ JMP
JAE/JNB JG/JNLE JNC
JB/JNAE JGE/JNL JNE/JINZ
JBE/JNA JL/JNLE Loop

JC

Exer;_ises

1. Write assembiy ._coqé fbr gaéh of the following decision structures.

a. IF AX < 0
THEN

PUT -1 IN BX

_ END_IF

b. IF AL < 0

THEN
put FFh in AW
ELSE
. put 0 in AH
_END_IF ,

< Suppbse. DL contains the ASCII code of a character.

(IF DL >= “A~)
THEN

display DL
END_IF

d. IF AX < BX
THEN ° ;
IF BX < CX
THEN

AND (DL <= ‘z*)

114

. Exercises.

put 0 in AX.

ELSE e
put O in BX
END_IF "7
* END_IF

‘e. IF (AX. < BX) OR (BX < CX)

THEN .
put 0 ‘in DX
ELSE ’
put 1 in DX |
END_IF °

f. IF AX < BX
THEN '
put 0°in }}x .
ELSE '
IF BY < CX°
THEN
put 0 in BX
ELSE
put ‘0 ‘in CX -
END_IF
END_IF

- Use a CASE structure to code the following:

Read a character.
If it’s “A”, then execute carriage return.
If it’s “B”, then execute line feed.

- If it's any other character, then return to DOS.

Wirite a sequence of instructions to do each of the following:

a. Pitthesum 1 +4+7+...+ 148 in AX.

b. Put the sum 100+ 95+ 90+...+ 5in AX.

Employ LOOP instructions to do the following:

a. put the sum of the first 50 terms of the arithmetic sequence
1,5,9,13,...in DX.

b. Read a character and display it 80 times on the next line.

. Read a five:character password and overprint it by executing
a carriage return and displaying five X's. You need not store
the input characters anywhere.

The following algorithm may be used to carry out division of two

nonnegative numbers by repeated subtraction:

initialize quotient to 0
WHILE dividend >= divisor DO

increment quotient
subtract divisor from dividend

END_WHILE
Write a sequence of instructions to divide AX by BX, and put the
quotient in CX.

1

Chapter 6 Flow Control Instructions 115

6. The following algorithm may be used to carry out multiplication
of two positive numbers M and N by repeated additton:"

init_ialize product to 0
REPEAT ' N

add M to product
decrement N

UNTIL N = O

Wirite a sequence of instructions to multiply AX by BX, and put
the product in CX. You may ignore the possibility of overflow.

7. 1t is possible to set up a count-controlled loop that will continue
to execute as long as some condition is satisfied. The instructions

LOOPE label :loop while equal
and
" LOOPZ label ;loop while zero

cause CX to be decremented, then if CX <> 0 and ZF = 1, control
transfers to the instruction at the destination label; if either CX =
0 or ZF = 0, the instruction following the loop is done. Similarly,
the instructions

LOOPNE label :loop while not equal
and
LOOPNZ label ;loop while not zero

cause CX to be decremented, then if CX <> 0 and ZF = 0, control

transfers to the instruction at the destination label; if either CX =

0 or ZF = 1, the Instruction following the loop is done.

a. Write instructions to read characters until either a nonblank
character is typed, or 80 characters have been typed. Use
LOOPE.

b. Write instructions to read characters until either a carriage re-
turn is typed or 80 characters have been typed. Use LOOPNE.

Programming Exercises

8. Write a program to display a “?”, read two capital letters, and dis-
play them on the next line in alphabetical order.
9. Write a program to display the extended ASCI! characters (ASCII

codes 80h to FFh). Display 10 characters per line, separated by
blanks. Stop after the extended characters have been displayed

once.
10. Write a program that will prompt the user to enter a hex digit
character (“0"-...“9” or "A" ... “F”), display it on the next line

in decimal, and ask the user ix he or she wants to do it again. If
the user types “y” or “Y”, the program repeats; if the user types
anything else, the program terminates. If the user enters an illegal
character, prompt the user to try again,

Sample execution: ~

116

Programming Exercises

11.

12.

ENTER A HEX DIGIT: 9

IN DECIMAL IS IT 9

DO YOU WANT TO DO IT AGAIN? y

ENTER A HEX DIGIT: c ‘

ILLEGAL CHARACTER - ENTER 0..9 OR A..F: C

IN DECIMAL IT IS 12

DO YOU WANT TO DO IT AGAIN? N

Do programming exercise 10, except that if the user fails to enter
a hex-digit character in three tries, display a message and termi-
nate the program.

(hard) Write a program that reads a string of capital letters, end-

" ing with a carriage return, and displays the longest sequence of

consecutive alphabetically mcreasmg capital letters read.
Sample exccution:

ENTER A STRING OF CAPITAL LETTERS:

FGHADEFGHC
THE LONGEST CONSE”UTIVELY INCREASING STRING IS:

DEFGH

| 'Lo'gic,, Shift, and -
Rotate Instructions

Overview

In this chapter we discuss instructions that can be used to change
the bit pattern in a byte or word. The ability to manipulate bits is generally
absent in high-level languages (except C), and is an important reason for
programming in assembly languages v

In section 7.1, we introduce the logic instructions AND, OR, XOR,
and NOT. They can be used to clear, set, and examine bits in a register or
variable. We use these instructions to do some familiar tasks, such as con-
verting a lowercase letter to upper case, and some new tasks, such as.deter-
mining if a register contains an even or odd number.)

Section 7.2 covers the shift instructions. Bits can be shifted left or
right in a register or memory location; when a bit is shifted out, it goes into
CF. Because a left shift doubles a number and a right shift halves it, these
instructions give us a way to multiply and divide by powers of 2. In Chapter
9, we’ll use the MUL and DIV instructions for doing more general multipli-
cation and division; howevey, these latter instructions are much slower than
the shift instructions.- - o . o

In section 7.3, the rotate instructions are covered. They work like
the shifts, except that when a bit is shifted cut one end of an operzud it is
put back in the other end. These instructions can be used in situation< where
we want to examine and/or change bits or groups of bits. .

In section 7.4, we use the logic, shift, and rotate instructions to do

binary and hexadecimal 1/O. The ability to read and write numbers iets us
solve a great variety of problems. -

117

118 7.1 logic Instructions

74 7
Logic Instructions

As noted earlier, the ability to manipulate individual bits is on
the advantages of assembly language. We can change individual bits in
computer by using logic operations. The binary values of 0 and 1 are tre:
as false and true, respectively. Figure 7.1 shows the truth tables for the I
operators AND, OR, XOR (exclusive OR), and NOT.

When a logic operation is applied to 8- or 16-bit operands, the re
is obtained by applying the logic operation at each bit position.

Example 7.1 Perform the following logic operations:

16101010 AND 11110000
10101010 OR* 11110000
10101010 XOR 11110000
NOT 10101010

Ll o\

Solutions:

1. 10101010
AND 11110000

= 10100000

2. 10101010
OR 11110000

=11111010

3. 10101010
XOR 11110000

=01011010

4. NOT 10101010
=01010101

Figure 7.1 Truth Tables for
AND, OR, XOR, and NOT
(0 = false, 1 = true)

a b aAND b aORb a XOR b
0 0 0 0 0

0 1 0 1 j‘

1 0 0 1 1
10 1 1 0

a NOT;

0 1

Chapter 7 Logic, Shift, and Rotate Instnictions 119

7.11
AND, OR, and XOR
Instructions

The AND, OR, and XOR instructions perform the named logic op-
erations. The formats are

AND destination,source

- .OR - destination,source -

XOR destination,source

The re;ult:of the operation-is stored in the destination, which must be a
register or memory location. The source may be a constant, register, or mem-

ory location. However, memory-to-memory operations are not allowed.
. . \

Effect on ﬂags .
. SF, ZF, PF reﬂect the result
- AF is undefined

CE OF=0

" One use of AND OR,"and XOR is to selectively modify the bits ir:’

" the destination. To do this, we construct a source bit pattern known as ¢

mask. The mask bits are chosen so that the corresponding destination bits

" are modified in the desired manner when the instruction is executea.

To choose the mask bits, we make use of the following properties of
AND, OR, and XOR. From Figure 7.1, if b represents a bit (0 or 1)

bAND1=b bORO=b bXOR0O=b
bANDO=0 bOR1=1 b XOR 1 = ~b {(complement of b)
From these, we may conclude that _

1. The AND instruction can be used to clear specific destination
bits while preserving the others. A 0 mask bit clears the corre-
sponding destination bit; a 1 mask bit preserves the correspond-

. ing destination bit.

2.” The OR instruction can be used to set specific destination bits
while preserving the others. A 1 mask bit scts the corresponding
‘destination bit; a 0 mask bit preserves the corresponding destina-
tion bit. ©~ . . .

3. The XOR instruction can be used to complement specific desti-

" nation bits while preserving the others. A 1 mask bit comple-

.. ments the corresponding destination bit; a 0 mask bit preserves
the corresponding destination bit.

Example 7.2 Clear the Sign bit of AL while leaving the other bits un-

_changed.

..Solution: Use the AND instruction.with 01111111b = 7Fh as the mask.

Thus,
AND AL,7Fh

Example 7.3 Set the most significant and least significant bits of AL
while preserving the other bits.

120

7.1 Logic Instructions

Solution: Use the OR instruction with 10000001b = 81h as the mask..
Thus,

OR AL,81h
Example 7.4 Change the sign bit of DX.
Solution: Use the XOR instruction with a mask of 8000l. Thus,

XOR DX, 8000h

Note: to avoid typing errors, it's best to express the mask in hex rather thap
binary, especially if the mask would be 1p bits long.

The logic instructions are espe ally useful in the followmg fre-
quently occurring tasks.

Converting an ASCIl Digit to a Number
We've seen that when a program reads a character from the keyboard,

. AL gets the ASCII code of the character. This is also true of digit characters.

For éxample, if the “5” key is pressed AL gets 35h instead of 5. To get 5 in
AL, we could do this:

SuB AL, 30h

Another method is to use the AND instruction to ciear the high
nibble (high four bits) of AL:

AND AL, OFh

Because the codes of “0” to “9” are 30h to 39h, this method will convert
any ASCII digit to a decimal value.

By using the logic instruction AND instead of SUB, we emphasize
that we're modifying the bit pattern of AL. This is helpful in making the
program more readable.

The reverse problem of converting a stored decimal digit to its ASCII
code-is left as an exercise.

, Converting a Lowercase Letter to Upper Case

" The ASCII codes of “a” to “z” range from 61h to 7Ah; the codes of
“A” to “Z" go from 41h to 5Ah. Thus for example, if DL contains the code
of a lowercase letter, we could convert to upper case by executing '

SUB DL, 20h

This method was used in Chapter 4. However, if we compare the binary
codes of corresponding lowercase and uppercase letters

Character Code Character Code
a 01100001 A 01000001

b N 01100010 B 01000010

01111010 z 01011010

Chapter 7 Logic, Shift, and Rotate Instructions 121

it is apparent that to convert lower to upper case we need only clear bit §.
This can be done by using an AND instruction with the mask 11011111b,
or ODFh. So if the lowercase character to be converted is in DL, execute

AND DL, ODFh

The reverse problem of conversion from upper to lower case is left as an
exerciseé.

Clearing a Register

' We already know two ways to clear a register. For example, to clear
AX we could execute

MOV AX,0

or

SUB AX,AX

Using the fact that 1 XOR 1 = 0 anu 0 XOR 0 = 0, a third way is
XOR AX, AX

The machine code of the first method is three bytes, versus two bytes for
the latter two methods, so the latter are more efficient. However, because of
the prohibition on memory-to-memory operations, the first method must

- be used to clear a memory location.

Testing a Register for Zero

Because 1 OR 1 =1, 0 OR 0 = 0, it might seem like a waste of time
to execute an instruction like .

OR CX,CX

because it leaves the contents of CX unchanged. However, it affects ZF and
SF, and in particular if CX contains 0 then ZF = 1. So it can be used as an
alternative to

cMP CX,0

to test the contents of a register for zero, or to check the sign of the contents.

7.1.2
NOT Instruction

The NOT instruction performs the one’s complement operation on
the destination. The format is

NOT destination
There is no effect on the status flags.

Example 7.8 Complement the bits in AX.

Solution:
NOT AX

123 7.2 Shift Instructions

7.4.3
TEST Instruction

The TEST instruction perfétms an AND operation of the destination
with the source but does not change the destination contents. The purpose
of the TEST instruction is to set the status flags. The format is

TEST destination, source

Effect on flags
SF, ZE, PF reflect the result .
AF is undefined
CF,OF=0

Examining Bits

The TEST instruction can be used to examine individual bits in an
operand. The mask should contain 1’s in the bit positions to be tested and
0's elsewhere. Because 1 AND b =b, 0 AND b = 0, the result of '

TEST'destination,maék

will have 1’s in the tested bit positions if and only if the destination has 1's
in these positions; it will have O’s elsewhere. If destination has O’s in all the
tested position, the result will be 0 and so ZF = 1.

Example 7.6 Jump to label BELOW if AL contains an even number.

Solution: Even numbers have a 0 in bit 0. Thus, the mask is 00000001b
= 1. ’

TEST AL,1 +is AL even?
Jz BELOW ;yes, go to BELOW

7.2
Shift Instructions

The shift and rotate instructions shift the bits in the destination operang
by one or more positions either to the left or right. For a shift instruction, the
bits shifted out are lost; for a rotate instruction, bits shifted out from one end
of the operand are put back into the other end. The instructions have two
possible formats. For a single shift or rotate, the forn is

Opcode destination,l
For a shift or rotate of N positions, the form is
Opcode destination,CL

where CL contains N. In both cases, destination is an 8- or 16-bit register or
memory location. Note that for Intel’s more advanced processors, a shift or
rotate instruction also allows the use of an 8-bit constant.

As we'll see presently, these instructions can be used to multiply and
divide by powers of 2, and we will use them in programs for binary and hex I/O.

Chapter 7 logic, Shift, and Rotate Inistructions 123"

7.2. 1 .
Left Shift lnstruct:ons

The SHL Instruction

The SHL (shift left) instruction shifts the bits in the destination to
the left. The format for a single shift is
SHL destination,1

A 0 is shifted into the rightmost bit position and the msb is shifted
into CF (Figure 7.2). If the shift count N is different from 1, the instruction

takes the form
SHL destination,CL

where CL contains N. In this case, N single feft shifts are made. The value
of CL remains the same after the shift operation.

Effect on fiags
SE, PF, ZF reflect the result
AF is undefined
=" CF = last bit shifted out
' OF = 1 if tesult changes sign on last shift

Example 7.7 Suppose DH contains 8Ah and CL contains 3. What are
the values of DH and of CF after the instruction SHL DH,CL is executed?

Solution: The binary value of DH is 10001010. After 3 left shifts, CF
will contain 0. The new contents of DH may be obtained by erasing the
leftmost three bits and adding three zero bits to the right end, thus
01010000b = S0h.

Multiplication by Left Shift

Consider the decimal number 235. If each digit is shifted left one
position and a 0 attached to the nght end, we get 2350; this is the same as
multiplying 235 by ten.

Figure 7.2 SHL and SAL

D‘—_{iiiiiiiiil:‘ﬁ?ﬁ?—]w—o

1S 14 13 ‘12 1 10 9 8 7
. Word

“DWO
T ocr 7 6 5 4 3 2 1 0

Byte

124 7.2 Shift Instructions

in the same way, a left shift on a binary number multiplies it by 2.
For example, suppose that AL contains 5§ = 00000101b. A left shift gives
00001010b = 10d, thus doubling its value. Another left shift yields 00010100
= 20d, so it Is doubled again.)

The SAL instruction |

Thus, the SHL instruction can be used to multiply an operand by
muftiples of 2. However, to emphasize the arithmetic nature of the operation
the opcode SAL (shift arithmetic left) is often used in instances where nu
meric multiplication is intended. Both instructions generate the same ma
chine code.

Negative numbers can also be multip. ¥ powers of 2 by left shifts
For example, if AX is FFFFh (-1), then shiftii., iree times will yield AX -
FFF8h (-8).

Overflow

When we treat left shifts as multiplication, overflow may occur. Fot
a single left shift, CF and OF accurately indicate unsigned and signed over-
flow, respectively. However, the overflow flags are not reliable indicators for
a multiple left shift. This is because a multiple shift is really a series of single
shifts, and CF, CF only reflect the result of the last shift. For example, if BL
contains 80h, CL contains 2 and we execute SHL BL,CL, then CF = OF =0
even though both signed and unsigned overflow occur. '

Example 7.8 Write some code to muitiply the value of AX by 8.
Assume that overflow will not occur.

Solution: To multiply by 8, we need to do three left shifts.

Mov CL,3 ;number of shifts to do
SAL AX,CL ;multiply by 8

Figure 7.3 SHR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0' CF
Word
7 6 5 4 3 2 1+ 0O CF
Byte J
7

S

Chapter 7 Logic. Shift, and Rotate Instructions 125

~

;.2.2 . .
Right Shift Instructions

The SHR Instruction

The instruction SHR (shift right) performs right shifts on the desti-
nation operand. The format for a single shift is
snn feaddd Anatingmg, i

A 0 1s shifted into the msb position, and the rightmost bit is shifted
“into CF. See Figure 7.3. If the shift count N is different from 1, the instruction
takes the form

SHR destination,CL

" where CL contains N. In this case N single right shifts are made.

The effect on the flags is the same as for SHL.

Example 7.9 Suppose DH contains 8Ah and CL contains 2..What are the
values of DH and CF after the instruction SHR DH,CL is executed?

Solution: The value of DH in binary is 10001010. After two right shifts, CF
= 1. The new value of DH is obtained by erasing the rightinost two bits and
adding two 0 bits to the left end, thus DH = 00100010b = 22h.

The SAR Instruction ~

The SAR instruction (shift arithmetic right) opefates like SHR, with
one difference: the msb retains its original value. See Figure 7.4. The syntax is

,SAR destination,l

and
SAR destination,CL

The effect on flags is the same as for SHR.

Division by Right Shift
Because a left shift doubles the destination’s value, it’s feasonable to
guess that a right shift might divide it by 2. This is correct for even numbers.

Fiqure 7.4 SAR

15 14 .13 12 11:10-9 8 7 .6 5 4 3-2 1 0 CF
Word
7 6 5 4 3 2 1.0 CF

Byte

126 7.2 Shift Instructions

For odd numbers, a right shift halves it and rounds down to the nearest ~
integer. For example, if BL contains 00000101b 5, then after a nght shift,
BL will contain 00000010 = 2. I .

Signed and Unsigned Division

In doing division by right shifts, we need to make a distinction
between signed and unsigned numbers. If an unsigned interpretation is being
given, SHR should be used. For a signed interpretation, SAR must be used,
because it preserves the sign.

Example 7.10 Use right shifts to divide the unsigned number 65143
by 4. 'ut the quotient in AX.

Solution: To divide by 4, two right shifts are needed. Since the divi-
dend is unsigned, we use SHR. The code is

MOV AX, 65143 ;AX has number
MoV CL,2 _ ;CL has number of right shifcs
SHR AX,CL ;divide by 4

Example 7.11 If AL contains -15, give the decimal value of AL after
SAR AL,1 is performed.

Solution: Execution of SAR AL,1 divides the number by 2 and rounds
down. Dividing -1§ by 2 yields -7.5, and after rounding down we get -8.
In terms of the binary contents, we have -15 = 11110001b. After shifting,
we have 11111000b = -8.

Figure 7.5 ROL

CF 15 14 13 12 11 10 9 8 7 6 S 4 3 2 1 O

Word

Chapter 7 Logic, Shift, and Rotate Instructions 127

More General Multiplication and Division
We've seen that multiplication and division by powers of 2 can be

" -accomplished by left and right shifts. Multiplication by other numbers, such as

10d, can be done by a combination of shifting and addition (see Chapter 8).

" In_Chapter 9, we cover the MUL and IMUL, DIV and IDIV instruc-
tions. They are not limited to multiplication and division by powers of 2,
but are much slower than the shift instructions.

7.3
Rotate Instructions

Rotate Left

The instruction ROL (rotate left) shifts bits to the left. The msb is
shifted into the rightmost bit. The CF also gets the bit shifted out of the
msb. You can think of the destination bits forming a circle, with the least
significant bit followmg the msb in the circle. See I‘ngurc 7.5. The syntax is

ROL- destination, 1

and - -

'ROL destination,CL

Rotate Right

The instruction ROR (rotate right) works just like ROL, except that
the bits are rotated to the right. The rightmost bit is shifted into the msb,
and also into the CF. See Figure 7.6. The syntax is

ROR destination,1

and

ROR Aesrinationn.CT,

Figure 7.6 ROR

1 14 13 12 19 10 9 8 7 6 5 .4 3 2 1 O CF
Word

128 7.3 Rotate Instructions

Figure 7.7 RCL

6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7
Word

7 6 5 4 3 2 1 0

Byte

In ROL and ROR, CF reflects the bit that is rotated out. The next
example shows how this can be used to inspect the bits in a byte or word
without changing the contents.

Example 7,12 Use ROL to count the number of 1 bits in BX, without
changing BX. Put the answer in AX.

Solution:
XOR AX,AX ;AX counts bits
MOV CX,16 ;loop counter
TOP: ' '
ROL" BX,1 - :C F = bit rotated out
JNC NEXT ;0 bit
INC AX ;71 bit, increment total
NEXT: . : ’
LOOP TOP ;loop until done

In this example, we used JNC (Jump if No Carry), which causes a jump if

CF = 0. In section 7.4, we use ROL to output the contents of a register in
binary.

Rotate Carry Left
The instruction RCL (Rotate through Carry beh) shlfts the bits of

_.the destination to the left. The msb is shifted into the CF, and the previous

value of CF is shiited into the rightmost bit. In other words, RCL works like

just like ROL, except that CF is part of the circle of bits belng rotated. See

Figure 7.7. The syntax is

" RCL dest ination,}

and
RCL destination,CL

Chapter 7 Logic, Shift and Rotate Instructions 129

Figure 7.8_RCR

15 14.13 1211 10 9 8 7 6 5 4 3 2 1 0
word

7 6 543 21 0
Byte

Rotate Carry Right

The instruction RCR (Rotate through Carry Right) works just like RCL,
except that the bits are rotated to the right. See Figure 7.8. The syntax is

RCR * destination,1 '

and)
RCR destination,CL

Example 7.13 Suppose'DH contains 8Ah, CF = 1, and CL contains 3.
What are the values of DH and CF after the instruction RCR DH,CL is
executed?.

Solution:

CF : DH
initial values . 1 ’ 10001010
after 1 right 0 : 11000104
rotation :
after z right 1 01100010
rotations
after 3 right 0 10110001.= B1h
rotations ’ ’

Effect of the rotate instructions on the flags
7 SF, PF, ZF reflect the result
, AF is undefined
" CF = last bit shifted out '
OF = 1 if result ghanges' slgf\ on the last rotation

1§b 7 4 Binary and Hex 1O

An Appllcatlon' Revemng a Blt Pattern

As an application of the shift and rotate instructions, let's consider
~the problem of reversing-the bit pattern in a byte or word. For example, if
AL contains 11011100, we want to make it 00111011,

" An easy way to do this is to use SHL to shift the bits out the left end
of AI. into CE,'and thén use RCR to move them into the left end of another
register; for example, BL. If this is done eight times, BL will contain the.
reversed bit pattern and it can be copied back into AL. The code is

o . MOV CX, 8 ;number of operations to do
. REVERSE:
SHL AL, 1 iget a bit:- into CF
RCR BL,1 ;rotate it into BL

LOOP REVERSE ;loop until done
MOV AL,BL ;AL ‘gets reversed pattern

7.4
Binary and Hex 110

One useful application of the shift and rotate instructions is in binary
and'hex 1/O.

- Binary Input

For binary input, we assume a program reads in a binary number
from the keyboard, followed by a carriage return. The number actually is a
character string of 0’s and 1’s. As each character is entered, we need to convert
it to a bit value, and collect the bits in a register. The following algorithm
reads a binary number from the keyboard and stores its value in BX.

i. Algorithm for Binary Input

Clear BX /* BX will hold binary value */
Input a character /* ‘0’ or ‘1’ */
WHILE character <> CR DO
Convert character to binary value
Left shift BX
Insert value into 1lsb of BX
Input a character
END_WHILE

'Demonstration -(for input 110)

Clear BX
BX = 0000 0000 0000 0000 .
Input character ‘1’, convert to 1
- R

" Left 'shift'Bx”’

BX = 0000°:0000 0000 0000
Insert value into 1sb

BX = 0000 0000 0000 0001
Input character ‘l’, convert to 1

- Left shift- BX - :

BX = 0000 0000 0000 0010
Insert value into 1lsb

BX = Q000 0000 0000 0011

’

Chapter 7 Logic, Shift, and Rotate Instructions 131

Input character ‘0' ;~ cénvert'to 0

. Left shift BX

.

BX = 0000 0000 0000 ono
Insert value into 1lsb |
BX = 0000 0000 0000 ouo

. BX contains 110b

The algorithm assumes (1) input characters are either “0”, “1”, or CR, and
(2) at most 16 binary digits are input. As a new digit Is input, the previous
bits in BX must be shifted to the left to make rcom; then an OR operation
can be used to insert the new bit into BX. The assembly instructions are

"XOR ‘- BX, BX iclear BX
MOV AH,1 ;input char furction
INT 21H ’ .iread a character
WHILE :
CMP AL, ODH ;CR?
JE 'END_WHILE ;yes, done
AND AL, OFH ;no, convert to binary value
SHL " BX,1 _ imake roum for new value
OR = BL,AL ;put vaiue into BX
. INT 21H | ;read a8 character .
JMP WHILE iloop back
END_WHILE: -
Binary Output

Outputting the contents of BX in binary also involves the shift-op-
eration. Here we only give an algorithm; the assembly code is left to be done
as an exercise. ,

Algorithm for Binary Output

FOR 16 times DO
Rotate left BX /* BX holds output value,
put ‘msb into CF */
IF CF = 1
THEN ’
output ‘1’
ELSE
output ‘0’
- END_IF,
END_FOR

Hex Input

Hex input consists of digits ("0” to “9”) and letters (“A” to “F")
followed by a carriage return. For simplicity, we assume that (1) only upper-
case letters are used, and (2) the user inputs no more than four hex characters.
The process of converting characters to binary values is more involved than
it was for binary mput and BX must be shifted four times to make room for
a hex value.

132

7.4 Binary and Hex /O

Algorithm f&r Hex Input

Clear BX /* BX will hold~

input hex character
WHILE character <> CR DO

ipput value */

convert character to binary value

left shift BX 4 times

-

insert value into lower 4 bits of BX

input a character -

. END_WHILE

Clear BX
“BX = 0000 0000 0000 0000
Input ‘6’, convert to 0110
Left shift BX 4 times

BX .= 0000 0000 0000 0000

BX = 0000 0000 .0000 O0Ol10
Input ‘A’, convert to Ah =
Left shift BX 4 times

BX = 0000 0000 0110 0000

Demonstration (for input 6AB)

‘Insert value into lower 4 bits of BX

1010

Insert value into lower 4 bits of BX

BX = 0000 0000 0110 1010
Input ‘B’, convert to 1011
Left shift BX 4 times

BX = 0C00 0110 1010 0000

BX = 0000 0110 1010 1011
BX contains O06ABh.

Here is the coc_re_:

XOR BX,BX
MOV CL,4
MOV AH,1
INT 21H

WHILE :
CMP AL, ODH
JE END_WHILE
;convert character to binary
CMP AL, 39H
JG LETTER.
;input is a digit
AND AL, OFH

: JMP SHIFT
LETTER:
- SUB AL,37H
SHIFT:
SHL BX,CL
;insert value ‘into BX
CR BL,AL
INT 21H

’ JMP WHILE_
END_WHILE: :)

'Insert value into lower 4 bits of BX

;clear BX

;counter for 4 shifts
;input character function’
;input a character

;CR?

;yes, exit -
value

:;a digit?

;no, a letter’

;convert digit to binary value
;go to insert in BX

;convert letter to ‘binary value

;make room for new value

;put value into -low 4 bits
;of BX

;input a character

;loop until CR

Chapter 7 Logic, Shift, and Rotate Instructions 133

Note that the program does not check for valid input characters.

Hex Output) -

. BX contains 16 bits, . which equal four hex digit values. To output

the contents of BX, we start from the left and get hold of each digit, convert
it to a hex character, and output it. The algorithm which follows is similar
to that for binary output.

Algorithrh for Hex Output

FOR 4 tzmes DO

"

Move BH to DL /* ‘BX holds output value */
shift "DL 4 ttmes to-the right -
IF DL < 10 RN
: THEN_ . ’ -
.sconvert to character in *0"..‘9,
.ELSE ' '
cornivert to - character in ‘A’..‘F’
END ‘IF * RN .

_output .character
Rotate BX lefr 4 tzmes'
END_FOR

_berhohstzatioq (BX Contains 4CA9h)

BX = '4CASh '= 0100 1100 1010 1001
Move BH to. DL . ~
DL = 0100 1100 !
Shlft DL 4 times to the right
. DL = 0000 0100 '
bonvert to character and output
- =*0011 0100 = 34h = ‘4°
Rotate BX left.4 times
..BX = 1100 1010 1001 0100
Move BH to.DL . 7 °
- DL = 1100 1010 . |
Shift DL 4 times td .the right
DL = 0000 1100
_Convert to character "and OutpuL
DL = 0100 0011 = 43h = rC
" Rotate BX left 4 times :
BX = ‘1010 1001 0100 1100
Move ‘BH to DL - ° .. .
DL = 1010-71001 : "« .1
Shift DL 4 times.sto ‘the: right
DL = 0000 1010 ,
Convert, to character and output
DL = 0100 0010 = 42h = ‘B’
Rotate BX left 4 times
BX = 1001 0100 1100 1010
- Move BH to DL - A
DL = 1001 0100 .
Shift DL 4 times to the right

134

Summary

DL = 0000 1001
Convert to character and output
DL = 0011 1001 = 3%h = ‘9’
Rotate BX 4 times to the left
BX = 0100 1100 1010 1001 = original contents

Coding the algorithm is left to be done as an exercise.

Summary

e The five logic instructions are AND, OR, NOT, XOR, and TEST.

¢ The AND instruction can be ‘:sed to clear individual blts in the
destinatlon

. The OR instruction is useful in setting individual bits in the desti-
nation. It can also be used to test the destination for zero.

¢ The XOR instruction can be used to complement individual bits
in the destination. It.can also be used to zero out the destination. _

* The NOT instruction performs the one’s complement operation
on the destination.

¢ The TEST instruction can be used to examine individual bits of
the destination. For example, it can determine if the destination
contains an even or odd number.

¢ SAL and SHL shift each destination bit left one place. The most
significant bit goes into CF, and a 0 is shifted into the least signifi
cant bit.

¢ SHR shifts each destination bit right one place. The least significant
bit goes into CF, and a 0 is shifted into the most sighificant bit.

¢ SAR operates like SHR, except that the value of the most signifi-
cant bit is preserved.

* The shift instructions can be used to do multiplication and divi-
sion by 2. SHL and SAL double the destination’s value unless over-
flow occurs. SHR and SAR halve the destination'’s value if it is
even; if odd, they halve the destination’s value and round down
to the nearest integer. SHR should be used for unsigned arithme-
tic, and SAR for signed arithmetic.

* ROL shifts each destination bit left one position; the most signifi-
cant bit is rotated into the least significant bit. For ROR, each bit
goes right one position, and the least significant.bit r\tate: into
the most significant bit. For both Instructions, CF gets the iast bit
rotated out.

RCL and RCR operate like ROL and ROR, except that a bit rotated
out goes into CF, and the value of CF rotates into the destination.

Multiple shifts and rotates can be perfom?ed. CL must contain
-.. the.number of times the shift or rotate is to be executed.

+ The shift and rotate instructions are useful in doing binary and
hex 1/0.

Chaptér-.7 Logic, Shift, and Rotate Instructions 135

. Glossary . ..
clear “Change a value to 0
- comiplement "Change fromaOtoalorfromaltoa0
“mask 'A bit pattern used in logical operations to
clear, set, or test specific bits in an operand
‘set - Change a bit value toa 1
T \
' AR [
New Instructions
.'AND RCR SER -
NOT - ROL SER
OR . ROR™ TEST
RCL SAL/SHL XOR

£xercises
. 1. Perform the folIowing logic operations

a. 10101111 AND 10001011

b 10110001 OR 01001001

c. .01111100 XOR 1101101y

d. NOT 01011110,

2. Give a logic instruction to do each of the_ following.

a. Clear the even-numbered bits of AX, leaving the other bits
* unchanged::- - .7

b. Set the most and least significant bits of BL, leavmg the other
, bits’ unchanged -

c Complement the msb of DX, leaving the other bits
unchanged

d. Replace the value of the word variable WORD1 by its one’s
* complement. = - .

3. Use the TEST instruction to do each of the following.-

a. Set ZF if the contents of AX is zero.

'b.: “Clear ZF if BX contains an odd number.”

< Set'SF xf DX contams a negative number.

d. “Set ZF if DX contams a zero Or positive number.
e. Set PF 1f BL contalns an even number of 1 bits.

4. Suppose AL ‘contains 11001011b and CF = 1. Give the new con-
tents of AL after each of the followlng instructions is exec.ted. As-
sume the preceding initial conditions for each part of this
question. -

-a.»SHL'AL, 1.

b 'SHR AL 1.

"¢/ 'ROL'AL,CL'if CL Conitains 2
"d. ROR AL CL 1(CL comams 3
e. SAR ALCL, 1f“C_L gonga_ms 2
f RCLALY
g RCR AL,CL if CL contams 3

136

Exercises

Write one or more instructions to do each of the following.
Assume overflow does not occur.

a. Double the value of byte variable BS. .

b. Muitiply the value of AL by 8. .

c. Divide 32142 by 4 and put the quotient in AX.

d. Divide -214S5 by 16 and put the quotient in BX.

Wirite instructions to do each of the following:

a. Assuming AL has a value less than 10, convert it to a decimal
character. T

b. Assuming DL contains the ASCII code of an uppercase letter,
convert it to lower case.

Write instructions to do each of the following. _

a. Multiply the value of BL by 10d. Assume overflow does not occur.

b. Suppose AL contains a positive ‘wmber. Divide AL by 8, and
put the remainder in AH. (Hint: use ROR.)

v

Programming Exercises

8.

10

11.

Write a program that prompts the user to enter a character, and
on subsequent lines prints its ASCII code in binary, and the num-
ber of 1 bits in its ASCII code.

Sample execution:

TYPE A CHARACTER: A

THE ASCII CODE OF A IN BINARY IS 01000001

THE NUMBER .OF 1 BITS IS 2

Write a program that prompts the user to enter a character and
prints the ASCII code of the character in hex on the next line. Re-
peat this process until the user types a carriage return.

Sample execution:

TYPE A CHARACTER: 2Z
THE ASCII CODE OF Z IN HEX IS 5aA.
TYPE A CHARACTER:

Write a program that prompts the user to type a hex number of
four hex digits or less, and outputs it in binary on the next line.
If the user enters an illegal character, he or she should be
prompted to begin again. Accept only uppercase letters.

Sample execution:

TYPE A HEY NUMBER (0 TO FFFF): 1la

ILLEGAL HEX DIGIT, TRY AGAIN: 1ABC

IN BINARY IT IS 0001101010111100

Your program may ignore any input beyond four characters.
Write a program that prompts the user to type a binary number
of 16 digits or less, and outputs it In hex on the next line. If the
user enters an illegal character, he or she should be prompted to
begin again. .
Sample execution:

TYPE A BINARY NUMBER, UP TO 16 DIGITS: 11100001
IN HEX IT IS El

12.

13.

14.

Chapter 7 Logic, Shift, and Rotate Instructions 137

Your program may ignore any input beyond 16 characters.

Write a program that prompts the user to enter two binary numbers
of up to 8 digits each, and prints their sum on the next line in bi-
nary. If the user enters an illegal character, he or she should be

" prompted to begin again. Each input ends with a carriage return.

Sample execution: -) .
TYPE A BINARY NUMBER, UP TO 8 DIGITS:11001010

" TYPE A BINARY NUMBER, UP TO 8 DIGITS:10011100
" THE BINARY SUM IS 101100110 .

Write a program that prompts the user to enter two unsigned hex
numbers, 0 to FFFFh, and prints their sum in hex on the next

" line. If the user enters an illegal character, he or she should be

prompted to begin again. Your program should-be able to handle
the possibility of ynsigned overflow. Each mput ends with a car-
riage return.]

Sample execution: . -

TYPE A HEX NUMBER, O - FFEF: 21AB

TYPE A HEX NUMBER, 0 - FFFF: FEO3

THE - SUM TS 11FAE

Wirite a program that prompts the user to ¢nter a string of deci-
mal digits, ending with a carriage return, and prints their sum in

" hex on the next line. If the user enters-an illegal character, he or

she should be prompted to begin agam :
Sample execution: -

ENTER A DECIMAL DIGiT STRING: 1299843

_THE SUM OF THE DIGITS IN HEX 1S 0024

The Stack and
Introduction to
Procedures

Overview

The stack segment of a program is used for temporary storage of data
and addresses. In this chapter we show how the stack can be manipulated,
and how it is used to implement procedures.

In section 8.1, we introduce the PUSH and POP instructions that
add and remove words from the stack. Because the last word to be added to
the stack is the first to be removed, a stack can be used to reverse a list of
data; this property is exploited in section 8.2.

Procedures are extremely important in high-level language program-
ming, and the same is true in assembly language. Sections 8.3 and 8.4 discuss
the essentials of assembly language procedures. At the machine level, we can
sce exactly how a procedure is called and how it returns to the calling program.
In section 8.5, we present an example of a procedure that performs binary
multiplication by bit shifting and addition. This example also gives us an
excuse to learn a little more about the DEBUG program.

8.1
The Stack

A stack is one-dimensional data structure. Items are added and re-

. moved from one end of the structure; that is, it is processed in a “last-in,
" first-out” manner. The most recent addition to the stack is called the top

of the stack. A familiar example is a stack of dishes; the last dish to go on
the stack is the top one, and it’s the only one that can be removed easily.

139

140 8.1 The Stack

A program must set aside a block of memory to hold the stack. We'
have been doing this by declanng a.stack segment; for example,
.STACK 100H.

When the program is assembled and loaded in memory, $S Will contain the
segment number of the stack segment. For the precedmg stagk declaration,.

SP, the stack pointer, is initialized-to 100h. This. regrtsents the emgity stack »
position: When the stack is not empty, SP contains the offset ‘address, of the -

top of the stack.

PUSH and PUSHF

To'add a new word to the stack we PUSH it on, The syntas is.
PUSH sourc‘e ’ .
where source is a 16-bit register or memory word. For example
PUSH AX ' '

Execution of PUSH causes the followmg to happen:
1. SP is decreased by 2.

2. A copy of the source content is moved to the address specxﬁed by
SS:SP. The source is unchanged.

" The instruction PUSHF which has no operands, pushes the contents of the

FLAGS register onto the stack.

Initially, SP contains the offset address of the memory locatlon im-
mediately following the stack segment; the first PUSH decreases SP by 2,
making it noint to the last.word in the stack seement. Recause each PUSH

Figure 8.1A Empty Stack

. Offsetv

00FD

00F2

O00F4

00F6

- QOF8
0100 SP

OO0FA

0oFC - 1234 AX

OOFE

0100 - _._‘-,——5” .. 5678 J BX

STACK (empty)

hanter 8 The Stack and Introduction to Procedures

Figure 8.18 After PUSH AX

" Offset*

00F0

00F2

00F6 -

00F8

00FA

.00FC

OOFE

1234

——— SP

+ 0100

STACK

ot

OOFE

1234

5678

SP

B8X

141

decreases SP, the stack grows t0ward the beginning of memory Figure 8.1
shOW} how PUSH works

- 1C After PUSH BX .

© Offset

00F0

00F2

- O0F4

00F6

00F8

O00FA

00FC

5678

e——— 5P

OOFE

123

0100

STACK

00FC

1234

5678

SP,

AX

. BX

8.1 The Stack

POP and POPF

To remove the top item from the stack, we POP it. The syntax is
POP destination
where destination is a 16-bit register (except IP) or mémory word. For example,
POP BX

Executing POP causes this to happen:
1. The content of SS:SP (the top of the stack) is moved to the desti-
nation.)
2. SP is increased by 2.

Figure 8.2 shows how POP works.
The instruction POPF pops the top of the stack into the FLAGS register.
There.is no effect of PUSH, PUSHF, POP, POPF on the flags.
Note that PUSH and POP are word operations, so a byte instruction
such as

llegal: PUSH DL A
is illegal. So is a push of immediate daia, such as
ltlegal: PUSH 2 '

Note: an immediate data push Is legal for the 80186/80456 processors. These
processors are discussed in Chapter 20.

In addition to the user’s program, the operating system uscs the stack
for its own purposes. For example, to implement the INT 21h functions,
DOS saves any registers it uses on the stack and restores them when the
interrupt routine is completed. This does not cause a problem for the user

8.2A Before POP

Offset

OOFQ

00F4

0076

00F8 .
O0FC sP

00FA

00FC 5678 ¢——— SP FFFE X

00FE 1234

0100 0001 DX

STACK

Chapter 8 The Stack and Introduction to ~Pro.cedure$ 143

N

82R After POP CX

> 00F2-

00FE | SP

00FC 5678 - 5678 o

QO0FE 1234 |e SP

0100 . Coe). . 0001 BX

STACK

because any values DOS pushes onto the stack are popped off by DOS before
it returns control to the user’s program. ’

8.2C After POP DX

0100 | SP

00FC 5678 5678 o

0100 : ¢——— $P 1234 DX

STACK (empty)

144

8.2 A Stack Application-

8.2
A Stack Application

Because the stack behaves in a last-in, first-out manner, the order
:hat items come off the stack is the reverse of.the order they enter it. The
‘ollowing program uses this property to read a sequence of characters and’

display them in reverse order on the next line.

Algorithm to Reverse input_

Display a ‘?/

Initialize count to-0

Read a character

WHILE character is not a carrxage return DO
push character onto the stack
increment count :
read a chazacter

-END _WHILE;

Go to a new line

FOR count times DO
pop a character from the stack,
dxsplay it;

END_FOR

Here js the program:

Program Listing PGM8_1.ASM
TITLE PCMB_1: szpass INPUT

237 . JAUCEL . SMA

3: .. .STACK 1CCH

4: .CODR)

S: MAIN PROC

6: ;displdy user prompt

7 MOV AH, 2 ;prepare to display
8: MOV DL, ’?’ ;char .to display
9: CINT 21H . ;display 27

10: :initialize character count)

11: _XOR €X,CX ;jcount = 0.

12: ;read a character

13: MOV AH, 1 ;prepare to read
14: INT -21H :read a char

15: ;while character is not a cakriagé return do
16: WHILE_: . .

17: CMP ‘AL, ODH " ;CR? .

18: JE END_WHILE ;yes, exit loop
19: ;save character on the stack and increment
20: PUSH AX " ;push it on stack
21: . INC cX ;count = count + 1
22: ,read a character)

23: “INT 21H " ;read a char

24: JMP | WHTLE ;loop back

25: END WHILL]

-26: ;go to a néw lzne

27 _MOV' AH,2 . ;display char fen
28 . MOV DL, ODH ;CR :

29: INT 21H ;execute

30 ‘MOV DL, OAH ;LF

coun!

Chapter 8 The Stack and Introduction to Procedures 145

31: INT 21H ;iexecute -
32: JCXZ EXIT ;exit if no characters read
33: ;for count times do . :

34: TOP: * A

35: :;pop a character from the stack

36:- . POP bx : ;get a char from stack

37: ;display. it

38: INT 21H ' ;display it

39: . LOOP TOP -

40: . ;end, for :

41: EXIT:

<42: L. ¢ «~MOV ‘AH, 4CH

43z, 0 [.INT . 21H

44: MAIN-., "ENDP o

45: .« . END MAIN

Because the number of characters to be entered is unknown, the
program uses CX to count them. CX controls the FOR loop that displays the
characters in reverse order. . '

In lines .16-24, the program exccutes a WHILL loop that pushes
characters on the stack and reads new ones, until a carriage return is entered.
Even though the input characters are in AL, it's necessary 1o save all of AX
on the stack, because the operand of PUSH must be a word.

When the program exits the WHILE loop (line 25), all the characters
are on the stack, with the low byte of the top of the stuck containing the
last character to be entered. AL contains the ASCII code of the carriage return.

At line 32, the program checks to sec if any characters were read. If
not, CX contains 0 and the program jumps to the DOS exit. If any characters
were read, the program enters a FOR loop that repeatedly pops the stack into
DX (so that DL will get a character code), and displays a character.

)
Sample exccutions:

C>PGMB_1
?THIS IS A TEST
TSET A SI SIHT

C>PGMB_1
2A
A

C>PGMS8_1

? (cnly carria,e return typed)
(no output) T

C>

146 - 8.3 Terminology of Procedures

8.3
Terminology of
Procedures

In Chapter 6, we mentioned the idea of top-down program design.
The idea is to take the original problem and decompose it into a series of
subproblems that are easier to solve than the original problem. High-level
languages usually employ procedures to solve these subproblems, and we
can do the same thing in assembly language. Thus an assembly language
program can be structured as a collection of procedures.

One of the procedures is the main procedure, and it contains the
entry point to the program. To carry out a task, the main procedure calls
one of the other procedures. It is also possible for these procedures to call
each other, or for a procedure to call itself.

When one procedure calls another, control transfers to the called
procedure and its instructions are executed; the called procedure usvally
returns control to the calier at the next instructicn after the call statement
(Figure 8.3). For high-level languages, the mechanism by which call and
return are implemented is hidden from the programmer, but in assembly
language we can see how it works (see section 8.4).

Procedure Declaration
The syntax of ptocedure declaration is the followlng:

name PROC type
;body of the proqédure
. . RET .

name ENDP ‘m,

Name is the user-defined nanie of the procedure. The optional operand type
is NFAR or FAR (if type is omitted, NEAR is assumed). NEAR means that
the statement that calls the procedure is in the same segment as the proce-
dure itself; FAR means that the calling statement is in a different segment.
In the following, we assume all procedures are NEAR; FAR procedures are
discussed in Chapter 14. .

Figure 8.3 Procedure Call
and Return *

MAIN PROC

— CALL PROCY
——| next instruction

PROC1 PROC
first instruction

RET

Chapter 8 The Stack and Introduction to Procedures 147

RET
The RET (return) instruction céuse; control to transfer back to the

calling procedure. Every proceduré (except the main procedure) should have
a RET someplace; usually it’s the last statement in the procedure.

Communication Between Procedures

. A procedure must have a way to receive values from the procedure
that calls it, and a way to return‘results. Unlike high-level language proce-
dures, assembly language procedures do not have parameter lists, so it’s up
to the programmer to devise a way for procedures to communicate. For ex-
ample, if there are only a few input and output values, they can be placed
in registers. The general issue of procedure communication is discussed in
Chapter 14. *

. Procedure Documentation

In addition to the required procedure syntax, it's a good idea to
document a procedure so that anyone reading the program listing will know
what the procedure does, where it gets its input, and where it delivers its
output. In this book, we generally document procedures with a commenti
block like this: '

(describe‘ what the procedure does)

’

; input: (where it receives information from
=" 7 "the calling program) ‘
; output: (where it delivers results to
the calling program)
; uses: (a list of procedures that 1t calls)

3.4 .
CALL and RET

CALL '~—address__expression

To invoke a procedure, the CALL instruction is used. There arc two
kinds of procedure calls, direct and indirect. The syntax of a direct pro-

cedure callis

CALL name
where name is the name of a procedure. The syntax of an indirect procedur:

call is - . .

where address_expression specifies a register ot memory'loca:(i()n' containiny, th
address of a procedure.
Executing a CALL instruction causes the f{ollowing to happen

1. The return address to the calling program is saved on the st !
This is the offset of the next instruction after the CALL sta' .-
ment. The segment:offset of this instruction is in CS:IP ai -»
time the call is executed.

148 84 CALL and RET

CHiset address »;-. _Code segment

MAIN PROC ’ N

0010 { CALL PROC1
P —» 0012 | next instruction

Offset Stack segment

address
PROC1T PROC
0200 | firstinstruction
00FC
' OOFE
RET 0100 j¢~——— SP

L

figure 8.4A - Before CALL

Off<et address Code segment

MAIN PROC

0010 { CALL PROCH
0012 next instruction

Offset Stack segment

address
PROC1 PROC
IP —% 0200 | firstinstruction
Q0OFC
OOFE | 0012 {&———S5P
RET 0100

Figure 8.48 After CALL

‘2. -IP gets the offset address of the first instruction of the procedure.
This trarisfers control to the procedure. See Figures 8.4A and 8.4B.

To return from a que.dure, the instruction

RET pop_value

Chapter 8 The Stack and /ntroddctiop to Prc).cedures

Offset address
0010
0012
0200
e
P —» 0300

Code segment

MAIN PROC

CALL PROC1- e

next instruction, =~ |

PROC1 PROC
first instruction

RET

‘Offset Stack segment

address
OOFC
- OOFE 0012 ¢———— SP
: 0100 - .

Figure 8.5A Before RET

Offset address

Code segment

0010
P —» 0012

0200

0300

MAIN PROC

CALL PROCY
next instruction

PROC1 PROC
fiest instruction

RET

Offset Stack segment
address

00FC

OOFE

0100 T ole——p

Figure 8.58 After RET

a9

is executed. The integer argument pop_value is optional. For a NEAR procedure,
execution of RET causes the stack to, be popped into IP. If a pop_value N is
specified, it is added to SP, and thus has the effect of removing N additional
bytes from the stack. CS:IP now contains the segment:offset of the return ad-
dress, and control returns to the calling program. Sce Figures 8.5A and R SR

150 85 An Examp’/e of a Procedure

8.5

An Example of a As an example, we will write a procedure for flqding tl}e 'product of

Procedure two positive integers A and B by addition and bit shifting. This is one way
roc unsigned muitiplication may be implemented on the computer (in Chapter

9 we introduce the multiplication instructions).

Multiplication algorithm:

Product = O
REPEAT
IF lsb of B is 1 (Recall 1lsb = least
significant bit)

3

THEN
Product = Product + A
END_IF .
Shift left A -
Shift right B
UNTIL B = 0

For example, if A= 111b = 7 and B = 1101b = 13

Product = 0

Since 1sb of B is 1, Product = 0 + 11ib = 11'b
Shift left A: A = 1110b

Shift right B: B = 110b

Since 1lsb of B is O,
Shift left A: A = 11100b
Shift right B: B8 = 11b

Since lsb of B is 1

Product = 111b + 131100k = 107011b
Shift left #: A = 1il10GOb

Shift right B: B = 1

Sirce lsb cf B is 3

Product = 100011k + 111000b = 10110.ib
Shift left A: A = 1110000b

Shift right B: B = 0

Since lsb of B = 0
Return Froduct = 1011C1lb = 9id

Note that we get the same answer by performing the usual decimal multi-
plication process on the binary numbers:
111b
x 1101b

111
00C
111

111 -
1011011b

. L

In the following program, the algorithm is coded as a procedure
MULTIPLY. The main program has no input or output; we will use DEBUG
for the 1/0)

Chapter 8 The Stack and Introduction to Procedures 151

"Program Listing PGM8_2.ASM

f: TITLE PGMB _2: MULTIPLICATION BY ADD AND SHIFT
2: .MODEL ~ 'SMALL

3: .STACK 100H

At ¢.CODE- -~

5: %" MAIN . PROC; - :

6: :execute in DEBUG. Place A in AX and B in BX

7: CALL MULTIPLY

8: ;DX will contain the product
9: ‘ MOV AH, 4CH

10: “INT 21H

11: MAIN ENDP 4

12: MULTI.PLYE;ROC
13: ;multiplies two nos. A and B by shifting and addition

14: ;input: “AX = A,"BX = B. Nos..in range 0 - FFh
15: ;output: DX = product

116: PUSH AX
S17: PUSH BX .
18: " XOR DX,DX ;product = 0
19: REPEAT: - - ~ '

20: ;if B is odd '

21: - " TEST BX,1" ;is B odd?

22: Jz END_IF .o, even

23: ;then

24: ADD DX, AX ;prod = prod + A
25: END_IF: ' ’ '
26: SHL &X,1° ;shift left A
27: SHR BX,1 ;Shift right B
28: ;until

29: .JINZ REPEAT

30: POP BX

+31% POP’ 'AX

30 RET e

33: MULTIPLY ENDP '

347 - - ° "END MAIN

=Procedure MULTIPLY receives its input A and B through registers AX and
__BX, respectively. Values are placed-in these registers by the user’inside the
DEBUG program; the product is returned in DX=Ir, order te avoid overflow,
_.A and B are restricted to range from O to FFh.
- -. A procedure usually begins by: savmg all the registers it uses on the
sstack and ends by restoring these registerS*-Tms is done because the calling
program may have data stored in registers, and the actions of the _procedure
_could cause unwanted side effects if the registers are not preserved. Even
though it’s not really necessary in this program, we illustrate this practice
by pushing AX and BX on the stack in lines 16 and 17, and restoring them
in lines 30 and 31. The registers are popped off the stack in the reverse order
- that they were pushed on. .
After clearing DX, whnch ‘'will hold the product, the procedure enters
a REPEAT loop (lines 19-29). “At liné 22, the procedure checks BX's least
significant bit. If the Isb of BX is 1, then AX is added to the product in DX;
if the Isb of BX is 0, the procedure skips to line 26. Here AX is shifted left,
and BX is shifted right; the loop continues until BX = 0. The procedure exits -
. with the produgt in DX.

152 8.5 An Example of a Procedure

After assembling and linking the program, we take it into DEBUG
(in the following, the user’s response appears in boldface):

C> DEBUG PGMS_2.EXE

DEBUG responds with its command prompt “-”. To get a listing of the pro-
gram, we use the U (unassemble) command.

_u .
177F:0000 E80400 CALL 0007
17°F:0003 B44C MoV AH, 4C
177F:0005 CD21 INT 21
177F:0007 50 PUSH AX
177F:0008 53 PUSH BX
177F:0009 33D2 XOR " DX, DX
177F:000B F7C30100 TEST BX, 0001
177F:000F 7402 JZ 0013
177F:0011 03D0D ADD DX, AX
177F:0013 DIEQ SHL -’ ax,1
177F:0015 DI1EB SHR BX, 1
177F:0017 7SF2 JINZ J00B
177F:0019 <B popP BX
. 177F:001A S8 pPOP AX
177F:001B C3 RET
i77F:001C E3D1 Jcxz FFEF
177F:001E E38B Jcx2 FFAB
The U command causes DEBUG to interpret the contents of memory as
machine language instructions. The display gives the segment:offset of each
instruction, the machine code, and the assembly code. All numbers are ex-
5 pressed in hex. From the first statement, CALL 0007, we can see that proce-
‘ dure MAIN extends from 0000 to 0005; procedure MULTIPLY begins at 0007
and ends at 001B with RET. The instructions after this are garbage.
Before entering the data, let's look at the registers.
_R -t D -

AX=0000 BX=0000"" CX=001C DX=0000 $SP=0100 BP=0000 SI=0000 DI=0006~'”
D3=176F ES=17€F S$S=1781 CS=177F 1IP=0000 NV UP EI PL NZ NA PO V.
177F:0000 E80430 CALL (0007 -

U

The initial value of SP = 100h reflects that fact that we allocated 100h bytes
for the stack. To have a look at the empty stack, we can dump memory with
the D command. °

Chapter 8 The Stack and Introduction to Procedures 153

DSS:FO FF _ : . ,
1781:00F0 00 00 00 00 00 00 6F 17-A4 13 07.00 6F 17 00 00

The command DSS:FO FF means to display the memory bytes from SS:FO to
SS:FF. This is the last 16 bytes in the stack segment. The contents of each
byte is displayed as two hex digits. Because the stack is empty, everything
irf this display is garbage.. ,

Before executing the program, we need to place the numbers A and
B in AX and BX, respectively. We will use A = 7 and B = 13 = Dh. To enter
A, we use the R command:

-RAX

AX 0000:7
The command RAX means that we want to change the content of AX. DEBUG
displays the current value (0000), followed by a colon, and waits for us to enter
the new value. Similarly we can change the initial value of B in BX:

~-RBX

BX 0000:D

Now let's look at the registers again.
-R E}

AX=0007 BX=C00D C¥X=001C DX=0000 SP=0100 BP=0000 SI=0000 DI=0000
DS=176F ES=176F - SS=1781 CS=177F IP=0000 NV UP EI PL NZ NA PO NC
177F:0000 E80400 CALL 0007

We see that AX ad BX now contain the initial values.
To see the effect of the first instruction, CALL 0007, we use the T .
(trace) command. It will execute a single instruction and display the registers.

HE] 8.5 An Example of a Procedure

-7
AX=0007 BX=000D CX=001C DX=0000 SP=00FE BP=0000 SI=0000 DI=0000
CS=176F ES=176F SS=1781 (CS=177F 1IP=0007 NV UP EI PL NZ NA PO NC

177F:06G627 50 PUSH AX

We notice two changes in the registers: (1) IP now contains 0007, the starting
offset of procedure MULTIPLY; and (2) because the CALL instruction pushes
the return address to procedure MAIN on the stack, SP has decreased from
0100h to OOFEh. Here are the last 16 bytes of the stack segment again:

-DSS:FO0 FF
1781:00F0 00 00 00 00 07 LO 00 00-07 00 7F 17 A4 13 03 00

The return address is 0003, but is displayed as 03 00. This is because DEBUG
displays the low byte of a word before the high byte.

The first three instructions of procedure MULTIPLY push AX and BX
onto the stack, and clear DX. To see the etfect, we use the G (go) command.

The syntax is
G offset

It causes the program to execute instructions and stop at the specified olfset.
From the unassembled listing given earlier, we can see that the next instruc-
tion after XOR DX,DX is at offset 600Bh.

~-GB

AX=0007 BX=04l0D CX=001C DX=0000 SP=00FA BP=00.;0 SI=0050 ©DI=32CC
DS=176F ES=17¢F 3s=1781 CS=177F 1IP=00GB NV U2 EI FL 2
177F:000B F7C30100 TEST BX, 0001 o

We see that the two PUSHes have caused SP to decrease by 4, from OOFEh
to OOFAh. Now the stack looks like this:

-DSS:FO FF .
1781:00FC 00 GO 00 00 07 00 CO 17-24 13 OD 00 07 GO C3 CO

The stack now contains three words; the values of BX (000D), AX (0007),
and the return address (0003). These are shown as 0D 00 07 00 03 00. -

Now let’s watch the procedure in action. To do 5o, we will execute
to the end of the REPEAT loop at offset 0017h:

Chapter 8 The Stack and Introduction to Procedures 155

-G17 :])
AX=000E BX=0006 CX=001C Dx=0007 SP=00FA BF=0000 S1=0C00 [£I=0000

DS=1"6F ES=176F SS=1781 CS=177F 1IP=0017 NV UP EI PL NZ AC PE CY
177F:0017 75F2 JNZ 000B

Because the initial value of B in BX was ODh = 1101b, the Isb of BX is 1, so
AX is added to the product in DX, giving 111b = 0007h. AX is shifted feft,
which doubles A to 14d = O00Eh, and BX is shifted right, which halves BX
(and rounds down) to 0006h = 110b.

' To get to the top of the loop, we'll use the T command again:

' 5

-T

'[‘ AX=u00L BX=0006 CX=001C DX=0007? SP=00FA BP=C0CC Si=0000 " C£I=C000
DS=176F ES=176F SE£=1781 (CS=177F 1IpP=00CB NV UP EI PL NZ AC PE (Y
177¢:0008 F7C30100 TEST BX,0001 :

. and execute again to the bottom:

-G17

AX=001C BX=0003 CX=001C DX=0007 SP=00FA BP=0000 SI=0000 5I=0000
DS=176F ~ ES=17€F S$S=1781 <CS$=177F 1IP=0017 NV UP EI PL N2 AC PE NC
1778:0017 75F2 SNZ 000B

PR + . v . , -
Beceuse BX = 0006h = 110b, the Isb of BX is 0, so the product in DX stays the
same. AX is shifted left to 11100b = 1Ch and BX is shifted right to 11b = 3h.

After two more trips through the loop, the product is in DX. Watch
AX, BX, and DX change:”

_T ..

EX=001C EX=0003 CX=001C DX=00C7 SP=00FA BpP=0000 S37=0000 DI=0000

DS=176Ff ES=176F $S=1781 (CS=177F - IP=000B NV UP EI PL NZ AC PE NC
»+177F;00CB F7C30100a- TEST BX,0001 R

-G17
AX=0038 BX=0001 CX=001C DX=0023 SP=00FA BpP=0030 S1=CCU0 DI=0002
DS=176F ES=176F SS=1781 C€S=177F 1IP=0017 NV UP EI PL NZ AC PO CY

177F:0017 75%F2 JNZ 000B

156 85 An Example of a Procedure

-7 .
AX=0038 BX=0001 CX=001C DX=0023 SP=00FA BP=0000 SI=0000 DI=0000
DS=176F ES=176F SS=1781 CS=177F IP=000B NV UP EI PL N2 AC PO CY

177F:000B F7C30100 TEST BX,0001 .

-G17
KX=0070 BX=0000 CX=001C DX=005B SP=00FA Bp=0000 SI=0000 DI=0000

DS=176F ES=176F SS=1781 CS=177F 1IP=0017 NV UP EI PL 2R AC PE CY
177F:0017 75F2 JNZ 000B

The last right shift made BX = 0, ZF = 1, so the loop ends. The product = 91

= 5Bh is in DX.
To terminate the procedure, we trace through the JNZ and the two

POP instructions:

-7
AX=0070 BX=0000 CX=0C1C DX=005B SP=00FA BP=0000 SI=0000 DI=0000
D8=176F ES=176F §S=1781 CS=177F 1IP=0019 NV UP EI PL ZR AC PE CY

177F:0019 SB POP BX

-T
AX=0070 BX=000D CX=001C DX=005B SP=00FC BP=0000 SI=0000 DI=0000
DS=176F ES=176F SS5=1781 (CS=177F 1IP=00l1A NV UP EI PL 2R AC PE CY

L77F:001A 58 POP AX

-7) .
AX=0007 BX=000D CX=001C DX=005B SP=00FE BP=0000 SI=0000 DI=0000
DS=176F ES=176F SS=1781 .C$-177F IP=001B NV UP EI PL ZR AC PE CY

177F:001B C3 RET

The two POPs have restored AX and BX to their original values. Let's look
at the stack: .

-DSS:FO0 FF
1781:06F0 70 00 70 GO 07 00 00 00-1B 00 7F 17 A4 13 03 00.

The values 000D and 0007 are no longer in the display. This is not a result
of the POP instruction; it's because DEBUG is also using the stack.
Finally, we trace the RET, .

Chapter 8 The Stack and Introduction to Procedures 157

T L S)
2X=0007 BX=000D CX<=001C Dx=005B SP=0100 BP=0000 SI=0000 DI=0000
DS=176F ES=176F SS=1781 CS=177F 1IP=0003 NV UP EI PL 2R AC PE CY

177F:0003 B44C MOV AH, 4C

RET causes IP to get 0003, the return address to MAIN. SP goes back to 100h,
its orjginal value. To finish executing the program, we just type G:

-G . ..
Program terminated normally

and we exit DEBUG by typing Q (quit)._

-Q

>C

Summary

¢ The stack is a temporary storage area used by both application
" progtams and the operating system.

*. The stack is a last-in, first-out data structure. SS:SP points to the
top of the stack.

e The stack-aitering instructions are PUSH, PUSHE POP, and POPE.
PUSH adds a new top word to the stack, and POP removes the
top word. PUSHF saves the FLAGS register on the stack and POPF
puts the stack top into the FLAGS register.

e SP decreases by 2 when PUSH or PUSHF is executed, and it in-
creases by 2 when POP or POPF is executed. SP is initialized to
the first word after stack segment when the program is loaded.

* A procedure is a subprogram. Assembly language programs are

© typically broken into two procedures, One of the procedures is
the main procedure, which contains the entry point to the pro-
gram. Procedures may call other procedures, or theinselves.

e There ate two kinds of procedures, NEAR and FAR. A NEAR proce-
dure is in the same code segment as the calling program, and a
FAR procedure is in a different segment.

+ The CALL inslrucgion is used to invoke a procedure. For a NEAR
procedure, execution of CALL causes the offset address of the
next instruction in line after the CALL to be saved on the stack,
and the IP gets the offset of the first instruction in the procedure.

158

Exercises

* Procedures erd with a RET instruction. Its exccution causes the stack
to be popped into 1P, and control returns to the calling program. In
order for the return address to be accessible, the procedure must en-
sure that it is at the top of the stack wher RET is executed.

* la assembly language, procedures often pass data through registers.

Glossary

dircct procedure call A procedure call of form CALL name

FAR procedure A procedure that can be called by proce-
dures residing in any segment

indirect procedure call A procedure call of forny CALL addr_exp

NEAR procedure A procedure that can only be called by
another procedure residing in the same
segment

top of the stack The last word of data added to the stack

New Instructions

CALL POPF PUSHF

POP PUSH RET

Exercises
1. Suppose the stack segment is declared as follows:

.STACK 100h

a. What is the hex contents of SP when the program begins?
b. What is the maximum hex number of words that the stack
may contain?
2. Suppose that AX = 1234h, BX = 5678h, CX = 9ABCh, and SP =
100h. Give the contents of AX, BX, CX, and SP after executing
the following instructions:

PUSH AX
PUSH BX
XCHG AX,CX
poP cX
PUSH AX.
POP :BX

3. When the stack has completely filled the stack area, SP = 0. If an-
other word is pushed onto the stack, what would happen to SP?
What might happen to the program?

4: .Suppose a program contains the lines

CALL PROC1 .
. MOV AX, BX -
_ and (a) instruction MOV AX,BX is stored at 08FD:0203h, (b) PROC1
~is a NEAR procedure that begins at 08FD:300h, (c) SP = 010Ah.
© What are the contents of IP and SP just after CALL PROC1 is exe-
cuted? What word is on top of the stack?

Chapter 8 The Stack and Introduction to Procedur>s 159

-S. Suppose SP = 0200h, tob of stack = 012Ah. What are the contents
of IP and SP _
a. after RET is executed, where RET appears in a NEAR procedure?
b. " after RET 4 is executed, where RET appears in a NEAR procedure”
6." Write some code to
" a. place the top of the stack into AX, without changing the
stack.contents. . *»
“b. place the word that is below the stack top into CX, without
. changing the stack contents. You may use AX.

* c¢. exchange the top two words on the stack. You may use AX

and BX.",

7. 'Procedures are supposed to return the stack to the :alling pro-
gram in the same condition that they received it. However, it
may be useful-to have procedures that alter the stack. For exam-
ple, suppose we would like to write a NEAR procedure
SAVE_REGS that saves BX,CX,DX,SI,DI,BP,DS, and ES on the
stack. After pushing these. registers, the stack would look like this:

ES .content

DX content
CX content
BX content
return_address (offset)

Now, unfortunately, SAVE_REGS can't return to the calling pro-

gram, because the return address is not at the top of the stack.

a. Devise a way to implement a procedure SAVE_REGS that gets
around this problem (you may use AX to do this).

b. Write a procedure RESTORE_REGS that restores the registers
that SAVE_REGS has saved.

Programming Exercises

8. Writea p'ro'gra'm that lets the user type some text, consisting of
- words separated by blanks, ending with a carriage return, and dis-
plays the text in the same word order as entered, but with the let-
~ ters in each word reversed. For example, “this is a test” becomes
“siht si a tset”. Hint: modify program PGM8_2.ASM in section 8.3.
9.; A problem in elementary algebra is to decide if an expression con-
taining several kinds of brackets, such as, [,},{,},(,), is correctly
‘bracketed. This is the case if {a) there are the same number of left
* ‘and right brackets of each kind, and (b) when a right bracket ap-
pears, the most recent preceding unmatched left bracket should
be of the same type. For example,”

‘@+[b-x(d-e)}]+f) is correctly bracketed, but
(a+[b—_lcx.(d-e)) }+f) is not

. Correct bracketing can be decided by using a stack. The expres-
~..sion is scanned left to right. When a left bracket is encountered,
it is pushed onto the stack. When a right bracket is encountered,

160

Exercises

10.

the stack is popped (if the stack is empty, there are too many
right brackets) and the brackets are compared. If they are of the
same type, the scanning continues. If there is a mismatch, the ex-
pression is incorrectly bracketed. At the end of the expression, if
the stack is empty the expression is correctly bracketed. If the
stack is not empty, there are too many left brackets.

Wirite a program that lets the user type in an algebraic expression,
ending with a carriage return, that contains round (parentheses),
square, and curly brackets. As the expression is being typed in,
the program evaluates each character. If at any point the expres-
sion is incorrectly bracketed (too many right. brackets or a mis-
match between left and right brackets), the program tells the user
to start over. After the'carriage return is typed, if the expression is
correct, the program displays “expression is correct.” If not, the
program displays “too many left brackets”. In both cases, the pro-
gram asks the user if he or she wants to continue. If the user
types ‘Y’, the program runs again. .

Your program does not need to store the input string, only check
it for correctness.

Sammple execution:

ENTER AN ALGEBRAIC EXPRESSICN:

(a + b)]TCO MANY RIGHT BRACKETS. BEGIN AGAIN!
ENTER AN ALGEBRAIC EXPRESSION

ta + [b - ¢) % d)

EXPRESSION IS CORRECT

TYPE Y TF YDt W NT TO CCWTINUE:Y

ENTER AN Al GFEERATL EXPRESCICN:

fa + b x (¢ - d) - e}ERACKET MISMATCIi. BEGIN AGAIN!
ENTER AN ALGEERAIC EXIRESSICN:
(a + (b - {c ~ (d - e) }] + 1)

T SRACKETS. BEGIN AGAIN!
CERAIC EXPKRESSION:

TOC MANY LE
ENTER AN AL
I'VE HAD ENf
EXPRESSICON IS CCRRECT

TYPE Y IF YQOU WANT TO CONTINUE:N .

The following method can be used to generate random numbers
in the range 1 to 32767.

Start with any number in this range.

Shift left once.

Replace bit O by the XOR of bits 14 and 15.
Clear bit 15. .

Write the following procedures:

a. A procedure READ that lcts the user enter a binary number

and stores it in AX. You may use the code for binary input
given in section 7.4.

b. A procedure RANDOM that receives a number in AX and re-
turns a random sumber in AX.

c. A procedure WRITE that displays AX in binary. You may use
the algorithm given in section 7.4.

Write a program that displays a ‘?*, calls READ to read a binary

number, and calls RANDOM and WRITE to compute and display
100 random numbers. The numbers should be displayed four per
line, with four blanks separating the numbers.

Multiplication-and
Division Instructions

Overview

_ In.Chapter 7, we.saw how to do multiplication and division by
shifting the bits in a byte or word. Left and right shifts can be used for
multiplying and dividing by powers of 2. In this chapter, we introduce in-
structions for multiplying and dividing any numbers.

-, .The process of multiplication and division is different for signed and
unsigned numbers, so there are different instructions for signed and unsigned
multiplication and division. Also, these instructions have byte and word
forms. Sections 9.1 through 9.4 cover the details.

One of the'most useful applications of multiplication and division

< s

“is to implement decimal input and output. In section 9.5, we write procedures

to carry out these operanons .This application greatly extends our program’s
1/0.capability.

9.1
MUL and IMUL

Signed-Versus-Unsigned Muitiplication

In :binary. multiplication, signed.and unsigned numbers must be
treated differently. For example; suppose we want to multiply the eight-bit
numbers 10000000-and 11111111. Interpreted as unsigned numbers, they
represent ‘128 and 255; respectively. The product is 32,640 =
0111111110000000b. However, taken as signed numbers, they represent -128
and -1, respectively, and the product is 128 = 0000000010000000b.

Because signed and unsigned multiplication lcad to different re-
sults, there.are two multiplication instructions: MUL (multiniv) for unsigned

© 161

162 9.1 MUL and IMUL

multiplication and IMUL (integer multiply) for signed multiplication. These
instructions multiply bytes or words. If two bytes are multiplied, the product *
is ¢ word (16 bits). If two words are multiplied, the product is a doubleword

(32 bits). The syntax of these instructions is
MUL source
and

IMUL source

' .
Byte Form'
For byte m{xitiplication one number is containied in the source and

the other is assumed to be in AL. The 16-bit product will be in AX. The
source may be a byte reglster or memory byte but not a constant.

Word Form

For word multiplication, one number is contained in the source and
the other is assumed to be in- AX. Fhe most-significant 16 bits of the
doubleword product will be in DX, and the least significant 16 bits will be
in AX (we sometimes write this as DX:AX). The source may be a 16-bit register
or memory word, but not a’constant.

For multiplication of posmve numbers (0 in the most significant
bit), MUL and IMUL give the same resu]t

Effect of MUL/IMUL on the status flags

SF, ZF; kF,PF: v undefined
CE/OF:
after MUL, CF/OF = 0 if the upper half of the result is’
: zero.
= 1 otherwise.
After IMUL, CF/OF = 0 if the upper half of the result is the

sign extension of the lower half (this
means that the bits of the upper half
are the same as the sign bit of the
lower half).

= 1 otherwise.
For both MUL and IMUL, CF/OF =1 means that the product is too big to
fit'in"the lower half of the destmatnon (AL for byte multiplication, AX for
word multiplication).

Examples

To iilustrate MUL and IMUL, we will do several examples. Because-
,hex multiplication‘is vsually difficult to do, we’ll predict the product by
converting the hex values of multiplier and multiplicand to decinial, doing ™
decimal multiplication, and converting the product back to hex.

-Examplec 9.1 Suppose AX contains .l and BX contains FFFFh:

Instruction” Decimal product .- Hex product DX AX CF/OF
oL Bx 655357 M 7 " OOOCFEFF 0000 FFFF 0
IMUL BX -1 "' FFFFFFFF FFFF FFFF 0

Chapter 9 . Multiplication and Division instructions 163

For MUL, DX =0, so CF/OF = 0.

For IMUL, the signed interpretation of BX is -1, and the product is
aiso -1. In 32 bns, this is FFFFFFFFh. CHO} =0 beuuse DX is the sign
extensxon of AX. -

"

_ Example 9.2 Suppose AX contains FFFFh and BX contains FFFFh:

Instruction .Decimal product Hex product DX AX CF/OF

MUL BX 4294836225 FFFEOOO FFFE 0001 1
IMUL BX 1 00000001 0000 0001 O

For MUL, CF/OF = 1 because DX is not 0. This reflects the fact that
the product FFFEOOO1h is too big to fit in AX.
) For IMUL, AX and BX both contain -1, so the product is 1. DX has
the sign extension of AX, so CF/OF =0 .

Example 9.3 Suppose AX contains OFFFh:

" Instruction -Decimal product Hex product DX AX CF/OF
MUL AX 16769025 " 0OFFEQO1 O0FF E0OY - 1
IMUL AX 16769025 OOFFEQO1 00FF E0O1 1

Because the msb of AX is 0, both MUL and IMUL give the same product.
Because the product is too big to fit in AX, CF/OF =

Example 9.4 Supbose AX contains 0100h and CX contains FFFFh:

Instruction Decimal product Hex product DX AX CF/OF
MUL CX 16776960 OOFFFFOO OOFF FFOO 1
IMUL CX -256 FFFFFFOO FFFF FFOO o

For MUL, the product FFFFQO is obtained by attaching two zeros to the
source value FFFFh. Because the product is too big to fit in AX, CF/OF = 1.

For IMUL, AX contains 256 and CX contains -1, so the product is
-256, which may be expressed as FFOOh in 16 bits. DX has the sign extension
of AX, so CF/OF = 0. -

Example 9.5 Suppose AL contains 80h and Bl. contains FFh:

Instruction Decimal product "Hex product AH AL CF/OF
MUL BL 128 7F80 7F 80 1
IMUL BL 1281, 0080 00 80 1
For byte multiplication, the 16-bit product is contained in AX.

I~or MUL, the’ product is 71‘80 Because the high eight bits are not 0,
CF/OF = -
. F or.lMUl_., we have a curious situation. 80h = -128, F¥h = -1, so the

product is 128 = 0080h. AH does not have the sign extension of AL, so CF/OF

= 1. This reflects the fact that AL does not contain the correct answer in a
signed sense, because the signed decimal interpretution of 80h is -128.

164 9.2 Simple Applications of MUL ana IMUL

2.2 - ' :
Simple Applications’ To get used to programming with MUL and IMUL, we’ll show how
of MUL and IMIUL some simple operations can be carried out with these instructions.

Exam;ile 9.6 Translate the high-lével language assignment statement A
= 5 x A - 12 x B into assembly code. Let A and B be word variables, and
suppose there is no overflow. Use IMUL for multiplication.

Solution:

MOV AX,5 , JAX = S

IMUL A) ;AX = S x A
MOV A,AX ;A = 5 X A
MOV AX,12 ;AX = 12
IMUL B ;AX = 12 x B

SUB A,AaX , JA = 5‘x A - 12 x B

Example 9.7 Write a procedure FACTORIAL that will compute N! for a
positive integer N. The procedure should receive N in CX and return N!
in AX. Suppose that overflow does not occur.

Solution: The definition of N! is

Nl=1ifN=1
AaNX(N-1)x(N-2)x'..x1ifN>1

Here is an algorithm: -

product = 1
term = N
FOR N times DO
product = product x term
term = term - 1
ENDFOR

It can be coded as follows:

FACTORIAL PROC
,;computes N!'
;input: CX = N
ioutput: AX ;‘N!

MoV AX,1 ° “;AX holds ‘product
TOP: - .
MUL CX ;product = product x term
= ' . LoOP TOP)
- ty . , RET :
FACTCRIAL . ENDP

Heré CX-is both idop counter and term; the LOOP instruction automatically
*decrements it "on each itération through the loop. We assume theé product
does not overflow 16 bits.’

Chapter 9 Muiltiplication and Division Instructions 165

9.3 .
DIV ‘and IDIV

_ When division is performed, we obtain two results, the quotient and
the remainder. As with multiplication, there are separate instructions for
unsigned and signed division; DIV (divide) is used for unsigned division
and IDTV-(integer divide)-for signed division. The syntax is

DIV divisor

L2 B

‘and ~
IDIV divisor

These instructions divide 8 (ox 16) bits into 16 (or 32) bits. The quotient and
remainder have the same size as the divisor.

.
.- Byte Form

In this form, the divisor is an 8-bit register or memory byte. The
16-bit dividend is assumed to be in AX. After division, the 8-bit quotient is
in AL and the 8-bit remainder is in-AH. The divisor may not be a constant. -

Word Form
Here the divisor is a 16-bit register or memory word. The 32-bit
“dividend is assumied to be in DX:AX, After division, the 16-bit quotient is
in AX and the 16 -bit remainder is in DX. The divisor may not be a constant.
For signed division, the remainder has the same sign a: the dividend.
If both dividend and divisor are positive, DIV and IDIV give tiie same result.
4

The effect of DIV/IDIV on the flags is that all status flags are undefined.

* Divide Overflow

It is possxble that the quotient will be too big to fit ini the specmed
destination (AL or AX). This can happen if the divisor is nuch smaller than
the dividend. When this happens, the program terminates (as shown later)
and the system displays the message “Divide Overflow”.

Example 9.8 Suppose DX contains OOOOh AX contins OOOSh and BX
‘contains 0002h.

(]

.Insrruction,w- .»; Decimal~ . Decimal - AX DX
S .i quotient:. . remainder

DIV BX 2 S 1 0002 0001
IDIV BX 2 1 - 0002 0001

Dividing S by 2 yields a quotient of 2 and a remainder of 1. Because both -
dividend and divisor are positive, DIV and IDIV five the same results.:

Example 9.9 Suppose DX contains 0000h, AX contains 0005h, and BX
contains FFFEh.’ :

166 9.4 Sign Extension of the Dividend

Instruction Decimal Decimal AX DX
quotient remainder

DIV BX 0 S 0000 0005

IDIV BX -2 1 FFFE 0001

For DIV, the dividend is § and the divisor is FFFEh = 65534; S divided
by 65534 yields a quotient of 0 and a remainder of 5.

For IDIV, the dividend is 5 and the divisor is FFFLh = -2; 5§ divided
by -2 gives a quotient of -2 and a remainder of 1. -

Example 9.10 Suppose DX contains FFFFh, AX contains FFFBh, and BX
contains 0002.

Instruction Decimal Decimal AX DX
quotient remainder
IDIV BX -2 -1 FFFE " FFFF
DIV BX DIVIDE
OVERFLOW

For IDIV, DX:AX = FFFFFFFBh = -5, BX = 2. -5 divided by 2 gives a
quotient of -2 = FFFEh and a remainder of -1 = FFFFh.

For DIV, the dividend DX:AX = FFFFFFFBh = 4294967291 and the
divisor = 2. The actual quotient is 2147483646 = 7FFFFFFEh. This is too big
to fit in AX, so the computer prints DIVIDE OVERFLOW and the program
terminates. This shows what can happen if the divisor is a lot smaller than
the dividend. :

Example 9.11 Suppose AX contains O0FBh and BL contains FFh.

Instruction Decimal Decimal AX Al
quotient remainder
DIV BL 0 251 F8 00
IDIV EL DIVIDE)
OVERFLOW

For byte division, the dividend is in AX; the quotient is in AL and
the remainder in AH.

For DIV, the dividend is O0FBh = 251 and the divisor is FFh = 256.
Dividing 251 by 256 yields a quotient of 0 and a remainder of 251 = FBh.

For IDIV, the dividend is O0FBh = 251 and the divisor is FFh = -1.
Dividing 251 by -1 yields a quotient of -251, which is too big to fit in AL,
so the message DIVIDE OVERFLOW is printed.

9.4
'Sign Extension of
the Dividend

Word Division

In word division, the dividend is in DX:AX even if the actual divi-
dend will fit in AX. In this case DX should be prepared as follows:
1. For DIV, DX should be cleared.

2. For IDIV, DX shouid be made the sign extension of AX. The instruc-
tion CWD (convert word to doubleword) will do the extension.

Chapter 9. Multiplication ar¥f Division Instructions 167

Example 9.12 Divide ~1250 by 7:

.
. %

Solution:

MOV AX,-1250 % aX gets dividend

CWD ;Extend sign to DX

MOV BX,7 ;BX has divisor

IDIV BX ;AX gets quotient, DX has remeinder

Byte Division
:Ih' byte divisidn.,_the:aividend is in AX. If the actual dividend is a
byte, then AH should be prepared as follows:
1. "For DIV, AH should be cleared.

2 Fof‘lDlV,'AH should the sign extension of AL. The instruction
CBW (convert byte to word) will do the extension.

Example 9.13 Divide theé signed value ‘of the byte vuriable XBYTFE by ~7.

Solution:

MOV AL, XBYTE - " ;AL has dividend

CBW o sExtend sign to AR
MOV BL, -7 - 7 ;BL- has divisor
IDIV°BL ' # ;AL has quotient, AH has remainder

There is no effect of CBW and CWD on the flags.

9.5
Decimal Input and
Output Procedures

Even though the computer represents everything in binary, it's more
convenient for the uscr to see input and output expressed in decimal. In this
section, we write procedurcs for handling decimal 1/0.

On input, if we type 21543, for example, then we are actually typing
a character string, which must be converted internally to the binary equiv-
alent of the decimal integer 21543. Conversely on output, the binary con-
tents of a register or mémory location must be converted to a character string
representing a decimal integer before being printed.

Decimal Output

We will write a procedure OUTDEC to print the contents of AX as
a signed decimal integer. It AX >= 0, OUTDEC will print the contents in
decimal; if AX < 0, OUTDEC will print a minus sign, replace AX by -AX (so
that AX now contains a positive number), and print the contents in decimal.
Thus in either case, the problem comes down to printing the decimal equiv-
alent of a positive binary number. Here is the algorithm:

Algorithm for Decimal’Output
1. IF AX < O /* "AX hclds output value */

2. <THEN- -

By

168

9.5 Decimal Input and Output Procedures

print a minus sign
replace AX by its two’s complement
END_IF)
Get the digits in AX’s decimal representation

A A

Convert these digits to characters and print them

To see what line’6 entails, suppose the content of AX, express'ed in
decimal, is 24168. To get the digits in the decimal representation, we can
proceed as follows:

Divide 24618 by 10. Quotient = 2461, remainder = 8
Divide 2461 by 10. Quotient = 246, remainder = 1
Divide 246 by 10. Quotient = 24, remainder = 6
Divide 24 by 10. Quotient = 2, remainder = 4
Divide 2 by 10. Quotient = 0, remainder = 2

Thus, the digits we want appear as remainders after repeated division by 10.
However, they appear in reverse order; to turn them around, we can save
thenrt on the stack. Here's how line 6 breaks down:

Line 6

count = 0 /* will count decimal digits */
REPEAT
divide quotient by 10
.push remainder on the stack
" gcount = count + 1
UNTIL quotient = 0

where the initial value of quotient is the original contents of AX.

Once the digits are on the stack, all we have to do is pop them off,
convert them to characters, and print them. Line 7 may be expressed as
follows:

Line 7

FOR count times DO
pop a digit from the stack
convert it to a character
output the character
END_FOR

Now we can code the procedure as follows:

Program Listing PGM9_1.ASM -

1: OUTDEC -PROC

2: ;prints AX as a signed decimal :Integer
3: input: AX

4: ;6utput: none

St PUSH AX . ;save registers
6: - PUSH BX

7: PUSH CX

8: ' PUSH .DX !

9: if AX'"< O)

10: OR AX, AX JAX < 0?

11: JGE @END_IF1 sNO, > 0

12: ;then

Chapter 9 Multiplication and Division Instructions 169

13: PUSH AX ;save number

14: MOV "¢ DL, ‘=’ iget ‘-’

15: MOV . 'AH,2° ;print char function
16: INT 21H ;print ' -¢

17: POP ' “AX ;get AX back

18: NEG - "AX’ JAX = =-AX .

.

19: QEND_IFl:
20: ;get decimal digits

217 . XOR **' CX,CX ;CX counts digits

22;, . MOV BX,10D +BX has divisor

23: @REPEATL: -

24: XOR DX, DX iprepare high word of dividend
25: DIV BX ;AX = quotient, DX = remainder
26: PUSH DX ;save remainder on stack

27: INC CcX ;jcount = count + 1

28: ;until-

29: OR AX, AX ;quotient = 07?

30: | JNE @REPEAT1 ino, keep going

31: ;convert digits to characters and print

32: MOV AH, 2 ;print char function

33: ;for count times do
34: @PRINT_LOOP:

35: POP DX - ;digit in DL
. 36: OR DL, 304 ;convert to character
37: INT 21H ;print digit

38: LOOP @GPRINT _LOOP ;loop until done

39: ~;end_ for

40: POP DX irestore registers
41: POP cX ’ .

42: > " POP "~ BX

43: POP AX

44: . RET

45: OUTDEC ENDP

After saving the registers, at line 10 the sign of AX is examined by
ORing AX with itself. If AX >= 0, the program jumps to line 19; if AX <0,
a minus sign is prinied and AX is replaced by its two’s complement. In either
case, at line 19, AX will contain a positive number.

At line 21, OUTDEC prepares for division. Because division by a
constant is illegal, we must put the divisor 10 in a register.

' The REPEAT loop in lines 23-30 will get the digits and put them on
the stack. Because we'll be doing unsigned division, DX is cleared. After
division, the quotient will be in AX and the remainder in-DX-(actually it is
in Dl,, because the remainder is between 0 and 9). At line 29, AX is tested
for 0 by ORing it with itself; repeated division by 10 guarantees a zero quo-
tient eventually. ., Lt . R .

The FOR loop in lines 34-38 gets the digits from the stack and prints
them. Before a digit is printed, it must first be converted to an ASCII character

(line 36).] C

The INCLUDE Pseudo-op

" Wean verify OUTDEC by placing it inside a short program and run-
ning the program inside DEBUG. To insert OUTDEC into the program without
having to type it in, we use the INCLUDE pscudo-op. It has the form

INCLUDE filespec

170

9.5 Decimal Input and Qutput Procedures

where filespec identifies a file (with optional drive and path). For example’
the file containing OUTDEC is PGM9_1.ASM. We could use

INCLUDE A:PGM9_1.ASM

When MASM encounters this line during assembly, it retrieves file
PGM9_1.ASM from the disk in drive A and inserts it into the program at the
position of the INCLUDE directive. This file is on the Student Data Disk that
comes with this book.

Here is the testing program:

Program Listing PGM9_2.ASM
TITLE PGM9_2: DECIMAL OUTPUT
.MODEL SMALL
.STACK 100H
.CODE
MAIN PROC

CALL OUTDEC

MOV AH, 4CH

‘INT 21H ;DOS exit
MAIN ENDP
INCLUDE A:PGM9_1.ASM

END MAIN

To test the program, we’ll enter DEBUG and run the program twice,
first for AX = -25487 = 9C71h and then for AX = 654 = 28Eh:

C>DEBUG
~-RAX

A¥ Q000
:9C71
-G
-25487
2recgram
-RAX

AX 9C71
:28E

-G

654

PGM9_2 .EXE

i

(first output)

terminated normally

(second output)

Note that after the first run, DEBUG automatically resets IP to the beginning
of the program. .

t

Decimal Input

To .do decimal input, we need to convert a string of ASCII digits to
the binary’ representatlon of a decimal integer. We will write a procedure
INDEC to do this.

In procedure ‘OUTDEC, to output the contents of AX in decimal we

: repeatedly divided AX by 10. For INDEC we need repeated multiplication by

10. The basic idea is the following:

Chapter 9 Multiplication and Division Instructions 171

Decimal Input Algorithm (first version)

total = 0
read an ASCII digit-
REPEAT .o

convert character to a binary value
total = 10 x total + value
.read a character
UNTIL character is a carriage return
- .
For example, an input of 123 is processed as follows:

total = 0

read ‘1’ .

convert 'l’, to 1°

total = 10 x 0 + 1 = 1
read ‘2’ b
convert ‘2’ to 2

total = 10:x 1 + 2= 12
read ‘3

convert ‘3’ to 3.

total = 10 x 12 + 3 = 123

We will design INDEC so that it can handle signed decimal integers in the
range -32768 to 32767. The program prints a question mark, and lets the
-user enter an optional sign, folléwed by a string of digits, followed by a
carriage return. If the user enters'a character outside the range “0” ... "“9",
the procedure goes to a new line and starts over. With these added require-
ments, the preceding algorithm becomes the following:

-Decimal Input Algorithm (second version)

Print a question mark
total = 0
negative = false
Read a character
CASE character OF

‘*-’: negative = true

read a character

‘+’; read a“character
END_CASE
REPEAT -
'""IF character ‘is not betwéen ‘0’ and ‘9’
* " THEN

* go to beginning’

ELSE ° ;'
' * convert character to a binary value

total = 10 x total + value

‘ENp_IF E ’

read a character
UNTIL character is a carrilage return
I¥ negative = true

“THEN
T total = -total
ENDIF

“Note: A jump like this is not really “structured pngamnung.” Sometimes it’s necessary to
Vviolate structure rules for the sake of effidency; for example, when emmor conditions occur,

172 9.5 Decimal Ipput and Output Procedures

The algorithm can be coded as follows:

Program Listing PGM9_3.ASM

1: INDEC PROC . »

2: ;reads a number in range -32768 to 32767
3: ;input: none B

4: ;output:AX = binary equivalent of number

5: PUSH BX . - ;save registers used
6: PUSH CX

7: PUSH DX

8: ;print prompt

9: @BEGIN:

10: MOV AH, 2

11: MOV DL, ' 2!

12: INT 21H ;print ‘2’

13: ;total = 0)

14: ' XOR BX,BX ;BX holds total

15: ;negative = false

16:; XOR CX,CX ;CX holds sign

17: :read a character '

18: B MoV AH,1

19: INT 21H ;character in AL

20: ;case character of

21: CMP AL,’-’ sminus sign?

22: JE @MINUS ;yes, set sign

23: CMP AL, '+’ ;plus sign

24: JE @PLUS ;yes, get another character
25: JMP @REPEATZ2 ;start processing characters
26: @MINUS:

27: MOV cX,1 ;negative = true

28: @PLUS: .

29: INT 218 ;xead a character

30: ;end_case
31: QREPEATZ2:

32: ;if character is between ‘0’ and ‘9’

33: cMP AL,’0Q’ ;character >= ‘0’'?

34: JNGE @NOT_DIGIT :;illegal character

35: CMP AL, "’ 9’ ;character <= ‘9°?

36: JNLE @NOT_DIGIT ;no, illegal character
37: ;then convert character to a digit

38: AND AX, 000FH ;convert to digit

39: PUSH AX ;save on stack

40: ;total = total x 10 + digit

41: MoV AX, 10 iget 10

42 MUL BX ;AX = total x 10

43: popP BX ;retrieve digit

44: ADD BX, AX ;total = total x 10 + diyit
45: ;read a character

46: MOV AH, 1

497: INT 21H .

48: CMP AL, ODH ;carriage return?

49: JNE @REPEAT2 ;no, keep going

50: ;until CR '

Sl: MOV AX, BX ;store number in AX

52: ;1if negative
53: OR cX,CX ;negative number

Chapter 9 Multiplication-and Division Instructions 173

54: JE QEXIT ;no, exit -
55:- ;then .) .
563 NEG AX ;yes, negate

57: ;end_if
58: BEXIT: .. .
59: POP DX . srestore registers

.

60: POP CX
6l: POP BX e
62: RET ' ;and return-

63: ;here if illegal character entered
64: @NOT_DIGIT:

65: ' MOV AH, 2 ;move cursor to a new line
66: Mov DL, ODH T

67: . INT 214

“68: MOV DL, 0AH

69: INT 21H

70:.0:" " amp @BEGIN ;go to beginning

71: INDEC ENDP

The procedure begins by saving the reglsters and printing a “?”. BX
holds the tota); in line 14, it is cleared.
CX is used to keep track of the sign; 0 mcans a positive number and
1 means negative. We initially assume the number is positive, so CX is cleared
at line 16.
’ The first character is read at lines 18 and 19. It could be “+”, “~" or
a digit. If it's a sign, CX is adjusted if necessary and another character is read
(line 29). Presumably this next character will be a digit.)
At line 31, INDEC enters the REPEAT loop, which processes the cur-
rent character and reads another one, until a carriage return is typed.
At lines 33-36, INDEC checks to see if the current character is in
fact.a digit. If not, the procedure jumps to label @NOT_DIGIT (line 64),
moves the cursor to a new line, and jumps to @BEGIN. This means that the
user can 't escape from the procedure without entering a legitimate number.
**" " If the current charactér in AL is a decimal digit, it is converted to a
bmary value (line 38). Then the value is saved on the stack (line 39), because
AX is'used when the total is multiplied by 10.
{7 " 1n lines 41 and 42, the total in BX is multiplied by 10. The product
will be in DX:AX; however, DX will contain 0 unless the number is out of
.-range (more about this later). At line 43, the value saved is popped from the
- stack and 10 times total is added to it.
" Atline 51, INDEC exits the REPEAT loop with the number in BX.
: After moving it to AX, INDEC checks the sign in CX; if CX contains 1, AX
is_nlcgated before the procedure exits.

Testing INDEC ‘

. Wecan test INDEC by creating a program that uses INDEC for input
and OUTDLC for output.

Program Listing PGM9_4.ASM
TITLE, PGM9. 4: DECIMAL 1/0
.MODEL SMALL

.STACK

.CODE

MAIN. PROC

174

9.5 Decimal Input and Output Procedures

;input & number
CALL INDEC - snumber in AX

PUSH AX ;save number
;move cursor to a new line
MOV AH, 2
MOV DL, ODH
INT 21H
MOV DL, OAH
INT 21H
;output the number
pop AX ;retrieve number
CALL QUTDEC
;dos exit
MOV AH, 4CH
INT 21H
MATN ENDP
INCLUDE A:PGM9_1.ASM ;include OUTCEC
INCLUDE A:PGM9_3.ASM ;include INDEC

END MAIN

Sample execution:

C>PGM9_4
721345
213450vertiow

Overflow

Procedure INDEC can handle input that contains illegal characters,
but it cannot handle input that is outside the range -32768 to 32767. We

call this input overflow.

) Overflow can occur in two places in INDEC: (1) when total is mul-
tiplied by 10, and (2) when a value is added to total. As an example of the
first overflow, the user could enter 99999; overflow occurs when the total =
9999 is multiplied by 10. As an example of the second overflow, if the user
types 32769, then when the total = 32760, overflow occurs when 9 is added.
The algorithm can be made to perform overflow checks as follows:

Decimal input Algorithm (third version)

Print a question mark
total = O
negative = false
Read a character
CASE character OF
‘-’ negative = true
read a character
‘+’: read a character
END_CASE
REPEAT
IF character is not between ‘0’ and

Chapter 9 Multiplication and Division Instructions 175

THEN.,
.99 &o beginning
,ELSE g, .
convert character ,to. a value
total -= 10 x total
IF overflow
THEN

<

-~ go {to .beginning

- ELSE
, total = total + value

IF overflow..

THEN
go to beginning

" END_IF

" END_IF

ENDHIF

read-a character
UNTIL .character.is a.carriage return
IF negative = E‘Irue ’

THEN

total = -total
END "IF™* BN

The imﬁlememation of this afgorithm is left to the student as an exercise.

Summiry

“The multiplication instructions are MUL for unsigned multiplica-

tlon and IMUL for sxgned multiplication.

For byte multnphcatlon, AL holds one number, and the other is in
,an 8-bit register or memory byte. For word multiplication, AX holds
“one number, and th¢ otfer is in an 16-bit register or memory word.

*. | For byte multiplication,:ithe 16-bit product is in AX. For word’

multiplication, the 32-bit product is in DX:AX.

ie' 'The division instructions are DIV for unsigned division and IDIV

for signed division.
The divisor may be a memory or register, byte or word. For divi-

.sion by a byte, the dividend is in AX; for division by a word, the
d1v1dend 15 m DX AX

After byte lelSlOn AL has the quotient and AH the remainder. Af-
ter word dnvxsnon AX has the quotient and DX the remainder.

For sxgncd word dst;on, if AX contains the dividend, then CWD
'can be used to extend the sign into DX. Similarly, for byte divi-
sion, CBW extends the sign of AL into AH. For unsigned word di-
'vision, if AX contains.the dividend, then DX should be cleared.
For unsigned byte division, if AL contains the dividend then AH
should be cleared

Multxply and dmde instructions are useful in doing decimal 1/0.

The INCLUDE pseudo-op provides a way to insert text from an ex-
ternal file into a program.

176

Exercises

New Instructions

CBW
CWD

DIV IMUL
IDIVI MUL

New Pseudo-Ops

INCLUDE

Exercises

1. If it is a legal instruction, give the values of DX, AX, and CF/OF
after each of the following instructions is executed.

a.
b.
c
d.

e.

MUL BX, if AX contains 0008h and BX contains 0003h
MUL BX, if AX contains 00FFh and BX contains 1000h
IMUL CX, if AX contains 0005h and CX contains I'FFFh

IMUL WORDI, if AX contains 8000h and WORD1 contains
FFFFh
MUL 10h, if AX contains FFEOh

2. Give the new values of AX and CF/OF for cach of the following
instructions.

a.
b.
c.
d.

MUL BL, if AL contains ABh and BL contains 10h

IMUL BL, if AL contains ABh and BL contains 10h

MUL AH, if AX contains 01ABh

IMUL BYTE], if AL contains 02h and BYTE1 contains FBh

3. Give the new values of AX and DX for cach of the following in-
,.structions, or tell if overflow occurs

a.
b.
C.

3 o

.4

DIV BX, if DX contains 0000h, AX contains 0007h, and BX
contains 0002h

DIV BX, if DX contains 0000h, AX contains FFFLh, and BX
contains 0010h .

IDIV BX, if DX contains FFFFh, AX contains FFFCh, and BX

‘contains 0003h " ° :
biv li‘X, same values as part ¢.

4! " Give the new values of AL and AH for each of the following in-

[aK

a.
b.

structions, or tell if overflow occurs

DIV BL, if AX comains 000Dh and BL contains 03h
IDIV BL, if AX contains FFFBh and BL. contains FEh

,c. DIV BL, if AX contains OOFEh and BL contains 10h
d. " DIV BL, if AX contains FFEOh and BL contains 02h
5. Glve the value of DX after executing CWD if AX contains
a.. 7E02h ‘ ‘
¥~ “b.78ABCh
c. 1ABCh

Chapter 9 Multiplication and Division Instructions 177

6. Give the vatue of AX after ekecuting CBW if AL contains

‘a’ FOh ,
“b. SFh ‘
c. 80h

7. Write asscmbly code for each of the following high-level lzaguage

«~ assignment statements. Suppose that A, B, and C a:» word
ables and all products will fit in 16 bits. Use IMUL for multiptica
on. It's not necessary to preserve the contents of variabics A, B,

“and C. s v
a, A <95 x A -7
b. B = (A - B)Y x (B + 10)

C. A = 6 - 9 x A
d. IF A2 + B*2 = C*2 / * where "~ denotes
exponentiation * /
THEN
set CF
ELSE
clear CF
END_IF

Programming Exercises

10.

11.

Note: Some of the following exercises ask you to use INDEC
and/ot OUTDEC for I/O. These procedures arc on the student
disk and can be inserted into your prograin by using the IN-
CLUDE pseudo-op (see scction 9.5). Be sure not to use the same
labels as these procedures, or you'll get a duplicate label assembly
error (this should be casy, because all the labels in INDEC and
OUTDEC begin with “@".

Modify procedure INDEC so that it will check for overflow.

Write a program that lets the user enter time in seconds, up to
65535, and outputs the time as hours, minutes, and seconds. Use
INDEC and OUTDEC to do the 1/0.

Write a program to take a number of cents C, 0 <= C <= 99, and
express C as hall-dollars, quarters, dimes, nickels, and pennics.
Use INDEC to enter C.

Write a program to fet the user enter a fraction of the form M/N
(M < N), and the program prints the expansion to N decimal
places, according to the following algorithm:

1. Print ™.~
Execute the following steps N times:

2. Divide 10 x M by N, getting quotient Q and rw-
mainder R.

3. Print O.
4. Replace M by R and go to step 2.

Use INDEC to read M and N.

178 Exercises

12. Write a prograrﬁ tb' find the greatest common divisor (GCD) of
two integers M and N, according to the following algorithm:

1. Divide M f>y N, getting quotient @ and remain-
der R. :

2. If R = 0, stop. N is the GCD of M and N.
3. If R <> 0, replace M by N, N by R, and repeat
step 1.

Use INDEC to enter M and N and OUTDEC to print the GCD.

Arrays and
Addressing Modes

Ovefview

In soine applications, it is necessary to treat a collection of values as
a group For example, we might need to read a set of test scores and print

. the mcdlan score. To do 50, we would first have to store the scores in as-

cending order (thls could be done as the scorcs are entered, or they could
be sorted after they are all in memory). The advantage of using an array to
store the data s that o single nane can be given to the whole structure, and
an element can be accessed by providing an index.
in sectioni 10.1 we show how onc-dimensional arrays are declared
in assembly language. To access the elements, in section 10.2 we introduce
new ways of expressing operands—the register Indirect, based and indexcd
addressing modes. in section 10.3, we use these addressing modes to sort an
array. .
A two-dlmensiohal array is a one-dimensional array whose elements
are also one-dimensional arrays (an array of arrays). In section 10.4, we show
how they are stored. These arrays have two indexes, and are most casily
manipulated by the based indexed addressing mode of section 10.5. Scction
10.6 ptovides a simple applicatiori.
+ Section 10.7 introduces the XLAT (translate; instruction. This in-
struction is useful when we want to do data conversion; we use it to vnuaie

and decode a secret message.

10.1
One-Dlmens:onal
lfrrays

A oné-dimensional array is an ordered list of clements, a1l of the

“samé type. By “ordered,” we mean that there is a first clement, second ele-

ment, third element, and so on. In mathematics, if A is an array, the elements

179

180 10.1 One-Dimensional Armrays

Figure 10.1 A .
One-Dimensional Array A

Index

1 Alt)

2 Al2)

3 Al3]

4 Al4)

5 Al
6 el |

are usually denoted by All), Af2}, A[3], and so on. Figure 10.1 shows a one-
dimensional array A with six elements.

In Chapter 4, we used the DB and DW pseudo-ops to declare dyte
and word arrays; for example, a five-character string named MSG,
MSG DB ‘abcde’
or a word array W of six integers, initialized to 10,20,30,40,50,60.
w. DW 10, 20, 30, 40,50, 60

The address of the array variable is called the base address of the array.
If the offset address assigned t0 W is 0200h, the array looks like this in
memory:

Offset address .’ ' Symbolic address Dedimal content
0200h LW 10
0202h . W+2h 20
0204h -W+dh' 30
0206h . " Wa+6h 40
0208h W+8h 50
' 020Ah 7 . W+Ah 60

' The DUP Operator
It is possible to define arrays whose elements share a common initial

“value by using the DUP (duplicate) operator. It has this form:

repeat_count DUP (value)

This operator causes value to be repcated the number of times specified by
repeat_count. For example, :

GeMIMA DW 100 DUP (0) Wy
sets up an ar}dy. of](E)Owti'grds, with each entry initialized to 0. Similarly,
DELTA DB 212 Dué (?) ‘
creates an array of 212 uninitialized bytes. DUPs may be nested. For example,

Chapter 10 Arrays and Addressing'Modes 181

[

-LINE DB s,4, 3 DUP (2, 3 DUP (0), 1)
which is equivalent to ' ‘
LINE DB 5,4,2,0,0,0,1,2,0,0,0,1,2,0,0,0,1

Location ‘of Array Elements’
PR £ R SR L U .
The address.of ;n array element may be specified by adding a con-
stant to the base address. Suppose.A.is an array and S denotes the number

of bytes in an element (S = 1 for.a byte array, S = 2 for a word array). The
position of the elements in array A can be determined as follows:

Position : Location

1 ! A

2 A=1xS$

, 3, A=2xS
‘N A=(N-1)xS

Example 10.1° Exchange the 10th-and 25th elements in a word array W.

Solution: W{10j is located at address W + 9 x 2 = W + 18 and W]|25] is
Tat W+ 24 x 2 =W + 48, 50 we can do the exchange as follows:

MOV AX,W+18 ;AX has W{1l()
XCHG W+48, AX ;AX has W[25]
MOV W+18,AX ;complete.-exchange

In many applications, we necd to perfoun some operation on each
element of an array. For example, suppose array A is a 1G-element array, and
we want to add the elements. In a high-level language, we could do it like this:

sum = 0
‘N =1
REPEAT
sum = sum + A([N]

©eN'R N 401
UNTIL N> 10 -

; . . 3 e
To code this m assembly language, we need a wav 1o nove from one array
clement to the next one. In the next section, we'll see how to accomplish
this by indirect addressing. -

10.2 :
Addressing Modes The way an operand is specified is known as its addressing mode
) The addressing modes we have used so far are (1) register mode, whict
means that an operand is a register; (2) immediate mode, when an operan-
is a constant; and (3) direct mode, when an operand is a variable. For exampl

182 10.2 Addressing Modes

MOV AX, O (Destination AX is register mode,
source 0 is immediate mode.)
ADD ALPHA, AX (Destination ALPHA is direct mode,

source AX is register mode.)

There are four additional addressing modes for the 8086: (1) Register Indirect,
(2) Based, (3) Indexed, and (4) Based Indexed. These modes are used to ad-
dress memory operands indirectly. In this section, we discuss the first three
of these modecs; they are useful in one-dimensional array processing. Based
indexed mode can be used with two-dimensional arrays; it is covercd in
section 10.5.

10.2.1
Register Indirect Mode

In this mode, the offset address of the operand is contained in a
register. We say that the register acts as a pointer to the memory location.
The operand format is
[register)

The register is BX, Si, DI, or BP. For BX, SI, or DI, the operand’s scgment
number is contained in DS. For BP, SS has the segment number.
For example, suppose that SI contains 0100h, and the word at 0100h

contains 1234h. To execute

MOV AX, [SI)

the CPU (1) examines SI and obtains the otfset address 100h, (2) uses the
address DS:0100h to obtain the value 1234h, and (3) moves 1234h to AX.
This is not the same as

MOV AX,SI
which simply moves the value of SI, namely 100h, into AX.

Example 10.2 Suppose that

BX contains 1000h Offset 1000h contains 1BACh
Sl contains 2000h Offset 2000h contains 20FEh
Di contains 3000h Ofiset 3000h contains 031Dh

where the above offsets are in the data segment addressed by DS.
Tell which of the following instructions are legal. If legal, give the
source offset address and the result or number moved.

3. MOV BX, [BX)

b. MOV CX, [SI)

¢. MOV BX, [BM]

d. ADD [SI1.(DI]
e. INC [DI]

Chapter 10 Arrays and Addressing Modes

183

Solution:

' Source offset Result
a. 1000h 18ACh
b. 2000h 20FEh
c. illegal source register {must be BX, SI, or DI)
d. illegal memory-memory

. addition

e, 3000h 031Eh

Now let’s return to the problem of adding the elements of an array.

Example 10.3 Write some code to sum in AX the elements of thé
10-element array W defined by
"w ow 10,20,30,40,50,60,70,80,90,100

Solution: The idea is to set a pointer to the base of the array, and let it
move up the array, summing elements as it goes.

XOR AX,AX ;AX holds sum
LEA SI,W - ;SI points to array W

MOV CX,10 ;CX has number of elements
ADDNOS ; :
ADD AX, (SI) ;jsum = sum + element
ADD SI,2 ;move pointer to the next
jelement
LOOP ADDMNOS ;loop until done

Here we must add 2 to SI on each trip through the loop because W is a word
array (recall from Chapter 4 that LEA moves the source offset address into
the destination).

The next example shows how register indirect mode can be used in
array processing. -. . . '

Example 10.4” Write a procedure REVERSE that will reverse an array of
N words. This means that the Nth word becomes the first, the (N-1)st
. word becomes the second, and so on, and the first word becomes the Nth

word. The procedure is entered with Sl pointing to the array, and BX has
the number of words N.

+

Solution: The idea is to exchange the 1st and Nth words, the 2nd and

(N--1)st words, and so on. The number of exchanges will be N/2 (roundec
down to the nearest integer if N is 0dd). Recall from section 10.1 that th

Nth element in a word array A has address A + 2 x (N - 1).

Program Listing PGM10_1.ASM
REVERSE PROC

;reverses ‘a word array

sinput: SI = offset of airay
i _BX = number of elements
" ;output: reversed array B

184 10.2 Addressing Modes

' PUSH AX ;save‘xegisters

PUSH BX
PUSH CX
PUSH sI
PUSH DI

;make DI point to nth word
MOV DI,SI ;DI pts to 1lst word
MOV CX, BX ;CX = n
DEC BX ;BX = npn-1
SHL BX, 1 ;BX = 2 x (n-1)
ADD DI,BX ;DX pts to nth word
SHR CcX,1 ;CX = n/2 = no. of swaps to do

;swap elements

XCHG_LOOP :
MOV AX, (ST} ;iget an elt in lower half of array
XCHG AX, [DI) ;insert in upper half
MOV [SI],AX ;complete exchange
ADD SI,2 ;move ptr
suB DI, 2 ;move ptr
LOOP XCHG_LOOQP ;loop until done
pPOP D1 ;restore registers
POP SI
POP CcX
POP BX
POP AX
RET

REVERSE ENDP

10.2.2
‘Based and Indexed _ In these modes, the operand’s offset address is obtained by adding

Addressing Modes a number called a displacement to the contents of a register. Displacement
may be any of the following:
. the offset address of a variable
a constant (positive or negative)

the offset address of a variable plus or minus a constant
If A is a variable, examples of displacements are:

A (offset address of a variable)
-2 (constant) -
A + 4 (offset address of a variable plus a constant)

The syntax ofan aperand is any of the following equivalent expressions:

[register + displacement)
{displacement + register]
[register] +. displacement
displacement + [register]
displacement {register)

The register must be BX, BP, SI, or DL If BX, SI, or Dl is used, DS containsj

the segment number of the operand’s address. If BP is used, SS has the seg-
ment number. The addressing mode is called based if BX (base register) or

Chapter 10 Arrays and Addressing Modes 185

BP (base pointer) is used; it is called indexed if SI (source index) or DI

(destination index) is used.
For example, suppose W is a word array, and BX contains 4. In the

instruction

MOV AX, W{BX])
the displacement is the offset address of variable W. The instruction moves
the element at address W + 4 to AX. This is the third element in the array.
The instruction could also have been written in any of these formg:

.
-

MOV AX, [W+BX]
MOV 2K, {BX+W]
MOV AX, W+ [BX)
MOV AX, [BX]+W
As another example, suppose SI contains the address of a word array
W. In the instruction

MOV AX, [SI+2}

the displacement is 2. The instruction moves the contents of W + 2 to AX.
This is the second element in the array. The instruction could also have been
written in any of these forms:

MOV AX, [2+S1)
MOV AX,2+(S1),
MOV AX, {SI]+2
MOV AX,2(SI)

Examble 10.5 Rework example 10.3 by using based mode.

Solution: The idea is to clear base register BX, then add 2 to it on each
trip through the summing loop. -

XOR AX,AX sAX holds sum

XOR BX, BX ;clear base register

MOV . CX, 10 ;CX has number of elements
ADDNOS : ‘

. ADD AX,W[BX] ;sum = sum + element

ADD BX,2 iindex next element

LOOP ADDNOS ;loop until done

Example 10.6 Suppose that ALPHA is declared as

ALPHA DwW 0123h,0456h,0789h, 0ABCDh

in the segment addressed by.DS. Suppose also that

BX contains 2 Offset 0002 contains 1084h
Si contains 4 - Offset 0004 contains 2BACh

Di contains 1

Tell which of the following 'instructions are legal. If legal, give the source
offset address and the number moved. .

186 10.2. Addressing. Modes
a. MOV AX, [ALPHA+BX],
b. MOV BX, [BX+2)
C. MOV CX,ALPHA([SI}
d. Mov ax,-2{s1]
€. MOV BX, [ALPHA+3+DI]
f. MOV Aax, {BX)2
8. ADD BX, [ALPHA+AX]
Solution:
Source offset Number moved
a. ALPHA+2 0456h
b. 2+2=4 2BACh
Cc. ALPHA+4 078%h
d. -2+44 =2 1084h
e. ALPHA+3+1 = ALPHA+4 0783h
f. lllegal form of source operand
g. llegal source register
The next two examples illustrate array processing by based and indexed modes.
Example 10.7 Replace each lowercase letter in the following string by
its upper case equivalent. Use index addressing mode.
MSG DB ‘this- i3 a message’
Solution:
Mov CX,17 ;no. of chars in string
XOR SI,S1 ;81 indexes a char
ToP .
CMP MSG(SI1]),’ ! sblank?
SE NEXT ;yes, skip over
AND MSG(SI]),O0DFh ;no, convert to urper cace
NENT
INC SI ;index next byvte
LOOP TOP ;loop until dcne
i0.2.3

The PTR Operator and
the LABEL Pseudo-op

You saw in Chapter 4 that the operands of an instruction must be
of the same type; for example, both bytes or both words. If one operand is
a constant, the assembler attempts to infer the type from the other operand.
For example, the assembler treats the instruction

MOV RX, 2

as a word instruction, because AX is a 16-bit register. Similarly, it treats
MOV BH, 5

as a byte instruction. However, it can’t assemble

MOV (BX]),1 ":illegal

Chapter 10 Arrays and Addressing Modes 187

" because it can’t'tell whether the destination is the byte pointed to by BX or
the word pointed to by BX. If you want the destination to be a byte, vou

can say, :
MOV BYTE PTR {BXj, 1
and if you want the destination to be a word, you say.

M2V WCRD 2TR {2Xi,1

Cxample 10.8 in the string of example 10.7, replace ti.e charactes “t”
by “T": A

Solution 1: Using register indirect xhoclc,

LEA SI,MSO ;81 pouints to M50

MOV EYTE PTR (SI1], 7’ sreplace ‘v’ ooy '3

Solution 2: Using index mode

XOK £1,S1 ;olear SI
MCV 145G is31), °T7 sreplace 't by °T
J

Here it is not necessary to use the TR operator, because MSG is a byte varizble.

Using PTR to Override a Type

- In general, the PTR operator can be used to override the declared
type of an address expression. The syntax is

type PTR-address _expression

where the type is BYTE, WORD, or DWORD (doubleword), and the address

expression has been typed as DB, DW, or DD.
For example, suppose you have the following declaration:

DOLLARS DB 1Ah
CENTS DB 52k

and you'd like to move the contents of DOLLAKS to AL and CENTS 10 AH
with a single MOV instruction. Now

MOV AX, DOLLARS ;illegal

is illegal because the-destination is a word and the source has been wped as a
byte variable. But you can override the type declaration with WORD "IR as

MCV AX, WORD PTR DUILLARPS AL = dollars, B4 = cents

and the instruction will move 521Ah to AX.

The LABEL Pseudo-Op

Actually, therc' is another way to get arousid the problem of type conflict
in the preceding example, Using the LABEL pseudo-op, we could declare
MONEY LABEL WORD
DOLLARS TR iAh
CENTS DB 52h

188 10.2 Addressing Modes

This declaration types MONLY as a word variable, and the components DOL-
LARS and CENTS as byte variables, with MONEY and DOLLARS being as-
signed the same address by the assembler. The instruction

MOV AX, MONEY ;AL = dollars, AH = cents
is now legal. So are the following instructions, which have the same effect:

MOV AL, DOLLARS
MOV AH, CENTS

Example 10.9 Supposc the following data are declared:

.DATA
A DW 1234h
B LABEL BYTE
DW 5678h
C LABEL WORD
Cl CB 9Ah
C2 DB CBCh
Tell whether the following instructions are legal, and if so, give the number
moved. ’

Instruction

MOV AX,B

MOV AH,B

MOV CX,C

MOV BX, WORD PTR B8
MOV DL, WORD PTR C
MOV AX, WORD PTR Cl

~rpoge

Solution:

illegal—type conflict
legal, 78h

legal, OBC9Ah

legal, 5678h

legai, 9Ah

legal, OBC9Ah

=m0 A n o

10.24
Segment Override

'ln register indirect mode, the pointer register BX, Sl, or DI specifies
an offset address relative to DS. It is also possible to specify an offset relative
to one of the other segment registers. The form of an operand is

segment_register:{pointer_register]
For example,

MOV AX,ES:[SI}

Chapter 10 Armrays and Addressing Modes 189

If ST contains 0100h, the source address in this instruction is E5:0100h. You
might want to do this in a program with two data segments, where ES con-
tains the segment number of the second data segment.

Segment overtides can also be used with based and indexed modes.

10.2.5
Accessing the Stack , We mentioned carlier that when BP specifies an offset in register
indirect mode, SS supplies the scgment number. This means that BP may be
used to access items on the stack..
 Example 10.10 "Move:the top three words on the stack into AX, BX,
and CX without changing the stack.
1
Solution:
MOV BP, SP ;BP points to stacktop
" MoV AX, [BP) ;move stacktop to AX
MOV BX, {BP+2) " ;move second word to BX
MOV CX, [BP+4] ";move third word to CX
A primary use of BP is to pass values to a procedure (sce Chapter 14).
10.3 .
An Application: It is much casier to locate an item in an array if the array has been
sorting an May sorted. There are dozens of sorting methods; the method we will discuss here

is called selectsort. 1t is one of the simplest sorting methods.
To sort an array A of N elements, we proceed as follows:

Pass 1. .Find the largest element among A[1} ... A[N]}. Swap it
and A[N]. Because this puts the largest element in position N, we
need only sort A[1] ... A[N-1] to finish.

Pass 2. Find the largest element among A{1] ... A[N-1). Swap it
and A[N-1]. This places the next-to-largest element in its proper

position.

Pass N-1. Find the largest element among A{1], Al2). Swap it and
Al2]. At this point Af2] ... A|N] are in thcir proper positions, so
All is as well, and the array is sorted.

Tor example, suppose the array A consists of the following integers:

Position 1. -2 -3 4 5
mnitial data 21 .5 16 40 7
pass 1 21 5 16 7 40
pass 2 7 5 .16 2 40
pass 3 7 -5 16 S 21 ~ 40
pss4 5 2 16 - 21 40

190 10.3 An Application: Sorting an Array

Selectsort algorithm

i = N :
FCR N-1 times DO

Fina the position k of the largest element -

amcng Afl)..Al1])

(*) Swap A[k] and Ali]

i o= i-1 '
END_FOR) o
Step (*) will be handled by a procedure SWAP. The code for the procedures
is the following (we'll suppose the array to be sorted is a byte array):

Program Listing PGM10_2.ASM

1: SELECT PROC * .
2: ;scrts a byte array by the selectsort method
3: ;imput: SI = array offset address
4: BX = number of elements
5: ;output: SI = offset of sorted arrcy
6 jusest SWAP
7: PUSH BX
8: PUSH CX
9: PUSH DX
10: PUSH SI
11: DEC BX JN = N-1
JE END_SCRT ;exit if l-elt array
MOV DX, S1 ;save array offset
;for N-1 times do
SORT_LOOP:
- MoV S1,DX ;S1 pts to array
MOV CX, BX ;no. of comparisons to make
MOV DI, SI ;DI pts to larygest element
MOV AL, (DI ;AL has largest element
:locate bigyest of remaining elts
FIND_BIG:
INC SI ' ;SI pts to next element
ol] 4 {Si),AL ;is new elecment > largest?
JNG NEXT ;no, go on .
25: MOV DI, ST ;yes, move DI
26€: MOV AL, IDI] ;AL has largest element
27: HNEXT:
28: LOOP FIND_BIG ;lo0op until done
29: ;swep bilgyest elt with last elt
30: CALL SwWAP : ;Swap with last elt
31: DEC BX ;N = N-1
32: JNE SORT _LOOP jrepeat if N <> 0
33: END_SORT:
34: - pop S
35: poP DX
36: POP CX
37: pop BX
38: RET
-39: SELECT “ENDP
40: SWAP ~ PROC

41: ;swaps two array elements
42: ;input: SI = one element
43: ; ‘ DI = other element

Chapter 10 Arrays and Addressing Modes 191

44: joutput: exchange- elements

45: PUSH AX ;save AX

46: MOV AL, (ST} ~~;get A1)

47: XCHG AL, [DI1) iplace in A{k]
48: MOV [SI), AL ;put Alk) in A[i]
49: POP AX ;xestore AX

50: RET

51: SWAP ENDP

. s R .) .

Procedure SELECT is entered with the array offsei address in SI, and
the number of elements N in BX. The algorithm sorts the array in N - 1
passes so BX is decremented; if it contains 0, then we have a one-¢lement
array and there is nothing to do, so the procedure exits.

In the general case, the procedure enters as the main processing loop

* (lines 15-32). Each pass through this loop placss the largest of the remaining
unsorted elements in its proper place. '

In lines 21-28, a loop is entered to find the largest of the remaining
unsorted clements; the loop is exited with DI pointing to the largest element
and SI pointing to the last element in the array. At line 30, procedure SWAP
is called to exchange the elements pointed to by SI and DI.

The procedure can be tested by inserting them in a testing program.

Program Listing PGM10_3.ASM
TITLE PGM10_3: TEST Si
.MODEL SMALL
.STACK 100H
.DATA
A DB 5,2,1,3,4
.CODE
MAIN PROC
MOV AX, @DATA
MOV DS, AX
LEA SI,A
MOV BX,5
.CALL SELECT, !
MOV AH, 4CH

“INT 21H
MAIN - ENDP
;select goes here

END MAIN

' ARer assembling and linking, we enter DEBUG and exccute down
" to the procedure <call (the addresses in the following demonstration were
- ‘determined in a previous DEBUG session):

- -6¢
AX=100D BX=0005 CX=0049 - DX=0000 SP=0100 BP=0000 SI=0004 DI=0000
DS=100D ES=0FF9 SS$S=100E CS=1009 IP=000C NV UP EI PL N2 NA PO NC

1009:000C EB0400 CALL 0013

Before calling the procedure, let’s look at the unsorted array:

The data appear in the order §, 2, 1, 3, 4. Now let’s execute SELECT:

CX=0049 DX=0000 SP=0100 BP=0000 SI=0004 DI=0005
$S~100E CS=1009 IP=000F NV UP EI PL 2R NA PE NC
MOV AH, 4C

‘and look at the array again:

It is now in’ ascending order.

A two-dimensional array is an array of array&; that is, a one-di-
mensional array whose elements are one-dimensional arrays. We can picture

192 10.4 Two-Dimensional Arrays
-pd 8
100D:0000 05 02 01 03-04
-Gr
AX=1002 BX=0005
DS=100D ES=0FF9
1009:000F BRAAC
-D4 8
100D:0000 01 02 03 04-05
104
Two-Dimensional
Arrays

the elements as being arranged in rows and columns. Figure 10.2 shows a
two-dimensional array B with three rows and four columns (a 3 x 4 array);
Bli,j] is the element in row i and column §.

How Two-Dimensional Arrays Are Stored

Because memory is one-dimensional, the elements of a two-dimen-
sional array inust be stored sequentially. There are two commonly used ways:
In row-major ordcr, the row 1 clements are stored, followed by the row
2 clements, then the row 3 elements, and so on. In column-major ordcr,
the clements of the first column are stored, followed by the second column,
third columnn, and so on. For example, suppose array B has 10, 20, 30, and
40 in the first row, 50, 60, 70, and 80 in the second row, and 90, 100, 110,
and 120 in the third row. It could be stored in row-major order as follows:

Chapter 10 Amays and Addressing ques' 193

Figure 10.2 A . .
Two-Dimensional Array 8

be processed together

[Column oo
Row 1 2 3 4
1 8(1,1) B{1.2} 8(1,3} 8[1.4]
T | emw | ema | sew | sna
1. 3| “s) 8132 7| 833 B3.4)
. R
B DW 10,20,30,40 .

DW 50, 60,70, 80
DW 90,100,110,120

or in column-major order as follows:

B DW 10,50,90
DW 20,60,100 -
DW 30,70,110

. DW 40,80,120

Most high-level language compilers store two-dimensional arrays in row-ma-
jor order. In assembly language, we can do it either way. If the elements of
a row are to be processed together sequentially, then row-major order is
better, because the next element in a row is the next memory location.
Conversely, colurnn-major order is better if the elements of a column are to

:
.

* Locating an Element in a Two-Dimensional Array

Suppose an M x N array A fs stored in row-major order, where the
size of the elements is S (§ = 1 for a bytc array, § = 2 for a word array). To
find the location of Afj, j],

1. Find where row | begins.
2. Find the location of the jth element in that row.

i Here Is the first step. Row 1 begins at location A. Because there are
N elements in each row, each of size S bytes, Row 2 begins at location A +
N x §, Row 3 begins at location A + 2 x N x S, and in géheral, Row i begins

at location A + (i- 1) x Nx S.
Now for the second step. We know from our r discussion of one-di-

. mensional arrays that the jth element in a row is stored (f - 1) x S bytes from

the beginning of the row.
Adding the results of steps 1 and 2, we get the final result:

If Ais an M x N array, with element size S bytes, stored in row-major
order, then

4] Afi, jl has address A+((l - 1) XN+ (j-1) xS
There is a similar expression for cotumn-m=zjor ordered asrays:

I Aisan M x N array, with element size S, stored in column-major
<, aer, then

@ Alijl has address A+ (i~ 1) + (j~ 1) x M) x S

194 10.5 Based indexed Addressing Mode

»

Example 10.12 Suppose A is an M x N word array stored ln row-major
order

1. Where does row i begin?
2. Where does column j begin?
3. How many bytes are there between elements in a column?

Solution:
1. Row i begins at Afi, 1]; by formula (1) its addressis A+ (1~ 1) x N
x 2,
2. Column j begins at A[l, j]; by formula (1) the address is A + (j -
1) x 2.

3. Because there are N columns, there are 2 x N bytes between ele-
ments in any given column.

10.5
Based Indexed . In this mode, the offset address of the operand is the sum of
Addr essing Mode 1. the contents of a base register (BX or B’)

2. the contents of an index register (SI or DI)

3. optionally, a variable’s offset address

4. optionally, a constant (positive or negative)
If BX is used, DS contains the segment number ot the operand’s

address; if BP is used, SS has the segment number. The operand may be
" written several ways; four of them are

1. variable[base_register) [index_register)

2. [base_register + index_register + variable + con-
stant]}

3. variable[base register + index register + constant]

4. constant [base_register + index_register + variable)

The order of terms within these brackets is arbitrary.
For example, suppose W is a word varlable, BX contains 2, and SI

contains 4. The instruction

MOV AX,W(BX] [ST) .

hoves the contents of W+2+4 = W+6 to AX. This instruction could also have
been written in either of these ways:

MOV AX, [W+BX+SI}

or

MOV AX,W[BX+SI}

Based indexed mode is especially useful for processing two-dimensionat ar-
rays as the followmg “example shows.” ™~

i

Chapter 10 Arrays and Addressing Modes 195

Example 10.13 buppose A is a §- x 7-word array stored in tow-major

" order. Write some code to (l) clear row 3, (2) clear column 4. Use based

indexed mode."

€ -

Solution:

1. From example 10.12, we know that In an M- x N-word array A, row
ibeginsat A+ (1-1) x Nx 2. Thus in a § x 7 array, row 3 begins at
A+(3-1)x7x%x2=A + 28. So we can clear row 3 as follows:

L4

MOV X, 28; BX indexes row 3

XOR S1,81 ‘ ;SI will index columns

MOV CX,7 . snumber of elements in a row
CLEAR: -

MOV A[BX)(Ss1),0 sclear A[3,3)

ADD S1,2 ;go to next column ,.

LOOP CLEAR © ;loop until done

2. Again from cxample 10.12, cohmn j beginsat A + (j - 1) x 2 in
’ -an M- x N-word array. Thus column 4 begins at A+ (4-1)x 2=
A + 6. Since A is a seven-column word array stored in row-major
order, to get to the next element in column 4 we need to add 7 x
2 = 14. We can clear column 4 as follows:

MOV SI, 6 : ;ST will index column 4.
XOK BX, BX sBX will 1ndex rows
MOV. CX, 5 . ;number of elements in a column
CLEAR: :
: MOV A[BX]|S1],0 ;clear A[i,4)
ALUD BX,1 . igo tOo next row
LOOP CLEAR ;loop until done

10.6

An Application:

Averaging Test
Scores

Suppose a class of five students Is given four cxams. The results are
recorded as follows: '

Test! _ Test2 Test 3 Test 4
MARY ALLEN -~ 67 as - 98 . 33
SCOTT BAYLIS 70 56 87 a4
GEORGE FRANK - * 82 72 89 40
BETH HARRIS 80 67 | 95 50
'SAM WONG 78 76 92 60

We will write a program to find the class average on each exam. To do this,
we sum the entries in each column and divide by 5. :

Algbn'thm
j = 4
REPEAT

_ sum the scores in column j
! divide sum by 5 to get the average in column j

IR
UNTIL § = O

Ll I I o

196 IO.S.An Application: Averaging Test Scores

)

We choosc'té start summing in iwoluinn 4 because it makes the code a little

shorter. Step 3 inay be broken down further as follows:

sum[j}] = O

io=1

FOR 5 times DO ,
sum{3i)] = sum{j} + scoreli,j]
1 = 1+1, ‘

END_FOR

Program Listing PGM10_4.ASM

0: TITLE PGM1 0__4 : CLASS AVERAGE
1: .MODEL SMALL

2: .STACK 100H

The test scores are stored in a two-dimensional array (lines 5-9).

3: .DATA
4: FIVE pw S
5: SCORES -DW 67,45,98,33 :Mary Allen
6: DW 70,56,87,44 ;Scott Baylis
.7 DW . 82,72,89,40 ;George Frank.
8: . DW 80,67,95,50 ;Beth Harris
9: . DW =~ 78,76,92,60 ;Sam Wong
10: AVG DW S DUP (0)
11: .CODE
12: MAIN PROC -
13; MOV AX, @GDATA
14: MOV DS, AX sinitialize DS
15: ;3j=4 :
16: MOV SI, 6 ;jcol index, initially col
17: REPEAT: '
18: MOV CcX,5 ;no. of rows
19: XOR BX, BX ;row index, initially 1.
20: XOR AX, AX ;col_sum, initially O
21: ;sum scores in column j
22: FOR: . T e T
23: ADD AX, SCORES (BX+SI};col_sum=col_sum + score
24: ADD BX, 8 ;index next .row ‘
25: I:OOP FOR - ;keep adding scores
26: ;endfor
27: ;compute average in.column j
28: . XOR . DX,DX .: sclear high part of divnd
29: DIV. FIVE. , ;AX = average
30: . MOV A‘IGISI],)'.X;_ ;store in array
31: suB_ SI1,2 - ;go to next column
32: ;until §=0 -~ ° ’
33: - JNL -~ REPEAT * . “;unless SI < O
. .34:+;dos exit ‘
35: MOV AH, 4CH
36: INT 218 <7
37: MAIN ENDP
38: END MAIN

In lines 22-25, a column is summed and the total placed in the array
AVG. In lines 28-30, this total is divided by 5 to compute the column average.

wnapter 10 Amays and Addressing Modes 197

8 «_Rows and columns of array SCORE are indexed by BX and S, respec-
txvely We choose to begin summing column 4; this column begins in
'SCORES+6, ‘50 S1 Is initialized to'6 (line 16). After a column is summed, SI
is decreased’by 2, until it is 0.~ -

The execution of the program may be seen in DEBUG. We execute
down to the DOS exit, then . dump .the'array AVG (the addresses in. this
demonstration were determined in a previous DEBUG session).

-G29

3

AX=4C4B BX=0028 CX=0000 DX=0002 SP=0100 BP=0000 SI=FFFE DI=0000
DS=100B ES=0FF9 SS=100F CS=1009 IP=0029 NV-UP EI NG NZ-AC PO CY

4B 00-3F 00 SC 00 2D 00

The averages are 004Bh, 003Fh, 005Ch, and 002Dh, or—in decimal 75, 63,

In some applications, it is necessary to translate data from one form

1009:0029 CD21- INT 21
-D36 3D
100B:0030
" 92, and 45.
10.7 .
The XLAT Instruction

to another. For example, the IBM PC uses ASCII codes for characters, but
IBM mainframes use EBCDIC (Extended Binary Coded Decimal Interchange
Code). To translate a character string encoded in ASCII to EBCDIC, a program
must replace the ASCII code of each character in the string with the corre-
sponding EBCDIC code. =

‘The instruction XLAT (trans!ale) is a no-operand instruction that
can be used to convert a byte value into another value that comes from a
table. The byte to be converted must be in AL, and BX has the offset address
of the conversion table. The instruction (1) adds the contents of AL to the
address in BX to produce an address within the table, and (2) replaces the
contents of AL by the value found at that address.

For example, suppose the contents of AL are in the range 0 to Fh
and we want to replace it by the ASCII code of its hex equivalent; for example,

- 6h by 036h = “6”, Bh by 042h = “B”. The conversion table is

TABLE DB 030h 031h, 0°2h 033h 034h 035,036h,037h,038h,03%h
DB 041h, 042h 043h 044h, 045h, 046h

A

For instance, to convert-OCh to “C”, we do the following:

MOV AL, OCh '__.E_n,number to convert
. LEA BX, TABLE " 4sBX has taple offset
XLAT . ,AL has ‘C’

Here XLAT computes address TABLE + Ch = TABLE + 12, and replaces the
contents of AL by the number stored there, namely 043h = “C~.
In this example if AL contained a value not in the range 0 to 15,
- XLAT would translate it ‘to some garbage value.

- 10.7 The XLAT Instruction .

Example: Coding and Decoding a Secret Message

The following program prompts the uscr to type a message, encodes
it in unrecognizable form, pnnts the coded message, translates it back, and

prints the translation.
Sample output:

ENTER A MESSAGE:,

GATHER YOUR FORCES AND ATTACK AT DAWN, (input)
ZNKBGM WULM HUMPGN XJO XKKXPD XK OXS$J, (encoded)
GATHER YOUR FORCES AND ATTACK AT DAWN, (translated)

Algorithm for Coding and Decoding a Secret Message

Print prompt -

Read and encode message

Go to a new line

Print encoded message

Go to a new line

Translate and print message

Program Listing PGM10_S5.ASM
0: TITLE PGM 10_5: SECRET MESSAGE

1:. MODEL SMALL
2: .STACK 100H
. 3: .DATA
4: ;alphabet ABCDEFGHIJKLMNOPQRSTUVWXY.
5: CODE_KEY DB 65 DUP (' '), ‘XQPOGHZBCADEIJSUVFMNKLRSTWY'
6: DB 37 DUP (' ')
7: DECODE_KEY DB 65 DUP ('’ ‘),’'JHIKLQEFMNTURSDCBVWXOPYAZG’
8: DB 37 puP (*)
9: CODED DB 80 DUP (’'S’)
10: PROMPT DB ’‘ENTER A MESSAGE:',0DH,OAH,’S’
11: CRLF DB ODH, CAH, ’$*
12: .CODE
13: MAIN PROC .
14: MOV AX, @DATA ;ini-ialize DS
15: MoV DS, AX
l16: ;print input prompt
17: MOV AH, 9 ;print string fecn
18: LEA . QX,PROMPT iDX pts to prompt |
19: INT 214 ;print message
20: ;read and encode message '
2): MOV AH,1 sread char fcn
22 LEA BX,CODE_KEY ;BX pts to code key
23: LEA DI, CODED ;DI pts to coded message
24: WHILE_: ‘ .
w29 tenrsatr s aian INTwes- 23R jread a char .
26: CMP AL, ODH ;carriage return? .)
27: JE ENDWHILE ;yes, go to print coded messag
28: XLA. :;no, encode char

Chapter 10 Arrays and Addressing Modes

199

29: MOV . (DI],AL ;store in coded message
30% INC ;DI oL ;move pointer

31: JMP WHILE_ ;process next char

32: ENDWHILE: R

33: igo to a ncw line

34: MOV . AH,9

35: LEA DX,CRLF

36: INT 21H ’ ":new line

37% ;print encoded message

38y ‘" LEA. DX, CODED tDX pts to coded

39% INT 21H . iprint codea message
40: ;go to a new line

a1: - LEA DX, CRLF

42: INT 218 :new line

43: ;decode message and print’ it

44: MOV All, 2 ;print char fen

45: LEA BX, DECODE_KEY ;BEX 1is to decode key
46: LEA S1,CODED ' ..s teo encoded message
47: WHILEl: , - . - :
48: MOV =~ AL,[$I] ;get a character fr~~— message
49: . CMP AL, 'S’ ;end of messaq:’

5C: JE ENDWHILE1 iyes, exit

51: XLAT o ' ;no, decode character
52: MOV DL, AL ;put in DL

53: INT . 21H. ;print translated char
S54: INC - SI-. - ;move ptr

551 JMP ,.WHILE1 ;process next chcr

56: ENDWHILEl: |

57: - " MOV' ~ AH, 4CH .

58: INT * 214 ;dos exit

59: MAIN ‘ ENDP ¢

60: ©° END" MAIN

Three arrays are declared in the data segment:
1. CODEL_KEY is used to encode English text.

2. CODED holds the encoded message; it is initiatized to a string of
- dollar signs so that it' may be printed with INT 21h, function 9.

3. Dl".CODIi_Kl-’.Y is used to translate the encoded text back to English.

Line 4 is a comment line containing the alphabet, which makes it easier to
sce how characters are encoded and decoded.
~1 - -«Inlines 24-32, characters are read and encoded until a carrniage return
" is typed. AL receives the ASCII code of each input character; XLAT adds it to
address CODE_KEY in BX to produce an address within the CODE_KEY table.
CODE_KLY, is sct up as follows: 65 blanks, followed by the letters to
'whxch Ato Z will be cncodcd followed by 37 more blanks for a total of 128
bytes (128 bytes arc -needed, “because the standard ASCII characters range
_from 0 to '127). Supposc for example, an “A” is typed. The ASCII code of
“A” is 65: XLAT compiites address CODE_KEY+65, picks up the vatue of that
b) te, which is'“X”, and stores it in AL. At line 33, this value is moved into
byte array CODED. Similarly, “B” is translated into ‘Q’, ‘C’ into ‘P’ ., .'Z’
into “Y” (the encoding table was. constructed arbitrarily). Characters other
than :apital letters (including the blank character) have ASCII code in the

200

Summary

ranges 0 to 64 or 92 to 127, and are translated into blanks. In lines 38-39,
the encoded message is printed.

DECODE_KEY also begins with 65 blanks and ends with 37 blanks.
The positions of the letters in this array may be deduced as follows. First,
lay down the alphabet (line 4). Now since “A” was coded into “X”, the letter
at position “X” in the decoding sequence should be “A”. Similarly, because
“B” was coded into “Q”, there should be a “B” at position “Q”, and so on.

In lines 47-56, the encoded message Is translated. After placing the
addresses of DECODE_KEY and CODED in BX and SI, respectively, the pro-
gram moves a byte of the coded message into AL. If it's a dollar sign, the
message has been translated and the program exits. If not, XLAT adds AL to
address DECODE_KEY to produce an address within the decoding table, and
puts the character found there into AL. At line 52, the character is moved
to DL so that it can be printed with INT 21h, function 2.

Summary

* A one-dimensional array is an ordered list of elements of the
same type. The DB and DW pseudo-ops arc used to declare byte
and word arrays.

e An array element can be located by adding a constant to the
base address.

¢ The way that an operand is specified is its addressing mode. The
addressing modes are register, immediate, direct, register indirect,
based, indexed, and based indexed. '

* In register indirect mode, an operand has the form [registez],
where register is BX, SI, DI, or BP. The operand’s offset is con-
tained in the register. For BP, the operand’s segment number is in
SS; for the other registers, the segment number is in DS.

¢ In based or indexed mode, an operand has the farm [register +
displacement]. Register is BX, BP, SI, or DI. The operand’s offset is
obtained by adding the displacement to the contents of the regis-
ter. For BX,S1, or DI, the segment number is in DS; for BP, the seg-
ment number is in SS.

* The operators BYTE PTR and WORD PTR in front of an operand
may be used to override the operand’s declared type.

s The LABEL pseudo-op may be used to assign a type to a variable.

e A two-dimensional array is a one-dimensional array whose ele-
ments are one-dimensional arrays. Two-dimensional arrays mey
be stored row by row (row-major order), or column by column
(column-major order).

¢ In based indexed mode, the offset address of the operand is the
sum of (1) BX or BI’; (2) SI or DI; (3) optionally, a memory offset
address; (4) optionally, a constant. One (of scveral) possible forms
" Is [base_register + index_register + memory_location + constant).
DS has the segment number if BX is used; if BP is used, SS has
the scgment number.

e Based indexed mode may be used to process two-dimensional arrays.

* The XLAT instruction can be used to convert a byte value into an-
other value that comes from a table. AL contains the value to be

Chapter 10 Amays and Addressing Modes

201,

converted and BX the address of the table. The instruction adds
AL to'the offset contained in BX to produce a table address. The
“contents of AL is replaced by the value found at that address.

Glossary
addressing mode

base address of an array

based addressing mode

éolllimn-m‘aior order
direct mode
displaccment

immediatc modc o

" indexed addressing mode

.

one-dimensional ~=—=—
pointcr

register mode
' row-major order

two-dimensional array -

The way the operand js specified

The address of the array variable

An indirect addressing mode in which
the contents of BX or BP are added to a
displacement to form an operand’s offset
address

Column by columin

The operand is a variable

In based or indexed mode, a number
added to the contents of a register to
produce an operand’s offset address

The opcrand is constant

An indirect addressing mode in which
the contents of Sl or DI are added to a

.

. displacement to form an operand’s off-

set address
An ordered list of element of the same type

A regisler that contains an offset address
of an opcrand

The operand is a register

Row by row

r s . i
A one-dimensional array whose clements

are one-dimensional arrays

New instructions
XLAT

New Pseudo-Ops ~

_ pup LABEL PTR
Exer':c_isé;s"
- 1. Suppose
AX contains 0500h offset 1000h contains 0100h

* BX contains 1000h
"SI contains 1500h -
DI contains 2000h

offset 1500h contains 0150h
offset 2000h contains 0200h
offset 3000h contains 0400h
offset 4000h contains 0300h

and BETA is a word variable whose offset address is 1000h

202-

Exercises -

For each of the following instructions, if it is legal, give the
sourcc offsct address or register and the result stored in the desti-
nation. '

MOV DI, SI

MOV DI, (DI

ADD AX, [SI]

SUB BX, [DI}

LEA BX,BETA[BX]

ADD. [SI], (DI)

ADD BH, [BL]

ADD AH, [SI]

i. MOV AX, (BX + DI + BETA]
Given the following declarations
A DW 1,2,3

B DB 4,5,6

C LABEL WORD

MSG DB ‘ABC’

TR 0 o0 ow

and suppose that BX contains the offset address of C. Tell which

of the following instructions are legal. If sc, give the number

moved.

MOV AH, BYTE PTR A

MOV AX, WORD PTR B

MOV AX, C

MOV AX, MSG

e. MOV AH, BYTE PTR C

Use BP and based mode to do the following stack operations.

(You may use other registers as well, but qon't use PUSH or POP.)

a. Replace the contents of the top two words on the stack by zeros.

b. Copy a stack of five words into a word array ST_ARR, so that
ST_ARR contains the stack top, ST_ARR + 2 contains the next
word on the stack, and so on.

Write instructions to carry out each of the following operations

on a word array A of 10 elements or a byte array B of 15 elements

a. Move Afi+1] to position i, i=1...9, and move A[1] to
position 10.

b. Count in DX the number of ‘zero entrics in array A.
Supposc byte array B contains a character string. Search B for
the first occuzrence of the letter “E”. If found, make SI point
to its location; if not found, set CF.

Write a procedure FIND_IJ that returns the offset address of the el-

ement in row i and column j in a two-dimensional M x N word ar-

ray A stored in row-major order. The procedure reccives i in AX, j

in BX, N in CX, and the offset of A in DX. It returns the offset ad- *

dress of the clement in DX. Note: you may ignore the possibility

of overflow.

a.
b.
c
d

221 6 5 3 7
1 2 35 67

Chapter 10 Armays and Addressing Modes 203

. Programming Exercises

. - To sott an a'riéyvA of N elements by the bubblesort method, we
- proceed as follows: .

Pass 1. Forj=2...N, if Alj]} < A[j - 1] then swap A{f]-and
Alj - 1]. This will place the largest element in position N.

Pass 2. Forj=2...N-1,if Aljl.< A[j - 1] then swap Alj} and

,AU-1LT his will place the second largest element in position N - 1.

Pass N-1. If A[Z] < A[1}, then swap A[2] and A[l] At thlS point
the arzay is sorted.

‘Demonstration

initial data 7 5 3 9 1
pass 1 S . 3 7 1 9
pass 2 3 S 1 7 9
pass 3 3 1 S 7 9
pass 4 1 3 " s 7 9

Write a procedure BUBBLE to sort a byte array by the bubblesort
algorithm. The procedure receives the offset address of the array
in'SI and the number of elements in BX. Write a program that
lets the user type a list of single-digit numbers, with one blank be-
tween numbers, calls BUBBLE to sort them, and prints the sorted
list on the next line. For example,

Your program should be able to handle an array with only one
element.

Suppose the class records in the example of section 10.4.3 are
stored as follows

CLASS

DB *MARY ALLEN ‘’,67,45,9 8,33
DB *SCOTT BAYLIS’,79,56,87,44
DB ‘GEORGE FRANK’,82,72,89,40
DB *SAM WCNG ',78,76,92, 60

Each name occupies 12 bytes. Write a programn to print the name
of each student and his or her average (truncated to an mteger)
for the four exams.

Write a program that starts with an Initially undefined byte array

of maximum size 100, and lets the user insert single characters

204 Programming Exercises

?A
2D

’B
"ABD

a

ABDa

2D

ABDa

? <ESC>

9.

10.

into the array in such a way that the array is always sorted in as-

cending order. The program should print a question mark, let the
user enter a character, and display the array with the new charac-
ter inserted. Input ends when the user hits the ESC key. Duplicate
characters should be ignored.

Sample execution:

Write a program that uses XLAT to (a) read a line of text, and (b)
print it on the next line with all small letters converted to capi-
tals. The input line may contain any characters—simall letters, cap-
ital, letters, digit characters, punctuation, and = on.

Write a procedure PRINTHEX that uses XLAT Lo display the con-
tent of BX as four hex digits. Test it in a program that lets the
user type a four-digit hex integer, stores ‘t in BX using the hex in-
put algorithm of section 7.4, and calls PRINTHEX to print it on
the next line.

The String
Instructions

Overview

11.1
The Direction Flag

In this chapter we consider a special group of instructions called the
string instructions. In 8086 assembly language, a memory string or string
Is simply a byte or word array. Thus, string instructions are designed for array
processing. :

Here are examples of operatlons that can be performed with the
itring instmcﬁons

‘Copy a string into another string.
n "* Search a string for a particular byte or word.
. e Store characters in a string.
t - o Compare strings of characters alphabetically.
The tasks carried out by the string instructions can be periormed by
1sing the register indirect'addressing mode we studied in Chapter 10; how-
wer,.the string instructions have some built-in advantages. For example,
‘hey provide automatic updatmg of pointer registers and allow memory-
nemorv operations.

In Chapter 5, we saw that the FLAGS register contains six status flags
and three control flags. We know that the status flags reflect the result of an
operation that the processor has done. The control flags are used to control
the processor’s operations. .

-One of the control flags ls the direction flug (DF). Its purpose is to
determine the direction in which string operations will proceed. These op-
crations are impiemented by the two index registers SI and DI. Suppose, for
example, that the following string fhius been declared:

205

206 11.2 Moving a String

STRING1 DB ‘ABCDE’
And this string is stored in memory starting at offset 0200h:

Offset address Content ASCll character
0200h 041h A
0201h 042h . 8
0202h 043h ¢
0203h 044h D
0204h ’ 045h 3

1f DF = 0, SI and DI proceed in the direction of increasing memory addresses:
from left to right across the string. Conversely, if DF = 1, S1 and DI proceed
in the direction of decreasing memory addresses: from right to left.

In the DEBUG display, DF =0 is symbolized by UP, and DF = 1 by DN.

CLD and STD

To make DF = 0, use the CLD instruction
CLD ;ciear directio flag
To make DF = 1, use the ST: instruction:

STD ;set .direction flag

CLD and STD have no effect on the other flags.

11.2
. Moving a String

Suppose we have defined two strings as follows:

.DATA
STRING1 DB "HELLO'
STRING2 DB 5 DUp (?)

and we would like to move the contents of STRING1 (the source string) into
STRING2 (the destination string). This operation is nceded for many string
operations, such as duplicating a string or concatenating strings (attaching
one string to the end of another string).

The MOVSB instruction

MOVSB ;move string byte

copies the contents of the byte addressed by D5:Sl, to the byte addressed by
£S:Dl. The contents of the source byte are unchanged. After the byte has
been moved, both Sl and DI are automatically jncremenied if DF = 0, or
decremented if DF = 1. For example, to move the first two bytes of STRINGI
to STRING2, we execute the following instructions:

_MOV AX, @DATA

MOV DS, AX sinitialize DS

MOV ES, AX ;and ES

LEA SI,STRING1l - 1S1 points to source string

LEA DI, STRING2 ;DI points to destination string
CLD ;clear DF

MOVSB ;move first byte

MOVSB ;and second byte
See Figure 11.1. '

-Figure 11.1 -MOVsB

Chapter 11 The String Instructions

. Before MOVSB'

o Toe ’

STRING1
Offset
STRING2 - ~ ..---
'oﬁset 6 7 8 9
[* T
After MOVSB -’
s
STRINGY nﬁﬂ
Offset ot 2 3 4
o
Offset s 6 7 8 9.
' After MOVSB L K
STRING ﬂﬂﬂ
Offset _'l 2 3 4
R o P
stz -

- Offset +, 5.6 7 8 9

Cee . -

207

\ MOVSB is the first instruction we have seen that permits a memory-
memory operation. It is also the first Instruction that involves the ES register.

.

v - The REP Preflx i

MOVSB moves only a sing\e byte from the source string to the des-
tination string. To move the entire string, first initialize CX to the number

N of bytes in the source string and execute .

REP MOVSB

208

11.2 Moving a String

The REP prefix causes MOVSE to be executed N times. After each MOVSB,
CX is decremented until it becomes 0. For example, to copy STRING1 of the
preceding section into STRING2, we execute

CLD

LEA SI,STRING1
LEA DI, STRING2
MOV CX,5 ;no. of chars in STRING1
REP MOVSB

Examplc 11.1 Wirite instructions to copy STRING1 of the preceding section
into STRING2Z in reverse ordet.

Solution: The idea is to get SI pointing to the end of STRING1, DI to’
the beginning of STRINGZ2, then move characters as S! travels to the left
across STRING1.

LEA SI,STRING1+4: ;SI pts to end of STRING1
LEA DI,STRING2 ;DI pts to beginning of STRING
STD ;right to left processing
MOV CX,5
MOVE:
MOVSB ;move a byte
ADD DI,2
LOOP MOVE

Here it is necessary to add 2 to DI after each MOVSB. Because we do this
when DF = 1, MOVSB automatically decrements both SI and DI, and we .
want to increment DI.

Movsw
There is a word form of MOVSB. It is
MOVSW ;move string word

MOVSW moves a word from the source string to the destination string. Like

MOVSB, it expects DS:SI to point to a source string word, and ES:DI to point

to a destination string word. After a string word has been moved, both, SY

and DI are increased by 2 if DF = 0, or are decrcased by 2 if DF = 1.
MOVSB and MOVSW have no effect on the flags.

Examplc 11.2 Tor the following array,

ARR DW 10,20,40,50,60,7?

write instructions to insert 30 between 20 and 40. (Assume DS and ES
have been initialized to the data segment.)

Solution: The ideca'is to move 40, 50, and 60 forward one position in
the array, then insert 30.

11.3
Store String

Chapter 11 The String Instructions ' 200

3TD ;right to left processing
LA ¢4, ARR+8h ' ;81 pts to 60

“EA DI, ARR+Ah ;DI pts to ?

<0, 3 " ;3 elts to move

RIP MOVSW . ;move 40,50, 60

{ OV JORD PTR ([D1), 30 iinsert 30

Note: the PTR operator was introduced in section 10.2.3.

3

i

The STOSB Instruction .

STOSB ;store string byte

moves-the contents of the AL register to the byte addressed by ES:DI. Dl is
incremented if DF = 0 or decremented if DF = 1. Similarly, the STOSW
instruction

STOSW . :store string word

moves the contents of AX to the word at address ES:DI and updates DI by
2, according to the direction flag setting.
STOSB and STOSW have no effect on the flags.
-~ = As an example of STOSB, the following instructions will store two
“A”s in STRING 1: . o

OV hX, GDATA

WV ES3, AX ;initialize ES

EA DI, STRING. ;DI points to STRING1

£2.D sprocess to the right

LoV oML, A ;AL has character to store
ress ;store an ‘A’

OB rstore another one

See Figure 11.2.

Reading and Storing a Character String

INT 21h, tanction 1 reads a character from the keyboard into AL. By
1epeatedly execnting this internipt with STOSB, we can read! and store a character
string. In addition, th:e characters may be processed before storing them.

) The toliwing procedure READ_STR reads and stores characters in a
sitiing, until o carriage return is typed. The procedute is entered with the
string offset adu ess in DL 1 1eturns the string offset in 11, and number of
characters entored in BX. If the user makes a typing mistake and hits the
bucks;:ace key, the previous character is removed from the string.

This procedure is similar to DOS INT 21h, function OAh (see exercise
1111

Algorithm for READ_STR

chars_rcad = 0
read a uvhar
WHILE char is not a carriage return DO
IF char is a bachkspace ’
THEN
chars_read - z=hgon _read - 1

~

210 11.3 Store String

Figure 11.2 STOSB Before STOSE
3’
STRING1 [IH"['EII g l g],o,j l Y J
Offset 0o t 2 3 4 AL
After STOSB .
q
STRING1 [A.I'E:J ‘L:J ,L,Ilorl [A]
Offset » 0 1 2 3 4 AL
After STOSB
Q

STRING1 [TA‘J A f.L.l .Lj.oj [%]
Offset -0 1 2 3 4 AL

remove previous char from string
ELSE ’
store char in string
chars_read = chars_read + 1
END_IF
read a char
END_WHILE -

Program Listing PGM11_1.ASM

1: READ_STR PROC NEAR

2: ; Reads and‘'stores a string

3: ; input: DI offset of string

4: output: DI offset of string

5: ;BX number' of characters read

6: " FUSH AX

7: PUSH DI -

8: CcLD ;process from left

9: XOR BX, BX ;no. cf chars read

10: MOV A, 1 ;input char function
11: INT. 21H ;read a char into AL
12: WHILEL: .

i3: cMP AL, ODH ;CR?,

14: JE END_WHILEL ;yes, exit

15: ;if char is backspace

16: CMP AL, 8H ;backspace?

17 JNE ELSEl ;no,store in string

18: :then

19: DEC DI :yes, move string ptr back
20: DEC BX ;decrement char counter

1.4
Load String

_Chapter 11 The String Instructions 211

21: JMP READ ;and go to read ‘another char
22: ELSEl: .
23: STOSB ;store char in string
24: NG P BX ;increment char count
25: READ: 7

26: INT "21H ;read a char into AL
27: A JMP WHILEL sand continue loop
28: END_WHILEL:

29: poP DI

30:) POP AX

31: RET.

.32: READ_STR’ ENDP '

" At line 23, the procedure uses STOSB to store input characters in the string.

STOSB automatically increments DI; at line 24, the character count in BX is
incremented.

The procedure takes into account the possibility of typing errors. If
the user hits the backspace key, then at linc 19 the procedure decrements

"DI and BX. The backspace itself is not stored. When the next legitimate

character is read, it replacés the wrong one in the string. Note: if the last
characters typed before the carriage return are backspaces, the wrong char-
acters will remain in the string, but the count of legitimate characters in BX

will be correct.

Wa 11co RFAN CTR far ctring innut in thse fallawinag cortinne

The LODSB instruction
LODSB ~,load str;ng byte

moves the byte addxessed by DS:SI into AL. Sl is then incremented if DF =
0 or decremented if DF = 1. The word form is

LODSW - sload string word

it moves the word addressed by DS Sl into AX; Sl is increased by 2 if DF =

0 or decreased by 2 if DF = |.
LODSB can be used to examine the characters of a string, as shown

later.
LODSB and.LODSW have.no effect on the flags.

To illustrate LODSB, suppose STRING1 is defined as

STRING1 DB ‘ABC’

The following code sutcessively'loads the first and second bytes of STRING1
into AL

MOV AX, @DATA

MOV DS, AX ;jinitialize DS

LEA SI,STRING1 2SI points to STRINGI

CLD /process left to right
LODSB +load.first byte into AL
LODSB, isloadsécond byte into AL

" See Figure 11.3.

212 11.4 toad String

figure 11.3 LODSB

Before LODSB

sl
STRING1 “n [:,
Offset o 1 2 AL

After LODSB

st
ST .
1 2

Offset 0 AL

After LODSB

SI
N
1 2

Offset 0 AL ¢

-

Displaying a Character String

The following procedure DISP_STR displays the string pointed to by
SI, with the number of characters in BX. it can be used to display all or part
of a string.

Algorithm for DISP_STR

FOR count times DO /* count = no. of characters to display *
load a string character into AL
move it to DL
output character

END_FOR

Proyram Listing PGM 11_2.ASM
;displays 3y string
;input: Sl1’= offset of string
H BX = no. of chars, to display
soutput: none
PUSH AX
PUSH BX
PUSH CX
PUSH DX
PUSH S1
MOV CX,BX ;no. of chars
JCXZ P_EXIT ;exit 1f none
CLD ;process left to right

Chapter 11 The String Instructions 213

MoV AH, 2 ;prepare to print
TOP: '
LODSB ;char in aL ~
MoV DL,AL ;move it to ‘DL
INT 21H ;print char
LOOP TOP :loop until done
P_EXIT:)
POP SI
por DX
POP CX
POP BX
POP AX
. RET
DISP_STR ENDP! t :

) To demonstrate READ_STR and DISP_STR, we'll write a program that
reads a string (up to 80 characters) and displays the first 10 characters on
the next line.

P

Program Listing PGM11_3.ASM
TITLE PGM11l_3: TEST READ_STR and PRINT_STR
.MODEL SMALL -
.STACK
.DATA
STRING DB 80 DUP (0)
CRLF DB ODH, OAH, *S’
.CODE
MAIN PROC
MOV AX, @DATA
MOV DS, AX
MOV ES,AX
;read a string
LEA DI, STRING ;DI pts to string
CALL READ_STR' ;BX = no. of chars read
;go to a new line
LEA DX, CRLY
MOV AH, 9
INT 21H
;print string
LEA SI,STRING, ;81 pts to string

MOV BX,10 ;display 10 chars
CALL DISP_STR -
;dos exit
MOV AH, 4CH
INT 21H
MAIN ENDP

/READ_STR goes here
:DISP. STR goes here
" END MAIN _

'2i4 11.5 Scan String

Sample execution:

C>PGM11_3
THIS PROGRAM
THIS PROGR

TESTS TWO PROCEDURES

1.5
Scan String

The instruction .
SCASB ;scan string byte

can be used to examine a string for a target byte. The target byte is contained
in AL. SCASB subtracts the string byte pointed to by ES:DI from the contents
of AL and uses the result to set the flags. The result is not stored. Afterward,
DI is incremented if DF = 0 or decremented if DF = 1.

The word form is o

SCASW ;scan stfing word

in this case, the target word is in AX. SCASW subtracts the word addressed
by ES:DI from AX and sets the flags. DI is increased by 2 if DF = 0 or decreased
by 2 if DF = 1. ’

All the status flags are affected by SCASB and SCASW.

Figure 11.4 SCASB

Before SCASS

(o] . :
et A TEe
Offset o 1 2 ' AL
After SCASB

o
STRING1 ' 2ZF = 0 {not found)
Offset 0 1 2 AL
After SCASB

D

STRING 1 nﬂ [»'s' l 2F = 1 (found)
Offset 0 1 2 AL

A3

Chapter 11 The String Instructions 215

For example, if the string

STRING1 DB ‘ABC’

is defined, then these instru&ions examine the first two bytes of STRING1,
looking for “B”

MOV AX, @DATA

MOV AX,ES ;initialize ES

CLD ;left to right processing
LEA DY,STRING1 . . ;DI pts to STRING1

MOV AL, ‘B’ . ;target character

SCASB wscan first- byte

SCASB : ;scan second_ byte

See Figure 11.4. Note that when'the target “B” was found, ZF = 1 and because
- SCASB automatncally increments DI DI points to the byte after the target,

not the target itself. '
s In looking for a target byte in a string, the string is traversed until

the byte is found or the string ends. lf CX is initialized to the number of
bytes in the string,

.
-

RBPNE_ 5 SCASB ;repeat SCASB while not equal
(to target)

3

will repeatedly Subtract each string byte from AL, update D], and decrement
CX dntil there is a zero result (the target is found) or CX = O (the string
ends). Note: REPNZ (repeat while ‘not zero) generates the same machine
code as REPNE.

As an example, Tt 's write a program te count the number of vowels
and consonants 1n a stnng

Algorithm for Counting Vowels and Consonants

Initialize vowel count ar! ¢ ~sonrnt_cour* L. 0;
.Read and stcre a <*:137Q
REPEAT - .,

Load a_str.nec chara.ter,
IF 1%’s a ~oweld
THEN
1ncremernt vowel count
ELSE IF it’s a conscnant
THEN increment consonant_count
END 1F, s
UNTIL end of sr.n.ng -
display no. of vowels
display no. of consonants

We'll use procedure READ_STR (section 11.3) to read the string. it
returns with DI pointirig-'to the string and BX containing the number of
characters read. To display -the number of vowels and consonants in the
string. we'll use procedure’OUTDEC of Chapter 9. It displays the contents
of AX as a signed decimal integer. For simplicity, we'll suppose the input is in
upper case.

Program Llstmg PGM11 _A.ASM

TITLE PGM 11.4:. COUNT VOWELS AND CONSONANTS
.MODEL SMALL

.STACK 100H

.DATA
STRING DB 80 DUP (0)

oW N o

216 -

11.5 Scan String

S:
6:
7:

9:

10:
12:
13:
14:
15:
16:
17:
18:
19:
20:

21:

22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:

47: -

48:
49:
50:
s51l:
82:
53:
54:
55:

57:
58:
59:
60:

"VOWELS DB ‘ALIOU’
CONSONANTS DB

ouT1 DB

ouT2

VOWELCT DW 0

CONSCT . DW 0

MAIN PROC

MOV AX, @DATA
MOV DS, Aax
MOV ES, AX

LEA DI, STRING

CALL READ_STR
MOV S1,DI
CLD

REPEAT: .

;load a string character
LODSB

;if it’s a vowel
LEA DI, VOWELS
MOV CX,5
REPNE SCASB
JNE CK_CONST

’ BCDFGHJIKLMNPQRSTVWXYZ2'
ODH, OAH, 'vowels = 5
bB ‘’, consonants = §'

sinitialize DS

sand ES

;DI pts to string

:BX = no. of chars read
;SI pts to string

;left to right processing

;char in AL

;DI pts to vowels
;5 vowels

:is char a vowel?
;no other char

;then increment vowel count

INC VOWELCT
JMp UNTIL

;jelse if it’s a consonant

CK_CONST:

MOV CX, 21
REPNE SCASB
JNE UNTIL

LEA DI,CONSONANTS ;DI pts to consonants

;21 consonants
;is char a consonant?
;no

;then increment consonant count

INC CONSCT
UNTIL: -

DEC . BX

JNE REPEAT
youtput no. of vowels

MOV AH,9

LEA DX,OUT1

INT 21H

MOV AX,VOWELCT
* CALL OUTDZC

;output no. of consonants
MoV AH, 9
LEA DX, 0UT2

INT 21H
MOV AX, CONSCT
CALL

OUTDEC
;dos exit ’
MOV - AH, 4CH
INT = 21H
MAIN . ENDP
;READ_STR goes here
‘7OUTDEC goes here
’ . END _ MAIN

:BX has no. chars left in
;loop if chars left

;prepare to print
;get vowel message
;print it

;get vowel count
;print it

;prepare to print

;get consonant message
;print it ’

sget consonant count
;print it

str

Chapter 11 The String Instructions 217

Because the program uses botn LODSB, which loads the byte in DS:S],
and SCASB, which scans the byte in ES: DI, both DS and ES must be initialized.
BX is used as a loop counter and is set to the number of bytes in the stnng
(CX is used elsewherc in the program).

Line 22. LODSB puts a stnng character in AL and advances SI to
the next one.

Line 26. To scc if the character in AL is a vowel, the program
scans the string VOWELS by executing REPNE SCASB. This in-
struction subtracts each byte of VOWELS from AL and sets the
flags. The instruction returns ZF = 1 if the character is a vowel
and ZI' = O if it isn't.

Line 35. If the target was not a vowel, the program scans the string
CONSONANTS, in exactly the same way it scanned VOWELS.

Sample exccution:

C>PGM11_4
A,E, I,0,U ARE VOWELS.
vowels = 9, consonants = 5
~&
11.6
Compare String The CMPSB Instruction

" CMPSE ;compare 'string byté

subtracts the byte with address ES:DI from the byte with address DS:S1, and
sets the flags. The result is not stored. Afterward, both SI and DI are incre-
mented if DF = 0, or decremented if DF = 1.

The word version of CMPSB is

CMPSW ;compare string word

It subtracts the word with address ES:Dl from the word whose address is DS:SI,
and sets the flags. If DF = 0, SI and DI are increased by 2; if DF = 1, they are
decreased by 2. CMPSW is useful in comparing word arrays of numbers.

All the status flags ar¢ affected by CMPSB and CMPSW.

For example, suppose

-DATA .
STRING1 OB ‘ACD’
STRINGZ DB . ‘ABC’

The following ipstructiohs compare the first t\vo bytes of the preceding strings:

., MOV AX, @DATA .
MOV DS,AX .© ' = ;initialize DS

MOV ES, AX "~ ;and ES
CLD’ B ;left to right processing

LEA 51,STRINGI ;81 pls Lo STRINGL

218 11.6 Compare String

Figure 11.5 CMPSB

B8efore CMPSB
Sl
STRING1 Hﬂ
Offset 0 1 2
DI
STRING2 n 'c
Offset 3 4 5
After CMPSB
]
STRING1 n ‘C'|'D RESULT = 041h - 041h = 0 (not stored)
ZF=1,5F=0
Offset 0 1 2
Dt
STRING2 un
Offset 3 4 5
After CMPSB
M|
STRING? “ " RESULT = 043h - 042h = 1 (not stored)
2ZF=0,5F=0
Offset o 1 2
[o]]
STRING2 Al sl
Offset 3 4 S
LEA DI, STRING2 ;DI pts to STRING2
CMPSB ;compare first bytes
CMPSB ;compare second bytes
See Figure 11.5.
REPE and REPZ

String comparison may be done by attaching the prefix REPE (repeat
while equal) or REPZ (repeat while zero) to CMPSB or CMPSW. CX is ini-
tialized to the number of bytes in the shorter string, then
REPE CMPSB ;compare string bytes while equal
or

REPE CMP3W ;compare string words while equal

Chapter 11 The String Instructions 219

l repeatedl.y executes CMPSB or CMPSW and decrements CX until (1) there

is.a mismatch between corresponding string bytes or words, or (2) CX = 0.
The tlags are set according to the result ot the last comparison.

CMPSB may be used to compare two character strings to see which
comes first alphabetically, or if they are identical, ur it one string is a substring
of the other (this means that one string is contained within the other as a
sequence of consecutive characters).

As an example, suppose STR1 and STR2 are strings or length 10. The
following instructions put 0 in AX if the strings are identical, put 1 in AX
if STR1 comes first alphabetically, or put 2 in AX if SIR2 comes first alpha-
betically (assume DS and ES are initialized). .

;length L 3tLinygs
LEA SI,STRI1 ;SI points to STRI
LEA DI,STR2 " ;DI poincs to STK2
CLD ;lert to riyht processing
" REPE CMFSB ;compare string cvtes
JL STR1_FIRST :STR1 precedes STR2
) - JG STRZ FIRST ;STR2 precedes S5TKL
;here if strings are identical |

MOV (X, i0

MOV AX,0 sput 0 in EX
JMP EXIT . ;and exit
shere if STR! precedes STR2
STR1_FIRST: -
MOV AX,1 sput 1 oan AX
J4p EXIT ;and exit

shere if STR2 precedes STRI1
STR2_FIRST:
MOV 2X, 2 JPUT 2 ain RX

EXIT:

11.6.1
Finding a Substring of
a String

U

There are several ways to determine whether one string is a substring
of another. The following way is probably the simplest. Suppose we declare

SUBl1 " DB *ABC’
SUB2 DB *CaB’
MAINST DB ‘ABABCA’

and we want to see whether SUB1 and SUB2 are substrings of MAINST.
Let’s begin with SUB1. We can compare corresponding characters in
the strings
SUB1 * . AEC
B
MAINST £ B ABCA

Because'there is.a mismatch at the third comparison, we backtrack and try
to match SUB1 with the part of MAINST from position MAINST+1 on:

A BC

L

MAINST AR ABCA

-

220

11.6 Compare String

There is a mismatch immediately, so we begin again, and at position
MAINST+2

SUB1 A (o}
P

B
MAINST ABABCA

This time we are successful; SUBI is a substring of MAINST.
Now let’s try with SUB2. The search proceeds as before until we reacn

$UBZ v C aAB

MAINST A BABCA

There is a mismatch, and there is no need to proceed further, for if we did
we would be trying to match the three characters of SUB2 with the two
remaining characters “CA” of MAINST. Thus SUB2 is not a substring of

MAINST.
Actually, we could have predicted the last place to search. It is

STOP = MAINST + length of MAINST —length of SUB2
= MAINST + 6 — 3 = MAINST + 3 '

Here is an algorithm and a program that scarches a main string
MAINST for a substring SUBST.)

Algorithm for Substring Search

Prompt user to enter SUBST
Recad SUBST .
Prompt user to enter MAINST
Rerad MAINST .
iF (length of MAINST is 0) OR (length of SUBST is 0)
OR (SURBST is5 longer tharn MAINST
THEN
SUBST is not a substring of MAINST
ELSE '
cempute STOP
_ START = offset of MAINST
REPEAT
compare corresponding characters in MAINST
(frcm START on) and SUBST
IF all characters match

THEN

SUBST found in MAINST
ELSE

START = START + 1
END IF

UNTIL (SU2ST found in MAINST)
OF (START > STOP)
Dizplay results

After reading SUBST and MAINST, and verifying that neither string
is null and SUBST is not longer than MAINST, in lines 44-50 the program
computes STOP (the place in MAINST to stop scarching), and initializes
START (the place to start searching) to the beginning of MAINST.

Chapter 11 ' The String Instructions 221

'Program Listing PGM11_5.ASM

1
2
3
4
5:
6.
9
8

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
i9:
20:
21:
22:
23:
24:
25:
26:
27:
28:
. 29:
30:
31:,
32:
33:
34:
35:
36:
37:
38:
39:
10:
1l1:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:

TITLE PGM11_5: SUBSTRING DEMONSTRATION
.MODEIL SMALL

.STACK 100H N .
.DATA ' .

MSG1 DB 'ENTER SUBST’,0DH, 0AH, 'S’

MSG2 DB ODR, OAH, 'ENTER MAINST', ODH, OAH,’$’

MAINST DB - 80 DUP (0)

SUBST DB 80 DUP (0)

STOP bW ? " ;last place to begin search
START DW ? : iplace to resume search
SUB_LEN DW? ;substring length

YESM3G OB ODH, ODAH,’'SUBST IS A SUBSTRING OF MAINSTS’
NOMSG DB ODH, OAH, ' SUBST IS NOT A SUBSTRING OF MAINS1T
.CODE :

MAIN PROC

MOV AX, @DATA

MOV DS, AX

MOV ES,AX
;prompt for SUBST

MOV AH, 9 ;print string fcn

LEA DX,MSG1 ;substring prompt

INT 21H ;prompt for SUBST
;read SUBST :

LEA DI, SUBST

CALL READ_STR ' ;BX has SUBST length

MOV ~ SUB_LEN,BX ;save in SUB_LEN
;prompt for MAINST

LEA DX,MSG2. ;main string prompt

INT 21H ;prompt £for MAINST

;read MAINST .
LEA DI,MAINST

CALL READ_STR ;BX has MAINST length
;see if string null or SUBST longer than MAINST
OR BX, BX ;MAINST null?
JE NO ;yes, SUBST not a subpstring
CMP SUB_LEN, 0 ;SUBST null?
‘JE 3o} ;yes, SUBST not a substring
cMp SUB_LEN,BX ;substring > main string?
JG NO .;yes, SUBST nolL a substring
;see if SUBST is a substring of MAINST
LEA 5I,3UBST ;SI pts to SUBST
LEA DI,MAINST ;DI pts to MAINST
CLD ileft to right processing
;compute STOP R
MOV STOP,DI :STOP has MAINST address
ADD STOP, BX ;add MAINST length
MOV CX, SUB_LEN .
suB STOP, CX ;subtract SUBST length
;initialize start N ’
MOV START, DI ;place to start search
REPEAT: . -
;compare characters o
MOY CLEN ;length of substring
MOV DI, START ;reset DI

222

11.6 Compare String

55: LEA SI, SUBST ;reset SI

56: REPE CMPSB ;compare characters
57: JE YES ; SUBST found
£8: ;substring not found yet

59: INC START ;update START
60: ;see if start <= stop

61: MOV AX.START

62: CMP AX, STCP ; START <= STOP?
63: JNLE NO ;no,exit

64 JIMP REPEAT ;keep going

65: ;display results

66: YES:

67: LEA DX, YESMSG

68: JMP DISPLAY

69: NO:

70: LEA DX, NOMSG

71: DISPLAY:

72: MOV AH, 9

73: INT 21H ;display results
74: ;DOS exit

75: MOV AH, 4CH

76: INT 21H

77: MAIN ENDP

78: ;READ_STR goes here

79: END MAIN

At line 51, the program enters a REPEAT loop where the characters of
SUBST are compared with the part of MAINST from START on. In lines 53-56,
CX is set to the length of SUBST, Sl is pointed to SUBST, DI is pointed to START,
and corresponding characters are compared with REPE CMPSB. If ZF = 1, then
the match is successful and the program jumps to line 66 where the message
“SUBST is a substring of MAINST” is displayed. If ZF = 0, there was a mismatch
between characters and START is incremented at line 59. The search continues
until SUBST matches part of MAINST or START > STOP; in the latter case, the

message “SUBST is not a substring of MAINST” is displayed.

Sample executions:

C>PGM11_5

ENTER SUBST

ABC

ENTEK MAINST

XYZRBABC

SUBST [S A SUBSTRING OF MAINST

C>PGM11_S
ENTER SUBST

ABD

ENTEK MAINST

ABACADACD .

SUBST IS NOT A SUBSTRING OF MAINST

Chapter 11 The String Instructions 223

11.7 .
General Form of} the
String Instructions

.

Let us summarize the byté and word forms of the string instructions:

Instruction Destination Source Byte form Word form
Move string ES:DI DS:sl MOVSB MOVSW
Compare string” ES:DI T DSSI CMPSB CMPSW
Store string ES:DI Al or AX STOSB STOSW
Load;string - Al or AX DS:SI . LODSB LODSW
Scan string ES:D! AL or AX SCASB SCASW

* Result not stored.

The opcrands of these instructions are implicit; that is, they are not
part of the instructions themselves. However, there are forms of the string
instructions in which the operands appear explicitly. They are as follows:

Instruction’ Example
MOVS destination_string, source stnng MOVS8

CMPS destination _string, source_string CMPSB

STOS destination_string STOS STRING2
LODS source_string - LODS STRING?
SCAS destination_string SCAS STRING2

When the a§sem_bler encounters one of these general forms, it checks to see
if (1) the source string is in the segment addressed by DS and the destination

' string is in the segment addressed by ES, and (2) in the case of MOVS and
" CMPS, if the strings are of the same type; that is, both byte strings or word

strings. If so, then the instruction is coded as either a byte form, such as
MOVSB, or a word form, such as MOVSW, to match the data declaration of
the string. For example, suppose that DS and ES address the following seg-
ment:

.DATA _
STRING1 DB ‘ABCDE’
STRINGZ - DB ‘EFGH’
STRING3 DB v YIJKL’
STRING4 DB - 'MNOP’
STRINGS DW . 1,2,3,4,5
STRING6 DW. 7,8,9

‘Then the foilowing pairs of instructions are equxvalc.nt

MOVS STRING2, STRING1 MOVSB
MOVS STRING6, STRINGS MOVSW
LODS’ STRINGY LODSB
LODS STRINGS LODSW
. SCAS STRING1 . SCASB
STOS STRING6 "t STOSW

It is-importart to note that if the general forms are used, it is still necessary to
make DS:SI and ES:DI point to the source and destination strings, respectively.

There are advantages and disadvantages in using the general forms
of the string instructions. An advantage is that because the operands appear
as part of the code, program documentation is improved. A disadvantage is

224

Summary

that only by checking the data definitions is it possible to tell whether a
general string instruction is a byte form or a word form. In fact, the operands
specified in a general string instruction may not be the actual operands used
when the instruction is executed! For example, consider the following code:

LEA SI,STRING1 ;SI PTS TO STRINGI
LEA DI, STRING2 ;DI PTS TO STRING2
MOVS STRING4, STRING3

Even though the specified source and destination operands are STRING3 and
STRINGA4, respectively, when' MOVS is exccuted the first byte of STRING1 is
moved to the first byte of STRING2. This is because the assembler translates
MOVS STRING4, STRING3 into the machine code for MOVSB, and SI and
DI are pointing to the first bytes of STRING1 and STRING2, respectivefy.

Summary

e The string instructions are a special group of array-processing in- A
structions.

¢ The setting of the direction flag (DF) determines the direction -
that string operations will proceed. If DF = 0, they proceed left to
right across a string; if DF = 1, they proceed right to left. CLD
makcs DF = 0 and STD makes it 1.

* MOVSB moves the string byte pointed to by DS:51 into the byte
pointed to by ES:DI, amd SI and DI to be updated according to
DE MOVSW is the word form. These instructions may be used
with the prefix REP, which causes the instruction to be repeated
CX times.

* REPE and REPNE are conditional prefixes that may be used. with
-string instructions. REPE causes the string instruction that follows to .
be repeated CX times as long as ZIF = 1. REPNE causes the following
string instruction to be repeated CX times as long as ZF = 0. REPZ
and REPNZ are alternate names for REPE and REPNE,. respectively.

* STOSB moves AL to the byte addressed by ES:DI, and updates DI
according to.DF. STOSW is the word form. STOSB may be used to
read a character string into an array.

* LODSB moves the byte addresscd by DS:SI into AL, and updates
S! according to DI LODSW is the word form. LODSB may be
used to examine the contents of a character string.

* SCASB subtracts the byte pointed to by ES:DI from AL and uses
the result to st the flags. The result is not stored, and DI is up-
dated according to DF. SCASW is the word form; it subtracts the
word pointed to by ES:DI from AX, sets the flags, and updates DI.
The result is not stored. These instructions may be used to scan a
string for a target byte or word in AL or AX.

* CMPSB subtracts the byte pointed to by ES:DI from the byte
pointed to by DS:SI, sets the flags, and updates both St and DI ac-
cording to DF. The result is not stored. The word form is CMPSW.
These instructions may be used to compare character strings “
alphabetically, to see if two strings are identical, or if one string is
a substring of another.

Chapter 11 The String Instructions 225

The string Tnstructions have general forms in which the operands
are &flicit. The assembler uses the operands only to decide
whether to code the instructions in byte or word form.

" Glossary
(mcmory) string - A byte or word array

..

.New Instructions

CLD . LODSW 3CASW
CMES MOVS STD
CMP3B MOVSB STOS
CMPSW MOVSW - STOSB
LODS SCAS SPOSW
LODSB SCASB ’
String Instruction Prefixes
REP ' REPNE ’ REPZ
REPE : ’ REPNZ
Exercises
1. Suppose

St contains 100h Byte 100h contains 10h

DI contains 200h Byte 101h contains 15h

AX'contains 4142h Byte 200h contains 20h

DF=0 Byte 201h - contains 25h

Give the source, destination, and valu# moved for each of the fol-

lowing instructions. Also give the new contents of Sl and DI.

a. MOVSB

MOVSEW

C. STOSH .

d. STOSW

c. LOD3B

f. LODSW

2. ‘Suppose the following declarations have been made:

STRING1l DB ‘FGHIJ’
STRING2 DB ‘ABCDE’
DB 5 DUP (?)

Wirite instructions to move STRING] to the end of STRINGZ pro-
ducing the string “ABCDEFGHI}”.

226"

Programming Exercises

Write instructions to exchange STRINGI1 and STRING2 in exercise 2.
You may use the five bytes after STRING2 for temporary storage.

An ASCIIZ string is a string that ends with a O byte; for example,

STR DB ‘THIS IS AN ASCIIZ STRING',O

Write a procedure LENGTH that receives the address of an ASClIZ
string in DX, and returns its length in CX.

Use the addressing modes of Chapter 10 to write instructions
equivalent to cach of the following string instructions. Assume
where necessary that SI already has the offset address of the
source string, DI has the offset address of the destination string,
and DF = 0. You may use AL for temporary storage. For SCASD
and CMPSB, the flags should reflect the result of the comparison.
a. MOVSB

STCEB

LOLSB

SCASE

CMPSB

Suppose the following string has been declared:

T QangC

STRING DB ‘'TH"3* G*$% AR* B*ASTS’
Wirite instructions that will cause each “*” to be replaced by “L”.
Suppose the following string has been declared:

STRINGL ©& ‘T 4 1 2 1 8 A T E 3 U

3TRING2 DB 11 YR (7

Write some code that will cause STRING1 to be copied into
STRING2 with the blank characters removed.

Programming Exercises

8.

A palindrome is a character string that reads the same forward or
backward. In deciding it a string is a palindrome, we ignore
blanks, punctuation, and lctter case. For example “Madam, I'm

1

Adam” or “A man, a plan, a canal, Panamua!
Write a program that (a) lets the user input a string, (b) prints it
forward and backward without punctuation and blunks on succes-
sive lines, and (c) decides whether it is a palindrome and prints
the conclusion. I
In spreadsheet applications, it is useful to display numbers right-
justified in fixed ficlds. For example, these numbers are righit-justi-
fied in a field of 10 characters:

1349
2342545
Write a program ' to read ten numbers of up lo 10 digits cach, and
display them as above.’

Chapter 11 The String Instructions 227

10. A character string STRING1 precedes another string STRING2 al-

- phabetically if (a) the first character of SIRING1 comes before the
tirst character ot STRING2 alphabetically, or (b) the tirst N - 1
characters ot the strings are identical, but the Nth character ot
STRING1 precedes the Nth character of STRING2, or (¢) STRINGT -
matches the beginning of STRING2, but STRINGZ2 is longer.

Write a program that lets the user enter two character strings on
scparate lines, and decides which string cumes first alphabetically,
or if the strings arc identical.

11. " INT 21h, function 0Ah, can be used to read a character string.
‘The first byte of the array to hold the string (the string butfer)
must be initialized to the maximum number of characters ¢x-
‘pected. After execution of INT 21h, the second byte contains the

" actual number of characters read. Input ends with a carriage re-
turn, which is stored but not included in the character count. 1

_the user enters more than the expected number ol characters, the -,
computer beeps.., ’ '
Write.a program that prints a “?"; reads a character string o up
to 20 characters using INT 21h, function OAb; and prints the
string on the next lind, Set up the string butter like this:

'SIKINU * LABEL BYTE

MAX LEN LB 20 JmAaximum ne. Ui chars expec:ied
C‘.‘_'-’N o ? sactual nc. of chaers read
CHAKE OB 21 DUP (?),;20 byres teor string

;extra byte ror carriaye
;return)

12, Write a procedure INSERT that will insert a string STRINGT into a
string STRING2 at a specified point.

Input

SI offset address of STRING1

Di offset address of STRING2

BX length of STRING1

CX length of STRING2

AX offset address at which 1o insert STRING !

Output
DI offset address of new string
. BX length of new string

The proceduré may assume that neither string has 0 tength, and
that the address in AX is within STRING?2

Write a program that inputs twq strings STRING1 and SI}\INC,_, a
nonnegative decimal integer N, 0 <= N <= 40, inscerts STRING1

into STRINGZ2 at position N bytes after the beginning of -
STRING2, and displays the resulting string. You may assumie thut-,
N <= length of STRING2 and that the length of each smng, is Tuss !
than 40.) .

228

Programming Exercises

13. Wirite a procedure DELETE that will remove N bytes from a string

at a specified point and close the gap.

Input -

DI offset address of ‘string

BX length of string

CX number of bytes N to be removed

S offset address within string at which to remove bytes
Output

Di offset address of new string

BX length of new string

The procedure may assume that the string has nonzero length,
the number of bytes to be removed is not greater than the length
of the string, and that the address in Sl is within the string.

Write a program that reads a string STRING, a decimal integer S
that represents a position in STRING, a decimal integer N that rep-
resents the number of bytes to be removed (both integers be-
tween' 0 and 80),-calls DELETE to remove N bytes at position §,
and prints the resulting string. You may assume O<NsL-§,
where L = length of STRING.

Part Two

Aclvanced Topics

Text Display and

Keyboard

Progiramming

Overview

One of the most. interesting and useful applications of assembly lan-
guage is in Lontmllm;, the monitor display. [n this chapter, we program such
operations as moving the cursor, scrolling windows on he screen, and dis-

"playing characters with various attributes. We also show how to program the

keyboard, so that if the user presses a key, a screen control function is per-
tormed; for example, we'll show how to make the arrow keys operate.

« The.display on the screen is determined by data stored in memory.
The ch.lptcr blgins with a discussion of how the display is generated and
how it can be controlled by altering the display memory directly. Next, we'll
show ho\s te do scréen operations by using BIOS funcu, a calls. ‘These func-
tions carl also be Used to detect. keys bun;> pressed; as a denanstration, we'll
write 3 sitiple screen edltor

12.1
The Monitor

A computer. monitor operate> an the same priniciple as a TV set. An

~electron gun is used ‘to.shoot a streari.of electrons at a phosphaor screen,

creating a bright spot. Lines are generated by swecping the stream across the
screcn; dots are created by turning the beam on and off as it moves.

A raster'of lines is created by starting the beam at the top left corner,
sweeping it to 'the right, then turning it off and repositioning it at the be-
ginning of the next line. This process is repeated until the last line has been
traced, at which point the beam is rcposmoncd at the top left corner and

“the progess is rcpe.md IR

231

232 1222 Video Adapters and Display Modes

.

There are two kinds of monitors: monochrome and color. A mono-
chrome monitor uscs a single electron beam and the screen shows only one
color, typically amber or green. By varying the intensity of the electron beam,
dots of different brightness can be created; this is called a gray scale.

" For a color monitor, the screen is coated with three kinds of phos-
phors capable of displaying the three primary colors of red, green, and biue.
‘Three electron beams are used in writing dots on the screen; each one is
used to display a different color. Varying the intensity of the electron beams
produces different intensities of red, green, and blue dots. Because the red,
green, and blue dots are very close together, the human eye detects a single
homogeneous color spot. This is what makes the monitor show different
colors.

' Video Adapters an
-Display Modes

Video Adapters

- The display on the monitor is controlled by a circuit in the computer

" aalled a video adapter. This circuit, which is usually on an add-in card,

has two basic units: a display memory (also called a vidco buffer) and
a video controllcr.

The display memory stores the information to be displayed. It can
be accessed by both the CPU and the video controller. The memory address
starts at segment AOOOh and above, depending on the particular videe
adapter.

The video controller reads the display memory and generates appro-
priate video signals for the monitor. For color display, the adapter can either
gencrate three separate signals for red, green, and blue, or can gencrate a
composite output when the three signals are combined. A composite monitor
uses the composite output, and an RGB monitor uses the separate signals.
The composite output contains a color burst signal, and when this signal is
twened off, the mionitor displays in black and white.

Display Modes

We commonly sce both text and picture images displayed on the mon- .
itor. The computer has different techniques and memory requirements for dis--
playing text and picture graphics. So the adapters have two display modes: text
and graphics. In text mode, the screen is divided into columns and rows,
typdcally 80 columins by 25 rows, and a chaacter is displayed at cach screen
position. in graphics mode, the screen is again divided into columns and

Table 12.1 Video Adapters

Mnemonic Stands For

MDA Monochrome Display Adapter
CGA Color Graphics Adapter

EGA Enhanced Graphics Adapter
MCGA Multi-color Graphics Array

VGA Video Graphics Array

Chapter 12 Text Display-and Keyboard Programming 233

rows, and each screen position is called a pixel. A picture can be displaycd
by specifying the color of each pixcl on the screen. In this chapter we con-
centrate on text mode; graphics mode is covered in Chapter 16.

. Let's take a closer look at character generation in text mode. A char-
acter on the screen is created.from a dot array called a character ccll. The
adapter uses a character generator circuit to create the dot patterns. The
number of dots.in a cell depends on the resolution of the adapter, which
refers to the number of dots it can generate on the screen. The monitor also
has its own resolution, and it is important that the monitor be compatible

with the video adapter.

‘Kinds of Video Adapters

Table 12.1 lists the video adapters for the IBM PC. They differ in
rcsoluuon and the number of colors that can be displayed.

IBM introduced two adapters with the original I’'C, the MDA (Mono-
chrome Display Adapter) and CGA (Color Graphics Adapter). The MDA can
only display text and was intended for business software, such as word pro-
cessors and spread sheets, which at that time did not use graphics. It has
good resolution, with cach character cell being 9 x 14 dots. The CGA can
dlsplay in color both text and graphics, but it has a lower resolution. In text
mode, each character cell is only 8 x 8 dots.

In 1984 IBM introduced the EGA (I'.nhanced Graphics Adapter), which
has 'good resolution and color graphics. The character cell is 8 x 14 dots.

" In 1988 IBM introduced the PS/2 models, which are equipped with

_the VGA (Video Graphics Array) and MCGA (Multi-color Graphics Array)

adapters. These adapters have better resolution and can display more colors
in graphics mode than EGA. The character cell is 8 x 19,

Mode Numbers

Depending on the kind of adapter present, a program can select text
or graphics modes. Lach mode is identified by a mode number; Table 12.2
lists the text modés for the dilferent Kinds of adapters.

Table '12.2 Video Adapter Text Modes

Mode Number
0

3
"7

Description

40 x 25 16-color text
(color burst off)

40 x 25 16-color text
80 x 25 16-color text
{color burst.off)

80 x 25 16-color text

Adapters
CGA.EGA,MCGA,VGA

CGA EGAMCGAVGA
CGA EGA MCGAVGA

CGAEGAMCGA VGA

80 x 25 monochrome text MDA EGA VGA

Note: For modes 0 0 and 2 the color burst signal is turned off for composite monitors;
RGB monitors will display 16 colors.

IS

B

234 12.3 TJext Mode Programming

12.3
Text Mode As discussed earlier, the screen in text mode is usually divided into
programming 80 columns by 25 rows. llowever, a 40-column by 25-row display is also

possible for the color graphics adapters.

A position on the screen may be located by giving its (column. row)
coordinates. The upper left corner has coordinate (0,0); for a 80 x 25 aispiay,
rows are 0-24 and columns are 0-79. Table 12.3 gives the coordinates of
some screen positions.

The character displayed at a screen position is specified by the con-
tents of a word in the display memory. The low byte of the word contains
the character’s ASCII code; the high byte contains its attribute, which tells
how the character will be displayed (its color, whether it is blinking, under-
lined, and so on). Actually, all 256 byte combinations have display characters
(sec Appendix A). Attributes are discussed later.

Display Pages

For the MDA, the display memory can hold one screenful of data.
The graphics adapters, however, can store several screens of text data. This
is because graphics display requires more memory, so the memory unit in a
graphics adapter is bigger. To fully use the display memory, a graphics adapter
divides its display memory into display pages. One page can hold the data
for one screen. The pages are numbered, starting with 0; the number of pages
available depends-on the adapter and the mode selected. If more than one
page is available, the program can display one page while updating another
one,

Table 12.4 shows the number of display pages for the MDA, CGA,
EGA, and VGA in text mode. In the 80 x 25 text mode, each display page
is 4 KB. The MDA has only one page, page 0; it starts at location B0O0OO:0000h.
he CGA has four pages, starting at address B8OO:0000h. In text mode, the
EGA and VGA can ¢mulate either the MDA or CGA.

Table 12.3 Some 80 x 25 Screen Positions

Position Decimal Hex
Column Row Column Row
Upper left corner 0 0 0 o
Lower left corner 0 .24 : 0 18
Jpper nght corner 73 0 aF 0]
ower rnight correr 75 24 4t 18
Zenter of the screen 39 12 27 C

Table 12.4 Number of Text Mode Display Pages

Maximum Number of Pages

Modes CGA EGA VGA
T0-1 8 8 ' 8

2-3 4 8 8

7 NA 8 8

Chapter 12 Text Display and Keyboard Programming 235

The Active Display Page

The active display page is the page currently being displayed: For
80 x 25 text mode, the memory requirement is 80 x 25 = 2000 words = 4000
bytes (thus the display does not use up all the 4 KB, or 4096 bytes, in the
page). The video controller displays the {irst word in the active display page
at the upper left corner of the screen (column 0, row 0). The next word is
displayed in column 1, row 0. In general, the active display page is displayed
on the screcen row by row; this means that the screen may be considered as
the image of a two-dimensional array stored in row-major order.

‘ .

12.3.1
The Attribute Byte

In a display page, the high byte of the word that specifies a display
character is called the attribute byte. It describes the color and intensity
of the character, the background color, and whether the character is blinking
and/or underlined.

16-Color Display

_ The attribute byte for 16-color text display (imodes 0-3) has the for-
mat shown in Figure 12.1. A 1 in a bit position sclects an attribute charac-
teristic. Bits 0-2 specify the color of the character (foreground colory and bits
4-6 give the color of the background at the character’s position. For example,
to display a red character on a blue background, the attribute byte should
be 0001 0100 = 14h. -

By adding red, blue, and green, other colors can be created. On the
additive colar wheel (Figure 12.2), a complement color can be produced by
adding adjacent primary colors; for example, magenta is the sum of red and
blue. To display a magenta character on a cyan background, the attribute is
0011 0101.= 35h. :

If the intensity bit (bit 3) is 1, the foreground color is lightened. If
the blinking bit (bit 7) is 1, the character turns on and off. Table 12.5 shows
the possible colors in 16-color display. All the colors can be used for the color
of the character; the background can use only the basic colors.

Monochrome Display

For monochrome display, the possible colors arce white and black.
For white, the RGB bits arc all 1; for black, they are all 0. Normal video is
a white character on a black background; the attribute byte is 0000 0111 =
7h. Reverse video is o black character on a white background, so the attri-
bute is 0111 0000 = 70h. ’

Figure 12.1 Attribute Byte

LI TP
Bt 7 6 S 4 3 2 1 0
BLR G B INR G B
<Background> <foreground>

i

BL = blinking IN = intensity
R=red G=aqreen B=blue

236 12.3 Text Mode Programming

Figure 12.2 Additive Color
Wheel

MAGENTA

YELLOW

As with color display, the intensity bit can be used to brighten a
white character and the blinking bit can turn it on and off. For the mono-
chrome adapter only, two attributes give an underined character. They are
01h for normal underline and 0%h for bright underline. Table 12.6 lists the

possible monochrome attributes.

TJahle 12.5 Sixteen-Color Text Display

Basic Colors

Bright Colors

IRGB
0000
0001
OO'I‘O
06011
0100
0101

0110

o011

0000
1000
1001
1010
1011
1100
1701
1110
ENRE}

I = intensity, R = red, G = green, B = blue,

Color
black

blue
green

cyan

red

magenta
brown

white

black

gray

light biue
light green
light cyan
light red

light magenta
yellow -
intense white

Table.12.6 Monochrome Attributes
‘ Attribute’Byte

Binary

0000 0000
0000 0111
0000 0001
0000 1111
0000 1001
0111 0000
<1000 0111
1000.1111
1111 11N
1111 0000

12.3.2
A Display. Page
Demonstration

To display a character with

Hex

00
07
01

OF
09
70
80
8F
FF

FO

Chapter 12 Text Display and Keyboard Frogramming 237

Result

black on black

normal (white on black)
normal underline

bright (intense white on black)
bright underline

reverse video (black on white)
normal blinking ;
bright blinking

bright blinking

reverse videp blinking

attribute at any screen position, it is only

necessary to store the character and attribute at the corresportding word in
the active display page. The following program fills the color screen with
red “A”s on a blue background.

Program Listing PGM12_1.ASM
TITLE PGM12_1:
SMALL

1

2 .MODEL
3 .STACK
-4 .CODE
5-

6

7

8

MAIN

;set DS

9:
10:.

11: ;£fill active display page

100H

PROC

to active display

MOV
MOV
MOV
MOV

12: FILL_BUF:

13: MOV
14: ADD
15: LOOF
16: ;dos exit

17: © MOV
18: . INT
19: MAIN ENDP
20: END

.

SCREEN DISPLAY 1

AX, 0B80Oh
DS, AX
cx,2000
DI1,0

(D1],1441h

DI, 2

FILL_BUF
.

AH, 4CH

21H

MAIN .

page
;color active display page

" ;80 x 25 = 2000 words

sinitialize DI

;red A on blue
;go to next word
;locp until done

-+ 2 To display a red “A” on a blue background at a screen position, the
corresponding active display page word should contain 14h in the high byte
. and 41h in the low byte.

23¢ - 123 Text Mode Programiming

The program begins by ihitializing DS to the video buffer segiment,
which is B80Oh for a color adapter. Loop counter CX is set to 2000—the
number of words in the active display page—and DI is initialized to 0. At
line 13, the program enters a loop that moves 1441h7into cach word of the
video bulffer. '

After the program is run, the screen positions retain the same attri-
butes unless another program changes it or the computer is reset.

12.3.3
INT 10H

Lven though we can display data by moving them directly into the
active display page, this is a very tedious way to contrdt the screen.

Instead we use the BIOS video screen routine which is invohked by
the INT 10h instruction; a video function is selected by putting a function
number in the AH register. .

[n the following, we discuss the most important INT 10h functions
used in text mode and give examples of their use. The INT 10h functions
used in graphics mode are discussed in Chapter 16. Appendix C has a more
complete list.

INT 10h, Function 0:
Select Display Mode

!

’ Input: AH =0

| Al = mode number (scc Table 12.2)
L Output: nonc

Example 12.1 Sct the CGA adapter for 80 x 25 color text display.

Solution:

WOR ;select display mede functicn
MOV ;EOR2S molor text mods

INT ;sclect mode .

when BIOS sets the display mode, it also clears the screen.

I

INT 10h, Function 1:
Change Cursor Size

Input: AH =1
CH = starting scan line
CL = ending scan line
Qutput: none

In text mode, the cursor is displayed as a small dot array at a screen position
(in graphics mode, there is no cursor). For the MDA and EGA, the dot array
has 14 rows (0-13) and for the CGA, there are 8 rows (0-7). Normally only
rows 6 and 7 are lit for the CGA cursor, and rows 11 and 12 for the MDA

, .and.EGA cursor: To change the ciursor size, put the starting and ending num-

bers of the rows to be lit in CH and CL, respectively.

“Chapter 12 Text Display and Keyboard Programming 239

Example 12.2 Make the cursor as large as possibie for the MDA.

Solution:
-
MOV _AH,1 ;cursor size function
OV CH, 0 istarting. row
MOV, CL, 13 . ;ending row
INT 10H. ;change cursor size

"“INT 10h, Function 2:
Move Cursor

Input: Alv =2
- DH = new aursor tow (0-24)
DL = new cursor column. 0-79 for 80 x 25 display,
" 0-39 for 40 x 25 display
BH = page number ~
Output: none :

THis function lets the program move the cursor anywhere on the screen. The
page doesn’t have to be the one currently being displayed.

Example 12.3 Move the cursor to the center of the 80 x 25 screen on
page O.

Solution: The center of the 80 x 25 screcn is column 39 = 27h, row 12
= 0Ch.

MOV 2H,2 ;move cursor furction
XOR PH,BH ;page 0 '

MOV DX, 0C27h srow = 12, column = 39
INT 1GH JMOVE Cursor

== INT 10h, Function 3:
Get Cursor Position and Size

Input: - Al{ =3
BH = page number
Output: DH = cursor row

DI = cursor column |
CH = cursor starting scan line
.. CL = cursor vending scan line

For some applications, such-as moving-the cursor up one row, we need to
Know its current Jocation. ’

240

12.3 Text Mode Programming

Example 12.4 Move the cursor up one row if not at the top of the
screen on page 0.

Aglution:
i MOV AH, 3 ;read cursor location function
XOR BH, BH :page O
INT 1CH ;DH = row, DL = column
OR DR, DH ;cursor at top of screen?
Jz EXIT ;yes, exit
MOV AH, 2 ;mave cursor function
DEC DH ;Jrow = row - 1
INT 10H ;move cursor
EXIT:
INT 10h, Function 5:
Select Active Display Page
Input: AH =35
AL = active display page
0-7 for modes 0, 1
0-3 for CGA modes 2, 3
0-7 for EGA, MCGA, VGA modes 2, 3
0-7 for EGA, VGA mode 7
Output: none

This function selects the page to be displayed.

Example 12.5 Select page 1 for the CGA.

Solution:

MOV AH, 5 ;select active display page function
MOV AL, 1 ;page 1 .
INT 10H ;select page

INT 10h, Function 6:
Scroll the Screen or a Window Up
l‘nput: AH =6
AL = number of lines to scroll (AL = 0 means
scroll the wholc screen or window)
BH = attribute for blank lines
CH,CL. = row, column for upper left corner of window
DH,DL = row, column for lower right corner of window
Output: none

Scrolling the screen up one line means moving each display line up one row,
and bringing in a blank line at the bottom. The previous top row disappears
from the screen.)

Chapter 12 Text Display and Keyboard Programming 241

The whole screen orany tectangular area (window) may be scrolled.
AL contains the number of lines to be scrolled. If AL = O, all the lines are
scrolled and this prowdes a way 10 clear the screen or a window. CH and CL
pi 34 g
get the row and column’of the upper left corner of the window, and DH and
DL get the row and column of the lower right corner. BH contain