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Preface 

This book is the outgrowth of our experience in teaching assembly 
·1anguage at Califori:iia State University, Hayward. Our goal is to write a text­
book that is easy to read, yet covers the topics fully. We present the m.iterial 
in a logical orucr and explore the organ_ization of the 113M PC with practical 
and interesting examples. · 

Assembly language is really just a symbolic form of machine lan­
guage; the language of the computer, and because of this, assembly language 
instructions deal with computer hardwarl' in a very i11ti111;1te WJ}'. A~ you 
karn to program in assembly language you also karn about computer orga­
nization. Also because of their close connection with the hardware, assembly 
language prognms can run fas\er and· take up less space in memory than 
high-level IJnguagc programs-a \=ital consideration when writing wmputcr 
game programs, for instance .. 

While this book is intended to be used in an assembly language 
programming class taught in a university or comm<.1nity college, it is written 

. in a tutorial style arid can be _read by anyone who wants to learn aboClt the 
IBM PC and how to gct the mmt out of it. l11~tnKtOrs will find the topin 
c0-vcreu in a pedagogical fashion with numerous examples and exercbes. 

It is not necessary to have prior knowledge of computer hardware 
or proi;ramming to read this book, although it helps if you have wrilte11 
progr.1ms in some high-level language like Basic, Fortrnn, _or Pascal. 

Hardware and Software To do the programming as~ignments and demonstr;itions, you need to own 
Requirements or have access to the following: 

1. An IBM PC or compatible. 

2. The MS-DOS or PC-DOS operating sysll'm. 

3. 1\ccess to assembler and linker soft,~irc, such as Microsoft's 
~ASM anu LINK, or Borland's TASM and TLINK. 

4. ~11 editor or word processing program. 

xiii 



xiv Preface 

Balanced Presentation 

Features of the Book 

Tli!e world of IBM PCs and compatibles consists of many different comput!~Y 
models with different processors and structures. Similarly, there are different 
versions of assemblers and debuggers. We have taken the following approach 
to balance our presentation: 

I. Emphasis is on the architecture and instruction set for the 
8086/8088 processors, with a separate chapter on the advanced 
processors. The reason is that the methods learned in program­
ming the 8086/8088 are common to all the Intel 8086 family be­
cause .he instruction set for the advanced processors is largely 
just an extension of the 8086/8088 instruction set. Programs writ­
ten for the 8086/8088 will execute without modification on the 
advanced processors. 

2. Simplified segment definitions, introduced with MASM 5.0, are 
used whenever pos~i Ille. 

1. The DOS environment is used, because it is still the most popular 
operating system on PCs. 

4. UEBUG is used for debugging demonstrations because it is part of 
DOS and its general features are common to all assembly debug­
gers. Microsoft's CODE VIEW is covered in Appendix E. 

All the materials have been classroom tested. Soml' of the features that we 
believe make this book special arc: 

Writing programs early 

You. are naturally cager to start writing programs as soon as pos~ible. 
However, because J~sembly li.mguage instrucliuns refor "to the hiHdware, you. 
first need to know the esscnti;.ils of the machine architecture and the basics 
of the binary and hcxadccim;il number systems. The fir~t progr:11n appears 
in Chapter 1, and by the end of cti;ipter 4 you will have the necessary tools 
to write simple but interesting programs. 

Handling input and output 

Input and out put in assembly language are difficult because the in­
struction Sl't is so basic. Our approach is to program input and output by 
using DOS function c;ills. This enablt's us to presl'nt completely functioning 
progra1m early in tilt· i>ool... 

Structured code 

The advantagl's of structured programming in high-level langu;iges 
c:Jrry O\'<:r to Jsst·m!Jly IJ11guagc. In Ch;.iµter 6, we show how the scamfard 
high-lt:Yd branching Jn<.! looping structures CJil be implemented in assembly 
langu;ige; subsegul'fll prog1<11m Jrc dC\L'lnpt'd lrom a high-le\·el pscudocodc 
in a t· .p-duwn m;rnn.::r. 

Definitions 

To have ;i clear u11tkrst;mJing of the iJe.1s o! Jsscmbly language 
progr;imming, it's important to have a firm grasp of. the terminology. To 
facilitJle this, new tl'rm~ appeJr in boldf;icc the first time tlley arc JseJ. and 
arc inclutkJ in a glm~.iry <it the end of the ct1aJ?ll'r. 



Note to lnstriJctors 

E.1Ce1 ·cises 

Instructor's Manual 

Student Data Disk 

Preface xv 

. ' Advanced applications 

One of the fun things that can easily be done in assembly Ja,.,guage 
is manipulating the keyboard and screen. Two chapters are devoted to this 
topic; the high point Is the development of a video game similar to Pong. 
Another Interesting application is the devl:i0pment of a memory resident 
program that displays and updates the time. 

Numeric processor 
The operations and instructions of the numeric processor are given 

detailed treatment. 

Ad.Janced processors 
The structure and operations of the advanced processors are covered 

in a separate chapter. Because DOS is still the <iominant operating system 
for the PC, most examples arc DOS applications. 

The book is divided into two parts. Part One covers the topics that are basic 
to all applications of assembly language; Part Two is a collection of advanced 
topics. The following table shows how chapters in Part Two depend on ma­
terial from earlier chapters: 

Chapter 

12 
13 
14 
15 
16 
17 
18 
19 
20 

Uses material from chapters 

1-10 
1-11, 12 (some exercises) 
1-10 
1-12, 14 
1-15 
1-10 
1-10, 13 
1-10 
1-11, 13, 14 

The chapters in Part One should be covered in sequence. lf the stu­
dents have strong backgrounds in computer science, Chapter 1 can be cov­
ered lightly or be a~signed as independent reading. In a ten-week course that 
meets four hours a week, we arc usually able to cover the first four chapters 
in two weeks, and make the first programming assignment at the end of the 
second week or the bq;inning of the third week. In ten weeks we arc usually 
able to cover chapters 1-12, and then boon to choose topics from chapters 
B-16 as time and interest allow. 

Ev-:ry chapter ends with numerous exercises to rt'inforce the concepts and 
principles covered. Tile exercises arc grouped into practice exercises and pro­
gramming exercises. 

A comprehensive instructor's manual is. available. It includes general com­
ments, programming hints, and solutions to the practice exercises. It also 
includes a set of tramparcncy masters for figu;rcs and program li~tings. 

A student data disk containing the source code for the programs in the text 
is available with th~ t1ccomp3n~1ing instructor's manuai.. 
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, 
Microcomputer 
Systems 

Overview 

1.1 . . 

The Components 
of a Microcomputer 
System 

This chapter provides an Introduction to the architecture of micro­
computers in general and to the IBM PC in particular. You will learn about 
the main hardware components: the central processor, memory, and the 
peripherals, and their relation to the software, or programs. We'll see exactly 
what the computer does when it executes an instruction, an<l discuss the 
main advantages (and disadvantages) of assembly language programming. If 
you arc an experienced microcomputer user, you arc already familiar with 
most of the Ideas discussl'CI here; if you are a novice, this chapter Introduces 
many of the important terms used In the rest of the book. 

Figure 1.1 shows a typical microcomputer system, consisting of a 
system unit, a keyboard, a dispiay screen, and disk drives. The system unit 
is often referred to as "the computer," because It houses the circuit boards 
of the computer. The keyboard, display screen, and disk drives are called 1/0 
devices because they perform input/output operations for the computer. 
They arc also called peripheral devices or peripherals. -

Integrated-circuit (IC) chips are used in the construction of computer 
circuits. · c c I ma con ai h dreds or even thousands of transistors. 
These IC circuits arc .kriown !IS di~tial c --~ s ause t ey operate on . 
discrete voltage slBnal levels, typiCaly, a high voltage and a low voltage. We 
use the symbols 0 ailcf' T'to represent the low- and high-voltage signals, 
respectively. These symbols are called l_!!..°.!!'"Y digit~, or,.bits. All information 
processed by the computer ls.represented by strings of O's and l's; that is, 
by bit strings. . · · 



4 7. 1 The Components of a Microcomputer System 

Figure 1. 1 A Mlaoc""1pUtlW 
System 

1.1.1 
Memory 

,---
; 

'~, . 
. ··>r-.:~~, 

·.·• ... \ 

·. 

Functionally, thl' cqmputer circuits consist of three parts: the cen­
tral processing unit (CPU), the memory circuits, and the 1/0 circuits. In 
a microcomputer, the 9~iogle-ch.iP_P-~~called .! mlcrop~ 
sor. The CPU is the brain of the computer, and it controls all operations. It 
uses the memory circuits to store Information, and the 1/0 drculls to com­
municate with 1/0 devices .. 

The System Board 

Inside the system unit is a main circuit board called the-.~· 
board, which contains the microprocessor and memory circuits. The systena 
board is also called a motherboard because· it contains expansion slots. 
which are connectors for additional circuit boards called add-in boards or 
add-_in cards. 1/0 circuits are usually located on add-In cards. Figure 1.2 
shows the picl;11·e of a motherboard. 

Bites and Words 

Infonnatlon"·processed by the computer Is stored In Its memory. A 
niemorys1i_cu}t_elem~nt_ can store one bit of data. However, the mtmory 
circuits are usually organized Into groups that can store eight bits of daf,J, 
and a string of eight bits ls called a byte. Each memory byte clrcult_:or 
memory byte, for short-is identified by a· number that Is called its IMI-
·~. like the street address of a house. The first memory byte has address 



,.._ 1.2 A Motherboard 

Flgur,e 1.3 Memory 
'lepresented as Bytes 

Chapter 7 Microcomputer Systems s . 

--·--·--------· ·-::- ···-· -··1 

i!m~ a&m·1 

• 1 

'V' 

0. The data "!lltOred in a memory byte are called Its i;pgtcgts. When the 
contents of a ml'mory hytl' are treated as a single numhcr, we often i1w the 
term v.atue to denote them .. 

It is important °t; understand the difference b<'twecn address and 
contents. The address of a memory byte i~ fixed and is different from the 
address t>f ahy otlll'r memory byte in the l''o111j1uter. Yet the contcnt5 of a 
memory byte arc not unique and arc subject to change, because they denote 
the data curmilly l~ing siored. Hgure 1.3 shows the organization of memory 
bytes; tl'n: contents ille arbitracy. ~ 

Another distinction between address and contents.ls that while the 
contents of .a memory byte are always eight bits, the numtrer of bits ln an 

- Address Conterits' 

7 0 0 1 0 1 1 0 

6 1 1 0 0 1 1 1 0 

5 0 0 0 0 1 1 0 1 

4 1 1 1 0 ,, 1 0 1 

3 0 0 0 0 0 0 0 0 

2 1 1 1 1 1 1 1 
1 • 0 0 1 1 1 1 0 

0 0 1 0 0 0 0 I 
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Figure 1.4 Bit Positions in a 
Byte and a Word 

address depends on the processor. For example, the Intel 8086 microprocessor 
assigns a 20-bit address, and the Intel 80286 microprocessor uses a 24~bit 
address. The number of bits used In the address determines the number of 
bytes that can be accessed by the processor. ' 

Example 1.1 Suppose a processor uses 20 bits for an address. How 
many memory bytes can be accessed? 

Solution: A bit can have two possible values, so In a 20-blt addre~s 
there can be 220 .. 1,048,576 different values, with each value being the 
potential address of a memory byte. In computer terminology, the mun· 
ber 220 is called 1 mega. Thus, a 20-bit address can be used to address 
1 megabyte or 1 MB. 

Jn a typical microcomputer, two bytes form a word. To accommo­
date word data, the IBM PC aijows any pair of successive memory bytes to 
be treated as a single unit, calil'Cl a naemory word. The lower address of 
the two memory bytes Is used as the address of the memory word. Thus the 
memory word with the address 2 Is made up of the memory bytes with the 
addresses 2 and 3. The microprocessor can always tell, by other information 
contained In each Instruction, whether an address refers. to a byte or a word. 

In this book, we use the term memory location to denote either 
a memory byte or a memory word. 

Bit Position\/"' 

Figure 1.4 shows the bit positions in a microcomputer word and a 
byte. The positions are numbered from right to left, starting with O. In a 
word, the bits 0 to 7 form the low byte and the bits 8 lo 15 form the ltigll 
byte. For a word ~tored In memory, its low hyte comes from the memory 
byte with the lower address and Its high byte Is from the memory byte with 
the higher address. 

Memory Operationi. • 

The processor can perform two operations on memory: r~ad (fetch) 
the contents of a location and write (store) dilla at a locallon. In a read 
operation, the processor only gets a copy of the data; the original contents 

7 6 5 4 3 2 0 
Byte bit 
position 

Word bit 
position 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I I ~1 I I 
High byte Low byte 
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Address bus 

of the location are unchanged. In a wri~e operatiqn, the _data written become 
the new c~ntents of the location; ·t_he original contents are thus lost. 

R.:W aqd BQM~. 

There are two kinds of memory drcu.lts: random access memory 
(RAM) and read-only m-cmory (~Q_M). The difference is that RAM loca­
tions can be read and written, whlle, as the name implies, RO~ locations 
can only be read. This is because the contents of ROM m~nl-
tlalized, cannot be changed. , 

Program instructions and data are nornially loaded Into RAM mem­
ory. However, the contents of RAM memory are lost when the machl11~ Is 
turned off, so anything valuable In RAM must be saved on a disk or printed 
out beforehand. ROM cln:ulls retain their values even when the power Is off. 
Consequently, ROM is used by computer manufacturers to store systefu pro­
grams. These ROM-based programs are known as .firmware. Tu~y are rel 
sponsible for loasJing~s from disk as well as for self-testing · 
the computer Wfteilitis turned on~ 

Buses 

A processor communicates with memory and l/Q.,clrcults by using 
signals that travel along a set of wires or connections called .Juua that 
connect the different comp0nents. There are ~hrec kinds of slgnals:.address, 
data, and control. And there are three buses:.address bus; data bus, and 
control bus. For example, to read the contents of a mc.mory location, th~ 
CPU places the address oC the memory location on the address bus, and It 
re<;elves the data, sent by tlie memory circuits, on the data bus, A control 
signal l~ required to inform the memory to perform a read operation. The 
CPU sends the control signal on the control bus. Figure 1.5 Is a diagram of 
the bus connections for.a microcomputer. · · · 

. As stated, ttie CPU Is the brain of the computer. It controls the i.:om­
pute(by executing programs stored In memory. A program might be a system 
program. ·or an application program. written by a user. In any ease, each 
lnstiuctlon that the CPU executes Is a bit string (for the Intel 8086, instruc­
tions are from one to six bytes long). This language of O's and 1 's is called 
machine. language. 
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Figure t.6 Intel BOBS 
MicroprocessOI' Organiz•tion Execution Unit (EU) Bus Interface unit. 

AX 
BX 

ex 

General registers 
ox 

BP cs 

External bus 

Temporary registers 

The instructions performed by a CPU are called its instruction set, 
and the Instruction set for each CPU is unique. To keep the cost of computers 
down, machine language Instructions are designed to be simple; for example, 
adding two numbers or moving a number from one location to another. The 
amazing thing about computers Is that the incredibly complex tasks they 
perform are, In the end, just a sequence of very basic operations. 

In the following, we will use the Intel 8086 microprocessor as an 
example of a CPU. Figure 1.6 shows its organization. There are two main 
components: the execution unit and the bw interface unit. 

Execution Unit (EU) 

As the name lmpUcs, the purpose of the execution unit (EU} is to 
execute Instructions. It contains a circuit called the arithmetic and logic 
unit (ALU). The ALU can-perform·arithmetic (+, - , x ,I) and logic (AND, 
OR, NOT} operations. The data for the operations are stored in circuits called 
rcgutcn .. A register is like a memory location except that we normally refer 
to it by a name rather than a number. The EU has eight registers for storing 
data; their names arc AX, BX, CX, DX, SJ, DI, Br, and SP. We'll become 
orcquainted with them in Chapter 3. In addition, the EU contains temporary 

' registers for holding operands for the ALU, and the FLAGS register whose 
individual bits reflect the result of a computation. 
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B~afe, <fnJ!.J!U!:!!t~ 
The bus_ Interface unit (BIU) facilitates communication betw,cc1· 'he 

EU and the memory or J/0 circuits. It is responsible for transmittir"' ad­
dresses, data,· and control signals on the buses. Its registers are named CS, • 
OS, ES, SS,. and IP; they hold addresses of memory locations. The IP 
(qistruCtion pointer) contains the address of the next instruction to be 
executed 'by the EU. · ' · · 

The fill and the filY. are connected by an ~nternal b~; and they work 
together. While the EU is executing an instruction, the BJU fetches up to six 
byte% of the next instruction and places them in the instruction queue. This 
operation is called i1rsrruc«qr1 qrefetch. The purpose is to speed up the pro­
Cj!.ll_Or. If the EU needs to communicate with memory or the peripherals, the 
BIU suspends instruction prefetch and performs the needed oneratians • ....-

1/0 devjces are connected to the computer through 1/0 circuits. Each 
of these circuits contains several registers called 1/0 ports. Some are used 
for data while others are used for control commands. Like memory locations, 
the I/O ports have addresses and arc connected to the bus system. However, 
these addresses are known as 110 addresses and can only be used in input or 
output instructions. This allows the Cl'U to distinguish between an 1/0 port 
and a memory location. 

1/0 ports function as transfer points between the Cl'U and 1/0 de­
vices. Data to be Input from :m 1/0 devise arc st·nt to ii port where they can 

. be read by the CPU. On output, the CPU writes data to an 1/0 port. The 1/0 
circuit then transmits the data to the 1/0 device. 

Serial and Parallel Ports 
The data transfer between an 1/0 port and an 1/0 device can be l 

bit at a time (serial), or 8 or 16 b.its at a time (parallel). A parallel port requires 
more wiring connections, while a serial port tends to be slower. Slow devices, 
like the keyboard, always connect to a serial port, and fast devices, like the 
disk drive, always connect to a parallel port. llul some devices, like the ...,, 
printer, can connect to either a serial or ·a parallel port. . .. ' . 

To understand how the CPU operates, let's look at how an Instruction 
Is executed. First of all, a machine instruction has two parts: an opcode and 
operands. The opcode specifies the type of operation, and the operands are 
often given as memory addresses to the data to be operated on. The CPU 
goes through the following steps to execute a machine instruction (the 
fctch,..exccutc cycle): 

Fetch 

1. Fetch an lmtruction from memory. 
2. Decode the Instruction to determine the operation. 

3. · Fetch data from memory if necessary. 
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=igure 1.7 Train of Clock 
'ulses 

Execute 

4. Perform the operation on the data. 

5.. Store the result in memory if needed. 

To see what this entails, let's trace through the execution of a typical machine 
language instruction for the 8086. Suppose we look at the iustructlon that 
adds the contents of register AX to the contents of the memory word at 
address 0. The CPU actually adds the two numbers in the ALU and then 
stores the result back to memory word O. The machine code is 

00000001 00000110 00000000 00000000 

Before execution, we assume that the first byte of the Instruction is stored 
at the location indicated by the IP. 

1. Fetch the instruction. To start the cycle, the BIU places a mem­
ory read request on the control bus and the address of the in­
struction on the address bus. Memory responds by sending the 
contents of the location specified-namely, the instruction 
.code just given-over the data bus, Because the instruction 
code Is four bytes and the 8086 c:an only read a word at a 
time, this involves two read operations. The CPU accepts the 
data and adds four to the JP so that the IP will contain the ad­
dress of the next instruction. 

2. Decode the lnstmction. On receiving the Instruction, a decoder 
circuit in the EU decodes the instruction and determines that it is 
an ADD operation involving the word at address 0. 

3. Fetch data from memory. The EU informs the BIU to get the con­
tents of memory word 0. The BIU sends address 0 over the ad­
dress bus and a memory read request is again sent over the 
control bus. The contents of memory word 0 arc sent back over 
the data bus to the EU and arc placed In a holding register. 

4. Perform the oper<1tiun. The contents of the holding register and 
the AX register arc sent to the ALU circuit, which performs the re­
quired addition and holds the sum. 

5. Store the result. The EU directs the BIU to store the sum at ad­
dress 0. To do so, the llIU sends out a memory write request over 
the control bus, the ;iddress 0 over the address bus, and the sum 
10 be stored over the data bus. The previous contents of memory r 
word 0 arc ov1:rwritl1.•n by the sum. 

The cycle is now repeated for the instruction whose address is con­
t;iined in the II'. 

Timing 

The prl'Cl.'ding example shows that even though machine instructions 
are very simple, their execution is actually quite complex. To ensure that the 
steps arc carried out in an orderly fashion, a clock circuit controls the processor 

-
lt-1 period-+! 
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hy generating a train of clock pulses as shown in Figure 1.7. The time inter\'al 
!Jetwcen two pulses· is known as·a clock period, and the nwnbcr of pulses per 
second is calk'CI the clock rate or clock speed, measured In megahertz 
(MHz)." One megahertz Is 1 million cycles (pulses) per second. The original 
lnM PC had a clock rate of.4.77 MHz, but the latest PS/2 model has .1 cluck 
rate of 33 MHz. 
. · Th~ _fi>mputer circuits.are activated by the clock pulses; that is, the 
circuits perform an operation only. when a clock pulse is present. E.Jch step 
in the instru<.:tiun fct<.:h and execution <.:ydc requires one or more do<.:k pe­
riods. For example, the 8086 takes four clock periods to do a memory read 
and a multiplication operation may take more than seventy clock periods. 
If we s·peed up the clock circuit, a processor can be made to operate faster . 

. However,_ each processor has a rated maximum clock speed beyond which 
it may not function properly .. 

1/0 devices are needed to get information into and out of the com­
puter. The primary 1/0 devices are magnetic disks, the keyboard, the display 
monitor, and the printer. 

· Magnetic Disks 

We've seen that the contl'nts of RAM arc lost when the computer 
is turned off, so magnetic disks an: used for permanent storage of programs 
and data. There are two kinds of disks: tlOJJJlY disks (also calll'd diskettes) 
and hard disks. The device that reads and writes data ori a disk is called 

· a disk drive. 
Floppy lfoks come in s i/4-inch or :n~-in<.:h diameter siZl!S. They arc 

lightweight and portable; it is easy to put a diskette away for safekeeping or 
use it on different computers. The amount of data a floppy disk can hold 
depends on the ly~c:; it ,1nges from 360 kilobytes to 1.44 megab.ytcs. A 
kilobyte (KU) is 2 ° bytes. · ·• 

. A hard disk and its disk drive are cndoscd in a hermetically scaled 
container that is not removable: from the computer; thus, it is also called a 
fixed disk. It can hold a Jot more data than a floppy disk-typically 20, 
·HI. to over 100 megabytes. A program can also access information on a hard 
disk much foster than a floppy disk. 

. Disk operations arc covered in Chapter 19. 

Keyboard 

The keyboard allows the user to enter information into the cornputt:r. 
It has the keys usual!)' fo_und on a typewriter, plus a number of <.:ontml and 
function keys. It has its own microprocessor that sends a coded signal to the 
computer whenever a key is pressed or released. 

When a key is prc!>sed, the corresponding key character normally 
appears on the screen. Uut Interestingly enough, there is no direct <.:onnc:ction 
between the keyboard and the screen. The data from the keyboard are re­
ceived by the current running program. The program must send the data to 
the screen before a character is displayed. In Chapter 12 you will learn how 
to control the keyl>Oard. 
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1.4 
Programming 
Languages 

Display Monitor 

1be display monitor is the standard output device of the computer. 
The information displayed on the screen Is generated by a circuit In the com­
puter called a video adapter. Most adapters can generate both text characters 
and graphics images. Some monitors are capable of displaying In color. 

We discuss text mode operations in Chapter 12, and cover graphics 
mode in Chapter 16. 

Printers 

Although monitors give fast visual feedback, the information is not 
permanent. Printers, however, arc slow but provide more permanent output. 
Printer outputs arc known as hardcopies. 

111e three common kinds of printers are daisy wllL'f!I, dot matrix, and 
/nscr printers. The output of a daisy wheel printer is similar to that of a typewriter. 
A dot matrix printer prints characters composed of dots; depending on the 
number of dots useu per character, some dot matrix printers can generate 
near-letter-quality printing. The advantage of dot matrix printers is that they 
can print characters with different fonts as well as graphics. 

The laser printer also prints characters composed of dots; however, 
the resolution is so hi~h (JOO dots per Inch) that it has typewriter quality. 
The laser printer is expensive, but in the field of desktop publishing it is 
indispensable. It is also quiet compared to the other printers. 

The operations of the computer's hardware are controlled by its 
software. When the computer is on, itls always in the process of executing 
instructions. To fully understand the computer's operations, we must also 
study its instructions. 

Machine Language 

A CPU can only execute machine language instructions. As we've 
seen, they arc bit strings. The following Is a short machine language program 
for the I BM PC: 

Machine instruction 

10100001 00000000 00000000 

00000101 00000100 00000000 

10100011 00000000 00000000 

Operation 

Fetch the contents of memory word 0 
and put it in register AX. · 

Add 4 to AX.. " 
Store the contents of AX in memory 
word 0. 

A~ you can wl'll imagine, writing programs in machine language is 
tt>dious and subject to error! 

Assembly Language. 

A more convenient language to use is asftmbly language. In as­
sembly language, we use symbolic names to represent operations, registers, 
and memory locations. If location 0 is symbolized by A, the preceding pro­
gram expressed in lllM J>C assembly language would look like this: 
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Assembly language instruction 

MOV .AX,A 

ADD AX, 4 

MOV A,AX 

Comment 

;fetch the cont~nts of 
; location A and 
;put it iw regi:;tcr AX 

;add 4 to AX 

;move the contents of AX 
;into location A 

A program written in assembly language must be converted to machine lan­
guage before the CPU can execute it. A program called the assembler trans­
lates each assembly language statement into a single machine language 
instruction. 

High-Level Lang~ages 

Even though it's easier to write programs in asscrn6Jly language than 
machine language, it's still difficult because the instruction set is so primitive. 
That is why high-level languages such as F.QJ..U:JiAN, l~I. ~ml others 
were devel0ped. Different high-level languages arc designed for different ap­
plications, but they generally allow programmers to write programs that look 
.more like natural language text than is possible in assembly la11guage. 

A program called a C0-1tpill"r is needed to·translate a high-level lan­
ghage program into machine code. \. .,11.:_Jilation is milleiiWOlvcd than assem­
hling lx.'(;ause it entails the trnnslation or comp;1•x mathematical (:xpressions and 
natural language comniands i·nto simple'macl1i.nc operations. A high-level lan­
guage statement ty1>kally translates into many machine lanb'Uage instructions. 

Advantages of High-Level Languages 4':\-

There are many reasons why a programmer might choose to write 
a program in a high-level language rather than In assembly language. 

First, because high-level languages are clo~er to natural languages, 
It's easier to convert a natural language algorithm to a high-level language 
program than to an assembly language program. For the same reason, it's 
easier to read and understand a high-level language program than an assem­
bly language program. 

Second, an assembly language program generally contains more 
statements than an equivalent high-level lanb'Uage program. so more time 
is needed to code thc assembly language program. 

Third, bccau~c c;ich computer has its own unique assembly language, 
assembly language programs are limited to one machine, but a high-level 
language program can be executed on any machine that has a compiler for 
that language. 

Advantages of Assembly Languages 

The main reason for writing assembly language programs is effi­
ciency: because assembly language is so close to machine.language, a well­
written assembly language program produces a faster, shorter machine 
langu;1ge program. Also, some operations, such as reading or writing to spe­
cific memory locations and 1/0 ports, can be done easily in assembly lan­
guage but may be impossible at a higher level. 

· Actually, it is not alway~ necessaiy for a programmer to choose be-
tween assembly language and high-level languages, beeause many high-level 
languages accept subpro0rams written in assembly language. This means that 

.1 
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; 
r'Assembly 
nguage Program 

crucial parts of a program can be written in assembly language, with the rest 
written in a high-level language. 

In addition to these considerations, there is another reason for 
learning assembly language. Only by studying assembly language ls it 
possible to gain a feeling for the way the computer "thinksn and why 
certain things happen the way they do inside the computer. High-level 
languages tend to obscure the details of the compiled machine language 
program that the computer actually executes. Sometimes a slight change 
in a program produces a major increase in th~ run time of that program, 
or arithmetic overflow unexpectedly occurs. Such things can be under­
stood on the assembly language level. 

Even though here you will study assembly language specifically for. 
the IBM PC, the techniques you wlll learn are typical of those used in any 
assembly language. Learning other assembly languages should be relatwely 
easy after you have read this boOk. ~ 

To give an idea of what an assembly language program looks like, here 
is a simple example. The following program adds the contents of two memory 
locations, symbolized by A and n. The sum is stored in location SUM. 

Program Listing PGM1_ 1.ASM 
TITLE PGMl 1: SAMPLE PROGRhM 
.MODEL SMALL 
.STACK !OOH 
.DATA 
A ow 2 

B DW 5 
SUM OW ? 

.CODE 
f>!/IIN PROC 
; i:iit.ialize DS 

MOV AX,@CATA 
MOV DS,AX 

;add t.he numb~rs 

MOV AX,A 
AD!:> AX,B 
MOV SUM,AX 

;exit to DOS 
MOV ;,x, 4CGOH 

IN1' 21H 
f?IN. ·END? 

END MAIN 

;AX has A 
;AX has A+B 
;SUM = A+B 

As~embly language programs consist of statements. A statement is 
either an Instruction to be executed ·when the program is run, or a directive 
for the assembler: !=or example, .b:{ODEL SMALL is an assembler directive 
that specifies the size of the progr.IWi. MOV AX,A is an Instruction. Anything 
that follows a semicolon Is a comment, and Is ignored by the assembler. 
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The preceding program consists of three parts, or segments: the stack 
segment, the data segment, and the code segment. They begin with the directives 
.STACK, .DATA, and .CODE, respectively. 

The stack segment is used for temporary storage of addresses and 
data. ·If no stack segment is declared, an error message is generated, so there 
must be a stack segmerit even if the program doesn't utilize a stack. 

Variables are declared in the data segment. Each variable is assigned 
space In memory and may be- initialized. For example, A DW 2 sets aside a 
memory word for a variable called A and initializes it to 2 (DW stands fo~ 
uoefine Word"). Similarly, B DW 5 sets aside a word for variable Band ini­
tializes it to 5 (these initial values were chosen arbitrarily). SUM DW ? sets 
Aside an uninitialized word for SUM. · 

, A program's instructions are placed in the code segment. Instruction~ 
are usually organized into uni~s cailed woccd1m;s. The preceding program has 
only one procedure, called MAlN,.which begins with the line MAIN l'ROC 

' and· ends with line MAIN ENDP. · 
The main procedure begins and ends. with instructions that are 

needed to initialize the DS register and to return to the DOS operating system. 
Their purpose is explained iri Chapter 4. The instructions for adding A and 
B arid putting the answer in SUM are as follows: . . . 
MOV

0

·AX, A 

ADD hX,3 
MOV· SUM,AX 

;AX h.is A 

; AX ha~ i>:+ B 
; SUM a A+B 

MOV AX,A copies the contents of word A into register AX. AOD AX,B.adds 
the c'?ntents o~ B _to it, _so that AX now, hol~s the total!~-~OV SUM,ft,.X 
stores the answer in vanable SUM. 

• Before this program could be run on the computer, it would have 
to be assembled into a.machine language program. The steps are explaim:d 
in Chapter 4. Because there were no output lnstructi9ns, we could not see 
the answer on the screen, but we·co.uld trace the program's exeeutlon in a 
debugger such as the DEUUG program, 

Glossary 

add-In board or card 

address 

address bus 

Circuit board that connects to the 
'motherboard, usually containsJ/O cir-
• cuits or additional memory 

A number that identifies a memory location 

The set of electrical pathways for address 
signals 

arithmetic and logic unit, • ~.PU. circ·~it where arithmetic and logic 
ALU operations arc done 
i:uscn1blcr 

assembly language 

. binary digit 

bit 

bus 

, ~ program that translates an assembly lan­
guage program into machine language 

~y~~onc representation of machine lan­
guage 

A symbol,that can have value 0 or 1 

, ~in,ary ~igit 
A set of wires or connections connecting 
the CPU, mcmol)', ilml J/O .PQIU 
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bus interface llllit, BW 

byte 

central processing unit, 
CPU 
clock period 

clock pulse 

clock rate 

clock speed 

compiler 

contents 

control bus 

data bus 

digital circuits 

disk drive 

execution unit, EU 

expansion slots 

fetch~xecute cycle 

firmware 

fixed disk 

floppy disk 

hardcopy 

hard disk 

1/0 devices 

1/0 ports 

instructfon pointer, IP 

instruction set 

kilobfte, KB 
machine language 

Part of the CPU that facilitates communi­
cation between the CPU, memory, and 
1/0 ports · 

8 bits 

The main processor t:ircuit of a computer 

The time interval between two dock pulses 
An electrical signal that rises from a low 
voltage to a high voltage and down again 
to a low voltage, used to synchronize 
computer circuit operations · 

The number of clock pulses per second, 
measured In megahertz (MHz) 

Clock rate 

A program that translates a high-level lan­
guage to machine language 
The data stored in a register or memory 
location 
The set of cla"trical p.lths for control signals 
The set of electrical paths for data signals 
circuits that operate on discrete voltage 
levels 

The device that reads and writes data on 
a disk 

Part of the CPU that executes instructions 
Connectors in the motherboard where 
other circuit boards can be attached 

Cycle the CPU goesJhrough to execute 
an instructlu1I --

Software supplied by the computer manu­
facturer, usually stored in ROM 

Nonremovable disk, made of metal 
Removable, flexible disk 

Printer output 
Fixed disk 
Devices that handle input and output 
data of the computer; typical 1/0 devices 
are display mo!litor, disk drl~e. and 
printer 
Circuits that function as transfer points 
between the CPU and 1/0 devices 
A CPU register that contains the address 
of the next instruction 

The instructions the CPU is capable of 
performing 

210 or 1024 bytes 
Instructions coded as bit strings: the lan­
guage of the computer 



mega 

megabyte, MB 
megahertz, MHz 

memory byte (circuit) 

memory location 

n1cmory word 

microprocessor 

n1otbcrboard 

opcode 

operand 
peripheral (de.vice) 

random access memory, 
RAM 
read-only 1nemory, ROM 

re&ris~er 

system board 

video adapter 

word 
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A unit that usually denotes 1 million, but 
in computer terminology 1 mega is 220 

(or 1,048,576) 

220 or 1,048,576 bytes 
1,000,000 cycles per second 

A memory circuit that can stor~ one byte 

A memory byte or memory word 

Two memory bytes 

A processing unit fabricated on a single 
circuit chip 

The main circuit board of the computer 

Numeric or symbolic code denoting the 
type of operation for an instruction 

The data specified in an instruction 

1/0 device 

Memory circuits that (an be read or 
written 

Memory circuits that can only be read 

A Cl'U circuit for storing information 

Motherboard 

Computer circuit that converts computer 
data into video signals for the display 
monitor 

16 bits 

1. Suppose memory bytes ~4 have the following contents: 

Address Contents 

0 01101010 
11011101 
00010001 
11111111 
01010101 

a. Assuming that a word is 2 bytes, what are the contents.of 

the memory word at addre>s 2! 
the nwn10ry word at <H.h.lrc~~ J? 

• the memory word whose high byte is the byte at aJdress 2? 

b. Wlut is 

• l:it 7 of ~te 2°! 
• bit 0 of word 3? 
o bit 4 of byte 2? 

• bit 11 of word 2? 
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2. A nibble is four bits. Each byte is composed of a high nibble and 
a low nibble, similar to the high and low bytes of a word. Using 
th~ data in exercise 1, give the contents of 

a. the low nibble of byte 1. 

b. the high nibble of byte 4. 

3. The two kinds of memory art! RAM and ROM. Which kind of 
memory 

a. holds a user's program? 

b. holds the program used to start the machine? 

c. can be changed by the user? 

d. retains its contents, even when the power is turned off? 

4. What is the function of 

a. the microprocessor? 

b. the buses? 

5. The two parts of the microprocessor are the EU and the BIU. 

a. What is the function of the EU? 

b. What is the function of the BIU? 

6. In the microprocessor, what is the function of 

a. the IP? 

b. the ALU? 

7. a. What are the 1/0 ports used for? 

b. How are they different from memory locations? . 

8. What is the maximum length (in bytes) of an instruction for the 
8086-based IBM PC? 

~. Consider a machine language instruction that moves a copy of 
the contents of register AX in the Cl'U to a memory word. What 
happens during 

a. the fetch cycle? 
b. the execute cycle? 

>. Give 

a. three advantages of high-level language programming. 

b. the primary advanl.ige ul assembly language programming. 
. ~· . 



RepreS'entatiOn Of 
Numbers and 
Characters 

Overview 

2.1 
Number Systems 

You saw in Chapter 1 that computer circuits arc capable of processing 
· only binary information. In this c~aptcr. we show how numbers can be 

expressed in binary; this is called the binary number system. We also 
introduce a very compact way of representing binary information called the 
hexadecimal number system. 

Conversions between binary, decimal, and hexadecimal numbers are 
covered in section 2.2. Section 2.3 treats addition and subtraction m these 
number systems. 

Section 2.-4 shows how rwgativi: 11umb1:rs are represi:ntcd and what 
effects the fixed physical size o'f a byte or word has on number representation. 

We conclude the chapter by explori11g how characters are encoded 
and used by tile computer..-

I\efore we look at how numbers are rl'.Q.r~euJed lQ ~IJtt.V· it is in­
structive to look at the familiar dedmal system. It is an example of a positional 
m1111ber system; that is, each digit in the number is associated with a power 
of 10, according to its position in the number. For example, the decimal 
number 3932 represents 3 thousands, 9 hundreds, 3 tens, and 2 ones. In 
other words, 

:l,932 = 3 f 103 + 9 ~ lOZ + 3 x 101 + 2 x !OO 

19 

1 
I 
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In a positional system, some number b is selected as the base and symbols 
are assigned to numbers between 0 and b - 1. For example, in the decimal 
system there are ten basic symbols (digits): 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The 
base ten is represented as 10. ·· 

Binary Number System 

In the binary number system, the base is two and there are only two 
digits, 0 and 1. For example, the binary string 11010 represents the number 

1 x 24 + 1x23 +ox22 + 1 x 21 +ox 2° = 26 

The base two is represented in binary as 10. 

Hexadecimal Number System 

Numbers written in binary tend to be long and difficult to express. 
for example, 16 bits are needed to represent the contents of a memory word 
in an 8086-based computer .. nut decim.al numbers are difficult to convert 
into binary. When we write assembly language programs we tend to use both 
binary, decimal, and a third number system called /Jex.adeci111al, or hex for 
short. The advantage of using hex numbers is that the conversion between 
binary and hex is easy. 

The hexadecimal (hex) system is a base sixteen system. The hex digits 
are 0, I, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F. The hex letters A through 
F denote numbers ten to fifteen, respectively. After F comes the base sixteen, 
represented in hex by 10. 

Because sixteen is 2 to the power of 4, each hex digit corresponds 
to a unique four-bit number, as shown in Table 2.1. This means that the 
contents of a byte--4.'ight bits-may be expressed neatly as two hex digits, 
which makes hex numbers useful with byte-oriented computers. 

Table 2.2 shows the relations among binary, decimal, and hexadec­
imal numbers. It is a good idea to take a few minutes and memorize the first 

Table 2.1 Hex Digits and Binary Equivalent 

Hex Digits Binary 

0 0000 

1 0001 

2 0010 

3 0011 

4 0100. 

5 0101 

6 0110 

7 0111 

8 1000 

9 1001 

A 1010 

8 1011 

c 1100 

D 1101 

E 111,; 

F 1111 
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Table 2.2 Decimal, Binary, and Hexadecimal Numbers 
1 

Decimal Binary Hexadecimal 

0 0 0 
1 1 1 
2 IO 2 
3 11 3 
4 100 4 
5 101 5 
6 110 6 
7' 111 7 
8 1000 8 
9- 1001 9 

10 -1010 A 
11 1011 B 
12 1100 c 
B 1101 () 

·14 1110 E 
15 1111 F 
16 10000 IO 
17 10001 11 
18 10010 12 
19 10011 13 
20 10100 14 
21 10101 15 

'22 10110 16 
23 10111 17 
24 J JO(io 18... 
25 11001 19 
26 ·11010 ];\ 

27 11011 111 
. 28 11100 IC 

29 11101 JD 
.10 111 IO IE 
.] 1 11111 lF 
'12 100000 ' 20 

256 100000000 100 

1024 400 

32767 7FFF 
32768 8000 

65515 FFIT 

1 K1l::>byte (1 KB)= 1024 = 400h 
64 Kilobytes (&4 KB) = &553& = 1 OOOOh 

1 Megabyte (1 MB)::: 1.046.576" 100000h 
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2.2 
Conversion Between 
Number Systems 

16 or so lines of the table, because you will often need tu express sma1i· 
numbers in all three systems. 

A problem in working with different numb~r systems is the meaning 
of the symbols used. For example, as you have seen, IO means ten in the 
decimal system, sixteen in hex, and two in binary. In this book, the following 
convention is used whenever confusion may arise: hex numbers are followed 
by the letter h; for example, 1A34h. Binary numbers are fo1lowet! by the 
letter b; for example, lOlb. Decimal numbers are followed by the letter d; 
for example, 79d. 

In working with assembly language, it is often necessary to take a 
number expressed in one system and write it in a different system. 

Converting Binary and Hex to Decimal 

Consider the hex number 82AD. It can be written as 

8A2Dh =8x 163 +Ax 162 + 2x 161 +Dx16o 

= 8 x 163 +IO x 162 + 2 x 16 1 
+ 13 x 1611 = 3537:~d 

Similarly, the binary number 11101 may be written as 

11101 b = 1 x 2 ~ + 1 x 23 + 1 x 22 + 0 x 2 1 + 1 x 2° = 29d 

This gives one way to convert a binary or hex number to decimal, but an 
easier way is to use nested multiplication. For example, 

8A2D = 8 x 163 +Ax 162 + 2 x 161 +Dx16° 
= ((8 x 16 +A) x 16 + 2) x 16 + D 
= ((8 x 16 + 10) x 16 + 2) x 16_+ 13 
= 35373d 

This can be easily irnplcmentt·d with a calculator: >.1ultiply the fir~t hex.digit 
by 16, and add the second hex digit. Multiply that result by 16, and ;1dd the 
third hex digit. Multiply the result by 16, add the next hex digit, and so on. 

The same procedure converts binary to decimal. just multiply each 
result by 2 instNd of 16. 

Example 2.1 .Convert 11101 to decimal. 

Solution: 0 
= 1 x 2 + i -• 3 x 2 + I --• 7 x 2 ~. 0 ----> 14 x 2 + I = 29d 

Example 2.2 Convert 2BD4h to decimal. 

Solution: 2 D 4 

=-2'{ 16 + 11----> 43 x 16 + 13----> 701x16 + 4 = 11220 

where we have uscJ. the fact that Bh = 11 :ind Dh = 13. 
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Converting Decimal to Binary and Hex 

Suppose we want to convert 11172 to hex. The answer 2BA4h may 
be obtained as follows. First, divide 11172 ·by 16. We get·a quotient of 698 
and a remainder of 4. Thus · · · . ' 

11172= 698x16 + 4 
~ .. _ . 

. t .... 

The remainder 4 is the unit's digit in hex representation of 11 F,2. N_ow 
divide 698 by -16. The quotient is 43, and the remainder is lQ,;, Ah. Thus 

•I._, . ./ •. • •, .. ""·~. 

698=43x16+Ah· ' 

The rcru;iindcr Ah is the sixteen's digit in th'e hex representation of 11172. 
We just continue this process, each time dividing the most recent quotient 
by 16, until we get a 0 quotient. The remainder each time is a digit in the 
hex representation of 11172. Here are the calculations: 

11172 = 698 x 16 + 4 
698 = ·43 xJ6 + iOCAb) 

43 = 2 x 16 + 1.l(Bh) 
2 = 0 x 16 + 2 

Now just convert the remainders to hex and put them together in reverse 
order to get 2BA4h. 

This same process may be used to convert decimal to binary. The 
only difference is that we repeatedly divide hy 2. 

Example 2.3 Convert 95 to binary. 

Solution: _95.=47x2+1· 
47 = 23 x 2 + 1 
23=1lx2+1 
11=5x2+1.' 
5=2x2+1 
2=1x2+0 
l=Ox2-..l 

Taking the remainders in reverse order, we get 95 = lOlllllb. - . . . . . ~ 

Conversions Between Hex an_d Binary 

.To convert a ht!x number to binary, we need only express each hex 
digit in binary. 

Example 2.4 Convert. 2B3Ch to binary. 

Solution: 2. B 3. c 
= 0010 1011 0011 1100 
=001_01.ofloo1f1100' 

To go from binary to hex, just reverse this process; that is, group the bi· 
nary digits in fours starti9g'from:the righ.t. Then convert each group to 
a hex digit. v' · · · · ' 

Example 2.S Convert 11101?1.91.2. to hex. 

,... 
Solution: 1110101010 = 11 1010 1010 = 3AAh 
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2.3 
Addition and 
Subtraction 

Sometimes you will want to do binary or hex addition and subtrac­
tion. Because these operations are done by rote in decimal, let's review the 
process to see what is involved. 

Addition 

Consider the following decimal addition 

2546 
+ 1872. 

4418 

To get the unit's digit in the Slim, we just compute 6 + 2 = 8. To get the ten's 
digit, compute 4 + 7 = 11. We write down 1 and carry I to the hundred's 
column. In that column we compute 5 + 8 + 1 = 14. We write down 4 and 
carry 1 to the last column. In that column we compute 2 + I + 1 = 4 and 
write it down, and the sum is complete. 

A reason that decimal addition is easy for us is that we memorized 
the addition table for small numbers a long time 260. Table 2.3A 1s an ad­
dition table for small hex numbers. To compute Hh + 9h, for example, just 
intersect the row containing il and the column containing 9, and read Hh. 

By using the addition table, hex addition may l>e don" in exactly 
the same way as decimal addition. Suppose we want to con:µutc the fol­
lowing hex sum: 

Table 2.3A Hexadecimal Addition Table 

0 1 2 3 4 5 6 7 8 9 A B c D E F 
-------·------------------

0 0 2 3 4 5 6 7 8 9 A ll c D E F 

1 2 3 4 5 6 7 8 9 A B c D E F IO 

2 2 3 4 5 6 7 8 9 A B c D E F 10 1 I 

3 3 4 5 6 7 8 9 A 13 c D E F 10 I l 12 

4 4 5 6 7 8 9 A B c D E F JO 11 12 13 

5 5 6 7 8 9 A B c D E F 10 J 1 I2 13 I4 

6 6 7 8 9 A B c D E F 10 11 IZ 13 I4 15 

7 7 8 9 A B c D £ F 10 I 1 12 i,1 14 15 16 

8 8 9 A 13 c D E F 10 11 12 1.3 I4 15 I6 17 

9 9 A B c D E F ·10 11 12 13 14 15 16 17 18 

A A !l c D E F 1 () 1 I 12 13 14 IS 16 17 18 19 

B il c [) E f ]\) 1 I 12 13 14 15 I6 17 18 19 IA 

c c D E F IO I 1 I2 13 14 15 16 17 18 19 IA 1B 

D [) E F 10 II 12 1J 14 15 .16 17 18 19 IA IB IC 

E E F 10 II I2 u 14 '5 16 17 18 19 IA rn lC lD 

F F 10 11 l2 i3 14 15 16 17 18 19 IA 1B IC 1Q lE. 

Table 2.38 Binary Addition Table 

- 0 . ,_ ,. 

0 ~ 1 0 
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\ I 
SB39h 

+ 7AF4h 

D62Dh 

In the t.;nit's column, ~e compute 9h + 4h = 13d"' Oh. Jn the.next column, 
we get 3h + Fh = 12h. Write down 2 and carry J to the next column. In that 
column, compute Bh +Ah+ I= 16h. Write 6, i!nd carry 1 to the last column. 
There we compute Sh + 7h +- 1 = Dh, and we are done. 

· Binary addition is done the same war as <lcc1mal and hex addition, 
but is a good deal easier because the binary addition t.ibll: is so small (Table 
2.3B). To do the surr: 

+ 

\' \\ l 
100101111 · 

110110 

101 lOOlOi 

Compute 1 + 0 = 1 in the unit's column. In the next column, add 1 • 1 = 
!Ob. Write down 0 and carry 1 to the next column, whe:•! we gt!t I + 1 + l 
= 1 lb. Write down 1, carry 1 to the next column. and so on. 

Subtraction 

Let's begin with the decimal mbtractton 

bb 
9145 

- 7283 
1862 . 

in the unit\ column, we compute 5 -- 3 = 2. To do the ten's. we first borrow 1 
from the hundred's rnlumn (to remember that we have dt'll<' t:m. we may pbcc 
a "b" above the hundred's column), and compute 14 - 8 o 6. Jn the hundred's 
column, we mu~t again borrow 1 from the next colu11;11, anc1 compute 11 - 2 
- 1 (tl:c preYious borrowi = 8. In the last column. we get 9 - 7 - J ~ J. . ' 

Hex subtraction may be done the same way as dtcimal s11btraction. 
To compute the hex difference 

bb 
D?6F 

- 131\9-t 

17011 

we start with Fh - 4h = Bh. To do the next (sixteen's) column. we 1;iu~t 

borrow 1 from thr third column. and compute 

16h-9h=? 

The easy way to figure this is to go to row 9 in Table 2 . .!A, and notiu.! that 
16 appC'ars in column D. This means that 9h + Dh = 16h, so 16h - 9h = Dh. 
In the third column. after borrowing, we must compute 12h - .-\IJ - J = 11 h 
·-Ah. In row A, 11 appears in colurnn 7 sol lh - Ah= 7h. finally in the last 
column, we have Ch - Bh = 1. 

:--:ow let us look at hi nary ~ubtraction, for ·example, 

bb 
1001 

- 011.1 
0010 

The unit's column is easy, 1 - 1 = 0. We must horrow to do the two's column, 
getting 10- 1=1. To do the four's column, we must again borrow, computir«; 
10 - 1 - I (since we borrowed from this column) = 0. Finally in 1 :ie l:i~t 

column, we have 0 - 0 = 0. 
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2.4 
How Integers Are 
Represented in the 
Computer 

.., . . 
c:. ...... J 

:..h:; :-:;ned Integers 

2.4.2 
Signed Integers 

The hardware of a computer necessarily restricts th" 51.ZC' of numbers 
that can be stored in a register or memory location. In this section, we will 
sec how integers can be stored in an 8-bit byte or a 16-bit word. In _!~'1.Jptcr 
18 we talk about how real numbers can be stored. 

In the following, we'll need to refer to two particular bits In a byte 
or word: the most significant bit, or rusb, is the leftmost bit. In a word, 
the msb is bit 15; in a byte, it is bit 7. Similarly, the least significant bit, 
or lsb, is the rightmost bit; that is, Oit 0 . 

An unsigned integer is an integer that represents a magnitude, so 
it is never negative. Unsigned int?gcrs are appropriate for representing quan­
tities that can never be negative, such as addresses of memory locations, 
counters, and ASCII character codes (see later). Because unsigned integers 
;ire by definition nonnegative, none of the bits are needed to represent the 
sign, and so all 8 bits in a byte, or 16 bits in a word, arc available to represent 
the number. 

The largest unsigned integer that can be stored in a byte is 11111111 
= FFh = 255. This is not a very big number, so we usually store integers in 
words. The biggest unsigned integer a 16·\:>it word can hold is 
1111111111111111 = I t'FFh = 65535. This is big enough for most purposes. 
If not, two or more words may be used. 

Note that if the least significant bit of an integer is 1, the number 
is odd, and it's even if the lsb is 0. 

A signed integer can be positive or negative. The most significant 
bit is reserved for the sign: 1 means negative and 0 means positiv·e. Negative 
integers are stored in the computer in a special way known as two's com­
plement. To explain it, we first define one's complement, as follows. 

One's Complement 

The one's complement of an integer is obtained by complementing 
each bit; that is, replace each 0 by a 1 and each 1 by a O. In the following, 
we ;1s~umc numbers ;ire J 6 bits. 

Example 2.6 Find the one's complement of 5 = 0000000000000101. 

Solution: S = OOOOOOOOOOCIOO I 0 I 
One's complement of 5 = 111l111111111010 

Note .that if we add 5 and its one's complement, we get 
1111111111111111. 
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Two's Complement 

To get the two's complement of an integer, just add 1 to its one's 
complement. 

Example 2.7 Find the two's complement of 5. 

Solution: From above, 

one's complement of 5 = 11111I1111111010 
'+'l. 

~~~~~~~~--~~~~~~--'-

two's wmplcmcnt of 5 = 11111111111110! I= FffBh ... 
Now look what· happens when we add 5 and its two's'coinplement: 

5 = 000000000000010 I 
1 two\ compll'1lll'lll of 5 = _!_1_!_~_~1_111_1_1 _1_j~ll_l 

1 OOOOOUUUC >UUOOOUO 

We end up with a 17-bil number. llccau'c ;i ro11iputcr wo1J circuit Gall 

only hold 16 bih, llil' I cirril'd out frolll till: n1m1 ~ignilic:inl l>it is lo~l, 
and the ]().IJit result is 0. A~ 5 and i\S tw11' "ll!lph:mcnt add up to 0, the 
two's complcml'nt of s· inust L>e a corrl'Ct rcprc,ent;;tion ui -5. 

It is e•1~y to sec why the twn's compil'111c11t ot .any itlll·ger N Jllll\l 
repre~ent -N: Aud111~- N and it' 011a:·~ LOmplemcnl gi\·t'\ J6 ones; adding 1 
to this produces I(, Zl'l'P\ with a 1 c:;:uried out Jlld lmt. .Jill' 1T.,11lt ,l.,rcd is 
;ilways 0000000000000000. 

The fl1iln>':ing l':-.-:1111 pk ~huws wh•ll h;ipµl'n~ whl'11 a m1111i>L0 r is cum­
plementcd two li111.:s. 

Example 2.8 Find the two's complement of the two's complement of 5. 

Solution: We would guess that after complementing 5 two times, "the re­
sult should be 5. To verify this, from above, 

two's complement of 5 = 1111111111111011 
one's complement of 111111I111111011 = 0000000000000100 

+ 1 

two's compiemcnt of 1111111111111011 = 00000000000001.01 = 5 

' Example 2.9 Show how the decimal integer -97 would be represented 
(a) in 8 bits, and tb) in 16 bits. l'.xpress the answers in hex. 

Solution:. A decimal-to-hex conversion using rereated division by 16 yiC'lds 

97 = 6 >< 16 + I 
6=0xl6+6 

Thu~ 97 = 6Jh. To rt•pt·~~l'nt -97, we lll'l'U to L'XJ>rl'~' C>lh 111 bi1Dr\' and 
take the two's complement. 
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a. In 8 bits, W<' get 

6lh = 0110 0001 
one's complement= 1001 1110 

+ 1 
two·~ complement= 1001 1111 = 9Fh 

b. In 16 bits, we get 
. \ 

61h = 0000 0000 0110 0001 
one's complement= J 111 1111 1001 1110·' 

+ I 
--------.~ 

111111111001 dl!=FF9Fh 

Subtracrion as Two'.s Complement Addition 

The adv;rntage ol two's complement representation of negative in­
tegc·rs in the compaic1 " that subtrJui<m CJ!l be done by bit complemen­
t:ition Jnd <idd1tion, <ind circuit; that add and complement bits are easy to 
design. 

Example 2.10 Suppose ,\X contains .51\BC!J ancl BX co11tJi11s 21 FCh. 
Fmd the differL·nce of :\:\ minu5 BX by u~ing cornpll'mcntation and addi­
tion. 

Solution: !\.\ co11tJim S \BCl1 = (IJ()J 1010 I 01 J I JOU 
ii.>\ cont~ins 21 FC:h = 0010 0001 1111 I J 00 

SABCh ,= 0101 iOJO !OJ l 1100 
+ 01;!'\ compll'Jllt.:111 of 21 ICli .o J lUl 11 iv il()f)() OUJ I 

+- 1 

Pifluvii<c~ I 00l1. iiHiU J](1()0000=:l8COh 

A one is carri,·d out of the mn~t •:;;n.:i, i:~'. ;,;i a0.I 1~ Jci.,t. The <lll5\H'r 
5lOiCd, 38C0h, is COfl\!t..'t, clS nlc1y !Jc \Ti!r:cd h~· hl'.\ "i~ibtr~1ctiun. 

----------
2.4.3 

Decimal ln~erpretation Jn the IJ\t >L'ctiun. he SJ\\' l!O\\' ;i.i.;ned and w1,igned decimal integers 
lllJ}' be reprl'sentl'd in ti!« computer. Thl' r"'"'I:>e prolilc1n i~ to interpret the 
contents uf a byte or word J~ a signed or un\;gnt"-1 c.kc11nal intl'ger. 

Umixncd iJ,u"1n,1/ i11te1prct11:io11: Just do ~1 llin:iry-to·decimal 
conn·rsinr .. It\ ti\ually e:isier to convert binary to hex first, 
and thl'n conwrt hex to decimJI. 

Sisncd dcci11111/ i11tcrprc:tatiu11: If the mo;I ~ignificant bit is 0, 
the number is positive, and the signed decimal is tile same as 
the umigncd decimal. If the msb is I. the number is nega­
tive, ~o cJIJ it -N. To find N, just t<Jke the twos' complement 
and then convert to decimal as before. 

Example 2.11 Suppo)e AX cont<iins FEOCJi. Give the um1,1;ned and 
signed decimal interpretations. 
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Table 2.4A Signed. and Unsigned Decimal Interpretations of 16-Bit 
Register/Memory Content"' 

Hex u,(signed decimal Signed d~cimal 

0000 
0001 
0002 

0009 
OOOA 

7FFE 

7FFF 

8000 
8001 

FFFE 

FFFF 

0 

2 

9 

10 

32766 

32767 
32768 

32769 

65534 
65535 

0 

2 

9 

10 

32766 

32767 
-32768 
-32767 

-2 

-1 

Solution: Conversion of FEOCh to decimal yields 65036, which is the 
unsigned dec;mal interpretation. 

. . 
For the signed interpretation, FEOCh = 1111111000001100. Since the sign 
bit is l, this is a negative number, call it -N. To find N, get the two's com­
plement. 

fEOCh = 111 1 1110 0000 11 00 
one's complement = 0000 0001 1111 0011 

+ 1 

N = 0000 0001 11110100=01F4h = 500 

Thus, AX contains -500. 
Tables 2.4A and 2.4B give 16-bit word and 8-bit byte hex values and 

their signed nnd unsigned decimal interpretations. Note the following: 
' 

1. Because the mo~t significant bit of a positive signed integer is 0, 
the leading hex digit of a positive signc9 intcg.:r is 0 _: 7; integers 
heginning with 8-Fh have 1 in the ~ign bit, so they are negative. 

2. The largest 16-bit positive signed integer is 7FFFh = 32767; the 
smallest negative integer is 8000h = -32768. For a byte, the larg­

. est positive integer is 7Fh = 127 and the smallest is 80h = -128. 

3 ... The·following reli\tiomhip holds between the unsipned and 
signed decimal interpretations of the contents of a 16-bit word: 
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2.5 
Character . 
-«~presentation 

Table 2.4B Signed and Unsigned Decimal Interpretations of a Byte 

Hex 

00 

01 
02 

09 

OA 

7E 

7F 

80 
81 

FE 
FF 

Unsigned decimal 

0 
1 

2 

9 

10 

126 
127 
128 
129 

254 
255 

Signed decimal 

0 

1 

2 

9 

10 

126 

127 
-128 ~ 

-127 

-2 

-I 

For OOOOh-7FFFh, signed decimal =unsigned decimal. 
For 8000h-FFFFh, s!gne::l decimal= unsigned decimal - 65536. 

There are similar rdations for the content~ uf an c.:ight-i.Jit L>yu.:: 

For 00h-7Fh, signed decimal= unsigned decimJI. 
For 80h-FFh, signed decimal = unsigned decimal - 256. 

Example 2.12 Use observation 3, from the above, to rework example 
2.11. 

Solution: We saw that the unsigned Jecimal interpretation of FEOCh is 
65036. fiec;rnse the kading hex digit is Fh, the content is negative in a 
signed sl·nse. To interpret it, just subtract 65536 from the umigned deci­
mal. Thus 

signed decimal interpretation = 65036 - 65536 = -500 

ASCII Code 

; Not all data processed by the computer arc treated as numbers. I/cT 
devices such as the vi<.lco monitor and printer are character oriented, and 

1
programs such as word processors deal with characters exclusively. Like all 
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data, characters must be ·coded in binary in order to be processed by the 
computer. The most popular encoding scheme for characters is ASCII 
(Americ

0

an Standard Code for Information Interchange) code. 
Originally used in communications by teletype, ASCII code is used by all 
personal computers today. . 

The ASCII code system uses seven bits to code each character, so 
there are a total of 27 = 128 ASCII codes. Table 2.5 gives the ASCII codes and 
the characters associated with them. 

Notice that only 95 ASCII codes, from 32 to 126, are considered to 
be printable. The codes 0 to 31 and also 127 were used for communication 
control.purposes and do not produce printable characters. Most microcom­
puters use only the printable characters and a few control characters such 
as LF, CR, BS, and Bell. 

Because each ASCII character Is coded by only seven bits, the code 
of a single character fits intq a byte, with the most significant bit set to zero. 
The printable characters can be displayed on the video monitor or printed 
by the printer, while the control characters are used to control the operations 
of these devices. For example, to display the charact.er A on the screen, a 
program sends the ASCII code 41 h to the screen; and to move the cursor 
back to the beginning of the line, a program sends the ASCII code ODh, 
which is the CR character, to the screen. 

A computer may assign special display characters to some of the 
non-printed ASCII codes. As you will see later, the screen controller for the 
IBM PC can actually display an extended set of 256 characters. Appendix A 
shows the 256 display characters of the IBM PC. 

Example 7.' ::'. .,...., ;10w the character string "RG 2z" is stored in mem-
ory, starting .. address 0. 

Solution: From Table 2.5, we have . 

Character ASCII Code (hex) 

R 52 
G 47 
space 20 
2 32 
z 7A 

So memory would look like :thi.s: 

Address 

0 

1 

2 
3 

The Keyboard 

Contents 

01010010 

>:. :0.1000111 
00100000 

·~ .~ . 
00110010 

01111010 

ASCII Code (binary) 

0101 0010 
01000111 

0010 0000 
0011 0010 
0111 1010 

It's reasonable to guess that the keyboard identifies a key by gener­
illini; ;in ASCII co<l~ when the key is pressed. This was true for a dass of 
keyboards known as ASCll k£'ybourcls used uy some early microcomputer~. 
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Table 2.5 ASCII Code 

Dec Hex Char 

0 00 <CC> 
01 <CC> 

2 02 <CC> 

3 03 <CC> 

4 04 <CC> 
5 05 <CC> 
6 06 <CC> 

7 01 <CC> 
8 08 <CC> 

9 09 <CC> 

10 OA <CC> 

11 OB <CC> 

12 

13 

14 

15 

16 

oc 
OD 

OE 

OF 

10 

11 

12 

13 

<CC> 
<CC> 

<CC> 

<CC> 
<CC> 

<CC> 

<CC> 

<CC> 

Dec Hex Char 

32 20 SP 

33 21 

34 22 

35 23 # 

36 24 $ 

37 25 % 

38 26 & 

39 27 

40 28 

41 29 

42 2A 
43 28 + 

44 2C 

45 2D 

46 2E 

47 2F 
48 30 

49 31 
50 . 32 

51 33 

I 

0 

2 

3 

17 

18 

19 

20 

21 

22 
23 

24 

25 

26 

/.7 

28 

29 

3C 

14 <CC> 52 34 4 

15 <CC> 53 

16 <CC> 54 

17 <CC> 55 
18 <((> 56 

19 <((> 57 

1A <CC> 58 

18 <CC> 59 

1C <CC> 60 

1D <CC> 61 

1E <CC> 62 

35 5 
36 6 

37 7 
38 8 

39 9 

3A 

38 
3C < 
3D 

3E > 

31 1F <CC> 63 3F ? 

<CC> denotes a control character 
SP = blank space 

Special Control Characters 

Dec 

7 
8 

9 

10 

12 

13 

Hex 

07 

08 

09 

OA 
oc 
OD 

Dec Hex Char 
64 40 @ 

65 41 A 

66 42 8 

67 43 c 
68 44 D 

69 45 E 

70 46 F 

71 47 G 
72 48 · H 

73 49 

74 4A J 

7S 48 K 

76 

77 
78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 
89 

90 

91 

92 

93 

94 

4C 

4D 

4E 

4F 

so 
51 

S2 
53 

S4 

S5 
56 

57 

58 

59 

SA 
SB 
SC 

SD 
SE 

9S SF 

Char 

BEL 
BS 
HT 
LF 
FF 

CR 

M 

N 

0 
p 

Q 
R 

s 
T 

u 
v 
w 
x 
y 

z 
[ 

f\ 

Dec Hex Char 

96 60 

97 61 a 
98 62 b 

99 63 c 
100 64 d 

101 65 e 
102 66 

103 67 g 

104 68 h 

105 69 

106 6A j 

107 68 k 

108 6C 

109 60 

110 6E 

111 6F 

112 70 

113 71 

114 72 

1 lS 73 

116 74 

117 7~ 

118 76 

119 77 

120 78 

121 79 

122 7A 
123 78 
124 7( 

125 7D 

126 7E 

m 
n 

0 

p 

q 

u 
y 

w 

x 

y 

z 

127 7F <CC> 

Meaning 

bell 

backspace 

horizontal tab 

line feid 
form feed 

carriage return 
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However, modern keyboards have many control and function keys In addi-
, tion to ASCII character keys, so other encoding schemes are used. For the 
IBM PC, each key is assigned a unique number called a scan code; when a 
key is pressed, the keyboard sends the key's scan code to the computer. Scan 
codes are discussed in·Chaptei 12. . . . 

SUMMARY t.:; 

• Numbers arc represented in different ways, according to the basic 
. symlmls used. The binary system uses two symbols, 0 and 1. The 

decimal system uses.0-9. The hexadecimal system uses 0-9, A-F. 

• 1 Binary and hex·numbcis can be converted to decimal by a pro-
cess of nested ·multiplication. · 

A hex m,mbcr can t>e 'converted tv decimal by a process of re­
peated division br, 16;, similarly, a binary number can be con­
verted to decimal by a process of repeated division by 2. 

• Hex numbers can be converted to binary by converting each hex 
digit to binary; binary numbers are convertc'CJ to hex by grouping 
the bits in fours, starting from the right, and converting each 
group to a hex digit; · · 

• The pron~ss of adding and subtracting hex and binary number~ is 
the sa;nc as for dedmal numbers, and can he done with the help 
of the appropriate addition table. 

Negative numbers arc stored in two's complement form. To get 
the two's complement of a number, complement each bit and 
add 1 to the result. 

• If A and B arc..s.t9.r_e.a_im~gers,-thc..pLQCessor computes A - B by 
adding the two's complement of H to A. 

• The range of unsigned Integers that can he stored in a byte Is 0-
255; in a 16-bit word, if is 0-65535. 

• For signed numbers, the mmt significant bit i~ the sign bit; 0 
mc;im pmitivc ;inJ I 111c;i11~ negative. TIR· range ul ~igned num­
bers that can be stored in a byte is -128 to 127; in a word, it is 
-32768 to 32767. 

• The unsigned decimal interpretation of a word is outaim:<l by con­
verting the binarr value to decimal. If the sign bit is 0, this is 
also the signed decjmal interpretation. If the sign bit Is l, the 
signed decimal interpretation may be obtained hy subtracting 
65536 from the unsigned decimal Interpretation. 

• The standard encoding scheme for characters is the ASCII code. 

A .s;haracter r~i.a!.s..sevcn bits to code_,, so it can be stored in a 
byte. · . · 

• The lllM ~crel'n controller can generate a.character for each of the 
256 possible nurnbe1s that can be stor(·d in a bytr. 
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Glossary 

ASCII (Anu~rlcan.!~tandar.d c:fhe~codtng·scheme for characters used·.: 
Code for ·Infermatlon . · on all personal computers 
lnterchangc).codcs• . 

binary number system 

bcxadcclmal number 
system'•· 

leas& slgniflcant•bit1 lsb 

Base two system in which the digits are 0 
and 1 . 

Base sixteen system In which the digits . 
are 0, l, 2, 3, 4, 5, 6, 7, 8, 9, A, IJ, C,· D," 
E, and F 

The rightm6st bit In a word or byte; that 
is, bit 0 

most significant bit, msb· . The leftmost bit in a word or byte; that 

one's cumplcrment -of a . 
binary number , 

scan.code 

slgl).Cd lnteg~. · 
two's complcmant••f a,, 
binary numbor 

unsigned integer 

Exercises· 

is, bit 15 In a word or bit 7 In a byte · 

Obtained by replacing each 0 bit by 1 
and each 1 bit by 0 

A number·used to identify a key on the .. 
keyboard1 

An Integer that.can be positive or negative · 

Obtained by adding l to the one's com· 
plement 

An· Integer representing a magnitude; that. 
Is, always positive 

Jn. many ·applications, it saves time to memorize the conversions" 
among small binary, decimal, and hex numben. Without refer• · 
ring to Table l.2, fill In the blank.~ In. the following taWe: · 
Binary Decimal Hex·.• 

tW... 9 L 
lClO \0 L 
.M..." {( D 
_)lQj 12 L_ 

1110 n 
i1l\ ~ 8 

2. Convert the following.binary.and hex uumbers to decimal:. 

a. 1110 · 

b. 100101011101 

c. 46Ah 

d. FAE2Ch 
3. Convert the following -decimal numbers: · 

a. 97·to.binary 

b: 627 to binary 

c. 921 to hex 

ll. -o 126 to 11eX: 

4. Convert the'following numbers: 
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a. 1001011 to hex 

ll. 1001010110ici1110 to hex 
-:,' . ~a..~- . 

c i\2CI I to bi11;1ry 

d. B34Dh to binary 

5. Perform the following additions: 

a. !OO!Olb + 101 llb 

.-b. !OOl l I !Olb + 10001111001 b 

c. · J\23CDh + l 7912h 

d. FEFFF.h + FHCAUh 

6: Perform the following subtractions: 

a . .l!Ol!b- lOllOb 

b. IOOOOIOlb - 11101 lb : 

c. SFC12h - 3ABD1h 

d. FOOi Eh - I FF3Fh 

7. Give the 16-bit representation of·each of the following decimal in­
tegers. Write the answer in hex. 

a. 234 

. b. -16 

c. 31634 

d. -32216 

8. Do the following binary and hex subtractions by two'~ rnmplc­
ment additio,n. 

a. 10110100 - 100101 ll , 

b. 10001011 - 111:10111 

c. FEOFh - 1~ llh , 
I.I. · IABCh - B3E/\h 

. 9. Give the uns •ncd and signed decimal interpretations of each of 
~he following 6-bit or 8-bit numbers. " 

a. 7FFF.h 

h. 85-Bh 

(. FEh 

d. 7Fh 

JU. Show how the decimal integer -120 would be represented 

a. in 16 bits. 

b. in 8 bits. 

11. For each of the following decimal numbers, tell whether it could 
be stored (a) as a 16-bit number (b)" as an 8-bit number. 

a. 32767 

b. -40000 

c. 65536 

d. 257.J 

c.j-128 

12. !"or l.'.1d1 ot thl.' following 16-bit signed numbers, tell whether it is 
positive or nq:ative. 

a. JO!OOICXJIOO!OlOOb 

b. 78E3h 
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c. CB33h 

d. 807Fh 

e. 9AC4h 

13. If the character string "S 12.75" is being stored In memory start­
ing at address 0, give the hex contents of bytes 0-5. 

14. Translate the following secret message, which has been encoded 
in ASCII as 41 74 74 61 63 68 20 61 74 20 44 61 77 6E. 

15. Suppose that a byte contains the ASCII code of an upperca~e let­
ter. What hex number should be added to it to convert lt to 
lower case? 

16. Suppose that a byte contains the ASCII code of a decimal digit; 
that Is, "0" ... "9." What hex number should be subtracted from 
the byte to convert it to the numerical form of the characters? · 

17. It is not really nece·ssary to refer to the hex addition table to do 
addition and subtraction of hex digits. To compute Eh + Ah, for 
example, first copy the hex digits: 

0123456789AUCDEF 

Now starting at Eh, move to the right Ah = 10 places. When you 
go off the right end of the line, continue on from the left end 
and attach a 1 to each number you pass: 

10 11 12 13 14 15 16 17 18 9 A B C D E F 
STOP "' START "' 

You get Eh+ Ah= 18h. Subtraction can be done similarly. For ex­
ample, to compute 15h - Ch, start at 15h and move left Ch"" 12 
places. When you go off the left end, continue on at the right: 

10 11 12 13 14 15 6 7 8 9 A U C D E F 
"START "STOP 

You get 15h - Ch= 9h. 
Rework exercises S(c) and 6(c) by this method. 



Org~nization ; 
of the IBM Personal 
Computers 

!overview 

3.1 
The Intel 8086 
Family of 
Microprocessors 

Chapter 1 described the organization of a typical microcomputer 
system. This chapter takes a closer look at the IBM personal computers. These 
machines are based on the Intel 8086 family of n.icroprocessors. 

· After a brief survey of the 8086 family In section 3.1, section 3.2 
concentrates on the ai:chltecture of the 8086. We Introduce the registers and 
mention some of their special functions. In section 3.2.3, the Important idea 
of segmented memory is discussed. 

In section 3.3, we look at the overall structure of the IBM PC; the 
memory organization, 1/0 parts, and the DOS and BIOS routines. 

The IBM personal computer family consists of the IBM PC, PC XT, 
PC AT, PS/l, and J>S/.2 models. They are all based on the Intel 8086 family 
of _microprocessors, which includes the 8086, 8088, 80186, 80188, 80286, 
80386, 80386SX, 80486, and 80486SX. The 8088 is used In the PC and PC 
XT; the 80286 is used in the PC AT and PS/1. The 80186 is used in some 
PC-compatible lap-top models. The PS/2 models use either the 8086, 80286, 
80386, or 80486: 

37 

l 
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The 8086 and 8088 Microprocessors 

. Intel lntrodm:ed the 8086 in 1978 as its first 16-bit microprocc)su1 
(a 16-bit processor can operate on 16 bits of data at a time). The 8088 wa! 
Introduced in 1979. Internally, the 8088 is essentially the same as the 8086. 
Externally, the 8086 has a 16-bit data bus, while the 8088 has an S.bit.data 
bus. The 8086 also has a faster. clock rate,1 and .thus has ~Ucr pt!rk>rmance. 
IBM chose the 8088 over the Bo86 fol' the.original PC .because it w·as less 
expensive to bulld a computer around .the .8088. 

· ·The' 8086 and 8088 have t!w same· lnstructlo1ue~ and If .forms the 
baslt·se~of lnsfrnctlons· fot the· other rnlcroptocessots iri the family. · 

The 80186 and 80188 Mia.aprrxssors. 

The 80186 ar.d 80188 are enhanced versions of the 8086 am! 8088, 
respectively. Their advantage is that they incorporate all the functions of the 
8086 and 8088 microprocessors plus those of some support chips. They can 
also execute some new instructions called the extended i11structiv11 set. How­
ever, these processors offered no significant advantage over the 8086 and 
8088 and were soon overshadowed by the development of the 80286. 

The 80286 Microprocessor 

The 80286, introduced in 1982, is also a 16-bit microprocessor. How­
ever, it can operate faster than the 8086 (12.5 MHz versus 10 MHz) and offers 
the following important advances over its predecessors: 

1. Tll'o modes o( operatio11. The 80286 can opcrilte in eit11er.nlal ad­
dre~ mode or protected virtual address mode. In real ad­
dress mode, the 80286 behaves like the 8086, ·and programs fo~ 
the 8086 can !-ic executed in this mode without modification. In 
protected •irtual address mode, also called protected mode, the 
80286 supports multitasking, which is the ability to execute 
several programs (tasks) at the same time, and memory protec­
tion, which is the ability to protect the memory used by one pro­
gram from the actions of another program. 

· 2. Mure nddr!'s.rnblc• memory. The 80286 in protected mode can ad­
dress 16 megabytes of physical memory (as opposed to 1 mega­
byte for the 8086 and 8088). 

3 .. Vi1t11a/ memory i11 protected mode. This means that the 80286 can 
treat extern;1I storage (that is, a disk) as if it were physical mem­
ory, and thcrclurc execute programs that arc too largecto be con­
tained in physical memory; such programs can be. up to 1 
gigabyte (230 bytes). · 

The 80386 and 803B6SX Microprocessors 

Intel introduced its first 32-bit microprocessor, the 80386 (or 386). 
in 1985. It is much faster ihan the 80286 because it has a :-12-hit data path, 
high clo_t·k rate (up to :n Ml lzl, and the ;1hility to execute instructions in 
ll·wer cil><.k q•c.:11:~ 111.111 till' 80!8<>. 

Like lhe 8028<>, the 386 c.111 opcrjll' in dlher real or p1ol1:Ued modi.'. 
In rcJl mode, it behaves likl' an 8086. In protected mode, it Giil emulate the 
80286. It also has a virt1111/ 8086 mode de)ign1:d lo run multipll' 8080 app1°­
cations under memory protection. The 386, in protected mode, can addre)s 
4 gigabytes of physit:al memory, and 64 lernbylc~ (246 bytes) of virtual memory. 
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-Organization of. the 
808618088 
Microprocessors 

3.2.1 
Registers 

l.2.2 
Data Registers: AX, BX, 
cx~ .. ox 
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Tl1e 386S X has essentially the same internal stracture as the 386, 
but it has only a 16-bit data bus. 

The 80486 and 80486SX Microprocessors 

Introduced in 1989, the 80486 (or 486), is another 32-bit micropro­
cessor. It is the fastest and most powerful processor in the family. It !ncor­
porates the functions of the 386 together with those of other support chips, 
including the 80387 numeric processor, which performs floating-point num­
ber operations, and an 8-Kll cache memory that serves as a fast memory area 
to buffer data coining from the slower memory unit. With its numeri<: pro­
cessor, cache memory, and more advanced design, the 486 is three times 
faster than a 386 running at the:same clock speed. The 486$X is similar to 
the 486 but without the floating-point processor. 

In the rest of this chapter we'll concentrate on the organization of 
the 8086 and 8088 . .These processors have the simplest structure, and most 
of the imtructiom we will stuuy .:ire 8086/8088 instrunions. They also pro­
vide insight to the organi1 . .ition of the more a<lvann·i.J proccs~o1s, <li~cus~c<l 
in Chapter 20. 

Because the 808(1 and 8088 have essentially the same internal struc­
ture, m the following, the name "8086" applies to hoth 8086 and 8088. 

As noted in Chapter 1, information inside the microprocessor is 
stored in registers. The registers are classified according to the functions they 
perform. In general. d11ta registrrs hol<l data for an operation, address re isters 

_ hold the address of~uctmh or data, and a. Hmm rc·s1~1er ·ceps t ie 
current st:mrs"of the proressor. 

The 8086 h.i~ four gener.il data wgbters; the address registers arc 
<lividcd into .~esmr1!!,_ poi11tcr, and i11dcx rr,~iscers; and the status register is 
called i11e FLAGS re,~ista. In total, there are fourteen 16-bit registers, which 
we now briefly describe. Sec Figure 3.1. Note: You don't need to memorize 
the special functions of these registers at this time. They will _become familiar 
with use. 

These four regi~tl'rs arc available to the programmer for general data 
manipulation. Even though the processor can operate on data stored in mem­
ory, the same instruction is faster (requires fewer clock cycles) if the data are 
stored in registers. This is why modern processors tend to have a lot of 
registers. 

The high and low bytes of the data registers can be accessed sepa­
rately. The high byte of ~~ is called ~H. and the low byte is ~L. Similarly, 
the high an<l low bytes of flX, CX, and DX are IH-1 and ill, CH and CL, DH 

. . . . . ·- -- "' , .. ,, . . -~-- ·- .. 
and,DL, respectively. 1 his arrangement gives us more registers to use when 
dealing with byte-size data. · 

These four registers, in addition to being general-purpose registers, 
·also perform special functions such as the following. 
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Figure 3. 7 8086 Registers 
Data Registers 

I 
AH 

I 
AL 

I AX 

,--BH BL . 

BX l I 
I 

f'"H 

l 
CL 

I ex 

I 
DH 

I 
DL 

I ox 

Segment Registers 

cs 

OS 

SS '-------~ 
ES 

Pointer and Index Regi5ters 

SI 

01 

SP 

BP 
• 

JP 

FLAGS Register 

AX (Accumulator Register) 
AX is the preferred register to use in arithmetic, logic, and c 

transfer instructions because its usi:> ~eneratcs the Shortt'~· ;-;1;;chine co 



3.2.3 
Segment Registers: 
CS, 0$, SS, ES 
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In multiplication and division operations, one of the numbers involved must 
be in AX c;r AL. Input and output operations also require the use of AL and AX. 

BX (Base RegisterJ 

BX also serves as an address register; an example is a table look-up 
. Instruction called XLAT (translate). 

·. ~ (Count Register) 

' Program loop constructions arc facilitated by the use of CX, which 
serves as a loop counter. Another example of using CX as counter is HF.I' 
(repeat), which controls a s·peeial class of instructions called string vper.1tio11s. 
CL ls used as a count in instructions that shift and rotate bits. 

DX (Data Register) 

DX Is used in multiplication and· division. It is also used in 1/0 
operations · .... 

Address registers store addresses of instructions and data in memory. 
These values arc used by the processor to access memory locations. We begin 
with the memory organizatlon . .._,f 

Chapter 1 explained that memory ls a CCJllcction of bytes. Each mem­
ory byte has an address, starting with 0. The 8086 processor assigns a 20-bit 
physical address to its memory locations. Thus it ls possible to address 
220 .. 1,048,576 bytes (one megabyte) of memory. The first five bytes in 
memory have the following addresses: 

1 ,., 1 r1,rl•1l ll1lfr1 
0000000000000000 
00000000000000001 
00000000000000000010 
00000000000000000011 
00000000000000000100 

Because addresses arc so cumbersome to write in binary, we usually express 
them as five hex digit~. thus 

00000 
00001 
00002 

00009 ·­
OOOOA · 
OOOOB 

and so on. The highest address is Ffl'FFh~ 
In order to explain th~ function of the segment registers, we first 

need to introduce the idea of memory segments, which is a direct conse­
quence of using a 20-bit :ic.Jdress in a 16-bit processor. The addresses are too 
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big to fit in a· 16·bit registeI"!Cll memory word. The 8086.gcts around this 
problem by partitioning its memory· in' to segments. 

· Memory Segment 

·. kmcmory sagmcnt is a block of 2 16 (or 64 l<J C<ll1sccut-i\'e memory 
bytes. Each segment is.identified by a segment numb\:r, ~tartiug with.O. 
A segment number is 16 bits, so the highest segment numbN !~ Hffh. 
~ Within a segment, a memory location is specified by' g. ,·iu0 ·an ·off. 
set. This is the number of bytes from the beginning of the segment. With 
a -64-KB segment, .the•offsct can be given as a 16-bit numbeL The first byte 
i,n a segment has offset 0. The ·last offset in a segment is FFFFh. 

· Segment:Offset Address 

A memory location may be specified by providing a segment number 
and ari offset, writkn in the form Sl.!g111C'llt:off:;et; this is known as a ·logical 
address. For example, A4FB:4872h means offset 4872h within segment A4l;Bh. 
To obtain a 20-bit physica) .<1ddress. the 8086 mic.roproces.soc fir!lt shifts the 
segment address 4 bits to the left (this is equivalent to multiplying by lOh), .md 
then adds the offset. Thus the physical address for A4FB:4872 is 

A4FBOh 
+ 4872h 
A9822h (20-bit physical address) 

Location -of Segments 

It is instructive to sec the layout of the segments in memory. Segment 
0 start.~ at address 0000:0000 = OOOOOh and end& at OOOO:FHF ., OFFffh. 
Segment 1 starts at address 0001:0000 .. OOOIOh ;inf ends at OOOl:FffF = 
I OOOFh. As we can sec, there· is a lot of overlapping between segments. Figure 
3.2 shows the locations uf the first three memory segments. The segments 
start every !Oh= 16 bytes and the starting addre~s of a segment always ends 
with a hex digit 0. We call 16 bytes a 1>aragrapb. We cill an ·:iiddress that 
is divisible by 16 (ends with a hex digit 0) a.paragraph boundary . 

. Because s<!gments may overlap, the scgment:offset form of an address 
is not unique, JS the following ex;imple shows. 

Example 3.1 For the memory location whose physical address is speci­
fied br 1256Ah, give the address in segmcnt:offset form for segments 
125611 and 1240h. 

Solution: Let X be th<! offset in segment 1256h and Y the offset in seg­
ment 1240h. We ha\·c 

1256Ah = 12560h + X and 1256Ah = l2400h + l' 

and ~o 

X = l 256Ah - 1256011 = Al1 and Y = lis6Ah - 1240011 = l 6Ah 

thus-

1256Ah =.1256:000A = 1240:016A 
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. Address 

--~ 10021 11010101 

10020 01001001 

Segment 2 ends --+1001F 11110011 
.,, 1001E 10011100 

10010 01111001 

Segment 1' ends --+1000F 11101011 

1000E 10011101 

I 10000 01010001 
I 

Segment 0 ends ---.OFFFF 11111110 

OFFFE 10011111 

00021 01000000 

Segmerit 2 begins---+ 00020 01101010 

0001F 10110101 

... 
00011 01011001 

Segment 1 begins---. 00010 · 11111111 

OOOOF 10001110 

00003 10101011 

00002 00000010 

~ 00001 10101010 

Segment 0 begins - 00000 00111000 

It is also possible to calcuiate the segment number when the physical 
address and the offset arc given. 

Example 3.2 A memory location has physical a<.ldress 80rD2h. In what 
segment does it have offset BFD2h? 

Solution: ·Wc"lmow that 

Thus 

physical address= segment x I Oh+ offset 

physil:al address= 80FD2h 
· , .. • ..:. offset ~ BFD2h 

scgml'nl x IOh = .7500011 

So the segment~in~st De 7SOOh. 
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Figure 3.3 Segment Registers 8086 Processor Address 

3.2.4 
Pointer and Index 
Registers: SP, B~ ~I. DI 

" 

CS OFSAh ....__ __ ..._...., OFSA:OOOO Code segment begins 

r--
PS OF89h OF89:0000 

SS OF69h 1----"'---4 OF69:0000 Stade segment begins · 

ES D 

Program Segments 

Now IN us t;ilk about the registers CS, l>S, SS, and ES. A typical 
machine language program consists of instructions (code) and data. There 
is also a data structure called the stack used by the processor to implement 
procedure calls. The program's code, data, and stack arc loaded into different 
memory segments, we call them the code segment. data segment, and 
£tack segment. 

To keep track of the various program segments, Lhe 8086 is e1Juipped 
with four segment registers to hold SC ment s. The cs, os,· and SS 
registers con am the coc e, data, an stacl( Sl'gmcnt numbers, rcspcctlvcly. If 
a program needs to access a second data segment, it can use the ES (extra 
segment) register. 

A program seAment need not oc<:upy the entire 64 kilobytes in a 
memory segment. The overlapping nature of the memory scgml'nts permits 
program segments that arc less tlwn 64 l<ll to be placed close togctheti l;igure 
3.3 shows a typkal layout of the program segments In memory (the segment 
numbers and the relative placement of the program segments shown are 
arbitrary). -

At any given time, only those memory locations addressed by the 
four segment registers are accessible; that ls, only four memory seg~e111s are 
active. However, the contents of a segment register can be modified by a 
program to address different segments. 

The rei;istcrs SP, BP, SI, and DJ normally point to (contain the offset 
addresses of) memory locations. Unlike segment registers, the poiriter and 
index registers can be used in arithmetic and other operatiom. 

SP (Sta~ Pointer) 

. llw SP (stack pointl!I') register Is_ used Jn conjunction with SS for accclS-
ing the stack segment. Operations of the stack are covered in Chapter 8. 
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BP (Base Pointer) 
\ 

·,. , The BP (base.pointer) register is used primarily to access data on the 
stack. However, unlike SP, we can also use BP to access data in the other 

_ segm.ents . 

. SI (Source ln_dex) 

The SI 1source index) register is used to point to°"'tnemory locations 
In the data segment addressed by OS. By incrementing the contents of SI, 
W~ c'an e~Sily access Consecutive memory locations. I 

DI (Destination Index) 

The DI (destination Index) register performs the same functions as 
SI. There is a class of instructions, called string operatiuus, that use DI to access 
memory locations addressed by ES. 

lnstrudion Pointer: IP The memory' registers ·covered so far are for data access. To access 

3.2.6. 
FLASS Register ,, 

3.3 
Organization of 
the PC 

Instructions, the 8086 uses the registers CS and II'. The CS register contains 
· the segment number of the next instruction, and the IP contains the offset. 
IP is updated each time an instruction is executed so that it will point to 
the next Instruction. Unlike the other regist('rs, the IP cannot be directly 
manipulated by an instruction; that Is, an imtruction may not contain II' 
as its operand. · 

The purpose of the FLAGS register is to imlicate t!1e status of the 
· . microprocessor. It do~ this by the setting of individual bits called flags. 

There arc two kinds of flags: status flags and control flags. The status 
nags renect the result of an instruction exl><:ut<:d by the processor. For exam­
ple, when a subtraction operation results in a 0, the ZF (zero flag) is set to 
1 (true). 'A subsequent instruction can examine the ZF and branch to some 
code that handles a zero result. · · 

.The control flags enable or disable certain operations of the proces­
sor; for example, if the IF (interrupt flag) is cleared (set to 0), inputs from 
the keyboard are ignored by the processor. Tile status flags are covered in 
Chapter 5, and the control fl.ass are discussed in Chapters 11 and 15. 

A computer system is m;ide up of both hardware and software. It is 
the 'softwaie that controls the hardware operations. So, to fully understand 
the operations of the' computer, you also· study the softw;ire that controls 
the comput~r. , · 
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3.3.l : 
The-Dp~Tsting _Sy~tem11 The most Important piece of software for a compute~ is the oper-

ating system. The purpose of the operating system is to coordinate the 
operations of all the devices that make .up the computer system. Some of 
the operating system functions are 

I. reading an·u executing· the <:ommands typed by the user 

2 . .' performing I/0 .ope.rations. 

3. generating error messages · 

4. managing memory and other resources 

At present, the most popular operating system for the IBM PC is the 
disk operating system (DOS), also referred to as PC DOS or MS DOS. 
DOS was dcsi8ned for the 8086/8088-based computers. llccause of this, it 
can manage only 1 megabyte of memory and it does not support multitask­
ing. However, It can be used on 80286, 80386, and 80486-based machines 
when they run in real address mode. 

One of the many functions performed by DOS is reading and writing 
inforn1ation on a disk. Programs and other information stored on a disk are 
organized into files. F.at·h file has a file nanac, which h made up of one 
to eight characters followed by an optional file.extension of a period fol­
lowed by one to three characters. The extension is commonly used to ideniify 
the type of file. For example, COMMAND.COM has a file name COMMAND 
and an extension .COM. 

There .are several versions of DOS, with eaciJ new version having 
more capabilities. Most commercial programs require the use of version 2.1 
or later. DOS is not just one program;. it consists of a number of sl'rvice 
routines. The user rl'quests a service by typing a commilnc..I. The latest version, 
DOS 5.0, also supports a ~;raphlcal user hatcrface (gui), allowing the use 
of a mouse. 

The DOS routine that services user commands is called COM•:. 
MAND.COM. It is responsible for generating the DOS prompt:""-that is, C:>-'.-­
and reading user commands. There .are two types of user·.•eommands; .. 
internal and external ... 

· Infernal commands are performed by DOS routines that have been . 
loaded into'memory, external commands may rder to DOS routines that 
have not been loaded or {O application programs. In normal operations, 
many DOS routines are not loaded into memory so as to ~ave memory space. 

l.lecause DOS routines reside on disk, a program mu~l ue operating 
when the computer is powered up to read the disk. In Chapter 1 we men­
tioned that there are system routines stored in HOM that are not destroyed 
when the power ls off. In the PC; they are called BIOS (Bask Input/Out­
put System) routines. · 

BIOS· 

The lllOS routines perform 1/0 operations for the PC. Unlike the 
DOS routines, which operate over the entire PC family, the BIOS routines 
are machine specific. Each PC model has its own hardware configura.tion 
and its own BIOS routines, which invoke the machine's 1/0 port registers' 
for input and output. Tile DOS 110 operations arc ultimately carried out by 
the BIOS routines. 

Other important"functioiis ·performed by BIOS are circuit checking 
and loading of the DOS routines. In section 3.3.4, we discuss the loading of 
DOS routines. 
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Figure a.4.NMemory- · 
Piirtitioillld into: Disjojnt• •: 
Segments<; 

3.3.2.: 

Address 
FFFFffi. 

FOOOOh 
EFFFRI· 

EOOOOh 

20000h 
OFFFFh 

10000h 
OFFFFh 

OOOOOh 
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; -
FOOOh 

.· 

EOOOh 

1000h 

-. OOOOh 

To let DOS and other programs use the llIOS routines, the addresses 
of the BIOS routines, called interrupt 'vectors, arc placed ir. memory, start­
ing at OOOOOh. Some DOS routines also have their addresses stored there. 

Because IBM has copyrighted Its BIOS routines, ll3M compatibles use 
their own BIOS routines. The degree of compatibility has to do with how 
well their BIOS routines match the IBM BIOS. 

M8noly pr.g~nization of As indicated in section 3.2.3, the 8086/6088 processor is capable of 
the.PC · ·. addressing 1 megabyte of memory. However, not all the memory can be used 

by an.application program. Some meinory locations have special meaning 
for the processor. For example, the first kilobyte (00000 to 003FFh) is used 
for interrupt vectors. 

Other memory locations are reserved by IBM for special purposes, 
such as for BIOS routines and video display memory. The display memory 
holds the data that are being displayed on the monitor. 
. :- To show the memory map of the IBM PC, it is useful to partition 
the memory into disjoint segments. We start with segment 0, which ends at 
location OFFFFh, so the next disjoint s~gment would begin at lOOOOh = 
1000:0000. Similarly, segment 1000h ends at lFFFFh and the next disjoint 
segment begins at 20000h = 2000:0000. Therefore the disjoint segments arc 
OOOOh, lOOOh, 200011, ... FOOOh, and so memory may be partitioned into 
16 disjoint segments. Sc.:? Figure 3.4. 

Only the first 10 disjoint .memory segments are used by DOS for 
loading and running application programs. Th!!sc ten segments, OOOOh to 
9000h, give us 640 Kl.I of memory. The memory sizes of 8086/8088-based 
PCs are given in terms of these i:nemor)' segments. For ex.ample, a PC with 
a 512-KB ,fnemory has only eight of these me!T'ory segments. 
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Figure 3.S Memory Map of 
the PC Address 

BIOS 
FOOOOh 

Reserved 
- EOOOOh 

Rese:-ved 
OOOOOh 

Reserved 
COOOOh 

Video 
BOOOOh 

Video 
AOOOOh 

Application program area 

DOS 

BIOS and DOS data 
00400h 

Interrupt VC!ctors 
OOOOOh 

Segments AOOOh Jnd BOOOh arc used for video display memory. Seg­
ments COOOh to EOOOh arc reserved. Segment FOOOh is a· special segment 
because its circuits are ROM instead of RAM, and it contains the BIOS routines 
and ROM BASIC. Figure 3.5 shows the memory IJyout. 

Table J.1 Some Common 110 Ports for the PC 

Port Address Description 

20h-21h interrupt controller 

60h-63h keyboard controller 

200h-20Fh garrie controller 

2F8h-2FFh serial port (COM 2) 

320h-32Fh hard drsk 

378h-37Fh parallel printer port 1 

3COh-3CFh EGA 
300h-30Fh CGA 

3F8h-3FFh serral port (COM I) 
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110 Port Addresses 

3.3.4 -
Start-up Operation 
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The 8086/8088 supports· 64 KB of 1/0 ports. Some common port 
~ddresses are given in Table 3.1: IQ general, direct programming of 1/0 ports 
is not recommt:·nded because 1/0 port address usage may vary ,1mong com­
puter !1lOdels. 

When tll°c PC.is powered up, the 8086/8088 processor is put in a 
reset state, tlte CS register is s~t to FHFh, and IP is set to OOOOh. So the first 
instruction it executes is located at FFFFOh. This memory location is in ROM, 
and it contains an instruction that transfers control to the starting point of 
the BIOS routines. 

The BIOS routines· first check for system and memory errors, and 
then initialize the interrupt vecto~s and Il!OS data area. Finally, BIOS loads 
the operating system from the system disk. This is done in two steps; first, 
the BIOS load~ a small program, called the boot program, then the boot 
program loads the actual operating system routines. The boot program is so 
named because it is part of the operating system; having it load theoperating 
system is like· the computer pulling itself up by the bootstraps. Using the 
boot program isolates the BIOS from any changes made to the operating 
system and lets it be smaller in size. After the operating system is loaded 

• into memory, COMMA)'ID.COM is then given control. 

·summary 

• The IBM personal computer family consists of the PC, PC x·1: PC 
_AT, PS/I, and the PS/2 models. They use the Intel 8086 family of 
microprocessors. 

The 8086 family of microprocessors consisb of the 8086, 8088, 
80186, 80188, 80286, 80386, 80386SX, 80486, and 80486SX. 

• The 8086 and 8088 have .the same instruction set, and this forms 
the basic set of instructions for the other microprocessors. 

The 8086 microprocessor contains 14 registers. They may be clas;i­
fied as data registers, segment registers, pointer and index regis­
ters, and the FLAGS reg\ster. 

• The data registers are AX, BX, CX, and D~. "fhese registers may 
be used for general purposes, and they also perform special func­
tions. The high and low bytes can be addressed separately. 

Each byte in memory has a 20-bit ::·s hex-digit address, starting 
'with OOOOOh. 

• A segment is a 64-KB block of memory. Addresses in memory 
may be given in segment:.off5~t form .. The physical ;iddre~s i~ ob­
tained by multiplying the segment number by !Oh, and adding 

• ' the offset. · · · ' · 

The segment registers are CS, DS, ss,' ~nd ES. When ;i machine 
language program' is1executing·,' these ·registers contain the seg­
ment numbers of the code, data, stack, and extra data segments. 



• The pointer .;nd index registers are SP, ~P, SI, DI, and IP. SP is 
used exclusively for the stack segment. BP can be used to access 
the stack segm1.:nt. SI and DI may be used to access. data in arrays. 

• The IP contains the offset address of the next Instruction to be 
executed. 

• The FLAGS register contains the status and control flags. The sta­
tus flags are set according to the result of an operation. The con· 
trol flags may be used to enable or disable certain operations of 
the microprocessor. 

• DOS is a collection of routines that coordinates the operations of 
the computer. The routine that executes user commands is 
COMMAND.COM. . 

• Information stored on disk is organized into files. A file has a 
name and an optional extension. 

The BIOS routines are used to perform 1/0 operations. The com­
patibility of PC clones with the IBM PC depends on how well 
their BIOS routines match those of. the IBM PC. 

The BIOS routines are responsible for system testing and loading 
the operating system when the machine is turned on. 

Glossary 

basic input/output 
system, BIOS 

boot program 

code segment 

COMMAND.COM 
control flags 

data segment 

disk operating system, 
DOS 

external commands 

file 

file extension 

file name 

flags 

graphical user interface, 
gui 

Routines that handle input and output 
operations 

The routine that loads the operating 
system during start-up 
Memory segment containing a machine 
language prQgram's instructions 

The command processor for DOS 
Flags that enable or disable certain 
actions of the processor 
Memory segment containing a machine 
language program's data 
The operating system for the IBM PC 

Commands that correspond to routines 
residing on disk . 
An organized, named collection of data 
items treated as a single unit for storage 
on devices such as disks 
A period followed by one to three charac­
ters; used to identify the kind of file 
i\ one- to eight-character name of a file 

Bits of the FLAGS register 

A user interface with. pointers and graphi· 
cal symbols 
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intern81 commands 

interrupt vectors · 

logical address 
memory protection 

memory segmcn_t 
multl~asking 

offset (of a memory 
location) 
operating system 

paragraph 
paragraph boundary 
physical address 

DOS commands that are executed by 
routines that are present in memory 

Addresses of the BIOS and DOS routines 

An address given in the form segment:offset 

The ability of a processor to protect the 
memory used by one program from being 
used by another running program 

A 64-KB block of memory 

The ability of a computer to execute sev­
eral programs at the same time 

The number of bytes of the location from 
the beginning of a segment 

A collection of programs that coordinate 
the operations of the devices that make 
up a computer system 

16 bytes 

A hex address ending in 0 

Address of a memory location; 8086-
based machines have 20-bit addresses 

protected (virtual address) A processor mode in which the memory 
mode used by one program is protected from 

the actions of ;mother program 

real address mode 

segment number 
stack 

stack segment 

statu.~ flags 
video display memory 

virtual me111ory 

Exercises 

A processor mode in which the addresses 
used in a program correspond to a physi­
cal memory address 

Number that identifies a memory segment 

A data structure used by the processor to 
implement procedure calls 

Memory segment containing a machine 
language program's stack 

Flags that rellect the actions of the processor 

Memory used for storing data for display 
on the monitor 

The ability of the advanced processors to 
treat external storage as if it were real in· 
ternal memory, and therefore execute pro­
grams that are too large to be contained 
in internal memory 

1. What are the main differences between the 80286 and the 8086 
processors? 

2. What are the differences between a register and a memory location? 

3. List one special function fO{ each of the data registers "AX. llX, 
CX, and DX. ' 
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4. Determine the physical address of a memory location given by 
OAS l :CD90h. 

5. A memory location has a physical address -tA37Bh. Compute 

a. the offset addr~ss if the segment number is 40FFh. 

b. the segment number if the offset address is 123Bh. 

6. What is a paragraph boundary? 

7. What determines how compatible an IBM PC clone is with an au: 
thentic IBM PC? 

8. \'\'hat is the maximum amoun~ of memory that DOS allocates for 
loading run files? Assume that DOS occupies up to the byte 
OFFFfh. 

For the following exercises, refer to Appendix B. 

9. Give DOS commands to do the following. Suppose that A ls the 
logged drive. 

a. Copy FlLEl in the curreru directory to FILElA on the disk In 
drive B. 

b. Copy all files with an .ASM extension to the disk in drive B. 

c. Erase all files with a .BAK extension 

d. List all file names in the current directory that begin with A. 

e. Set the date to September 21, 1991. 

f. Print the file FILES.ASM on the printer. 

10. Suppose that (a) the root directory has subdirectories A, B, and C; 
(b) A has subdirectories Al and A2; (c) Al has a subdirectory AlA:j' 
Give DOS commands to 
a. Create the preceding dlret:tory tree. 

b. Make A 1 A the current directory . 

.:. Have DOS display the curren·t cirectory. 

d. l\emove the pr•xcding directory tr1ee. 



4 

Introduction to IBM 
ec Assembly. 
~ . 

Language 

Overview This chapte(covers the essential steps in creating, assembling, and 
executing an as~embly language program. ny the chapter's er.ct you will be 
able to write simple but interesting programs that carry.out useful tasks, and 
nm them on the computer. 

As with any programming language, the first step is to learn the 
s1·n:;;x, "Nnich for a~sPmbly language is' relatively simple. Next we show how 
vanables a-re declared, and introduce basic data mm«:ment and arithmetic 
instructions. Finally, we cover program organization; you'll see that assembly 
langL•<Jge programs are comprised of code, data. and the stack, just like a 
maclune language program. 

Because assembly language instructions are so basic, input/output is 
much harder in assembly.language than in high-level languages. We use DOS 
functions for 1/0; they are easy to invoke and are fast enough for all but the 
most demanding applications. 

An assembly language program mu~t be converted to a machine 
language program before it can be executed. Section 4.10 explains the steps. 
To demonstrate, we'll create sample programs. ·1 hey illustrate some standard 
assembly language progr;,mming technique\ :ind SL'r\·c ;i~ models for the 
exercises. 

53 
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4.1 
Assembly Language 
Syntax 

4.1.1 

Name Field 

Assembly language programs are translated into machine language 
instructions by an assembler, so they must be writtf'n to conform to the 
assembler's specifications. In this book we use the Microsoft Macro Assembler 
(MASM). Assembly language code is generally not case sensitive, but we use 
upper' case to differentiate code from the rest of the text. 

Statements 

Programs consist of statements, one per l~ne. Each statement is either 
an instruction, which the assembler translates into machine code, or an 
assembler directive, which instructs the assembl~r to perform some spe., 
cific task, such as allocating memory space for a variable or creating a pro-~ 
cedure .. Both instructions and directives have up to four fields: 

name operation operand(a) comment 

At least one blank or tab character must separate the· fields. The fields do 
not have to be aligned in a particular column, but they must appear in the 
above order. 

An example of an instruction is 

START: MOV CX,5 ;initialize counter 

Here, the name field consists of the label START:. The operation is 
MOV, the o..ierands are CX and 5, and the comment is ;initialize counter. 

An example of an assembler directive is 

MAIN PROC 
( 

MAIN is the name, and the o~eration field co'fitains PROC. This particular 
directive creat:s a procedure called MAIN. 

The name field is used for instruction labels, procedure names, and 
variable names... The assemhler translates names into memory addresses. 

Names can be from 1 to 31 characters long. and may comist of 
lelters, digits, and till' special characten ? . (ro _ S 'V.1. Embedded blanks are;y­
not allowed. If a pcricd is used, it must be the first cilarJcler. Names may 
not begin with a digit. The assembler does not diflcrt·ntiate between upper 
<1nd lower case in a name. 

Examples of legal names 

::C'J~lTERi 

:·-:-::.Ii! c1 ("!_ •- [. 

$:.GOO 



4.1.2 
Operation Field 

4.1.3 
Operan_d Field 

4.1.4 
Comment Field 
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. Examples of illegal names . 

TWO WORDS 

2abc 

A45.28 

YOU&ME 

contains a blank 

begins with a d1g1t 

. not f 1rst character 
contains an illegal character 

For an instru_cti_on, the operation field contains a symboiic operation 
code (opcode). The assembler translates a symbolic opcode into a machine 
language opcode. Opcode symbols often describe the operation's function; 
for example, MOV, ~DD, SUB. 

In an assembler directive, the operation field contains a pseudo-op­
eration code (pseudo-op). Pseudo-ops are not translated into machine code; 
rather, they simply tell the assembler to do something. For example, the 
PROC pseudo-op is used to create a procedure. 

For an instruction, the operand field \]>eCifies the data that are to 
be acted on by the operation. An instruction may have zero, one, or two 
operands. For example, 

NOP 

INC AX 

ADD WORDl,2 

no operands. does nothing 
one operand. adds ,1 to the contents 
of AX 

two operands; adds 2 to the contents 
of memory word WORDl 

In a two,operand instruction, the first operand is the destination opcranct. 
It is the register or memory location where the result is stored (note: some 
instructions don't store the result). The second operand is the source op­
erand. The source is usually not modified by the irisiruction 

For an assembler directive, the operand field .. usually contains more 
inforh1ation about the directive. · 

The comment field of a statement is used by the programmer to say 
something about what the statement does. A semicolon marks the beginning 
of this field, and the assembler ignores anything typed after the semicolon. 
Comments are optional, but because assemblv language is so low-level, it is 
almost· impossible to understand an assembly language program without 
comments: In fact, ·good programming practice dictates a comment on al­
most every lirfe. The art ot good commentar)" is devl'loped through prac;ce. 
Don't say something obvious, like this: 

MOV CX,O ;move .o to ex 

Instead, use comments to put the inst:uction into the context of the propam: 

MOV CX.0 :CX counts ter- -., initially 0 
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4.2 
Program Data 

It is also permissible to make an entire line a comment, and h"l use them to 
create space in a program: 

;ir.itialize registe~s 

MCN AX, 0 

MOV BX, 0 

The processor operates only on binary data. Thus, the assembler 
must translate all data representation into binary numbers. However, in an 
assembly language program we may express data as binary, decimal, or hex 
numbers, and even as characters. 

Numbers 

A binary number is written as a bit string followed hy the letter "R" 
or "b"; forexample, 10108. . 

A decimal number is a string of decimal digits, ending with an op­
tional "D" or "d". 

A hex number must begin with a decimal digit and end with the 
letter "H" or "h"; for example, OABCH (the reason for this is th<1t the assem­
bler would be unable to tell whether a symbol such as "ABCH" represents 
the variable name "AllCH" or the hex number ABC). 

Number 

: , 2 2 4 

l24D 

Any of the preceding numbers may have an optional sign. 
Here are examples of legal and illegal numbers for MASM: 

T~pe 

decimal 

binary 

decimal 

decimal 

illegal-contams a nondig1t character 
hex' 

illegal hex number-doesn't end 1n "H" 

illegal hex number-doesn't begin with 
a decimal digit 

hex 

Characters 

ChJracters and charJctcr strings must be enclosed in single or uouble 
4uotes: for example, "A" or 'hello'. Characters are trJnslated into their ASCII 
codes by the dssembler, ~o there is no difference between using "A" and 41h 
(the ASCII code for "A") in a progr?m. · 



4.3 
Variables 

:;..... 

4-3.1 
Byte Variables 

4.3.2 
Word Variables 
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T~ble 4.1 Data-Defining Pseudo-ops 

Pseudo-op 

DB 
OW 

DD 

DQ 

OT 

Stands for 

define byte 
define word 
define doubleword (two consecutive 
words) 
define quadword (four consecutive 
words) 
define tenbytes (ten consecutive bytes) 

Variables play the same role in assembly language that they do in 
high-level languages. Each variable has a dJta type and is assigned a m1::mory 
address by the program. The data-defining pseudo-ops and their meanings 
are listed in Table 4.1. Each pseudo-op can be used to set aside one or more 
data items of the given type. 

In this.section we use DB and DW to define byte variables, word 
variables, and arrays of bytes and words. The other data-defining pseudo-ops 
are used in Chapter 18 in connection with multiple-precision and non;ntP.ger 
operations. 

The assembler directive that defines a byte variable takes the follow­
ing form: 

name 08 initi..al valu~:: 

where the pseudo-op 013 stands for "Define Byte". 

For example, 

ALPllA DB 

This directive causes the assembler.to as~odate a memory byte with the name 
ALPHA, and initialize it to 4. A question mark (" 7 ") used in place of an initial 
value sets aside an uninitialized byte; for example, . . . 
BYT DB ? 

. / ../. 
The decimal range of initial values.that can be specified is -128 to 12r if a 
signed interpretation is beiryg giveo, or C) to 255 for an unsigned irt<crpreta­
tion. These are the ranges of va!uPs that fit in a byte. 

The assembler directive for·ddining a word variable has the follow. 
ing form: · • ~: - .. , ' 

name 
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4.3.3 

Arrays 

The pseudo-op OW means "Define Word." For example, . . 

WRD DW -2 

as with byte variables, a question mark in place of an initial value means an 
uninitialized word. The decimal range of Initial values that can be specified 
is -32768 to 32767 for a signed interpretation, or Oto 65535 for an unsignt.'<l 
interpretation. 

In assembly language, an array is just a sequence of memory bytes 
or words. for example, to define a three-byte array called U_ARRAY, who~r 
initial values are lOh, 20h, and 30h, we can write, 

B ARRAY DB 10H,20H,30H 

The name B_ARRAY is associated wi.th the first of these bytes, B_AllRAY+l 
with the second, and B.:_ARRAY+2 with the third. If the assembler assigns the 
offset""adtlress 0200h to B_ARRAY, then memory would look like this: 

' ' 
Symbol 

B ARRAY 

B ARRAY+l 

B ARRAY+2 

Address 

200h 
201h 

202h 

Contents 

I Oh 

20h 

30h 

In the same way, an array of words may be defined. For example, 

W ARFJ,y ow 1000,40,29887,329 

sl'ls up <in array of four words; with initial values 1000, 40, 29887, anti 329. 
The initial word is associated with the name W_ARRAY, the next one with 
\\'_ARRAY + 2, the next with W _ARRAY+ 4, and so on. If the array starts at 
030011, it will look like this: : 

Symbol Address Contents 

w A"i<i<.AY 0300h lOOOd -
w /i.?.."i<..l\Y.._2 0302h 40d -
w !'RP.A Y + 4 0304 29887d 
W ARRAY+6 0306h 329d 

High and Low Bytes of a Word 

Sometimes we need to refer to the high and low bytes of a word 
variable. Suppose we define 

WO!l.Dl cw 

The low byte of WOHD 1 contains 34h, and the high byte contains 12h. The 
low byte has symbolic address WORD1, -and the high byte has symbolic­

. address WORDl+I. 

Character Strings 

An array of ASCII codes can be initialized with a string of character~. 
for example, 
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LETTERS 

is equivalent to 

.LETTERS 

DB 

DB 

'ABC' 

41H,42H,43H 

Inside a string, the assembler differentiates between upper and lower 
case. Thus, the string "ab£" is translated into three bytes with values 61h, 
62h, and 63h. · 

It is possible to combine characters and numbers in one definition; 
.for example, 

MSG Db 'HELLO', OAH, OOH,'$' 

is equivalent to 

MSG DB 48H,45H,4CH,4CH,4FH,0AH,ODH,~4H 

To make as<embly language code easier to under~tand, it is often 
desirable to use a symbolic nai:ne for a constant quantity. 

EQU (Equates) 

To assign a name to a constant, we can use the EQU (equates) 
pseudo-op. The ;yntax is 

consr ,)nt 

h>r e"arnplc, the ~latl•m1:nt • 

a;signs th1: name !.F to 0.\11, tlie A.'>CIJ LOdl: nf 1h1: lin1: feed character. The 
name l.f may now he med in place of O.'\h .mywlwrl· m the progr~m. Thus, 
the assembler tramlates the instructions 

l~~;V DL, vAH 

and 

1·1•_':V DL, 1.F 

into thl' sanll' m;icliine instruction. 
Tile ~yml)()I (>n the right of an EQU can ;ilso be a ~Iring. For example. 

Then instead of 

we could say 

Nute: no memory h allocated for EOU na;m:"( 
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Figure 4.1 MOV AX.WORD1 

4.5 
A Few Basic 
lnstrudions 

4.5.1 

MOVand XCHG 

Figure 4.2 XCHG AH.BL 

Before After 

0006 0008 

AX AX 

0008 I ! 0008 I 
~-0_1~~~~~~~~~~~~w_o_R_o_1~--' 

There are over i hundred instructions in the instruction set for the 
8086 CPU; there arc also instructions designed especially for the more ad­
vanced processors (sec Chapter 20). In this section we discuss six of the most 
useful. instructions for transferring data and doing arithmetic. The instruc­
tions we present can be used with either byte or word operands. 

In the following, WORDI and WORDZ are word variables, and 
BYTEI and BYTE2 are byte variables. Recall from Chapter 3 that AH is the 
high byte of register AX, and BL ~s the low byte of BX. 

The MOV Instruction is used to transfer data between ref:bters, be­
tween a register and a memory location, or to move a number directly into 
a regis_ter or memory location. The syntax is 

MOV destination,source 

Here are some examples: 

MvV AX,WQRDl 

This reads "Move WORDl to AX". The content\ of register AX are replaced 
by the contents of memory luc;1tic>n WORD!. The content\ of WORD! arc 
unchanged. In other '''""I', a c"py of \VORDI h ~cnt to ,\X (l'igure 4. IJ. 

MOV 1-.X, 2.Y. 

AX gets what wa~ previou~ly in BX. BX is unchanged. 

MOV Jl.H, 'A' 

Before After 

I. 1A 00 J 05 00 

AH AL AH AL 

oo- 05- 00 lA 

BH BL • BH BL 
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Table 4.2 Legal Combinations of Operands for MOV and XCHG 

MOV 

Source Operand 
7 General register 

S,egment register 

Memory location 

Constant 

XCHG 

Source Operand 

General register 

Memory location 

Destination Operand 

General 
register 

Segment Memory 
register location 

yes 

yes 

yes 

yes 

yes 

·no 

yes 

no 

Destination Operand 

General Memory 
register location 

yes 

yes 

yes 

; no 

yes 

yes 

no • 

yes 

Constant 

no 

no 

no 

no 

This is a move of the number 04 lh (the ASCII co<lc of "A'') into register AH. 
The previous value of AH is overwritten (replaced by new va.lue):v 

The XCHG (exchange) operation is used to exchange the contents 
. of two registers. or a register and a·memory location. The syntax is 

X.CHG destination,source 

. An example is 

XCHG AH,BL 

This instruction swaps the contents of AH and 13L, so that AH contains what 
was pTeviously in 13L al1d 13L contains what was originally in AH (Figure 4.2). 
Another example ·is · · · ·· 

XCHG · AX, WORDl , 

which swaps the contents of AX a~d memory location WORDl~ 

Restrictions on MOV and XCHG 

For technical rtasc.ns, there Me a few restrictions on the use of MOV 
and XCHG. Table 4.2 shows the J!lowable combinations. Note in particular that 
a MOV or XCHG between memory locations is not allowed. For example, 

ILLJ::GAL: MOV WO!,fll,\'IORD2 

but we can get around this restriction by using a regis~er: 

MOV AX,WORD2 

t-:ov \oiORDl. AX 
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Figure 4.3 ADD WORD1,AX 

4.5.2 
ADD, SUB, INC, and DEC 

Figure 4.4 SUB AX,DX 

Before ·A~er 

01BC 01BC ·I 
AX 

0523 .!. 060F 

WOR01 WOR01 

The ADD and SUB instructions are used to add or subtract the con. 
tents of two registers, a register and a memory location, or to add (subtract) 
a· number to (from) a register or memory location. The syntax is 

ADO destination,source 
SUB destination,source 

For example, 

J\[';[l WORDl, l\X 

This in)truction, "Add AX to WORD!," causes the contents of AX and mem­
ory wor.d WORD! to be added, and the sum is stored in WORD!. AX is 
unchanged (figure 4.3). 

SUB AX,DX 

In this example, "Subtract DX from AX," the value of DX i5 ~ubtractl'd from 
ttie value of AX, with the difference being stored in AX. DX is unchanged 
(Figure 4.4). 

Table 4.] Legal Co!"binations of Operands for ADD and SUB 

Destination Operand 

Source Operand 

General register 

Memory location 

Constant 

Before 

0000 I 
AX 

B 
OX 

General register Memory location 

yes 

yes 

yes 

After 

FFFF 

AX 

G 
ox 

ye~ 

no 

yes 
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1=1gure 4.6 DEC BYTE1 
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Before After 

0003 

WOR01 WOR01 

ADO BL,5 

This Is an additicm of the number 5 to the contents of register BL. 
As was the case with MOV and XCHG, there are some restrictions 

on the combinations of operands allowable with ADD and SUB. The legal 
ones are summarized in Table 4.3. Direct. addition or subtraction between 
memory locations is illegal; for example, 

ILLEGAL: ADD BYTE1,BYTE2 

A solution is to move BYTE2 to a register before adding, thus 

MOY AL,BYTE2 
ADD BYTEl,AL 

; AX gets BYTE2 

;add it to BYTEl 

INC (increment) Is used to add 1 to the contents of a register or 
memory location and DEC (decrement) subtracts 1 from a register or memory 
location. The syntax is 

.JNC destination 
DEC destination 

For example, 

INC WORDl 

adds t to the content~ or WORDl (fi8ur~ 4.SJ. 

D£C BYTEl 

subtracts I from variable BYTEl (Figure 4.6). 

Before After 

B FFFO 

BYTE1 BYTE1 
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Figure 4.7 NEG BX 

4.5.3 
NEG 

4.6 

Before After 

0002 FFFE 

BX BX 

SEG is used to negate the contents of the destination. NEG does 
this by replacing the contents by its two's. complement. The .syntJX is ' 

NEG destination 

The destination may be a n:gistcr or memory loc;ttion. for example, 

\ 
m:gJtcs the cuntl"llb "f HX (Figure 4. 7). 

Type Agreement of Operands 

Tiu! upcrJmb uf !!11• prl'Ct:(!1r11; twn-op(•r.11hl i11strnctio11 mml be ot 

the same type; that is, bnth byte~ (Jr wore.ls. Thus ,111 imtrm:llon such JS , ~ 

:-;C"J AX, ~Y!El ; i ~: ~g_a l 
\ 

is not allowed. I Iowcvcr, the assembler will alee pt both of the following 
instructions: 

;md 

In the former case, the asseml-ler rc.:sons that ;iilc.:: the dc~tin;:t;c.n AH is a 
byte, the source must be a byte, and it moH:S 41h intvAH. In the lattercasef 
it assume.s that because the deslinatio11 is a word, so is the·source, aml it 
moves 0041h into A:X.. · 

Translation .of To give you a feeling for the preceding instructions, we'll translate 
High-Level Language some high-level Jangu<tge assignment statements into as~embly language. 

A bl . Only MOV, ADD, SUH. INC, DEC, and NEG are used, although in some cases 
to ssem Y a better job could be done by using instructions that are covered later. In 
Language the dbcussion, A am.I 13 arc word variables. 

Statement 

B=A 

Translation 

MOV AX,A 
MOV B, AX 

:move A into AX 

;and then into B 

As was poii'it.ed out earlier, a direct mcrr.ory-mcmory move is illegal, so we 
must move the con ten ls of A into a register before moving it to B. 
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A=S-A M'.:>V AX,5 ;put 5 in AX 

SUB AX,A ;AX contains :, - A 

MOV ··A,AX ' ,;put it in A 

This example illustr~tes one approach to translating assignment statements: 
do the arithmetic in a register-for example, AX-then move the result into 
the destination variable. In this case, there is another, shorter way: .. ' ...::-·~-. 

NEG A. ;A ~ -A 

ADD A,_ 5 

The next example ~hows how to do m~ltiplication by a comtant. 

A = B - 2 x A MOV AX, B ; AX has B 

Slll3 AX,A 

SUl3 AX,A 

MOV A,A:< 

;AX has B - A 

;AX has B - 2 x A 

; tn:..lvt? r·~$ul t lo A 

• · Chapt~r 3 noted that machine language programs consist ot code, 
data, and stack. Each part occupies a memory segment. The same organiz11-
tion is reflected in an assembly language program. This time, the code, data, 
and srock are structured as program segments. Each program segment is trans­
lated into a memory segment by the assembler. 

We will use the simplified segment definitions that were introduced 
for the Micro~oft Macro Assembler (MASM), version 5.0. They are disrmwd 
further in Chaptei 14, along with the full segment definitions. 

The size of code and data a program can have Is determined ll; 
specifying a memory modCl using the .MOLJEL directive. The syntax h 

. . 

.MODEL mP.mu;y_moucl 

The most frequently used memory model~ are SMALL, MEDIUM, COMPACT. 
and LARGE. They arc dc\criucd in Table 4.4 .• Unless there is a lot of wde ci~ 
data, the appropriate model is SMALL. The .MODEL directive should rn11\c· 

before any segrnent definition. 

Table 4.4 Memory Models 

/Model 

SMALL 

MEDIUM 

COMPACT 

LARGE· 

HUGE 

Description 

code 1n one segment 
data 111 one segment 

code 111 more than one segment 
data 1n one segmen~ 
code 1n .one segment 
data in more_ than one _segment 

code in more than one segment 
data.in more than one 1segmen,t/ 
no array larger than 64k byte~ 

code in more than one segment 
data in more than'one segment 
arrays may be larger than 64k bytes 
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4.7.2 
Data Segment 

4.7.3. 
Stack Segment 

4.7.4 
Code Segment 

A program's data segment contains all the variable deflnlUons. 
Constant definitions are often made here as well, but they may be placed 
elsewhere ln the program since no memory allocation ls involved. To declare 
a data segment, we use the directive .. DATA, followed by variable and constant 
declarations. For example, 

.DATA 
WOROl 
W0RD2 
MSG 
MASK 

ow 2 
DW 5 
DB 'THIS IS A MESSAGE' 
EQU 100100105 . 

The purpose of the stack segmmt declaration ls to set aside a block 
of memory (the stack area) to store the stack: The stack area should be big 
enough to contain tlie stack at Its maximum size. The declaration syntax ls 

.STACK size 

where slzi Is an optional number that spedfies the stack area size In bytes. 
For example, 

.STACK lOOH 

sets aside lOOh bytes for the stack area (a reasonable size for mosJ applica­
tions). If size Is omitted, 1 KB ls set aside for the stack area. 

The code stgment contains a program's lnstNctlons. The·dec-
larat_lon syntax ls · · 

.CODE name 

. where name Is the optional name of the st!gment (there ls no need for a 
name In a SMAll program, because the assembler wlll generate an error). 

Inside a code segment, instructions are organized as procedwes. The 
simplest procedure definition ls 

name PROC 

;body of the procedure 
name ENOP' . · 

where name Is the.name ,of the procedure; PROC and ENDP are pseudo-ops 
that delineate the procedure. 

Here Is an example of a code segment deflnltion: 

.CODE 
t9>IN PROC 
;main procedur~ instructions 
MAIN ENDP 
;other procedures go here 
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'!nput and Output 
Instructions 

4.8.1 
INT 21h 

Chapter 4 Introduction to IBM PC Assembly Language 67 

Now that you have seen all the program segments, we can construct 
the general form of a .SMALL model program. With minor variations, this 
form may be used in most applications: 

.MODEL SMALL 

. STACK lOOH"' 

.DATA 
;data definitions go here 
.COD,E: 
MAIN PROC 
;instructions go here 
MAIN EllDP 
;other procedures go here 

-END MAIN 

The last line- in the program should be the END directive, followed by name 
of the main procedure. 

- In Chapter 1, you saw that the CPU communicates with the periph: 
erals through 1/0 registers called I/0 ports. There are two instru"ctions, IN and 
OUT, that access the ports directly. These instructions are used when fa.~t 110 
ls essential; for example, in a game program. Howev~r. most applications 
programs do not use IN-and OUT because (1) port addresses vary among 
computer models, and (2) it's much easier to program 1/0 with the service 
routines provided by the manufacturer. 

There are two categories of 1/0 service routines: (1) the Basic In­
put/Output System (BIOS) routines and (2) the DOS routines. The BIOS rou­
tines are stored in ROM and interact directly with the 1/0 ports. In Chapter 
lZ, we use them to carry oufbaslc screen operations such as moving thf. 
cursor and scrolling the screen. The DOS routines can carry out more com­
plex tasks; for example, printing a character string; actually they use the 
BIOS routines to perform direct 1/0 operations. 

The INT Instruction 

To invoke a DOS or BIOS routine, the INT (interrupt} instruction is 
used. It has the format 

INT interrupt_number 

where interrupt_number is a number that specifies a routine. For example. 
INT 16h-invokes a BIOS routine that performs keyboard input. Chapter i S 

. covers the JNT_instruction in more detail. In the following, we use a particular 
DOS routine, INT 2lh. 

INT 21h may be used to Invoke a large number of DOS functions 
(see Appendix C); a particular function is requested by placing a function 
number in the AH register and invoking INT 2lh. Here we a~ interested ir, 

·the following functions: -- · · ' 
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Function number 

1 

2 

Routine 

single-key input 
single-character outputv 

9 character string output 

INT 21h functions expect input values to be in certain registers and retur 
output values in other registers. T!1ese are listed as we describe each functior 

Function 1: 
Single-Key Input 

Input: AH =I 
Output; AL = ASCJI code if character key b pressed 

= 0 if non-character key is pressed· 

To invoke the routine, execute these instructions: 

MO'/ AH, l 

I~IT 2lh 

; input key function 
;ASCII code in AL 

The processor will wait for the "user to hit a key if ne<:es~ary. If a t.:hilra<:tci 
key is pressed, AL gets its ASCII code; the character is also displayed on tht' 
screen. If any other key is pressed, such as an arrow key, Fl-FIO, and so on! 
AL will contain 0. The instructions following the INT 21 h can examine Ai 
and take appropriate action. : 

Because INT 2lh, function I, doesn't prompt the user for input, h< 
or she might not know whether the computer is waiting for input or i~ 

occupied by some computation. The next function can be used to genei"Jjtt 
an input prompt. 

~na~n~ • 
Display a character or execute a control function 

Input: AH i = 2 
DL · = ASCII code of the display char<iLt.:r ur _ 

L::_ 
lOlltrnl d1<1racter · 

Output: AL · "'ASC:ll L"'Jc ol the displ,iy d1.1rJLt.:1 or 
lUll!ruJ ci1dr<Ktt"r 

To display a character with this functiQn, we put its ASCII code in DL. Fo1 
example, the following instructions cau~e a question mark to appear 011 c/H 

screen: 

MCV AH,2 

~ov ~L, '?' 

INT 2lhv 

;disp1ly character 1~nction 

;chdract.er is '?~ 

;di~play character 

After the character is displayed, the cursor advances to the next position or: 
the line (if at the end of the line, the cursor mov~s to the beginning of thE 
next line). - · ' · 

Function 2 may also be used to perform· con'trol functions,_}!_ DJ 
contains fueASCll cOde ofac~rrtrofefiaracieC,iNT 2Ih causeSthe c_qntro 
function to be performed. The principal control characters are as follbws: 
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ASCII code 1Hex) 

7 
a· 
,9 

A 

D 

Symbol 

BEL 
·BS ,.-

CR 

Function 

beep (sounds a tone) 
backspace 
tab 
line feeG! (new line) 
carriage return (start of 
current line) 

1 

On execution, AL gets the ASCII code of the control character. 

69 

Our first program will read a character from the keyboard and display 
it at the beginning of the next line. 

We start by displaying a question mark: . 

MOV AH,2 
MOV'DL, '?' 

INT 2.lh 

·;display character function 
;character is '?' 
;display character 

The second instructlon moves 3Fh, the ASCII code for"?", into DL. 
.. Next we read a character: 

MOV AH,l 
INT 2lh 

;read character function 
; character in AL 

Now we would like:to display the character on the next line. Before 
doing so, the character must be saved in another register. (We'll see why in 
a moment.) 

'/ 
MOV BL,AL ;save it in BL 

~ . 
To move the cursor to the beginning of the next line, we must execute a 
carriage return and line feed. We can perform these functions by putting the 
ASCII codes for th~m in DL and executing INT 21 h. 

MOV AH,2 
MOV DL,ODH 
INT 2lh 
MOV DL,OAH 
INT 2lh 

;display charact~r function 
; carriage return 
;execute carriage r~turn 

;line/feed v" 
;execute line feed 

The reason why we· had to move the input character from AL to BL is that 
the INT 21 h, function i, changes AL 

Finally"wc ar~ ready tO display the character: 

MCV DL,BL 
INT 2lh 

;get charar.ter 
~ ' -_"';;and __ display it 

Here is tile complete program: 

,Progra'!1 L!sting PGM4_ 1.ASM 
TITLE PGM4_1: ECHC PROGRAM 

. MODEL SMALL -

. STACK lOOH 
··.CODE 

MAIN PROC 

: display ·prompt· 
MClV AH,2 ;display character fJnction 
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4.10 
Creating and 
Running a Program 

MOV DL,' ?' 
INT 21H 

;input a character 
MOV AH,l 
INT 21H. 
MOV BL,AL 

;go to a ne~ line 
MOV AH, 2 

MOV DL,QDH 
INT 21H 
MOV DL,OAH 
INT 21H 

;display character 
MOV DL,B~.I 
INT 21H . 

; return to DOS 
MOV AH, 4Cfl, 

INT 2)H, 
MAIN ENDP 

END MAIN" 

;character is '?' 
;display it 

;read character function 
; character in AL 
;save it in BL 

;display character function 
;carriage return 
;execute carriage return 
; line feed 
;execute lir.e feed 

;retrieve character 
;apd display it 

; DOS exit fun ct ion 
;exit to DOS 

Because no variables were used, the data segment was omitted. 

Terminating a Program 

The last two lines in the MAIN procedure require some explanation. 
When a program terminates, it should return control to DOS. This can te 
accomplished by executing INT 2lh, function 4Ch. 

We are now ready to look at the steps involved in creating and 
running a program. The preceding program is used to demonstrate the pro­
cess. The four steps are (Figure 4.8): 

I. Use a text editor or word processor to create a source prograiln 
file. 

2. Use an assembler to create a machine language object file. 

3. Use the LINK program (see description later) to link one or more 
object ·files to create a run file. 

4. Execute the run file. 
In this demonstration, the system files we need (assembler and linker, 

are in drive C and the programmer's djsk is in drive A. We ~e A the defaul; 
drive so that the flies created will be stored on the programmer's disk. 

Step 1. Create the-source Program File 

We used an editor to create the preceding program, with file nam! 
PGM4_1.ASM. The .ASM extension is·the conventional extension used tc' 
identify an ass·embly language source file. 
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Editor 

.ASM 
file 

Assembler 

.. 

.OBJ 
file 

Linker 

.EXE 
file 

create source program 

assemble source 
program 

link object program 

Step 2. Assemble the Program 

We use the Microsoft Macro Assembler (MASM) to translate th<! 
source file PGM4_1.ASM into a machine language object file called PGM 

· 4_1.0BJ. T~e simplest; com~and is (user's response appears in boldface): 
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A>C:HASN PGM4_l; 

Microsoft (R) Macro >.ssembler Version s:10 
Copyright (Cl Microsoft Corp 1981, 1988. All rights reserved. 

50060 + 418673 Bytes symbol space free 
0 Warning Errors 
0 Severe Errors 

;.>C:MASM PGM4_1 

After printing copyright Information, MASM checks the source file 
for syntax errors. If it finds any, it will display the line number of each error 
and a short description. Because there are no errors here, it ·translates the 
assembly language code into a machine language object file named 
PGM4_1.0BJ. 

The semicolon after the preceding command means that we don't 
want certa_in optional files generated. Let's omit it and see what happens: 

MJ crosr,: ·. ( ~ l ~:aero Assembler Ver s '. vn 5. l 0 

Cc-pyr:-:;r.;: (Cl Microsoft Corp 198l, 1S38. All rights reseP1ed. 
l)b )ect f: l :narr,e ~ PGM4 l. CBJ] : 

Scurc"' liz;:ing (Nvl..LSTJ: PGM4_l 
,--, )S!>-refcrcnce (NUL.CRFJ: PGM4_1 

~jOGO - 4:667J Byte~ syrr.bcl s;.;:i~«:, f:-.'e 
0 l~a=:: ... r.:; F.:r:::ors 

0 Severe Errvr.:; 

This time MASM prints the names of the files it can create, then waits for 
m to supply names fur the files. The default names arc enclosed in square 
brJckcts. To acccpt a n:irnc, just press return. The default name NUL means 
that no file will be crc.1ted unless the user does spccify a name, so we reply 
wi1h the name PGM4_1. 

The Source Listing File 

The source foting file (.I.ST file) is a linC'-nurnbcrcd text file that dis· 
plays assembly language cude and the corresponding rnJchinc cod<' sidc by side, 
and gives other inforrnJtion :ibout the program. It is c~pcci;illy helpful for de­
bu~ing purpml·~. bec;1usc M.\S\.f's error mesSJge$ refer to Er;c numbers. 

The Cross-Reference File 

The cross-referrncc filt: (.CRF file) is a Ji~ting of names that ;ipp-;~ar 
in the program and the line numbers on which they occur. It is useful in 
loc<iting variables a1,1d l;ihels in a large program. 

Examples of .LST and .CRF files are shown in Appe11dix D. along y 
'Nith other MASM options. 
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Step 3. Link the Program 

The ,OBJ file created in step 2 is a machine lanb'tlage file, but 1t cannot. 
he executed because it doesn't have the proper run file form;it. In p:irticul:ir, 

1. because it is not known where a program will be loaded in mem­
ory for execution, some machine code addresses may not have 
been filled in. · 

2. some names used In the program may not have been defined in 
the program. For example, it may be necessary to create several 
files for a large program and a procedure In one file may rdcr to 

• a name defined in another file. 

The LINK program takes one or more object files, fills in any missing 
addresses, and combines the object files into a single executable file (.EXE 
file). This file can be loaded into mem0ry arid run. 
To link the pro~ram. type 

!.>C:LINK PGM4_l; 

A~ bcfc,re, if the sc·micr.~. in is omitted, the linker will prompt you for names 
of thl' cutput hi•'~·generatcd. See Appendix D. · 

· · Step 4. Run the Program 

To run it, just type the run file name, with or w?tho11t th.: .EXE 
extension. 

l.>PGM4_1 

?A 
A 

Th" r·•<.,•1:im pri:•:' ;a ... ! .• • ~!hl w;•ils for u~ to cnt.:r ;i chillJCkr. \Ve entc·r "A" 

and lh" pr•·;:~·-·"'" 'i"' ~it <in the ne,.-t line. 

In our firs< prngra1n. we 11 ... ed IN1 Zlh, function~ 1 i1nd 2, to read 
and display a single char;icter. lkr .. i~ another l>JT 211~ fum !il::1 that can he 
used to display a character sl rlPg: · 

INT 21h, Function 9: 
Oisplay a String 

Input: DX -~ nHwt :iddrcss of string. 
Th<' string must end with a 'S' ch;ir:ictcr. 

I 
I 

~.~~~~~-~--~~~J 

The "S" marks the end of the string and is 1101 dhplJ)'l'l.I. H till'~; ri:1g c11nlain~ 
the ASCII code of a control character, the control funLtion is performed. 

· To <lemonstrilte thi~ function, we will writl· a pro<;'"•·' that prints 
"HE~LO!" on the screen. This message is <ldined in the data segmL'nt as 

MSG DB 'HEI.LO!$' 
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The LEA Instruction 

INT 2lh, function 9, expects the offset address of the character string 
to be In DX. To get it there, we use a new instruction: / 

LEA destination, source 

where destination is a general register and ~urce is a memory location. LEA 
stands for "Load Effective Address." It puts a copy of the source offset address 
into the destination. For example, 

LEA DX, MSG 

puts the offset address of the variable MSG into UX. . 
Because our second program contains a data segment, It will begl11 

with instructions that initialize DS. The following paragraph explains why 
thelt: instructions are needed. 

Prograf!1 Segment Prefix 

When a program is loaded in memory, DOS prefaces it with a 256-
byte program segment prefix (PSP). The PSP contains information about 
the program. So that programs may access this area, DOS places its segment 
number in both DS and ES before executing the program. The result is that 
DS does not contain the segment number of the data segment. To correct 
this, a program containing a data segment begins ":'fth these two instructions: 

MOV AX,@DATA 
MOV DS,AX 

-·· @Data is the name of the data segment defined by .DATA. The assembler7 
_.translates the name @DATA into a segment number. Two i11structions are 
_ needed because a number (the data segment number) may not be moved 
_directly into a segment register. 

With DS initialized, we may print the "HELLO!" message by placing 
its address in DX and executing INT Zlh: 

LEA DX,MSG 
MOV AH,9 
INT 2lh 

; get message 
; display string function 
;display string 

Here ls the complete program: 

Program Listing PGM4_2.ASM 
TITLE PGM4_2: PRINT STRING PROGRAM 
.MODEL SMALL 
.STACK lOOH 
.DATA 

MSG 
.CODE 

DB 'HELLO!$' 

MAIN PROC 
; initialize DS 

MOV AX,@DATA 
MOV DS,AX 

; display mes'sage 
• LEA DX, MSG. 

MOY AH, 9. 
INT 2lh 

; cet ucn to DOS 
MOY AH,4CH 

; initialize OS 

; get message 
; display string fu·nction 
; display message 
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INT 21h 

MAIN ENDP 
END MAIN 

And here is a sample execution: 

A> PGM4.,:.2 
HELLO! 

;DOS exit 

We will now combine most of the material covered in this chapter 
into a single program. This program begins by prompting the user to enter 
a lowercase letter, and on the next llne displays another message with the 
letter In uppercase. For example, 

SNTER A LOWERCASE LET.TER: 
IN UPPER CASE IT IS: A 

We use EQU to define CR and LF as names for the constants OOH 
and OAH. 

CR EQU OOH 
LF EQU OAH 

The messages and the Input character can be stored in the data seg-
~ · · ment like this: · 

MSGl DB 'ENTER A LOWERCASE LETTER: $; 

MSG2 DB CR,LF, 'IN UPPER CASE IT IS: ' 
CHAR DB:?,'$' 

In defining MSGZ and CHAR, we have used a helpful trick: because 
the program is supposed to display the second message and the letter (after 
conversion to upper case) on the next line, MSG2 starts with the ASCII codes 
for carriage return and line feed; when MSG2 is displayed with INT 21h, 
function 9, these control functions are executed and the output Is displayed 
on the next line. Because MSG2 does not end with 'S', INf 21h goes on and 
displays the character- stored In CHAR. 

Our.program begins by displaying the first message and reacting the 
character: 

LEA OX,MSGl 
MOV AH,9 
'IN't 2lh 
MOV AH,l 
INT 2lh 

; qet first message 
;display strinq function 
/display .first message 
;read character function 
~read a small letter into.AL 

· Having read a lowercase letter, the program must convert It to upper case. 
In the ASCII character sequence, the lowercase letters begin at 61h and the 
uppercase letters start at 4lh, so subtraction of 20h from the contents of AL 
does the conversion: ' 

SUB AL,20H ·.;convert it to upper case 
- MOV. CHAR, AL ,. ; ;and store it · 

, No~ the program displays the second message and the uppercase letter: 
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LEA flA,MSG2 
MOV A!!,9 

!N7 2ch 

;get second message 
;display string function 
;display message and uppercase letter 

Hrre is the complete program: 

'Program listing PGM4_3.ASM 
TITLE PG~4 3: CASE CONVERSION PROGRAM 
• MODEL SMALL 

. S7ACK l rJOH 

.D.'1.TA 

MSGl 

CR 

LF 

DB 

EOLl 
EQU 
'ENTER J'. 

ODH 
OAH 

LOWEP. CASE LETTER: $' 

MSG/. DB OOH, CA!-l. I IN UPPER CASE IT IS: I 

CHAR CB ~:'I I$' 

.CODE 
~A.-!~ PROC 
; :..r:itial ize DS 

MOV 
MOV 

AX,~DATA 

DS,AX. 
i~rint use~ ~ro~p~ 

UX, ~~.SG t 

Aii, ; 

dH 

;get data segment 
; initialize DS 

; gf!t f i r:·t message 
;display string funcLion 
;di~play first message 

;ir.put ~ charact~r and convert tc upper case 
:-iOV AH, 1 
INT 21 H 

SUB AL, 20H 
MCV CHAR, A~ 

;di5play on the .next-
LEA OX, MSG2 
:1ov . AH,_f 
Ii~T 2lH· ' 

;DOC exit 
MCV AH,4CH 
cNT 21H 

MAIN END:> 
END t-"u~, ~H 

summary 

;read character function 
;read a small letter into AL 
;con~ert it to upper case 
;and store it 

line 
;get second message 
;display string function 
;display mes~a1e and upper case 
;letter in front 

;DOS exit 

• Assembly language programs are made up of statements. A state­
ment is either an i11~t.mcti.on to be cxeculcd by the computer, or 
a directive for lhr as~cmhler. 

Stalcmcnt~ have name, oper;.tion, operand(s), and comment 
fields. 

• A symbolic name can contain up to 31 characters. The characters 
can be letters, digits, and "c:'ertain special symbols. 

• Numbers may be written in binary, decimal, or hex. 

• Characters and character strings must be enclosed in single or 
double quotes. 
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• · Directives on and DW are ~sed to define byte and word variables, 
respectively. EQU can be used to give names to constants. 

• A program generally contains a code segment, a data segment, 
and a stack segment. 

• MOV and XCI-IG are used to transfer data. There arc some restric­
tions for the u~e of these instructions; fur example, they may not 
operate directly l.Jctween 1i1emory locations. 

• ADD, SUB, INC, DEC, and NEG are some of the basic arithmetic 
' instructions. • · 

• There arc two ways to do input and output on the IBM PC: (1) by 
direct communication with 1/0 devices, (2) by u5ing BIOS or DOS 
interrupt routines. 

• The direct method is fastest, but h tcuious to program and 
depends on specific hardware circuits. 

. ' 
Input and output of 1.:haracters and strings may b..:? done by the 
DOS routine INT 21.h. 

· • 11\"T 2lh, function I, causes a keyboard character to be read into AL. 

• l!'iT 2lh, functio11 2, causes the character whose ASCIJ code Is in 
DL to be displayed. if DL contains the code of a control charac­
ter, the control function is performed: 

• INT 21h, function 9, causes the string whose offset audress is in 
DX to be displayed. The string must end with a "S" chatacter. 

Glossary 

·array 
assemlJlcr directive 

code seb'Tllcnt 

.CRF file 

data segment 

destination operand 

.EXE file 

instruction 

memory anodcl 

A sc.quence of m.::mory bytes or words 

Dir.:i:ts the ;h~cmblcr to perform some 
~pccific ta~k · · 

·!'art of the program that hulds the 
instructions 

A file created by the asse111bler that lists 
na;Jies ·111at appeM in a program and line 

· numbers where they occur 
Part of the µrogram lhat hulds variabll·s 
First operand in an in~truction-receives 
the result 

Same as run file 

A statement that the assembler translates 
to machine code 
A linoe·numbercd tile created by the •hscm· 
bier that displays assembly language 
code, machine code, and other informa­
tion about a program 
Organization of a program that indicates 
~he amount of code and data 
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object file 

Program segment prefix, 
PSP 

p~eudo-op 

run file 

source operand 

source program file 

stackAegment 

variable 

New Instructions 

ADD 
DEC 
INC 

New P$eudo-Ops 

.CODE 

.DATA 

Exercises 

The machine language file created by the 
assembler from the source program file 
The 256-byte area that precedes the pro­
gram In memory--contains information 
about the program 

Assembler directive 

The executable machine language file 
created by the LINK program 
Second operand In an instruction- · 

usually not changed by the instruction 
A program text file' created with a word 
processor or text editor 
Part of the program that holds the run-
time stack · 

Symbolic name for a memory location 
that stores data 

INT 
LEA 
MOV 

.MODEL 

.STACK 

'NEG 
SUB 
XCHG 

EQU 

I. Which of the following names are legal in IBM PC assembly 
language? 
a. TWO WORDS -
b. ?l 

c. Two words 

d . . @? 

e. $145 

f. LET'S _GO 

g. T c 

2. Which of the following are legal numbers? If they are legal, tell 
whether they are binary, decimal, or hex numbers. 
a. 246 
b. 246h 
c. 1001 

d. 1,101 

e. 2A3h 
f. F~Eh 
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g. OAh 
h. Bh. 

i. 'i110b 

3. If It Is legal, give d~t~ definition pseudo-ops to define each of the 
following. 
a. A word variable A initialized to 52 
b. A word variable WORDl, uninitializ.ed 
c. A byte variable B, initialized to 25h 
d. A byte variable Cl, uninitialized 
e. A word variable WORD2,.initialized to 65536 
f. A word array ARRAYI, initialized to the first five positive 

integers (i.e. 1..:s) 

g. A constant BELL equal to 07h 
h. A constant MSG equal to 'THIS IS A MESSAGES' 

4. Suppose that the following data are loaded starting at offset OOOOh: 

A 
B 

c 

DB 
DW 
DB 

7 

lABCh 
'HELLO' 

a. G1v7 the offset address assigned to variables. A, B, and C. 
b. Give the c.ontents of the byte at offset 0002h in hex. 
c. ·Give the contents of the byte at offset 0004h in hex. 
d. Give the offset address of the character "O" in "HELLO. H 

5. Tell whether each of the following instructions is legal or illegal. 
Wl and W2 are word variables, and Bl and B2 are byte variables. 
a. 

b. 
c. 
d. 
e. 
f. 

g. 
h. 

MGV 

MOV 

MOV 

MOV 

XCHG 

SUB 

ADD 

ADD 

DS,AX 

DS,lOOOh 

.CS, ES 

Wl,DS 

Wl,W2 

5,Bl 

Bl,B2 

AL,25i 

i. MOV Wl, Bl 

6. Using only MOV, ADD, SUB, INC, DEC, and NEG, translate the 
following high·level language assignment statements Into assem· 
bly language. A, B, and C are word variables. 

a. A= B-A 
b. A:: -(A+ 1) 

c.- c'..A+B 
d. B=3x B+7 

e. A=B-A-1 
7. Write instructions (not a complete program) to do the following. 

a. Read a character, and display it at the T'.ext position on the 
same line. 

< • 

b. Read an uppercase letter (omit error checking), and display it 
at the next position on the same line in lower case. 
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Programming Exercises 

8. Write a program to (a) display a "?", (b) read two decimal digits 
who.se sum "is less than 10, (c) display them and their sum on the 
next line, with an appropriate message. 

Sample execution: 

?27 
'!'HE SlJM OF 2 .'\ND 7 IS 9 

9. Write a program to (a) prompt the user, (b) read first, middle, and 
last initials of a person's name, and (c) display them duwn the 
left margin. 

Sample execution: 

ENTER THRl::E INITIALS: JFK 

J 

K 

10. Write· a program to read one of the hex digits A-I', and <.lisplay it 
on the next line in decimal. 

Sample execution: 

E~TER A HEX ~:GIT: C 

IN DECIMAL IT rs 12 

11. Write a program to display a t 0 x 10 solid box of asterisks. 
Hint: declare a string in the data segment that specifies the box, 
and display it with INT 2lh, function 9h. 

12. Write a program to (a) display"?", (b) read three initials,(<;) dis­
play them in the middle of an 11 x 11 box of astc:ri5ks, and (d) 
beep the computer. 
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The Processor Status 
and the FLAGS. 
Registe~ 

Overview 

5.1 
The FLA GS Register 

One imi}ortant feature that distinguishes a computer from other ma­
chines is the computer's aQi_lity to make decisions. The circuits in the CPU 
can perform simple decision making based on the current state of the pro­
cessor. for the 8086 processor, the proce~sor state is implemented as nine 
individual bits called flags. Each decision made by the 8086 is based on the 
values of these flags. 

The flags are placed in the FLAGS register and they arc classified as 
either status flags or control flags. The status flai,;s reflect the result of a 
computation. In this chapter, you will see how :h.:y are affected by the 
machine instructions. Jn Chapter 6, you will S( ~ how they are used to im­
plement jump instrut:tions that allow progr· "" to have multiple branches 
and loops. The t:ontrol flags are ·USl.'CI to en.; Jk or disable certain operations 
of the processor; they are covered in later cl apkr~. 

In section 5.4 we introduce the DOS pit ;;ram DEBUG. We'll show 
how to use DEBUG to trace through a user progr;,111 and to display registers, 
!lags, and memory locations. 

Figure 5.1 'shows the FLAGS rc);istcr. The status flags are located 
in bits 0, 2, -!, 6, 7, and 11 and the control flags are located in bit~ 8, 9, and 
10. The other bits have 110 sii;nitkance. f\'ot<': it's not important to remember 

81 
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Figure 5.1 The FLAGS 
Register 

"15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I OF I OF j 1F I TF I SF I ZF I I AF I I PF I I CF I 

which bit is which flag-Table 5.1 gives the names of the flags and their 
symbols. In this chapter, we concentrate on the; status flags.· 

The Status Flags 

As stated earlier, the processor uses the status flags to reflect the 
result of an operation. For example, If SUB AX,AX is executed, the zero flag 
becomes l, thereby Indicating that a zero resl,llt was produced. Now let's get 

·to know the status flags. 

Carry Flag (CF) 

CF "' 1 if there is a carry out Crom the most significant bit (msb) on 
addition, or there Is a borrow into the msb on subtraction; otherwise, it Is 
0. CF is also affected by shift and rotate Instructions (Chapte~ 7). 

Parity Flag (PF) 

PF = 1 If the low byte of a result has an even number of one bits 
(even parity). It Is O if the low byte has,odd parity. For exampl~, if the result 
of a word addition Is FFFl.i.h, then the low byte contains 7 one bits, so PF "" 0. 

Table 5.1 Flag Names and Symbols 

Status Flags 

Bit Name Symbol 

0 Carry flag CF 

2 Parity flag PF 

4 Auxiliary carry flag AF 

6 Zero flag ZF 

7 Sign flag SF 

11 Overflow flag OF 

· Control Flags; 

Bit Name ~ymbo# 

8 Trap flag TF 

9 Interrupt flag IF 

10 Direction flag OF 
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Auxiliary Carry Flag (AF) 

AF = 1 if there is a carry out from bit 3 on addition, or a borrow into 
bit 3 on subtraction. AF is used in binary-coded decimal (BCD) operation!. 
(Chapter 18). - · 

Zero Flag (ZF) 

ZF = 1 for a zero result, and ZF = 0 for a nonzero result.• 

'Sign Flag (SF) 

SF = 1 if the msb of a result is l; it means the result is negative if 
you are giving a signed interpretation. SF = 0 if the msb is 0 . 

. Overflow Flag (OF) 

OF = l if signed overflow occurred, othcrwi~e it is 0. The meaning 
·of overflow is discussed next. 

The phenomenon of overflow is associated with the fact that the 
range of numbers that can be represented in a computer is limited. 

Chapter 2 explained that the (decimal) range of signed numbers that 
can be represented by a 16·1;>it word is -32768 to 32767; for an S·b'it byte 
the range is -128 to 127. For unsigned numbers, the range for a word is 0 
to 65535; for a byte, it is 0 to 255. If the result of an operation falls outside 
these ranges, overflow occurs and the truncated result that is saved will be 
incorrect. 

Examples of Overflow 

Signed and u'nsigned overflows are ind~pcndcnt phenomena. When 
we perform an arithmetic operation such as addition, there are four possible 
outcomes: (1) no overflow, (Z) signed overflow only, (3) unsigned overflow 
only, and (4) both si&ned and unsigned overflows. .· 

As an example of unsigned overflow but not signed overflow, sup· 
pose AX contains FFFFh, IlX contains 0001 h, and AlJD AX,BX is ex~cuted. 
The binary result is-

' -

1111111111111111 
+ 0000 0000 0000 0001 

1 0000 0000 0000 (J{J{)() 

, If we-are giving an unsigned interpretation, the correct ans\,1:r 1s 

lOOOOh = 6SS36, but this is out of range for a word operation. A I is cariicd 
out of the msb and the answer stored in AX, OOOOh, is wrong, so umigned 
overflow occurred. But the stored aniwer is correct as a signed number, for 
FFFFh = -1. OOOlh = 1, and FFFFh + OOOlh = -1 + 1 = 0, so signed overflow 
did not occur. 

As an example of signed but not unsigned overflow, suppose AX and 
BX bo~h contain 7FFFh, anp we execute ADD AX.BX. The binary result i~ 
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0111 1111 1111 H 11 
+ 0111111111111111 

1111 1111 1111 1110 = FFfEh 

The signed and unsigned decimal interpretation of 7HFh IS 32767. Thus for 
both signed and unsigned addition, 7FfFh + 7FFfh = 32767 + 32767 = 65534. 
This is out of range for signed numbers; the signed interpretation of the 
stored answer fFFEh is ~2. so signed overflow occurred. However, the un­
signed interpretation of FFFEh is 65534, which is the right answer, so there 
fs no unsigned overflow. 

There are two questions to be answered in connection with overflow: 
(1) how does the cru indicate overflow, and (2) how does it know that 
owrflow <Kcurrcd·! 

How the Processor Indicates Overflow 

The processor sets OF= 1 for signed overflow and CJ!= 1 for unsigned 
overflow. It is then up to the program to take appropriate action, and If 
nothing is done immediately the result of a subsequent instruction may 
ciuse the overflow flag to be turned off. · 

In determining overflow, the processor does not interpret the result 
:i~ either signed or unsigned. The action it takes is to use troth interpretations 
for each operation and to turn on CF or OF for unsigned overflow or signed 
overflow, rcspcctiwly. . 

It is the programmer who is interpreting the results. JC a signed in·, 
tcrpretation is being given, then only OF is of interest and CF can be ignored; 
conversely, for an unsigned interpretation CF is important but not OF. 

How the Processor Determines that Overflow Occu"ed 

M~~y·instructions can cause overflow; for simplicity, we'll limit the 
di~cussion to addition and subtraction. 

Unsigned Overflow 

On addition, unsigned overflow occurs when there Is a carry out of 
the msb. This means that the correct answer is larger than the biggest .un­
signed number; that is, FFFl'h for a word and FFh for a byte .• on subtraction, 
unsigned overflow occurs when there is a borrow into the msb. This means 
that the correct answer is smaller than 0. 

Signed Overflow 

O~ addition of numbers with the same slgn, signed ovl!rflow occurs 
when.the sum has a d.iffcrcnt sign. This happened in the preceding example 
when we were adding 7FFFh. and 7FFFh (two positive numbers), but got 
FFFEh .(a ne.iative result), · 

Subtraction of numbers with dlffert?nt signs ls like adding numbers 
of the same sign. For example, A ".' ( -B) :a A + B and -A -(+B) "' -A + -B. 
Signed overflow occurs if the .result has a .different sign than expected. See 
example 5.3, in the next section: . · 1 

In addltit>n of numbers With different signs, overflow Is impossible, 
because a sum lik~ A + ( -B) is really A - B, and because A and B are small 
enough to fit in the destination, so is A - ll. For exactly the same reason, 
subtraction of numbers with the' sam~ sign cannot give· overflow. 
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, 
Actually, the processor. uses the following method to set the OF: If 

the c;irries into and out of the msb don't matah-·that is, there js a carry into 
the msh but no carry out, ·or if there is a carry out but no ccy:ry in-then 
sigr:ied overflow ha~ occurred, and OF is set to 1. See example 5.2, in the 
next section. 

/ . 
In general, each time the procesmr executes an instruction, Ufo !lags 

are altered to reflect the re.suit. Howc...,er, ~ome instructions don't ?ffect any 
of the flags, affect only some of them, br may leave them undefined. Because 
the jump instructions studied in Chapter 6 dependbn the flag settings, it's 
important to know what each instruction docs to the flags. Let's return to 
the seven basic instructions intruduccJ in Chapter 4. They affect the flags 
as follows: · 

' 
Instruction 

MO'!/ XCHG. 

ADD/SUB 

INC!DEC 

NE(}," 

Affects flags 

none 
all 
all except CF 

all (CF = 1 unless result is 0. 
OF = 1 if word .:-oerand 1s 8000h. 
or byte operand is 80h) 

To, get you used to seeing how these instructions affect tile flags, we will do 
several examples. In each example, we give an instruction, the content~ of 
the operands, and predict the result and tlw settings of CF, l'l:, zr, SF, and 
OF (we Ignore AF because It is used only for rlCD arithmetic). 

Example S.l ADD AX.BX. wlwrC' AX contains Fl'ITl1. !IX contaim 
FFFFh. 

Solution: I FFFh 
+ FfFFh 
1 FFFEh 

The result stored In AX is FFFEh = 1111 111 l ' i 11 111 U . 

SF = 1 because the> msb is 1 . 

·PF = 0 lx>causr there are 7 (odd n1m1lier) or 1 hits in the low brtc 
of the result. 

ZF = 0 because the result is nonzcr<i. 

Cf~ 1 I>c;rnusc then: is a .carr; out of the msb on addition. 

Ot = 0 Kecause the sign of the stored rc~ult is the same as that of 
thl' nutnl>Ns bci11g added (a~ a binary addition, there is a 
carry into the msh and also a carry out). 

Exam1>1e ~.2 ADD i\l.,BL, whl'rt: AL co11tains 80h, !IL contains 80h. 

Solution: 80h 
+ROh. 
I OOh 
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The result stored in Al. is OOh. 

SF = 0 because the msb is 0. 

PF = 1 because all the bits in the result are 0. 

ZF = 1 because the result is 0. 

CF = 1 because there is a ca.rry out of the msb on addition. 

OF = 1 because the numbers being added are both negative, but 
the result is 0 (as a binary addition, tttere is no carry into 
the msb but there is a carry out). 

Example S.3 sun AX,IlX, where AX contains SOOOh and BX contains 
OOOlh. 

Solution: 8000h 
- OOO!h 

7HFh=Olll llll llll 1111 

The result stored in AX d 7f"FFh. 

SF = 0 because the hisb is 0. 

PF = 1 because there are 8 (even number) one bits in the low byte 
of the result. · • 

ZF = 0 because the result is nonzero. 
CF = 0 because a smaller unsigned number is being subtracted 

from a larger one. 

Now for OF. In a signed sense, we are subtracting a positive number from 
a negative one, which is like adding two negatives. Because tl'le result is 
positive (the wrong sign), OF = I. 

Example 5.4 INC AL, where AL contains FFh. 

Solution: Hh 
+ lh 
JOOh 

The result stored in AL is OOh. SF= 0, PF = 1, ZF = 1. Even though there 
is a carry out, CF is unaffected by INC. This means that if CF = 0 before 
tl1e execution of the instrm:tion, CF will still be 0 afterward. 

OF = 0 because numbers of unlike sign are being. added (there is a carry 
into the msb and also ;i carry out). 

Example 5.5 MOV AX, -5 

Solution: The rc~ult \torcd in AX is -5 = l'HBh. 

None of the flags arc ;iffec~.ed by MOY. 

Example 5.6 NEG AX, where AX contains 8000h. 
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Solution: 8000h = 1000 0000 0000 0000. 
one's complement= 0111 1111 1111 1111 

+1 
1000 0000 OOOb 0000 = 8000h 

The result stored In AX Is 8000h. 

SF = l, PF = l, ZF = 0. 
, CF = 1, because for NEG CF is always 1 unless the result is 0. 
OF = 1, because the result Is 8000h; when a number Is negated, 

we would expect a sign.change, but because 8000h is 
Its own two's complement, there is no sign change. 

In the next section, we introduce a program that lets us see the actual 
setting of the flags. · · · 

. The DEBUG program provides an environment in which a program 
may be tested. The user can step through a program, and display and change 
the registers and memory. It Is also possible to enter assFmbly code directly, 
which DEBUG converts to machine code and stores in memory. A tutorial 
for DEBUG and CODEVIEW, a more sophi~ticated debugger, n:iay be found 
in Appendix E. 

We use DEBUG to demonstrate the way instructions affect the flags. 
To that end, the following program has been created. 

Program listing PGM5_ 1.A5M 
'IITLE PGM5_l:C_HECK FLAGS 
;used in DEBUG t.o· check flag set.tings 
.MODEL SMALL 
.STACK lOOH 
.CODE 
MAIN PROC 

MOV AX,4000H ;AX - 4000h 
ADD, AX,AX • ;hX ~ SOOOh 
SUB.; AX,OFFFFH ;AX =· SOOlh 

-·~ . .> 

NEG• AX ;AX "' ]FFFh 
"'-

2 .ao<ioh INC' A1< ;AX 
MOV AH,4CH 
INT 21H ;DOS exit 

MAIN ENDF 
END Ml\IN 

. We ·assemble and link the program, producing the run ·file 
PGMS_l .EXE, which is on a disk in drive A .. In the following, the user's 
responses are in boldface. 

The DEBUG p1ogram is on the DOS disk, which Is in drive C. To 
enter DEBUG with our demonstration program, we type 

· C>DEBOG A:P<OMS_l .EX& 

-~DEBUG iesp0nds by•its prompt,"-", and waits for a comma~ to be entered. 
First, we can view the regiSters by typing "R". · 
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-R 
AX=OOOO BX=OOOO CX=OOlF DX=OOOO SP=OOOA BP•OOOO SI=OOOO DI=OOOO 
DS=OEDS ES=OEDS SS=OEES CS=OEE6 IP=OOOO NV UP DI PL NZ NA PO NC 
OEE6:0000 B60040 MOV AX,4000 

-R 

Tl!c display shows the contents of the registers in hex. On the third line of 
the display, we see · 

OEE6: 0000 880040 MOV AX,4000 

OEE6:0000 is the address of the next il}struction to be executed, in se&"f 
ment:offset form. B80040h is the machine code of that instruction. Segment 
OEE6h is where DOS decided to load the program; if you try this demonstra· 
tion, you will ~robably see a different segment number . 

. The eight pairs of letters appea-ring on the second line at the right 
are the current flag settings. The flags appear in this order: OF, DF, IF, SF, ZF, 
AF, PF, and CF. Table S.2 gives the symbols DEBUG uses for the flags. You 
can see that they have been cleared by DEBUG. The meaning of the control 
flag symbols are explained in Chapters 11 and 15. 

To step through our program, we use the "T" (trace) command. Be­
fore doing so, let's display the registers again. 

AX=0000 BX=OO~O CX=OOlF DX•OOOO SP=OOOA BP=OOOO SI=OOOO DI=OOOO 
DS•OED5 ES•OEDS SS=OEES CS•OEE6 IP=OOOO NV UP DI PL NZ NA PO NC 
0EE6: 0000 8800.40 MOV AX, 4000 

The first instruction is MOV AX,4000h. 

-T . 
AX=4000 ex-0000 CX=JOlF DX=OOOO SP=OCOA B?=COOO SI=OOOO.DI=OOOO 
::~=OF.JS r:::-c;:::-s SS=2£F.5 CS=OEE6 r;:-~0003 NV u? DI ?L ~IZ :n:.. ?O NC 

-T 

;;:.:o AX,AX 

Execution of MOV AX,4000h puts 400011 in AX. Tl1e flags are un­
changed since a MOV doesn:t affect them. N<:>w let's <>xecutc 1\0D AX,AX: 

AXz8000 BX=0000 CXcOOlF DX=OOOO SP=OOOA B?aOOOO SI=OOOO DI-0000 
DS.,,OEDS ES=OEDS SS=OEES CS•OEE6 IP=OOOS OV U? DI NG NZ NA ?E NC 
OEE6:0005 20FFfF SUB AX,FFFF 
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Table 5.2 DEBUG Flag Symbols 

Status Flag Set (1) Symbol 

CF CY (carry) 
Pf PE (even parity) 
AF AC (auxiliary carry) 
ZF ZR (zero) 
SF NG (negative) 
OF OV (overflow) 

Con
1

trol Flag 

DF ON . (down) 

IF El (enable interrupts) 

Clear (0) Symbol 

NC (no carry) 
PO (odd parity) 
NA (no ~uxiliary carry) 
NZ (nonzero) 
Pl (plus) 
NV (no overf:ow} 

UP (up) 
DI (disable interrupts) 

AX now contains 4000h + 4000h = 8000h. SF becomes 1 (NG) to indicate 
a negative result. Signed overflow is indicated by OF = l (OV) because we 
added two positive numbers and got a.negative result. J>F = 1 (PE) because 
the low byte of AX contains no l's. 

Next we trace SUB AX,OFFFFh: 

AX=eOOl BX=OOOO CX=OOlF DX=OOOO SPsQQOA BP=OOOO SI=OOGO DI=OOOO 
DS=CED5 ES=OED5 SS•OEE5 CS=OEE6 IP=OOOB NV UP DI NG NZ AC PO CY 
OEE6:0008 F7D8 NEG AX 

-T 

AX gets 8000h - FFFFh = 8001h. OF changes back to 0 (NV), because we are 
subtracting numbers of like sign, so signed ovcrllow is impossible. However, 
CF = 1 (CY) indicates that we got unsigned overflow, because we have sub­
tracted a bigger unsigned number from a smaller one, which requires a bor­
row into the msb. PF = 0 (PO) because the low byte of AX has a single I. 

Now Jet's trace NF.G AX: 

AX•7FFF BX=OOOO CX•OOlF ox-0000 SP=OOOA BP•OOOO SI=DOOO 01-0000 
DS=SED5 ES=OED5 SS•O~E~ CS•OE~~ lP=OOOA NV UP DI PL NZ AC PE CY 
OEe:6:000A 40 :!'IC AX 

•' 

AX gets the two's complement of 8001h = 7FFFh. For NEG, CF = 1 (CY) 
unles·s the' result is 0, which is not the case here. OF = 0 (NV) because the 
rcsul t is . not" !WOOh. 

Finally, we execute INC AX: 
.·. ~ 
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Ax~aooo Bx~oooo CX=OOlF DX=OOOO SPcOOOA BP•OOOO SicOOOO DI-0000 
DS•OEDS ES~OEDS SS=OEES CS•OEE6 IP=OOOB OV UP DI NG NZ AC PE CY 
OEE6; OOOB B44C 

-G 

MOV AH,4C 

OF changes back to 1 (OV) because we added two positives (7FFFh and 1), 
and got a negative result. Even though there was no carry out of the 1mb, 
CF stays 1 because INC doesn't affect this flag. 
To complete execution of the program, we can type "G" (go): 

Program terminated normally 

-Q 
C> 

and to exit DEBUG, type "Q" (quit) 

Summary 

• The FI.AGS register is one of the registers in the 8086 microproces­
sor. Six of the bits are called status flags, aod three are control flags. 

• The status flags reflect the result of an operation. They are the 
carry flag (CF), parity flag (PF), auxiliary carry flag (AF), zero flag 
(ZF), sign flag (SF), and overflow flag (OF). 

• CF is 1 if an add or subtract operation generates a carry out or 
borrow into the most significant bit-position; otherwise, it is 0. 

• PF Is 1 if there is an even number of 1 bits in the result; other­
wise, it Is 0. 

• 

• 
• 
• 

AF is 1 if there is a carry 9ut or borrow into bit 3 In the result; 
otherwise, it Is O. 

ZF is 1 if the result Is O; otherwise, it is 0 . 

SF i~ 1 if the most significant bit of the result is l; oth~rwise, it is 0 . 

OF Is 1 if the correct signed result is too big to fit in the destina­
tion; otherw.ise,. it ls. 0. ·-- - . -
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• Overflow occurs when the correct result ls outside the range of 
values represented by the computer. Unsigned overflow occurs if 
an unsigned interpretation is being given to the result, and 
signed overflow happens if a signed interpretation is being given. 

• The processor uses CF and OF to indicate overflow: Cf = 1 means 
that unsigned overflow occurred, and Of = 1 indicates signed 
overflow. 

• The processor sets CF if there is a carry out of the msb on addi­
tion, or a borrow into the msb on subtraction. In the latter case, 
this means that a larger unsigned number is being subtracted 
from a smaller one. 

• The processor sets OF if there Is a carry into the msb but no carry 
out, or If there is a carry out of the msb but no carry in. 

• There is another way to tell whether signed overflow occurred on ad­
dition and subtraction. On addition of numbers of like sign, signed 
overflow occurs if the result has a different sign; subtraction of num­
bers of different sign ls like adding numbers of the same sign. and 
signed ovr:rflow occurs if the result has a different sign·. 

• On addition of numbers of different sign, or subtraction of num­
bers of the s~me sign, signed overflow is impossible. 

Generally the execution of each lnstructi?n affects the flags, but 
some Instructions don't affect any of the flags, and some affect 
only some of th:! flags. 

• The settings of the flags is p;irt of the DEBUG display. 

• The DEBUG program may be used to trace a program. Some of its 
commands arc "R", to display register~; ''T", tcx.trace an instruc­
tion; an::' ''.G", to execute a program. 

Glossary 

control flags 

.Pags 
,,, 

FLAGS register 

status flags 

Exercises 

_, . 

Flags that are used. to ~able or disable 
certain operations of the CPU 

Bits of the FLAGS register .that represent a 
condition of the CPU 

Register in the CPU whose bits are 'flags 
. Flags that refkct the result of an instmc­

tion executed by the CPU 

1. For each of the following instructions, give the new destination 
contents and the new settings of CF, SF, tF, Pf, and OF. Suppose 

·that the flags are initially O in each part al this question. 

a. ADO AX,BX where AX contains 7FFFh and BX 
contains QOOlh 

b. SUB AL,BL where AL contains 01h and BL contains 
FFh 

c. DEC AL where A~ contains ooh 
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d. NEG AL where AL contains 7Fh 

e. XCHG AX,BX where AX contains 1ABCh and BX 
contains 712Ah 

f. ADD AL,BL where AL contains 80h and BL contains 
fFh 

g. SUB AX,BX where AX contains OOOOh and BX 
contains 8000h 

h. NEG 'AX where AX contains 0001h 

2. a. Suppose that AX and nx both cont.iin positive numbers,'and 
ADD AX,llX is executed. Show that th~r<:> i~ a carry into the 
msb but no carry out of the msb if, and only if, signed over· 
flow occurs. 

b. Suppose AX and BX both contain negative numbers, and 
ADD AX,llX is executed. Show that there is a orry out of the­
msb but no carry into the msb if, and only if, signed over­
flow occurs. 

3. Suppose ADD AX,BX is executed. In each of the following parts, 
the first number being added is the contents of AX, and the sec­
ond number is the contents of BX. Give the resulting value of AX 
and tell whether signed or unsigned overflow occurred. 

a. 512Ch 
+ 4185h 

b. FE12h 
+ lACllh 

c. EIE.4h 
+ DAB3h 

d. 7132h 
+ 7000h 

e. 6389h 
+ l l 76h 

4. Suppose SUB AX, BX is executed. In each of the following parts, 
the i1rst number i5 the initial conte:nls of AX and the second 
number is !he contents of BX. Give the rt!sulting value of AX and 
tell whether signed or unsigned overflow occurred. 

a. 2143h 
- J986h 

h. 8JFEh 
- 1986h 

c. 19BCh 
- 81fEh 

d. 0002h 
- FEOFh 

e. 8BCDh 
- 71ABh 



6 

FlollV Control 
Instructions, 

O.erview 

•.1 
tn Example of 
1Jump 

For assembly language-programs to carry out useful tasks, there must 
·be a way to make decbions and repeat sections of code. In this chapter we 
show how these things can be accomplished with the jump and loop in-
structions. · 

The jum and loo instructions transfer control to another art 
t e ro ram. his trans er can be uncond_i_tional m can depend on a partic- · 
ular combination o status ag_settings. · 

· After introducing the jump instructions, we'll use them to implement 
high-level language decision and looping structures. This application will make 
it much easier to convert a pseudocode algorithm to assembly code, 

To g<!t an idea of how the jump instructions work, we will write a 
orol!ram to disolav the entire- IBM character set. 

, .Program·Listing PGM6_ 1.ASM 
1: TITLE PGM6 1: IBM CHARACTER DISPLAY 
2: . MODtL' SMALL 
3: 
4: 
5: 
6: 
7: 

8: 
9: 

.STACK 

.CODE" 
MAIN· 

MOV 
MOV 
MOV 

PRINT LOOP: -

lOOH 

PROC 
AH, 2·v 

ex, 256' 
DL,0 

~display char function 
;no .. of chars to :display 
;DL ,has ASCII code of null ch.; 

93 
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6.2 

10: INT 2lh ;display a char 
11: INC DL ;increment ASCII code 
12: DEC ex ;decrement counter 
13: JNZ PRINT - LOOP ;keep going if ex not 0 
14: ;DOS exit 
15: MOV AH,4CH 
16: INT 2lh 
l 7: MAIN ENDP 
18: END MAIN 

There are 256 characters in the IBM character set Those with codes 32 
to 127 are the standard ASCII display characters Introduced in Chapter 2. IBM 
also provides a set of graphics characters with codes 0 to 31 and 128 to 25Si:' 

To display the characters, we use a loop (lines 9 to 13). Before en­
tering the loop, AH Is initialized 'to 2 (slngle-chara~er display) and DL is set 
to 0, the Initial ASCII code. CX Is the loop counter; it is set to 256 before 
entering the loop and is decremented after each character Is displayed ..... 

The instruction that controls the loop is )NZ Uump if Not Zero). If 
the result of the preceding Instruction (DEC CX) Is not zero, then the )NZ 
instruction transfers control to the instruction at label PRINT_LOOP. When 
CX finally contains 0. the program goes ·on to execute the DOS r~turn in­
structions. Figure 6.1 shows the output of the program. Of course, the ASCII 
codes of backspace, carriage return, and so on cause a control function to 
be performed, rather than di.splaying a symbol. 

Note: PRINT_LOOP is the first statement label we've used in a pro­
gram. Labels are needed in situations where one instruction refers to another, 
as is the case here. Labels end with a colon, and to make labels stand out, 
they are usually placed on a line by themselves. If so, they refer to the 
instruction that follows. 

Conditional Jumps )NZ is an example of a cunditional jump instruction. The syntax is 

Figure 6. 7 Output of PGM6_ 7 

Jxxx destination_label 

C: 'BIN>P9"'-' 
QI• .. 

Jl_.'4Jl!11§.1u-~~-4" ! "11$%1' Ou,-. 1"8123456789:: <=>?IABCDEFGHIJKIJlllOPQll$TUUWCVZC• 
~-· ~bcdef9hlJkl"nopqrs:luuu1<!12<l 1·o!;il,..aUs&Qlfl~eoMil\ji:iiiCCWl\flli6'Allil&a~ 
-t•I H U.1 001!1111 1 U,.HH!arimHtW'tpll~ ridlt' rlol P"txJrntavT16!16mo1Era:lif J +=0 

• t• 
• 
C:'81N> 
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If the condition for the jump ls true, the next instruction to be executed is 
the one at destination_label, which may precede or follow the jump instruc­
tion itself. If the condition is false, the instruction Immediately following 
the jump Is done next. For JNZ, the condition Is that the result of the previous 
operation is not zero, 

Range of a Conditional Jump 

The structure of the machine code of a conditional' jump requires 
·that destination_label must precede the jump instruction by no more than 
126 paes, or follow it by no more than 127 bytes (we'll show how to get 
aroun this restriction later). . 

How the CPU Implements a Conditional Jump 

To implement a conditional jump, the CPU looks at the FLAGS reg­
ister. You already know It reflects the result of the last thing the processor 
did. If the co11llitiom for the jump (expressed us a combination of ~talus Hag 

. settings) are true~ the CPU adjusts the IP to point to the destination label. -
so that the instruction at this label will be done next. If the fump condition 

• ls false, then IP is not altered; this means that the next instruction in line 
will be done. 

In the preceding program, the CPU executes JNZ PRlNT_LOOP by 
• inspecting ZF. If ZF = 0, control transfers to PRINT_LOOP; if ZF = 1, the 
program goes on to execute MOY AH,4CH. 

Table 6.1 shows the conditional jumps. There are three categorie;: 
(1) the.signed jumps are used when a signed interpretation is being given 
tp results, (2) the unsigned jumps are used for an unsigned interpretation, 
and (3) the single-flag jumps, which operate on settings/of individual 
flags. Note: the jump instructions themselves do not affect the flags. , 

The first column of Table 6.1 gives the opcodes for the jumps. Many 
of the jumps have two opcodes; for example, JG~J~h opcodes 
produce the same machine code. Use of one opCode"or itSaitema~JTY' 
determined by the context in which ~he jump appears. 

The CMP Instruction 

The jump condition is often provided by the CMP (compare) instruc­
tion. It has the form 

CMP destination, source 

This instruction compares destination and source by computing destination 
contents minus source contents. The result is not stored, but the flags are 
affected. The operands of CMP may not both be memory locations. Desti­
nation may not be a const;i1u. Note: CMP is iust like sun. exceot that des­
tination is not changed<' 

For example, suppose a program contains these lines: 

CMP, AX,BX 
JG BELOW 

where AX = 7FFFh, and BX = 0001. The result of CMP AX,BX is 7ffFh -
0001 h "." 7FFEh. Table 6.1 shows that the jump .condition for JG Is satisfied, 
because ZF = SF = OF = 0, so control transfers to label BELOW. 
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Table 6.1 Conditional Jumps 

Signed Jumps 

Symbol 

JG/JNLE 

JGE/JNL 

JUJNGE 

JLE/JNG 

Description 

jump if greater than 
jump if not less than 

or equal to 

jump if greater than 

or equal to 
jump if not less than 

or equal to 

jump if less than 

jump if not greater than 

er equal 

Condition for Jumps 

ZF = 0 and SF = Of· 

SF= OF 

SF<> OF 

1ump if less than or equal ZF = 1 or SF <> OF 

1ump if not greater than 

\Unsigned Conditional Jumps 

Symbol 

JA/JNBE 

JAE/JNB 

JB/JNAE 

JBE/JNA 

l Single-Flag Jumps 

Symbol 

JE/JZ 

JNE/JNZ 

JC 
JNC 
JO 

JNO 

JS 

JNS 

JP/JPE 

JNP/JPO 

Description 

jump if above 

jump if not below or equal 

Condition for Jumps 

CF = 0 and ZF = 0 

1urr.p if _above or equal CF = 0 

1ump if not below 

iump if below 
1um~ it not above or equill 

CF= 1 

jump- if equal CF = 1 or ZF = I 

1ump if not above 

Description Condition for Jumps 

1ump if equal ZF = 1 

jump if equal to zero 

1ump 1f not equal ZF = 0 

jump if not zero 

1ump if carry CF= 1 

jump 1f no carry CF= 0 

1ump if overflow OF= 1 

jump if no overflow OF= 0 

jump if sign negative SF= 1 

1ump if nonnegative sign SF= 0 

jump 1f panty even PF= 1 

jump if parity odd PF= 0 
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ln~rpreting tile Conditional Jumps 

In the example just given, we determined by looking at the flags 
after CMP was executed iliat control transfers to label BELOW. This is how 
the CPU Implements a conditional jump. But it's not necessary for a pro­
grammer to think about the tlags; you can just use the name of the jump 
to decide if control transfers to the destination label. In the following, 

CMP AX,BX 
JG BELOW 

if AX Is greater than BX (in a signed sense), :hen JG fiµmp if greater than) 
transfers to BELOW. · 

Even though CMI' is specifically ..'esigncd to be used with the con­
ditional jumps, they may be preceded bi otht>r instructions, as in PGM6_1. 
Another example is 

DEC J>.X 
.:L THE!l.E 

Here, if the contents of AX, in a signed sense, is less than 0, control transfers 
to THERE. 

Signed Versus Unsigned Jumps 

Each of the sii;ned jumps corresponds to an analogous unsigned 
jump; for example, the signed jump JG and the unsigned jump JA. Whether 
to use a signed or unsigned jump depends on the interpretation being given. 
In fact, Table 6.·l shows that these jumps operate on different flags: the signed 
jumps operate on ZF, SF, and OF, while the unsigned jumps operate on Zf 
and CF. Using the wrong kind of jump can le<id to incorrci.:t results. 

For example, suppose we're giving a signed interpretation. If AX = 
7FFFh, BX = 8000h, and we execute 

CXP AX,BX 
JI\ BELOW 

then even though 7 Fffh > 8000h in a signed scnst:, the program does not jump 
to BELOW. The reason is that 7FFFh < 8000h in an unsigned sense, and we arc 
using the unsigned jump JA. 

Working with Characters 

In working with the standard ASCII character set. either signed or 
unsigned jumps may be used, because the sign bit of a byte containing a 
character code is always zero. However, unsigned jumps should be used when 
comparing cxt.::ndcd ASCII char.1ncrs (code~ 8011 tc FFhJ. 

~le 6.1 .suppose AX aml l\X contain ~igncd numbers. Write some 
rode to put \he biggest one in ex.. . 

Solution: 

NEXT: 

l~OV ex, AA .. 

o:P EX, ex .. 
JLE !<EXT~ 

MOV ex. BV 

; put AX ~r: :·:-: 
;is BX bigg.;,r? 

;yes, put BX ir. ex 
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6.3 
The JMP Instruction 

6.4 
High-Level Language 
Structures 

6.4.1 
Branching Structure-s 

ThejMP (iump) instruction causes an unconditional transfer of con­
trol (unconditional jump): The syntax is 

JMP destination 

where destination is usually a label in the same segment as the JMP itself 
(see Appendix F for a more general description). 

JMP can be used to get around the range restriction of a conditional 
jump. For example, suppose we want to implement the following loop: 

TOP: 

;body of the lccp 
DEC ex 
JNZ TOP 
MOV AX,BX 

;decrement counter 
;keep looping if ex > 0 

and the loop body contains so many instructions that label TOP is out of 
range for JNZ (more than 126 bytes before JMP TOP). We can do this: 

TOP:. 

;body of the locp 

DEC ex ; decrement counter 
JNZ BOTTOM 1keep looping if ex > 0 
JMP EXIT I 

BOTTOM: 
JMP TOP 

EXIT: 
MOV AX,BX 

V\'e've shown that the jump instmctions can he used to implement 
branches and loops. However, because the jumps are so primitive, it is dif­
ficult, especially for beginning programmers, to code an algorithm with therrl' 
without some guidelines. ' 

Because you have probably had some experience with high-level lan­
guage constructs-such as the IF-THEN-ELSE decision structure or WH\\..i. 
loops-we'll show how these structures ca.n be simulated in assembly language. 
In each c;isc, we will first express the structure in a high-level pseudocode . . ' . . 

In high-level languages, branching structures enable a program to 
take different paths, depending on conditions. In this section, we'll look at 
three structures. 

/F-TH"EN 

The IF-THEN structure may be- expressed in pseudocode as follows: 



------------
..;;;ure 6.2 IF-THEN 
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IF condition is ~r.ue.1·. -•. 
THEN 
execute true-branch statements 

END_IF 

See Figure 6.2. 
The co11dition is an expression .. that is true or false. lf It is true, the 

true-branch statements are executed. lf It is false, nothing is done, and the 
program goes on to whatever follows. 

Example 6.2 Replace.the number in AX by its absolute value. 

Solution: A pseudoc~e algorithm Is · 

IF AX < 0 
THEN 

replace AX by -AX 
END_IF 

It can be coded as follows: 

; if AX < 0 
CMP AX, 0 
JNL END -

;then 
NEG AX 

END IF: -

;AX < 
IF ;no, 

;yes, 

0 ? 
exit 

change sign 

The condition AX < 0 is expressed by CMP AX,O. If AX Is not less than 0, 
there is nothing to do, so we use a JNL (jump if not less) to jump around 
the NEG AX. !f condition AX < 0 is true, the program goes on to execute 
NEG AX. 

,-------------------. 

l 

True-branch 
statements • 
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Figure 6.3 IF-THEN-ELSE 

IF-THEN-ELSE 

IF co'ldition is true 
THE~~ 

execute true-branch statements 
ELSE 
execute false-branch statements 

END_IF 

See Figure 6.3. 
In this structure, if condition Is true, the true-branch statements are 

executed. If condition is false, the false-branch statements are done. 

Example 6.3 Suppose AL and BL contain extended ASCII characters. 
Display the one that comes first in the character sequence. 

Solution: 

IF AL <o BL 
TH:ON 

Ji:.>play the character in AL 
ELSE 

display the charac~er in BL 
END IF -
It can be coded like this: 

; if AL <= BL 

;then 

ELSE : -

False-branch 
~atements 

MOV 

CMP 
JNBE 

MOV 
JM? 

1-dOV 

AH,2 

AL,BL 
ELSE -

DL,AL 
DISPLAY 

CL,BL 

True-branch 
statemenU 

;prepare to Jisplay 

;AL <~ BL? 

; no, displa:; char in BL 
;AL <• BL 
;move char to be displayed 
;go to display 
;BL < AL 
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DISPLAY: 
INT 2lh ; ~iisplay it 

END_IF 

Note: the label ELSE_ is used because ELSE ls a reserved word. 

The condition AL <= BL is expressed by CMP AL,BL. If It's false, the pro­
gram jumps around the true-branch statements to ELSE_. We use the un­
signed jump JNBE (jump If not below or equal), because we're· comparing 
extended characters. 

U AL <= BL ls true, the true-branch statements are done. Note that 
JMP DISf>LAY is needed to skip the false branch. This ls different from the 
high-level language IF-THEN-ELSE, in which the fal5e~branch statements are 
automatically skipped if the true-branch statement$ are done. ' 

·CASE 

A CASE is a multiway branch structure that tests a register, variable, 
or expression for particular values or a range of values. The general form i:; 
as follows: 

CASE express.;.on 
values l: statcmencs_l 
values_2: staterr.ents_2 

values_n: statements n 
END_CASE 

See Figure 6.4. 
In this structure, expression is tested; if its value is a member of the st~t 

values_i, then statements_i are executed. We assume that sets values_l, .. ,val­
ues_n are disjoint. 

Example 6.4 If AX contains a negative number, put -1 In BX; if AX 
contains 0, put O In BX; if AX contains a positive number, put 1 In BX.· 

1 
Expression 

values_ l values_2 values_n 

statements_n 
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Solution: 

CASE AX 
<0: put -1 in BX 
~o: put o in IlX 

>O: put· l in BX 

END_CASE 

It can be coded as follows: 

;case AX 

NEGATIVE: 

ZERO: 

POSITIVE: 

END CASE: -

CMP AX,O 
JL Nl\GATIVE 
JE zE'Ro 
JG POSITIVE 

MOV BX,-1 
JMP END CASE -
MOV BX,0 
JMP ENC CASE -
MOV BX, l 

;test ax 
;AX < 0 
;AX = 0 
;AX > 0 

;put -1 in BX 
;and exit 

;put 0 in BX 
;and exit 

;put l in BX 

Note: only one CMP is needed, because jump instructions do nor affect the 

txamplc 6.5 If AL contains I or 3, display "o"; if AL contains 2 or 4, 
:lisplay "e". 

Solution: 

CASE AL 
J,3: display 'c' 

2,4: display 'e 1 

EtlD CJ..SE 

The code is 

; case AL 
; 1, 3: 

2, 4: 

CMP hL, 1 

JE CDC 
CMP AL,3 
JE '.u::: 

.:rw!~ . 

.IE 
C!~? 
.;£ 

. J,I, ,; 

E.'/EI~ 

;AL - l? 
;yes, uisplay 'o' 
;AL = '3' 
; ye·S, display ·'o' 

;AL a 2? 
;yes, display 'u' 

;AL c. 4? 

;yes, display· 'e' 
'JMP . F:ND CJ.SE' -, not 1.: 4 

CDD: 

'EVEN: 

DISPLAY: 

MOV DL1 'o' 
JMP DISPLAY 

MOV DL, 'e' 

; display 'o' 

; get 'o' 
;gc .to display 
;display 'e' 
;get 'e' 
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MOV AH,2 
INT 21H ;:1"' ··.•;display_ char 

END CASE:. 

Branches with Compound Conditions 

Sometimes the branchi~g condition in an IF or CASE takes the form 

condition_:_l' AND condition 2' 

or 

ci:mditio~ 1 .Oi< .. condition_2 

'where co_nditfonj ~~d.conaitio?-:2 are either true or false. We will refer to the 
first of these as an AND condition and to the second as an OR condition. 

AND Conditions 

An A;-.ID condition is true if and only if oondition_l and condition_2 
are both true. Likewise, if ei_ther condition is false, then the whole thir6 is false. 

E-.:ample 6.6 Read a character, and if it's an uppercase letter, display it. 

Solution: 

Read a cha.::-accer (into AL) 
IF. ('A'. <c character) and (character <c 'Z') 

':HEN 
display character 

END IF 

To code this, we first see if the character in AL follows",\" (or is "A") in the . 
character sequence. If not, we can exit. If so, we still mu~t ~ee if the character 
precedes "Z" (or is "Z"l before displaying it. 1-lere is the code: 

;read a chrrYa~~er 

:.:::.,·1 Al', 1 
::;T 21H 

" . ;'prepa;:e., :.o :-e?d 
;char in i·.~ 

;if ('A' <= char> and (chai: <= 'Z') 
c:-1? #.j AL, 'A; ;char >:; 

.J:·~GE END_lF ';no, exit 

Ct~? AL, 'Z' 
.;1;LE. ~END _.o.IF 

; then display cr,ar 

END_IF: 

~iov. DL, AL. 

t-:O'J AH, 2 
:NT· 21H 

OR Conditions 

;char <= 'Z'? 
,·no, exit 

;get char 
;p:::e;::are t.o ctisplay 
,·display c!-.a!'" 

;', ~ Condition_ I OR condition_,2 is true if at least one of the conditions 
is true; it is only false when bot}} conditiom ;ire fahe. 

· Ex.ample 6.1 Read a character. If it's "y" or "Y", display it; otherwise, 
•. terminate the program. 
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6.4.2 

Looping Structure~ 

Solution: 

Read a character (into AL) 
IF (character - 'y'J OR (character - 'Y'J 

THEN 
display it 

ELSE 
terminate the program 

END IF 

To code this, we first see if character .. "y". If so, the OR condition Is tIUI 
and we can execute the THEN ~tatements. If not, there is still a chance 
. the OR condition wlll be true. If character = "¥", It will re true, and we 
execute the THEN statements; If not, the OR condition is false and we d~ 
the ELSE statements. Here is the cc¥1e: ' 

; read ·a character 
MOV AH, 1 ;prepare to .read· 
INT 21H ;char in AL 

; if (cha:-acter ~ 'y') or "(character = 'Y') 
CMP AI,., 'y' ;char J 'y'? 
JE THEN ;yes, go to display it 
CMP AL, 'Y' ;char ~ 'Y'? 
JE THEN ;yes, go to display it 
JMP ELSE ;no, termina~e -

T~EN: 

MOV AH,2 ;prepare to display 
MOV CL,AL ;get char 
!NT 21H ;display it 
JMP END IF ;and exit -

ELSE : -
MOV AH, 4CH 
INT 21H ;DOS exit 

ENO IF: -

A loop Is a sequence of instructions that is repeated. The numbf''J' 
of times to repeat may be known in advance, or It may depend on conditions 

FOR LOOP 

This is a loop structure in which the loop statements are repeated a 
known number of times (a count-controlled loop). Jn pscudocode, 

FSR locp_count t:..me.s DO 
~~;Jte::ients 

Sec Figure 6.5. . . 
The LC)OP imtruction can be used to implement a 1'0~ loop. It has 

the iorm 

LOOP destination_label 

The counter for the loop is the register CX which is initialized to loop_COWlt. 
Execution of the LOOP Instruction cacses CX to be decremented automa~ally, 
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False 

and if CX Is not 0, control transfers to destination_label. If CX "'0, the next 
instruction after LOOP is done. Destinatlon_label must precede the LOOP 
instruction by no more than 126 bytes. 

Using the instruction LOOP, a FOlt loop c;in UI! implemented as 
follows: 

TOP: · 
;initialize ex to loop_count 

;body of the loop 
LOOP TOP 

Example 6.8 Write a count-controlled loop to display a row of 80 stars. 

Solution: 

FOR 80 t.:.mes DO 
displiiy ... 

END,..FOR 

The code is 

TCP: 

Mov ex.so 
MOV AH,2 
MOV DL,_ '*' 

;number of stars to disp~a'/ 

;display charac::er fun~tior. 

;charac~er to di~fla'/ 

INT 2lh ;display a star 
LOOP TOP ;repeat ao times 

- f 
You may have noticed that a FOR loop, as impl~mented with c. LOOP In-
struction, !S executed at least once. Actually, if ex contains O when the loop 
Is entered, .the LOOP instruction causes ex to be decremented to FFFF::-1, and 
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Figure 6.6 WHILE LOOP 

the loop is then executed FFFFh = 65535 more times! To prevent this, the 
struction JCXZ (jump if CX is uro) may ~ used before the loop. Its syntax 

JCXZ destination_label 

If CX contains 0, control transfers to the destination label. So a loop i 
plernented as follows is bypassed if ex is 0: 

'i'OP: 

SKIP: 

JCXZ SKIP 

;body of the loop 
LOOP TOP 

WHILE LOOP 

This loop depends on a condition. In pseudocode, 

WHILE condition DO 
statements 

END l"iHILE 

See Figure 6.6. 
The cv11ditio11 is checked at the top of the loop. If true, the stat ments ·· 
executed; if false, the program goes on to whatever follows. It is p •ssiblc • ! • 
the co11ditio11 will be false initially, in which case the loop body ls n •t cxecu c 
at all. The loop executes as long as the condition is true. 

Example 6.9 Write some code to count the number of chara ters In; n 
input line. 

Solution: 

initialize count to 0 
read a character 
WHILE character <> carriage_ret~rn DO 

count • count + l 
read a character 

EtJD_l-;HILE 
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The code Is 

MOV DX,O ;DX counts characters 
MOV AH,l ;prepare to read 
INT 21H ;character in AL 

WHILE -
CMP ·AL, OOH ;CR? 
JE END_WHILE ;yes, exit 
INC DX ;not CR, increment count 
INT 21H ;read a character 
JMP' WHI.LE - ;loop back; 

. END WHILE:· -
Note that becaus~ a WHILE loop checks the terminating condition at the 

. top of the loop, you must make sure that any variables involved in the 
coriaition arc initialized before the loop is entered. So you read a charac­
ter before entering the loop, and read another one at the bottom. The la­
bel WHILE_: .is used because WHILE is a reserved word. 

1i ! I. 
REPEAT LOOP 

Another conditional loop is the REPEAT LOOP. In pseudocode, 

REPEAT 
statements 
UNTIL condition 

See Figure 6.7. , , 
In a REPEAT .. , UNTIL loop, the statements are executed, and then 

the condition is checked. If true, the loop terminates; if false, control branches 
~ to the top of the loop. · 

• r .r 
Example 6.10 Write some code to read characters until a blank is read. 

Solution: 

REPEAT 
read a character 

UNTIL character ~s a bla~k 
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6.5 
Programming 
with High-Level 
Structures 

The code is 

REPEAT: 

:until 

MOY AH,l 

INT 21H 

CMP AL,' ' 
JNE REPEAT 

WHILE Versus REPEA1 

; prepare to read 

;char iii AL 

;a blank? 
; no, keep reading 

In many situations where a conditional loop Is needed, use of a 
WHILE loop or a REPEAT loop Is a matter of personal preference. The ad­
vantage of a WHILE is that the loop can be bypassed if the terminating, 
condition is initially false, whereas the statements in a REPEAT must be done 
at least once. However, the code for a REPEAT loop Is likely to be a little 
shorter because there is only a conditional jump at the end, but a WHILE 
loop has two jumps: a conditional jump at the top and a JMP at the bottom. 

To show how a program may be developed from high-level pseudo­
code to assembly code, let's solve the following problem. 

Problem 

Prompt the user to enter a line of text. On the next line, display the 
capital Jetter entered that comes first alphabetically and the one that comes 
last. If no capital letters are entered, display "No capital letters". The execu­
tion should look like this: 

Type a line of text: 
':HE QUICK BROWN FOX JUMPED. 

First capit.:tl ~ B Last capital ~ X 

To solve this problem, we will use the method of top-clown program 
design that you may have encountered In high-level language program­
ming. In this method, the original problem is solved by solving a series of 
subproblems, each of which Is easier to solve than the original problem. Each 
subproblem is in turn broken down further until we reach a level of sub­
problems that can be codtd directly.The use of procedures (Chapter 8) may 
enhance this method. 

First refinement 

1. Display-the opening message. 

2. Read and process a line of text. 

3. Display the results. - · 
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MOV 
LEA 
INT 

Step 1. Display the opening message. 

This step can be coded immediately 

AH,9 
o·x. PROMPT 
21H 

;display string function 
; get opening message 
;display it 

The message will be stored in the data segment as 

PROMPT DB 'Type a line of text:', OOH, OAH, 'S' 

we· include a carriage return and line feed to move the cursor to the next 
·line so the user can type a full line of text. 

Step 2. Read and process a line of text. 

This step does most of the work in the program. It takes input from 
the keyboard, and returns the first and last capital letters read (it should also 
indicate if no capitals were read). Here Is a breakdown: 

Read a charac_ter 
WHILE character ls not a ~~rriage return DO 
I.F character is a c~pital letter (•J 

THEN 
IF character p~j~e~es first capital 

THEN 
first capital = character 

END_IF 
IF character follows last capital 

THEN 
last capita:!. ~ character 

END_IF 
END IF 
Read a character 
END WHILE 

Line (*) is actually an AND condition: 

IF ('A' <~ character) AND (character <~ 'Z') 

Step 2 can be coded as follows: 

MO"J AH, l 
HlT 21H 

;read char function 
;char in AL 

WHILE_: 
;while character i!: not a ::arri.:ige return do 

CMP AL,ODH ;CR? 
JE END -Wl!ILE ; yes, "?Y.it 

; if character is a capital letter 
CMP AL, 'A' ;char >= 'A'? 

JNGE END -IF ; not a capital 
CMP AL·, 'Z' ;char <- "Z'? 
JNLE END -IF ;not a capital 

;then 
if character precedes first capital 

CMP AL, FIRST ;'char < FIRST? 
JNL CHECK_LAST ; no, >= 

;then first capital = character 

; end_if 

CHtCK_LAST: 

MOV FIRST,AL ;FIRST - char 

letter 

letter 
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.; •if character follows last capital 
CMP AL,"LAST ;char > LAST? 
JNG END_IF ;no, <= 

;then last capital ~ character 

: end_if 
END IF: 

MOV LAST I AL ; LAST - char 

; read a characte~ 

END WHILE: 

INT 21H 
JM? WHILE 

; char in AL 
;repeat loop 

Variables FIRST and LAST must have values before the WHILE loop is 
executed the first tim~. They can be initialized in the data segment as follows: 

F'IRST 
LAST 

DB 
DB 

']' 

'@' 

The initial values ")" and "(!!>" were chosen because ")'' follows "Z" Jn the 
ASCII sequence, and "@" precedes "A". Thus the first capital entered will 
replace both of these values. 

With step 2 coded, we can proceed to the final step. 

Step 3. Display the results. 

IF no capitals were typed, 
THEN 

d.:.splay "No capitals" 
ELSE 

di:;p1ay !i:-:;t :::ap1tal and last :::apital 
END IF 

This step will display one of two possible messages; NOCAP _MSG if 
no capitals are entered, and CAP _MSG if there are capitals. We can declare 
them in the data segment as follows: 

NOC AP MSG DB 'No capitals $' -
CAP MSG C!.~ 'First capital = 

-
FIRST CB 'l' 

:.JB ' L.1st capital 
LA~~T !:JR '@ $' 

When CAP _MSG is displayed, it will display "First capital =", then the value 
of FIRST, then "last capital =", then the value of LAST. We used this same 
technique in the last program of Chapter 4. 

The program decides, by inspecting FJl{ST, whether any capitals were 
read. If FIRST contains its initial value "!", then no capitals wer~ read. 

Step 3 may be coded as follows: 

MOV AH,9 ;display string function 
;if no capitals were typed 

;then 

CAPS: 

DISPLAY: 

;end_if 

CM<' FIRST,']' ;FIRST ~ 'J'? 
JNE CAPS ;no, display results 

LEA OX,NOCAP_MSG 
JMP DISPLAY 

LEA DX,CAP_MSG 

INT 21H ; display me>ssage 



Chapter 6 Flow Control Instructions 111 

Here is the complete program: · 

· Program Listing PGM6_2.ASM 
TITLE FGM6_2: FIRST AND LAST CAPITALS 
• MODEL SMALL 
.sT;,cK lOOH 
.DA:i'A 

·PROMPT DB 'Type a· line of text',ODH,OAH,'S' 
NCC.l'.P MSG DB ODii, OAH, 'No . -

.CAP_MSG DB 
'J' 

capit.als S' 
O::>H, OAH, 'First 

FIRST DB 
DB 

LAST OB 
' Last capital = ' 
, @ S' t. 

.CODE 
:-111.IN PROC 
; initialize DS 

MOV AX,@DATA 

capital 

MOV DS,AX 
;display openi~g message 

-. MOV .AH, 9 

, LEA DX, PROMPT. 
;display string function 
;get opening message 

INT 21H ; display it 
process a line of text ; read and 

MOV 
.INT 

. . .. 
AH, 1 

21H 
;read char function 
; char in AL 

WHILE_ 
... 

;while character is not 
CMP'. AL,ODH 

a carriage 
;CR? 

-;JE · END WHILE . ;yes, exit 
;if character is a capital letter 

return do 

CMP AL,'A' ';char>= 'A'? 
JNGE.END_IF inot a capital letter 

;then 

CMP AL,' Z' 
JNLE END.:..lF 

;char<= 'Z'? 
; not a capital letter 

;if character precedes first capital 
CMP AL, FIRST ; char < first capital? 
,TNL CHECK LAST ; no, >eo1 

then ,first capital ·- character 
MOV FIRST,AL .. ,. ;FIRST = char 

;end_if . 
CHECK_LAST: 

";.·if character follows ,,l~st ca;:. ital 
CMP l,L, LAST ; char > last capital? 
JNG.•END_rF." ;'lo,<= 

i 'then" ldst · c.:ipi tai 'character 
" . ._ MOV' LAST ,'AL ·.• ; LAST ~ char 

; end_if 
ENO_IF: 
; r·ead a character 

INT 21H 
_JMP WHILE_ 

ENO WHILE: 

: display results 

.;char in AL 
. ; repeat loop 
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MOV AH, 9 
·;if no capita ls were 

CMP FIRST,']' 
JNE CAPS 

;display string function 
typed 

; first - ']' 
;no, display results 

;then 

CAPS: 

LEA DX,NOCAP_MSG ;no capitals 
JMP DISPLAY 

LEA DX,CAP_MSG 
DISPLAY: 

;capitals 

INT 21H 
;end_if 

; display message 

;dos exit 
MOV AH,4CH 
Il;T 21H 

MAIN ENDP 
END 1".J>.I N 

Summary 

• The jump instructions may be divided into unconditional and 
conditional jumps. The conditional jumps may be classified as 
signed, unsigned, and single-flag jumps. 

• The conditional jumps operate on the settings of the status flags. 
The CMP (compare} instruction is often used to set the flags just 
before a jump instwctlon. 

• The destination label of a conditional jump must be less than 
126 bytes before or 127 bytes after the jump. A )MP can often be 
used to get around this restriction. 

In an IF-THEN decisfon structure, If the test condition is true, 
then the true-branch statements are done; otherwise, the next 
statement in line is done. 

In an IF-THEN-ELSE decision structure, if the test condition is 
true, then the true-branch statements are done; otherwise the 
false-branch statements are done. A JMP mu~t follow the true­
branch statements so that the false-branch will be bypassed. 

• In a CASE structure, branching is controlled by an expression; the 
branches correspond to the possible values of the expression. 

• A FOR loop is executed a known number of times. It may be im· 
plemented by the LOOP instruction. Bdore entering the loop, CX 
is initialized to the number of times to repeat the loop statements. 

• In a WHILE loop, the loop condition Is checked at the top of the 
loop. The loop stat~menti are repeated as long as the condition is 
true. If the condition is initially false, the loop statements are not 
don·e at all. 

• In a REPEAT loop, the loop condition is checked at the bottom of 
the loop. The statements are repeated until the condition is true. 
Rccausc the condition ls· checked at the bottom of tht' loop, the 
statements arc done at least once. 



Glo~sary 

AND coiuUtloa 

coaclltlonal jump 
iD.structlOD 

loop 
OR coaclltlon 

signed jump 

single-Dag jump 

.. 
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A logical AND of two conditions 

A jump Instruction whose execution 
depends on status flag settings 
A sequence of instructions that is repeated 
A logical OR of two conditions 
A conditional jump instruction used with 
signed numbers 
A conditional jump that operates on the 
setting of an individual status flag 

top-clown program design Program development by breaking a large 

unconclltlonal j~mp 

unsigned jump 

New Instructions 

CMP 
JA/JNBE 
JAE/JNB 
JB/JNAE 
JBE/JNA 
JC 

Exercises 

problem Into a series of smaller problems 
An unconditional transfer of control 
A conditional jump instruction used with 
unsigned numbers 

JCXZ JLE/JNG 
JE/JZ JMP 
JG/JNLE JNC 
JGE/JNL JNE/JNZ 
JL/JNLE LOOP 

1. Write asse~bJy.c~.e for ~ach of the following decision structures. 
a. ·IF AX < 0 

THEN 
PUT -1 IN BX 

END IF 

b. IF "AL < 0 
THEN 
put FFh in AH' 

ELSE 
put 0 in AH 

END_IF 

.c. - Suppose DL contains the ASCII code of a character. 

(IF Dl. >• "A'"I ANO . (DL <,. •z•) 
THEN 
display DL 

END IF 

d. IF AX < BX 
THEN 

IF BX i< ex 
THEN 
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e. 

f. 

t'ut 0 in AX. 
ELSE 

''l~ 

put 0 iii BX 
END_IF ·: .. -· 

END_IF 

IF (AX < BX) 

THEN 
put 0 ·in ox 

ELSE 
put 1 in DX 

END IF -

IF AY. < BX 
THEN 
put 0 ·in AX 

ELSE 
IF BY. < C'X 

THEN 

OR 

put 0 in BX 
ELSE 
put ·o in ex 

END IF 
END IF 

(BX < CX) 

2. Use a CASE structure to code the following: 

Read a character. 
If it's "A", then execute carriage return. 
If it's "Bn, then execute line feed. 

If it's any other character, then return to DOS. 

Write a sequence of inst~ctions to do each of the following: 

a. Ptit the sum 1 + 4 + 7"+ .. ;.+. 148 in AX. 
b. Put the sum 100 + 95 + 90 + ... + 5 in AX. 
Employ LOOP instructions to do the following: 
a. put the sum of the first 50 terms of the arithmetic sequence 

I, 5, 9, 13, ... in DX. 

b. Read a character and display it 80 times on the next line. 

c. Read a five~character password and overprint it by executing 
a carriage return and displaying five X's. You need not store 
the input characters anywhere. 

The following algorithm may be used to carry out division of two 
nonnegative numbers by repeated subtraction: 

initial~ze quotient to 0 
WHILE dividend >- divisor DO 
increment quotient 
subtract diOi~or from dividend 
END_ WHILE 

Write a sequence of instructions to divide.AX by BX, and put the 
quotient in ex. 
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6. The following algorithm may be used to carry out multiplication 
of. two positive numbers M and N by repcatecf addition: 

initialize product to O 
REPEAT 

add M to product 
decrement N 

UNTIL N z 0 

Write a sequence of instructions to multiply AX by BX, and put 
the product in ex. You may Ignore the possibility of overflow. 

7. It is possible to set up a count-controlled loop that will continue 
to execute as' long as ~me condition Is satisfied. The instructions 

LOOPE label 

and 

LOOPZ l,abel 

; loop while equa:). 

; loop while zero 

cause ex to be decremented, then if CX <>. 0 and ZF = 1, control 
transfers to the instruction at the destination label; if either ex = 
0 or ZF = 0, the instruction following the loop is done. Similarly, 
the instructions 

LOOPNE label 

and 

LOOPNZ label 

;loop while not equal 

; loop while not zero 

cause ex to be decremented, then if CX <> 0 and ZF .. 0, control 
transfers to the instruction at the destination label; if either ex .. 
0 or ZF "' 1, the Instruction following the loop is done. 

a. Write Instructions to read characters until either a nonblank 
character is typed, or 80 characters have been typed. Use 
LOO PE. 

b. Write instructions to read characters until eHher a carriage re­
turn Is typed or 80 characters have been typed. Use LOOPNE. 

Programming Exercises 

8. Write a program to display a "?", read two capital letters, and dis­
play them on the next line In alphabetical order. 

9. Write a program to display the extended ASCII characters (ASCJI 
codes 80h to FF_h). Display 10 characters per line, separated by 
blanks. Stop after the extended characters have been displayed 
once. 

10. Write a program that will prompt the user to enter a hex digit 
character ("0"· ... "9" or "A" ... "F"), display it on the next line 
in decimal, and ask the user i.i he or she wants to do it again. If 
the user types "y" or "Y", the ·program repeats; If the user types 
anything else, the program terminates. If the user enters an illegal 
character, prompt the user to try again. 

Sample exen1tiot1: :-
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ENTER A HEX DIGIT: 9 
IN DECIMAL IS IT 9 
DO YOU WANT TO DO IT AGAIN? y 
ENTER A HEX DIGIT: c 
ILLEGAL CHARACTER - ENTER 0 .. 9 OR A .. F: C 
IN DECIMAL IT IS 12 
DO YOU WANT TO DO IT AGAIN? N 

11. Do programming exercise 10, except that if the user fails to enter 
a hex-digit character In three tries, display a message and termi-
nate the program. · 

12. (hard) Write a program that reads a string of capital letters, end­
ing with a carriage return, and displays the longest sequence of 
consecutive alphabetically increasing capital letters read. 

Sample exec11tio11: 

ENTER A STKING OF CAPITAL LETTERS: 
FGHADEFGHC 
THE LONGEST CONSECUTIVELY INCREASING STRING IS: 
DEFGH 
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Logic, Sh_ift, and 
Rotate Jnstructio·ns 

Overview In this chapter we discuss Instructions that can be used to change 
the bit pattern in a byte or word. The ability to manipulate bits is generally 
absent in high-level languages (except C), and is an important reason for 
programming in assembly language~ 

In section 7.1, we introduce the logic in~tructions AND, OR, XOR, 
and NOT. They can ·be used to clear, set, and examine bits in a register or 
variable. We use these instructions to -do some familiar tasks, such as con­
verting a lowercase letter to upper case, and some nC' .v tasks, such as. deter­
mining If a register contains an even or odd number. · 

Section 7.2 covers the shift ·instructions. Bits can be shifted left cir 
right in a register or memory locatlo?; when a bit is shifted out, it goes into 
CF. Because a left shift doubles a numl>er and a right shift halves it, these 
instructions give us a way to multiply and divide b~ers of 2. In· Chapter 
9, we'll use the MUL_and DIV instructions for doiQg more generaJ·multipli­
cation and divisl~ow'CVel-, the~e latter instructions are much slower than 
the shift instructions.- · · 

In section 7.3, the rotate instructions ~re covered. They work like 
the shifts, except that when a bit Is shifted out one end of an oper~:1d it is 
put back in the other end. These instructions can be used in situation• where 
we want to examine and/or change bits or groups of bits. , 

In section 7.4, we use the logic, shift, and rotate instructions to do 
'binary and hexadecimal 1/0. The ability to read and write numbers lets us 
solve a great variety of problem~. 

-117 
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7.1 v 

Logic Instructions 

Figure 7. 1 Truth Tables for 
AND, OR, XOR, and NOT 
(0 = false, 1 = true) 

As noted earlier, the ability to manipulate individual bits is on 
the advantages of assembly language. We can change individual bits in 
computer by using logic operations. The binary values of O and 1 are tre< 
as false and true, respectively. Figure 7.1 shows the truth tables for the I~ 
operators AND, OR, XOR (exclusive OR), and NOT. 

When a logic operation is applied to 8- or 16-bit operands, the re 
is obtained by applying the logic operation at each bit position. 

Example 7.1 Perform the following logic operations: 

1. 10101010 J\ND 11110000 

2. 10101010 OR• 11110000 

3. 10101010 XOR 11110000 

4. NOT 101010.10 

Solutions: 

L. 10101010 
AND 11110000 

= 10100000 

2. 10101010 
OR 11110000 

= 11111010 

3. 10101010 
XOR 111 lOoocY 

=01011010 

4. NOT 10101010 
=01010101 

a b aANOb a OR b a XOR b 

0 0 0 0 0 

0 1 0 1 1 

1 0 0 1 1 

i 1 1 1 0 - --

a NOT a 

0 1 

1 0 



7.1.1 
AND, OR, and XOR 
Instructions 

Chapter 7 Logic, Shift, and Rotate lnstrlictions 119 

The AND, OR, and XOR instructions perform the named logic op­
erations. Ttie formats are 

AND destination.source 

OR · .~:stinatio~.~urce. 
XOR destination, source 

The result.of the operation-is stored in the destination, which must be a 
register or memory location. The source may be a constant, register, or mem­
ory location. However, memory-to-memory operations are not ~llowed. 

I 

Effect on flags: 

SF, ZF, PF reflect the result 
AF is undefined 

CF, OF= 0 

One _use of.AND, OR,'and XOR is to selectively modify the bits in 
· the destination. To do this, we construct a source bit pattern known as ;: 

mask. The mask bits are.chosen so that the corresponding destination bit!· 
are modified in the desired manner when the instflJction is executea. 

· To choose the mask bits, we make use of the following properties of 
AND, OR, and XOR:· From Figure 7.1, if b represents a bit (0 or I) 

b AND 1 = b b OR 0 =· b b XOR 0 = b 

b AND 0 = 0 b OR 1 = 1 b XOR 1 = -b (complement of b) _ 

From these, we may conclude that 
I. The AND instruction can be used to clear specific destination 
• bits ~hile preserving the_ others. A 0 mask bit clears the corre­

sponding destinatio9 bit; a 1 mask bit preserves the correspond­
ing destination_ bit. , 

2. · The OR instruction can be used to set specific destination bits 
while preserving the others. A 1 mask bit si.:ts the corresponding 
'destination bit; a 0 mask bit preserves the corresponding destina­
tion bit. · 

3. The XOR instruction· can be used to complement specific desti­
nation bits while pre~erving the others. A I mask bit comple-

-· ments the corresponding destination bit; a () mask bit preserves 
the corresponding destination bit. 

Example 7.2 Clear the sign bit of AL while leaving the other bits un­
-- c_hanged~ 

~:S~dution: Use the AND instruction.with 0111111 lb = 7Fh as the mask. 
Thus. 

AND AL,7Fh 

Example 7.3 Set the most signifiC'ant and least significant bits of AL 
while preserving the other bits. 
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Solution: Use the OR instruction with lOOOOOOlb = 81h as the mask. 
Thus, 

OR AL,8lh 

Example 7.4 Change the sign bit of DX. 

Solution: Use ~e XOR instruction with a mask of 800011. Thus, 

XOR DX,8000h 

Note: to avoid typing errors, it's best to express the mask in hex rather than 
binary, especially if the mask would be lfi bits long. 

The logic lnstructi<;>ns_ are espec\ally useful in the. following fre-
quently occurring tasks. · . 

Converting an ASCII Digit to a Number 

We've seen that when a program reads a character from the keyboard, 
. AL gets the ASCII .code of the characteL This ls also true of digit characters. 

For example, if the "5" key is pressed, AL gets 35h instead of 5. To get 5 in 
AL, we could do this: 

SUB AL, 30h 

Another method ls to use the. AND instruction to dear the high 
nibJ?le (high four bits) of AL: 

AND AL,OFh 

Because the codes of "O" to "9" are 30h to 39h, this method will convert 
any ASCII digit to a decimal value. 

By using the logic instruction AND instead of SUB, we emphasize 
that we're modifying the bit pattern of AL This is helpful in making the 
program more readable. · 

The reverse problem of converting a stored decimal digit to Its ASCII 
code-is left as an exercise.· 

Converting a Lowercase Letter to Upper Case 

The ASCII codes of "a" to "z" range from 61h to 7Ah; the codes of 
"A" to "Z" go from 4 lh to SAh. Thus for example, If DL contains the code 
of a lowercase letter, we could convert to upper case by executing · 

SUB DL,_20h 

This method was used in Chapter 4. However, if we compare the binary 
codes of corresponding lowercase and uppercase letters 

Character 

a 
b 

Code 

01100001 
01100010 

01111010 

Character 

A 

B 

z 

Code 

01000001 
01000010 

01011010 
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NOT Instruction 
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It Is apparent that to convert lower to upper case we need only clear bit 5. 
This can be done by using an AND instruction with the mask llOlllllb, 
or ODFh. So if the lowercase character to be converted is In DL, execute 

AND DL,ODFh 

The reverse problem of conversion from upper to lower case is left as an 
exercise. 

Clearing a Register 

We already know two ways to clear a register. For examole, to clear 
AX we could execute 

MOV AX,O 

or 

SUB AX,AX 

Us!ng the fact that 1 XOR 1 = 0 an..i 0 XOR 0 = 0, a third way is 

XOR AX,AX 

The machine code of the first method Is three bytes, versus two bytes for 
the latter two methods, so the latter are more efficient. However, because of 
the prohibition on memory-to-memory operations, the first method must 
be used to clear a memory location. 

Testing a Register for Zero 

Because 1 OR. 1 = 1, 0 OR 0 = 0, It might seem like a waste of time 
to execute an Instruction like 

OR CX,CX 

because it leaves the contents of CX unchanged. However, it affects ZF and 
SF, and In particular if CX contains 0 then ZF .. 1. So it can be used as an 
alternative to 

CMP CX,O 

to test the content$ of a register for zero, or to check the sign of the contents. 

The NOT instruction performs the one's complement operation on 
the destination. The format is 

NOT destination 

There is no effect on the status flags. 

Example 7.5 Complement the bits In AX. 

Solution: 

NOT AX 
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.,.1.3 
TEST Instruction 

7.2 
Shift Instructions 

The TEST Instruction performs an AND operation of the destination 
with the source but does not change the destination contents. The purpose 
of the TEST in~truction _ls to set the status flags. The format is 

TEST destination,source 

Effect on flags 

SF, zF, PF reflect the result 
AF is undefined 

CF, OF= 0 

Examining Bits 

The TF.ST instruction can be used to examine individual bits In an 
operand. The mask should contain 1 's In the bit positions to be tested and 
O's elsewhere. Because 1 AND b = b, 0 AND b = 0, the result of 

TEST destination,mask 

will have l's in the tested bit positions if and only if the destination has l's 
in these positions; it will have O's elsewhere. If destination ha·s O's in all the 
tested position, the result will be 0 and so ZF = 1. 

Example 7.6 Jump to label BELOW If AL contains an e~en number. 

Solution: Even numbers have a 0 in bit 0. Thus, the mask is OOOOOOOlb 
s: 1. 

TEST AL, 1 
JZ BELOW 

;·is AL even? 
; yes, go to BELOW 

The shift and rotate instructions shift the bits in the destination operanJ 
by one or more positions either to the left or right. For a shift instruction, the 
bits shifted out are lost; for a rotate instruction, bits shifted out from one end 
of the operand are put back into the other end. The instructi.oru have two 
possible formats. For a single shift or rotate, the form is 

Opcode destination,l 

For a shift or rotate of N positions, the form is 

Opcode destination, CL 

where CL contains N. In both cases, destination Is an 8- or 16-bit register or 
memory location. Note that for Intel's more advanced processors, a shift or 
rotate instruction also allows the use of an 8-bit constant. 

As we'll see presently, these instructions can be used to multiply and 
divide by powers of 2, and we will use them in programs for binary and hex 1/0. 
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Left Shift Instructions 

Figure 7.2 SHL and SAL 
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The SHL Instruction 

The SHL (shift left) instruction shifts the bits in the destlnatio'.1 to 
the left. The format for a single shift is 

SHL destination,l 

A O is shifted into the rightmost bit position and the msb is shirted 
into CF (Figure 7.2). If the shift count N is different from l, the instruction 
ta1'es the form · 

SHL destination, CL 

where CL contains N. In this case, N single Jdt shifts are made. The value 
of CL remains the same after the shift operation . 

Effect on flags 

SI', PF, ZI' reflect the result 

AF is undefined 

CF= last bit shifted out 

. 

OF= l if result changes sign on last shift 

Example 1.1 Suppose DH contains 8Ah and CL contains 3. What are 
the values of DH and of CF after the instruction SHL DH,CL is executed"! 

Solution: The binary value of DH Is 10001010. After 3 left shifts, CF 
will contain 0. The new contents Qf DH may be obtained by erasing the 
leftmost thwe bits and adding three zero bits to the right end, thus 
01010000b = 50h. 

Multiplication by Left Shift 

Consider the decimal number 235. If each digit is shifted left one 
position and a O attached to the right end, we get 2350; this is the same as 
multiplying 235 by ten. 

D~ fffffffffffffff}- 0 

CF' 15 14 13 ·12 11 10 9 8 7 6 s 4 3 2 

Word 

--- D-1 ff ff ff f 1-0 

CF 7 6 5 4 3 2 

Byte 

0 

0 
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Figure 7.3 SHR 

In the same way, a left shift on a binary number multiplies lt by 2. 
For example, suppose that AL contains 5 = OOOOOlOlb. A left shift gives 
00001010b = 10<:!, thus doubling Its value. Another left shift yields 00010100 
= 20d, so it ls doubled again. 

The SAL instruction 

Thus, the SHL Instruction can be used to multiply an operand .b) 
multiples of 2. However, to emphasize the arithmetic nature of the operation 
the opcode SAL (shift arithmetic left) is often used in instances where nu 
meric multiplication is intended. Both instructions generate the same ma 
chine code. 

Negative numbers can also be multip. 
For ex~mple, if AX is fFFFh (-1), then shifti1 '· 
FFF8h (-8). 

1· powers of 2 by left shifts 
1ree times will yield AX ' 

Overflow 

When we treat left shifts as multiplication, overflow may occur. F01 
a single left shift, CF and OF accurately indicate unsigned and signed over­
flow, respectively. However, the overflow flags are not reliable indicators for 
a multiple left shift. This ls because a multiple shift is really a series of single 
shifts, and CF, CF only reflect the result of the last shift. For example, if BL 
contains 80h, CL contains 2 and we ex~cute SHL BL,CL, then CF = OF = 0 
even though both signed and unsigned overflow occur. 

Example 7.8 Write some code to multiply the value of AX by 8. 
Assume that overflow will not occur. 

Solution: To multiply by 8, we need to do three left shifts. 

MOV CL, 3 

SAL AX,CL 
;number of shifts to do 
;multiply by 8 

o--4 ?????'J'J?1J'J1?'J?? .f-{] 
15 14 13" 12 11 10 9 8 7 6 5 4 3 2 

0 

Word 

7 6 5 4 3 2 

Byte 

0 Cf 

0 CF 
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Right Shift Instructions 

Fiaure 7.4 SAR 

Chapter 7 Logic. Shift and Rotate Instructions 12!i 

The SHR lnstructlo~ 
The instruction SHR (shift right) performs right shifts on the desti­

nation operand. The format for a single shift ls 

ti"',. -•" hlat:.l."11), ;, 

A O Is shifted Into the rnsb position, and the rightmost bit Is shifted 
·into CF. See Figure 7.3. If the shift count N is different from 1, the instruction 
takes the form 

SHR destination, CL 

where CL contairis N. In this case N single right shifts are made. 
The effect on the flags Is the same as for SHL. 

Exauip1e·1.9 Suppose DH contains 8Ah and CL contains 2 .• What are the 
values of DH and CF after the Instruction SHR DH,CL is executed? 

Solution: The value of DH in binary Is 10001010. After two right shifts, CF 
= 1. The new value of DI-I Is obtained by erasing the rightmost two bits and 
adding two 0 bi'ts to the left end, thus DH = OOIOOOIOb = 22h. 

The SAR Instruction 

The SAR Instruction (shift arithmetic right) operates like SHR, with 
one difference: the msb retains Its original value. See Figure 7.4. The syntax is 

SAR destination,1 

and 

SAR destination, CL 

The effect on flags Is the same as for SHR . 
. • 

Division by Right Shift 

Because a left shift doubles the destination's value, it's reasonable to 
guess that a right shift might divide it by 2. This Is correct for even numbers. 

'l???2???????????~ 
15 14 13 12 11 • 10 9 8 7 6 5 4 3 2 

Word 

rt????·?? ·~ 
765432 

Byte 

0 

0 CF 
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Figure 7.5 ROL 

For odd numbers, a right shift halves It and rounds down to the nearest -
integer. For example, if BL contains OOOOOIOib = 5, then after a dght shirt. 
BL will contain 00000010 = 2. .1 ,t 

Signed and Unsigned Division 

In doing division by right shifts, we need to make a distinction 
between signed and unsigned numbers. If an unsigned intt:rpretatlon is being 
given, SHR should be used. For a signed interpretation, SAR must be used, 
because it preserves the sign. 

Example 7.10 Use right shifts to divide the unsigned number 65143 
by 4. Put the quotient in AX. 

Solution: To divide by 4, two right shifts are needed. Since the divi­
dend is unsigned, we use SHR. The code is 

MOV AX,65143 
MO'/ CL,2 
SH!l AX,CL 

; AX· has number 
;CL has number of right shifcs 
;divide by 4 

Example 7.11 . If AL contains -15, give the decimal value of AL after 
SAR AL, 1 is performed. 

Solution: Execution of SAH AL,l divides the number by 2 and rounds 
down. Dividing -15 by 2 yields -7.5, and after rounding down we get -8. 
In terms of the binary contents, we have -15"' ll llOOOlb. After shifting, 
we have 1111 lOOOb = -8. 

D---i Tiifff f'f'f'f'~ 
CF 15 14 13 12 11 10 9 8 7 6 5 4 3 2 

CF 

Word 

765432 

Byte 

0 

0 
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Rotate Instructions 

Figure 7.6 ROR 
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More General Multiplication and Division 

We've seen that multiplication and division by powers of 2 can be 
accomplished by left and right shifts. Multiplication by other nwnbers, such as 
lOd, can be done by a combination of shifting and addition (see Chapter 8). 

·. In. Chapter 9, we cover the MUL and IMUL, DIV and IDIV instruc­
tions. They are not limited to multiplication and division by powers of 2, 
but are much slower than the shift instructions. 

Rotate Left 

The instruction ROL (rotate left) shifts bits to the left. The msb i~ 
shifted into the rightmost bit. The CF also gets the bit shifted out of the 
msb. You can think of the destination bits forming a circle, with the least 
significant bit following the msb in the circle. See Figure 7.5. The syntax is 

ROL- destination,1 

and 

ROL destination, CL 

Rotate Right 

The instruction ROR (rotate right) works just like ROL, except that 
the bits are rotated to the right. Jhe rightmost bit is shifted into the msb, 
and also into the CF. See Figure 7.6. The syntax is 

ROR destination,l 

and 

15 14 13 12 11 10 9 8 7 6 5 i 4 3 2 

Word 

7.;·6,, .5 4. 3 2 

Byte 

0 

0 CF 
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Figure 7.7 RCL 

15 14 13 12 11 10 9 8 7 6 5 .4 3 2 0 

Word 

~ l____:_I 
7 6 5 4 3 2 0 

Byte 

... 
In ROL and ROR, CF reflects the bit that Is rotated out. The next 

example shows how this can be used to inspect the bits In a byte or word, 
without changing the contents. 

Example 7.12 Use ROL to count the number of l bits In BX, without 
changing BX. Put the answer In AX. 

Solution: 

XOR AX,AX ;AX counts bits 
MOV ex, 16 ;loop counter 

TOP: 
ROL BX,1 ;C. F c bit rotated out 
JNC NEXT ;O bit 
INC AX ;l bit, increment total 

NEXT: 
LOOP TOP ;loop until d~ne 

In this example, we used JNC Uump If No Carry), which causes a Jump If 
CF = 0. In section 7.4, we use ROL to output the· contents of a register In 
binary. 

Rotate Carry Left 

The Instruction RCL (Rotate through Carry Left) shifts the bits of 
. the destination to the left. The msb is shifted Into the CF, and the previpus 
value of CF ls shi•ted Into the rightmost bit. In other words, RCL works like 
Just llke ROL, except that CF is part of the circle of bits being rotated. See · 
Figure 7.7. The syntax is 

RCL destination 4 1 

and 

RCL destination,CL 
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nfttt-?fu12TI?T1 
15 14 13 12 11 10 9 8 7 6 s 4 3 2 0 

word 

~ 1='1 
7 6 s 4 3 2 0 

Byte 

Rotate Carry Riglit 

The instruction RCR (Rotate through Carry Right) works just like RCL, 
except that the bits are rotated to the light See Figure 7 .8. The syntax Is 

RcR· destination,1· 

and 

RCR destination,CL 

Example 7.13 Suppose"DH contains 8Ah, CF= l, and CL contains 3. 
What are the values of DH and CF after the instr1.,1ction RCR DH.CL is 
executed? 

Solution: 

initial values 
after 1 right 
rotation 
after 2 righ~ 
rotations 
after 3 right 
rota~ions 

. ' 

CF 

1 

0 

0 

Effect of the rotate Instructions on the flags 

·, SF, PF, ZF reflect the result 
AF Is undefined ' 
CF =·la.st bit shifted out - . . 

DH 

10001010 

11000101 

01100010 

10110001 = Bth 

OF = 1 if result changes sign (In the last rotation 
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7.4 
Binary and Hex 110 

An Application: Raversing a Bit Pattern 

As an. application of the shift and rotate Instructions, let's consider 
'the problem of reversing·the bit pattern in a byte or word. For example, if 

AL contains 11011100, we want to make 1t00111011. 
· ~ · · An easy way to do this' Is to we SHL to shift the bits out the left end 

of AL Into C( and then use RCR to move them Into the left end of another 
register; for example, BL. If this is done eight times, BL will contain ~he . 
reversed bit pattern and it can be copied back Into AL. The code is · 

MOV CX,8 ;number of operations to do 
,RF.VERSE: 

SHL AL,l ;get a bit· into CF 
RCR BL,1 ;rotate it into BL 
LOOP REVERSE ;loop until done 
MOV AL,BL ;AL'gets reversed pattern 

One useful application of the shift and rotate Instructions is in binary 
and·hex 1/0: · 

Binary Input 

For binary Input, we .assume a program reads In a binary number 
from the keyboard, followed by a carriage return. The number actually Is a 
character string of O's and l's. As each character Is entered, we need to convert 
it to a bit value, and collect the. bits in a register. The following algorithm 
reads a binary number from the keyboard and stores its value tit BX. 

1. Algorithm for Binary Input 

Clear BX /* BX will. hold binary value */ 
Input a character /• '0' or '1' */ 
WHILE character <> CR DO 

Convert character to binary value 
Left shift BX 
Insert value into lsb of BX 
Input a character 

END_WHILE 

,, 
Demonstration·(for input 110) 

Clear BX 
BX ~ 0000 0000 0009 0000 

Input character '1', convert to 1 
Left. 'ifhi'f't''a}C'~ - . · · • r' ' 

BX m 0000. ·0000 0000 0000 
Insert value into lsb 

BX = 0000 0000 0000 0001 
Input character 'l' , convert to 1 
Left :shift· BX•· 

BX = 0000 0000 0000 0010 
Insert value into lsb 

BX • 0000 0000 0000 0011 
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Input charact'er '0' ;- c6nvert 1:to o 
. Left shift BX .. , 

BX • 0000 0000 0000 0110 .. 
Insert value into lsb ~ 

BX - 0000 0000 0000 0110 . .· . 
Bx· contains llOb. 

The algorithm assumes (1) input characters are either "O", "l ", or CR, and 
• (2) at most 16 binary digits are input. N. a new digit Is Input, the previous 

bits in BX must be shifted to the left to make room; then an OR operation 
can be u~d to insert the new bi.t into BX. The assembly instructions are 

XOR ·BX, BX 
MOV AH, 1 
INT 21H 

WHILE_: 
CMP AL, OOH 
JE .END WHILE -
AND AL,OFH 

: clear BX 
: input cha1· ft:r.C":t .ion 

: :i:ead a character 

;CR? 
;yes, done 
;no, convert t.o binary VU}lh! 

SHL . ·ax, i ;make rn-..rn !o: new value 
OR BL,AL ;put value into &X 

INT 21H ;read a character . 
JMP WHILE_ ;loop back 

END_WHILE: 

Binary Output 

Outputting the contents of BX in binary also involves the shifl'o\i­
eratlon. Here we only give an algorithm; the assembly code Is left to be don~ 
as an exercise. 

Algorithm for Binary Output 

FOR 16 times DO 
Rotate left BX /• BX holds output value, 

put ·msb into CF */ 
IF CF • 1 

THEN 
output 'l' 

ELSE 
output •o• 

· END_IF, 
END_FOR 

Hex Input 

Hex il}put consists of digits ("0" to "9") and letters ("A" to "F'l 
followed by a carriage return. For simplicity, we assume that (1) only upper­
case letters are used, ana (2) the user inputs no more than four hex characters. 
The process of converting characters to binary values Is more Involved than 
it was for binary input, and BX must be shifted four times to makt! room for 
a hex value. · · 
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.. 
Algorithm for Hex Input 

Clear BX /* BX will hold'inpp~ value */ 
input hex character 
WHI~E character <> CR DO 

convert character to binary value 
left shift BX 4 time;i 
insert value into lower ·4· bi-ts of BX 
input a characte·r' 

END_WHlLE 

Demonstration (for input 6AB) 

Clear BX 
··Bx - 0000 0000 0000 0000 

Input '6', convert to 0110 
Left, shift BX 4 times 

BX .c 0000 0000 0000 0000 
Insert value into l.ower 4. bits of BX 

BX - 0000 0000 .0000 0110 
Input 'A', convert to. Ah - 1010 
Left shift BX 4 times 

BX 0 0000 0000 0110 0000 
Insert value into lower 4 bits of BX 

BX = 0000 0000 0110 1010 
Input 'B', cof!.vert to 1011 
Left shift BX 4 times 

BX -· OCOO 0110 1010 0000 
Insert value. into lower 4 bits of BX 

BX ~ 0000 OlHl 1010 1011 
BX contains 06ABh. 

Here is the code: 

XOR BX,BX ;clear BX 
MOV CL,4 ;counter for 4 shifts 
MOV AH,l : input character function 

WHILE_: 

;convert 

INT 

CMP 
JE 

character 
CMP 
JG 

; input is a digit 
AND 
JMP 

21H ;input a character 

AL,ODH ;CR? 
END WHILE ;yes, exit 
to binary value 
AL, 39H ;a digit? 
LETTER. ; no, a letter· 

AL,OFH 
SHIFT 

;convert digit to binary value 
;go to insert in BX 

;convert letter to ~inary value 

;make room for new value 

;put vi!lue into ·low 4 bits 
;of BX · 
;input a character 
;loop until CR 
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Note that the program does not check for valid input characters. 

}lex.Output· 

BX contains 16 bits,. which equal· four hex digit .values. To output 
the contents of BX, we start from the left and get hold of each digit, convert 
it to a hex character, and output it. The algorithm which follows is similar 
to that for binary output. 

Algorithiti for H·ex Output 

•. FOR 4 times DO 
.. Mov~ BH to Di:. · · ./* "BX h~lds output value *I 

shift"DL 4 tt~e~ tocthe righ£ 
IF DL < 10 
•THEN . 
. •convert .to character in '0' .. '9~ 
.ELSE 

convert to-character in 'A' .• 'F' 
END_'.IF 
_ou~put .character 
Rotate BX left 4 times 

END FOR 

·. ' Demonstration isx Contains 4CA9h) 
. • . . ~ ~ ! 

BX - '4CA9h '• 0100 1100 1010 1001 
Move BH to ·DL 

DL = 0100 1100 • · · 
Shift DL 4 times to the right 

DL . c- 0000 '0100 

convert to cha'ra'cter. and output 
.. DL =' 0011 0100 m 34h = '4' 
Rotate BX left. 4 times 

BX = 1100 .1010 1001 0100 
Move BH to .DL , , • 

. ::- . DL ,;, . 110.0 1.010 

Shi ft DL 4 times til th; right 
DL ~ o·ooo· · 1100' 

Convert to c~aract~i'and output 
DL = 0100 0011 = 43h = .'C' 

Rotate BX left 4· times 
BX ~ 1010 1001 0100 1100 

Move .. BH to DL · • ,. 
· DL ~ 1010-' 1001 : . ·' .'!. 

Shift flL 4 times"to ·the; right 
DL - 0000 .10.10 . 

Convert, to chara~ter" and output 
DL • 0100 0010 = 42h • 'B' 

Rotate BX left"4 times 
BX = 1001 '0100 1100 1010 

Move E!i to DL 
OL "" 1001 0100 

Shift DL 4 times _to _th~ risht 
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DL • 0000 1001 
Convert to character and output 

DL • 0011 1001 • 39h • '9' 
Rotate BX 4 t~mes to the left 

BX • 0100 1100 1010 1001 • original contents 

Coding the algorithm Is left to be done as an exercise. 

Summary 

• The five logic instructions are AND, OR, NOT, XOR, and TEST. 

• The AND Instruction can be ~sed to clear individual bits in the 
destination. 

,• The OR instruction Is useful In setting individual bits in the desti­
nation. It can also be used to test the des.tlnation for zero. 

• The XOR instruction can be used to complement individual bits 
in the destination. It. can also be used to zero out the destination. 

• The NOT Instruction performs the one's complement operation 
on the destination. 

• The TEST Instruction can be used to examine individual bits of 
the destination. For example, It can determine If the destination 
contains an even or odd number. 

• SAL and SHL shift each destination bit "left one place. The most 
significant bit goes into CF, and a 0 Is shifted Into the least slgnifi 
cant bit. 

• SHR shifts each destination bit right one place. The least significant 
bit goes into CF, and a 0 ls shifted into the most sighiflcant bit. 

• SAR operates like SHR, except that the value of the most signifi­
cant bit is preserved. 

• The shift instructions can be used to do multiplication and divi­
sion by 2. SHL and SAL double the destination's value unless over­
flow occurs. SHR and SAR halve the destination's value if it is 
even; if odd, they halve the destination's value and round down 
to the nearest integer. SHR should be used for unsigned arithme­
tic, and SAR for signed arithmetic. 

ROL shifts each destination bit left one position; the most ~ignifi­
cant bit is rotated Into the least significant bit. For ROR, eac.h bit 
goes right one position, and the least significant.bit r"tate: into 
the most significant bit. For both Instructions, CF gets the 1ast bit 
rotated out. 

RCL and RCR operate like ROL and ROR, except that a bit rotated 
ou~ goes Into CF, and the value of CF rotates into the destination. 

Multiple shifts and rotates can be perforlljled· CL must contain 
the.number of.times_the shift or rotate is to be executed .. 

The shift and rotate instructions are useful in doing binary and 
hex 1/0. 
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, Glossary. 
clear, Change a value to 0 

~- oompiement 
·mask 

·change from a 0 to a 1 or from a 1 to a 0 

'A bit pattern used in logical operations to 
dear, let, or test.specific bits in an operand 

·set Change a bit value to a 1 

New 1n5t..Uction~ 
.:AND 

NOT 
OR 

RCL 

.:RCR 

ROL 
ROR• 

SAL/SHL 

SJ>.R · 
SHR 

TE.ST 

XOR 

exercises 

1. Perform the following .logic operations 
a. 10101111 AN'o'"1~101i .. 

h. 1 ·1oi1oooi'6R'oiooiooi' 

c .. 01ii1100 XOR i101101u 
d. NOT 01011110 .. ,. 

2. 91ve ~ ~ogic instructio~ ~o do each of the. following. 
a. Clear the even-numbered bits of AX, leaving the other bits 

· unchanged::· · . : . 

b. Set the most and least significant bits of BL, leaving the other 
· ·'i bits unchan ed.· ' ·' · " . \ . g '' " -
c~ ;Co~plem~nt 'the 'rii'sb of DX, leaving the other bits 

'unC"l1ariged.' ' . . . ' 
·- "'•' f. 

d. Replace the value of the word variable WORD I by its one's 
complement .. 

3. Use the.TEST instruction to. do each of the following.· 

a. Set ZF if the contents of AX is zero. 
b. 'ClearZF If BX cqntalns an· odd number.· 
c.- Set·SF if DX'contains a negative number. 

d. ·Set ZF. if DX c~nt~·in;· a zero or positive number. 

e. Set PF if BL contains an even number of 1 bits. . . : . 
4. Suppose AL contains 1100101lb and CF= l. Give the new con­

tents.of AL after each of the ·following instructions is exec .lied. As· 
sume the preceding initial conditions for each part of this 
question. · · 

a. »SHL·AL,J; 

· b.· 'SHR AL~ 1, 

:.c! .ROL'AL,CL if c'L c~ritains 2 

'd.
1 

ROR AL,CL ir.CL'c~ntains 3 

e. SAR AL,q_,1(~L ~o~t.~ins 2 

.f. , RCL AL, 1.. , . 

g. RC_R_AL,CL if CL co~~ins 3 
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· S. Wtite one or more Instructions to do each of the following. 
Assume overflow does not occur. 
a. Double the value of byte variable BS. 
b. Multiply the value of AL by 8. 

c. Divide 32142 by 4 and put the quotient In AX. 
d. Divide -2145 by 16 and put the quotient in BX. 

6. Write instructions to do each of the following: 
a. Assuming AL has a value less than 10, convert It to a decimal 

character. 
b. Assuming DL contains the ASCII code of an uppercase letter, 

convert It to lower case. 
7. Write instructions to do each of the following. 

a. Multiply the value of BL by lOd. Assume overflow does not occur. 
b; Suppose AL contains a positive ~umber. Divide AL by 8, and 

put the remainder in AH. (Hint: use ROR.) 

Programming Exercises 

8. Write a program thC!t prompts the user to enter a character, and 
on subsequent lines prints its ASCII code in binary, and the num­
ber of 1 bits In Its ASCII code. 
Sample execution: 

TYPE A CHARACTER: A 
THE ASCII CODE OF A IN BINARY IS 010'00001 
THE NUMBER OF l BITS IS 2 

9. Write a program that prompts the user to enter a character and 
prints the ASCII code of the character in hex on the next line. Re­
peat this process until the user types a carriage return. 

Sample execution: 

TYPE A CHARACTER: Z 
THE ASCII CODE OF Z IN HEX IS SA 
TYPE A CHARACTER: 

· 10. Write a program that prompts the user to type a hex number of 
four hex digits or less, and outputs it In binary on the next line. 
If the user enters an illegal character, he or she should be · 
prompted to begin again. Accept only uppercase letters. 
Sample exenitio11: 

TYPE A HEX NUMBER (0 TO FFFF): la 
ILLEGAL HEX DIGIT, TRY AGAIN: lABC 
IN BINAPY IT IS 0001101010111100 

Your program may ignore any Input beyond four characters. 
11. Write a program that.prompts the user to type a binary number 

of 16 digits or less, and outputs It In hex on the next line. If the 
user enters an illegal character, he or she should be prompted to 
begin again . 

... . .. ·- -·-
Sample e.1tecutio11: 

TYPE A BINARY NUMBER, UP TO 16 DIGITS: 11100001 

IN HEX IT IS El 
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Your program may ignore any input beyond !6 characters. 

12. Write a program that prompts the user to enter two.binary numbers 
of up to 8 digits each, and prints their sum on the next line in bi­
nary. If the user enters an illegal character, he or she should be 
prompted to begin again. Each input ends with a carriage return. 
Sample executiQn: , 

TYPE 'A BINARY NUMBER, UP TO 8 DIGITS: 11001010 
TYPE 'A BINARY NUMBER, UP TO 8 DIGITS: 10011100 
THE BINARY SUM I~ 101100110 

13. Write a. program that prompts the user to enter two unsigned hex 
numbers, 0 to FFFFh, and prints their sum in hex on the next 
line. If tti'e user enters an illegal character, he or she should be 
prompted to begin again. Your program should·be able to handle 
the possibility of ynsigned overflow. Each input ends with a car-
riage return. · 

Sample execution: 

TYPE 'A HEX NUMBER, 0 - FFEF: 21AB 
TYPE 'A HEX NUMBER, 0 - FFFF: FE03 
THE·SUM lS llFAE 

14. Write a program that prompts .the user to enter a string of deci­
mal digits, ending with a carriage return, and prints th.eir su~ in 
hex on the next line. If the user enters· an illegal character, he or 
she should be prompted to begin again. 
Sample execution: 

ENTER A DECIMAL DIGIT STRING: 1~99843 

THE SUM OF THE DIGITS IN HEX f S 0024 



8 

The Stack and 
Introduction to 
Procedures 

Overview 

8.1 
The Stack 

The sta.::k segment of a program ls used for temporary storage of data 
and addresses. In this chapter we show how the stack can be manipulated, 
and how it is used to implement procedures. 

In section 8.1, we Introduce the PUSH and POP Instructions that 
add and remove words from the stack. Because the last word to be added to 
the stack Is the first to be removed, a stack can be used to reverse a list of 
data; this property is exploited in Section 8.2. 

Procedures are extremely important In high-level language program­
ming. and the same ls true in assembly language. Sections 8.3 and 8.4 discuss 
the essentials of <issembly language procedures. At the machine level, we can 
see exactly how a procedure is called and how it returns to the calling program. 
In section 8.5, we present an example of a procedure that performs binary 
multiplication by bit shifting and addition. This example also gives us an 
excuse to learn a little more about the DEBUG program. 

' A stack is one-dimensional data structure. Items are added and re-
-. moved from one end of the structure; that is, it is processed in a "last-in, 
· · first-out" manner. The most recent addition to the stack is called the top 

of the stack. A familiar example is a ~tack of dishes; the last dish to go on 
the stack ls the top one, and it's the only one that can be removed easily. 

139 
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Figure 8. 1A Empty Stack 

A program must set aside a block of memory to hold the stack. w:· 
have been doing this by declaring a.stack segment; for example, 

.STACK lOOH 

When the program is assembled and loaded in memory, ~S will contain the 
segment number of the stack segment. For the preceding Stafk Cieclaraticm, .. 
SP, the stack pointer, is lnitiallzec,1'-to lOOp. Thjs . .re~ts tJit empfy ~taek 
position: When the stack is nofenipty, SP contains.the offset'address.of the · 
too of the stack. · 

'1USH ~nd PUSHF 

ro·add _a new word to the stack we PUS~ it on, The synta.X i~ 

PUSH ~ource 

where source is a. 16-~it register or memory word. For example, 

PUSH AX 

Exeeution of PUSH cause~ the following to happen: 

1. SP is decreased by 2. 
2. A copy .of the source content is m~ved to the address specified by 

SS:SP. The source is unchanged. . . 
The instruction PUSHF, which has no operands, pushes the contents of the 
FLAGS register. onto the stack. 

Initially, SP contains the.offset address of the memory location im­
mediately following the stack segmer:it; the first PUSH decreases SP by 2, 
makinu It noi"nt to the la~t .word in the stack sel'rnl'nl. llecau•P each PllSH 

. Offset 

OOFO 

OOF2 

OOF4 

OOF6 

OOFS I 0100 I SP 
OOFA 

OOFC EJAX 
OOFE 

0100 ..__SP 

ST ACK (empty) 
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· Figure 8.18 After PUSH AX 
·I 

Offset·· 

OOFO 

OOF2 

OOF4 '' 

OOF6 

OOF8 ,, 
OOFE SP 

OOfA 

' G OOFC AX 

OOFE 1234 .--SP 

·.1>100 5678 BX 

STACK . 

decreases SP, the stack grows toward the beginning of memory. Figure 8.1 
show>; how PUSH works. · 

- 1C After PUSH BX .. 

Offset 

... 
OOFO 

OOF2 

OOF4 

OOF6 

OOF8 I OOFC J SP 

OOFA 

OOFC 5678 +----SP I 1234 AX 

OOFE 1234 

0100 5678 BX 

STACK 
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8.2A Before POP 

POP and POPF 

To remove the top item from the stack, we POP It. The syntax Is 

POP destination 

where destination is a 16-bit register (except IP) or memory word. For example, 

?OP BX 

Executing POP causes this to happen: 
1. The content of SS:SP (the top of the stack) Is moved to the destl· 

nation. 
2. SP is Increased by 2. 

Figure 8.2 shows how POP works. 
The Instruction POPF pops the top of the stack lnt9 the FLAGS regls ter. 
There. ls no effel't of PUSH, PUSHF. POP, POPF on the flags. 
Note that PUSH and POP are word operations, so a byte Instruction 

such as 

Illegal: PUSH DL 

Is illegal. So Is a push of immediate data, such as 

Illegal: PUSH 2 

Not.e: an Immediate data push Is legal for the 80186/80486 processors. These 
processors are discussed In Chapter 20. 

In addition to the user's program, the operating system uses the stack 
for its own purposes. For example, to Implement the INT 21h functions, 
DOS saves any registers It uses on the stack and restores ·them when the 
Interrupt routine ls completed. This does not cause a problem for the user 

Offset 

OOFO 

OOF2 

OOF4 

OOF6 

OOF8 
OOFC SP 

OOFA 

OOFC 5678 4---SP t FFFF ex 
OOFE 1234 

0100 B OX 

STACK 
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B_2B After POP CX 

I I 

OOF4 

OOF6 

·0 SP 

OOF8 

OOFA 

OOFC 5678 
5678 1. ex 

OOFE 1234 +-- SP 

0100 1- 0001 BX 

STACK 

because any values DOS pushes onto the stack are popped off by DOS before 
It returns control to the user's program. · 

8.2C After POP DX 
Offset.· '. 

OOfO 

OOF2 

OOF4 

G SP 
OOFI 

OOFA . 

OOFC 5678 I 5678 ex 

OOFE 1234 

0100 SP :1 1234 DX 

STACK (empty) 
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8.2 
A Stack Application Because the stack behaves in a last-in, first-out manner, the order 

:hat items come off the stack iS the reverse of.the order they enter tt:-The 
'ollowlng program uses this property to tead a sequence of characters and · 
display them in reverse order on the next line. 

Algorithm to Reverse Input. 

Display a '?' 
Initi~lize count to·O 
Read a characr.er 
WHILE character is not a carriage return DO 

push character onto the stack 
increment count 
.read a characte'r 

EN!:> WHILE; 
Go to a new '1ine 
FOR count times DO 

pop a character from the stack; 
display it; 

END FOR 

Her~ is .the program: 

Program Listing PGMB_ 1.ASM 

~: .• Mui:oE!.. 

3: .. STACK 
.CODE 
MAIN 

SMALL 
lCCH 

PROC 
4: 
5: 

6: 
7 :' 

;display user prompt 

B: 

9: 

MOV AH, 2 
MOV DL, '?' 
INT 21H 

;p_reparc: to display· 
;cher ·to display· 
;dis.play '?' 

10: ;initialize character count 
11: 
12: 
13: 
14: 

; read a 
XOR ex, ex 
character 
MOV AH, l 
INT ·21H 

;count = 0. 

; prepare to read 
; read a char 

15: ;while character is not a carriage return do 
16 :. WHI_LE_: 
l 7: 
18; 

19: 
20: 
21: 
22: 
23: 
24: 
25: 
2 6: 
27: 
.28: 
29: 
30: 

CMP AL, OOH 
JE END WHILE -
;sav.e char.act er 
POSH AX 
INC ex 

;read a character 
INT 21H 
JMP Wlll·LE 

E;N!J - WHILE: 
;go to u. new line 

MOV AH,2 
MOV DL,9DH 
INT 21H 

'MOV DL,OAH 

;CR? 
;yes, exit loop 

on the stack a·nd increment coun1 
;push it on stack 
; count = count + l 

; read a char 
; loop back 

;display c.har fen 
:CR 
;execute 
;LF 
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31: INT 21H 
32: JCXZ EXIT 
33: ; for count times 
34: TOP: 
35: ;pop a character 
36 :· POP 
37: ;display_ it 
38: INT 
39: . LOOP 
40:. ;end.._for 
41: EXIT: 

DX 

21H 
TOP 

do 

from 

. ' 

;execute 
;exit if no characters read 

the stack 
;get a char from stack 

;display it 

'.42: -MOV AH, 4CH 
. 21H 

C>PGMS 1 
?THIS IS A .TEST 
!SET A SI SIHT 

C>PGM8_1 
?A 
A 

C>PGMS_l 

43 :· •. , : . 
44: MAIN-
45: -~ 

. INT 
"ENDP 

END MAIN 

Because the number of characters to be entered is unknown; the 
program USl!S ex to count them. ex controls the FOR loop that dfsplays the 
characters in reverse "order. . . 

In lines .]6-24, the program executes a WHILE loop that pushes 
characters on the stack and reads new ones, until a carriage return is entered. 
Even though the input characters are in AL, it's necessary to save all of AX 
on the stack, because the operand of PUSH must be a word. 

When the program exits the WHILE loop (line 25), all the charac1ers 
are on the stack, with the low byte of the top of the stack containing ~he 
last character to be entered. AL contains the ASCII code of the carriage return. 

At line 32, the program checks to see if any character~ were read. If 
not, CX contains 0 and the program jumps to the DOS exit. If any characters 
were read, the program enters a FOR loop that repeatedly pop~ the stack into 
DX (so that DL will get a character code), and <foplays a character. 

Sample ex,'C11tio11s: 

? (c;,nly· 'carria~e return type,j) 
(no output) 

C> 
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8.3 
Terminology of 
Procedures 

Figure 8.3 Procedure Call 
and Return · 

In Chapter 6, we mentioned the idea 0f top-down program design. 
The idea is to take the original problem and llecompose it into a series of 
subproblems that are easier to solve than the original problem. High-level 
languages usually employ procedures to solve these subproblems, and we 
can do the same thing in assembly language. Thus an assembly language 
program can be structured as a collection of procedures. 

One of the procedures is the main procedure, and it contains the 
entry point to the program. To carry out a task, the main procedure calls 
one of the other procedures. It is also possible for these procedures to call 
each other, or for a procedure to call itself. 

When one procedure calls another, control transfers to the called 
procedure and its instructions are executed; the called procedure usually 
returns control to the caller at the next instructicn after the call statement 
(Figure 8.3). For high-level languages, the mechanism by which call and 
return are implemented is hidden from the programmer, but in assembly 
language we can see how it ~orks (see section 8.4). 

Procedure Declaration 

The syntax of ptocedure declaration is the following: 

name PROC type 
;body of the procedure 

RET ·-
name ENDP id: , 

Name is the user-defined name of the procedure. The optional operand type 
is NFAR or FAR (if type is omitted, NEAR is assumed). NEAR means that 
the statement that calls the procedure is in the same segment as the proce­
dure itself; FAR means that the calling statement is in a different segment. 
In the following, we assume all procedures are NEAR; FAR procedures are 
:'iscussed in Chapter 14 .. 

MAIN PROC 

CALL PROCI 
next instruction 

PROC1 PROC 
first instruction 

RfT 
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CALL and RET 
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RET 
The RET (return) instruction causes control to transfer back. to the 

calling procedure. Every procedure (except the main procedure) should ha•:e 
a RET someplace; usually it's the last statement in the procedure. 

Communication Between Procedures 

, A procedure must have a way to _receive values from the procedure 
that calls .It, and a way to return' results. Unlike high-level language proce­
dures, a$sembly language procedures do not" have parameter lists, so it's up 
to the programmer to devise a way for procedures to communicate. For CX· 

ample, if there are only a few input and output values, they can be placed 
in registers. The general issue of procedure communication is discussed in 
Chapter 14. • 

.. Procedure Documentation 

In addition to the required procedure syntax, it's a good idea to 
document a procedure so that anyone reading the program listing will know 
what the procedure does, where it gets its input, and where it delivers i::~ 

output. In this book, we generally document procedures with a comment 
block like this: 

(describe what the procedure does) 
input: (where it receives information from 

the calling program) 
output: (where it delivers results to 

the calling program) 
uses: (a 11 St of procedures that lt calls) 

To invoke a procedure, the CALL instruction is used. There arc two 
kinds of procedure calls, direct and indirect. The ~yntax of a direct pro­
cedure call is 

CALL name 

where name is the name of a procedure. The syntax of an indirect proccd·...1r<· 
call is -

'c.a.LL address_exprcssion 

where address_.:xpression specifics a register or memory location containi11i·. '.·!· 
address of a procedure. 

Executing a CALL instruction causes the following to happen 

I. The return address to the calling program Is saved on the: ~t ·c' 
This is the offset of the next instruction after the CALL ~ta· __ 
ment. The segment:offset.ofthis'.instruction is in CS:IP ,,; ·~ 

time the call is executed.-
. ... !: 
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~tt>et address ,,.. . Code segment 

I MAINPROC 

I 0010 
IP-+0012 

CALL PROC1 
next instruction 

PROCI PROC 
0200 first instruction 

KET 

Figure 8.4A · Before CALL 

Off~et address Code segment 

MAIN PROC 

0010 CALL PROCt 
0012 next instruction 

PROC1 PROC 
IP -... 0200 first instruction 

RET 

Figure 8.48 A~er CALL 

Offset Stack segment 
address ,,----~ 

OOFC 

OOFE 

0100 "---SP 

Offset Stack segment 
address ,,-----. 

OOFC 

OOFE 0012 +----SP 

0100 

2. · lJ> gets the offset address of the firSt Instruction of the procedure. 
This transfers i:ohtrol to the procedure. See Figures 8.4A and 8.48. 

To return from a ~'"Jure, the- Jnstruction 
·~ . 

RET pop_value 
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Offset address Code segment 

MAINPROC 

0010 CALL PROC1 
0012 next instruction, 

PROC1 PROC 
0200 first instruction 

IP -+ 0300 RET 

Figure 8.SA Before RET 

·Offset Staclc segment 
address .-------. 

OOFC 

· OOFE 0012 .--sp 

0100 

Offset address Code segment 

MAIN PROC 

0010 CALL PROCl 
IP --+ 0012 next instruction 

PROC1 PROC 
0200 first instruction 

1- 0300 RET 

Figure 8.SB. After RET 

Offsei Stack segment 
address .-------. 

OOFC 

OOFE 

0100 -SP 

Is executed. The Integer argument pop_ value is optional. For a NEAR procedure, 
exea.i"tion of RET causes the stack tq be popped into IP. If a pop_value N is 
si)ectfied, it ls added to SP, and thus has the effect of removing N additional 
byte5 from· the stack. CS:IP now contains the segment:offset of the return ad· 
dress, and control returns to the caUlnx proi:rdm. St.oe Fi1..'Ures 8.5A and H c;n 
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8.5 
An Example of a 
Procedure 

As an example, we will write a procedure for finding the product of 
two positive integers A and B by addition and bit shifting. This is one way 
unsigned multiplication may be implemented on the computer (in Chapter 
9 we introduce the multiplication instructions). 

Multiplication algorithm: 

Product = 0 
REPEAT 

IF lsb of B is 1 (Recall lsb = least 

significant bit) 
THEN 

Product ~ Product + A 
END IF 
Shi ft left A 

Shift right B 

UNTIL B = 0 

For example, if A= llib = 7 and B = il01b = 13 

Product = 0 

Since lsb of B is 1, Product = O + lllb ll:b 
Shift left A: A - lllOb 
Shift right B: B = llOb 

Since lsb of B is 0, 

Shift left A: A = lllOOb 
Shift right B: B = llb 

Since lsb of B is 1 
?r0duct. = lllb + 111001:: 10'.lOllb 
Shift left ;...; f, ~ ll 1000b 

Shi ft ri ]ht B: i3 ~ 1 

Sir.ce lsb cf E '" 
Pr0duct = JOOOllh + lllOOOb = lQllO:ib 
Shift left A: A = lllOOOOb 
Shift right B: B 0 

Since lsb of B c O 

Return Product = 101101 lb : 9ld 

Note that we get the same answer by performing the usual decimal multi­
plication procc~s on the binary numbers: 

Jl 11.J 
xllOlb 

111 
ooc 

111 
111' , . 

1011011b 

' f 

In the following program, the algorithm is coded as a procedure 
MULTIPLY. The main program has no input or output; we will use DEBUG 
for lnP f/() 
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~Program Listing PGM8_2.ASM 
i: TITLE PGM8 2: MULTIPLICATION BY ADD AND SHIFT 
2: .MO::>EL -~·SMALL 
3: .STACK lOOH 

! .CODE> ·• 
.MAIN , PROC; 

.4: 
.5: 
6: 
7: 

;execute in DEBUG. Place ~ in AX and B in BX 
CALL MULTIPLY 

8: 
9: 
10.: 

;DX 

11: MAIN 

will contain the 
MOV AH, 4CH 

0 rNT 2iH 
.ENDP •. 1 

12: MULTIPLY PROC 

product 

13: ;mulc6iplies two n~s. A and B by shifting and addition 
14: ;input: AX= A, BX B. Nos.~in range 0 -. FFh 
15: ; output: DX = product 
16: PUSH AX 

. l 7: 

18: 
19: REPEAT: 

PUSH 
XOR 

20: ;if B is odd 

21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 

•31 ": 

. TEST 

JZ 
;then 

ADD 
END IF: -

SHL 
SHR 

;until 
.JNZ 
POP 
POP' 
RET 

MU!..TI?LY ENDP '. 

END 

BX 
DX,DX 

BX,l 
END IF -
DX,AX 

Ax,1· 
BX, l 

REPEAT 
BX 
AX 

MAIN 

;product 

;is B odd? 
, '10, · even 

0 

; shift. left A 
;Shift right B 

"""Procedure MULTIPLY receives ils input A and B through registers AX and 
. _BX, respectively. Values are placed·in these registers by the user inside the 

DEBUG program; the product is returned in DX:--lr, order to avoid ovt>rfiow, 
_A and B are restricted to range from ·a to.FFh. 
_ ~ p.rocedure }l~ually beg~ns by:sa';'i~·g !111 the registers it uses on the 
... stack and ends by restoring these reglsters:--This is done because the calling 

pro!;ram may have data stored in registers, and thl' actions of the.procedur<.-
. could cause unwanted side effects if the registers are not preserved. f\·,·n 
though it's not really necessary in this program, we illustrate this practice 
by pushing AX and BX on the stack in lines 16 and 17, and restoring them 
in lines 30 and 31. The registers are popped off the stack in the reverse order 

• that they ":ere p~ished on.. . ,. ._ . , 
Aftei clearing DX, whi~h will hold the product, the pron:dure enters 

a REPEAT loop (lines· 19-29): At line· 22, the proc~dure checks BX's least 
significant bit. If the lsb of BX is i: then ~X is added to the product in DX; 
if the lsb of BX is 0, the procedure skips to line 26. Here AX is shifted left, 
and BX is shifted right; the loop continues until BX = 0. The procedure exits 

.. with the produ<;t In DX. 
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I 
. I 

-u 
177F:OOOO 
17-::0003 
l rF:0005 
1 77F: 0007 
177F:0008 
177F.:0009 
177F:OOOB 
177F:OOOF 
177F:OOll 
177F:0013 
.177F: 0015 
~77F:0017 

li7F:0019 
177F:001A 
177F:001B 
l77F:001C 
177F:001E 

-a 

After assembling and linking the program, we take it into DEBUG 
(In the following. the user's response appears in boldface): 

C> DEBtJG PGH8;__2 .EXE 

DEBUG responds with its command prompt"-". To get a listing of the pro­
gram, we use the U (un:issemble) command. 

E80400 CALL 0007 
B44C MOV AH,4C 
C021 INT 21 
50 PUSH AX 
53 PUSH BX 
3302 XOR DX,OX 
F7C30100 TEST BX,0001 
7402 
0300 
DlEO 
OlEB 
75F2 
~B 

~8 

C3 
E3Dl 
E38B 

JZ 0013 
ADD DX,AX 
SHL · AX,l 
SHR BX,l 
JNZ OOOB 
POP BX 
POP AX 
RET 
JCXZ FFEF 
JCXZ FFAB 

The U command causes DEBUG to interpret the contents of memory as 
machine language Instructions. The display gives the segment:offset of each 
instruction, the machine code, and the assembly code. All numbers are ex­
pressed in hex. From the first statement, CALL 0007, we can see that proce­
dure MAIN extends from 0000 to 0005; procedure MULTIPLY begins at 0007 
and ends at OCHS with RET. The instructions after this are garbage. 

Before e!'tering the data, let's Jook at the registers. 

__ __,-. 

AX=OOOO BX=OOOO-CX=OOlC DX=OOOO 
DS=176F ES=l76F SS=l78l CS•l77F 
177F:OOOO ES0400 CALL 0007 

SP=OlOO BP•OOOO s:=OOOO DI=OOOO 
I P•OOOO NV UP E ~ p;:, NZ !JA PO ~· 

The initial value of SP= lOOh reflects that fact that we allocated lOOh bytes 
for the stack. To have a look at the empty stack, we can dump memory with 
the D command. ' 
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DSS:FO FF 
178l:OOFO 00 00 00 00 00 00 6F l7-A4 13 07 00 6F 17 00 00 

I-~ L AX 0000:7 

The command DSS:FO FF means to display the memory bytes from SS:FO to 
SS:FF. This is the last 16 bytes in the stack segment. The contents of each 
byte is displayed as two hex digits. Bet!luse the stack is empty, everything 
in' this display is garbage .. 

Before executing the program, we need to place the numbers A and 
B In AX and BX, respectively. We will use A "' 7 and B = 13 = Dh. To enter 
A, we use the R command: 

The command RAX means that we want to change the content of AX. DEBUG 
displays the current value (0000), followed by a colon, and waits for us to enter 
the new value. Similarly we can change the initial value of B in BX: 

· I.__· _;_~_o_o_o.o-:o ____ _ 

-a 
!>.Xo0007 BX=OOOD 
DS=l76F ES~l76F 

177F:OOOO E80400 

Now let's look at the registers again. 

CX=OOlC DXcOQOO 
SS 0 1781 CSg177F 

CALL 0007 

SP=OlOO 
IP•OOOO 

sP~oooo s1-oooo 01-0000 
NV UP EI PL NZ NA PO NC 

We see that AX ad BX now contain the initial values. 
To see the effect of the first Instruction, CALL 0007, we use the T . 

(trace) command. It will execute a single instruction and display the registers. 
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I 

-T 
AX~0007 BX=OOOD CX=OOlC DX=OOOO SP=OOFE BP=OOOO S!cQQOO DI=OOOO 
GS=l76F ES=l76F SS=l781 CS=l77F IP=0007 NV UP EI PL NZ NA PO NC 
i77F:0007 50 PUSH AX 

-DSS:FO FF 

We notice two changes in the registers: (1) IP now contains 0007, the starting 
offset of procedure MULTIPLY; and (2) because the CALL instruction pushes 
the return adJress !o procedure ~.'.AJN on the stack, SP has decreased from 
OlOOh to OOFEh. Here are the last 16 bytes of the stack segment again: 

l 781: OOFO 00 00 00 00 07 c.O 00 00-07 00 7F 17 A4 13 03 00 

The return address is 0003, but is displayed as 03 00. This is because DEBUG 
displays the low byte of a word before the high byte. 

The first three instructions of procedure MULTIPLY push AX and BX 
onto the stack, and clear DX. To see the effect, we use the G (go) command. 
The syntax is 

G offs"'t: 

It causes the program to execute instructions and stop at the specified o~fset. 
From the unassembled listing given earlier, we can sec that the next instruc­
tion after XOR DX,DX is at offset OOOBh. 

I 
-GB 

AX•OJO~ BXnO~OD CX•COlC 
DS=~76F ES=17EF 3~-1781 

1 :77F:000c F7C30100 TEST 

DX=OOOO 
cs~177F 

BX,0001 

SP=OOFA 
IP=OOGB 

BP=OO~O sr-0000 DI=S~CO 

NV u~ El r·~ 21~ NA PE l~C 

-DSS:FO FF 

We see that the two l'USHcs ha\-e caused SP to decrease by 4, from OOFEh 
to OOFAh. Now the stack looks like this: 

1781: O:)FC 00 CiO 00 00 07 00 00 17· .:,4 13 OD 00 07 00 C3 CC, 

The stack now contains three words; the values of BX (OOOD), AX (0007), 
and the return address (0003). These are shown as OD 00 07 00 03 00. _:: 

Now let's watch the procedure in action. To do so, we will execute 
to the end of the REPEAT loop at offset 0017h: 
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-Gl7 
AX=OOOE BX•OOG6 
DS=l~6F E5=l76F 
l 77F:0017 75F2 

cx-001c DX=0007 
55=1791 C5nl77F 
JNZ OOOB 

5P=OOFA .BP=OOOO Sl=OOOO Cl=OOOO 
IP~OOl 7 NV UP £! PL NZ AC PE CY 

Because the initial value of Bin BX was ODh = 1 lOlb, the lsb of BX is I, so 
AX 

1

is added to the product in DX, giving 11 lb= 0007h. AX is shifled left, 
which doubles A to 14d = OOOEh, and BX is shifted right, which halvts BX 
(and rounds down) to 0006h = 1 lOb. 

· To get to the top of the loop, we'll use the T wmmand again: 

ox~ooo1 

C5=177F 
BX,0001 

5P=00FA 
IP=OOOB 

and execute again to the bottom: 

BP=OOOO si=OOOO c1~0000 

NV UP EI PL NZ AC PE CY 

-Gl 7 ,, 
AX=001C 
D5~176F 

5X•0003 
E5·l-16F 

CX=OOlC 
SS=i781 
JNZ OOOB 

DX=0007 
CS=l77F 

SP=OOFA 
!P=0017 

BP=OOOO 51=0000 SI=OOOO 
NV UP EI PL NZ AC PE: t;C 

117F:0017 75F2 

'· ,, 

-T 

Ht'L.•use BX = 0006h = l lOb, the lsb of BX is 0, so the proch1ct in DX stays the 
same. AX is shifted left to 11 lOOb = ICh and BX is shifted right to 1 lb= 3h. 

After two more trips through the loop, the product is in DX. Watch 
AX, BX, and DX change: 

Ax~oo1c EX=0003 CX=OOlC DX-0007 5P=OOfA B?~oooo SI~oooo DI=OOOO 
!)S~l76f E3=176F 5Szl781 C5~177k- IP=OOOB NV UP 1::1 PL Nt AC ?ENC 

•• l 77F: OOOB f7C30100~· TES7 BX, 0001 

-Gl7 
AX=0038 BX=OOOl 
DS=l76F ES=l76F 
l 77F:0017 75F2 

CX=OOlC DX=0023 
55=1781 C5=177F 
JNZ OOOB 

5P~OOFA 

IP=0017 
B?=OOOG Sl=CCOO DI=OOOJ 
NV UP EI PL NZ AC 1-'0 CY 
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-T 
AX-0038 BX-0001 cx-001c 0Xm0023 SP•OOFA BP•OOOO sr-0000 DI•OOOO 
DS=l 76F ES=l 76F ss-1 781 CS-l 77F IP~oooa NV UP EI PL NZ AC PO CY 
l 77F: OOOB F7C30100 TEST BX, 0001 

-G17 
Ax-0010 ax=oooo cx-001c oxEoosa 
DS=l76F ES•l76F SS=l7Sl CS-177F 

SP=OOFA BP-0000 sr-0000 DI-0000 
' IP=OOl 7 NV UP EI PL ZR AC PE CY 

177F:0017 75F2 JNZ OOOB 

-T 
AX=0070 
DS=l76F 
177F:0019 

-T 
AX=0070 
DS=l76F 
l 77F: OOlA 

-T 
AX=0007 

BX•OOOO 

The last right shift made BX = 0, ZF = I, so the ·loop ends. The product= 91 
= 5Bh is in DX. 

To terminate the procedure, we trace through the JNZ and the two 
POP instructions: 

CXaOClC DX=OOSB SPaOOFA BP-0000 sI-0000 01-0000 
ES=l76F SSal781 cs~177F IP•0019 NV UP EI PL ZR AC PE CY 

SB POP BX 

BX=OOOD CX=OOlC nx~OOSB SP=OOFC BP-0000 SI•OOOO DiaOOOO 
ES=l76F SS=l781 CS=l77F IP=OOlA .NV UP EI PL ZR AC PE CY 

58 POP AX 

BX=OOOD cx-001c ox-OOSB SP=OOFE BP•OOOO SiaOOOO OiaOOOO 
DS=l76F ESml76F SS=l781 CS•l77F IP•OOlB NV UP EI PT. ZR AC PE CY 
177F:001B C3 

-DSS:FO FF 

RET 

T~e two POPs have restored AX and BX to their original values. Let's look 
at the stack: 

1781:00FO 70 00 70 00 01· 00 00 00-lB 00 7F 17 A4 13 03 00, 

The values OOOD and 0007 are no longer In the display. This is not a res~lt 
of the POP Instruction; it's because DEBUG is also using the stack. 

Finally, we trace the RE·1: 
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-T 
.r.x~ooo1. ax·-0000 cx0 001c OX•OOSB 
OSml76F ES•l76F ss•1101 CS•l77F 

SP-0100 
IP•0003 

BP-0000 SI•OOOO 01°0000 
NV UP EI PL ZR AC PE CY 

177F:0003 B44C MOV AH,4C 

-G 

RET causes IP to get 0003, the return address to MAIN. SP goes back to lOOh, 
Its orjginal value. To finish executing the program, we just type G: 

Program terminated normally 

-Q 
>C 

and we exit DEBUG by typing Q (quit) .. 

Summary 

• The stack is a temporary storage area used by both application 
programs arid the operating system. 

•. The stack ls a last-in, first-out data structure. SS:SI' points to the 
top of the stack. . 

• The stack-altering instructions are PUSH, PUSHF, POP. and POPF. 
PUSH adds a new top word to the stack, and POP removes the 
top word. PUSHF saves the FLAGS register on the stack and POPF 
puts the stack top into the FLAGS register. 

• SP decreases by 2 when PUSH or PUSHF is executed, and It in­
creases by 2 when POP or POPF is executed. SP is initialized to 
the first word after stack segment when the program ls loaded. 

• A procedure is a subprogram. Assembly language programs are 
typically broken into two procedures. One of the procedures is 
the main procedure, which contains the entry point to the pro­
grnm. Procedures may call other procedures, or themselves. 

• There are two kinds of procedures, NEAR and FAR. A NEAR proce­
dure is in the ~ame code segment as the calling program, and a 
FAR procedure is in a different segment. 

• The CALL instruction is used to invoke a procedure. i=or a NEAR 
procedure, eXl."CUtion of CALL causes the offset address of the 
next instruction in line after the CALL to be saved on the stack, 
and the IP g~ts t!1e. ~ffset of the first Instruction in the procedure. 
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• Procedures er.d with a RET instruction. Its execution causes the stack 
to be popped into IJ>, and control returns to the calling program. In 
order for the return address to be accessible. the procedure must en­
sure that it is at the top of the stack wheri RET is executed. 

la assembly language, procedures often pass data through registers. 

Glossary 

direct procedure call 

FAR procedure 

A procedure call of form CALL name 

A procedure that can be called by proce­
dures residing in any segment 

indirect procedure call 

NEAR procedure 

A procedure call of form CALL addr_exp 

A procedure that can only be called by 
another procedure residing in the same 
segment 

top of the stack The last word of data added to the stack 

New Instructions 

CALi. 

?OP 
POPF 
PUSH 

PUS HF 
RET 

Exercises 

1. Suppose the stack segment is declared as follows: 

.STACK lOOh 

a. What is the hex contents of SP when the program begins? 

b. What is the maximum hex number of word~ that the stack 
may contain? 

2. Suppose that AX= 1234h, BX= 5678h, CX = 9ABCh, and SP= 
1 OOh.° Give the contents of AX, BX, CX, and SP after executing 
the following instructions: 

PUSH AX 
PUSH BX 
XCHG AX,CX 
POP ex 
PUSH AX •. 
POP J BX 

3. When the stack has completely filled the stack area, SP = 0. If an­
other word is pu.shcd onto the stack, what would happen to SP? 
What might happen 10 the program? 

4: Suppose a program contains the lines 

CALL PROCl 
MOV AX,BX 

and (a) instruction MOV AX,BX is stored at 08FD:0203h, (b) PROCI 
Is a NEAR procedure that begins at 08FD:300h, (c) SP= OIOAh. 
What are the contents of JP and SP just after CALL PROCl is exe­
cuted? What word is on top of the stack? 
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. ' ~ . 
5. Suppose SP= 0200h, top of stack = 012Ah. What are the contents 

Of JP and SP 

a. after RET is executed, where RET appears in a NEAR procedure? 

b. after RET 4 is executed, where RET ap~;m in a NEAR procc_dure' 
6 .• Write some code to 

a. place the top of the stack into AX, without changing tilt! 
stackcontents. • • 

- b. place the word that is below the stack top into ex. without 
changing the stack contents. You may use AX. 

c. exchange the top two words on the stack. You may use AX 
and BX.· .. ' . 

7. ·Procedures arc supposed to return the stack to the .:alling pro­
gram in the same condition that they received it. However, it 
may be !lseful to have procedures that alter the stack. For exam­
ple, suppose we would like to write a NEAR p_roccdure 
SAVE_REGS that saves BX,CX,DX,Sl,Dl,BP,DS, and ES on the 
stack. After pushing these. registers, the stack would look like this: 

ES ·content 

DX cont.,nt 
ex content 
BX content 
return address (offset) 

Now, unfortunately, SAVE_REGS can't return to the calling pro­
gram, because the return address is not at the top of the stack. 
a. Devise a way to implement a proce<lurt! SAVE_REGS that gets 

around this problem (you may use AX to do this). 

b. Write a procedure RESTORE_REGS that restores the registers 
th.at SAVE_REGS has saved. 

Programming Exercises 

8. Writ; a program that lets the user type some text, consisting of 
words separated by blanks, ending with a carriage return, and dis­
plays the text in the same word order as entered, but with the let­

__, ters ·in each word reversed. For example, "this is a test" becomes 
"siht si a tset". Hint: modify program PGM8_2.ASM in section 8.3. 

9.; A problem in elementary algebra is to decide if an expression con­
taining several kinds of brackets, such as, [,],{,),(,), is correctly 
bracketed. This is the case if (a) there are the same number of left 
'and right brackets of each kind, and (b) when a right bracket ap­
pears, the most recent preceding unmatched left bracket should 
be of the same type. For example,· 

·(a~. I?- fc x (d - ~ ) I J + f} is correctly brackett!d, but 

(a+ (b -.lex (d - e)) I + f J is not 

Correct bracketing can be decided by using a stack. The expres-
'· slon is scanned left to right. When a left bracket is encountered, 

it is pushed onto -the stack. When a right bracket is encountered, 
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the stack is popped (if the stack is empty, there are too many 
right brackets) and the brackets are compared. If they are of the 
same type, the scanning continues. If there is a mismatch, the ex· 
pression is incorrectly bracketed. At the end of the expression, if 
the stack is empty the expression is correctly bracketed. If the 
stack Is not empty, there are too many left brackets. 

Write a program that lets the user type in an algebraic expression, 
ending with a carriage return, that contains round (parentheses), 
square, and curly brackets. As the expression is being typed in, 
the program evaluates each character. If at any point the expres­
sion is incorrectly bracketed (too many right brackets or a mis­
match between left and right brackets), the program tells the user 
to start over. After the· carriage return is typed, If the expressjon is 
correct, the program displays "expression Is correct." If not, the 
program displays "too many left brackets". In both cases, the pro­
gram asks the user if he or she wants to continue. If the user 
types 'Y', the program runs again. 
Your program docs not need to store the input string, only check 
it for correctness. 

Sample execution: 

ENTER AN ALGEBRAIC EXPRESSION: 
(a + bl] TCO MANY RIGHT BRACKETS. BEGIN AGAIN! 

£:<1ER AN ALGEBRAIC EXPRESSION 
(a + r b - c 1 :-: d) 

EXPPESSION :s \.OPRECT 

TYPF: Y TF Y');' t.;.'.~:T 70 cc::;TINDS:Y 

E:NTC:R J\N Al GF!:~.;,~·-· t:XP~f.:!:S.H:N: 

{a + b x (~ - cl) •· P)Bl<ACi<ET MISMATCH. BEGIN AGAIN! 

E!;TER All A:...::;Et:.i(AiC l::Y.l'RESSION: 

((a + [b - {c :-: (d· - e) J 1 + fl 
700 MANY ~EFT a~ACKETS. BEGIN AGAIN! 

ENTER A:·! AI.G!::!?.HA~C EXPF<ESSION: 

I' VE H1\D ENOUGH 
EXPRESSION I~ C8RR£CT 
TYPE Y IF YO~ ~ANT TO CONTINUE:N 

10. The following method can be used to generate random numbers 
in the range 1 to 32767. 

Start with any number in this range. 
Shift left once. 
Replace bit 0 by the XOR of bits 14 and 15. 
Clear bit 15. 

Write the following procedures: 

a. A procedure READ that l<:ts the user enter a binary number 
and stores it in AX. You may use the code for binary input 
given in section 7.4. 

b. A procedure RANDOM that receives a num~r in AX and re­
turns a random nurnl>l'r in AX. 

c. .-\ proct>dure WRITE that displays AX in binary. You may use 
lhl' algorithm given in section 7.4. 

Write a program that displays a '?', calls READ to read a binary 
numl>cr, and calls RANDOM and WRITE to compute and display 
100 random numbers. The numbers should be displayed four per 
line, with four blanks scparatlng the numbers. 
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Multiplicatiori.;iand 
Oivision 111str1.ic:tlons 

Overview 

9.1 
MUL and IMUL 

In. Chapter 7, we. saw how to do multiplication and division by 
shifting the bits in a byte or word. Left and right shifts can be used for 
multiplying and dividing by powers of 2. In this chapter, we introduce In­
structions for multiplying and dividing any num~rs. . . 

·>:. , .The process of multiplication and division ls different for signed and 
unsigned numbers,.so there are different Instructions for signed and unsigned 
multiplicat_ion and division. Also, these instructions have byte a·nd word 
forms. Sections 9.1 through 9.4 cover the details . 

. , One.·of the·most useful applications of multiplication and division 
1s to impl~rpent decim!ll input and output. In section 9 .5, we write procedures 
to carry out these or.erations.Thls application greatly extends our program's 
1/0.capabllity. · · ' •• · "· · 

Signea,Versi.is·Unsigried Multiplication 
In 'binary multiplication, signed· and unsigned numbers must be 

treated differently. For example, suppose we want to multiply the eight-bit 
numbers 10000000-?nd 11111111. Interpreted as unsigned numbers, they 
repre5ent '128 and 255; respectively. The product is 32,640 = 
01111111 lOOOOOOOb. However, taken as signed numbers, they represent-128 
and-I, respectively; and the product is 128 = OOOOOOOOlOOOOOOOb. 

Because.signed and unsigned multiplication lead to different re­
sults. there.are two multiolication Instructions: MUL lmultinlvl for unsigned 

161 
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multiplication and ThlUL (integer multiply) for signed multiplication. These 
instructions multiply bytes or words. If two bytes are multiplied, the product · 
is ~ word (16 bits). If two words are multiplied, the product is a doubleword 
(32 bits). The syntax of these instructions is 

MUL source 

and 

IMUL source 

I . 

Byte form 

For byte multiplication, one n.umber is contained In the source and 
the other is assumed to be in AL. The 16-bit product will be in AX. ·The 
source may be a byte register or memory byte, but not a constant. 

~ . . . . . .. ' 

Word Form 

for word multipl_ication, one number is.contained in the source and 
the other is assumed to be in AX. The most significant 16 bits of the 
doubleword product will be in DX, and the least significant 16 bits will be 
in AX (we sometimes write this as DX:AX.). The source may be a 16-bit register 
or memory word, but not a· constant. 

For multiplication of positive numbers (0 in the most significant 
bit), MUL and lMUL' give the same result.· 

' ' 
Effect of MUU/MUL on _the status flags 

SF,ZF;hF,PF: 

CF/OF: 
1'.fte•r MUL, CF/OF 

After IMUL, Cr/tiF 

undefined 

= O if the upper half of the result is· 
zero. 
= 1 otherwise. 
= 0 if the upper half of the result is the 
sign extension of the lower half (this 
means that the bits of the upper half 
are the same as the :;ign bit of the 
lower half). 
= 1 otherwise. 

For both MUL and !MUI., CF/OF = l means that the product is too big to 
fit' in 'the lower half of "the destination (AL for byte multiplication, AX for 
word multiplication). · · 

Examples 

To i:Justratc MUL and IMUL, we will do several examples. Because· 
, hex multipli<..ation ·is ,•sually difficult to do, we'll predict the product by 
~o~vc~ting tile hex values of multiplier and multiplicand to' decin1a( doing .• 
decimal multiplication, and converting the product back to hex. 

·Example 9.1 Suppose AX contains,,! a11d.BX contains FFFFh: 

Instruction~ Decimal product •. Hex product DX AX CF/OF 

·~uL BX· . 6ss3s .. ., •' OOOOFFFF 0000 FFFF 0 

IMUL BX -1 FFFFFFFF FFFF FFFF 0 
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For MUL. DX = U, so CF/OF= 0. 
for IMUL, till' signed interpretation of BX is -1, and the product is 

also -1. In 32 bits, this is fFFFfFHh. CF/OF = 0 because DX is the sign 
extension of AX. . . 

Example 9.2 Suppose AX contains FHFh and BX contains tFFFh: ..• . 

Instruction , Decimal product Hex product DX AX CF/OF 

MUL ~x 4294836225 FFFE0001 FFFE 0001 1 

IMUL BX 00000001 0000 0001 0 

For MUL, CF/OF = 1 because DX is not 0. This reflects the fact that 
the product FFFEOUOlh is too big.to fit in AX. 
· For IMUL, AX and BX both contain -1, so the product is I. DX has 
the s;gn cxte.nsion of AX, so CF/Of= O. 

ExC\mpJe 9.3 Suppose AX contains OFFFh: 

Instruction 

MUt AX 
IMUL AX 

·Decimal product . Hex product 

16769025 OOFFE001 
16769025 OOFFE001 

DX 

DOFF 
DOFF 

AX 

EOOl 
E001 

CF/OF 

Because the msb of AX is U, both MUL and IMUL give the same product. 
Llecause the product is too big to fit in AX, CF/OF = 1. 

Example 9.4 Suppose AX contains OlOOh and CX contains FFFFh: 

Instruction 

MUL ex 
IMUL ex 

Decimal product 

16776960 
-256 

Hex product 

OOFFFFOO 
FFFFFFOO 

DX 

OOFF 
FFFF 

AX 

FFOO 
FFOO 

CF/OF 

1 

0 

For MUL. the product FFFFOO is obtained by attaching two zeros to the 
source value ffFFh. llccause the product is too big to fit in AX, CF/Of = 1. 

For IM
0

Ul., AX contains 256,;md CX ~·ontains -1, ~o the product is 
-256, which may be expressed as Fl-'OOh in 16 bits. DX has tht> ~ign extension 
of AX, so CF/OF= 0. · 

Example 9.S Suppose AL contains 80h and BL contains Hh: 

Instruction Decimal product Hex product AH AL CF/OF 

M:JL BL 128 7F80 7F 80 
IMUL BI. 128L 0080 00 80 

For byte multiplication, the 16-bit product is contained in AX. 
For MUL, the.product is 7F80. Becaust• the high eight bits arc not o. 

CF/OF= I. · ' 
. For IMUL, we have a curious situation. !:!Oh = -128, Ffh = -1, so the 

product is 128 = 0080h. AH docs not have the sign extension of AL, so CF/OF · 
= 1. This refl~cts the fact that AL does not contain the correct answer in a 
signed sense, because the signed decimal interpret .. tion of 80h is -128. 
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9.2 
Simple Applications· 
of MUL and IMUL 

To get used to programming with MUL and IMUL, we'll show how 
some simple operations can be ·carried out with these Instructions. 

. . 
Example 9.6 Translate the high-level language assignment statement A 
= 5 x A - 12 x B into assembly code. Let A and B be word variables, and 
suppose there is no overflow. Use IMUL for multiplication. 

Solution: 

MOV AX,5 ;AX m 5 
IMUL A ;AX = 5 x A 
MOV A,AX ;A a 5 x A 
MOV AX,12 ;AX = 12 
IMUL. B ;AX = 12 x B 
SUB A,AX ;A c 5 x A - 12 x B 

Example 9.7 Write a procedure FACTORIAL that will compute N! for a 
positive integer N. The procedure should receive N in CX and return N! 
in AX. Suppo~e that overflow does not occur. 

Solution: The definition of N! ls 

N! :. 1ifN=1 

= N x (N - l) x (N :_ 2) x · .. x 1 if N > 1 

Here ls an algorithm: · 

product = l 
term = N 
FOR N t ime:s DO 

product = product x term 
term = term - l 

END FOR 

It can be coded as follows: 

FACTORIAL PROC 
. ; computes N ! · 
; ir.put: ex - N 

.• ,<;>utput :. AX, ~ ·i°l ! 

TOP:· 

.. t 

._ I 

FACTORIAL 

MOV AX,l 

MUL ex 
L00P TOP 
RET 
ENDP 

.~ . 

;AX holds ·product 

;pro~uct • product x term 

Here CX·ls both loop counter and term; the LOOP instruction automatically 
'decrements'H..._one·acff·iteration thniugh'"the loop. We assume the produE 
does not overflow 16 bits: 
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.When division Is performed, we obtain two results, the quotient and 
the remainder. As with multiplication, there are separate Instructions for 
unsigned and signed division; DIV (divide) Is used for unsigned division 
and IDIV-(lnteger dlvlde)-for signed division. The syntax is 
r. 
DI.Y divis_or 

·and -~ '·' '. 

IDIV ·divisor 
~ ·°"' ., , i;·,_ .. ,., ... , ..... · ~-

These instructions divide 8 (or 16).bits Into 16 (or 32) bits. The quotient and 
remainder have the same size.as the Clivisor . 

. ,.. . 

Byte Form 

In this form, the divisor is an 8-bit register or memory byte. The 
16-bit dividend is assumed to be in AX. After division, the 8-bit quotient is 
in AL and the 8-bit remainder Is in AH. The divisor may not be a constant. 

Word Form 
. ~. . .. ' 

• Here the divisor is a 16-bit register or memory word. The 32-bit 
- dividend Is assumed to be In DX:AX, After division, the 16-bit qJotient is 
In AX and the 16~bit remainder is In DX. The divisor may not he a constant. 

For signed division; the remainder has the same sign a~ the dividend. 
If ~oth dividend and divisor are positive, DIV and !DIV give the same result. 

The effect of DIV /IDIV on the flags is that all status flags are undefined. 

Divide .Overflow 
.. ~ : .. . 

It is possible thafthe quotient will be too big to fit in the
0

specified 
destination· (AL or AX). This can happen if the divisor is .nuch smaller than 
the dividend: Wheri this happens, the program termina':B (as shown later) 
and the system displays 'the message "Divide OverfJuw" . 

. • Exampl~ 9.8 Supp0se DX .cc)riiains OOOOh, AX cont;:ins OOOSh, and BX 
contains 0002h. · ·· · · 

'i 

Instruction, · •. Decimal. Decimal AX DX 
, 1 quotient~. remainder 

DIV BX 2 OO.C2 0001 
IDIV BX 2 0002 0001 

Dividing S by 2 yields a quotient of 2 and a remainder of 1. Because both 
dividend and divisor are positive, DIV and !DIV "i;ive the same:results.: 

· Example 9.9 Suppose DX· contains OOOOh, AX contains OOOSh, and BX 
contains FFFEh. · .. . . . 
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9.4 
· Sign Extension of 
the Dividend 

Instruction 

DIV BX 

IDIV BX 

Dedmal 
quotient 

0 

-2 

Dedmal 
remainder 

5 

AX DX 

0000 0005 
FFFE 0001 

For DIV, the dividend is 5 and the divisor is FFFEh = 65534; 5 divided 
by 65534 yields a quotient of O and a remainder of 5. 

For IDIV, the dividend is 5 and the divisor is HFI::h = -2; 5 divided 
by -2 gives a quotient of -2 and a remainder of 1. · 

Example 9.10 Suppose DX contains FFFFh, AX contains FFFBh, and BX 
contains 0002. 

Instruction Decimal Decimal AX DX 
quotient remainder 

IDIV BX -2 -1 FFFE FFFF 

DIV BX DIVIDE 
OVERFLOW 

For IDIV, DX:AX = FFFFFFFBh = -5, BX = 2. -5 divided by 2 gives a 
quotient of -2 = FFFEh and a remainder of -1 = FFFFh. 

For DIV, the dividend DX:AX = FFFFFFFBh = 4294967291 and the 
divisor= 2. The actual quotient is 2147483646 = 7FFFFFFEh. This is too big 
to fit in AX, so the computer prints DIVIDE OVERFLOW and the program 
terminates. This shows what can happen if the divisor Is a lot smaller than 
the dividend. 

Example 9.11 Suppose AX contains OOFBh and BL contains FFh. 

Instruction Decimal Decimal AX AL 
quotient remainder 

DIV P.L 0 251 FB 00 
IDIV EL DIVIDE 

OVERFLOW 

For byte division, the dividend is in AX; the quotient is in AL and 
the remainder in AH. 

For DIV, the dividend is OOFBh = 251 and the divisor is FFh = 256. 
Dividing 251 hy 256 yields a quotient of 0 and a remainder of 251 = FBh. 

For IDIV, the dividend is OOF!lh = 251 and the divisor is FFh = -1. 
Dividing 251 by -1 yields a quotient of -251, which is too big to fit in AL, 
so the message DIVIDE OVERFLOW is printed. 

Word Division 

In word division, the dividend Is in DX:AX even if the actual divi­
dend will fit in AX. In this case DX should be prepared as follows: 

1. For DIV, DX should be cleared. 

2. For IDIV: DX si1ouid be 'ii1ad~ the sign extension of AX. The instruc­
tion CWD (convert word to doubleword) will do the extension. 
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Example· 9.12 Divide -1250 by 7: 

Solution: 

MOV AX,-1250 
CWD 
MOV BX,7 
IDIV BX 

1

;AX gets dividend 

;Extend sign to DX 

;BX has divisor 
;AX qets quotient, ClX h<LS re:nc:.inrler 

Byte Division 

• '1'1.byte division'..the ·dividend is in AX. If the actual dividend is il 
byte; then AH sho"uld be prepared as fol!ows: 

1. 'For DIV. AH should be cleared. 

2. Fo~'IDIV,'AI-1 ;hould th<: sign extension of AL. The instruction 
·!. CBW (convert byte to word) will do the extension. 

Exam11lc 9.13 -Di\•idc.thc ~igned valuc'of the byte v;iriablc: XBYl'E by -7. 

Solution: 

MOV AL, XBYTE • - -;·;AL' has dividend 

CBW 
MOV BL,-7 
IDIV"BL _, 

;Ext~nd sign to AH 
' .;B!..· has d1vis0r 

~ 1 ;A!.. !las quotient, AH h.:is rt:i1ai:-.c.ie:r 

There is no c:ffect of CBW and CWp on the flilg~. 

Even though the computer represents evc:rything in binary, it's more 
convenient for the user to see input and output expressed in decimJ!. In this 
section, we write procedurc:s fqr handling decimal 1/0. 

On input, if we type 21543, for cxilmplc, then we Jre actually typing 
a character string, which must be converted internally to the binary equiv­
alent of the decimal integer 21543. Conversely on output, the binary con­
tents of a register or memory location must be converted to a character string 
representing a decimal integer before being printed. 

Decimal Outout 

\'\le will write a procedure.OUTDEC to print the· contents of . .\X as 
a signed decimal integer. If AX >.= 0, OUTDEC will print the contents in 
decimal; if AX < 0, OUTDEC will print a minus sign, replace AX by -AX (so 
that AX now contains a positive number), and print the contents in decimal. 
Thus in either case, the problem comes down to printing the decimal Cl.JUi\·­
Jlent of a positive binary number. Here is the algorithm: 

Algorithm for Decimal'Output 

1. IF AX _ < 0 /• AX hclds output value •/ 

:2. 4HEN· · 
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3. print a minus siqn 

4. replace AX by its two's complement 

5. END IF 

6~ Get the digits in AX' s decimal representation 

7. Convert these digits to charact.ers and print ~hem 

To see what line"6 entails, suppose fhe content of AX, expre~ in 
decimal, is 24168. To get the digits In the decimal representation, we cal) 
proceed as follows: 

Divide 24618 t1y 10. Quotient= 2461, remainder= 8 
Divide 2461 by 10. Quotient= 246, remainder .. 1 
Divide 246 by 10. Quotient= 24, remainder= 6 
Dlvid.e 24 by 10. Quotient • 2, remainder = 4 

Divide 2 by 10. Quotient = 0, remainder = 2 

Thus, the digits we want appear as remainders after repeated division by 10. 
However, they appear In reverse order; to turn them around, we can save 
thenr on the stack. Here's how line 6 breaks down: 

Line 6 

count - 0 /• will count decimal digits •/ 
REPEAT 

divide quotient by lO 
.push remainder on the stack 
count .. count + l 

UNTIL quotient ~ 0 

where the initial value of quotient is the original contents of AX. 
Once the digits are on the stack, all we have to do is pop them off, 

convert them to characters, and print them. Line 7 may be expressed as 
follows: 

Line 7 

FOR count times DO 
pop a digit from the stack 
convert it to a character 
output the character 

END_FOR 

Now we can code the procedure as follows: 

Program Listing PGM~_ 1.ASM · 
l : OUTOEC · PROC 
2: ;prints AX as a signed decimal integer 
3: .-.input: AX 
4: ;output: none 
5: PUSH 
6: PUSH 
7. PUSH 
8: PUSH 
9: ;if AX"< o· 
10: OR 
11: JGE 
12: ;then 

·AX 
BX 
ex 

.ox 

AX,AX 
@END -IFl 

; save registers 

;AX < 0? 
;NO, > 0 
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13: 
14: 
15: 
16: 

PUSH AX 
MOV 
HOV 
INT 

re DL, '~' 
··AH,2 • 

21H 
17: POP ' •AX 
18: NEG ·'AX. 

19: @END.:_IFl: 
20: ;get decimal digits 
21 : xoR ~ • ex, ex 
22 :. MOV BX, lOD 

23: @REPEATl: 
24: XOR 
25: DIV 
26: PUSH 
27: INC 

28: ;until· 

DX,DX 
BX 
DX 
ex 

; save number 
;get • -• 
;print char !unction 
;print '-• 
;get AX back 
;AX u -AX. 

;CX counts digits 
;BX has divisor 

;prepare high word of dividend 
;AX = quoti~nt, DX c remainder 
;save remainder on stack 
; count = count + 1 

29: OR AX,AX ;quotient = 0? 
30: JNE @REPEAT! ; no, keep going 
31: ;convert digits to characters and print 
32: MOV AH,2 ;print char function 
33: ;for count times do 
34: @PRINT_LOOP: 
35; POP DX 

36: 
37: 
38: 
39: ~;end_ 
40: 
41: 

for 

OR 
INT 
LOOP 

POP 
POP 

DL,30H 
21H 
@PRINT_LOOP 

DX 
ex 

42: ·pop .. ~BX 

43: POP AX 
44: RET 
45: OUT DEC ENDP 

;digit in DL 
;convert to character 
;print digit 
; loop until done 

;restore regist~rs 

After saving the registers, at. line io the sign of AX is examined by 
ORlng AX with Itself. If AX >= 0, the program jumps to line 19; if AX < 0, 
a minus sign is prin<ed and AX ls replaced by its two's complement. In either 
case, at line 19, AX will contain a positive number. 

At line 21, OUTDEC prepares for division. Because division by a 
constant is illegal, we must put the divisor 10 in a register. 

The REPEAT loop in lines 23-30 will get the digits and put them on 
the stack. Because we'll be doing unsigned division, DX is cleared. After 
division, the quotient will be in AX and the remainder in·DX·(actuaily it is 
in DL, because the remainder is betwc.>en 0 and 9). At line 29, AX is tested 
for 0 by ORing it with itself; repeated division by 10 guarantees a zero quo· 
tlent eventually. . , . _ . 

The FOR loop in lines 34-38 gets the digits from the stack and prints 
them. Before a digit is printed, it must first be converted to an ASCII character 
O~e3~. . . . 

The'INCLUDE Pseudo-op 

We can verify OUTDEC by placing it inside a short program and run· 
ning the program inside DEBUG. To insert OUTDEC into the program without 
having to type it in, we use the INCLUDE pscudCH>p. It has the form 

INCLUDE filespec 
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where filespec identifies a file (with optional drive and path):. For example". 
the file containing OUTDEC is PGM9_1.ASM. We could use 

INCLUDE A:PGM9 l.ASM 

When MASM encounters this line during assemb.ly, it retrieves file 
PGM9 _1.ASM from the disk in drive A and inserts it Into the program at the 
position of the INCLUDE directive. This file is on the Student Data Disk that 
come5 with this book. 

Here is the testing program: 

Program Listing PGM9_2.ASM 
TITLE PGM9 2: DECIMAL OUTPUT 
.MODEL SMALL 
.STACl\ lOOH 
.CODE 
MAIN PROC 

CALL OU'TDEC 
MOV AH,4CH 
INT 21H ;DOS exit 

r,...J..IN ENDP 

INCLUDE A:PGM9_1.ASM 
EN::l MAIN 

To test the program, we'll enter DEBUG and run the program twice, 
first for AX = -25487 = 9C7 lh and then for AX = 654 = 28Eh: 

C>DEBUG PGM9 2.EXE 
-RAX 

A>: ODDO 

:9C71 
-G 
-25487 

-RAX 

AX 9C7 l 
:28E 
-G 
654 

(first output) 

(second output) 

:'\ote that after the first run, DEBUG automatically resets IP to the beginning 
of the pr6gram. 

Decimal Input 

To .do decimal input, we need to convert a string of ASCII digits to 
the binary' representation of a decimal integer. We will write a procedure 
INDEC to do this. · . 

In procedure
0

0lITDEC, to output' the contents of AX in decimal we 
· repeatedly divided AX by 10. For INDEC we need repeated multiplication by 

10. The basic idea is the following: 
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Decimal Input Algorithm (first version) 

total ~ 0 
read an· ASCII digit· 
REPEAT . r 

convert character to a binary value 
total = 10 x total + value 
read a character 

UNTIL character is a carriage return 
1-

For epmple, an input of 123 is processed as follows: 

total = 0 
read 'l' 
convert '1'. to 
total ~ 10 x 0 + = 1 
read '2' 
convert '2' to 2 
total = l 0 · x 1 + 2 ·· = 12 

read '3' 
convert '3' to 3. 
total - 10 x 12 + 3 - 123 

We will design INDEC so that it can handle signed decimal integers in the 
range -32768 to 32767. The program prints a question mark, and Jets the 

··user enter an optional sign, followed by a string of digits, followed by a 
carriage return. If the user enters !a character outside the range "0" ... "9", 
the procedure goes to a new line and starts over. With these added require­
ments, the preceding algorithm becomes the following: 

Decimal Input Algorithm (second version) 

Print a question .mark 
total - 0 
negative - false 
Read a character 
CASE character OF 

'-': negative = true 
read a Character 

'+': read a"character 
i':Ni::> CASE 

REPEAT · 
"IF character 'is not between '0' and '9' 
' '.<HEN 

' go to ~eginning' 
ELSE 
' convert character to a binary value 

tQta.!. ..:: 10 x total + _va!ue 
:E!'JD IF 

read a character 
UNTIL chetracter is a carriage ::-etv.r-n 

~F negat~ve ; true 
·:.HE!< 

.. total = -total 
END IF - . 
'Nae: A jwnp like this is not really "structured programming." Somctimes it's neu~ssary to 
.violate structure rules for the sake of efficiency; for example, when enor conditions occur. 
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The algorithm can be coded as follows: 

Program Ustlng PGM9_3.ASM 
1 : INOEe PROC 
2: ; reads a number in range -32768 to 32767 

3: ;input: none 
4: ; output: AX • binary equivalent of number 
5: PUSf! BX ; save registers used 
6: 
7: 

PUSH ex 
PUSH DX 

8: ; print prompt 
9: @BEGIN: 

10: 
11: 

MOV 

MOV 

12: INT 

AH,2 

DL, '?' 
21H 

13: ;total • 0 

14: XOR BX,BX 

15: 
16: 

17: 

1 e: 
19: 
20: 
21: 

22: 
23: 
24: 
25: 

;negative .. false 
xoR ex,ex 

;read a character 
MOV AH, 1 

INT 21H 

;case character of 
eMP AL,'-' 

JE @MINUS 

eMP AL,'+' 
JE @PLUS 
JMP @REPEAT2 

26: @Mil'US: 

27: MOV 

28: @PLUS: 

29: INT 

30: ;end_case 
31: @REPEAT.2: 

ex,1 

21H 

32: 

33: 

34: 

;if character is between 
eMP AL,' 0' 

JNGE @NOT_DIGIT 

;print '?' 

; BX holds total 

; ex holds sign · 

; character in AL 

;minus sign? 
;yes, set sign 
;plus sign 
;yes, get another character 
;start processing characters 

;negative a true 

;read a character 

'O' and '9' 
;character >a '0'? 
;illegal character 

35.: CMP AL,' 9' ;chllracter <- '9'? 
36: JNLE @NOT_DIGIT ;no, illegal character 
37: ; then convert character to, a digit 
38: AND AX,OOOFH ;convert to digit 
39: PUSH AX ;save on stack 
40: ;total .. total x 10 + digit 
41: MOV AX,10 ;get 10 
42: MUL BX ;AX .. total x 10 
4 3: ; retrieve digit POP BX 
44: ;total -·total x 10 + di~it ADD BX,AX 
45: 
4 6: 
4 7: 
48: 
4 9: 
50: 
51: 
52: 
53: 

;read a character 
MOV AH,1 
INT 21H 
CMP AL,ODH 
JNE @REPEAT2 

;until CR 
MOV AX,BX 

;if negative 
OR ex, ex 

;carriage return? 
; no, keep going 

;store number in AX 

;negative number 
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54: JE 
55:< ;th~n. 
56: .• NEG 
57: ;end_if 
58: @EXIT: 

@EX Ir 

AX 

DX 
ex 
BX 

;no,. exit 

; yes, negate 

;restore registers 59: 
60: 
61: 
62: 

POP 
POP 
POP 
RET 

63: ;here if illegal 
64: @NOT DIGIT: 

; and return· 
character entered 

65:' - MOV 
66: MOV 
67: INT 
68: MOV 

69: INT 
70: .r:. ''JMP 

71: IND EC ENDP 

AH,2 
DL,ODH 
21H 
DL, OAH 
21H 
@BEGIN 

;move cursor to a new line 

;go to beginning 

The procedure begins by saving the registers and printing a u?". BX 
holds the total; in line 14, it is cleared. 

ex ls used to keep track of the sign; 0 means a positive number and 
1 means negative. We initially assume the number is positive, so CX is cleared 
at line 16. " 

The first character is read at lines 18 and 19. It could be "+ ", "-" or 
a digit. If it's a sign, ex is adjusted if necessary and another character is read 
(line 29). Presumably this next character will be a digit. • 

At line 31, INDEC enters the REPEAT loop, which processes the cur­
rent.character and reads another one, until a carriage return is typed. 

· ··At lines 33-36, INDEC checks to see if the current character is in 
fact .. a digit. If not, the procedure jumps to label @NOT_DIGIT (line 64), 
moves the cursor to a new line, and jumps to @BEGIN. This means that the 

. user can't escape from the procedure without entering a legitimate number. 
• ! •· · If the oirrent character in AL is a decimal digit, it Is converted to a 

binary value (line 38). Then the value is saved on the stack (line 39), because 
AX is-·used when the total is multiplied by 10. 
: ,. · In lines 41 and 42, the total in BX is multiplied by 10. The product 

will be in DX:AX; however, DX will contain O unless the number is out of 
.-range (more about this later). At line 43, the.value saved is popped from the 
· stack and 10 times total is added to it. 

1 -~ At line. 51, INDEC exits the REPEAT loop with the number in BX. 
·After.moving it to AX, INDEC d~ecks the sign in CX; if CX contains 1, AX 

Is negated.before the procedure exits. 
1. I ... • 

'f.esting INDEC 

We can test INDEC by creating a program that uses INDEC for input 
and.OUTDEe for output. 

Program Us.ting PGM9_4.ASM 
TITLE; PGM9.:. 4: DECIMAL I/O 
.MODEL SMALL 
.STACK 
.CODE 

MAIN PROC 
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C>PGM9_4 
?21345 
2l 3~50'Jer flow 

; i.nput a number 

CALL INDEC 

PUSH AX 

;number in AX 

; save number 
;move cursor to a new line 

MOV AH, 2 

MOV DL,ODH 

INT 21 H 

MOV DL, OAH 

INT 21 H 

;output the number 

POP AX 

CALL OUTDEC 

;dos exit 

MOV AH, 4CH 

INT 21H 

MATN ENDP 

INCLUDE A:PGM9 l.ASM 

INCLUDE A:PGM9_3.ASM 

END MAIN 

Sample execi1tion: 

Overflow 

; retrieve number 

; include OUTDEC 

; include IND'EC 

Procedure INDEC can handle input that contains illegal characters, 
but it cannot handle input that is outside the range -32768 to 32767. We 
call this input overflow. 

Overflow can occur in two places in INDEC: (1) when total is mul­
tiplied by 10, and (2) when a value is added to total. As an example of the 
first overflow, the user could enter 99999; overflow occurs when the total = 
9999 is multiplied by 10. As an example of the second overflow, if the user 
·types 32769, then when the total= 32760, overflow .occurs when 9 is added. 
The algorithm can be made to perform overflow checks as follows: 

Decimal Input Algorithm (third version) 

Print a question mark 

total = 0 

negative - false 
Read a character 

CASE character OF 
'_, . negative ~ true 

read a character 
,., : read a character 

END C::ASE 

REPEAT 

IF character is not between '0' and '9' 
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THEN.~ 

... g? ,to. beginni_ng 
1ELSE .>,. 

convert character,t~~ ~value 

total-= 10 x total 
• t-\ . 

IF 'overflow 
THEN 

r~ .. -qo 'to .beginn"ing· 
ELSE 

, total = total + value 
IF overflow .. 

'.:'HEN 

go to beginning 
END_IF 

·~ END IF 
END•:IF'' 

read· a character 
UNTIL .character-is a .carriage return 
IF neg~ti v'e v' true 

•' 
THEN 

total = -total 
END IF··· 

The implementation .of t_his aigorithm is left to the student as an exercise. 

'su'mm'~;rr,· 

• 1The· multiplication iristructions are MUL for unsigned multiplica­
.tion and IMUL for signed multiplication. 
' , .... . . • l 

• .. For byte multipii_cation •. AL holds one number, and the other is in 
an 8-bit register or memory b}rte. For word multiplication, AX holds 

"'one number, aria the oilier is in an 16-bit register or memory word. 

•. : For byte multiplication,1the 16-bit product is in AX. For word 
multiplication, the 32-bit product is in DX:AX. 

i •' •The division instructions are DIV for unsigned division and !DIV 
~or sigi1ed division. 

The divisor may be a memory or regi~tcr, byte or word. For divi­
i.: , sion by a.byte, the dividend is in AX; for division by a word, the 

dividend i.s in ·Dx:..\x. · · 
• ,After byte division, AL has the quotient and AH the remainder. Af. 

ter word divisi.on: AX has the quotient and DX the remainder. 
h .ll,. \ . • .••. , •. 

. • ,For signed word division, if AX contains the dividend, then CWD 
•can be used to extend the sign into DX. Similarly, for byte divi­
sion·, CBW extends the sign of AL into AH. For unsigned word di­
·vision, if AX contains the dividend, then DX should be cleared. 
For unsigned byte division, if AL contains the dividend then AH 
should be cleared. 

"Multiply and divide instructions are useful in doing decimal 1/0. 
• I 

• The INCLUDE pseudo-9p provides a way to insert text from an ex­
ternal file into a program. 
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New Instructions 

CBW 
CWD 

DIV 
ID IV I 

IMUL 
MUL 

New Pseudo-Ops 

INCLUDE 

Exercises 

I. If it is a legal instruction, give the values of DX, AX, and CF/OF 
after each of the following lhstructlons Is executed. 

a. MUL BX, if AX contains 0008h and BX contains 0003h 

b. MUL BX, if AX contains OOFFh and BX contains lOOOh 

c. IMUL CX, If AX contains OOOSh and CX contains Frffh 

d. IMUL WORDl, if AX contains 8000h and WORDI contains 
FFFFh 

e. MUL ·1011, if AX contains FFEOh 

2. Give the new values of AX and CF/OF for each of the following 
instructions. 

a. MUL BL, If AL contains ABh and BL contains l Oh 

b. IMUL BL, if AL contains ABh and BL contains lOh 

c. MUL AH, if AX contains OlABh 

d. IMUL BYTEl, if AL contains 02h and BYTEI contains FBh 

3. Give the new values of AX and DX for l'ach of the following 111-
1.structions •. or tell if overflow occurs 

a. DIV BX, if DX contains OOOOh, AX contains 0007h, and BX 
contains 000211 

u. DIV BX, if DX contains OOOOh, AX contains FFFEh, and llX 
contains OOIOh 

c. !DIV BX, if DX contains FFFFh; AX contains FFFCh, and BX 
'contains 0003h . 

. . d: DIV BX, sa1ne values as part c.' 
• ~ l . . • • 

~: . Give th~'new values of AL and AH for each of the following in-

'" '
structio. ns', or t111l if 'overflow occurs 

ii· DIV BL, if AX contains OOODh and BL contains 03h 

b. !DIV BL, if AX contains FFFBh and BL contains FEh 

, c. DIV BL, if AX .contains OOFEh and BL contains !Oh 
d. · L>IV BL, if AX contains HEOh and IJI. contains 02h 

5. Give the value of DX after executing CWD If AX contains 

a .• 7E02h 

" - ·b:-8ABCh 

c. lABCh 
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6. Give the value of AX <1fter executing CBW if AL contains 

a.· FOh 
~ 
. b. SFh 

c. 80h 

7. Write assembly code for each of ~hi! followin;; high-level 1 ::;;gi;,:,;:~ 

., assignment statements. Suppose that A, B, and C a:P word '·'<:rl­
ables and all products will fit in 16 bits. Use IMUL for multip!!CJ 
(\on. It's not necessary to preserve the contents of variables A, B, 
and C. 
a. A - S x A - 7 

~ B • (A - Bl x (B + 10) 

C. A • 6 - 9 x A 

d. IF AA2 + BA2 - CA2 I ~ where A denotes 

exponentiution • I 
THEN 

SP.t CF' 
ELSE 

clear CF 

END IF 

Programming Ex«'Cises 

Note: Some of the following exercises ask you to use lNDEC 
and/or OlJTDEC for 1/0. These procedures arc on the student 
disk and can be imerted into your program by using the IN­
CLUDE pseudo-op (see section 9.5). Be sure not to use the same 
labels as these procedures, or you'll get a duplicate label assembly 
error (this should be easy, because all the labels in INDEC and 
OUIDF.C begin with "Cw". 

8. MOdify procedure INDEC so that it will check for overflow. 

9. Write a program that lets the user enter time in seconds, up to 
65535, and outputs the time as hours, minutes, and seconds. Use 
INDEC and OUIDEC to do the 1/0. 

10. Write a program to take a number of cents C, 0 <= C <= 99, and 
express C as half·dollars, quarters, dimes, nickels, and pennic:s. 
Use INDEC to enter C. 

11. Write a program to tel the user enter a fraction of the fo11n MIN 
(M < N), and the program prints the expansion to N decimal 
places, according to the following algorithm: 

1. Priqt "." 

Execute the following st<.>ps N times: 

··2. Divide 10 x M by N, getting q·;.:;,tient Q ..ir.d H:­

mainder R. 

3. Print: Q. 

4. ReplacP. M by R ann go t:o st~p ?. 

Use INDEC to read M and N. 
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12. Write a program to find the greatest common divisor (GCD) of 
two integers M anci N, according to the following algorithm: 
1. Divide M by N, getting quotient O and remain­

der R. 

2. If R ~ 0,. stop. N is the GCD of M and N. 

3. If R <> O, · replace M by N, N by R, and repeat 
step 1. 

Use INDEC to enter M and N and OUTDEC to print the GCD. 
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Ar-rays and 
rAddressing Modes 

.Overview 

10.1 
One•Dimensional 
Jftrays 

In some applications, it is necessary to treat a collection of values as 
a group. For example. we might need ,ta read a set of test scores and print 
the median score. To do so, we would· first have tu store the scores in as­
cending order (this could be done as the score~ arc entered, or they cmtl<l 
be sorted after they an: all in memory). The adv.:mtage uf using an array to 

~lure the data h th;it J )ingh: 11.:11nc l·.:in bl' gln·n tu tlw whole 'truclur<'. ;ind 
an eiement can be <iccessed by providing an index. · 

ln section 10.l we show how one-dhnensional arrays .:m~ declart•d 
In a~mbly language. To access the elements, In section 10.2 we introclt1ce 
new ways of expressing operands-the register Indirect, based and indexed 
addressing modes. in section 10.3, we use these addre~sing modes to mrt an 
array. 

A two-dimensional array ls a one-dl~ensional array whose elements 
are also one-dimensional arrays (an array of arrays). In section 10.4, we show 
how they are stored. These arrays have two indexes, and arc mo~t easily 
manipulated by the ba~d Indexed addressing mode of section 10.5. Section 
10.6 ptovides a simpie application. 

" Section 10.7 lntroduees the XI.AT (translate) 111strue1ion. Thh in­
struction IS useful when we want to do data conversion; \H· usl' it tcJ '-':~u .. :l' 
and decode a secret message. 

A one-di11iensiohal array is an ordered h~t 01· cleme111s. ;:ll uf tllr 
same type. By "ordered," we mean that there is a first ,•1cmc11t, ~cron<l t:lc­
ment, third element, arid so on. In mathematics, if A is an array. thl' clements 

179 
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Figure 10.1 A , 
One-Dimensional Array A Index 

A[1) 

2 A[2) 

3 A[3) 

4 A{4) 

A{S)·· .:: . x-s. .. ' 
~, u •• 

l • . 
5 

r 

6 A[6) 

are u~ually denoted by Al lj, Af2J, A[JJ, and so on. Figure 10.l shows a one­
dimensional array A with six elements. 

In Chapter 4, we used the DB and DW pseudo-ops to d.eclare byte 
and word arrays; for example, a five-character string named MSG, 

MSG DB 'abcde' 

or a word array W of six integers, initialized to I0,20,30,40,S0;6o. 

w DW 10, 20, 30, 40, 50, 60 

The address of the array vanable is called the ba$C address of the array. 
Jf the offset address assigned to W is 0200h, the arr<iy looks like this in 
memory: 

Offset address ' ·Symbolic address Decimal content 

0200h .~ 10 

0202h . W+2h 20 . 
0204h W+4h' 30 
0206h W+6h 40 
0208h W+8h 50 

. 020Ah W+Ah 60 

The DUP Operator 

It is possible to define arrays whose elements share a common initial 
value by using the DUP (duplicate) operator. It has this form: 

repeat_count DUP (value) 

This operator causes value to be repeated the number of times specified by 
repcat_count. For example, 

GJ..1-llf..!, DW 100 DUI' (0) 
. . . ~ ~ . ... . . .,, . ~ 

~ets up an array of 100.\vords, with each entry Initialized to O."Simllarly, 

DELTA DB 212 DUP (?) 

creates an array of 212 uninitialized bytes. DUI>s may be nested. For example, 
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!" • ' 

·LINt DB 5, 4, 3 DUP ( 2, 3 DUP ( 0) , 1) 

w~ich is equivalent to 

LINE DB 5,4,2,0,0,0,1,2,0,0,0,l,:?.,0,0,0,l 

Location of Array Elements· 
• • ~ 'I , .•· • ,.. "t. •·I -. • • , 

The address.of an array element may be specified by adding a con· 
stant to the base address. Suppose.A.is an array and S denotes the number 
of bytes in an element <S = 1 for.a byte array, S = 2 for a word array). The 
position of thC' clements in array A can be determirwd as follows: 

Position 

1 

2 

3, 

.. 
'N 

Location 

A 

A= 1 x S 
A=2x's· 

A=(N-l)xS 

Example 10.1· Exchange the 10th and 25th clements in a word array W. 

Solution: W(lOJ is.located at address W + 9 x 2 = W + 18 and Wl251 is 
at W + 24 x 2 =·W + 48; so we can do the exchange as follows: 

MOV AX,W+l8 
XCHG.W+48,AX 
MOV W+18,AX 

; AX has \·/ [ 1 (; J 

;1,x has W[251 

;complet~.·cxchange 

In many applications, we need to perto11n ~ome operation on each 
element ot'an array. FOr example; ~uppose arr:,y ,\ is a J().element array, and 
we want to add the elements. In a high-level language, \W: could do it like this: 

sum = 0 
. N = 1 

REPEAT 
sum c sum + A[NJ 

• ~ N';. N + · 1 

UNTIL N >- 10 
.· ,. ···-· . 

To code this m assembly IJ11guage, """ n..:L·d a w.i,· t:> '~""'L· f10111 om· ar1-.1y 
cleri1ent to the next one. In the next \ection, we'll \CL· !1ow to accompli\11 
this by indirect addrcs>ing. 

The way an oper;J°nd is specified is known as its addressing mode 
The addressing modes we have used so far are ( 1) re~ri.ster mode, whid 
means that an operand is a register; (2) immediate mode, when an operJn· 
is a constant; and (3) direct mode, when an operand is J vJri<ible. For exam pl 
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10.2.1 

MOV 1\X,O 

ADD ALPHA,AX 

<Destination AX is register mode, 
source 0 is immediate mode.) 

(Destination ALPH.\ is direct mode, 
source AX is register mode) 

There are four additional addressing modes for th<.> 8086: ( 1) R<.>ghter Indirect, 
(2) Based, (3) Indexed, and (4) Uascd Indexed. Th<.>~ mod<.>s ar<.> used to ad­
dres.s memory operands indir~tly. In this section, we discuss the first three 
of these modes; th<.>y are useful in one-dimensional array processing. Based 
indexed mode can be med with two-dimensional arrays; it is covered in 
section 10.5. 

Register Indirect Mode In this mQde, the offset address of the operand is contained in a 
register. We ~ay that the register acts as a pointer to the memory location. 
The operand format Is 

[register] 

The register is BX, SI, DI, or BP. For BX, SI, or DI, the operand's segment 
number is contained in DS. For Br, SS has the segment number. 

For example, suppose that SI contains OlOOh, and the word at OIOOh 
contains 1234h. To execute 

MOV AX, (SI J 

the CPU Cl) examines SI and obtains the offset addrl'SS JOOh, (2) uses the 
address DS:OlOOh to obtain the value 1234h, and (]) moves 1234h to AX. 
This is not the same as 

MO\' AX,SI 

whil.:h ~imply moves the value of SI, namely lOOh, into AX. 

Example 10.2 Suppose that 

BX contains 1000h 
SI contains 2000h 
DI contains 3000h 

Offset 1 OOOh contains 1 BAC h 
Offset 2000h contains 20FEh 
Ofiset 3000h contains 031 Oh 

where the above offsets arc in the data segment addressed by DS. 
Tell which of the following instructions are legal. If legal, give the 

source offset address and the result or number mo\'cd. 

a. MOV ex, [~XJ 
h. MOV ex, rsr J 
<;. MOV BX, [.Z..~:J 

d. ADD (S! J. (DI] 

e. !NC (!)I J 
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Solution: 

Source offset 

a. lOOOh 
b. 2000h 

Result 

lBACh 
20FEh 

c. illegal source register (must be BX, SI. or DI) 

d. illegal memorv-memory 
addition 

e. 3000h 031Eh 

Now let's return to the problem of adding the elements of an array. 

Example 10.3 Write some code to sum in AX the elements of the 
10-element array W defined by_ 

W OW 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 

SOiution: The idea is to set a pointer to the bast< of the array, an·a let it 
move up the array, summing elements as it goes. 

XOR AX,AX ;AX holds sum 
LEA SI,W ;SI points to array w 
MOV CX,10 ;CX !"las number of elements 

AODNOS: 
ADO AX, [SI) ;sum .. sum + element 
ADD SI,2 ;move pointer to the next 

;element 
LOOP ADON OS ;loop until done 

Here we must add 2 to SI on each trip through the loop because W Is a word 
array (recall from Chapter 4 that LFA moves the source offset address Into 
the destin;ition). 

The next example shows how register Indirect mode can be used In 
array processing. ·. · 

Example 10.4 - Write a procedure REVERSE that will reverse an array of 
N words. This means that the Nth word becomes the first, the (N-l)st 

__ word becomes the second, and so on, and the first word becomes the Nth 
word. The procedure ls entered with SI pointing to the array, and BX has 
the number of words N. 

SoluUon: The idea ts to exchange the 1st and Nth words, the 2nd and 
(N ... l)st words, and so on. The number of exchanges will be N/2 (rounde< 
down to the nearest Integer If N Is odd). Recall from section 10~1 that th 
Nth element ln a word array A has address A+ 2 x (N - 1). 

Program Listing PGM10_ 1.ASM 
REVERSE PROC -
;reverses ·a word array 
;input: SI • offset of a~ray 
, , BX - number of elements 
;output: reversed array ., 
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• •!. 

10.2.2 

•Based and Indexed 
Addressing Modes 

PUSH AX ;save registers 
PUSH BX 
PUSH ex 
PUSH SI 
PUSH DI 

;make DI point to nth word 
HOV DI,SI 
MOV CX,BX 
DEC BX 
SUL BX, l 

ADD DI,BX 
SHR ex, l 

;swap element.s 
XCHG_LOOP: 

MOV AX, (SI J 
XCHG AX, [DI) 
MOV [SI] ,AX 

ADD SI,2 
SUB DI,2 
LOOP XCHG_LOOP 
POP DI 
POP SI 
POP ex 
POP BX 
POP AX 
RET 

REVERSE ENDP 

;DI pts to 
;CX m n 
;BX - n-1 

1st 

; BX • 2 x (n- l) 

word 

;DX pts to nth word 
;CX - n/2 - no. of swaps to do 

;get an elt in lower half of array 
;insert in upper half 
;complete exchange 
;move ptr 
;move ptr 
; loop until done 
;restore registers 

In these modes, the operand's offset address Is obtained by adding 
a number called a dbphu:cmcnt to the contents of a rl"gistcr. Displacement 
may be any or the following: 

the offset address or a variable 
a constant (positive or negative) 
the offset address or a variable plus or minus a constant 

If A is a variable, examples of dlsplacements are: 

A (offset address of a variable) 
-2 (constant) . 
A + 4 (offset address of a variable plus a constant) 

The syntax of an operand is any of the following <.'quivalent expressions: 

[register + displacement] 
[displacement + register] 
[ register] + displacement 
d:..splaccmant + [register] 
displacement[register) 

The register must be BX, BP, SI, or Dl.U BX, SI, or DI is used, DS contains) 
the segment number of the operand's address. If BP is used, SS has the seg-' · 
mcnt number. The addressing mode is called based if BX (base register) or 
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BP (base pointer) Is used; It Is called lDclexecl if SI (source index) or DI 
(destlnatl.:>n i.ildex) Is used. 

For example, suppose W is a word array, and BX contains 4. In the 
instruction 

MOV AX,W[BX] 

the displacement is the offset address of variable W. The instruction moves 
the element at address W + 4 to AX. This ls the third element In the array. 
The instruction could also have been written in any of these forn14: 

MOV AX, [W+BXJ 
MOV Afc, [BX+WJ 
MOV AX,W+[BX) 
MOV AX, [BXJ+W 

As another example, suppose SI contains the address of a word array 
W. In the instruction 

MOV AX, [SI+2] 

the <1isplacement is 2. The instruction moves the contents of W + 2 to AX. 
This is the second element in the array. The Instruction could also have been 
writte~ in any of these forms: 

MOV AX, [2+51] 
MOV AX,2+{SI), 
MOV AX, [SI J +2 
MOV AX,2(Sl] 

Example 10.5 Rework example 10.3 by using based mode. 

Solution: The idea is to clear base register BX, then add 2 to it on each 
trip through the summing loop. ·' 

XOR /\X,AX ;AX holds sum 
XOR BX,BX ; clear base register 
MOV CX,10 ;CX has number of elements 

ADDNOS: 
. ADD AX,W[BXJ ;sum - sum + element 

ADD BX,2 ;index next element 
LOOP ADD NOS ;loop until done 

Example 10.6 Suppose that ALPHA is declared as 

ALPHA DW 0123h,0456h,0789h,0ABCDh 

in the segment addressed by.OS. Suppose also that 

BX contains 2 
SI contains 4 • 

DI contains 1 

Offset 0002 contains 1084h 
Offset 0004 contains 2BACh 

Tell which of the following'in'struCtions are legal. If legal, give the source 
offset address and the number moved. · 
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10.2.3 

1he PTR Operator and 
the LABEL Pseudo-op 

a. MOV AX, [ALPHAtBXJ. 

b. MOV BX, [BX+2J 

c. MOV CX,ALPHA[SIJ 

d. MOV AX, -2 [SI] 

e. MOV BX, [ALPHA+3+DI] 

f. MOV AX,[BX]2 

g. ADD BX,(ALPHA+AXJ 

Solution: 

Source offset Number moved 

a. ALPHA+2 0456h 
b. 2+2 = 4 2BACh 
c. ALPHA+4 0789h 

d. -2+4 = 2 1084h 

e. ALPHA+3+ 1 = ALPHA+4 0789h 

f. Illegal form of source operand 
g. Illegal source register 

The next two examples illustrate array processing by based and indexed modes. 

Example 10.7 Replace each lowercase letter in the folhnving string by 
its upper case equivalent. Use index addressing mode:. 

l!SG DB 'this· is a message' 

Solution: 

!10'/ 

XO!{ 
CX,17 

SI,SI 

CMP MSG [SI ] , ' ' 

;no. of chars in st.:-in,. 
;SI indexes a char 

;blank? 
JE NEXT ;yes, skip ove:-
;,:m MSG[SI]. OD!"h ;no, convert: t.o ·~i:?"r c.~~e 

INC SI 
LOOP TOP 

; index next b:_..•{:o; 

; loop unti 1 done 

You saw in Chapter 4 that the operands of an instruction must t.: 
of the same type; for example, both bytes or both words. Ii one opernnd is 
a constant, the assembler attempts to infer the type from the other operand. 
For example, the assembler treats the instruction 

=~cv P..X, ! 

as a word instruction, because AX ls a 16-bit register. Simiiarly, it t~e:its 

!'1C'V BH, 5 

as a byte Instruction. However, It can't assemble 

MOV [BXJ;l 
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bii<:ausc it can't ·tell whether the <kstinauon is the byte pointed to l>y 13X or 
the word pointed to l>y BX. If you want the d(•stinJtion to be a byte, \'l)U 

(,111 SJ)', 

and if you want the destination to be a word, you '"Y· 
MJ·.' ;.;CRQ ?7R [ ?.X; , l 

i::xarnplc 10.X In the string of rxample 10.7, repl;in· t .. t: ch;1ract<:1 "t" 

hy "T':·. 

Solution 1: Using register indirect mode, 

LE/'1 S l, MSC. ; ~i pvi:its t.·:J Z'.SC 

!-!·JV BYTE P'!'R [SI j, 'T' ,"l(;I=-ilclCC' 't' !:Jy '~'' 

Solution 2: Using index mode 

XOR ~!.SI ; (_' .le~1 SI 

MCV MSGi31], '~' ;repJe~e 't.' hy 'T' 

Hcie it is not necessary to use the !'TR opcr;itor, l>l'<"aus~ MSG i5 .1 byll' nri~lllc. 

Using PTR to Override a Type 

.·In general, the !'TR operator c;in lie used to O\l·mdc tile c.k:.:iar<•ct 
type of an address expression. The S) nt.ix is 

'ype PTR·dddr<:as_cxprezsion 

wht:re the type is BYTE, WORD, or DWOIW (doublc.·worc.ll, and the adJress 
expre~sion has het'n typed as DB, DW, or DD. 

For example, suppose you hJvc the following declaration: 

DOI..LAF.S Di3 lAh 

C~NTS DB 52h 

and you'd like to move the contents of DOl.L\HS to AL and CENTS to /\1-t 
with a single MOV instruction. Now 

~OV AX, DOLLJl.llS ;ill(:gC.l 

is illl-gal because th<! de~tination is a word •md the ~ourrc has lll'en typed :1'> :i 

byte variable. But you can override the type declaration with WO!:ZD l"I R ~s 

and the instruction will move 52L\h to AX. 

The I.ABEL Pseudo-Op 

Adually, thcrC.: is another way to get aruu:1d till' pwl>l\:111 or tyre c.:<mllict 
in the preceding example. Using the I.ABEL pseudo-op, Wl' could decl<irl' 

MON£"{ 

!JUL LARS 
CENTS 

LA fl EL 

DB 

lvOi\D 

lAh 
52h 
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10.2.4 
Segment Override 

This declaration types MON1:.-Y as a word variable, and the components DOL· 
LARS and CENTS as byte variables, with MONEY and DOLLARS being as­
signed the same address by the assembler. The instruction 

MOV AX, MONEY ;AL • dollars, AH • cents 

is now legal. So are the following instructions, which have the same eff~"t: 

MOV AL, DOLLARS 
MOV AH, CENTS 

Example 10.9 Suppose the following data are declared: 

.DATA 
A OW 1234h 
B LABEL BYTE 

DW 5678h 
C LABEL WORD 
Cl CB 9Ah 
C2 °DB CBCh 

Tell whether the following instructions arc legal, an<l if so, give the number 
moved. 

Instruction 

a. MOV AX,B 

b. MOV AH,B 

c. MOV cx,c 
d. MOV BX, WORD PTR £ 

e. MOV DL, WORD PTR c 
f. MOV AX, WORD PTR Cl 

Solutioa: 

a. illegal-type conflict 

b. legal, 78h 
c. legal, OilC9Ah 

d. legal, 5678h 

e. legal, 9Ah 

f. legal, Ol3C9Ah 

In register indirect mode, the pointer register BX, SI, or DI specifies 
an offset address relative to OS. It ls also possible to specify an oCfset relative 
to one of the other segment registers. The form of an operand is 

seqment_register:[pointer_register] 

For c.xample, 

MOV AX,ES: [SI] 
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Accessing the Stack 

10.3 
An Application: 
Sorting an Array 
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If SI contains OlOOh, the source address.in thi~ instruction is ES:OlOOh. You 
might want to do this in a program with two data segments, where ES con­
tains the segment number of the second data segment. 

Segment overrides can also be used with based and indexed modes. 

We mentioned earlier that when BP specifies an offset in register 
indlrea mode, SS supplies the segment number. This means that BP may be 
~ to access Items on the _stack.. 

Examplc·l0.10 "Move:the top three words on the stack into AX, BX, 
and ex without changing the stack. 

1 
Solution: 

HOV BP,SP : BP points to stack top 
;move stacktop to AX 
;move second word to BX 

MOV AX, [BP] 
MOV BX, ,[BP+2]' 

MOV ex, [BP+4 J ·;move third word to ex 

A primary use of BP is to pass values to a procedure (see Chapter 14). 

It is much easier to l~tc an item In an array If th~ array has been 
sorted. There arc dozens of sorting methods; the method we will discuss here 
is called selectsort. It Is one of the simplest sorting methods. 

Position 

To sort an array A of N elements, we proceed as follows: 

Pass 1: • Find the largest element among A( 1) ... A(N]. Swap it 
and A(N]. Because this puts the largest element in position N, we 
need only sort A[l] ... A[N-1] to finish. 

Pass 2. Find the largest element among A(l) ... A[N-1). Swap it 
and A[N-1). This places the next-to-largest element In its proper 
position. 

Pass N-1. Find the largest clement among A(l], A!2). Swap it and 
A[2j. At this point A[2j ... A[N] are in their proper positions, so 
Alli is ~swell, and the array is sorted. 

For example, suppose the array A consists of the following integers: 

f . 2 3 4 s 
initial data 21 5 16 40 7 
pass 1 21 5 16 7 40 
pass 2 7 5 16 21 40 
pass 3 7 5 . 16 21 40 
pass4 5 7. 16 21 40 
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Selectsort algorithm 

i ~ N 

?CR .\'- J limes DO 
Fina t:;e position k of the largest el .... mem: 

among Ai lJ .• A[iJ 
C-l Swdp A[k] eint.! A[i I 

-= ~ -1 

END FOR 

~tl'p (") will be handled by a procedure SWAP. The code for the procedures 
is tho: following {Wl' 0 ll suppose the array to be sorted is a byte array): 

Program Listing PGM10_2.ASM 
l : SELE.CT PROC 

;scrts d hytc array by the select sort met.!iod 2: 

3: 
~: 

5: 
6: 
7: 

; i~,p~t: sr = a:-ray offset address 
BX 

;output: SI = 

; uses·: SWAP 

8: 
9: 
l 0: 
l , . 

12: 
l '. 
14: ;for N-1 

PUS:i 
PUSH 
PUSH 
PUSH 
DEC 
JE 
MOV 

times 
l~: SORT_LOOP: 
16: MOV 

= number 
offset of 

BX 
ex 
DX 
SI 
BX 
E!'ID SuRT -
DX,SI 

do 

SI, DX 

of elements 
sorted arr<.y 

;N a N-1 
;exit if 1-elt array 
; save array offset 

;SI pt~ ta array 
17: MOV CX,BX ;no. of comparisons to make 
18: MOV DI,SI ;OJ pts lo la.rqest p]e:nent 
19: ~!OV AL, [DI] ;AL has largest element 
?O: ; lo-::ate bigyest ot r~maining el ts 
21: FIND BIG: 
:::2: INC 

CM!:' 

Jt~G 

MOV 
r-~:w 

IJEXT: 

LOOP 

SI 
(Si I ,AL 

NEXT 
DI,SI 
AL, [DI] 

FIND BIG -

;SI pts to next element 
; is new element > largest? 
;no, go on 
; yes, move DI 
;AL has largest element 

;loop until done 

%:; : 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
3'1: 

32: 
33: 
34: 
35: • 
3E;: 

37: 
38: 
39~ 

40: 

;:,w.:p bigqest elt with last elt 
CALL SW!\P ;Swap with last elt 
DEC BX ; N ~ N-1 

JNE SORT - LOOP ;repeat it N <> 0 
EUD SORT: 

POP Sl 

POP DX 
POP ex 
POP 13>: 
RET 

SE.LECT ·ENDP 
S~/AP PROC 

41: ;swaps two array elements 
42: ; input: SI .. one element 
43: DI • other element 
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44: ; output: exchange- elements 

45: PUSH AX ; save AX 

46: ·-;get A(i] MOV AL, (SI] 
47: ;place in A[k] XCHG AL, [DI] 
48: ;put A[k] in A[ij MOV (SI], AL 
4 9: ; rest: ore AX POP AX 

RET 50: 
51: SWAP ENDP 

. . . ~ 

Procedure SELtCT is entered with the array off5el address in SI. and 
the number of elements N in BX. The algorithm sorts the array in N - l 
passes so BX is decremented; if it contains 0, then we ·haw a one-dement 
array and there is nothing to do, so the procedure exits. 

In the general case, the procedure enters as the main processing loop 
· (lines 15-32). Each pass through this loop plar~s the largest of the remaining 

unsorted clements in its proper place. ·· 
In lines 21-28, a loop is entered to find the largest of the remaining 

unsorted clements; the loop is exited with DI polnh~ to the largest element 
and SI pointing to the last element in the array. At line 30, procedure SWAP 
is called to exchange the clements pointed to by SI and DI. 

The procedure can be tested by inserting them In a testing program. 

Program Listing PGM10_3.ASM 
TITLE PGM10_3: TEST SI 
.MODEL SMALL 
.STACK lOOH 
.DATA 
A DB 5,2,1,3,4 
.CODE 
MAIN PROC 

MOV AX,@DATA 
MOV DS,AX 
LEA SI, A 
MOV BX,5 

.CALL SELECl'. ' 
MOV AH,4CH 

·INT 21!{ 
HAIN ENDP 
;select goes here 

ENO MAIN 

After assembling and linking, we enter DEBUG and execute down 
· to the procedure call (the addresses in the following demonstration were 
·determined in a previous DEBUG session): 

AX=lOOD.BX=OOOS cx~0049·DX•OOOO SP~OlOO BP~oooo SI=0004 DI=OOOO 
DS=lOOD ES=OFF9 SS=lOOE CS=l009 IP-OOOC NV UP EI PL NZ NA PO NC 
1009:000C E80400 CALL 0013 
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-DC 8 
1000:0000 

-Gr' 

Before calling the procedure, let's look at the unsorted array: 

05 02 01 03-04 

The data appear in the order S, 2, l, 3, 4. Now let's execute SELECT: 

AX-1002 BX-0005 CX-0049 ox~oooo SP-0100 BP=OOOO SI~0004 0Ie0005 
DSmlOOD ES•OFF9 SS-lOOE CS-1009 IP=OOOF NV UP EI PL ZR NA PE NC 
JOO~:OOOF M~C: MOV All,4C 

and look at the array again: 

-DC 8 
1000:0000 01 02 03 04-05 

10.4 
1Wo-Dimensional 
Arrays 

It Is now In· ascending order. 

A two-dimensional array is an array of arrays; that Is, a one-di­
mensional array whose elements are one-dimensional 4lrrays. We can picture 
the elements as being arranged in rows and columns . .figure 10.2 shows a 
two-dimensional array B with three rows and four columns (a 3 x 4 array); 
B(l,IJ is the element in row I and column j. 

How TWo-Dimensional Arrays Are Stored 

Because memory Is onc-<llmenslonal, the elements of a two-dimen· 
sion.11 array must l>c stored sequentially. There are two commonly used ways: 
Jn row-~atajor order, the row 1 clements are stored, followed by the row 
2 clements, then the row 3 clements, and so on. In colnn1n-major order, 
the clements of the first column are stored, followed by the second column, 
third column, and so on. For example, suppose array ll has 10, 20, 30, and 
40 in the first row, SO, 60, 70, and 80 in the second row, and 90, 100, 110, 
and 120 in the third row. It could be stored In row-major order as follows: 
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B 

Column 
. 

R ow 1 

1 8(1,11 

'2 8(2.11 

l ··a1J.11 

ow 10,20;30,40 
DW 50,60,70,80 
OW 90,100,110,120 

-
2 

8(1,21 

Bf2:21 

B(l,2) 
,. 

or in column-major order as follows: 

B DW 10,50,90 
DW 20,60,100 
DW 3 0, 7 0, ll 0 
DH 40,80,120 

3 4 

8(1.31 8(1.41 

8(2.ll 8(2.41 

8(3.ll 8(3,41 

Most high-level language compilers store two-dimensional arrays In row-ma­
jor order. In assembly language, we can do It either way. If the elements of 
a row are lo be processed together sequentially, then row-major order is 
better, because the next element in a row Is the next memory location. 
Conversely, column-major order is better if the elements of a column are to 
be processed together. 

Locating an Element in a Two-Dimensional Array 

Suppose an M x N array A is stored in row-major order, where the 
size of the elements ls S (S = 1 for a byte array, S = 2 for a word array). To 
find the location of A[i, j), 

1. Find where row i begins. 

2. Fi.nd the location of the jth element in that row. 

. Here Is the first step. ltow 1 begins at location A. llecause there arc 
N elements in each row, each of size S bytes, Row 2 begins at location A + 

• - N x S, Row 3 begins at location A + 2 x N x S, and in g~eral, Row i begins 
at location A + (l - 1) x N x S. 

Now for the second step. We know from our discussion of one-di­
. mmsional arrays that the jth element in a row is stored (j - l) x S bytes from 

the beginning of the row .. , . . 
Adding the results of steps 1 and 2, we gl't the final r~sult: 

If A ls an M x N array, with element size S bytes, stored in row-major 
order. then 

(]) A(i, ii has addrl'\S A+((I - 1) x N + (j - I)) x S 

llwre is a similar ~xpressim1 'Jr column-m~;ur orJcR'CI arr.iys: 

If A is an M x N array, wi.'h element size S, stored in column-major 
,., .lcr, then 

(2) A[i,j) has address A + ((I - 1) + (j - 1) x M) x S 
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10.5 
Based Indexed 
Addressing Mode 

Example 10.12 Suppose A is an M x N word array stored in row-major 
order. 

1. Where does row i begin? 
2. Where does column j begin? 

3. How many bytes are there between elements In a column? 

5olutlon: 

1. Row I begins at A(i, 1); by formula (1) Its address Is A + (i - 1) x N 
x 2. 

2. Column j begins at A[l, j]; by formula (1) the address Is A+ (j -
1) x 2. 

3. Because there are N columns, there are 2 x N bytes between ele­
ments in any given column. 

In this mode,. the offset address of the operand is the sum of 

1. the contents of a base register (BX or Bl') 

2. the contents of an index register (SJ or DI) 

3. optionally, a variable's offset address 

4. optionally, a constant (positive or negati~e) 

If BX Is used, OS contains the segment number ol the operand's 
address; if BP is used, SS has the segment number. The operand may be 
written several ways; four of them are 

1. variablc[b,;rnc_registerJ [in<.lcx_rc•rJl!lt°"r] 

2. [bast!_register + index_register + variable + con­
stant:] 

3. variable[base __ register + index_register: + constant] 

4. constant[base_register + index_register + variable) 

The order of terms within these brackets Is arbitrary. 
For example, suppose W Is a word variable, BX contains 2, and SI 

contains 4. The Instruction 

MOV AX, W [BX] [ SI ] 

1'noves the contents of W+2+4 = W+6 to AX. This instruction could also have 
been written in either of these ways: 

MOV AX, [W+BX+SIJ 

or 

MOV AX, W [BX+SI] 

Based indexed_ mode .ts es~ially useful for processing two-dimensional ar­
rays; as the folloWing 'example shows~-- --
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. Example 10.13 Suppose A I~ a 5- x 7-word array stored in row-major 
·order. Write somt: code to {1) clear row 3, (2) clear column 4. Use based 
indexed mode.' 

Solution: 

1: From example 10.12, we ):mow that In an M· x N-word array A, row 
i begins at A + (I - 1) x N x 2. 111us In a 5 x 7 array, row 3 begins ;it 
A+ (3 - 1) x 7 x 2 =A+ 28. So we can clear row 3 as follows: 

CLEAR: 

• 
YJOV X, 28; 
XOR Sl·, SI 
MOV ex, 7 

BX indexes row 3 
;SI will index columns 
; number of elements in a row 

MOV A[BX][Sl],O ·;clear A[3,j) 

ADD 51,2 ;go to neJ<t column 
LOOP CLl::AR ; loop until done 

2. Again from example 10.12, cohrnm j begins at A+ (j - IJ x 2 in 
·an M- x N-word array. Thus column 4 begins at A + (4 - 1) x 2 = 
A + 6. Since A is a sev~n-column word array stored in row-major 
order, to get to the next element In column 4 we need to add 7 x 
2 = 14. We can clear column 4 as follows: 

CLEAR: 

MOV SI, 6 

XOf< BX,BX 
MOV. ex, 5 

MOV 1\ [ BX 1 l S I I , 0 

AIJD BX, 1 

LOOP CLEAR 

;Sl will index column 4 

;BX will index rows 
; number of elements in a col urnn 

;cleilr 1\[i,4] 
; go to noxt row 
; loop until donr. 

Suppose a class of five students Is given four exams. The results are 
recorded as follows: · · · 

Test f TestZ Test J THt .. 
MARY ALLEN ' 67 45 98 33 

scon BAYLIS 70 56 87 44 
GEORGE FRANK · . 82 72 89 40 

BETH HARRIS 80 67 95 50 
SAM WONG 78 76 92 60 

We will write a program to find the dass average on each exam. To do this, 
we sum the entries In each colum_n and divide by 5. 

Algorithm 

1. j - 4 
2. REPEAT 

3. sum the _·scores in column j 

4. ( divide sum by 5 to qet the averaqc in column j 

... ., j - j-1 . 
~ • .••. • r 

S. UNTIL j • 0 
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., 

We choose-to start summing in oolumn 4 because It makes the code a little 
shorter. Step 3 may be broken down further as follows: 

sum[ j] - 0 
i c l 
FOR 5 times DO 

sum[j] a sum[jJ + score[i,j] 
1 ~ l+l_ 

END FOR 

Program Listing PGM10_4.ASM 
0: TITLE PGM10_4: CLASS AVERAGE 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 

.MODEL 

.STACK 

.DATA 
FIVE 
SCORES 

AVG 
.CODE 

SMALL 
!OOH 

DW 
.ow 

OW 
OW 
OW 
OW 
OW 

5 
67,45,98,33 ;Mary Allen 
70,56,87,44 ;Scott Baylis 
82,72,89,40 ;Georqe Frank_ 
80,67,95,50 ;Beth Harris 
78,76,92,60 ;Sam Wong 
5 DUP (0) 

MAIN PROC 
MOV AX, @DATA 
MOV DS,AX 

; j-4 
MOV SI,6 

REPEAT: 
MOV CX,5 
XOR BX,BX 
XOR AX,AX 

;initialize DS 

;col index, initially col 

;no. of rows 
;row index, initially l. 
;col_sum, initially 0 

;sum scores in column j 

FOR: 

;endfor 

ADD 
ADD 
LOOP 
~ 

AX,SCORES[BX+SIJ;col_sum-c?l_sum + score 
13X, 8 ; index next . row 
FOR ; keep adding scores 

; compute average in _column j 

:- • XOR DX, DX . ;clear high part of divnd 
DIV. FIVE. ;AX - averaqe 
HOV A"/G[SIJ,AX_ ;store in .:irray 
SUB SI, 2 - ;90 to next column 
; until j=O 

,JNL ·- REPEAT •;unless SI < 0 • 
.34:•;dos· exit 
35: MOV AH, 4CH 
36: INT 21 H _-__ 
37: MAIN ENDP 
38: END MAIN 

The test scores are stored in a two-dimensional anay (lines 5-9). 
in lines 22-25, a column is summed and the total placed in the array 

AVG. In lines 2&-30, this total iS divided by S to compute the column average. 
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r Rows and columns of array SCORE are indexed by BX arid SI, respec­
tively~ w~ choose - to begin .. summing column 4; this column begins in 

'SCORES+6, 'So SI ls initlallZed to' 6 (line 16). After a column is summed, SI 
is decreasecfby 2, ·until it 1s·o.-.. .- • 

The execution of the program may be seen in DEBUG. We execute 
down to the DOS exit, then'. dump . the' array AVG (the addres~es In this 
demonstration were determined In a previous DEBUG session). 

AX•4C4B BX-0028 CX=OOOO ox~ooo2 SPcOlOO BPzOOOO SI=FFFE 01-0000 
DS-1008 ES•OFF9 SS=lOOF CS=l009 IP-0029 NV· UP EI NG NZ·AC PO CY 
1009:0029 CD21· 

-D36 3D 
1008:0030 

INT 21 

4B 00-3F 00 SC 00 20 00 

The averages ~;e 004Hh, OOJFh, 005Ch, and 002011, or-in decimal 75, 63, 
· 92, and 45. 

The XLAT Instruction In some applications, it is necessary to translate data from one form 
to another. For example.,the IBM PC uses ASCII codes for characters, but 
IBM mainframes use EBCDIC (Extended Binary Coded Decimal Interchange 
Code). To translate a character string encoded In ASCII to EBCDIC, a program 
must replace the ASCII code of each charactel" In the string with the corre­
sponding EBCDIC cOde. ·; . 

·The instruction XLAT (translate) is a no-operand instruction tha: 
can be used to convert 3 byte value Into another value that comes from a 
table. The byte to be converted must be in AL, and llX has the off~et address 
of the conversion table. The instruction (1) adds the contents of AL to the 
address in BX to produce an address within the table, and (2) replaces the 
contents of AL by the value found at that address. 

For example, suppose the contents of AL are in the range 0 to Fh 
and we want to replace it by the ASCII code of its hex equivalent; for example, 

· 6h by 036h = "6", Bh by 042h = "B". The conversion table Is 

TABLE 
i. • ' - .:: ~ 

DB 030h,0.3lh,032h,033h,034h,035,036h,037h,038h,039h 
DB 04l~.~42h,O~~h,04~h;045~,046h 

For instance, to' convert OCh to "C", we do the following: 

'' MOV AL, O_Ch 
LEA BX, TABLE 
XLAT 

.. . ,; number to convert 
~ ,; DX has table off set 
''":Al. has •c• · 

Here XI.AT computes address TABLE + Ch -= TABLE + 12, and. replaces the 
contents of AL by the number stored there, namely 043h = "C". 

In this example, If AL contained a value rwt in the range 0 to 15, 
-XI.AT would translate it'to some garbage value. · 
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Example: Coding and Decoding a Secret Message 

The following program prompts the user to type a message, encodes 
It In unrecognizable form, prints the coded message, translates It back. and 
prints the translation. · 
Sample output: 

ENTER A MESSAGE:, 

GATHER YOUR FORCES AND ATTACK AT DAWN, 
ZXKHGM WULM l!llME'GN XJO XKKXPD XK OXS-l• 
GATHJ::R YOUR FORCES AND ATTACK AT UAWN, 

(input) 
(encoded) 
(translated) 

Algorithm for Coding and Decoding a Secret Message 

Print prompt . 

Read and encode message 
Go to a new line 
?rint encoded message 

Go to a new line 
Translate and print message 

Program Listing PGM10_5.ASM 
0: TITLE PGM 10_5: SECRET MESSAGE 
l:. MODEL 

2: .STACK 
3: .DATA. 

SMALL 

lOOH 

4: ;alphabet AaCDEFGHIJKLMNOPORSTUVWXY. 

5: CODE_KEY DB 65 DUP (' 'l, 'XQPOGHZBCADEIJWFMNl<LRSTWY' 
6 : DB 3 7 DUP (' ' ) 

7: DECODE_KEY DB 65 DUP (' '),'JHIKLQEFMNTURSDcavwxOPYAZG' 
8: DB 37 DUP (' 'l 

DB 80 PUP('$') 9: CODED 
10: PROMPT 
11: CRLF 
12: .CODE 
13: MAIN 
14: 

DB 'ENTER A MESSAGE:',ODH,OAH,'S' 

15: 
16: 
1-7: 
18: 
19: 

;print 

DB ODH, OAH,' $' 

PROC 
HOV AX,@DATA 

MOV OS, AX 
input 

MOV 
LEA. 
INT 

prompt 
AH,9 
DX,PP.OMPT 
21H 

20: 
2l: 
22: 

;read and encode message 
MOV AH, 1 
LEA BX,CODE_KEY 

23: LEA DI, CODED 
24: WHILE_ 

.• 25:--~----INTu • ...,__2lH._ ..•. 
26: CMP AL, OOH 

27: JE ENO\-IHILE 

28: XLA. 

;ini~iaiize DS 

; pr int string -fen 

;DX pts to prompt , 
;print message 

; read char fen 
;BX pts to code key 
;DI. pts to coded message 

; read a char 

;carriage return? 

; yes, go to print coded messa~ 
; no, encode char 
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29: MOV , (DI) ,AL 
30:· INC r_DI 

;store in coded message 
;move pointer 

31: JMP WHILE -
32: ENDWHILE: 
33: ;go to a new llric 

34 :' MOV AH,9 
35; LEA DX,CRLF 
36: INT 21H 
37; ;print encoded me·ssage 

38: 
, 

LEA DX, CODED 

39: INT 2lH 
40: ;go to a new line 
41: LEA DX,CRLF 
42: INT 21H 
43: ;decode message· and print 
44: MOV All, 2 
45: LEA BX, DECODE KEY -
46: LEA SI,CODED 
47: WHILEl: 

~ ? ,. 

48: MOV ., ~L, [SI) 
49: CMP AL,' S' 
SC: JE ENDWHILEl 
51: XLAT 
52: MOV ·o'i,·,AL 

53: INT 21H, 
54: INC SI 

;process next char 

·;new line 

·,DX pt s to coded 
;print coded ;;-.essa9e 

; new 1 ine 
it 
;p:i:int <.:h.:tr fen 
;BX ~ts to decode key 

.ts tc ancodect message 

; get a character frr·- messuge 
; end of messar;;· · 
; yes, exj t. 
; no, decode character 
;put in DL 
;print translated char 
;move ptr 

55 :_.: JMP 1 ·WHILE1 ; process next ch.:•: 
56: ENDWHILEl: 
57: MOV' AH: 4<:H 
58: INT : 2lH ;dos exit 
59: MAIN ' ENDP 
60: END. MAIN 

Three. ar~ays are declar~d In the data segment: 

· 1. CODE_l<EY _is used to encode English text. 
2. CODED holds the encoded message; it is initialized to a string of 

d~llar signs so that it may be printed with INT Zlh, function 9. 
3. DECODE_KEY is used to translall! thl' l'ncudc:d ll'Xt hack to English. 

Line' 4 is a comment line containing the alphabet, which makes it easier to 
sec how characters arc encoded and decoded . 

. · • In lines 24-32, characters are read and enco<.lcd until a carnage return 
is typed. AL receives the ASCH co<le of each Input charac:tt-r; XLAT adds it to 
address CODE_Kf.Y in BX to produce an address within the CODE_KEY table. 

CODE_KEY. is set up as follows: 65 blank.~, followed by the letters to 
. which A to i will be encoded, followed. by 3 7 more blanks for a total of 128 
b)'tes (128 bytes arc ·needed; because the standard ASCII characters range 

.from 0 to 
0

127). Suppose, for example, an "A" is typed. The ASCII code of 
''.A" is 65: XLAT com1:i11tes address CODE_KEY+65, picks up the value of that 
byte, which is'"X", and stores it in AL. At line 33, this value is moved into 
byte array CODED. Similarly/ "ll" is translated into 'Q'. 'C' into 'P' .. , 'Z' 

.into "Y" (the encoding table was constructed arbitrarily). Characters other 
than ~apital letters _(including .t!"!.e. bl~nk character) have ASCII code in the 
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ranges 0 to 64 or 92 to 127, and are translated into blanks. In lines ~39, 
the encoded message is printed. 

DECODIU<EY also begins with 65 blanks and ends wlth 37 blanks. 
The positions of the letters in this array may be deduced as follows. First, 
lay down the alphabet (line 4). Now since HA" was coded Into "X", the letter 
at poslUon "X" Jn the decoding sequence should be HA". Similarly, because 
"B" was coded lnto "Q", there should be a "B" at position "Q", and so on. 

In Jines 47-56, the encoded message ls translated. After_pladng the 
addresses of DECODE_l<EY and CODED Jn BX and SI, respectively, the pro­
gram moves a byte of the coded message Into AL If it's a dollar sign, the 
message has been translated and the program exits. U not, XLAT adds AL to 
address DECODE_J<EY to produce an address within the decoding table, and 
puts the character found there into AL. At line 52, the character Is moved 
to DL so that it can be printed with INf 21h, function 2. 

Summary 

• A one-dimensional array is an ordered list of elements of the 
same type. The DB and OW pseudo-ops arc used to declare byte 
and word arrays. 

• An array element can be located by adding a constant to the 
base address. 

• The way that an operand is specified is its addressing mode. The 
addressing modes are register, immediate, direct, register indirect, 
based, indexed, and based indexed. 

• In register indirect mode, an operand has the form (register), 
where register is BX, SI, DI, or DP. The operand's offset Is con­
tained in the register. For BP, the operand's segment number is in 
SS; for the other registers, the segment number Is In OS. 

• In based or indexed mode, an operand has the form (register+ 
displacement]. Register is BX, BP, SI, or DI. The operand's offset is 
obtained by adding the displacement to the contents of the regis­
ter. for BX,SI, or DJ, the segment number is in OS; for BP, the seg­
ment number is in SS. 

• The operators BYTE PTR and WORD l"TR in front of an operand 
may be used to override the operand's declared type. 

• The LABEL pseudo-op may be used to assign a type to a variable. 

• A two-dimensional array is a one-dimensional array whose ele­
numts are one-dimensional arrays. Two-dimensional arrays mi!y 
be store<I row by row (row-m<Jjor order), or c.:olurnn by column 
(column-major order). 

• In based indexed mode, the offset address of the operand is the 
sum of (1) BX or HP; (2) SJ or DI; (3) optionally, a memory offset 
address; (4) optlon;illy, a constant. One (of several) possible forms 
Is (base_register + index_register + memory_location +constant]. 
DS has the segment number If BX is used; It BP Is used, SS has 
the segment number. 

• Uasctl indexed mode may be used to process two-dimensional arrays. 

• The XLAT instruction can be used to convert a byte value into an­
other value that come~ from a table. AL contains the value to be 
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converted and BX the address of the table. The instruction adds 
AL to"the offset contained in BX to produce a table address. The 

··contents of AL is replaced by the value found at that address. 

Glossary 

addrcsslaa m«Kle 

base address of an array 
based addttsslag mode 

column-major order 
di~ mode' .. 

dlsplaccmcnt 

immediate mode 

The way the operand is specified 

The address of the array variable 
An indirect addressing mode In which 
the contents of BX or BP are added to a 
displacement to form an operand's offset 
address 
Column by column 

The operand is a variable 
In based or indexed mode, a number 
added to the contents of a register to 
produce an operand's offset address 
The operand is constant 

indexed address.la& mode · An indirect addressing mode in which 
the contents of SI or DI arc added to a 
displacement to form an operand's off­
set address 

one-dbncnslo.nal --· -­
pointer 

register naoclc 
row:maJor order 
twO-climensional ar.ray 

New instructions 

XLAT 

New Pseudo-O~s : 
DUP 

Exerc~s· 
• 1 

0 1. I Supp.ose 
AX contains OSOOh 

' BX contains 1 OOOh 
·SI contains 1 SOOh 
DI contains 2000h 

An ordered list of element of the same type 

A rq;islcc that contains an offset address 
or an operand 
The 01~r;iml is a Tl.1;islcr 

Row hy row 

• • 
1
A one-dimcmional ilrray whose clements 
are one-dirnt!nsional arrays 

LABEL PTR 

offset 1000h contains 0100h 

offset 1 SOOh contains O 1 SOh 
offset 2000h contains 0200h 
offset 3000h contains 0400h 

offset 4000h contains 0300h 

and BETA is a word variable whose offset address is 1 OOOh 



202- Exercises 

2. 

For each of the following instructions, if it is legal, give the 
wurce offset address or register and the result stored in the desti­
nation. 

a. MOV OI,SI 

b. MOV DI, [DI) 

c. ADD AX, [SI) 

d. SUB BX, [DI) 

e. LEA BX,BETA[BX) 

f. ADD- [SI), [DI) 

g. ADD BH, [BL] 

h. ADD AH, [SI) 

i. MOV AX: [BX + DI +_· BETA) 

Given the following declarations 

A DW 1, 2. 3 

B DB 4. 5, 6 
c LABEL WORD 

MSG DB 'ABC' 

and suppose that BX contains the off5et address of C. Tell which 
of the foflowing instructions are- legal. If sc, give the number 
moved. 
a. MOV AH, BYTE PTR A 

b. MOV AX, WORD PTR B 

c. MOV AX, C 

d. MOV AX, MSG 

e. MOV AH, BYTE PTR C 

3. Use BP and based mode to do the following stack operations. 
(You m~y use other registe_rs as well, but ~on't use PUSH or POP.) 
a. Replace the contents of the top two words on the stack by zeros. 
b. Copy a stack of five words into a word array ST _ARR, so that 

ST_ARR contains the stack top, ST_ARR + 2 contains the next 
word on the stack, and so o.n. 

4. Write instructions to carry out each of the following operations 
on a word array A of IO elements or a byte array B of 15 elemen~r 
a. Move A[i+l) to position I, i = 1 ... 9, and move Afl) to · 

- position 10. 

b. Count in DX the number of·zero entries in array A. 

c. Suppose byte array R contains a character string. Search B for 
the first occurrence of the letter "E". If fo"und, make SI point 
to its location; if not.found, set CF. 

5. Write a procedure FIND_l] that returns the offset address of the el­
ement in row i and column j in a two-dimcnsionJI M x N word ar­
ray A stored in row-major order. The procedure receives i in AX, j 
in BX, N in CX, and the offset of A in DX. It returns the offset ad· : 
dress of the clement in DX. _Note: you may ignore the possibility 
of overflow. 
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6 .. To sort an array A of N elements by th~ bubblesort method, we 
proceed as follows: . "" 

Pass 1. For i • 2 ..• N, If A(J) <AO - 1) then swap A[/) a1.d 
AU- 1). This will place the largest element In position N. 
Pass 2. For j = 2 ... N - J, if Af/l< AU - 11 then sWilp AIJl and 

, AV - 1). This will place the second largest element in position N - 1. 

Pass N - 1. If A[2) < A[l), then swap A[2) and A[l). At this point 
the array ls sorted. 

Demonstration 

initial data 7 s 3 9 1 

pass 1 5 3 7 1 9 
pass 2 3 5 7 9 
pass 3 3 1 5 7 9 
pass 4 3 't 5 7 9 

Write a procedure BUBBLE to sort a byte array by the bubblesort 
algorithm. The procedure receives the offset address of the array 
In Sl and fr1e number of elements in BX. Write a program that 
lets the user type a list ofslngle-dlgit numbers, with one blank be­
t\veen numbers, calls BUBBLE to sort them, and prints the sorted 
list on the next line. For example, .-

Your program should be able to handle an array with only one 
clement. 

7. Suppose the class records in the example of section 10.4.3 are 
stored as follows 

CLASS 
DB 'MARY ALL~N ',6"'1,45,9 S,33 
DB 'SCOTT BAYLIS',7~.~6,6"'1,44 

DB 'GEORGE FFANK',82,"'12,89,40 
DB 'SAM WCNG ',78,76,92,60 

Each name occupies 12 bytes. Write a program to print the name 
of each student and his or her average (truncated to an integer) 
for the four exams. 

8. Write a program that starts with an initially undefined byte array 
of maximum size 100, and lets the user Insert single characters· 
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?A 
A 
?I> 

AD 

?B 
ABO 
?& 
ABDa 
?D 

hBDa 
? <J:SC> 

into the array in such a way that the array is always sorted in u­
cending order. The program should print a question mark, let the 
user enter a character, and display the.array With the new charac­
ter Inserted. Input ends when the user hits the F.SC key. Duplicate 
characters should be ignored. 
Sample executio11: 

9. Write a program that uses XLAT to (a) read a line of text, and (b) 
print It on the next line with all small letters converted to capi­
tals. The Input line may contaln any characters-small letters, cap­
ital, letters, digit characters, punctuation, and :,.:. on. 

10. Write a pron'llure l'IUNTJIEX that US'-'S XLAT to display the con­
tent of BX as four hex digits. Test· it In a program that lets the 
user type a four-digit hex Integer, stores 't in llX using the hex In­
put algorithm of section 7.4, and calls PRINTHEX to print It on 
the next line. 
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The String 
·Instructions 

Overview 

11.1 
The Direction Flag 

In this chapter we consider a special group of Instructions called the 
string i11struccio11s. In 8086 a~cmbly language, a memory string or string 
ls simply a byte or word array. Thus, string Instructions are designed for array 
:>rocesslng: · . · 

Here are examples of operations that can be performed with the 
;trlng instructions: . 

• · Copy a string Into another string. 
" • · · Search a string for a particular byte or word. 
ti· Store characters in· a string. 
l ' - • Compare strings of characters alphabetically. 
11.. • · The tasks carried out by the strtng instructions can be performed by 
JSing the register lndiTect'addressing mode we studied in Chapter 10; how­
~er .. the string Instructions have some built-in advantages. For example, 
hey provide automatic updating of pointer registers and allow memory-
ncmorv ooerations. . . 

In Chapter 5, we saw that the FLAGS register contains six status flags 
and three control flags. We know that_ the status flags reflect the result of an 
operation that the processor has done. The control flags are used to control 
the pr~r's operations. : _ , . 

-One of the contr?I flags Is the directiu11 (lag (Df). Its purpose Is to 
determine.the direction in which string operations wlll proceed. These op­
erations are impiemented by the two index registers SI and DI. Suppose, for 
example, th.at the following string h~is been declared: 

205 
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11.2 
Moving a String 

S1'RING1 DB 'ABCOE' 

And this string is stored in memory starting at offset 0200h: 

Offset address Content ASOI character 

0200h 041h A 

0201h 042h 8 
0202h 043h 

., 
0203h 044h D 

0204h 045h E 

If DF = 0, SI and DI proceed In the direction of increasing memory addresses: 
from left to right across the string. Conversely, if DF = 1, SI and DI proceed 
in the direction of decreasing memory addresses: from right to left. 

In the DEBUG display, OF= 0 ls symbollz.ed by Ur, and OF= 1 by ON. 

CLD and STD 

To make OF = 0, use the CLD Instruction 

CLO ;clear directio flag 

To make OF= 1, use the ~T;:. instruction: 

STD ; set .direct ion flag 

.CLO and sro have no effect on the other flags. 

~uppose we have defined two strings as follows: 
.DATA 
STRINGl OB 
STRING2 OB 

'HELLO' 
5 OUP I?) 

and we would like to move the contents of STRING I (the source string) into 
STRING2 (the destination string). This operation Is neooed for many string 
operations, such a) duplicating a string or concatem1ting strings (attaching 
one string to the. end of another string), 

The MOVSB instruction 

MOVSB ;move string byt~ 

copies the contents of the byte addressed by DS:SI, to the byte addressed by 
ES:OI. The contents of the source byte are unchanged. After the byte has 
been moved, both SI .and DI arc automatically jncrcqienu:d. If OF .. 0., pr 
decremented If OF= I. For example, to move the first two bytes of STRINGl 
to STIUNG2, we exccut('. the following Instructions: · 

.MOV AX,@DATA 
MOV DS,AX 
MOV ES,AX 
LEA SI,STRINGl 
LEA DI,STRING2 
CLO 
MOVSB 
MOVSB 

See Figure 11.1. 

; initialize DS 
; and ES 
1Sl points to source strinq 
;DI points to destination string 
;clear OF 
;move first byte 
; and second byte 
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• Before MOVSB 

SI 

STRING1 t±· 1·e·1·L·1·L·1 ·o· j_ 

Offset 0 2 3 4' 

01 

STRING2 . .; -' I I l I -I .. I 
Offset 56789 

, .. 

After MOVSB 

SI 

STRING1 I 'H' I '~' ., 'L' I 'L' I '0 ' I 
Offset 0 2 3 4 

DI 

STRING2 l'H'I 
I 

I 
Offset 5 6 7 8 9 

·1: 

• l 

AfterMOVSB .-
SI _ 

STRINGt 1·H·1 ·e· 1 {· 1 ·L· j ·o· 1 

Offset 0 2 3 4 

DI· · 

STRING2 • I 'H' i 'E' I I • "' I ' I 
Offset 5 .• 6 7 B 9 

MOVSB Is the first irutructlon ·we have seen that pennits a memory­
memory operation. It is also the first Instruction that Involves the ES register. 

"' The REP Prefix ; . 
!_ • 

MOVSB moves only a single byte from the source string to the des-
tination string. To move the entire string, first initialize CX to the number 
N of bytes ln the source string and execute 

REP MOVSB 
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The REP prefix cawes MOVSB to be executed N times. Aft.er each MOVSB, 
CX Is decremented until it becomes 0. For example, to copy STRING I of the 
preceding section Into STRING2, we execute 

CLD 
LEA SI,STRINGl 
LEA DI,STRING2 
MOV CX,5 ;no. of chars in STRING! 
REP MOVSB 

Example I I. I Write instructions to copy STRING 1 of the preceding section 
Into STRING2 In reverse order. 

... 
SolutJon: The idea is to get SI pointing to the end of STRING 1, DI to' 
the beginning of STRING2, then move characters as SI travels to the left 
across STRING 1. 

MOVE: 

LEA SI,STRING1+4 
LEA DI,STRING2 
STD 
MOV CX,5 

MOVS~ 

ADD DI,2 
LOOP MOVE 

;SI pts to end of STRINGl 
;DI pts to beginning of STRING 
; right to left processing 

;move a byte 

Here it Is necessary to add 2 to DI after each MOVSB. Because we do this 
when OF = l, MOVSB automatically decrements both Sf and DI, and we • 
want to increment 01. 

MOVSW 

There Is a word form of MOVSn. ft is 

MOVSW ; move string word 

MOVSW moves a word from the source string to the d~·stinatlon string. l.ike­
MOVSB, it expects DS:SI to point to a source string word, and ES:DI to point 
to a destination string word. After a string word has lx.>cn moved, boty1 
and DI are increased by 2 if DF = 0, or are decreased by 2 if OF = 1. 

MOVSB and MOVSW have no effect on the flags. 

Example 11.2 For the following array, 

!IRR DW io, 20, 40, ~o. 60,? 

write instructions to Insert 30 between 20 and 40. (Assume DS and ES 
have been Initialized to the data segment.) 

Solution: The idea Is to move 40, 50, and 60 forward one position In 
the array, then insert 30. 
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)'I'D ;right to left pi'ocess1ng 
U'h ! i,AR!HBh ;SI pts to 60 

7,EA O!,ARR+Ah ;DI pts to ? 
fC".' ~>:, 3 ;3 el ts to move 

·U l' :-1\.lVSW ;move 40, 50, 60 
; JV :l(.)RO P'l'R [:HJ• J(, ; insert 30 

l\'t>te: the PTR operator was introduced in section 10.2.3. 

11.3 
Store String The STOSB Instruction 

STOSB ; st on• !:Lrlng byte 

moves· the contents or thl· AI. register to the byte addressed by ES:DI. DI Is 
incremented if OF = 0 or decremented if OF = 1. Similarly, the STOSW 
instruction 

S'l'OSW ; stor1: string word 

moves the contents of AX to the word at address ES:DI and updates DI by 
2, il\:cording lo the dir .. 'Ction flag setting. 
· .. STOSB and STOSW have no effect on the flags. 

· - As an example of STOSB, the following Instructions will store two 
"Ans In STRING l: . 

'10il h".<,@DATA 
10V E.>,~X 

.EA Di,STRlNG! 
<.:;.o 
'i(JV .'.t., 'A' 
:·-;•(;!: 3 

1'0Sl< 

S.·c Fihure 11 .2. 

; initialize ES 
;DI points to STRINGl 
;process to th<! right 
;AL has character to store 
; store an 'A' 
: :;tore a11othur 011P. 

Reading and Storing a Character String 

!Jill" 2111, t-111..:tion 1 r.:-ads a character from the keyboard into AL. By 
1ep<?atcdly t'XL'Cllting t hh hltt:rnipt with STOSB, we can read and store a character 
)'ring. rn addili• 111, ll :c d1:i1al te~ may be processed IJClurc storing them. 

The 1oli'>wi11g pr11ccdure READ_STR reads and s1orcs characters In a 
~·ring, until .1 1 arriag(· n·lurn is typed. The prcx:cd11re is entered with the 
slrinf offset ••du rss ,in DI. 11 1elurns the string offset In DI, and number of 
cliara• 1crs c1.i-.·re<1 i:i ax. If lhe user makes a 1ypi11g mistake and hits the 
b.;cksr.ic·~ kty, tl.c l'rl'Vivu~ d1aractcr is removed rrom the string. 

·1 his pr• •CL-d11rc is similar to DOS ll'll" 21h, function OAh (see exercise 
11.11) 

Algorithm for REAO_STR 

chars_re3d ·,. 0 

read a .:h»r 
WHILE cti.u ; s not a carriage return DO 

IF char is '1 bad . .:pace 
THEN 
chars_read -:··~.::._read - l 
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Figure 11.2 STOSB Before STOSS 

DI 

STRING1 1·~·1 ·e· 1 ·l· 1 ·l· 1 ·0 • I ~ 
Offset 0 2 3 4 Al 

After STOSS 

DI 

STRING1 I 'A' I '~' I 'l' I 'l' 1·o·1 ~ 
Offset 0 2 3 4 Al 

After STOSS 

DI 

STRING I I 'A' I 'A' I 'l" I 'l' 1 ·o·1 ~ 
Offset 0 ·2 3 4 Al 

remove previous char from string 

ELSE 

store char in string 
chars read = chars read + l 

END IF 

read a char 
END_WHIJ,E 

Program Listing PGM11_1.ASM 
l: REAO STR PROC NEAH 

2: ; Reads ar:ct •st.ores a string 
3: inp;_it: DI offset of string 
4: ;output: DI offset of string 
5: ; l3X number' of characters read 
6: 
7: 

8: ; process from left 
9: ;no. cf chars read 
10: ;input ct:ar fun<;:tion 
11: ;read a char into AL 
12: 
13: 

14: 
15: 
16: 
17: 

18: 
19: 
20: 

;CR?, 

;yes, exit 

;backspace? 
;no, store in string 

;yes, move string ptr back 
;decrement char counter 
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Load String 
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21: JMP READ ;and go to read 'another char 

22: ELSEl: 
23: STOSB ;store Chilr in i,tring 

24: !NC . BX ;increment char count 

25: READ: 
26: INT 21H ;read a c::har into AT. 
27: JMP WHILEl ;and continue loop 
28: END WHILEl: -
29: POP DI 
30: POP AX 

31: RET. 
32: READ STR. ENDP 

At line 23, the procedure uses STOSB to 'store input characters in the string. 
STOSB automatically increments DI; at line 24, the character count in BX is 
incremented. 

The procedure takes into account the possibility of typing errors. If 
the user hits the backspace key, then at line 19 the procedure decrements 

·DI and BX. The backspace itself is not stored. When the next legitimate 
character is read, it repl~ces the wrong one in the string. Note: if the last 
characters typed before the carriage return arc backspaces, the wrong char­
acters will remain in the string, but the· count of legitimate characters in liX 
will be correct. 

Wo 11co DJ:' An CTD ln-r c:trinn ;Y'\nnt in tha fn11nUJinn cortinr\c 

The LODSB instruction 

LOO SB ;load s~~ing byte 

moves the byte addressed by DS:SI into AL. SI is then incremented if DF = 
0 or decremented if DF. = 1. The word 'forin Is 

LODSW ;load string word 

it moves the word addressed by DS;Sl into AX; SI is Increased by 2 if DF = 
0 or decreased by 2 if DI= = 1. 

LODSB can be used to examine the characters of a ~tring, as shown 
later. 

LODSB and,LODSW have.no effect on the flags. 
To illustrate LODSB, suppose STRING I is defined as 

STRINGl ·oa 'ABC' 

111e following code successively' loads the first and second bytes of STP.ING I 
into AL 

MOV AX,@DATA 
MOV DS,AX 
LEA SI, STRINGl 
CLO 
LODSB 
LODSB; 

·. See Figure 11.3. 

; initialize DS 
; SI' points to STRING! 
;process left to right 
;load~first byte into AL 
~load~iicond byte into AL 
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Figure 11.3 LODSB 

~ 

Bfof'.lre LODSB 

SI 
STRING1 j·~·j·e·j·c·j 
Off5C?t 0 2 Al 

After LODSB 

STIUNG1 ~ 
Offset 0 2 Al 

After LODSB 

SI 
.STRING1 l'A'l'B'l'~'I ~ 
Offset. 0 2 AL 

Displaying a Character String 

The following procedure DISP _STR dlspl<1ys the string pointed to by 
SI, with the number of characters in BX. It can be used to display all or part 
of a ~lring. 

Algorithm for DISP _STR 

FOR count times DO J * count Q no. of characters to display * 
load a string c,haracter into AL 

move it to DL 
output character 

END_FOR 

Program Listing PGM 11_2.ASM 
;di~plays ~f string 
;input: ::a;= offset of string 

DX m no. of chars. to display 
;output: none 

PUSH AX 

PUSH BX 
PUSH ex 
PUSH DX 
PUSH SI 
HOV CX,BX ;no. of chars 

JCXZ P_EXIT ;exit if none 

cr.o ;process left to right 
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MOV AH,2 ;prepare to print 
TOP: 

LODSB ;char in AL 
MOV DL,AL. ;move ·it to··oL 
INT 21H ;print char 
LOOP TOP ;loop until done 

p EXIT: -
POP SI 
fOP DX 
POP ex 
POP BX 
POP AX 
RET 

DISP STR ENDP: -

To demonstrate READ_STR and DISP ~STR, we'll write a program that 
reads a string (up to 80 characters) and displays the first 10 characters on 
the next line. · 

Program Listing PGM11_3.ASM 
TITLE PGM11_3: TEST READ_STR and PRINT_STR 
._MODEL 
.STACK 
.DAT/\ 
STRING DB 
CRLF DB 
.CODE 

SMALL 

80 DUP (0) 
ODH,OAH,'$' 

MAIN PROC 

MOV AX, @DATA 
MOV DS,AX 
MOV ES,AX 

;read a string 
LEA DI, STRING 
CALL READ _STR . 

;go to a new line 
LEA DX, CRl.F 
MOV AH, 9 
INT 21H 

;print string 

;dos 

MAIN 

LCA SI,STRING 
MOV BX,10 
CALL DISP STR -

exit 
MOV AH,4CH 
INT 21H 
ENDP 

;READ_STR goes here 
;DISP~STR goes here 

END HAIN , 

;DI pts to string 
;BX • no. o! chars read 

;SI pts to string 
;display 10 chars 
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Sample execution: 

C>li'GM11_3 

THIS PROGRAM TESTS 'l'WO PROCEDURES 

THIS PROGR 

11.S 
Scan String The instruction 

Figure 11.4 SCA SB 

SCASB ;scan string byte 

can be used to examine a string for a target byte. The target byte is contained 
in AL. SCASB subtracts the string byte pointed to by ES:DI from the contents 
of AL and uses the result to set the flags. The result is not stored. Afterward, 
DI is incremented if DF = 0 or decremented if DF = 1. 

The word form is 

SCASW ;scan string word 

in this case, the t~rget word is in AX. SCASW subtracts the word addressed 
by E.S:Dl from AX and sets the flags. DI is increased by 2 if DF = 0 or decreased 
by 2 if DF = I. . 

All the status flags are affected ~y SCAS£! and SCASW. 

Before SCASB 

DI 
STRING1 , .~lB' I 'C' I ~ 
Offset 0 2 AL 

After SCASB 

DI 

STRING1 I 'A'! ·e· 1·c1 · ~ ZF = 0 (not found) 

Offset 0 2 AL 

After SCASB 

DI 

STRING I 1·A·1·e· 1·~· 1. ~ ZF "' 1 (found) 

Offset 0 2 AL 
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For example, if the string 

STRINGl DB 'ABC' 

is defined, then these instructions examine the first two bytes of STRING!, 
looking for "B" 

MOV AX,@DATA 

MOV AX,ES 

CLO 

LEA D~, STRINGl 

MOV AL, 'B' 

SCASB 

SCASB 

; initialize ES 

;left to right processing 

;DI pts to STRINGl 

;target character 

:; scan first byte 

;scan second. byte 

See Figure-11.4. Note_ that when-'the iarget"'B" was found, ZF = 1 and because 
· SCASB automatically" increm_ents DI, DI points to the byte after the target, 

not the target itself. · ' 
- In looking for a target byte in a string, the string Is traversed until 

the byte is found or the string ends. If CX is initialized to the number cf 
bytes in the string, 

, 
REPNE_ , SCASB ; repeat SCASB while not equal 

(to target) 

will repeatedly 'su.btract each string byte from AL, update DJ, and decrement 
ex until theri(is a zero re~ult (the target is found) or ex = 0 (the string 
ends). Note: REPNZ (repeat· while ·not zero) generates the same machine 
code as REPNE. . . 

As an example, 
0

let\ write a prni;ram t0 ~uunt thP 11umbE'r "t vowels 
and consonants in a string. 

Algorithm for Counting Vowels and Consonanh 

Initialize V;.)We~_co1~~.t di"' i _r ··.son.:-.t_couri• :.. ..... o,· 
.Read and 

REPEAT 

sti:re C1 e• __ 1-.g 

.. 
i.,oa:J 3 ~t~ ... nr._cr....1.r.~-tP:1 

IF l':.'s a· J"''"l 

THEN 

increment vowel count 

ELSE IF it's a consonant 
THEN increment consdnant_count 

END_IF_ 
UNTI~ end of string_, 
di,;play no. of vowels 
display no. of consonants 

We'll use procedure READ_STR (section 11.3) to read the string. lt 
returns with:DI pointing· to the string and BX containing the number of 
characters read. To display ·the number of vowels and consonants in the 
string. we'll use procedure 'OUTDEC of Chapter 9. It displays the contents 
of AX as a signed decimal integer. For simplicity, we'll suppose the input is in 
upper case. 

Program Listin'g PGM11,..4.A.sM' 
0: TITLE PGM 1~:.. 4: .COUNT VOWELS AND CONSONANTS 

1: .MODEL SMALL 

2: .STACK lOOH 

3: .DATA 
4: STRING DB BO DUP (0) 
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5: 
6: 
7. 

VOWELS 
CONSONANTS 
OUTl 
ou·r2 
VOWELCT OW 
CONS CT ow 
MAIN PROC 

HOV 
HOV 
HOV 
LEA 

DB 'Ar:IOU' 
DB 'BCOFGHJKLMNPQRSTVWXYZ' 
DB OOH,OAH,'vowels • $' 
OB ', consonanLs ... S' 
0 
0 

; initialize OS 
;and ES 
;DI pts to string 

a: 
9: 
10: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 

CALL 
MOV 

AX,@DATA 
OS,AX 
ES,AX 
OI,STRING 
READ_STR 
SI,DI 

;BX ~ no. of chars read 
;SI pts to string 

CLO ;left to right processing 
REPEAT: 
; load a string character 

22: LOOSB ;char in AL 
23: ;if it's a vowel 
24: LEA OI,VOWELS ;DI pts to vowels 
25: MOV CX,5 ;5 vowels 
26: REPNE SCASB ; is char a vowel? 
27: JNE CK_CONST ;no other char 
28: ;then increment vowel count 
29: 
30: 

INC 
JM? 

VOWELCT 
UNTIL 

31: ;else if it's a consonant 
32: CK_CONST: 
33: LEA DI, CONSONANTS ; DI pts to consonants 
34: HOV CX, 21 ;21 consonants 
35: REPNE SCASD ;is chat a consonant? 
36: JNE UNTIL ;no 
37: ;then increment consonant count 
38: INC CONSCT 
39: UNTIL: 

DEC 
Jl<E 

;output no. 
MOV 
LEA 
INT 
MOV 
CALL 

;output no. 
MOV 
LEA 
INT 
MOV 
CALL 

40: 
41: 
42: 
43: 
44: 
45: 
4 6: 
47: 
4 8: 
.; 9: 

50: 
51: 
~2: 
53: 
54: 
55: 
56: 

;dos exit 
HOV 
INT 

57: MAIN . ENDP 

BX 
REPEAT 

of vowels 
AH,9 
DX,OUTl 
21H 
AX,VOWELCT 
OUT DEC 

of consonants 
AH,9 
OX,OUT2 
21H· 
AX,CONSCT 
OUTOEC 

AH, 4CH 
21H 

58: ;REAO_STR goes here 
5 9: ·; OUTOEC 9oes he re 
60: END MAIN 

;BX has no. chars left 
;loop if chars left 

;prepare to print 
;get vowel message 
;print it 
;get vowel count 
;print it 

;prepare to print 
;get consonant message 
;print it 
;get consonant count 
;print it 

in str 



C>PGMll 4 

Chapter 7 7 The String Instructions 217 

Because the program uses both LODSB, which loads the byte in DS:SJ, 
and SCASB, which scans the byte in ES:Dl, both DS and ES must be initialized. 
BX is used as a loop counter and is set to the number of bytes In the string 
CCX is used elsewhere in the program). 

Li11c 22. LODSB puts a string character In AL and advances SI to 
the next one. 

Li11e 26. To sec if the character in AL is a vowel, the program 
, scans the string VOWELS by executing REPNE SCASB. This in­

struction subtracts each byte of VOWELS from AL and sets the 
flags. The instruction returns ZF = 1 if the character is a vowel 
and ZF = O if it isn't. 

Linc 35. If the target was not a vowel, the program scans the string 
CONSONANT~. in exactly the same way it scanned VOWELS. 

S<11~1plc: ,·xc:rntiu11: 

A,E,I,0,U ARE VOWELS. 

-..e; 
1~1.6 

vowel.: = 9, 

Compare String 

consonants 5 

The CMPSB Instruction 

CMPSB ;compare string byte 

subtracts the byte with address ES:DI from the byte with address DS:SI, and 
sets the flags. The result is not stored. Afterward, both SI ;ind DI are incre­
mented if DF = 0, or decremented if DF = 1. 

The word version of CMPSB is 

CMPSW ;compare string word 

It subtracts the word with address ES:DI from the word whose address is DS:SI, 
and sets the fl;igs. If DI'= 0, SI am) DI arc increased l>y 2; if DI'= I, they ;ire 
decreased by 2. CMPSW is useful In comparing word ;irrays of numbers. ·· 

All the status flags arc affected by CMl'SB and CMl'SW. 
For example, suppose 

.DATA 
STRING! DB 
STRillG2 DB 

'ACD' 
'ABC' 

The following i~structions compare t~e first two bytes of the preceding strings: 

MOV r;x, @DATA 
MOV DS,AX 
MOV ES,AX 
CLD 
LEJ\ !;!,STHINGl 

; initialize DS 
; and ES 
;left to r.ight processing 
;!;I µL~ Lu ~TRINGl 
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Figure 11.5 CMPSB Before CMPSB 

SI 

STRING1 1·l·j ·s· 1 ·c I 
Offset 0 2 

DI 

STRING2 1 ·l·j ·c1 ·o·1 
Offset 3 4 5 

After CMPSB 

51 

STRING1 1·A·1·c·j·o·j 
Offset 0 2 

DI 

STRING2 I 'Al~' I 'C' I 
Offset 3 4 5 

After CMPSB 

SI 

STRING1 l'A' I 'C' I '6'1 
Offset 0 2 

DI 
STRING2 rpl!J 
Offset 3 4 s 

LEA Dl,STRING2 
CMPSB 
CMPSB 

Sec Figure 11.5. 

REPE and REPZ 

RESULT= 041h- 041h = 0 (not stored) 
ZF,. 1, SF m 0 

RESULT = 043h - 042h = 1 (not stored) 
ZF "'O. SF= 0 

;DI pts lo STRING2 
;compare first bytes 
;compare second bytes 

String comparison may be done by attaching the prefix REPE {repeat 
while equal) or REPZ (repeat while zero) to CMPSB or CMPSW. CX is ini­
tialized to the number of bytes in the shorter string, then 

REPE Cl".PSB ;compare string bytes while equal 

or 

REPE CMPSW ;compare string words while equal 
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Finding a Substring of 
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. . . 

repeatedly executes CMPSB or CMPSW and decrements CX until {I) then: 
is a mismatch between corresponding string bytes or words, or (2) CX = 0. 
The !lags are set according to the result ot the last ~omparison. 

CMPSB may be used to compare two character strings to see which 
comes first alphabetically, or if they are identical, ur it one string i~ a sub~tring 
of the other (this means that one string is contained within the other a~ a 
sequence of con~ecutivc characters). 

As an example, suppose STRl and STR2 are strings O!· length 10. Thi'. 
following instructions put O in AX If the strings are identical. put I in AX 
if STJU comes first alphabetically, or put 2 in AX if STR2 comes first alpha­
betically (assume OS and ES are initialized). 

M0v cx,10 
LEA SI,STRl 
I.EA DT,STR2 
CLD 

;length 01 St!r:,ys 
;SI points to STRl 
;DI poincs to STk2 
;lert to r1yht ~recessing 

R~PE CMPSB ;compdre strrn~ byte5 
JL 5TR1 FIRST ; STRl precedes ~TR2 

JG STR~ _FIRST ; STH2 precedes ST kl 
;her~ if strings are identical 

MOV AX,O 
JMP EXIT 

;here if STRl !:'recedes 
STRl FlR~T: 

MOV AX,l 
J;~p EXIT 

;h~re if STR2 pceced~s 

STR2 FIRST: 
MOV Jl.X, 2 

EXIT: 

STR2 

STRl 

;put 
; and 

;µut 
;ar.d 

;PUT 

0 in /..X 

PX it 

l in ;,x 
e>:i t. 

2 .in AX 

There arc several ways to determine whethe' one string is a substring 
of another. The following way is probably the simplest. Suppose we declare 

S0Bl • DB 
SUB2 DB 
MAINST DB 

'ABC' 
'CAB' 

'ABABCA' 

and we war:t to see whether SUl31 and SUl32 arc ~ubstrings of MAINST. 
Let's begin with SUlll. We can compare corresponding characters in 

the strings 

SUBl ' 

MA:NST 

A El c 

I I + 
/..B.~BCA 

13ecame'there is.a mismatch at the third comparhon, we backtrack and try 
to match SUBl with the part of MAINST from position MAINST+l on: 

. SL!bl 

MA INST 

A B .... C 

i 
A!JABCA 
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There is a mismatch immediately, so we begin again, and at position 
MAINST+2 

SU Bl A B C 

I I I 
MA INST A B A D C A 

This 'time we are successful; SUBI is a substring of MAINST. 
Now let's try with SUB2. The search proceeds as· before untll we reacn 

C A B 

+ 
l1AINST A B A B C A 

There is a mismatch, and there is no need to proceed further, for if we did 
we would be trying to match the three characters of SUB2 with the two 
remaining characters "CA" of MAINST. Thus SUB2 is not a substring of 
MA INST. 

Actually, we could have predicted the last place to search. It is 

STOP= l\.IAINST + iength of MAINST - length of SUl.12 

= MAINST + 6 - 3 = MAINST + 3 

Herc is an algorithm and a program that searches a main string 
MAINST for a substring SUBST. 

Algorithm for Substring Search 

Prof:lpt user to enter SUB ST 
Re, ad SUBST 

i? rc:npt U3e~ to enter l1AINST 
j(.!,Hi M1\:NST 

IF (length of MAINST is 0) OR (length of SUBST is 0) 
OH (SUBST .!'.; lon')_.r thc.r. MAINST) 

THEN 

SUBST is not a substring of MAINST 
Ei..SE 

.cc:nput e Sj"Oi' 

S'i'ART ~ offset: of t-IA:NST 
HEPEAT 
compare corresponding characters in MAINST 
( f rem START on I and SUBST 
IF all charactet·s match 

THE!J 
SUBST found in MAINST 

I::LSl:: 

START = START + 1 
f.W: !F 

u:n·rL CSUi'.ST found in MAI!JST) 

OP. (START > STOP) 

Dlsp!a1' results 

After r('ading SUBST and MAlNST, and verifying that neither string 
is null ;md SUilST is not longer than MAINST, in lines 44-50 the program 
computes STOP (the pl<ice in MAINST to stop searching), and initializes 
START (the place to start searching) to the beginning of MAINST. 
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. Program Listing PGM11_5.ASM 
l: TITLE PGMll 5: SUBSTRING DEMONSTRATION 
2 : • MODEJ, SMALL 
3: .STACK lOOH 
4: .DATA 
5: MSGl DB 

6: MSG2 DB 
7: MAINST DB 

8: SUBST DB 
9: STbP D'(; 

10: START DI~ 

11 : SUB LEN DW? 

12: YESMSG DB 
13: NOMSG DB 
14: .CODE 
i.5: MAIN 
16: 
17: 

MOV 
MOV 

'ENTER SUBST',ODH,OAH,'S' 

ODH,OAH,'ENTER MAINST',ODH,OAH,'S' 

80 DUP (0) 
80 DUP (0) 

? ; last place to begin search 

? ; place to resi;me search 

;substring length 

ODH, ()AH,' SUBST IS A SUBSTRING OF MAINSTS' 
ODH,OAH,'SUBST IS NOT A SUBSTRING OF MAINS1 

AX,@DATA 

DS,AX 
18: MOV ES,AX 
19: ;prompt for SUBST 

20: MOV AH, 9 
21: LEA 

22: INT 
23: ; read SUBST 

24: LEA 

25: 
26: 
21: ;prompt 
28: 
29: 

CALL 
MOV 
for 
LEA 
INT 

30: ; read MAINST 

DX,MSGl 

2iH 

DI,SUBST 
READ STR -
~UI3 LEN, DX -

MA INST 
DX,MSG2 
21H 

31 :, LEA DI, MA INST 

;print string fen 
;substring prompt 

;prompt for SUBST 

;BX has SUB ST length 
;save in SUB LEN -
;main string prompt 
;prompt for MA INST 

32: CALL READ STR ; BX has MAINST length 

33: ;see if string null or SUB~T longer than MAINST 
34: OR BX,BX ;MAINST null? 

35: JE NO ;yes, SUBST not a substring 

36: CMP SUB_LEN, 0 ;SUBST null? 
NO 

SUB_LEN,BX 
;yes, S.UBST .not a substring 
;substring > main string? 

37: 
38: 
'39: 
'10: 
'11: 
42: 
43: 

'JE 

CMP 
JG 
SUIJST 
LEA 
LEA 
CLD 

NO ; yes, SUB ST nol a substring 
; see i 1 is a sub::;tring o!: MAINS1' 

SI,SUBST 
DI,MAINST 

;SI pts to SUBST 
;DI pts to MAINST 

; left t._? right proce:;sing 
4 4: ; compute STOP 

45: MOV 

~G: 

47: 
48: 
49: 
50: 

ADD 

MOV 

SUB 
; ir.itialize 

MOV 
51: REPEAT: 

STOP,DI 
STOP,BX 

CX,SUB_LEN 
STOP,CX 

start 
START, DI 

52: ;compare characters 
53: MOV CLEN 
54: MOV DI, START 

: '3TO? has MA INST address 
; add MA INST. length 

;subtract SUBST length 

;place to start search 

;length of substring 

: reset DI 
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C>PGMll_S 
ENTER SUBST 
ABC 

El'TER MA!~ST 
XYZABABC 

55: LEA SI,SUBST ;reset SI 
56: REPE CMPSB ;compare characters 
57: JE YES ;SUBST found 
58: ;substri!lg not found yet 
59: lNC START ;update START 
60: ;see if start <= stop 
61 : MOV AX .. START 
62: CMP AX,STCP ;START <= STOP? 
63: JNLE NO ;no, exit 
64: JM? REPEAT ;keep going 
65: ;display results 
66: YES: 
67: LEA DX,YESMSG 
68: JMP DISPLAY 
69: NO: 
70: LEA DX,NOMSG 
'1: DISPLAY: 
72: MOV AH,9 
73: INT 21H ;display results 
74: ;DUS exit 
75: MOV AH,4CH 
76: INT 21H 
77: MAIN ENDP 
78: ;READ ST!l. goes here -
79: END MAIN 

At line 51, the program enters a REPEAT loop where the characters of 
SUllST are compared with the part of MAINST from STAlff on. In lines 53-56, 
CX is set to the length of SUBSl; SI is pointed to SUBS'!: DI is pointed to STAJn; 
and corresponding characters arc compared with REl'E CMl'Sll. If ZF = 1, then 
the match is successful and the program jumps to line 66 where the message 
"SUBST is a substring of MAINST" is displayed. If ZF = 0, there was a mismatch 
between characters and START is incremented at line 59. The search <.:ontinues 
until SUBST matches part of MAINST or START > STOP; in the latter case, the 
message "SUBST is not a substring of MAINST" is displayed. 

Sample executions: 

SUBST IS A SUBSTRING OF MAINST 

C>PGMll 5 
ENTER 9UBST 
ABO 
ENTER MAINST 
ABACAOACD 
suss·r IS NOT A SUBSTRING OF MAINST 
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Let us summarize the byte and word forms of the string instructions: 

Instruction Destination Source Byte form Word form 

Move string ES:OI OS:SI MOVSB MOVSW 

Compare string 
. 

ES:OI OS:SI CMPSB CMPSW 
Store string ES:DI AL or AX STOSB STOSW 
Load'Wing AL or AX OS:SI LOOSB LODSW 
Scan string ES:OI AL or AX SCASB SCA SW 

• Result not stored. , 

The operands of these instructions are implicit; that is, they arc not 
part" of the instructions themselves, However, there arc forms of the string 
instructions in which the operands appear explicitly, They are as follows: 

Instruction Example 

MOVS destinat1on_string, source_string MOVSB 
CMPS destination_string, source_string CMPSB 
STOS d.estiriation_string STOS STRING2 
LOOS sour~~.,.stnng LOOS STRINGl 
SCAS d_estination_string SCAS STRING2 

When the assembler encounters one of these general forms, it checks to see 
if (1) the source string Is in the segment addressed by DS and the df'stination 
string Is In the segment addressed by ES, and (2) in the case of MOVS and 
CMPS, if the strings are of the same type; that is, both byte strings or word 
strings. If so, then the instruction is coded as either a byte form, such as 
MOVSB, or a word form, such as MOVSW, to match the data declaration of 
the string: For example, suppose that DS and ES address the following seg-
ment: ' · 

.DATA 
STRINGl DB 'ABCDE' 
STRING2 DB 'EFGH' 
STRING3' DB ' 'IJKL' 
STRING4 DB 'MNOP' 
STRINGS ow 1,2,3,4,S 
STRING6 OW 7 I 8 I~ 

Then the foilowing pairs ·of instructions are equivall:nt 

MOVS STRING2, STRINGl MOVSB 
MOVS STRING6,STRINGS MOVSW 
LOOS. STRING4 LODS3 
LOOS STRINGS LODSW 
SCAS STRINGl SCA SB 
STOS STRING6 STOSW 

It is·importact to note that if the general forms are used, it is still necessary to 
make DS:SI and ES:DI point to the source and destination st:I:ngs, respectively, 

There are advantages and disadvantages in using the general forms 
of the string instructions. An advantage is that because the operands appear 
as part of the code, program documentation is improved. A disadvantage is 
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that only by checking the data definitions is it possible to tell whether a 
general string instruct_ion is a byte form or a word form. In fact, the operands 
specified in a general string instruction may not be_ the actual operands used 
when the instruction is executed! For example, consltler the following code: 

LEA SI,STRINGl 
LEA DI, STRING2 

MOVS STRING4,STRING3 

; SI PTS TO STRINGl 

; DI PTS TO STRING2 

Even though the specified source and destination operands arc STRING3 and 
STRING4, respectively, when MOVS is executed the first byte of STRING l is 
moved lo the first byte of STRJNG2. This is became the assembler translates 
MOVS STRING4, STRING3 into the machine code for MOVSB, and 51 and 
DI arc pointing to the first bytes of STRING l and STRING2, respectivcry. 

Summary 

• The string instructions are a special group of array-processing in­
structions. 

• The setting of the direction flag (DI:) determines the direction / 
that string operations will proceed. If DF = 0, they proceed left to 
right a!=ross a string; if DF = I, they proceed right to left. eLD 
makes DF = 0 and STD makes it l. 

MOVSB moves the string byte pointed to by DS:SI into the byte 
pointed to by ES:DI, <Kld SI and DI to he updated according to 
DE MOVSW is the wnrd form. These instructions may be used 
with the prefix REI', which <:auses the instruction to be repeated 
ex times. 

• REPE and HF.PNE are conditional prefixes that may be used.with 
.string instructions. REl'E causes the string instruction that follows to. 
be repeated ex limes as long as ZF = l. HEPNE causc.'S the following 
string instruction to he repeated CX times as long as ZF = 0. REPZ 
and REPNZ are alternate names for REl'E and REPNF.,. respectively. 

STOSB mows AL to the byte addressed by ES:DI, and updates DI 
according to DF. STOSW is the word form. STOSB may be used to 
read a character string into an array. 

LODSB moves the byte addressed by DS:Sl into AL, and updates 
SI according to DF. LODSW is the word form. LODSll may be 
used to examine the contents of a character string. 

SCASB subtracts the: byte poinll'd to by ES:Dl from AL and uses 
the: result to set the flags. The result is not stored, and DJ is up­
dated according to DE seASW is the word form; it subtracts the 
word pointed to by ES:DI from AX, sets the flags, and updates DI. 
The result is not stored. These instructions may be u~ed to scan a 
string for a target byte or word in AL or AX. 

• CMl'SB subtracts the byte pointed to by ES:DI from the byte 
pointed to hy l>S:SI, ~ets the flags, and updates both SI and DI ac­
cording to DF. The result is not storcc.J. The word form is CMl'SW . .,.. 
These instructions may be used to compare character strings .;. 
alphabetically, to sec if two strings arc identical, or if one string is 
a substring of another. 
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The string 1nstructions have general forms in which the operands 
are ~icit. The assembler uses the operands only to decide 
whether to code the instructions In byte or word form. 

Glossary 

(memory) string A byte or word array 

·' . 

. New Instructions 

CLD LODSW 
CMPS MOVS 
CMP:3!:1 MOVSB 
CMPSW MOVSW 
LODS SCAS 
LODSB SCASB 

String Instruction Prefixes 

REP REPNE 
RE~NZ RC:Pt; 

Exercises 

1. Suppose 

SI contains 1 OOh 
Di contains 200h 

A>« contains 4142h 

OF= 0 

Byt~ 100h contains. 10h 

Byte 1O1 h contains 1 Sh 
Byte 200h contains ~ 
Byte ~Olh ·contains 25" 

SCASW 
STD 
STOS 
STOSB 
S'PE>SW -

REPZ 

Give .the source, dcstktatlon,' and vOJIU«! moved fot each of the fol­
lowing instructions. Also give the new rontents of SI and DI. 
a. MOVSB 

b. MO"JSW 

c. STOSB 

d. STOSW 

e. LODSB 

f. LO::JSW 

2. · Sup1>0sc lhc following dccl:irations have been made: 

S7RING1 DI3 'FGlllJ' 
STRING2 DB 'ABCOE' 
DB ~ PUP I?) 

Write imtructions to move STRING 1 to the end of STRINGZ, pro­
ducing tht! string "ABCDEFGHIJ". 
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., 3. Write instructions to exchange SIBINGI and STRING2 in exercise 2, 
You may use the five bytes after STRING2 for temporary storage. 

4. An ASCIIZ string is ;i string that ends with a 0 byte; for example, 

STR DB 'THIS IS AN ASCIIZ STRING', G 

Write a procedure LENGTH that receives the address of an ASCllZ 
string in DX, and returns its length in CX. 

5. Use the addressing modes of Chapter 10 IO write instru<:iiom 
equivalent to cadl of the following stnng instructions. Assume 
where necessary that SI already has the offset address of the 
source string, DI h<1s the offset address of the destination string, 
and DF = 0. You may use AL for temporJry storage. For SCASil 
and CMPSB, the flags should reflect the result of the comparbon, 

a. MCJVSB 

b. STCSb 

c LO~~SP.i 

d, SCA SE 

e. CMPSH 

6. Suppose the following string has been declared: 

Write instructinm that will cause each ..... to tJe rq1laced by "E". 

7. Suppose the following string has been declared: 

:.; I S A ':' ;: 

(? j 

Write some cm!<: that will e<1use STHING I to 1>,· cup1 .. d in lo 
ST!il~G2 with liH' hJ.111k chM<Jdcrs remo\Td, 

Programming Exercises 

8. ,\ palimlrumc is a characll'r ~!ring that re;uh lhl' \dllll' for\\·ard or 
backward. In d(·ciding if ;i string b a pali11d1ume, \\e ignore 
b!Jnks, punctuation. <tnl1 letter case. for •%•111pk "\!;1dJill, I'm 
Adam" or "A man, a µJan, a canal, l'anam.1 1" 

Write a program that (a) lets the user input a string, (b) prints it 
forwa1d and !Jackw<ird without pum:tuation .lllu !Jl;inks un succes­
sive lines, and (CJ decides whl'lher it is a pJlindrorrn: anJ prints 
the conclusion, " 

9. In spread~hcel app1;c;1Linn,, it is useful to di,pl.1y 1111111ih:r\ lighl­
ju~tified in fixed fields. For example, thl'\l' m11nbers are right-justi­
fied in a field oi Jo char.icters: 

l 3 ,, :, 

n:,254 s 
S6' 

\\'rite a program· to rc,ad ten nurnbers ,,f up lo 10 digits eJch, and 
display them us above.'· ' 
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10. A character string STRING I precedes another string STIUN(.;2 al­
phabetically it (a) the first .:haracter ol STRING I comes before the 
first character ot STRJNli2 alphabetically, or (bJ the tirst N - I 
1.:haracters of the strings arc identical. but the Nth t·haracter ot 
STRING l precedes th~ Nth d1arath!r ol YI IUNG2, 01 (C) STHl:-it;J 
matches the beginning ol s·11UNt,;2, hut STIUNu2 i) longcr. 

\Vrite a program that lets the user enter two character strinp 011 

separate lines, and deddes which string comes first alphabetic.Illy, 
or if the strings arc identical. 

11. INT 2Ih, function OAh, can be used to rt"ad a character string. 
'The first byte of the array to hold the string (the string butfc·ri 

must be i,nitialized to the maximum number of d1arJL1t·rs cx· 
'pech!d. After l."Xecution of INT 2lh, the second byte (OlltJim th..: 

· actual number of characters read. Input ends with a c.irri.1g.: re·· 
turri, which h sto1ed but not induded in tht: charactn un111t. II 

. the user enters more than the expected number ul d1.11a::1v1~. 1lw 
t·omputer lx·•·p~ .. 

Write.a program that prints a 'T'; reads a character string ol uµ 
tu 20 chara.:kr~ using INT 2lh, fum:tion OAh; .111d pri11h th.: 
string on the next line. Set up the string butter lik ti iis: 

s J'l<l flit.: LABEL oY'l'E 

MAX LJ::N !J~ iU ;1!1rl.X!m~n :".c:. ""..Jt ct1::Jr~ f.:·:pec: .. .!d . 

ACT :.EN C•!< 

CHAR~ DB 
? 

21 DUP 
;actl.i.Jl r.c. vf ::hars r.G,:id 

!?);20 byres tcr zr.rir;g 

.;e>:tru byt,~ i0r carriage 
;return 

12. Write a procedure INSERT that will im<:rt a 'tring STIUNG 1 into a 
string STJUNG2 at a spedficd point. 

Input 

SI offset address of STRING 1 

DI offset address of STRING2 

BX length of STRING 1 

CX length of STRING2 

AX offset address at whJCh to insert STRING 1 

Output 

DI offset address of new string 
BX length of new stnng 

The prucl·<.lur<: ma>· assu11H? that 11C'itlwr \trin~ ha\ O ll·ngth, and. 
that thl' ad<.lrl''' in AX i' within SI HJM;2. 

Writ<: a program that inputs twQ string' STHl '.':G l JnJ STJ\l:"G2, a 
nonnegative decimal intcg<:r !\', 0 <= N <= .JO, im<.:rts SllW-.:C I 
into STl{ING2 at position N bytes after th.c b""ginning u!· 
STRING2, and displays the resulting string. You may assume .th<ll :_· 
N <= length of STRING2 and that the knt;th of ea(h string is!"'' 
than 40. 
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13. Write a proccuure VELETE that will remove N IJyte~ from a ~Iring 
at a specified point and close the gap. 

Input 

DI offset address of string 
BX length of string 
CX number of bytes N to be removed 
SI offset address within string at which to remove bytes 

Output 

DI offset address of new string 
BX length of new string 

The procedure may assume that the string has nonzero length, 
the number of bytes to be removed is not greater than the length 
of the string, and that the address in SI is within the string. 

Wiite a program that reads a string STRING, a decimal integer S 
that represents a position in STRING, a decimal integer N that rep­
resents the number of bytes to be removed (both integers be­
tween- 0 and 80), calls DELETE to remove N bytes at position S, 
and prints the. resulting string. You may assume 0 s N s L - S, 
where L =length of STRING. 



Part Two 

Aciv;;1nced Topics 



Text·· Display as1id 
Keyboard 
Proga·a1nming 

Overview 

12.1 
The Monitor 

One of"the most. inlc:rc\ting and useful applil·atiom of asscmhly la11-
guage is ih co11trolli11g the: JllOllitor display. In this d1;iptl'r, WC progr;1111 'ud1 
operations a~ •Jill> vi Ilg "the: curso"r, scrolllrig window\ Oil Lile Sl·rcen, and dh­
'pJaying'char:icter~ with various attrihutes. We also show how to proi.:ram thl• 
keyboard; so that if the user presses a key, a screen control function is pl·r­
formed; for examp.k. we'll sho\-v how to make the arrow keys opera!(•. 

, Tl.1e .. display on the.screen is determined by data storcu in memory. 
The ch.iptcr bL:gins \\•ith a ·aiscussion of h0:·· the display is generated and 
11'ow it c.in I•~ Lon trolled by altering the display 111e .. 1ory dircctl>" Next, "''"II 
show how 1,, do ~creen operations by usi11g lllOS fum1. 'fl calls. Thew fu11c­
tions car. also he used to detect keys being pressed; as a de11.0mtration, we'll 
write a simple_ ~creen editor.' · ·· · 

,\computer. monitor operate)~" the )~me pri::ciple as a TY set. An 
electron gun is used 'to.sho~t a· stream .of electrom ;11 a pho)phor )Geen. 

· creating a bright spot. Lines are ge'nerated by sweeping the strt!am across the 
screen; dots are created by turning the beam on and off a~ it moves. 

A ra~ter of lines is created by starting the be.:un at the top left corner, 
sweeping it to "the right, then turning if off and rcpo)ilioning IL at the lx.·­
ginning of the next line. This process is repeated until the last line has been 
traced, at which point the beam is repositioned at the top left l·orner ilnd 

_' th_c- pr~css is r~pe;itcd. 

231 
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12.2-< 
Video Adapters and 
Display Modes 

There are two kinds of monitors: monochrome and color. A mono­
chrome monitor uses " single electron beam and the screen shows only one 
color, typically amber or green. By varying the intensity of the electron beam, 
dots of different brightness can be created; this Is called a gray scale. 

· for a color monitor, the screen Is coated with three kinds of phos­
phors capable of displaying the three primary colors of red, green, and blue. 
Three electron beams are used in writing dots on the screen; each one is 
used to display a different color. Varying the intensity of the electron beams 
produces different Intensities of red, green, and blue dots. Because the red, 
green, and blue dots are very close together, the human eye detects a single 
homogeneous color ·spot. This is what makes the monitor show different 
colors. 

Video Adapters 

The display on the monitor is controlled by a circuit in the computer 
ailed a video adaJJtcr. This circuit, which is usually on an add-in card, 
has two basic units: a display memory (also called a video buffer) and 
a video controller. 

The display memory stores the information to be displayed. It can 
be accessed by ~th the CPU and the video controller. The memory address 
starts at segment AOOOh and above, depending on the particular videe 
adapter. 

The video controller reads the display memory and generates appro­
priate video signals for the monitor. For color display, the adapter can either 
generate three separate signals for red, green, and blue, or can generate a 
c~inposite output when the three signals are combined. A composite monitor 
uses the composite output, and an RGB monitor uses the separate signals. 
The composite output containi. a color l>urst signal, and when this ~ignal is 
tumed off, the monitor displays in black and whit!!. 

Display Modes 

We commonly SC<' both text and picture images displayed on the mon-. 
itor. The computer h.u different techniques and memory requirements for dis-· 
playing text and picture graphics. So the adapters h;ivc two display modes: text 
;ind graphics. In text nwdc, the scrl'l!n Is divided into columns and rows, 
typh.:ally 80 <.'1111111111~ uy 2S rows, and a ch;1ra1.:kr is displ;iycd ;it c;id1 sncen 
po~ition. In graphics rnodc, the screen Is ag;iin divided into columns and 

Table 12.1 Video Adapters 

Mnemonic. 

MDA 
CGA 
EGA 
MCGA 
VGA 

Stands For 

Monochrome Display Adapter 
Color Graphics Adapter 
Enhanced Graphics Adapter 
Multi-color Graphics Array 
Video Graphics Array 
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rows, and each screen position is called a pixel. A picture can be displayed 
by specifying the color of each pixel on the screen. In this chapter we con­
centrate on text mode; graphics mode is covered in Chapter 16. 

· Let's take n closer look at character generation in text mode. A char­
acter on the screen is created from a dot array called a character cell. The 
adapter uses a character generator circuit to create the dot patterns. The 
number of dots.in a cell .depends on the resolution of the ildapter, which 
refers to the number of dots it can generate on the screen. The monitor also 
has its own resolution, and it is important that the monitor be compatible 
with 'the video adapter. 

·Kinds of Video Adapters 

Table 12.1 lists the video adapters for the IBM PC. They differ in 
resolution and the number of colors that can be displayed. 

· IIlM introduCl•d two adapters with the original PC, thl· MDA (Mono­
chrome Display Adapter) ;111d CGA (Color Graphics Adapter). The MDA can 
only display text and was intended for business software, such as word pro­
.:essors and spread sheets, which at that time did not use graphics. It has 
good resolution, with each character cell being 9 x 14 dots. The CGA can 
display in color both text and graphics, but it has a lower resolution. In text 
mode, each character cell is only 8 x 8 dots. 

In 1984 IBM introdi1ced the 1'.GA (Enhanced Graphics Adapter), wl1ich 
has 'good resolution and coloq;mphics. The character cell is 8 x 1-1 dots. 

· In 1988 JJ3M introduced the PS/2 models, which arc equip'pcd with 
. the VGA (Video Graphics Array) and MCGA (Multi-color Graphics Array) 
adapters. These adapters have better resolution and can tlisplay more colors 
in graphics mode th;111 EGA. The d1araclcr cell is 8 x 19. 

Mode Numbers 

Depending on the kind of adapter present, a program Glll seh:ct ll'Xt 
or gr;1phlcs modes. Each mode is identified by a mode number; Table 12.2 
lists lhe text modes for the tlilfcrenl kinds of adapters. 

Table'12.2 Video Adapter Text Modes 

Mode Number Description 

O 40 x 2 5 16-color text 
(color burst off) 

2 

40 x 25 16-color text 
80 x 25 16-color text 
(color burst.off) 
80 x 25 16-color text 

Adapters 

CGA.EGA.MCGA,VGA 

CGA,EGA,tv1CGA.VGA 

CGA,EGA,MCGA.VGA 

CGA,EGA,MCGA,VGA 3 

7 80 x 25 monochrome text MDA.EGA,VGA 

Note: For modes O and 2, the color burst signal is turned ott for composite monitors; 
RGB monitors will display 16 colors . . 
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12.3 
Text Mode 
Programming 

As discussed earlier, the screen in text mode is usually divided into 
80 columns by 25 rows. I IOWl'llcr, a 40-column hy 25-row di,pli1)' b ;iho 
possible for the color graphics adapters. 

A position on the screen may be located by giving its (column. row) 
coordinates. The upper IC'ft corner has coordinate (0,0); for a 80 x 25 ai~pl.1y. 
rows are 0-24 and columns are 0-79. Table 12.3 gives the coordinJtc~ of 
some screen posi lions. 

The character displayed at a screen position is specified by the con­
tents of a word in the display memory. The low byte of the word contains 
the character's ASCII code; the high byte contains its attribute, which tells 
how the character will be displayed (its color. whether it is blinking; under­
lined, <ind so on). Actually, all 256 byte rombin;itions IJJ\'C display characters 
(sc>C' Appendix A}. Attributes arc discussed later. 

Display Pages 

for the MDA, the display memory can hold one screcnful of data. 
The graphics adapters, however, can store several screens of text data. This 
is because graphics display requires more memory, so the memory unit in a 
graphics adapter is bigger. To fully use the display memory, a graphics adapter 
divides its <lispl;1y memory into di.~play pages. One page can hold the data 
for one screen. The pages are numbered, starting with O; tile number of pages 
available dcpcnds·on the adapter aml the mode \Ckclt·d. If more than one 
pi!gl' is av;iilabll', tlw program can display onl' p.r;.:e whill' updating <mother 
Ollt'. 

·n.ble 12A \IJOW\ till' number of c.lispl;iy pages for the MDA, CGA, 
HiA, and VGA in tt•xt mode. In the 80 x 25 text mode, each display page 
is 4 KB. The MDA has only one p<igl', pagl' O; it starts <it location BOOO:OOOOh. 
rJ1c CG.'\ has four p;1gl',, starting at ;idc.lrt'\S !IHOO:OOOOh. In text mode, the 
EGA and VGA can emulate either the MDA or CGA. 

Table 12.3 Some 80 x 25 Screen Positions 

Position Decimal Hex 

Column Row Column 

Upper left corner 0 0 0 
•_o· ......... er kJft corner 0 24 0 
Jtipor r1gh! corner 19 0 4F 

owf'r r1')ht corr.er 79 24 4f 

:enter of the screen 39 12 27 

Table 12.4 f.>Jumber of Text Mode Display Pages 

Modes 

0-1 

2-3 
7 

CGA 

8 

NA 

Maximum Number of Pages 

EGA VGA 

8 8 
8 8 
8 8 

Row 

0 

18 

0 

18 

c 
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Figure 12.1 Attribute Byte 
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The Active Display Page 

T'1t• a<.:tivc tli!>play page is the page currently l>eing di~playcd: For 
80 x 25.text mode, the memory requirement is 80 x 25 = 2000 words= 4000 
bytes (thus the display docs not use up all the 4 Kll, or 4096 byte~. in the 
page). The video controller displays the first word in thc active displ.1y pagc 
at.the upper left corner of the screen (column 0, row 0). The next word i~ 
displayed in column 1, row 0. In general, the active display pag<' h cfoplaycd 
on the screen row hy row; tl'iis means that the screen m;iy he con,idt.>rl'd a' 
the image of a two-dimensional array stored in row-major order. 

In a display page, the high byte of the word that ~pl'cifics ;i di\pl;iy 
character is called the attribute b')'tC. It dt·\Crihl'\ lht• color and inll'mily 
of thl' character, lilt:: hackgmund color, and whclhl'I llw cl1aral:tl'J h hi inking 
and/or underlinl'd. 

16-Color Display 

The attribute byte for 16-color text display (modes O-:~) ha' the for­
mat shown in Figure 12.1. A_l in a bit position ~elects an Jltributc •:hilrac­
teristic. Bits ~2 specify the color of the character (lowground color) and bits 
4-6 give the color of the background at the charancr·~ position. For t•xampk•. 
to display a red character on a blue b;.ickground. lht• Jltribull' by!c should 
be 0001 0100 = 14h. 

lly adding red, blue, and green, other colors on bl' created. On the 
additive color wheel (Figure 12.2), a complement color ran he pmdm·ed by 
adding adjacent primary colors;·for example, magenta is the sum of red and 
blue. To display a magenta character on a cyan b<1ckground, the attribute h 
0011 0101.= 35h. 

If th~ i11te11sity bit (bit 3) is 1, the foreground color is lightened. If 
the /J/i11ki11s bit 1bit 7) is 1, the character turns on and off. T;iblc 12.5 sho\\'s 
the possible colors in JC,-color display. All th.:> colors r.in he used for the color 
of the ch.ir;i~·tcr; the hackground can use only lht• basic color~. 

Monochrome Display 

For monochrome display, thl' possible colors arc white and black. 
for white, the RGU bit~ <1rc· all I; for black, they are all 0. Normal video is 
a white character on ;i bl;1ck background; the ;itlril>ule byte i~ 0000 0111 ~ 
7h. Reverse video is a black ch<1racter on a while background, \O the attri­
bute is 0111 0000 = ?Oh. 

Bit 7 6 5 4 3 2 1 0 
BL R G B IN R G B 

<llackground> <foreground> 

BL = blinking IN = intensity 
R = red G "' Qreen B " blue 
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Figure 12.2 Additive Color 
Wheel 

CYAN 

L ____ ____. 

As with color display, the intensity bit can be used to brighten a 
white character and the blinking bit can tum It on and off. For the mono­
chrome adapter only, two attributes give an underlined char<icter. They .'.Ire 
Olh for normal underline and 09h for bright underline. Table 12.6 lists the 
possible monochrome attributes. 

Table 12.5 Sixteen-Color Text Display 

Basic Colors IR GD Color 

0000 black 

0 0 0 1 blue 

0010 green 

0 0 1 1 cyan 

0 1 0 0 red 

0 101 magenta 

0 1 1 0 brown 

0 1 1 1 white 

Bright Colors 0000 black 

1 0 0 0 gray 

1 0 0 1 light biue 

1 0 1 0 light green 

1 0 1 1 light cyan 

1 1 0 0 light red 

1 ·, 0 1 light magenta 

1 1 1 0 yellow. 

1 1 1 1 intense white 

I "' intensity. R a red, G " green, B .; blue. 
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Table.12.6 Monochrome Attributes 

· Attribute; Byte 

Binary Hex Result 

0000 0000 00 black on black 

0000 0111 07 normal (white on black) 

0000 0001 01 normal underline 

0000 1111 OF bright (1nten~e white on black) 

0000 1001 09 bright underline 
011 f 0000 70 reverse video (black on white) 

,1000 01.1.1 80 normal blinking 
1000 1111 BF bright blinking 
1111 1111 FF bright blinking 
1111 0000 FO reverse video blinking 

To display a character with attribute at any screen position, It is only 
necessary to store the character and attribute at the corrcsport'ding word in 
the active display page. The following program fill6 the color screen with 
red "A''s on a blue background. 

Program Listing PGM12_ 1.ASM 
l: TITLE PGM12 l: SCREEN DISPLAY l 
2: . MODEL SMALL 
3: . STACK lO::JH 
4: .CODE 
5: MAIN PROC 
6: ; set DS to active display page 
7: MOV AX, 0B800h ;color active display page 
s: 
9: 
10:. 

11: 
12: 

13: 
14: 
15: 
16: 
l 7: 
18: 
19: 
20: 

; fill 
FILL -

;dos 

MAIN 

MOV 
MOV 
MOV 

active 

BUF: 
MOV 
ADD 
LOOF 

exit 

MOV 
.INT 

ENDP 
END 

DS,AX 
ex, 2000' 

DI,O 
display page 

; . 

;80 x 25 = 2000 words 
; init.lalizc DI 

[DIJ.144lh ;:red A on bl\.le 
DI, 2 ; go to next word 
FILL_BUF ; locp until dor:e 

AH,4CH 
21H 

l'.AIN. 

·, ." To display a red "A" on a blue background at a screen position, the 
corresponding active display page word should contain 14h in the high byte 

• and 4 lh in the low byte. 



23~ 12 3 Text Mode Programming 

12.3.3 

INT 10H 

The progr<im hegim hy i~itiali7.ing DS to the video huffer segment, 
which is BSOOh for a color adapter. Loop counter CX is set to 2000-the 
numhcr of words in the active display page-and DI is initialized to O. At 
line 13, the program enters a loop that moves 144lh-into each word of the 
video buffer. 

After the program is run, the screen positions retain the same attri· 
butes unless another program changes it or the computer is reset. 

EH·n though we can display data by moving thl·m directly into the 
.1tli\'c display page, lhh is a vl·ry ll•Jious way lo conlnJ'I the screen. 

lllSleJd WL" U'(" llJl" nJ()S videu SUCeJl Wlllille whid1 is irJV<Jhl0 d J>y 
the INT lOh imtruction; a video function is selected by putting a function 
number in the AH registt·r. 

In thr following. wt• discuss the most importarll INT !Oh functions 
u~cd in kxt mode and give cx<implcs of their use. The INT IOh functions 
med in graphics mode arc discussed in Ch<ipter 16. Appendix C has a more 
complete list. 

I 
I 
I 
l 

INT 10h, Function 0: 
Select Display Mode 

Input: 

Output: 

AH= 0 
Al. = mode number (sec Table 12.2) 
none 

Example 12.1 Sc:t the l.GA adapter for 80 x 25 color text display. 

Solution: 

·.:".'"JR. AH,;..;: 

:-.iGV ; .. ~., 3 

;c.c>J•"ct display mode !:°:.;C!<::ticn 

;t:,.~>:25 r:olor te:'t r-r.•.:.,d:.:. 

,. sc:lecr_ mode 

when BIOS 'l'I~ thC' dhpl;1y modt'. it also clear\ !ht· \crc·cn. 

INT 10h, Function 1: 
Change Cursor Size 

Input: 

Output: 

AH= I 
CH= starting ~Gill line 
CL = endin;: scJn line 
110rll' 

In tc>:t modi.', the cur~or i~ dbplayed as a small dot arr;iy at a screen position 
(in graphics moJc>, tht•re is no cursor). !'or the MDA and EGA, the dot array 
h;1s 14 rows (0-13) ;ind lor the CGA, there art' 8 rows (0-7). Normally only 
rows 6 ,rnd 7 are lit Jor the CGA cursor, and rows l I and 12 for tile MDA 

, ,and EGA cursor: To change the ciusor size, put the starting and ending num­
bers of the rows to be lit in CJI and CL, respectively. 
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Example 12.2 Make the cursor as· large as possible for the MDA. 

Solution: 

MOV .AH,l 
l'.OV CH, 0 

MOV. CL,13 

INT lOH. 

;cursor size function 
.: starting. row 
;f'nding .row 
;change cursor size 

·un 10h, Function 2: 
Move Cursor 

Input: 

Output: 

Alt= 2 
DH = new c.ursor row (0-24) 
DL = new cursor column. 0-79 for 80 x 25 display, 

· 0-39 for 40 x 25 display 
BH = page number -
none 

'rliis function lets the program move the cursor anywh('re on the screen. The 
page doesn't have to be the one currently being displayed. 

Example 12.3 Move the cursor to the center of the 80 x 25 screen on 
page 0. 

Solution: The center of the 80 x 2.5 screen is column 39 = 27h, row 12 
= OCh. 

MOV .O.H, 2 

XOR PH,BH 

MOV DX, OC?7~, 

!f,TT 1 G H 

INT 10h, Function 3: 

;move cursor fur.ctior. 
; page 0 
;row ~ 12, cc,lumn ~ 39 
;rr.C\.'C c·;r.sor 

Get Cursor Position and Size 

AH= 3 
lHI = pai;c number 

I Output: DH= cursor row 

l 
n1. = l'ltr~l1r t•ulu111n 

. CH = cur,ur 't;uting scan lint• 
_ CL = cimor l'nding scan line 

[___~~~~~~·~~~--~~~~~~~~~~~~~~~~~ 

For some ;ipplications, such·as moving·the cursor up one row, we nee<;! to 
know its current location. 
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Example 12.4 Move the cursor up one row if not at the top of the 
screen on page 0 . 

.. 'itlutioii: 
MOV 

XOR 
IN'!' 
OR 

JZ 
MOV 

DEC 
INT 

EXIT: 

AH,3 
BH,DH 
lOH 
DH,DH 
EXIT 
AH,2 
DH 
lOH 

;read cursor location function 
; page 0 
;OH = row, OL = column 
;cursor at top of screen? 
; yes, exit 
;move .cursor function 
; row • row -
; move cursor 

INT 10h, Function 5: 
Select Active Display Page 

Input: 

Output: 

AH= 5 
AL = active display page 

0-7 for modes 0, l 

none 

0-3 for CGA modes 2, 3 
0-7. for EGA, MCGA, VGA modes 2, 3 
0-7 for EGA, VGA mode 7 

This function selects the page to be displayed. 

Example 12.5 Select page l for the CGA. 

Solution: 

MO'J All, 5 
MOV AL, 1 

INT lOH 

;Bel~ct active di~play page function 
; page 1 
;select page 

INT 10h, Function 6: 
Scroll the Screen or a Window Up 

' Input: AH= 6 

Output: 

AL = number of lines to scroll (AL = 0 means 
scroll the whole screen or window) 

BH = attribute for blank lines 
CH,CI. = row, column for upper left corner of window 
D!-1,DL = row, column for lower right corner of window 
none 

Scrolling the screen up one line means moving each display line up one row, 
and bringing in a blank line at the bottom. The previous top row disappears 
from the screen. · 
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The whole screen, or any rectangular area (window) may be scrolled. 
AL contains the number of lines to be ~crolled. If AL = 0, all the lines are 
scrolled and this provides a war. to clear the screen or a window. CH and CL 
get the row and column· of iii~ ~pi>er l~ft comer of the window, and DH and 
DL get ihe row and column of the lower right comer. BH contains the attri­
bute for the blank lines. 

Examp\e 12.6 Clear the screen to black for the 80 x 25 display. 

Solution: 

MOV 
XOR 
XOR 
MOV 
MOV 
INT 

• 'i, 6 
AL,AL 
ex, ex '' 

; scroll up· function 
;clear whole screen 

DX, 1_84Fh 
;upper left corner is (0,0) 
;lower right corner is (4Fh,1Bh) 
;normal video attribute BH,7 

lOH ; clear screen 

INT 10h, Function 7: 
Scroll the Screen or a Window Down 

Input: AH= 7 
AL == number of lines to scroll (:0 L = 0 means 

scr . _.the wh•Ae screer. or window) 
BH =attribute for.blank lines 
CH.CL = row, column for ·.1pper left corner of window 
DH,DL = row, column for lower right corner of window 

Output: none 

If the screen or window is scrolled down one line, each line moves down 
one row, ~blank line Is brought in at the mp, and the bottom row disappears. 

INT 10h, Function 8; I 
Read Character at the Cursor 

Input: ·AH = ·s j 
BH = page number J 

Output: AH =attribute of c.,aracter 
.· . · AL "' ASCII code of character 

'-----·---

In some applications, we need to know the chari:ctcr at the cursor 
position. BH contains a page num.ber, which doesn't have to be the one 
bdng displayed. After execution, AL contains the ASCII couc of the character. 
and AH contains its attribute. We'll see a:n example that uses this fl.inction 
in a moment. Let's first look at a function that writes a character. 
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INT 10h. Function 9; 
Display Character at the Cursor with Any Attribute 

Input: AH= 9 
BH • page number 
AL "' ASCII~ of character 
ex = number of times to write character 
BL '"' attribute of character 

Output none 

With function 9, the programmer can specify an attribute for the character. 
CX contains the number of times to display the character, starting at the 
cursor position. 

Unlike INT 2lh, function 2, the cursor doesn't advance after the 
character is displayed. Also, if AL contains the ASCII code of a control char­
acter, a control function is not performed; Instead, a display symbol is shown. 

The following example shows how functions 8 and 9 can be wed 
together to change the attribute of a character. 

Example 12.7 Change the attribute of the character under the cursor to 
reverse video for monochrome display. 

Solution: 

HOV AH,8 
XOR BH,BH 
INT l O.H 
MOV AH,9 
MOV CX,l 
MOV BL,70H 
INT lOH 

; read character 

;on page 0 
;character in AL, attribute in AH 
;rtl~play character with attribute 
;display l character 
;reverse video oLLrih•ite 
;display character 

INT 10h, Function Ah: 
Display Character at the Cursor with Current Attribute 

Input: AH c OAh 
BH = page number 
AL = ASCII code of character 
ex = number of times to write character 

Output: none 

This function Is like function 9, except that the attribute byte ls not changed, 
so the character is displayed with the current attribute. 
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4 Comprehensive 
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INT 10h, Function Eh: 
Display Character and Advance Cursor 

Input: AH :s OEh 
AL =_ASCII code of character 
BH = page number 
BL = foreground color (graphics mode only) 

Output: none 

This function displays the character in AL and advances the cursor to the 
next position in the row, or if at the end of a row, It sends it to the l>eginnlng 
of the next row. If the cursor Is In the lower right comer, the screen Is scrolled 
up and the rursor is set to the beginning of the last row. This is thl' mos 
function used by INT 21h, function 2, to display a character. The control 
characters bell (07h), backspace (08h), line feed (0Ah), and carriage return 
(ODh) cause control functions to be performed. 

INT 10h, Function Fh: 
Get Video Mode 

Input: 
Output: 

AH= OFh 
AH = number of screen columns 
AL = display mode (see Table 12.2) 
BH = active display page 

This function can be used with function S to switch between pages being 
displayed. 

Example 12.8 Change the display page from page 0 to page 1, or from 
page 1 to page 0. 

Solution: 

MOV AH,OFH ;get video mode 
INT lOH ;BH = act.ive page 
MOV AL,BH ;move to AL 
XOR AL, l ;complement bit 0 
MOV l\H, 5 ;select active page 
INT lOH ;select new page 

To demonstrate several of the INT I Oh functions, we write a program 
to do the following: 

1. Set the display to mode 3 (80 x 25 16-color text). 
2. Clear a window with upper left comer at column 26, row 8, and 

;'ower right comer at column 52, row 16, lo red. 
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12.4 
The Keyboard 

3:- Move-the cursor to column 39. row 12. 

" Print a blinking, cyan'" A" at the cursor position. 

If you have a color adapter and monitor, you can see the output by running 
the program in program listing PGMI2_2.ASM . 

. • 
Program Listing f>GM12_2.ASM 
TITLE PGM12_2: SCREEN DISPLAY __ 2 

; red scrE:en with blinking cyan 'A' in middle of screen 
.MODEL SMALL 
-STACK lOOH 
-CODE 
MAIN PROC 
; set video mode 

MOV A~,0 

MOV AL, 3 
INT lOH 

;clear window to red 
MOV AH,6 
MOV ex. 081Ah 
MOV 
MOV 
MOV 
INT 

; move cursor 

DX,1034h 
·BH, 43H 
AL,O 

,lOH 

;select mode function 
;80x25 color text 
; select mode 

; scroll up function 
; upper left corner ( lAh, 08h) 
; lower right corner (34h, l0h) 
;cy~n chars on red background 
;scroll all lines 
; clear window 

MOV AH, 2 ;move cursor function 
MOV DX,OC27h ;center of ~creen 
XOR BH, BH ; page 0 
INT l OH ; move cursor 

;display character with attribute 
MOV AH,09 ;display character function 
MOV BH, 0 ;page 0 
MOV 

MOV 
MOV 
INT 

;dos exit 

BL,OC3H 

CX,1 
AL, 'A' 

lOH 

MOV AH, 4CH 
INT 21H 

t-1.AI?i ENDP 
E1'0 MAIN 

;blinkiRg cyan char, red back 

;display one character 
;character is 'A' 
;display character 

There are several keyboards in use for the IBM PC. The original key-_ 
board has 83 keys. Now, more computers use the enhanced keyboard with 
101 keys. In general, we can group the keys into three categories: 

I. ASCII keys; that Is, keys that correspond to ASCII display and con-­
trol characters. These include letters, digits, punctuation, arithme­
tic anc:i other special symbols; and the control keys Esc (escape), 
Enter (carriage return), Backspace, and Tab_ 
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2. Shift' key;: left a'nd right shifts", Caps Lock~ Ctrl, Alt, Num Lock, 
and Scroll Lock. These keys are-usually used in combination with 
other keys. 

3. Fun::tion keys: Fl-FlO (Fl-F12 for the enhanced keyboard), the ar­
row keys, Home, PgUp, PgDn, End, Ins, and Del. We call them 
function keys because they are used in programs to perform 
special functions. 

Scan Codes 
. . . 

l!.ach key on the keyboard Is assigned a unique number called a scan 
code; when a key is pressed, the. keyboard circuit sends the corresponding 
scan cooe"to the comRut~r. Scan code values start with 1; Table 12.7. shows 
the scan codes of shift and function keys. A complete list of scan codes for 
the 101-key keyboard may lie found in.Appendix H. 

You 'may wonC!er how the computer detects a combination of keys, 
such as the Ctrl-Alt-Del combination 'that· resets the computer. There must 
be a way for the computer to know that a key has been pressed, but not yet 
released. 

To indicate a key's release, the keyboard circuit sends another code 
called a break code; derived from the key's scan code by changing the msb 

. to 1 (the scan code itself is also known as a make code). For example, the 
make code for the Esc key is 01 h a!1d its break code is 81 h. 

The computer does not store information on every key that is pressed 
and not yet released; it only does so for the fupct;on key Ins, and the shift 
keys. This information ls saved as individual bits called keyboard fla~s stored 

- t - • • ' 

Table 12.7 Scan Codes fo~ Shift and Function Keys 

Hex Decimal Cey 

10 '29 :trl 

2A 42 .eft Shift 

38 56 ~It 

3A .5s_ 1 :aps Lo(k 

3B'-44 . 5_9-<>8 1-F10 
45 ,69 ~um Lock 

46 70 .croll Lock 

47 71 iome 

48 7i Jp arrow 

49 73 'gUp 

;46 !75 eft arrow 

4C 76 :eypad 5 
40 77 1ght arrow 

4F 79 nd 

50 80 lown arrow 

51 ,_81 gOn 
52· .82. 15 

53 '83. 1el 

·: 
(-
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in the byte at 0040:0017. A program can call. a BIOS routine to investigate~ 
the«> flags. 

The Keyboard Buffer 

To prevent the user from typing ahead of a program, the computer 
uses a IS-word block of memory called the keyboard buffer to store keys 
that have been typed but not yet read by the program. Each keystroke is 
stored as a word, with the high byte containing the key's scan code, and the 
low byte containing its ASC:ll code if it's an ASCII key, or 0 if it's a function 
key. A shift key is not stored in the buffer. When a left or right shift, Ctrl, 
or Alt key is down, some keys will cause a combination key scan code to be 
placed In the keyboard buffer (see Appendix H). 

The contents of the buffer are released when a program requests key! 
inputs. The key values are passed onto the program in the same order that · 
they come lri; that ls, the keyboard buffer is a queue. If a key Input is re· 
quested and the buffer is empty, the system waits until a key is pressed. If 
the buffer is full and the user presses a key, the computer sounds a tone. 

Keyboard Operation 

To summarize the preceding discussion, let's see what happens when 
you press a key that is read by the current executing program: 

1. The· keyboard sends a request (interrupt 9) to the computer. 

2. The interrupt 9 service routine obtains the scan code from the 
keyboard 1/0 port and stores it in a word In the keyboard buffer 
(high byte = scan code, low byte = ASCII code for an ASCII key, O 
for a function key). 

3. The current program may use INT 21h, function 1, to read the 
ASC:ll codl'. This also ca11sps the ASCII code to he displayed 
(echoed) to the screen. 

In the next section, we'll show how a program can process keyboard 
inputs using INT 16h. To get both the scan code and ASCII code, a program 
may access the keyboard buffer directly or use the BIOS routine INT 16h. 

INT 16H 

BIOS INT 16h provides keyboard services. As with INT lOh, a pro­
gram can request a service by placing the function number in AH before 
calling INT 16h. In what follows, we use only function 0. 

INT 16h, Function 0: 
Read Keystroke 

Input; 
Output: 

AH= 0 
AI. = ASCII code If an ASCII key is pressed 

.. O for function keys 
AH =scan code of key 

This function transfers the first available key value in the keyboard buffer 
into AX. If the buffer Is empty, the computer waits for the user to press 
key. ASCil keys are not echoed to th~ screen. 
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The function provides a way for the program fo decide If a function 
key Is pressed. If AL '"' 0, this must be the case, and the program can check . 
the scan code In AH to see which key It is. 

' ' 

· Example 12.9 Move the cursdr to the upper left comer If the Fl key ls 
pressed, to the lower right comer If any other function key is pressed. If a 
character )tey Is pressed, do nothing. 

' Solution: 

MOV AH,O ;read keystroke function 
INT 16H ;AL ~ ASCII code or o. 

;AH K scan code 
OR AL,AL ;AL - 0 (function key) ? 
JNE EXIT ;no, char.act er key 
CMP AH,3BH ;scan code for Fl ? 
JE Fl ;yes, go to move cursor 

;other function key 
MOV OX,184FH ;lower right corner 
JMP EXECUTE ;go to move curs6r 

Fl: 

XOR ox.ox ;upper left corner 
EXECUTE: 

MOV AH,2 ;move cursor function 
XOR BH,BH ;page 0 
INT lOH ;move cursor 

EXIT: 

To show how the function keys may be programmed, here is a pro- , 
gram that does some of the things that a basic word processor does. It. first 
clears the screen and puts the cursor in the upper left comer, then lets the 
user type text on the screen, operate some of the function keys. and finally 
exits when the Esc _key is pressed. 

Screen Editor Algorithm 

Clear the screen 
Hove the cursor ._o the upper left corner 
Get a keystroke 
WHILE key is not the Esc key DO 

IF function key 
·THEN 

perform function 
ELSE /* key must be a character key •I 
·display character 

END IF 
Get a keystroke 

ENO_WHILE 

.The Esc key dm be detected by checking for an ASCII code of 1 Bh. To demonstr­
ate how the function keys can be programmed, a procedure DO_FUNCTION Is 
written to program the arrow ~eys. They operate as follows: 
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Up a"ow. Causes the cursor to move up one row unless it's 
at the top of the screen. If so, the screen scrolls down one line. 
Down n"ow. Causes the cursor to move down one row unless it's 
at the bottom of the screen. If so, the screen scrolls up one line. 
Right a"ow. Causes the cursor to move right one column, unless 
it's at the right margin. If so, it moves to the beginning of the 
next row. But if it's In the lower right comer, the screen scrolls 
up one line. 
Left arrow. Causes the cursor to move left one column, unless it's at · 
the left margin. If so, It moves to the end of the previous row. But if 
it's in the upper right corner, the screen scrolls down one line. 

OO_FUNCTION Algorithm 

Get ~ursor position; 
Examine scan code of last key pressed; 
CASE scan code OF 

up arrow: 
IF cursor is at the top of the screen /* row 0 •/ 

THEN 
scroll screen down 

ELSE 
move cursor up one row 

END. IF 
down arro'w: 

IF cursor is at the bottom of the screen /• row 24 */ 

THEN 
scroll screen up 

ELSE 
move cur::>or down 

END IF 
left arrow: 

IF cursor is not at beginning of a row /* column 0 •/ 
THEN 

move cursor to the left 
ELSE /• cursor is at beginning of a row •/ 
r~· cursor is in row 0 /* position (0, 0) *I 

THEN 
scroll screen down 

ELSE 
move cursor to the end of previous row 

ENO IF 
END IF 

right arrow: 
IF cursor it not at end of a row 

THEN 
mov~ cursor to the right 

ELSE /* cursor is at end of a row •/ 
IF cursor is in last row /* row 24 •/ 

THEN 
scroll screen up 

ELSE 
move cursor to the beginning of next row 

- END_:IF • - ~· '·~ ·· -- --- . -· ---· .... 

END_JF 
END_CASE 



Chapter 12 Text Display and Keyboard Programming 249 

Here Is the program: 

. Program Listing PGM12_3.ASM 
O: TITLE PGM12_3: SCREEN EDITOR 

. l: 

' ·2: 
.MODEL 

·.STACK 

.CODE 

MAIN 

SMALL 

lOOH 

PROC 

'3: 
4; 

5: 
6: • 
7: 
8: 

.9: 
10; 

l l: 
12: 

13: 

; set video mode and clear screen 

MOV AH, 0 ; set mode function 

MOV AL, 3 ; 80 x 25 color text 

INT l OH ; set mode 

;move cursor to upper left corner 
MOV AH, 2 ;move cursor funct.ior. 

XOR 
MOV 

INT 

ox.ox 
BH,O 

lOH 

i4: ;get keystroke 

15: MOV AH, 0 

16: INT l6H 

17: WHILE : 

18; CMP AL,lBH 

19: JE END WHILE -
20: ;if funct i '.)n key 

21: CMP AL,0 

JNE ELSE -

;position (0, Ol 

;page 0 
;move cursor 

;keyboard input fur.ct.ion 

;AH=scan code,AL~ASCI~ code 

;i:;sc (exit character)~ 

;yes, exit 

;AL = 0? 
; no, character key 22: 

23:-;then 
24: CALL OO_FUNCTION ;execute function 
25: 

26: ELSE_: 

27: 

28: 

29_: 

JMl' 

MOV 

MOV 

INT 
30: NEXT KEY: 

31: 

32: 

33: 

MOV 

INT 
JMP 

34: END_WHlLE: 
35: ;dos 
36: 
37: 

• 38:. MAIN 
39: 

exit 
MOV 
INT 
ENOP 

40: DO_FUNCTION 

NEXT_KEY 

~ 

AH,2 

'DL,AL 

21H 

AH,O 
l6H 

WHILE_ 

AH,4CH 

21~ 

PRO't: 

;get nexl kcfsLroke 
;display character 

;display cha~acter func 

; get character 

;display character 

;get keystroke function 

;A.H=scan code,AL~ASCII code 

41: operates the arrow keys 

42: input: AH = scan code 

4 3: output: none 

44: PUSH 
0

BX 

45: 
. 46: 
• 47: 

48: 

4 9: 
50: 

.51: 

PUSH ex· 
·PUSH ox: 

PUSH AX 

; locate cursor 

MOV AH, 3 ...• ' 

'MOV BH, 0 

.INT lOH 

; save scan code 

. : :;get cursor position 

: r;on page 0 

;OH ~ row, OL ·" col 
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POP AX ;retrieve scan code 
;case scan code of 

52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61: 
62: 

CMP AH, 72 ;up arrow? 
JE CURSOR_UP ;yes, execute 
CMP AH,75 ;left arrow? 
JE CURSOR LEFT ;yes, execute 
CMP AH, 77 ;right arrow? 
JE CURSOR_RIGHT ; yes, execute 
CMP AH, 80 ;down arrow? 
JE CURSOR_ DOWN ; yes, execute 
JMP 

63: CURSOR_UP: 
64: CMP 
65: 

·66: 

JE 
DEC 

67: JMP 
68: CURSOR_DOWN: 
69: 
70: 
71: 
72: 

CMP 
JE 
INC 
JMP 

73: CURSOR_LEFT: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 

CMP 

JNE 

CMP 

JE 
DEC 
MOV 
JMP 

81: CURSOR_RIGHT: 
82: CMP 

83: 
84: 
85: 
86: 
87: 
88: 
89: GO_LEFT: 

JNE 
CMP 
JE 
INC 
MOV 
JMP 

90: DEC 
91: JMP 
92: GO_RIGHT: 
93: INC 
94: JMP 

95: SCROLL_DOWN: 
96: MOV 
97: 
98: 
99: 
100: 

XOR 
MOV 
MOV 
MOV 

101: MOV 
102: INT 
103: JMP 
104:SCROLL_UP: 
105: MOV 
106: XOR 

EXIT 

DH,O 
SCROLL DOWN 
DH 
EXECUTE 

DH,24 
SCROLL UP 
DH 
EXECUTE 

DL,0 
GO LEFT 
DH,0 
SCROLL_DOWN 
DH 
DL,79 
EXECUTE 

DL,79 
GO_R°IGHT 
DH,24 
SCROLL UP 
DH 
DL,O 
EXECUTE 

DL 
EXECUTE 

DL 
EXECUTE 

AL,l 
ex.ex 
DH,24 
DL,79 
BH,07 
AH,7 
lOH 
EXIT 

AL,l 
cx,cx 

;other !unction key 

;row 0? 
;yes, scroll down 
:no, row • row - 1 
; go to execute 

; last row? 
;yes, scroll up 
;no, row -= row + l 
;go to execute 

;column 0? 
;no, move to left 
;row 0? 
;yes, scroll down 
;row • row - l 
; last column 
; go to execute 

; last column? 
;no, move to right 
; last row? 
;yes, scroll up 
; row • row + 1 
; col - 0 . 
;qo to execute 

; co.l • col - 1 
; qo to execute 

;col - col + l 
; go to execute 

; scroll l line 
; upper left corner ~ ( 0, ~ 
; last row 
; last column 
;normal video attribute 
;scroll down function 
;scroll down 1 line 
;exit procedure 

;scroll up 1 line 
;upper left corner • (0,0) 



Chdµter 12 Text Display and Keyboard Programming 251 

10"/: MOV OX,184FH ;lower rt corner (4fh, 18hl 

108: MOV BH,07 ;nor:nal video attribute 
109: "MOV AH,6 ;scroll up tunction 
!lu: INT lOH ;scroll up 
111: JMP 1':XIT ;exic procedure 
112: EXECUTE: 
liJ: MUV AH,L i Ct:t SOI mOV\.· !\11.(.;r. i uri 

114: INT 10H ;move cursor 
l J,5: EXIT: 
116: POP ux 
117: POP ex 
118: POP BX 
119: RET 
120:00 FUNCTION ENDP 
1,~ l: END MAIN 

The program begins by setting the video mode to 80 x 25 color text {mode 
3). This also clears the screen. After moving the cursor to the upper ll'ft 
corner, the program accepts the first keystroke and enters a WHILE loop at 
line 17. AH has the scan code of the key, Al. the ASCII code for a character 
key, and O for a fu11ction key. H the key is the fal· kl!y {Al.= 1 BI-I), th~ program 
terminates. If not, the program checks for a function key {AL = 0). If so, the 
procedure DO_FUNCflON is called. If not, the key must have been a char­
ackr key, and the character is displayed with INT 21 h, fu111.:tion 2. Thi) 
function automatically advances the cuoor after displaying the chara~:cer. At 
the bottom of the WHILE loop {line 30), another keystroke is accepted. 

Procedure DO_FUNCTION is entered with the scan code of the last 
keystroke in AH. This is S<Jved on the stack {line 47), while the procedure 
determines the cursor position {lines 49-51). Alter restoring the )lilll code 
to AH {line 52), the procedure checks to see if it is the scan code of one of. 
the arrow keys (lines 54-61). If not, the procedure t1mnl11atcs. 

If AH contains the scan cude of an arrow key, the prol·t:dure jump) 
to a block of code where the appropriate cur)or move b executed. DH and 
DI. contain the row and column of the cursor location, respectively. 

If the cursor is not at the edgP of the sl·reen {row 0 or 24, column 
0 or 79), UH and UL arc updated. "lb move up, the row number In DH is 
decremented; to move down, it .is Incremented. To move left, the c.:ulumn 
number in DL is decremented; to move right, it Is incremented. After updat­
ing DH and DL, the procedure jumps to line 112, where INT lOh, function 
2, does the actual cursor move. 

For the up arrow key, if the cursor is in row 0 the procedure at line 
64 jumps to code block SCROLL_DOWN, which scrolls the screen down one 
line. Similarly, for the down arrow klj', If the n1r)01 h in row 24 the proc:edure 
at line 72 jumps to code block SCROl.L_UP where the screen is scrolled up 
one line. 

Fo1 the left arrow key, if the cursor b in the upper left wrner !0,0) 
the procedure julllp) tu ~CROLL_DOWN (line 77). If it's i.lt the left margin 
and not row 0, we want to move to the end of the previous row. To do this, 
the row number in UH is decremented, DL gch 79, and tht: prucedurt: jumps 
to line l IZ to do the cursor move. 

Similarly for the right arrow key, if the cursor is in the lower right 
comer the procedure jumps to SCROLL __ UP {line 85). If it's at the right ma1gin 
and not row 24, we want to move, to the beginning of the next row. To do 
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this, the row number i11_ DH is incremented, DL gets 0, and the procedure 
jumps to Jin(: 112 to do the cursor move. 

The program can be run by assembling and linking file 
PGM12_3.ASM. As you piay with it, its shortcomings become apparent. For 
example, text scrolled off the screen is lost. It is possible to type over text, 
but not to insert or delete text. 

Summary 

A video adapter contains memory and a video controller, which 
translates dara into :.n image on the screen. The adapters are the 
MDA, CGA, F.GA, MCGA, and VGA. They differ in resolution and 
the number of colors they can display. 

There are two kinds of display modes: text mode and graphics 
mode. In text mode, a character is displayed at each screen posi­
tion; in graphics mode, a pixel is displayed. 

In text mode, a screen position is specified by its (column, row) 
coordinates. A character and its attribu:e can be displayed at each 
position. 

In 80 x 25 text mode, the memory on the video adapter is di­
vided into 4-Kll blocks called display pases. The number of pages 
available depends on the kind of adapter. The screen can display 
one page at a time; the page being displayPd is called the active 
di5play page. 

The display at each screen position is specified by a word in the 
active display page. The low byte of the word gives the ASCII 
code of the character and the high byte its attribute. 

• The attribute byte specifies the foreground (color of the character) 
and background at each screen position. Other attributes are 
blinking and underline (MDA only). 

For monochrome display, the foreground and background colors 
are white (RGB bits all l's) or black (RGB bits all O's). Normal 
video attribute is 07h; reverse video is 70h. 

BIOS Interrupt INT !Oh routine performs screen processing. A 
number placed in AH identifies the screen function. 

ll'<T 1611 function 0, i~ a BIOS function for reading keystrokes. 
AH gets the scan co..1c, .1nd AL the ASCII code for a character key. 

·for a function key, AH gets the scan code and AL= 0. 

• A program CJn use INT 16h and INT !Oh to program the func­
tion keys for controlling the screen display. 
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Glossary 

active display page 

·attribute 

attribute byte 
' 

,•: 

break code 

CGA 

character cell 

" 

.. 

display memory 

display page 

EGA 

function keys 

graphics mode 

gray scale 

keyboard buffer 

make code 

MCGA 

MDA 

mode number 

normal video 

resolution 

reverse video· 

scan codes 

text mode 

VGA 

video adapter 

video buffer 

video controller 

The display page currently being shown 
on the screen 

A number that specifies how a character 
will be displayed 

·The high byte of the word that specifies a 
display character; it contains the 
character's attribute 

Number used to indicate when a key is re­
lcased-<Jbtained by putting I in thl' msh 
of a key's scan code 

Color Graphics Adapter 

Dot array· used to form a character on the 
screen 

Memory uni\ of a video adapter 

The portion of display memory that . 
holds one screenful of data 

Enhanct!d Graphics Adapter 

Keys that don't correspond to ASCH charac­
ters or shifts 

Display mode that can show pictures 

Different levels of brightness in mono­
chrome display 

A IS-word block of memory used to hold 
keystrokes 

Same as scan code 

Multi-color Graphics Array 

Monochrome Display Adapter 

A number used to select a text or graph­
ics display mode 

White character on a black background 

The number of dots a video adapter can 
display 

Black character on a white background 

Numbers used to identify a key 

Display mode in which only characters 
are shown 

Video Graphics Array 

Circuit that controls monitor display 

The memory that stores data to be dis­
played on the monitor; same as display 
memory 

Control unit of a video adapter 
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Exercises 

J. To demonstrate the video bufter, enter DEBUG and do the following: 
a. If your machine has a monochrome adapter, -use the R com­

mand to put ROOOh in l>S; if it has a color adapter, put 6800h 
in DS. 

b. We can now enter data dlll!l.."tly into the video buffer, and see 
the results on the scr~n. To do so, USt! the E command to en­
ter data, starting at offset 0. For example, to di~play a blink­
ing reverse video A in the upper left corner of the screen, put 
41h in byte O and l'Oh in byte 1. Now enter different charac­
ter:attribute values in words 2, 4, and so on, and watch the 
changes on the top row of the screen. 

2. Write some code to do the following (assume 80 x 25 mono­
chrome display, page 0). Each part of this exercise is independent. 
a. Move the cursor to the lower right comer of the )Creen. 

b. Locate the cursor and move it to the end of the current row. 

c. Locate the cursor and move it to the top of the screen In the 
current column. 

d. Move the cursor to the left one position if not at the begin­
ning of a row. 

e. Clear the row the cursor is in to white. 

f. Scroll the column the cursor Is in down one line (normal 
video). 

g. Display five blinking reverse video "A "s, starting in the upper 
left comer of the screen. 

3. Assuming 80 x 25 color display, write some code to turn the color 
of each capital letter character in row 0 to red and the local back­
ground to t>rown. Other charactt'rs should rl't<1in thl'ir previous 
foreground and background colors. Assume page 0. 

Programming Exercises 

4. Write a program to 

a. Clear the screen, make the cursor as large as possible, and 
move it to the up~r ldt comer. 

b. Program the following function keys: 

Home key: Curso_r moves to the upper left corner. 

End key: Cursor moves to the lower left corner. 
PgUp key: Cursor moves to the upper right corner. 

PgDn key: Cursor moves to the lower right comer. 

Esc key: Progr<1111 terminates. 

Any other key: Nothing happens. 

5. Write a program to 

a. Clear the screen to black, move the cursor to the upper left 
corner. 

b. U..•t the U)t'r type his or her name. 
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c. Clear the input line, and display the name vertically in col­
umn 40, starting at the top of the screen. Use 80 >< ZS display. 
For MDA, display the name in reverse video . .For color dis· 
play, display it in green letters on a magenta background. 

6. Write a program that does the following: 
a. Clear the screen, move the cursor to row 12, column 0. 

b. If the user types a character, the character is displayed at the 
cursor position. Cursor does not advance. 

c. Program the following function keys: 
• 

Rigl1t Arrow: The program moves cursor and character to the 
right one position, unless it is at the right margin. A blank ap­
pears at the cursor's previous position. 
Left Arrow: The program moves cursor and character lo the lefl 
one position, unless It Is at the left margin. A blank appears at 
the CUlSOr's previous position. · 
Escape: The program terminates. 
Other (unction keys: Nothing happens. 

7. Write a one-line screen editor that does the following: 
a. Clear screen, and position cursor at the beginning of row 12. 

b. Let the user type text. Cursor advances after each character is 
displayed unless cursor Is at the right margin. 

c. Left arrow moves cursor left except at left margin; right arrow 
moves cursor right except at right margin. Other arrow keys 
do not operate. 

d. Ins li:ey makes the cursor and each character to the right of 
the cursor (in the cursor's row) move right one position. A 
blank appears at the cursor's previous position. The last char· 
acter in the cursor's row is pushed off the screen. 

e. Del key causes each character to the right of the cursor (in 
the cursor's row) to move left one position, and a blank is 
brought in at the right. 

f. E.sc key terminates the program. 
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Macros 

Overview 

13.1 
Macro Definition 
and Invocation 

In previous chapters we have shown how programming may be sim­
plified by using procedures. In this chapter. we discuss a program structure 
called-a n111Cro, which Is similar to a procedur..:. 

·As ~Ith procedures, a macro name represents a group of instructions. 
Whenever the .instructions are needed In the program, the name Is used. 
However, the way procedures and macros operate Is different. A procedure 

. is· called at execution time; control transfers to the procedure and returns 
after. ·e.xecutlng Its statements. A macro Is invoked at assembly time. The 
assembler copies the macro's statements into the program at the position of 
the invocation. When the program executes, there is no transfer of control. 
· ·: ' Macros a·re csp'edally useful for carryini; out tasks that occur fre­
quently. for example, we can write macros to initialize the OS and ES regis­
ters, print a character string, terminate a program, and so on. We can also 
write macros to eliminate restrictions in existing instructions; for example, 
the operand of MUL can't be a constant, but we can write a multiplication 
macro that doesn't have this restriction. 

A macro Is a block of text that has bcCn given a name. When MASM 
encounters the name during assembly, it inserts the block Into the pr<)gram. 
The text may consist of Instructions, pseudo-ops, comments, or references 
to other macros. • ' 

The syntax of mac·ro definition is 

macro_name MACRO dl,d2,: . .'dn 
.stat~ment~ 

ENDM 
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Here macro_name is the user-supplied name for the macro. The 
pseudo-ops MACRO and ENDM indicate the beginning and "nd of the macro 
definition; dl, d2, ... dn is an optional list of dummy arguments used by 
the macro. 

One use of macros is to create new instructions. For example, we 
know that the operands of MOV can't both be word variables, but we can 
get around this restriction by defining a macro to move a wonHn~<> a.~ord. 

Exam11lc 13.1 Define a macro to move a word into a word. 

Solution: 

MOVW MACRO WORDl, WORD2 
PUSH WORD2 
POP WORDl 
ENDM 

I !ere the name of the macro is MOVW. WORD I and WORD2 are the <lummy 
arguments. 

To use a nwcro in a program, .we invoke it. The syntax is 

macro name al, a2, ... an 

where al, a2, ... an is a list of actual arguments. When MASM encounters 
the macro name, it expands the macro; that is, It copies the macro state­
ments into the program at the position of the invocation, just as if the user 
had typed them in. As it copies the statements, MASM replaces each dummy 
argument di by the corresponding actual argument ai and creates the ma-
chine code for any instructions. ' 

A macro definition must come before its invocation in a program 
listing. To ensure this sequence, macro definitions are usually placed at the 
beginning of a program. It is also possible to create a library of macros to be 
used by any program, and we do this later in the chapter. 

Example 13.2 Invoke the macro MOVW to move B to A, where A and 
B are word variables. 

Solution: MOVW A, B 

To expand this macro, MASM would copy the macro statements Into' 
the program at the position of the call, replacing each pccurren~ 9f,WORJ;>l 
by A, and WORD2 by B. 'Ille tesult is · 

PUSH B 
POP A 

•"l ''. 
In expanding a macro, the assembler simply substitute.s the character 

strings 'defining the actual arguments for the corresponding dummy ones. 
F~r example, the following calls to the MOVW macro ·' 

MOVW A,DX and MOVW A+2,B 

cause the assembler to insert this code into the program: . 

PUSH DX 

POP A 
and PUSH B 

POP A+2 
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Illegal Macro Invocations 

There are often restrictions on the arguments for a macro. For ex­
ample, the arguments In the MOVW macro must be m<.>mory words or 16-bit 
registers. Thl' mauo invocation 

MOVW AX, lABCh 

generates the code 

PUSH lADCh 
POP AX 

and because an immediate data push is illegal (for the 8086/8088), this results 
in an assembly error. One way to guard against this situation is tu put a 
comment in the macro; for example, 

MOVW MACRO WORD1,WORD2 
;arguments must be memory words or !(·-bit t<=<JLSL··•1:; 

PUSH WORD2 
POP WORUl 
ENDM 

Restoring Registers 

G~d programming practice requires that· a proct.'Clure should restore 
the registers it uses, unless they contain output values. The same is u~ually 
true for macros. As an example, the following macro exchanges two memory 
words. Because It uses AX to perform the exchange; this register is restored. 

,,.'CH MACRO WORD1,WORD2 
PUSH AX 
MOV AX,WORDl 
XCHG AX,WORD2 
MOV WORDl,AX 
POP AX 
ENDM 

Mc. cro Expansion in the .LST File 

T~l .LST file is one of the files that can be generated when a prugrdm 
is assemblld ·.:ee Appendix D). It )hows a)scmbly cock and the corresponding 
machine C('l1c .. addresse) of variable), and other information about the pro­
gram. The· LS'I file also shows how macro~ are expanded. To demomtrate 
this, the fol11wi.1g program contains the MOVW macro and two invocations: 

Program Listing PGM13_ 1.ASM 
TITLE PGM13_1: MACRO DEMO 
. MODEL SMALL 
MOVW MACRO wpRDl, WORD2 

PUSH WOR02 
POP WOF.01 
ENUM 

.:;TACK 10011 

.DATA 
A 

B 

.<::ODE 

ow 
ow 

1, 2 

3 
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------·------
Figure 1~.1 PGM 13_1.LST 

MAIN PROC 
MOV AX,(!DATA 
MOV DS,AX 
MOVW A,DX 
MOVW A+2,D 

;dos exit 
MOV AH, 4CH 
INT 21H 

MAIN ENDP 
!::ND MAIN 

. Figure 13.1 shows file PGM13_1.1Sf. In this file, MASM prints the 
macro invocations, followed by their expansions (shown In boldface). The 
digit 1 that appears on each line or the expansions means these macros were 
invoked at the "top level"; that is, by the program itself. We wlll show later 
that a macro may invoke another macro. 

Microsoft (R) Macro Assembler Version 5. 10 
1/18/!).2 00:03:08 
PGM13_1: MACRO DEMO Page 1-1 

0000 0001 0002· 
0004 0003 

0000 
oobo BS -R 
0003 SE DS 

0005 52 
0006 8F 06 0000 R 

OOOA FF 36 0004 R 
OOOE ··aF 06 0002 R 

0012 B4 4C 
0014 CD 21 
0016· 

1 
1 

l 
l 

TITLE PGM13 l: MACRO DEMO 
.MODEL SMALL 
MOVW MACRO WORDl,WORD2 

PUSH WORD2 
POP WORDl 
ENDM 

.STl\CK 10011 

.Dl\TA 
A 

B 

.CODE 
MAIN 

;dos 

MAIN 

DW 
DW 

PROC 
MOV 
MOV 

1,2 
3 

AX,@DATA 
DS,AX 

MOVW A,DX 

PUSH DX 

POP A 
t«>VW 

PUSH 

POP 
exit 

MOV 
INT 
ENDP 
END 

A+2,B 
B 

A+2 

AH,4CH 
21H 

MAlN 

Microsoft (R) Macro Assembler Version 5. 10 
1/18/92 00:03:0S 
PGM13_1: MACRO DEMO 
Macros: 

Symbols-1 
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(Continued) 
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N _a .. m e 

MOVW . 

Segments and Groups: 

N a m e 

DGROUP 
_DATA 

STACK 
TEXT 

Symbols: 
N a m e 

A 

B 

MAIN 
Length 0016 

@CODE . 
@CODESIZE 
<!CPU .. 
f'[l/\'r/\::< T 7.F 

@FILENAMI:: 
@VERSION . 

21 ScJUrce Lines 
25 Total Lines 
21 Symbols 

Lines 

2 

Length Align 

GROUP 
0006 WORD 
0100 PARA 
0016 WORD 

Type Value 

L WORD 0000 

L WORD 0004 

N PROC 0000 

TEXT 
TEXT 
TSXT 
1'!'.XT 

TEXT 

TEXT 

Combine 

PUBLIC 
STACK 
PUBLIC 

At tr 

DATA 

DATA 

TEXT 

TEXT 
0 
OlOlh 
0 

l'GMl.l 

~10 

47930 + 4220033 Bytes symbol npace f rec 
.> ';•· 

0 Warning- Errors , 
0 Severe .Errors .. ; 

.LST File Options 

Class 

'DAT.!\' 
'STACK' 
'CODE' 

Tlm:c assembler directives govcri1 how macro cxpa1i~iom appear in the 
.I.ST file. Th1.>se directives pertain to the macros that follow them in the program. 

1. After .SALL (suppress all), the assembly code in-a macro cxpan-
, 'sion is noi listed. You might want to use this option for large 
· ·macros, or ,if there ·are a lot of mal'ro invocations. 

2., Alter .XAl.L, only those sourn• lirll'~ tll~ll ~cm:ratc l"nde <ll" d<rl<I 
;ire listed. For example, comment line' arc not lbtcd. This i\ till' 
ddault option .. 

3. After .LALL (list all), all source lines ;ire li;ll'U, except those 
hq;i1111i11_, with a duul~c scmicolo11 (;;). 

/ 

"' 
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13.2 
Local Labels 

These directives do not affect the machine code generated in the macrc 
invocations; only the way the macro expansion appear in thl.' .LST file. 

Example 13.3 Suppose the MOVW macro is rewritten as follows: 

MOVW MACRO WORD1,WORD2 
;moves source to destination 
; ; uses the stack 

PUSH WORD2 
POP WORDl 

·ENDM 

Show how the following macro Invocations would appear in a .I.ST file 

.XALL 
MOVW OS,CS 

.LALL 
MOVW P,Q 

.SALL 
MOVW AX, [SI] 

Solution: 

.XALL 
MOVW DS,CS 
PUSH cs 
POP OS 

.LALL 
MOVW P,Q 
;moves source to destination 
PUSH Q 

POP P 
.SALL 

MOVW AX, [Sl) 

Finding Assembly Errors 

If MASM finds an error during macro expansion, It Indicates an error 
at the point of the macro Invocation; however, It's more likely that the 
problem ls within the macro itself. To find where the mistake really ls, you 
need to insp,ect the macro expansion In the .LST file. The ,LST file is especially 
helpful if you have a macro that Invokes other macros (see discussion later). 

A ·macro with a loop or decision structure contains one' or more 
labels. If such a macro Is Invoked more than once In a program, a duplicate 
label appears, resulting In an assembly error: This problem can be avoided 
by using local labels In the macro. To declare them, we use. the LOCAL 
pseudo-op, whose syntax Is 

LOCAL list_of __ labels 
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Macros that Invoke· 
Other Macros 
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where list_of_labels is a list of labels, separated by commas. Every time the 
macro is expanded, MASM assigns different symbols to the lab('!s in the list. 
The LOCAL directive must appear on the next line after the MACRO ~tate-
ment; not even a comment can precede it. · 

Example 13.4 Write a macro to place the largest of two words in AX. 

Solution: ' 

GET BIG MACRO 
LOCAL 
MOV 
CMP 
JG 

. MOV 
EXIT: 

ENDM 

WORD1,WORD2 
EXIT 
AX, WOIUH 
AX,WORD2 
EXIT 
AX,WORD2 

Now suppose that FIRST, SECOND, and THIRD are word variables. ,\ macro 
invocation of the form 

GET BIG FIR~T,SECOND 

expands as follows: 

??0000: 

MOV AX, FIRST . 
CMP AX,SECOND 
JG ??0000 
MOV AX,SECOND 

A later call of the form 

GET BIG SECOND,THIRD 

expands to this code: 

??0001: 

MOV AX, SECOND 
'CMP AX, THIRD 
JG ??0001 

. MOV AX, TllIRD 

Subsequent invocations of this inacio or to other macros with local labels caw.cs 
MASM to insert labels ??0002, ??0003, and so on into the program. These labels 
are lmique and not likely to conflict with ones the user would choose. 

•. • • .;. f ( • • 

A macro may invol:c another macro. Suppose, for exampll', we have 
two macros that savl' am! rl·storc thrl'l' n·ghlt•rs: 

SAVE -REGS MACRO Rl, R2, R3 RESTORE - REGS MACRO !:il,~:L,53 

PUSH Rl POP !.Jl 

FUSJI H2 1'01' ... , ... 
PtJSll H3 PC'l' ~~ -~ 

ENDM ~OM 

These_mac~os. arc_invoked by the macro in the following example. 
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... 

13.4 
A Macro Library 

Example 13.5 Write a macro to copy a string. Use the SAVE_REGS and 
RESTORE_REGS macros. 

Solution: 

COPY MACRO SOURCE, DESTINATION, LENGTH 
SAVE_REGS CX,SI,DI 
LEA SI, SOURCE 
LEA DI, DESTINATION 
CLO 
MOV CX,LENGTH 
REP MOVSB 
RESTORE REGS DI,SI,CX 
ENDM 

If MASM encounters the macro invocation 

COPY STRING1,$TRING2,15 

it will copy the following code into the program: 

PUSH ex 
PUSH Sl 

PUSH DI 
LEA SI, STRINGl 
LEA DI,STRING2 
CLO 
MOV CX,15 
REP MOVSB 
POP DI 
POP SI 
POP ex 

Note: A macro may invoke itself; such macros are called recursive macros. 
They are not discussed in this book. 

The macros that a program invokes may be contained in a separat~ 
file. This makes it possible to create a library file of useful macros. For ex­
ample, suppose the file's name Is MACROS, on a disk In drive A. When 
MASM encounters the pseudo-op 

INCLUDE A:MACROS 

in a program, it copies all the macro definitions from th~ file MACROS Into 
the program at the position of the ·INCLUDE statement (note: the INCLUDE 
directive was discussed In section 9.5). The INCLUDE' statement may appear 
anywhere in the program, as long as it precedes the invocations of its macros. 

The IF1 Conditional 

If a macro library is Included in a program, all its macro definitions 
will appear in the .LST 'mc;cVen If they're not invoked In the program. To. 
prevent this, we can insert the following: 
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1Fl 
INCLUDE MACROS 

J::NDIF 

Here, 11'1 arid ENDIF are pseudo-ops. The If! directive causes the assembler 
to access the MACROS file during the first assembly pass, when macros arc 
expanded, but not during the second pas~. when the .LST file is nealcd. 

· Note: Other conditional pseudo-ops are dlscuscd in section 13.6. 

Examples of Useful Macros 

The following are examples of macros that are useful to have in a 
macro library file. 

Example 13.6 Write a macro to return to DOS . . - ... -

Solution: 

. DOS_RTN MACRO 

MOV AH,4CH 
INT 21H . -­

ENDM 

The macro invocation is 

DOS_RTN 

Example 13;7 Write a macro to execute a carriage return and line feed . 

. Solution: 

NEW LINE MACRO 

MOV 
MOV 
INT 

MOV 
INT 

ENDM 

AH, 2 
DL,ODH 

21H 
DL, OAH. 

21H 
.• 

The macro Invocation is 

NEW LINE 

The next example is one of the more interesting macros. 

Example 13.8 •Write a macro to display a character string. The string is 
the macro parameter. 

Solution: 

DlSP_STRMACRO 

LOCAL 

; save registers 

STRING 

START,MSG 

PUSH AX 
PUSH DX 
PUSH 

.JMP 

DS 

• S'IART 
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C>PGM13_2 

MSG 
START: 

DB STRING,'$' 

MOV AX,CS 
MOV OS, AX ; set OS to c:>de seg ·.~ ,:; 
MOV AH,9 
LEA OX, MSG 
INT 21H 

;restore registers 
POP OS 
POP DX 
POP AX 
ENDM 

Sample invocation: 

DISP STR 'this is .. • string' 

When this macro is invok~-:1. the string parameter replaces the dummy pa­
rameter STRING. Becaus~ •11c strin~ Is being stored ln the code segment, CS 
must be moved to D'l; U1h takr ~ two Instructions, because a direct move 
between segment registc!rS Is fo1bidden. 

Including i'J Macro Library 

The p•c1..eding macros have been placed in file MACROS on the stu­
dent disk. They are used in the following program, which displays a message, 
goes to a new ~· ., and displays another message. 

Progr•m Listing PGM13_2.ASM 
7ITLE PGM13 2: MACRO DEMO 
. MODEL SMALL 
.STAC:I' lOOH 
T :C 1 

INCLUDE 
ENDif 
.CODE 

MACROS 

MAIN PROC 
DISP STR 
NEW_LINE 
DISP_STR 
DOS_RTN 

MAIN ENDP 
END MAIN 

'this is the first line' 

'and this is the second line• 

Sample exemtion: . 

this is the first line 
and this is the second line 

The macro expansions are shown In file PGM13_2.LST (Figure 13.2). 
To save space, the machine code has been edited out. 
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TITLE PGM13_2: MACRO DEMO 
.MODEL 
.STACK 
.CODE 
MAIN 
DlSP_STR 

l 

1 
l· 

1 
r 

l 

1 
l 

code segment 
l 

NEW_LINE 

l 

l 

l 
1 

l 

l 

l 

l 

??0001 

??0000: 

SMALL 
lOOH 

PROC 
'this is the first line' 

PUSH AX 

$' 

PUSH OX 
PUSH OS 
JMP . ??0000 

' DB 

MOV AX,CS 

'this is 
first 

MOV DS,AX ;set DX to 

MOV AH,9 
LEA DX, ??0001 
H!T 21 H 
POP DS 
POP DX 
POP AX 

Mer: AH, 2 
MOV i,;_. l'lDH 
INT 21H 
MOV DL,OAH 
INT 211! 

DISP_STR 'apd this is the second line ' 
l PUSH AX 

PUSH DX 
PUSH DS 
JMP ??0002 

the 
line',' 

·l 
1 

1 ??0003 DB 'and this is the 
second line ','$' 

1 

l 
l 

code segment 
l 

Q.OS_RTN 

l 

1 
l 
l 

1 

i~ 

1 
HAIN £NOP 
END MAIN 

?'?0002: 
MOV AX,CS 
HOV DS,AX ;set DX to 

HOV AH,9 
LEA ox,· ?'!0003 
INT 21H 
POP DS 
POP DX 
POP AX 

HOV AH, 4CH 
INT 21H 

267 

' 
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13.5 
Repetition Macros The REPT macro can be used to repeat a block of statements. Its 

syntax is 

REPT expression 
statements 

ENDM 

When the assembler encounters this macro, the statements are repeated the 
number of times given by the value of the expression. A REPT macro m.:iy 
be invoked by placing it in the program at the point that the macro's state­
ments are to be repeated. For example, to declare a word array A of five zeros 
the following can appear in the data segment: 

A LABEL 

REPT 

WORD 
5 

OW 0 
ENDM 

Note: The LABEL pseudo-op was discussed in section 10.2.3. MASM 
expands this as follows: 

A 0 
CW 0 
Dl-1 0 

DW 0 
LlW 0 

Of course, this example is trivial because we can just write 

A DW (0) 

Another way to invoke a REI'T macro is to plan· it an ordinary llliKCO, 

and invoke that macro. 

Example 13.9 Write a macro to initialize a bkx:k of memory to the first 
N integers. Then invoke it in a program to initialize an array to the first 
100 integers. 

Solution: 

BLOCK MACRO N 

K=l 
REPT N 
OW K 
K:K+l 

ENJM 
E~~I·1 

Note: In this macro, we used the = (equal) pseudo-op. Like EQU, it 
~an be used to give a name to a constant. The expression to the right of the 
equals sign must evaluate to a number. Unlike EQU, a constant defined with 
an = may be redefined; for example, K = K + 1. Remember. all this takes place 
at assembly time, rather than execution time. 

To define a word array A and initialize it to the first 100 integers, 
WC can place the following stateme11ts-in the data segment: 
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A· LABEL' WORD 
BLOCK 100 

Invocation of the BLOCK macro initializes K to 1 and the statements Inside the 
RF.PT are assembled 100 times. The -first time, DW 1 is generated and K is 

· .. increased to 2; the second time, DW 2 Is generated and K becomes 3, ... the 
lOOth time, DW 100 Is generated and K = 101. The final result is equivalent to 

A DW l 
DW 2 

DW 100 

Example 13.10 Write a·macro tci initialize an n-word array to 
1!,2!, .. 11! and show how to Invoke it. 

Solution: 

FACTORIALS MACRO N 

M = 1 
FAC = l 

HEPT · N 

DW FAC 

M = M+l 
FAC = M•FAC 

ENDM 
ENDM 

To define a word array B of the first eight factorials, the data segment 
'can contain 

B. LABEL , WORD 
FACTORIALS 8 

'. Because S! ; 40320 is the largest factorial that will fit in a 16-bit. 
word, it doesn't make sense to ln".'oke. t.his· macro for larger values of N. The 
expansion is 

B . I OW 

ow 2 
DW 6 
ow 24 
ow 120 ~ 
o;-i 720 ~ 

DW 5040" 
Dvl 40320 

The /RP Macro 

'- Another repetition macro is IRP (indefinite repeat). It has the form 
. 'l I ~ -

TR.P. _d, -<al,a2,._ .. an>, 

staterr.ents 

ENDM 

Note: The angle brackets In the above definition are part of the syntax. 
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13.6 
An OUtput Macro 

W11cn it Is expanded, this maao causes the statements to be assembled n times; 
on the Ith expansion, each occurrence of parameter .d is replaced by al. 

Example 13.11 Write macros to save and restore :in arbitrary number 
of ~isters. 

Solutions: 

SAVE_REGS MACRO REGS RESTORE_REGS MACRO REGS 
IRP D, <REGS> IRP D, <REGS> 
PUSH D POP D 
ENDM ENDM 
ENDM ENDM 

To save AX,BX,CX,DX, wt' can write 

SAVE_REGS <AX,BX,CX,DX> 

It has the following expansion: 

PUSH AX 
PUSH BX 
PUSH ex 
PUSH DX 

To restore these registers, write, 

RESTORE_REGS <OX,CX,BX,AX> 

To use the macro structures Introduced so far, we write a macro 
HEX_OUT that displays the contents of a word as four hex digits. The hex 
output algorithm, discussed In Chapter 7, Is the following: 

Algorithm for Hex Output (of BX) 

l: FOR 4 times DO 
2: Move BH to DL 
3: shift DL 4 times to the right 
4: IF DL < 10 
5: THEN 
6: 
7: 
8: 
9: 

convert 
ELSE 

convert 
END IF -

contents 

contents 

10: output character 

of OL 

of DL 

11: Rotate BX left 4 times 
12: END_FOR 

to a character 

to a character 

in , 0' .. , 9' 

in 'A' .. ' F' 

The following listing contains the macro HEX_OUT and a program to test It. 
HEX_OUT ln.vokes four other macros: (1) SAVE_REGISTERS and (2) RE­
STORE_REGISTERS from example 13,11; (3) CONVERT_TO_CHAR, which con­
verts the contents Qf a byte to a hex digit character (lines 4-9 In the algorlthm); 
and (4) DISP_CHAR, which displays a character (line 10 in the algorithm). 
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Program Listing PGM13_3.ASM 
0: TITLE PGM13 3: HEX OUTPUT MACRO DEMO 
l: .MODEL SMALL 
2: 
3: SAVE _REGS MACRO REGS 
4: IRP·D,<REGS> 
5: PUSHD 
6: ENDM 
7: ENDM 
8: 
9: RESTORE_REGS MACRO REGS 
10: 
11: 
12: 
13: 
14: 

IRP D,<REGS> 
·POP o 
ENOM 
ENOM 

15: CONVERT_TO_CHAR MACRO BYT 
16: LOCAL ELSE_, EXIT 
17: ;converts contents of BYT to a hex digit char 
18: ;if 
19: CMP BYT, 9 ;contents <= 9? 
20: JNLE LSE ;no, >2 Ah 
21: ;then 

- 22: 
. 23:' 

24: ELSE_ 
25: 
2!r: EXIT: 
27: 
28: 

OR 
JMP 

ADD 

ENDM 

29: DlSP_CHAR MACRO BYT 

BYT,30H 
EXIT 

BYT,37H 

30: ;displays contents of BYT 
31: PUSH AX 
32: MOV AH, 2 
33: 
34: 

.":35: 
36: 
37: 

MOV DL,BYT 
. INT· 21H 

POP AX 
ENDM 

38: HEX_OUT MACRO WRD 

;convert to 

; convert to 

digit 

digit 

39: ;displays cont-ents of WRD as 4 hex digits 
40: SAVE_REGS <BX,CX,OX> 
41: MOV sx;wRO 

char 

char 

42: MOV CL,4 ;shift and rotate count 
43: REPT 4 
44: 
45:' 
46: 
47: 
48: 
49: 
SO: 
Sl: 
52: 
53: .STACK 

HOV OL,'BH 
SHR DL, Ct; 
CONVERT_TO_CHAR DL 
DlSP_CHAR OL 
ROL BX,CL 
ENOM 

;shift right 4 times 
;convert DL to digit char 
;display D 
;rotate left 4 times 

RESTORE_REGS.<DX,CX,BX> 
ENDM 
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C>PGM13 3 
lAF4 

13.7 
Conditionals 

54: .CODE 
SS: ;program to test above macros 
56: MAIN PROC 
57: MOV AX, 1AF4h ;test data 
58: HEX_OUT AX ;display in hex 
59: MOV AH,4CH ;dos exit 
60: INT 2:H 
61: MAIN ENDP 
62: END MAIN 

Sample excrntio11: 

To code the FOR loop in the hex output algorithm, HEX_OUT uses a REP1' 
... ENDM (lines 43-49). This was done mostly for illustrative purposes; It 
makes the machine code of the expanded macro longer, but it has the ad­
vantage of freeing CL for use as a shift and rotate counter. 

At line 46, macro CONVERT_TO_qiAR is invoked to transform the 
contents of DL to a hex digit characteo£. This macro has two local labels, 
declared at line 16. At line 47, macro DISP _CHAR is invoked to display the 
contents of DL. 

Conditional pseudo-ops may be used to assemble certain state­
ments and exclude others. They may be used anywhere in an assembly lan­
guage program, but are most often used inside macros. The basic forms are 

Conditional 

statements 

END IF 

and Conditional 

statements! 

ELSE 

statements2 

END IF 

In the Cirst form, If Conditional evaluates to true, the statements are assem­
bled; If not, nothing Is assembled. In the second form, if Conditional Is true, 
then statements! are assembled; If not, statements2 are assembled (ELSE and 
ENDIF are pseudo-ops). 

· Table 13.1 gives the forms of the most useful conditional pseudo-ops 
and what' is required for them to be evaluated as true. 

In section 13.4, we used the conditional lFI to Include a macro 
library In a program. The next examples show how some of the other con­
ditionals may be used. 
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Table t3.1. coitdith.miL ~s 
F<Nrit. 

If exp 
l~E exp. 
IFB <arg> 

IFNB <arg> 
IFoEF svm 

IFNOEF sym 

TRUE IE· 

. Constant expression exp is nonzero. 

_Exp is zero. 
Argument ·arg is missing (blank). Angle brac.kets are 
required. 
Arg is not missing (not' blank): 
Symbol sym is defined in the program (or declared as 

· EXTRN). " 
:r-

. Note: The EXTRN directive is discussed 1n Chapter 14. 
Sym is not defined or EXTRN. 

IFIDN <Strl>,<Str2> Strings strl and str2 are identical. Angle brackets are 
required. 

IFOIF <Str1>,<Str2> 
IF1 

Strings strl and str2 are not identical. 

Assembler is making the first assembly pass. 

Assembler is making the second assembly pass. IF2 

' . 
A Macro that Uses IF 

-· 
Ex.iuuplc 13.12 Write a macro to define a block of memory wonh with 
N entries, consisting of the first K integers, followed by N - K zero words, 
and use it to initialize an array of 10· words to values 1, 2, 3, 4, 5, 0, 0, 0, 
0, and O. 

Solution: 

BLOCK MACRO .N, K 
I a l 

REPT N 

IF K+l-I 
OW I 

1 • I+l 

0ELS~, •· • . 

. _DW; , •. 0 
END IF 
.E~DM 
ENDM 

--
If this macro Is invoked to define an array A as follows, 

A 
BLOCK 

·LABEL 
10,5 

WORD 
'!.' 

i , .• . 

the l'xpanslon lniti<flizl's N lo 10,. K to 5, I to 1, and ;1sseml>le the statemenl~ 
'inside l~Ert }l? tiiltics. ·After ·five p·as:;c~ •. 0'11 ... DW 5 are generated and I'~ 

~' 6. After that, .since K + l - I = S + l - 6 = 0, the statement followln1~ 
i'.LSE-n.1111~·ly DW 0-is assembled. Th~· result is equiv.1knt to 

A ow l, 2, J, 4, 5, 0, 0, 0, 0, 0 
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· A Maao that Uses IFNB;:. 

Recall from Chapter 11, exen:tse 9, that INT 2lh, function OAH, 
stores a .sb'ing that the user types ln the byte array whose offset address ls 
contained. in DX. The first byte of the array must contain the maximum 
number of characters expected.. DOS fills in the next byte with the actual 
nuinber of d?racters read. 

Exaulple 13.13 Write a macro READ MACRO BUF,LEN that either uses 
INT 21 h, function OAh, to read a string Into the byte array nu1: of length 
LEN (if both arguments are present), or uses INT 2lh, function 1, to read 
a single character Into AL (If both arguments are missing). · 

Solution: 

READ MACRO BUF, MAXCHARS 

BUF • STRING BUFFER ADDRESS 
LEN • MAX NO. OF CHARS TO READ 

!FNB <BUF> 
IFN& <LEN> 

MOV 
LEA 
MOV 
INT. 

END IF 
ELSE 

MOV 
INT 

END IF 

ENDM 

AH,OAH 
DX,BUF 
BUF,LEN 
21H 

AH, l' 

21H 

;read string FCN, 
;DX has string ADDR 
; 1st byte has array size 
; read string 

; read char E'CN 
;read char 

If the preceding macro Is invo~ed by ~e statement 

RE/..D MSG, 1 0 

then slncc both arguments are present, the code 

M0"1 All, Ot.H 

LI::•\ I.IX, MSG 

MOV MSG,10 
INT 21H 

ls assembled. String MSG must be a declared array of at least 13 ~ytes (1 byte 
for the maximum number of characters expected, 1 byte for the actwl num· 
ber of characters read, 10 b)'tCS for the characters, and 1 byte for a carriage 
return). It the macro invocation ls 

the11 since both arguments arc bla11k, the code following ELSE, namely 

MOV AH,l 
INT 2lh 

ls assembled. If this macro ls Improperly Invoked with only one argument-
for example, READ MSG-then no code ls assembled. · 



The .ERR Dltwctlve 

Because macros may be called ln a variety of situations, it's possible 
they may be Invoked Incorrectly. The .Eltlt directive provld~ a way for the 
assembler to tell tht user about' this. If MASM encounters thlS dlrecttw, It 
displays the ml'SSage •forced e~, which Indicates a fatal assembly error. 

Example 13.14 Wrtte a program a>ntalnlng a macro to display ;rchara<:­
ter. The mpao should produce an assembly error If Its parameter ls omitted. 

Solution: 

Program Listing PGM1J_4.ASM 
TITLE PGH13_4: .ERR DEMO 

. HODEL SMALL 

.STACK lOOH 
DISP_CHAR 

.CODE 
HAIN 

MACRO CHAR 
IFNB <CHAR> 
HOV AH,2 
HOV 0

DL,CHAR 
INT 21H 
El.SE 
.ERR 
ENDIF 
ENDH 

PROC 
DISP_CHAR 'A' 
,DISP_CHAR 
HOV AH,4CH 
INT . 21H 

HAIN ENDP 
END MAIN 

; legal call 
1 ille9al call 

I 
Microaoft (R) Macro Assembler Verfion 5.10. 
~opyright (C) Microsoft Corp 1~11; 1988. All rights reserved.' 

~GM13_4.ASM(l5l: etror A.2089: Forced error 

·so050 + 4 t 8G83 Bytes symbol space free 
O warnin9. Errors 
1 Severe Errors 
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13.s·' Macr~ and/>roceaures 

13.8: 
Macros ·and 
Pr0c:ltc#iies_ . 

M;icros and pi'Ocedures are· alike Jn the sense that both are written 
to carry out tasks for a program, buLit'can sometimes be difficult tor a 
programmer to decide which structure. ls best in a given situation. Here are 
some considerations: 

· . Assembiy Time, 

A program containing macros usually takes longer to assemble than 
a similar program containing procedures, because it takes time to expand 
the macros. This is especially ~ru~ iflibrary macros are involved . 

. · Execution · r1111e 
The code generated by a macro expansion generally executes faster 

than a procedure call, because the latter involves saving the return address, 
transferring control to the procedure, pa~sing data into the procedure, and 
returning from the procedure.· 

. ' 

Program Size · 

A program with macros is generally larger than a simil.u program 
with procedures, because each macro invocation causes a separate code block 
to be copied into the program. However, a procedure is coded only once. 

Other Considerations 

Macros are especially suitable for small, frequently occurring bsks. 
Liberal use of such macros can result in ~ource code that resembles high-level 
language. However, big jobs are usually best handled by procedures, because 
big macros generate large amount of code if they are called very often. 

' .. ~ .. 
Summary 

A macro is a named block of text. It may consist of instructions, 
pseudo-ops; or references to other macros. 

A macro Is invoked at a~~- ·0 expand a macro, MASM 
copies the macro''-'' imo llle JJrogram at the position of the i_n­
vocatlon, just as If the u;~er had typed It in. If the macro has a 
dummy p;irameter list, actual parameters replace the dummy 
ones: MASM:Ceplaces any instructions by machine language code. 

1r.J. ;}:.!i: ,.~·-· .. ~ -f , ......... , ... 1 
• • 

An important •1se of macros Is to create new instructions . 

. 1'.facro exp~nsfons n1ay be viewed in 'a pr~gram's .LST flie. Three 
~sscmblcr dirPctiv~ govern how the expansion will appear. After 
.SALL, the macro 'expansion. is not listed .. After .. XALL, only those 
lines that generate source code are JisteCI: A"fter ·.LALL, all source 
lines are listed, except• comments that ~a~e preceded by :; . : 

Local labels may be used within a macro.-F..ach tiine the macro 
ls invoked, a different label is generated. This gds around the 
problem of having duplicate labels resulting from several macro 
invocations. 
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~- ... ~ ,,. '. ·~ ... 1;. 

• Al~1a1:ron-i'ay iiWoke.anotbcl' fuai:ro, or itself. 
t. - ... ~· \"! --

••• A library file of macro5 can be created. Its macros may be used In 
a program-t(tt-ie iNCLUDE pseudo-op is used . 

.. :.. • .. ~- ' -~ • - j .... ~. ~ 

: • ,. The REPT macro may be used to repeat a block of statements. lt 
'. . has' a single argument that specifics the number of times to rc­

peat,the'statements. It can be placed In the program at the point 
' the statements are'.to be repeated, or enclosed in another macro . 
• . The Rf.~ m~c~? has no name field. ' 

• Tl1e IRP 1 ma.c~o may be used to repeat statements an arbitrary 
-number_ of, times._ 

By using 00-nditional pseudo-ops within macros, MASM can be 
made to 'assemble certain statements and exclude others. 

• .- ·,'rlie :ERll:dir~.ciive provides a way to inform the user that a macro 
' !s. being !ncorrcctly called. 

• Macro and procedures each have advantages. Programs with mac­
--ros usually'take longer-to assemble, and they generate more ma­

chine code, but execute faster. Small tasks are often best handled 
' by 1riacros:- and: procedures are better for large tasks. 

·Glossary 

~onditionaJ pscudo--ops _ 

expand (a·nia~~) 

invoke (a macr~) · 
, . locan~b~I. __ 

Pseudo-ops used to assemble certain state­
ments and exclude others 

When MASM encounters a macro name 
in a program, it replaces the macro name 
by its body 

Use the macro name in a program 
A label defincc' with the LOCAL pseudo­
op inside a macro. Each time the macro 
is invoked, MASM generates a different 
numerical label when the local label is 
cncm.intered 

El'<::>l-1 

.ERR 
IR? 

LOCAL 
MACRO 
REPT 
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hordsos 
1 •. Write ~he following meccas. All registers used by the macros 

should br mtored, except those that rctum results. 

a. MUL..N.MACRO N, which puts the signed 32-bJt pr<Xluct of 
AX and the number N in DX and AX. 

b. DIV_N MACRO, N which divides the number In AX by the 
number N and puts the signed 16-btt quotient ln AX. You 
may assume that N is not O. 

c. MOD MACRO M,N, which returns In AX !he remainder after 
M 15 divided by N. Note that M and N mt1y be J 6-blt Wc>rth, 
registers, or constants. You may assume that N Is not 0. 

d. POWER MACRO N, which takes the number In AX and raises 
it to the power of N, where N is a positive number. The result 1: 
should be stored In AX. If the result Is too big to flt In 16 
bits,· the macro should set CF/OF. 

2. Write a macro C_TO_F, which takes an argument C (which repre­
sents a centigrade temperature), and converts It to Fahrenheit tem­
perature F according to the formula F = C9~xC)+32. To do the 
multiplication by 9 and division by S, your macro should invoke 
the MUL_N and DIV _N macros of exercises 1 (a) and l(b). The re­
sult, truncated t.> an Integer, Is returned in AX. If ow?rflow occurs 
on. 111ulllpllcatlo11, CF/01' should be set. 

3. Write a macro <.:GD MACRO M,N that computes the greatest com- . 
mon divisor of arguments M and N. Euclid's algorithm for com- 1 

putlng the CGD of M and N is 

WHILE N II 0 DO 
H•MHt>DN. 
Swap M and N 

END __ WHILE 
RETURN M 

Your milCro should Invoke the MOD macro of exercise J (c):' 
4. Macros are especially ul<'ful in gr;iphlcs applk;11iom. Write !he fol­

lowing niaaos: 

a. A macro MOV_CURSOR MACRO R;C that moves the cursor 
to row Rand column C. 

b. A macro DISP_CHAR MACRO CHAR,ATfR that displays char­
acter CHAR with attribute ATIR once at the cursor position. 

c. A macro CII~R_ WINDOW MACRO R 1,C I ,R2,C2,COLOR that 
clears a window with upper left comer at (Cl ,RI), lower 
right corner ar (C2,R21, and attribute COLOR. 

d. A macro DRAW_IK>X MACRO 1u.c1.n2.c2 thilt draws a box 
outline with upper kft qirner at (Cl,Rl}, and lower right cor­
ner at (C2,R2). Uw extended ASCII characters for the corners 
11nd ~Id~. 
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5. u~e a REPT to write the following macros: 

. a.· A macro ALT MACRO N, where N ls a positive even integer, 
that initializes a block of N memory bytes to alternating O's 
and l's, beginning with 0. Show how the macro would be in­
voked to initiali7.e a 100-byte array ~YT. 

b. A· macro ARITH MACRO B,J,N, where B, I, and N are posi­
tive tntegers, that initializes a block of memory words to 
the following arithmetic progression: B, 8 + I, B + 2 >< I . .. 
H + (N - 1) x I. Show how the macro would be lnvoki:u to 
initialize a 100-word array WRD whose first two elements• 
are 10 and 12. 

c. A macro POWERS_OF_lWO MACRON, where N Is a nonneg­
ative integer, that may be used to Initialize a block of N mem­
ory words to 1, 2, 4, 8, 16, ... ,2N • 1• Show how the macro is 
Invoked to initialize a 10-word array W. 

d. A macro BIN MACRO N, K, where N and K are nonnegative 
integers, that wlll move the binomial coefficient B(N, K) = N 
x (N - 1) x .. (N - K + 1) into AX. 

6. State what code, if any, would be assembled in the followin~.r": 

MACl MACRO H 

IF H-1 
HOV AX,H 

M•M-1 

IFE H 

HOV BX,H 

ENO IF 
ENO IF 
ENOH 

a. For the macro invocation MACl l ! 
b. For the macro Invocation MACl 2? 

7. State what code, if any, would be assembled in the following macro: 

MAC2 MACRO H,K 

REPT H 
HOV AX,H 

K-K+l 
IF K-3 

HOV BX,M 

END IF 
ENDH 
ENDH 

a. For the macro Invocation MAC2 5,1? 
b. For the macro Invocation MAC2 2,2? 



~ Exercises · 

8. The Fibonacci sequence is 1, 1, 2, 3, 5, 8, 13, 21, 34 .... Write a 
macro FIB MACRO N whose Invocation will cause the instruction 
MOV AX,FN to be assembled, where FN is the Nth Fibonacci nurr 
ber. For example, the call FIB 8 would cause the instruction MOV 
AX,21 to be assembled. 

Herc is an Iterative algorithm for producing the Nth Fibonacci 
number: 

IF N m l 
THEN FN c l 

ELSE 

LO - 0 
HI ~ l 
REPEAT N-1 TIMES 

X m LO 

LO m HI 

HI c X + LO 

FN ~ HI 
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Me111ory Manage111ent 

Overview 

14.1 
.COM Programs 

Until now, all our programs have consisted of a code segment, a 
_stack segment, and perhaps a data segment. If there were other procedures 
besides the main procedure, they were placed in the code segment after the 
main procedure. In this chapter, you ·will see that programs can be con-
structed in other ways: · 
, · · In section 14.1, we discuss the .COM program format in which rnde, 

data,'. and stack· fit into' a·stngle 'segment. .COM programs have a simple 
structure and don't take up" as much disk space as .EXE programs, so system 
programs are often written in this format. 

Section 14.2 shows how procedures can be placed in different mod­
ules, assembled separately, and linked into a single program. In this way they 
can be written and tested separately. The modules containing these proce­

. dmcs may have their own code and data segments; when the modules are 
linked, ihe code segments 'can be combined, as can ,the data segment~. 

_ Section 1~.3 covers the full segment definitions. They provide com-
plete control over the ordering, combination, and placement of program 
segments. · ' · · • 

Section 14.4 provides more information about the simplified ~gmcnt 
definitions.that we have been using throughout the book. 

The procedures we've written So far have generally passed data values 
through registers. Section 14.S shows. other ways for procedures to communicate. 

Jn this section we discuss a program format in which the code, data, 
and stack segments coincide. This type of program is also known as a .COM 
prograna, because that is the extemion given the nm file. As you will see. 
the primary a~~antages of .C~M programs are their simple structure,and the 
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282 14.1 .COM Programs 

fact that they take up relatively little disk space. The disadvantages are in· 
flexibility and limited size, because everything-code, data, and stack-must 
flt into the single segment. 

A problem with .COM programs Is where to place the data, If any, 
because they are in the same ~~gment as the code. They can be put at the 
end of the program, but this requires use of the full segment dedarations 
~section 14.3 ). We choose to place the data at the beginning of the 11rogram. 
Here ls the form of a .COM program: . . . . . . . ... 

. COM Program Format 

0: TITLE 
1: .MODEL SMALL 
2: .CODE 
3: ORG lOOH 
4: START: 
5: JMP MAIN 
6: ;data goes here 
7: MAIN PROC 
8: ;instructions go here 
9: ;do:; exit 
10: MOY AH,4CH 
11: INT 21H 
12: MAIN ENDP 
13: ;other procedures go here 
14: END START 

Let's look at the differences between this format and the format 
we've been using up till now (.EXE. program format). First, there ls only one 
segment, defined by .CODE. Because the first statement must be an Instruc­
tion, the procedure begins with a JMP around the •data. The label START 
Indicates the entry point to the program; this label Is also the operand of 
the END in line 14. The reason for the ORG lOOh directive ls explained as 
follows. 

The ORG Directive 

In Chapter 4 we mentioned that when an .EXE program is loaded 
In memory, it is preceded by a lOOh-byte information area called the prosram 
segment pre(vc (PSI'). The same Is true for .COM programs, and for them, the 
PSP occupies the first lOOh bytes of the segment. 

The ORG lOOh directive assigns lOOh to the location cou11tcr, which 
keeps track of the relative location of the statement currently being assem­
bled. Ordinarily, the location counter ls set to 0 at the beginning of a seg­
ment. ORG 100h makes it start at IOOh instead. 

Now suppose a .COM program has some data. Without the ORG 
lOOh, the assembler would assign addresses lo variables relali\'e to the l>c· 
ginning of the segment; this would incorrectly place them in the PSI'. With 
the ORG IOOh, variables are correctly assigned addn.-sscs relative to the be· 
ginning of the program, which starts lOOh bytes after the beginning of.the 
segment . 

. COM Program Stack 

In a .COM program, the stack is in the same segment as the code 
and data. Unlike an .EXE program, the programmer docs not have to define 
a stack area. When the program Is loaded, SP is initialized to FFFEh, the last 



Figure 14.1 A .COM Progr.Jm 
in Memory 
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Ofl5Ct ·-
Pr0gr•m 1egment prefix 

- . 

100h JMPSTART .--1P 

D•t• 

START: 

FFFEh +--- SP 

Wl)rd in thl' segment. Because the stack grows toward the beginning of mcm­
..iry, thcrr is little danger that the stack will interfere with the cock, unlt•ss 
the stack gets very large or there ls a lot of code. Hgure 14.1 shows how a 
.COM progr!lm looks after It has been loaded In memory, If defined with the 
preceding format. 

. An Example of a .COM Program 

As an example, let's rewrite PGM4_2.ASM In .COM format. The pro· 
gram just displays HELLO! on the screen. To aid in the comparison. 
PGM4_2.ASM is reproduced here and renumbered PGM14_1.ASM. 

Program Listing PGM14_ 1.ASM (a repeat of PGM4_2.ASM) 
'fl1'L£ l?GM14_1: HELLO 

.MODEL SMALL 

• S'l'AC:K lOUH 
.DATA 

MSG DB 'HELLO!$' 

.CODE 
11£/·\!N i'KOC 

: init:iali;:e !).:; 

MOV AX,@DATA 

MOV DS,AX 

; display reessage 
LEA DX,MSG 

MOV AH, 9 

INT 2lh 
;return to DCJS 

WW AH, 4CH 

INT 2lh 
M;,IN Etmr 

I::ND Ml'.Ill 

;initialize DS 

;get me!iSil'.,~i! 

;displa~ s~ring funccion 
;display rr~ssage 

Now ~ere ls the program wri~ten i~ .C<)M format. 
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Program Listing PGM14_2.ASM 
TITLE P~Ml4 ·2:.COM DEMO 
. ~.'.l:::JE-;.. SMALL 

. co;:,E 
CJRG lOOH 

S7ART: 
JMP 
!:lB 

i?RO::: 

LC.A 

MOV 

I :•T 

MCV 
-1·'T' .I.•"• 
ENDP 
CND 

MAIN 
'llt;Ll.(1~' 

DX,~SG 

AP., 9 

2:B 
AH,4CH 
2·:H 

START 

; get message 
;display string function 
;display 'HE::..LO' 
; dos exit 

Note that because there is only one segment, the instructions 

~CV hX, @DATA 

Mcv os. r.x 

. which are required for an .EXE program that has data, are not needed in ii 

.COM program. 
The assemble and link steps are the same as before: 

. h>C:MASM E'GM14_2; 

:.::c.:.0~vlt (R) MiH ... :-o l\f:!>emble:r Vcrsi•..>n ~.10 

:::ii:;yright (C'.) :~icrcscf~ Corp 1981, 1988. All rights rP.served. 

,,., ·S•.;.'vere Crr::;rs 

h~C:LINK PGM14_2; 

:-:_c:-~scft (f<.) C·;.-,:-lay Linker Versie~. 3.64 
c·,;:;·;.'.g:.t (Cl !·:ic:-:,scft Corp 1983··1988. All rights rest'rv.,,d. 
:.::;:< : h.:ir:-.::-.g l...;:21: ~.O stack segmen~ 

This warning may be ignored since a .COM program doesn't have a separate 
stack segment. 

for a .COM program, the .EXE file that is produced by the LINK 
program is not the run file. It must be converted to .COM file format by 
running the DOS utility program EXE2Bl1'. 
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A>C:EXl!2Bill' PGM14_2 ·PGM14_2.Cote 

14.2 

A>PGM14_2 
HELLO! ... ~• .. - . 

Program Modules 

The first argument to EXE2BIN is PGM14_.:2. The default extension is .EXE. 
The second argument PGMH...:.Z.COM is the output file name. The .EXE file 
that was created in the preceding steps Is no longer needed and should be 
'erased before.runnin£ the oro2ram.·To execute it. we tvve 

.s.mentioncd before, a prin:iary advantage of .COM programs is their small 
ize. The size of PGM14..:.l.EXE is 801 by.tes vs. 22 bytes for PGM14_2.COM. 
'he main reason for the size discrepancy Is that an .EXE file has a 512-byte 
cader block, which contains information about the size of the excrntable 
Ode, where it is to be located In memory, and o~her data. Another reason 
i f!iat an .. EXE program contains a separate stack segment. 

For large programs with many procedures, it is convenient to put 
·procedures in separate files. There are two primary reasons for doing this: 

'. i. The procedures can be coded, a~sembled, and tested separately, 
possibly by different ~rogramincrs . 

. 2. When procedures a·re 'assembled separately, they can use the same 
nan1<.-s for. variables and/or state1nent labels. This is because the a~­
sembler allows' a ruime tci be local to a file and it will not conflict 
with the same name in a different file . 

• Assembly and Object Modules 

A sepaf~tcly-asse~bled pr~cdurt! n1~~t be contained in an assem­
bly module. This is an .ASM file consisting·of at least one segment defini­
tion. ,The assembler takes an assembly module and produces an .OBJ file 
called'an,ubjec(~oclUlc. The li.nker thc'n combines object modules into 
an .EXE file that can be executed. 

NEAR and FAR· Procedures 

• In section 8.3, we noted.that the syntax of procedure declaration is 
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where type ls NEAR or fAK (the default ls NEAR). A procedure ls NEAK If the 
statement that calls It ls In the same segment as the procedure lbelf; a pro-
cedure is FAR lf it Is called from a different segment. . · 

Because a FAK procedure Is In a different segment from Its c:alling 
)tatement, the CALL lnstnlL'tlon causes first CS and then IP to be saved on 
the )tack, then CS:ll' gets lhe segment:orrset of the proc1.-dure. To return, RET 
pops the stack twice to restore the original CS:IP. 

You'll see In a moment that a procedure can be NEAR. even If It's 
assembled separately. A procedure must be typed as FAR If It's Impossible for 
the calling statement and the procedure to flt into a single memory segment, 
or If the procedure will be called from a high-level language. 

EXTRN 

When assembling _a module, the assembler must be Informed of 
names which are used In the module but are defined In other modules; 
otherwise these names will be flagged as undeclared. This is done by th~ 
EXTRN pseudo-op, whose syntax Is 

EXTRN external_name_list 

Here, extema(name_llst ls a list of arguments of the form name:type whe!e 
name ls an external name, and type Is one of the following: NEAR. FAR, 
WORD, BYTE, or DWORD. For externally declared procedures, type would 
be NEAR or FAR. 111e types WORD, BYfE, and DWOKVare used for variables. 

For example, to Inform MASM of the existence of a Nl:.AK procedure 
PROCt and a FAR procedure PROC2 that are defined in separate modules, 
we would say, 

EXTRN PROCl:NEAR, PROC2:FAR 

Now suppose MASM encounters the statement 

CALL PROCl 

MASM knows from the EXTRN llst that PROCt Is In another assembly mod­
ule, and allocates an undefined address to PROCI. The address ls Oiied In 
when the modules are llnked. 

The EXTRN pseudo-op may appear anywhe?re In the program, as long 
as It precedes the first reference to any of the names In the external name 
list. We will place It at the beginning of the program. 

PUBUC 

A procedure or variable must be declared with the PUBUC pseudo­
op If It ls to be used In a different module. The syntax Is 

PUBLIC name_ list 

where name_list Is a list of procedure and variable names that may be referred 
to in a dlfCcrent module. The PUBLIC pseudo-op can appear anywhere in a 
modul~ but we will usually place It near the beginning of the module. 

Linking Object Modules 

The LINK program combines object modules into a single executable 
machine language program. 1t tries to match· names that are declared In 
EXTRN directives with PUBLIC declarations In the other modules. It com· 
blnes code and data segments In different modules according to the M.ogment 
declarations of these segments (see section 14.3). With the relative positions 
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of Instructions and data known, It Is able to fill In the addresses left undefined 
byMASM. . 
' As an example, we will rewrite PGM4~:A5M, which displays a 
prompt,· reads a lowercase letter, and convetb It to upper case • 

. ··· . There are two assembly modules. The first module contains the main 
proci!cf ute; It displays a message, lets the user enter the lowercase letter, and 
calls'i procedure CONVERT, which converts the letter to uppercase and dls­
·piays It with ~other message. CONVERT Is defined In another module. 

Pr0gram Listing 14_3.ASM: First Module 
O: TITLE PGM14 3: CASE CONVERSION -
l • :EXTRN CO.NVERT: NEAR .. 
·2=~ .MODEL SMALL ...... 

looii 3: .STACK 
4: .DATA ;-

5: MSG. -DB 'ENTER A LOWERCASE LETTER:$' 
6: .COPE 1: MAIN .i'ROC., 
8:' HOV ~,@DATA, 

9: MoV DS,AX .;initialize ds 
10: HOV AH,9 ;display string fen 
11: LEA DX, MSG ;get MSG 
12: INT 21H ;display it 
13: HOV AH,l ;read char fen 
14: INT 21H ;input char 
15: CALL CONVERT ;convert to uppercase 
16: HOV AH, 4CH 
17: INT 21H ;DOS exit 
18: MAIN ENDP 
19: END MAIN 

The first module consists of stack, data, and code segments. After 
lnltlallzlng OS at llnes 8 and 9, the program prints the message "ENTER A 
LOWERCASE LETTER:" and calls procedure CONVERT. The existence of 
CONVERT as a procedu.t In another module Is made known to the assembler 
by the EXTRN directive In line 1. The first module ends with an END directive 
In line 19, with the entry point MAIN to the program. 

Program Listing 14_3A.ASM: Second Module 
0: TITLE PGM14_3A: CONVERT 
1: PUBLIC CONVERT 
2: .MOl'lF:I. SMAT.L 

3: .DATA 
4: MSG DB ODH,OAH,'IN UPPERCASE 
5: ·CHAR DB -20H,'$' 
6: .CODE 
7: CONVERT PROC NEAR 
8: ;converts char in AL to uppercase 
9: PUSH BX 
10: PUSH DX 
11: ADD CHAR, AL :·convert 
12: HOV AH, 9 ;display 
13: J.EA DX,MSG ;got MSG 

IT IS I 

to uppercase 
st.rin9 fen 
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14: INT 21H .:display it 
15: ?OP DX 
"1'6: I'OP 13X 
17: RET 

18: CONVERT ENDP 
19: END 

The module containing CONVERT has its own data and code segments. 
When the modules are linked, .the code segments from the two modules are 
combined into a single code segment; similarly, the data segments are combined 
into a single segment (you'll see the reasoo for this in section 14.3). · 

At line 1, CONVERT Is declaled PUBLIC, enabling it to be called. 
from the first module. At line 7; procedUre CONVERT Is declared as type 
NEAR because the code segments of the two modules ;ue combined. Because 
the data segments are also combined, It's not necessary to initialize DS in ~ 
the second module; this was.dooe lit the first module. The module ends with 
an END directive; unlike the first module, the END has no oi)erand. 

After saving the registers used; CONVERT begins at line. 11 by adding 
the lowercase letter in AL to the -ZOh stored in byte variable CHAR. This 
converts the letter to upper rase (asswning a lowercase letter was entered). -. 
At lines 12-14, the procedure outputs the final message. Note that the name 
MSG is used in both modules. ' 

Now let's assemble and link the modules. MASM and LINK will be 
in drive C, and the source files In drive A. A is the logged drive. 

A>C:MASM PGM14_3; 

Microsoft (Rl Macro Assembler Version 5 .10 
Copyright CCI Microsoft Corp 1981, 1988. All rights reserved. 

4 9984 + 390317 Bytes symbol space fre'!' 

0 Warni~ Errors 
O Severe Errors · 

A>C :·NASN l'GM14_3A; 

Microsoft (Rl Macro Assembler Version 5.10 
Copyright !Cl Microsoft Corp 1981, 1988. All rights reserved. 

49976 + 390325 Bytes symbol ·space free 

0 Warning Errors 
0 ·severe Errors 
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C:'>LIB MYLIB 

Micros:Jft (Fl) Library Manager Version' 3 .10 
Copyright (CJ Microsoft Corp 1983-1988. A.i.l rl.3h:.:; ;.·"-~"~·.;;.:i. 

Gper~it iv~:;: 

List fi!e-:HYLIB 

When LID asks for a 1ist file,' we reply MYLlli. This 1:re;1tcs a !isling filc MYLlll, 
which looks like· this: · ' 

c::.Type MYLIB 

CONVERT •..•••••••• pgml4 3a 

p;:c.14._ 3a 
.:::ONV£i<T 

Oftset: OOOOOOlOH Code and data size: 291! 

The listing shows the object module names and the procedures they contain. 
In this case, the only object module in the library is PGM l 4_3A.OBJ, and it 
contains only procedure CONVERT. 

For more information about the LIB utility,· rnnsult the Microsoft 
Codei•iew and Utilities manual. · 

Full Segment 
,Definitions 

The ~implified segment definitions that we have been u~ing up till 
now are adequate for most purposes. In this section we wnsidcr the full 
segment definitions. The pr!1~ary reasons for using th.t:m arc as follow~: 

1. Full segment definitions must be used for versions of MASM e:>r· 
lier than version 5.0. 

2. With the full segment definitions, the p•ogrammer <·an i:ontrol 
how segments arc ordered, combined with each other, and 
aligned rel,!ltive to each other In memory . 

. The Segment Directive 

The full form of the segment dirtl·tivc is 

n.::.r:-,a S'£l.2.:Z:NT align ccmbine 'c-~ ass' 

The operands .1lig:1, combine, and class are optional types, and a;e discussrd 
in the next section. To end a segment, we say · 

name ENDS 
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!'or example, we could define a data segment called D_Sf.G as follows: 

D SEG SEGMENT 
; data. goe_~: -~ere 
D SEG ENDS - . 

Now let's look at the segment operands._ 

Align Type 

The align type of a segment declaration determines how the starting 
address of the segment is selected when the program is loaded in memory. 

··· Table l 4.1 giv"c5 the options. 
The significance of a segment's align type may be illustrated by the 

following example. Let SEGl and SEG2 be segments declared like this: 

SE'.'l SEGMENT !?ARA 

i.]L,; 111! DUP ( 1) 

SEGl ENDS 
S2G? SECr-1F:n PARA 

" ..,_ lOH DUP (2) 

SEo:;2 ENDS 

Suppose these segments are loaded sequentially, with SEG 1 being 
a,~igned segment number 1010h. The llh byt~ of SEGl will extend from 
1010:0000h to 1010:0010h. Now, because SEG2 has a PARA align type, it 
begins at the next available paragraph boundary, which is at 1012:0000 = 
1010:0020. Here Ka Dl::BUG display of memory: 

1010:0000 01 01 01 01 01 01 01 01-01 01 01 01 01 01 01 01 
;01o:cc10 en oo oo 00 oo oo oo-o·o oo oo oo oo oo oo oo 
l 'JlO: C020 02 C2 C·2 02 02 02 02 02-02 02 02 02 02 02 02 02 

Wc sec tiler.: is a gap of Fh = 15 bytes (rcprcsentcJ by 00 bytes) fra·m the 
end of SEG 1 to th·e. start of SEG2. This gap represents wasted ~pace; becau_sc 
it is not part of the data ir\ either ~gment. 

Tabl~· 14.1 Align Types 

f'ARA 

BYTE 

WORD 

PAGE 

Seg,;:,ent begins ~t the next available pJragr<1ph (least 
s1gn1f1cant hex digit of physical address is 0). 

Segment be_~rns at the next available byte. 

Segment begins at the next available word (least s1gnif1Cant bit 
-of physical address is 0). 

Segment begins at the next available page (two least 
significant hex digits of physical address are 0) 

PARA is the default align type. 
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No~ suppose I~ segm~1ts a.rc.dl'darl'd as follows: 

SEGl · SEGM£NT PARA 

DB l l H DUP ( l J, 
SEGl ENDS 

"SF.C.? SEGMENT • BYTE 
DB lOH DUP (2(, 

SEG2 ENDS 

where SF.G2 i~ given a BYTE align type. If these segments are loaded sequen­
tially. memory will look like this: 

lCi"tO:o,:oo Cl 01 OJ Cl 01 01 Ol 01-01 01 01 01. 01 Gl Ol \Jl 
lClO: 0010 Cl 02 02 02 02 02 02 02-02. 02 02 02 02 02 02 02 
lo~ o: 0020 02 _oo .oo oo oc oo oo 00-00 oo. oo- oo oo oo oo 00 

The segments have been.combined into a. singh· memory ~egmc·nt 
with no wasted space. 

Combine Type 

Jf a program conwins segments of_the same_n;ime, the co111/Ji11e type 
tells how they are to be combined when the program is lo<idcd in memory. 
Table 14.2 gives the most frequently used choices. 

The assemble.r indicates an error if a stack sc:gment does riot lla,·e a 
STACK combine type. for other segments, if the combine type is omitted 
the progrnm segment is loaded into its own memory 5egml'nt. 

~frequent use of the l'lJ.BI.IC combine 'YPl' is to combine code ~eg­
ments with the same name from differPnt modules into a single code seg­
llK~lt. Thi': 1i1cans tll.1t ·all pro<:edu.rcs ·l:;lll he l}"j>L"d J\ NF.:\ll. ·Sir11ilarly. 
PUBLIC data segmci.its can· be combii1ecr 11110 ;i 'in;: le data \eg1m·nt. f"ht· 
advantage is thilt DS needs only tu be initialized once', and does n(lt 11l'cd 
to he inodified to access any of the J;ita. Tllh is wh<it haJlpened in l'GM I ~-3 
when data seg.lne11ts· were·co;nbined. . . • 

• 
0

• ••• D<.rtil st•g111c111s' iii ·uilfrrc11t ~notlult·~ tJll bl' ;;h·t•11 rlrl' ~;11rrt· 11;,111<· 

and a COMMON combine trpe so that vari;illlc~ in one modull· c<in ~h;m· 

Table 14.2 Combine Types 

PUBLIC Segment~ wrtlr tile ~dlTll! r:dn•f' dre cu11t..it~·r•d',ed (µl"ct·cl u11t: 

, ·, . ·' after· the other) t•) form a·s,·.,1le. ccntrnuous mc>mory block 

' '"COMi•10N - 'Seg"rnen:s wrth the same na1ne hegrn at tl•e same place rn 
memory that 1s, are ovi:rlard 

STACK Has the same< :fe<.t as PUBLIC.· except tllat all off:.et .Jcdre1;'21 

ot instructrons and data.in the segment are relative to the SS 
register SP rs rnitioilizecfto 'the end of° the segment 

AT paragraph lndrcates that the segment should begrn at the specrfied 
paragraph. 
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the same memory locations as variables In the other module. To show how 
COMMON works, suppose we declare 

D SEG SEGMEN7 COMMON 
A DB llH DUP (l) 

D SEG ENDS 

in FIRST.ASM, and 

D_SEG SEGMENT COMMON 
B DB lOH DUP (2) 

D SEG ENDS 

in SECOND.ASM. If the modules are assembled and linked as follows: 

C>LINK FIRST + SECOND; 

then they will be overlaid in memory and variables A and U will be assig111:d 
the same address. The size of the common data scgmt>nt ...... ill be that ul till' 
larger segment (1 lh bytes). However, the values of the !JytL-s will be thosl..' 
that appear in SECOND, because it is the last module mentioned on the 
LINK command line. Memory wi:t look like this: 

... : ·.: ,.,;,.\) ·'/. o:> O? 02 02 02 O.'.-()?. l)2 ()?. 02 02 02 O?. o;o 

. ,: '' : ;Jt' 1t1 lJ I ''0 OC 00 OU OU 00 00-00 '.i0 Ol' 00 00 OC O'.l 00 . 

Class Type 

The cln.(s type of a segment declaration determines the order in 
which segments are loaded in memory. Class type declar;itions must be en­
closed in single quotes. 

If two or more segments have the same clas~. they are loadl·d in 
memory one after the other. If classes arc not specified in sq;mcnt dcdara­
tions, segments are loaded in the order they appear in the source listin!). 

For example, suppose we declare 

C_Sl::G Sl::GMJ::NT 'CODI::' 

;main procedure goes here 
C SEG ENDS 

in module FIRST.ASM, and 

Cl SEG S£GMSNT 'CODE' 

C-1 SE.G ENDS 

in module SECOND.ASM ;incl these arc the only ~l·~mt·nl~ or ,·Ja~' 'l ()JlF.'. 
When the modules arc assemblccl and linked by 

i--
1 

C>LINK FIRST + SECOND 
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then Cl_SEG will. follow C_SEG in :memory. However, there may be a 
-gap between the segments; to eliminate it, Cl_SEG could be given a BYTE 
- align type. · 

The form of an .EXE program with the full segment ddinitions is a 
little different fr~m the way It 'is with simplified segment definitions. Here 
is the standilfd format: · . . 

S_SEG ' SEGMENT 
DB .. 

S_SEG 
- D_SEG 

ENDS 
SEGMENT -

; data goes here 
· D_SEG ENDS•·. 

C_SEG SEGMENT 

ASSUME 
MAIN PROC 

;initialize DS 

STACK 
lOOH GUP (?) 

CS:C_SEG, ss:s_SEG, DS:D SEG 

MOV ·_AX, D ~SEG 
MO\/ '.DS, AX 

; other inst ructi 0n~ 
;dos exit· •· 

MOV • ·AH, 4CH 
• ' INT • 21H · · 

MAIN. ENDP ) 

;other procedures.can go here 

·C"'"SEG ENDS 
END MAIN 

The segme~t name~ i~ this form are arbitrary. The ASSUME directive is un­
fo.miliar, so we need to explain its role here. 

The ASSUME·Directive 

.. . When a program is assembled, MASM needs to be told which seg­
ments are the code, data;· and stack; the,purpose of the ASSUME directive 
is "to associate the CS, SS, OS, and possibly ES registers with the appropriate 
segment. With the simplified segment directives, the segrncmt n:gistcrs are 
automatically assodated with the correct segments, so no ASSUME is needed. 

:However, for programs with data we still need to move the data segment 
number into DS at run.time because, as we noted in Chapter 4, DS initially 
contains the segment ~umber of the.PSP.. 

To show how the full Segment definitions work, we'll use them to 
rewrite PGMl4_3.ASM and PGM14_3A.ASM. We will do this two ways: in 
the first version, we'll use the default. operands of the sc:gment <lirl'ctives . 
. , ·""" ; ) •·I I ·, • ' ' ! 
Program Listing 14_4.ASM:.first Module 
o: ·TI:-L·E PGM14·.· 4 =· ·e:Asc::-c:otivERsroN 

• 1: EXTF.N •'coNVEi<'i:: f"AR .• 
2: ' S~SEG ~ • .'! SEG11_ENT:.. STACK ~ 
3: DB 100 DUP (0) 
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4: s SEG ENDS -
5: D_SEG SEGMENT 
6: MSG DB 'ENTER A LOWERCASE LETTER:$' 
7: D SEG ENDS -
8: c SEG SEGMENT -
9: ASSUME CS:C_SEG,DS:D_SEG,SS:S_SEG 
10: MAIN PROC 
11: MOV AX,D_SEG 
12: HOV DS,AX ;initialize DS 
13: MOV AH,9 ;display string (Cl> 

14: LEA DX, MSG ;get MSG 
15: INT 21H ; display it 
16: MOV AH,l ;read char fen 
17: INT 21H ;input char 
18: CALL CONVERT ;convert to uppercase 
19: MOV AH,4CH 
20: INT ~lH ;dos exit 
21: MAIN ENOP 
22: c SEG ENOS -
23: END MAIN 

Program Listing 14_4A.ASM: Second Module 
24: TITLE PGM14_4A: CONVERT 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
36: 
39: 
40: 
41: 
42: 
43: 
4 4: 
45: 
46: 
47: 

PUBLIC CONVERT 
D_SEG SEGMENT 
MSG DB ODH,OAH,'IN UPPERCASE IT lS . 
CHAR DB -20H, '$' 

D_SEG ENDS 
C SEG SEGMENT 

ASSUME CS:C_SEG,DS:O_SEG 
CONVERT PROC FAR 
;converts cna.r in AL to uppercase 

PUS!! 
PUSH 
MOV 
MOV 
ADD 
MOV 
LEA 
INT 
POP 
POP 
RET 

CONVERT ENDP 
C SF.G ENDS 

END 

OS 
DX 
DX,D_SEG 
DS,DX 
CHAR, AL 
AH,9 
DX, MSG 
21H 
DX 
OS 

; save OS 

;.:ind DX 
; reset DS 
; to local data segment 
;convert to uppercase 
;display string fen 
;get MSG 

;display it 
; restore DX 
; and OS 

Note the following: 

1. We cho~~ the same name C_SEG for the code segments in both 
modules, but because they don't have combine type PUBLIC, 
they will occupy separate memory segments when the modules 
are membled and linked. ThJs mearu procedure CONVERT must 
be typed as FAR (lines 1, 32). 
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2. Because the. data segments are also not PUBLIC, they occupy sepa­
rate ·memor)' 'segments. thls means procedure CONVERT needs to 
change DS in order to access the data in the second module (lines 
36, 37) .. We use DX (instead of AX) to move the segment number 
into OS, because CONVERT receives its input in AL 

After assembling and linking the modules, let's look at the .MAP file 
(Figure 14.3). TI1e segments appear in the order they appear in the source 
listings. Because-the segments were defined with the default (PARA) align 
t)lpe, there are gaps between·them. 

Now let's rewrilc the pwceding modules to lake full adv;mtag.., of 
the SEGMENT directives. Here are the requirements: 

1. The code segments from the two programs are combined into a 
single ~gmcnt, as are the data segments. 

2. Gaps between segments arc eliminated. . 
3. The order of the segments in the final program is: stack, data, code. 

Program Li:oting 14_5..ASM: First Module 
0. TITLE PGMi4_5: CASE CONVERSION 
l: EXTRN 

2: S_SEG 
3: 
q; S_SEG 

CONVERT:NEAR 

SEGMENT STACK 

DE 100 DUP (0) 

ENDS 

5: D_SEG SEGMENT BYTE PUBLIC 'DATA' 

6: MSG 

7: D_SEG 

a: c..:_sEG 

9: 

DB 'ENTER A LOWERCP.S::: LETTER'l- $' 

ENDS 

SEGMENT BYTE PUBLIC 'CODE' 

10: MAIN 
11: 

ASSUME cs: C_SEG, os·: D_SEG, SS: S_SEG 
PROC 

12: 
13: 
H: 
15: 

.16: 
17: 
18: 
19: 
20: 

MOV 

MCV 
MOV 

LEA 

INT 

AX,D_SEG 

OS, AX. 

AH,9 
DX, MSG 

21H 

MOV .• _AH, 1 
INT . 21H 
CALL CONVERT 

MOV AH, qcH 

INT 21H 
21 : MAIN END? 
22: C_SEG. Em)s 

23: EHD MAIN 

Start Stop 
OOOOOH 00063H 
00070H 0008AH 
00090H •• OOOA9H 
OOOBOH' OOOC7H 
OOOOOH · OOOESH 

Length 
00064H 
0001BH 
0001AH 
00018H 
00016H 

Name 
· S_SEG 
,O_SEG 
C...SEG 
D_SEG 
C_SEG 

Program entry· point at 0009:0000 ·. '· 

; lnit·iuli1.<? o;, 
;display stri~g fen 
;4.;:; MSG 

;display it 
; read char fen 
; input char 
; convert t<:> uppercase 

;dos exit 

Class 
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Figure 14.4 PGM14_5.MAP 

Program Listing 14_5A.ASM: Second Module 
0: TITLE PGM14 SA: CONVERT 
l: 
2: 
3: 
4: 

5: 
6: 
I: 

PUBLIC 
D_SEG 
MSG 
CHAR 
D SEG 
C_SEG 

CONVERT 
SEGMENT BYTE PUBLIC 'DATA' 
DB ODH,OAH,'IN UPPERCASE IT I:: , 
DB -20H, '$' 
ENDS 
SEGMENT BYTE PUBLIC 'CODE' 
ASSUME CS:C_SEG,DS:D~SEG 

8: CONVERT PROC NEAR 
9: ;converts char in AL to uppercase 
1 0: 

11 : 
12: 

l 3: 

1 4 : 

: 5: 
16: 
: 7: 

l 8: 
i 9: 

CONVERT 
C SEG 

PUSH 
AuD 
MOV 
LEA 
INT 
POP 
RET 
ENDP 
ENDS 
END 

DX 
CHAR, AL 
All, 9 
DX,MSGl 
21H 
DX 

;convert to uppercase 
;display 5tring fen 
; get MSGl 
; display it 

As before, we as~L·mble and link the modules. Figure 14.4 shows the 
.MAP file. It shows tha: the data and code segments of the two modules 
have been combined into single segments with no gaps between them. Here's 
how the SEGMENT operands were used: 

1. By using the same names for code and data segments in the two 
modules, and using a PUBLIC combine type, we formed a pro· 
gram Consisting of only three segments. Also, gaps were ellml· 
nated by using a BYTE align type. Because the PUBLIC combine 
typ<.> causes segments with the same name to ue concatenated, 
the use of class types 'CODE' and 'DATA' is actually redundant. 

2. Becau~e the data for both modules now form a single segment, it 
wasn't necessary to reset OS in procedure CONVERl: and CON­
VERT doesn't need to save and restore DS. This Is the primary rea­
son for combining data segments. 

3. Because there is now only one code segment, we can give CON­
VERT a NEAR attribute. 

Start Stop Length 
OOOOOH 00063H 00064H 
00064H 00096H 00033H 
00097H • OOOBDH 00027H 

Name 
s_SEG 
D_SEG 
C_SEG 

Proqram entry point at 0009:0007 

Class 

DATA 
CODE 
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Now that we have seen. the full segment definitions, we can say more 
about the features of the simplified segment directives that we havc been 
using throughout the book. 

First, as we saw in section 4.7.l, a memory model must be specified 
when the simplified segment definitions are used. The choice of memory model 
depends on how many code and data segments thcrc arc. The synt.1x i~ 

,, I ,f • ·'' ' 

, .MODEL - memcry_model • · 

where menwry_mmkl is one of tlw dwi~·l'' lisll'J in ·n1blc 14.J. Unlc." l hl0 ll' 
is a lot of code or data, the .SMALL model is adequate for most assembly 
language programs. · 

· Second, for the SMALL model, Table 14.4 gives the simplified ~egments, 
their default ifames arid align, combine, and class types. In addition to the 
.CODE, .DATA, and .STACK segments we have bc<l9 using, uninitialized data 
can be declared in a separate .DATA? segment, and dJta thJt won't~ changed 
by the program may be placed in a .CONST scgment. For examrll'. 

.MODEL SMALL 

.!JTACK 1 OOtl 

.DATA 
x ow 

- . 
. DATA? 

y ow 
.CONST 

MSG DB 

Table 14.3 Memory Models 

Model 

SMALL 

MEDIUM 

COMPACT 

·LARGE 

HUGE 

'HELL::JS' 

De_st:ription 

Code 1n one segment 
Data in one segment 

Code in more than one segment 
Data 1n one segment 

Code 1n one segment 
Da.ta-1n more than one segment 

Code in more than one segment 
Data in more than one scqment 

_No array larger than 64 KB 

Code in more than one segment 
D,1ta 1n more than one scqment 
Arrays may be larger than 6~ K[l 

Table 14.4 SMALL Model Segments· 

Default 
Segment ·'.·Name Align Combine Class 

CODE ' TEXT WORD PUBLIC "CODE' -
DATA DATA WORD PUBLIC 'DATA' 

.DATA' _BSS WORD PUBLIC ·sss· 

.STACK STACK PARA STA~K "STACK' 
CONST CONST WORD PUBLIC "CONST" 
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14.5 
Passing Data 
Between Procedures 

14.5 ... 1 
Global Variables 

.CODE 

MAIN 

MAlN 
END 

PROC 

ENDP 

MAIN 

Herc the usual initializing statements 

MOV AX,@DATA 
MOV D.S,llX 

allow the program access-to the .DATA, .DATA?, and .CONST segment~. This 
is !>ecause LINK actually combines these program segments into a single 
memory segment. 

Third, for the .SMALL model, when .CODE is used to define code 
segments in St'Jlaratcly assembled modules, these segments have the same 
default name LTEXT) an::! a PUBLIC combine type. Thus when the modules 
are linked, the code segments combine into a single code segment; likewise, 
segments defined with .DATA combine into a single data segment. We saw 
a demonstration of this in PGM14_3. 

In section 8.3, we briefly di§.Cllssed the problem of passing data be­
tween procedures. Cecause assembly language procedures do not have asso­
ciated parameter lists, as do high-level language procedures, it ·is up to the 
programmer to devise strategies for passing data between them. SO far, we 
have been passing data to procedures through registers. 

We have u~ed the EX"ffiN and PUBLIC directives to show how a 
procedure defined in one module can be called from another. We can also 
use these directives to have variables defined in one module and referred to 
in another. Followi11g l\igh-lcvcl language practice, these variable~ arc c.alk'll 
glubal variables. An ad\•antage of using global vJriables Is that procedures 
need not use additional instructions to move data between thern5elves. 

As an example, the following program prints a user prompt, reads 
two decimal digits whose sum is less than 10, and prints them and their sum 
on the next line. This problem was exercise 4.7. 

Program Listing 14_6.ASM: First Module 
0: TlTL2 PGM14_6: ADD DIGITS 

' · EXTRN ADDNOS: 
2: 
3: 

~: 

PUBLIC 

.MODEL 

.STACK 

S: .DATA 

DIG:a", 
Sl".ALL 

lOOH 

!>!".AR 
DIGIT2, st···: 

0: MSG DB 

7: MSGl DB 

'Er:·n::F Tl'. r:GI~S:S' 

o:,il, r;H •• TJJ;_. ->UM OF • 

e: DIGITl .DB 

9: DB AND ' 

10: DIGIT2 DB 

11: DE ' IS 
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12: 
13: 

14: 
15: 
16: 
17: 
18: 
19': 
20: 
2,1: 
22: 
23: 
24: 
25: 
26: 

SUM DB -30H,'$' 

.CODE 

MAIN PROC 

;initialize OS 

MOV AX,@DATA 

MOV DS,AX 

;prompt user 
MOV AH, 9 

LEA DX, MSG 
INT 21H 

; re.id two di9its 
MOV 
INT 
MOV 

INT 

AH,l 
21H 
DIGITl,AL 
21H 

27! HOV_. OIGI:'2!AL, 
.28: ';'add the digits 

29: CALL ADDNOS 
_ 30: • ;di-~pl~Y. result's~, · 
31; 

0

LEA' . DX, MSGl 

32: MOV AH,?, 
33: INT 21H 

34: . MOV AH,4CH 

J5: INT :ilH 

36: MAIN ENDP 
"-37: .• - END•· MAIN 

. ; initialize OS 

;display string fen 

;get prompt 
;displ.:iy it 

; input char fen 
;·char. in AL 

; store in DIGITl 
;char_ in AL. _ 
; store in- oiGIT2 

;add nos 

; output result 

;dos exit 

The digits and their sum are contained in variables DIGIT!, DIGIT2, 
and SUM, declared in the first module. In line 2, they are declared PUBLIC 
so that external procedure ADDNOS can have access to them. ,_ 

Pr0gram Listing 14_6A.ASM: ·SeCOnd Module 
0: TITLE PGM14_6A: ADDNOS . 
l: EXTRN DIGITl:BYTE, DIGIT2:BYTE, SUM:BYTE 

2: PUBLIC ADDNOS 
3: . MODEL SMALL 
4: .CODE 
5: ADDNOS PROC NEAR 
6: ;add_s two digits 
7: ;input: byte variables DIGITl, DIGI.T2 in PGM14 4 
a: ;output: byte ':-ariable suM in PGMl 4_ 4 
9: ·PUSH AX 

10: 
11: 
12: 

• 13: 

MOV : AL, DIGITl 
ADD AL, DlGI1'2 

·ADD SUM, AL 
POP • ·r,x 

14: RET-. 

15: ADD NOS • - ENDP 
'END 

DIGITl,· DIGITT, and SUM appear in the .~econd module's EXTRN list, line 
~-_The procedure ~dds them (actually, it_ adds the ASCII codes of the digit 

~ charactel'S), then adds the sum to the -JOh that has been stored in variable 
SUM. This puts ·the ASCII code of the sum in SUM. 
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Sample l!XC'C11tio11: 

C>PGM14_5 
F;:;·;:-9 '.~"t'r"'I ;"'·~';I fS:26 

T!!F ::l'M IJf 2 <cND 6 IS 8 

14.5.2 

Passing the Addresses 
of the Data 

A second method for passing data to a procedure is to send the 
address of the data. This method is known as call by reference; it is par­
ticularly useful when dealing with arrays. Call by reference is different from 
call by value In which the actual data values are passed to the called pro­
cedure. Both methods can be used in the same procedure; for example, the 
sclectsort procedure discussed in section 10.3 receives tht> address of the array 
to be sorted In SI (call by reference), and the numher of elements In the array 
in RX (call by value). 

Here is the program to add two digits using call by reference. 

Program Listing 14_7.ASM: First Module 
() ! TITLE PGMl 4 7: ADD DIGITS 

l : EXT RN ADDNOS: NEAR 

2: .MODEL SMALL 
3: .STACK lOOH 

4: .DATA 

s: MSG DB 'ENTER TWO DIGITS:$' 
I;: MSGl Dfl OOH, OAH;' THI:: SUM OF 
7: OIGITl 08 ? 

8: DB . ANO . 
9: DIGIT2 DB ? 
iO: DB IS . 
11 : SUM DB -301!,'$' 

12: .CODE 
13: MAIN PROC 
14: ;initialize OS 
l:.: MOV AX,@DATA 
16: MOV DS,AX ;initialize OS 
l 7: ; di :;play prompt 
~ 8: MO\/ AH,9 ; display string function 
19: LEA DX, MSG ;get prompt 
.70: INT 21H ;display it 
2]: ;read t.wo digiLS 
::?2: MOV AH, 1 ;input char function 
23: INT 21H ;char in /IL 
2~: MOV DIGITl,AL ;store in DlGll'l 
25: INT 21H ;char in AL 
26: MOV DIGIT2,AL ;store :n DIGIT2 
27: ;add them 

28: LEA S!,DIGITl ;SI has of !set of DIGITl 
29: LEA DI, D IGIT2· ;DI has offset of OIGTT2 
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'30: LEA l•X, :>UM ; ax has offset of SUM 

31: CALL l1DD'l< S ;add nos 

32: ;display results 
33: MOV J,H, ') ;display string fen 

34! LEA l'X, MSGl ;DX has mes5w'1e 
35: INT ~'.lH ;output result 

36: ;,dos exit 
37: MOV AH,4CH 

38: INT 21H 

39: MAIN ENDP 
' - 40: END l".AIN 

At llnes 28-30, the addresses of the DIGITI, DIGITZ, and SUM arc passed to 
• procedure ADDNOS in pointe_r registers SI, DI, and BX. 

Pro_S1ram Listing 14_7A.ASM: Second Module 
0: TITLE PGM14_7A: ADDNOS 
l: PUBLIC ADDNOS-
2 : . MODEL ~MALL 

3: .CODE 
4: 'MONOS PROC • NEAR 
5: ;adds two digits 
6: ; input: SI = address of DIGITl 
7: DI = offset of DIGI".:2 
8: BX = offset. of SUM 

9· ;output: [BX] 

10 :_ PUSI! 

l i': MOV 
12: ADD 
13: ADD 

14: P,OP 
15: RET 
16: ADDNOS ENDP 
l 7: END 

= sum 
AX 
AJ,, [SI] 
AL, [DI J 
[BX] ,AL 

_AX 

; 1,1, has DIG! Tl 

; /,L has DIG! Tl + DIGIT2 

;.:>tld to SUM 

In lines ll and ·12, ADDNOS uses indirect addressing to place the sum of 
digits in AL. In line 13, indirect addressing is used to ,,.id the sum to the 
-30h in variable SUM. · 

Instead of using registers, a procedure can place data values and 
addresses on the stack before calling another procedure. The called procedure 
then uses BP and· indirect addressing to access the data (recall from section 

i-10.2.1 that if BP is used in register indirect mode, SS has the operand's seg-
• ment number). This method is used by high-level languages to pass data to 
• assembly Jangu;igi! procedures; we use it in Chapter 17 to impleml'lll recur­

sive procedures (procedures that call themselves) . 
• < • Because the CALL instruction causes the return address to he placed 
·on top of the stack, the called procedure begins by saving BP on thl· stack, 
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then it moves SP to BP; this makes BP point to the top of the stack. The 
resulting stack looks like this: 

(original BP) - BP 
return address 

SP-

data 
data 

data 

Stack 

Now BP may be used with indirect addressing to access the data (we 
use ~p because SP can't be used in indirect addressing). To return to the 
calling procedure, BP is popped off the stack and a RET N is executed, where 
N is the number of data bytes that the calling procedure pushed onto the 
stack. This restores CS:IP and removes N more bytes from the stack, leaving 
ii in its original comlition. 

Here Is the program to add ~o digits using this method: 

Program Usting 14_8.ASM: First Module 
0: TITLE PGM14 8: ADD DIGITS 
l: 
2: 
3: 
4: 
5: 
6: 
7: 

8: 
9: 
10: 
11: 

12: 
13: 
14: 
15: . 

16: 
1 7: 

.18: 

19: 

20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31:. 
32: 

EXT RN ADDNOS: NEAR 
.MODEL SMALL 
.STACI( !OOH 
.DATA 
MSG DB '.ENTER TWO DIGITS:$' 
MSG! DB ODH,OAH,'THE SUM OF . 
DIGIT! DB ? 

DB ' AND ' 
DIGIT2 DB ? 

DB ' IS ' 
S.UM DB -30H,'$' 
.CODE 
MAIN PROC 
; initialize DS 

MOV AX, @DATA 
MOV DS,AX 

;display prompt 
MOV AH, 9 

; read 

;add 

LEA 
INT 

DX, MSG 
21H 

two digits 
MOV AH,l 
INT 21H 
MOV DIGITl,Al. 
PUSH AX 
INT 21H 
MOV DIGIT2,AL 
PUSH AX 

the digits 
CALL. ADDNOS. 
ADD SUM, AL 

; display results 

; initialize OS 

;display string function 
;ge.t prompt 
;display it 

;input cha• function 
; char in AL 
; store in DIGITl 
;save on stack 
;char in AL 
; store in DIGIT2 

, ; save on staclt 

; AX has sum 
; store sum 
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33: MOV AH,9 ,. r, ;'display string fen 
34: LEA DX,MSGl -~:::>X has message 
35: .:'.ilNT 21H ;output result 

_ 36: ";dos exit 
37.: - MOV AH,4CH 

.38: ' INT 21H ~ . 

39: MAIN ENDP .. 
40: END MAIN 

At lines ztl-28, the two digits a'ie read, stored, and pushed onto the stack 
(because PUSH requires a word operand, we have to push AX). At line ~O • 

• ADDNOS is called to add.the digits; it returns with the sum in AL, and this 
ls added to the -30h in SUM. 

- . 
Program Listing 14_8A.ASM: Second Module 
0: TITLE PGM14_8A: ADDNOS 
l: PUBLIC ADDNOS 
2 :r · .MODEL. SMALL 
3: .CODE·. 
4 : ADDNOS. PROC NEAR 
5: :·;adds two"digits 
.6: /stack on entry: ret. addi: (top), digit2, di<Jitl 
7: 
8: 
9: 
10: 
11: 
12 :: 

·13: 

;output: AX 2 

PUSH 
MOV 
MOV .. ADD 

·POP 
RET 

~ 

14: ADDNOS ENDP 
15: . END 

sum 
BP . ;save BP 
BP,SP ;DP pts 

. AX, IBP.+6] ;AL has 
AX, (BP+4 ]" ;AL has 
BP ;restore 
4 ;restore 

At line 9, the stack looks like 'this: 

SP (original· value of BP) 
return address 
DIGIT2 (low byte) 
DIGIT1 (low byte) 

Stack 

to stack top 
DIGITl 
SUM 
DP 
stack, exit 

- BP 

DIGITl and DIGIT2 arc in the low bytes of the words on thl' stJck. 
,. Aft<;r adding them, BP is popped and the procedure executes a RET 4, which 

removes the two data words from lhe stack. .. . 
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Summary 

• 111 a .COM format program, stack, data, and code all fit into a sin­
gle segment. A .COM program takes up much less disk space than 
a comparable .EXE program, but the fact that code, data, and 
stack must all flt into a single segment limits its versatility. 

There are two kinds of procedures, NEAR and FAR. A NEAR proce­
dure is in the same code segment as the calling procedure, and a 
FAR procedure is in a different segment. When a FAR procedure is 
called, both CS and IP are saved on the stack. 

• The EXTRN pseudo-op is used to inform the assembler of the exis­
tence of procedures and variables that are defined in another as­
sembly module. 

• A procedure must be contained In an assembly module, which 
consists of at least one segment definition. MASM t~anslates an as­
sembly module Into a machine language object (.OBJ) module. 

The PUBLIC pseudo-op is used to Inform the assembler that cer­
tain names a module may be referred to In another module. 

• The LINK program combines object modules into an executable 
machine language program·. It matches EXTRN decl'!ratlons In ob­
ject modules with PUBLIC dt·clarations in other object modules. 

· , • The LIB program can be used to create and maintain a file of ob­
ject modules. 

• The SEGMENT directive may have align, combine, and class types. 

The align type determines how the segment's starting address will 
be selected when the program is loaded in memory. 

• The combine type determines how segments of the same name 
are to be combined in memory. 

If two or more segments have the same class, they arc loaded 
sequentially in memory. 

Procedures in different modules can communicate through global 
variables. Other methods are call by value or call by reference; 
the calling procedure can implement these methods by placing 
data value~ and addrt·s~cs in registers, or pushing them onto the 
stack. 

Glossary 

assembly module · 

c:all by reference 

call by value 

An .ASM file consisting of at least one seg­
ment definition 
Communication with a procedure by pass­
ing it the addresses of variables contain­
ing the data the procedure needs 
Communication with a procedure by pass­
ing the procedure the actual data values 
it needs 
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.COM program A program in which the code, data, and 
'stack segments coincide 

(" 

·global variable A variable that is declared as PUBLIC, ~o 
it can be accessed by statements in other 
program modules 

object module_ The .OBJ file that MASM creates b)' assent- -
bling an assembly module 

New Pseu~~Ops. 

ASSUME 
.CONST 
.DATA? -

Exercises 

EXTRN 
ORG 

1. .. Suppose a J>:rogram contains the lines 

CALL PROCl 
MOV AX, BX 

PUBLIC 
SE:GMl'tJ1' 

and (a) i~struction MOV AX,BX Is stored at 08FD:0200h, Cb) 
PROCl Is aFAR procedure that begins at 1000:020011, and (c) SI' 
= OlOAh. I .• 'i • ' .. , - ·•• 

- What are the contents of CS, JP, and SP just after CALL J>ROCl is . 
.. _.executed? What word is· on top of the stack? 

2: Suppose' SP =·OOFAh, cS = 'tOOOh, top of stack= 0200h, next 
·' word on the stack = OSFDh. What are the contents of CS, IP and 

SP after the following happens: 

a. After RET is executed, where RET appears in a NEAR procedure. 

b. After RET is execute:!, where RF.T appears in a FAR procedun•. 

c. After Rf:.T 4 is executed, whL·rc RET appear.. in a NIJ\H pron·Jurc. 

Programming Exerdses 

3. Consider a program that docs the following: 

The main procedure MAIN displays the message "INSl()E 
MAIN PROGRAM", calls procedure PROCI, and exits to DOS. 

• PROCl displays the message "INSIDE l'ROCI" on a m•w lim·, 
calls procedure PROC2, and returns to MAIN. 

• l'ROC2 displays the message "INSIDE PROC2" on a new line 
and returns to PROCl. 

Write this program in the following ways; 
a. As ;1 .COM program. 

b. As an .EXE program in which PROCI and l'ROC2 are l\!E.All 
procedures cont.:iincd in stparately assembled modules. Lich 
prucC<.lure's module contains the message that the prc><.:cu11n: 
displays. 
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c. As an .EXE progr;im in which the PROCI and PROC2 arc FAR 
procedures cont;iined in sep;irately assembly modules. Each 
procedure's module contains the message that the procedure 
displays. 

d. As an .EXE program In which the three messages are con­
t~ined in MAfN's module a1id declared PUBLIC there. The 
other procedures arc NEAR procedures contained in separately 
assembled modules. These procedures refer to the appropriate 
messages via an EXTRN directive. 

e. As ::in .EXE program in which the three messages are con­
tained in MAIN's mOdule. PROCI and l'ROC2 are separately 
••ssembled NEAR procedures. Before calling PROCl, MAIN 
places the addresses of the messages "INSIDE PROCl" and 
"INSIDE PROC2" in SI and DI, respectively. 

f. As an .EXE program in which the thrl'C messages are con­
tained in MAIN's module. PROCI and PROC2 are separntely 
assembled NEAR procedures. Before calling PROCl, MAIN 
pushes the addre~scs of the messages "INSIDE PROC2" and 
"INSIDE PROCI" onto the stack. 

4. The position of a substring within a string Is the number of bytes 
from the beginning of the string to the start of the substring. 

Write a separately assembled NEAR procedure l'IND_SUllST that re­
ceives the offset addresses of the first string in SI and the second 
string iri DI and determines whether the second string is a substr­
ing of the first; if so, flND_SUBST returns its position in AX. If 
the second string Is not a substring of the first string, the proce­
dure returns a negative number in AX. 

Write a program to test FIND_SUBST; the testing program reads 
I.he strings, calls flND_SUBST, and displays the result. This prob­
lem is a variation of PGMl 1_5.ASM. 
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BIOS and. DOS 
Interrupts 

Overview 

15.1 
lnterruot Service 

In ·previous chapters, we used the INf (interrupt) instruction to call 
system routines. In this chapter, we discuss different kinds of interrupts and 
take a closer look at11he .opera lion of tilt' INT inst ruction. In ~cclions 15.2 

. and 15.3, we discuss the services provided by various lilOS (l>asic Input/out­
put systems)'and_DOS interrupt routines. 

To demo'ristrate the. use of interrupts, we win write a program that 
displays the current time on the screen. There are three versiom: the first 
version simply displays the time and then terminates, the second version 
shows the lime updated ·every second, and the third version is a memory 
res!dent program that can be called up when other programs are running. 

Hardware Interrupt 

, The noti911 of interrupt ol·iglnally was conceived to allow hardware 
devices to interrupt the'opcration'of the CPU. For example, whenever a key 
is pressl'd, the 8086 must be notified lo read a key code into the keyboard 
buffer. The gc1'1cral bardw<&rc intcrru1,t goes like this: (1) a han.lware that 

. needs service sends an intcrru1>t request sibrnal to the processor; (2) the 
8086 ·suspends the current task it is executing and transfors. control to an 
interrupt routine; (3) the interrupt routine services the hardware <fcvicl' 
by performing some 1/0 operation; and (4) control is transferred back to the 
original executing task at the point where it was suspended. 

309 
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15.1.1 

Interrupt Vector 

Some questions to be answered are how does the 8086 find out a 
device is signaling? How does it know which interrupt routine to execute? 
Hc•w docs it resume the previous task? 

Because an interrupt signal may come at any time, the 8086 \:hecks 
tor the signal after executing each instruction. On detecting the Interrupt 
signal, the 8086 acknowledges it by sending an interrupt acknowledge 
si~•nal. The interrupting. device responds by sending an eight-bit nµmber 
on the data bus, called an lntcrrupt number. Each device uses a different 
interrupt number to identify its own service routine. The process of sen~ing 
control signals back and forth is called hand-shaking; it is needed to Iden­
tify the interrupt device. We say that a tyi>e N interrupt occurs when·a device 
U)es an interrupt number N to interrupt the 8086. 

The transfer to an interrupt routine Is similar to a procedure call. 
Bdore transferring control to the interrupt routine, the 8086 first saves the 
address of the next instruction on the stack; this is the return address. The 
8086 also saves the fLAGS register on the stack; this ensures that the status 
of the ~uspended task will be re~tored. It is the responsibility of the Interrupt 
routine to restore any registers it uses. 

Before we talk about how the 8086 uses the interrupt number to 
locate the interrupt routine, let's look at the other kinds of interrupts. 

Software Interrupt 

Software interrupts arc used by programs to request ~ystem services. 
A software interrupt occurs when a program calls an interrupt routine 
using the INT instruction. The format of the INT instruction is 

INT interrupt-number 

The 8086 treats this interrupt number in the same way as the interrupt 
number generated by a hardware device. We have already given a number 
of examples of doing 1/0 with INT 21 h. 

Processor Exception 

There is a third kind of interrupt, called a processor exception. A 
. processor exception occurs when a condition arises inside the processor, such 

as divide overflow, that requires special handling. E<ich condition corre· 
sponds to a unique interrupt type. For example, divide overflow Is type 0, 
so when overflow occurs in a divide instruction the 8086 automatically ex­
ecutes interrupt 0 to handle the overflow condition. 

Next we t<ikc on the ;iddress calculation for interrupt routines. 

The interrupt numbers for the 8086 processor are unsigned byte val­
ues. Thus, it is possible to specify ;i total of 256 types of interrupts. Not every 
interrupt number has a corresponding interrupt routine. The computer man­
ufacturer provides some hardware device service routines in ROM; these are 

. the BIOS interrupt routines. The high-level system interrupt routines, like 
INT 2lh, are part of DOS and are loaded into memory when the machine 
is started. Some additional interrupt numbers are reserved by IBM for future 

· use; the remaining numbers are available for the user .. See Table 15.1. 
The 8086 does not generate the interrupt routine's address directly from 

the Interrupt number .. Doing so would mean that a particular interrupt routine 
must bl: plated in exactly the Silme location in eve!):' computer-an impossible 
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•

1 Table 

Table 15.1 Interrupt Types 

Interrupt Types _0-1 Fh: 
Interrupt Types 20h'."'3Fh: 
1~.terrupt Types 41Jh-7Fh:. 

Interrupt Types soh-Foh:"' · 
Interrupt Typ'es F 1 h-FFh:' 
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BIOS Interrupts 

DOS Interrupts 

reserved 

ROM BASIC 
not used 

task, given th~ riumber 6£ computer models and updated versions of the 
routines. Instead, the 8086 uses the interrupt number to calculate the address 
of:a memory-location that contains the actual address of the interrupt rou­
tine. This means that the routine may appear anywhere, ·so long as its address, 
called ·an intt:rrupt_ vei::tor, is stored in a predefined memory location. 

All interrupt v~tors are 'placed in an interrupt "ector table, 
which occupies the first 1 KB of memory. Each interrupt vector is given as 
segment:offset and occupies four bytes; the first four bytes of memory con­
tain interrupt vector 0. See Figure 15.1. 
' To find the vector for an Interrupt ·routine, we simply multiply the 
interrupt ni.imrn;·r by 4. This gives the.memory location containing the offset 
of the routine; the segmerit address of the routine is In the next word. For 

' example, tak.e interrupt 9, the keyboa'rd interrupt routine: the offset address 
is stored in location 9 x 4 = 36 = 00024h, and the segment address is found 
in loca'tion 24h +' 2 ='00026h: BIOS Initializes its in.terrupt vectors when the 

.computer is turned on, a'nC:i the DOS interrupt vectors are initialized· when 
DOS is loaded. ' 

Address . Memory wo~ds 

I- . 
. ...,: 

~t--~~~~~~~~ 

003FE Seg,;;ent of INT FF 

: 003FC I Offset·of INT Ff 

,,, .-
.. 

't; .•., 

00006 Segment of INT 1 

00004 Ottset'of INT 1 

00002 . Segment of INT 0 
• u • . ... ·-

00000 °0ffset of INT 0 
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15.1.2 
Interrupt Routines 

15.2 
BIOS Interrupts 

Let's see how the 8086 ·executes an IJIIT instruction. First, it saves 
the flags by pushing the contents of the FLAGS register onto the stack. Then 
it clears the control flags IF (Interrupt flag) and TF (trnp flag); the reason for 
this action Is explained later. Next it saves the current address by pushing 
CS and IP on the stack. Finally, it uses the interrupt number to get the 
interrupt vector from memory and transfers control to the interrupt routine 
by loading CS:IP with the interrupt vector. The 8086 transfers to a hardware 
interrupt routine or processor exception routine in a similar fashion. 

On completion, an interrupt routine executes an IRET (interrupt 
return) instruction that .restores the IP, CS, and FLAGS registers. 

The Control Flags IF and TF 

The control flags IF and TF play an important role in the interrupt 
process. When TF is set, the 8086 generates a processor exception, interrupt 
type 1. This interrupt is used by DEBUG in executing the T (trace) command. 
To trace an instruction, DEBUG first sets the TF, and then transfers control 
to the instruction to be traced. After the instruction is executed, the processor 
generates an interrupt type 1 because TF is set. DEBUG uses its own interrupt 
1 routine to gain control of the processor. 

The IF is ·used to control hardware interrupts. When IF is set, hard­
ware devices may interrupf the 8086. External interrupts inay be disabled 
(masked out) by clearing IF. Actually, there is a hardware interrupt, called 
NMI (nonmaskable Interrupt) that cannot be masked out. 

Both TF and ff are cleared by the processor before transferring to an 
!nterrupt routine so that the routine will not be interrupted. Of course, an 

'interrupt routine can change the flags to enable interrupts to occur during 
its execution. 

As indica_ted in Table 15.1, interrupt types 0 to lFh are known as 
BIOS interrupts. This is because most of these service routines are BIOS rou­
tines residing in the ROM segment FOOOh. 

ln.terrupt Types 0-7 

Interrupt types 0-7 are reserved by Intel, with types 0-4 being pre­
defined. mM ~ses type 5 for print screen. Types 6 and 7 are not used. 

Interrupt 0-Divide Overflow A type 0 interrupt is generated when a· DIV 
or IlJIV opNation produces an overflow. The interrupt 0 routine displays the 
message "DIVIDE OVERFLOW" and returns control to DOS. 

Interrupt 1-Single Step As discussed In the last section, a type 1 interrupt 
is generated when the TF is set. 

Interrupt 2~onmaskab/e lnt~rrupt Interrupt 2 is the hardwar~ interrupt 
that cannot be masked out by clearing the IF. The JBM P.C uses this Jnterrupt 
to signal memory ;md 1/0 parity errors that indicate bad chips. 
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Interrupt 3-Breakpoint:.The INT J instruction is the only single-byte in­
' terrupt .instruction (opcode eeh); other interrupt instructions are two-byte 
. instructions. It is possible to insert an IITT 3 instruction anywhere in a pro­
-gram by replacing an existing opcode. The DEBUG program uses this feature 
to set up breakp0ints for the G (go) command. 

. . ' 

Interrupt 4-0verllow A type 4 interrupt is generated by the instruction 
· 1mo (Interrupt if overflow) when OF Is set. Programmers may write their 
own interrupt routine to handle unexpected overflows. 

Interrupt ~rin-t Screen The BIOS interrupt 5 routine sends the video 
screen information to the printer. An INT 5 instruction is generated by the 
keyboard interrupt routine (interrupt type 9) when the PrtSc (print screen) 
key is pressed: 

Interrupt Types Bh-Fh 

, . The 8086.has only one terminal for hardware interrupt signals. To 
allow more devices to Interrupt the 8086, IBM uses an interrupt controller, 
the Intel 8259 chip, which can Interface up to eight devices. Interrupt types 
S-Fh are generated by hardware devices connected to the 8259. The original 
version of the re uses only interrupts 8, 9, and Eh. 

Interrupt 8-Timer The IBM re contains a timer circuit that generates an 
Interrupt once every 54.92 milliseconds (about 18.2 times per second). The 
ll!OS interrupt 8 routine services the timer .circuit. It uses the timer signals 
(ticks) to keep track of the time of day. · 

Interrupt 9-Keyboard This interrupt (9) is generatc<.1 by the keyboard each 
time a key is pressed or released. The lllOS interrupt 9 routine reads a scan 
code· and stores it in.the keyboard buffer. 

Interrupt E-Diskette Error The BIOS interrupt Eh routine handles disk­
·.eite errors .•. 

Interrupt Types 10h-1Fh 

The interrupt.routines iOh-lFh can be called by application .,_ 
grams to perform various 1/0 operations and status checking . 

• f '•. 

Interrupt 10h-Video Th~ llIOS inter;upt lOh routine is the video driver. 
Details arc covered In Chapters 12 and 16. 

Interrupt 11h-Equipnfent ~heck The BIOS interrupt 11 h routine returns 
the equipment configuration of the particular l'C. The return code is placed 
in AX. Table 15.2 gives the,interpretation of the bits returned in AX. 

Interrupt 12h-Memory Size The BIOS interrupt 12h routine returns in AX 
the amount of conventional memory a computer has. Conventional 
memory refers to memory circuits·' ith ;iddresscs below 640 K. The unit for 
the return value is in kilobytes. 
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----- -----

Table 15.2 Equipment Check 

15-14 number of printers installed 
13 
12 
11-9 

8 
7-6 

5-4 

3-2 

1 

0 

= 1 if internal modem installed 
= 1 if game adapter installed 
number of RS-232 (serial) ports installed 
not used 
number of floppy disk drives [if bit O = 1) 
00 means 1 
01 means 2 

10 means 3 
11 means 4 
initial video mode 

00 not us?d 
01 means 40 x 25 color text 
10 means 80 x 25 color "text 

11 means 80 x 25 monochrome 
system board RAM size (for original PC) 
00 =means 16 KB 

01 =means 32 KB 
10 = means 48 KB 
1 1 = means 64 KB 

= 1 if math coprocessor. installed 
= 1 if floppy disk drive installed 

Example 15.1 Suppose a computer has S 12 KB conventional memory. 
What will be returned in AX if the instruction INT 12H is executed? 

Solulion: 512 = 200h, hence AX= 020011. 

Interrupt 13h-Disk VO The BIOS Interrupt 13h routine Is the disk driver, 
it allows application programs to do disk 1/0. 

Interrupt 14h-Communications The BIOS Interrupt 14h routine Is the 
communil"ations driver that interacts with the serial ports. 

Interrupt 1Sh-Cassette This interrupt was used by the original PC for cas­
sette interface an.d by the l'C AT and PS/2 models for various system services. 

Interrupt 16h-Keyboard VO The BIOS interrupt 16h routine is the key­
board driver. Keyboard operations are found in Chapter 12. 

Interrupt 1 lh-Printer VO The BIOS interrupt I 7h routine is the printer 
driver. The routine supports three functions: 0-2. Function O writes a char­
acter to the printer; input .values are Ali = O, AL = character, DX = printer 
number. Function 1 Initializes a printer port; input values are AH "' 1, DX 
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Table 15.3 Printer Status. 

Bits in AH 

7 

6 
5 
4 

3. 
2 

0 

M.eaning. 

= 1 printer not busy 
= 1 print acknowledge 
= 1 out of paper 
.. 1 printer .selected 
= 1 VO error 
not used 
not used 
= 1 printer timed-out 

printer number. Function 2 gets printer status, input values ilrc 1UI = 2, DX 
~ p;inter number. for all functions, the status is returned in AH. Table 15.3 
shows t~e meaning of the bits returned in AH. 

Example JS.2 Write Instructions to print a 0. 

Solution: We use function 0 to do the printing. Because printers con­
tain buffers for data, the 0 will not be printed until ii carri;igc return or 
line feed character is sent. Thus, 

· MOV AH,0 ; functi,)n 0, print char 
MOV AL,' 0' ;ch.:ir () 

MOV DX, 0 ;prj nt.cr ~ 

INT 17H ;J>.H contaill!l reLurn code 
MOV AH,0 ; function 0, print char 
MOV l1L, OAH ; line feed 
INT l 711 

interrupt ·18h-BAS/C The BIOS interrupt 18h routine transfers control to 
ROM BASIC. 

Interrupt 19h-Bootstrap The BIOS interrupt 19h routine reboots the sy\ll'ITI. 

in.terrupt 
0

1Ah-Time of Day The BIOS interrupt lAh routine ;illows a pro­
gram to get and set the timer tick l·ount. and in thr. case of re AT and l'S/2 
models, it allows programs to get and set the time and date for the clod; 
circuit <:hip. · 

Interrupt 1B~trl-Break This interrupt is called by the INT 9 routine 
when the Ctrl-brcak key is pressed. The BIOS interrupt 1 llh routine c11111;1im 
only an IHET-instruction. Users may write their own rouli11e tu il0111dll· tilt· 

Ctrl-break key. 



316 15.3 DOS Interrupts 

15.3 
DOS Interrupts 

15.4 
A Time Display 
Program 

Interrupt 1Ch-Timer Tick INT lCh is called by the INT 8 routine each tim')­
the timer circuit Interrupts. The BIOS interrupt lCh routine contains only 
an IRET instruction. Users may write their own service routine to perform 
timing operations. In section 15.5, we use it to update the displayed time. 

Interrupts 1Dh-1Fh These interrupt vectors point to data instead of in­
structions. The interrupt lDh, lEh, and lFh vectors pointing to video ini­
tialization parameters, diskette parameters, and video graphics .characters, 
respective! y. 

The interrupt types 20h-3fh are serviced by DOS routines that pro­
vide high-level service to hardware as well as system resources such as files. 
and directories. The most useful is INT 2lh, which provides many functions 
for doing keyboard, video, and file operations. 

Interrupt 20h-Program Terminate Interrupt 20h can be used by a pro­
gram to return control to DOS. But because CS must be set to the program 
segment prefix before using INT 20h, it is more convenient to exit a program 
with INT 2lh, function 4Ch. 

Interrupt 2th-Function Request The number of functions varies with the 
DOS version. DOS 1.x has functions 0-2Eh, DOS 2.x added new functions 
2Fh-S7h, and DOS 3.x added new functions 58h-5Fh. These functions may 
be classified as character I/O, file access, memory management, disk access,, 
networkinS(, and mi~cellaneous. More information is found in Appendix C. 

Interrupts 22h-26h Interrupt routines 22h-26h handle Ctrl-Break, critical 
errors, and direct disk access. 

Interrupt 27h-Terminate but Stay Resident Interrupt 27h allows pro­
grams to stay in memory after termination. We demonstrate this interrupt 
in section 15.6. 

As an example of using interrupt routines, we now write a program 
that displays the current time. There are three versions, each getting more 
complex. In this section, we show the first version, which simply displays 
the current time in hours, minutes, and seconds. In section 15.5, we write 
the second version, which shows the time updated every second; and in 
section 15.6 we write the third. version, which is a 111c:111ury rc:sidc:11t pru;;ra111 
that can display the time while other programs are running. 

When the computer is powered up, the current time can be entered 
by the user. or supplied by a real-time clock circuit that is battery powered. 
This time value is kept ln·memory and updated by a timer circuit using 
interrupt 8 .. A.progrilm_can call the DOS interrupt 2lh, function 2Ch, to 
access the time. 
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INT-21h, Function 2~h: 
Time-of-Day 

Input: AH = 2Ch 
Output: CH = hours (0-23), 

CL = minutes (0-59), 
DH = seconds (0-59), 
DL = 1/100 seconds (0-99) . 

.' Our time display program has the following steps: (1) obtain the 
current .time, (2) convert the hours, minutes, and seconds into ASCII digits, 
we ignore the fractions of a second, and (3) display the ASCII digits. 

The program Is organized Into a MAIN procedure in program listing 
PGM15_1.ASM and two procedures GET_TIME and CONVERT in program 

- listlng,P_GMl S_lA.ASM. 
. A time buffer, TIME_llUF, Is lnltfalized with the message of.00:00:00 . 

. The p~oc_edure MAiN first ·calls GET_TIM£ to store the current time in the 
time buffer. Then It uses INT 2lh, function 9, to print out the string in the 
time buffer. 

The procedure GCT_TIME calls INT 21h function 2Ch to get the 
time, then calls CONVERT to convert the hours, minutes, and seconds into 
ASCII characters. The first step In procedure CONVERT is to divide the input 
number in AL by 10; this will put the ten's digit value in AL and unit's digit 
value In AH (note that the input value is less than 60). The second step is 
to convert the diJlits into ASCII. 

Program L~sting PGM15_ 1.ASM 
'.fITLE PGM15_1: TTME_DISPLAY_VER_l 

;progra~ that dispJ~ys the current time 

EXTRN GET TI!-:E:NEAR .. . -
.MODEL SMALL 

.STACK lOOH 

.DATA 

TIME BUF DB '00:00:00S';time buffer hr:min:sec 

.CODE 
MAIN l'ROC 

MOV .', .l\X, @DATA 
MOV DS,AX ;init:ialize ;;g 

;got: and display time 

LEA BX, TIME_EU!' ; BX p0J.ntt "t.o TIME_BUF 

:- ·~.;exit 

CALL 

Ll:I\ 

MOV" 

'tNT 

MOV 

IHT 
MAHL ,ENDP 

GET_TIME :; put current: t:ime in' TIME_BUF 
l.)Y.,TlME_UUF ;l.lX f-<.Ji11t:; Lu TlMf-_UUf. 

AH,09H ·;ctisi:>_lay time 
21H 

AH,4CH 

21H 
·;return .­
;to DOS • 

, • END · MAIN· 
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15.5 
User Interrupt 
Procedures 

Program Listing PGM15_1A.ASM 
TITLE PGM15_1A: GET ANO CONVERT TIME TO ASCII 
PUBLIC GET TIME 
. MODEL SMALL 
.CODE 
GET TIME PROC 
;get time of day and store ASCII digits in time buffer 
; input: BX • address of time buffer 

MOV AH, 2CH ;gettime 
INT 21H ;CH = hr, CL ~ min, OH ~ sec 

;convert hours into ASCII and store 
MOV AL, CH ; hour 
CALL CONVERT ; convert to ASCII 
MOV [BX] ,AX ;store 

;con~ert minutes into ASCII and store 
MOV AL, CL ; minute 
CALL CONVERT ; convert to ASCII 
MOV [BX+3] ,AX ;store 

;convert seconds into ASCII and store 
MOV AL,011 ;second 
CALL CONVERT 
MOV [BX+6) ,AX 
RET 

GET TIME ENDP..., 

CONVERT PROC 
;converts byte number (0-59) into ASCII digits 
;input: AL - number 
;output:AX • ASCII digits, AL •.high digit,AH = low digit 

MOV AH' 0 ; clea·r AH 
MOV DL,10 ;divide AX by 10 
O!V DL ;AH has remainder, AL has quotient 
OR AX,3030H ;convert to AS,Cll, J\H has low di9i~ 
RET ;AL has high digit 

CONVERT ENDP 

END 

The program displays the time and terminates. 

To make the time display program lflore interesting, let us write a 
second version that displays the time and updates it every second. 

One way to continuously update the time is to execute a loop that 
keeps obtaining the time via INT 2lh, function 2Ch and displaying it. The 
problem here is to find a way to terminate the program. 

- Instead of pursuing this°iipproach, we will' write a routine for inter-
rupt lCh. As mentioned earlier, this interrupt is generated by the INT 8 
routine which is activated by a timer circuit about 18.2 times a second. When 
our interrupt routine is called, it will get the tiln•~ :;.id display It. 
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Our program will have a MAIN procedure that sets up the interrupt 
routine. and when a key Is pressed, it will deactivate the interrupt routine 
and terminate. 

Set Interrupt Vector 

To set up an interrupt routine, we need to (1) save the current in­
terrupt vector, (2) place the vector of the user procedure In the Interrupt 
vector table, and (3) restore the previous vector before terminating the pro­
gram. 

We use the INT 21h, function 3Sh, to get the old vector and function 
2Sh to set up the new interrupt vecto.r. 

INT '-1h, Function 25h: 
Set Interrupt Vector 

;store Interrupt vector Into vector table 
Input: AH = 2Sh 

AL = Interrupt number · 
DS:DX = inte~~pt vector 

Output: none 

INT 21h, Function 35h: 
Get Interrupt Vector 

;obtain interrupt vector from vector table 
Input: . AH = 3Sh 

Output: 
AL = Interrupt number 
ES:BX = interrupt,_vector 

., 

The procedure SETUl'_JNT In program listing PGM1S_2A.ASM saves an old 
interrupt vector ;111d sets up a new vector. It gets the interrupt number in 
AL, a buffer to save the old vector at DS:DI, and a buffer containing the new 
interrupt vector at DS:Sl. lly reversing the two buffers, SETUP _INT can also 
be used to restore the old vector. · 

Program Listing PGM15_2A.ASM 
TITLE PGM15 2A: SET INTERRUPT VECTOR 
PUBLIC SETUP INT 
. MODEL SMALL · · . . 
. CODE 
SETUP~INT PROC 
;saves old vector and sets up new'vector 
;input: AL • interrupt number-

DI • address of buffer for old vector 
SL = address of buffer co~tuining new vector 

;save· old 
'MOV 

INT 
MOV 

MOV 

interrupt 
AH,35H 

vector 

2111 
(DI], BX· 
[DI+2];ES- · 

;fu.nction 35h, get 
; ES: BX n vector 
: save offset 
: save segment 

vector 
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·. 
;setup new vector. 

HOV DX, (SI) ;DX has off set 
PUSH OS ;save OS 
MOV OS, [SI+2) ;OS has segment number 
MOV AH,25H ;function 25h, set vector 
INT 21H 
POP OS ;restore OS 
RET 

SETUP INT ENDP -
END 

Cursor Control 

Each display of the current time by INT Zlh, function 9, will advance 
the cursor. If a new time ls then displayed, it appears at a different screen 
position. So, to view the time updated at the same screen po)ition we must 
restore the cursor to its original position before we display the time. This is 
achieved by first determining the current cursor position; then, after each 
print string operation, we move the cursor back. 

We use the INT IOh, functions 3 and 2, to save the original cursor 
position and to move the cursor to its original position after each print 
string operation. 

INT 10h, Function 2: 
Move Cursor 

Input: 

Output: 

AH= 2 
BH = page number 
DH = row· number · 
DL = column number 
none 

INT 10h, Function 3: 
Get Cursor Position 

Input: 

Output: 

AH= 3 
BH = page number 
DH = row nuiriber 
DI. = column number 
CH = starting scan line for cursor 
CL = ending scan line for cursor 

Interrupt Procedure 

-- - -·--When an interrupt procedure is activated, it cannot assume that the 
OS register contains the program's data segment address. Thus, if it uses a!JY 
variables it must first reset the DS register. The DS register should be restored 
before ending the interrupt routine with liU::T. 
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'. . Program listing PGM15_2.ASM contains the MAIN procedure and 
the interrupt procedure TIME_!NT. The steps in the MAIN procedure are (1) 
save the current cursor position, (2) set up the interrupt vector for TIME_INT, 
(3) wait for a key input,and (4) restore the old interrupt vector and terminate. 

To do step 2, we use the pseudo-ops OFFSET and SEG to obtain the 
offset and segment of procedure TIME.JNT; the vector is then stored in the 
buffer NEW_ VEC. The procedure SETUP _INT, is called to set up the vector 
for interrupt type lCh, timer tick.: The interrupt 16h, function 0 is used for 
step 3, key input. Procedure SETUP _INT Is again used in step 4; this time SI 
points to the old vector and DI points·to the vector for TIME_INT. 

'The steps in the procedure TIME_INT are (1) set DS, (2) get new time; 
(3) display time, (4) restore cursor position, and (5) restore DS. 

The program operates like this: After setting up the cursor and in­
terrupt vectors, the MAIN procedure jusrwaits for a keystroke. In the mean­
time, the lnterrupfprocedure,TIME_INT, keeps updating the time whenever 
the timer circuit ticks. After a key is hit, the old interrupt vector is restored 
and the program terminates.· 

Program Listing PGM1S_2.ASM 
TITLE PGM15_2: DISPLAY_TIME_V~R~ 

; program 'that di splays the - current time 
·;and updates the time 18~2 times a second 

E~TRN GET_TIM~:NEAR,SETUP_INT:NEAR 

.MODEL SMALL 

• STACK !OOH 

.DATA 

TIME BUF DB '00:00:-00$' ;time b•.1ffer hr:min:sec 
i ;!cursor position (row:col) 

;new interrupt vector 

-
- CURSOR POS DW ? -

NEW VEC DW ? , ? - . 
OLD VEC DW ? ,·? ;old interrupt vector 

.CODE 
MAIN PROC 

Mov .Ax; @oATA • 
MOV DS,AX ; initialize OS 

;save "cursor position 

MOV AH, 3 ; function 3, get cursor 

MOV BH, 0 ;page 0 '", 
•TNT.'-· 1011' ·' 'I ;DJJ -- rowi· DI.'~ 

· ··· MOV · CURSOR_.:_FOS,DX' ·- is'ave 'it . ' . ~ 
·;set up interrupt-p.cocedt:re by"_ 
;placing segment': of !set· of ;TIME_) NT in NEW_ VEC 

'.MOV : .NEW_vEc;oFFSET-'TIME:_INT ;offset 
MOV NEW _VEC+2, SEG.>TIME_::!INT ; segment 

· LEA~ · DI;·OLD_.:..VEC ;DI points to. vector buffer 
LEA. ''SI,NEW_VEC !'~' -;SI points to new vector 
MOV AL, lCH 
CALL SETUP _INT 

; read keyboard 
MOV .-- ·''AH: 0 

INT 16H 

;restore ~ld inter~upt 
LEA DI, NEW..::V.EC 
LEA SI,OLD VEC 

;timer interrupt 
;setup new interrupt vector 

vector 
. .__,;--,:J; DI. points to vector buffer 

;SI points to old vector 
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15.6 
Memory Resident 
Program 

MOV AL, lCH 
C.":.LL SETUP INT 

•• HOV AH,4CH 
INT'" 21H 

MAIN ENDP. 

TIME_INT PROC 
;interrupt proceduie 
;activated by the timer 

PUSH .DS 
MOV AX,@DATA 
MOV DS., AX 

;get new time 
LEA BX,TIME_BUF 
CALL GET_TIME 

; di splay time 
LEA DX,TIME_BUF 

··MoV · 'AH, 0 9H 
INT 

0

21H 
;restore cursor position 

MOV AH,2 
MOV BH,0 
MOV DX,CURSOR_POS 
INT lOH 
POP OS 
IRET 

TIME INT ENDP -

END MAIN 

;tiner interrupt 
;.restore old vector 

.;.return 

.;to DOS 

; save current OS 
;set it to data segment 

;BX points to time buffer 
; store time .in buffer 

; DX points to TIME BUF 
;display string -

; function 2, move cursor 
;page 0 
;cursor position,DH•row,DL•col 

; restore DS 

;end of interrupt procedure 

The I.INK command should include the modules PGM15_2, 
l'GM15_1A, and PGM15_2A. 

We will write the third version of DISPLAY_ TIME as a TSR (tCJ'llli· 
natc and stay resident) progrlllll. Normally, when a program termi­
nat~. the memory occupied by the program is used by DOS to load other 
programs. However, when a TSR program terminates, the memory occupied 
is not released. Thus, a TSR program Is also called a memory resident 
program. 

To return to DOS, a TSR program is ten~1inated by .using dther INT 
27h or INT 2th, function 31h. Our program uses INT 27,h .. 

INT 27h: 
Terminate and Stay Resident 

Input: DS:DX = .addr.ess of byte beyond the part that is 
.., -" -- - - - ~·-to remain resident 

Output: ·none 
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We write our program as a .COM program because to use interrupt 27h, we 
need to determine .how. ·many ·~res are 10 remain memory resident. Thl' 
structure of a :C<i>NI progranl makes this easy ~cause there Is only om· 
program segment. Another reason for using a .C:OM program Is thc \i7c 
consideration. As wP·saw In Ch~ter 14, a .COM program is sm:1lkr in sizl· 
than Its .EX'E counterpart. So, to save space, TSR programs arc often written 
as .COM programs. 

Once .terminated, a TSR program Is not ill'tive. It must be activated 
by some external activity, such as a certain key combination or by the timl·r. 
The advantage of a TSU program Is that it may l:w •Ktivated while some otlwr 
program is running. Our program will bc<.·omc a<.·tivc when the Ctrl and right 
shlft keys are pressed. , 

To keep the program small, It will not update the time. We le;1w it 
as an exercise for the reader to write a TSI{ prng1am lhal updates the tinw 
every. second. · 

The program has two parts, an initiali7.ation part that wts up llw 
interrupt vector, and the interrupt routine il~elf. The pmu-<lure INiTIJ\1.17.F. 
lnitiallzcs the Interrupt vector 9 (keyboard interiupt) with the addrC\s of llw 

·interrupt procedure MAIN and then calls INT 27h to terminate. The ·addrl'~s 
· passed to IN1'.27h is the beginning addrcs~ of the lNITlAl.IZE proccdurl'; thi' 
· is possible because the instructions· arc no longer nredl'<I. The proccdurt· 

INITIALIZE .is shown In program listing l'GM15_3A.ASM . 

.Progr.oam Ustlng PGM15_3A.ASllll .. 
TITLE PGMl ~. 3A: SET UP 'I' SR P !<.OGRAM 

EXTRN MA£N:~EAR,SETUP~INT:NEAR 

EXTI<N NE.W _VEC: l~OKD., OLD_ Vt:C: DWORU 

PUBLIC INITIALIZE. 

C_SEG SEGMENT PUBLIC 

l\.SSUMECS;C_S~:G 

INITlhLIZE PROC 

;set up interrupt vc~tor 
MO\' NF;;.1_VEC, OFFSET MAIN ;,;r..-:.re ;itJdT<'!;~' 

MOV NF.W_ VEC ~2, CS ; segment 
LEA D 1, OJ.D _VEC 

LEA SI,N~W_VEC. 

MOV AL, 09H 

Cl•LL SETUP _Itl'l' 
;exit to DOS 

LEA DX, INITIALIZE 

INT 27H 

INITIALIZE ENDP 

C_SEG ENDS 
• , El~!) 

;keyboutd int~Irupt 

;.::;~t i.nt.r!!·1t:pl vect;.).!' 

-·There arc a number of ways for the iptcrrupt routine to dctL'Ct a par-
. ti<..'lliar key combination. The simpkst way Is to detect the control and shift keys 
by chtd:lng the kerbo.1rd flilgs. When activated by •• keystroke, the interrupt 
routine calls the old keyboard lriterrupt .routine to handle the key input. fo 
detect the control and shift keys, a program cin examine the keyboard flags at 
the BIOS data area 0000:0417h or u~ INI' 16h, function 2. 
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' . 
INT 16h, Functiqn.2: 
Get Keyb~_arc:!/1.ags . 

Input: · " 'AH =·2 
·"Output: - AL··= key flags 

bit 111ea11i11g 
7 = l ~ insert on 
6'= 1 · Caps.Lock on 
5 = 1 Num Lock on· 
4 = 1 Scroll Lock on 
3 = 1 Alt key down 
2 = I Ctrl key down 
1 = 1 left shift key down 
o = 1 right shift key down 

. '"" 
We will use the Ctrl and right shift key combination to activate and 

deactivate the clock.display. When activated, the current time will be dis­
played on the upper right-hand corner. We must first save the screen data 
so that when the clock display Is deactivated the screen can be restored. 

The procedure SET_CURSOR sets the cursor at row 0 and the column 
given in DL. The procedure SAVE_SCREEN copies the screen data into a buffer 
called SS_BUF, and the procedure RESTORE_SCREEN moves the data back to 
the screen buffer. All three procedures are shown in program listing 
PGMlS_:m. 

Program Listing PGM15_3B.ASM 
TITLE .PGM15 38: SAVE SCREEN AND CURSOR 

.EXTRN SS BUF:BYTE 

P.UBLIC SAVE_SCREEN, RESTORE_ SCREEN, SET_CURSOR 

C SEG SEGMENT PUBLIC 

ASSUME CS: C SEG 

SJWE SCF-EC::N PROC 
; saves 0 characters from upper right hand corner of 

.; screen 
LF:A DI,SS l3UF -
MOV CX,8 

MOV DL, 72 
CLD 

SS LOOP: 
CALL .SET CURSOR 

MOV AH, 08!1 

INT lOH 

STOSW 

INC DL 

LOOP SS LOOI.' 

RET 
SAVE SCREEN ENDP -

'. 
R.ESTORE_SC_REEN , 

;restores saved screen 
LEA SI, SS_BUF 

MOV DI, 8 
MOV DL, 72 

; screen buffer 
; repeat 8 times 
;column 72 

;clear DF for string operation 

; setup cursor at row 0, col DL 
;read char on screen 
;AH = attribute, AL = character 
;stores char and attribute 
; next col 

PROC 

;SI points to buffer 
; repeat 8 times 
;column 72 



MOV 

RS LOOP: 

ex, 1 

CALL SET CURSOR 

LODSW 
MOV BL;AH .. 

MOV AH, 09H 
MOV " BH; O• 
INT lOH 

' INC 
DEC 

JG 
RET 

DL 
DI . 

RS LOOP 
J 

RESTORE_SCREEN 

SET CURSOR Pl"WC 
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;1 char at a time 

; move cursor 

;AL '7-char, AH - attribute 

;attJ:ibute to BL 

;function 9, write char and attribute 
: page. o 

;next· char po$ition 

;move characters? 

·;yes;· repeat 

ENDP· 

; sets cursor at row 0, column DL 

; input DL col ur.;n number . · 

MOV AH, 02 ; function 2, set cursor 

MOV DH, 0 c; paye 0 

MOV DH, 0 i; row G 

INT lOH 
RET 

SET CURSOR ENDP 

C SEG ENDS 
ENO 

We are now ;ea.dy to write the inlt'rrupl routine. To determine 
whether tO activate or deactivate' the time display, WC USC: tr\c variable 
ON_JLAG, which is se.t to j ·when the' time is being displayed. Procedure 

'MAIN is the interrupt procedure.'. 
The steps in;procedure'MAIN are (1) save all registers used and set 

up the DS and ES registers, (2) call the old keyboard interrupt routine to 
handle the key input,-(3).'chcck to sec if both Ctrt amt right shift keys are 
down; if not, then exit, (4) test ON_FLAG to determine status, and if 
ON_FLAG is 1 then resfor'c-screen and exit, (5) save current cursor position 
arid also the display screen info,:and (6) get time; display time, then exit. 
· · In step l, to set ·up' the registers DS and ES we use CS. It might be 
ll'lllJlting to use till' valiil.- C_SEG i11stc.id; however, sq~ment values c;11111ot 

'be used in a .COM program'. In. stl'p 2, we need to push the FLAGS register 
so'thai the procedure call simulates ;in interrupt 1.:aJI. 111 step o, we used tlw 
1.1105 fritcrrupt JOit instt.?ad of the nos interrupt 2lh, function 9, to displar 
the timt', bccaust.? from (•xpcricncc, th~ INT 21 h, function 9, tends to bt· 
unreliable in a TSR J'>.rogram. .. 

Program Listing PGM1S.,.3.ASM 
TITLE PGM15 3: TIME~DISPLAY VE~ 3 

; merr.ory resident. proqr.a.m th ~t show~ CLi 1: ~c:;r. t.: m·2 of c..Ju y 

;calle;d by Ctrl-rt shift key combin»titm 

.-. EXTRN INITIALIZF.:NEAR,SAV~_~CµEEN:NFhR 

EXTRN.RF.STORE_SCl".EEN:NEAR,SET_CUHSOH:NEAR 

EXTRN GET TIME:NEAR 
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PUBLIC HAIN 
PUBLIC NEW_VEC,OLD_VEC,SS_BUF 

C_SEG SEGMENT .PUBLIC 
ASSUME CS:C_SEG, DS:C_SEG, SS:C_SEG 
ORG lOOH 

START:JMP INITIALIZE 

SS BUF DB 16 DUP(?) ;save screen -
TIME_ BUF DB '00:00:00$' ;time buffer 

buffer 
hr:min:sec 

CURSOR_:POS DW ? ;cursor position 
ON FLAG OB 0 ;l - interrupt procedure -
NEW_VEC DW ? , '? ;contains new vector 
OLD VEC DD ? ; contains old vector 

1".AIN PROC 
;interrupt procedure 
;save registers 

PUSH DS 
PUSH ES 
PUSH AX 

PUSH BX 
PUSH ex 
PUSH bx 
PUSH SI 
PUSH or 

MOV AX,CS ; set DS 

running 

MOV DS,AX 
MOV ES,AX 

;call old keyboard interrupt 
PUS HF 

; and ES to curre.nt segment 
procedure 

CALL OLD_VEC 
;get keyboard flags 

MOV AX,CS 
MOV OS,AX 
MOV ES,AX 
MOV AH,02 
INT 16H 
TEST AL,l 
JE l_DON,E 
TEST AL,lOOB 
JE ! DONE -

; yes, process 
CMP ON_FLAG, l 
JE RESTORE 
MOV ON_FLAG,l 

; save FLAGS 

; reset DS 

;and ES t"o current segment 
; function 2, keyboard flags 
;AL has flag bits 
;right shift? 
;no, exit 
;Ctrl? 
;no, exit 

;procedure active? 
;yes, deactivate 
; no, activate 

;-save cursor position and screen info 
MOV AH,03 ;get cursor position 
MOV BH, 0 ; page 0 
INT lOH ;DH E row, DL ~ col 
MOV CURSOR_POS,DX ;save it 

····CALL· -·SAVE_SCREEw-- ·;save time d.isplay screen 
;-position 

MOV 
CALL 

cursor to upper 
DL, 72 
SET CURSOR 

right corner 
; column 72 
;position cursor in row 0,col 72 
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LEA 
CALL 

BX,TIME_BUF 
GET_TIME 

: ;-displa!! time 
LEA SI,TIME_BU~ 

MOV 
MOV 

CX,8 
BH,0 

MOV AH, OEH 

Ml: LODSB 
,INT l OH 

. LOOP 'Ml 

, JMP _ RES_ CURSOR 
RESTORE: 
; restore screen 

MOV ON_FLAG, 0 

;get current time 

;8 ch11rs 
;page 0 
;write cllar 
;char in AL 

;cursor ifi rnoved t:c nc:-:-:t. col 
;loop bc1ck jf rn0re chur:.; 

;clear:; fl.:.y 

CALL RESTORE_SCREEN 
;restore saved cursor position 

RES CURSOR: -
MOV AH,02 ; set c-..irsor 

MOV BH,0 
MOV DX, CURSOR_ POS 
INT i.OH 

:restore registers 
I _D~NE: · 

POP DI 
POP SI 
POP DX 

·POP ex 
POP BX 
POP AY. 

PO? ES 
POP OS 

- IRET 

MJ\I-N ' f.NDP 

c SEG ENDS -
END STl\HT ; st a rt i ri<J i nsr. ruction 

Ilccausc lhe program has been wrillcn as a .COM program, we need 
to rcwriic the file containing the GET_ TIME procrllun: with full segment 
Clircctivcs: The file PGM15_3C.ASM contains GET_ TIME, CONVER'!; and 
SETUP_INT. 

Program Listing PGM1S_1C.ASM 
TITLE PGM15_3C: GET J\ND CONVERT TIMS TO A!:CII 

PUBLIC GET TIME,SETUP
0 

INT 

C SEG SEGMENT PUBLIC 
ASSUME CS:C SEG 

GET_TIME PROC 
;get time of ~ay and store ASCII digits in time buffer 
;input; jx •.address of time buffer 
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MOY AH, 2CH ; get time 
INT 21H ;CH • hr, CL min, OH - sec 

;convert hours into ASCII and store 
MOY AL, CH ; hour 
CALL CONVERT ; convert to ASCII 
MOY [BX],AX ;store 

;convert minutes into ASCII and store 
MOY AL, CL ; minute 
CALL CONVERT ; convert to ASCII 
MOY [BX+3J,AX ;store 

;convert seconds into ASCII and store 
MOY 
CALL 
MOY 
RET 

GET TIME -.. 
CONVERT 

AL,DH 
CONVERT 
[BX+6] ,AX 

ENDP 

PROC 

;second 
;convert %0 ASCII 
;store 

; converts byte number (0-59) into ASCII digits 
;input: AL • number 
; output: AX a ASCII digits, AL - high digit, AH ·- low 
;digit 

MOY 
MOY· 
DIV 
OR 
RET 

CONVERT 

SETUP_INT 

AH,0 
OL,10 
DL 
AX,3030H 

ENDP 

PROC 

;cle<!r AH 
;divide AX by 10 
;AH has remainder, AL has quotient 
;convert to ASCII, AH has low digit 
;AL has high digit 

; input: AL - interrupt type 
DI = address of buffer for old vector 
SI - address of buffer containing new vector 

;save old interrupt vector 
MOY AH, 35H ; function 35h, get vector 
INT 21H·• ;ES:BX - vector 
MOY [DI],BX ;save offset 
MOY [DI+2],ES ;save segment 

;setup new vector 
MOY DX,[SI] 
PUSH 
MOY 
MOY 

OS 
DS,[SI+2] 
AH,25H 

INT 2 lH 
POP 
RET 

SETUP INT 

C SEG ENDS 
END 

OS 

ENDP. 

; DX has offset 
; save ·it 
;OS has segment number 
; function 25h, set vector 

; restore OS 
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The LINK command should be LINK PGM15_3 + PGM15_3B + PGM15_3C 
+ PGM15_3A. Notice that PGM15_3A is linked last so that the procedure 
INITIALIZE is placed at the end of the program. Writing TSR programs is 
tricky; if there are other TSR programs on your system, your program may 
not function properly. 

Summary 

' • An interrupt may be requested by a hardware device or by a 
program using the INT instruction or generated internally by the 
processor. 

• The INT instruction calls an interrupt routine by using an inter­
• rupt number. 

• The 8086 sup.ports 256 interrupt types and the interrupt vectors (ad­
dresses of the procedures) are stored in the first 1 KB of memory. 

• The interrupts 0-lFH call BIOS interrupt routines and the inter­
rupt vectors are set up by BIOS when the computer is powered up. 

The interrupts 20ff-3Fh call DOS il'1terrupt routines. 

Users can write their own interrupt routines to perform various 
tasks. < , .,, 

• A memory resident program may be activated by a combination 
of keystrokes. ' 

Glossary 
.1''· - I 

conventional 111e1nory 

hand-shaking 

hardware interrupt 

interrupt acknowledge 
signal 

interrupt number 
interrupt request signal 

interrupt routine 

interrupt vector 

interrupt vector table 

mefi¥>rY resident program 

NMI (nanmaskable 
interrupt) 

processor exception 

TSR (terminate and stay 
resident) program 

software interrupt 

The first 640 J<B of memory 
A protocol for uc\·iccs to communicate 
with each other 

A hardware device Interrupting the 
processor 

A signal generated by the processor 
accepting an interrupt request signal 

A number identif)•ing the type of interrupt_ 
A signal sent by a hardware device to the 
proccssor requesting service 
A procedure invoked by.an interrupt 
The address of an interrupt routine 
The set of all interrupt vectors 
A TSR program 
A hardware interrupt that cannot be 
masked out by clearing the IF 

A condition of the processor that requires 
special handling 
A program that remains in memory after 
termination 

An INT instruction 
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New Instructions 

IRET 

New Pseudo-Ops 

OFFSET SEG 

Exercises 

1. Compute the location of the interrupt vector for interrupt 20h. 

2. Use DEBUG to find the value of the interrupt vector for Interrupt 0. 

3. Write instructions that use the BIOS interrupt 17h to print the 
message "Hello". 

4. Write instructions that use the INT Zlh, function 2Ah, to display 
the current date. 

Programming Exercises 

5. Write a program that will output the message "Hello" once every 
h;ilf ~ccond to the screen. 

6. Modify PGMIS_Z.ASM so that INT 21h, function 9, Is called to 
display the time only when the seconds change. 

7. Write a memory resident program similar to PGM15_3.ASM using 
INT Zlh, function 3lh. 



16 

Color Graphics 

.. 

Overview 

16.1 
\.raphics Modes 

In Chapter 12,. we showed how the screen can be manipulated in 
text modc;.ln this chapter, WC disc.:uss the waphics modes of the PC. There 
are three common c.:olor graphic.:s adaptc1s for the l'C: CGA (Color Graphics 
Adapter), EGA (Enh;:inc.:ed Graphics ;\d;ipter), and VGA (Video Graphic.:s Ar­
ray); We 1kscribc thl'ir operations ;me! programming, and also show how to 
write an interactive video game program.· 

As noted in Chapter 12, the screen displ;iy is composed of lines 
traced by an electron beam; these Jines arc called scan lines. A dot pattern 
is created by turning the bc;im on and off durini; the scan; the dot patterns 
generate characters ;a~ well as pic.:turcs on the ~c.:reen. The video signal con­
trolling the sc.:an is.generated by a video adnpter circuit in the computer. 

A video adapter c.:an vary the numb.er of dots per line by changing 
the size of a dot. Some adapters can also change the number of scan lines. 

Pixels 

In graphics mode operation, the snc<:n display is divided into col­
umns ;md rows; and each screen position. given by a column number and 
r_ow 'number, is called a pixel (picture clement). The number ~f columns 
and rows'give the resu/u1i1m of the graphics mode; for example, a resolution 
of 320 x 200 means 320. columns and 200 ruws. The columns arc numbered 
from left to right starting with 0, and the mws <ire numl>crcd from top to 

1 bottom st<irting with 0. for example, in a 320 x 200 mode, the upper-right 
comer pixel has column 319 and row 0, and the lower-right comer pixel has 
coluinii 319 and row 199. Sec figure 16.1. 

331 
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Figure 16.1 Pixel 
Coordinates in 320 x 200 
Mode 

Row 0 

Column 
0 

Column 
319 

Depending on the mapping of rows and columns into the scan lines 
and dot positions, a pixel may contain one or more dots. For example, in 
the low-resolution mode of the CGA, there are 160 columns by 100 rows, 
but the CGA generates 320 dots and 200 lines; so a pixel is formed by a 2 
x 2 set of dots. A graphics mode is c Jlled APA (all JJoints addressable) 
if it maps a pixel into a single dot. 

. Table 16.1 shows the APA graphics modes of the CGA, EGA, and 
VGA. To maintain compatibility, the EGA is designed to display all CGA 
modes and the VGA can display all the EGA modes. 

Mode Selection 

The screen mode is normally set to text mode, hence the first oper­
. ation to begin a graphics display is to set the display mode. We showed in 

Chapter 12 that the BIOS Interrupt lOh handles all video functions; function 
0 sets the screen mode. 

Table 16.1 Video Adapter Graphics Display Modes 

Mode Number (hex) 

4 
5 
6 

D 
E 
F 

10 

11 

12 
13 

CGA Graphics 

320 x 200 4 Color 
320 x 200 4 Color (color burst off) 
640 x 200 2 Color 
EGA Graphics 

320 x 200 16 Color 
640 x 200 16 Color 
640 x 350 Monochrome 
640 x 350 16 Color 
·VGA Graphics 

640 x 480 2 Color 
640 x 480 16 COIN 
320 x 200 256 (v;.;r 
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CGA Graphics 
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1 INT 10h Function o: 
Set Saeen Mode 

Input: AH;O 
AL = mode number 

Output: none 

Exa01ple 16.1 Set the display mode to 640 x 200 two-color mode. 

Solution: From Tabie 16.1, the mcid~ number is 06h; thus, the instruc­
tions are 

MOV - AH,0 
MOV .. AL, 06H 

INT lOH 

; function O 
;mode 6 

; select mod; 

.. ~ The CGA has thrfe graphics resolutions: a low resolution of 160 x 
100, a medium resolution of 320 x 200, and a lligll resolution of 640 x 200. 
Only the medium-resolution and high-resolution modes are supported ·by 
the BIOS INT lOh routine. Programs that use the low-resolution mode must 
·access the video controller chip directly. ' 

__ The CGA adapter has a display memory of 16 Kn located in segment 
B800h; the memory addresses arc from BSOO:OOOO to B800:3FFF. Each pixel 
Is represented by one or more bits, depending on the mode. For example, 

Table 16.2 Sixteen Standard CGA Colors 

IR GB Color 

0000 Black 

0 0 0 1 Blue 

0 0 1 0 Green 

0 0 1 1 Cyan. 

0 1 0 0 Red 
0 1 0 1 Mag'enta (purple) 

0 1 1 0 Brown 

0 1 1 1 White 

1 0 0 0 Gray 

1 0 0.1 Light Blue 

1 0 1 0 Light Green 

101 1 Light Cyan 

1 100 Light Red 

1 101 Light Magenta 

1 1 1 0 Yellow 

1 1 1 1 lnfense White 
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high resolution uses on~ bit per pixel :and medium uses two bits per pixel' 
The pixel value ldentijles the -color of the pixel. 

Medium-Resolution Mode 

The CGA can display 16 colorli; Table 16.2 shows the 16 colors of 
the CGA. In ml'dium resolution, four colors can be displayed at one lime. 
This is due to the.limited-size of the display memory. Because the resolutio.n 
Is 32G x 200, there are 320 x 200 = 64,000 pixel5. To display four colors, each 
pixel Is coded by two bits,· and the .memory requirement is 64000 x 2 = 
128000 bits or 16000 bytes. Thus, the 16-KB CGA display memory can only 
support four colors in this mode. 

To allow different four:.Color combinations, the CGA in medium-res­
olution mode uses two palettes; a palt>tte is a set of colors that can b'J' 
displayed at the same time. Each palette contains three fixed colors plus a 
1Nlckground color that can be chosen from any of the standard 16 c:·olor:.. 
The background color is the default color of all .pixels. Thus, a screen with 
the background color would show up if no data have been written. Table 
16.3 shows the two palettes. 

The default palette Is palette 0, but a program can select either palette 
for display. A pixel value (0-3) identifies the color in the current selected 
palette; If we chanlle the display palette. all the pixels change color. IN1' lOh, 
function OBh, can be used to .select a palette or a backgrou~:col.or. 

•INT :tOh, function OBh: 
Select ·Palette or BackgTound Color 

Subfunction ·o: Select "Background 
Input: AH = OBh 

Bil= 0 
llL =color number (0-15) 

Output: none 

Subfunction 1: Select Palette 
"Input: Al I = OBh 

BH =I 
UL = palette number (0 or 1) 

Output: none 

Table 16.3 CGA Mode, Four-Color Palettes 

Pdlette Pixel Value 

0 0 
1 

2 
3 

0 

1 

2 
3 

Color 

Background 

Green 

Red 

Brown 

Background 

Cyan 

M<Jgenta 

White 
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~le 116:2 Write Instructions that select palette 1 and a background 
•COlor·of'llght.blue.' • 

'5olution: 'Llght blue has color ~umber 9. Thus, 

HOV AH, OBH' ;function OBh 
MOV BH,DOH ;select background color 
Mpv BL,9 ;iight blue 
INT lOH 
MOV BH,l ; select palette 
HOV BL,l ; palett.e .1 
INT lOH 

·Reading and Writing Pixels 
I. . 

To read or write a pixel, we must idc11tify the pixel by its column and 
row numbers. Th~ functions ODh and OCh are for read and write, respectively. 

INT "!Oh, Function OCh: 
Write Graphics .Pixd 

.Input: 

Output: 

AH= OCh 
AL = pixel Vitluc 
Bl f = page (for the. CGA, this value is ignored) 
ex = column number . 
DX = row number 
·none 

lfllT 10h, Function ODh: 
Read Graphics Pixel 

Input: 

Output: 

All = ODh 
BH = J>ill)C (for the CGA, thh v<1Juc is ignortd) 
ex = column number 
DX = row number 
AL = pixel value 

Exrnnplc 16.3 Copy the pixel at column 50, row 199, to the pixel at 
column 20, and row 40. • • 

Solution: We first read the pixel at co'lumn 50, row 199, and then write 
to the pixel at column 20, row 40 . 

.. 
MOV AH,ODH ; read .pixel 
HOV CX,50 ;col~mn 50 
MOV DX,199 ; ruw 199 
INT lOH ;AL get::: pixcJ Vdlue 
HOV AH, OCH ;write pixel, AL is already set 
HOV CX,20 ;column 20 
HOV DX,4'0 ;row .;o 

INT lOH 
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High-Resoiution Mod'! 

In high-resolution mode, the CGA can display two colors, each pixel 
value is either 0 or 1; 0 for black •md 1. for white. It is also possible to select a 
background color using !Nf lOh, function OBh. When a background color is 
selected, a 0 pixel va!tie is the background color, and a pixel vatue of 1 is white. 

We now show a complete graphics program. 

Example 16.4 Write a program that draws a line in row 100 from col­
umn 301 to column 600 in high resolution. 

Solution: The organization of the program is as follows: (1) set the dis­
play mode to 6 (CGA high resolution), (2) draw the line, (3) read a key in 
put, and (4) set the mode back to 3 (text mode). Step 3 is included so 
that we can control when to return to text mode; otherwise, the line 
would disappear before we can take a good look. 

Program Listing PGM16_ 1.ASM 
TITLE PGM16_1: CGA LINE DRAWING 
;draws horizontal lin,e in high res 
; in row 100 . from ,..cxfi 301 to col 600 · 

._MODEL SMALL 
. STACK 10.0H 

.CODE 

MAIN PROC 

;set graphics mode 

MOV AX,6 
INT 1 OH 

;draw line 

MOV AH, OCH 
MOV AL, 1 
MOV CX,301 
MOV DX,100 

Ll: INT lOH 

INC ex 
CMP CX,600 

JLE Ll 

; read keyboard 

MOV AH, 0 
INT 16H 

;set to text mode 

MOV AX, 3 
INT lOH 

;return to 
MOV 
INT 

MAIN ENDP 

DOS 
AH,4CH 
21H 

END MAIN 

; select mode 6, hi res 

;write pixel 
;white 
;beginning col 

; row 

; next col 

;more columns? 

; yes, repeat 

;select mode 3, text mode 

:return 
;to DOS 
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Writing Directly to Memory. 

When we wish to do fast screen updates, as In video game playing, 
we can bypass the BIOS routines and write directly to the CGA video display 
memory. To do so, we need . to understand the organization of the CGA 
display memory. The CGA's 16~K8 display memory is divided into two halves. 
Pixels In even-numbered rows are stored In the first 8 KB (8800:0000 to 
BSOO:IFFF), and pixels In odd-numbered rows are stored In the second 8 KB 
(8800:2000 to B800:3FFF). Each row Is represented by SOh bytes. Figure 16.;? 
shows the relationship between the display memory address and the screen 
display. 

' To locate the bit positions for a particular pixel In a display mode, 
we first determine the starting byte of that row and then the offset In the 
row for that pixel. We now show an example. 

l;.xamplc 16.5 Let the graphics mode be mode 4. Determine lhe byte ad­
dress and bit positions for the pixel In row 5, column 10. 

Solution: Row 5 Is the third odd-numbered row, so the starting byte for 
row 5 has an offset address of 2000h + 2 x SOh = 20AOh. rn mode 4, each 
pixel is two bits, so each byte can store four pixels. Column 10 is the elev­
enth column In the row,·~o the pixel must be the third pixel in the third 
byte. The byte address ls 20A0h + 2 = 20A2h. Pixels are stored starting 
from the left In a byte, so'the third pixel has bit positions 3 and 2. 

Example 16.6 Suppose the current display mode is mode 4. Write a 
pixel value of lOb at row 5, column 10. 

Solution: We use the address computed in the last example. To write 
a pixel, we first read the byte containing the pixel, change the appro­
priate bits, and· then write back. The reason for read before write Is to 
preserve other pixel values contained In the same byte. To change the 
bits, we _first clear them using an AND operation, and then write the 
data using an OR operation. 

. .' 
· 8800:0000 -+Row 0 
8800:2000 -+Row 1 
8800:0650 -+Row 2 
8800:2050 -+Row. 3 

B800:1EFO -+Row 198 
B800:3EFO -+Row 199· 

Screen 
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MOV 
MOV 
MOV 
MOV 
AND 
OR 
STOSB 

AX,OBBOOH 
ES,AX 
DI,20A2H 
AL,ES: [DI) 
AL, llllOOllB 
AL,lOOOB 

;video memory segment number 
;place in ES 
; offset of byte 
;move byte into AL 
;clear the data bit positions 
;write lOb into bit positions 3,2 
;store back to memory 

Displaying Text 

It is possible to display text in graphics mode. Text characte~ In 
graphics mode are not generated from a character generator circuit as in text 
mode. Instead, the characters are selected froin the character fonts stored In· 
memory. Another difference between text mode and graphics mode Is that 
the cursor is not being displayed In graphics mode. However, the cursor 
position can still be set by INT IOh, function 2. 

Example 16.7 Display the letter "An In red at the upper right comer of 
the screen. Use mode 4 and a background color of blue. 

Solution: When we display characters In graphics mode, we use text co­
ordinates. With the 320 x 200 resolution, there are only 40 text columns, 
see Table 16.4. Thus, the row and column numbers of the upper-right cor­
ner are 0 and 39, respectively. To display a red letter and blue back­
ground, we use palette 0 with blue background color. 

The steps are as follows: (1) set to mode 4, default palette Is 0, (2) set 
background color to blue, (3) position cursor, and (4) display letter "A" in red. 

MOV AH,O ;set mode 
MOV .AL, 04H ;mode 4 
INT lOH 
MOV AH,OBH ;function OBh 
MCV SH, OOH ;select background color 
MCV BL,3 ;blue 
INT lOH 
MOV AH,02 ;set cursor 
MOV BH,0 ;page 0 
MOV DH,O ;row 0 
MOV DL,39 ;col 39 
INT lOH 
MOV AH,9 ;write char function 

Table 16.4 Text Columns and Ro~s in Graphics Mode 

Graphics Resolution Text Text 
Columns . Rows 

320 x 200 40 25 

25 ·6,fo x- 200 -80 
640 x 350 80 25 

640 x 480 80 29 
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MOV .•.. AL,' A' 
MOV .BL,2 
MOV CX,l 
INT lOH 
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~ ; I A, 

; red color 
;write 1 char 

The EGA adapte~'can generate either 200 or .~SO scan lines. ·10 display 
the higher resolution,· an ECD (enhanced color display) monitor is 
required. The EGA has sixteen palette registers; these regi"Sters store the current 
display colors. There are six color bits in each palette register; two for eJch 
primary color. This means that each palette register is capahle of storing ;iny/ 
one of 64 colors and thus, the EGA can display 16 colors out of 64 at one 
time. In the 16-color EGA modes, each pixel value selects a palette register. 
Initially, the 16 palette registers are loaded with the standard 16 CGA colors. 
To display other.colors on the screen, a program can modify these registers 
using INT IOh,function IOh, subfunction Oh (see Appendix C). 

The EGA adapter can emulate the CGA graphics modes, so that a 
progra·m written for the CGA can run in EGA with the saflle colors. Its display 
memory can be configured by software. Depending on the display mode, 
the display memory may have a· starting address of AOOOOh, ROOOOh, or 
B8000h. In displaying CGA modes, the EGA memory starts at R8000h so as 
to remain compatible with the CGA display memory. 

In displaying EGA modes, the display memory has the following struc­
ture. It \s located in segment AOOOh and uses up to 256 KB. To accommodate 
256 KB in one segment, the EGA uses four modules of up to 64 KB each. The 
four modules, called bit planes, share the same 64 K memory addresses; each 
address refers to four bytes, one in each bit plane. The 8086 cannot access the 
bit planes directly; instead, all data transfer must go through EGA registers. 

With this n\uch storage, we can see that the display memory may 
hold more than one screen of graphics data. In EGA modes, the display 

- memofy. is divided into pages, with each page being the size of one screen 
· of data. The number of pages allowed depends on the graphics mode and 

the display memory size. For example, for the di~play mode D (320 x 200 
· with 16 colors) there arc 64000 pixels and 4 bits for each pixel. Thus, the 

memory requirement for one screen is 32000 bytes. If the display memory 
is 256 KB, then it is possible to have eight display pages (0 to 7). There will 
be fewer ·pages if the memory is less. 

When we use functions OCh and ODh to read or write pixels, the 
page number is specified in BH. These functions can be used on any page 
regardless of which page is being-displayed. 

Example 16.8 Assume that we are'usirrg a 16-color p;ilctte, write a 
J.?reen pixel to pai::c 2 at column O. row 0. 

Solution: We use flinctlon OCh and a color value of 2. 

MOV AH, OCH ;write pixel function 
MOV AL;2 ·:;green 

.. , 

MOV•. BH,2 ;page 2 
MOV cx,o ;column 0 

M6v DX,0 ;row 0 
TNT loH 
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16.4 
VGA Graphics 

When a graphics mode ls first selected, the active display page ls automati­
cally set to page O. We can select a different active display page by using 
function 05h. 

INT 10h, Function 5: 
Select Active Display Page 

Input: AH= 5 
AL =page number 

Output: none 

Example 16.9 Select page 1 to be displayed. 

Solution: 

MOV AH,OSH 
MOV AL,1 
INT lOH 

;select active display page 
; page 1 

Page switching can be used to do simple animation. Suppose we 
draw a figure in page 0, then draw the same figure at a slightly different 
position in page I, and so on. Then, by quickly switching the active display 
page, we can see the figure move across the screen. This movement is limited 
by the total number of pages available. We show a more practical animation 
technique in section 16.5. 

The VGA adapter has higher resolution than the EGA; it can display 
640 x 480 in mode I2h. There are also more colors: the VGA can generate 
64 levels of red, green, and blue. The combinations of the red, blue, and 
green colors produce 643 equals 256 K different colors. A maximum of 256 
colors can be displayed at one time. The color values being displayed are 
stored In 256 video DAC (digital to analog circuit) color registers. There are 1~ 
color bits in a color register; six for each primary color. To display all these 
colors, we need to have an analog monitor. 
. . The VGA adapter can emulate the CGA and EGA graphics modes. In 
VGA mode, the display memory Is organized Into bit planes just like the EGA 

Let's look at the VGA mode 13h, which supports 256 colors. In this 
mode, each pixel value Is one byte, and it selects a color register. The color . 
registers are loaded initially with a set of default values. It Is possible to 
change the value in a color register; but let us first display the default colors. 

Example 16.10 Give the instructions that will display the 256 default 
colors as 256 pixels in row 100. · 

Solution: We begin by selecting mode 13h, then we set up a loop to 
write the value of AL, which goes from 0 to 255 in columns 0 to 255. 
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;set mode 
MOV 
MOV 
INT 

.... , .... ,. 

'AH, 0 
AL,13H 
lOH 

; di splay 256 pixels 
MOV AH, OCH 
MOV 

. 
"AL, o·' 

MOV BH,O 
•MOV. CX,O 
MO.J OX,100 

, i1: INT lOH 
INC AL 
INC ex 
CMP CX,256 

I JL Ll 

in 

; set mode 
;to 13h 

row 100 
;write pixel 
;start with 
;page 0 
;column 0 
; row 100 
;write pixel 
;next color 
;next col 
;finished? 
;no, repeat 

function 
pixel color 

We can set the color in a color register with function lOh. 
. .• . I 

.. INT 10h, Function 10h, '"Subfunction 10h: 
Set Color Register 

Input: AH= lOh 
AL = lOh 
BX = color register 
CH = green value 
CL = blue value 
DH = red value 

Output: none 

0 

·Example 16.11 Put .the color values of 30 red, 20 green, and 10 blue 
into color register 5. 

Solution: 

MOV AH,lOH ;set color register 
MOV AL,lOH 
MOV BX,5 ;register 5 
MOV DH,30 ;red value 
MOV CH,20 ;green value 
MOV CL,10 ;blue value 
INf lOH 

It is also possible to set a block of color registers in one call; see Appendix C. 

The movement of an object on the ~creen is simulated by erasing 
•the existing object and then displaying it at a new location. We will use a 

small ball to illustrate ~he techniques in animation. 
For the display, we n<~ed to pick a graphics mode, the ball color, and 

the background color. Because ;ill adapters support CGA modes, let's choose 
ipode ~· If we selec! 'palette _1 _witti a green background color, we can show 
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a white bali movin~ on a green background. The ball will be represented byt 
a square matrix of four pixels; its position is given by the upper left-hand 
pixel. 

Ball Display 

We will confine the ball to an area bounded by columns 10 and 300 
and the rows 10 and 189. The boundary is shown in cyan. Initially, let us 
set the ball to the middle of the right-hand margin; that is, ball position ls 
column 298, row 100. 

The procedure SET_DISPLAY_MODE sets the display mode to 4, se­
lects palette 1 and a green background color, and then draws a cyan'border. 
The border is drawn by two macros DRAW_ROW and DRAW .. COLUMN. The 
procedure DISPLAY_BALL displays the ball at column CX row DX with th"' 
color given :n AL. Both procedures are in program listing PGM16_2A.ASM. 

Program listing PGM16_2A.ASM 
TITLE PGM16 2A: 

PUBLIC SET_DISPLAY_MODE, DISPLAY BALL 
.MODEL SMALL 
DRAW ROW MACRO x 

LOCAL Ll 
;-iraws· a line in row x from column 10 to col'·· 

MOV AH, OCH ;<;!raw pixel 
MOV "AL, l ;cyan 
MOV CX,10 ;column 10 
MOV DX,X ;row x 

Ll: INT lOH 
me ex ;next column 
CMP CX,301 ;beyond column 300? 
JL Ll ;n::>, repeat 
ENDM 

DRAW CO!..UMN MACRO y 

LOS AL L2 

·n 

;draws a line in column Y from row 10 lo row 189 
MOV AH, OCH 
MOV AL, 1 

MOV CX,Y 

MOV DX,10 
L2: INT JOH 

INC DX 
Z:!'lP DX,190 
JL L2 
F.NDM 

.CODE 
SET DISPLAY MODE -
;:;ets display :node 

MOV AH, (1 

;draw pixel 
;cyan 
;column Y 
;row 10 

; next row 
;beyond r0w 189? 
; n0, repeat 

PROC 
and draws bounrlary 

; .set mode 

300 

MOV AL,04H ;mode 4, .<20 x ;-oo 4 color 

lNT ' 10'1 
MOV AH,OBH ;select palette 

MOV BH,l 
MOV PL,l ;palette 
TN.,. lfl" 



MOV' · BH/0 
MOV BL;2 
:::NT 10.H 

draw bo~ndary · · ' 
DRAW_ROW 10 
DRAW ROW· ' 189 

DRAW=COLUMN. 
0

10 

DRAW. COLUMN ·300 

~ET 

SET_OISPLAY_MODE ENDP 

DISPLAY BALL PROC 
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;setJbackground color 
; green· 

;dr·'!iw row 10 

;draw row 189 

;draw column 10 
;draw column 300 

;displays oall. at .column ·ex and row DX with color given 
; in' AL 

; input: AL = color of ball 
ex = column 
DX = row 

MOV AH, OCH ;write 
INT lOH 

INC ex ;pixel 
INT lOH' 
INC DX ;down 
INT lOH · 

pixel 

on next: column 

l row 

DEC ex ; prev1 :::.us column 
INT 1 011 

DEC .ox 
P.ET 

DISPLAY_BALL f::NDP 

END· 

; restore DX 

Notice that, to erase the ball, all we have to do is display a ball with 
the background color at the ball position. Thus v.e can use the DISPLAY _BALL 
procedure for both displaying and erasing. 

To simulate ball movement, we define a ball velocity with two co·m­
ponents, VEL_X and VEL_ Y; each is a word variable. When VEL_X is positive, 
the ball is moving to the right, and when VEL_Y is positive, the ball is moving 
down: The position of the ball is given by ex (column) and DX (row). After 
displaying the ball at one position, we erase it and compute the new position 
by adding Vf.L_X.to ex and VEL_Y to DX. The ball is then displayed at the 
new column an.ct.row position, and the procE"ss is repeated . 

. 1 .. The following instnictions display a ball at column CX, row DX; 
.erase it; and display it in a new position ddermined by the vt::locity. 

. ., ! 

.MOV~ AL,3 ;'7olor~r ir. i=C'1le:.tte = whit•? 
'c11L'L D:S?LAY BALL. ;display .. ·hite bali 
MOV AL, 0 - .. ~:.;color· O ·i~ bacY.groi.;nd color 

,CALL .. ~IS~Ll''.'Y_BALL ';era~e ball 
ADD CX,VELX ·;r.c\.,coluni'n 
ADD DX,VEL;-Y ·;r.·ewrow' 
MOV. · AL, 3_,. -; " ·;white \:01"ar 

CALL DISPLAY_EALL' ;di~play b~ll at new positior: 

Because ~h~· com¢ter ;a~ e~ecute l~structions at such a high speed, the ball 
will be moving too fast on the screen for us to see. One way to solve the 
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problem is to use a counter-controlled delay loop after each display of theJ 
• ball. But due to different operation speeds of the various PC models, such a 

delay loop cannot give a consistent delay time. A better method ls to use 
the timer. We noted In Chapter lS that the timer ticks 18.2 times every 
second; 

A timer interrupt procedure Is needed for the timing, It will do the 
following: each time It is activated, It will set the variable TIMER_FLAG to 
1. A ball-moving procedure will check this variable to determine if the timer 
has ticked; If so, it moves the ball and clears TIMER_FLAG to O. The timer 
interrupt procedure TIMER_TICK Is given In the program listing 
PGMl6_2B.ASM. 

Program Listing PGM16_2B.ASM 
TITLE PGM16_2B: TIMER_TICK 
;timer interrupt procedure 

EXTRN TIMER FLAG:BYTE 
PUBLICTIMER TICK 

. MODEL SMALL 

.CODE 
;timer routine 
TIMER TICK PROC 
; save registers 

PUSH DS 
PUSH AX 

MOV 
MOV 
MOV 

AX,SEG TIMER_FLAG 
DS,AX 
TIMER_FLAG,1 

;restore registers 
POP AX 

-POP DS 
IRET 

TIMER TICK ENDP 
END 

Ball Bounce 

; save DS 

;get segmenc of flag 
;put in DS 
;set flag 

; restore DS 

;end Li~er routine 

If we continue to move the ball in the same direction, eventually, 
the ball will go beyond the boundary. To confine the ball to the given area, 
we show it bouncing off the boundary. First we test each new position before 
displaying the ball. If a position is beyond the boundary, we simply set the 
ball at the boundary; at the same time, we reverse the velocity component 
that caused the ball to move outside. This will move the ball back as if it 
bounced off the boundary. The procedure CHECK_BOUNDARY in program 
listing PGM16_2C.f\SM checks for the boundary condition and modifies the 
velocity accordingly. 

\Vi th 'the boundary check procedure written, we can write a 
MOVE_BALL procedure that waits for the timer and moves the ball. The 
MOVE_BALL procedure first erases the ball at the current position given by 
CX,DX; then it computes the new position by adding the velocity and calls 
CHECK_BOUNDARY to check the new position; finally, it checks the 
TIMER_FLAG to see if the timer has ticked; if so, It displays the ball at the 
hew ·rositio-n.- The· MOVE_BALL procedure is in program listing 
PGM16_2C.ASM. 
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Program Listing PGM16_2c.ASM 
TITLE PGM16_2C: 
;contains MOVE_BALL and CHECK_BOUNDARY procedures 

EXTRN OISPLAY_BALL:NEAR 
EXTRN TIMER_FLAG:BYTE, VEL_X:WORD, VEL_Y:WORO 
PUBLIC MOVE_ BALL 

. MODEL SMALL 

.CODE 
MOVE_.BALL PROC 
; erase ball at current position anct display ball at new 
;position 
; input: ex a column of ·ball position 

DX • r.ow of ball position 
;erase ball 

MOV 
CALL 

AL, 0 ; color 0 is background color 
OISPLAY_BALL ;erase ball 

;get new position 
ADD ex, VEL_X 
ADO OX, VEL_Y 

; chec.k boundary 
CALL CHECK_BOUNDARY 

;wait .for. 1 timer tick to ~isplay ball 
TEST_TIMER: 

CMP 
JNE 

·Mov 
MOV 
CALL 
RET 

MOVE_BALL 

TIMER_FLAG,l ;timer ticked? 
TEST_TIMER ;no, keep testing 
TIMER_FLAG, 0 I yea, reset flag 
AL, 3 ;white color 
DISPLAY_BALL ;show ball 

ENOP 

CHECK_ BOUNDARY PROC 

;determine if ball is outside screen, if so move it 
;back in and change the ball direction 
;input: ex • column of ball position 

ox • %OW of ball position 
;output: ex - column of ball position 

OX = row of ball position 
1check column value 

CMP CX,11 
JG Ll . 
MOV CX,11 
NEG VEL X 
JMP L2 

Ll: CMP CX,298 
.JL L2 
MOV CX,298 
NEG VEL X 

;check row value 
L2; CMP OX,11 

JG L3 
MOV OX,11 
NEG VEL Y 
J!1P DONE 

L3: CMP OX,187 

1left of 11? 
;no, qo check right margin 
;yes, set to 11. 
;change direction 
;go test row boundary 
;beyond right margin? 
;no, go test row boundary 
;set column to 298 
ichange direction 

;above top margin? 
;no, check bottom margin 
1set to 11 
;change direction 
;done 
;below bottom margin? 
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DONE: 

JL 
MOV 
NEG 

DONE 
DX,187 
VEL_Y 

RET 
CHECK_BOUNDARY 

END 

;nl', done 
;yes, set to 187 
;change direction 

ENDP 

We are now ready to write the main procedure. Our program wili use the 
SETUP _INT procedure in program listing PGM15_2A in Chapter 15 to set up 
the interrupt vector. The steps In the main procedure are: (1) set up the 
graphics display and the TIMER_ TICK interrupt procedure, (2) display the 
ball at the right margin with a velocity going up and to the left, (3) wait for 
the timer to tick, (4) call MOVE_BALL to move the ball, (5) wait for the timer 
to tick again to aHow more time for the ball to stay on the screen, and (6) 
go to step 3. The main procedure is shown In program listing PGM16_2.ASM. 

Program Listln9 PGM16_2.ASM 
TITLE PGM16 2: BOUNCING BALL 

EXTRN SET_DISPLAY~MODE:NEAR, DISPI.1'Y_BALL;NEAR 
EXTRN MOVE_BALL:NEAR 
EXTRN SETUP_INT:NEAR, TIMER_TICK:NEAR 
PUBLIC TIMER_fLAG, VEL_X, VEL Y 

.MODEL SMALL 

.STACK lOOH 

.DATA 
NEW TIMER_ VEC 
OLD_TIMER_VEC 
TIMER FLAG -
VEL X 
VEL Y 

.CODE 
MAIN PROC 

DW 
ow 
DB 
ow 
DW 

MOV AX,@DATA 
MOV DS,AX 

? I? 
? , ? 
0 
-6 
-1 

;initialize DS 

;set graphics mode and draw border 
CALL SET_DISPLAY_MODE 

;set up tinier interrupt vector 
MOV NEW_TIMER_VEC! OFFSET TIMER_TICK ;offset 
MOV NEW_TIMER_VEC+2,CS ;segment 
MOV AL, lCH ; i.nterrupt type 
LEA to vector buffer DI, OLD_ TIMER_VEC ;DI points 
LEA 
CALL 

; star:t ball 

Sl,NEW TIMER -
SETUP INT 

·-
at column = 

- VEC ;SI points to new vector 

298, row = 100 
;for the rest of the ~rogram CX will be column position 
;of ball and DX will be row position 

MOV CX,298· 
MOV DX, l 00 
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Adding Sound 

MOV. 

CALL 

AI., 3 
DISPLAY.:_BALL - _ 
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: wlai t.i;o l.idl.I 

;wait for t.imP.r tick· betore moviug tht! bail 

TEST_ 1' I MER: 

CMP 

JNE 
MOV 

CALL 

. 'f IMER _FLAG, l 

Tt.ST TIMER 
TlMER_f'LAG,0 
MOVE_BALL 

;delay l timer tick. 
TEST_'l'IMER_2: , 

CME' TIMER FLAG; l -
JNE 1"£S1' Tli1ER 2 - -
MOY '!'IMER f'LAG,0 --
JMP ·'Tt::ST TIMER -MAlN ENC? 
E:NU Miil N 

it.in.er tlckc,,d? 
;uo, keE:p L~.stl11g 

;ye:;, cl<:.J.:; r'iay 
;move tu 1i.;w p1)SiL1"11 

;timer tlcked? 

; no, k~E:p testing 
;yes, c:le11r fldg 
;go get n~hL ball position 

. lo· run .the program, we need to link the object files PG Ml 6 _2 + 
PGM15..:.2A + .PGM16 __ 2A + PliM16_2R _+ l'GM16 .. 2C. One word or caution. 
however: this program has no way to terminate. Soil may bl· lll'<·(•,,,;iry to relxiot 
the system. In section 16.6.2 we discuss a way to tenninate the program. 

·. 

In the following sections, Wt"'ll deve•op the bouncing bail program 
into an interactive video game program. First. in s~ctiu11 l!i.6.1, we ad<.! sound 
to the prugr.im; when the ball hits tht: bound.try ii toric i~ gc11cri1tu.I. Scrnnd. 
in section 16.6.2, we add a paddle to illlow the player to hit the ball To keep 
things simple, the paddle only slides up and down along 1he left boundary 
and Is controlled by the up and down arrow 1-;eys. If the pi!ddle mhscs the 
ball when it arriws al th(.: left m<irgi11, the game b te1111inated. Tht- gil1ne 
can abo be tcnniniltcu b)· prc.>si11g the Es1.. key. 

The PC has a tone generator that can be set to generate particula1 
tones for specified durations. The frequency of the tone generation can l>c 
specified l>y a timer circuit. 

The timer l'ircuit is driven by a clock circuit that has a rate of 1.193 
MHz. This is beyond.the range-of human h·eadng. but the timer l·an generate 
output signals with lower frequencies. It does this by generating one pulse 
for cvl·ry N Im om mg pulses,- where N 1...in lit• sped lied by a program. Tlw 

:.numl>er .. N Is lirsl loaul'll.into a counter, then, ilfler counting N incoming 
, pulses, the circuit produces ont- pulse. The process h rl•p<•atcd until a ~iffcrcrll 
, value is placed in the counter. ·for example, by placing a value of 1193 in 
;the counter, the.output ls.1000 pubes every second, or 1000 Hz . 

. · ,._ · The next thing-in tone generation is to determine the duration To 
start the tone, we turn on the timer circuit; afkr a specilic arrwunt of time, 
~we .must turn it off. To keep time, we can use the' TIMEI< TJrl< interrupt 
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routine. Because the TIMER_ TICI< procedure Is activated once every 55 ms, 
we get half a second of delay in 9 ticks. 

To access the timer circuit, we have to use the 1/0 Instructions IN 
and OUT. They allow data to be moved between an 1/0 port and AL or AX. 
To read an 8-blt 1/0 port we use 

IN AL, port 

where port is an 1/0 port number. Similarly, to write to a 8-blt 1/0 port we use 

OUT port,AL 

There are three 1/0 ports Involved here: port 42h for loading the counter, 
port 43h that specifies the timer operation, and port 61h that enables the 
timer circuit. 

Before loading port 42h with the count, we load port 43h with the 
command code B6h; this specifies that the timer will generate square waves 
and that the port 42h will be loaded one byte at a time with the low byte 
first. The bit positions O and 1 in port 61h control the timer and its output. 
By setting them to 1, the timer clrct1it will be enabled. 

The sound-generating procedure, BEEP, produces a tone. of 1000 Hz 
for half a second. The steps are (1) load the counter (1/0 port 42h) with 1193, 
(2) activate the timer, (3) ClllOW the beep to last for about 500 ms, and (4) 
deactivate the timer. Procedure BEEP is shown in program listing 
PG Ml 6_3A.ASM. 

Program Listing PGM16_3A.ASM 
TITLE PGM16_3A: BEEP 
;sound generating procedure 

EXTRN TIMER_FLAG:BYTE 
PUBLIC BEEP 

.MODEL 
,CODE 
BEEP PROC 

SMALL 

;generate beeping sound 
PUSH ex ; save ex 

;initialize timer 
MOV 
OUT 

;load count 
MOV 
OUT 
MOV 
OUT 

AL,OB6H 
43H,AL 

AX,1193 
42H,AL 
AL,AH 
42H, AL· 

;specify mode of operation 
;write to port 43h 

; count for, 1000 · Hz 
; low byte 
; high byte 

;activate speaker 

;500 

B 1: 

IN 
MOV 
OR 
OUT 

AL,61H 
AH,AL 
Jl.L, llB 
61H, AL 

;read control port 
;save value in AH 
;set control bits 
;activate ~peaker 

l\S delay loop 

CMP 
JNE 
MOV 
LOOP 

ex, 9 ; do 9 times 
TIMER_FLAG, l ; check timer flag 
B 1 ; not set, loop back 
TIMER_FLAG, 0 ; flag set, clear it 
B l ;repeat for next tick 

; turn off tone 
MOV AL, AH ;return old control value to AL 
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We now write a new ball movement procedure that uses the sound­
generating procedure BEEP. Wllenever the ball hits the boundlry, procedure 
BEEP ls called to sound the tone. The new procedures are called 
MOVE_BALL_A and CHECK_BOUNDARY _A; both are contained ln the pro-
grai;n listl~g PGM16_3B.ASM. · 

Program Listing PGM16_3B.ASM 
TITLE PGM16_3B: Ball Movement 
icontains MOV(_BALL_A and CHECK_BOUNDARY A 

EXTP.N DISPLAY~BALL:NEAR, BEEP:NEAR 
EXTRN TIMER_FLAG:BYTE, VEL_X:WORD, VEL_Y:WORD 
PUBLIC MOVE_BALL_A 

.MODEL SMALL 

.CODE 
MOVE_BALL_A PROC 
;erase ball at current position and display ball at new 
;position 
; input: ex - column 

DX • row 
;output: ex a column 

DX • row 
MOV AL, O ; color O is background color 
CALL DISPLAY_BALL ;erase ball 

;get new position 
ADD ex, VEL_X 
ADD DX, VEL_Y 

; check boundary 
• CALL CHECK_BOUNDARY_A 

;wait for 1 timer tick 
TEST_TIMER_l :· 

CMP TIMER_FLAG, l ;timer ticked? 
JNE TEST_TIMER _l ; no, keep testing 
MOV TIMER_FLAG, 0 ;yes, clarify 

• MOV AL, 3 ;white color 
CALL DISPLAY_BALL ; show ball 
RET 

MOVE_BALL A ENDP 

CHECK_BOUNDARY_A PROC 
;determine if ball is outside scr~n, if so move it 
iback ·in and chanqe the ball direction 
;iriput:· ex - colu~n 

DX - row 
;output: c~ - column 
; . DX a row 
;check column value 

CMP ex, ll 
JG Ll 
MOV CX,11 
NEG VEL X 
CALL BEEP 
JMP L2 

Ll: CMP CX,299. 

JL L2 

HOV CX,298 

NEG VEL X 
.· 

I left Of 11? 
; no, qo check right margin 
;yes, set to 11 
ichange direction 
;sound beep 
; go teat row boundary 
;beyond right margin? 
;no, go test row boundary 
; set column to 298 

- ; change direction 
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16.6.2 
Adding a Paddle 

CALL BEJ::P ;sound beep 
;check row value 
L2:" CMP DX, ll ;above top margin? 

JG L3 ;no, check bottom margin 
MOV DX,11 ;set to 11 
NEG VE!._ ':! ;change direction 
CALL BEtP 
JMP DONE ;done 

L3: CMP Dx •. 1 ea ;below bottom margin? 
.JL DONE ; no, done 
MOV DX,187 ; yes, set to 187 
NEG VEL y ;change direction -
CALL BEEP ;sound beep. 

DONE: 
RET 

CHECK BOUNDA.RY_A ENDP 

END 

Next, let us add a paddle to the program. The paddle will move up 
and down along the left boundary as tltf player presses the up and down 
arrow keys. 

Since the program does not know when a key may be pressed, we 
need to write an intem1pt procedure for Interrupt 9, the keyboard interrupt. 
This Interrupt procedure differs from the one In Chapter 15 in that it will 
access the keyboilrd 1/0 port directly and obtain the scan code. 

There are three 1/0 ports to be accessed. Wheri the keyboard gener­
ates an Interrupt, bit S of the I/0 port 20h is set, and the scan code comes 
into port 60h. Port 61 h, bit 7, is used to enable the keyboard. Therefore, the. 
interrupt routine should read the data from port 60h, enable the keyboard 
by setting bit 7 in port 61h, and clear bit 5 of port 20h. 

The interrupt procedure is called l<EYBOARD._INT. When it obtaim 
a scan ~ode, it first checks to see if the scan code is a make or break code. 
If it finds a make code, it sets the variable °KEV_FLAG and puts the make 
code in the variable SCAN_ CODE. If it finds a break code, the variables are 
not changed. Procedure J<F.YBOARD_INT is in program listing 
PGM l 6_3C.ASM. 

Prograim Listing PGM16_3C.ASM 
TITLE PGM16_3C:Keyboard Interrupt 

EXTRN SCAN_ CODE: BYTE, KEY FLAG: BYTE 
PUHLlCKEYBUARO_lNT 

.MODEL SMALL 

.CODE 
KE:tBOARD_lNT l:'ROC 
;keyboard interrupt routine 
; save registers 

PUSH OS 
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; set up DS 
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MOV AX,SEG SCAN_CODE 
MOV. DS,AX 

; input scan code 
IN AL, 60H. 
PUSH AX - >. 

IN 
MOV 
OR 
OUT 
XCHG 
OUT 
POP 
MOV 
TEST 
JNE 

AL,61H 
AH,AL' 
AL,80H 
61H,AL 
AH,AL 
6~H,AL 

AX 
All, AL 
1'.L, BOH 
KEY 0 

'·;read scan CC!lde 
;save it 
;control port value 
; save in AH 
; set bit tor keyboard 

··;write· back 
; get back control value 
;reset control port 
;recover scan code 
;save scan code in AH 
; test for break code 
;yes, clear flags, goto KE'i_O 

;make code 
MOV 
MOV 

KEY_O: MOV 
OUT 

SCAN CO~'E,AL ;save in variable 
KEY_FLAG, l ; set key flag 
AL,20H 
20H,AL 

;restore registers 
POP AX 
POP OS 
IRET 

KEYBOARD_INT ENDP 

END 

; reset interrupt 

;end 'KEYBOARD routin~ 

We now add a paddle in c'olumn i l,' and use the up and down arrow 
·keys to move It. ·u the ball gets to C:olumn 11 and t~e paddle is not in position 
to hit the ball, the program terminates. The paddle is mad~ up of 10 pixels; 
the initial posltlo·n Is from row 4S to row· 54. We use two variables, PAD­
DLE_ TOP and PADDLE_BOTTOM, to keep track of Its current position. 

We need two procedures: DRAW _PADDLE, to display and erase the 
paddle; and MOVE_PADDLE, to move the paddle up and down. Both pro­
cedu.res are in program listing PGM16_30.ASM. 

Program Listing PGM16_30.ASM 
TITLE PGM16_3D: PADDLE CONTRCL 
;contains MOVE_PADDLE and DRAW_PADDLE 

EXTRN PADDLE_TOP:WORD, PADDLE_BOTTOM:WORD · 
PUBLIC DRAW_~ADDLE, MOVE PADDLE 

.MODEL SMALL 

.CODE 
DRAW _PADDLE PROC 
;dr~w paddle ·i; column ll 
; input: AL contains pixel value•''' 
· • 2 (red) for display and 0 (green) to erase 
; save registers 

PUSH ex 
PUSH DX 
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MOV AH, OCH 
MOV CX,11 
MOV DX,PADDLE_TOP 

DPl: INT lOH 
INC DX 
CMP DX,PADDLE_BOTTOM 
JLE DPl 

;restore registers 
POP DX 
POP ex 
RET 

DRAW PADDLE ENDP 

MOVE_PADDLE PRQC 
;move paddle up or down 

!.. 
;write pixel function 
;column 11 
;top row 

;next row 
;done? 
;no, repeat 

; input: AX • 2 Ct :i move paddle down 2 pixels) 
• -2' .. -.v move paddle up 2 pixels) 

MOV BX,AX ;copy to BX 
; check direction 

CMP AX, 0 
JL UP : neg, move up 

;move down, check paddle position 
CM~ PADDLE_BOTTOM,188 ;at bottom? 
JGE 
JMP 

DONE 
UPDATE 

;move up, check if at top 
UP : CMP PADDLE_ TOP, 11 

JLE DONE 
; move paddle 
UPDATE: 
;-erase paddle 

MOV AL,O 
CALL DRAW PADDLE 

;-change paddle position 
ADD PADDLE_TOP,BX 
ADD PADDLE_BOTTOM,BX 

;-display paddle at new position 

;yes, cannot move 
;no, update paddle 

;at top? 
;yes, cannot move 

: green color 

MOV AL, 2 ; red 
CALL DRAW_PADDLE 

DONE: RET 
Move .PADDLE ENDP_ •.... 

END 

MOVE_PADDLE wlll either move the paddle up two pixels or down 
two pixels, depending on whether AX Is positive or negative. However, If 
the paddle Is already at the top, It will not move up; and if It Is already at 
the bottom, it will not move down. 

We are now ready to write the main procedure. 
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TITLE PGM16_3: PADDLE_BALL 

Chapter 7 6 ~o/or. Graphics 353 

EXTRN 
EXT RN 
EXTRN 
EXT RN 
EXT RN 

SET_DISPLAY_MODE:NEAR, DISPLAY_BALL:NEAR 
MOVE_BALL_A:NEAR, DRAW_PAODLE:NEAR 
MOVE_PADDLE:NEAR 
KEYBOARD INT:NEAR, TIMER TICK:NEAR 
SETUP_INT:NEAR, KEYBOARD=INT:NEAR '. 

PUBLIC . TIMER_FLAG, KEX_FLAG, SCAN~CODE 

PUBLIC PADOLE_TOP, PADDLE_BOTTOM, VEL_X, VEL_Y 

. MODEL SMALL 

.STACK lOOH 

.DATA 

NEW_TIMER_VEC 
OLD_TIMER_VEC 
NEW_KEY_VEC 
OLO_KEY_VEC 
SCAN_CODE 
KEY_FLAG 
TIMER FLAG 
PADDLE TOP 
PADOLE_BOTTOM 
VEL_X 
VEL_Y 
;scan codes 
UP _ARROW • 72 
DOWN_ ARROW • 8 0 
ESC_KEY • 1 

.CODE 
MAIN PtlOC 

ow 
ow 
ow 
ow 
DB 
DB 
DB 
ow···_ 
ow 
ow 
ow 

MOV AX, @DATA 
MOV DS,AX 

;set graphics mode 

?,? 
?,? 
?,? 
?,? 
0 
0 
0 
45 
54 
-6 
-1 

CALL SET_DISPLAY_MODE 
; draw paddie 

MOV 
CALL 

AL, 2 . 
DRAW_PADDLE 

; set up timer interrupt vector 

; initialize DS 

;display red paddle 

MOV NEW_TIMER_VEC,OFFSET TIMER_TICK ;o_ffset 

; set 

MOV 
MOV 
LEA 

NEW_TIMER_VEC+2,CS 
AL,lCH 
OI,OLD_TIMER_VEC 

LEA SI,NEW TIMER VEC - . - ·. 
CALL SETUP INT 

~p keyboard interrupt vector 

;segment 
;interrupt number 

;offset MOV NEW_KEY_VEC,OFFSET KEYBOARD_INT 
HOV N£W_K£Y_VEC+2,CS ; Se91"ent 

;interrupt number MOV 
LEA. 

LEA 
CALL 

AL, 9H 
OI,OLO_KEY_VEC 
SI,NEW_KEY_VEC. 
SETUP_INT 

;start ball at column • 298, row • 100 
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MOV ex, 2.98 

MOV • DX, 100 
MOV. '.AI., 3 

,CALL OISPLAY_BALL 

icolumn 
;row 
;white 

; check. Jtey ~ ~;~~ •. .! 

TEST_KE'i: ;: • . . 

TK_l: 

CMP . 'KEY FLAG, i .. 
JNE .•. 'TEST_TIMER 

;.check key flag 

;not set, go check timer fl.:i 
MOV 

CMP 
JNE 
JMP 

CMP 
JNE 

MOV 

CALL 

JMP 

KEY_FLAG,O ;flag set, clear it and che::: 
SCAN CODE,ESC_KE'i ;Esc key? 
TK l· 

DONE 
;no, cr,eck arrow keys 
;Esc, 

SCAN_CODE,UP_ARROW 
TK 2 ;no, 
AX,-2 ;yes, 

MOVE_PADDLE 

terminate 
; up arrow? 

.check down arrow 
move up 2 pixels 

TK 2: CMP 

TEST_TIMER ;go check timer flag 

SCAN_CODE,DOWN_ARROW ;down arrow? 

JNE 

MOV 
CALL 

TEST TIMER ;no, check timer flag 

AX,~ _;yes, move down 2 pixels 
MOVE PADDLE 

;check timer flag 

TEST TIMER: 
; flag set? CMP 

JNE 

MOV 

CALL 

TIMER_FLAG,l 
TEST KEY 

TIMER_FLAG,O 

MOVE BALL A 

; no, check key flag 

;yes, C'lear it 

;move ball to new position 

paddle missed 

CX,11 
ball 

;at column 11? 
;check if 

CMP 

cTNE 
CMP 

JL 

TEST KEY 

DX,PADDLE_TOP 

CP_l 

; no, check key flag 

. ; yes, check paddle 

;misied, ball above 
CMP DX,PADDLE_BOTTOM 
JG CP _l ;missed, ball below 

;paddle hit the ball,_ de~ay one tick tr.en 
;move the ball and red1aw paddle 
DELAY: CMP TIMER_FLAG, l ;t,imer ticked? 

JNE DELAY . ; no, ko:ep checking 

MOV TIMER_F:L.AG, 0 ; yes, reset flag 
CALL MOVE BALL A -- . -
MOV AL, 2 ;display red paddle 

CALL DRAW PADDLE 
JMP . TEST -KEY 

;padd~e missed the ball, 
CP 1 :, Mo·v. 'AL, a· 1 

- CALL DISPLAY_BALL 

; check key flag 

erase the ball and 

;erase ball 

;-reset timer 'interrupt vector 
DONE: LEA . DI. NEW. TIMER VEC 

'• LEA S_I_,OLD=TIMER=VEC,. 
MOV AL, lCH 
CALL . SETUP '.'rnf 

' 1 ' . ;~ f . 

;-reset-·keyboard ·interrupt-vector 

: .i 

LEA DI,NEW__.KEY_VEC 

LEA .sr, OLD _KEY_ VEC' 
MOV AL, 9H 

terminate 



Chapter 16 Color Graphics 355 

CALL SETUP INT 
;read key 

MOV AH, 0·.·• 
,. INT 1 611 

; reset to text: mode 
MOV AH,0 .;wait fur l.nput 
MOV AL, 3._ 
INT lOH 

; return to DOS 
MOV AH,4CH 

.· . ., 1'lNT 2111 · 

MAIN ENDP 
END MAIN 

. ln·thl! inain procL'Clure, we alternate between checking the key llag and the 
timer flag. If ihe key flag is set, we check the scan i.:ode: (1 I F.sc key will 
terminate the program, (2) Up arrow key will move the paddle up, (3J lJown 
arrow key will move the paddle down, and (4) all other keys are ignoreCI. II 
the timer flag Is set, we call MOVE_BALL_A to move the ball to a new posi­
tion, and if the ball is at (;Olumn 11 but missed the paddle, we terminate 
the program. 

To terminate the p1ogram, we firi.t re~;et the interrupt vectors and 
wait for a ke}' input. When a key is pressed, we rl•set the screen to text mod«.> 
and return to DOS. 

summa..Y 
• 
• 

_.. 

Screen elein~ts in graphics mode arc called pixels . 

The .c?1_n~non ll!M graphics adapters ;ire CGA, EGA, and VGA . 

The INT lOh -routine·handles all graphics opcr;itions . 

• I The ccA l1a·s a IJH:di.urri-rcsolulion Jllo<..IC of 320 )( 200 and d high· 
resolution mode of 640 x'200. 

• 

~ .: 
• 

- . 
The EGA has all the CG/\ 111odes plus a rc·,olution of 640 x 350. 

The VGA has all 1 lhc·~A modes plus a resolution of 640 x 480. It 
can also display 256 colors (n the :~zo x 200 mode. 

0Ariimat.io1~ i.;~·oivc~· ~r~~ing 'an object and displaying it at a· new 
·1ocatio11. " · : , ; 

. . . 
Sound generation can be achiev<.-<l by writing to the 1/0 ports. 

. . . j, ! ... j 

lnter;ictivc vid«.>o game programming requires trapping thl' key-
board interrupt. 
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Glossary 

analog monitor. 

APA (all points 
addressable). 
background color· 

bit planes 

ECD (enhanced color 
display) monitor 

palette 

pixel 

scan lines 

New Instructions 

IN 

. Exercises 

A monitor that can accept multilevel 
color signals 

Graphics mode that maps a pixel into J 

single dot 
Default color of pixels 

Memory modules that share the same 
memory address 

A monitor that can display all EGA modes 

A collection of colors that can be dis· 
played at the same time 

Picture el<?ment 

Lines on the screen traced by a beam of 
electrons 

OUT 

1. Write Instructions that will select graphics mode 320 x 200 with 
16 colors. 

2. Write Instructions that will select palette 0 with white back­
ground for the CGA medium resolution mode. 

3. Writ.: instructions thal will display a 10 x 10 green rectangle with 
the upper left-hand comer at column 1 SO and row 100 on a 
white background using CGA medium resolution. 

4. Write Instructions that will change a 10 x 10 green rectangle on 
white background into a cyan rectangle on a white background. 

Programming Exercises 

s. Modify the video game program In the chapter to add a second 
· paddle in column 299 so that it becomes a 2-player game. 

6. Modify the video game program In the chapter so that the ball 
speed decreases when it hits the boundary, but increases when It 
is hit by a paddle. 
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Recur$ion 

Overview·· 

1)7.1 
The Idea of 
Recursion 

A recursive procedure is a procedure that calls itself. Recursive pro­
cedures are important in high-level languages, but the way the system uses 
the stack to implement these procedures is hil1dcn from the programmer. In 

-assembly language, the programmer must actually program the stack ·oper­
ations, so this provides. an opportunity to see how recursi~n. really works . 

. • nccause you may have had only limited cxpcriem:e with recursion, 
~c<.:tlons 17.1-17.2 dis<.:usnhc unucdying ideas. Sc<.:tion 17 .3 shows how that 
stack can· be used to pass data to a pron•durc; this topic was·.also covered in 
Chapter 1-l. In sections 17 .4-17.5, we apply this method to implement re­
cursive procedures that call themselves once. Thl' chapter ends with a dis­
cussion of procedures that make multiple recursive 'calls. 

A pro<:ess is said to Ile r&.."t:ursh·c if it is defined in terms of it~clt. 
For cxa111plc, conside1 tl11: following definition of a binary tree: · 

A binary tree is either empty, t>r consists 01 a single clcmt>nt 
called the r1k>I, ;incl whose remaining t'IC'mcnts arr partiti;J11rll 
inlll twu dbjoi1ll \uli>cts (lh<i ldL and right subttl'l'S), c;1ch 0f 
which i\ a bin.try tree, 

.. Let us apply the definition to show tllat the following tree T is 
a binary tr;c·: -

35/ 
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17.2 
Recursive Procedures 

Choose A as the root of T. The tree Tl, consisting of B, I), and £, is 
the left subtree of A and the tree T2, consisting of C; is the right subtr('~. We 
must show that Tl and TZ are binary trees. 

Choose B as the root of Tl. The trees Tla consisting of D a111.J Tlh 
consisting of E are the left and right subtrees. We must show that Tla and 
Tl 1> are binary trees. 

Choose D ;is the root of Tia. The left and right subtrees of I> arc 
empty, and since an empty lree is a binary tree, Tia is a binarr trct'. Fur 11.u..T 
same reason, Tlb is a binary tree. Because Tla and Tlb are binary trees, Tl 
must be a binary tree. 

NQw look at T2. It has a root C whose left and right subtrees are 
empty, so it is a binary trer. 

Since Tl and T2 have been shown to be binary trees, tr('e T mu~t 
also be a binary tree. 

This simple example illmtralc-s the main characteristics of recursive 
processes: 

1. The main problem (showing that Tis a binary tree) breaks down 
to simpler probl"ms (showing that Tl and T2 arc binary trees), 
and each of thr~e problems is solved In exactly the same way as 
the main problem. 

2. There must be an e~cape case (empty trees are binary tree~) that 
lets the recursion terminate. 

3. Once a subproblem has been solved (Tl is shown to be a binary 
tree), work proceeds on the next step of the original problem 
(showing that TZ is a binary tree). 

I 

A ren1rsive pron~durc calls itself. As a first exampil'. con~idcr till' 
factorial of a positive integer. It may be 

0

defi11ed nonrecursively as 

FACTOlllAL (I)= I 
FAl.'TORIAL CN) = N x (N- 1) x CN - 2) x ... 2 x 1 if N>l 

or, since 

FACTORIAL (N- 1) =IN- 1) x IN- 2) x ... 2 x 1 

we may w1ite the following recursive definition: 

F,\CI OHl,\l. (1 l = I 
F:\CTOHIAI. <N) = N x FACTO HI Al. (N - I l if N >I 

Let's rewrite this as an algorithm for a recursive procedure fACTOIUAL: 

~: ??.:CSDUP.E FAl.'i\..i~ll\L (inpi.;t: f\, ou~pt;t: RL::.SUL'!') 

2 : I~~ ~J = i 

3: :-HE!-l 

~: RE.SULT e l 

5: E'!.SE 
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6: , call FA.CTORIAL (input: N - 1, output: RESULT) 

7: RESULT "' N x RESULT 

8: END IF 

9: RETURN 

In line 7, the ~ah.ie of RESULT on the right side is the v.1lue returned .by ihe 
call to FACTORIAL at line 6. ' · 

•For N = 4, we can.trace the actions of the procedure as follows: 

call FACTORIAL': ('.j, RESULT) ' 

call··facTORlAL. ·c 3, R~SULT) 
call' FACTORIAL ·1·2;~ESULT) 
c~ll FArCTORIAL q,RESULT) 

RESULT' r 1 

/* begin 
/* begin 
/"' begin 
;• begin 

first call •/ 
second call •/ 
third call •/ 
fourth call •I 

RETURN. /•· end fourth call •/ 

The fourth call is the escape case. When it is finished, the third call is resumed 
at line 7: · · · 

RESULT = N x RESULT 

On the right side, N = 2 and RI::SULT is 1, the value computed in 
the fourth call. We compute_ 

RESULT a 2 · x 1 ··'' 2 
l . . . . . 

and this call ends. The procedure then· re~ume~ the second C.all 'at line 7'. In 
this call N = 3; so we compute · _, · 

RESUJ.T a '3 x RESULT •• 3 x 2 a 6 

which ends this call. Finally the procedure resumes the first call a_t line 7. In 
this call N = 4, so thf resul.t is. 

RESULT ~ 4 'x RESlJLT =. 4 x 6. = 24 

and this is the value returned by the procedure. 
This procedure has the properties of a recursive process that we no­

ticed in the binary tree example. E.1ch call to procedure FACTORIAL works 
on a simpler version of the original problem (finding the factorial of a smaller 
number), there is an escape case (the factorial of l) and unce a c:all has been 
completed, work continues on the previous call. 

' As a second example, comidcr tile problem of finding rhe largest 
entry in an array A of N integers. If N = 1, then the largest entry is the only 
entry, All]. If N > 1, the largest entry is either AINI or the biggest of the 
entries A[l] ... AIN - lj. Here is an algorithm for a procedure.· 

1: PHOCEDtJRE F'INC_11/\/: (input: N£, ot.:t.put: ~/IX) 

2: I~ N i;a l 
3: THF:N 

1 : ~:f.X .= !I ( l J 
5: E,LS!:: 

f.: call FIND ~;.1\X (N-1, :/J,X> 
. . -- . 

7 • IF A f i.J J > MAY. 

2: THEN 

9: M~.X ~ l\ [NJ 

10: ELSE -

11 : MAX . - MAX 

12: ENP_lf 
13: RE':'URN 

' In lines 7 and 11, the value MAX.on the right side is the value returned by 
the call at line, 6. 
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17.3 
Passing Parameters 
on the Stack 

Let's trace the procedure for an array A of four entries: 10, 50, 20, 4. 

call FIND_MAX(4,MAX) 
cull f·Ilm_MAX(3,MAX) 
call FIND_MAX(2,MAX) 
call FIND_MAX(l,MJ\X) 

/* !irst call •/ 
/* second call •/ 
/* third call */ 
/* fourth call *I 

As in the factorial example, the fourth call ls the escape case. It returns MAX 
= A[l} = 10 and exits. 

Now the third call resumes at line 7. Because A(2) (= 50) > MAX (= 
10), the value returned from this call is MAX = 50. 

Next the second call resumes at line 7. Because A[3) (= 20) < MAX 
-' (= 50), this call also returns MAX = 50. 

Finally, we are back in the first call at line 7. Because A[4) (= 4) < 
MAX (= 50), this call returns MAX = 50, and this is the v;iluc returned to 
the calling program by the procedure. 

As we will see l;itcr, recursive procedures are implemented in assem­
bly language by passing parameters on the stack (section 14.5.3). To see how 
this may be accomplished, consider the following simple program. It places 
the content of two memory words on the stack, and calls a procedure 
ADD_ WORDS that returns their sum in AX. 

Program Listing PGM17_1.ASM 
0: TITLE PGM17_1: ADD WORDS 
l: .MODEL SMALL 
2: .STACI< lOOH 
3: .DAT,\ 
4: WORDl OW 2 

5: WORD2 ow 5 
(i: .CODE 
7: MAIN PROC 
8: MOV 1\X,@DATA 
9: MOV OS,l\X 

10: PUSH WORDl 
11: PUSH WORD2 
12: CALL f,DD WORDS -
13: MOV AH,4CH 
14: INT 21H 
::. 5: 
16: ADD WORDS PROC -
1 7: ;adds two memory words 
18: ;stack on entry: return 
l '): ; output: AX = ~urn 

20: PUSH BP 
21: MOV BP,SP 
22: MOV AX, [BP+6] 
23: ADD !IX, [BP+4] 

24: POP BP 
25: RET 
26: ADD WORDS ENDP 
27: END MAIN 

NEAR 

addr. (top), word2, wordl 

;save BP 

;AX gets WORDl 
;AX has sum 
;restore BP 
; ex'i t 
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After initializing OS, tlu!.fcogram pushes the contents of WORDl 
and WORD2 on the stack, and calls ADD_ WORDS. On entry to the proce­
dure, the stack looks like this: 

SP-'+ return_address (line 13) 
5 (WOR02 content) 
2 (WORD.1 content) 

At lines 20-21, the procedure first saves the original content of BP on the 
stack, and sets BP to point to the .stack top. The result Is 

• SP-- original BP value 
return ·address 
5 
2 

Now the data can be accessed t:y indirect addressing. BP is used for two 
reasons: (1) when BP is used In indirect addressing, SS is the assumed segment 
register, and ·(:2) SP itself may not be used In indirect addressing. At line 22, 
the effective address of the source In the instruction 

MOV AX, [BP+6] 

Is the stack top offset plus 6, which is the location of WORJ) l w11tcn1 . 
Similarly, at line 23 the source in . 

ADD AX, [13P+4] 

is the location of WORD2 content (5). 
· After resto.ring BP to its original value at line 24, the stack becomes 

SP-, ~turn address 

. 2 . 

To exit the procedure and restore the slack to its original condition, 
we us"" 

RET 4 

This causes the return address to be popped into II', and four additional bytes 
to he removed from the slack. 

Before attempting to code a rccursiv~ procedure, one issue must be 
resolved. The parameters (and local variables, if any) of the procedure arc 
reinitialized each time the procedure is called. In both examples of section 
17.2, the procedure is first called with paramell'r N = 4, then with N = 3, 
then with N = 2, then with N = I. When a call has been completed, the 
procedure resumes the previous call at the poinl ii left off. In order to do 
so, it must Somehow "remember" that poinl, as well as the values of the 
parameters and local variables in that call. These values arc known as the 
activation record of the call. 

To illustrate, suppose we have a procedure that is caJled once from 
the main procedure, and then calls itself twice more. Before initiating the 
firs~ call, the main procedure places the initial activation record on the stack 
and calls the 'procedure. The procedure saves DP and sets BP to· point to the 
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'. 5tack top, as was done in the example of the last section. The stack looks. 
like this: 

SP and BP----+ original BP value 
return address (in main procedure) 
parameters } 

activation 
record 
first call 

Using BP to access the parameters and local variables, the procedure 
executes its instructions. Before calJing itself, it places the activation record 
for the next call on the.stack. The return address that the recursive call places 
on the stack is that of the next instruction to be done in the procedu~e. As 
the second call begins, the procedure once again saves BP and sets BP to 
point to the stack top. The result is 

SP and BP-- saved BP value (from first call) 
return address (in first call) 
parameters and local variables 

original BP 
return address (in main procedure) 
parameters 

} 

activation 
record 
second call 

} 
activation 
record 
first call 

!\:ow, as in the first call, the procedure uses BP to access the data for the 
second call. Before initiating the third call, its activation record is placed on 
the stack. The third call saves BP and sets it to point to the stack top. The 
stJck becomes 

SP and BP ---- saved BP value (from s~cond call) 
return addr (in second call) 
parameters and local variables 

original BP value (from first call) 
return addr (in first procedure) 
parameters and local variables 

original BP 
return addr (in main procedure) 
parameters 

}
activation 
record 
third call 

}
activation 
record 
second call 

} 

activation 
record . 
first call 

Let's suppose that the third call is the escape case. The result it com­
putes may be placed in a register or memory location so that it is available 
to the second call when the second call resumes. After the third cail is com-• 
pleted, the second call may be resumed by first-.popping BP to restore its 
previous value, and executing a return. The return places in IP the address 
oi the next instruction to be done in the second call. As part of the returri, 
the third rJll's parameters and local variables are popped off the stack and · 
discarded, as was done in the example in the last section. The stack becomes 

SP and BP - -• saved BP value (from first call) 
return addr (in first call) 
parameti'rs and local variables 

original BP 
return addr (in main procedure) 
parameters. 

~l activation 

J 
record 
second call 

} 

activation 
record 
second call 

- ·, Now.the.second caJl.resumes.·It picks up the result of the third call 
and executes to completion. When it has finished and stored the result, theT: 
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sta~k is once again popped Into BP, and control returns to the first call. As 
before, the second call's data are discarded. Now the stack looks like this: 

SP and BP ··- original BP value 
return address (in main procedure) 
pan1meters 

1 activation 
( record 
,, first rail 

When the 'first call is done, the procedure restores BP to its original 
value, and control passes to the main procedure. As before, the paf.1mctl·rs 
are discarded. The procedure stores the final result in a place ~here the- m;iin 
procedure can pick it up. 

In this section, we show how recursive procedures may he im­
plemented in assembly language. 

Example 17.1 Code the FACTORIAL procedure of section 17 .2. Call it 
in a program to compute the factorial of 3. 

Solution: To make the code easier to follow, the algorithm is repeatfd here: 

1: PROCEDURE FACTQRIAL 

2: IF N ~ l 
3: , THEN . _ 
4: RESULT ;,, . 1 
5: ELSE 

(input: N, output: RESULT) 
. . 

6: call .FACTOPIAI. (input: N - 1, out.pllt.: RESULT) 

7: RESULT = N x RESULT . \ 
8: END_IF 

9: RETURN 

Program Listing PGM17 _2.ASM 
0: TITLE PGMl 7 2: FACTORIAL PROGRAM 

l: '.MODEL 

:1 :. . STACK 

.3:. .CODE -· 

Sl1ALL 

lOOH 

4: MAIN PROC 

5: MOV AX,3 
6: PUSH /..Y. 

'/: 

B: 

9: 

CA:..L : ;..CTORl AL 

:-;::iv 

INT 

;.,;i, 4CH 

21H 
10: MAIN EN:? 
11: FAC':'O?.IAL PROC 

fcici:oriaJ 

;N ~ 3 
,· N on stack. 

;/\X has J !oc~-::r1a~ 

;dos return 

12: ; C0:1".pDte.5 :.; 

13: .; input:staci: 
14: i.-output1'.X 

on entry - rct. addr. (~op), N 

l!'>: PUSH . 3P 

lo;: 
. 17: ; if 

18: 

MOV Dt', $P 

CMP WORD PTR [ BP+4], l 

;save BP 

; BP pts t <:> stac~tol-' 

; N =· l ?.-
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19: JG END_ ff ;no, Nl 
20: ;then 
21: MOV AX, 1 ;result c 1 
22: JMP RETURN ;90 to re.turn 
23: END IF: -
24: MOV ex, IBP+4 l ;qet. N 
25: DEC ex ;N-1 
26: PUSH ex ;save on stack 
27: CALL FACTORIAL ; recursive call 
28: MUL WORD PTR [BP+4] ;RESULT - N*RESULT 
29: RETURN: 
30: POP BP ; restore BP 
31: RET 2 ;return and discard" N 
32: FACTORIAL ENDP 
33: END MAIN 

The testing program puts 3 on the stack and calls FACTORIAL. At lines 15 
and 16 the procedure saves BP and sets BP to point to the stack top. The 
stack looks like this: 

SP --• (original) 
return addr (line 8) 
3 (value of N) 

•- BP (first call) 

Now, at line 18 the current value of N is examined. We must use 
CMJ> WORD PTR [BP+4),l rather than CMP [BP+4),l because the assembler 
cannot tell from the source operand 1 ~hether to code this as a byte or word 
instruction. 

liecau.se N ~ I·, in lines 24-26 the data for the next call arc prepared by 
retrieving the current value of N, decrementing it, and saving it on the stack. 

At line 27. the m:ond call (N = 2) Is madc. Once again, at lines 15 
and 16, BP is saved and llJ> Is set to point to the ~lack top. The stack becomes 

SP - BP (first call) 
return addr (line 28) 
2 
BP (original) 
return addr (line 8) 
3 

..-- BP (second call) 

Since N is still not 1, the procedure calls Itself one more time, and 
the stack looks like this:. 

SP ~·- BP (second call) 
return addr (linP 28) 
1 
BP (first call) 
return addr (line 28) 
.2 
BP (original), 
return addr (line 8) 
3 

- BP (third call) 
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Since N Is now I, the recursion can terminate. At line 21, the pro­
cedure places RESULT .. J In AX, restores BP to its value in the second call 
and rcturm. The Rf:f 2 at line 31 causes the .rt.'turn address In the second 
call (llne 28 In the llsting) to be placed In IP. JUff 2 also causl'S parame.ter 1 
to be popped oU the stack. The stack becomes 

SP ...-. BP (first call) 
return addr (line 28) 
2 
BP (original) 
return addr (line 8) 
3 

- BP (second call) 

Now execution of the second call continues at line 28. Because the result of 
the third caJI Is In AX, the procedure can multiply it by the current value of 
N, yielding RESULT= ·2 x 1 = 2. The new result remains In AX. With this 
call complete, BP is restored and the first call resumed at line 28. The stack 
Is now 

SP -- BP (original) 
return addr (line 8) 
3 (value _of N) 

...- BP (first call) 

As before, the latest result Is multiplied by N, yielding RF.SULT = 3 x 2 "' 6. 
Control passes to line 8 in the main program, with the value of the factorial 
In AX. -

Example 17.2 Code proc.:dure FINDMAX of section 17.2, and test It In 
a program .. 

Solutton1 The algorithm for the procedure is reproduced here: 

1; PROCEDURE FIND !-!AX (input; N, output: MAX) 

2; IF N • 1 

3: THEN 
4: MAX ~ 1 

5: ELSE 
6: call F!ND_MllX (N - 1,MAX) 
7: IF A[N) > MAX 

8: THEN 
9: MAX - A[N) 

10: ELSE 
11: MAX • MAX /• v<1lue retu~:ied by call at line 6 •/ 

12: ENDIF 

13: RETURN · • 
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Progra·m listing P~M17_3.ASM 
0: TITLE PGM17_3: FINO MAX 

. l : 

2: 
. ~lODEL 

.STACK 

3: .DATA. 

SMALL 

lOOH 

4: A ow !0,50,20,4 
5: .CODE 

. 6: MAIN 

7: 

B: 
9: 
10: 
11: 

12: 

l 3: 

14: MAIN 

15: FIND MAX 

PROC 

MOV AX,@OATA 

MOV DS,AX 

MOV AX,4 
PUSH AX 
CALL FIND MAX -
MOV AH,4CH 

INT 21H 

ENDP 

PROC NEAR 

; initialize OS 

; no. of el ts in array 

;parameter on stack 

; retunrs MAX in AX 

;dos exit 

16: finds the largest element in array A of N elements 

17: input: stack on ent r:y - r:et. ad<ir. (top), N 

18: output: AX largest element 

19: PUSH BP ;save Bl? 

MOV 20: BP,SP ;BP pts to stacktop 

21: 
27: 

23: 

?.4: 
25: 
76: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 

. 3'.:>; 

36 :. 
17: 
36: 
39: 
4 '.l: 

4: : 
42: 

f if 

;then 

ELSE : 

; if 

;then 

EN:::l IFl: -

45: rIND Ml,X 

CMP 

JG 

MOV 

JMP 

MOV 

DEC 

PUSH 

CALL 

M0V 

SHL 

SUB 

CV.P 

JLE' 

MOV 

PCP 

RET 

4 4: END 

WORD PTR [BP+4),J ;N"1? 

ELSE ; no, go to set 11p next c:al l 

AX,A 
ENO_TF 

ex, [B,P.+41 

ex 
ex 
FIND MAX 

BX,!B?.,.4] 

BX,l 

BX,2 

A[BX],AX 

EN::l_IFl 

AX,A[BX) 

BP · 

;MAX ~ A [ l I 

;get N 

;N-1 

; save on stack 

; returns MAX in· AX 

;qe::. N 
;2N 
; 2 (N-1) 

;A [N] > :-IAX? 

; no, go to retu::-n 

;yes, set MAX ; A[NJ 

; re; store BP 

; .retl..:rn a:;d discard ~J 

The stacking of the activnlion records dur;ng the recursive calls in this ex­
ample is similar to that of example 17.1, and is not shown here (see exercise~). 

At line 32, the procedure begins preparation for comparison of ,I,\~\ 
with the currt•nt value of MAX in AX. Recall from chapter 10 that the off~el 
location of the Nth element of a word array/\ i~ A+ 2 x (N - 1). Lines '.B-3S 
put 2 x (N - 1) in llX, so that based mode may be used in the comparisOIJ_ 
at line 36. If MAX > AINJ, we can leave it in AX, which means that the ELSE 
statement at line 11 of the algorithm need not be coded. 
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In the preceding examples, the code for recursive procedures has 
involved only one recursive caU; fo.t example, the only call that procedure 
FACTORIAL (N) makes is to FACTORIAL (N - 1). However, it Is possible that 
the code for a recursive.procedure may Involve multiple recursive calls. 
' ~~s an e'xaitiple, suppose"we·would like to \\'rite a procedure to com-

pute the binomial coefficients C(11, k). These are the coefficients that appear 
in the expansion of (x + y)". The expansion takes the form 

(x + y)n'= C(n ,O)x"y0 + C(11, 1)x"-1y 1 + C(n; 2)x"-2y2 + ... + C(n, n-l)x1y'-1 + C(n, 11)x0y'1 

These coefficients also are used in the construction of Pascal's Triangle. For 
~' = 4, the triangle is · 

C(O, 0) 
C(l, 0) C(l, 1) 

C(2, 0) C(2, 'l) ' C(2, 2). 
C(3, 0) . C(3, 1) C(3, 2) C(3, 3) 

C(4, 0) C(4, 1) C(4, 2) C(4, 3) C(4, 4) 

The coefficients satisfy the following relation: 

C(11, 11) = C(11, 0) = 1 . 
C(11, k) = C(n - 1, k) + C(n -1, k-1) if 11 > k > O 

This means that in the triangle, the entries along the edges are all 1 's, and 
an.interior entry is th~ sum of the entries in the row above immediately to 
the left and right. So the triangle. computes to 

1 
1 1 

l 2 1 
I 3 3 1 

I 4 6 4 1 

Let's apply the prcccoing definition to compute C(3, 2): 

C(3, 2) = C(2, 2) + C(2, lJ 
C(2, 2) = 1 
C(2, 1) = C(l, I) + C(l, 0) 

··co.1>==1 
·en. O) = i 

, So : C(2, 1) = I + · 1 :o 2 
:! and C(3, 2) ':' 1 + 2 = 3 

·Here is a~ aigo'rith'm for a proccuurc to compute C(n, k): 

PROCEDURE BINOMIAL ( inp-.;t:: N, K;' o·..it.pi;t:: RESULT) 
.IF (X • ,N)' OR ·(K ~. 0) 

THEN 

• RESULT = 1 

. ELSE 
CALL BINOMIAL.CN-1,K,RESULTll 

CALL BINGMIJ..L (N-1; K-l, RESULT2) 

RESULT - RESUL11 + RESULT2· 

RETURN 
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Example 17.3 Code the BINOMIAL procedure and call it in a program 
to compute C(3, 2). 

Solution:• 

Progr:am Listing PGM17 _4.ASM 
0: TITLE PGM17_4: BINOMIAL COEFFICIENTS 

.MODEL SMl\LL 

.STACK lOOH 

.CODE 
MAIN PROC 

MOV AX,2 
PUSH AX 
MOV AX,3 
PUSH AX 

l: 
2: 
3: 
4: 
5: 
6: 
7: 

8: 
9: 
10: 
11: 
12: 
13: 
1-'1: 
15: 
16: 

CALL BINOMIAL 
MOV AH,4CH 
INT 21H 

MAIN ENDP 
BINOMIAL PROC NEAR 

PUSll 11r 

MOV BP,SP 
MOV AX, (BP+6) 

17: ;if 
18: 
19: 
20: 
21: 
22: THEN: 
23: 
24: 
25: ELSE : 

CMP 
JE 
CMP 
JNE 

MOV 
JMP 

AX, (BP+4) 
THEN 
J\X,0 

ELSE -
AX,l 
RETURN 

26: ;compute C(N-1,K) 
27: PUSH {BP+6] 
28: 
29: 
30: 
31: 
32: 

MOV 
DEC 
PUSH 
CALL 
PUSH 

ex. [SP+4 J 
ex 
ex 
BINOMIAL 
AX 

33: ;compute C(N-1,K-ll 
34: MOV ex, (BP+6] 
35: DEC ex 
36: 
37; 
38: 

PUSH 
MOV 
DEC 

ex 
ex, fBP+4J 

ex 
39: PUSH ex 
40: CALL BINOMIAL 
41: ; compute C (N, Kl 
42: POP BX 
4 3 : ADD AX, BX 
44: RETURN: 
45: POP 

46: RET 
47: BINOMIAL' 
48: END 

BP 
4 
ENDP 
MAIN 

;K=2 

;N~3 

;AX = RESULT 

;DOS EXIT 

;get K 

;K•N? 
;yes, nonrecursive 
;KmO? 
; no, recursive 

;RESULT 

;s.ave K 
;get N 

s 

;N-1 
;save N-1 
; RESULTl in AX 
; save RESULTl 

;get K 
;K-1 
; save K-1 

;get N 

;N-1 
; save N-1 
;RESULT2 in AX 

; get RESULTl 

case 

case 

;RESULT ~ RESULTl + RESULT2 

; restore BP 
;return and discard N and·K 
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Procedure BINOMIAL differs from the procedures of examples 17.1 and 17 .2 
in the following ways: 

1. There are two escape cases, k = n or k = O; in both cases, the call 
returns I in AX (line 23). 

2. In the general case, computation of C(n, k) involves two recursive 
calls, to compute C(11 - I, k) and C(n - I, k - I). 

All calls to lllNOMIAL return the result in AX. After C(11 - l, k) i' 
computed (line 31), the result (Rf_<;ULTl in tile algorithm) is pushed oni.:. 
the stack (line 32). At line 40, C(11 - l, k - ]) is computed and tile rcsu!t 
(RESUl,T2 in the algorithm) will be in AX. At lines 42-43, HESULTI is popped 
into I.IX and added to RESULT2, so that AX will contain C(11, k) = C(11 - I, 
k) + C(ll - I, k - I).. 

To completely understand how procedure BINOMIAL works, you are 
encouraged to trace the effect of the procedure on the stack, as WJs clone in 
example 17. I. 

Summary 

l<ecursive 'problem solviug has the following ch:iracteristics: (I) 
The main problem lneah down to simpler problems, each of 
which is solved in th~ same way as the main problem; (2) there is 
a nonrecursive escape case; and (3) once a subproblem has been 
solved, work proceeds to the next step of thc original problem. 

· • Jn assembly language, recursive procedures arc implemented as 
follows: The calling program pl;ices the activation record for the 
first call on the stack and calls the procedure. The procedure uses 
I.II' to acccss lhL• data it needs from the stack. Before initiating a 
recursive call, a procedure place.~ the activation record for the call 
on the \lad ;md calls itself. When a (all h completed, BP is re­
stored, the return '.address popped into II', and the data for the 
cornplt'tcd di! poppl·d off tlw stack. 

Tl1e code for a procccJure may involve more than one recursive 
call. lnto.>rmcdiate results may be saved on the stack, and rctrievcc.J 
when the original call resumes. 

Glossary 

acli\'illion record 

rccuni i·c procc:..i. 

Values of thl' paralllcters, local variables, 
and return addrl·~~ of a procedure call 

A process that is defined in terms of itself 
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Exercises 

l. Write a recursive definition of a", where 11 is a nonnegative integer. 

2. Ackermann's function is defined as follows for nonnegative Inte­
gers m and n: 

A(O, n) =n + 1 

A(m, 0) = A(m - 1, 1) 

A(m, 11) = A(m - 1, A(m, n - 1)) if rrP, n >'- 0 

Use the definition to show that A(2,2) = 7. 

3. Trace the steps in example 17.2 (PGMl 7 _3.ASM) and show the 
stack 

a. At line 20 in the initial (first) call to FIND_MAX. 
b. At line 20 i~ the second call to FIND_MAX. 
c. At line 20 in the third call to F!ND_MAX. 
d. At line 20 in the fourth call to FIND.>iAX. This is the escape 

case. 
e. At line 42 in the completion of the third call to FIND_MAX 

(after RET 2 has been executed) . .Also give the content~ of AX. 

f. At line 42 in the completion of the second call to FIND_MAX 
(after RET 2 has been executed). Also give the contents of AX. 

g. At line 42 In the completion of the first call to FIND_MAX (af­
ter RET 2 has been executed). Also give the contents of AX. 
This is the value returned by the procedure. 

Programming F.xercises 

4. Write a recursive assembly language procedure to compute the 
sum of the elements of a word array. Write a program to test your 
procedure on a four-element array. 

5. The Fibonacci sequence 1, l, 2, 3, 5, 8, 13, 21, 34, 55, ... may be 
defined recursively as follows: 

f(O) = f(l) = 1 

F(11) = f(ir - 1) + F(n - 2) if n > 1 

Write a recursive assembly language procedure to compute F(n), 
and call it in a testing program to compute F(7). 
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Advanced 
Arithine-tic· 

Overview 

18.1 
Double-Precision 
Numbers 

. . . 
l'rogran1s 'often must deal with data that are bigger than 16 bits, or 

contain fractions, or have special encoding. In the fir~t three ~ections of this. 
chapter, we discuss arithmetic operations on double-precision 11umbers, BC[) 
(bi11ary-coded d<'cimal) 1111111ber5, and floati11g-poi11t 111mi/1ers. In section 18.4, we 
discuss the operation of the 8087 numeric coprocessor. 

. ·We have shown that numbers stored ·i;1 the 8086-bascd computer 
t"in. be 8 or 16 bits. But even for 16-bit numbers, the r!lngc is limited to O 
to"<>5535 for unsigned numbers and -3276R to ... -~2767 for 'iJ.lned numbers. 
To extend this range, a 'common technique is t'o use 2 words for each number. 
Such numbers are called duublc-prccbiou 1lumbcrs, and the range here 
is 0 to 2 12

- 1 or 4,294,967,295 for unsign~d and -2,147,483,648 tn 
+2, 147,483,647 for signed numbers. 

A double-precision number may occupy two registers er two memory 
words. For example, .if a 32-bit number is stored in the two memory words· 
A and A+2, writlen A+2:A,-then the upper 16 bits arc iii .-\+2 and the lower 
16 bits are in A. 'u the number is signed, then the 1mh of A+2 is the sign 
bit. 1\1.'gative numbers are represented in two's complement form. 

-Since the 8086/8088 can only operate on R- or 16-bit numbers, op­
erations on double-precision numbers must be emulated by software. In sec­
tion 18-4, we show how the 8087 coprocessor can be used to do 
double-precision arith lllt'lic 

371 
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18.1.1 

Double-Precision 
Addition, Subtraction, 
and Negation 

To ;idd or subtract two 32-bit numbers, we first add or subtract the 
lower 16 bits and then add or subtract the higher 16 bits. However, the 
answer would be incorrect if the first addition or subtraction generates a 
carry or borrow. 

One way to handle this problem is to use instructions to test the flags 
and adjust the result. A better method is to use two new instructions provided 
by the 8086. The instruction ADC (add with carry) adds the source operand 
and CF to the destination, ;ind the instruction SllB (subtract with borrow) 
subtracts the source operand and CF from the destination. The syntax is 

ADC destination, source 
SBB destination, source 

For our first example we'll add two 32-bit numbers. 

Example 18.1 Write instructions to add the 32-bit number in A+2:A to 
the number in 13+2:13. 

Solution: We have to move the first number to rcgi.sters before the 
addition. 

t~!)V AX,A ;AX gets lower 16 bit:; of A 
MO\/ DX,l\+2 ; !JX gets upper 16 bits of A 
,\DD B,AX ; .Jdd the lower 16 b.lLS to B 

l\!"lC 0+2,DX ; .1dd rix and CF to 0+2 

While the JZ-bit ~um is stored in ll+Z:ll, the flags may not be set cor­
rectly. Specifically, the ZF and the PF, which depend 011 both values of 
Il+Z and n, are set by the value in 13+2 only. When it is important to set 
the flags correctly, we can use additional instructions. 

The procedure DADD in program listing PGM 18_ 1.ASM performs a 
double-precision add and leaves the flags in the same state as if the processor 
J1;id a 32-bit add instruction. We assume the two numbers are in DX:AX and 
CX:llX, and the result is returned in DX:AX. 

Program Listing PGM18_ 1.ASM 
;?rocedure for double precision addition with ZF and PF 
;adjust 
DADD PHOC 
; input : ex: BX source· operand 

DX:!»: destinaticn operand 
; c.u~;:·ut: DX: A::. ~ S'Jll\ 

;3dve regi~ter SI 

l'li~H SI 

ADD AY., DX 
ADC . D:<, ex 
PUS!iF 
.Po"P .,, 

; t 8.St for zero 
JNE CHECK PF -
TE::iT AX,OFFFFH 

;SI is needed in t!-:e procedure 
;to store flags 
; ildd lower i t, bit. s 
;add upper l6 bit~ ·,;ith carry 
;3ave the flags on the stack 
;put flags in Si 

; if DX is not zero c.r.en ZF 
;is OK, go check PF 
;DX = 0, check if AX = 0? 



JE 
AND 

; check. PF 
CHECK PF: 

OR 
TEST 
JP 

XOR 

CHECK PF 
SI,OFFBFH 

·SI, lOOB 
AX, OFF': 
RESTORE 

SI,1008 
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;yes, ZF is OK 
;AX not zero, clear ZF bit in SI 

;set SI for even parity 
;test AL for parity 

;AL has even pa~ity, PF bit in 
; SI is OK 
;AL has odd par~ty, negate PF 

;bit i'.l SI 

RESTORE: ' 
PUSH SI 
POPF 

' ·' 
;place new flags on stack 
;update FLAGS register 

; restore SI 
POP SI 
RET 

DADD ENDP 

•,'· 

The SJ register is used to manipulate the ·~ag bits. We copy tlie- flags 
into SI by pushing the FLAGS register and then popping to SI because the 
con!ents of the FLAGS register cannot be moved to SI directly. JO adjust zr, we 
examine both DX and AX, and for PF we examine AL; then we copy SI t.o tile 
FLAGS register, again using the stack. Use the INCLUDE directive to include the 
file PGMI8_1.ASM in your program if you want lo u~e procedure DADD. 

. To obtain the n_egation of a double-precision number, we recall that 
.the two's complement of a number is fnrnicd IJy adding a 1 to its 011<.:'s 

co111pleme·n1. 

Example 18.2 Write instructions lo form the negation of A+2:A. 

Solution: we· first for111 the one's complement hy using the NOT in­
struction, and then add a I. 

!';Q";' A+2 

NOT A 

I!..JC A 

ADC !<.+~ t Q ., 

• i CfJC'' S CC~1plt;':1'...':1t 

;one's comp.iemer.t 

; a_ad l 
;take c~re of puss~blP c~rry 

' . 

ror subtraction, again we subtract the low 16 bits firs.t, then sulltract 
the hi~h-order worth together with any borrow that might b~ generated . 

.Example 18.3 Write instructions -to subtract the 32-bitnumhcr in 
, .A+2:A from B+2:11. 

' Soluiion:' 

r-:cv- /l.X,/I. 

MOV :>X; .•.+2 

SUE B,AX 
Sol3 B+2,DX 

; /\X g ct::; ~...:_,,.._,et J 6 L .. r .2 , ; t /'>. 

;C•X gc·ts :.!]:Jper !.6 b.:.":!i :.=f rP.,. 

; !it.fr.it ract ~.hr2 ~0',..cr. ~ f. D-4 ~.3 

; subtr-act DX and CF 'fr..J:':"l 3~;: 

·To set the flags correctly, we can use the same t<.:chniquc as in the case 
for ·addition; we \\'ill leave it as an exerci5e. 
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I 
. 18.1.2 

r Double-Precision 
Multiplication and 
Division 

18.2 
Binary-Coded 
Decimal Numbers 

Double-precision multiplication and division by powers of 2 can be 
achieved by using the shift operations, as was done in Chapter 7. To multiply 
by 2, we perform a left shift. To divide by 2 we perform a right shift. 

Example 18.4 Write instructions to perform a left shift operation on 
A+Z:A. 

Solution: We start with a left shift on the low-order word, resulting in. 
the msh heing shifted Into CF. Next, an RCl. shifts the CF into the high­
order word. The instructions are 

SHL A, l ;low~order wor9 shi!ted 
P.CL AT2,l ;shift CF intc high-o~der word 

Again, the Of, ZF, and the PF may be set incor.rectly. 
The next example shows multiplication by z 10. 

Example 18.S Write instructions to perform 10 left shifts on A+Z:A. 

Solution: One may be tempted to place 10 in CL and use CL as the· 
count in the shift operation. However, this causes 9 bits in the number .to 
be lost. In multiple-precision shifts, we must do one shift at a time. The 
CX register may be used as a counter 1n a loop. 

MOV CX,10 ·:initialize counte: 
; l: ;,1,r. Tl' 1 : s~ i ft ]OW-t;!'"d~::- word 

RCL A+2, l ; :;hi ft CF i.rat.C' high-o\'oer word 
LOC? Ll ;repeat if c:,. . .;!""1t. is not 0 

The other shift and rotate operations '3rc left as exercises. 
When the multiplier is not a power uf 2, we can ~imulalc ii multi­

plication operation with a series of additions. for example, to multiply two 
double-precision numbers Mand N, we can form the product by adding the 
numher M N times. A morl' efficient way to do multiplication and division 
of multiple precision numbers is to use the 8087 numeric processor imtru~ 
lion~ covered in section 18.4. 

, 
The BCD (binary-coded decimal) number sy~tcm uscs four hits 

to :.:ode each decimal 'lii-:it, from 0000 to 1001. The combinations Ill!() to 
1111 ar<• illl·gal in BCD. For example, the BCD representation uf the drcimal 
numbt·r 9H is 1001 0001 0011. The reason for using BCD numbers is that 
the com·ersion between decimal and BCD is relatively si1i1ple. In section 
18.4, we giVl' a procedure for conversion betwl'en dccimal and BCD. 

As we ~aw in Chapter 9. multiplication and division arc nel'ded to 
do ~lccima1J/C2,Jh1:se are notnrrously slm~· opl'rntions. for some busincss 
programs that pertorm a lot of 1/0 and onlr do simple calculations, m~·h 
time can be saved ii numbers are stored in tcrnally in BCIJ format. l'eedlf.ss 
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Packed and 
Unpacked BCO 

'• 

18.2.2 
BCD Addition and 
the AAA Instruction 
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to say, the processor must make it easy for programs to do BCD arithmetic 
if the savings are ·to be realized. 

We first look at' the two ways of storing BCD numbers in memory. 

Because only four bits are needed to represent a BCD djtit, two digits 
can i)e placed In a byte. This is known as packed BCD form. In unpacked 
BCD form, only one digit is contained in a byte. The 8086 has addition 
and subtfaction instructions to perform with both forms, but for multipli­
cation and division, the digits must be unpacked. 

Example 18.6 Gi;,,·e the bfoary, packed BCD, and unpacked BCD repre 
sentations of the decimal number 59. · 

Solution: 59 = 3Bh = 00111011, which is the binary representation. Be­
cause 5 = 0101 ·and 9 = 1001, the packed BCD representation is. 
01011001. The unpacked BCD representation is 00000101 00001001. 

In the following sections, we cover the instroctions needed to do 
arithmetic on unpacked BCD numbers. 

In BCD operations, we do one digit at a time. It is possible to add 
two BCD digits and generate a non-B<;:D result. For example, suppose we add 
Bl., which has 7,'to AL, which has 6. The sum of 13 in AL is no longer a 
valid IlCD digit. To <id just, we subtract 10 from AL and place a 1 in AH; then 
AX will contain the correct sum. · 

AH 00000000 AL 00000110· 

RL + 00000111 

AL 00001101 ;not a BCD digit 
+ - 00001010 ;adjust by subtracting a 1 Od ·-----· ---- ;from AL and adding a 1 to AH 

AH OOOOCOOl ... ;L 00000011 ;result is 1 in AH and 3 in AL 

We can get the same result by adding 6 to AL and then clearing the high 
nibble (bits 4-7) of AL. Because the value 13 in AL is greater than the c~rrect 
result by 10, adding a 6 will make it too large by 16; clearing the high nibble 
has the effect of subtr;1cting 16. 

AH oooocooo l"\L 00001101 ;not a BCD d1g1t 
+ + 00000110 ;adiust by adding 6 to AL ----- ----- ;and 1 to AH 

AH OOOCDOOl Ai., 00010011 ;and clearing the high nibbie 
AH" 00000001 •AL· 00000011;~ I ;of AL 
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The AAA Instruction 

The 8086 does not have a BCD addition instruction, but it does have 
an instruction that performs the preceding adjustments: AAA (ASCII adjust 
for addition) instruction. 

AAA has no operand (AL is assumed to be the operand). It is used 
after an add operation to adjust the BCD value in AL It checks the low nibble 
of AL <ind the AF (auxiliary flag). If the low nibble of AL is greater than 9 or 
the Ar is set, then a 6 is added to AL, the high nibble of AL is cleared, and 
a 1 is added to AH. 

Both AF and CF are set if the adjustment is made. Other flags are 
unde1i11ed. 

It is also possible to add two ASCII digits and use AAA to adjust the 
result to obtain BCD digits. This allows a program to input ASCII digits, add 
them, and store the result in BCD format. For example, suppose AL contains 
:l6h (ASCII 6) and BL contains 37h (ASCII 7). We add Ill. to AL and then use 
AAA to adjust the result. 

Ali ooocoooo AL 00110110 

BL • 00110111 

AH 00000000 P..L 01101101 ·;low nibble not a BCD digit 

.. 00000110 ;adjust by adding 6 to AL 
----- ;and adding 1 to AH 

_r,p 00000001 i\L 01110011 ;and clearing the high nibble 
AH OOJOOOOl AL 00000011 ;of AL 

As another example, suppose AL is 39h (ASCII 9) and BL is 37h (ASCII 7). 

/\ii ooocooor> /\I. 00111001 

BL + 00110111 

AH 00000000 AL 01110000 ;low nibble is a BCD digit 
;but AF is set 

+ 00000110 ;adjust by adding 6 to AL 
------- ;and 1 to AH 

AH 0000::1001 
,, 0!110110 ;and clearing the high nibble n~ 

/..,H GOOOCOOl ! ... ~ 00000110 ;of Al 

Example 18.7 Write instructions to perform decimal <iddition on the 
unpacked BCD numbers in BL and AL. 

Solution: The first operation is to clear AH, then we acid and adjust the 
result. 

;,I~V l~H, J 

:;DC ?.L, BL 

AAA 

;p"epare for p0ss~h:~ sa~ry 

;binary addiLic~ 

Examplc'i.8.8 Write instructions to add the two-digit BCD number in 
bytes B+l:B to the one cont<lined in A+l:A. Assume the result is only two 
digits. · 
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Solution: We add the low digit before the high digit. 

MOV AH,O ;prepare for possible carry 
MOV AL,A ;load BCD digit 
ADD AL,B ;binary addition 
AAA ;BCD adjust, AX contains sum 
MOV A,AL ; store digit 
MOV AL,AH ;put ca.rry in AL 
ADD AL,A+l ;add high digit of A, assume no 

;adjustment is needed 
ADD' AI.,B+l ;add high digit of A, '33!;Um<' no 

;adjustment is needed 
MOV A+l,AL ;store high digit 

Multiple-dil!it adctition is l!iven as an exercise. 

IJCD subtraction is again performed one digit at a time. When one 
BCD digit is subtracted from another, a borrow may result. For example, 
suppose we subtract 7 from 26; we place 7 in BL, 2 in AH, and 6 in AL. After 
subtracting l.lL from AL, the result in AL is incorrect. The adjustment is to 
subtract 6 from AL, clear the high nibble, and subtract I from AH. This has 
the same effect a~ borrowing from AH and addin,i.; lo to AL. 

AH 

All 

AH 

"AH 

-: 

00000010 

00000010 
' 

l ----
00000001 

00000001 

-!IL 00000110 

RL - 00000111 
----· 

AL 11111111 ;~ot a BCD digit 

00000110 ;adjust by subtracting 6 

AL 11111001 ;from AL and 1 from AH. 

.'AL 000()1001 ;cledr high nibble of AL and 
;result in AH:AL is 19 

The AAS Instruction 

The AAS (ASCH adjust for subtr;iction) instruction performs BCO 
subtraction adjustmcnt on the AL register. JC the low nibbl~ of AL is greater· 
than 9 (low nibble of AL contains an invalid BCD number) or if the AF is 
set, AAS will subtract 6 from AL, clear tile high nibble of AL, and subtract 1 
from AH. 

Example 18.9 Write instructions to subtr;itt the two-tligit l.ICD number 
in bytes Il+ 1 :Il from the one contained in A+ 1 :A. Assume the number in 

.A+l:A is larger. 

Solution: We subt1,1ct th(• low digit before thi: high digit. 

MOV AH, A< 1 
MOV ,l\L,A 
SUB AL,B 
AAS 

·. \') 
; load high ;:;;:::.:, cli<Jl t of l\ 

; load low digit of A 
;subtract low jigit of 3 
,·adjust for borrow 
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18.2.4 

BCD Multiplication and 
the AAM Instruction 

18.2.5 
BCD Division· and 
the AAD Instruction 

SUB AH,B+l 
MOV A+l,AH 
MOV A,AL 

; subtract high digit of B · 
;store 'high. digit 
; store low digit 

In subracting the high digits, we were able to use the AH register because. 
we assumed that no adjustment was needed; otherwise AL should be used 
as the result adjusted with AAS. For subtraction of three-digit numbers, 
and again start from the lowest digit to the highest. Three AAS adjust~ 
ments are needed. The details are left as an exercise. 

In this section, we show only single digit BCD multiplication. In. 
section 18.4, we show how the 8087 can be used to perform multiple-digit 
BCD multiplication. Two BCD digits can be multiplied to produce a one- ai'f 
two-digit product. We put the multiplicand in AL and the multiplier In a 
register or memory byte. After BCD multiplication, AX co~tains the BCD 
product. 

To multiply 8 by 9, for example, we could put 8 in AL and 9 in BL. 
After doing the steps in BCD multiplication, the registers AH:AL contain the 
product 07 02. 

The first step in BCD multiplication is to multiply the digits by or­
dinary binary multiplication. The binary product will be in AL. The scc:ond 
step is to convert the binary product to its BCD equivalent in AX .. 

With 8 in AL and 9 in l!L, to do the first step we execute MUL BL. 
It puts 0048h = 72 in AX. This needs to be adjusted so that AH contains 07 
and AL contains 02. 

The AAM Instruction 

The AAM (ASCII adjust for multiply) instruction performs the sec­
ond step. It c!ivides the contents of AL by 10. The quotient, corresponding 
to the ten's digit (7, in this example). is placed in .<\Ii; the remainder, corre­
sponding to the unit's (2, in the example), is placed in AL. 

In summary, to multiply the BCD digits in AL and BL •. and put the 
BCD product in AX, execute 

MUL BL 
AAM 

; B-bi.t m.,; tiplication 
;BCD adjust, result ·in AX 

In this st·ction, we show the division of a two digit BCD number by 
a single digit BCD number. The quotient is stored as a t1rn digit BCD number 
\the leading digit may be 0). We put the dividend in AX and the divisor in 
a register or memory byte. After the llCD division AX will contain the BCD 
digit~ of t'l1c quotic111. 

For example, suppose we want to divide 97 by 5. Before division, 
AH:AL contains 09 07, The divisor S could be put in BL. Since the quotient 
is 19, after HCD division, AH:AL = 01 09. 

· There are three steps in BCD division: 
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1. Convert.the dividend in AX hom two BCD digits lo their binary 
e4uiv.ihmt. 

2. IJo ordinary binary divbion. This pub the 1binary1 quotient 111 

AL and the remainder in AH. 
3. Convert_ the binary quotient m Al. to ils two-dii.;il HC!) ,•quiva­

lent in AX. 

The AAD Instruction 

The instruction AAD <ASUI ad1u~t for division) docs step l. It muJ. 
tiplics AH by 10, adds the produc.:t to AL, thl'll dears AH. For ML\I. ~ 09 
07,'.multiplkalion of AH hy 10 yields 90 = SAh, and adding thi~ lo th,· 7 in 
AL puts 61h = Ol 100001 in AL . 

If the divisor is in BL, step 2 is clone by l·Xl'cuting DIV HL Al. gl"I \ 
the quotient. 'nh = 19, and All gets the rernainder:02h. 

Step -~ h done by executing AAM. It converts the Uh in Al. tn Ill 
09 in ,\H:Al.. . • 

Ill ~u1ilmary;to divide the two BCD digits in AX lly the BCD dil!i\ 
in UL, exec.:ute 

!'.,All 

Dl V ti:. 

AAM 

; :-:inv.:rt BCD dividend in AX to t.>i11ary 
;do bind! y dL·is~un 

;AX nas BCD quotie1·.t 

Uy using floating-point numbers, we can rrprl'$C'llt •;alues that arc 
·very large and fractions that are very small in a uniform fashion. Before we 
look at the floaling-poi11t representation, Wl' havi:: lo ~ec· lww llcLim;il frJl· 
lions can be converl('d into binary. 

Suppose the dC'cim;il fraction O.IJ1D2 ... 1>11 ha~ J binJry rcprtsen· 
tation 0.81/12 ... llm. Th(: hit B1 is equ;il lo the integer part of tlw product 
O.D1Dl ... Du x 2. This i~ becaust• if W<.' multiply the bin:iry representation 

·by 2 we obtain R1.B2 ... B111; as the two products must be equal. so musi 
their integer parts. If we multiply thl> tr;iction;il part of the pri::viou~ product 
hy 2, the integer part of the result will be B2.\\'c can repeat this ptocess until 
H111 is obtained. Here is the :ilgorithm: 

Algorithm to convert a decimal fraction to an M digit binary fractiop _ 

Let' x~CO!"'llair. t~1C· ·iei::ir:-,al frt~C"tl<".JO 

Fnr i. = l step l un•-~l m do 
y = x x 2 

X ...,. fract10:1al par-~ of ·1 

E; = in;. e<J0:: r,..1rt c.f Y 

co~j 

:--<ow let\ look at ~um1: _examples. 

- "'•·:ii 
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Figure 18.1 Floating-Point 
Representation 

Example 18.10 Convert the decimal fraction 0.75 to binary. 

Solution: Step 1, X = 0.75, Y = 0.75 x 2 = 1.5, so 81 is 0. Step 2, ~new 
value of X Is 0.5, so Y = 0.5 x 2 = 1.0, and B2 is 1. Since the new fractioqal 
part is 0, we arc done. Thus, the binary representation of 0.75 Is 0.11. ~ 

Example 18.11 Convert the decim.al number 4.9 into binary .. 

Solution: We do this in two parts. First we convert the integer part into 
binary and get lOOb. Next we convert the fractional part: Step I, X = 0.9, 
Y = 0.9 x.2 = 1.8, so 81 is 1. Stc•p 2, X = 0.8, Y = 0.8 x 2 = 1.6, so 82 is I. 
Step 3, X = 0.6, Y = 0.6 x 2 = 1.2, so 83 is I. Ste!p 4, X = 0.2, Y = 0.2 it 2 = 
0.4, so 84 is 0. Step 5, X = 0.4, Y = 0.4 x 2 :c J.8, so 8s Is 0. At this point 
the new value for X is again 0.8, we can expect the computation to cycle.· 
So the binary reprcsent;ition for 4.9 is 100.1110011001100 .... 

In the floating-point represent;ition, each number is represented in 
two p;irts: a mantissa, which c:ont;iins the leading significant bits in a num­
ber, and an exponent, which is used to adjust the position of the binary 
point. For example, the number 2.5 in binary is 10. I b, and its floating-point 
representation has a mantissa of 1.~1 and an exponent of 1. This is because 
10.lb can he written as 1.01 x 21. for numbers different from zero, the 
m;intis~a is stoil'tl a~ ;i value that is gre;iter than or equal to 1 and le~~ than 
2. Suell a manthsa h said to be 11um111liLecl. Some floating-point representa-. 
lions do not store till' integer part. Negative numbers arc not co1i1plemented; 
they nre stored in signed-magnitude format. 

For numbers smiiller th;in 1, if we normalize the mantissa the expo· 
ncnt will be negative. For example, the number 0.000lb is 1 x 2·4

_ Negative 
exponents are not represented as signed numbers. Instead, a number called 
the hia"i is added to tlw exponent to create a positive number. For.example, 
if we us.: eight bits for the exponent, then the number (2

7 
- I) or 127 is 

chosen as the bias. To represent the number 0.0001 b, wc have a mantissa of 
1.0 and an exronent of -4. After adding the bias of 127, we get 123 or 
0111110 I b. figure I 8.1 shows the· layout of a 32-bit floating-point represen­
tation. It starts with a sign bit, followed by an 8-bit exponent, and a 23-bi( 
mantissa. We'll gi\'l' t•xamples in section 18.4.1. 

To perform most <irithmetil· operations on floating-point numbers, 
the t:xponcnt ilntl the mantissa must be first extr;;ictcd, and then different 
opcratiom ;ire performed on them. For ex;1mple, to multiply two rt•al numbers 

JIJO 2l 22 

IF~-;-,---~~:.:::=1 
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we have to add.the exponents and multiply the mantissa; then the result is 
normafized and stored. However; if two real numbers are to be added, the 
number with the smaller exponent Is shifted to the right so as to adjust the 
exponent to that of the other number; then the two mantissas are added 
arid the result normalized. 

' Needless to say, all these operations are time consuming if emulated 
by software. The floating-point operations can be carried out much faster by 
using a specially designed circuit chip. 

The 8087 .chip is designed to perform fast numeric operations for an 
. 8088- or 8086-based system. It can operate on multiplc-precbion, llCD, and 

floating-point data. 

The 8087 supports three signed integer formats: word integer (16 
bits), short integer (32 bits), and long integer (64 bits). 

The 8087 supports a IO-byte packed BCD format which consists of 
a sign byte, followed by 9 bytes which contain 18 packed BCD digits; a 
positive sign is represented by Oh and a negative sign by 80h. 

There arc three floating-point formats: 

. . Short re<1l-Four data bytes with an 8-bit c>.:pom:nt ;mc1 a 24-bit 
· mantissa. The integer part is ncit stored. 

L1111s IC'lft-Eight data bytes, with an 11-l>it cxpuncnt and a 53-bil 
mantissa. Again, _the integer part is not stored. 

Ti:111purary real--Ten data bytes, with a IS-bit 'exponent and a 64-bit 
mantissa. All mantissa bits, including the integer part, are stored. 

Figure 18.2 shows the data types of the 8087: We give some examples. 

Exami>I~ 'ts."12 Represent the: number -12345 ;1s an 8087 packed 
BCD number. 

Solution: For negative BCD numbers, the sign byte is. 8011. There are a 
total of 18 BCD digits. Thus the ·number is 8000000000000001234Sh. 

E~ainplc lS.13 Represent the number 4.9 as an 8087 short real. 

Solution: From example 18.11, the binary representation for 4.9 is 
100.1110011001100 .... After normalization, tile 24-bit mantissa is 
1.0011100110011001100110, and the exponent is ·2. Adding the bias 127 
to 2, we get 129 Gr 10000001 b. The integer part is not stored, so the num­
ber is 0 10000001 00111001100110011001100 or 409CCCCCh. 

Exanaplc:18°.I4 lkprc~cnt 'the number -0.75 as an 8087 ~hort real. 
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I 

i 
lJata 

Rang., Precision 
Forrr.ats 

r· 
~Wu•d integ.,; 104 16 Bits 

Short integer 109 32 Bits 
i 

I Lor.g i01teger 10•• 64 llits 

i r;,cked B(u 10'' 18 Digits 
I 

I L Short Real 10•3• 24 Bi's 

lli"~ R<'al 
10.ioa 53 Bits 

E'";por~ry Real 10r4_'1U 64 Bits 

lnt~i;er: I 
f'~c~ed BCD: (-1 l~D,, ... Do) 
1<t.1I· ( 1)'(2'·8oa•)(F0 "f 1 ... ) 
b;~s :. ; 2i for Short fleal 

102 ~ for Lon9 Rf,al 
16~83 for remp Real 

_Figure 18.2 8087 Data Types 

18.4.2 

8087 Registers 

18.4.3 

Instructions 

Most Significant Byte 

7. 011 011 011 oj1 oj1 011 011 011 011 ol , 
1,. 10 I Two's Complement 

131 lo I Two's C~mplement . 
In 

Two's 
1o I Complement 

SI o,,o" I JD,DoJ 

SjE 7 Eo/F, F21 ( F0 Implicit 

SIE10 EoiF1 · F62I F0 Implicit 

SIE,. Eo!Fo F63I 

Solution: from example 18.12, the binary representation for 0.75 is 
O.llb, so -7.5 is -0.llb. The normalized mantissa is 1.1, and the expo­
nent is -1. Adding the biils 127 to -1, we get 126 or 011111 IOb. The inte­
ger part is not stored, so the number is 
l 01111110 10000000000000000000000 or Bf400000h. 

The 8087 has eight 80-bit data registers, and they function as a stack. 
Data may be puslwd or popped from the stack. The top of the stack is ad· 
dressed as ST or ST{O). The register directly beneath the top is addressed a~ 
ST(l). In general, the ith re~hter· In the stilck is addressed as ST(i), where·i 
must be a constant. 

The data stored in these registers are in temporary real format. Mem­
ory data in other formats may be loaded onto the stack. When that happens, 
the data are converted Into temporary real. Similarly, when storing data into 
memory, the temp<irary real data arr converted to other data formilts spec­
ifit:d in the store instructions. 

The instructions for the 8087 Include add, subtract, multiply, divide, 
compare, load, store, square root, tangent, and exponentiation. In doing a 
complex floating-point operation, the 8087 can be JOO times faster than an 
8086 using an emulation pP>gram. 

The coordination between the 8087 and the 8086 Is like this. The 
8086 is responsible for fetching Instructions from memory. The 8087 monitors 
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this insi:niction stream but ·does not execute any instructions until it finds 
an 8087 Instruction. An 8087 Instruction Is ignored by the 8086, except 

. , when it contains a memory operand. In that case, the 8086 would access 
the operand and place it on the data bus; this is how the 8087 gains access 
to memory locations .. _ - - · 

. In this section, we'll show simple examples on the operations of 
load, store, add, subtract, multiply, and divide. Appendix F contains more 
Information on these instructions and in the following sections we'll give 
some program ·.examples. 

Load and Store 

The load Instructions load a source operand onto the top of the 8087 
stack. There are three load instructions: FLD (toad real), FILD (integer load), 
and FBLD (packed ~<;:D load). The syntax Is 

FLO source · 
FILO source -
FBLO sour~e 

where source is a memory location. 
The type of the memory data is taken from the declared data type. 

For example, to load a word integer stored in the memory word NUMBER, 
we write the Instruction FILO NUMBER. If the variable DNUM is .defined by 
DD (Define Doublcword), then the instruction HLD DNUM loads a short 
integer. The instruction FLO can also be used to load an 8087 register to the 
top of the stack. For example, FLO ST(3). , 

Once a number is loaded onto the 8087 stack, we can convert It into 
any data type by simply storing it back into memory. This is a simple way of 
using the 8087 to perform type conversion. Let's look at the store instructions. 

When storing the top of the stack to memory, the stack may or may 
not be popped. The instructions FST (store real) and FIST (integer store) do 
not pop the stack, while the instructions FSTP (store real and pop), FISTP 
(Integer store and pop), and FBSTP (packed BCD store and pop) will pop 
the stack after the store operation. The syntax is 

FST destination 
FIST destination 
FSTP destination 
FISTP destination 
FBSTP destination 

where destination is a memory location. The ~tored data type depends on 
the declared size of the memory operand. 

Example 18.15 Write instructions to convert t!'te short_ il)teger stored in 
the doublcword variable DNUM into a long real and store it in the 
quadword variable QNlJM. 

Solution: We ust' the load integer and_store real instructions. 

FILO DNUM 
FSTP QNUM. 

; lo-ad short integer 
;store long real and pop stack 



384 18.4 The 8087 Numeric Processor 

18.4.4 
Multiple-Precision 
rnteger /JO 

Add, Subtract, Multiply, and Divide 

We i:an add, subtract, multiply, and divide a memory operand or an 
8087 register with the top of the 8087 stack. The instructions for real oper­
ands are FADD (add real), FSUB (subtract real), FMUL (multiply real), and 
FDIV (divide rc<rl). Each opcode can take zero, one, or two operands. An 
instruction with no operands assumes ST(O) as the sou~ce and ST(l) as the 
destination; the instruction also pops the stack. For example, FADD (with 
no operands) adds ST(O) to ST( I) and pops the stack. 

In an instruction with one 9perand, the operand specifies a memory 
lot·ation as the source; the destination. is assumed to be ST(O). For example, 
to subtract a short real in lhe double word variable IJWORD from ST(O) we 
write FSUB DWORD. 

A two operand instruction specifies ST(O) as one operand and ST(l) 
as the other operand. The stack is not popped. For example, the instruction 
FMUL ST(l), ST(O) multiplies ST(O) into ST(l); and FOlV ST(O),ST(2) divides 
ST(2) into ST(O). The syntax is 

FADD 
FSUB 
FMUL 
FMUL 
FDIY 

[fdestinaLlon,]Gou~ce] 

[[destination,Jiource] 
[[destination,]source] 
[[destination,]source] 
[[de.St inat ion,] source] 

where.items in square brackets are optional. . 
There arc also instructions for integer operands. They ;ire FIADD 

(integer add)J FISUB (integer subtract), FIM,UL (integer multiply), and 
FIDIV (integer divide). The syntax is 

FIADD source 
FISUB source 
FIMUL source 
F'TDIV source 

Example 18.16 Write instructions to add tJ1e ~hort reals 5lored in the 
variables NUMl and NUMZ, and store the sum in NUM3. 

Solution: We load the first number, add the· second, and store into the 
third location. 

FLO 
FADD 
FSTP 

NUMl 
NUM2 
NUM3 

; load first number 
;add second number 
; st.ore result and pop 

A 1nultiplc-prcdsio11 number Is a number stored in multiple 
words. In section 18.4.1, you h;wc already seen the ~pecial case of a double· 
precision number. Normally, conversions of multiple-precision numbers be­
tween_ their decimal and binary representations are very time consuming. 
We can use the 8087 to speed up the conversion process. To input a mul.ti­
ple-precisio.n decimal number and convert it into-binary, we first store it ii 
BCD format Then the 8087 can be used to coilv~rt the BCD into binary. To· 
output a binary multiple-precision number in decimal, we first use the 8087 
to convert It Into BCD and then output the BCD digits. 
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The algorithm for reading digits and converting to packed BCD for­
mat is as follows: 

Algorithm for Converting ASCII Digits to Packed BCD 

read first char 
· case '-' 

, 0' ... , 9' 

while char <> CR 

read char 
case 'G' ... '9' 

· end while 
repeat: 
pop stack 

set_ sign bit of BCD buffer 
convert to binary and push on stack 

convert to binary and push on stack 

assemble 2 digil:S to one byte 
until all digits- are popped 

. . 
The algorithm ls cooed In procedure READ_INTEGEJ.., which also 

converts the BCD number into temporary real format. We can convert the 
number Into other binary formats by using different store lnstnactions. The 
READ_INTEGER procedure Is given in program listing PGM18_.:t_ \SM. The 
l11put buffer is IO bytes and contains O's initially. We also assume the Input 

' number is at most l~ digits. · 

t • ~ 

Program Listing PGM18_2.ASM 
REAO_!NTEGER . PROC 
;read multiple precision integer number and store a~ 

;real number 
;input: BX m address of 10-byte buffer of O's 

XOR BP, BP · ; BP counts number of digits read 
MOV SI, BX ; copy. of pointer 

; read number and push digits on stack 
MOV AH, 01 _ ; read 
INT . 21H

0 

• 

;check for negative 
CMP AL,'-' 
JNE: 

;negative, 
MOV 
INT 

RI LOOPl ; not, negative 
set sign byte to 80h 

DYTE PTR [BX+9),80H 
21H ; read next char 

; check !or CR 

RI_LOOPl :· 
CMP AL, OOH ;_CR? 

JE RI 1 ; CR, goto RI_l 
; digit, coflvert to binary and sa·n on stack 

ANO AL,OFH ;convert ASCII to binary value 
INC - BP ; incre.r.;;nt count 
PUSH AX ; p;..sh on stack 
MOV 

INT 
JMP 

All,01 
21H 
RI LOOPl 

; read nf,xt char 

;repeat 
; pop - number from stack and store as packed BCD 
RI_l: 

HOV 

RI LOOP2: - . '. 

CL, 4 ;counter for left shifts 
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POP AX 
MOV · · .. ·{BX] ,AL 
DEC BP 

JE RI_4 
POP AX· 

SHL AL,CL 

OR [BX) ,AL 

INC BX 
DEC 
JG 

BP 
RI_LOOP2 

; convert to real 

;low digit 
;store 
;more digits? 
;no, exit loop 
;yes, pop high digit 
;shift to high nibble· 
;store 
;next byte 
;more digits? 
;yes, repeat 

RI 4: FBLD TBYTE PTR(SI] ;load BCD to 808"/ stack 
FSTP TBYTE PTR(SI) ;store real to memory 
RET 

READ_ INTEGER ENDP 

Once the numbers are converted',to·binary format, ·we may add, subtract, 
multiply, and divide them. As long as the results do not cause overflow, we 
can store the results as BCD numbers and print out the results In decimal 
using the following algorithm. ' · 

Algorithm for Printing Packed BCD Numbers 
. ~ . " { ' 

if sign bit is set, then print '-' 
get high order byte 
for 9 times do 

convert high BCD digit to ASCII and output 
convert low BCD digit to ASCII and output 
get next byte 

end 

The 'algorithm is coded as procedure PRlNT_BCD given in program listing 
PGM18_3.ASM. 

Program Listing PGM18_3.ASM 
PRINT_BCD PROC .. 
;pri~t BCD· number' in· buffer 
; input: BX ~ addrP.sses of· 10-byte 

TEST BYTE ?l'K{BX+9], 80H ·;check sign bit 
JE PB_l ;positive, skip 
MOV 
MOV 

' -!NT 

PB 1: "/,DD 

MO'/ 
MOV 

PB LOOP: 
MOV 
SHR 

OR 

MOV 
INT 

MOV 
AND 

DL, "-' 
AH,2 

·21H 

BX,8 
CH,9 
CL, 4 

DL, [BX] 

DL,CL 

DL,30H 
AH,2 

21H 
DL, [BX) 
DL,OFH 

;negative, output'-' 

;start with most significant digit 
; 9 bytes 
;shift 4 times 

;get byte 
;high digit to low nibble 
;convert to ASCII 
;output 

; get byte again 
;mask out high nibble 



OR 
MOV 
INT 
DEC 
DEC 
JG 
RET 

1?R1NT_aco 

OL,30H 
AH,2' 
21H 
BX· 

CH 
PB_ LOOI?. 

ENDP 
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;convert low digit t<:> As.:11 
;output. 

; next byte 
;more digits? 
; yes, repe-"l 

When we combine 8086 and 8087 instructiom In a program. we 
need to make sdre the 8086 does not access a memory location tor an 8087 
result before the 8087 ean Onish an opt:ration and ~Ion' 1he re~ult. To syn­
chronize the 8086 ·with the 8087 we use the Instruction FWAIT, whid1 
suspends the 8086 until the 8087 ls finished executing. 

Program listing PGM18_4 gives a program that reads In two multiple· 
precision numbers, and oulputs the sum, difference, product, and 41uotic11t. 

Program Listing PGM18_4.ASM 
TITLE l?GM18_4: MULTil?LE PRECISI0N ARTTHMF.Trr. 
: inputs 2 multiple precision numbers 
: outputs the sum, difference, product, .:ind C'JUOt icnt 
.MOOEL SMALL 
.8087 
.STACK 
.DATA 
NUMl OT 
NUM2 OT 
SLIM OT 

·DIFFERENCE 
PRODUCT 
QUOTIENT 

CR 
LF 

NEi; LINE -
MOV 
MOV 
INT 
MOV 
INT 
ENDM 

0 

0 

? 
OT 
OT 
OT 
EQU 
EQU 

tv'.ACRO 
DL,CR 
AH,2 
21H 
DL,LF 
21H 

? 

OOH 
OAH 

: output. CR and LF 

DISPLAY MACRO X ;output :< on screen 
MOV DL,X 
MOV AH,2 
INT 2iH -

El.:01-1 

.CODE 
;include I/0 procedures 

INCLUDE l?GM18_2.ASM. 
INCLUDE l?GM18_3 .ASM' 

"·'!\.: ~·~ PROC 
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MOV AX, @DATA 
HOV 
MOV 

OS,AX 
ES,AX 

DISPLAY '?' 
LEA BX,NUMl 
CALL READ_INTEGER 
NEW_LINE 
DISPLAY '?' 
LEA BX, NUM2 

. CALL READ_I~TEGER 

NEW_LINE 
; compute sum 

FLO NUMl 
FLO NUM2 
FADD 
FBSTP SUM 
FWAIT 
LEA BX, SUM 
CALL PRINT BCD 
NEW_LINE 

;compute difference 
FLO NUMl 
FLO NUM2 
FSUB 
FBSTP DIFFERENCE 
FWAIT 
LEA BX, DIFFERENCE 
CALL PRINT_BCO 
NEW LINE 

; compute product 
FLO NUMl 
FLO NUM2 
FMUL 
FBSTP PRODUCT 
FWAIT 
LEA BX, PRODUCT 
CALL PRINT_BCD 
NEW_LINE 

;compute quotient 
FLO NUMl 
FLO NUM2 
FDIV 
FBSTP QUOTIENT 
FWAIT 
LEA BX,QU~TIENT 

CALL PRINT_BCD 
NEW_LINE 
MOV AH,4CH 
INT 21H 

MAIN ENDP 
END MAIN 

;initialize OS 
;initialize ES 

;display prompt 
;BX points to buffer 
; input first number 

;BX points to buffer 
;input second number 

; load first number 
;load second number 
;add 
; store and pop 
;synchronize 8086 and 8087 
;BX points to SUM 
;output SUM 

;load first number 
;load second number 
;subtract second from first 
;store difference and pop 
;synchronize 8086 and 8087 
; set pointer 
;output DIFFERENCE 

; load first number 
;load second number 
;multiply 
;store product and pop 
;synchronize 8086 and 8087 
;BX points to PRODUCT 
;output PRODUCT 

;load first n~mber 

;load second number 
;divide first by second 
;store quotient and POP 
;synchronize 8086 and 8087 
; set pointer 
;output QUOTIENT 

;return 
;to DOS 



'18.4.5 

Re~l-Number liq 
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Numbe~ with fr.ictions are called real numbers. The algorithm for read­
ing real numbers is simllar to that for integers. The digits are read in as BCD, 
then C:)nverted to floating point and scaled. To do the scaling, a counter is set 
to the number of digits after the decimal point. 

Algorithm for Reading Rear Numbers 

repeat: read char 
case'-': set sign bit of BCD buffer 

' .'• : set flag · 
-•o• '9': convert to binary and push on stack 

_ and if flag is set, increment counLer 
until CR 

repeat: 
pop stack 
assemble 2 digits to one byte 

until all digits are popped 
load BCD onto 8087 stack 
divide by nonzero count _ _value 
store back as real 

TI1e algorithm is coded as procedure READ_FLOAT given in program listing 
PGM18_5.ASM. 

Program Listing PGM18_5.ASM 
READ_fLOAT PROC 

;read and store real numbe~ 

; input: BX = address of 10-byte buffer of 0' s 
XOR DX,-DX ; OH m l for decimal point, 

.(• .. ;OL = no. of digits after decimal point 

XOR • BP,BP ;BP countH num~~r of digits read 
MOV SI, BX ; copy of pointer 

;read number and push
0

digits on stack 
Rf LOOPl: 

MOV - l\H, 0 l iread.char 
INT 21H 

;check for negative 
_ .CMP AL,'--' 
- JNE '" RF" 1 • • .,. ;not negative, 

;negative, se;t sfi;in oyte 
M0V l3YT£ !'TR [BXt9], BOH--

JMP -RF_i?opi.' ;read next char 
~F·_:·l: CMP • AL •• '.' '' ; decimal point? 

,. JNE RF 2 . ·.-:'' ·:no,- check CR 
' .. - ' .. ·"'' . ;decimal point," ·set· DH' to 1 

, . \t~C _. • OH~ •· •n' • 
1

, •• 

JMP Rf_LOOPl ·' iiead next char 
; chtck fer CR -
RF 2: CMP AL,ODH 

JE RF_3 ;i;R, -goto RF _3 

check 

;dig~l, cor1vcrt ~o binary a1HJ save c.;;; sLd<.:k 

AND AL, OFH 
INC DP 
PUSH AX 

' ; ~onyert ASC_I I to binary 
;increment ~aunt· 
; push on stack 

value 
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CHP 
JE 
INC 
JM[> 

DH,O 
RF I.OOPl 
DL 
RF...:.LOOPl 

;seen decimal point7 
; no, rc3ct ne:-<t chili: 
: yes, increm~nt =cunt 
; read ne>:t char 

;pop number from st~r.k and store A$ p~~~cd BCD 
RF_3: 

HOV 
RF LOOP2: 

PO? 
MOV 
DEC 
JE 
POP 

SHL 
OR 

INC 
DEC 
JG 

CL, 4 

AX 
[BXJ,AL 
BP 

RF_4 
AX 
AL,eL 
[BX].AL 

BX 

BP 
RF L00P2 

; convert to real 
RF 4: FBLD TBYTE PTR [SI J 

FWAIT 

CMP 
JE 

DL,O 

RF_S 
XOR ex. ex 
MOV 
MO'l 
MOV 

RF_!,OOP3: 

IMUL 
LOOP 
MOV 

FI DIV 
RF_S: FSTP 

FWAIT 
RET 

READ __ Fl.OAT 

CL,DL 
AX,1 
!;)(, 10 

BX 
RF _LOOP3. 

(SIJ,AX 

WORD PTr\[SIJ 

TBYTE P7R[Sl] 

ENDP 

;counter for left shifts 

;get low digit 
; store in buffer 
; decrement cour1t 
;done if 0 
;get high digit 
;move to high nibble 
;move to buffer 
; next byte 
; more digit ::-.J? 

; yes, repeat 

;load BCD t0 8087 stack 
;synchronize 8036 and 8087 
;digit~ rtftet decimal? 
;no scaling, goto RF_5 

;digit count in ex 
;prcpar~ t'.:l forr. 
;powers of 10 

;multiply 1 ty 10 
:ex times 
; save sealing factor 
;divide by scal.i.ng factor 
;stcre real to m~m0ry 
: synchron.i. ze 80H; .ind 8087 

Here, we assume that the number of digits after the decimal point is 1t-"l 
than 5, which allows the \Caling factor to be stored as a one-word signt'd 
Integer. 

To output real numbers, we first multiply the numJ;:>er by a sc.:aling 
factor. Then we store the real number iri BCD format, an<l output the digit\ 
with an appropriate decimal point- We print only four digits after the dec.:imal 
point. So the scaling factor is 10000_ 

Algorithm for Printing Real Numbers with a Four-Digit Fraction 

::'.tilt.tpjy real numu•~r by 10000 
store as BCD 
~utput !.'CD nu!l'bcr INiLh ' - '. insert.P.d bef<H~ lds'... 4 .di.'Ji( s 

. -· r~e algorilh1i1 is COd\.'CI as procedure l'IUNT_FLOAT given in program 
listing l'GM18_6:ASM-
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Program Usting PGM18_6.ASM 
f>RINT FLOAT'' f>ROC 
;print top 'ot"000'P'stack-­
;input; -ax:. a~di~~i··~f~buffer 

MOV .. WORD p~~{BX) I 10.000 
FIMUL WORD ... P,TR[BX] 

; ten thousand 
;scale up by 10000 
; store as BCI:: FBSTP -TBYjE PTR(BX] 

. ._ .J.J 
FWAIT 

TEST BYTE PTR[BX+9),80H 
;synchronize 8086 and 8087 
;check sign bit 

JE. i " Pf" I 

·MOV ._. DL,_,' ,-
MOV AH, 2 

INT "21H 
' PF l : . ADD . BX. 8: 

MOV 

.; ,•, MOV 

MOV 

PF LOOP: 
MOV 

CH< 7 .. 
__ CL, 4 

DH·, 2 

DL, [BX] 

SHR DL, CL_ : 
OR . .; DL, 30H-. 
INT 21H 
MOV DL, [B~] 
AND DL,OFH 
OR DL,30H 

INT 21H --"~"' 
DEC BX 
DEC CH 
JG PF_LOOP 

DH 
JE 'PF DONE. 

DISPLAY ' ' 
MOV 

JMP 
PF_DONE: 

RET 

CH,2 
PF LOOP 
.•. -:, tf ., ._ 

P
0

R INT . FLOAT ENDP 

; 0, qot0 ?F" l 

. ;output 

-·;point to high byte 
;14

0
digits bef~re decimal point 

; 4 shifts 
';2 times 

'·;get BCD digits 
;move high digit to iow nibbie 

.;convert to ASCTr . 
; output 
; get byte aga.in 
imask out high digit 
.;.convi;rt to ASCII 
;output 

':'next byte 
'~dec~e~ent count 
;repeat if more bytes 
; second time? 
;yes,,,done • 
_:no, o·.1tput decimal point 
;4 mor~ digits after decimal point 
;g~ print digits 

' ... ~~ ••• . .r :n·' . ~. . 
The program_ ~<? co~bine these procedures is left as an exercise. 

Summary 

• Double-precision numbers increase the range of integers repre­
sented. 

• The ADC and Siil.i instructions arc. used in performing doublc­
prccision addition and subtraction. 

• Multiplication and division of double-precision numbers by 
,powers of 2 can be implemented by shift and rotate instructions. 
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In the BCD system, the decimal digits of a number are expressed 
In four bits. A number is stored in packed form if two BCD digits 
are contained In a byte; In unpacked form, one BCD digit is con­
tained In a byte. 

• The advantage of the BCD representation is that it is easy to con­
vert decimal character input to BCD and back. The disadvantage 
is that decimal arithmetic Is more complicated for the computer 
than ordinary binary arithmetic. 

• The AAA Instruction adjusts the sum In AL after addition. 

• The AAS Instruction adjusts the difference in AL after a subtractioq. 

• The AAM instruction takes the binary product of two BCD digits 
in AL, and produces a two-digit BCD product in AH:AL. 

• The AAD instruction converts a two-digit BCD dividend in AH:AL 
int~ its binary equivalent In AL. 

• Floating-point format consists. of a sign bit, an exponent, and a 
mantissa. . 

• The 8087 numeric processor can per~orm a variety of numeric 
operations on integer, BCD, and real numbers. 

Glossary 

BCD (binary-coded 
decimal) system 

bias 

double-precision number 

exponent 

floating-point number 

A system of coding each decimal digit as 
four binary digits 

A number that Is added to the exponents 
to make them positive 
Number stored in two computer words 

The part of a floating-point number con­
sisting of the power 
Number represented in memory in the 
form of exponent and mantissa 

mantissa The part of a floating-point number con­
sisting of the significant digits 

multiple-precision nunabcr Number stored in multiple words 

packed BCD form Two BCD digits stored in a byte 
unpacked BCD form 

New Instructions 

!..Al\ 

MD 
AAM 
AAS 
ADC 
FADD 
FBLD 

FBSTP 

One BCD digit stored in a byte 

FDIV 
FIAOD 
Fl DIV 
FILO 
FIMUL 
FIST 
FISTP 
FI SUB 

FLO 
FMUL 
FST 

.FSTP 
FSUB 
FWAIT 
SBB 



New Pseudo-Cos 

.8087 

Exercises 
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For exercises 1 to 6, use only the 8086 instructions. 

1. Write a procedure DSUB that will perform a double-precision sub­
traction of CX:BX from DX:AX and return the difference in 
DX:AX. DSUB should set the flags correctly. 

2. Write a procedure DCMP that will perform a double-precision 
compare of CX:BX from DX:AX. The registers should not be 
changed, and the flags should be set correctly. 

· 3. Write the instmctions that will perform the following double­
precision operations. Assume that the numher is in DX:AX. Do 
single shifts and rotates. 

a. SHR 

b. SAR 
c. ROR 

d. ROL 

e. RCR 
f. RCL 

4. A triple-precision number is a three-word (48-blt) number. Write 
instructions that will perform the following operations on the 
two triple-precision numbers stored in A+4:A+2:A and B+4:B+2:B. 
a. Add the second number to the first. 
b. Subtract the ~ccond number from the first. 

5. Write Instructions that will perform an arithmetic right shift on a 
triple-precision number stored in ilX:D)\:AX. 

6. Suppose two unpacked 3-digit ilCD numbers are stored in 
A+2:A+l:A and B+2:B+l:B. Write instructions that will 

' a. add the second number to the first; assume the result ls only 
three digits. 

b. subtract the second number from the first; assume that the 
first number is larger. 

7. Represent the number -0.0014 as an 8087 short real. 
8. Represent the number -2954683 as an 8087 packed BCD. 
9. Write the floating-point instruction~ that will 

a. add an integer variable X to the top of the stack. 
b. divide a short real number Y into the top of the stack. 

c. store and pop the stack to a BCD nunt\Jer Z. 
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Programming Exercises . 
10. Write a program lv read In two decimal numbers from the key­

board and output their sum. The numbers may be negative and 
.. have up to 20 digits. Do not use the 8087 instructions. 

11. Write a program to read In two real numbers, with up to four dec­
imal digits after the decimal pOlnt, and output their sum, diffor­
ence, product, and quol1ent. 
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' 

Disk and File 
Operations 

Overview 

19.1 
Kinds of Disks 

Up till now, we have used disk storage exclusively ns a repository for 
system and user program files. Disk files can also be used to store input and 
output data of a program. Common examples arc databases and spreadsh~ts. 
In this chapter, we study disk organization, disk opcr;ition:s, and file handling. 

·There are two kinds of disks, floppy disks and lwtl di.1ks. Floppy disks 
are made of mylar and are flexible, hence the name. Hard disks are made of 
metal and are 'rigid. The surface of a disk is coated with a metallic oxide, and 
information is stored as magnetized spots. 

Floppy and hard disk operntions are similar. A disk drive unit reads 
and writes data on the disk with a r<'acl/write liead, which moves radinlly in 
and out over the disk surface while the disk spins. Each head position tral.cs 
a circular palh called a track on the disk surface. The movement ol till' 
read/write head allows it to access different track\. 

Floppy Disks 

A floppy. disk is contained in a protective jacket and comes itl,. 
3la-inch or 5 Vo1-inch diameter sizes. The jacket for a S 1/4-inch disk is madl· 
of flexible plastic and has four cutouts (sec Figure 19. I): (l) a center cutout 
so that the disk drive can clamp down on the disk and spin it; (2) an 
oval-shaped cutout that allows the read/write head to access the disk sur­
face; (3) a small circular hole that aligns with an index hole on the disk 
used by the disk drive to identify the beginning of a· track; and (4) a 

~qc; 
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Figure 19.1 A 51/4-inch Floppy Disk 

write-protect notch-if open, the disk can be re;id or written; if taped 
over, the disk can only be read. 

The 3112-inch disk has a more sturdy construction. Its jacket Is made 
of hard plastic, which makes it more rigid; it has a metal-reinforced hub for 
longer use and a metal sliding cover that protects the read/write head access 
opening. TI1e write-protection hole operates differently from that of the 
5 V4-inch disk; the disk is write-protected when the hole is open. There is no 
index hole: i'igure 19.2 shows a 31,;'z-inch disk. 

Hard Disks ~ · , 

A hard disk consists of one or more platters mounted on ii common 
spindle. 13olh sides of a platter are used for recording, and there is one 
read/write head for each side of a platter. All the heads are connected to a 
common moving unit. See Figure 19.3. 

The read/write head hovers just a'JOve the disk surface, never actually 
touching it during operations (unlike a floppy disk). The space between the 
head and the disk surface is -.o small that any dust particle would cause the 
head to crash onto the disk ~.irface, so hard disk! and their disk drives come 
in hermetically sealed cases. 
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Figure 19.2 A 31/.z-inch Floppy Disk 

19.2 
Disk Stmcture 

. . ·.Hard disk access is much taster than tor a floppy disk ror several reasons: 
(1) a hard disk is always rotating, so no time is Jost in starting up the disk, (2) 
hard disks rotate at a much faster rate (usually about 3600 rpm, or revolutions 
per minute, versw 300 rpm for a floppy disk), and (3) because of its rigid surface 
and dust-free environment, thr: recording density is much greater. 

Information on a disk is stored in the tracks. When a disk is formatted, 
tracks are partitlone<f°into 512-b}'tc areas called sectors. DOS numbers tracks, 
starting with O. Within a track, sectors are also numbered, starting \\ith 1. The 
number 9f tracks and sectors per track depends on the kind of disk. 
· 1 A cylinder Is the collection of tracks that have the same number. 

Foi example, cylinder 0 for a floppy disk consists of track 0 on each side of 
the disk; for a hard disk; cylinder 0 consists of the tracks numbered O on 
both sides of eadi·platter. Cylinders are so named becau5e the tracks that 
make up a cylinder line up· vertically and seem to form a physical cylinder 



398 19.2 Disk Structure 
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Figure 19.3 A Hard Disk 

19.2.1 

Disk Capacity 

(sec Figure 19.3). The number of cylinders a disk ha) is equal to the number 
of tracks on each surface. 

DOS also numbers the surfaces that make up a disk, beginning with 
0. A floppy dbk has surfaces 0 and 1. A hard disk can have more surface 
numbers, because it may consist of several platters. 

The rapacity in byte) th;1t can be stored on a disk can be {'alculated 
a) follows: · 

capacity in bytes= surlxcs x tracks/)urfacc x sector)/\ rack x S 12 bytes/sector 

l'or example, a 51/4-inch floppy disk has this capacity: 

capacity in bytes= 2 surfaces x 40 tracks/surface x 9 sectors/track 
x 512 bytes/sector = 368,640 bytes 

Tables 19.lA and 19.IB give the number of cylinders, sectors/track, surfaces, 
and capacity for some of the floppy and hard disks in use today. 
· The density of information on a floppy disk depends on the recording 
technique. Two common recording techniques are double de11sitrand lriS!' der~sijy. 
A high-density drive uses a narrow head and it can read double-density d1~; 
however, a double-density drive cannot read a high-density disk. 
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Disk Access 

19.2.l, 
File Allocation 
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Table 19.1A' Floppy Disk Capadty 

Kind ~f Dlsk . . Cylinde,; · ,Sectors/Track Capacity 

368,640 bytes 
. ''. ..., 

51/4 in. 40 9 
double density 

5V4 in. 80 15 
·high density 

1 ,228,800 bytes 

31R in. 80 9 
double density 

737,280 bytes 

3ta in. 80 18 
high density 

1 ,474,560 bytes 

Table 19.18 Hard Disk Capacity. 

Kind of Disk Cylinders Sectors/Track Sides Capadty 

10 MB 306 17 4 10,653,696 bytes 

20 MB 615 .. 17 4 21.411,840 bytes 

30 ¥,B 615. :· 17 6 32, 117, 760 bytes .. 

60 MB 940 17 8 65,454,080 bytes 

.. The method ,of acc~ssir:ig information for both floppy and hard disks 
Is similar .. The disk drive is under the control of the disk controller circuit, 
which is responsible for moving the heads and reading and writing d;ita. 
Data are always ac<;essed one sector ~t a time. 

The first step in accessing data is to position the head at the right 
track. This niay Involve moving the head assembly-a slow operation. Once 
the head Is positioned on. the right track, it waits for the desired sector to 
come by;'thls takes additional time. Because all the tracks in a cylinder can 
be accessed without moving the head assembly, when DOS is writing data 
to a disk it fills a cylinder before going on to the next cylinder. 

To keep' track of the data stored on a disk, DOS uses a directory 
structure. The first tracks and sectors of a disk contain information about 
the disk's file structure. We'll concentrate on the structure of the 5 V4-lnch. 
double-density floppy disk, which is organized as follows: 

Surface Track Sectors Information 

0 .o boot record (used 
r in start-up) 

0 0 2-5 file allocation table 
(FAn 

0 0 .'6-9 file directory 
·1 0 1-3 file directory 

1 0 4-9 data (as needed) 

0 11 1-9 data (as needed) 
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The File Directory 

DOS creates a 32-byte directory entry for each file. 'fhe format of an 
entry is as follows: ' 

Byte 

0-7 

8-10 
11 
12-21 
22-23 
24-25 
26-27 

28-31 . 

Function 

filename (byte 0 is also used as a 
status byte) 

extension 
attribute (see below) 

reserved by DOS 

creation hour:minute:second 

creation year:month:day 

starting cluster number (see discussion 
of the FAn 
file size in bytes 

There are seven sectors in the directory area, each with 512 bytes. Each file 
entry contains 32 bytes, so there ls room for 7 x 512/32 = 112 entries. How­
ever, file entries also may be contained in subdirectories. 

The directory ls organized as a tree, with the main directory (a.k.a. 
root directory) as root, and the subdirectories as branches. 

In a file directory entry, byte 0 ls the file status byte. The FORMAT . 
program assigns 0 to this byte; it means the entry has never been used. ESh 
means the file has been deleted. 2Eh indicates a subdirectory. Otherwise, 
byte 0 contains the first character of the filename. 

· When a new file is created, DOS uses the first available directory 
field to store Information about the file. 

Byte 11 ls the attribute byte. Each bit specifies a file attribute (see 
Figure 19.4). 

A hidden file is a file whose name doesn't appear in the directory 
search; that is, the DIR command. Hiding a file provides a measure of security 
in situations where several people use the same.machine. A hidden file may 
not be run under DOS version 2 (it may be run under DOS version 3). However, 
the attribute may be changed (see section 19.2.8) and then" it can be l'U01-

The archive bit (bit 5) is set when a file is created. tt is used by 
the BACKUP command that saves files. When a file is saved by BACKUP, 
this bit is cleared but changing the file wlll cause the archive bit to be set 
again. This way the BACKUP program knows which file has been saved. 

The attribute byte is specified when the file is created, but as men­
tioned earlier, it may be changed. Normally when a file is created it has 
attribute 20h (all bits 0 except the archive bit). 

An example of a file directory entry is given in section 19.3. 

Clusters 

DOS sets aside space for a file In clusters. For a particular kind of 
disk, a cluster Is a fixed number of sectors (2 for a SV4 in. dcuble-density 
disk); in any case, the number of sectors in a cluster is always a power of 2. 

Clusters are numbered, with cluster 0 being the last two sectors of 
the directory. Bytes 26 and 27 of the file's directory entry contain the starting 
cluster number of the file. The first data file on the disk begins at cluster 2. 
· Even If a file ls smaller than a ~ll!Stet (1024 bytes for a 5V4 In. dOjol­
ble-density disk), DOS still sets aside a whole cluster for It. This means tfie 
disk is likely to have space that is not being used, even if DOS says it is full. 
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7 .6 5 4 ] 2 0 

_Read-only file 
~---Hidden file 

.....__...,.... ___ DOS system file 
,__ ______ Volume label 

.__ ________ subdirectory 
....._ _________ Archi.,.. bit 

~---------~Not used 
'-------------Not used 

The FAT 

The purpose of the file allucation table (FAT) is to provide a· 
map of how files are stored on a disk. For floppy disks and 10-MB hard disk, 
FAT entries are 12 bits in lengthi for Luger hard disks, FAT entries are 16 bits 
Jong. The first byte of the FAT is usL>d to indicate the kind of disk (Table 
19.2). For_ I 2-bit FAT entries, tlie next two bytes contain FFh. 

How DOS Reads a File 

· To see how the FAT Is organized, let's take an example of how DOS 
uses the FAT to read a file (refer to Figure 19.5): 

I. 005 gets the starting cluster number from the directory; let's sup­
pose it is 2. 

2. DOS reaJ~ cluster 2 from the disk and stores it in an area of mem­
ory l'alicd the data trainfer area (DTA). The pr9gram that ini­
tiated the read retrieves data from the OTA as nt~ded. 

3. Since entry 2 contains 4, the next cluster in the file is cluster 4. If 
the program needs more data, -DOS reads cluster 4 into the OTA. 

4. Entry 4 in the FAT contains FFFh, which indicates the last cluster 
in the file. In general, the process. of obtaining cluster numbers 
from the FAT and reading data Into the OTA continues until a 
FAT entry contains FFFh. ·· 

Table 19.2 The First BYte of the FAT for Some Disks 

Kind of Disk _;First Syte (hex) 

51;4-in. double density FD 
51;4.111. high density F9 
3''2-in. double density F9 

· 31'2-in. high density 
Hard diSk 

FO 
FS 

·<'. 



402 19.3 File Processing 

Figure'19.5 Example of a FAT 

19.3 
File Process_ing 

19.3.1 

File Handle 

Entry . 0 ' 1 ': . 2 3 .. 4 5 6 7 8 9 

. . _ l-~o~ I ~~: ., ~ I oos I FFF I oo& j 001 joos j FFF I ooo I 

As another example, the FAT in Figure 19.S shows a file that occupies 
clusters 3, S, 6, 7, and 8. 

How DOS Stores a File 

To store a disk file, DOS does the following: 

1. DOS loqtes an 1:1nused ~irectory entry and stores the filename, at­
tribute, creation time, and date. 

-- 2: ·DOS searches the FAT.for the first entry indicating an unused clus­
ter (000 means unused) and stores the starting cluster number in 
the difectory. Let's suppose it finds 000 in entry 9. 

3.· If t.he data will fit in .a cluster, DOS stores them in cluster 9 and 
places FFFh in FA:r entry 9. If there are more data, DOS looks for 
the next availablv entry in the FAT; for example, Ah. DOS stores 
more data in' cluster Ah, and places OOAh in FAT entry 9. This pro­
cess of finding unused c;.lusters from the F.AT, storing data in those 
clusters, making each FAT entr)' point to the next cluster contin­
ues until ail the data have been stored. The last FAT entry for the 
file contains FFFh. 

.•. In .this section, we discuss a group of INT 21h functions called the 
file handle functions. These functions were introduced with DOS version 2.0 
and make file operations much easier ~an the previous file control block 
(FCB) method. In the latter, the programmer was responsible for setting up 
a table that contained information about open files. With the file handle 
functions, DOS keeps_ track of open file data in its own internal tables, thus 
relieving the prograri1mer of this responsibility. Another advantage of the 
file handle functions is that a user may specify file path names; this was not 
possible with the FCB functions. _ . 

In the following discussion, reading a file means copying all or part 
of an existing file into memory; writing a file means copying data from 
~en:i2ry to.a .m~; .r~~.ri.ting a file, mcal}S replacing a file's content wi~h 
other data. 

When a file is opened:or:created in a program, DOS assigns It a 
unique number called the' flle handle .. This number is used to identify the , 

'file, so the program must· save it. · - · 
There are five pr~defined flle handles. They are 
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1§.3.3 
Opening and Closing 
a File 

0 
1 

i 
3 

4 
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keyboard 
screen· . 
error ciutpui~reen 
i ·, ~ "'. • i.. • .4 ,. 

auxiliary device 

orinter 

In addition to these files, DOS allows7three additional user-defined files to 
be open (It is possible to raise the limit of open user files See the DOS 
manual). 

There are many opportunities for ~rrors in INT 21 h file handling; 
DOS·identifies··each·errcir by~a-cOde·numbcr. Jn the functions we clescrihc 
here, if an error·o&tirs tncn"CF JS-set a·nd the code number appe.us in AX. 
The following list contains-the more common file-handling error~;. 

Hex·Error Code 

.1 

M_ea~/ng 

invalid function number 

file-not found 2 
3 
4 
5 

"•6 

c 
'f. 
10 

11 

12 

_path. no~ found 
all available handles in use 
access den"ied 

'invalid file handle 

iA~aiid 'access code 

in~~lid drive specified 

attempno-r~move current directory 

not.the"·same device 

'flo mcire files to be found 

_In the follpwing se~io~s; ,we descrtbe -the DOS"file handle function~;. As with 
the· DOS I/0 functions we have been using, put a function numter in AH 
and .execu'te. INT 21 h. ·" 

Before a file can-be used; It must be opened. To create a new file or 
rewrite an existing file. the user orovides a filename and an attribute; DOS 
returns a-file handle. 

··iN-t 21h."f:unction 36i: · · · · 
-Open a New File/Rewrite a-File 

Input: 
DS:DX = address of filename, which is an ASCIIZ string 

;(a;strlng_endlng with a 0 byte) 
CL = attribute ' . 

._J_f ~.ucce~~fu.I, AX·:: file ~andle 
Error if C:F "' 1, error code in AX (3, 4, or 5) 
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The filename may Include a path; for example, A:\PROGS\PROG l.ASM. Pos­
sible er;·ors for this function are 3 (path doesn't exist), 4 (all file handles In 
use), u 5 (access denied, which means either that the directory is full or the 
file is a read-only file). · 

Exa1uplc 19.1 Write Instructions lo open ;i new read-only file called 
FILEI. 

Solution: Suppos!? the filename Is stored as follows 

FNAME DB 
HANDLE OW 

'FILEl' ,0 
? 

The string FNAME containing the filename must end with a O byte. HANDLE 
will contain the file handle. 

-MOV AX,@DATA 
MOV DS,AX ;initialize OS 
MCV AH,3CH ;open file function 
!..EA DX,FNAME ;DX has filename address 
MOV CL,1 ; read __ only attribute 
INT 21H ;open file 
MOV HANDLE, AX ; save handle or error code 
JC OPEN ERROR ; jump if error -
If there were an error, the program would jump to Ol'EN_ERROR where we 
could print an error mes~agc. 

To open an existin~ file, there Is another function: 

INT 21h, Function 30h: 
Open an Existing File 

lllj:>Ul: 

Output: 

AH= 3Dh 
DS:DX = address of filename which is an ASCllZ string 
Al. = access code: · 0 means open for reading 

1 means open for writing 
2 means open for both 

If successful, AX = file handle - · 
Error if CF= 1, error code In AX (2,4,5, 12) 

After a fik has been processed, it s_hould be closed. This frees the file 
handle for use with anothC'r file. If the file is being written, closing causes 
any data remaining in memory to be written to the file, and the file's time, 
date, and size to bt! updated in the directory. 

INT 21H, Function 3Eh: 
Close a File 

Input: BX = file handle 

Output: If CF .. 1, error code In AX (6) 
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Example 19.2 Write somc code to close a file. Suppose variable 
HANDLE contains the fill' handle. 

Solution; 

MOV 
M.JV 

JNT 

AH, 3EH 
BX, HANDLE 
21H 

. I' . 
<'":LOSE ER;;,o~ 

;cluse file function 
; get handle 
;close file 
;Jump if errcr 

The only,thing that could go wrong is that there might be no hit> corre­
sponding to the file handle (crmr 6). 

'The.following function'reads a specified m1ml)cr of Llytl•s i!orn a file 
and stores them in memor/. 

r 
-·--------·---- -- ----·-·1 

T 21H, Function.3Fh: i 
ead a File 1 

r 

pu:: , AH "' .. HI·. 
1 

BX =- file handle 
r 

i 
·i 
; 

Output: 

CX =number of bvt<'S to read 
DS:DX =-memory huffer'address 
AX = number of bytes actuaily re~d. i 

If AX= 0 or AX< ex, 1md of fiic f'IKOUll!L'l·c·I. 

It CF= l, error rnde in AX (5,6J 

_, 

L ____ _ 

F.xamplc 19.3 Write sonll' co<lcto read a 512-tyti> \CCtO• frorn a 'lli:. 

Solution: 1 First we must set up a memory block '.huffcr) to rec:civc tlic d.ita; 

.DATA 
HAND Lt: ni· 
BUFFF.i< 

The instructions are 

':-1ov 

~lOV 

l·lOV 

:-JS, nx 
h.H I JiH. 

SY., H/..NL'-'..,S .·, 
CX;'512 

INT 21 H , _ 
.Jc •READ r.:o.r'.~;k 

~ i 2 o··" (~) 

';. ini t ~al i z~ CS 

·;~·ead i~l~ tu:-.c:.:~·~;. 
; get h-3;-,jle 

. . . 
-; rt::cn."P•5:2· byt ~.s 

;r·~tlG file . . -.!'. 

In ~omc <ipplicatiom, w~ m:iy w.lrit tu read anLl pru.:t~~ ''. •• ,1~ u11til 
end of file <EOFl is cncountC'red. The pr<•;,:;r;:m •Jn clwck f•.1r !:(11· b:. ,·.mi-
paring.AX anJ CX:· :.1. 

CMP AX, ex ; t~:~·F? 
' 

.. 
~ 

JL ·EXIT' ~·: "./€ $_, ~.er~i :·:,~ t ·:' ~ . ·' 
JM? READ LO'.)? - ;n .. ;, ~~!?t:.' .:J = .::,.:;.._;:. !;'~ 
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19.3.S 

Writing a File 

19.3.6 

A ·Program to Read 
and Display a File 

Function 40h writes ·a specified number of bytes to a file or device. 

INT 21H, Function 40h: 
Write File. 

Input: 

Output: 

AH= 40h 
BX = file. handle 
ex = number of bytes to write 
DS:DX =·data address · 
AX = bytes written. If AX < CX, error (full disk) 
If CF = 1, error code in AX (5,6) 

It is possible that there is not enough room on the disk to accept the,data; 
DOS doesn't regard this as an error, so the· program has to' ched:·for fr' hy · 
comparing AX and ex. 

Function 40h writes data to a file, but it can also be used to send 
data to the screen or printer (,handles 1 and 4, respectively). 

Example 19.4 Use function 40h to display a message on the screen. 

Solution: Let's suppose the message is stored as follows: 

.DATA 
MSG DB 

The instructions are 

MOV A.X,@DATA 
MClV 11~,JIX 

MOV AH,40H 
MOV BX,l 
MOV CX,20 
LEA DX, MSG 
INT 21H 

'DISPLAY THIS MESSAGE' 

;initJil!ize !'.S 

;write file function 
;screen".fil~ handle 
;length of message 
;gPt address of MSG 
;display MSG 

To show how the file handle functions work. we will v.Tite a program 
that lets the user enter a filename, then reads and di~play~ the nie on the screen. 

Algorithm for displaying a file 

Get filename from user 
Open file 
IF open c:>rr•.>r 

'.1-'FN 

. ::Ii:; play err or C'1~le -:inrl exit 
ELSE 

REPEAT 
Read a sect~r !nto tuffer 
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Display · buffe·r 

UNTI::.. end''of'. !lle 

Close file 
•ENDIF 

Program Listing PGM19_ 1.ASM 
·O:· TITLE PGM19_1·: DISPLAY FILE 

1 : • . MODEL r SMALL 

2: 
3: .ST~CK lOOH 

. 4: 
~5: .DATA 

6: PROMPT DB 

7: FILENAME DB 

8: BUFFER DB 
9: HANDLt: . DW 

10: OPENERR DB· 

11 ; ERRCODE DB 

12: 

13: .CODE 

'FILENAME:$' 

30 DUP (0), 
512 :DUP (0) 

? 
ODH, OAH, 'OPEN ERROR - CODE' 

30H, '$' 

14: MAIN 

15: 

PROC •. ;·. 

MOV AX,@DATA 

16: MOV 

MOV~ 

CALL 

LEA 

MOV 

DS 1AX ;initialize DS 

17: iES,AX._ · ;and ES 

18: .GET_NAME ; read filename 

19: DX, FILENAME ·;DX has filename offset 

20: 

21;: CALL 

22:. JC. 
23: MOV·. 

,24: READ .LOOP: 

.LEA~ 

AL,0 

OPEN· 

OPEN_ERROR 
HANDLE, AX 

;access code 0 for reading 

;open file 

;exit if error 

; save handle 

;DX pts to buffer 25: 

26: 
27: 
28: 
29: 

MOV • 

CALL 
OR 

JE .:. 

DX, BUFFER 

BX, HANDLE 

READ"· 
AX,A~ 

EXIT : 

'· ; get handle 

30£ MOV.: 
31: CALL 

:32: JMP 

33: OPEN_ERROR:.J 
34 :· ·LEA 

35:• 
36: 
37: 

ADD 

'MOV 

:INT 

CX,AX 
DISPLAY 
READ LOOP 

DX, OPENERR,, 

ERRCODE,AL 

AH,9 

21H 

;read file. AX ~-~ytes read 

;end of.file? ~ 

;yes, exit j, 
1CX gets no. of bytes read 
:: display file 
;exit 

;get error me~sage 
; convert error code to ASCII 

; display error messa.ge 
·39: EXIT'! 
:39; 
40: 

MOV '-"C~BX, HANDLE 
.CALL'.·\1 :CLOSE 

X'MOV ·;~ 0AH,4C::H 

!NT 1·~c21H 

ENDP.:',!.i 

·;get handle 

1·.;close file 
41: 
42: 
43: MAIN 
44: 

45: GE_T_NA,ME1 PROC 

46:.;1 .. reads ~i:ic;:I-: stores, filename 

47: ;·inpu~·-:~~none 

';dos exit 

4~:~;C)µtp,ut.:._filename store~: as;Ascnz· string 
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PUSH AX ;save registers used 
PUSH ox 
PUSH DI 
HOV AH,9 ;display string fen 

LEA DX, PROMPT 

49: 
50: 
51: 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61: 
62: 
63: 
64: 
65 ~ 
66: 
67: 
68: 
69: 
70: 
71 :· 
72: 
73: 
74: 
75: 
76: 
17: 
78.: 
79: 
80: 
81: 

INT 21H ;display data prompt 
CLO 
LEA DI,FILENAHE ;DI pts to filename 
HOV AH,l ;read char fen 

REAO_NAME: 
INT 21H ;get a char 
CMP AL,ODH ;CR? 
JE DONE ;yes, exit 
STOSS ;no, store in string 

JMP REAO_NAME ;keep reading 

DONE: 
HOV AL,O 
STOSB ;store 0 byte 
POP DI ;restore reg,i..sters 

POP DX 
POP AX 
RET 

GET_NAME ENDP 

OPEN PROC NEAR 
;opens file 
;input: DS:DX filename 

AL access code 
;output: if successful, AX handle 

if unsuccessful, 
HOV AH, 3DH 
HOV AL, 0 

CF - l, AX - error code 
;open file fen 

INT 21H 
82: RET 
8 3 : OPEN ENDP 
84: 
85: READ PROC NEAR 
86: ;reads a file sector 
87: ;input: BX file handle 

;input only 
;open file 

88: ex bytes to read (512) 
89: DS:DX buffer 
90: :output: if successful, sector in buffer 
91: AX ~umber of bytes read 
92: if unsuccessful, CF• l 
93: PUSH ex 

. 94: 

95: 
96: 
97: 
98: 
99: READ 
100: 
lOl:DISPLAY 

MOV 
HOV 
INT 
POP 
RET 
ENDP 

PROC 

AH,3FH 
eX,512 
21H 
ex 

NEAR 
102: ;displays memory on screen 
l03:;input: BX• handle (1) 

;read 
; 512 
; read 

104: 1 ex - bytes to display 

file fen 
bytes 
file into buffer 
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105:; DS:DX • data addrc':>s 
106: ;output: AX • b~tes displayed 
l 01: ''pusH l:'x 
108°: 

109: 
·110: 
111: 
112: 
113: DISPLAY 
114: 

MOV 
·r-:ov 

lNT 
FOP' 
RET 
EN::JP 

J.H, 4 OH 

Fi(' l 
2. H' 
EX 

11'5: CLOSE PROC NEA:< 

116: ;closes a· file 
117: ; input: BX- =• hand.: e 

;i..·rite file fen 
; t-.~ndlc f~I .sc~·eer~ 

;displuy file 

118: ;output: if CF = L c:-ror c.:.~;., :n AX 
119: MC'.' .z,r.,JU! ;;:-~e;se fJ..lC fc:; 
120: IN':' ;' l H ;close ~il~ 

121: RET 
122: CLOSE ENL<-· 
l 2 3: 
124: . EtlD :•JAIN 

At line 18, prix:cdurc GE.T_NAME ls called to rc(civc the filename from the 
user and store it in array HLENAME as an ASC.llZ suing. Mtcr l'!iLLl'AML's 
offset is moved to DX, procedure OPEN ls called alline ll to opi:n the file. 
The most likely errors are nonexistent file or path. If either happ.:>ns, OPE~ 
returns with CF set and the error code 2 or 3 in AL. The program convert~ 
the code to an ASCII character by adding it to the lOh in varialJlc EltRCOOE 
(line 35), and prints an error meuage with the appropriate code number. 

·.Note: typing mistakes will be treatt.'<I as errors. 
· , If the.file opens successfully, AX will cont;iin 5, the fir:;t available 
· handle:aftcr·the predefined handles. · 

. : . '· At line 2.J, the progr.1m enters· the main proccs~ing. loop. First, pro­
cedure READ is called to ;cad a sector into .ur.iy Blll'FEll. c1: !s set if an error 
occurred, but the conceivable errors (accc!>s denied, illegal hie .:1andlc) are 
not possible In this program, so AX will have the '":tual number of bytes 
read. If this Is zerq, F.OF was encountered on the prc\'im1!> call to READ, and 
tlie program calls procedure CLOSE to close t tic file. 

If AX is not 0, the number of bytes rl!ad Is moved to C:X (line 30) 
and procedure DISPLAY ls called to display the bytes on the scr1~en. 

Sample Executions: 

C>PGMl~ l 
FILENAME: A:A.TXT 
THIS rs A SMALL TEST FILE 

C>PGM19 l 
FILENAME: A:B.TXT 
OPEN ERROR - CO::>E 2 (nonexistent. file) 

C>PGM19_l 
FILENAME: A:\PROGS\A.TXT 
OPEN ERROR - CODE 3 (illeqal path) 
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19.3.7 
The File Pointer The file pointer is used to.locate a position in a file. When the file 

is opened, the file pointer is positioned at the beginning of the file. After a 
read operation, the file pointer indicates the next byte to be read; after writing 
a new file, the file pointer is at EOF (end of file). 

The following function can be used to move the file pointer. 

INT 21H, Function 42h: 
Move File Pointer 

Input: 
·• 

AH= 42h 
AL = movement code: 0 means move relative to 

beginning of file 

BX = file handle 

1 means move relative to 
the current file pointer location 

. 2 means move relative to 
. .the end of the file 

. CX:DX = number of bytes to move (signed) 
Output: DX:AX = new pointer location in bytes from the 

" . . beginning of the file 
If CF =- 1, error code in AX (l,c) .. ' . 

CX:DX contains the number of bytes to move the pointer, expressed as a signed 
·number (positive means forward, negative means backward). If AL = 0, move­
ine'rit is from the beginning of the file; if AL= l, movement is from the current 

·. P?inter·position. If AL = 2 •. movement is from the end of the file. 
•••

1
• '"· ·ucX:DX is too large, the pointer could be moved past the beginning 

or end· of the file. This is not an errcir in itself, but it will cause an error when 
·the riext file read ot write is executed. 

• The following code moves the pointer to the end of the file and 
determines 'the file size: 

MOV .AH,42H 
MOY .BX,HANDLE 
XOR CX,CX 

· X.OR , D~, DXJ 
MOV AL, 2 
INT 21H 

JC MOVE ERROR 

;move file ptr function 
; get . han.dle 

; 0 bytes •. to move 
;relative 'to end of file 
;move pointer to end. 
;DX:AX = file size 
;error IF CF • 1 

Application: Appending Records to a File 

The following program creates a file of names. It prompts the user 
to enter names of up to 20 characters, one name per line. After each name 
is entered, the program appends it to the file and blanks the Input line on 
the screen. The user indic_ates end of data by typing a CRTL-Z. 

Algorithm for Main Program 

Open NAMES file 
Move file pointer to EOF 
Print data prompt 
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~-;. • .. • • .. ' .. : > 

,hHILE a <CTHL-Z~ has._n~t 0 b~cn typed UO 

,Cet.::a 0:name; from· the· 1.1se1 and stcre i:i byte 

• al ray!i' NAMEFLD 
',write ndnie to NAMES file 

ENOWHli..E 
;:>Cl •. :;E:l'.NAMES~file: 
~. . . 
··rhe program· calls procedure GEl'_NAME to R.t!I a name from th1~ user. 

,; Algorithm fOr G~-NA~E Procedure 

, Put blanks· in first 20 bytes, of NAMEFLD (last 

2 byt.es, are <~R.><LF~l 

,REPF.AT· 

Read a ch~racter ., . 

. !F ~·huacter is <CTRL-Z> <lA.~) 

THFN 

.:'·L CF ~nd exi~ 

J::l;::iF.::IF. :c:hai:acLe·1 i.; not <(:";. 

THEN, 

store character in NAMEFLD 
END IF 

~UNTIL character i.s «CR> 

;i;llank input line on screen 

Program'Usting PGM19_2~M. , 
j· T!ILE PGM19_2: A~PEND RECORDS 

1 ·.MODEL. ~SMALL 

l, 

J, .·.S?AL.:K :100 
,4: 

5: .DATA 

:6: PROMPT. ,H.'DB 

7: NAMEFLD DB; 

:8: FILE : ;DB 

·'NAMES:',ODH,OAH,'$' 

20 DU~~1:0~l.,ODH,OAH 

. 'NAMES' , 0 . ;;; 
·9: HPiNDLE DW 

1 0 : OP ENI R!<. '. d.1B 

•ll: WRITE&{R; DB 

:12: 

;ODh, OAH,•' OPEN. ERROR $' 

.OOH, C'AH, 'WRITE ERRuR S' 

13: .CODE 

114: MAIN 
·15: 

r .P.RO(. ~ • .. 
MOV AX, @DATA 

·1.6: MOV OS,AX ;initialize DS 
_17: MOV . ,ES,1'X .<;and f.S 
18: ;open NAMES file 

:9: LEA DX, nLE. ·;get addr of filename 

20: i:~f'I CALL OPEN , ;; open ti le 

2.1: ~JC :OPEll_ERROR ,•;exit if error 

22: MOV. •HANDLE, AX : u save handle 

23: ;move .file pointer to eof;r.,· 

24: MOV ; · BX, R:!iNDLE· , :; get handle 
25: 

'.2.6: 
27: 
'28: 
29: 

CALL . MOVE __ P.TR~~. 

;print'.: promp~·/C' 

<!o!OV V AH, 9 

t'rE.A TIOX, PROMPT 

INT ...... C:lH 

: ;;move pointer 

:1;display string fen 

: :; "NAMES:" · 
:,,::di;;play frompt 
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30: READ_LOOP: 
31; 

32: 
•LEA 

CALL 
33: JC 
34: ; append name 
35: MOV 
36: MOV 
37: 
38; 
39: 
40: 

LEA 

CALL 

JC 
JMP 

41: OPEN ERROR: 
~2: LEA 
43: MOV 
H: IN'!" 
.;s: JMP 

4 6: 1-:Rl TE ERROR: 
< ~: LEA 
.;ii; MOV 

4.,: !J.JT 

50: EXIT: 

51: 
S2: 
53: 
54: 
55: MAiN 
56: 

MOV 

CALL 

MOV 
INT 

ENDP 

;read names 
OI,NAl!EFi.D ;DI pts to name 
GET_NAME ;read name 
EXIT ;CF - 1 if end of data 

to NAMES file. 
BX.HANDLE ;qet handle 
CX,22 ;22 bytes for name, CR, LF 
DX, NAMEFLD i get addr of name 
WRITE ;~rite to file 
WRITE_ERROR ;exit if error 
READ_LOOP / qet next name 

DX,OPENERR 
AH,9 
21H 
EXIT 

DX,WRITERR 
AH,9 
2i.H 

BX, HANDLE 
CLOSE 
AH,4CH 
21H 

;qet error message 

;display error mesaaqe 

;qet error message 

;display error message 

• ; get handle 
;close NAMES file 

;dos exit 

57: GET_NAME PROC NEAR 
58: ; reads and stores a na~·-e 

59: : input: DI s offset acidress of NAMEFLD 
60: ;output: name stored at: NAMEFLD 

61: CLO 
62: 
63: 
64: 
65: 
66: 

;clear 

MOV AH, l 
NAMEFLD 

PUSH DI 
~ov c: .. 20 
MOV AL,' 

67: REP STOSS 
DI 68: i?OP 

69: READ_NAME: 
70: 
71: 
72: 
-; 3: 
.,<: 
75: r•o: 
76: 
77: 
78: 
79: 
80: ; clear 
61: DONE: 
il2: 
83: 
84: 
SS: 

INT 
CMP 

JNE 
STC 
R.ET 

2lH 
AL, lAH 
NO 

CMP AL, OOH 
JE DONE 
STOSS 
JMP READ_NAME 

input line 

MOV 
HOV 
INT 
HOV 

AH,2 
DL,OOH 
.!lH 
OL,' ' 

; read char funct"ion 

save ptr to NAMEt"LD 
;name can have up to 20 chars 

; store blar.ks 
;restore ptr 

1 read a char 
;end of data? 
; no. cont tnue 
;yes, set CF 
;and return 

; end of name? 
;yes, exit 
;no, store in string 
: keep reading 

;print char fen 

;execute CR 
;get blank 
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'86: .HOV;. : ex, 20 . 
87: CLEAR: 

INT , i 21H · : ·88: 
~89: 

90: 
'9.i.i 

92:· 

~LOOP; · CLEAR 
HOV OL, OOH 
INT·~'21fi ·; 

;clear input line 

1 reset cursor to st.srt of line 
RET 

93: GET_NAME ENrJP 
94: 
95: 'OPEN . • PROC NEAR 

96: ;opens file. ., ... 
P7: hnput: OS:DX filename 
98: AL access code 
99: ;output: if successful, AX handle 
100:; if unsuccessful, ·er • 'f,- AX "' error c:ode 
101: HOV AH,3DH ;open file •fen 
102: HOV AL, l ;write only 
103: INT 21H ';open file 

104: • RET 
105: OPEN ENDP 
106: 
107:WRITE PROC NEAR 

108: ;writes a file 
1 G9: ; input: BX n handle 
110:; ex m bytes to write 
111:; DS:DX•dataaddresa 
li2: ;output: AX ~ bytes written. 
113: ; If un!n:ccess ful, CF • 1, AX • error c:ode 
114: MOV AH, 40H ;write file fen 
115: INT 21H ·:write file 
116: RET 

117: WRITE ENDP 
118: 
ll9:CLOSE PROC NEAR 

120: ;closes a file 
121: ;input: BX • handle 
122: ;output: if CF • l, error 
123: MOV AH, 3EH 
124: INT 21H 
125: RET 
126: CLOSE ENDP 
127: 
128:MOVE_PTR PROC 
129: ;moves file poi_nter to eof 
130: ;input: BX • file handle 

code in AX 
;close file fen 
;close file 

131: ;output: DX:AX • point~r position· from beqinnir•<; 
132: MOV AK, 42H 1move ptr function 

.133: XOR ex.ex ;O bytes . 
.'134: 
0

135 :· 
136: 
137: 
'138: MOVE_PTR 
139: 
140: 

XOR 
MOV 
INT 
RET 

END 

ox.ox ;from end 
'.z>.r:; 2•' ;movement 
218'. ; move ptr. 

ENDP 

MAIN 

of file 
code 
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19.3.8 

The program begins by using INT 2lh,' function 3Dh, to_ open the NAMES 
tile. Since this function may:only be used to open a file that already exists, 
a blank file NAMES' must be created before the program is run the first time. 
To crt~alt! such a flle,'eritcr DEBUG and:follow these steps: 

1. Use _tti~ N command to na~e~ t~e file (type N NAMES). 
2. Put 0 in BX and <:X (specify 0 file length). 
3. Write file to disk' (type W). 

After the prog~n has been run,.~~': ~S_.iYPE command may be l&'d to view it. 

Sample exeaition: (The input'nam,es ·are actually entered on the same line, 
but will be·shown·on separate fines.) · 

~~PGM19_2 

!\AMES: ... 
GEORGE WASHINGTON 
JOHN ADAMS 

<CTRl.-Z> 

C>TYPE NAMES 
GEC RC';E i~ASH IN..:TUN 

Jvi:11' ALlAM::; 

':>PGM19_2 . 
NAMES: 

THOMAS JEFFERSON 

HARRY TRUMAN 

SUSAN.a. ANTHONY 
<:::1 R;, · z.·· 

->TYilE NAMES 
G<:CRGE 'ilA.5nlNui0N 

.J.JHi\ ALiAi•J::> 

l'HO<~.As Jn FEi-.5vN 
liARPi 'i,_iJM.ttt• 
s·,,;.o;.N a. Ar.·inuN'i 

Changing a File's 
Attribute 

In ~ection ·19.1.2, we saw that a.file's attribute is specified when it 
is created (function 3Ch). The followiiig fum:tion provides a way to g.:t or 
change the at.trl~ute. 
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Direct Disk 
Operations 

1~4.1 

INT 25h and 
INT 26h. 
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1Ni'21H. Funrtion 43h: 
Get/Change File Attribute 

lnn11t• 

Output: 

AH= 43h 
DS:DX =address of file pathname as ASCIIZ string: 
AL = 0 to get attribute' 

= I to change attribute 
CX = new file· attribute (if AL = I) 
If successful, CX = current file .attribute (If AL = 0) 
Error if CF = l, error code in AX (2,3, or 5) 

This'function may not'be ·used i:o change the volume label or subdirectory 
bits of the file attribute (bi.ts 3 and' 4). 

Example'.19.S .Change a:file's attribute to hidden. 

Solution: 

MOV' AH;43H 
'MOV AL,l'' 

LEA DX,FLNAMF. 
MOV CX,l 
INT 21H ~. 

JC ATTR_ERROR--

;get'/change attribute fen 
;change' attribute option 
;get path 

:~;hidden ·attribute 
;change attribute 
;exit if error. AX • liot'ror code 

Up to now, we have. been talking about operations on files using the 
DOS INT 21h file handle functions. There are two othe{ DOS interrupts for 
reading and writing disk sectors di~ectly.' 

The'DOS interrupts for reading and writing sectors are INT 25h and 
INT 26h, respectively. Before invoking these interrupts, the following regis· 
ters must be initialized: 

AL =; drive number (0 =. drive A, 1 e drive B, etc.) 
DS:BX.= segmcnt:offset of memory buffer 

CX = number of sectors to read or write 
DX = starting logical sector n_umber (see following section) 

Unlike INT 2lh, there is no function number to put in AH. The Interrupt 
routines place the contents of the FLAGS register on the stack, and It stiould 
be popped before the program continues. If CF = l, an error has ciccurred 
~and AX gets the error.code. 



416 79.4 Direct Disk Operations 

Table 193 Logical Sectors 

Surface »'•de S«tors Logical Sectors Information 

0 0 1 0 Boot record 
0 0 2-5 1-4 FAT 

0 0 6-9 5-8 File directory 

-1 0 1-3 9-11 (9h-Bh) File directory 
1 0 4-9 12-17 (Ch-1 lh) Data (as needed) 
0 1-9 18-26 (12h-1Ah) Data (as needed) 

Logical Sector Numbers 

In sc<.1ion 19.1.2, we identified positions on J disk by surface, lr<1ck, 
;ind sc<."tor. DOS assigns a logical sector number lo each sector, starting with 0. 
Logic.al sector numh<'rs proc<.>ed along a tr.ack on surface 0, then continue on 
the s.amc track on surface L lable 19.3 gives the correspondence between sur­
face-track-'>Cctor and logical Sl'CIOr for the first part of a 51/<1-inch floppy disk. 

Reading a Sector 

As an example of a direct disk operation, the following program 
reads the first sector of the directory (logical sector SJ of the disk in drive A. 

Program Listing PGM19_3.ASM 
0: TITLE PGMl 9 _3: READ SECTOR 

l : . MO<JEL SMALL 

2: 
3: .STJ\CK lOCH 

4: 
5: .[Jf..TA 

6: a0n 
7: i~7 !·:.._-,j. M5U · 

8: 

l 0: 

l l : 
l.2: 
l3: 
H: 
15: 
16: 
l 7: 

16: 

2;: 

22: 

:! 3: 

24: EXIT: 
25: 
26: 
21: 
2!1: 
29: 

:~.AIN 

MOV 
MOV 
MOV 
LEA 
MOV 
MO\' 

INT 
PCP 

MCV 

LEJI. 

INT 

MOV 

INT 
ENDP 

ENO 

DB '.>12 LiUP (0) 

OS,AX 

AL, 0 
BX, BUFF 
ex. l 

nx, ~1 
2~H 

:JX 

EXIT 

AH,9 
DX, ERP.CR MSG 

; initialize DS 
;drh•e A 

;P.X has t•tf!'er offset 
: read l zectcr 
;_start. at s~i::c?: 5 
; rcdd sect or-
; r~store s~ask 

; jump .: f ~i-~ err~ .. r 

21H ;display error message 

AH,4CH ;clos exit 
21S 

MAIN 
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-Gl3 (execute 
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To demonstrate the program, a disk containing two files ATXT and 
B.TXT is placed in drive A, and the program is executed inside DEBUG. In 
this environment, the program performs the same function as DEBUG's L 
(load) command. 

3.EXE 

through , line 18 above) 
AX=OlOO 'AX=OOOO CX=OOOO ox~ooos SP-0062 BP=7420 SI=01B6 01~0001 
DS=OF12 ES=OEFB SS=OFOB CS•OF33 IP-0013 NV UP EI PL ZR NA PE NC 
OF33:0013 SA POP DX 

-DO (dump buffer) 
OF12:000'.l 41 20 

0Fl2: 0010 00 00 
Wl2:0020 42 20 
OF12: 0030 00 00 

OF12:0040 00 F6 
OF12: 0050 F6 F6 

OF12: 0060 00 F6 
OF12: 0070 F6 F6 

20 20 20 20 20 2p-s4 5a :;4 20 00 00 00 00 A TXT .... 
00 00 00 00 BO 19-22 16 02 00 BO 00 00 00 ...... .:." 

20 20 20 20 20 20-$4 58 54 20 00 00 00 00 D TXT .... 
00 00 00 00 23 24-BA 16 03 00 80 00 00 uO ...... 1$ ........ 

F6 F6 F6 FG. F6 F6-F6 F6 F6 F6 F6 F6 F6 F6 • VVVVVVVVVVVV''l/VV 

F6 F6 F6 F6 F6 F6-F•, i6 F6 F6 F6 F6 F6 F6 vvvvvvvvvvvvv·.Jvv 

F6 F6 F6 F6 F6 F6-F6 f6 F6 F6 F6 F6 F6 F6 . vvvvvvvvvvvv·o1vv 

F6 F6 F6 F6 F6 t•6-F6 F6 F6 F6 F6 F6 F6 F6 VVVVVVVVVVVVV't/VV 

From the display. we can pick out the relative fields of the directory entries. 
For file A, 

Offset (hex} 

0-7 
8-A 
B 
C-15 

16-17 

18-19 
lA-18 
1(-10 

Information 

filename 
extension 
attribute 
reserved by DOS 
creation time 
creation date 
starting clust~r 
file size 

. Bytes 

41 20 20 20 20 20 20 20 A 
54 58 54 
20 

BD 19 

22 16 
02 
80 

TXT 

The format of the creation hour:mlnute:second is hhhhhmmmmmmsssss. 
for this file, 

19llDh = 0 0 0 1 l 0 0 I 1 0 I l l I 0 I 

= 3:13:29 
The ycar:month:day has form yyyyyyymmmmddddd where the year is rel­
ative to 1980 for tl:tis DOS version. We get 

1622h = 0 0 0 101 1 0 0 0 1 0 0 0 1 0 

= 11:1:2 (actually 91:1:2) 

Examining a File Allocation Table 

As another ex:imple, we can put a disk that contains sever«! files i.ti 

drive A and use the preceding program to display the first part of the 1:AT. 
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-dG 
OF12:0000 FD FF 
0Fl2:0010 cb 00 
0Fl2:0020 of 17 
OF12: 0030 21 20 
OF12:0040 co 02 
0Fl'2: 0050 03 37 
OF12:DD60 41 20 
OF12:DD70 co 04 

which begins at logical sector I. If we change line 17 in the program to read 
MOV DX,l and run the program Inside DEBUG, the result is 

FF FF 4F 00 05 60-00 07 FO FF 09 AO 00 OB 
OD EO 00 OF 00 01-11 20 01 13 40 01 15 60 
80 01 19 AO 01 lB-CO 01 10 EO 01 lF 00 02 
02 23 40 02 25 60-02 27 80 02 29 AO 02 2B 
20 EO 02 2F 00 03-31 20 03 33 40 03 35 60 
80 03 39 AO 03 38-CO 03 ·30 EO 03 3F 00 o~ 

D4 43 40 D4 45 6D-D4 47 SD D4 49 AO D4 48 
40 ED 04 4F DO D5-51 2D DS 53 40 05 55 6D 

The l'AT is hard to read in this form because FAT entries are 12 bits= 3 hex 
digits. To decipher the display, we need to form 3-digit numbers by alter­
nately (1) taking two hex digits from a byte and the rightmost digit from 
the next byte, and (2) taking the remaining (leftmost) digit from that byte 
and the two digits from the next byte. Performing this operation on the 
preceding display, we get 

CLUSTER 0 1 2 3 4 5 6 7 8 9 A 
CONTENTS FFD rFF FFF OD4 ODS OD6 007 FFF DO' OOA DOB 

The first data file begins in cluster 2. The entry there is FFFh, so the file also 
ends in this cluster. The next file begins In cluster 3 and ends in cluster 7. 
The next one starts in cluster 8, and so on. 

Summary 

• The FORMAT program partitions each side of a disk into concen­
tric circular areas called tracks. Each track is further subdivided 
into 512-byte sectors. The number of tracks and sectors depends 
on the kind of disk. A 51/4-inch double-density floppy disk has 40 
tracks pt'r surface and 9 sectors per track. 

In storing data, DOS fills a track on one side, then proceeds to a 
track on the other side. · 

• Data abput files are contained in the file directory. A file entry 
includes name, extension, attribute, time, date, starting cluster, 
and file size. 

A file's attribute byte is assigned when it is opened. The attri­
bute specifies whether a file is read-only, hidden, DOS syste~ 
file, volume, label, subdirectory, or has been modified. The 
usual file attribute Is 20h. 
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• OOS sets aside ~pace for a file in clusters. A cluster is a fixed num­
beYof secto·rs (2 tor a double-density floppy disk). The first data 
iile on the disk begins in cluster Z. 

, 
• The FAT (file allocation table) provides a map of how files are 

stored on the disk. Each FAT entry is 12 byles. A file'> directory 
entry cuntains the first cluster number Nl of the file. !-"AT entry 
NI contains .the cluster number NZ of the next dustt-r of the file 
if there ls one; the last FAT entry for a file contaii:is HTh. 

• The 'oos INT 2lh file handle functions provide a convenient way 
to do file op<:~ations. With then:i, a file is assigned a number 
called a file lla11Jle when it is opened, and a program ma}' identity 
a file by this number. 

• File handle functions are specified by putting a function number 
in AH and invoking INT 2lh. The main funct!ons are 3Ch for 
opening a new file, 3Dh for opening an existing file, 3Eh for clos­
ing a file, 3Fh for reading a file, 40h for writing a file, 4Zh for 
moving the file pointer, and 43h for changing the lilo~ attribute. 

• DOS interrupts INT 25h and INT 26h may be used to read and 
write disk sectors. 

Glossary 

archive bit 

attribute byte 
cluster 

cylinder 

Used to indicate the most recently modi­
fied version of a file 

'. Specifics a file's .:ittribute 
A fixed 11umbe1 of sectors-<kpcmds on 
the kind of disk 

The cullectio11 ot tracks on di~lerent sur­
faces that share a track numt>.~1 

data transfer "area (DTA) Area of memory that DOS ust:s to store 
data from a file 

file allocation table (FAT) Provides a map of file storage on a disk 

file handle A number used by INT 21h functions to 
identify a file 

file pointer Used to locate a position in a file 
hidde:u file A file whust name doesn'l appear in a 

disk's directury ~earch · 

read a file Copy dll or µ..irt of tht fi!c 1l1 mtm0ry 

rewrite a file Replace a file's wnl<"nt~ by ot:1er data 

)e(:tor A 512-byte section of a track 
)"talus byte Byte 0 in a tile directory entry 

track A circular area on a disk 

write a file Copy data from memory to the file 
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ENTRY 
CLUSTER 

Exercises 

1. Verify that 1,228,800 bytes can be stored on a SV4-lnch floppy 
disk that has 80 cylinders and 15 sectors per track. 

2. Suppose FAT entries for a disk are 12 bits = 3 hex digits In length. 
Suppose also that the disk contains three flies: FILEl, FILE2, and 
FILE3, and the FAT begins like this: 

2 3 4 5 6 7 8 9 ABC DEF 
004 009 OOB FFF OOA FFF FFF 000 000 000 000 000 000 000 

a. If Fii.El, flLE2, and FILE3 begin In clusters 2, 3, and 7, respec­
tively, tell which clusters each of the files are in. 

b. When a file is erased, all Its FAT_entries are set to 000. Show the 
contents of the FAT after each the following operations are per­
formed (assume the operations occur In the following order): 
• FILEl is erased. 
• A 1500-byte file FlLE4 is created. 
• FILE2 Is erased. 
• A 500-byte file FILES Is created. 
• A 1500-byte file FILE6 Is created. 

3. Write instructions to do the following operations. Assume that 
the file handle is contained in the word variable HANDLE. 
a. Move the file pointer 100 bytes from the beginning of a file. 
b. Move the file pointer backward 1 byte from the current location. 
c. Put the file pointer location In DX:AX. 

4. From the DEBUG display of the file directory in section 19.4.1, 
determine the creation time, date, and size for file B.TXT. 

Programming Exercises 

5. Write a program that will copy a source text file into a destination 
file, and replace each lowercase letter by a capital letter. Use the DOS 
TYPE command to display the source and destination files. 

6. Writ.e a program that will take two text flies, and display them 
~ide l>r side on the sl:rl·cn. You may suppose th;it the length of 
lines in each file is less than half the screen width. 

7. Modify J>GM19_2.ASM in section 19.3.7 so that it prompts the 
user to enter a name, and determines whether or not the name 
appears in the NAMES file. If so, it outputs Its position in hex. 

8. Modify PGM19_2.ASM in section 19.3.7 ~c that it prompts the user 
to enter a name. If the name Is present In the NAMES file, the pro­
gram makes a copy of the file with the name removed. Use the DOS 
TYPE command to display the original file and the changed file. 



20 

Intel's Advanced 
Microprocess.ors 

Overview 

20.1 
The 80286 
Microprocessor 

We have so far been concentrating on the 8086/8088 processors. In 
this chapter, we take a look at Intel's advanced microprocessors, which have 
become very popular. We'll show that they are co1:npatible with the 8086 
and ca11 execute 8086 progr:ims. In addition, they have features that support 
memory protection and multitasking. 

In section 20.1 we discuss the 80286. The operating system software 
needed to use the l?rotected mode of the 80286 is discussed in s1~ction 20.2. 
In section 20.3 we discuss the 80386 and 80486 processors. 

Like the 8086, the 80286 is also a 16-bit processor. It has .111 the 8086 
registers and it can execute all the 8086 instructions. It was designed to be 
compatible with the 8086 and also support multitasking. This is achieved 
by having two modes oi operation: real address mo'1e (also called real 
mode), and protected virtual address mode (protected mode, for 
short). 

In real address mode, the 80286 behaves like an 8086 and can exe­
cute progra~1s written for the 8086 without modification. In addition to the 
8086 instructions, it can execute some new instructions called the extended 
instruction set. 

In protected mode, the 80286 supports multit;isking and it can ex­
ecute additional instructions needed for this purpose. There ar·~ also addi­
tional registers being used in this mode. 

Let us st;irt with the extended instruction SC't. 

421 
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7.0.1.1 

Extended Instruction Set The extended instruction set contains some 8085 instructions with 
additionill operand types as well as new instructions. They are push and pop. 
multiply, rotate and shift, string 1/0, and high-level instructions. 

PUSH and POP 

The 80286 allows constants to be used in the PUSH instruction. lh" 
format is 

PUSH immediate 

With this instruction, we no longer have to put a constant into a reghter 
and then- push the register. For example, we can use· PUSH 25 instead of 
MOV AX,25 and PUSH AX. 

There are also instructions for pushing and popping all general reg­
isters. The instruction PUSHA (push all) pushes all the general registers in 
the following order: AX, ex, DX, BX, SP, BP, SI, and DI. The instruction 
POPA (pop all) pops all the general registers in the reverse order: DI, SI, BP, 
SP, BX, DX, ex, and AX. These two instructions are useful in procedures 
that need to save and restore all the registers.The formats are 

PUSHA 
POPA 

Multiply 

The 80286 has three new formats for IMUL that permit multipJ., 
operands: 

IMUL regl6,immed 
IMUL regl6,reg16,immed 
IMUL regl6,meml6,immed 

where immcd is a constant, reg16 is a 16-bit register, and mern 16 is a memory 
word. The first format specifies an immediate operand as source and a general 
16-bit register as destination. The second and third formats contain three 
operands:· the first operand is a 16-bit regi;;ter that stores the product, the 
multiplier and multiplicand are found in the second and third operands. 

I !ere aie some examples: 

1. IMUL BX, 20 ;BX and 20 are multipled and the 
;product is In BX 

2. IMUL ~x. BX, 20 ;BX and 20 are multiplied and the 
;result is stored in AX 

3. IMUL AX, WDATA, 20 ;WDATA and 20 are multiplied and 
;the result is stored in AX 

Note that ohly the low 16 bits of the product are stored. The CF and Of art' 
cleared if the product can be stored as a 16-bit signed number; otherwise, 
they are set. The other flags are undefined. 

Shifts and Rotates· 

The 80286 allows multiple shifts and rotates using a byte constant: 
There is no need to use the CL register. For example, we may use SHR AX,4 
instead of the two instructions MOY CL,4 and SHR AX,CL. 
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Real Address Mode 
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String VO 

The 80286 aJ;.;ws multiple bytes for input and output operations. 
The input instructions are INSB (input string byte), and INSW (input string 
word). The instruction INSB (or INSW) transfors a byte (or a word) from the 
port addressed by DX into the memory location addressed by ES:DI. DI is 
then incremented or decremented according to the DF just like other string 
instructions. The REP prefix can be used to input multiple bytes or words. 

The output instructions are OUTSB (output string byte), and 
OUTSW (output string word). The instruction OUTSB (or OUTSW) transfers 
a byte (or a word) from the memory location addressed by ES:Sl to the port 
addressed' by DX .. SI is then incremented or decremented according to the 
.DF just like other string instructions. The REP prefi·x· can again be .o~i:d to 
output multiple bytes or words. 

High-Level Instructions 

The high-level instructions allow block-structured high-levei lan­
guages to check array limits and to cr~;>te memory space O!l the stack for 
local variables. The instructions are BOUND, LEAVE, and ENTER. Because 
they are primarily used by compilers, we shall uot uisrnss them further. 

Address Generation 

One of the major drawbacks of the 8086 !it's in its use ot a 20-bit 
address, which gives a memory space of only I mt•gabylt'. This 1-MH ::nemory 
is further restricted by the structure of the PC, which reserves the addresses 
above 6-!0 KB for video and other puq~oses. The 802S6 uses a 24-bit address, 
so it has a memory address space of z24 or 16 Mll. 

On first glance, it appears that the 80286 may solve a lot of th.· 
memory lim.itation problems. On closer examini'tion, however, ·~·e sec th •t 
program~ running under DOS cannot use the extra mcrn >ry. DOS is dcsigncu 
for the 8086/8088, which corresponds to the real mode of the 80286. In 
01dcr to be compatible with the 8086, the 80286 real address mode generates 
<? physical addn.•ss the same ·way as the 8086; that is, the 16-••it segme1·• 
number is shifted left four bits ai1d then the offset h added. TJ-:.c· 20-bit 
number formed becomes the-low 20 bits of the 24-bit phy,iG1l address; the 
high four bits are cleared. This gives us a limit of J !v!ll. 

1\\.:tu.111}', th.:·80286 t·an access sli>:hlly lll<llc' 111.111 I Ml\ i11 1c·-.I 111..;J,,: 
·10 illustrate, let us use a segment number of FFl':'ll and ;in offset of FFHh. 
the computed address is ffHh + FFFFh =lOFl'Er:h. Jn.till' 8086, the> extra bil 
is dropped, resulting in a physical addres: of OFFEFh. h>r the 80286, bc:cause 
th, re arc 24 adcress lines, the memory location IOFITFh ;s addre~sed. It is 
simple to see that for the FFFFh segment, 1iytcs with ufhd ad-Jressc·s 10h to 
HFfh have 21-bit addresses. '!hus, in :;1e real address m.1ctr., the 80.'.:!>6 can 
access almost 64 KB more than the 8086. This addrt•ss 'l'ace above I Ml.I is 
used by DOS version 5.0 to luad soq1e of its routin<·~. rc>sulting in mor-! 
memory for application programs. Note that 011 many l'Cs tile tw.:nty-f1rst 
address t.>it must be activated by software be for.' the highl'r m1.·mory can hl• 
accessed. 
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20.1.3 

Protected Mode 

Programs Running Under DOS 

Under DOS, the 80286 must operate In real mode. Any program 
written for the 8086 will run on an 80286 machine under DOS. A program 
for the 80286 may also contain extended Instructions. To assemble a program 
with extended Instructions, we must use the .286 assembly directive to avoid 
assembly errors. 

As an example of extended instructions, let's write a procedure to 
output the contents of llX in hex. The algorithm is given in Chapter 7 . 

. 286 
HEX OUT 
;output 

PU SHA 
MOV 

;repeat 
REPEAT: 

MOV 
SHR 
CMP 
JG 
OR 
JMP 

LETTER: 
ADD 

PRINT: 
MOV 
INT 
SHL 

LG Of 
POPA 
RET 

HEX_OUT 

PROC 
contents of • 
CX,4 

loop 4 times 

DL,BH 
DL,4 
OL,9 
LETTER 
OL,30H 
PRINT 

DL,37H 

AH,2 
21H 
BX,4 

REPEAT 

ENDP 

BX in hex 
; save all registers 
;CX counts # of hex digits 

;get the high byte 
;shift out low hex digit 
;see if output digit or letter 
;go to LETTER if > 9 
;<•9, change to ASCII 
;output 

;>9, convert to letter 

; output fun ct ion 
;output hex digit 
; shift next di git into first 
;position 

;restore registerz 

1o fully utilize the power of the 80286, we need to operate it in protected 
mode. When executing in protected mode, the 80286 supports virtual a~ 
dressing, which allows programs to be much bigger than the machine's phys­
ical memory size. Another protected mode feature is the support for 
multitasking. which allows several programs to be running at the same time. 
The 80286 is designed to execute in real mode when it is powerc.'d up. Switching 
it into protected mode is normally the job of the operating system. In section 
20.2 we look at some software that executes in protected mode. 

Virtual Addresses 

Application programs running in protected mode still use segment 
and offset to refer to memory locations. However, the segment number no 
longer corresponds to a specific memory segment. Instead, it is now called 
a segment selector and is 1Ascd by the system to locate a physical segment 
that may be anywhere in memory. Figure 20.1 shows a segment selector. 

To keep track of the physical segments used by each program, ~e 
operating system maintains a set of segment descriptor tables. F.ach ap­
plication program is given a local descriptor table, which contains 
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Index 

RPL (requested privilege level)" desired selector privilege level 
Tl (table indicator) • 0, u1e Global Descriptor Table 

= 1, use Local Descriptor Table 
Index = number that 1elects descriptor in descriptor table 

information about the program's segments. In addition, there is a global 
descriptor table, which contains information on segments that can be 
accessed by all programs. 

The segment selector is used to access a segment descriptor con­
tained in a segment descriptor table. As we see in figure 20.2, a segment 
descripter describes the type and size of the segment, whether ·:he segment 
is present, and a 24·bit base address of the segment In memory. 

The process of translating the segment and offset used in an appli­
cation program into a 24-bit physical address goes like this. Fir:;t, the Tl bit 
in the selector is used to select the descriptor table; Tl = 1 means the local 
descriptor table and Tl = 0 means the global descriptor table. The location 
of the global table is stored in the register GDTR (global descriptor table 
register) while another register, the LDTR (local descriptor table register), 
slores the local table of lhe current running program. Next, a ~egment de­
scriptor specified by the 13-bit index is accessed from the selected table to 
obtain the 24-bit segment address. The offset is then added to the segment 
address to obtain the physical address of the memory location. 

A descriptor table may have up to 64 KB. Since a descrlp·:or is 8 bytes 
each descriptor table can have up to 8 K (2 13) descriptors; each descriptor 
specifics one program segment. A program can choose either ils local table 
or the global table; so it can specify up to 16 K segments. Since the maxlmu!ll 
size of a segment is 64 KB, a program can use up to 16 K x 64 KB equals 230 

15 8 7 0 

+6 RESERVED, MUST BE 0 

pl DPL I s I TYPE I A I BASE,,.,. 
I I I 

+4 . 

+2 BASE,, .• 

0 LIMIT,..., 

P =present 
OPL = descriptor privilege level 
S . " segment descriptor 
TYPE = segment type · 
A =accessed 
BASE "' physical memory address of segment 
LIMIT= size of seqment · 
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20.1.4 
Extended Memory 

or 1 GB (gigabyte) of memory. This memory is known as vlrtual memory, 
because the 80286 only has 16 MB of physical memory. 

The virtual segments of a program are maintained on the disk drive. 
The operating system may load the segments into memory as they are 
needed. It uses the P bit in a descriptor to keep track of whether the corre­
sponding segment has been loaded into memory. If a virtual segment is not 
loaded, the r bit in the corresponding descriptor is cleared. 

An example is a program that is bigger than the physical memory 
size. It must be loaded incrementally. When an instruction addresses a seg­
ment that is not loaded, the operating system is notified by the hardware 
in the form of an interrupt. The operating system then loads the segment 
and restarts the instruction. It may be necessary to save a memory segment 
to disk to ma.ke room for this new segment. 

Tasks 

The basic unit of execution in protected mode is a task, which is 
similar to a program execution in real mope. Each task has its own local 
descriptor table. At any one time, only one task can be executing, but the 
operating system can switch between tasks using an interrupt. Also, one task 
may call another task. 

Because one task cannot access anotti.er task's local descriptor table, 
the memory segments of one task are protected Crom other tasks. To provide 
further protection, each task is assigned a privilege level. There are four 
privilege levels, 0-3. Level 0 is the most prlviledged, and level 3 is the least. 
The operating system operates at level 0, and application programs operate 
at level ::i. There are privileged instructions such as loading descriptor table 
registers that can be executed only by a task at level 0. A task operating at 
one level cannot access data at a1 more privileged level, and it cannot call a 
procedure at a less privileged level. 

As \Ve have seen, the 80286 cannot access all its potent.al memory 
when operating in real mode; this is also true for the 80386 and 80486. The· 
memory above 1 Mil, called extended memory, is normally not avallable 
for DOS application programs. However, a program could access extended 
memory by using INT !Sh. The .two functions for dealing with extended 
memory are 87h and 88h. A program uses function 88h to determine the 
size of the extended memory available, and then uses function 87h to transfer 
data to and from the extended memory. A word of rnution in using INT 15h 
to manipulate extended memory: parts of the extended memory may be 
used by other programs such as VDISK, and the memory may be corrupted 
by your program. A better method is for the program to call an extended­
memory man;iger program for extended-memory access. 

INT 1 Sh Function 87h: 
Move Extended Memory Block 

Input: AH= 87h 
CX = number of words to move 
ES:SI = address of Global Descriptor Table 

Output: AH = 0 if successful · 
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When function 87h is called, the Interrupt routine temporarily switches the 
processor to protected mode. After the data transfer, the processor is switched 
back to real mode. This Is why a Global Descriptor Table ls needed. 

INT 1 Sh Function 88h: 
Get Extended Memory Size 

Input: AH.,; 88h 

Output: AX "' amount of extended memory (in KB) 

Program PGMZO_l copies the data from the array SOURCE to.extended mem­
ory at l lOOOOh and then copies back the information from extended memory 
at 110000h to the array DESTINATION. Since the program does not do any 
1/0, the memory can be examined In DEBUG. 

Program Listing PGM20~1.ASM 
TITLE PGM20_1: COPY EXTENDED MEMORY 
.MODEL SMALL 
. 286 . 
. STACK 
.DATA 
SOURCE DB I HI, THERE! I 

DESTINATION DB 
GDT DS 

SRC ADDR DB 
DST ADDR DB 
.CODE 
MAIN PROC 

MOV AX, @DATA 
MOV DS, AX 
MOV ES,AX 

10 DUP(O) 
.48 DUP (?) ;global table 
?,?,? ;24-bit source address 
? I? I? ;24-bit dest. address 

;put 24-bit source address in SRC_ADDR 
MOV WORD PTR SRC_ADDR, DS ; get segment address 
SHL WORD PTR SRC_ADDR,4 ;shift seg no. 4 places 
MOV AX,DS ;get highest 4 bits 

;put 

SHR 
MOV 
LEA 
ADD 

AH,4 
SRC_ADDR+2,AH 
SI, SOURCE 
WORD PTR SRC_ADDR,SI 

ADC SRC_ADDR+2,0 
24-bit destination address 

MOV DST_ADDR, 0 
MOV DST_ADDR+l,O 
MOV DST_ADDR+2,11H 

; set up registers 
LEA SI,SRC_ADDR 
LEA DX,DST_ADDR 
MOV ex, 5 
LJ::A Dl, GD'f 

; transfer data· 
CALL COPY_EMEM 

;set up source address 
MOV SRC _AD.DR, 0 
MOV SRC_ADDR+l,O 

;source offset address 
; add offset to se·gment 
; take care of carry 

in DST ADDR 
;destination address is 
; 110000h 

; source address 
;destination address 
;number of words 
;qlobal tni::J.€ 

; copy to c:<tended memor; 

;source address is 
; llOOOOh 
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HOV SRC_ADDR+2, llH 
;set up destination address 

HOV WORD PTR DST_ ADOR,·os 
SHL WORD PTR DST_ADDR,4 
HOV AX,DS 
SHR . AH, 4 
HOV DST_ADDR+2,AH 
LEA SI,DESTINATION 
ADD WORD PTR DST_ADDR,SI 
AOC DST_ADDR+2,0 

;set up registers 
LEA SI,SRC_ADDR 
LEA DX,DST_ADDR 
MOV CX,5 
LEA DI,GDT 
CALL COPY_EMEH 
HOV AH,4CH 
INT 21H 

MAIN ENDP 

;get segment address 
;shift seq no. 4 places 
;get highest 4 bits 

; destination offset addr 
;add offset to segment 
; take care of carry 

; source address 
;destination address 
;number of words 
;global table 
;copy to DESTINATION 
;DOS exit 

COPY_EMEH PROC 
;move block to and from extended me~ory 
;input: ES:DI • address of 48 byte buffer to be used as GOT 

ex a number of words to transfer 
SI ~ source address (24 bits) 
DX • destination address (24 bits) 

;initilize global descriptor table by setting up six 
;descriptors 

PUS HA 
;-first descriptor is null, 

HOV AX, 0 

; save registers 
i.e. 8 bytes of 0 

STOSW 
STOSW 
STOSW 
STOSW 

;-second descriptor is set to 0, i.e. 8 bytes of 0 
STOSW 
STOSW 
STOSW 
STOSW 

;-third descriptor is source segment 
• SHL ex, 1 ; convert to number of bytes 

DEC ex 
MOV 
STOSW 
HOV SB 
HOV SB 
MOVSB 
HOV 
STOSB 

AX,CX 

AL,93H 

HOV AX, 0 
STOSW 

;size of segment, in bytes 

;source address, 3 bytes 

;access rights byte 

;-fourth descriptor is destination segment 
MOV AX, ex isize of segment, in bytes 
STOSW 
HOV SI,DX ;destination aadress, 3 bytes 
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MOVSB 
MOVSB 
MOV.SB 

.MOV AL, 93H 
STOSB 
MOV AX,0 

STOSW 

; access rights byte 

;-fifth descriptor is' set to 0 
STOSW 
sTqsw 
STOSW 
STOSW 

;-sixth descriptor is 
STOSW 
STOSW 
STOSW 
STOSW 

;restore registers 
POPA 

;transfer data 
MOV SI,DI 
MOV AH,87}! 

INT 15H 
RET 

COPY EMEM ENDP 

END MAIN 

set to 0 

;ES:SI points to GOT 

The copying Is done by procedure COPY _EMEM. It receives In CX 
the number o(words to transfer, ln SI the location of a 24-bit source address, 
and in DI the location of a 24-blt destination address. The source ;md des­
tination buffers can be anywhere in the 16-MB physical address spa•:e of the 
80286. COPY_EMEM first sets up the global descriptor table which rnntains 
the source and destination buffers as program segments. It then uses INT 
lSh, function 87h to perform the transfer. 

Now that we have some Idea of how the hardware func:tions in 
protected mode, let's turn to the software. At present, there is no standard 
multitasking operating system for the PC. We'll look at Windows 3 and OS/2. 
First, let's consider the process of multitasking. 

Multitasking 

In a single-task environment like DOS, one program controls the 
CPU and releases control only when it chooses to. An exception to this 
scenario is that of an interrupt. In a multitasking environment, howcv.er, 
such as Windows and OS/2, the operating system determines which program 
has control and several programs can be running at the same time. Actually, 
a program is given a small amount of time to exa"Ute, and when the time 
ls up, another program Is allowed to execute. By rotating quick!)' among 
several programs, the computer gives the impression that all the programs 
are executing at the same time. 
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20.2.1 

Windows and 0512 Windows 3 

Windows 3 Is the most popular graphJcal user interface (gui) 
on the PC. Each executing task is shown in a box on the screen, called a 
window. A window may be enlarged to occupy the entire screen or shrunk 
to a single graphics element called an icon. A Windows 3 application pro­
gram may pro\·ide services, identified by a menu, to the u~er. To select an 
item in the menu, a user simply positions a screen pointer with a mouse 
at the item and clicks it. 

Windows 3 can operate in one of three modes: real mode, standard 
mocll!, and 386 e11/1a11ced mode. When Windows 3 runs on an 8086 machine 
or in the real address modes of the advanced processors, It operates in real 
mode. An application program must end before another one can be executM. 

The standard mode of Windows 3 corresponds to the protected mode 
of the 80286. Windows 3 uses the multitasking features of the 80286 to 
support multiple Windows 3 applications. It can also execute a program 
written for DOS. However, to run such a program it must switch the processor 
back to real address mode. In this case, other applications cannot execute in 
the background. Windows 3 requires at least 192 KB of ext~nded memory 
to run in this mode; otherwise it can only run in real mode. 

The 386 enhanced mode of Windows corresponds to the protected 
mode of the 386. In the next section, we'll see that the .186 can execute 
multiple 8086 applications in protected mode. So, in 386 enhanced mode 
Windows 3 can perform multitasking on Windows 3 applications as well as 
DOS applications. A machine must have a 386 or 486 prccessor chip and at 
least l Mil of extended memory to rnn Windows 3 in this mode. 

Windows 3 is not a complete operating system, because it still needs 
DOS for manv file operations. To run Windows 3, we mmt start in DOS arif 
then execute the Windows 3 program. 

0512 

Unlike Windows 3, 05/2 is a complete operating system. OS/2 version 
1 wa~ designed for the protected mode of the 80286. It requires at lt!ast 2 MB 
of extended memory. 05/2 version 2 5upports the 80186 protected mode. 

Threads and Processes 

Under OS/2, it is possible for a program to be doing several things 
simtiltaneously. For example, a program may display one file on the screen 
whilr at the same time it is copying another file to disk. The program itself 
is called a process, and each of the two tasks here is known as a thread. 
A thread is the basic unit of execution in 05/2, and we can see that it cor­
responds to a task supported by the hardware. A thread can create another 
thread by calling a system service routine. 

To summarize, a process consists of one or more' threads together 
with a number of system resources, such as open files and devices. that are 
shared by all the threads in the process. The concept of a process is similar 
to the notion of a program execution in DOS. 
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We only show some simple OS/2 programs as an illustration. More 
complex OS/2 programs and Windows 3 application program:; are beyond 
the scope of this book. 

One noticeable difference between DOS and 05/2 for the programmer 
is that, to do 1/0 and system calls in 05/2, a program must do a far call to a 
system procedure, instead of using the INT instruction. Parameters are to be 
pushed onto the stack before the call is made. This is done to optimize high­
level language interface. The system procedures can be linked to the applica­
tion program by including the appropriate system library. Actually, the library 
only contains a reference to the procedure and not the code. The system 
procedure is contained in a .DLL file and is linked when the program Is loaded. 
Linking modules at loading time is called dynamic linking and is used by OS/2. 
OS/2 function calls arc known as application program interface (APJ). 

"Hello" Program 

·As a first example, we show a program that prints out 'Hello!'. The 
program is shown in program,_listing PGM20_2.ASM. 

Program Listing PGM20_2.ASM . 
TITLE PGM20 2: PRINT HELLO 
. 286 
.MODEL SMALL 
.STACK 

.DATA 
MSG DB 'HELLO!' 
NUM_EYTES OW 0 

.CODE 
EXTRN DOSWRITE:FAR, DOSEXIT:F.".P. 

MAIN PROC ·. 
;put arguments for DosWrite on stack 

;put 

MAIN 

PUSH l ; file handle for screen 
PUSH DS ; address of message: seqment 
PUSH 
PUSH 

OFFSET MSG 
5 

;offset 
;leng~h of message 

PUSH DS ;addr of number of bytes written: seg 
PUSH OFFSET NUM_BYTES ;offset 
CALL DOSWRITE· ;write to screen 

,arguments fer DosExit on stack 
PUSH 
PUSH 
CALL 

ENDP 
END 

l 
0 

DOSEXlT 

MAIN 

;action Cvde l ~ end all threads 
;return code 0 
;exit 

Notice that we do no~ have ~o initialize DS. When a program is loaded, 05/2 
sets DS to the data segment and it does not create a PSP for the program; 
furthermore, OS/2 supports only .EXE files. 

We have u~ed two AP! functions, DosWrite to write to the screen, 
·and Dosf.xit to terminate, the .program. Dos Write writes to a file; the argu­
ments are file handle, addr~ss of buffer, length of buffer, and address of 
bytes-out variable. The file handle for the screen is 1. The bytes-out variable 
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receives the number of bytes written to the file; the value can be used to 
check for errors. The arguments must be pushed on teh stack In the order 
given before calling DOSWrite. 

DosExit can be used to terminate a thread or all threads In a process.­
The arguments are (1) an action code to terminate a thread or all threads, 
and (2) a return code that Is passed back to the system that created the 
process. The arb'Uments for normal exit consist of an action code 1 to end 
all threads and a return code 0. 

In OS/2, th~ called procedures are responsible for clearing the stack 
of arguments sent to them when they return. Thus there are no POP instruc­
tions In our program. 

The API functions DosWrite and DosExit are defined in the library file 
called DOSCALI.S.LIB. As a matter of fact, all API functions used in this book 
are contained there. To link the program, we use the following command: 

LINK PGM20 2,,,DOSCALLS. 

Echo Program 

As a second program, we write a program to echo a string typed at 
the keyboard. 

Program Listing PGM20_3.ASM 
TITLE PGM20_3: ECHO PROGRAM 

.286 

. MODEL SMALL 

.STACK 

.DATA 
BUFFER DB 20 DIJF (0) 

NUM_CHARS DW 0 
NUM_EYTES DW 0 

.CODE 

EXTRN DOSREAD:FAR, DOSWRITE:FAR, DO~~XIT:FAR 

MAIN PROC 

;put arguments for DosRead on stack 
PUSH 0 ; file handle for k

0

eyboard 
PUSH DS ;address of buffer: segment 

P!JSH OFFSET BUFFER ;offset 

PUSH 20 · ;length of buffer 

PUSH DS ;addr of no. of chars read: segpient 

PUSH OFFSET NUM_CHARS ;offset 
CALL DOSREl\D ; read from keyboard 

; put arguments for DosWri te on stack . 

PUSH 1 ; file handle for screen 

PUSH DS ; address of .meszage: segment 
PUSH OFFSET BUFFER; offset . 

PUSH NUM CHARS ;length of message 

PUSH DS ;addr of no. of bytes written: segmen 

PUSH OFFSET NUM_BYTES ;offset 

CAl.L DOSWRITE ;write to screen 

;put arguments for DosExit on stack 

PUSH 1 ; action code l=end all threads 

PUSH 0 ; return code 0 

CALL DOSEXIT 

MAIN ENDP 

END MAIN 

;exit 
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We use the API function DosRead to reatl from the keyboard . 
. DosRcad inputs from .a. file and it takes the arguments: file hanclle, buffer 
addre$s, buffer length, and address of chars_read variable. The file handle 
for the keyboard is 0. DosRcad reads in the keys until the buffer is filled or 
a carriage return is typed. nie number of characters read is returned in the 
chars-read .variable. 

We have treated the screen and keyboard as files for DosWrite and 
. DosRe.ad. There are also Vio (video) .and Kbd (keyboard) API functions that 
can perform more 1/0 operations. 

The preceding two programs are only meant as an introduction to 
OS/2 programming. A full treatment requires a separate book. 

The 80386 and 80486 are both 32-blt microprocessors. As noted in 
Chapter 3, they are very similar, with the exception that the 80486 contains 
the floating-point processor circuits. In the following treatment, we'll con­
centrate on the 80386, because the 80486 can be treated like a fast 80386 
with. a floating-point processor. 

The 80386 has both a real address mode and a protected mode of 
operation, just like the 80286 . 

The 80386 has eight 32-bit general registers: EAX, EBX, E.CX, EDX, 
ESI, EDI, EBP, ESP. Each register contains a 16-bit 8086 counterpart; for ex­
ample, AX is the lower 1.6 bits of EAX. There are six 16-bit segment registers: 
CS, SS, DS, ES, FS, and GS, with DS, ES, FS, and GS being dat.i segment 
regist<ors. The 32-'!Jit EFLAGS register contains in it the 16-bit FLAGS register, 
and the 32-blt EIP register contains the 16-bit IP register. There are .'llso debug 

-. reglste.rs; control'registers, and test registers. In addition, there are registers 
for protected'mode memor}' management and protection. . 

In real address mode, the 80386 can execute all of the 802861eal address 
mode instructions. Hence; to the programmer the 80386 real address mode Is 
similar to the 8086 with extensions to tbe instruction set and registers. 

The 80386 uses 32-blt.addresses; but in real address mode it generates 
an address like an 8086, so it cari address at most 1 MB plus 64 KB just like 
an 80286 . 

The 80386 in protected. mode can execute all 80Z86 instructions. 
,JWhen an 80286,protected mode operating system is used on an 80386, a 
segm·ent descriptor corita1ns a 24-bit base address so only 16 MB of physical 
men1ory are available. Actually, because there Is no wraparound it can access 
~16 MB plus'64.KB. 

· The 80386. in protected mode allows a segment descriptor to contain 
. a 32-bit .address· and the offset can alsO have 32 bits, giving a segment !>ize 
'of.232 or 4 gigabytcs;.this is.also the.size of the physical memory address 
•SP.ace. A .rrogram can still use 21~ segments, so the virtual memciry space is 
. 232 x 2~ .. , which is 246 or 64' terabytes. This should be sufficimt for any 
·application, program in· the foreseeable future. 
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20.3.3 
Programming the 80386 

Page-Oriented Virtual Memory 

It 1s possible to organize the virtual memory Into pages. The oper· 
atlng system can set a bit in a control register to Indicate the use of page 
tables. When th£s happens, the 32-blt address in the segment descriptor ls 
treated a$ a page selector that selects one of the 1-I< page-tables from a page 
directory, and a page number .ln the selected page table and an offset in the 
page. The page directory contains 1 I< tables, and each table contains 1 K 
pages, and each page is 4 KB. Hence, the total address possible ls 232 or the 
entire 4 gigabytes of physical space. Each page is 4 I<B of contiguous addresses 
of physical memory. 

Virtual 8086 Mode 

The 80386 supports execution of one or more 8086 programs in an· 
80386 protected mode environment. The processor executes in virtual 8086 
(V86) mode when the VM (virtual machine) bit In the EFl.AGS register Is set. 
In V86 mode, the segment registers are used In the same fashion as in real 
address mode; that Is, aq address is computed by adding the offset to the 
segment number shifted four bits. This linear address can be mapped to any 
physical address by the use of paging. 

Sixteen-Bit Programming 

The real mode 80386 instructions with only 16-blt operands are es­
sentially 80286 Instructions. There are some new instructions, and they are 
given in Appendix F. 

Thirty-7llv.o-Bit Programming 

In 32-blt programming, both operand size and offset address are 32 
bits. The machine opcodes for 32-bit 386 Instructions are actually the same a.s 
those for 16-bit instructions. It turns out that the 80386 has two mode$ of 
operations, 16-bit mode and 32-bit mode. Since the instruction opcodes for 
32-bit and 16-bit are the same, the operand type must depend on the current 
mode of the 386. Byte-size operands are not affected by the operating mode. 

When the 80386 is Jn protected mode, It can operate in either 16-bit 
or 32-bit mode; the operating mode ls identified in the segment descrlpt~ 
in each task. However, It can only operate in 16-bit mode when it ls In real 
address mode. 

Mixing 16- and 32-Bit Instructions 

It Is possible to mix 16-bit and 32-bit instructions in the same pro­
gram. An operand-size override prefix (66h) can be placed before an instruc­
tion to override the default operand size. In 16-bit mode, the prefix switches 
the operand size to 32 bits, and in 32-bit mode the same prefix switches the 
operand size to 16 bits. orie prefix must be used for each Instruction. 

There is also an address size override prefix (67h), which overrides 
the offset address size. It is used in a similar manner as the operand size 

. prefix, and the)' both can be used in the same instruction. 
We demonstrate by writing a program for DOS (16-bit real mode) 

· using 32-bit operands. The program given in program listing PGM20_ 4.MM 
reads In two unsigned double-precision numbers· and outputs their sum. The 
addition is performed by 32-bit registers. 
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Progralll Listing PGM20_4.ASM 
TITLE PGM20_4: 32-BIT OPERATIONS 
;input two 32-bit numbers and output their sum 
;uses 386 32-bit operations 
.386 
.MODEL SMALL 
S_SEG SEGMENT USE16 STACK 

DB 256 DUP (?) 
S SEG ENDS 

D _ SEG SEGMENT . 
.~IP.~T DD 0 
D_SEG. ENDS 

~EW_LINE MACRO 
line ;go to next 

MOV AH,2 
MOV DL,OAH 
INT 21H 
HOV DL,ODH 
INT ,'21H 
ENDM 

PROMPT MACRO 
; output prompt 

HOV DL,' ?'. 
MOV AH, 2 
INT 21H 
ENDM 

C SEG SEGMENT 
ASSUME 

MAIN PROC 

HOV AX, D_SEG 
-~ov DS,AX._ 

; output prompt 
.PROt-iPT 

; clear EBX 

MOV · EBX, 0
1

• 

; read character 
Ll: HOV AH,1 

INT 21H 
; checlt for CR ,. 

CMP Alt• ODH 
JE NEXT 

. ;plac'e digit I in '•EBX• 
AND AL, OFH­
IMUL ·' EBX,"10 • .; 

"MOVJX 1ECX;"AL . •· 
ADD- EBX, Ecx:·· 

; repeat;, \ 
JMP. Ll 

11 save~·first''numbe'r •, ~': 
.,.EXT:·. HOV . FIRST, EBX: 
; ."\ext'.'·U.ne 

USE16 
1•torei1 first 32-bit number 

USE16 
CS:C_SEG,DS:D_SEG,SS:S_SEG 

; initialize OS 

; CR, get next number 

;convert to binary 
;multiply EBX by 10 
1mo~.~~L to ECX and extend Mith O's 
1add "di'qit 
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NEW•I;INB 
; output pr.,mpt 

PRuMPT 
;clear EBX · 

HOV EBX, 0 
; read character 
L2: MO'/ AH, 1 

INT 21H 
; check for CR 

CMP AL, OOH 
JE SUMUP 

;place digit in EBX 
AND AL, OFH 
IHUL EBX,10 
HOVZX ECX,AL 
ADD EBX,ECX 

;repeat 
JMP L2 

;sum up 
SUMUP:ADD EBX,FIRST 
;convert to decimal 

MOV EAX,EBX 
MOV EBX,10 
MOV cx,o 

L3: MOV EDX,O 
DIV EBX 
PUSH ox 
INC ex 
CMP EAX,O 
JG L3 

;next line 
NEW LINE 
MOV 

;output 
L4: POP. 

MAIN 

C SEG 

OR 
INT 
LOOP 

HOV 
INT 
ENDP 
ENDS 
END 

AH,2 

ox 
OL,30H 
21H 
L4 

AH,4CH 
21H 

MAIN _ 

;CR, sum up 

;convert to binary 
;multiply EBX by 10 
;move AL to EBX and extend with "o• s 
;add digit 

;EBX has sum 

;move sum t~ EAX 
;divisor is io· 
;initialize counter 

;divide EBX into EDX:EAX 
;OX is reminder, EAX is quotient 
; increment count 
;done? 
;no, repeat 

; output function 

;get digit 
;convert to ASCII 
;output 

;return 
;to DOS 

We have used an 80386 instruction MOVZX which moves a source 
operand Into a bigger size register and zero extends teh leading bits. To 
assemble 386 Instructions, we need to use the .386 directive. However, when 
the .386 directive ls used, the assembler assumes that the operating mode ls 
32-blt mode. When we are running programs under the real address mode 
of the 386, we have to specify a default mode of 16 bits. This can only be 
done with the full segment directives. A segment can be specified with a use 
type. For example, to specify a t~bit we type we wrote D_SEG SEGMENT 
USE.16 in the program. The use type, ·uSE16 specifies both operand size tnd 
offset address size are 16 bits; and all our segments have the use type USE16. 
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Summary· 

• The 80286 can operate in either real address mode or protected mode. 

• In real addtess mode; t~e 80l86 operates like an 8086. 

• The 80286 uses 24-bit addresses, allowing it a total memory space 
of 16 MB. However, in real address mode, it can only access 1 MB. 

• In protected mode,·the 80286 can use 1 gigabytes (GB) of virtual 
mi:mory. 

•· Windows 3 has three modes of operations: real mode, standard 
mode, and 386 enhanced mode. . . . 

• OS/2 version 1 supports th~ 80286 protected mode !ind ve1sion 2 
supports the 80386 protected mode. 

• System services OS/2 ;:ire coded as far calls. 

• The 80486 is like an 80386 with a floating-point unit. 

•. The 80386/80486 operates as an 80286 in real address mode. 

• In protected mode, the 80386/80486 supports paging and a 
virtual 8086 mode. It can also execute all 80286 instructions. 

Gloss~ry 

dynamic.linking 

cxtended_instructfon.set 

·. 
extended memory 

global descriptor table 

graphical user interface, 
gui 
icon 

local descriptor table 
register (LDTR) 

menu 

mouse 

multitasking 

. privilege level 

process 

protected (address) mode 

Linking modules at the time of loading 

Set of new instructions first used by the 
80186 and 80188 processors, can a.so be 
executed by the 80286, 80386, and 80486 
processors 

Memory above 1 MB 

A segment descriptor table that contains 
information about the segments that can 
be accessed by all tasks 
A user interface that uses pointers to com­
m<inds, and special graphics symbols 
A graphical element representing a com-
mand or program . 

A register that holds the address of a local 
descriptor table 
A set of command selections displayed in 
a window 

A pointing device used to control cursor 
position 011 a display screen 
A technique that allows more than one 
progr~m (task) to run concurrently 

A measure of a program's ability to exe· 
""cute· special commamls 

A program execution 

A mode of operation by the advanced pro­
cessors that protects the memory w;ed by 



one program from other concurrent pro-
grams · 

~ (address) moclt; The mode of operation In which an ad­
dress contained In an Instruction corre­
sponds to a physical address 

sesment descriptor An entry ln a descriptor table that de· 
scribes a program segment 

segment descriptor table A table that contains segment descriptors, 
there are two kinds of segment descriptor 
tables, global descriptor table and local 
~scriptor table · 

segment selector fhe value of a segment register when the . 
processor Is running under protected mode, 
It Identifies a segment in a descriptor table 

task A program unit with Its own segments 
thread A subtask of a process 

virtual addre'ss An addres5 contained In an instruction 
that does : .. >t correspond to any particu­
lar physical address 

virtual memory Disk memory used by the operating sys­
tem to store segments of a task that are 
not needed currently 

window A rectangular area on the screen 

New Instructions 

BOUND 
ENTER 
INS 
INSB 

New Pseudo-ops 

.286 

Exercises 

INSW 
LEAVE 
MOVZX 
OUTS . 

.386 .... 

OUTSB 
OUT SW 
POPA 
PUS HA 

1. Write a procedure for OS/2 tl)at will input a string, and then 
echoes the string ten times on 10 different lines. 

2. Use 80386 instructions to muitiply two 32-bit numbers. 
3. Use the 386 instrut.tions given in Appendix F to write a proc~dure 

that outputs the position of the leftmost set bit in th~ register BX. 

Programming Exercises 

4. Modify program PGM20_4.ASM so that it will output the sum of 
two signed double-precision numbers. 



Part Three 

Appendices 



The IBM PC uses an extended set of ASCII characters for it~ screen 
display. ·Table A.1: shows the ASCll characters. The control cha~aclcrs BS 
(backspace), HT (tab), CR (carriage return), ESC (escape), SP (space) corre­
spond to the keys Backspace, Tab, Enter, E.sc, and space bar; LF Oine feed) 

·advances the cursor to the next line, BEL ·(bell) sounds the beep·~r. and FF 
(form feed) advances ·the printer to the next page. 

- Table A.2 shows the extended set of 256 display characters. When a 
display· code is written to the active page of the display memory, the corre­
sponding character.shows up on the screen. To write to the displaJ' memory, 
-we can use·lNf 10h functions 9h, OAh, Of.h; and 13h. The functions 9h and 
OAh write all values to the display memory. The functions OEh and_ 13h 
recognize the control character codes 07h (bell), 08h (backspace), OAh (line 
feed), and ODh (carriage return) and perform the control functions instead 
of wr!tlng these codes to th_e display memory. 
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Table A.1 
ASCII Code 

DEC 

0 

1 

2 

3· 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24· 

25 

26 

27 

28 

29 

30 

31 

! 
I 

I 

HEX 

00 

01 

02 

03 

04 

05 

06 

07 

08 

09 

QA 

OB 

oc 
OD 

OE 

·OF 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

IA 

lB 

1( 

10 

1E 

lF 

CHAR DEC HEX 

32 20 

33 21 

34 22 

3s 23 
,____ 

36 24 

37 25 

38 26 

(BEL) 39 27 

(BS) 40 28 

(HD 41 29 

(LF) 42 2A 

43 2B 

(FF) 44 2C 

(CR) 45 20 

46 2E 

47 2F 

48 30 

49 31 

50 32 

51 33 

52 34 

53 35 

54 36 

55. 37 

56 38 

57 39 

58 3A 

(ESC) 59 3B 

60 3C 

61 30 

62 3E 

63 3F 

CHAR DEC HEX 

(SP) 64 40 0 

I 65 41 A 
. . 66 42 B 

# 67 .· 43 ·C 

s 68 44 0 

% 69 45 E 

& 70 46 F 

71 47 G 

( 72 48 H 

) 73 49 

* 74 4A 

+ 75 48 K 

. 76 4C L 

- 77 40 M 

78 4E N 

I 79 4F 0 

0 80 so p 

1 81 51 Q 

2 82 52 R 

3 83 53 s 
4 84 54 T 

5 85 55 u 
--

6 86 56 v 

7 87 57 w 
8 88 58 x 
9 89 59 y 

I 90 SA z 
. 91 SB 

< 92 SC \ 

= 93 SD 

> 94 SE /\ 

? 9S SF 

Blank spaces indicate control characters that are not used on the IBM PC. 

DEC HEX CHAR 

96 60 

97 61 . a 

g~ . 62 b 
.. 

99 63 . c 

100. 64 d 

101 65 e 

102 66 

103 67 g 

104 68 h 

105 69 

106 6A j 

107 6B k 

108 6C 

109 60 m 

110 6E n 

111 6F 0 

112 70 p 

113 71 q 

114 72 

115 73 s 

116 74 

117 75 u 

118 76 v 

119 77 w 

120 78 x 

121 79 y 

122 7A z 

G23 7B 

I 124 7C 

125 70 

126 7E 

127 7F 
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""" Extended. 
Character set .. 

DEC 

000 

. OOL 

'002 

003 

004 . 
·005 

006 

007 

008 
-

009 --
010 

011 

012 

013 

014 

015 
---

016' 
-

-017 

018 

019· 

.'020 

: 
021 

-
022-

--
023 

024' 

025 

HEX 

.00 

01 . 

02 

03· 

04 • 
05 

06 

07 

08 

-
09 

OA 

oe._ 

oc. 

OD 

OE. 

OF. 
-

. 10: --... 
11 -

'. 12· 

13 -
14 

·~-. 

15 

··16 

r11· 

18 

19 

CHAR DEC 

ILANlt 026 

o. 027 

•• 028 

•· 029 

• 030· 

... ·031 

• 032 

• 033 

a .034 . 
0 035 

- . • 036 

d 037 

9 03 .. 

ji. 039 

~ 040 

~- 041 

.... _ 
o42 - - ~ . -

~ 043 -

.L 044 - . 

. ' 
}_I .. 045 . 

. en 046 

§ 047 . 

.J --- 048 

l 049. 

y- ·oso 

! 051 

HEX CHAR 

·1A 
: -

18 --
1C. ~ 

1D ..... 
1E . . 

·1f ... 
20 (SPACE) 

(!or) 

21 I 

22 . 
23 # 

- -
24 s 
- - - . 
25 °lo 

26 &· 

27 

28 '<-" 
29 i) 

y_· .. 
-- ~-· . 

28 + - - -.. 
I 2C ---- ·-. 

20 -----
~~-~ . . . 
2E .· . -

. 2F. I 

30 0 

I 

31 - 1- --

32 2 

33 3 
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DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR 

052 34 4 078 4E N t04 .68 h 
·-

053 _35, ' 5 ' 079 4F 0 105 69 i -- 1---

054 36 6 080 . so p 106 6A j 

055. 37 7 081 51 Q 107 68 k 

-
056 38 . 8 082 52 R 108 6C I 

057. 39 ·9 083 53 s 109 6D m 

058 3A : - 084 54 T 110 6E n 

059 38 ; -- 085 55 u 111 6F 0 . 
060 3C < 086 56 v 112 70 p 

-061 3D .. 087 57 w 113 71 q 
-. 
- --

062 3E > 088 58 x 114 72 r 

-
063 3F 7 089 59 y 115 73 s 

064 40 0 090 SA z 116 74 t 

06S 41 A 091 . 58 ( 117 7S u 

- - -
066 42 B 092 SC \ 118 76 v 

067 43 c 093 so I 119 77 w 

068 .. 44 0 094 'SE " 120 78 x 

069 45 E 095 'SF - 121 79 y 
- . -

070 46 F 096 • 60 122 7A z 
~ -. 

071 . 47 G 097 61 a 123 78 { - . - --, 
I 

072 --~· H 098 62 b 124 7C I 

073 49 I 099 -63 c 12S 70 I 
_, 

074 4A J .. 100 64 d 126 7E -

075 411 K -101- -65 ll 127 7F !:>,. 

076 4C L 102 66 f 128 80 ~ 

077 40 M 103 67 g 129 81 (i 

L__ 
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Table A.2. 
IBM Extended 
Character Set 

DEC HEX CHAR 

130 82 4! 

131 83 

132 84 a 

133 8S a· 

134 86 

135 87 

136 88 

137 89 

13B BA 

139 BB 

140 BC 

. 141 BO 

142 BE 

143 BF A 

144 90 

145 91 lie 

146 92 A: 

147 93 6 

14B 94 0 

149 95 6 

150 96 u 

151 97 u 

152 !!B y 

153 99 0 

154 9A u 

155 9B 

SP m!'!ans space. 

DEC 

1S6 

1S7 

1S8. 

1S9 

160 

161 

162 

163 

164 

165 

166 

167 

168 

169 

170 

171 

172 

173 

174 

175 

176 

177 

178 

179 

1BO 

181 

HEX CHM DEC HEX 

9C: £ 182 86 

90 T 183 B7 

9E Pt 184 88 

9F f 1BS B9 

AO ~ 186 BA 

A1 I 187 88 

A2 6 188 BC 

A3 u 189 BC> 

A4 II 190 BE 

AS· ~ .191' BF 

A6 ii 192 . co 

A7 0 193 Cl 

A8 l 194 C2 

A9 .- 19S C3 

AA ~ 196. C4 

AB 1/2 197 cs 

AC 1/4 198 C6 

AD I 199 C7' 

AE . 200 CB 

AF . 201 C9 

BO 202 CA 

81 i! 203 CB 

82 El 204 cc 

83 I 205. co 

84 -i 206 CE 

8S· =l 207 CF 

!CHAR oec HEX CHAR O£C !i£X' 'CHAii 
-

-ll 208~ oo. ...L . i»· a-. a1 

II 209' '01 T 235 Ell:; l5 

=t 210.. 02. T 236 EC. -
91 211· 03 IL 237 ED 0 

II 212: 04 b 238 EE E 

. '11 2.1J. 05 F 239 EF' l"'I 

di. 214: 06 Ir 240 FO • 

.JI 215 07 * 241 Ff :: 

d 216 08 + 242 F2 "' 
..., 217 09 _J 243 f~ s 

L 218'· DA I 244 F4 r 

..l.. 219 08 0 245 FS J 

T 220 DC Cl 
246 F6 + 

f- 221 DD a 247 F7 . 
- 222 'OE a 248 F8 . 

223 OF 
c:::I 249 F9 • + 

~ 224 EO Q 250 FA •· 

II- ;µs El II 2S1 FB .[ 

I!.: 226 E2 r 252 FC n 

IF 227 El 1t 253 FD J 

JL 22B E4 l: 254 FE a 
li 229 ES a 2S5 FF (S,Aa: 

(5') 

If = 230 E6 µ 

- 231 E7 t 

.JL 232 EB- • ,r 

..!.. 233 E9 -& 



B 

In this appendix, we give some common DOS commands. 
Note: in thl• following, two special .characters can be u!.ed within a 

tile name or extension. The? character used in any position l11dlcates that 
any character can occupy that position In the file name or extension; The * 
character used in any position Indicates that any character can· occupy that 
position and all remai11/ng positions In _the file name or extenslo:ri. 

·BACKUP 

Creates a backili;> of disk files .. 

Example: BACKUP C: A: 

Coples the files in the curre~t C directory to a backup In disk A. 

CLS (Oear Screen) 

· Clears the display· screen and moves the cursor to the upper left comer . 
. . . 
Example: CLS 

COPY 

Coples files from one disk and directory to another. 

Example 1: COP'{ A:FILEl.TxT D: 

Copies the file FJLEl.TXT from drive A to drive B. The current drive need 
not be specified in the command. It i~ also possible to give the copy a dif-
ferc~t name. · · 

Exaniple2: COPY FILE1.TXT"B:FILE2.TXT 

Copies FILE I .TXT from the disk In the cur:crit drive to FILE2.TXT on the 
·disk 1n drive B. 

E.JEample 3: . CO?'i A: • . • B: 

Cooles all files from drive A to drive lJ ... 

445 
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DATE 

Changes the date known to the system. The date is recorded as a directory 
entry on .:my files you create. The format is mm-dd-yy. 

Example: DATE 07-14-90 

DIR (Directory) 

Lists the directory entric:. 

Example 1: DIR 

Lists all directory entries in the current drive. Each entry has a file name, 
size, and date. The entries in a different directory or different drive can also 
be listed by specifying the name of the drive or directory. 

Example 2: DIR C* .• 

Lists all directory entri;~ of files that begin with C and have any extension. 

ERASE (or DEL) 

Erases a file." . 

Example 1: ERASE FILEl. TXT 

Erases the fil_e called FILEl.TXT from the current drive and directory. 

Example 2:. ERASE •• OBJ 

Erases all files with an .OBJ extension in the current drive. 

FORMAT 

Initializes a disk. 

Example: FORMAT A: 

Formats the disk in drive A. Caution: formatting a disk destroys any previous 
contents of the disk. A new disk must be formatted before it can be used. . . 
PRINT 

Prints files on the printer. 

Example: PRINT A:MYFILE.TXT 

Prints the file called MYFILE.TXT in drive A . . 
RENAME (or REN) 

Changes the name of a file. 

Example: REN FILEl.TXT MYFILE.TXT 

Renames the file FILEl.TXT to MYFILE.TXT. 

RESTORE 

Restores flies from a backup disk. 

Example: RESTORE A: c: 

Copies the backup files trom disk A to disk C. 
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Tree-Structured 
Directories 
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TIME 

Changes the time known to the system. The time is recorded as a directory 
entry on any files you create. The format Is hh:mm:ss. The range· of hours is 
~n . . 
Example: TIME 16:47:00 

TYPE -

Displays the contents of a file ~n the display screen . 

. ~xampl~: TYPE MY'FILE. TXT 

Displays the file called MYFILE. TXT. 

DOS versions 2.1 and later provide the capability of placing related 
disk files in their own directories. 

When a disk is formatted, a single directory called the root directory 
is created. It can hold up to 112 files ,for a double-sided, double-density 
51,14 inch floppy disk. 

The root directory can contain the names of other directories called 
subdirectories. These subdirectories are treated just like ordinary files; they have 
names of 1-8 characters and an optional one- to three-character extension. 

To illustrate the following commands, we'll use the following tree­
structurcd directory as an example. 

ROOT 

/ 
PROGS 

/ "' PROl PR02 
// 

PIA.EXE 

Here, PROGS is a subdirectory of the root directory. PRO! and PR02 are 
subdirectories of PROGS. PIA.EXE is a file in PRO!. 

A path to a file consists of a sequence of subdirectory name:; separated 
by backslashes (\), and ending with the file name. If the sequence begins 
with a \:then the path begins at the ROOT DIRECTORY If not, it begins 
with the current directory. 

CHOIR (or CD) 

-Changes the current direl.'tory. 

Example 1: CIT\ 

Makes the root directory the current directory of the logged drive. 

Example 2: CD\PROGS 

Makes PROGS the current directory of the logged drive. 

Example 3: CD PROl 

-After example 2, makes PRO! the current directory. 

Example 4: CD\PROl 
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DOS would reply "invalid directory". because PROl is not a subdirectory of 
the rocit directory. 

Example 5: CD 

This command causes the path to the current directory to be display so after 
example 3, if C is the logged drive, DOS would respond with 

· C:\PROGS\PROl. . 

MKDIR (or MD) 

Creates a subdirectory on the specified disk. 
As examples, we'll create the preceding tree structure on the disk in drive C: 

C>CD\ 
C>MD\PRQGS 
C>MD\PROGS\PROl 
C>MD\PROGS\PR02 

RMDIR (or RD) 

Removes a subdirectory from a disk. The subdirectory must be empty. The 
last directory in a specified path Is the one removed. 
As examples, we'll erase file Pl A.EXE.and rem"ove all the preceding directories 
.from the .disk In drive C: · 

C>ERASE\PROGS\PROl\PlA.EXE 
C>RM\PROGS\PROl 
C>RM\PROGS\PR02 
C>RM\PROGS 



Appendix 

BIOS and DOS· . -

Interrupts 

C.1 
Introduction 

C.2 
~/OS Interrupts 

In this appendix, :we show some of the common lllOS ;ind DO\ 
intcrrupt calls. We begin witlt'intcrrupt lOh; imi:rrupts 0 to fh .lr<' not nor­
mally used by application progr;ims, their names an~ given in Table C. l. 

Interrupt 10: Video 

Function Oh: 
Select Display Mode 
Selects video display mode. 
Input: . AH= Oh· ~ 

. AL = video mode 
Output: none 

FunctiOn 1h: 
Change Cursor Size 
Selects the start and ending lines for the cursor. 
Input: AH= lh -

CH (bits 0-4) = starting line for cursor 
CL: (bits 0-4) = ending line for cursor 

. Output: rionc 
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Table C.1 Interrupts O to OFh 

Interrupt Type Usage 

Oh Divide by z~ro 
1h Single step 

2h NMI 

3h Breakpoint 

4h Overflow 

Sh PrintScreen 

6h Reser 1ed 

7h Reserv_d 

8h Timer tick 

9h Ke>•board 

O/\h Reserved 

OOh Serial communicauons (COM2) 

OCh Serial communicat.ons (COM 1) 

ODh Fixed disk 

OEh Floppy disk 

or-h Parallel printer 

Function 2h: 
Move Cursor 
Positions the cursor. 
Input: AH = 2h 

BH =page 
DH= row 
DL =column 

Output: none 

Function lh: 
Get Cursor Position and Size 
Obtains the current position an.d size of the cursor. 
:nput: AH = 3h 

Output: 
llli = p;igc 
CH = starting line for cursor 
CL = ending line for cursor 
DH= row 
DL =column 

Function Sh: 
Select Active Display Page 
Input: AH= Sh 

AL =page 
DH= row 
DL =column 

0utput: none 

Function 6h: 
. ; 

Scroll Window Up 
. '.Scrolls the entire screen 0! a window up by a specified number of lines. 

Input: AH = 6h 
AL = number of lines tQ scroll 

(if zero, enti~e window is blanked) 
BH = attribute for ulanked lines 
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CH,CL = row, column of upper left comer of windows 
Dl~,DL ,;, ~ow, column of lower right comer of windows 
none • 

Function 7h: 
Saoll Window Down 
Scrolls the entire screen or a window down by a specified number 
of lines 
Input: 

Output: 

AH= 7h 
AL = number of lines to scroll 

. (if zero,. entire window is blanked) 
BH = attribute for blanked lines 

. CH,CL = row, column of upper left corner of window 
DH,DL = row; column of lower right corner of window 
none 

Function Sh: 
Read Character and Attribute at Cursor 
Obtains the ASCII character and Its attribute at the cursor position. 
Input: AH ;,, Sh . - ' : 

· · BH =page 
Output: AH = attribute 

0

AL = character 

Function 9h: 
' ' Write Character and Attribute at Cursor 

Writes an ASCII character and Its attribute at the cursor position. 
·-Input: AH= 9h· '. ' 

AL = character 
sH c: page· . 
BL··,;,, attribute (text mode) or color (graphics mode) 
ex ;; count of character) to write 

Output: none 

Function OAh: 
Write Character at Cursor 
Writes an ASCII character al the cursor po)ition. The character re­

- ceives the attribute of the previous character at that position. 
Input:, AH = OAh . 

AL =.character 
1311 = page 

Output:· 
ex = count of characters to write 
none 

Functi'on OBh: 
Set Palette, ·Bac:kground, or Border 
Selects a palette, background color, or border color. 
Input: To ~elect the background color and borJ• r coior 

·. AH = OBh . 

Output:· 

• ·. "BH ·.: 0: 

· BL · =' color 
0

To select palette (320 x 200 four-color moue) 
AH.: OBh 
BH.; 1 
BL .. palette 

none 
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Function och: 
Write Graphics Pixel 
Inpu;: AH = OCh 

Output: 

AL = :>iX.t-1 value 
!3H = page· 
ex;,,_ column 
DX= row 
none 

Function ODh: 
Read Graphics Pixel 
Obtains a pixel value. 
Input: AH = ODh 

Output: 

BH =page 
ex= column 
DX= row 
AL = pixel value 

Function OEh: 
Write Character in Teletype Mode 
Writes an ASCII character at the cursor position, then increments 
cursor position. 
Input: AH = OEh 

AL = character 
BH =page 
BL = color (graphics mode) 

Output: n<?ne 
Nute: the altribute of the character cannot be specified. 

Function Ofh: 
Get Video Mode 
Ol>t;iins current display mode. 
Inpul: •. t\1-l = OFh 
Output: AH = number of.character columns 

AL =,display mode 
BH ~ aclivc display p;ige 

Function 10h, Subfunction 10h: 
Set Color Register 
Sets individual VGA color register. 
Input: AH = lOh 

Output: 

AL = lOh 
BX = color register 
CH = green value 
Cl. ~ blue value 
DH = red value 
non~ 

Function 10h, Subfunction 12h: 
Set Olock of·Color Registers 
Sets ;i group uf VGA color registers. 
Input: .-\Ii = IOh 

Output: 

:\L = 12h 
UX = firstcolor register 
CX = number of color registers 
ES:DX = scgment:offset of color table 
none 
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Note: the table consists of a group of three-byte entries correspond­
ing to red, green, and blue values for each color register. 

Function 10h. Subfunction 15h: 
Get Color Register 
Obtains the red, green, and blue values of a VGA color register. 
Input: AH = IOh • - .. 

Output: 
. '..:. 

AL =!Sh 
BX = color register 
CH ~ green value 
CL = blue value 
DH = red value 

Function 10h, Subfunction 17h: 
Get Block of Color Registers 
Obtains the red, green, and blue values of a group of VGA color registers. 
Input: AH = IOh· · 

AL = I7h' 
BX = first color register 
CX = number of color registers 
ES:DX ;; segment:offset of buffer to receivl· color list 

Output:' ES:DX = segment:offset of buffer 
Note: the color list consists of a group of three-byte entries corre­
sponding to red, green, and blue value~ for each color register. 

Interrupt 11h: Get Equipment Configuration 
L .. ! 

Obtains the equipment list code word. 
Input: . none' 

. Output: AX = equipment list code word 
(bits 14-15 =number of printers installed, 
13 =internal modern, 
12 = game adapter, 
9-11 = number of serial ports, 
8 is reserved, . 
6-7 = riumber of floppy disk drives, 
4-5 =initial video mode, 
2-3 = systein' board RAM size, original PC 
2 used by l'S/2: 
I = math copr•xcs~or: 
O = florpy dis" installed) 

Interrupt 12h: Get· Conventional Memory Size 

Return:; the· amount uf conventional memory. 
Input: none 
Output: AX =memory size (in KB) 

lnterrupt.13h: Disk VO 

Function 2h: 
Read Sector· 
Reads one or more sectors. 
Input: AH :; Zh . 

'1 = number of~cctors 
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Output: 

CH= cylimh'r 
CL =sector 
DH= head 
DL = drive (Q.:.7Fh = floppy disk, 80h-FFh = fixed disk} . 
ES:BX = segment:offset of buffer 

If function successful 
CF =clear 
AH = ~) 
AL = number of sectors transferred 

If function unsuccessful 
CF =set 
AH = "rror status 

Function 3h: 
Write Sector 
Writes one or more s<•:tors. 
Input: AH = 3h 

Output: 

AL = number of sectors 
BX = firsrcolor register 
CH = cyt.1der 
CL =sector 
DH= head 
DL = drin (0-7Fh = floppy disk, 80h-FFh = fixed cfok) 
ES:IlX = sL-gment:offset of buffer 
If function successful 

CF =clear 
AH= 0 
AL = number of sectors transferred 

If function unsuccessful 
CF = St·t 
Al I = e: ror status 

Interrupt 15h; Cassette VO and Advanced Features 
for AT, PS/2 

Function 87h: 
Move Extended Mem:>ry ~lock 
Transfers data between' orwcntional memory ;ind ext c.:ndc.:d memory. 
Input: AH = 87h 

Output: 

CX = num,1rr Of Words tO 1110\'C 

ES:Sl = S('1;mcnt:offset of Global l),·.,criplor Table 
lf function succc:s~ful 

CF =char 
All= 0 
AL = numb(•r of sectors transfcm.:d 

If function unsuccessful 
CF = set 
AH = error statu~ 

Function 88h: 
Get Extended Memory Size 
Obtains amount of extended memon 
Input: AH = 88h 
Output: AX = extended memory size (in KB) 
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Interrupt 16h: Keyboard 

Function Oh: ,• . _ . . 
Read Character fro'm ·Keyboard 
Input: AH = Oh 
Output: AH.= keyboartl.~i::an code 

AL:= ASCII d1aracter 
r 

Function 2h: 
Get Keyboard Flags , 
Obtains key flags that describe the status of the function :,eys. 
Input: AH = 2h _ 
Output: AL.= Hags : ·.· ·: . .., . .. . . ~ 

Bit If Set '• 

.7 .. Insert or. 
6 Caps Lock on ,. 
5. Nurn Lock on 
4 · Scroll Lock on 
3 Alt key is down 
2 Ctrl key 1s- down 
1 left shift key is down 
O " right shift key is down 

J. 

Function 10h: l 
Read Character from Enhanced Keyboard 
Input: AH = Oh 
Output: AH = keyboard scan code 

AL = ASCII ch;iractcr 
Note: this function can be used to return ~cJn codes for ccmtrol 
keys such as Fl 1 a~d Fl 2. 

fnterrupt 1 lh: Printer 

F1Jnction Oh: 
Write Character to Printer 
Input: AH = 0 

. AL = character 
DX = printer number 

Output: AH = status 

Bit If Set 

7 printer no'. bLJsy 
6 pr;nter acl. nnwlC?dge 
5 · out of pap1~r 
4 · printer S(-i~ced 
3' VO .error 
2 unused 
1 unused 
0 printer timed out __ 



456 Appendix C BIOS and DOS Interrupts 

C.3 
DOS Interrupts Interrupt 21h 

Function Oh: 
Program Terminate 
Terminates the execution of a program. 
Input: AH = Oh 

CS =segment of PSP 
Output: none 

Function 1h: 
Keyboard Input 
Waits for a character to be read at the standard input device (un· 
less one is ready), then echoes the character to the standard out· 
put device and rl'lurns the ASCII code in AL. 
Input: AH = 01 h 
Output: AL = i.:haracter from the standard input device 

Functi0n Zh: 
Display Output 
Outputs the character in DL to the standard output device. 
Input: AH = 02h 

DL = character 
Output: none 

Function Sh: 
Printer Output 
Outputs the character ih DL to the standard printer device. 
Input: AH = OSh 

DL = character 
Output: none 

Function 09h: 
Print String 
Outputs the characters in the print string to the standard output device. 
Input: AH = 09h 

DS:DX =_pointer to the character string cndi ns; with '$' 
Output: none 

Function 2Ah: 
Get Date 
Returns the day of the week, year, month and date. 
Input: AH = 2ah 
Output: AL : Day of the week (O=SUN, 6=SAT) 

CX = Year (1980-2099) 
DH= Month (1-12) 
DL = Day (1-31) 

Function 2Bh: 
Set_Date 
Sets the date. 
Input: · AH = 2Bh · 

ex = year (1980-2099) 
DJ-I = month (1-12) 
DL =day (1;..31) 
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AL = 00'1, if the date is valid 
FFh, if the date is not valid 

Function 2Ch: 
Get Time 
Returns the time: hours, minutes, seconds and hundredths 
of seconds. 
Input: ·AH = 2Ch 
Output: ·:CH= hours (0-23) 

CL = minutes (0-59) 
DH = seconds (0-59) 
DL = hundredths (0-99) 

Function 2Dh: 
Set Time· 
Sets the time. '· . 
Input: AH = 2Dh 

CH = Hours (0-23) . 
DH = Seconds (0-59) 
CL = Minutes (0-59) 
DL = Hundredths (0-99) 

Output: AL = OOh if the time i~ valid 
Hh ii the time is not valid 

Function lOh: 
Get DOS Version Numb»r 
Returns the DOS vt·rsion 11umber. 
Input: AH = 30'1 
Output: BX : 000011 

ex = 0000H 
AL = m;ijor version number 
Al I = ,ninor version numbl·r 

Function 31h: 
Terminate Process; <lnd Remain Resident 
Terminates the. •1wm1 process and .1ttempts to ~C't th~ initial allo­
cat:on block to 1he m"mory ~ize in p;1ra~raphs. 
Input: AH =· 1;); 

AI. = re. um lode 
DX" 1111·mory ~ize in parat:r;•phs 

Output: n•lfil' 

Func.-tie>n 33h: 
Ctrl-break Cher.k 
Set or\!• t the st •tr. ,f .1u.M· ·ctr:-hn:.1k ·J ... ·ckingl. 
Input: Al I ·" ·' \11 

Output: 

AL ~Odil, o l'l'ljllCSl currC'lll ,t,1tl' 
0 I h, to set the current st;ite 

DL = OOh, to set current state OH 
01 h, to ~et current state ON .. 

DL =The current state (00h=OH. Olh=ON) 

Function 3Sh: 
Get Vector 
Obtains the address in an interrupt vector. 
Input: AH = 35h 
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AL = interrupt number 
Output: ES:l\X = pointer to the interrupt handling routine. 

Function 36h: 
Get Disk Free Space 
Returns the disk free space (available clusters, clusters/drive, 
bytes/sector). 
Input: AH = 36h 

Output: 
DL = drive (O=default, l=A) 
BX = Available clusters 
DX = clusters/drive 
ex = bytes/sector 
AX = i:tFFh if the drive i:1 OL is invalid, 

otherwise the number of sectors per cluster 

Function 39h: 
Create Subdirectory (MKDIR) 
Creates the specified directory. 
Input: AH = 39h 

Output: 
DS:DX = pointer to an ASCllZ string 
AX = error codes if carr;· flag is set 

Function 3Ah: 
Remove Subdirectory (RMDIR) 
Rl'movcs the specified directory. 
Input: AH = 3Ah 

Output: 
DS:DX = pointer to an ASCllZ string 
AX = error codes if carry flag h set 

Function 3Bh: 
Change the Current Directory(CHDIR) 
Changes the current directory to the specified directory. 
Input: AH = 3!3h 

Output: 
DS:DX = pointer to an ASCIIZ string 
AX = error codes if carry flag is set 

Function 3Ch: 
Create a File (CREAT) 
Cre.1tcs a new file or truncates an old file to ZNO length in prcpa­
ra!ion for writing. 
Input: ·Al-I = 3Ch 

Output: 

DS:DX = pointer to an ASCllZ string 
ex = attribute of the file 
AX = error codes if carry flag is set 

16-bit handle if carry flag not set 

Function JDh: 
Open a File 
Opens the specified file. 
Input: AH = 3Dh 

Output: 

DS:DX = pointer to an ASCllZ path name 
AL = access Code 
AX = error codes if carry tlag is ~ct 

16-bit handle if carry flag not set 



Aooendix C BIOS and DOS Interrupts 459 

Function lEh: 
Close a File Handle 
cioscs the specified file handle. 
Input: AH = 3Eh 

Output: 
BX = file handle returned by open or create 
AX = error codes if carry flag is set 

none if carry flag not set 

Function 3Fh: 
Read from a File or Device 
Transfers the specified number of bytes from a file into a buffer location. 
Input: . AH = 3Fh 

Output: 

BX = file handle 
DS:DX = buffer address 
ex = number cf bytes to be read 
AX = number of bytes read 

er!Of codes if carry flag set 

Function 40h: 
Write to a File or Device 
Transfers the specified number of bytes from a buffer into a speci­
fied file. 
Input: · AH = 40h 

Output: 

BX =: file handle 
DS:DX = address of the data to write 
ex =number of bytes to he write 
AX = number of bytes written 

error codes _if carry flag set 

Function 41h: 
Delete a File from a· Specified Directory (UNLINK) 
Removes a directory entry associated with a file name. 
Input: AH= 41h 

Output: 

' . 

DS:DX =._!lddress of an ASellZ string 
AX = error codes if carry flag set 
none. if carry flag not ~ct 

Function 42h: 
Move File Read Write Pointer (LSEEK) 

.Moves the rcad/m it\.' pointer according to the method specified. 
Input: AH = 42h 

CS:DX = distance (offs~t) to move in bytes 
·AL= method of moving (0, 1,2) 
BX = file handle 

Outµut: AX = error coJcs if carry flag set 
DX:AX ~ new pointer location if carry fl:ig not set 

Function 47h: 
, Get. Current Directory 
Places -the· full path n:1me- (starting from the root directo::y) of 
the "current directory for the specified drive in the area pointed 
to. by DS:SI. . . 
Input: AH ="47h 

DS:SI = pointer to a 64-byte.user memory area 
DL =drive number (O=default, l=A, etc.) 

error codes if carry flag set 
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Output: DS:SI ~ filled out with full path name from the root if 
carry is not set 

AX = error codes if carry flag is set 

Function 48h: 
Allocate Memory 
Allocates the requested number of p.uagraphs of memory. 
Input: AH = 4811 

Output: 
BX = number of paragraphs of memory requested 
AX:O = points to the allocated memory block 
AX = error codes if carry flag set 
BX = size of the largest block of memory available (in 

paragraphs) if the allocation fails 

Function 49h: 
Free Allocated Memory 
Frees the specified allocated memory. 
Input: AH = 49h 

ES = segment of the block to be returned 
Output:· AX = error codes if carry flag set · 

none if carry flag not set 

Function 4Ch: 
Terminate a Process (EXIT) 
Terminates the current process and transfers control to the invoking 
process. 
Input: AH = 4Ch 

AL = return code 
Output: rione 

Interrupt 2Sh: Absolute Disk Read 

Input: 

Output: 

AL = drive number 
CX = number ·of sectors to read 
DX = beginning logical sector number 
DS:BX = transfer address 
If successful CF = 0 
If unsuccessful CF = I and AX contains error code 

Interrupt 26h: Absolute Disk Write 

Input: 

Output: 

AL = drive numher 
CX = number of sectors to read 
DX = beginning logical sector number­
DS:llX = transfer address 
If s1;cc.:ssful CF= (l 
If u11sliccessful CF = 1 and AX contains error code 

Interrupt 27h: Terminate but Stay Resident 

Input: 

Output: 

DX = offset of beginning of free space, 
segment is with respect to PSP. 
none 
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MASM· and LINK 
Options 

D.1 
MASM The MASM assembler translatr:s an assembly language source file 

into J machine lan1~u.1ge object file. It gcrn•rJt<'S three files, a~. shown: 

SOlJRCE FILE 

~iASM 
_.-- I 

-----~ ---------OBJECf FILE l.IS1 FILE CROSS-REl-'ERENCE FILE 

The object file contains the machine language translation of the as­
sembly language source code, plus other information needed to produce an 
executable file. 

The list file is a text file that gives assembly language code and the 
corresponding machine code, a list of names used in the program, error 
messages, and other statistics. It Is helpful in debugging. 

The cross-reference file list~ names used in the pmgram <ind line num­
bers where they appear. It makes large programs easier to follow. As generated, 
it is not read.1ble; the CREF utility program may be used to convert it to a 
legible form. · 
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MASM Command Line 

For MASM version 5.0, the most general command line Is 

MASH option• sourc•_~ila,object_~ila,liat_~ila,croaa­
raf_fila 

MASM 4.0 h:is the same command line, except that the options 
appear last. · 

The default extemion for the object file ls .OBJ, for the listing file it 
is .LST, and for the cross-rderence file It Is .CRF. 

For example, suppose MASM Is on a disk In drive C, source file 
FIRST.ASM is on a disk in drive A, and C Is the logged dfive. To cieate object 
file FIRST.OBJ, listing file FIRST.LST, and cross-reference file F!RST.CUF on 
drive A, we could type · 

C>MASM A:FIRST.ASM,A:FIRST.OBJ,A:FIRST.LST,A:FIRST.CRF 

A simpler way to get the same result is 

C>MASM A:FIRST,A: ,A: ,A: 

A semicolon instead of a comma on the MASM command line tells 
the assembler not to generate any more files. For example, if we type 

C>MASM A:FIRST,A:; 

Then MASM will genera td_ only FIRST.OBJ. If we type 

Then we get flRST.OBJ, FII~T.LST, but not FIRST.CRF. 
It's also possible to let MASM prompt you for the files you want. For 

example, suppose we want .OBJ and .CnF files only. 
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C>MJ\SM A:FIRST 
Microsoft (R) Macro Assembler- Version 5. 10 
Copyright _(C) Micro.soft:coip i981, 1988. All rights reserved. 

~ 
Object fi~ename [FIRST.OBJ]: 
Source lis.ting [NUL.LSTJ: 

A:<Enter> 
<Enter> 

Cross-reference [NUL.CRFJ: A:F!RST <Enter> 

50140 + 234323 Bytes symbol space free 
0 Warning Errors 
0 Severe Errors 

The first response just given means that we accept the name 
FIRST.OBJ for the object file. The second one means that we don't want a 
listing file (NUL means no.file). The third one means we want a cross-refer-
ence file called FIRST.CRF. · 

Options 

The MASM options control the operations of the assemble1· and the 
format of the output files. Table 0.1 gives a list of some commonly used 
ones. For a complete list, see tht Microsoft Programmer's Guide. 

Several options may b~ specified on a command line. For ·~xample, 

C>~·I /D /W2 /Z /ZI FIRS~; 

Table D.1 Some MASM Options 

Option 

/A 

IC 
ID 
/ML 

/R 
IS 
iW{Ol112} 

fl 
/ZJ 

Action 

Arrange so. rce segments in 
alphabetical ·order. 

Create a cross-reference file. 

Create pass 1 listing (see below). 

Make names case sensitive. 

_Accept 8087 floating-point ins·:ructions. 

Le~ve source segments in ori9inal order. 

• -; Set error level display: (default= 1 ): 
0 = illegal statements 
1 = ambiguous or questiorable 

statements 
2 = statements that may produce 

inefficient code 

Display the lines containing errors. 

Write' symbolic information to the 
. object file (use with CODEVIEW). 
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A MASM Demonstration 

To show what the MASM output files look like, the following program 
SWAJ>.ASM will be assembled. It swaps the content of two ml!JTIOty words. 

Program UstJng PGMD_ 1.ASM 
TITLE PGMD_l: SWAP WORDS 
.MODEL SMALL 
.STACK lOOH 
.DATA 
WORDl DW 10 
WORD2 DW 20 
.CODE 
MAIN PROC 

MOV AX,@DAT1'. 
MOV DS,AX 
MOV AX,WORDl 
XCHG AX,WORD2 
MOV WORDl,AX 
MOV AH,4CH 
INT 21H 

ENDP 
END MAIN 

C>MASM A:PGMD_l,A: ,A: ,A: 

Microsoft 
Copyright 

(P.) Macro Assembler Version 5 .10 
(C) Microsc.ft Corp l'.j61, 1988. All rights reserved. 

47358 T 390893 Bytes symbol spilcc free 
0 Warning Errors 
0 !";eve re Errors 

The listing file is shown in Figure D.1. 

C>'J.'YPE A:PGMD_l.LST 

Down the left si<le of the listing are the line numbers. Next we have a column 
of offset addresses fin hex), relative to stack, data, and code segments. After 
thil't come.~ the machine code translation (in hex} of the instructions. 

Two-Pass Assembly and the SYMBOL TABLE 

MAS!l.1 makes t_wo pass-:s through the source file. On the first pass, 
MASM checks for syntax errors and creates a symbol table of names and thffir 
relative locations within a segment. To keep track of locations, it uses a 
luc11tiu11 cuw1tc·r. The location counter is reset to 0 at the beginning of a 
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Microsoft (Rl Macro Assembler 
PGMD l: SWAP WORDS 

1 
2 

3 
4 
5 0000 OOOA 
6 0002 0014 
7 
8 0000 
9 0000 88 R 
10 0003 BE DB· 
11 0005 Al 0000 R 
12 OOOB B7 06 -0002 R 
13 oooc A3 0000 R 
14 OOOF B4 4C 
15 0011 CD 21 
16 0013 
17 

Version •• 5.10·.., ~9/6/91_00:43:35 
Paqe-1 

TITLE· PGMD_!l:SWAP. WORDS 
.MODEL 

.:·STACK 

c•_OATA 
.~ORDl 
,WORD2 

MAIN ' 

SHALL 
lOOW 

ow 
OW 

·.CODE 
PROC 

,HOV 
, HOV. 
·HOV' 

.. XCHG 
t..HOV 
MO~. 

10 
20 

AX,@OATA 
OS,AX'1 
AX,WORDl 
AX,WOR02 
WORDl,·AX 
AH, 4CH 

" .. _ . . .. .. _ ;It~T· _·, 21H ' 
MAIN . ENDP 

ENO • MAIN 
Microsoft (Rl· Macro Assembler Versi'on ::-5:-io- 9/6/9"1' "oo:43~35 
PGMD_l: SWAP WORDS ,Symbols-;l•.:. 
Segments and Groups: . \ . 

N a m e 
DGROUP 

_TEXT 

_DATA. 
STACK. 

Symbols: 

MAIN. 
WORDl 
WORD2 

N a m e 

~CODE 
@CODESIZE 
@CPU ••.• 
@DATASIZE 
@FILENAME 
@VERSION. 

17 Source Lines 
1 7 Total Lines 
20 Symbols 

.Lenqth i. Aliqn.CombineClass 
GROUP 

-0004--~WORD· PUBLIC'DATA' 
0100 PARA STACK 'STACK' 
0013 WORD .PUBLIC'CODE' 

Type Value Attr 
N PROC 0000 •_TEXT Lenqth 
L WORD 0000 DATA -
L WORD 0002 _DATA 

.TEXT TEXT 
TEXT 0 
TEXT OlOlh 
TEXT 0 
TEXT PGMD_l 
TEXT 510 

4 7 358 +, 390893 Bytes symbol space t.ree 
o:warning Errors 
0 - Severe Errors 

Figure D.1 ~, !.LST 

- 0013 
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segment. When an instiuCtion is encpuntered, the location counter Is 
Increased by the number of bytes needed for the machine code of the instruc­
tion. When a name i~ encountered, It is entered ih the symbol table along with 
tht lqcatlon counter's value. The symbol table appears near the bottom of the 
.lST file; ln. the preceding example, the symbols arc MAIN, WORD!, and 
WORD2. The MASM ID option causes the .. LST flle to include pass I error 
messages. Whether these are actually errors Is determined in pass 2. 

On the second 'pass, MASM completes error checking and machine 
codes the Instructions, except for those instructions that refer to names in 
other object modules. The .LST file is also created. 

The reason IV!ASM needs two passes to assemble a program is that 
some instructions may refer to names that appear later on in the source file. 
These instructions can be machine-coded only after their relative locations 
have bee11 determined from the symbol table. 

The object file (PGMD_l.OBJ) that MASM creates is not executable. 
The final addresses of ~he variables need to be determined by the LINK pro­
gram (see later description). In the .LST file, these addresses are marked by 
a "R" (relocatable) symbol (lines 9, 10, 11, 12, 13). 

The Cross-Reference File 

The cross-re(enmce file (here PGMD_l.CHF) contains information on 
names-where they aw defined and the line numbers where they appear in 
the .LST file. The .CRF ;'ile is not printable; the CREF program, on the DOS 
disk, converts It to a .REF file that has an ASCII format: 

~-!i crosoft Cross-Reference Version 5 .'10 
:>:;MD_ 1 : SWAP WORDS 

Fri Sep 06 01:33:52 1991 

Symbol Cross Reference 

t'ICPU . 
@VERSION 

CODE 

:;.>,TA 

DGROUP 

MAIN • 

STJl.CK. 

WORDl. 

WCRD2. 

(',\TA. 

rt.XT. 

11 Symbols 

(f definition, + modification) Cref-1 

1f 
11 

7 

4 
9 

81 

3 

5# 
6# 

41 
7# 

16 17 

J3 

11 13+ 
· 12+ 

c;gure D.2 PGMD_ 1.REF 
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C>CIU:F · A:PGMD_l; 

.Microsoft (RJ Cross-Reference· Utility~·\Tersion 5 .10 
·copy~ight .. (Cl .,Microsoft. Corp :1981'-.1985,•·19'97',- All rights rcscrvec. 

11 Symbols 

The 04t~ut is-~h-~ file PGMD_LREF, which can be printed by using the TYPE 
command (Figure 0.2). 

C>TYPE PGMD_l .REI' 

The job of. the LINK program is to link object files (and possibly 
:library'files)into ... a-sihgle executable flle: To do this, it must resolve reference 
1to name$ u·sed in ·one ·module but' defined In another. The mechanism fo1 

doing this is explained in Chapter 14. LINK must be-used·even-if there is 
only one object file. 

The input to LINK ~ one 0or more object and library files, and the 
output is a run file and an optional loadmap file, as s~ow~: 

Object file(s) Library file(s) 
...._"- / 
~ . ·./ 

·Link 

/ 
Run file Lo<idm;ip file 

The run file is a11 t'.'l.Ccutabie m;ichinc language program. The loac'rnap file 
gives the size and relative location of. thc·program segments. 

LINK Command·LinE 

For l.J0:J~ 'ersion 5.0, the mo~t gl•nc-:;il <"u!·1:na11d line i~ 

LINX options"cbject_file_list, run_file, loadmap_file, li­
brary_list,. 

The nnly option you w11l l>e lihly to me is /CO, v.-liich causes ex~:;, 
information for CODEVIEW to be included. 

The objfft_Jih:_list is a list of ob1ect files to he linked. It begim 1·•ilL 
the name of the nbject file containing the main program: the other c;hj·. ,., 
files usually contain procedures that are called by the main program anct by 
P1ch other. The file names are separated by blanks or "+". 
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.. 
The nm_Jile h 1s ;in .f.XE extension. It is an executable file unless the 

program ls a .COM li1ru1.1t·program,-1n which case one·1nore step is needed 
to produc<! an execuubh: file ... COM programs are discussed In Chapter 14 . 

• The llbrary_li~t 1."0ruists of Jlbrary files,. If any, separated by blanks or 
· "+•. Ubrary files usually have a .UR extension; and they often contain stan­
dard routines used 'Jy many programs, such as 1/0 .routines. An example 
appears In Chapter 14. · · 

For example, suppose LINK ls on a disk In drive C and the files to 
be linked are In driw A. The main object flle,Is'FIRST.OBJ, other object flies 
are SECOND.OBJ and THIRD.OBJ: To. create a run file FIRST.EXE and a 
loadmap file FIRST.MAP,.we could type 

,: .>LIMIC A: FIRST+SECONO+'l'H:tltD, A: FIRST, A: FIRST; 

or just 

C>LINX A:FIRST+SECONI>+THIRD,A:,A:; 

. . . ... . 
The semicolon at the. end means that there are no library files. As with 
MASM, it's posslbl~.to.run LINK interactively: 

C>LINJt.FIRST+SZCOND+TBIN> 

. 
Microsc-!t IRI Ovel'lay Linker Version 3. 64 
Copyri~ht !Cl Microsoft Corp l9a3~1988. All riqhts 
reserved. 

Run Fi:c [FIRST.EXE): <Enter> 
Li:.;L File [NLIL.MJ\l'J A:FIRS'l" <Enter>' 
Libr.u: ~s: (. LIBJ <Enter> 

The first response mcam that we.accept the name FIRST.EXE for the run file. 
The second respome means we wa11t to call the loadmap file FIRST.MAP. The 
third response mcam that there are no library files. -

·A LINK Demonstration 

Let's link PGlvfD_l abo\•e:· 
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C>LIHlt A:PGND_;,l,A:,A:; 

Microsoft CR) Overlay Linker Version 3.64" 
Copyright (C) Microsoft Corp ·1983-1988. All rights 
reserved •. 

C> 

Here is.the loadmap file: 

C>TYPE •A: Pc:MD~ l ".MJU> ~· 

Start Stop 
OOOOOH 00012H .00013H ._TEXT . 
00014H 00017H 00004H._OATA' 
00020H OOllFH 001 OOH .STACK''. 

Origin 
0001:0· 

Length Name 
CODE 
DATA. 
STACK 

Group 
OGROUP. 

Proqram·entry point·at·.OOOOiOOOO" 

Class 

The file. 8fves the relative size and location of the program segment:1. 
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QEBUG and 
CODEVIEW. 

E.1 
Introduction 

E.2 
DEBUG 

This appendix covers the DEBUG and CODEVIEW debu.ggers. DE· 
BUG is avallabl.e on the DOS disk, and CODEVIEW comes with the Microsoft 
Macro rusembler, version 5.0 or later. DEBUG is a primitive .but utilitarian 

· program with a small, easy-to-learn com_mand set. CODEVIEW :.s a much 
more sophlstlcatNI program that may be used to debug Pascal, BASIC, FOR· 
TRAN, C, or assembly language code. The user can simultaneously view 
source code, registers, flags, and selected variables. · · · 

Si~ce n;ost of th~ DERUG commands will work in CODEVIEW, you 
should read the sections on DEBUG even if you wlll ultimately be using 

., CODEVIEW. Table E. l surnm.iri.7.es the most useful DE.BUG commands. For 
-a. complete list, see the DOS use.r's manual. 

A Debug_ DemonstriJt:on 

To demonstrate the DEBUG commands, we'll use PGM4_2.ASM, 
which displays "HELLO!" on the.screen. 

Program Listing PGM4_2.ASM• 
T".:TLE PGM4 2: PRIN'r STRING PROGRAM 

• MODEL SMAJ..T, 

• STACK. 1 QC.JI 
471 
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.DATA 
MSG 
.CODE 

DB 'HELLO!$' 

MAIN PROC 
; initialize. OS 

MOV AX,@OATA 

HOV OS,AX 

; display message 
LEA DX,H<;G . 

HOV AH,9 

INT 2lh 

; return to DOS 

HOV AH,4CH 
INT 2lh 

MAIN .ENDP 
END MAIN 

; initialize OS 

;get message 
;display string function 
;display·message 

; DOS exit 

After assembling and linking the program, we take it into DEBUG. 
(the user's response appears in boldface). 

f- ..... _, .... 

-R 

DEBUG comes back with its "-" command prompt. To view the registers, 
type "R" 

AX•OOOO BX•OOOO CXs0121 DX•OOOO SP•OlOO 

IP•OOOO 

BP•OOOO SI .. 0000 DI=OOOO 

NV UP DI PL NZ NA PO NC DS•OEFB ES•OEFB SS•OFOB cs-one 
OFlC:OOOO B81BOF HOV AX,OFlB 

The display shows the contents of the registers in hex. The third line of the 
display gives the segmcnt:offset address of the first instruction in the progr.un;t° 
along with its machine code and assembly code. The letter pairs at the end of 
the second line arc the current settings of some of the status and control flags. 
The flzgs displayed and the symbols DEBUG uses are ·the following: 

Flag aear (OJ Symbol Set (1) Symbol · 

Overflow Flag NV ov 
Direction flag UP ON 
Interrupt flag DI El 
Sign flag PL NG 

Zero flag NZ ZR 

Auxiliary carry flag NA AC 
Parity flag PO PE 

carry flag NC CY 
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Table E. 1 DEBUG Commands · 

Optional parameters are endosed in curly brackets. All constants are he;cadecimal. 

Command 
D {start {end}} {range} 

·Examples: 
D 100 

D CS:lOO 120 

D 

E start {list} 

Examples: 
E DS:O A 8 C 

. E ES:lOO 1 2 'ABC' 

E 25 

G {=start} {addr1 addr2 .. addrn} 

Examples: 
G 
G =100 

G 100 300 200 

G =100 150 

Action 

Dump bytes in he~ format 

Dump 80h bytes starting at DS.: 1 OOh 

Dump bytes from CS:100h to CS:120h 

Dump 80h bytes starting at DS:last+l 
where last is the last byte displayed 

Enter data in list beginning at start · 

Enter Ah,Bh,Ch in bytes DS:O,DS: 1,DS:2 

Enter 1 in ES:lOOh; 2 in ES:101h, 41h 
in ES:102, 42h in ES:103, 43h in 
ES:104h 

Enter bytes interadively starting at 
DS:25. Space·bar moves to next byte, 
Return terminates 

Go (execute) at start, with break points 
at addr1, addr2, .. addrn 

Execute at CS:IP to completion · 

Execute at CS: 1 OOh to completic'n · 

Execute at CS:IP. stop of first of 
breakpoints CS:100h, CS:300h, e>r 
CS:200h encountered · 

Execute at CS: 1 OOh, breakpoint cit 
CS:150h 

L address {drive start_sector end_sector} Load absolute disk sectors or named 
program (see N command) 
Drive specified by number (0 = A. -1 • 
B, 2 =- C, etc.) 

· Examples: "' 
L DS:lOO o·c 18 

l SFDO:O 1 2A 38 

L DS:100 ' 

N filename 

Example:· 
N myfile. 

Q 

R {register} 

Examples: , 
R 
RAX 

load sectors Ch to 1 Bh from the disk 
in drive A at OS: lOOh 

Load sectors 2Ah to 3Bh from the disk 
in drive 8 at address SFDOh 

Load named file'at DS:lOOh 

Set current filename for L and W 
commands 

Set load/write name to myfile 

Quit DEBU_G and r~turn to DOS 

Display/Change contents of register 

Display registers and flags 

Display AA and change contents if 
desired 
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-ROX 
DX 0000 

:lABC 

-R 

T {=Start} {value} 
Examples: 

T 

T =100 
T =100 5 

T4 

U {start {end}} {range] 

Examples: 
u 100 

U CS:100 110 

U 200 L 20 

u 

W {start) 

Example: 
w 100 

Trace "value" instructions from start 

Trace the instruction at CS:IP 

Trace the instruction at CS: 1 OOh 

Trace 5 instructions starting at CS: 1 OOh 
Trace 4 instructions starting at CS:IP 

Unassemble data in instruction format 

Unasse:nble about 32 bytes starting at 
CS:100h 
Unassemble from CS: 1 OOh to CS: 11 Oh 

Unassemble 20h instructions starting at 
CS:200h 
Unassemble about 32 bytes starting at 
last+ 1, where l(lst is the last byte 
unassembled 

Write the BX:CS bytes to file (see N 
command) 

Write the BX:CX bytes stored at 
CS:lOOh 

To change the contents of a register-for t:xamplc, DX-to lABCh, type 

DEBUG responds by displaying the current content of DX, then displays a 
colon and waits for the us to enter the new content. We enter tABC and 
press the Enter key (DEBUG ;issumes that all numbers the user types artt 
expressed in hex, so no "h" is needed). To retain the current content of DX, 
w•; would just hit the Entrr key after the colon. 

To verify the ch;inge, we can display the registers again. 

AX=GOC·J BX=OOCO CX=0121 flX, 11,sc SP=OlOO BP=OOOO SI=OOOO or~oooo 

DS=OaE: ES=OI:nl SS=OFOl3 CS=OFlC IP~oooo NV UP Dl PL NZ NA PO I.JC 

MOV AX,OFlB 

Now let's trace down to the INT 21h. 
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-'I' 

AX=OFlB BX=OOOO CX=Ol21 DX=lhBC SPaOlOO BP~oooo SI=OOOO DI-0000 

DS=OEFB ES=OEFB SS=OFOB CS=OFlC IPm0003 NV UP DI PL NZ NA PO NC 

OF1C:0003 BEDS MOV DS,AX 

-T 
• AX-OFlB. BX=OOOO cx°=oi".21 DX=OU02 SP=OlOO,.BP,:;0000 SI=OOOO DI=OOOO 

DS-OFlB ES=OEFB SS-OFOB CS=OFlC IP•"'O~ Nv··up DI PL NZ NA PO NC 

OF1C:0009 8409 MOV AH,0° 

-T 

Note that DEBUG seemingly "skipped" the instruction LEA DX,MSG. Actu­
ally, that instruction was executed (we can tell because· DX has new contents). 
DEBUG occasionally executes an instruction without pausing to ::lisplay the 
registers. 

AX=091B BX=OOOO cx~o121 DX=0002 SP=OlOO B?=OOOO SI=OOOO • DI=OOOO 

DS=OFlB ES=OEFB SS=OFOB CS=OFlC IP=OOOB NV UP DI PL NZ NA PO NC 

OFlC:OOOB CD21 INT 21 A 

-GD 
HEL'..,8! 

If we were to hit "T" again, DEBUG would start to trace INT Zlh, which is 
not what.we".want. 

l'rmn,thc>. last rC'ghtcr display, we SC'C Iha I INT 21 h is ,, two-hytc 
instruction. Since II' is currently 00013h, the next instruction rr.ust be at 
OOODh, and we can set up a breakpoint there: 

hXc C "i::4 E:<=OOJO CX=Ol21 o:->0002, SP=OlOO BP=OOOO SI=ODOO DI=0000 
CS••('F;B ES=OEFB SS=OFOE C:S~:CFJC .IP=OOOD N\7 UP DI PL NZ NA. PO NC 
OF: c:: 0000 c4 ;c MOV AH,'.·.:: 

.. 
·G 

The INT 21 h. function 9, di~plays "HELLO!'' ;ind execution stops at the break­
point OOODli. To finish execution, just type "G": -

Program _te:~in~~~:~ 411.o_rm,;fly . . , 

This· message indicates the program· has run to completion. The program 
must be rcloadL-d to be executed again. So Jet's leave UEBUG. 
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-Q 
C> 

To demonstrate the U command, let's reenter DEBUG and use it to Ust our 
program: 

C>DEBOG PGM4 2.EXE. 

-u 
OFlC: 0000 
OF1C:0003 
OF1C:0005 
OFlC:0009 
OFlC: 0008 
OFlC:OOOD 
OFlC: OOQf 
OFlC:OOll 
0FlC:0014 
OFlC: 0016 
OF1C:0019 
OFlC: OOlC 

-o 0 ... 
OFlC:OOOO 
OF1C:0003 
OFlC: 0005 

.OF1C:0009 
OFlC: 0008 
OFlC:OOOD 
OF'lC: OOOF 

BBlBOF MOV AX,OF18 
8ED8 MOV DS,AX 
8Dl60200 LEA ox, [0002) 
8409 HOV AH,09 
CD21 INT 21 
B44C MOV AH,4C 
CD2l INT 21 
0'15BE8 ADD [BP+DI-18] ,BX 
3BEE CMP BP,SI 
E88AF3 CALL F3A3 
E97E08 JMP 089A 
8D1E8E09 LEA BX, [098E) 

DEBUG has unassembled about 32 bytes; that Is, interpreted the contents of 
these bytes as instructions. The program ends at OOOFh, and the rest Is 
DEBUG's interpretation of the garbage that follows as assembly code. To list 
just our program, we type · 

B8180F MOV AX,OFlB 
8ED8 HOV DS,AX 
8Dl60200 LEA DX, [0002] 
B409 
CD21 
B44C 
CD2l 

MOV AH,09 
INT 21 
HOV AH, 4C 
INT 21 

In the unassembly listing, DEBUG replaces names by the segments or offsets· 
assigned to those names. For example, instead of.MOY AX,@DATA we have. 
MOV AX,OlFB. LEA DX,MSG becomes LEA DX,(0002] because 0002h Is the 
offset In segment .DATA assigned to MSG. · 

To demonstrate the D command, let's dump that part of memor: 
that contains the message "HELLO!". First, we execute the two statement 
that initialize DS: 
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-GS 
AX•OFlB BX•OOOO cx-0121 ox-0000 SP~OlOO 'BP-0000 sr-0000 .DicOOOO· 
OS•OFlB ES•OEFB SS•OFOB CS•OFlC IP•OOOS NV UP DI PL NZ NA PO NC 
OFlC: 0005 SOl 60000 . LEA DX, [0000) OS: 0000-4548 

-DO 
OFlB:OOOO 
OFla:·oo10 
OF1B:0020 
0Fl13:0030 
OF18:0040 
OFlB:OQS\) 
0FlB:0060 
0FlB:0070 

-02 8 
OFlB:OOOO. 

Now we dump memory starting at DS:O , 

21 00 4S 45 4C 4C 4F 21-24 C4 02 SB lE 46 43 01 ! . HELLO! $ ..•. FC. 

EJ 01 EJ SB 87 BC JD SB-97 BE JD 89 86 7C FF B9 ..... ,c .. ·"'· ·' .. 
96 7£ FF 05 oc 00 52 50-ES 70 6A BJ C4 04 so EB .- .... RP.}:1 ... P. 

6C fl3 8J C4 02 OA co 75-0J E9 F6 FE C6 06 09 37 l. ..... u ....... 7 
FF.SB lE 46 .4J Dl EJ 8B-B7 AO JC AJ 60 3E BB lE ... FC ..... <. '> .. 
46 
87 
ES 

4J SA ~7 E6 JC 2A E4-AJ_ SA JC 01 EJ Dl E3 BB FC ... <* •• Z< ••••• 
FC Jl OB B7 FE 31 75-03 EB 9£ FD BB FF FF BB .. 1 ... lu ........ 
SD CJ 90 SS BB EC 83-EC OB 56 C6 06 oc 42 FF • ) •• U ••••• If •.• B. 

OE.BUG has displayed 80h bytes of memory. The contents of each byte is 
shown as two hex digits. For example, the current content of byte OOOOh Is 
seen to be 48h. Across the first row, we have the contents of bytes 0-7h, 
then a dash, then bytes 8-fh. The contents of bytes !Oh througl:. IFh are 
shown In the second row, and so on. To the right of the display, thE' content 
of memory ls Interpreted as characters (unprintable characters are indicated 
by a dot). · 

- To display just the message "HEll0!$", we type 

4S 45 4C 4C 4F 21 24 HELLO!S 

Before moving on, let us take note of one pecularity of memory dumps. We 
usually write the contents of a word in the order high byte, low byt~. How­
ever, a DEBUG memory dump displays a word contents in the order low 
byte, high byte. For example, the word whose address is Oh contains 4548h, 
but DE.BUG displays it as 48 45. This can be confusing when we are inter­
preting memory as words. 

Now let's use the E command to change the message from "HELLO!" 
to "GOODBYE!" 

-E2 'GOOl>BYSI•' 
I ' •. 

To verify the change, we wlll dump memory· 
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-DO F 
OFlB:OOOO 21 00 47 4F 4F 44 42 59-45 21 24 BB lE 46 42 Dl !.GOODBYE!$ .. FC. 

-G 
GOODBYE' 

Now let's execute to completion. 

Program terminated normally 

-0 200 204 

The E command can also be used to enter data interactively. Suppose, for 
example, we would like to change the contents of bytes 200h-;204h. Before 
doing so, let's have a look at the current content: 

OF1B:0200 QC FF 5A E9 48 .. Z. H 

-E 200 

OF1B:0200 OC.l 

-D 200 204 

Now let's put 1,2,3,4,5 in these bytes. 

FF.2 5A. 3 E9. 4 48.5 F3. 

DEBUG begins by displaying the current content of byte 0200h, 
namely OCh, and waits.for us to enter the new content. \Ve type 1 and hit 
the space bar. Next DE13UG displays the content of byte 0201, which is FFh, 
and again waits for us to enter the new content. ·we type 2 and hit the space 
bar to go on to the next byte. After 5 has been entered in byte 204h, DEBUG 
displays the content of byte 20Sh, which is F3. Since we don't want to enter 
any more data, just hit the Enter key to get back to the command prompt. 

Now let's have a look at memory: 

OFlB: 02(JQ 01 02 03 04 05 

In the process of entering data, if we had wanted to leave the contents of a 
byte unchanged, we would just hit the space bar to go on to the next bvt\'!, 
or hit return to get back to the command prompt. 
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CODEVIEW is a powerful debugger that enables the user to view 
both high-level and assembly language source code during the ·1ebugging 
process. There are two operating modes: window and sequential. In sequential 
mode, CODEVIEW behaves more or less like DEBUG; sequential mode must 
be used if your machine is not an IBM compatible or the program Is assem­
bled and linked without options. In window mode, ali the cap;;:bilitics of 
CODEVIEW are available, and for that reason It Is the only mode we will 
discuss. Because CODEVIEW Is a large program with many features, we do 
not attempt to be comprehensive in the following discussion. 

' 
Program Preparation 

To debug In window mode, the code segment of the prog::am must 
have class 'CODE', for example, 

C SEG SEGMENT 'CODE' 

Note: the simplified segment directive .CODE generates ·a code segment with 
default cla~s 'CODE': 

When the program is assembled and linked, the /ZI ~hd /CO options 
should be specified; for example, - · • 

MASM /ZI HrPROG; 

LINK /CO HrPROG; 

The~e optio~s cause symbolic information for CODEVIEW ~·~,be lnduded In 
the .EXE file. Because this makes the file a lot bigger, the program should 
be-assembled'and linked in the ordinary way after it has been debugged. 

Entering CODEV/EW 

The comm!Jnd line.for entering CODEVJEW is 

1CV- {options)· fi'lename·: 

File name Is the name of an execuiabie file. The options control CODE VIEW'S 
start-up behavior. Here is a partial ·list (see the Microsoft manual for the 
complete set): 

Option 

ID 

/I 

IM 
/P 

IS 

Action 

You are. using an IBM compatible thJt"cfoes not support certc.1n 
IBM~sp~ific. trapping functions. · 
You are using a non-IBM-compJt1ble computer and wart to be 
able to use CTR~-( and CTRL-break to stop a program.~ 

You have a mouse but don"t want to use it. 
You have a non-IBM EGA and have problems running 
CODEVIEW. 
You l1ave a non-IBM compdt1ble and want to be able to see 
the output screen. 

·NJ·· - .... ~.,, - ""You·have an IBM·compat1ble and want to use window mode. 

More than one option may be specified. for cx<iinple, 
~ ' . ' . . -

Cl/ /D_/MJW_Myprog_ 

Note that with CODEVIEW, unlike DEBUG, it is_ not necessary to use 
·a file extension. 
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Window Mode 

To demonstrate some of CODEVIEW's features, we will assemble anc 
link the program we used to demonstrate DEBUG (PGM4_2.ASM) and takt 
it into CODEVIEW. 

C>MASM /ZI A:PGM4_2; 
Microsoft (R) Macro Assembler Version 5.10 
Copyright (Cl Microsoft Corp 1981, 1988. All rights reserved. 

50094 + 28 9327 Bytes symbol space free 

O Warning Errors 
0 Severe Errors 

C>LINlt /CO A:PGM4_2; 

Microsoft CR) Overlay L~n~er Version 3.64 
Copyright (Cl Microsoft Corp 1983:..1988. All rights reserved. 

C>CV A:PGM4_2 

Figure E.1 shows window mode display. We see three windows: a 
display window at the top, a dialog window at the bottom, and a register window. 
at the right side. 

Fil• Uieu Search Run Uatch Options Language ralls Help I FB=Trace FS=Go 
pg"4_Z. ASl1 i--~----..,,------"""'-

1: .nGDEL St1ALL 
z: .STACK 18BH 
3: .DATA 
4: ltSG DB 'HELLO!$' 
S: .CODE 
6: t1AIH PROC 
7: :initlallZIJ OS 
e: tlOU AX,IOATA 
9: tlOU OS, AX ; IHITIALIZE OS · 
18: :displ•~ ,.ssae'B 
11: LEA DX, ~ : GD ltESSAGE 
lZ: tlOU AH, 9 : DISPUW STRING FUHCTiott 
13: IlfT Z1h : DISPUW ttESSAGI 
14: :return to DOS 
1s: nou AH,4at 
16: IlfT Z1h :DOS EXIT 
17: llAIH EHDP 
18: EltD nAIH 

t AX = 8888 
BX = 8888 
ex = eeea 
DX = 8888 
SP = 8188 
BP = 8888 
SI = 8888 
DI = 8898 
OS = SlAI 
ES = S1AF 
SS = S1C1 
CS = SlBF 
IP = 8888 

~UP 
EI PL 
NZ llA 

I PO Ht 

------------------------------------------------'~ 
nicrosoft <R> CodeUiBM <R>. U.rslon z.z 
<.t.) t.o)'Jr\gl\t. IUcl'osoft. Corp. 198f»-1988.-· All rights reurwd. 
) 

Figure E. 1 CODEVIEW Window Mode Display 

t 

I 
J 
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The display wlndoW' show! the'saurce code, with the current instruc­
tion In reverse video or In a different color. Unes with previously set break-
points are highlighted. · 

. 'Ibe dialog window Is where you can enter commands, but as we 
will see, the function keys can be used for many commands. 

The register window shows the contents of the registers and the 
flags. The flag symbols are the same as DEBUG's. 

- It Is also possible to· activate a watch window, which will display 
selected variables and conditions. 

C9ntrolling the Display 

The appearance of the display may be controlled with the keyboard 
or a mcuse. Table E.2 shows the keys and key combinations. For mouse 
operations, see the Microsoft manual. . 

Controllil1g Program Execution 

Table E.3 shows the function keys :hat may be used to S•~t and clear 
breakpoints, trace through a program, or E:xecute to a breakpoint. 

Selecting from the Menus 
'· 

The menu bar at the top of the screen has nine titles. Th•~ two com-
mands at the end (TRACE and GO) are provided for mouse user!•. 

1. To open a menu, press Alt and the first letter of the title. For ex­
ample, Alt-F to open the File menu. This causes a menu box to be 
displayed. 

_Table E.2 Display Commands 

Key 
Fl 
F2 

. F3 

F4 

F6 

CTRL-G 
CTRL-T 
·Upa~w 
Down arrow 

Pg Up 
Pg On 

Home 

Function 

Displays initial on-line help screen. 

Toggles the register window. 

Switches between source, mixed, or assembly modes . 
Source mode shows source code in the display vll!ndow. 
assembly mode shows assembly language 1nstru:t1ons, 
and mixed mode shows both. 

Switches to the output screen. The output screen shows 
output from the program. Press any key to return to the 
display screen. 

Moves cursor between display and dialog . uido..vs. 

Increases size of the wmdow the cursor is in. 

Decreases size of the window the cursor is in. 
Moves cursor up one J:ne. 

-Moves cursor down one line. 

Scrolls up one page~ 
Scrolls down one page. Stop~ Jt bottom of fil~ if in 
source mode, behaves like DEBUG's U command in 

other modes. • 

Scrolls to top of file if cursor is in display window. or to 
top of command buffer if in dialog window. 
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Table E.3 · Function Key' Commands 
' ' .. . :" ,... . . ~ . 

Key 
FS 

-Function 

Executes to the next breakpoint or to the end of the 
program if no breakpoint encountered. 

F7 

FS 

F9 

FlO 

· SetS a temporary breakpoint on the line with the cursor 
·and executes to that line, unless another breakpoint or 
end of program is encountered. 
Traces the next source line, if in source mode, or the 
next instruction if in assembly mode. If the source line is 
a call, it enters.the called routine. Note: it will execute 
through DOS function calls. 
Sets or clears a breakpoint on the line with the cursor. If 
the line does not have a breakpoint, it sets one on the 
line. If it already has a breakpoint. the breakpoint is 
cleared. · 

Execut~ l11e next program step. Like FS except that calls 
are executed rather than traced. . 

2. Use the up and down arrow keys to make a selection. When the 
item you want is highlighted, press Enter. 

3. For most menu selections, the choice Is executed immediately, 
however, some· selections require a response. 

4. If a response is needed, a 
0

dlal9g box opens up and you type the 
needed information. · · 

The escai>e key can be pressedt~ cancel a menu. When a menu is open, the 
left and right arrow keys may be used to move from one menu to another. 

The RUN Menu 

This. menu eont!lins selections for running the program. Table E.4 
gives the choices. · 

Watch Commands 

One. of the most useful of CODE.V.IEW's features is the ability to 
monitor variables and expression~. The watch commands described hereafter 
specify the variables and expressions to be watched. 

Table E.4 RUN Menu Selections 

Selection Action 

Start Runs the program from the beginning. Program will run 
to completion unless a breakpoint or watch statement 
(see below) is encountered. 

Restart Restarts the program buf doesn't begin to execute it 
Any previously set breakpoints or watch statements will 
still be in effect. 

Execute Executes in slow motion from the current instruction. To 
stop execution, press a key or mouse button. 

Ctear,breakpoints ' Clears all breakpoints, Doesn't affect watch statements. 



>W A 
>WI A 
>WI A L6 
>WW A L6 
>WI A 4 

>W 100 104 
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The watch commands can be entered from the watch menu, but it's 
easier to enter them as dialog cQmmands; also, with dialog watch 1:ommand~ 
a range of variablt"S can bci specified. '· 

Watching Memory 

The watch· c0mmand ·to ll)oriltor memory. Is 
: . . . 

W{type) range 

where range ls either 

start address end_address- , · . .: .-· . 

or -

!.'-count .. -
and count ls the number of values to be displayed . 

. Type is one of the followtn~: 
. ' t •. 

1l'P• Me dining 

Norie. ~ default 
·a hex byte 
A :'ASCII 
I signed decimal word 
u· unsigned decimal word 
w . hex word 
D hex doubleword 
s short real 
L long real 
T 10-byte real 

The default type ls the last type specified by a DUMP, ENTER, WATCH, O!" 

lltAClPOINT command; otherwise· It Is B. 
For example, suppose that array A has been declared as 

A OW 37,12,18,96,45,3 

and OS has been htitlaliied to 4A7Dh, the segment number oi the .D.\TA 
segment. 

The dlalog commands 

_Create the following watch· window: 
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0) A 4A70:0000 2~ % 
1) A 4A7D:OOOO 37 
2) A L6 4A7D:OOOO 37 12 18 96 45 3 
3) A L6 4710:0000 0025 oooc 0012 0060 0020 0003 
4) A 4 47AD:OOOO 37 12 18 
5) 100 104 : 47AD:Ol00 6400 8448 6912 

>WI SP L6 

0) Sj? l 6 

F~L6 

1) bp l 6 

In (0), CODEVIEW displays both hex and ASCII values of variable A. In (1), 
we ask for A to be displayed as a signed integer. In (2), we want to see thtl:r 
array A of six words, displayed as integers. In (3), we ask for array A to be 
displayed in hex. Jn (4), we ask for the following range to be displayed in 
decimal: start_address = A = OOOOh, end_address = 0004h. In (5), we specify 
range DS:OIOOh to DS:0104h. The display is in decimal, because that was 
the type used in (4). 

Now as the program is traced or executed, the values In the watch 
window wlll change as the program changes memory. 

Watching the Stack 

We can monitor the stack as a special case of a memory range. For 
example, suppose SS:SP = 4A6C:OOOAh and BP = OOOCh. To monitor six stack 
words as decimal integers, type 

and the watch wlnuow shows 

4A6C:OOOA 1813 5404 2009 5404 2741 5404 

;ilso nr may be used as .'.I st;icl: pointer; ~or example, 

and the watch window shows 

4A6C:OOOC 5404 2009 5404 2741 5404 3085 



>W? A 
>W? A,d 
>W? AX + BX 
>W? A + 2*AX 
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Watching Expressions 

The watch window may also be used to monitor the value of a sym­
bolic expression. The syntax IS 

W? expression {,format} 

where expression can be a single variable or a complex expression involving 
· several variables and constants. The optional format is a single lEtter that 

specifies how the expression will be displayed. Some possibilities are 

Fonn•t Output Format 

d signed decimal integer 
signed decimal integer 

u unsigned decimal integer 
x 

c 
hexadecimal integer 
single character 

Here are some examples, using the array A defined earlier. Suppose 
that AX = 1 and BX = 4; . 

and the watch window is 

OJ A Ox0025 
1) A,d: 37 
2) AX + BX Ox0005 
31 A .._ 2*AX : OX0027 

In (0), the expression to be displayed Is just the variable A. It appears as 
Ox0025 (the notation Oxdigits is the C language notation for hexadecimal 
digits). In (1), we ask for A to be displayed with a decimal format. In (:?), we 
get the sum of the contents of registers AX and BX. In (3), we ask for the 
the sum of A and 2 times the contents of AX. 

Register Indirection 

Sometimes we would 'like to keep track of a byte or word triat is 
"being pointed to by a register; for example, !BX) or /BP + 4]. COD£\"IEW 

· docs not allow lht! .. square bracket pointt!r notation, but ust>s the folJO',..·ing 
symbols inste~_d: 

Assembly Language Symbol Codeview Symbol 

BYTE PTR [register] 
WORD PTR [register) 
DWORD PTR [register] 

BY register 
WO register 

DW register 
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>W? BY BX 

>W? WO BX 
>W? WO BX+2 

0) 
1) 

2) 

BY BX 

WO BX 

WO BX+2 

A L6 

For example, supposr that BX contain OlOOh, and memory looks like this: 

Offset 

0100h 
0101h 
0102h 
0103h 

.The following watch commands 

produce this watch wi11dow: 

OxOOab 
Oxcdab 
OxOOef 

Contents 

ABh 

CDh 
EFh 
OOh 

Removing Lines from the WATCH WINDOW 

To remove a line from the watch window, the Y (yank) command 
can be used. Its syntax is 

'i number 

where number is the numl>er of the line to be removed. The command Y 
causes all the Jines to be removed. 

Tracepoints 

You can specify a variable or 1ange of variables as a trace point. When 
the variable(s) change, the program will break execution. The syntax is 

TP? expression {,format} 

or· 

TP (type} ?Cange 

where format, type, and range are the same as for t~e W command. 
CODEVIEW displays the ·expression, variable, or range of variables in the 
same format _as the Vo(. com~and, except_ that the display is intense. For 
example, we could type 
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>WP? AX>BX 
>WP? AX - BX 
>WP? A > 25 

>WP? A = 25 

0) AX>BX 

~ 
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. and CODE VIEW. wnulcl di;pla 

' . ' ' '. 
4A7D: 0000- .: . 37 - 12 · • ·18 • 96 ' 45 3 

'in the·watch window. 'If any element of the array A 'hanges, execution 
would break. 

_watchJioihrs. 
A watchpolnt breaks execution when a specified expression becomes 

nnn7<>rn ftn1P) ThP command line for setting a watchpoint is 
~ l 

WP? expression (,format) 

where expression is a relational expression invo_lving variable~ a:1d possibly 
constants. 

For example, suppose that A is defined as 

A ow 25h 

and the current values·of AX and BX are 5 and 2, respectively. The dialog 
commands . 

3 

\ 

will create the followlng watch window 

oxoooi 
1) AX ... BX - 3' : OxOOOO 

2) A > ·25 : OxOOOO 
3i A m 25: 0x(l025 

The displ.ly ·following (0) indicates that execution will break if AX > BX is 
true. Because AX has 5 and BX has 2, this is currently true and t~xecution 
would break immediately. CODEVJEW Indicates true by the notation OxOOOJ. 

In (I), execution will break if AX - BX - 3 is nonzero. Curr•mtly, AX 
- llX - 3 = 5 - 2 - 3 = 0, so this condition is false. CODEVIEW indicaks false 
by the notation OxOOOO. 

In (2), execution will break if A > 25, which is currently false. 
In (3), execution will break if A = 25. This is t:urrcntly tr1Jc, so ex1:­

cution would break immediately. CODEVIEW shows the current value of A 
as Ox0025. 
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DEBUG Commands in CODEVIEW 

Most of the DEBUG commands can be used as dialog commands In 
CODEVlEW. When working in source mode, symbolic labels may be used 
in commands. For example, If BELOW Is a label In a program, then 

G BELOW 

causes execution to break at this label if encountered. In the D and E com­
mands, a type can be specified. The syntax for E is 

= {type} address {list} 

D has the same syntax. Type comes from the same list of one-letter specifiers 
that are used for the W command. For example, 

EI A 17 -1 456 8900 -29 

will let the user enter the preceding five decimal integers in array A. 
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Assetnbly Instruction 
Set 

~pica/ 8086 
Instruction Format 

I Sytr. 1 Byte 2, 

I 7 6 s 4 3 2 1 0 7 6 
OPCODE D w MOD 

I 
I__ 

figure F.1 Opcode Format 

s 

In this appendix, we show the binary encoding of a typical 8086 
instruction and give a summary of the common 8086, 8087, 80286, and 
80386 instructions. 

A machine instruction for the 8086 occupies rrom one to six bytes. 
For most instructions, the first byte cont;ilm the opcode, the second byle 
contains the addressing modes of the operands, and the other bytes contain 
either address Information or immediate data. A typical two-operand lnstruc­
lion has the format given in figure El 

., In the first byte, we see a six-bit opcode that identifies the op1~ration. 
The same opcode is used for both 8- and 16-bit operations. The size of the 
oper;inds ls given by the W bit: W = 0 means 8-blt data and W = 1 means 
16-bit data. 

For register-to-register, register-to-memory, and memory-to-regbter op­
erations, the REG field in the second bytl' contains a register number z;nd the 
D bit specifies whether the register in the REG field Is a source or dest;,nation 
operand, D = 0 means source and D = l means destination. For other types of 
operations, the REG field contaim a three-bit extension of the opcode. 

Byte 3 Byte 4 Byte 5 ByteS 

4 3 2 1 0 low disp nigh disp low high 
REG RIM or data or data data data 

489 
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MOD=11 Effective Address Calculation 

RIM W=O W=1 RIM MOD :00 MODs01 Moo .. 10 

~ :: AL AX 000 (BX)+ (SI) (BX) + (SI) + 08 (BX)+ (SI)+ 016 

CL ex 001 (BX) +(DI) (BX) + (DI) + 08 (BX)+ (Oil+ D16 

--1--
. 

(BPl +(SI) 
.. i. .-...:; .; 1. 

. 010 DL DX 010 (BP) + (SI) + OS (BP)+ (SI)+ 016 
I 
~ 

! I 
BX 011 (BP)+ (DI) (BP) + (DI) + D8 (BP)+ (DI)+ D16 i 011 I BL 

I 
~ 

I I 100 AH SP 100 (SI) (SI)+ DB (SI)+ D16 

~ i 
I 101 i CH BP 101 (DI) (DI)+ DB (DI)+ D16 
L -

1 110 I DH SI 110 I DIRECT ADDRESS (BP)+ 08 (BP)+ D16 
I- _____ _.___ -
I 111 I BH I DI 111 (BX) (BX)+ DB (BX)+ 016 
L _____ : _ _J 

I rv'OD = 11 means register mode. 

''OD= 00 means memory mode with no displacement, except when RIM= 110, then a 16-bit 
displacement follows. 

MOD= 01 means memory, with B·b1t displacement following (DB). 

L_~100 = 10 means memory mode with 16-bit displacement following (016). 

Figure F.2 MOD and RIM Fields 

F.2 
8086 Instructions 

The combination of the W, bit and the ltEG field can specify a total 
of 16 TL'gistcrs, .sec Table F.1- · 

The second operand is spcc.:ific<l by the l\lOD and R/M fields. Figure 
F.2 shows the various modes. 

For segment registers, the field ls indicated by SEG. Table F.2 shows 
the seg~ent register encodings. " 

The following set of 8086 instructions appears in alphabetical order. 
In the set 

• (register) stands for the contents of the register 

• (EA) stands for the co_ntents of t'he memory location given by 
the effective address EA 
flags affected means ·those flags that '!re modified by the In· 
struction according to the result , , . , , 

• flags undefined means the values of those flags are unreliable 
• disp means 8-bit displacement 
• dlsp-low disp-hi means 16·bit displacement 
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Table F.1 :Register Encoding 

REG 

000 
001 
CllOt 

. 011 ..... 
100 

. 101 
' 110· 

• 111 
'' · ... 
Table F.i 
SEG 

00 

01 
10 

11 

W=O. 

AL 
CL 
DI: 
BL 
AH 
CH 
DH . 
BH 

.se'g!"'ent_ ~egis_t~r Encoding 

Register 

ES 

cs. 
SS 

'DS 

: AAA: ASCII Adjust for Addition 

W= 1 

AX 

ex 
DX 
BX 
SP 
BP 
SI 
DI 

Corrects the result in AL of adding two unpacked BCD digits or two ASCII digits. 
f-orinat: AAA 
Operation:· - if th~ '.lower nibble of AL is greater than 9 or if AF :.s set to 

i; then AL is incremented by 6, AH is incremented by 1, 
- and AF Is set to I. This instruction always clears the upper 

, nibble of AL and copies AF to CF. 
.·Flags: CL - : Affected-AF, CF 

Undefined-OF, PF, SF, ZF . ..~. r. 
Encoding: 00110111 

3.7 -

AAD: ASCII Adiu'st f~r Division 

Adjusts the unpacked BCD.dividend in AX in prcp;iration for division. 
Format: '.1 AAD 
Operation: The_unpackcd BCD operand in AX is converted into binary 

:and stored in.AL. This is achieved by multiplying AH by 10 
and adding the result to l.L. AH is then cleared. 

Flags: Affected-,-PF, SF. ZF . 
Undefined-Ar, CF, OF 

Encoding: 11010101 · .. 0000,1010 
:::>5 OA 

AAM: 'ASCII Adju~t for Multiplication 

Convcrts:the result of multiplying two BCD digits into unpacked BCD format. 
Can be .used in converting numbers lower than 100 into unpacked BCD format. 
Format: AAM 
Operation: The contents of AL are converted into two unpackec: BCD 

digits and placed in AX. AL is divided by 10 and the quo­
tient ls plal:ed in AH and the remainder in AL. 
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Fla~s: Affected-PF, SF, ZF 
Undefined-AF, CF, OF 

Encoding: 11010100 00001010 
D4 OA 

AAS: ASCII Adjust for Subtrectlon 

Corrects the result in AL of subtracting two unpacked BCD numbers. 
Format: AAS 
Operation: IC the lower nibble of AL Is greater than 9 or if AF is set to 

1, then AL is decremented by 6, AH is <lecremenled by 1, 
and AF is set to 1. This instruction always clears the upper 
nibble of AL and copies AF to CF. 

flags: Affected-AF, CF 
Undefined-;-OF, PF, SF, 'D 

Encoding: o o 111111 
3F 

ADC: Add with Carry 

The carry flag is added to the sum of the source and destination. 
Format: ADC destination, source 
Operation: If CF = 1, then (dest) = (source) + (dest) + 1 

If CF = 0, then (dest) = (source) + (dest) 
Flags: Affected-AF, CF, OF, PF, SF, ZF 
Encoding: Memory or register with register 

OOOlOOdw mod reg r/m 
Immediate to accumulator 
OOOlOlOw data 
Immediate to memory or register 
lOOOOOsw mod 010 rim data 
(sis set if a byte of data ls added to 16-bit memory or register.) 

ADD: Addition 

Format: 
Operation: 
Flags: 
Encoding: 

ADD d~stination,source 

(dt)St:.) = (sou::-ce) + (destl 
Affected-Al', CF, 01', PF, SF, ZF 
Memory or register with register 
OOOOOCdw mod reg rim 
Immediate to accumulator 
OOOOOlOw data 
Immediate to memory or register 
lOOOOOsw mod 000 rim data 
(s is set if a byte dab is added to 16-bit memory or register.) 

AND: Logical AND 

format: 
Oper;ition: 

flags: 

Encoding: 

1\ND destinat.ioo, source 
Eolch bit of the source is ANDed with the corresponding bit 
in the destination, with the result stored in the destination. 
CF and OF are cleared. 
Affected-CF, OF, PF, SF, ZF 
Undefined: AF 
Memory or register with register 
001000dw mod reg rim 
Immediate to accumulator 
0010010w data 
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Immediate to memory or register 
lOOOOOOw mod 100 rim data 

CALL: Procedure C.11 

Format: 
Operation: 

Flags: : 
Encoding: 

CALL target 
The offset address of the next sequential instruction is 
pushed onto the stack, and control is transferred to the tar­
get operand. The target address is computed as fo.llows: (1) 
intrasegment direct, offset = IP+ displacement, (2) intraseg­
ment indirect, offset = (EA), (3) intersegment direct, seg­
ment:offset given in instruction, and (4) intersegment 
Indirect, segment ~ (EA +2), offset = (f.A). 
Affected-none · 
Intrasegment Direct 
11101000 disp-low disp-high 
Intra-segment Indirect 
11111111 med 010 rim 
lnlersegment Direct 
10011010 offset-low offset-high seg-low seq­
high 
Intersegment Indirect 
11111111 mod 011 rim 

CBW: Convert Byte to Word 

Converu the ~lgncd 8-bil number In AL into a signed 16-bit number in AX. 
Format: CBW 

Operation: If bit 7 of AL is set, then AH gets FFh. 

Flags: 
Encoding: 

If bit 7 of ·AL is clear, then AH is cleared. 
Affected-none 
10011000 
98 

CLC: Clear cany .Flag 

Format: CLC 
Operation: Clears CF 

·Flags: · · Affected-CF· 
Encoding: 11111 o o o 

FS 

CLO: Clear Direction Flag 

Format: 
Operation: 
Flags: 
Encoding: 

CLD 
Clears DF 
Aff1.~'11.-d-DI: 

lillllOO 
FC· 

CU: Clear Interrupt Flag 

Disables maskable external interrupts., ,. 
Forniat:' · ' CLI · · "' 
Operation:·.. Clear~dF , • 
Flags: Affect~-lf 

Encoding: · 11112010 
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CMC: Complement carry Flag 

Format: CMC 
Operation: Compleme~ts CF 
Flags: Affected-CF 
Encoding: 1111o1 o o 

F5,. 

~P: Compare 

Compares two operands by subtraction. The flags are affected, but the result 
is not stored. · 
Format: 
Operation: 

Flags: 
Encoding: 

CMP destina;ion,source 
The source operand is subtracted from the destination and 
the flags are set according to the result. The operands are 
not affected. · 
Affected-AF, CF, OF, PF, SF, ZF 
Memory or register with register 
001110dw,. mod reg r/m 
Imn1ediate with accumulator 
OOllllOw data 
Immediate with memory or register 
lOOOOOsw mod 111 r/m data 

CMPS/CMPSB/CMPSW:. C~mpare Byte or Word String 

Comp11res two memory operands. If preceded by a REP prefix, strings of 
arbitrary size car. be compa~ed: 
Format: CMPS sourc:e-st r ~ng+dest-st ring 

or 

Operation: 

Flags: 
Encodirts!: 

CMPSB 
or 
CMPSW 
The dest-string indexed by ES:DI is subtracted from the 
source-~tring indexed by SI. The status flags are affected. If 
the control' flag OF is 0, then SI and DI are incremented; oth­
erwise, they are decremented. The increments are 1 for byte 
strings and 2 for word strings. 
Affected-AF, CF, OF, PF, SF,,ZF 
1010011w 

CWD: Convc>rt Word to Double Word 

Converts the slgnei:l ·16:bit 'number in' AX into a signed 32-bit number in 
DX:AX. , 
Format: 
Operation: 

Flags: 
Encoding: 

CWD , . 
If bit 15 of AX is set, then DX gets FFFf. 
If bit 15 o( AX is clear, then DX ls cleared. 
Affected-none 
10011001 

-. ; ·, 

DAAi Decimal Adju&t for Addition 

Corrects the result in AL of adding two packed BCD operands. 
Format: DM, 

Operation: If th~ 1'>wer nibble of AL ls greater than 9 or if AF is set to 
1, then AL ls incremented by 6, and AF is set to 1. If AL ls 
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greater than 9Fh ·or if the CF is set, then 60h is added to AL 
and ~F_is set to 1. 

Flags: Affected_.::._AF, CF, PF, SF, ZF 
Uridefined--OF ·- ,, · 

-Encoding: 00100111 
• 27 • . . 

DAS: ~cimal. Adjus~ f~r Subtraction 

~orrects the result in AL of subtracting two packed BCD operandi .. 
Format: . '.! DAS - ·. 1 

Operation: . If the lower nibble of AL is greater than 9 or·if AF is set to 

Flags: 
Encoding: 

1, .then 60h is subtracted from AL and CF is set to I. 
Affected-AF, CF, PF, SF, ZF 
00101111' 
2F 

DEC: Decrement 

Format: . DEC destination. 
Operation:, ,Decrements the destination operand by I. 
Flags: ... · , . . -Affectecf...;..AF, OF, PF, SF, ZF 
Encoding: Register (word) 

DIV: Divid., 

01001 ·rE!g" 
Memory or register 
lllllllw;mod 001 rim 

Performs unsigned division. 
Format: DIV - source 
Operation: The divisor is the source operand, which is either mernory 

or regis$er. For byte division (8-bit source) the dividenij is 
AX, and for word division (16-bit source) the dividend is 
DX:AX. The quotient Is returned to AL (AX for word c.:ivi­
sion), and the remainder is returned to AH (DX for weird di­
vision). If the quotient Is greater than 8 bits (16 bits for 
word division), then an INT 0 is generated. 

Flags: Undefined-AF, CF, OF, PF, SF, ZF 
Encoding: llllOllw mod 110 r/m 

ESC: Escape 

Allows other processors, such as the 8087 coprocessor, to access instructions. 
The 8086 processor performs no operation except to fetch a memory o.::>erand 

· for the other processor. 
Format: ESC external-opcode, source 
Flags: none 
Encoding: llOllxxx-mod xxx r/m 

(The xxx sequence indicates an opcode for the coproce!isor.) 

HLT: Halt 

· Causes the processor to enter Its halt state to wait for an external interrupt. 
Format: 'HLT 
Flags: • none · 

-Encoding: .11110100 
.. F4 
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Performs signed division. 
Format: IDIV source 
Operation: The divisor Is the source operand, which is either memory 

or register. For byte division (8-blt source) the dividend is 
AX, and for word division (16-bit source) the dividend is 
DX:AX. The quotient Is returned to AL (AX for wbrd divi­
sion), and the remainder Is returned to AH (DX for word di­
vision). If the quotient is greater than 8 bits (16 bits for 

Flags: 
Encoding: 

word divbion), then an INT 0 Is generated. 
Undefined-AF, CF, OF, PF, SF, ZF 
llllOllw mod 111 rim 

IMUL: Integer Multiply 

Performs signed multiplication. 
Format: IMUL source 
Operation: The multiplier is the source operand, which is either mem­

ory or register. For byte multiplication (8-bit source) the mul­
tiplicand Is AL, and for word multiplication (16-bit source) 
the multiplicand is AX. The product is returned to AX 
(DX:AX for word multiplication). The flags CF and OF are 
set if the upper half of the product is not the sign-extension 
of the lower half. 

Flags: Affected-CF, OF 
Undefined-AF, PF, SF, ZF 

Encoding: llllOllw mod 101 r/m 

IN: Input Byte or Word 

Format: 
Operation: 

Flags: 
Encoding: 

IN accumulator,port 
. The contents of the accumulator are replaced by the con­
tents of the designated 1/0 port. The port operand is either 
a constant (for fixed port), or DX (for variable port). 
Affected -none 
Fixed port 
lllOOlOw port 
Variable port 
lllOllOw 

INC: Increment 

Format: · 
Operation: 
Flags: 
Encoding: 

INC destination 
Increments the destination operand by 1. 
Affected-AF, OF, PF, SF, ZF 
Register (word) 
01000 reg 
Memory or register 
lllllllw mod 000 r/m 

INT: Interrupt 

Transfers control to one of 256 interrupt routines . 
. Format:. INT interrupt-type 

Operation: The FLAGS register is pushed onto the stack, then TF an~F 
are cleared, CS is pushed onto the stack and then filled by 
the high-order word of the interrupt vector, IP is pushed 
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onto the stack and then filled by the low-order word of the 
interrupt vector. 

Flags: Affected-IF, TF 
Encoding: Type 3 

11001100 
Other typ~~-
11001101. type. 

INTO: Interrupt if Overflow 

Generates an INT 4 if OF Is set. 
Fotmat: INTO 
Operation: If OF= l, then same 0peratlon as INTi4·. l(OF'= 0, the;n n'o 

operation takes:pJace. ··• · ·· · 
Flags: If OF=l then ()1' and TF are clearaj 

If OF=O then nc) fla2s a~e affected.' . 
Encoding: llOOJ 110 

CE 

IRET: Interrupt Return 

Provides a return from aq interrupt. routine. . 
Format: IRET · 

Operation: Pops the siac~ intc:> the. registers IP. CS, and FLAGS\ 
Flags: Affected-all · ·· · 
Encoding: 11001111 

CF 

J(con~ition}: jump Short, If Cond~~ Is Met 

·Format: J (condition) shQ~·t-label 
Operation: If the condition is t,ttle, then jfr>istlort (~P is made t•) the la-

bel. The label must be withln1i'7128 t~ ;tl27 bytes.of'the next 
instruction. 

· Flags: ·Affected...,..-none 

Instruction ,Jump If Cofidlt1t.V.·. :c En.:Ot/;ng 
JA above Ci;f-idil) a~d ZF..: o' 77 disp 

JAE above or equal CF
0

k 0 73 d1sp 

JB below (Ji '"• 1 72 disp 
JBE below or equal CF o' 1 or ZF = 1 76 d1sp 

JC carry CF., 0 72 clisp 

JCXZ ex is o (CF or ZF) = 0 U C'1sp 

JE equal ZF = 1 74 d:~p 

JG greater ' ZF = 0 and SF = OF 7r d1sp 

JGE greater or equal ZF= OF 70 cl1sp 

. Jl less (SF :Mor ~) = 1 7( di:;p 

JLE less or equdl · (SF xor Of) or ZF =· 1 7£ d1sp 

JNA not above CF"= 1 or ZF "' 1 ' 76 d1>p 
JNAE not above or equal CF; .. 1 72 disp 

.JNB not below Cf= 0. -.. 73 a.~p 

JNBE not bP'0""'. or equal CF= 0 and ZF = 0 77 d•sp 
I 

jf,( not carry CF= 0 73 d1sp 

JNE not equal ZF 10 0 75 disp· 
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JNG· 

JNGE 

JNL 

JNLE 
JNO. 

JNP 

JNS 

JNZ 

JO 
.JP 

JPE 

JPO 

JS 

JZ 

JMP: Jump 

Format: 
Operation: 
Flags: 
Encoding: 

Jnot greater (SF xor OF) or ZF = 1 

_not greater nor equal 7C disp 
(SF xor OF) =· 1 

not less 
; 0 

SF= OF 

not less nor equal ZF = 0 and SF = OF 

not overflow - OF= 0 
not parity PF= 0 

not sign sr= o 
n~t zrr,9 ZF = 0 
overflow OF= 1 
parity - PF-= 1 

parity even PF= 1 

parity odd PF= 0 

sign SF= 1 
zero ZF = 1 

JMP target 
Control is transferred to target label. 
Affected-'none 
Intrase8mcnt direct 
lll01001 disp-low disp-hi 

Intrasegmcnt direct short . 
11101011 disp 

lntersegment direct 
11101010 
lnterscgment indirect 
11111111 mod IOI r/m 
lntrasegmcnt indirect 
11-111111 mod 100 r/m 

7E disp 

70 disp 

7F disp 

71 disp 

78 d1sp 

79 disp 

75 disp 

70 disp 

7A disp 

7A disp 

78 disp 

. 78 disp 

74 disp 

LAHF: Load A'H from. Flags 

Fo_rmat: 
Operation: 

Flags: · 
- Encoding: 

LAHF 
The low eight bits of the FLAGS register arc transferred to 
AH. . 
Affected-none 
10011111 
9F 

LOS: Load Data Segment Register 

.. 

Lo;ids the OS regi~ter with·a segment address and a general register with an 
oflsct so that data at the segtm:nt:offsct may be accessed. 
Format:· LDS dest1'-o.ti0n, source 
Opcr<ition: The source is a doubleword memory operand. The lower 

word is placed iri the destination register, and the up­
perword is placed in DS 

flags:' 
Encoding: 

Affe( ted-none · 
llOOJlOl rrod reg 

L.E~: Load Effective Address 

rim 

Lo<ids an offset memory address lt> a register. 



Format: 
Operation: 

Flags: 
Encoding:· 
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LEA destination,source 
The offset address of the source memory operand is placed 
in the destination, which 1s a general register. 
AUected_.::none 
lOOOllOl;·mod reg rim 

. . . . 

LES: Load Extra Segment Register'\.:! 

Loads the ES register with a· segment address and a general register with an 
offse~ so .that data at,the segment:offset may be accessed. 
Format: LES destination, source 
Operation: The source Is a doubleword memory opt>rand. The lower 

word ls placed in the destination register, and the up­
perword is placed in ES. 

Flags: none -
Encoding: 11000100 mod reg rim 

LOCK: Lock Bus · 

In ~ multiproces~or environment, locks the bus. 
Format: LOCK 

Operation: 

Flags: 
Encoding: 

LOCK is used as a prefix that can precede any instructi.:m. 
The bus is locked for the duration of the execution of the in­
struction to prevent other pr<?Cessors from accessing memory. 
none 
11110000 
FO 

LODS/LODSB/LODSW: Load Byte or Word String 

Transfers a memory byte or word indexed by SI to the accumulator. 
Format: LO:JS source-string 

or 

Operation: 

Flags:· 
Encoding: 

LOOP 

LODSB 
or 
LODSW 
The source byte (word) is loaded into AL (or AX). SI is incre­
mented by 1 (or 2) if OF is clear; otherwise SI is decrement•~ 
by 1 (or 2). 
Affected-none 
1010110w 

Loop until count is complete. 
Format: LOOP short-label 
Operation: CX is decremented by 11 and if the result is not zero ther.. 

Flags: 
Encoding: 

control is transferred to the labeled in.S.truction; otherwise 
control flows to the next Instruction. : 
Affected-none 
11100010 disp 
£2 

LOOPEJLOOPZ: : Loop if Equalii.oop If zero 
I " j:. - • 

A loop is controlled by the counter and the ZF. 
Format: LOOPE short-lat,el 

or 
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Operation: 

Flags: 
Encoding: 

LOOPZ short-label 
CX is decremented by 1, if the result is not zero and ZF = 1, 
then control is transferred to the labeled instruction; other­
wise, control flows to the next Instruction. 
Affected-none· 
11100001 disp 
El 

l.OOPNE/LOOPNZ: Loop If Not Equal/Loop If Not zero 

A loop is controlled by the counter and the ZF. 
Format: LOOPNE short-label 

or 

Operation: 

Flags: 
Encoding: 

LOOPNZ ~hart-label 
CX is decremented by 1, if the result is not zero and ZF = 0, 
then control is transferred to the labeled instruction; other­
wise, control flows to the next instruction. 
Affected-none 
11100000 disp 
EO 

MOV: Move 

Move data. 
Format: .MOV destination,sourcc 
Operation: 
Flags: 
Encoding: 

Coples the source operand to the destination operand. 
Affected-none 
To memory from accumulator 
lOlOOOlw addr-low addr-high 
To accumulator from ·memory 
1010000w addr-low addr-high 
To segment register from memory or register 
10001110 mod 0 seg r/m 
To memory or register from segment register 
10001100 mod 0 seg r/m 
To register from memory or register/ To memory from reg 
lOOOiOdi mod reg r/m (addr-low addr-high) 
To register from immediate-data 
lOllw reg data (data-high) 
To memory or register from immediate-data 
llOOOllw mod 000 r/m data (data-high) 

MOVS/MOVSBIMOVSW: Move Byte or Word String 

Transfers memory data addressed by SI to memory location addressed by 
ES:DI. Multiple bytes (or words) can be transferred if the prefix REP is used. 
Format: MOVS dest-string, source-string 

or 
MO'JSB 
or 
MOVSW 

Ope~ation: The source string byte (or word) Is transferred tn the destina-
tion operand. Both SI and DI arc then increrr by 1 (or 
2 for word strings) if DF = 0; ot)·erwise. boti. -
decremented by 1 (or 2 for wor•J ~· ·ings). 

Flags: Affected-none 
Encoding: 1010010w 
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MUL: Multiply 

Unsigned multiplication. 
Format: MUL source 
Operation: The multiplier is the source operand which Is either mem­

ory or register. For byte multiplication (8-bit source) the mul­
tiplicand is AL and for word multiplication (16-blt source) 
the multiplicand is AX. The product is returned to AX 
(DX:AX for word multiplication). The flags CF and OF are 
set if the upper half of the product Is not zero. 

Flags: _ Affected-CF, OF 
Undefined-AF, PF, SF, ZF 

Encbding: llllOllw mod 100 r/m 

NEG: Negate 

Forms two's complement. 
Format: NEG destination 
Operation: The destination operand Is subtracted from all l's (OJ:Fh for 

bytes and OFFFFh for words). Then a 1 Is added and the re­
sult placed in -the destination. 

Flags: Affected-AF, CF, OF, PF, SF, ZF 
Encoding: llllOllw mod 011 r/m 

NOP: No Ope~ation 

Format: 
Operation: 
Flags: 
Encoding: 

NOP 
No operation is performed. 
Affected-norie 
10010000 
90 

NOT: Logical Not 

Format: 
Operation: 
Flags: 
Encoding: 

NOT destination 
Forms the one's complement of the destination. 
Affected-none 
llllOllw mod 010 r/m 

OR: Logical Inclusive' Or 

Format: OR desti"nation, source 
Operation: Performs logical OR operation on each bit position of ·:he op­

erands and places the result in the destination. 
Flags: Affected-CF, OF, PF, SF, ZF 

Undefined-AF " 
Encoding: Memory or register with reg. ~ter 

- OOOOlOdw mod reg r/m 
Immediate to accumulator 
OOOOllOw data 

. Immediate to memory :or register 
lOOOOOOw mod 001 r/m 

OUT: Output Byte or Word 

Format: 
Operation: 

OUT accumulator,port 
1. The contents of the designated 1/0 port are replaced by the 

contents of the accumulator. The port is either 1 consta;:it 
(for fixed port) or DX (for variable port). _ ·.· 
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Flags: 
Encoding: 

Affected-none' 
Fixed Port 
1110011w port 
Variable port 
lllOlllw 

POP: Pop Word Off Stack to Destination 

Format: 
Operation: 

Flags: 
Encoding: 

POP destination 
The contents of the destination are replaced by the word at 
the top of the stack. The stack pointet is incremented by Z. 
Affected-none 
General register 
01011 reg 
Segment register 
000 seg · 111 
Memory or register 
10001111 ffiod 000 rim 

POPF: Pop Flags Off Stack 

Format: 
Operation: 

Flags: 
Encoding: 

POPF 
Transfers flag bits from the top of the stack to the FL/\GS reg­
ister and then increm:!nts SP by 2. 
Affected-all 
10011101 
90 

PUSH: Push Word onto Stack 

Format: 
Operation: 

Flags: 
Encoding: 

PUSH source 
Decrements the SP register by 2 and then tr;msfers a word 
frnm the source operand to the new top of stack. 
i·one 
Gt!nero; register 
OlOlCJr0·;i 

Segment rtgister 
000 seg 110 
Memory or register 
11111111 mod 110 r/m 

PUSHF: Push Flags onto Stack 

Format: 
Operation: 
Flags: 
Enqx:ling: 

PUS HF 
Decrements SP by 2 and transfers flag bits to the top of the stack. 
Affected-none 
iOO~llOO 

:.ic 

RCL: Rotate Left Through Carry 

Rotates destination left through the CF llag one or mort! times. 
Format: RCL destination, l 

or 
RCL destination.CL 

Operation: The first format rotates the destination one~ through C~~e­
sulting in the msb being placed in CF and the old CF elfded 
in the lsb. To rotate more than once, the count must be 
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placed in ·cL. When the count Is 1 and the leftmost two bits 
of the old destination are equal, then OF is cleared; if they 
are unequal, OF is set to L When the count is n:>t 1, then 
OF is undefined. CL is not changed. 
Affccted-CF,OF 
110100vw mod 010 rim 

If v=O, count=l 

If v=l, count-(CL) 
; i. 

RCR: Rotate Right Through Carry 

Rotates•destination right through the CF flag Qne or more times. 
Format: RCR destination, 1 

or · , . 

Operation: 

Flags: 
. E!1c9.9i r;ig: 

· RCR destination, CL 

The first format rotates the destination once thro1Jgh CF .e­
sulting in the lsb being placed in CF and the old CF ended 
in the msb. To rotate .mure t ~1 once, the count must be 
placed in CL. When the count is 1 and the leftmost two bits 
of the new destination are equal, then OF is cleared; if they 
are unequal, OF is set to l. When the count is not 1, then 
OF is undefined. CL is not changed. 
Affected-'-CF, ·OF -" · : .. 
110100vw m?d. 011 r/m 

If v 0, count ~ ·1 
If v

0 

=· 1, count'.= (CL) 

.. REP/REPZ/REPE/REPNEJREPNZ: Repeat String Operation 
, , I•_. 

. The string operation that follows is ~peated while (CX) is not zero. 
Format: REP /REPZ/RE?E/REPNE/ki::?NZ string-instruct ion 

Operation: The string operation is carried out until (CXJ is decremented 

Fl;igs: -
Encoding: 

to 0. For CMPS and SCAS operations, the ZF is alsc used in 
terminating the iteration. For REP/REPZ/REPE the CMPS and 
SCAS operations are repeated if (CX) is not zero and ZF is l. 
For REPNE/REl'NZ, the CMl'S and SCAS operations are re-
peated if (CX) is not zero and ZF is o: 
See the associated string instruction. 
RE?/~EPZ/RCPE 11110011 
REPNE/RE?NZ .· 11110.010 

RET: Return from Procedure 
. .,. l 

Returns control after a called procedure has been executed. 
Format:· · ·. RET [pcp;.:·J.;.lue] 

Operation: , If RE.Tis within a NEAR proceuurc, it is translated i.1to an in­
trasegmcrH JC•turn, which updates tile II' by popping one 
word from the stack. If RET is within a FAR procedue, it is 
translated into an interscgment return that updates both the 
II' and CS. Tht- optional pop value specilies a numb~r of 

Flais: · 
Epcoding: 

'bytes ·i11 the ·stack ·t6'·be· diKardcd. These arc parameters 
passed to the procedure. 

· Affoctcd-none · · •· 
Intrn~egment 

llC(;CIOi"i 
.fri tra~egnien t with 'i)cip \ialuc 
~ • <. •• • • • 

. •11000010 



s04 ·· · Appendix F Assembly Instruction Set 

lntersegment 
11001011 
lntersegment with pop value 
11001010 

ROL: Rotate Left 

Rotates destination left one or more times. 
Format: 

Operation: 

Flags: 
Encoding:. 

ROL destination,l 
or 
ROL destination,CL 
The first format rotates the destination once; CF also gets 
the msb. To rotate more than once, the count must be 
placed in CL. When the count Is 1 and the new CF Is not 
the same as the msb, then the OF is set, otherwise, OF is 
cleared. When the count is not 1, then OF is undefined. CL 
is not changed. 
Affected-CF, OF 
llOlOOvw mod 000 r/m 
If v - 0, count • l 
If v = l, count = (CL) 

ROR: Rotate Right 

Rotates destination right one or more times. 
Format: ROR destination, l 

Operation: 

Flags: 
Encoding: 

or 
ROR destination,CL 
The first format rotates the destination once; CF also gets 
the lsb. To rotate more than once, the count must be placed 
in CL. When the count Is 1 and the leftmost two bits of the 

' new destination are equal, then OF is cleared; if they are un­
·equal, OF is set to 1. When the count is not 1, then OF is 
undefined. CL is not changed. 
Affected-CF, OF 
110100vw med 001 r/m 
If v ~ 0, count ~ l 
If v a l, count a (CL) 

SAHF: Store AH in FLAGS Register 

Format: 
Operation: 

Flags: 
Encoding: 

SAHF 
Stores five bits of AH into_ the lower byte of the FLAGS regis­
ter. Only the bits corresponding to the flags are transferred. -
The-flags in the lower byte of FLAGS register are SF= bit 7, 
ZF = bit 6, AF = bit 4, PF = bit 2, and CF = bit 0. 
Affected-Ar; CF, PF, SF, ZF 
10011110 
9E 

SAUSHL: Shift Arithmetic Left/Shitt Logical Left 

Format: SAL/SHL destination,l 
or 

-SAL/SHL destination, CL 
Operation: The first format shifts the destination once; CF gets the rrub 

and a 0 is shifted into the lsb. To shift more than once, the 
count must be placed in CL. When the count is 1 and the 
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new CF is not the same.as the msb, then the OF Is set; other­
~ise, OF is cleared. When the count is not 1, then OF is un­
defined. CL is not changed. 
Affected-CF, OF, PF, SF, ZF 
Undefined-AF 

Encoding:· 1101 OOvw mod l 00 r /m 
If v = 0, count l 

If v ~ 1, count - (CLJ . . 

SA~: Shift Arithmetic Right 

Format: SAR destination, l 
or 
SAR destinatio~,CL 

Operation: The first format shifts the destination once; CF gets the lsb 
and the m~b is repeated (sign is retained). To shift r.:wre 
than once, the count must be placed in CL. When 1he 
count is 1 OF is cleared. When the count is not 1, then OF 
is undefined. CL is n_ot changed. 

Flags: Affected-CF, OF, PF, SF, ZF 
Undefined-AF 

Encoding: 110100vw mod 111 r/m 
If v 0, count 
If v = 1, count = (CL) 

SBB: Subtract with Borrow 

Format: 
Operation: 

Flags: 
Encoding: 

SBB destination,source 
Subtracts source from destination; and if Cf is 1 then sub­
tract 1 from the result. The result is placed in the de:otina­
tion. 
Affected-AF, CF, OF, PF, SF, ZF 
Memory or register with register 
OOOllOdw mod reg r/m 
Immediate from accumulator 
OOOlllOw data 
Immediate from memory or register 
lOOOOOsw mod 011 · r/m data 
(s is set if an immediate-data-byte is subtracted from 16-bit 
memorv or re1!ister.) 

SCAS/SCASB/SCASW: Scan Byte or Word String 

Compares memory against the accumulator. Used with REP, it can scan mul­
tiple memory locations for a particular value. · 
Format: SCAS dcst-st r ir.g 

or 

. . 
Operation::, 

Flags: 
Encoding: 

SCA SB 
or 
SCASW 
Subtracts the destination byte (or word) addressed by DI 
from AL (or AX). The flags are affected but the result h not 
saved. DI is Incremented (if DF = 1), or decremented (if DF = 
0) by 1 (byte strings) or 2 (word strings). 
Affected-AF, CF, OF, PF, SF, ZF 
1010lllw 
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SHR: Shift Logical Right 

Format: SHR destination, 1 
or 
SHR destination,CL 

Operation: The first format shifts the destination once; CF gets the lsb 
and a 0 is shifted into the msb. To shift more tpan once, 
the count must be placed in CL. When the count is 1 and 
the leftmost two bits are equal, then OF is cleared; other­
wise, OF is set to 1. When the count is not 1, then OF is un­
defined. CL is not changed. 

Flags: Affected-CF. OF, PF, SF, ZF 
Undefined-AF 

Encoding: 110100vw mod 101 rim 
If v 0, count 1 
If v = 1, count = (1...L) 

STC: Set Carry Flag 

Format:. 
Operation: 
Flags: 
Encoding: 

. STC 
CF Is set to 1. 
Affected-CF 
11111001 
F9 

STD: Set Direction Flag 

Format: 
Operation: 
Flags: 
Encoding: 

STD 
DF is set to 1. 
Affected-OF 
11111101 
FD 

STI: Set Interrupt Flag 

Format: 
Operation: 
Flags: 
Encoding: 

STI 
IF is set to 1, thus enabling external interrupts. 
Affected-If. 
11111011 
FB 

STOS/STOSB/STOSW: Store Byte or Word String 

Stores the accumulator into memory. When used with REP, it can store mul­
tiple memory locations with the same value. 
Format: STOS dest-string 

or 

Oreralion: 

Flags: 
Encoding: 

or 
::;:-csw 
Stores AI. (or AX) into the destination byte <or word) ad­
dressed by DI. DI is incremented (DF = I), or decremented 
(DF = 0) by l (byte strings) or 2 (word strings). 
:\ffccted-none 
1 :•lOlOlw 
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SUB: Subtract 

Fonnat: 
Operation: 

Flags: 
Encoding: 

SUB destination,source 
Subtracts source frqm destination. The result is placed in the 
destina .;on. 

· Affected,-AF; ~F, OF, PF, SF, ZF 
Mc:-r. - .., ~· ·egister with register 
6010lOdw med reg r/m 
immediate from accumula.tor 
OOlOllOw data 
Immediate from memory or register 
lOOOOOsw mod 101 rim data 
(s ls set if an immediate-data-byte is subtracted from 16-bit 
memory or register.) 

TEST: Test (Logical Compare) _ 

Format: 
Operation: 

Flags: 

Encoding: 

WAIT 

Format: 
·Operation: 

·Flags: 
·Encoding: 

TEST'destin3tion,source 
The two operands are ANDed to affect the flags. The oper- · 
ands are not affected. 
Affected-'CF, OF, PF, SF, ZF 
Undefined-AF 

' Memory or registe~ with register 
lOOOOlOw mod reg rim 
Immediate with accumulator 
1010100w data ·-
Immediate with memory or register 

'llllOllw mod 000 rim data 

WAIT 
The processor is placed in a wait state until activated by an 
.external interrupt. 
Affected-none 

'10011611 
9B 

)(CHG: ExchangE 

Format: 
Opcr;ition: 

flags: 
Encoding: 

XCHG destination,source 
The source opcranu ;md the ucstinalion operand arc inlcr­
ch;inged. 
1\fkctcu-11011c: 
Hegistcr with accumulator 
lOOlOreg 
Memory or register with register 
l.000·01:w r..od reg rim· 

XLAT: Translate 

Performs a table lookup translation. 
Format: XLAT so;;rce-table. 
Operation: BX must contain .the offset address of the source table, which 

is at most 256 bites: AL should contain the index of the table 
element. The operation replaces AL by the contents of '.he ta­

Flags: 
Encoding: 

ble element addressed by BX and AL 
Affected-none - -
11010111 
07 
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F.3 
8087 Instructions 

XOR: Exclusive OR 

Forinat: XOR destination, source 
Operation: The exclusive OR operation is performed bit-wise with the 

source and destination operands; the result is stored in the 
destination. CF and OF are cleared. 

Flags: Affected-CF, OF, PF, SF, ZF 
Undefined: AF 

Encoding: Memory or register with register 
OOllOOdw mod reg r/m 
Immediate to accumulator 
OOllOlOw data 
Immediate to memory or register 
lOOOOOOw mod 110 r/m data 

The 8087 uses several data types, when transferring data to or from 
memory, the memory data definition determines the data type format. Table 
F.3 shows the association between the 8087 data types and the memory data 
definitions. In this section we only give 8087 instructions for. simple arith­
metic operations. Check the 8087 manual for other instructions. 

FADD: Add Real 

Format: FADD 

or 
FADD source 
or 
FADD destination,source 

Operation: Adds a source operand to the destination. For the first form, 
the source operand is the top of the stack and the destina­
tion is 'ST(l). The top of the stack is popped, and its value is 
added to the new top. For the second form, the source is ei­
ther short real or long real in memory; the destination is 
the top of the stack. For the third form, one of the operands 
is the top of the stack and the other is another stack regis­
ter; the stack is not popped. 

Table F.3 8087 Data Types 

Data Type Size (bits) Memory Pointer Type 
Definition 

Word integer 16 ow WORD PTR 
Short integer 32 DD DWORD PTR 
Long integer 64 DQ QWORD PTR 
Packed decimal 80 DT TBYTE PTR 
Short real 32 DD DWORD PTR 

Long real 64 DQ QWORD PTR 
Temporary real 80 OT TBYTE PTR 
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FBLO: Packed Decimal Load 

Format: FBLD. source; 
·Operation: .Loads a packed decimal number to the top of the stack. The 

source operand is of type DT (10 bytes). 

FBSTP: Packed BCD Store .and Pop 

Format: FBSTP destination 
Operation: Converts the top of the stack to a packed BCD fo;:mat and 

stores the result in the memory destination. Then the stack 
is popped. 

FDIV: Divide Real 

Format: FDIV 
· or 

FDiV source 
or 
FDIV destination,source 

Operation: Divides the destination by the source. For the first form, the 
source operand is the top of the stack and the des·:ination Is 
ST(l). The top of the stack is popped and Its value Is used to 
divide into the new top. For the second form, the source Is 
either short real or long real In memory; the destluatlon Is 
the top of the stack. For the third form, one of the operal}ds 
Is the top of the stack and the other is another stack regis­
ter; the stack is not popped. 

FIADD: Integer Add 

Format: 
Operation: 

F IADD sou.rce 
Adds the so.urce operand to the lop of the stack. The source 

·operand can be either a short integer or a word Integer. 

FIDIV: Integer Divide 

Format: 
Operation: 

FIDIV source 
Divides the top of the stack by the source. The source oper­
and can be either a short integer or a word integer. 

FILO:' Integer Load ·· 

Format: FIL!) source 
Operation: Loads a memory integer operand onto the top of the stack. 

The source operand is either. word integer, short integer, or 
long integer. 

FIMUL: . Integer Multiply 

Format::· 
Operation: 

FIMUL source 
Multiplies the source operand to the top of the stack. The 
source operand can be either a short integer or a word integer. 

FIST: Integer Store 

Format: 
Operation: 

FIST destination 
Rounds the top of the stack to an integer value and stores to 
a memory location. The destination may be word Integer or 
short integer. The stack is not popped. 
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FISTP: Integer Store and Pop 

Format: -
Operation: 

FISTP ~e~tination 

Rounds the top of the stack to an integer value and stores to 
a memory location. Then the stack Is popped. The destina­
tion may be word integer, short integer, or long integer. 

FISUB: Integer Subtract 

Format: 
Operation: 

F.ISUB source 
Subtracts the source opera1•d from the top of the stack. The 
source operand can be either a short integer or a word integer. 

FLO: Load Real 

Format: FLD source 
Opention: Loads a real operand onto the top of the stack. The source 

may be a stack register ST(i), or a memory location. For a mem­
ory operand, the data type may be any of the real formats. 

FMUL: Multiply Real 

- Format: FMUL 
or 
FMUL source 
or 
FMUL destination,source 

Operation: Multiplies a source operand to the destination. For the first 
form, the source operand is the top of the stack and the des­
tination is ST(l). The top of the st;ick Is popped ;ind its 
value is multiplied to the new top. For the second form, the 
source is either short real or long real in memory; the desti­
nation is the top of the stack. For the third form, one of the 
operands is the top of the stack and the other Is another 
stack register; the stack is not popped. 

FST: Store Real 

Format: 
Operation: 

FST dest: inat ion 
Stores the top of the stack to a memory location or another 
stack register. The memory destination may be short real 
(doubleword) or long real (quadword). The stack is not 
popped. 

FSTP: Store Real and Pop 

Format: FSTP destination 
Operation: Stores the top of the stack to a memQry loc;ition or ;mother 

stack register. Then the sta-ck is popped, The memory dc:sti­
nation may be short real (doubleword), long real 
(quadword), or temporary real (10 bytes). 

FSUB: · Subtract Real 

Format: FSUB 
or 
FSUB source 
or 
FSUB destination,so~rce 
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ov:~atiqn: '. Subtracts a source operand from the destination. For the 
first form, the source operand is the top of the stack and the 
·destination Is ST(l). The top of the stack is popped and its 
value Is subtracted from the new top. For the second form, 
the source is either short real or Jong real in memory; the 
destination is the top of the stack. for the third form, one 
of the operands is the top of the stack and the other is an­
other stack register; the stack is not popped. 

The. ·real-mode 80286 instruction set includes all 8086 instructions 
· plus ·the extended instruction set. The extended instruction set contains five 

groups of instructions, (1) multiply with immediate values (IMUL), (2) input 
and output strings (INS a~d OUTS), (3) stack operations (POPA, PUSH im­
mediate; PUSHA), an'd.(4) shifts arid.rotates with ilnmediate count values, 
and (5) instructions for translating high-level language constructs (:lOUND 
and ENTER) .. We only give the instructions in groups 1-4. 

IMUL: Integer Immediate Multiply , · 

Format: · 

Operation: 

Flags: · 

Encoding: 

· IMUL destination, immediate' 
or 
IMUL destiriation,source,immediate 
For the ·first format, the immediate operand, which must be 

· a byte, iS multiplied with the destination, which must be a 
· 16~bit register. The lower 16-bit of the result is stored in the 
~register. For the second format, the 8- or 16-bit Immediate 
operand is multiplied with the source operand, which may 
be a 16-bit register or a memory word. The lower 16-bit of 

i: the'.resulHs stored ·in the'destination, which must be a 16-
bit register. The flags CF and OF are set if the upper half of 
the product is not the sign-extension of the lower half. 
Affected-CF, OF . . 
Undefined-AF, PF, SF, ZF 
Cj_iQlOsl mo·ci'"reg r/m data [data H s=OJ 

INS/INSB/INSW: Input from Port to String 

Transfers :i.bytc _or word st.ring clcn1cnt lrom ;i porl to memory. Multipk 
bytes or words can be transferred if the prefix REI' is used. 
Format:! INS· destination-'stri.ng, pert 

Opet<ition: 

Flags: 
Encoding: 

··or J 

.·',INSLl 

l-Or 

~I~~ SW 
,,.\ byte or.word is·transferrcd from tht! port designated by 

DX to the Joc.1tion ES:DL DI is then incremented by 1 (or 2 
for wo!d strings),.if DF = O; otherwise, DI is decrementcc: by 
l (or 2 for word strings). 
Affected-none · 
OllOllOw 
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OUTS/OUTSB/OUTSW: Output String to Port 

Transfers a byte or word string element from memory to a port. Multiple 
bytes or words can be transferred if the prefix REP is used. 
Format: OUTS destination-string, port 

or 

Operation: 

Flags: 
Encoding: 

OUT SB 
or 
OUT SW 
A byte or word is transferred from memory located at DS:Sl 
to the port de~ignated by DX. SI is then incremented by 1 
(or 2 for word strings) if DF = O; otherwise, SJ is 
decremented by 1 (or 2 for word strings). 
Affected-none 
OllOillw 

POPA: Pop All General Registers 

Format: 
Operation: 

Encoding: 

POPA 
The registers are popped in the order DI, SJ, BP, SP, BX, DX, 
ex, and AX. 
('1100001 
61 

PUSH: Push· Immediate 

Format: 
Operation: 

Flags: 
Encoding: 

PUSH data 
The data may be 8 or 16 bits. A data byte is signed extended 
into 16 bits before pushing onto the stack. 
Affected-none 
011010s0 data [data if s = OJ 

PUSHA: Push All General Registers 

Format: 
Operation: 

Flags: 
Encoding: 

PU SHA 
The registers are pushed in the order AX. ex, DX, BX, origi­
nal SP, BP, SJ, and DI. 
Affected-none 
01100000 
60 

The general format of shifts and rotates with immediate count values is 

Opcode destination, immediate 

where opcode is any one of RCL, RCR, ROL, ROR, SAL, SHL, SAR, and SHR. 
If the immediate value is l, then the instruction is the same as an 8086 
instruction. For an immediate value of 2--31, the instruction operates like an 
8086 instruction in which CL contains the-value. The 80286 does not allow 
a constant count value to be greater than 31. 

The encodings for immediate values of 2-31 are 

RCL 
llOOOOOw mod 010 rim 

RCR 
llOOOOOw mod 011 rim 

ROL 
1100000,;,. mod 000 rim 

ROR 
llOOOOOw mod 001 rim 
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SAL/SHL . 
·llOOOOOw mod 100 r/in 

SAR 
llOOOOOw mod 111 rim· 

SHR 
llOOOOOw mod 101 r/m 

The real-mode 80386 Instruction set includes all real-mode 80286 
instructions plus their 32-bit extensions, together with six groups of new 
instructions, (I) bit scans, (2) bit tests, (3) move with extensions, (4) set byte 
on condition; {S) double-precision shifts, and (6) move to or from special 
registers. We only give instructions in groups 1-5. 

Bit Scan Instructions 

The bit scan instructions are BSF (bit scan forward) and B:5R (bit scan 
reverse). They are used to scan an operand to find the first set bit, and they 
.differ only in the direction of the scan. 
Formats: BSF destination, source 

Operation: 

Flags: 
Encoding: 

or 
BSR destination,source 

'The destination must be a register, the source Is either a reg­
ister or a memory location. They must be both. words or 

. both. doublcwords. The source Is scanned for the fi1st set bit. 
If the bits are all 0, then ZF is cleared; otherwise, ZF is set 
and the destination register is loaded with the bit i:;osition 
of the first set bit. For BSF the scanning is from bit 0 to the 
msb, and for BSR the scanning is from the msb to bit 0. 
Affected-ZF 
BSF 
00001111 10111101 mod reg r/m 
BSR 
00001111 10111101 mod reg r/~ 

· Bit Test lnstructiC?ns 

The bit test instructions are BT (bit test), BTC (bit test and comple­
ment), BTR (bit test and reset), and llTS (bit test and set). They are used to 
copy a bit from the destination operand to the CF so that the bit can be 
tested by a JC or )NC instruction. 

Format: BT dedtination,source 
or 
BTC destination,source 
or r:- ,,.., ".\: · ~. ~ · .. 
BTR destination,source 
'or ·- ""'· · ..... 

·· .. 
'BTS destination,source 

•. ' . . I •.. 

Operation: The source specifies a bit pos1t1on m tne destination ':o be 
· - " copied to the CF. BT simply copies the bit to CF, BTC copies 

the bit arid'co~plements it _in the destination, BTR copies 
the bit and resets it in the destination, and BTS copies the 
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bit and sets it in the destination. The source is either a 16-
bit register, 32-bit register, or an 8-blt constant. The destina-
tion may be a 16-blt or 32-blt register or memory. If the 
source is a register, then the source and destination must 
have the same size. 

Flags: Affected-CF 

Encoding: Source is 8-bit immediate data: 
BT 
00001111 10111010 mod 100 rim 
BTC 
00001 l ll 10111010 mod 111 ilm 
BTR 
00001111 10111010 mod 110 rim 
BTS 
00001111 10111010 mod 101 rim 

· Source Is register: 
BT 
00001111 10100011 mod reg rim 
BTC 
00001111 10111011 mod reg rim 
BTR 
00001111 10110011 mod reg rim 
BTS 
00001111 10101011 mod reg rim 

Move with Extension Instructions 
The move with extension instructions are MOVSX (move with sign­

extend) and MOVZX (move with zero-extend). These instructions move a 
small source into a bigger destination and extend t<? the upper half with the 
sign or a zero. 
Format: MOVSX destination, source 

Operation: 

Flags: 
Encoding: 

or 
MOVZX destination.source 
The destination must be a register, the source Is either a reg­
ister or memory. If the source Is a byte (or word) the destina-
tion is a word (or doubleword). MOVSX copies and sign 
extends the source into the destination. MOVZX cople·s and 
zero extends the source Into the destination. 
Affected-none 
MOVSX 
00001111 lOlllllw mod reg rim 
MOVZX 
00001111 lOllOllW mod reg r/m 

Set Byte on Condition Instructions 
The set byte on condition Instructions set the destination byte to 1 

if the condition is true and clear it if the condition Is false. 

Format: 
Operation: 

Flags: 
Encoding: 

SET(condition) destination 
The destination is either an 8-bit register or memory. It Is 
set to 1 if condition is true and to 0 if condition Is false. 
Affected-none 
00001111 opcode mod 000 rim 
(the opcode byte is given In the following in hex) 
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lmtruction S•t If · Condition Op cod• 
SETA above· CF "' 0 and ZF = 0 97 
SETA.E above or equal CF= 0 93 
SETB below CF= 1 92 
SETBE below or equal CF= 1 or ZF = 1 96 
SETC carry CF= 0 !i'2 
SETE equal ZF '"' 1 94 
SETGG greater ZF .. 0 and SF = OF 9F 

SET GE greater or equal ZF =OF 3) 

SETL iess (SF xor OF) "' 1 9( 

SET LE less or equal (SF xor OF) or ZF = 1 9E 

SETNA not above CF= 1 or ZF = 1 96 

SETNAE not above or equal CF= 1 9~· 

SETNB not below CF= 0 93 

SETNBE not below or equal CF = 0 and ZF = 0 97 

SETNC not carry CF= 0 93 

SETNE not equal ZF = 0 95 

SETNG not greater (SF xor OF) or ZF = 1 9E 
SETNGE not greater nor equal (SF xor OF) = 1 9C 

SETNL not less SF= OF 90 

SETNLE not less nor equal ZF = 0 and SF = OF 9F 

SET NO not overflow OF= 0 91 

SETNP not parity PF= 0 98 

SETNS not sign SF= 0 99 

SET NZ not zero ZF = 0 95 

SETO overflow OF= 1 90 

SETP parity PF= 1 9A 
SET PE parity even PF= 1 9A 
SETPO parity odd PF= 0 98 

SETS sign SF= 1 98 

SETZ zero ZF = 1 94 

Double-Precision Shift Instructions 

The double-precision shift instructions are SHLD (double-precision 
shift left) and SHRD (double-precision shift right). 

Format: SHLD destination,source,count 
or 
SHRO destination,source,count 

Operation: The destination is either register or memory, the source ls a 
register, and both must be of the same size (either 16 or 3:! 
bits). Count is either an 8-bit constant or CL The count 
specifies the number. of shifts for the destination. Instead of 
shifting in zeros as in the case of the single-precision shifts, 
the bits shifted into the destination are from the source. 
However, the source is not altered. The SF, ZF, and PF flags 
are set according to the result; CF is set to the last bit 
shifted out; OF and AF are undefined. 
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Flags: Affected-SF, ZF, PF, CF 
Undefined-OF, AF 

Enco·j,ng: Count.is immediate data: 
SHLD · 
00001111 10100100 mod reg r/m [disp] data 
SHRD 
00001111 10101100 mod reg r/m [disp] data 
Count is CL: 
SHLD 
00001111 10100101 mod reg r/m [disp) 
SHRD 
00001111 10101101 mod reg r/m [dispJ 

' 
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Asse1111bler Directives 

.. 
This appendix describes the most Important assembler directives. To explain 
the syntax, we will use the following notation: 

I separates choices 
{ J enclosed items are optional 
[J repeat the enclosed items 0 or more times 

If syntax is not given, the directive has no required ur optional arguments . 

. ALPHA 

Tells the assembler to arrange segments in alphabetical order. Placed before 
segment definitions. 

ASSUME 

Syntax: ASSUME segnent_register:name [,segment_regis­
ter: name! 

Tells the assembler to associate a segment rcghter with a segment name. 

Ex;imple: ASSUI~C: CS:C_SEG, DS:D_SEG, :3~;~_SEG, E.S:D_SEG 

Note: the name NOTHING cancels the current segment register association . 
. In particular, ASSUME NOTHING cancels segml•nt register associations made 
by previous ASSU!v!E stateme11ts . 

. CODE 

Syntax: . CODE (name J 

A simplified segment directive (MASM 5.0) for defining a code segment. 

.COMM. 

Syntax: 
•' 

, where definition has the syntax NEARIFAR IJlJL'l:~i<.cl:countl 
label is a variable name. . . 
size is BYTE, WORD, DWORD, QWORD, or TBYJ"E 
count is the number of elements contained in the. variable 
(default = I) · 
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Defines a communal variable; such a variable has both PUBLIC and EXTRN 
attributes, so it can be used ,in different assembly modules, 

Examples: 

COMMENT 

Syntax: 

COMM 
COMM 

NEAR WORDl:WORD 
FAR ARRl:BYTE:lO, ARR2:BYTE:20 

COMMENT delimiter {text) 
{text l 
delimiter {text) 

where delimiter Is the first nonblank character after the COMMENT directive, 
Used to define a comment, Causes the assembler to ignore all text between 
the first and second delimiters, Any text on the same line as the second 
delimaer is ignored as welL 

Examples,· 

COMMENT • Uses an asterisk as the delimiter. All this 
text is ignored * 
COMMENT + This text and the following instruction is ig-
nored too + MOV AX,BX 

.CONST 

A simplified segment directive for defining a segment containing data that 
will not be changed by the program, Used mostly in assembly language 
routines to be called by a high-level language . 

. CREF and .XCREF 

Syntax: .CREF {name (,name)) 
.XCREF (name (,name]) 

In the generation of the cross-reference (.CRF) file, .CREF directs the gener­
ation of cross-referencing of names in a program .. CREF with no arguments 
causes cross-referencing of all names. This is the default directive . 
. XCREF turns off cross-referencing in general, or just for the specified names. 

Example: 

.XCREF 

.CREF 

.XCREF NAME1,NAME2 

.DATA and .DATA7 

;turns off cross-referencing 

.:turns cross-referencing back 

;turns off cross-referencing 
;of NAMF.l and NAME2 

Simplified segment directives for defining data segments .. DATA defines an 
initialized data segment and .DATA? defines an uninitialized data segment. 
Uninitialized data consist of variables defined with"?" .. DATA? is used mostly 
with assembly language routines to be called from a high-level language. For 
stand-alone assembly language programs, the .DATA segment may contain 
uninitialized data. 
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Data-Defining Directives 

Directive Meaning 

DB define byte 
DD . define doubleword (4 bytes) 
OF 

DO 
OT 
ow ' 
Syntax: 

define farword (6 bytes); used only with 80386 processor 
define quadword (8 bytes) 
define tenbyte (10 bytes) 
define word (2 bytes) 

{name} directive initializer [, initia:.izer) 

where name Is a variable name. If name Is missing. memory is all•xated but no 
name Is associated with It. Initializer Is a constant, constant expression, or ?. 
Multiple values may be defined by using the DUP operator. See Chapter IO. 

DOSSEG 

Tells the assembler to adopt the DOS segment-ordering convention. For a 
SMALL model program. the order is code, data, stack. This directive should 
appear before any segment definitions. 

ELSE 

Used in a conditional block. The syntax is 

Condition 
statementsl 

ELSE 
statements2 

END IF 

If Condition is true, statements! are assembled; if Condition is false, state­
ments2 are assembled. See Chapter 13 for the form of Condition. 

END • 

Sylltax: END {start_address) 

Ends a source program. Start_address is a name where execut~p is to begin 
when the program is loaded. For a program with only one sqtm:e module, 
start_address would ordinarily be the name of the main proc,eaure or a label 
indicating the first instruction. For a program with several' modules, each 
module must have an END but only one of them can spei;tfy a start_address. 

ENDIF 

Ends a conditional block. See Chapter 13. 

ENDM 

Ends a macro or repeat block. See MACRO and REPT. 

ENDP 

Ends a procedure. See PROC. 

ENDS 

Ends a segment or structure. See SEGMENT and STRUC. 
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EQU 

Syntax: There are two forms, numeric equates and string equates. A numeric 
equate has the form 

name EQU numeric_expression 

A string equate has the form 

name EQU <string> 

The EQU directive assigns the expression following EQU to the constant 
symbol name. Numeric_ expression must evaluate to a number. The assembler 
replaces each occurrence of name in a program by numeric_expression or 
string. No memory is allocated for name. Name may not be redefined. 

Examples: 

MAX 
MIN 
PROMPT 

ARG 

Use in a program: 

.DATA 

EQU 32767 
EQU MAX - 10 
EQU <'type a line of text:$'> 
EQU <[DI + 2]> 

MSG DB PROMPT 

.CODE 
MAIN PROC 

=(equal) 

Syntax: 

MOV 

MOV 

AX, MIN 

BX,ARG 

name s expression 

;equivalent to MOV AX,32757 
;equivalent to MOV BX, [DI+2) 

where expression is an integer, constant expression, or a orie or two-character 
string constant. 
The directive = works like EQU, except that names defined with = can be 
redefined later in a prog1am. 

Examplc:s: 

CTR s l 
MOV AX, CTR ;translates to MOV AX,l 

CTR s C)'~ + 5 
. MOV BX,CTR ;translates to MOV BX,6 

The = di_rcctive is often used in m_acros. See Chapter 13 . 

. ERR Directives 

These are conditional error directives that can be used to force the . 
assembler to display an error message during assembly, for debugging pur­
poses. The assembler displays the message "Forced error", with an identifying 
number. See Chapter 13. 

Directive Number Forced error if 

.ERRl 87 encountered during assembly pass 1 
ERR2 88 encountered duri:ig assembly pass 2 

•. 
.ERR ... 89 encountered 

.ERRE expression 90 expression is false (0) 
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.ERRNZ expression 91 expression is true (nonzero) 

.ERRNDEF name 92 name has not been defined. 

.ERRDEF name 93 name has been defined. 
I 

.ERRB <argument> 94 argument is blank 

.ERRNB <argument> 95 argument is not blank 

.ERRIDN <arg1>,<arg2> 96 arg1 and arg2 are ident:al 

.ERRDIF <arg1>,<arg2> 97 . arg 1 and arg2 are different 

EVEN 

Ad~ances the location counter to the next even address. 

EXITM 

Used in a macro or repeat block. Tells the assembler to terminate 1 he macro 
or repeat block expansion .. 

EXT RN 

Syntax: EXTRN ,name: type • [,name: type J 

Informs the assembler of an external name; that is, a name defined in another 
module. Type must match the type decla.red for the· name in the o::her mod­
ule. Type can be NEAR, FAR, PROC,' BYTE, WORD, DWORD, FWORD, 
QWORD, TBYTE, or ABS. See Chapter 14., 

.FARADATA and .FARDATA7 

Sy11tax: • FARDATA {name) 

.FARDATA? {name) 

Used primarily with compilers for defining extra data segments. 

GROUP 

Syntax: name GROUP segment (,segment] 

A group is a collection of segments that are associated with the same starting 
address. Variables and labels defined in. the segments of the group are as­
signed addresses relative to the start of the group, rather than relative to the 
beginning of the segments in which they are defined. This makes it possible 
to refer to all the data in the group l:>y initializing a single segment register. 
Note: the same result can be obtained by gjving the same name and a PUBLIC 
attribute to all the segments. 

if directives 

These directives are used to grant the assembler permission 10 assemble the 
statements following the directives, depending on conditions. A li;t may be 
found in Chapter 13. 

INCLUDE 

Syntax: . INCLUDE filespec 

where filespec specifies a file containing valid assembly language statements. 
In addition to a file name;<filespec may include a drive and path. 
The .directive causes the assembler to insert the contents of the file at the 

"position of the INCLUDE.in the source file, ~nd to begin processing the file's 
statements. •· · · · · 



522 Appendix G Assembler Directives 

Examples: INCLUDE MACLIB 
INCLUDE C:\BIN\PROGl.ASM 

LABEL 

Syntax: name LABEL type 

where type Is BITE, WORD, DWORD, FWORD, QWORD, TBYTE, or the 
name of a previously-defined structure. 
This directive provides a way to define or redefine the type associated with 
a name. 

Example: 

LABEL WORD WORD_ARR 
B'iTE_ARR DB 100 DUP (0) 

Here WORD_ARR defines a SO-word array, and BYTE_ARR defines a 100-byte 
array. The same address Is assigned to both variables . 

• LALL 

Causes the assembler to list all statements In a macro expansion, except 
those preceded by a double semicolon . 

• LIST and .XUST 

.LIST causes the assembler to Include the statements following the .LIST 
directive in the source program listing .. XLIST causes the listing of the state­
ments following the .XLIST directive to be suppressed. 

LOCAL 

Syntax: LOCAL name [,name) 

Used inside a macro. Each time the assembler encounters a LOCAL name 
during macro expansion, it replaces it by a unique name of form ??number. 
In this way duplicate names arc avoided if the macro is called several times 
in a program. See Chapter 13. 

MACRO and ENDM 

Syntax: name MACRO {parameter [,parameter]} 

These directives are used to define a macro. 

Example: 

EXCHANGE MACRO 
PUSH WORDl 
PUSH WORD2 
POP WORD! 
POP WORD2 
ENDM 

Sec Chapter 13 . 

• MODEL 

Syntax: .MODEL m~mory_model 

WORD1,WORD2 

A simplified segment directive for defining a memory model. Memory model 
can be any of the following: 



Model 

TINY 

SMALL 

MEDIUM 

COMPACT 

LARGE 

HUGE 

·ORG 

Syntax: 
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Description 

code and data in one segment 

code in one segment 
data in one segment 

code in more than one segment 
data in one segment 

code in one segment 
data in more than one segment 

code in more than one segment 
data in more than one segment 
no array larger than 64 KB 

code in more than one segment 
data in more than one segment 
arrays may be larger than 64 KB 

ORG expression 

where expression must resolve to a 2-byte number. 
Sets the location counter to the value of expression. For example, in a .COM 
program, the directive ORG IOOh sets the location counter to lOOh, so that 
variables will be assigned addresses relative to the start of the program, rather 
than in the lOOh-byte program segment prefix, which precedes the program 
in memory. Another use of ORG is to define a data area that can be shared 
by several variables. For example, 

.DATA 
WORDl ARR DW 100 DUP (?) -
ORG 0 
NORD2 ARR DW 50 DUP ( ?) 
WORD3_ARR DW 50 DUP ( ?) 

This definition caus~s WORD2_ARR and the first SO words in WORDI_ARR 
to occupy the same memory space. Similarly, WORD3_ARR and the last SO 
words of WORDl_ARR occupy the same space. 

%OUT 

Syntax: %OUT text 

where text is a line of ASCII characters. 
Used to display a message at a specified place in an assembly .listir .. g. Often 
used during conditional as~embly. 

E.>:a 111plc: 

IFN:)EF 

END IF 

SUM 
SUM 
%OUT 

m1 ? 
SliM ls defined here 

If SUM had not been previously defined, it would be defined here and the 
message would be displayed. · 
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PAGE 

Syntax: PAGE {{length},width} 

where length is 10-255 and width is 60-132. Default values are length"' 50 
and width = 80. 
Used to create a page break or to specify the maximum number of lines per 
page and the maximum number of characters per line in a program listing. 

Examples: 

PAGE 
PAGE 50, 70 

PAGE ,132 

;creates a page break 
;sets maximum page length to 50 
; and maximum page width to. 70 
;sets maximum page width to 132 

PROC and ENDP 

Syntax: name PROC distance 
name ENDP 

where distance is NEAR or FAit Default is NEAR. 
Used to begin and end a procedure definition. See Chapter 8. 

Processor and Coprocessor Directives 

The following directives define the instruction set recognized by 
MASM. These directives must be placed outside segment declarations. In the 
following, 8086 includes 8088. 8087, 80287, and 80387 arc co1noccssors. 

Directive 

8086 
.186 

.286 

.286P 

.386 

.386P 

8087 
.287 

.387 

PUBLIC 

Spllax: 

Enables assembly of instructions for processors 
and coprocessors · · 

8086. 8087 

8086. 8087. and 80186 additional instructions 

8086, 80287, and additional 80286 nonprivileged instructions 

same as .286 plus 80286 privileged instructions 

8086. 80387 and 80286 and 80386 nonpnvileged instructions 

same as .386 plus 80386 privileged instructions 

8087; disables instructions unique to the 80287 and 80387 
8087, and 80287 additional instructions 

8087. 80287, and 80387 additional instructions 

PUBLI c r:ar:1e r, name} 

wh<.'rc name i.~ a variilhle, label, or numeric equate dcfin~d in the module 
containing the directive. 
lJscd to make n:imcs in thi~ module av<1ilable for use in other modules. Not 
to be confused with the l'Ulll.IC combine-type, which is used to combine 
segments. Sec Chapter 14. 

PURGE 

Syntax: PURGE macroname [, macroname J 

where macroname is the name of a macro. 
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Used to delete macro~ from memory during assembly. This ml.~ht be neces­
sary if the system does not have enough memory to keep all the macros a 
program needs In memory at the same time. 

Example: 

MACl 
PU!;lGE MACl 

; expand macro MACl 
;don't need it anymore 

.RADIX 

. RADIX base 

where'base is a decimal number in the range 2-16. 
Specifies the default radix for representation of integer constants. This means 
that in the absence of a "b", "dn, ·or "h" as the last character in the repre­
sentation of an integer, the assembler will assume the number is represented 
in the base specified by the directive. The default is IO (decimal). 

Examples: 

.DATA 

.RADIX 16 ;hexadecimal 
A DW 
.RADIX 
B DW 

RECORD 

1101 
2 

1101 

; interpreted as 1101 h 

; interpreted as 110 lb 

Used to define a record variable. This is a byte or word variable in which 
specific bit fields can be accessed symbolically. See the Microsoft Macro As­
sembler. Programmer's Guide. 

REPT and ENDM 

Syntax: REPT expression 
statements 

ENDM 

where expression must evaluate to ti 16-bit unsigned number. 
Defines a repeat block. REPT causes the statements in the block to be assem­
bled the number of times equal to the value of expression. A repeat block 
can be placed at the position where the statements arc to be repeated, or it 
can be put inside a macro. See Chapter 13 . 

. SALL 

Causes the assembler to suppress the list'ing of macro expansions. 

SEGMENT and ENDS 

Syntax: 

where 

nam~ SEGMENT (align) fcombi:oc) {'class' J 
statements 

name ENDS 

align is PARA, BYTE, WORD, or PAGE 
combine is PUBLIC, COMMON, STACK, or AT 
class is a name enclosed in single quotes 

These directive define a program segment. Align, combine, and class specify 
how the segment will be aligned in memory, combined with other .;egments, 
and ordered .with respect to other segments. See Chapter 14. 
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.SEQ 

Directs the ass.embler to leave the segments-in their original order. Has the 
same effect as .ALPHA . 

.STACK 

Syntax: .STACK {size) 

where size is a positive integer. 
A simplified segment directive which defines a stack segment of size bytes. 
Default size is 1 kilobyte. 

STRUC and ENDS 

Used to declare a structure. This is a collection of data objects that can be 
accessed symbolically as a single data object. See the Microsoft Macro Assembler 
Programmer's Guide. 

SUBTTL 

Syntax: . SUBTTL {text) 

Causes a subtitle of up to 60 characters to be placed on the third line of each 
page in an assembly listing. May be used more than once. 

TITLE 

Syntax: °TITLE {text) 

Causes a title to be placed on each page of an assembly listing. May be used 
only once . 

• XALL 

Causes the assembler to list all statements In a macro expansion that produce 
code. Comments are suppr~ssed . 

. XCREF 

See .CREF. 

.XLIST 

See .LIST. 



Appendix H 

Keyboard Scan. Codes 

The keyboard communicates with the processor by scan cedes as­
signed to the keys. When a key is pressed, the keyboard sends a mal:e code 
to the computer, and when a key is released a break code is 5ent. Table H.l 
shows the make codes of the original 83-key IBM keyboard; a 'break cede can 
be obtained from the make codes by ORJng it with SOh. 

The INT 9 routine Is responsible for getting the scan codes from the 
1/0 pon and placing an ASCII code and the scan code Jn the keyboard buffer. 
We can classify the keys into ASCII keys, function keys, and shift key·s. The 
ASCII keys include the character keys, the space bar, and the control keys Esc, 
Enter, Backspaa!, and Tab; these keys have corresponding ASCII codes. The 
function keys include Fl to FIO, the arrow keys, Pg Up, Pg Dn, Home, End, Ins, 
and Del. These keys do not have ASCII codes, and a 0 is used to indicate a 
function key in the keyboard buffer. The shift keys include left and right shifts, 

. Caps Lock, Ctr!, Alt, Num Lock, and Scroll Lock. The scan codes of the shift 
keys are not placed in the keyboard buffer. Instead, the INf 9 routine us.~s the 
keyboard flags byte (address 0000:0417) to keep track of the shift keys. The 
keyboard flags can be retrieved by using INf 16h, function 2. 

When certain shift keys are down, the INT 9 routine places different 
scan codes In the keyboard buffer to indicate key combinations. Tablt! H.2 
shows the scan codes for key combinations. . 

The 101-key enhanced keyboard uses a different set of make and 
break codes. However, except for the new keys Fl 1 and F12, the INT 9 routine 
still generates the 83-key scan codes for the keyboard buffer to maintain 
compatibility. Table H.3 shows the new scan codefgenerated by the INT 9 
routine for the enhanced keyboard. There are also rome new combination 
scan codes. These new scan codes can only be retrieved by INf 16h functions 
IOh and l lh. 

When the Ctr! key IS dow11, INT 9 will generate different A:'iCll 
codes for letter keys. Table H.4 shows the scan code and ASCII for the key 
combinations. 

~i27 
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Table H.1 83-Key Keyboard Scan Codes 

Hex Scan Key Hex Scan Key Hex Scan · Key 
Code Code Code 

01 Esc 1D Ctr! 39 Space bar 

02 1 lE A 3A Caps Lock 

03 2 lF s 38 Fl 

04 3 20 0 3C F2 

05 4 21 F 30 F3 

06 5 22 G 3E F4 

07 6 23 H 3F F5 

08 7 24 40 F6 

09 8 25 K 41 F7 

OA 9 26 L 42 F8 

OB 0 27 43 F9 

oc 28 44 F10 

OD =+ 29 45 Num Lock 

OE Back Space 2A Left Shift 46 Scroll Lock 

OF Tab 2B \I 47 7 Home 

10 Q 2C z 48 8 Up Arrow 

11 w 20 x 49 9 Pg Up 

12 E 2E c 4A - (num) 

13 R 2F v 4B 4 Left Arrow 

14 T 30 B 4( 5 (num) 

15 y 31 N 40 6 Right Arrow 

16 u 32 M 4E + (Aum) 

17 I 33 ,< 4F 1 End 

18 0 34 .> so 2 Down ArroV< 

19 p 35 /? 51 3 Pg On 

lA [ { 36 Right Shift . 52 0 Ins 

18 I } 37 Prt Sc 53 Del. 

1C Enter 38 Alt 
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Table H.2 Scan Codes for Comb!nation Keys 

SCJ1n Keys Scan Keys Scan Keys 
Cod• . ~ t:;od• Code 

54 Shift Fl 65 Ctrl F8 75 Ctrl End 

55 Shift F2 66 Ctrl F9 76 Ctrl ?gOn 

56 Shift F3 67 Alt F10 77 Ctrl Hom(· 

57 Shift F4 68 Alt Fl 78 Alt 1 

58 Shift FS 69 Alt F2 79 Alt 2 

S9 Shift F6 6A Alt F3 7A Alt 3 

SA Shift F7 68 Alt F4 78 Alt4 

SB Shift F8 6C Alt FS 7C Alt S 

SC Shift F9 60 Alt F6 70 Alt 6 

so Shift FlO 6E Alt F7 7E Alt 7 

SE Ctrl Fl 6F Alt F8 7F Alt 8 

SF Ctn F2 70 Alt F9 80 Alt 9 

60 Ctrl F3 71 Alt FlO 81 Alt 0 
61 Ctrl F4 72 Ctrl PrtSc 82 Alt· 

62 Ctrl FS 73 Ctn Left Arrow 83 Alt= 

63 Ctrl F6 74 Ctrl Right Arrow 84 Ctrl PglJp 
64 Ctrl F7 

Table H.3 Scan Codes for Enhanced Keyboard 

SCJ11n Keys Scan Keys Sun Keys 
Code Code Code 
8S F11 90 Ctrl + (num) 98 Alt Left A.rrow 

86 F12 91 Ctrt Dn Arrow 90 Alt Right .~rrow 

87 Shift Fl 1 92 Ctrl Ins 9F Alt End 

88 Shift Fl 2 93 Ctrl Del AO Alt Down Arrov. 

B9 Ctrl Fl 1 94 Ctrl Tab Al Alt PgDn 
BA Ctrl Fl 2 9S Ctrl I (num) A2 Alt Ins 

BB Alt Fl 1 96 Ctrl • (num) A3 Alt Del 

BC Alt F12 97 Alt Home A4 Alt I {nun.,, 

SD Ctrl Up Arrow 98 Alt Up Arrow AS Alt Tab 
BE Ctrl • (num) 99 Alt PgUp A6 Alt Enter {nurnl 

SF Crrl 5 (num) 

(n'um) means numeric keypad keys. 



530 Appendix H Keyboard Scan Codes 

Table H.4 ASCII Codes for Combination Keys 

Keys ASCII Scan Keys ASCII S~an 

Code Code Code Code 

Ctrl A 1 1E Ctrl N E 31 

Ctrl B 2 30 Ctrl 0 F 18 

Ctrl C 3 2E Ctrl P 10 19 

Ctrl D 4· 20 Ctrl Q 11 10 

Ctrl E 5 12 Ctrl R 12 13 

Ctrl F 6 21 Ctrl S 13 1F 

Ctrl G 7 22 Ctrl T 14 14 

Ctrl H 8 23 Ctrl U 15 16 

Ctrl I 9 17 Ctrl V 16 2F 

Ctrl J A 24 Ctrl W 17 11 

Ctrl K B 25 Ctrl X 18 2D 

Ctrl L c 26 Ctrl Y 19 15 

Ctrl M D 32 Ctrl Z 1A 2C 
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S (end of string), 73 
%OUT assembler directive 
• (asterisk), as DOS special character, 

445 . 
; (semicolon), in assembly language 

program, 14, 55 
= (equal) pseudo-op, in REPT macro, 

268 
-i..<question mark), as DOS special char· 
'-· acter, 445 · · 

A 
AAA instruction (ASCII adjust for addi· 

tlon), 376-377, 491 
AAD instruction (ASCU adjust for divi· 

sion), 378-379, 491 
AAM instruction (ASCJJ adfust for mul­

tiply), 378, 491-492 
AAS'!hstructlon (ASCII adjust for sub­

_.tract'ion), 377-378, 492 
Absolute disk read/write, DOS inter· 

rupts for, 460 
Accumulator register (AX), 40--41 
Activation rKords, 361-363 -,. 
/\ctivc display page, 235 

selecting, 240, 450 
ADC instruction (add with carry), 372; 

492 
ADD instruction, 62-63, 492 . ,. · 

flags and, 85, 8.8--89 
overflow, 83-84, 85-86 

Add-in boards or cards, 4 
Addition 

BCD, 376-377, 494-495 
with carry flag, 372, 492 
with "1cimal adjust, 494--495 
double:precision, 372-373 

with 8087 processor, 384 
Instructions, 62-63, 376-377, 491, 

492, 494-495 . 
number systems and, 24-25 
overflow and, 83~5 · 

Address. 4-5 
base address of an array, 180 
in call by reference, 302-303 
contents vs., S~ 
display modes, CGA. 337 
In instruction pointer (IP};9 
loading (LE.A instruction), 74, 

498-499 
'logical, 42 
of memory word, 6 
physical, 41 

Address bus, 7 . 
in fetch-execute cycle, 10 

Address register, 39 
base register (BX) as, 41 

Addressing modes, 181-189 
See a.fS-O Real address mode 
arrays and, 179 
based, 184-186 
based indexed, 194-196 
indexed, 185-186 
register indirect. 182-183 

string i11structio11s vs., 205 
AF (auxiliary carry flag), 82, 83 
Align type of segment declaratlon, 

292-293 
All points addressable (APA) graphics 

mode, 332 
.ALPHA directive, 517 
ALU (arithmetic and logic unit), 8 
American Standard Code for Informa-

tion Exchange. See ASCII charac­
ter codes 

Analog monitor, for VGA, 340 

AND conditions, high-level v:;. assem­
bly languages, 103 

AND instructions, 119-121, 492-493 
TEST instruction and, 122 

AND truth table, 118 
Animation, 340, 341-347 
APA (all points addressable) graphics 

mode, 332 
Appending records to flle, 410-414 
Application program Interface (API). In 

OS/2, 431, 433 . 
Application programs, memory .1eg-

ments for, 47 
Archive bit, 400 · 
Arithmetic and logic unit (ALU),,8 
Arithmetic operations 

Sel! also specific operations 
accumulator register (AX) for, 40-41 
advanced, 371-394 

binary-coded decimal number::, 
374-379 

double-precision 'numbers, 371-374 
8087 i11stmctio11s, 384 
/loati/1g-poi11t 1111mbers, 3 79-3,''i1 
multipl~-precision number f/0. 

384--388 
wit/1 rm/ 1111111ber$, 31$9-.i:?J 

in arithmetic and logic unit (ALU). 
8 

· ·verflow and, 83-85 
pointer and index registers for, 44 
shift instructions for, 117, 122-1::::7. 

504--505 
Array elements 

Se~ also Arrays 
aJding, 183 
reversing order of, 183-184 
specifying addresse~ tor, 181 

Arrays. 58-59 

s::11 



l 
t 
r 

532' · Index 

Se<' '''·"' Array elements 
.iddrr~sing modes for, 181-189 
application example, averaging test 

scores, 195-197 
one-dimensional, 179-181 
procl'~sing, string instructions for, 

205-228 
ook ui, 17<) 
'<ortini;. ·'"'•'<'!>ore method, 189-192 
two-<l11m·nsional, 179, 192-194 

'"·"'" i11<l<':>.•'<I <11/1lressi11s muclc for, 
194-195 

lot11ti11g elelll('llf< in, 193-194 
1t1m1ge oriler for, 192-193 

Arrow k<!VS. programming, 247-252 
ASCII adjust instructions 

tor addition (AAA), 376-377, 491 
ior di,·ision \AAD), 378-379, 491 
for multiply (AA!vi), 378, 491-492 
for subtraction (AAS), 377-378, 492 

A~Cll character codes, 30-31, 441-444 
in array,, SR-59 
ltH combination keys, 530 
converting case of, 120-121 
converting to numbers, AND In· 

structlons for, 120 
display characters and, 234 
extended character set, 443-444 
in INT 21h instructions, 68 
jump Instructions and, 97 
translating to E.SCDIC code, 

197-200 
ASCII digits, converting to packed 

BCD, 385-386 
ASCII keys, 244 
.ASM tiles, assembly modules, 285 
/\s,cmhler 

See e1h11 Microsoft Macro Assembler 
a'sl•mhly language syntax for, 54 
creating object file with, 70, 71-72 
obj.,ct modules produced by, 285 
role of, 13 

Assembler directives, 54, 517-526 
See 111>0 specific directives 
arrays. 58-59 • 
hyte variables, 56 
operand fields in, 55 
pSt'Ulll 1-ups, 55 
word variables, 56-57 

Assembly language 
. Sr<' .11.<o Assembly language pro-

grams 
adVantages of, 13-14 
describ~, 12-13 
high-level language translation to, 

64-65 
sample. stack use, 144-145 

Assembly language programs, 53-80 
appending records to a ti\e, 

410-414 
avera~ing test scores, 195-197 
ball bounce, 344-347 
ball display, 342-344 
basic instructions, 60-64 

case conversion, 120-121, 287-289 
curling and decoding secret mes­

sage, 198-200 
combined 8087/8086 Instructions, 

387-388 
convutlng ASCII digits to packed 

BCD, 385-386 
counting vowels and consonants, 

215-217 
creating and running, 70-73 
designing, top-down method, 

108-112 
echo, 432-433 
extended memory management, 

427-429 
"Hello" messages, 431-432 

.EXE vs . . COM fonn11t, 283-284 
INT 10h example, 243-244 
jump instruction example, 93-94 
macro expansions in .LST file, 

259-261 
macro library use In, 266-267 
named constants, 59 
OS/2, 431-433 
printing packed BCD Integers, 

386-387 
printing real numbers, 390-391 
procedures In, 146-147 
program data, 56-5 7 
reading and displaying a file, 

406-409 
reading real numbers, 389-390 
reading an'Cl"\torlng a character 

string, 209-211 
recursive procedures In, 363-369 
sample, 14-15, 69-70, 75-76 

with lriglr-lcvel structures, 108-112 
multiplicat/011 procedure, 150-157 

stacks in, 139-145 
structure of, 65-6 7 
substring search, 220-222 
syntax, 54-56 
terminating. 70 
for time display, 316-318 
top-down design "of, 108-112 
variables, 57-59 

Assembly modules, 285 
linking, 287-291 

Assembly time, macros vs. proc<.'dures 
and, 276 

AS.5UME. pseudo-op, 295, S 17 
Asterisk ("), as DOS specl<al character, 

445 . 
Attribute byte (display character), 

235-237 
Attribute byte (file attribute), 400, 401 
Attributes of characters, 234 

current, for character at cursor, 242 
Auxiliary Cilf!'Y flag (AF), ~z. 8~ 
Averaging t,st scores, 195-197 
AX (accur- Jl&tor register), 4~1 

8 
Background color, 334, 451 
BACKUP (DOS program), 445 

archive bit and, 400 
Sall display, 342-344 
Sall manipulation 

for animation, 344-347 
In Interactive video game, 347, 

349-350 
Base, In number systems, 20 
Base address of an array, 180 
Base pointer (BP) register, 45 
Base register (SX), 41 
Based addressing mode, 184-185 

segment overrides in, 189 
Based Indexed addressing mode, 

194-196 
Basic Input/Output System routines 

See BIOS routines 
BASIC Interrupt (Interrupt 18h), 31. 
SCD. See Binary-coded decimal nuri 

ber system 
BEEP procedure, 348-349 
Blas, 380 
Binary digits (bits), 3 
Binary fractions, converting declmi .. 

fractions to, 379-380 
Binary number system, 19, 20 

addition and subtraction In, 25 
ASCII codes In, 31-32 
decimal and hex conversions, 

22-23 
decimal and hex equivalents, 20, 

21 
In program data, 56 
two's complements, 26-28 

Binary-coded decimal number system 
(SCD), 374-379 

addition (AAA instruction), 
376-377 

dlvl•lon (AAD Instruction), 378-379 
8087 numeric processor and, 381-

382, 384-388 
multiplication (AAM lnstructlon)fl 

378 
packed vs. unpacked BCD form, 

375 
subtraction (AAS Instruction), 

377-378 
BIOS (Basic Input/Output System) IOU• 

tines, 46-47 
Interrupt routines, 67-69, 310-316, 

449-455 
ASCH cede display at1d, 246 
keyboard fur1ctiot1s, 246-247 
text mode display (uncrlons, 

238-244 
In start-up operation, 49 

Sit patterns · 
masks, 119 
modifying 

applications for, J 30-134 



lo.fie instructions for, 117, 118-
122, 492-493, 501, 508 

rotate instructions for, 117, 122, 
127-130, 502-503; 504 

shift instructions for. See Shift in­
structions 

Bit pl<.nes 
in EGA disp;ay memory, 339 
m VGA display memory, 340 

Bit positions, 6 
!lit scan imtructions (8(1386), 513 
Bl! strings, 3 

machine language, 7, 12. 
ili t test instructions, 513-5 J 4 

~Bits (binary digits), 3 
~ See also Bit patterns; Bit strings 

flags, 45 
least significant (lsb), 26 
manipulating, high-level vs. assem-

bly language and, 117 
:•1.isk, 119 
must significant (rnsb), 26 

:.l!Ll Sn1 Bus interface unit 
l!lmking bi:, 23.5, 236 
Boot program, 49 
Bootstrap interrupt (Interrupt 19h), 31.5 
Border, setting color for, 451 
Bouncing ball program, 342-347 

interactive video game from, 
347-355 

BOUND instruction, in 80286, 423 
~BP (base pointer) register, 45 

'Branching structures, high-level vs. as-
sembly languages, 9S-!04 

BREA!<, checking status of, 457 
Break code, 245 
Breakpoint inti:!u:upt (Interrupt 3), 313 
Buffer, keyboard, 246 .. 
Bus interface unit (BIU), 8, 9 

connection to EU, 9 
in fetch-execute cycle, IO 

Buses. 7 
Jocking, 499 

B~{base register), 41 
n~1e arrays. See Character strings; Mem­

ory strings 
Byte variables, 57 
Uyt<:s, ~ 

c 

bit positions in, 6 • 
changing bit patterns in, 117 
conv<.'rting to words, 167, 493 
disk capacity, 398-399 · 
di,·iding, 165, 167 
hex digits and, 20 
integer storage in, 26-28 
multiplying, 162 

C-\L"nstructions. 146, 147~!49, 493 
JCtivation records of, 361-363 
chrect vs. indirect, 147 
:\EAR vs. FAR procedures and, 286 

In OS/2, 431 
in program example; isi, 152, 153, 

154 
in recursive procedures, 357-369 
using stack with, 303-305, 360...361 

Call by reference, 302-303 
Call by value, 302 
Carriage return-lme feed, macro for, 

265 • .. 
Carry flag (CF), 82 • . . , 

clearing, (CLC instruction), 493 
complementing (CMC instruction),. 

' 494 ' .•. 
setting (STC instruction), 506 

Case, for assembly language code, 54 
Case conversion program, 75-76 
CASE structure, high-level vs. assembly 

languages, 101-103 
Cassette interrupt (interrupt !Sh), 314, 

454 
CBW instruction (convert byte to 

! •I 

word), 167, -193 
Centrill processing unit (CPU), 4, 7-9 

bus interfJcc unit (BIU), 8, 9. 
execution unit (EU), 8 
jump irJstructions and. 95, 97 

CF (carry fldg), 82 
CGA. See Co:or gr~phics adapt_,t 
Character rd!, 233 · 
Character rqires~ntation, 30-33 
Character strings · • .. 

m arr•~. 58-59 .. 
coun!lng vowcis arn.J consonants 

in, 215-217 
displaring, 73-75 · 

DISP_STR procedure far, 212-214 
lil:IOU f(Jr, 265-266 

reading a:id >toring, 209-211 
Charactcis 

attribute byt'.?S and, 235-237 
attrih:tt·s of, 234. 
at cu::S()f 

.li.\ciarins ,111d .iJ\ ;:;nrfn.s; cursvr, .· 
2-13 

dis/1/,,yi11s wfril any uttrihute, 242 ·· 
d1.1pia1·i11g ll'i!li wrrr11t attribute, 

242 . 

!il prog""ll u.it.1, 56 
reading, 241 
reading from keyb0ard, 455 
wntrng to printer. 4:,5 · 

CHD!R (CD), 447-148, 458 
CLC instruction (clear carry tl~g), 493 
CLD Instruction (clear direction flag), 

206, 493 
Clear (d~stindtion bttl .. .\'.\'[) instruc-

tion for, 119,,121 · ' 
Clear Screen (CLSJ. 4-15 
Clearing flags. mstructions for, 493 
CU (clear inrerrupr tlagJ. -t9.l 
Clock circuit • . 

Interrupt I Ah and, 31 5 
tone generation and, 347 

Clock period, I I 

lodex 533 

Clock pulses, 10-11 
Clock rate (clock speed), 11 
Closing a file, 404-405, 45·~ 
CLS (clear screen), 445 · 
Clusters, 400 
CMC instruction (complement carry 

tldg), 494 . 
CMP instruction (compare);' 494 

jump conditions and, 95, 97 
OR instruction vs., 121 · · 

Cl\f PS instruction, 223, 494 
CMPSB instruction (compar.~ string 

byte), 217-222, 223, 494 
CMPSW instr'uction (compare string 

wordi, 217: 494 
.CODE assembler directive, 66, 299, 

517 . 
in sample prograni, 76 

Code segmcnt,.15, 44 
.COM programs and. 281 .. 
declaration syntax, 65 

CODEVIEW program, 479-4E.8 
DEBUG commands in, 4811 

Coding and decoding a secrel message, 
198-200 

Color display, 235, .?.36' 
BIOS interrupt routines, 45•1, 

452-45:{ 
Color graphics, 331-356 

display modes, 331-332 
CGA, 332. 333-339 
EGA, 332, 339-340 
selecting, 3.12-333 · 
VGA. 332, 340-341 

Color graphics adapter (CGA), 232, 233 
changing cursor size for, 238 
graphics display modes, 332, 

. 333.:339 
number of clisplay pages for, 234 
pixel size and, 332 
port address. 48 
selecting active display page for. 

240 
selecting dimlay mode for, 2.38 
writing directly to memory in, 

3]7-338 
Color graphics adapter types, 331. Si:·· 

·tli>U .\fl<'cifh' l)/J<'S 

Color monitor, 232. See also Color di~­
play · 

Color registers 
getting, 453 ' 
setting (VGA), 340, 341, 452-45:; 

Column-major order, arrdy storage Ill, 

192, 193 
C0:\1 I/CO?'.! 2. See Serial ports :: 
.C0:\1 programs, 281-285 " 

.EXE programs vs., 281, 282-2,,S 
Combine. type of segment dccl.irc;tiu11. 

293-294 
.COMM as~cmbler directive, 517-.): ·~ 
COMMAND.CO~, 46 
Command line 

CODEV!EW, 479 
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LINK program, 467-448 
Microsoft Macro Assembler (MAIM), 

462-463 
Commands 

DEBUG, 473-474 
DOS, 445-448 
internal vs. external, 46 

Comments 
in assembly language programs, 14, 

518 
comment field syntnx, 54, 55-56 

for documenting procedures, 147 
using. 55-56 

Communications interrupt (Interrupt 
14h), 3H 

COMPACT memory model, 299 
Compare instruction. Su CMP ;nstr.ic-

tion 
Comparing memory strings, 217-222 
Compiler, role of. l3 
Complement (destination bit), XOR in­

struction for, 119, 120 
Complement carry· flag (CMC instruc­

tion), 494 
Composite monitor, 232 
Computl'rs. See IBM personal comput­

ers 
Conditional jump instructions, 94-97, 

497--198 
l1ii;h-lcvel vs. assembly language 

structures, 98-104 
Conditional loop instructions 

REPEAT loop, 107-108 
WHILE loop, 106-107 
WHILE vs. REPEAT, 108 

Conditional macros, 272-275 
Conditional pseu~o-ops, 272-273 

for macro library, 264-265 
Consonants, counting, 215-217 
.CONST pseudo-op, 299, 300, 518 
Constants, named, 59 
Contents, address vs .. 5-6 
<."l>nlrol bu,, 7 

in fett·h-execute cycle, 10 
Control characters, 31, 32 

1n INT 21 h instructiuns, 61Hi9 
C011 trul n.1g~ . .is. 81, 82, 205 

DEBUG example, 88, 89 
direction flag (OF), 205-206 
in interrupt routine, 312 

Control keys, 2H 
Conventional memory, Interrupt 12h 

and, 313-314, 453 
COPY (DOS command), 445 
•.:ount rt'gister (CX), 41 
Cl'U. s,•r Central processing unit 
UUJ utility program, 461, 466-467 
Crm~-refl!rence (.CRF) file, 72, 461, 

466-467, 518 
CS <instruction register), 45 
Cl,!·Break (Interrupt lBh), 315 
CTRL-RREAK check (Interrupt 21h), 

457 
ClRL-Z (end of data), 410 

Cursor 
advancing to next position, 243 
changing size of, 238-239, 449 
displaying character with attribute 

at, 241, 242, 451 
getting position and size of, 239-

240, 450 
moving on screen, 239, 450 

programming arrow keys for, 
247-252 

reading character at, 241 
restoring position of, 320 
writing character and attribute at, 

451 
CWD instruction (convert word to 

doubleword), 166-167, 494 
ex (count register), 41 
Cylinder, 397-398 

D 
OM instruction, 494-495 
Daisy wheel printers, 12 
DAS instruction, 494 
Data calls, by value and reforcnce, 302-

303. See abo CALL instructions 
Data bus, 7 

in fetch-execute cycle, 10 
microprocessors and, 38, 39 

.DATA directi\'<?, 66, 299, 518-519 
assembler and, 74-75 
in sample program. 76 

.DATA? pseudo-op, 299, 300, 518-519 
Data register (DX), In 8086, 39, 40-41 
Data registers, in 8087, 382 
Data segment, 15, 44 

.COM programs and, 281 

.DATA directive for, 66 
declaration syntax, 66 

Data segment register, loading, 498 
Data storage, Jn registers, 8 
Data tr;msfcr area (0'1~\), -101 
Data transfer instructions 

accumulator register (AX), 4~ 1 
MO\' instruction, 60, 61 

Data t)'IX!S, 8087 11umc•ric processor, 
381-382, 508 

Data-defining pseudo-ops. variables 
and, 57-59 

DATE (DOS command), 446 
Date, INT 21h functions and, -156-457 
DEBUG program, 87-90, 471-478 

CODEVJEW and, 488 
commands, 473-474 
exiting, 90 
11ags shown In, 117-90, 472 
interrupt routine and, 312 
memory dumps, 477 

· Debuggers. See CODEVIEW program; 
DEBUG program 

Debugging, source listing (.LSl) file 
for, 72 

DEC instruction (decrement), 62, 495 

jump instruction and, 97 
overflow and, 85 

Decimal adjust for addition/subtrac­
. tion, 494-495 

Decimal fractions, converting to bi­
nary, 379-380 

Decimal Input, INDEC procedure for, 
170-175 

Decimal number system, 19-20 
addition and subtraction in, 24, 25 
ASCII codes in, 31-32 
binary and hex conversions, 22-23 
binary and hexadecimal equiva-

lents, 21 
binary-coded, 374-379 

8087 numeric processor a11d, 381-
382, 384-388 

In program data, 56 
sign~ and unsigned Integer repre­

sen talion, 28-30 
Decimal output, OlJTDEC procedure 

for, 167-170 
Decision making, flags and, 81 
Decoder circuit, in fetch-execute cycle, 

10 
Decoding program, 198-200 
Decrement instruction. See DEC in-

struction 
DEL (DOS command), 446 
Deleting a file, DOS interrupt for, 459 
Destination Index (DI) register), 45 
Destination operand, 55 
Devices 

1/0, 3, 11-12 
peripheral, 3 
serial vs. parallel port, 9 

DF. See Direction flag 
DI (destination Index) register, 45 
Digital circuits, 3 
DIR (directory list), 446 
Direct mode, 181, 182 
Direct procedure call, 14~ 
Dirc•tion Oag (OF), 205-206 

clearing and setting, 206, 493, 506 
Directives. See Pseudo-operation code; 

specific directives 
Directory, getting, 459-460 
Directory structure, 399-402, 447-448 
Disjoint memory segments, 47 
Disk controller circuit, access con-

trolled by, 399 
Disk drives, 11, 398 
Disk 1/0 interrupt (Interrupt 13h), 

314, 453-454 
Disk operating system. See DOS 
Disk operations, 395 

DOS int.,rrupt~ and, 415-418 
Disk space; checking, 458 
Diskette error (Interrupt E), 313 
Disks 

See also Floppy disks; Hard disks 
accessing Information on, 399 
capacity of, 398-399 
clusters on, 400 



e FAT location on, 401 
file allocation on, 399-402 
structure of, 397-398 
types of, 395-397 

DISP _STR procedure, 212-214 
Displacement, 18~ 
Display 

INT !Oh functions and, 238-244, 
449-455 

INT 2lh functions and, 456 
screen positions, 234 
scrolling screen or window 

up/down, 240-241, 450-451 
Display memory (video buffer), 232 

..,..Display modes, 232-233 
~ getting, 243, 452 

selecting, 238, 44S 
Display monitor. See Monitor 
Display pages, 234 

active, 235 
selecting, 240, 450 

attribute bytes in, 235-237 
sample program, 237-238 

Displaying a file, program for, 406-409 
DIV instruction (divide), 165-167, 49.S 
Divide overflow, 165-166 

BIOS interrupt routine (Interrupt 0), 
312 

processor exception for, 310 
Division 

ASCII adjust for (AAD) instruction, 
37&-379, 491 

~·BCD, 378-379 . 
::.. data register (DX) for, 41 

OJV/IDIV instructions for, 161, 165-
167, 495, 496 

double-precision, 374 
with 8087 processor, 384 
methods for, 127 . 
shift instructions for, 117, 122, 

125-127 
Do_fUNCTION procedure, for pro­

gramming arrow keys, 247-252 
Dollar sign (S), for string display, 73 
D~ (disk operating system), 46 

commands, Usted, 445-448 
directory structure, 400-402, 

447-448 
disk structure and, 397, 398 
file processing, 402-415 
I!\ T (interrupt) instructions for. See 

DOS interrupts • 
programs for 80286, 424 
returning to, 265, 316 
versions, 46, 45 7 

OOS interrupts, "7-69, 316, 456-,460 
See also specific interrupts 
file handle functions, 402-415 
for reading and ·writing sectors, 

415-418 
DOS ~mpt (C), COMMAND.COM 

.!1~, 46 .• 
DOSSEG directiye, 519 
Dot matrix printers, 12 

Double-density drives and disks, 398 
Double-precision numbers,·371-374 

adding, ~ubtracting, or negating, 
372-373 

multiplying and dividing, 374 
sh!ft instructions, 5l5-516 

Doublewords, converting words to, 
. 166-167, 494 

OTA (data transfer area), 401 
DUP pseud0-0p (duplicate), 180-181 
DX (data register), 41 
Dynamic J{nking, in OS/2, 431 

E 
EBCDIC code, translating ASCII code 

· to, 197-200 
ECD (enhanced color display) monitor, 

339 
EGA. See Enhanced graphics adapter 
8086 microprocessor · 

clock rate of, 11 
coordination with. 8087 processor, 

382-383, 387-388 
fetch-execute cycle in; IO 
flags and, 81 
hardware interrupts, 309-310 
IBM PC family and, 37, 38 
instruction format, 489-490 
instructions, ·listed, 490-508 
org"irnization of, 7, 8-9, 39-45 
virtual 8086 n1ode, 434 

8088 microprocessor, 38 . 
80186 microprocessor,"38 
80188 microprocessor,.38 
80286 microprocessor, 38, 421-429 

instructions, 511-513 · 
OS/2 and, 430 
Windows 3 and, 430 

80386/80386SX microprocessors. 38-
.W. 433-136 

instructions, 513-516 
OS/2 and, 430 
programming, 434-436 
Windows 3 and, 430 

80486/80486SX microprocessors, 39, 
433 . . . 

· Wj,w!(nvs 3 and, 430 · 
. 80387 numeric processor, 39 

8087 numeric processor, 381-391 
coordination with 8086 micropro-

. cessor, 382-383, 387-388 
data types, 381-382, 508 
instructions for, 382-384, 508-Sl l 
rcghtcrs, 382 

.8087 pseudo-op, 387 
8259 chip (interrupt controller), 313 
ELSE pseudo-op, in macros, 272, 273, 

274, 275, 519 
Empty stack, 140 · 
Encoding and decoding a message, 

198-200 
END directive, 67, 519 

Index 535 

in sample program, 76 
ENDIF pseudo-op, macro file and, 265, 

520 . 
ENDM pseudo-op (end macro defini­

tion), 257, 258, 520, 522, 525 
ENDP pseudo-op (end procedure), 519, 

524 
ENDS directive (declare structure), 526 
ENDS pseudo-op (end segir.ent or struc­

ture), 519, 525 
Enhanced color display (ECO) moni­

tor, 339 
Enhanced grapl1ics adapter (EGA), 232, 

233, 
339-340 

changing cursor size for, 238 
graphics display modes, 332, 339-

340 
number of display pages ior, 234 
port address, 48 
selecting active display page for, 240 

Enhanced keyboard, scan codes for, 
529 

ENTER instruction, in 80286, 423 
EQU (equates) pseudo-op, 59, 75, 520 
Equal (=)pseudo-op, in REPT macra, 

268 
Equipment check interrupt (Interrupt 

llh), 313, 314, 453 
ERASE (DOS command), 446 
.ERR directives, 520-521 

for incorrect macro, 275 
Errors, in macro expansion, 262 
ESC instruction (escape), 495 
EU. s .. e Execution unit 
EVEN directive, 521 
Exchange instruction. See XCHG in­

struction 
EXE2BIN (DOS utility), .EXE programs 

vs . . COM programs and, 284-285 
.EXE program 

.COM program vs., 281, 282-285 
creating, 73 

from library file, 289-291 
from ubjert modules, 287-289 

with full segment definitions, 
295-298 

Execution of instructions, 9-11 
Execution :ime. macros vs. ptbc·~dures 

and, 276 
• Execution unit (EUJ, 8 

connection to SIU, 9 
EXIT (terminate process), Interrupt 

2lh for, 460 
Exiting DEIJUG program, 90 
EXITM assembler directive, 521 
Expanding a macro, 258 
Exoansion slots, 4 
Exponent, 380 
Extended Binary Coded Decimal .:nter­

change Code. See EBCDIC code 
Extended character set, 31, 443-4·44 
Extended instruction set 
, in-80286, 421, 422-423 
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nic.-oprocessors and, 38. 
r.xt.,r.Jcd memory, 426-429 

l\iCS interrupts, 4S4 
•«.,;,·nded-memory manager programs, 

-t26 
Extcmion instructions, 514 
btc!;1al comm:mds, 46 
L'\TR:" ps!!Udo-op, 286, S21 

F 
r.\()fi instruction 1alld real), 384, 508 
I .·\fl po>e<1ures, 146, 285-286 
T\Rf.-\TA/FARDATA? directi\'es, S21 
F\T \," rne allocation. table 
rn1.n 1•1stml"tion <packed BCD lo.id), 

.'Sl, 509 
\ B~TI' in~trua.:tion (p;ickcd BCD store 

anJ pnpl, 383, 509 
rn1v instruction (divide real), 3~, 509 
l·drh-cxrrute cycle, 9-lO 

1:·~rninc languilJ.:C for, 12 
t1111i:1g ut. 10-11 

! i.\IJJ) am•.ruction (inlei;~r add), 38-1, 
S;l'J 

I Ill!\' ii1'lrurtio11 (int;:gcr divide). 384, 
S09 

field~. in as~rmbly language syntax, 
5-1-56 

lli.D in~tructir:n (integer load), 3!13, 
SU'.l 

I dt· JilUlction table (l:ATJ, 401-lUZ 
,:1\pJ.1ying, -117-418 

l'ilc· attritute, .rno, 401, 403 
· changing, -114-115 

'l'''\'if~·ing. 40.~ 
J'i le errors. -1(13 
Hk cxtemion. 46 

.• \S~I 1assen.~ly language source 
file1, 7C 

Fik handles. -102-403 
dosing, -159 

hie name. 46 
'pecial characters with, 445 

I i!t· poilllt·r. -110 
.1ppen<1.ng records to file with. 

., 10--114 
!lHJ\'lllg. -1:-9 

I 1k· ,;"" cluster size and, -100 
Fi]('\, -16 

.11inc~ti«n nf <•ll di.,k, 399--102 

.1ppr11<li11i: records lo, 410-41-1 
(h,111~ii:g attrihutE.'s of, 4 H-41 S 
l'l'l'atin~:. -157 
dirt?ctory siructure, -100 
opening and closin&, 403-405, 

458-459 
?'<;)tl1.'>'>i.t\I!, of, Hlc handle functions, 

40:~ 15. Se~ also specific fimc-
1io11s 

program module, 285-291 
r,•ading. -102, 405 
rC'Jcling and displaying, 4-06-409 

rewriting. 402, 403-404 
writing. 402, 406 

FIMUL Instruction (Integer multiply), 
384, 509 

Firmware, 7 
FIST instruction (Integer store), 383, 

509 
FISTP instruction (integer store and 

pop), 383, 510 
FISUB Instruction (integer subtract), 

384, 510 
Fixed disk. See Hard disk 
Flags, 81 

clearing. instructions for, 493 
instructions and, RS-S7 

ANV, OR, XOR, 119, 492-493, 
501, 508 

CMP example, 95, 97 
DEBUG, 87-90, 472 
jltlllf'S, 95 
rotates, 129 
slii(ts, 123, 125 

in interrupt routine, 312 
loading AH from (LAHF instruc· 

tion), 498 
overflow and, 83~5 

FLAGS register, 39, 40, 45, 81-83 
in intcrmpt routine, 319, 31:! 
jump instructions and, 95 
storing AH in (SAHF Instruction), 

504 
FLD instruction (load real), 383, 510 
Floating-point numbers, 379-381 

ROK7 processor and, 381-391 
80-!86 processor and, 39, 433 
representation of, 380 

Floppy disks, 11, 395-396, 397 
See cll.\u Disks 
capadt)' of, 398, 399 
file allocation on, 399-402 

Flow control lnstnactions, 93-116 
jump instructions, 93-911 

FMUL instniction (multiply real), 3!14, 
510 

FOR loop, high-level vs. assembly lan­
guage, 104-106 

"Forced error• message, for incorrect 
macro, 275 

l'ORMAT !DOS command), 446 
status byte and, 400 

Fractions. See Real numbers 
rsT imtruction (store real), 383, S 10 
FSTI' instruction (store real and pop), 

:lln. s10 
FSUll instruction (subtra~"t real), 384, 

510-511 
Function i.ey commands, CODEVIEW, 

481-482 
Function keys, 245 

programming, for screen editor, 
247-252 

scan codes for, 245 
!'unction requests. See specific Interrupts 

FWAIT Instruction (suspend 8086 pro­
cessor), 387 

G 
Game, interactive video, 34i'-355 
Game controller, port address, 48 
Global descriptor table. 425, 426, 42i' 
Global descriptor table register 

(GDTR), 425 
Global variables, 300-302 
Graphical user Interface (GUI), 46, 430 
Graphics modes, 232-233, 331-333 

animation techniques, 341-347 
CGA, 332, 333-339 
displaying text in, 338-339 
EGA, 339-.340 
selecting, 332-333 
VGA; 332, 340-341 

Graphics pixels, reading or writing. 
335, 452 

Gray scale; 232 
GROUP assembler directive, 521 
GUI (graphical user Interface), 46, 430 

H 
Halt Instruction (HLn, 495 
Hand-shaking. 310 
Hard disks, 11, 395, 396-397, 398 

See alsc Disks 
capacity of, 398, 399 
file allocation table (FAT) on, 401 
port address, 48 
structure of, 397-398 

Hardcopy, 12 
Hardware components 

BIOS routines and, 46 
microcomputers, 3-9 
softw;ire vs., 4S 

Hardware interrupts, 309-310 
IF (Interrupt flag) and, 312 
nonmaskable (t-.'Ml), 312 

Hex error code5, file handling errors. 
403 

Hex numbers. See Hexadecimal num· 
ber system 

Hexadecimal number system, 19, 20-22 
addition and subuaction in, 24-25 
ASCII codes In, 31-32 
decimal and bln;u:y conversions, 

22-23 
digital and binary equivalents, 19, 

21 
In program data, 56 

HE.X_OIJf macro, 270-272 
Hidden, changing file atulbute to, 415 
Hidden files, 400 
High resolution mode, CGA, 336 
High-density drives and disks, 398.,jij 
High-level instructions, In 80286, 4'23 
High-level languages, 13 

advantages of, 13 



bit pattern changes and, 117 
jump Instructions and, 98-104 
loop structures and, 104-108 
program design with, 108-112 
uanslated to assembly language, 

64-05 
HLT lnstn;ction (halt), 495 
Holding register, In fetch-execute cy· 

cle, 10 
HUGE memory model, 299 

, 
IBM character set, 441-444 
· displaying. sample program for, 

93-94 
IBM mainframes, EBCDIC code used 

by, 197 
JBM personal computers 

extended character set for, 31 
keyboard, 244-247 

s.:a11 codes, 33, 245-246, 527-529 
monitor for, 231-232 
organization of, 37-52, 45-49 

1/0 port addressts, 49 
memory. 47-48 
operating system, 46--17 

start-up operation, 49 
text mode progranuning for, 

234-244' 
video adapters and display modes, 

~ 232-233 
·icons, In Windows program, 430 
IDIV instruction (integer divide), 165-

167, 496 
if assembler directives, 521 
IF (constant exp ls nonzero), 273 
IF (interrupt flag), 45 

in interrupt routine, 312 
IFl (assembler making first pass), 273 

macro file and, 264-265 
IF2 (assembler making second pass). 
..,. 273 

IF!f(arg is missing), 273 
IFDEF (SyplbOI ls defined or EXTRN), 

273 
IFDIF (strings are not identical), 273 
IFE (exp is zero), 273 
IFIDN (strings are identical), 273 
IFNB (arg is not missing), 273 

macro using, 274 
IFNDEF (symbol is not defined or EX· 

TRN), 273 
IF-THEN structure, 98-99 
IF-THEN-ELSE structure, 100-101 
immediate mode, 181, 182 
IMUL instruction (integer multiply), 

161-164, 496 
in 80286, 422, 511 . 

IN MilP,truction (input byte or word), 
""496 -
for accessing timer circuit, 348 

INC (inaement) instruction, 63, 496 

flags and overOow with, 85, 86, 
89-90 

INCLUDE pscu~op, 169-170, 
·s21-s22 

macro library and, 264 
INDEC procedure, 170-175 
Indefinite repeat (IRP) macro, 269-270 
Index registers, 39, 40 

direction flags and, 205-206 
• Indexed addressing mode, 185 

segment overrides in, 189 
Indirect procedure call, 147, 304. 
Input overflow, 174 

' Input/output addresses, 9 
Input/011tput (1/0) devices, 3, 11-12. 

See also Interrupt routines 
Input/output operations 

accumulator register (AX) for, 41 
data register (DX) for, 41 
with 8087 processor, 384-391 
with 80286 processor, 511-512 
Instruction syntax, 67~9 
multiple-precision Integer, 384-388 
In OS/2, 431--433 
real number, 389-391 
shift and rot;ite imtructions in, 

130-134 
Input/output ports, 9 

port _,ddresses, 48-49 
Ins (Insert) key, 245-246 
INS instruction (input from port to 

string), 511 
INSB instruction (Input string byte), 

423, 511 
Instruction pointer (IP), 9, 45 

jump instructions and, 95 
Instruction prefctch, 9 
Imtruction queue, 9 
Instruction set, 8 
Instructions, 54 

Su also sprcific instructio11s; spi:cific 
types 

assembly language, 12-13, 14, 15 
basic, 60-6-1 
syntax, 5-1 

creating, macros for, 258 
8086, 490-508 
1:1087 numeric proco:ssor, 382-384, 

508-5ll 
combi11i11g with 8086 i11structio11s, 

387-388 
80286, 511-513 
80386, 5 13-516 
execution of, 9-1 1 
llai;s and, 1:1~7 

DEBUG example•, 87-90 . 
flow control; 93-116. See also Jump 

instructions 
format for, 489-490 
logic, 117, 118-122 . 
machine language, 7, 12 
rotate, 117, 127-130 

in binary 1/0, 130-131 
in hex VO. 131-134 

··-
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shift, 117, 122-127 
in binary VO, 130-131 
in lrex JIO, 131-13-1 

string. 205-228 _ 
INSW Instruction (input string word), 

423, 511 
INT Instruction (Interrupt). 67-69, 

310. 312, 496-497 
Integer operands, 8087 instructions, 

384 
Integer.;, rcprc\Cntation of, 26-28 
Intq;rated-circuit (IC) chlpi, 3 
Intel 8259 chip (interrupt c:ontroller), 

313 
Intel microprocessors, 37-39, 421-438. 

See also specific microprocessors 
Intensity bit, 235, 236 
Interactive video game, 34:1_355 
Internal commands, 46 
Interrupt 0 (divide.ovcrl1ow), 312 
lnterr.1 pt 1 (single step), 312, 450 
Interrupt !Ah (time of day;., 315 · 
Interrupt lll!l (Ctrl-llreak), 315 
Interrupt lCh (timer tick). J 16 

time updating program •••1th, 
318-322 

Interrupt 1 Oh-Interrupt 1 fh, 316 
Interrupt 2 (nonmaskable t1tirruptl, 

312 
Interrupt 3 (breakpoint), 313 
Interrupt 4 (overflow). 313 
Interrupt 5 (print screenJ, 313 
Interrupt 8 (timer), 313 

timer tick interrupt and, 316 
Interrupt 9 (keyboard), 313 

Ctrl·llrcak interrupt and, 315 
Interrupt !Oh (video), :iB, j:i2, 

H9-453 -
listed, 238-243 
programming examples, 243-244 
for palette or background color 

(CGA>. 334 
for reading/writing graphics pixels 

(CGA), 335 
for selecting display pag1· (EGAJ, 

340 
for setting. color register ;:VGA), 341 
In text mode, 238-2"4 
for time display, 325, 326 

Interrupt 1 lh (equipment check), 313, 
314, 453 

Interrupt 12h (memory size;, 313, 453 
Interrupt Bh (di~k 1/0). 314, 453-454 
Interrupt 14h (communications), 314 
Interrupt I Sh (cassette), 314, 454 
Interrupt 15h (extended memory), 

~26-129 

Interrupt 16h lkC)'board 1/01, 314, 455 
keyboard services with, 2 46-24 7 

Interrupt l 7h (printer 1/0), 314-315, 
455 . 

Interrupt 18h (BASIC), 315 ':. 
Interrupt l 9h (bootstrap), 315 
Interrupt 20h (program terminate), 316 
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Interrupt 21h functions, 67~9. 316 
ASCII Code display and, 246 
for displaying a string, 73-75 
file errors with, 403 
file handle functions, 402-415 

,Ji.111si11s cl file's clltribute, 414--415 
111u1·i11s filt' poi11ter, 410-414 
11pt•11i11s n11d c/osi11g files, 403-405 
'"ndi11s n file, 405 
writi11s n file, 406 

in sample program, 75, 76 
for time-of-day display, 316-318 

Interrupt 22h - Interrupt 26h (DOS in-
terrupts), 316 

Interrupt 25h (read sector), 415, 416 
Interrupt 26h (write sector), 415 
Interrupt 27h (terminate but stay resi-

dent), 316 
time d.isplay program with, 322-329 

Interrupt acknowledge signal, 310 
Interrupt controller, 313 

port address, 48 
Interrupt E (diskette error), 313 
Interrupt flag (IF), 45 

clearing, 493 
in interrupt routine, 312 · 
setting (ST! instruction), 5p6 

Interrupt instruction (INl), 67-69, 
310, 312, 496-497 

Interrupt number, 310 
Interrupt request signal, 309 
Interrupt routines, 309 

address calculation for, 310-311 
tl'luming from (IRET instruction), 

312, 497 
in time display programs, 316-329 

·lntl·rrupt VC'Ctor table, 311 
Interrupt vectors, 47, 310-311 

~etting addresses of, 457-458 
setting up, 319 

Interrupts · 
BIOS, 310, 312-16. See also specific 

intem1pis 
LJ0\ 316 
hardware, 309-310 
nonmaskable (NM(), 312 
proCl's.~or exception, 310 
soitware, 310 

l:'\10 instruction (interrupt if over­
tlow), -197 

Invoking a macro, 258 
1/0. See entries begi1111i11g witll "l11p11t/011t­

' put" 
IP (instruction pointer), 9, 45 

ju1np instructions and, 95 
I RET instruction (interrupt return), 

312, 497 
IRP macro (indefinite repeat), 269-270 

.Jump instructions, 93-98, 497-498 
CMP instruction and, 95, 97 

conditional, 94-97, 497-498 
· lligl1-level vs. assembly language 

strnctures, 98-104 . 
example, 93-94 
high-level languages and, 98-104 
JMP (unconditional jump), 98, 498 
JNZ (jump If not zero), 94, 95 
role of, 93 

K 
KB (kilobyte), 11 
Keyboard, 11, 244-247 

ASCII code and, 21, 22 
hardware interrupts and, 309 
INT 16h functions, 24~247, 455 
INT 2lh functions, 456, 457 
operation of, 246 
scan codes, 33, 245-246, 527-529 

Keyboard buffer, 246 
Keyboard controller, port address, 48 
Keyboard flags, 245-246 
Keyboard interrupt (Interrupt 9), 313 
Keyboard 1/0 Interrupt (Interrupt 

16h), 314 
Kilobyte (KB), 11 

L 
LABEL pseudo-op (declare operand 

type), 187-188, 522 
Labels 

cross-reference file and, 72 
of macros, 262-263 

LAHF instruction (load AH from flags), 
491! 

.LALL (list all), 522 
for macro expansions, 261, 262 

LARGE memory model, 299 
Laser printers, 12 
LDS instruction (load data segment reg­

ister), 498 
LDTR (local descriptor tabl~ register), 

425 
LEA instruction (load effective ad­

dress), 74, 498-499 
in sample program, 75, 76 

Least significant bit (lsb), 2.6 
'LEAVE instruction, in 80286, 423 
LES Instruction (load extra segment 

register), 499 
LIB utility, 289-291 
Library files 

for macros, 264-266 
for object modules, 289-291 
in 05/2, 431 

Line feed/carriage return, macro for, 
265 

LINK program, 73, 467-469 
command line, 467-448 
example, 468-469 
.EXE programs vs .. COM programs 

and, 284-285 ..., 

library flies and, 289-291 
object modules combined by .. 285, 

2.86-287, 467 
Linking, in OS/2., 431 
List file, as MASM output, 461 
.LIST assembler directives, 522 
Lists. See Arrays 
Load Effective Address. See LE.A instruc-

tion 
Load Instructions, for 8087, 383 
Loading memory strings, 211-214 
Local descriptor table, 424-425 

multitasking and, 426 
Local descriptor table register (LDTR), 

42.5 
Local labels, In macros, 262-263 

·LOCAL pseudo-op, 262-263, 513 
· Location counter (MASM), 464, 466 

ORG lOOh and, 282 
LOCK instruction (lock bus), 499 
LOOS instruction, 22.3, 499 
LODSB instruction (load string byte), 

211-214, 223, 499 
LODSW instruction (load string word), 

211, 223, 499 
Logic instructions, 117, 118-12.2 

accumulator register (AX) for, 40-41 
AND, OR, XOR, 119-121, 492-493, 

501, 508 
role of, 117 

Logic operations, In arithmetic and 
logic unit (ALU), 8. See also 
Logic instructions 

Logical address, 42 
Logical sector numbers, 416 
Long real floating-point format, 381 
Loop, defint'd, 104 
Loop counter, count register (CX) as, 

41 
LOOP Instructions, 93, 94, 499-500 

high-level vs. assembly languages, 
104-108 . 

Lowercase letters, converting to upper­
case, 120-121, 287-289 

I.SEEK, 459 
.I.ST file (source listing file), 72, 259 

macro expansion in, 259-261 
options for, 261-262 

macro library files and, 264 

M 
Machine code, Jn source listing 'c.l.ST) 

file, 72 
Machine language, 12 

defined, 7 
instruction sets, 8 

MACRO pseudo-op, 258, 522 
Macros, 257-280 

conditional, 272-275 
conditional pseudo-ops in, 272-273 
defined, 257 
expanding. 258 



in .IST file, 259-262 
assembly errors, 262 

IF pseudo op In, 273 
IFNB pseudo-op In, 274· 
illegal Invocations, 2.59 
incorrect, .ERR directive for, 275 
Invoking, 258 
invoking other macros with, 263-

264, 270-272 
library file for, 264-266 

sample program using, 266-267 
local labels in, 26~263 
optimum use of, 276 
output, 270-272 
procedures vs., 257, 276 
rl'C"ursive, 264 
repetition, 268-270 
role of, 257 
syntax for, 257-258 
useful examples, 265-266 

Magnetic disks, 11 
Make code, 245 
Mantissa, 380 
Masks 

for AND, OR, XOR instructions, 
11!1, 120 

for TEST instruction, 122 
MASM. See Microsoft Macro Assembler 
MB (megbyte), 6 
MCGA. See Multi-(:olor graphics array 
MDA. See Monochrome display adapter 
MEDIUM memory model, 299 
Medium resolution mode, CGA, 333, 

334-335 
~Mega, defirled, 6 

·Megabyte (MB), 6 
Megahertz (MHz), 11 
Memory· 

allocating, 460 
extended, 426-429 
freeing, 460 
physical, in 80386, 434, 435 
virtual, 38, 426 

;,, 80386, 38, 433 
Memory (hardware), 4-7 

..;ccess to, ~0286 microprocessor 
~'":' and, 38 

operations on, t-7 
Memory byte circuits, 4 

addresses of, 4-6 
contents of, 5 
RAM vs. ROM, 7 

Memory dumps, DEBUG, 477 
· Memory errors, nonmaskable inter· 

rupts and, 312 • 
Memory location, 6 

adding or subtracting contents of, 
62-63 

clearing, 121 
exchanging contents of, 60, 61 
IBM re. 47-48 
instruction pointer (IP), 45 
for Interrupt vectors, 311 
lolJcal addresses, 42 

negating contents of, 64 
physical addresses, 41 
registers and, !J 

FLAGS register, 45 
pointer and lndeJC registers, 44-45 
segment register, 41-44 

reserved, 4 7 
transferring data to and from, 60, 

61 
\irtual addresses, 424-426 

Memory management, 281-308 
.COM vs .. EXE programs and, 281, 

28~285 
in 80286, 423-424 . 
program modules and, 285-291 

Memory manager programs, 426 
Memory map, 48 
Memory models, 65, 299 

choosing, 299-300 
declaration syntax, 65, 299 
.MODEL directive for, 65. 

Memory protection, protected mode 
· and, ~8 

Memory-resident programs. See Terrni· 
nate-and-stay-resident programs 

Memory segments, 41-42 
disjoint, 47 , 

Memory size interrupt (Interrupt 12h), 
313, 453 

Memory strings 
comparing, 217-222 
defined, 205 
finding substrings of, 219-222 
loading, 211-214 
moving, 206-209 
scanning, 214-217 · 
storing, 209-2 ll 

Memory wort!, 6. See also Words 
Menus, in Windows program, 430 
Messages, Inserting in programs, 75 

. Microcomputer system, components 
of, 3-9 

Microprocessors, 37-39, 421-438 
See <1/su specific 111icrupruces.,01s 
address size and, 5-6 
data registers in, 39 . 

. defined, 4 
fetch-execute cycle in, 9-10 
orsanization of (8086), 7, 8-9, 

39-45 
shift or rotate instructions and, 122 
speed of, 10-11 

Microsoft l.lbrary Manager, 289-291 
Microsoft Macro Assembler (MASM), 

461-467 
command line, 462-463 
credting machine language file 

with, 70, 71-73 
example, 464-467 
full segment definitions and, 291 
LINK program and, 286-289 
macros and, 257, 258 

•torr:ed error• message, :z, 5 
UJ:-olcing other macros, 264 

library files, 264 
local labels, 263 

options, 463 

Index 539· 

segment definitions, 6S 
syntax for, 54 

MKDIR (MD), 448, 458 
Mode numbers, for video adapters, 233 

selecting, 238 
.MODEL directive, 65, 299, 52~523 
Monitor, 12, 231-232 

analog, for VGA, 340 
display pages, 234 
port addresses for, 48 
video adapter and, 232, 233 

Monochrome display adapter (MDA), 
232, 233 

attribute bytes for, 235-Z36, 237 
changing cursor size for, 238-239 
display memory capacity, 234 

Monochrome monitor, '232. See also 
Monochrome display 

Most significant bit (msb), .Z6 
Motherboard, 4, 5 
Mouse, for Windows, 430 
MOY instruction, 60-61, 5CO 

for clearing a register, AND instruc­
tion vs., 121 

flags and, 85, 86 
DEBUG example, 88 

macro for, 258 
in sample program, 75, 76 

Moving memory strings, 206-209 
MOVS Instruction, 223, 224, 500 
MOVSB instruction (move string byte), 

206-208, 223, 224, 500 
MOVSW instruction (move string 

word), 208-209,.223, 500 
MOVSX instruction (move with sign· 

extend), 514 
MOVZX instruction (move with zero· 

extend), 435, 436, 514 
MS DOS, 46. See also DOS 
MUL Instruction (multiply), 161-164, 

501 
Multi-color graphics array (MCGA), 

237., 233 
selecting active display page for, 240 

Multiple-precision numbers, with 80117 
processor, 384-388 

Multiplication 
ASCH adjust for.(AAM) instruction, 

378, 491-492 
BCD, 378 '' 
data register (DX) for, 41 · 
double-precision, 374 · 
with 8087 processor, 384 · 
in 80286, 422, 51J 
methods for, ·127 
MUL/IMUL Instructions for, 161-

164, 496, 501 
procedure for, 150-157 
shift instructions for, 117, 122 

overflow and, 124 
SAL (shift arithmetic left), 124 
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SHI. (.,/1ift h•(t), l 23-l 24 
signell vs. unsigned, 161-162 

l\IULTll'LY procedure, 15~157 
Multitasl.ing. 429 

N 

8028(1 and. 421 
prot.:dcd (virtual address) mode 

and, 38, 421 
Windows .and OS/2 for, 430 

Name field, in assembly language syn­
tax. 54-5.'i 

Naml'll constants, 59 
N.11m.1i language, high-level language 

.111d, Ll 
'.\:lAl! procedures, 146, 285-286 

RET instruction and, 1.9 
NF.G (negation) imtrnction, 64, 501 

fl.1.~s and. 85. 86-87, 89 
:-.leg.11.un, double-precision, 373 
Ne):ativc integers, 26-28 

two's complement representation 
uf, 27-28 

N1hbk, 18 
:\,1nma1kablc interrupt (NM!). 312 
NOi' imtruction (no operation), 501 
''urinal vuko, 235 
NOT imtruction (logical not), 121, 501 
!';OT truth table, 118 
Numl><.•r 'Y>tcms, 19-22 

ai.Jdition and subtraction In, 24-25 
in assembly language programs, 56 
converting between, 22-23 

Numbers, converting ASCII digits to, 
120 

0 
Object \.Ollj) files, 285 

creating,_ 70, 73 
I.INK program for, 73 
as MASM output, 461, 466 

Object modules, 285 
library files for, 289-291 

OF (overnow flag), 82, 83 
Offset address of operand 

In based indexing addressing mode, 
194 

obtaining, 184-187 
Offset (of memory location), 42 
OFFSET pseudo-op, 321 
One-dimensional arrays, 179-181 
One's complement of binary number, 

26 
NOT instruction and, 121 

Opcode, 9, SS 
format for, 489-490 

G\'~\\\\\'b i m~. 403-404 
Operand field, in assembly language 

syntax, SS 
Operands, 9 

of ADD instructions, 62 

addressing modes for, 181-189 
declaring types of, 187-188 
destination vs. source, 55 
of 8087 instructions, 384 
in instruction format, 489, 490 
of MOV instruction, 61, 64 
obtaining offset address for, 

184-187 
overriding type of, 187, 188 
of segment declaration, 291-295 
of string instructions, 223-.t24 
of SUB Instructions, 62 
type agreement of, 64, 18f-187 

o•·erridi11g, 187-188 
of XCHG instruction, 61 

OperJting system 
lllM PC. -16-47 
muititasking, 429-433 
role of, 46 
in start-up operation, 49 

Operiition lode. See Opcode 
Operation field, in assembly language 

syntax, 55 
Operations, in assembly language syn­

. tax, 54 
OR conditions, high-level vs. assembly 

languages, 103-104 
OR instructions (logical inclusive or), 

119-121, 501 
OR truth table, 118 
ORG lOOh pseudo-op, in .COM pro­

gram, 282, 523 
OS/2 operatir.g system, 429, 430 

programming In, 431-433 
OUT instruction (output byte or 

word), for accessing timer cir­
cuit, 348, 501-502 

OUT instruction (output string to 
port), 512 

OUTDEC procedure, 167-170 
Output macros, 27~272 
OUTSB instruction (output string 

l>ylc), 423, 512 
OUTSW mstructlon (output string 

word), 423, 512 
Overflow, 83-85 

divide, 165-166, 310, 312 
input, 174 
interrupt instruction for (INTO), 

497 
shift instructions and, 124 

Overflow flag (OF), 82, 83 
Overflow interrupt (Interrupt 4), 313 

p 
Packed BCD form, 375 

converting ASCII digits to, 385-386 
decimal adjust for add!tlon/subtrac· 

lion, 494-495 
8087 numeric processor and;· 381-

382, 385-386, 508, 509 
printing numbers In, 386-387 

Paddle, adding to video game, 350-352 
PAGE assembler directive, 524 
Page-oriented virtual memory, In 

80386, 434 
Pages, In F.GA mode, 339 
Palette registers, EGA, 339 
Palettes, 334 

setting, 451 
Paragraph, 42 
Paragraph boundary, 42 
Parallel port, 9 

port address,. 48 
Parity errors, nonmaskable Interrupts 

and, 312 
Parity flag (PF), 82 
PC DOS, 46. See 11/su DOS 
%OUT assembler directive, 523 
P<:ripileral devices (peripherals), 3 
Personal computers. Sec IBM personal 

computers 
PF (parity flag), 82 
Physical address, 41 
Physical memory, in 80386, 434, 435 
Pixels, 23~, 331-332 

default color of (background color), 
334 

reading or writing, 335, 452 
Pointer registers, 39, 40 

register Indirect mode and, 182 
POP Instructions, 142-143, 502 

In 80286, 422 
In program example, 151, 152, 156 

POPA instruction, In 80286, 422, 512 
POPF Instructions, 142, 153, 502 
Ports, 1/0, 9 

port addresses, 48--49 
Positional number system, 19-20 
Power loss, RAM vs. ROM and, 7 
Prefixes, string Instruction, REP (re· 

peat), 207-208 
PRINT (DOS command), 446 , 
Print Screen interrupt (Interrupt 5), 313 
Printer, INT 2 lh functions and, 456 
Printer 1/0 Interrupt (Interrupt l 7h), 

314-315, 455 
· Pclnters, 12 

Printing packed BCD numbers, 
386-387 

Printing real numbers, with four-digit 
fractions, 390-391 

Privilege level, 426 
PROC pseudo-op (begin procedure), 

524 
Procedures, 15, 146 

beginning and ending, 524 
calling, 493. S~<' alw CALL lnstruc· 

tions 
communication between, 147, 

300-305 
for decimal 1/0, 167-17~ 
documenting, 147 
macros vs., 257, 276 
NEAR vs. FAR, 285-286 
recursive, 357, 358-360 
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activation rtrords and, 361-363 LABEL (declare operand type), 187- Real numbers, 389 
implmientatlon of, 363-366_, 188 8087 operations with, 389-391 
with multlplt calls, 367-369·.:. LOCAL, for macros, 262-263 Rebooting the system, lnten·upt 19h 

returning from, 146, 147, 148, 149, MACRO, 258 . . for, 315 
J503-504 _ ... ---~ , , for named constants, 59.. RECORD assembler directive·, 525 

separate files for (program mod-_ ., OFFSET, 321 Records, appending to file, ~J0-414 
ules), 285-291 · · · · ORG lOOh, 282 Recursion, 357-370 

syntax of, 146-147, 285-286 .. PTR (override operand type), 187, Recursive macros, 264 
using stack With, 303-305, 360-361 ' 188 Recursive procedures, 357, 358-360 

Process, in OS/2, 430 PUBLIC, 286 activation records and, 361-363 
Processor exception, 310 · · SEG, 321 Implementation of, 363-:166 
Program data, 56-57 . ' SEGMENT, 291-298 with multiple calls, 367-c:69 
Program execution, tasks vs .. 426 .286, 424 passing parameters on stack for, 
Program loop constructions, count reg- • .386, 435 360-361 •; 

,. lster (CX) In, 41 PSP (Program segment prefix), 74 Recursive process, defined. 357-358 
•rrogram modules, 285-291 ORG lOOh and, 282 Register indirect mode, 182-183 
Progtam segment prefix (PSP), 74 PTR pseudo-op (override operand segment register override in, 
Program segments, 44, 6~7 type). 187, 188 188-189 

.COM programs and, 281-282 PUBLIC pseudo-op, 286, 524 string Instructions vs., 20.; 
full definitions for, 291-298 PURGE directive, 524-525 . Register mode, 181, 182 
in protected mode, 42~26 PUSH Instructions, 140, 141, 502 Registers, 8, 39 
simplified definitions for, 299-300 in 80286, 422, 512 • adding or subtracting contents of, 

Program size, macros vs, procedures In program example, 151, 152, 153 62~3 ·' 
and, 276 PUSHA Instruction, In 80286, 422, adding to, 63 

Program structure, 6~7. 281 512-513 · · clearing, 121 
.COM programs, 281-285 PUSHF Instruction, 140, 141, 502 color, 340, 341 . 

Program terminate interrupt (Interrupt double-precision numbers and, 371 
20h). 316 · In 8086 microprocessor, 39-45. See 

Programs also spedfic types 
See also Assembly language pro- Q in 8087 numeric processor, 382 Question mark (?), ils DOS special char- · grams; Software In 80286, 422, 425 
.COM, 281-285 acter, 445 In 80386, 433 
CPU and, 7 Quitting a progrjlm, Interrupt 20h fnr exchanging contents of, 60, () 
designing, top-down method, 316 In Instruction format, 489.,..490, 491 

108-112 · in Interrupt routlne, 310 · 
DOS negating contents of, 64 , 

for 80286, 424 R restoring after macro, 259 
for 80386, 434-436 .RADIX assembler directive, 525 stack use vs .. 30:i-304 

firmware (ROM-based), 7 RAM (random access memory), 7 In start-up operation, 49 
jump example, 93-94 RCL Instruction, 128, 502-503 subtracting from, 63 
stack segmenu of, 139 ' RCR instruction, 129, 5o:i testing for zero, 121 
terminating. 456 · application ex;imple, 130 transferring data between, 60, 61 
testing. Set CODEVIEW programi READ_STR procedure, 209-211. RENAME (REN), 446 

DEBUG program 213-214 · REP Instruction (repeat), count register 
Pll'.')tected (virtual address) mode, 38 Read operations, 6-7 · (CX) for, 41, 50, 503 

'1n 80286, 421, 424-426 In fetch-execute cycle, ·10 REP prefix (r.?peat), 207-208 
in 80386, 433-434 Read sector In 80286, 423 
multitasking and, 429 INT 13h for, 453-454 · ' REPE prefix (repeat while equal), In 
OS/2 and, 430 · INT 25h for, 4l5, 416 string comparisons, 2HI, 219 
Windows 3 and, 430 · ' Read-only memory. See ROM. .,'REPEAT loop 

Pseudo-operation code (pseudo-op$). 55 • Read/write head, 395 · high-level vs. assembly language, 
ASSUME, 295"" · Reading from disk, DOS lnterrupi for, 107-108 
conditional, 272-273 460 WHILE loop vs .. 108 

for macro library, 264-265 • Reading a file, 405 1 Repetition macros, 268-270 
d;ita-deflnlng, 57 · dellned;·.fo2: .. _ ·-- REPNE Instruction (repeat while not 
our (duplicate), 180-181 DOS Interrupt for, 459 equal), In string scanning, 215, 
.8087, l87 programfor, 4~ 216, 217, 503 
ELSE. in macros, 272, 2i3, 274, 275 Reading grap_lllcs pixels, 335, 452 REPNZ prefix (repeat while not zero), 
ENDM (end ~aero defln,ltion), 258 Reading and storing a character string, 215, 503 
EQU (equates), 59, 75 . 209-211 . _ '. __JU:PT macro (repeat block of state-
= (equal), In REPT macro, 268· -;~ .r.cReal address ·m~e (real mode), 38 ' ments); 268-269; 525 ': 
E'lffRN, 286 ' -· 'in 80286, 421, 423-424 · REPZ prefix (repeat while zero), In 
IFl...ENDIF, for macro file, 264-265 Ir 80386, 433 _ . · string comparisons, 218 
INCLUDE., 169-170 ' . . Real mode, Wind5°ivsljlj~4.J~ ~esolutlon, 233, 331 
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CGA, 333 
EGA, 339 
VGA, 340 

RESTORE (DOS command), 446 
RET instruction (retum), 146, 14 7, 

148, 149, 503-504 
in program example, 151, 152, 

1S6-157 
Return address, in interrupt routine, 

310 
Reverse video, 235 
ll<'writinJ: a file, 402, 403-404 
RGB monitor, 232 
RMDIR (ltD), 448, 458 
ROL instruction (rotate left), 126, 127, 

128, S04 
ROM (read-only memory), 7 

BIOS interrupt routines in, 310, 
312-316 

ROM-based programs (firmware), 7 
· memory segment for, 48 
ROM BASIC, transferring control to, 

:ll.5 
R<>ot dirl'ctory. 400 
ROR instruction (rotate right), 127-

128, S04 
Rotate instructions, 117, 122, 127-130, 

502-SOJ, 504 
application examples, 130-134 
applying, reversing bit pattern, 130 
in 80286. 422 
role of, 117 

Row-major order, array storage in, 
192-193 

Run file, creating and executing, 70,. 73 

s 
S.\HF instruction (store AH In FLAGS 

register), SOS 
SAL instruction (shift arithmetic left). 

124, S04-50S 
'.SALL (suppress all), for macro expan­

sions, 261; 262, 52S 
SAR instruction (shift arithmetic right), 

12S, 126. 505 
SBll instruction (subtract wlth borrow).°· 

372, 373, 505 
Sc~n codes 

keyboarc' and. 33, 245-246, 
~27-529 

kc~·l>oard buffer and, 246 
Scan lines, 331 
Scanning memory strings, 214-217 
SCAS instruction, 223, 505 
SCASI! instruction (scan string byte), 

214-217, 223, 505 
SCASW instruction (scan string word), 

214, sos 
Screen display. See Display; Monitor 
Screen editor, sample program'. 

J47-7~7 

Scroll1ng screen or window up/down, 
240-241, 450-451 

Searching. for substrings of strings, 
219-222 

Secret message, coding and decoding. 
198-200 

Sectors, 397 
logical, 416 
reading, program for, 416-417 

SEG pseudo-op, 321 
Segment:offset form of address (logical 

addrl'ss), 42-43 
Segment definitions · 

full form of, 291-298 
simplified, 299-300 

Segment descriptor, 42S, 426 
In 80386, 433 

Segment descriptor tables, 424-425 
Segment cllrective, 291-292 
Segment number, 42 
Segment overrides, 188-189 
SEGMENT pseudo-op, 291-298, 52S 
Segment registers, 39, 41-44, 499. See 

also Program segments 
Segment selector, in protected mode, 

424, 42S . 
Segments. See Program segments 
SELECT procedure, for sorting an ar­

. ray, 190-191 
Selectsort method, 189-192 
Semicolons 

in assembly language programs, 14, 
SS 

is assembler instructions, 72 
.SEQ assembler directive, 526 
Serial ports, 9 

port addresses, 48 
Set (destination bit), OR Instruction 

for, 119, 120 
Set byte on condition instructions, 

514-51S 
SF (sign tlag), 82, 83 
Shift instructions, 117, 122-127 

application examples, 130-134 
applying, reversing l>it pattern, 130 
division by, 117, 122, 125-127, 374 
double-precision, 374, 515-Sl6 
in 1:10286, 422 
multiplication by, 117, 122, 123-

'- 124, 374 
OV!!rtlow and, 124 
role of, 117, 122 
SAL (shift arlthcmtlc right), 124. 

504-SOS 
SAR (shift arithmetic right), 12S, 

126, S05 
SHL (shift logical left), 123-124, 

504-SOS 
SHR (shift logical right), 12S, 126, 

506 
Shift keys, 24S 

information stored on, 245-246 
scan codes for, 24S 

SHL lnstrucfion (shift left), 123-124, 
504-SOS 

appllcafloil example,;_ 130 
Short real floating-point format, 381 
SHR instruction (shift right), 125, 126, 

506 
SI (source index) register, 45 
Sign flag (SF), 82, 83 
Signed integers, 26-28 

decimal Interpretation, 28-30 
cllvislon by IDIV Instruction, 165-

167, 496 
division by right shifts, 126 
8087 support, 381 
multiplication by IMUL Instruction, 

161-162, 496 
Signed Jumps, 95, 96, 97 
Signed overflow, 83, 84, 85 
Single step interrupt (Interrupt 1), 312 
Single-flag jumps, 95, 96 
16-blt programming, 434 
16-color display, attribute byte for, 23S 
.SMALL model, 67, 299-300 
Software, 45 

programming languages, 12-14 
Software interrupts, 310 
Sorting arrays. selectsort method, 

189-192 
Sound, adding, 347-350 
Source Index (SI) register, 45 
Source listing file. See .LST file 
Source operand, SS 
Source program file, creating, 70-71 
SP (staclc pointer) register, 44 . 
Special characters, with DOS com-

mands, 44S 
Stack, 44, 139 

accessing or placing Items on, 189, 
303-305, 360-361 

adding to (PUSH/PUSHF instruc­
tions), 140-141 

application example, 144-145 
in .COM vs .. EXE programs, 

282-283 
8087 data registers as, 382 
empty, 140 . 
removing Items from (POP/POPF in· 

structions), 142-143 
top of, 139 .. 

.STACK directive, 66, 299, S26 
In sample program, 76 

Stack pointer (SP) register, 44 
Stack sc~mcnt, IS, 44 

.COM programs and, 281 
declaring, 140 

S)71tax for, 66 
Standard mode, Windows 3 in, 430 
Start-up operation, IBM PC, 49 
Statements 

in assembly language programs, 14 ~ 
assembly language syntax, S4 · 

Status byte, in file cllrectory, 420 
Status flags, 4S, 81, 82-83, 205 

DF.RIJG examnle. RR. R9 



DNflDlV instructions and, 165 
jump instructions and, 95 · · 
MUL/IMUL lnstruCttons and, 162 

Status registers, 39 
STC instruction (set carry flag), 506 
STD instruction (set direction.flag), 

206, 506 
STI instruction (set Interrupt flag), 506 
Storage, magnetic disks, 11 
Storing memory strings, 209-211- ' 
STOS insiruction, 223, 506 
STOSB instruction (store string byte), 

209-211, 223, 506 
STOSW instruction (store string word), 
~- 209, 223, 506 . ' 

String, defined, 205. See also Charac­
ter strings; Memory strings 

String instructions, 205-228, 
CMPS, 223, 494 ·· 
CMPSB (compare string byte), 217-

t22, 494 
CMPSW (compare string word), 

217, 494 
direction flags and, 205-206 
in 80286, 423 
general form of, 223-224 
INSB (input string byte), 423 
INSW (input string word), 423 
LOOS, 499 
LODSB (load string byte), 211-214, 

499 
LODSW (load string word), 211, 

499 . 
MOVSB (move string byte), 206-

208, 500 . 
REP prefix and, 207-208 

MOVSW (move string word), 208-
209, 500 

OUTSB (output string byte), 423 
OUTSW (output string word), 423 
register indirect addressing mode 

vs., 205 
REP prefix (repeat), 207-208 
~AS, 505 
SCASB (scan string byte), 214--217, 

505 
SCASW (scan string word), 214, SOS 
STOS, 223, 506 
STOSB (store >hing byte), 209-211, 

506 
STOSW (store string word), 209, S06 

Strlng operations 
count register (CX) for, 41 
DI (destlnatlon Index) and, 4S 

Strings, 20S: See Character strings; 
Memory strings 

STRUC assembler directive, 526 
Structure, declaring (STRUC directive), 

526 
SUB instruction, 62-63, 507 

for \l~aring a register, AND instruc­
~tion vs., 121 

flags and 
DEBUG example, 89 

overflow, 84, 85, 86 
in sample program, 75, 76 

Subdirectories, 400 
managing, 448, 458. . 

Substrings, searching for, 219-222 
Subtraction 

ASCII adjust for (AAS) instruction, 
377-378,492 . 

BCD, 377-378, 495 
by bit complementatlon and addi- · 

tion, 28 _ 
decimal adjust for (DAS instruc-

tion), 495 ' 
double-precision, 372, 373 
with 8087 processor, 38-t 
instructions, 62-63, 377-378, 492, 

sos, 507 
number systems and, 24-25 · 
overflow and, 8~S 
real (FSUB instruction), 384, 

510-511 
5UBTTL instruction (subtitle 'display), 

526 . 
SWAP procedure, for sorting an array, 

190-19-1 . . 
Symbol table (MASM), 464 
Syntax 

assembly language, 54-56 
based and indexed addressing 

modes, 184 
input/output instructions, 67.,-69 
procedure declaration, 146-147 

System board, 4 
System reboot, Interrupt 19h for, 315 

T. 
Tasks, in protected mode, 426 
Teletype mode, writing character in, 

4S2 
Temporary real floating-point format, 

381 
Terminate-and-stay-resident (TSR) pro­

grams, 322 
for time display, 322-329 

Terminate-but-stay-resident interrupt 
(Interrupt 27h), 316, 460 

Terminating a process (EXIT), Interrupt 
2lh for, 460 

Terminating a program, Interrupt 20h 
for, 316 

TEST instruction, 122, 507 
Tesl scores, averJgin,i;, 195-197 
Text, displaying in graphics mode, 

CGA, 338-339 
Text mode, 232 

character generation in, 233 
display pages in, 234 
graphics m0de vs., 338 
mode numbers, 233 
progrJmrnlng, 234-244 

INT JOh functions, 238-244 
video adapter and, 233 
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TF (trap flag), In Interrupt routine, 312 
32-bit programming. 434 
Thread, in OS/2, 430 

, 386 enhanced mode, Windows 3 in, 
· 430. See also 80386 mi<:roproces-

' sor 
.386 pseudo-op, 435 
Time, INT 2lh functions.and, 457 
TIME (DOS command), 447 
Time of day interrupt (lntern1pt lAh), 

315 
Time display 

program for, 316-318 . 
program for updating, 31Sc322 
TSR program for, 322-329 · 

Timer circuit, for tone generation, 
34°7-348 ' 

Timer Interrupt (Interrupt 8), :113 
Timer tick count, Interrupt lAh and, 

315 
Timer tick interrupt (Interrupt lCh), 

316 ' 
time updating program with, 

318-322 
TITLE assembler directive, 526 
Tone generation, 347-350 · " 
Top of the stack, 139 
Top-down program design, 108-112 

procedures in, 146 
Tracepoints, Ji1 CODEVIEW, 486--487 
Tracks, 39S, 397 
Translating character codes. See XI.AT 

instruction 
Trap flag (TF), in interrupt routine, 312 
Truth tables, for logic operators, 118 
TSR programs. Sc•e Terminate-and-stay-

resident programs 
.286 pseudo-op, 424 
Two-dimemional arrays, 179, 192-194 

based indexed addressing mo:1e for, 
194-195 

locating elements in, 193-19~, 
storage order for, 192-193 
Jn test score averaging program, 196 

Two's complement of a binary num­
ber, 27-28 

double-precision negation and, 373 
TYPE (DOS command), 447 
Typeahead buffer. See Keyboard buffer 

u 
Unconditonal UMP) jump instruc1ions, 

98 
Underline characters, 236, 23 7 
UNLINK, DOS interrupt for, 4S9 
Unpacked BCD form, 375 
Unsigned integers, 26 

decimal interpretation, 28-30 ,, 
division by DIV instruction, 16~;-

166, 495 
division by right shifts, 126 
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multiplication by MUL instruction, 
161-162, 501 

Unsigned jumps, 95, 96, 97 
Unsigned overfl~ 83, 84 
Uppercase letters, converting to lower· 

C3Se, 120-121, 287-289 
User commands (DOS), 46 · 
User Interrupt procedures, 318-329 , 

v 
Variables, 5 7-59 

arrays, 5S-59 
oosc nddress of, 180 
011e-di111msio1"ll, 179-181 

byte, 57 
cross-reference file and, 72 
global, 300-302 
wocd, 57-58 

VGA. See Video graphics array 
Video adapters, 12, 232, 233 

graphics display modes, 332 
scan lines and, 331 

Video buffer. See Display memory 
Video controller, 232 

display modes and, 232-233 
Video display. See Display; sptclfic types 
Video display memory, 47 

segments for, 48 , 
Video game, Interactive, 347-355 
Video griiphlcs a.ny (VGA), 232, 233 

graphics display modes, 332, 
3-lU-:Hl 

number of displily pages for, 234 
selecting active display page for, 240 

Video Interrupt (interrupt 10h), 313, 
332,449-453 

for palette or background color, 
CGA, 334 

for reading/writing graphics pixels, 
CGA, 335 

for selecting display page (EGA), 
340 

for setting color register, 341 
Video modes. Set Display modes 
Virtual address mode. S~ Protected 

mode 
Virtual addresses, 424-426 
Virtual ll086 mode, Jo, 4l4 
Virtual memory, 426 

access to, 38 
In 80386, 38, 433 

Virtual program segment!, 426 
Vowels, counting, 215-217 

w 
WAIT inslructlon, 507 
Watch commands, in CODEVIEW. 

482-487 
Watchpoints, in CODEVIEW, 487 
WHILE loop 

hlgh·level vs. assembly lar.guage, 
106-107 

REPEAT loop vs., 108 
Wlldcard characters, with DOS com­

mands, 445 
Window 

defined, 430 
scrolling up or down, 240-241, 

450-451 
Window mode display, in CODEVlEW, 

480-481 
Windows 3 environment, 429, 430 
Word arrays. Stt Strings 
Word variables, 57-58 

high and low bytes of, 58 
moving word into word, Invoking 

macro for, 258 
Words 

bit positions In, 6 
changing bit patterns In, 117 

converting bytes to, 167, 493 
converting to doublewords, 166-

167, 494 
defined, 6 
dividing, 165, 166-167 
double-precision numbers and, 371 

. Integer storage In, 26-28 
moving Into words, macro for, 258 
multiplying, 162 

Write operations, 6, 7 
In fetch-execute cycle, 10 

Write sector 
INT 13h for, 454 
INT 26h for, 415 

Write-protect notch, 396, 397 
Writing to disk, DOS interrupt for, 460 
Writing a file, 406 

defined, 402 
DOS Interrupt for, 459 

Writing graphics pixels, 335, 452 

x 
.XALL, for macro expansions, 261, 

262, 526 
XCHG Instruction (exchange), 60, 61, 

507 
nags and, 85 

.XCREF (cross-reference file), 518, 526 
XLAT Instruction (Uanslate), 179, i97-

200, 507 
.XLIST assembler directives, 522, 526 
XOR Instruction, 119-121, 508 
XOR truth table, 118 

z 
Zero, testing register for, 121 
Zero flag (ZF), 45, 82, 83 
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