
ASSEMBLY
LANGUAGE FOR

INTEIT-BASED
COMPUTERS

FOURTH EDITION

KIP R. IRVINE

ASCII CONTROL CHARACTERS
The following list shows the ASCII codes generated when a control key combination is pressed.
The mnernonics and descriptions refer to ASCII fimctions used for screen and printer formatting
and data communications.

ASCII
Code* Ctr]-

Mne -
monic Description

ASCII
Code* Ctr!-

Mne
monic Description

m I
OI Ctrl-A
02 Ctrl-B
03. Ctrl-C
04 Ctrl-D
05 Ctrl-E
06 Ctrl-F
07 Ctrl-G
08 Ctrl-I-I
09 Ctrl-I
0A Ctrl—J
OB Ctrl—I_(

Ctrl-L
Ctrl-M
Ctrl-N
Ctrl-O

OC
OD
OE
OF

mm
am
fix
ETX
an
mm
Mm
em
m
m"
w
vr
W
on
so
a

Null character
Stan of header
Start Of text
End of text
End of transmisS_ion
Enquiry
Acknowledge
Bell
Backspace
Horizontal tab
Line feed
Vertical tab
Form feed
Carriage return
Shift out
Shift in

10 (ft:-llP
1 1 Ctrl-Q
12 Cu-I-R

Ctrl-S
Ctrl-T
Ctrl-U
Ctrl-V
Ctrl-W

- Ctrl-X
CnLY
Ctrl-Z‘
Ctrl-I
Ctrl-
Ctrl-I

IE Cub“
IF Cu-l-r

r—Ii—1r—~r—-Ir-Ir-\r—* .\O%-IOELII-P~L;J

1A
m
m
m

ow
om
DC2
om
om
mm
wn
HE
mm
EM
we
ac
E
®
M
m

Data itifé escape
Device control 1
Device control 2
Device control 3.
Device control 4
Negative acknowledge
Synchronous idle
End transmission block
Cancel
End of medium
Substitute
Escape
File separator
Group separator
Record separator
Unit separator

* ASCII codes are in hexadecimal.
1' ASCII code lFh is'Clrl-Hyphen (-).

ALT-KEY COIIIIBINATIONS
The following hexadecimal scan codes are-produced by holding down
the ALT key and pressing each character:

Key Scan Code Key

O\OOO-lO'\Ui-I>>L.~Jl\Jv—-

R
79
7A
m
7C
m
m
W
w

000000 b~JI\J'—'

gwW““mommUnw>

Sean Code Key ‘Scan Code
IE I T3112 I

N<xg<cewwowoz

30 .
2E
'20
l2 .
21
22
23
17
24
25
26
32.

5-1:-\r—n:--tu-r—-I -I5~"l'jU~5@\O@

16'
2F
I I
2D
I5
"2C

The following keyboard scan codes may be retrieved either by calling INT 16h or by calling INT
2lh for keyboard input a second time (the first keyboard read returns 0). All codes are in hexa-
decimal

KEYBOARD SCAN CODES

FUNCTION KEYS

Key Na"-ma!
With
Shift

With With
Ctrl Alt

Fl 3B.
F2 3C
F3 3D
F4 3E
FS 3F
F6 40
F7 4l
F8 42.
F9 43
F10 44
Fl 1 85
F12 86

S4
SS
S6
57
S8
S9
SA
SB
SC
SD
87
88

SE 68
SF 69
60 6A
6 I 6B
62 6C
63 6D
64 6E
65 6F
66 70
67 71
89 8B
8A 8C

Key Alone
With
Ctrl Key _

I Home
End
PsUP
PgDn
PflSc
Left arrow
Rt arrow
Up arrow
Dn arrow
Ins
Del
Back tab
Gray +
Gray -

47
4F
49
S 1
37
4B
4D
48
SO
S2
S3
OF
4E
4A

77
7S
84
76
72
73
74
SD
9jI
92
93
94
90
SE

Assembly Languagefor
Intel?Based Computers

Fourth Edition

Kip R. Irvine
Florida International University

Pearson Education, Inc.
Upper Saddle River, NJ 07458

Library ofCongress Cataloging-in-Publication Data

Irvine. Kip R.
Assembly language for intel-based computers--4th edition I Kip R. lrvine.
ClP DATA AVAILABLE.

Vice President and Editorial Director. ECS: Marcia Horton
Executive Editor: Perm Rector
Editorial Assistant: Renee Mnitms
Vice President .and Director of Protluctionand Manufactu ring, ESM: David W. Rict'an'n'
Executive Managing Editor: Vince O'Brien
Assistant Managing Editor: Cnnn'H'e Trem’rat'os!e
Production Editor: [ruin Zncker
ManuI'actu|'ing Manager: Trndy Pt'.sct'0l’n'
Manufacturing Buyer: Lisn McD0we'H
Director of Creative Services: Pan! Beiflntti
Creative Director: Cm-ole Anson
Art Director: Jayne Come
Cover Designer: KIWI Design
Cover Art: Plimogrnph nfSheH, Darling Kiitdersiey Media 1..i£2'1.'¢zz'_t-'
Executive Marketing Manager? Pamela Sltctjfer
lvlarketing Assistant: Barrie Reittitoltl

© 2003. I999 Pearson Education. Inc.
Pearson Education, lnc.
Upper Saddle River, New Jersey U7-4'58

All rights reserved. No part ol" this book may be reproduced, in any format or by any means. without permission in writ-
ing -Irom the publisher

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the
development. research. and testing of the theories and pnograms to determine their effectiveness. The author and publisher
make no warranty oi‘ any kind. expressed or implied, with regard to these programs or the documentation contained in this
book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with. or
arising out of. the funtishing. performance. or use of these programs.

TRADEMARK INFORMATION
TextPad is a trademark oi’ Helios Software Solutions-.
TASM and Turbo Debugger are trademarks of Borland international.
Microsoft Assembler (MASM)LWindows NT. Windows Me, Windows 95, Windows 98. Windows 2000.
Windows XP, MS'—Windows. PowerPoint, Win32. DEBUG, WinDbg_ MS-DOS, Visual Studio. Visual C++.

and Codeview are registered trademarks of Microsoft Corporation.

Pttinted in the United States of America
Reprinted with conections April. 2()lJ3.
I0 9 8 7 6

ISBN D-113-D“I]tD]t3~=I
Pearson Education Ltd.. London
Pearson Education Australia Pty. Limited, Sydney
Pearson Education Singapore Pte. Ltd.
Pearson Education North Asia Ltd. Hong Kong
Pearson Education Canada Inc.. Toronto
Pearson Educacion de Mexico, S.A. de CV.
Pearson Education—Japan, Inc., Tokyo
Pearson Education —Malaysia Pte. Ltd.
Pearson Education Inc.. Upper Saddle Rivet; New Jersey

‘1Ei"'

To Jack and Candy Irvine

Contents

><E.Preface

1 Basic Concepts 1
1.1 Welcome to Assembly Language 1

1.1.1 Some Good Questions to Ask 2
1.1.2 Assembly Language Applications 7
1.1.3- Section Review 8

1.2 Virtual Machine Concept 8
1.2.1 The History of PC Assemblers 11
1.2.2 Section Review 12

1.3 Data Flepresentation 12
1.3.1 Binary Numbers 13

1.3.1.1 Unsigned Binary integers 13
1.3.1.2 Translating Unsigned Binary lntegers to Decimal 14
1.3.1.3 Translating Unsigned Decimal Integers to Binary 14

11.3.2 BinaryAddition l5
1.3.3 Integer Storage Sizes l6
1.3.4 Hexadecimal Integers 16

1.3.4.1 Converting Unsigned Hexadecimal to. Decimal 17
1.3.4.2 Converting Unsigned Decimal to Hexadecimal 18

1.3.5 Signed Integers l8
1.3.5.1 Two's Complement Notation 19
1.3.5.2 Maximum and Minimum Values 21

1.3.6 Character Storage 2l
1.3.7 Section Review 23

1.4 Boolean Operations 25
1.4.1 Truth Tables for Boolean Functions 2-7
l .4.2 Section Review 29

1.5 Chapter Summary 29

Contents

IA-32 Processor Architecture 31
General Concepts 31
2.1.1 Basic Microcomputer Design 32
2.1.2 Instruction Execution Cycle 33

2.1.2.1 Multi-Stage.Pip_eline 34
2..1.2.2 Superscalar Architecture 36

2.1.3 Reading from Memory 37
2.1.4 How Programs Run 38

2.1.4.1 Load and Execute Process 38
2.1.4.2 Multitasking 39

2.1.5 Section Review 40
IA-32 Processor Architecture 41
2.2.1 Modes of Operation 41
2.2.2 Basic Execution Environment 41

2.2.2.1 Address Space 41
2.2.2.2 Basic Program Execution Registers 42

2.2.3 Floating-Point Unit 44
2.2.3.1 Other Registers 44

2.2.4 Intel Microprocessor History 45
2.2.4.1 IA-32 Processor Family 46
2.2.4.2 P6 Processor Family 46
2.2.4.3 CISC and F11SC 46.

2.2.5 Section Review 47
IA-32 Memory Management 48
2.3.1 Rea1»address Mode 48

2.3.1.1 20-bit Linear Address Calculation 49
2.3.2 Protected Mode 50

2.3.2.1 Flat Segmentation Model 50
2.3.2.2 Multi-Segment'Model 51
2.3.2.3 Paging 52

2.3.3 Section Review 53
Components of an IA-32 Microcomputer 53
2.4.1 Motherboard 53

2.4.1.1 P01 Bus Architecture 54
2.4.1.2 Motherboard Chipset 54

2.4.2 Video Output 55
2.4.3 Memory 55
2.4.4 Input-Output Ports 56
2.4.5 Section Review 57
lnput-Output System 57
2.5.1 How I'tA11 Works 57
2.5 .2 Section Review 60
Chapter Summary 60

Contents

3 Assembly Language Fundamentals 63
3.1 Basic Elements of Assembly Language 64

3 . I .1 Integer'Constants 64
Integer Expressions 65
Real Number Constants 66
Character Constants 67
St1"in'g Constants 67
Reserved Words 67
Identifiers 67
Directives 6.8
Instructions 68
3.1.9-".1 Label 69
3.1.9.2 Instruction Mnemonic 70
3.1.9.3 Operands 70
3.1.9.4 Comments 71

3.1.10 Section Review 71
3.2 Example: Adding Three Integers 72

3.2.1 Program Listing 72
3.2.2 Program Output 72
3.2.3 Program Description 73

3.2.3.1 Alternative Version of AddSub 74
3 .2 .4 Program Template 76
3.2.5 Section Review 76

3.3 Assembling, Linking, and Running Programs 77
3.3.1 The Assemble-Link-Execute Cycle 77

3.3.1.1 Listing File 78
3.3.1.2 Files Created or Updated by the.Linker 79

3.3.2 Section Review '80

3.4 Defining Data 80
3.4.1 Intrinsic DataTypes 80
3.4.2 Data Definition Statement" 81
3 .-4.3 Defining BYTE and SBYTE Data 81

3.4.3.1 Multiple Initializers 82
3.4.3.2 Defining Strings 83
3.-4i3.3 Using the DUP'Operator 83

3.4.4 Defining WORD and SWORD Data 84
3.4.5 Defining DWORD and SDWORD Data 84
3.4.6 Defining QWORD Data 85
3.4.7 Defining TBYTE Data 85
3.4.8 Defining Real Number Data 85
3.4.9 Little Endian Order 86
3.4.10 Adding Variables to the A'ddSub Program 87

l..:Jl..:Jl..:Jl..:JL.;Jl..:JL.;Jl..:J il|l|l|np_l|l|l|n ioboktbxbtita-ink:

Contents

3.4.1 1 Declaring Uninitialized Data 87
3.4.12 Section Review 88

Symbolic Constants 89
3.5.1
3.5.2
3.5.3
3.5.4
3.5.5

Real-Address Mode Programming (Optional) 93
3.6.1

Equal~Sign Directive 89
Calculating the Sizes of Arrays and Strings 90
EQU Directive 91
TEXTEQU Directive 92
Section Review 93

Basic Changes 94
3.6.1.1 The AddSub2 Program 94

Chapter Summary 95
Programming Exercises 96

Data Transfers, Addressing,
and Arithmetic 97
Data Transfer Instructions 98
4.1.1
4.1.2
4.1.3
4.1.4

Introduction 98
Operand Types 98
Direct Memory Operands 99
MOV Instruction 100

4.1.5 Zero/Sign Extension of Integers 101
4.1.5.1 Copying Smaller Values to Larger Ones 101
4.1.5.2 MOVZX Instruction 102
4.1.5.3 MOVSX Instruction 103

4.1.6 LAHF and SAHFInstructions 103
4.1.7
4.1.8
4.1.9

XCHG Instruction 104
Direct-Offset Operands 104
Example Program (Moves) 105.

4.1.1-0 Section Review I06

Addition and Subtraction 107
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6

INC and DEC Instructions 107
ADD Instruction 108
SUB Instruction 108
NEG Instruction 109
Implementing Arithmetic Expressions 109
Flags Affected by Arithmetic 1 10
4.2.6.1 Zero" and Sign Flags 110
4.2.6.2 Carry Flag (unsigned arithmetic) 110
4.2.6.3 Overflow Flag (slgned arithmetic) 111

Contents

4.2.7 Example Program (AddSub3) 113
4.2.8 Section Review 114

4.3 Data-Related Operators and Directives 115
4.3.1 OFFSET Operator I 15

4.3.1.1 OFFSET Example 115
4.3.2 ALIGN Directive I 1.6
4.3.3 PTR Operator 1 17
4.3.4 TYPE Operator 1 18
4.3.5 LENGTHOF Operator l 18
4.3.6 SIZEOF Operator I 19
4.3.7 LABEL Directive I 19
4.3.8 Section Review I20

4.4 Indirect Addressing 120
4.4.1 Indirect Operands 121
4.4.2 Arrays 122
4.4.3 Indexed Operands 123
4.4.4 Pointers 124

-4.4.4.1 Using the.TYPDEF Operator 125
4-.4.5 Section Review 126

4.5 JMP and LOOP Instructions 127
4.5.1 JMP Instruction I27
4.5.2 LOOP Instruction I 28
4.5.3 Summing an Integer Array 129-
4.5.4 Copying a String 130.
4.5.5 Section Review 131

4.6 Chapter Summary 132
4.7 Programming Exercises 133

5 Procedures 137
5.1 Introduction 137
5.2 Linking to an External Library 138

5.2.1 Background InI’ormation I38
5.2.2 Section Review 139

5.3 The Book’s Link Library 140
5.3.1 Overview 140
5.3.2 Inc_livid_ua1 Procetlure Descriptions 141

5.3.2.1 The;Irvine32.inc Include File 147
5.3.3 Library Test Program I48
5..3.4 Section Review 152

x Contents

5.4 Stack Operations 153
5.4.1 Runtime Stack 153'

5.4.1.1 Push Operation 154
5.4.1.2 Pop Operation 155
5.4.1.3 Stack Applications 155

5.4.2 PUSH and POPInstructions I56
5.4.2.1 P.USH Instruction 156
5.4.2.2 POP Instruction 156
5.4.2.3 PUSHFD and POPFD Instructions 156
5.4.2.4 PUSHAD, PUSHA, POPAD, and POPA 157
5.4.2.5 Example: F1eversingaString 157

5.4.3 Section Review I58
5.5 Defining and Using Procedures 159

5.5.1 PROC Directive‘ 159
5.5.1.1 Defining a Procedure 159
5.5.1.2 Example: Sum of Three Integers 160
Documenting Procedures 160

5.5.2 CALL and RET Instructions 161
5.5.2.1 Call and Fleturn Example 161
5.5.2.2 Nested Procedure Calls 162
5.5.2.3 Local Labels and Global Labels 163
5.5.2.4 Passing Register Arguments to Procedures 164

5.5.3 Example: Summing an Integer Array I64
5.5.4 Flowcharts 1 65
5.5.5 Saving and Restoring Registers 166

5.5.5.1 USES Operator 166
5.5.6 Section Review I68

5.6 Program Design Using Procedures 169
5.6.1 Integer Summation Program (Design) 170

5.6.1.1 Integer Summation Implementation 172
5.6.2 Section Review 175

5.7 Chapter Summary 175
5.8 Programming Exercises 176

6 Conditional Processing 179
6.1 Introduction 180
6.2 Boolean and Comparison Instructions 180

6.2.1 The CPU Flags" I81
6.2.2 AND Instruction 181

6.2.2.1 Converting Charactersto UPPer'Case 182
6.2.3 OR Instruction 183
6.2.4 XOR Instruction I84

Contents

6 .2 .5 NOT Instruction I 86
6.2 .6 TEST Instruction I 86
6.2.7 CMP Instruction 186
6.2.8 Setting and Clearing Individual CPU Flags 188
6.2.9 Section Review I88

6.3 Conditional Jumps 189
6.3.1 Conditional Structures 189
6.3.2 ..It'0im‘Inst1'uction 190
6.3.3 Types of Conditional Jump Instructions 191

6.3.3.1 Equality Comparisons 192
6.3.3.2 Unsigned Comparisons 192
6.3.3.3 Signed Comparisons 192

6.3.4 Conditional Jump Applications 193
6.3.4.1 Testing Status Bits 193
6.3.4.2 Application: Scanning an Array 194
6.3.4.3 Application: String Encryption 195

6.3.-5 Bit-Testing Instructions (Optional) 198
6.3.5.1 BT Instruction 198
6.3.5.2 BTC Instruction 19.9
6.3.5-3 BTF1 Instruction 19.9
6.3.5.4 BTSInsttuction 199

6.-3.6 Section Review 200
6.4 Conditional Loop Instructions 200

6.4.1 LOOPZ and LOOPE Instructions 200
6.4.2 LOOPNZ-and LOOPNE Instructions 201
6.4.3 Section Review 202

6.5 Conditional Structures 202
6.5.i Block-Structured IF Statements 202
6.5.2 Compound Expressions 204

6.5.2.1 Logical AND Operator 2'04
"6.5-.2.2 Logical OF1 Operator 205

6.5.3 WHILE Loops 205
6.5..3.1 Example: IF statement Nested in a Loop 206

6.5.4 Table—Driven Selection 20.8
6.5.5 Section Review 210

6.6 Application: Finite-State Machines 211
6.6.1 Validating an Input String 212
6.6.2 Validating a Signed Integer .213
6.6.3 Section Review 216

6.7 Using the .lF Directive (Optional) 217
6.7.1 Signed and Unsigned Comparisons "219
6.7.2 Compound Expressions 220

Contents

6.7.2.1 SetCursorPosition Example 220
6.7.2.2 College Registration Example 221

6.7.3 .REPEAT and .WI-IILE Directives 222
6.7.3.1 Example: Loop Containing an IF Statement 222

Chapter Summary 223
Programming Exercises 224

Integer Arithmetic 227
Introduction 228
Shift and Rotate Instructions 228
7.2.1 Logical Shifts versus Arithmetic Shifts 229
7.2.2 SHL Instruction 229
7.2.3 SHR Instruction 230
7 .2 .4 SAL and SAR Instructions 231
7.2.5 ROL Instruction 231
7.2.6 ROR Instruction 232
7.2.7 RCL and RCR Instructions 232
7 .2.-8 SHLD/SHRD Instructions 233
7.2.9 Section Review 235
Shift and Rotate Applications 236.
7.3.1 Shifting Multiple Doublewords 236
7.3.2 Binary Multiplication 237
7.3.3 Displaying Binary Bits 237
73.4 Isolating a Bit String .238
7.3.5 Section Review 239.-
Multiplication and Division Instructions 239
7.4.1 MUL Instruction 240
7.4.2 IMUL Instruction 241
7.43 DIV Instruction 242
7.4.4 Signed Integer Division 243

7.4.4.1 CBW; CWD, CDQ Instructions 243
7.4.4.2 ThelDI\/Instruction 243
7.4.4.3 Divlde Overflow 244

7 :45 Implementing ArithmeticExpressions "245"
7.4.6 Section Review 247
Extended Addition and "Subtraction 248.
7 .5 .1 ADC Instruction 248
7.5.2 Extended Addition Example 249'
7.5.3 SBB Instruction 250
7.5.4 Section Review 250

Contents

7.6 ASCII and Packed Decimal Arithmetic (Optional) 251
7.6.1 AAA Instruction 252
7 .6 .2 AAS Instruction 253
7.63 AAM Instruction 253
7 .6.4 AAD Instruction 253
7.6.5 Packed Decimal Integers 254

7.6.5.1 DAA Instruction 254
7.6.5.2 DAS Instruction 254

7.7 Chapter Summary 255
7-.8 Programming Exercises 256

8 Advanced Procedures 259
8.1 Introduction 259
8.2 Local Variables 260

8.2-.1 LOCAL D'ire.ctive 261
8.2 .2 -Section Review 263

8.3 Stack Parameters 263
8.3.1 INVOKE Directive 264

8.3.1.1 DDR Operator 265
8.32 ._PROC Directive 266

8.3.2.1 Examples 267
8.3.3 PROTO Directive 268

8.3..3.1 ArraySum Example 269
-8 .3 .4 Passing by Value or by Reference 269
8.3.5 Parameter Classifications 271
8.3.6 Example: Exchanging Two Integers 271
.8.3_.7 Trouble-Shooting Tips 272

8.3.7.1 Saving and Restoring Registers 272
8.3.7.2 Wrong Op_erand Sizes 273
8.3.7.3 Passing the Wrong Type of Pointer 274
8.3.7.4 Passing Immediate Values 274

8.3.8 Section Review 274
8.4 Stack Frames 275

8.4.1 Memory Models 276
8.4.2 Language Specifiers 277

8*.-4.2.1 STDCALL Specifier 277
8.4.2.2 C-Specifier 278
8.4.2.3 PASCAL Specifier 278

8.4.3 Exp1icitAccess to Stack Parameters 278
8.4.3.1 Saving -and Reston'ng-Registers 280

8.4.4 Passing Arguments by Reference 280
8.4.4.1 Arra'yFil1Example' 281
8.4.4.2 LEA Instruction 282

XII! Contents

8.5

8.6

8.7

8.8

9
9.1
9.2

9.3

9.4

8.4.5 Creating Local Variables 282
-8.4.6 ENTER and LEAVE Instructi.ons (Optional) 283
8.4.7 Section Review 285
Recursion 285
8.5.1 Reeursively Calculating a Sum 286
8.5.2 Calculating a Factorial 288
8.5.3 Section Review 290
Creating Multimodule Programs 290

l a I .8.6. Ex mp1e.ArraySu_m Progi am 291
'8.6.".1 Include File: Function Prototypes 292
8.6.".2 Main Module 292
8.6 PromptFor1ntegers Module 293
8.6 ArraySum Module 2'94
8.6 DispIaySum Module 295
8.6.‘ .6 Batch File for Assembling and Linklng 295

8.-6.2 Section Review 296
Chapter Summary 296
Programming Exercises 298

.L.L.L 011::-co

Strings and Arrays 301
Introduction 301
String Primitive Instructions 302
9.2.1 MOVSB, MOVSW, and MOVSD 304.
9.2 .-2 CMPSB, CMPSW, and CMPSD 304

9.2.2.1 Example: Comparing Two Strlngs 306
9.2.3 SCASB, SCASW, and SCASD 307
9.2.4 sirose, srosw, and sroso 30s
9.2.5 LODSB. LODSW, and LODSD 308-
9.2..6 Section Review 309
Selected String Procedures 309
9.3.1 Str_compare Procedure 310
9.3 .2 _Str_Iength Procedure 31 I
9.3.3 Str_copy Procedure" 3 I I
9.3..4 Str__trim Procedure 312
9.3.5 Str_ucase Procedure 3 I-4
9.3.6 Section Review 315
Two-Dimensional Arrays 315
9.4.1 Base-Index Operands 315
9.4.2 Base-Index Displacement 317
9.4.3 Section Review 318

COIIIBHIS

9.5 Searching and Sorting Integer Arrays 318
9.5.1 Bubble Sort 319
9.5.2 Binary Search 321

9.5.2.1 Test Program 324
9.5.3 Section Review 328

9.6 Chapter Summary 328
9.7 Programming Exercises 330

10 Structures and Macros 333
10.1 Structures 334

10
10

c:>'<:5<:>§:><:>

11>-

10

I Defining Structures 334
2 Declaring Structure Variables 335
3 Referencing Structure Variables 336

Example: Displaying the System Time 338
5 Nested Structures 340
6 Example: Drunkard’s Walk 341
7 Declaring and Using Unions 344
8 Section Review 346

10.2 Macros 347
10.2.1 Overview 347
10.2.2 Defining Macros 348
10.-2.3 Invoking Macros 349
10.2.4 Macro Examples 350

10.2.4.1 mWnteStr Macro 351
10.2.4.2 mReadStr Macro .352
10.2.4.3 mGotoxy Macro 352
10.2.4.4 mDumpMem Macro 353
10.2.4.5 Macros Containing Code and Data 354

10.2.5 Nested Macros 355
10.2.6 Example Program: Wrappers 356
10.2.7 Section Review 357

10.3 Conditional-Assembly Directives 358
10.3.1 Checking for Missing Arguments 359
10.3.2 Default Argument Initializers 360
10.3.3 Boolean Expressions 360
10.3.4 IF, ELSE. and ENDIF Directives 36.1
10.3.5 The IFLDN and IFIDNI Directives 362
10.3.6 Special Operators 363

10.3.6.1 Substitution Operator (8) 363
10.3.6.2 Expansion Operator (%.) 364
10.3.6.3‘ Literal-Text Operator (<>) 366
10.3.6.4 Literal-Character Operator (I) 366

xvi Contents

10.3.7 Macro Functions 367
10.3.8 Section Review 369

10.4 Defining Repeat Blocks 370

10.4.2 REPEAT Directive

10.4.6 Section Review 37

10.4.1 WHILE Directive 370
371

10.4.3 FOR Directive 371
10.4.4 FORC Directive 372
10.4.5 Example: Linked List 373

5

10.5 Chapter Summary 375
10.6 Programming Exercises 376

11 32-Bit Windows Programming 379
11.1 Win32 Console Programming 379

11.1.1 Background Information 381
11.1.1.1 Windows Data Types 382
11.1.1.2 Console Handles 383

I I .1 .2 Win32 Console Functions 384
11.1.3 Console Input 386

11.1.3.1 ReadConso|e Function 387
11.1.3.2 Single-Character Input 388

11.1.4 Console Output 389
11.1.4.1 Data Structures 390
11.1.4.2 WriteConso1e Function 390
11.1.4.3 Example Program:Conso1e1 390
11.1.4.4 WriteConso1eOutputCharacter Function 391

11 .1 .5 Reading and Writing Files. 392
1‘ ." .5.1 CreateFi1e Function 392
1 " ." .5.2 CIoseHand1e Function 395
1".".5.3 ReadFi1e Function 395
1".".5.4 Wn'teFiIe Function 395
1‘:'.5.5 Example WriteFile Program 396
1".".5.6 Moving the File Pointer 397
11.1.5.7 Example ReadFile Program 397

11.1.6 Console Window Manipulation 39.8
1 1.1.6.1 SetConso
1 1.1.6.2 GetConso

eTitIe 399
1eScreenBufferlnfo 399

11.1.6.3 SetConso1eWindowlnfo Functlon 400
1 1 .1 .6.4 SetConso

I I .1 .7 Controlling the Curs
11.1.7.1 GetConso

eScreenBufierSize Function
or 402
eCursor1n1o Function 402

11.1.7.2 SetConso1eCursorlnfo Function 402
11.1.7.3 SetConso1eCursorPosition 403

Contents xvii

I 1.1.8" Controlling the Text Color 403
11.1.8.1 SetConsoIeTextAttribute Function 403
1 1.1.8.2 WriteConsoIeOutputAttfibute Function 403
11.1.8.3 Example WriteCo1ors Program 403

I I .1 .9 Time and Date Functions 405
11.1.9.1 GetLocaITime and SetLocaI'l"|me 406
11.1.9.2 GetTickCount Function 407
11.1.9.3 Sleep Function 407
11.1.9.4 GetDate.Time Procedure 408
11.1.9.5 Creating a Stopwatch Tlmer 409

11.1.10 Section Review 410
11.2 Writing a Graphical Windows Application 411

1.2.1 Necessary Structures 412
11.2.2 The MessageBox Function 413
11.2.3 The WinMain Procedure 414
1 1.2.4 The WinProc Proce_dure 414
1 1.2.5 The ErrorI—landIer Pro.cedure 415
11.2.6 Program Listiltg 416

11.2.6.1 Running the Program 419
11.2.7 Section Review 420

11.3 IA-32 Memory Management 421
I I .3.1 Linear Addresses 421

11.3.1.1 Translating Logical Addresses to Linear Addresses 421
11.3.1.2 Paging 423
11.3.1.3 Descriptor Tables 424
11.3.1.4 Segment Descriptor Details 425

11.3.2 Page Translation 425
11.3.2.1 MS-Windows Virtual Machine Manager 426

I 1.3.3 Section Review 427
11.4. Chapter Summary 428
11.5 Programming Exercises 429

12 High-Level Language Interface 431
12.1 Introduction 431

12.1.1 General Conventions 431
12.1.2 Section Review 433

12.2 lnline Assembly Code 433
12.2.1 __asm Directive in Microsoft Visual C++ 433

12.2.1.1 Using the LENGTH, TYPE, and SIZE Operators 435
12.2.-2 File Encryption "Example 436

12.2.2.1 Procedure Call Overhead 437
12.2.3 Section Review 439

xvlll Contents

12.3 Linking to C++ Programs 439
12.3.1 Linking to Borland C++ 4-40
12.3.2 ReadSector Example 441

12.3.2.1 Main C++ Program That Calls ReadSector 442
12.3.2.2 Assembly Language Module 444

12.3.3 Example: Large Random Integers 446
12.3.4 Using Assembly Language to Optimize C++ Code 448

12.3.4.1 FindArray Code Generated by Visual C++ 449
12.3.4.2 Linking MASM to Visual C++ 450

12.3.5 Section Review 454
12.4 Chapter Summary 455
12.5 Programming Exercises 456

13 16-Bit MS-DOS Programming 457
13.1 MS-DOS and the IBM-PC 457

13.1.1 Memory Organization 458
13.1.2 Redirecting Input-Output 460
13.1.3 Software Interrupts 461
13.1 .4 INT Instruction 461

13.1.4.1 Interrupt Vectoring_ 461
13.1.4.2 Common Interrupts 462

13.1.5 Section Review 462
13.2 MS-DOS Function Calls (INT 21h) 463

13.2.1 Selected OuIputFunctions 464
13.2.2 Hello World Program Example 467
13.2.3 Selected Input Functions 467

13.2.3.1 Example: String Encryption Program 469
13.2.3.2 Int 21h Function 3Fh 470

13.2.4 DatefTime Functions 472
13.2.4.1 Example: Displaying the Time and Date 474

13.2.5 Section Review. 476
13.3 Standard MS-DOS File I/O Services 476

13.3.0.1 Create_ or Open File (716Ch) "478
13.3.1 Close File Handle (3Eh) 479
13.3.2 Move File Pointer (42h) 480

13..3.2.1 Get File Creation Date and Time 481
1.3 .3 .3 Selected Library Procedures 481

13.3.3.1 Fleadstrlng 482
13.3.3.2 WriteString 482

13.3.4 Example: Read and Copy a Text File 483
13.3.5 Reading the MS-DOS Command Tail 485
13.3.6 Example: Creating a Binary File 48.7

COFIIBIIIS xix

13.3.7 Section Review 490
13.4 Chapter Summary 491
13.5 Chapter Exercises 492

14 Disk Fundamentals 495
14.1 Disk Storage Systems 495

14.1.1 Tracks,Cylinders,an'd Sectors 496
14.1.2 Disk Partitions (Volumes) 498
14.1.3 "Section Review 499

14.2 File Systems 500
14.2.1 FAT12 501
14.2.2 FATI6 501
14.2.3 FAT32 501
14.2.4 NTFS 502
14.2.5 Primary Disk Areas 503
14.2.6 Section Review 504

14.3 Dlsk Directory 505
14.3.1 MS-DOS Directory Structure 505
14.3.2 Long Filenamesin MS-Windows 508
14.3.3 File Allocation Table (FAT) 510
14.3.4 Section Review 511

14.-4 Reading-and Writing Disk Sectors (7305h) 511
14.4.1 Sector Display Program 513
14.4.2 Section Review 517

14.5 System-Level File Functions 517
14.5.1 Get Disk Free Space (7303h) 5 I 8

14.5.1.1 Disk Free Space Program 519
14.5.2 Cneate Subdirectory (39h) 521
l4.5_.3 Remove Subdirectory (3Ah) 521
14.5.4 Set Current Directory (31311) 522
14.5.5 Get Current Directory (47h) 522
14.5.6 Section Review 522

14.6 Chapter Summary 523
14.7 Programming Exercises 524

15 BIOS-Level Programming 527
15.1 Introduction 527

15.1.1 BIOS DataArea 528

XX Contents

15.2 Keyboard Input with INT 16h 529
15.2.1 How the Keyboard Works 530
15.2.2 INT 1611 Functions 531

15.2.2.1
15.2.2.2
15.2.2.3
15.2.2.4
15.2.2.5
15.2.2.6

Set Typematic Rate (03h) 531
Push Key into Keyboard Bufier (05h) 531
Wait for Key (10h) 532
Check Keyboard Bufier (1 1 h) 533
Get Keyboard Flags 534
Clearing the Keyboard Bufier 535

15.2.3 Section Review 537
15.3 VIDEO Programmin.g with INT 10h 537

Basic Background 537
15.3.1.1 Three Levels of Access 537

15.3.1

15.3.2

15.3.3

15.3.4

15.3.5

15.3.1.2
15.3.1.3

Running Programs in Full-Screen Mode 538=
Understanding Video Text 538

Controlling the Color 539
" 5.3.2.1
" 5.3.2.2

"5.3.3.1
"5.3.3.2
"5.3.3.3
"5.3.3.4
"5.3.3.5
"5.3.3.6
"5.3.3.7
" 5.3.3.8
15.3.3.9

Mixing Primary Colors 539
Attribute Byte 540

INT I011 Video Functions 54I
Set Video Mode (00h) 542
Set Cursor Lines (01 h) 543
Set Cursor Position (02h) 544
Get Cursor Position and Size (03h)
Scroll Window Up (06h) 546
Example: Writing Text to a Window
Scroll Window Down (07h) 548
Read Character and Attribute (08h)
Write Character and Attribute (09h)

544

547

548
548

"5.3.3.10 Write Character (0Ah) 549
‘ 5.3.3.11 Toggle Blinking and Intensity Modes 550
"5.3.3.12 Get Video Mode Information (0Fh) 550
" 5.3.3.13 Write String in Teletype Mode (13h) 551
"5.3.3.14 Example: Displaying a Color String 552
Library Procedure Examples 554
15.3.4.1
15.3.4.2

Gotoxy Procedure 554
Clrscr Procedure 554

Section Review 555

15.4 Drawing Graphics Using INT 10h 555
15.4.1 INT 1011 Pixel-Related Functions 556

15.4.1.1
15.4.1.2

Write -Graphics. Pixel (0Ch) 556
Read Graphics Pixel (0Dh) 557

15.4.2 DrawLine Program 5'57
15.4.3 Cartesian Coordinates Program 559
15.4.4 Converting Cartesian Coordinates to Screen Coordinates 562
15.4.5 Section Review 563

15.5 Memory-Mapped Graphics 563
I5.5.I Mode 1311: 320 X 200. 256 Colors 563

Contents

15.5.2 Memory-Mapped Graphics Program 565
15.5.3 Section Review 568

15.6 Mouse Programming 568
15.6..1 Mouse INT 3311 Functions 568

Fleset Mouse and Get Status 568
Showing and Hiding the Mouse Pointer 569
Get Mouse Position and Status -570
Set Mouse Position 571
Get Button Presses and Fleleases 571

"5.6.".6 Setting Horizontal and Vertical Limits -573
‘5.'6.".7 Miscellaneous Mouse Functions 573

15.6.2 Mouse Tracking Program 574
15.6.3 Section Review 579'

15.7 Chapter Summary 580
15.8 Chapter Exercises 580

|.|.|.|.|. 9797959595 |.|.|.|.|.
U1-b~C10|\)—l

16 Expert MS-DOS Programming 583
16.1 Introduction 583
16.2 Defining Segments 584

16.2.1 Simplilied SegmentDirectives 584
16.2.2 Explicit Segment Definitions 586

16.2.2.1 Align Type 587
16.2.2.2 Combine Type -587
16.2.2.3 Class Type 588
16.2.2.4 ASSUME Directive 588.
16.2.2.5 Example: Multiple Data Segments .588

16.2.3 Segment Overrides 589
16.2.4 Combining Segments 590
16.2.5 Section Review 592-

16.3 Runtime Program Structure. 592
16.3.1 COM Programs 593
16.3.2‘ EXE Programs 595

16.8.2.1 Memory Usage 5_95
16.3.-2.2 EXE Header 596

16.3.3 Section Review 597

16.4 Interrupt Handling 597
16.4.1 Hardware Interrupts 599
16.4.2 Interrupt Control Instructions 600
16.4.3 Writing a Custom Interrupt Handler 601

16.4.3.1 Ctrl~Break Handler Example 602
16.4.4 Terminate and Stay Resident Programs 604

16.4.4.1 Keyboard Example 604
16.4.5 Application: The N.o_Re.~;et Program 605
16.4.6 Section Review 609

xxli Contents

16.5 Chapter Summary 609

17 Advanced Topics
Chapter 17 is an additional chapter provided as a PDFfile on the CD-ROM
accompanying this boolc.

17.1 Hardware Control Using I/O Ports- 17-1
17.1.1 Input-Output Ports 17-2

17.1.1.1 PC Sound Program 17-2

17.2 lntellnstruction Encoding 17-4
17.2.1 Single-Byte Instructions 17-5
17.2.2 Immediate Operands 17-6
17.2.3 Register-Mode Instructions 17-6
17.2.4 Memory-Mode Instructions 17-8

17.2.4.1 MOV1nstruction Examples 17-9
17.2.5 Section Review 17-12

17.3 Floating-Point Binary Representation 17-13
17.3.1 IEEE Binary Floating-Point Representation I7-I3

17.3.1.1 The Sign 17-14
17.3.1.2 The Significand 17-14
17.3.1.3 The Significand‘s Precision 17-15

17.3.2 The Exponent 17-16
17.3.3 Normalizing and Denormalizing I7-16
17.3.4 Creating the IEEE Representation 17-17

17.3.4.1 Real Number Encodings 17-17
17.3.5 Converting Decimal Fractions to Binary Reals 17-19

17.3.5.1 Converting Floating-point Decimal to IEEE Slngle-Precision 17-21
17.3.5.2 Converting1EEE Single-Precision to Decimal 17-21

17.3.6 Rounding 17-22
17.3.7 Section Review 17-23

17.4 Floating-Point Unit 17-24
17.4.1 IA-32 Floating Point Architecture 17-24
17.4.2 Instruction Formats 17-26
17.4.3 Simple Code Examples 17-28

Appendix A: lrkséggigglgpd éilsling the

Appendix B: The Intel Instruction Set 617
Appendix C: BIOS and MS-DOS Interrupts 649
Appendix D: MASM Reference 661
Index 689

Preface

Assembly Language for Intel-Based Computers, Fourth Edition is based on the Intel IA-32
Processor architecture. seen from a programmer’s point of view. It is appropriate as a text in the
following types of college courses for computer science majors:

' Assembly Language Programming
- Fundamentals of Computer Systems
' Fundamentals of Computer Architecture

Although this book was originally designed as a p_11ogramming textbook for community college
students- it has gradually developed into much more. Currently, many universities use the book
for their introductory computer architecture courses. At Florida International University, for
example, this book is used in a course named F1.mdamentaI.s' of Computer Systems, which -leads
to a more comprehensive course in Computer Architecture.

The present edition includes topics that lead naturally into subsequent courses in computer
architecture. operating systems. and compiler writing:

' Virtual machine concept
' Elementary boolean operations"
' Instruction execution cycle
' Memory access using clock cycles
' Interrupts and polling
' Multi-stage pipeline
' Superscalar architecture
- Multitasking
' Loading and executing programs
' Floating-point binary representation

Other topics relate specifically to Intel IA-32 architecture, using information "gained from its
manuals:

‘.3 1'1’Q- IA-32 Protected Memory addressing and pagi
' Memory segmentation in Real-address mode
' Interrupt handling
' Direct hardware IIO
' Instruction encoding

xxiii

xxlv Preface

Certain examples presented in the book lend themselves to courses that occur later in a computer
science curriculum:

' Searching and sorting algorithms
' High-level language structures
' Finite-state machines
' Code optimization examples

There are a number of new features in this edition that relate to programming:

' A more comprehensive and logical explanation of data definition.
' A n1ore careful explanation of addressing modes.
' A simplified link library that requires fewer input parameters for nearly all procedures.

There are new procedures to. dump the CPU registers and sections of memory, as well as a
delay timer.

' An explanation and demonstration of t0p—d0wn program design.
- Use of liowcharts as code-generation tools.
' Even more thorough coverage of assembly language directives, macros, and operators. For

example, the PROC. PROTO, and INVOKE directives are thoroughly explained and dem-
onstrated.

- More complete coverage of structures, including nested stmctures and arrays of-structures.
' Block-stmctured IF, WI-IILE, and REPEAT statements (an advanced feature of MASM).
' Introduction to video graphics, using both BIOS and direct-memory mapping techniques.
' Mouse programming.
' Win32 Console programming, using calls to the Keme132 Windows library.
' More array manipulation examples.

Still a Programming Book It is important to note that this book is still focused on its original
mission: to teach students how to write and debug programs at the machine level. It will never
replace a complete book on computer architecture, but it does give students the first-hand expe-
rience of writing software in an environment that teaches them how thecomputer really works.
The value of this cannot be underestimated, because they will retain a great deal more theoretical
knowledge by having immediate contact with the machine. In an engineering course, students
construct prototypes; in a software course,.students write programs. In both cases, they have
a memorable experience that gives them" the confidence to work in any OS/machine-oriented
environment.

Real Mode and Protected Mode Many professors have indicated a desire to move to 32-bit
programming, using Intel’s protected memory model. This edition primarily emphasizes
32-bit Protected mode, but it still has three chapters devoted exclusively to Real-mode program-
ming. For example, there is an entire chapter on BIOS programming for the keyboard. video dis-
play (including graphics), and mouse. There is another chapter exclusively on MS-DOS

Preface xxv

programming using interrupt (function) calls. It is very beneficial for students to have some
experience programming directly for firmware and hardware.

The examples in the first part of the book are nearly all presented as 32-bit text-oriented
applications running in Protected mode using the fiat memory model. This is extremely straight-
forward. No longer do students have to deal with segment-offset addressing. There are specially
marked paragraphs and popup boxes that note the small differences between Protected mode
and Real-mode programming-. Most of the differences are hidden away in the book’s two link
libraries.

Link Libraries There are two versions of the link library that students use for basic input-output
in this book. The 32-bit version (lrvz'ne32.lib) works in Win32 Console mode, under any version
of MS-Windows. The 16-bit version ([rw'nel6.lib) works under MS-DOS, MS-Windows, and a
Linux DOS emulator. In later chapters, all the functions i11 these two libraries are exposed, and
readers can modify the libraries as they wish. It is important to realize that the link libraries are
there only for convenience. not to prevent students from learning how to program input-output
themselves.

Included Software and Examples All the example programs have been tested with the
Microsoft Macro Assembler Version 6.15. For the most part, the programs will assemble" with
Borland TASM 4.0 and 5.0, but there aresome. features that Borland does r1ot fully support.

Web Site Information. Updates and con*ections to this book may be found at the book’s Web
site, including additional programming projects for professors to assign at the ends of chapters:

http : / /www . nuvis ionmiami . com/books/asm

If for some reason you cannot access this site, information about the book and -a lir1k to its cur-
rent Web site can be found at wwmprenhall . com by searching for the book title or for the full
author name "Kip Irvine.“ The author's e-mail address is kip@nuvisionmiami.com

Overall Goals
Each of the following goals of this book is designed to broaden the studer1t‘s interest and knowl-
edge in topics related to assembly language:

- The Intel IA-32 processor architecture and programming
' Assembly language directives, macros, operators, a11d program -structure
' Programming methodology, showing how to use assembly language to create both system-

level software tools and application programs-
' Computer hardware manipulation
' Interaction between assembly language programs, the operating system, and other applica-

tron programs

One of my goals is to help students approach programming problems with a machine-level
mind set. It is important to think of the CPU as an interactive tool, and to learn to monitor each

xxvi Preface

of its actions as directly as possible. A debugger is .21 programmer's best friend. not only for
catching errors. but as an educational tool that teaches about the “CPU a11d operating system. I
errcourage students to look beneath the surface of high-level languages, ar1d to realize that most
programming languages are designed to be portable and, therel’ore, independent of their host
machines.

In addition to the short examples. A.s'.s'cml2l_\- Languagefor Intel-Based Compzzters contains
more than 1 15 ready-to-run programs that demonstrate instructions or ideas as they are pre-
sented ir1 the text. Rel"'erence materials. such as guides to MS-DOS interrupts and instruction
mnemonics. are available at the end of the book. There is a contprehensive link library that
makes the user interface mucl1 r11ore accessible for students writing their lirst programs. The
macro library included with the book may also provide inspiration for further development by
professors and students.

Required Background The reader should already be able to program confidently in -at least
one other prograntmirtg language. prel’erably Pascal. Java, C, or C++. One chapter goes into C++
interfacing in some depth. so it is very helpful to have a compiler on hand. I have used this book
ir1 the classroom with majors in both computer science and management information systems.
ar1d it has been used elsewhere in engineering courses. l used Microsol’t Visual C++ 6.0 ar1d Bor-
land C++ 5.0 for the examples that deal with hi gh-level language interfacing.

Features
Complete Program Listings- A companion CD-ROM contains all the source code from the
examples in this book. Additional listings are available on the author's Web page. A11 extensive
link library is supplied with the book, containing more than 3.0 procedures that simplify user
input-output. numeric processirtg. disk and file handling. and string handling. In the beginning
stages o1’ the course. students car1 use this library to enhance. their programs. Later. they can cre-
ate their own procedures and adcl them to the library. Students are given the complete source
code for the 16-bit and 32-bit lir1k libraries.

Prograrnnnng Logic Two chapters en1pha~:ize boolean logic and bit-level manipulation. A
conscious attempt is made to relate high-level pr'ograr11n1ing logic to the low-level details ol’ the
machine. This helps stud.ents to create r11ore eflicient implementations and to better understand
l1ow language compilers generate object code.

Hardware and Operating System Concepts The lirst two chapters introduce basic hardware
ar1d data representation concepts, including binary numbers. CPU architecture. status flags. and
memory mapping. A survey 01' the computer's hardware and a historical perspective of the lntel
processor family helps students to better understand their target computer system.

Structured Programming Approach Beginning with Chapter 5. procedures and module
decomposition are strongly emphasized. Students are given n1ore complex programming prob-
lems that require the ability to carefully structure their code and to deal with complexity.

Preface xxvll

Disk Storage Concepts Students learn the fundamental principles behind the disk storage sys-
tem on the PC, from both hardwareand software points of view.

Creating Link Libraries Students are free to add their own procedures to the book's link
library and can create libraries oftheir own. They leam to use a toolbox approach to program-
ming and to write code that is useful in more than one program.

Macros and Structures A chapter is devoted to creating structures, unions, and macros, which
-are important in both assembly language and high-level languages. Conditional macros with
advanced operators serve to make the macros more professional.

Interfacing to High-Level Languages A chapter is devoted to interfacing assembly language
to C and C++. This is an important job skill for students who are likely to find jobs programming
in high-level languages. They can learn to optimize their code and see actual examples of how
C++ compilers optimize-code.

Instructional Aids All the program listings are available on disk and on the Web. Instructors
are provided -a test bank, answers to all review questions, solutions to programming exercises,
and a Microsoft PowerPoint slide presentation for each chapter.

l

Presentation Sequence
Chapters 1-8 represent the basic foundation of assembly language -and should be covered in
sequence. A great deal of effort went into making these chapters flow smoothly.

1. Basic Concepts: Applications of assembly language, basic concepts, machine language,
and data representation.

2. IA-32 Processor Architecture: Basic microcomputer design, instruction execution cycle,
IA-32 processor architecture, IA-3.2 memory management, components of a microcom-
puter, and the input-output system.

3. Assembly Language Fundamentals: Introduction to assembly language, linking and
debugging, and defining constants and variables.

4. Data Transfers, Addressing, and Arithmetic: Simple data transfer and arithmetic
instructions, assemble.-link-execute cycle, operators, .dire'ctives-, expressions, JMP and
LOOP instructions, and indirect addressing.

5. Procedures: Linking to an external library, description of the book’s link library, stack
operations, defining and using procedures, fiowcharts, and top-down structured design.

6. Conditional Processing: Boolean and comparison instructions, conditional jumps and
loops, high-level logic structures, and finite state machines.

7. Integer Arithmetic: Shift and rotate instructions with useful applications, multiplication
and division, extended addition and subtraction, and ASCII and packed decimal arithmetic.

8. Advanced Procedures: Stack frames, local variables, parameter declarations, recursion,
and advanced parameter passing.

xxvlll Preface

Chapters 9-1 6 may be covered in any order, giving instructors the opportunity to choose topics
that are most relevant to their courses.
9. Strings and Arrays: String pl‘ilTlitlVBS, manipulating arrays of characters and integers.

two-dimension-al arrays. sorting, and searching.

10. Structures and Macros: Structures, macros, conditional assembly directives, and defining
repeat blocks.

ll. 32-Bit Windows Programming: Protected mode memory management. and using the
Mic-:rosol’t Windows APl to display text and colors on the console.

12. High-Level Language Interface: Parameter passing conventions. inline assembly code,
and linking-assembly language modules to C!C++ programs.

13. 16-Bit MS-DOS Programming: Calling MS-DOS interrupts for both console and Iile
input-output.

14. Disk Fundamentals: Disk storage systems, sectors, clusters. directories, file allocation
table, handling MS-DOS error codes, and drive and directory manipulation.

15. BIOS-Level Programming: Keyboard input, video text and graphics programming, and
mouse programming.

16. Expert MS-DOS Programming: Custom-designed segments. runtime program structure.
and Interrupt handling.

17. Advanced Topics (on the enclosed CD-ROM): Hardware control using I-/O ports, instruc-
tion encoding, floating-point binary representation, and floating-point arithmetic.

' Appendix A: Installing and Using the Assembler
* Appendix B: The Intel Instruction Set
' Appendix C: BIOS and MS-DOS Interrupts
- Appendix D: MASM Reference

Reference Materials
In my own assembly course, I rely heavily on instructional materials such as tutorials. review
questions.-electronic slide shows. and workbooks. ln that spirit. I have tried to provide ongoing
support for instructors. If you lind that something important is missing. please contact me and I
may be able to. provide it. The Following rel’eren.ce information is included either in the book. on
the accompanying CD-ROM, or on my Web site.

Assembly Language Workbook An interactive workbook is included .on the attached CD—
ROM, covering such important topics as number conversions, addressing modes, register usage,
Debug programming, and floating-point binary numbers. The content pages are HTML clocu—
ments, making it easy for students and professors to add their own customized content. This
workbook is also available on my Web site.

Preface xxix

Debugging Tools Tutorials on using Microsoft CodeView, Microsoft Visual Studio, and
Microsoft Windows Debugger (WinDbg).

BIOS and MS-DOS Interrupts Appendix C contains a brief listing of the most often-used
INT l0h (video), INT 16h -(keyboard), and INT 21h (MS-DOS) functions.

Instruction Set Appendix B lists most nonprivileged instructions. for the IA—32 processor fam-
ily. For each instruction, we describe its effect, show its syntax, and show which flags are
affected.

PowerPoint Presentations A complete set of Microsoft PowerPoint presentations taken from
my own classroom lectures is available on the instructor Web site.

Answers to Review Questions Answers to all the odd-numbered review questions are avail-
able on the book’s Web site. Answers to the even-numbered questions -areavailable via the
instructor Web site.

Acknowledgments
Special thanks are due to Petra Recter, Senior Computer Science Editor at Prentice Hall, who
provided friendly, helpful guidance during the writing of the fourth edition. Irwin Zucker did a
terrific job as production editor, constantly keeping track of numerous minute details. Bob
Englehardt was a great help when preparing the book’s CD-ROM. Camille Trentacoste was the
book’s managing editor.

I offer my special thanks and gratitude to the following three professors who boosted my
morale, gave me great pedagogical tips, and tirelessly examined the entire book:

' Gerald Cahill from Antelope Valley College, who offered numerous excellent suggestions
and "corrections. A great many of his ideas became reality in this book.

' James Brink of Pacific Lutheran University gave me many great suggestions. His own 32-
bit link library inspired me to create one for this book.

' Maria Kolatis .of the County College of Morris provided incisive, in-depth reviews of my
chapters that forced me to rethink the presentation of many topics.

In addition. three people contributed a great deal of their time either by proofreading my
book-or developing examples that inspired me:

- Tom Joyce, Chief Engineer at Premier Heart, LLC.
- Jeff Wothke of Purdue Calumet University.
' Tim Downey of Florida International University.

Several of my top students at Florida International University read the manuscript and
made valuable suggestions: Sylvia Miner, Eric Kobrin, Jose Gonzalez, Ian Merkel, Pablo Mau-
rin, and Hien Nguyen. Andres Altamirano wrote excellent solutions for many programming
exercises.

xxx Preface

Proofreaders Many thanks to the following individuals for proofreading individual chapters.
Unless otherwise noted, all are teaching faculty:

' Courtney Amor, a mathematics student at UCLA
' Scott Blackledge, IBM Corporation
~ Ronald Davis, Kennedy-King College
- Ata Elahi, Southern Connecticut State University
' Leroy I-Iighsmith, Southern Connecticut State University
' Saj id Iqbal, Faran Institute of Technology
' Charles Jones, Maryville College
- Vincent Kayes, Mount St. Mary College, Newburgh, New York
' Barry Meaker, Design Engineer, Boeing Corporation
' M. Nawaz, OPSTEC College of Computer Science
' Kam Ng,'Chinese University of I-long Kong
' Ernie Philipp, Northern Virginia Community College
' Boyd Stephens, UGMO Research, LLC
' Zachary Taylor, Columbia College
' Virginia Welsh, Community College of Baltimore County
' Robert Workman, Southem Connecticut State University
' Tianzheng Wu, Mount Mercy College
' Matthew Zukoski, Lehigh University

Microsoft generously provided its Macro Assembler software for inclusion with this book.
Helios Software Solutions Inc. permitted me to include an evaluation copy of the TextPad editor.

Basic Concepts

1.1 Welcome to Assembly Language
1.1.1 Some Good Questions to Ask
1.1.2 Assembly Language Applications
1.1.3 Section Review

1.2 Virtual Machine Concept
1.2.1 The History of PC Assemblers
1.2.2 Section Review

1.3 Data Representation
1.3.1 Binary Numbers
1.3.2 Binary Addition
1.3.3 Integer Storage Sizes
1.3.4 Hexadecimal Integers
1.3.5 Signed Integers
1.3.6 Character Storage
1.3.7 Section Review

1.4 Boolean Operations
1.4.1 Truth Tables for Boolean Functions
1.4.2 Section Review

1.5 Chapter Summary

1.1 Welcome to Assembly Language
This book, entitled Assembly Language for Intel-Based C0:-zmurers, focuses on programming
Intel microprocessors, specifically members of the Intel IA-32 processor family. The IA-32 fam-
ily began with the Intel 80386, and continues on through the current Pentium 4. Assernbly lan-
guage is the oldest programming language, and of all languages, it bears the closest resernblance
to the native language of a computer. It provides direct access to a computer’s hardware, making
it necessary for you to understanda. great deal about your cornputer’s -architecture and operating
system.

Edncatiomzl Value Why do you have to read this book‘? Perhaps you‘re taking a college course
whose name is similar to one of these:

' Microcomputer Assembly Language
' Assembly Language Programming
' Introduction .to Computer Architecture

1

2 Chapter 1 - Basic Concepts

' Fundamentals of Computer Systems
' Embedded Systems Programming

In fact, these are names of actual courses at colleges and universities that used the third edition
of this book. You will probably find that this book contains more assembly language techniques,
reference infomiation, and examples than you can possibly digest in a single semester.

If you are in a course whose name includes either the word mrclzitet-tare orfimdamenmls,
this book will give you some basic principles about computer architecture, machine language,
and low-level programming that will -stay with you for years to come. You will leam enough
assembly language to test your knowledge on today‘s most" widely used microprocessor family.
You won’t be learning to program a “toy” computer using a simulated assembler; this is the real
thing, the same one used by the professionals. You will leam the. architecture of the Intel I-A-32
processor family from the programmer’s point of view.

If you are in doubt about the value of spending endless hours studying the low-1 evel details
of computer software and hardware, perhaps you c-an find inspiration in the following quote
from a lecture given by one of the greatest computer scientists of our time, Donald Knuth:

“Some people [say] that having machine language, at all, was the great mistake that
I made. I really don’t think you can write a book for serious computer programmers
unless you are able to discuss low-level det'ail."1

Web Site Before you go any farther, visit the book’s Web site to see the extra support informa-
tion and workbook exercises you can use:

http : / /www . nuvis iomniami . com/books / astn

There are always new workbook tutorials, interesting example programs, corrections to errors in
the text, and so on. If for some reason the given URL is not available, you can reach the book’s
Web site through Prentice Hall’s URL (www.prenhall.com). Search for “Kip Irvine".

1.1.1 Some Good Questions to Ask
Maybe we can answer some of your questions about this book and how it can be u_sed..

What background should! have? Before reading this book, you should have completed a
single college course or its equivalent in computer programming. Most students learn C++, C#,
Java, or Visual Basic. Other languages will work, provided they have similar features.

What is an assembler? An assembler is a program that converts source-code programs from
"assembly language into machine language. The "assembler can optionally generate a-source listing
file with line numbers, memory addresses, source code statements, and a cross-reference listing
"of symbols and variables used in a program. A companion program, called a linlcez; combines

I Donald Knuth: MMIX, A R18C Cr:nrpu!cr_f?:r the New Millennium. Transcript ol'a lccturc given at the Massachussctts
Institute of Technology, December 30. 1999..

1.1 Welcome to Assembly Language 3

individual files created by an assembler into a single executable program. A third program, called
a debugger; provides a way for a programmer to trace the execution of a program and examine the
contents of memory Two of the most popular assemblers for the Intel family are MASM
(Microsoft Assembler) and TASM (Borland Turbo Assembler).

What hardware and software do I need? You need a computer with an Intel386, Intel486, or
one of the Pentium processors. All of these belong to the IA-32 processor family, as Intel calls it.
Your operating system may be some version of Microsoft Windows, MS-DOS, or even Linux
running a DOS emulator. The following. are either required or recommended:

' Editor: You need a simple text editor that can create assembly language source files. You
can use TextPad by Helios Software, which is supplied on the CD-ROM with this book. Or
you can use NotePad (free with Windows), or the Microsoft Visual Studio editor (used
with Visual C—t—t—). Any other editor that produces plain ASCII text files will do also.

' Assembler: You need Microsoft Assembler (MASM) Version 6.15, supplied free with this
book on a CD-ROM- Update patches, as they become availahle, can he downloaded from
the Microsoft Web site.

' Linker: You need a linker utility to produce executable files. We supply two linkers on the
CD-ROM with this book: The Microsoft 16-bit linker, named LINKEXE, and the
Microsoft 32-bit linker, named LINK32.EXE.

' Debugger: Strictly speaking, you don’t need a debugger, but you will probably want one.
For MS-DOS programs, MASM supplies a good 16-bit debugger named Code!/iew.
TASM supplies one named Turbo Debugger. For 32-bit Windows Consoleprograms, our
preferreddebugger is Microsoft Visual Studio (msdevexe), part of Microsoft Visual C++.

What types ofprograms will I create? You will create two basic types of pt'0gl‘3.mS'I

- 16-Bit Real-Address Mode: If you’re running either pure MS-DOS or a DOS emulator,
you can create 16-bit Real-address mode -programs. Most of the programs in this book can
be adapted to run in Real-address mode. There are notes throughout the book with tips
about programming in Real-address mode, and two chapters are exclusively devoted to
color and graphics programming under MS-DOS.

' 32-Bit Protected Mode: If you’re using Microsoft Windows, you can create 32-bit Pro-
tected mode programs that display both text and graphics.

What do I get with this book? You get a lot of printed paper. On the CD attached to the book,
you get a complete copy of the Microsoft Assembler, version 6.15. You get a collection of
example programs on the CD. Best of all, you get a whole lot of information on the author's
Web site, including:

- Updates to the example programs. No doubt some of the programs will be improved and
corrected.

' The Assembly Language Workbook, a constantly expanding collection of practice exer-
cises covering topics from all over the book.

Chapter 1 - Basic Concepts

Complete source code for the book’s link libraries-. One library is for 32-bit Protected
mode .under MS.-Windows; the other library is for Real-address mode programming
under MS-DOS or a DOS emulator. (Note: MS-Windows can also run Real-address
mode programs.)
Corrections to the book. Hopefully there won't be too many of these!
Helpful hints on installing the assembler and configuring diflierent editors to run it. Two
editors I currently use are Microsoft Visual C-t—t~ and Te.rrPad by Helios Software.
Frequently asked questions. In the previous edition, there were about 40 of these.
Additional topics on MS-Windows programming, graphics programming, and so on, that
could not be included in the printed book for lack of space;
E-mail access to the author for corrections and clarifications directly nelated to the book. But
don’t ask me to help you debug your programming projects. That's your professor’s job.
Solutions to ‘odd-numbered pro.gramming exercises. In the previous editions, only profes-
sors were given access to solution program's, but this turned out to be somewhat controver-
sial. I was continually fending off e-mail requests for solutions by individuals who (said
they) were self-studying assembly language. (There will be additional suggested program-
ming assignments posted on the instructor Web site, which will absoluteiv, p0sz'rt'vel_r be
available only to registered college instructors.)

What will I leam? Here are some of the ways this book will make you better informed about
computer architecture, programming, and computer science:

You will learn "some basic principles of computer architecture. as applied to the Intel IA-32
processor family.
You will learn some basic boolean logic and how it applies to programming and computer
hardware.
You will leam about how IA-32 processors manage memory, using real mode, protected
mode, and virtual mode.
You will learn how high-level language compilers ("such as C++) translate statements from
their language into assembly language and native machine code.
You will learn how high-level languages- implement arithmetic expressions, loops, and
logical structures at the machine level.
You will learn about data representation, including signed and unsigned integers, real
numbers, and character data.
You will improve your machine-level debugging skills. Even in'C-t—+, when your programs
have errors due to pointers .or memory allocation, you can dive to the machine level and
find out what really went wrong. High-level languages purposely hide machine-specific
details, but sometimes these details are important when tracking down errors.
You will learn how 't1ppllC3.[i0I‘l programs communicate with the computer's operating sys-
tem via intertupt handlers, system calls, and common memory areas. You will also learn
how the operating system loads and executes application programs.

1.1 Welcome to Assembly Language 5

' You will learn how to interface assembly language code to C4+ programs.
- You will gain the confidence to write new assembly language programs without having to

ask anyone for help.

How does assembly language relate to machine language? First, machine language is a
numeric language that is specifically understood by a computer’s processor (the CPU). Intel proces-
sors, for example,. have a machine language that is automatically understood by other Intel
processors. Machine language consists purely of numbers.

Assembly language consists of statements that use short mnemonics such as ADD,
MOV, SUB, and CALL. Assembly language has a one-to-one relationship with machine lan-
guage, meaning that one assembly language instruction corresponds to one machine-language
instruction.

How do C-H- and Java relate to assembly language? High-level. languages such as C++ and
Java have a one-to-many relationship with both assembly language and machine language. A
single statement in C-t—t-, for ex-ample, ‘expands into multiple assembly language or machine
instructions.

Let’s find out first-hand how C++ statements expand into machine code. Most people can-
not read raw machine code, so we will show its closest relative, assembly language, instead. The
following C++ statement carries out two arithmetic operations and assigns the result to a vari-
able. Assume that X and Y are integers:

X = (Y + 4) * 3;
Following is the statement’s translation to assembly language. Note that the translation requires
multiple statements because assembly language works at a detailed level:

mov eax,Y ; move Y to the. EAX register
add eax,4 ; add 4 to the EAX register
mov ebx',3 ; move 3 to the EBX register
imul ebx ; multiply EAX by EBX
mov }t,eax ; move BAX to X

(Registers are named storage locations inside the -CPU which are often used for intermediate
results of operations.)

The point in this example is not to show that C++ is “better” or more powerful than assembly
language, but to show how assembly language implements a statement in a high-level language-
The assembly language statements have a one-to-one correspondence with the computer‘s native
machine language, which is a set of coded numbers with special meaning to the processor.

We? Who’s that? Throughout this book, you’re going to see constant references to we.
Authors of textbooks and academic articles often use we as a formal reference to themselves- It
just seems too informal to say, “I will now show you how to“ do such-and-such. If it helps,
think of we as-a reference to the author, his reviewers (who really helped him a lot), his pub- ,

i lisher (Prentice-Hall), and his students (thousands)-

6 Chapter 1 ' Basic Concepts

Is assembly language portable? An important distinction between high-level languages and
assembly language has to do with portability. A language whose source programs can be com-
piled and run on -a wide variety of computer systems is said to be portable. A C++ program, for
example, should compile and run on just about any computer, unless it makes specific references
to library functions" that only exist under a single operating system. A major feature of the lava
language is that compiled programs run on nearly any computer system.

Assembly language, on the other hand, makes no attempt to be portable. It is tied to a spe-
cific processor family, so there "are a number of different assembly languages widely used today.
Each is based on either a processor family or "a specific computer, with names such as Motorola
68x00, Intel IA-32, SUN Spare, Vax, and IBM-370. The instructions in assembly language
match the computer’s instruction set architecture. For example, the assembly language taught in
this book works only on processors belonging to the Intel IA-32 family.

Why learn assembly language? Why not just read agood book on computer hardware" and
architecture, and avoid having to-learn assembly language programming?

- You may be working toward a degree in computer engineering. If so, there is a strong like"-
lihood that you will write embedded systems programs. Such programs are written in C,
Java, or assembly language, and downloaded into computer chips and installed in dedi-
cated devices. Some examples are automobile fuel and ignition systems, air-conditioning
control systems, security systems, flight control systems, hand-held computers, modems,
printers, and other intelligent computer peripherals".

- Many dedicated computer game machines have stringent memory" restrictions, requiring
programs to be highly optimizedfor both space and runtime speed. Game programmers
are experts at writing code that takes full advantage of specific hardware features in a tar-
get system. They frequently use assembly language as their tool of choice because it per-
mits total control over the creation of machine code.

- If you are working toward a degree in computer science, assembly language will help you
gain an overall understanding of the interaction between the computer hardware, -operating
system, and application programs. Using assembly language, you can apply .and test the
theoretical information you are given in computer architecture and operating systems
courses-

' If you’re working as an application programmer, you may find that limitations in your cur-
rent language prevent you from perfomiing certain types of operations. For example,
Microsoft Visual Basic doesn’t handle character processing very efficiently. Programmers
generally -rely on DLL (dynamic link libraries) written in C—l—l— or assembly language to
perform character operations such as data encryption and bit manipulation.

- If you work for a hardware manufacturer, you may have to create device. drivers for the
equipment you sell. Device drivers are programs that translate general operating system
commands into specific references to hardware details. Printer manufacturers, for exam-
ple, create a different MS-Windows device driver for each model they sell. The same is
true for Mac OS, Linux, and other operating systems.

1.1 Welcome to Assembly Language 7

Are there any rules in assembly language? Yes, there are a few rules, mainly due to the physical
limitations of the processor and its native instruction .set. Two operands used in the same instruction,
for example, must be the same size. But assembly language is far less restricti ng than CH-.

Assembly language programs can easily bypass restrictions" characteristic of high-level
languages. For example, the C-I-+ language does not allow a pointer of one type to be assigned to
a pointer of another type. Ordinarily, this is a good restriction because it helps avoid logic errors
in programs. An experienced programmcr can find a way around this restriction but in .doing so
may end up writing -code that is overly tricky. Assembly language, in contrast, has no restriction
regarding pointers. The assigmnent of a pointer is left to the programmer’s discretion. Of course,
the price for such" freedom is high: an assembly language programmer spends a lot of time
debugging programs at the machine level.

1.1.2 Assembly Language Applications
In the early days of programming, most application programs were written partially or entirely
in assembly language because programs had to fit in a small area of memory and had to run as
efficiently as possible. As computers became more powerful, programs became longer and more
complex; this demanded the use of high-level languages such as C, FORTRAN, and COBOL
that contained a certain amount of structuring capability to assist the programmer. More
recently, object-oriented languages such as C-t—t-, C#, Visual Basic, and Java have made it possi-
ble to write complex programs containing millions of lines of code.

It is rare to see large application programs written completely in assembly language
because" they would take too much time to write and maintain. Instead, assembly language is
used to optimize certain sections of application programs for speed and to- access computer
hardware. Assembly language is also used when writing embedded systems programs and
device drivers. Table l-1 compares the adaptability of assembly language to high-level lan-
guages in relation to various types of computer programs.

Table 1-1 Comparison of Assembly Language to High-Level Languages.
I __..t:i 7 7' :‘_ "T_*' .. 7. _ _ 7 ___ __ |

i Assembly Language 5
la-7

Type of Application 1 High-Level Languages

Minimal formal structure, so one
must be imposed by program-
mers who have vatying levels of

l
1 Business &|_Jpl.1C&l'l0ll soft- 3 Formal structures make it easy to

ware, written for -single . organize and maintain large sec-
platform, medium to large tions of code.
size. i experience. This leads to difficul-

Hardware device "driver. ‘i Language may not provide for
direct hardware access. Even if it

, does, awkward coding techniques
r must often be used, resulting in

. maintenance difficulties.

ties_ maintaining existing code.

Hardware access is straightfor-
ward and simple. Easy to main-
tain when programs are short and
well documented.

8 Chapter 1 - Basic Concepts

Table 1-1 Comparison of Assembly Language. to High-Level Languages. (Continued)

l Type of Application High-Level Languages Assembly Language

‘ Business application written Usually very Portable- The source Must be recoded separately for
for multiple platforms (dif- code can be recompiled on each ‘ each platform, often using an
fereni operating systems). target operating-system with n1ini- assembler with a different syn-

mal changes. tax. Difficult to maintain.

Embedded systems and Produces too much executable Ideal, because the .exec.utable
: computer games requiring T code, and may not run efficiently. code is small and runs quickly. *
~ direct hardware access. i

'C—l—l— has the unique "quality of offering a compromise between high-level structure and
low-level details. Direct hardware access is possible but completely non-portable. Most C-t—t-
compilers have the ability to generate assembly language source code, which the programmer
can customize and refine before assembling into executable c.ode.

1.1.3 Section Review

l. I-low do the assembler and linker work together?
2. How will studying assembly language enhance your understanding of operating systems?
3. What is meant by a one-to-many relarzfonship when comparing a high-level language to

machine language‘?
4. Explain the concept of portability as it applies to programming languages.
5._ 15 the.asSe1'nbly language for the Intel 80x86 processor family the same as those for com.

puter systems such as the Vax or Motorola 6-8x00‘?

\D'OO\10\

. Give an example of an emlaedded systems application.

. What is a device driver‘?

. I__s- type checking on pointer variables stronger in assembly language or in C++‘?

. Name two types of applications that would be better suited to assembly language than a
high-level language,

10. Why would a high-level language not be an ideal tool for writing a program that directly
accesses a particular brand ol‘ printer‘?

ll. Why is assembly language not usually-used when writing large application programs?
12.. Challenge: Translate the following C-I-+ expression to assembly language, using the exam-

ple presented earlier in this chapter as a guide: X = (Y 4) + 3 l

1.2 Virtual Machine Concept
A most effective way to explain how -a computer’s |l€.1l‘CiW3.l.'E and software are related is called the
virtual n-t-acltirze -concept. Our explanation of this model is derived from Andrew Taiienbaunfs

1.2 Vlrtual Machine Concept 9

book, Structured Computer 0rgtmt'zari0rz.2 To explain this concept, let us begin with the most
basic function of a -computer, that of executing programs.

A computer is ordinarily constructed in such a way that it directly executes programs writ-
ten in what may be called its machine language. Each "instruction in this language is simple
enough that it can be executed using a relatively small number of electronic circuits. For simplic-
ity, we will call this language L0.

But programmers would have a difficult time writing programs in L0 because it is enor-
mously detailed and consists purely of numbers. if a new language, L1, could be constmcted
that was easier to use, programs could be written in LI. There are two ways to achieve this:

' Im*erprerazi0n.' As the L1 program is running, each of its instructions could be decoded
and executed by a program written in language L0. The L1 program begins running imme-
diately, but each instruction has to be decoded before it can execute.

~ Translation.‘ The entire Ll program could be converted i-nto an L0 program by an L0 pro-
gram specifically designed for this purpose. Then the resulting L0 program could be exe-
cuted directly on the computer hardware.

Virtual Machines Rather than thinking purely in terms of languages, Tanenbaum suggests
thinking in terms of a hypothetical computer, or virtual machine, at each level. The virtual
machine VM1, as we will call it, can execute commands written in language L1. The virtual
machine VMO can execute commands written in language L0, as shown below:

_, _ _

:\>

-I»

Virtual Machine VM1 tiiliii3311*1::-\-lp-.
-\

Q.‘Intu-’-“Y.2-.'-33""I:-’

Virtual Machine VMO. _'..reI9 -r-*.?I*r.:

Y‘riii“-{ti

_
P‘

-r. ! ,9

tans“ ;e1.=--‘- "*

Each virtual machine can be constructed of either hardware or software. People can write
programs for virtual machine VM1, and if it is practical to implement VMI as an actual com-
puter, programs can be executed directly on the hardware. Or, programs written in VM1 can be
interpre'ted!tr'anslatcd and executed on machine VMO.

Machine" VM1 cannot be radically different from VMO because the translation or
interpretation would be too time-consuming. What if the language VMI supports isstill not pro-
gratnmer-friendly enough to be used for useful applications‘? Then another virtual machine,
VM2, can be designed which is more easily understood. This process canrepeat itself until a vir-
tual machine \/Mn can be designed that supports a powerful, easy-to-use language.

3 Andrew S. Tanenbaum. Stru'c_tm'ed Computer.O:fgnniznri0n, 4th Edition. 1999, Prentice Hall.

10 Chapter 1 * Basic Concepts

The Java programming language" is based on the virtual machine concept. A program
written" in the Java language is translated by a Java compiler into Java byte code. The latter is a
low-level language that is quickly executed at run time by a program known as a Java virtue!
machine (JVM). The JVM has been implemented on many dil’l’erent computer systems, making
Java programs relatively system-independent.

Specific Machines Let us relate this to actual computers and languages. using names like
Level 1 for VMI ,-and Level 0 for VMO. shown in Figure l-l. Let us assume" that a computer’s
digital logic hardware represents machine Level 0_, and that Level l is implemented by an inter-
preter hard-wired into the processor called :1zicrornchirecrm-e. Above this is Level 2: called the
insrrucriorz set archirectm'e. This is the first level at which users can typically write-programs,
although the programs consist of binary numbers.

Microarchitecture (Level I) Computer chip manufacturers don’t generally make it possible
"for average users to write microinstructions. The specific microarchitecture commands are often
a proprietary secret. It might require three or four microcode instructions to carry out a primitive
operation such as fetching a number Fiom memory and incrementing it by" l.

Instruction Set Architecture (Level 2) Computer chip manufacturers design into the processor
an instruction set that can be used to carry out basic operations, such as-" move. "add, or multiply.
This set of instructions is also re l’en'ed to’. as cotzvenrionai machine ltznguczge. or simply machine
hmg-uage. Each machine-language instruction is executed by several microinstructions.

..'.‘5-
.-uw;High-Level Language Level 5

:'- lts},.,l‘

_ if X‘

“'= Jl.,a>l*
Level

M
- \..

Operating System Level 3

in;#5-F3117)f44%-

H
i Instruction Set A

-'é:~[:¥i-;~=n.."‘*'-i‘.=':3-32

Mlcroarchltecture Level I

\

\ Digital Logic ,_. Level U

\'%=;,_,=a;;=. .-.L@-.=.~-fig-:|i'..rg-'1_e&=t..:P.‘z.s*=.:-.-l1sr'.._.- .'?a=. as

Figure 1-1 Virtual Machine Levels 0 fnrough 5.

1.2 Virtual Machine Concept 11

Operating System (Level 3) As computers evolved, additional virtual machines were created
to enable programmers to be more productive. A Level 3 machine understands interactive corn-
mands by users to load and execute programs, display directories. and so forth. This is known as
the computeris 0peraring- system. The operating system software is translated into machine code
running on a Level 2 machine.3

Assembly Language (Level 4) Above the operating system level , programming languages pro-
vide the translation layers that make large-scale software development practical. Assembly lan-
guage, which appears at Level 4, uses short mnemonics such as ADD, SUB, and MOV that are
easily translated to the instruction set architecture level (Level 2). Other assembly language
statements, such as Interrupt calls, are executed directly by the operating system (Level 3).
As_semb]y language programs are usually translated (assembled) in their entirety into machine
language before they begin to execute.

High-Level Languages (Level 5) At Level 5 are languages such "as C++, C#, Visual Basic, and
Java. Programs in these languages contain powerful statements that often translate into multiple
instructions at Level 4. Most C++ debuggers, for example, have the option to view a window that
lists the assembly language translation of your code. In Java, you would look at a symbolic list-
ing of Java byte code to see the same sort of translation. Level 5 prograrns are usually translated
by compilers "into Level 4 programs. They usually have a built-in assembler that immediately
translates the Level 4 code into conventional machine language.

processor architecture supports multiple virtual machines. Its virtual-86 oper-
emulates the architecture of the Intel 808618088 processor, used in the original Ati

'1 Computer. The Pentium can run multiple instances of the virtual-86 machine, at ll
time,-so that independent programs running on each virtual machine seem to" have ,

ft-Ejc;<;jrjtplete' control of their host computer.ll, ,, .
‘ -'1',‘ -- - _.

1.2.1 The History of PC Assemblers
There is no universal assembly language specification for Intel processors. What has emerged
over the years is a -de facro standard, established by Microsoft’s popular MASM Version 5
assembler. Borland International established itself as a major "competitor in the early 1990s with
TASM (Turbo Assembler). TASM added many enhancements, producing what was called Ideal
Mode, and Borland also provided a MASM corrrparibiiiry mode which matched the syntax ol'
MASM Version 5.

Microsoft released MASM 6.0 in l992, which was a major upgrade with many new fea-
tures. Since that time, Microsoft has released minor upgrades in versions 6.] l, 6.13, 6.14, and
6.15, to keep up with changes to each new Pentium instruction set. The assembler syntax has not

5 Its source code might have been written in C or assembly language. but once compiled. the operating system is simply
a Level 2 program that interprets Level 3 commands.

12_ Chapter 1 - Basic Concepts

changed since version 6.0. Borland released 32-"bit TASM 5.0 in l996, which matches the
MASM “6.0 syntax.

There are other popular assemblers. all of which vary from MASM’s syntax to a greater or
lesser "degree. To name a few, there are: NASM (Netwide Assembler) for both Windows and
Linux, MASM32, a shell built on top ofMASM,_Asm86., and GNU assembler, distributed by the
Free Software Foundation.

1.2.2 Section Review

1. In your.own words, describe the virtual machine concept.
2. Why don’t programmers use the native language of a.computer to write application programs?
3. (True/False): When an interpreted program written in language Ll runs, each of its instruc-

tions is decoded and executed by a program written in langu_age L0.
4. Explain the technique of translation when dealing with languages at different virtual

machine levels-.
5. I-low does the lntel IA-32 processor architecture demonstrate an example of a virtual

machine?

99°99‘

What software permits compiled Java programs to run on almost any computer?
Name the six virtual machine levels named in this section, from lowest to highest.
Why don’t programmers write applications in microcode?
Conventional machine language is used at which level of the virtual machine shown in
Figure l-l?

l0. Statements at the assembly language level of a virtual machine are translated into state-
ments at which other level(s)‘?

1.3 Data Representation
Before we can begin to discuss computer organization and assembly language, we need a com-
mon mode of communication with numbers. Specifically, computer data can be represented in a
variety of ways. Because we are dealing with the computer at the machine level, it is necessary
to examine the contents of memory and registers. Computers are constructed from digital cir-
cuits that have onlytwo states: "on" and qfi”. At times, we will use binary numbers to describe the
contents of computer memory; at other times, decimal .and hexadecimal numbers will be used.
You must develop a certain fluency with number formats, and have the ability to translate num-
bers from one format to another.

Each numbering format, or system, has a base, or maximum number of symbols that can
be assigned to a single digit. Table I-2 shows the possible digits for the numbering systems used
most commonly in computer literature. In the last row of the table, hexadecimal numbers use the
digits 0 through 9, and then continue with the letters A through F to representdecimal values l0
through I 5. 1t’s quite common to use hexadecimal numbers when showing the contents of com-
puter memory and machine-level instructions.

1.3 Data Representation 13

Table 1-2 Binary, Octal, Decimal, and Hexadecimal Digits.

kiisystem. . '. p Base p Possible-Digits i

p Binary 2 0 I

Oam s l0123456?
‘Decimal l l0 “O123456789 l

Hexadecimal 16 i0l23.4567'89ABCDEF

1.3.1 Binary Numbers
A "computer stores instmctions and data in memory as collections of electronic charg¢5_ Rep,-353%
ing these entities with numbers requires a system geared to the concepts of on and 01?” or trite and
false. Binary numbers are base 2 numbers in which each binary digit (called a bit) is either a 0 or a 1 .

Bits are numbered starting at zero on the right side, and increasing toward the left. The bit on
the left is called the most sigmjicarir bit (MSB), and the bit on the right is the least significant bit
(LSB). The MSB and LSB bit numbers of a 16-bit binary number are -shown in the following figure:

MSBg LSB
|1011001010011100|
ts 0

Binary integers can be either signed or unsigned. A signed integer can be either positive or
negative. An unsigned integer can only be positive, including zero. Through special encoding
schemes. binary numbers can even represent real numbers. For now, we begin with the simplest
type of binary numbers, unsigned integers.

1.3.1.1 Unsigned Binary Integers

Starting with the least significant bit, each bit in an unsigned binary integer represents an
increasing power of 2. The following figure contains an 8-bit binary number, showing how the
powers of two increase" from right to left:

27 -26 25 24 23 22 2| 20

Table 1-3 lists the decimal values of 20 through 2 I5.

14 Chapter 1 I Basic Concepts

Table 1-3 Binary Bit Position Values.
2"

_ ___

Decimal Value. r 2H ‘ __ Decimal Value* 1.>-~
- .l..

l.

W I 21) 28 256
2| 2 29 5l2

l J Q2 4 2'" 1024
23 8 23! I 2048
2-I l6 212 4096
25 I is

s s rm»

l

213 A 8192
Q6 64 ‘ 214 l 16384

. 27
128* I 21$ 32768

1‘ _

1.3.1.2 Translating Unsigned Binary Integers to Decimal
Weighted positional notation represents a convenient way to calculate the decimal value of an
unsigned binary integer having n digits:

£166 = (o,,_, >< 2"-') + (o,,__, >< 2"-Q) + + (D; >< 2') + (0,, >< 2°)
D indicates a binary digit. For example, binary 00(}0l00l is equal to 9. We calculate this value
by leaving out terms-equal to zero:

(1><23)+(1><2")=9
This is also shown in the following figure:

—— s
+1

| —9'
00001001

1.3.1.3 Translating Unsigned Decimal Integers to Binary
To translate an unsigned decimal integer into binary, repeatedly divide the decimal value by 2,
saving each remainder as a binary digit. l-Iere is an example of how we would translate decimal
37. The remainder digits, starting from the top row, are the binary digits D0, DI , D2, D3, D4, and
D51

Division -Quotient Remainder

3712 I8 l

1812 9 | 0 I I

1.3 Data Representation 15

. -.--- .» -. .1’ ,- i; _ _- _ . -_ . -_
I ‘ ,\‘ " -' '.'.rt._'.>i;].': ‘i ‘. =1‘ _|.~ 1 . ..'= I:':' ' ' - 1 .'_" ‘M: 1- I’ '-- D-E

F .E; ;,- .?.;]‘§*?';?= '.Qi_tfr,'lift'ient"3-, I Reif11‘éiiIfriiiéj5;§1;1_§,

9.1 2 4. 1 I
4/2 '2 ‘ 0

2/2 1 0

.1/2 » O_ 1 .

Collecting the binary digits in the remainder column in reverse order produces binary 100101.
Because we are used to working with binary numbers whose lengths are multiples of 8, we can
fill the remaining two digit positions on the left with zeros, producing 00100101.

1.3.2 Binary Addition
When adding two binaty integers, you must proceed bit by bit, beginning with the lowest order
pair of bits (on the right side). Each bit pair is added. There are only four ways to add two binary
digits, as shown below:

0+0=0 0+l=i 0

l+0=I l+1=10

In one case, when adding I to 1, the. result is 10 binary. (You can also think "of this as the decimal
value 2.) The extra digit generates a carry to the next-highest bit position. In the following fig-
ure, for example, we add binary 00000100 to 0000011 1:

carry: 1

lololo olol (4)

. 1.1. |.y.]..|.].l.| <7.
lololololllfllllll <1»

bit position: 7 6 5 4 3 2 1 0

Beginning with the lowest bit in each number (bit position 0), we add 0 + l,producing a 1 in the
bottom row. The same happens in the next highest bit (position 1). In bit position 2, we add 1 +
l,-generating a sum of zero and a carry of l. In bit position 3, we add the carry bit to 0 +0, pro—
ducing 1 . The rest of the bits are zeros.You can verify the addition by adding the decimal equiv-
alents shown on the right side of the figure (4 + 7 = 1 1).

16 Chapter 1 - Basic Concepts

1.3.3 Integer Storage Sizes
The basic storage unit for all data in an IA-32-based computer is a byte, containing '8 bits. Other
storage sizes are word (2 bytes), donbleword (4-bytes), and -qnctdn-'ot'd (8 bytes). In the following
figure, the number of bits is shown for each size:

word
‘T!riI'”'-er *'ite'- --tie--'1-'%:\:'*= » r.‘ I _',' _ 1'1" '|-1; L3°-'1bl@"*’°1'd

quadword
_ but Z?‘

Table 1-4 -shows the range of possible values for each type of unsigned integer.

Table '1-4 Ranges of Unsigned Integers.
If StorageType= I» U Range (Iowa-high) Rowers-of-:2 - \

Unsigned byte 0 to 255 I 0 to t2“ - I)
0‘ Unsigned word I I Oto 65.535 I i 0 to (2‘°- 1) I
-1 _ 1 — _ _

Unsigned doubleword 0.10 -=l,294,967.295- I 0 to (232 — I)

H Unsigned qttadwortl I Ii 0.10 I8‘.-=i46.744.073.709.55|.6IS I 10 010 (2("4— I) II

Large Measzzrenzents A number of large measurements are used when referring to both mem-
ory and disk space:4

~ One kilobyte is equal to 2“), or 1,024 bytes.
~ One tttegttbyte (MB) is equal to 220, or 1,048,576 bytes.
- One gigabyte toe) is equal to 23°, or 1024-‘, or 1 .073,741.s24 bytes.
' One terabyte (TB) is equal t_o 240, or I024“, or I .099,5I l,627.776 bytes.
- One petnbyte is equal to 25"..et- 1,1-25.s99.90s.s42,624 bytes.
- One e.\'ab_\=te is equal to 26°, or I ,l.52.92 I ,504.606,846,976 bytes.
' One zettctbyte is equal to 270.
- One yottoisyte is equal to 230.

1.3.4 Hexadecimal Integers
Large binary numbers are cumbersome to read, so hexadecimal digits are usually used by as-sern-
blers and debuggers to represent binary data. Each digit in a hexadecimal integer represents four
binary bits, and two hexadecimal digits together represent a- byte.

4 Source: wwwsxrebopedia.c0'm.

1.3 Data Representation 17

A single hexadecimal digit can have a value from 0 to I5, so the letters A to F are used, as
well as the digits 0-9.The IetterA =10, B = I1, C = I2, D =13, E = I4, and F = l5. Table l-5
shows how each sequence of four binary bits translates into a decimal or hexadecimal value.

Table 1-5 Binary, Decimal, and Hexadecimal Equivalents.

Decimal 1 I-lexadeclmal Binary Decimal Hexadecimal 2

E 0000 1 0 0 1000 s s
A 0001 1 1 1 1001 I 9 1 9 A

0010 2 2 1010 :0 A ,
, 0011 3 3 ll 1011 11 B

0l00 4 4 ll00 12- C

0101 I 5 5 A 1101 13 0 A
J I I

0110 6 6 . 1110 1 :4 E
it 0111 7 7 1111 15 i F
r 7 _____ 7 7 7 7

In the Following example, we can _see that the binary integer 000l0I I0l0l00I I I I00l0l00
is represented by hexadecimal l6A794-:'

1 s A 10 9 4
0001 0110 1010 0111 1001 0100

It is often useful to display binary integers with a space between each group of Four bits. Trans-
lation from binary to hexadecimal becomes that much easier.

1.3.4.1 Converting Unsigned Hexadecimal to Decimal
In hexadecimal, each digit position repres'ents- £1 power ol’ I6. This is I"1eIpl"uI when calculating
the decimal value of a hexadecimal integer. First, let’s number the digits in a 4-digit hexadecimal
integer with subscripts as D3D3DiD0. The following formula calculates the number’s decimal
value:

dec=(D_; ><1s3)+t0,><.162)+(0,><1s‘)+t1:>0 >< 16“)
This can be generalized for any rt-digit hexadecimal number:

dec=(D,,_, >< 16"-*1 +(1:_>,,_2 X 16"-1) + + (0, >< 16*) +(1:>D->< 16°)

18 Chapter 1 ~ Baslc Concepts

For example, hexadecimal 1234 is -equal to (l x 16.3) + (2 x 162) + (3 x I6-1) + (4 x l.6°),.or
decimal 4..660. Similarly, hexadecimal 38211418 eqiiei t6 (3 X 163) + (11 X 162) + (1.0 X 16‘) +
(4 x 160), or decimal 15,268. The following figure shows this last calculation:

34 163= 12,288
A 11e162= 2,816

10e16'= 160l 1 ,_ .
3 B A 4 T0l.'t1lZ 15.268

Table 1-6 lists the powers of I6, from 160 to 1.67.

Table 1-6 Powers ot16_. in Decimal.
I __

I 16"-" il‘DecimaliValuei=i*= iii‘ 16" I Decimal Value '
I l ‘‘ I4 fi_ .1 7' _£

16° = 1 1'64 65,536
‘ 16' '16 165 11,048,516 I

I1

162 256 166 ,16.111.216 .
163 2 4096 I 16? 268,435,456

.1 _ _ .L. 4 W

1.3.4.2 Converting Unsigned Decimal to Hexadecimal
To convert an unsigned decimal integer to hexadecimal, repeatedly divide the decimal value" by
16, and keep each remainder as .a hexadecimal digit. For example, in the following table, we
convert decimal 422 to hexadecimal:

" Division " "Quotient ' Remainder 7

422116 I 26 6 I
, 26-t16 1 A

I116 0 I F

II’ we collect the digits from the remainder column in reverse order, the hexadecimal representa-
tion is 1A6. You may recall that we used the same algorithm for binary numbers back in
Section 1.3.1. It works for any number .base,just by changing the divisor.

1.3.5 Signed Integers
As we said earlier, signed binary integers can be either positive or negative. In general, the
most significant bit (MSB) indicates the numb.er’s sign. A-value of 0 indicates that the integer

1.3 Data Representation ‘I9

is positive, and I indicates that it is negative. For example, the following figure shows exam-
ples of both negative and positive integers stored in a single byte:

I; .L%L1-l
Sign bit

2?’

L0. L0 L0. 1L0L1L0P0Si[ivc

1.3.5.1 Two’s Complement Notation
Negative integers are represented using what is called two’s- c'on'tpZen-tent represent'ation. The
two’s complement of an integer is simply its additive i1rve1'se. (You may recall that when a num-
ber's arlciitive inverse is added to the number, their sum is zero.)

Two’s complement representation is useful to processor designers because it removes the
need for separate digital circuits to handle both addition and subtraction. For example, if pre~
sented with the expression A - B, the processor can simply convert it to an addition expression:
A + (-B):

The two’s complement of a binary integer is formed by reversing its bits and adding I.
Using the 8-bit binary value 00000001, for example, its two"s complement turns out to be
lIllllll,as can be seen below.

Starting value 000.0000 1

Step I: reverse the bits 11111110

Step 2: add I to the value from Step I 11111110
+00000001

__ _ -_. - _ 1
Sum: two's complement representation 11111111

Therefore, Illll I ll is the two‘s complement represeiitation of -I. The two‘s complement
operation is reversible, so if you form the two’s complement" of llll llll, the result is
00000001.

Two’s Complement ofHexadecimal To form the two’s compIement.ot' a hexadecimal integer,
reverse all bits and add I. An easy way to reverse the bits of a hexadecimal digit is to subtract
the digit from I5. I-Iere are several examples of hexadecimal integers converted to their two’s
complements:

6A3D --> 95C2 + 1 --> 95C3
95C3 --> 6A3C + 1 --> 6A3D

20 Chapter 1 ~ Basic Concepts

21F0 --> DEOF + 1 --> DE10
DE10 e-> 21EF + 1 ——> 21FO

Converting Signed Binary to Decimal Suppose you would like to determine the decimal
value of a signed binary integer. Here are the steps to follow:

' If the highest bit is a 1, it is currently stored in two’s complement notation. You must form
its two’s complement a second time to get its positive equivalent. Then you. can convert
this new number to decimal as if it were an unsigned binary integer.

' Ifthe highest bit is a 0, you can convert it to decimal as if it were an unsigned binary integer.

For example, signed binary 11110000 has a 1 in the highest bit, indicating that it is a neg-
ative integer. First we form its two’s complement, then we convert the result to decimal. I-lere. are
the steps in the process:

Starting value 11110000

Step l_: reverse the bits 0 0 0 0 1 1 1 1

Step 2: add 1 to the value from Stepl 00001111
+ 1

Step 3: form the two’s complement 0 0 0 1 0 0 0 0

Step 4: convert to decimal 16

Remembering -that the original integer (1 1 1 10000) was negative, we infer that its decimal value
was -16.

Converting Signed Decimal to Binary "Suppose you would like to determine the binary repre-
sentation of a signed decimal integer. Here are the steps to follow:

' "Convert the absolute value of the decimal integer to binary.
' If the original decimal integer was negative, form the two’s complement of the binary

number from the previous step.

For example, -43 decimal can be translated to binary as follows:

' The binary representation of unsigned 43 is 00101011.
' Because t11e original value was negative, we form the two’s eonlplement of 0.0101011,

which is 11010101. This is the representation of -43 decimal.

Converting Signed Decimal to Hexadecimal To convert a signed decimal integer to hexadeci-
mal, do the following:

' Convert the absolute value "of the decimal integer to hexadecimal.
' If the decimal integer was negative, form the two’s complement of the hexadecimal num-

ber from the previous step.

1.3 Data Representation 21

Converting Signed Hexadecimal to Decimal To convert a signed hexadecimal integer to deci-
mal, do the Following:

- If the hexadecimal integer is negative, form its two’s complement; otherwise, retain the
integer as is.

' Using the integer from the previous step, convert it to decimal. If the original value was
negative, attach a minus sign to the beginning of the decimal integer.

You can tell if a hexadecimal integer is positive or negative by inspecting its most significant
(highest) digit. If the digit is >= 8, the number is negative; if the digit is <= 7, the number is
positive. For example, hexadecimal BA20 is negative, and 7FD9 is positive.

1.3.5.2 Maximum and Minimum Values
A signed integer of 1-1 bits can only use 17-1 bits to" represent the number’s magnitude. Table 1-7
shows the minimum and maximum values for signed bytes, words, doublewords, and quadwords.

Table 1-7 Storage Sizes and Ranges of Signed Integers.

Storage Type Range (low-high) Powers of 2

Signed byte -12810 +127 -2110121 - 1)
Signed word -3'2,76_8 10 +3-2,767 A -215 10 <2“ - 1)
Signed doubleword I -2,147,483,648 10 2,147,483,647 -23' 10 <23‘ - 1)
Signed quadword -9,223.372,036,854-,775,808 to p -263101263 - 1)

-I-9,223,372,036,854,775,807

1.3.6 Character Storage
Assumin-g that a computer "can only store binary data, one might wonder how it could also store
characters. To do this, it must sup.port -a certain character set, which is a mapping of characters
to integers. Until a few years ago, character sets used only 8 bits. Becauseof the great diversity
of languages around the world, the. 16-bit Unicode character set was created to:.support thou-
sands of di1Teren1c_har_acte1"8y1nbols;5

When running in character mode (such as MS-DOS), IBM-compatible microcomputers
use the ASCII (pronounced “askey”) character set. ASCII is an acronym for Arrzerican Standard
C0de_)‘brl1t_-fo1'mati011.lnrerclrange. In ASCII, a unique 7-bit integer is assigned to each character.

Because ASCII codes use only the lower 7 bits of every by-te, the extra bit isused on vari-
ous computers to create a. proprietary character ‘set. On IBM-compatible microcomputers, for
example, values 128-255 represent graphics symbols and Greek characters.

5 You can road about the-U11icodc Standard at http:l{ www.u1'1icode.o'rg.

22 Chapter 1 ' Basic Concepts

ASCII Strings A -sequence of one or more characters is called a string. An ASCII string is
stored in memory as a succession of bytes containing ASCII codes. For example, the numeric
codes for the string “ABCIZ3” are 41h, 42h,"43h, 31h, 32h, and 33h. A null-terminated string is
a string of characters followed by a single byte containing zero. The C and C-1+ languages use
null-terminated strings, and many of the MS-DOS and MS-Windows functions require strings to
be in this format.

Using the ASCII Table There is a convenient table on the inside back cover of this book that
lists all of the ASCII codes when running in MS-DOS mode. To find the hexadecimal ASCII
code of a character, look along the top row of the table-and find the column containing the char-
acter that you want to translate. The most significant digit of the hexadecimal value is in. the-sec-
ond row at the top of the table; the least significant digit is in the second column from the left.
For example, to find the ASCII code of the letter a, find the column containing the a, and look in
the second row: The first hexadecimal digit is 6. Next look to the left along the row containing a
and note that the second column contains the digit 1. Therefore, the ASCII code of a is 61 hexa-
decimal. This is shown below in simplified form:

MS-Windows programs use a variety of different character -sets_, so it is not possible to use
just a single lookup table. (You can read the Microsoft documentation on Windows fonts to see
how characters translate into numeric-codes.)
Terminology for Nmneric Data Representation It is important to use precise terminology
when describing the way numbers and characters are represented in memory and on the display
screen. Let’s_ use decimal 65 as an example: stored in memory as a single byte, its binary bit pat-
tern is 01000001. A debugging program would probably display the__byte as "41," which is the
hexadecimal notation for this bit pattern. But if the byte were moved to the video display area of
memory by a running program, the letter A would appear onscreen. This is because 01000001 is
the ASCII code for the letter A. In other words, the interpretation of numbers on a computer
depends greatly on the context in which the number appears.

In this book, we use a naming method for numeric data representation that is rea;sonably
general to avoid conflicts with terminology you might encounter from other sources.

' A binary naznber is a number stored in memory in its raw format, ready to be used in a cal-
culation. Binary integers" are stored in multiples of 8 bits (8, 16, 32, 48, or 64).

' An ASCII digit string is a string of ASCII characters, such as “I23” or “65," which is
made to look like a number. This is "simply a representation of the number and can be in
any of the formats shown for the decimal number 65 in Table 1-8:

u

13 Data Representation

Table 1-8 Types of Numeric Strings.

Format ~ Value I
ASC11 binary “01000001"
ASCII decimal “65”

I ASCII hexadecimal “41”

ASCII octal “l0l"

1.3.7 Section Review

1
2'.

3

-1

5

6

I
1

S

Explain the term LSB.
Explain the term MSB.
What is the decimal representation of each of the following unsigned binary integers?

& 11111000

0 11001010
Q 11110000

What is the decimal representation of each of the following unsigned binary integers‘?
& 00110101
h 10010110
C 11001100

What is the sum of each pair of binary integers?
a 00001111 + 00000010
h 11010101 + 01101011
e 00001111 + 00001111

What is the sum of each pair of binaiy integers‘?
a 10101111 + 11011011

U 10010111 + 11111111

Q 01110101 + 10101100

How many bytes are in each of the following data types?
a word
b.doub1eword
C quadword

How many bits are in each of the following data types?
a word
0 doubleword
Q quadword

Chapter 1 - Basic Concepts

Vlfhat is the minimum number of binary bits needed to represent each of the following
unsigned decimal integers?

Q 65
Q 256
Q 32768

Vlfhat is- the minimum number of binary bits needed to represent each of the following
unsigned decimal integers?

a 4095
Q 65534
Q 2134657

What is the hexadecimal representation of each of the following binary numbers?
a 1100 1111 0101 0111
h 0101 1100 1010 1101
e 1001 0011 1110 1011

What is the hexadecimal representation of each of the following binary numbers?
Q 0011 0101 1101 1010
Q 1100 1110 1010 0011
Q 1111 1110 1101 1011

What is the binary representation of the following hexadecimal numbers?
Q E5B6AED7
Q B697C7A1
Q 234B6D92

What is the binary representation of the following hexadecimal numbers?
Q 0126F9D4
Q 6ACDFA95
Q F69BDC2A

What is the unsigned decimal representation of each hexadecimal integer?
a 3A
h 1BF
c. 409.6

What is the unsigned decimal representation of each hexadecimal integer?
Q 62
b 1C9
Q 6A5B

What is the 16-bit hexadecimal representation of each signed decimal integer?
Q -26
Q -452

1.4 Boolean Operations 25

18. What is the" 16-bit hexadecimal representation of each signed decimal integer?
Q ~32

h -62

19. The following 16-bit hexadecimal numbers represent signed integers. Convertto decimal.
Q 7CAB
h C123

20. The following l6_~bit hexadecimal numbers represent signed integers. Convert to decimal.
Q 7F9B
h 8230

21. What is the decimal representation of the following signed binary numbers?
Q 10110101
Q 00101010
Q 11110000

2-2. What is the decimal representation of thefollowing signed binary numbers‘?
Q 10000000
h 11001100
Q 10110111

-23. What is the 8-bit binary (two’s complement) representation of each of the following signed
decimal integers?

Q -5
b. - 3 6
Q -16

-24. What is the 8-bit binary (two’s complement) representation of each of the fol-lowing signed
decimal integers? '

Q -72
0 -98
Q -26

25. Whatare the hexadecimal and decimal representations of the ASCII charactercapital X?
26. What are the hexadecimal and decimal representations of the ASCII character capital M‘?
27.. Why was Unicode invented?
28. Challen.ge.- What is the largest value you can represent using a 256-bit unsigned integer?
29. Cha"lZenge.' What is the largest positive value you can represent using a "256-bit Signed

integer???

1.4 Boolean Operations
In this section we introduce a few fundamental operations of boolean. algebra, the algebra that
defines a set of operations on the values true and false. This algebra was invented by George
Boole, a mid-nineteenth-century mathematician who never saw a working "computer. When early

26 Chapter 1 ~ Basic Concepts

computers were designed, it was discovered that his algebra. could be used to describe the design
ol’ digital circuits. At the same time. boolean expressions are used in programming to. express
logical operations.

Boolean Expression A boolean expression involves a boolean operator and one or more
operands. E-ach boolean expression implies a value oi’ true or false. The set of operators
includes:

' NOT: notated as _' or--"or"
- AND: notated as A or -
' OR: notated as v or +

The NOT operator is unary, and the other operators are binary. The .operancls- of a boolean
express-ion can also be boolean -expressions. The following are examples:

-1-. - I '.'|i'.|.- L.=- -.~.- 5-_=-0 .I.- ..

Expression " De'sEripti"on
(“X NOTX

XAY XANDY

yXvY XORY

;_'X‘~/Y (NOTXJORY

' "(X1-\Y) NOT(XANDY) A
IXA _'Y XAND(NOTY)

NOT The NOT operation reverses a boolean value. It can be written in mathematical notation
as " X. where X is a variable (or expression) holding a value of true (T) or false (F). The follow-
ing rrrirlz table shows -all the possible outcomes of NOT using a variable X. Inputs.-are on the left
side, and outputs (shaded) are on the right side:

'7 ".i T _,.I.§-'4.--.l X l!| _1

l
‘ I I

* 1.2-;
F T

,| if? "'|l.ll- -:- :=.:r.*=.=.-'T 1==-tr

A truth table can just as easily be constructed using 0 for false and l .for true.

AND The Boolean AND op"erati'on requires two .-operands, and can be expressed using the
notation X A Y. The following truth table shows all the possible outcomes (shaded) for the val-
ues oi’ X and Y:

-ii-_q,i

1.4 Boolean Operations 27

x Y" xxv
F Flt F

F Tf F
l1 __

T F . F

TTT'
~.r

.\'ote that the output is true only when both inputs are true. This corresponds to the logical AND
used in compound boolean expressions in programming languages such as C-I-+ and Java.

OR The Boolean OR operation requires two operands, and can be expressed using the notation
X v Y. The following truth table shows all the possible outcomes (shaded) for the values of X
and Y:

x Y xvv

Tr T“ T
T F T 5
T T T

Note that the output is false only when both inputs are false. This corresponds to the logical OR
used in compound boolean expressions in programming languages such as C-I-+ and Java.

Operator Precedence In a boolean expression involving more than one operator, the issue of
precedence is important. As shown in the following table, the NOT operator has the highest
precedence, followed by. AND and OR. To avoid any ambiguity, use parentheses to force the
initial evaluation of an expression:

1 Expression Order of Operations
l

-1 7 N "*f*I"“““""” 77'7"’ ' "“‘*‘*I"" ti _

‘ —‘-X v Y , NOT, then O-R

1 _'(X v Y) OR, then NOT

X V (Y AZ] AND, then OR

1.4.1 Truth Tables for Boolean Functions
A boolean frmcrion receives boolean inputs and produces a boolean output. A truth table can be
constructed for any boolean function that shows -all possible inputs and outputs. The following

28 Chapter 1 ~ Baslc Concepts
7 __ _ _ _ ___ T _ _ i 1

are truth tables representing boolean functions having two inputs named X and Y. The shaded
columnon the right side is the function ’_s output:

Example 1: _'X v Y"
. , l_,__,__1

,x -=x Y -.=x\/Y,
>. -

1 F T F T
‘Y 7 — —_ _ __ — 1‘; — 1‘; —_—_—_—_l_

F T T is-§----"T -1
l

T F F F
‘i l l I - 1. i ‘ &|-rife —-—‘ 1-A

T r= Ti‘T

Example 2: X A _'Y

7 1 W 7”'_".""’1 _ _. 1
lxw Y -=Y xx-IY

F F,‘T Ff

,r=T1= F
T F T T

T T F F ‘

Example 3: (Y -A S) v (X A _'S)

x Y s xx-s l-Is xx-Is, (Y,-.s)\»(x.~.fis) ,
_ _ .,¢.-..\.r= r=' r= , , l

4- 1 » — . _ _T:.;T;_'_1;

r=lT r=‘r= T r= F
_* _ *l_ l *___,___ _7 _ - 7__ _

T F F F T T T
' T’ . _ _ 1 1 -;;:;;::*'"' _ 7|-

TTr=“r= T T T
r=.r=,T r= r= r= F

1 l. . ~ _________1 ..

FT.T T F F T

lTr=“T 1=“r= r= F
l

TT“T Tir F T I
l

1.5 Chapter Summary 29

This boolean function describes a muIrz'p'{e.rer, "a digital component that uses a selector bit (S) to
select one of two outputs (X or Y). If S = false, the function output (Z) is the same as X. If S =
true, the function output is the same as.-Y. I-Iere is a diagram of such a device:

S

X .

mux E ZY l—

1.4.2 Section Review

C\U‘|-I>~l..:JI\J'—-

. Describe the following boolean expres_sion:._'X v Y.

. Describe the following boolean expression: (-X A Y).

. What is the value ol’ the boolean expression" (T A F) v T ?

. What is the value of the boolean expression _'(F v T) ?

. What is the valueof the boolean expression _'F v _'T?
Create a truth table to show all possible inputs and outputs for the boolean function
described by _'(A v B).

7. Create a truth table to show all possible inputs -and outputs for the" boolean function
described _by (_'A A —:B.).

8. Ciialienge-.' If a boolean function has four inputs, how many rows would be required for
its truth table?

9.. Chaliertg-_e: I-low many selector‘ bits would be required for a four-input multiplexer?

1.5 Chapter Summary
This book. entitled Assembl_r Language fbr Intel-Based Computers, focuses on programming
Intel microprocessors. specifically members of the lntel IA-32 processor family.

This book will give you some basic principles about computer architecture, machine lan-
guage, and low~level prog'ramming-. You will learn enough assembly language to test your
kiiowledge on toclay’s most widely used microprocessor" family.

Before reading this book, you should have completed a single college course or its equiva-
lent in computer pro‘grai"nming.

An assembler is a program that converts; source-code programs from assembly language
into machine language. A companion program, called a linker, combines individual files created
by an assembler into asingle executable program. A third program, called a debugger", provides a
way for a programmer to trace the execution ol’ a program and examine the contents of memory.

You will create two basic types of programs: l6-Bit Real-address mode programs, and
32-bit Protected mode programs.

30 Chapter 1 r Basic Concepts

You will leam the following concepts from this book: B.asic computer architecture applied
to Intel IA-32 processors; elementary bo.olean logic; how IA-32 processors manage memory;
how high-level language compilers translate statements from their language into assembly lan-
guage and native machine code; how high-level languages implement arithmetic expressions.
loops, and logical structures" at the machine level; the data representation of signed and unsigned
integers, real numbers, and -character data.

Assembly language has a one-t_o'-one relationship with machine language, meaning that
one assembly language instruction corresponds to one machine-language instruction. Assembly
language is not portable, because it is tied to a specific processor family.

It is important to understand how languages are simply tools that can be applied to various
types of applications. Some applications, such as device drivers and hardware interface routines.
are more suited to assembly language. Other applications, such as multi-platform business appli-
cations, are suited to high-level languages.

The virtual machine concept is an effective way of showing how each layer in a computer
architecture represents an abstraction of a machine. Layers canbe c"onstructe'd of hardware or
software, and programs written at any layer- can be translated or interpreted by the next-lowest
layer. The virtual machine concept" can be related "to real-world computer layers. including digi-
tal logic. microarcliitecture, instruction set architecture, operating system, assenibly language.
and high-level languages.

Binary and hexadecimal numbers are essential notational tools for programmers working
at the machine level. For this reason, it is vital that you understand how to manipulate and trans-
late between each of the number systems. It is also important to understand how character repre-
sentations are created by computers-.

The following boolean oper-ators were presented in this chapter: NOT, AND, and OR..A
boolean expression combines a boolean operator with one or more operands. A truth table is an
effective way to show all possible inputs and outputs of a boolean function.

LA-32 Processor Architecture

2.1 General Concepts
2.1 .l Basic Microcomputer Design
2. l .2 instruction Execution Cycle
-2.1.3 Reading from Memory
2.1.4 I-low Programs Run
2. l .5 Section Review

2.2 IA-32 Processor Architecture
2.2.l Modes of Operation
2.2.2 Basic Execution Environment
2.2.3 Floating-Point Unit
2.?-.4 Intel Microprocessor History
2.2.5 Section Review

2.3 lAj32 Memory Management
2.3.1 Real-address Mode
2.3.2 -Protected Mode
2.3.3 Section Review

2.4 Components of an IA-32 Microcomputer
2.4. 1 Motherboard
2.4.2 Video Output
2.4.3 Memory
2.4.4 Input-Outp ut Ports
2.4.5 Section Review

2.5 Input-Output System
2.5.1 How It All Works
2.5.2 Section Review

2.6 Chapter Summary

2.1 General Concepts
This chapter describes the" architecture of the Intel IA-32-processor family and its host comptltet‘
system from a prograrnmefs. point of view. As we pointed out in the first chapter, assembly lan-
guage is a great tool for learning how a computer works. This chapter is an essential part of the
learning process, because you need to learn the basics of system architecture before assembly
language can be useful.

We try to strike a balance between concepts that apply to all microcomputer systems and
specific information about the IA-32 processor family. It is impossible to know what type of

31

32 Chapter 2 - IA-32 Processor Architecture

computersystems you will use in the future, so it would be a mistake for you to only leam about
the LA-32. On the other hand, a generalized, superficial knowledge of computer processors
might leave you with an empty feeling, not having had enough experience with a single CPU
and its assembly language to do anything useful. To use an imperfect analogy, people don‘t
become great cooks by reading cookbooks. They learn to cook a few dishes well, and then build
on their experience.

l After reading "this chapter, you may want to delve further into the IA-32’s design. You can begin
, by reading Intel’s well-written -and authoritative manual: IA-32 Intel Architecture Software-
; Developer's Manual. Volume 1: Basic /_irchr'rectun_e. You can download it for free f1‘0m the Intel

Web site (ww-w.intel.com). Far from being adty, dull reference, this manual can keep your
attention for days or weeks. But don't forget about the book you’re holding in your hands---it
still has a lot to-offer you!

2.1.1 Basic Microcomputer Design
Figure 2-l shows the basic design of a hypothetical microcomputer. The" central processor unit
(CPU) is where all the calculations and logic operations take place. It contains a limited number
of storage locations called registers, a high"-frequency clock, a conrztzl-I unit, and an arithmetic
Iogic unit.

- The clock synchronizes the internal operations of the CPU with other system components.
' The control unit (CU) coordinates the sequencing of steps involved in executing machine

instructions.
' The arithmetic logic unit (ALU) performs arithmetic operations such as -addition and sub-

traction, and logical operations such as AND, OR, and NOT.

data bus

4' 7 | We ' 7 7 i 7 F -‘ | . k " I

~
Central Processor Unit r Memory Storage D23“ i Di?“

(CPU) , Unit #1 #2

A [ALU | cu | ‘clock | 7

O T control bus N O O if O

i address bus i i i

Figure 2-1 Block Diagram of a Microcomputer.

2.1 General Concepts 33

The CPU is attached to the rest of the computer via pins attached to the CPU socket. Most
of these pins connect to the data bus, the control bus, and the address bus.

The rnemorr storage uni! is where instructions and data are held while a computer
progr-am is running. The storage unit receives requests for data from the CPU, transfers
data from random access memory (RAM) to the CPU, and transfers data from the CPU into
memory.

A bus is a group of parallel wires that transfer data from one pan" of the computer to
another. The system bus of a computer usually consists of three different busses: the data bus,
the control bus. and the address bus. The data bus transfers instructions and data between the
CPU and memory. The'comr0l bus uses binary signals to synchronize the actions of all devices
attached to the system bus. The address bus holds the addresses of instructions and data when
the currently executing instruction transfers data between the CPU and memory.

Clock Each operation involving the CPU and the system bus is synchronized by an internal
clock that repeatedly pulses at a constant rate. The most basic unit of time for machine instruc-
tions is called the machine c_rcIe (or clock cycle time), which is the time required for one com-
plete clock pulse. In the followittg figure, one cl.ock pulse is depicted as the time between one
falling edge and the next:

one cycle

lJT_TlJ—l_l_l
The duration of a clock cycle is the reciprocal of the clock’s speed, measured in oscilla-

tions per second. -A clock that oscillates l billion times per second (l GI-iz). for example, pro-
duces a clock cycle with a duration of one billionth of a second (l nanosecond).

A machine instruction requires at least one clock cycle to execute, and a few require in
excess of 50 clocks (the multiply instruction on the 8088 processor, for example). Instructions
requiring memory access often have empty clock cycles called u-air stares because of the differ-
ences between the speed of the CPU, the system bus. and memory circuits. (Recent research
suggests that in the near future we may abandon the synchronized computing model in favor of a
type of asynchronous operation that would not require a system clock.)

2.1.2 Instruction Execution Cycle
The execution of a single machine instruction can be divided into a sequence of individual oper-
ations called the in.s"rrucrz'0n e.recuh‘0n cycle. When the CPU executes an instruction using a
memory operand, it must calculate the address of the operand, place the address on the address
bus, wait for memory to get the operand, and so on.

34 Chapter 2 - IA-32 Processor Architecture

program
| ti-| I r-2| I-31 t-4|

nemory rcwhII-|

road
registers rcgiste rs

- -_1 instruction

1 1 ‘1“"““’Z 1
emoat)Q .-2., ,

execute

Figure 2-2 Instruction Execution Cycle.

Before it executes, a program must be loaded into memory. ln Figure 2-2, the program
cotmter is a register that contains the address of the next instruction about to be executed. The
insrructiorz queue is a holding area inside the microprocessor into which one or more instruc-
tions are copied just before they execute. When the CPU executes-a single machine instruction,
three primary operations are always necessary: fetch. decode, and e;_t-ec-ate. Two more steps are
required when the instruction uses a memory operand; fetch operand, and store output operand.
in other words, as many as five operations may be required by ins_tructi_'ons that access memory.

' Fetch: The control unit fetches the instruction, copying it from memory into the CPU and
increments the program counter (PC).

' Decode: The control unit determines the type of instruction to be executed. It passes zero
or more operands to the arithmetic logic unit (ALU) and sends signals to the ALU that
indicate the type of operation to be performed. l

' Fetch operands-.' If'a memory operand is used, the control unit initiates a read operation to
retrieve the input operand from memory.

' Execute: The arithmetic logic unit executes the instruction, sends its data to the output
operand, and updates status flags providing information about the output.

' Store-output operand.': If the output operand is in memory, the control unit initiates a write
operation to store the. data..

2.1.2.1 Multi-Stage Pipeline
Each step in the instruction cycle takes at least one tick of the system clock, called a clock cycle.
But this doesn’t mean that the processor must wait until all steps are completed before beginning
to process the next instruction. The processor can execute the steps in parallel, a technique
known as pt'pelining.- T-he Intel386 used a six-stage execution cycle. Later, the Intel486 intro-

2.1 General Concepts 35

duced pipelining. The six stages and the parts of the processor that carry them out are listed here:

l. Btt.s'1n!etj‘Zrce Unit (BIU): accesses memory and provides input-output.
2. Code PI‘éffi’f£‘h Unit: receives machine instructions From the BIU and inserts them into a

holding area named the r'nstrtrcn'0n queue.
3. Instrtzction Decode Unit: decodes machine instructions from the pref-‘etch queue and trans-

lates them irrto microcode.
4. E.rectm'on Unit: executes the microcode instructions produced by the instruction decode unit.
5.. Segment Unit: translates logical addresses to linear addresses and performs protection

checks.
6'. Paging Unit: translates linear addresses into physical addresses, performs page protection

checks. and keeps a list of recently accessed pages.

Example Let’s assume that each execution stage in the processor requires a single clock cycle.
Figure 2-3 uses a grid to represent" a six-stage non-pipeiined processor, the type used by Intel
prior to the Intel486. When instruction I-l has finished stage S6, instructiorr I-2 begins. Twelve
clock cycles are required to execute the two instructions. In other words, For it execution stages.
n instructions require (n It) cycles to process.

Of course. Figure 2-3 represents a major waste of CPU resources because each stage is
used only one-sixth of the time.

If, on the other hand. a processor supports pipelining. as in Figure 2-4. a new instruction
can enter stage Sl during the second clock cycle. Meanwhile. the first instruction has- entered
stage S2. This enables the overlapped execution of the two instructions. Two instructions, I-l
and I-2, are shown progressing through the pipeline. I-2 enters stage S1 as soon as I-1 has moved
to stage S2. As a result. only seven clock cycles are required to execute the two instructions.
When the pipeline is full. all six stages are in use all the time.

In general. for k execution stages. n instructions require Ir + (n - l) cycles _to process.
Whereas the non-pipelined processor weshowed earlier required l2 cycles to process 2 instruc-
tions, the pipelined processor can process 7 instructions in the same amount‘ of time.

Stages
W "-’ 1' '*"*'"* l lL_S1_ __S2l S3 -_Sg+'l~_ S6.

W I I-1 j .
1' I-1l\Jl-'-

if W I-1 2' 2
I~1 .

i g I-1

co-itcstn-r=-:..a

S
._ A I-1.

Cyce

scew""

' I-2 g , it
t _ I-Zl _

. 1-2r it 1-2
KW 2‘? I-2#7 77; 77 _ _ 7 *7 _ _ l

W _. I-2

Figure 2-3 Six-Stage Non-Pipelined Instruction Execution.

36 Chapter'2 - IA-32 Processor Architecture

Stages

‘.03. 1'1. q i 1

, W A IES T—|i—| ‘|\-3|-—*
r—|i-4

Cyc
N’__

'.-'2':-' IQr—~ '7' W

i r-' 7 ”""T T 7'

w

-pa-—~

in:-.__.5-1...-.| _; _ I l
$ r y ‘ I-2, 1-:1

__ . ,_ as I I—2i

Figure 2-4 Six-Stage Pipelined Execution.

2.1.2.2 Superscalar Architecture
A snperscalar processor has two or more execution pipelines, making it possible for two instruc-
tions to be in the ‘execution stage at the same time. In order to better understand" why a
superscalar processor would be useful, let’s consider the preceding pipelined example, in which
we assumed that-the execution stage (S4) required-a single clock cycle". That was an overly sim-
plistic approach. What would happen if stage S4 required two clock cycles? Then -a bottleneck
would occur,- shown in Figure 2-5. Instruction I-2 cannot enter stage S4 until I-1 has completed
the stage, so I-2 has to wait one more cycle before entering stage S4. As more instructions entjer
the pipeline, wasted cycles occur (shaded in gray). In general, for k stages (where one stage
requires 2 cycles), n instructions require (I: + 2n — l) cycles to process.

When a superscalar processor design is used, multiple instructions can be in the execution
stage at the same time. For n pipelines, n instructions can execute during the same clock cycle.
The Intel Pentium, which had two pipelines, was the first superscalar processor in the IA-32
family. The Pentium Pro processor was the first to use three pipelines.

Let’s introduce a second pipeline into our 6-staged pipeline and assume that stage S4
requires two cycles. In Figure 2-6, odd-numbered instructions enter the u-pipeline and even-
nurnbered instructions enter the .v-pipeline. This removes the wasted cycles, and it is now possi-
ble to process n instructions in (k + n)_-cycles.

Stages
I has I" ~ rssa. ,S4.i.=5i:;'S§§il?E:'Sr5;‘;f

Cycles
T *1*?1

'T""'T‘il'fi.
La-Il\-3|-—*

U-3|\-3""-'

'|%‘|%‘|%IT! l\'JlsJ|-—*|-—* 1% |'—‘ ,,_,,_,)__,

L
-n__'t__JI-F. _1 ";‘-'.E1‘i 4_-.i,.,‘ - ..
r ****J-n-at

in

- ‘1-1 P
.r-.'¢-;' l ,8?-Fin ,
r = -

_ l ,1-3
_ l I-3

Figure 2-5 Pipelined Execution Using a Single Pipeline.

-H.-'LvJi‘L»J tr
'.-'

rl\-1 -iti-\ itliu l\-If__

2.1 General Concepts

Stages
._.34_

_\-J-,"is-1. __..
'l

r, , , H __

1 % I‘ 1 ‘ ‘|
\ l

..- .-\._

-:-.»
i:--ha‘ ' -:! '-itre"I-2

_.
I-I

.-;_,._ .,.- .,,
Ti] . "‘ -'1

\im?}iE; §{;h]:"f3
rj

I-2 , I-1 _
S r-4 I-3 i—l f1‘

Cyce

o-_
1.20i ,-5.

|-"|_..-

. as ;_'i;
. rt,'\o'l I-4 31-

y *1-*2
3 I1! [nu-l I-2

;'-1'11 I-4 i—i 1Li-5 -2-l I-1 I.. ..,,
-.--..

1; ‘-"V",__:_ J. I'M i—l ‘LA I-4 I-2 ITI ‘-1
\':-say irzi 14 I-3 '7‘ts:".'?:.' ,
\ .<~3.a. _ , 1-4F . 3 _ '7‘oz

Q, _ . *7* 41‘-

1

1

¥

Figure 2-6 Superscalar 6-Stage Pipelined Processor.

2.1.3 Reading from Memory
Memory access is an important factor when understanding the speed of a program. The CPU
clock might be capable of running at 1 or 2 GHZ, for example, but access to memory over the
"system bus is far slower. This forces the CPU to wait one or more clock cycles until operands
have been fetched from memory before instructions can execute. These wasted clock cycles are
called wait states.

Several steps are required when reading instructions or data from memory, controlled by
the processor’s internal clock. Figure 2-7 shows the processor clock (CLK) rising and failing at
regular time intervals. In this example, a clock cycle begins as the clock signal changes from
high to low. These changes are called rraili-ng edges, and they indicate the time taken by the tran-
sition between states.
The following is a simplified description of what happens during each clock cycle as memory is
read:

Cycle I: The address bits of the memory operand are placed on the address bus (ADDR).
Cycle 2: The Read Line (RD) is set low (0) to notify memory that a value is to be read.
Cycle 3: The CPU waits one cycle to give memory time to respond". During this cycle, the-mem-
cry controller places the operand on the data bus (DATA).
Cyc_Ie- 4: The Read Line (RD) goes to l, signaling that the CPU can now read the values on the
data bus.

Cache Memory Because conventional memory is so much slower than the CPU, microcom-
puters have higlr-speed caclrememory that holds the most recently used instructions and data.
\Vl1enever possible, the CPU reads from cache memory, giving programs a noticeable boost in
performance. There are two types of cache memory in an IA-32 system: Level-I cache is inside
the processor itself, and Level-2 cache is located on separate high-speed memory chips next to
the CPU. Level-1 cache is faster and more expensive than Level-2.cache.

38 Chapter 2 ~ IA-32 Processor Architecture

Cycle 1 Cycle 2 Cycle 3 Cycle 4'

- Address -ccmc____cct CCCCCCCCCCC itsF c c S S S _cl__.ADDR X i
___ 7 _ _ _ _ me _,___'__,_,___,___,___,____,_,____,*t:;_:__,_'__,__,__,_,____,__,__,_,____,__-?—---—'-—'¢IT---cu__,+_p__,-

RD ~ *_ j i

O y Data _
DATA::I:::::::_::::i:::l>< it l l

a " l

Figure 2-7 Memory Head Cycle".

2.1.4 How Programs Run

2.1.4.1 Load and Execute Process
When you tell the computer’s operating system (OS) to load and run a program. the following
things happen ("in sequence):

- The user issues a command to run a certain program. This might be done by typing the
p11ogram’s filenarne at a command prompt (as in MS-DOS or Linux), or by clicking on an
icon or ‘shortcut that identifies" the program (as in MS-Windows or Mac OS).

' The -OS searches for the program’s filename in the current disk directory. If it cannot find
the name there, it searches a predetermined list of directories (called paths) for the file-
narne. If the OS fails to find the program filename, it issues an error message.

- If the program’s filename is found, the OS retrieves basic information about the program‘s
file from the disk directory, including the file size and its physical location on the disk
drive. (This process might ‘involve several steps, but they are transparent to the user.)

' The OS"determines the next available location in memory, and loads the program file into
memory. It allocates a certain block of memory to the program and "enters information
about the prog_ran1’s size -and location into a table (sometimes called a descr'z]|0!0:' table).
Additionally, the OS may adjust the values of pointers within the program so they contain
the correct addresses of program data.

- The OS executes a branching instruction that causes the CPU to begin execution of the
prograiafs first machine instruction. As soon as the program begins running, it is called a

2.1 General Concepts 39

pr0c:e.s‘.s'. The OS gives the process an identification number (process ID) that makes it pos-
sible to keep track of the process while it is running.

- The process runs by itself. It is the OS ’s job to track the execution of the process and to
respond to its requests for system resources. Examples of resources are memory, disk files,
and input-output devices.

- When the process ends, its handle is removed and the memory it used is released so it can
be used by other programs.

,L _ —— * _ ___ 7
ll '

iffTy'ott’re using Windows NT or 2000, press Ctr!-Alt-Delete and click on the Task Manager button.
ililiiite are tabs labeled Applications, and Processes. Applications are the names of complete programs
currently running, such as Windows Explorer or Microsoft Visual IC++. When you click on the Pro-

tab. you see 30 or 40 ‘names listed, oftenwith names you might not recognize. Each of those
ii pgttgesses is a small program running independently of all the others. Note that each has a PID (pro-

‘ and you can continuously track both the amount of CPU time and the amount of memory
the program. Most of these run in the background without any visible element. If you know

you’re doing. you can shut down a process that was somehow left running in memory by mis-
take. Of course. if you shut down the wrong process, your computer may stop running, and you'll

T -:hafve' to reboot. 1

2.1.4.2 Multitasking
When an operating system is able to tun multiple tasks at the same time, it is said to be multi-
tasking (or preemptive multitasking). A moment ago we were talking about processes, and now
we’re talking about tasks. A process-may optionally contain multiple tasks (or tlzreacls 0fe.tecu-
tion) that ane more or less independent of each other. A game program, for example, with several
animated graphics moving independently of each other, might assign each graphic to a separate
task. Some processes consist of only a single task.

Most modern operating systems have to simultaneously run tasks that communicate with
hardware, display user interfaces, do background file processing, and so on. The CPU can only
execute one instruction at a time. so a component of the operating system called the schedtder
allocates a small portion of CPU time (called a time slice) to each task. During a single time
slice. the CPU will eXecute a block of instructions. stopping when the time slice has ended.

By rapidly switching tasks, the OS gives the illusion that loaded tasks are running simulta-
neously. One type ol’ scheduling used by the OS is called rotmd-robin scheduling. In Figure 2—8,
nine tasks are active-. Suppose the st.-heduler arbitrarily assigned Il milliseconds to each task,
and activated them in sequence. "One full circuit of the tasks would require a little over 100 milli-
seconds, which includes time to switch from task to task.

A multitasking OS must run on a processor that supports task switching, which means that
the processor saves the state of each task before switching to a new one. A task’s state consists of
the contents of the processor registers, the task‘s variables, and its program counter. A multitask-
ing OS will usually assign varying priorities to tasks, giving them relatively larger or smaller
time slices.

Chapter 2 - IA-.-32 Processor-Architecture

s<=h-=<1u1=r

Flgure 2-8 Hound-Robin Scheduler.

2 1 5 Section Review

The central processor unit (CPU) contains registers and what other basic elements?
The central processor unit is connected to the rest of the computer system using what three
buses?
Why does memory access take more machine cycles than register access?
What are the three basic steps in the instruction execution cycle?
Which two additional steps are required in the instruction execution cycle when a memory
operand is used?
During which stage of the instruction execution cycle is the program counter incremented?
Define pipelined execution.
In a 5-stage non-pipelined processor, how many clock cycles would it take to execute 2
instructions?
In a 5-stage single-pipelined p1'0CeSSOI', how many clock cycles would it take to execute 8
instructions‘?
What is a supersealar processor?
Suppose that a 5-stage dual-pipelined processor has one stage that requires two clock cycles
to execute, and there are two pipelines for that stage. How many clock cycles would be
required to execute 10 instructions?
When a program runs, what information does the OS read from the iilenarne’s disk direc-
tory entry?
After a program has been loaded into memory, how does it begin execution?
Define multitasking.
What is the function o.f the OS scheduler?
When the processor switches from one task to another, what values in the first task’s state
must be preserved?

2.2 IA-32 Processor Architecture 41

2.2 IA-32 Processor" Architecture
In this section we detail many aspects of the IA-32 processor architecture. Although we men-
tioned this in Chapter 1, it is worth repeating that IA-32 refers to a family=of processors beginning
with the Intel386 and continuing up to the--latest 32-bit procejssor, the Pentium 4. Although many
enhancements have been" made to the process'o'r’s performanceand implementation, these differ-
ences are hidden behind the IA-32 standard. From the programmer’s point of view, the IA-32
architecture has not changed substantially since the Intel386. The primary exception is the intro-
duction of a set of high-performance instructions that improve multimedia processing.

2.2.1 Modes of Operation
IA-32 processors have three basic modes of operation: Protected mode, Real-address mode, and
System Management mode. In addition, the Virtual-8086 mode is a special case of Protected
mode.

Protected Mode Protected mode is the native state of the processor, in which all instructions
and features are available. Programs are given separate memory areas (called segments), and the
processor detects any attempt by a program to reference memory outside its assigned segment.

Virtual-8086 Mode While in Protected mode, the processor can directly execute Real-address
mode software such as MS-DOS programs in a safe multitasking environment. In other words, even
if -an MS-DOS program crashes, it will not affect other programs running at the same time. (This
feature is often called I/tr-run!-8086 mode even though it is not really a separate processor mode.)

Real-address Mode Real -address. mode implements the programming environment of the.Intel
8086 processor with a few extra features, such as the ability to switch into the other two modes.
This mode is available in Windows 98. for example, if you need to run an MS—D.OS program that
seizes control of the computer’s hardware. -Old computer games often do this. All Intel proces-
sors boot in Real-address mode. After that, the host operating system may switch to another
mode.

System MamzgementMode System Management mode (SMM) provides an operating system
with a mechanism for implementing such functions as power management and system security.
These functions are usually implemented bycomputer manufacturers who want to customize the
processor for a particular system setup.

2.2.2 Basic Execution Environment

2.2.2.1 Address Space
In Protected mode, 'IA—32 processors can access up to 4GB of memory. This is because 32—bit
registers can have values between 0 and 232 — l. In Real—address- mo_de, a maximum of IMB of
memory c-an be accessed. If the processor is in Protected mode and running multiple programs in
virtual-8'086 mode, each program can access its own separate IMB area of memory.

42 Chapter 2 ' IA-32 Processor Architecture

2.2.2 .2 Basic Program Execution Registers
Registers are high-speed storage locations directly inside the CPU, designed to be accessed at
much higher speed than conventional memory. When a processing loop is optimized for speed,
for example, registers are used inside the loop rather than variables.

Figure 2-9 shows the basic program execution registers (as Intel calls them). There are
eight general—purpose registers, six segment registers, a register that holds processor status flags
(EFLAGS). and an instruction pointer (EIP).

General-Purpose Registers The general-ptu'po.s'e registers are primarily used for arithmet-ic
and data movement. As shown in the following figure, each register can be addressed as either a
single 32-bit value or a l6-bit value:

8 8

AH AL s bits + s bits
IX};-i'ij=t=>|:-qi$§1au4.ib; --it-s..~:,=-I.’--5'7. ti

l gr 16 btts
is};-surigmsmrfitirj Y-t-"mi-.2:-.=»*..<-a Y: “

l

¢-.r-;--w-.-

I "'r.-. I H I-l-1 I :l:;;;== - i
L EAX _____l __ 71 32bits

Some l6-bit registers can be addressed as two separate -8-bit values. For example, the EAX reg-
ister is 32 bits. Its lower l_6 bits are also named AX. The upper 8 bits ofAX are named Al-I, and
the lower 8 bits are named AL.

32-bit General-Purpose Registers

SL.-.a'~:e/

EAX EBP

EBX ESP
_ z

‘it
ECX ESI JN _
EDX L, EDI i

"i'!.“’i 1 i1i‘."-:1". '.'-i!1.'-'|\L'|‘l‘E ‘IL? Ir‘ -5.17 -_'1§_l!’5g.r\-_ ;.,';-.;|,[;..§.§. _|| '. ~|':!|:1E;';-I.-II‘. - ., *1, _U | _ ["7

16.-bit Segment Registers

L EFLAGS cs I ES a
’_ ._1-~_.__ _ . .-_..t¢_- ._ __-| , .- V -~..t.-1 31. .- l I M

L EIP os I cs H" _-” ;-Ti ‘.T:5.-.- “fae.+.;-: ...~s;r.--_-=
i _._-..-tait:s_._-_-- ..-art;-..1:-_._ , .-. - _ _ I - i -.-.n: -_=-.- i,

Figure 2-9 IA-32 Basic Program Execution Registers.

2.2 IA-32 Processor Architecture 43

This overlapping relationship exists for the EAX, EBX, ECX, and EDX registers:

S 32-an S 16-an l 8-bit(high) i l§;bit(low) S
BAX AX . AH “ AL.
EBX BX A BH l BL '
scx

‘ EDX K
O>< OI F)F‘

U.><i UI UF‘
u _7

The remaining general-purpose registers have separate names for their lower 16 bits, but
cannot be divided further. The 16-bit registers shown here are usually used only when writing
programs that run in Real-_address mode:

32-bit ‘ 16-bit

ESI SI

EDI DI

esp BPT
ESP SP

Specialized Uses Some general-purpose registers have specialized uses:

- EAX is automatically used by multiplication and division instructions. It is often called
the extended accutnztlaror register.

- The CPU automatically uses ECX as a loop counter.
' ESP addresses data on the stack (a system memory structure). It should never be used for

ordinary arithmetic or data transfer. It is often called the extended stack pa inter register.
- ESI and EDI are used by high-speed memory transfer instructions. They are sometimes

called the extended source index and extended destination index registers.
' EBP is used by high-level languages to reference function parameters and local variables

on the stack. It should not be used for ordinary arithrnetic or -data transfer except at an
advanced level ‘of programming. It is often called the extendedframe pointer register.

Segment Registers The segment registers are used as base locations for preassigned memory
areas‘ called segments. Some segments hold program instructions (code). others hold variables
I data), and another segment called the stack segment holds local function variables -and function
parameters.

Instruction Pointer The EIP, or itzstruction pointer register contains the address of the next
instmction to be executed. Certain machine instructions manipulate this address, causing. the
program to branch to a new location.

44 Chapter 2- ' IA-32 Processor Architecture

EFLAGS Register The EFLAGS (or just Flags) register consists of individual binary bits that
either control the operation of the CPU or reflect the outcome ol’ some CPU operation. There are
machine instructions that can test and manipulate the processor flags.

I A flag is set when it equals l: it is clear (or reset) when it equals 0. l

Control Flags. Individual bits can be set in the EFLAGS register by the programmer to control
the CPU’s operation. Examples are the Direction and Interrupt flags. We will cover these on an
as-needed basis later in the book.

Status Flags. The Status flags reflect the outcomes of arithmetic and logical operations per-
formed by the CPU. They are the Overflow, Sign. Zero. Auxiliary Carry. Parity, and Carry flags.
Their abbreviations are shown immediately after their names:

' The Carry flag (CF) is set when the result of an tmsigned arithmetic operation is too large
to lit into the destination.

' The Overflow flag (OF) is set when the result of a signed arithmetic operation is either too
large or too small to lit into the destination.

* The Sign flag (SF) is set when the result of an arithmetic or logical operation generates a
negative result.

* The Zero flag (ZF) is set when the result of an arithmetic or logical operation generates a
result of zero-.

' The Auxiliary Carry flag (AC) is set when an arithmetic operation causes a carry from bit
3 to bit 4 in an 8-bit operand.

' The Parity flag (PC) sums the number of bits that are set in a number, -and indicates
whether the sum is odd or even.

2.2.3 Floating-Point Unit
The IA-32 has afloarfng-point unit (FPU) that is used expressly for high-speed floating-point
arithmetic. At one time a separate coprocessor chip was required for this, but beginning with the
Intel486. it was integrated into the main processor chip.

There are -eight floating-point data registers in the FPU, named ST(0). ST(l). ST(2),.
ST(3). ST(4)., ST(5)', ST(6), and ST(7). The remaining control and pointer registers of the FPU
are shown in Figure 2- 10".

2.2.3.1 Other Registers
ln passing, we will mention two other sets of registers used for advanced multimedia programming:

' Eight 64-bit registers for use with the MMX instruction set
' Eight I28-bit XMM registers used for single-ins-truction, multiple-data (SIMD) operations

2.2 IA-32 Processor Architecture 45

80-bit Data Registers
-t - - \ 48-bit Pointer Registers

ST|[0 - " * :
i r ex. L FPU Instruction Pointers'r|[1) . - - _- »_ _--.--

l
T \lST-:21 FPU Data Pointer U

l

STl[3} Tfifiw Til

lZ_

317:4) : ‘ 16.-bit Control Registers

s'r(s-) g Ni Tag Register B

i SR6) I Control Register. -- - jg‘, g _
STU) Status Register

‘§=__jf,f1f;;l;-=;'1;§-'-'--- T H.-:-H---;& J. _ _.-._.__-_;.;

L Opcode Register U

Figure 2-10 Floating-Point Unlt Registers.

2.2.4 intei Microprocessor History

In this chapter, you’re about to get another dose of history from someone (me) who really was
around when the first IBM-PC was released, in the dark days when they had 64K of RAM and
no hard drives.

Senior programmers love to talk about history and legends because a lot of them were actu-
ally around when the history was being written. One of my professors worked on the Mark I
computer at Harvard University during World War II. He was given a single register from
the Mark I when it was dismantled. (The register was about 2 feet high and weighed 20
pgilndsl)
.'$_'.'»-- iiiiiii if if

Intel 8086 The Intel 8086 processor (created in l9'78) marks the beginning of the modern Intel
Architecture family. The primary innovations of the 8086 over earlier processors were that it had
16-bit registers and a l6-bit data bus, and used a segmented memory model that allowed pro-
grams to address up to IMB of RAM. This greater access to memory made it possible to write
complex business applications. The IBM-PC, introduced around 1980, contained an Intel 8088
processor, which -was identical to the 8086 except that it had an 8-bit data bus, making it slightly
less ex-pensive to produce. Today, the Intel 8088 is primarily used in low-cost microcontrollers
and costs only a few dollars.

46 Chapter 2 - IA-32 Processor Architecture

It. - ——- —- f —— f - ~**

I D0wnwardC0mpa1ibility. It should be noted that each new processor introduced into the 3
Intel family (since the 8086) has always been downward-compatible with earlier genera-
tions. This has made it possible for the same software to run on the newer computers with- I
out modification. Newer software eventually appeared. however, that required the features ‘

1 of the more advanced processors. i

Intel 80286 The Intel 80286 processor, first used in the IBM-PCIAT computer. .quickly set a
new standard of speed and power. It was the first Intel processor to run in Protected mode. The
80286 could address up to 16MB of RAM using a 24-bit address bus.

2.2.4.1 IA-32 Processor Family
The Intel386 processor featured 32-bit registers and a 32-bit address bus and external data path.
This was the first member of the IA-32 family, which also includes the Intel486 and various Pen-
tium processors. They support a new way of addressing virtual memory that is larger than the
computer’s physical memory. Each program was given a 4GB linear address space.

Intel486 Continuing the IA-32 family. the Intel486 processor features an instruction set
microarchitecture using pipe]?!-ting techniques that permit multiple instructions to be processed
at the same time.

Pentium The Pentium processor added many perlbrmance improvements. including a .s-upc=r-
scalar design with two parallel execution pipelines. This permitted two instructions to be
decoded and executed simultaneously. The Pentium used a 32-bit addness bus. 64-bit internal
data path, and introduced MMX technology to the IA-32 l'am'ily.

2.2.4.2 P6 Processor Family
In l995. the P6 Family of processors was introduced. based on a new micro-architecture design
that improved execution speed. At the same time, it extended the basic IA-32 architecture. This
family includes, among others, the Pentium Pro. Pentium II, and Pentium III. The Pentium Pro
introduced advanced techniques to improve the way instructions were executed.The Pentium ll
added MMX technology to the P6 family. The" Pentium III introduced SIMD (streaming exten-
sions) into the IA-32 architecture, with special I28-bit registers designed to move large amounts
of data quickly.

Pentium 4 At the time of this writing, the Pentium 4 is the newest IA-32 processor. It intro-
duced the NerBm'sr micro-architecture that permits the processor to operate at much higher
speeds than previous IA-32 processots. It appears to be oriented primarily toward high-per|'or-
mance m_ultimedia applications.

2.2.4.3 CISC and RISC
The earliest Intel pnocessors for the IBM Personal Computer were based on what is called a
Cmnpler Inst:-uericm Set (CISC) approach. The Intel instruction set includes powerful ways to

2.2 IA-32 Processor Architecture 47

address data, and instructions that are relatively high-level complex operations. The philosophy
was that high-level language compilers would have less work to do if individual machine-lan-
guage instructions were powerful. A major disadvantage to the CISC approach is that complex
in:5tructio'ns require a relatively long time for the processor to decode and execute. An interpreter
program inside the CPU written in a language called microcode decodes and executes each
machine instruction. Once Intel committed to a complex instruction set, it was necessary for all
subsequent Intel processors to be compatible with the first one. Software written for the original
IBM Personal Computer can still run on today's latest Pentium.

A completely different approach to microprocessor design is called Reduced ln.rrrucr:'0n
Se: (RISC). A RISC machine language consists of a relatively "small number of short, simple
instructions that can be executed very quickly. Rather than using a microcode interpreter to
decode and execute machine instructions. a RISC processor directly decodes and executes
instructions using hardware. I-Iigh-Speed engineering and graphics workstations have been built
using RISC processors for many years. Unfortunately. these systems have been expensive
because the processors were produced in small quantities.

Because of the huge popularity of IBM-PC compatible computers. Intel was able to lower
the price of its processors and thus dominate the microprocessor market. At the same time, Intel
recognized many advantages to the RISC approach and found a way to use RISC-like features
(such as pipelining and s-uperscalar) in its Pentium processors. Meanwhile, the IA-32 instruction
set continues to be enormously complex and constantly expanding.

2.2.5 Section Review

l. What are the IA-32 processor"s three basic modes of operation’?
2. Name all eight 32-bit general-p'urp0.se registjers.
3. Name all six segment registers.
4. What special purpose does the ECX register serve‘?
5. Besides the stack pointer (ESP). which other register points to variables on the stack‘?
6. Name at least four CPU status flags.
7. Which flag is set when the result of an zm.rigned arithmetic operation is too large to fit into

the -destination‘?
8. Which flag is set when the result of a .ri_q:zecI arithmetic operation is either too large or too

small to fit into the destination‘?
9. Which flag is set when an arithmetic or logical operation generates a negative result‘?

l0. Which part of the CPU performs floating-point arithmetic‘?
l l. How many bits long are the FPU data registers’?
l2. Which Intei processor was the first member of the IA-32 family’?
l3. Which Intel processor first introduce_d superscalar execution’?
l4. Which Intel processor first used MMX technology’?

48 Chapter 2 ' IA-32 Processor Architecture
1, __ 7 -__

15. Describe a CISC instruction set.
l6. Describe a RISC instruction set.

2.3 IA-32 Memory Management
The IA-32 manages memory according to the basicmodes of operation that we discussed earlier
in Section 2.2.1.

In Real-address mode, only IMB of memory can be addressed, from hexadecimal 00000
to FFFFF. The processor can run only one program at atime, but it can momentarily ‘interrupt
that program to process requests (called interrupts) from peripherals. Application programs are
permitted to read and modify any area of RAM (random-access memory), and they can read but
not modify any area of ROM (read-only memory"). The MS-DOS operating system runs in Real-
address mode, and Windows 95 and 98 can be booted into this mode.

In Protected mode-, the processor can run multiple programs at the same time. It assigns
each process (running program) a total of 4GB of memory. Each program can be assigned its
own reserved memory area, and programs are prevented from accidentally accessing each
other’s code and data. MS-Windows and Linux both run in Protected mode.

In Virtual-8086 mode, the computer runs in Protected mode =and creates a virtual 8086
machine with its own IMB address space that simulates an 80x86 computer running in Real-
address mode. Windows NT, 2000, and XP, for example, create a virtual 8086 machine when
you open a Command window. You can run many Such Wind0WS at the Si-11118 time. and Bfi¢h i5
protected from the actions of the others. Some MS-DOS programs that make direct references to
computer hardware will not run in this mode under Windows NT and 2000.

In the next two sections (Section 2.3.1 and Section 2.3.2), we will explain details of both
Real-address mode and Protected mode. If you want to study this subject in more detail, a good
source is the three-volume IA-32 Intel /lrchirecrure Sofn-rare Developer ‘s Manual. You can read
or download it from Intel ’s Web site (www.inte1.com).

2.3.1 Fleal-address Mode
In Real-address mode., the IA-32 processor can access 1,048,576 bytes of memory (IMB)
using 20-bit" addresses in the range 0 to FFFFF hexadecimal. The basic problem that Intel
engineers had to solve was that the original 8086 processor had only l6-bit registers, so it was
impossible to directly represent "a 20-bit address. They came up with a scheme known as seg-
mented m.emory. All of memory is divided into 64-kilobyte units called segments, shown in
Figure 2-1 l.

An analogy might be a large building, where the segmems represent the floorsof the build-
ing. A person can ride the elevator to a particular floor, get off, and then begin following the
room numbers to locate a single room. The oflser of a room can be thought of as the distance
from the elevator to the room.

u T’ 7' T 7 7 T

2.3 IA-32 Memory Management 49'

F0000 r

E0000 — — — s0.00=F1=1=F 9 - — -A
D0000 — -
c0000 s - *
B0000 .v -
A0000 * - a I I

l I90000 y - , A
1 I “*7

I80000 ~— —
70000 I -9- A ,
00000 .-- - ,,

- ----------- --; s000;02s0
S0000 r

40000 y g , 0250

30000‘ - 4 I 8000:0000 »
20000 1 ‘ I i
10000 A 'seg o|'s
00000 -

Figure 2-11 Segmented Memory Map, Flea]-address Mode.

Looking again at Figure 2-ll, note that each segment begins at an address having a zero for
its last hexadecimal digit. Because of this, when segment values are stated, the last zero is dropped.
A segment value of C000, for example, refers to the segment that begins at address C0000.

In the same figure, we see an expansion of the segment beginning at 80000. To reach any
of the bytes in this segment, we need a l6-bit offset value (0 to FFFF) that can be added to the
segment’s base location. An example is 8000:0250, which represents an -clfset of 250 inside the
segment beginning at address 80000. The linear address is 8025011.

2.3.1.1 20-bit Linear Address Calculation
An address is a number that refers to a single location in n'1emory.. In Real-address mode, the lin-
ear(or absolute) address is 20 bits, ranging from 0 to FFFFF hexadecimal. But programs cannot
use linear addresses directly, so they express addresses. using two l6-bit numbers, which are
together called a segzaeztr-Qfiirer address:

50 Chapter 2 ~ IA-32 Processor Architecture

- A l6-bit segment value, placed in one of the segment registers (CS, DS, ES, SS).
' A l6~bit offset value.

When addresses are expressed this way, the CPU automatically does some arithmetic and con-
verts the segn1ent-offset address to a 20-bit linear address.

Example. Suppose that a variable’s hexadecimal segment-offset address is 08Fl:0l00. The
CPU multipliesthe segment value by 10 hexadecimal and adds this to the variable’-s offset:

08Fl * 10 = 08Fl0 (adjusted segment value)

Adjusted Segment value; 0 8 F 1 0
Add the offset: 0 1 0 0
Linear address: 0 9 0 1 0

A typical program has three. segments: code, data, and stack. Three segment registers, CS,
DS, and SS, contain the base locations of a program‘s code, data, and stack segments:

' CS contains the l6-bit code segment address.
~ DS contains the 1.6-bit data segment address.
- SS contains the l6-bit stack segment address.
- ES, PS, and GS can point to alternate data segments.

2.3.2 Protected Mode
Now let’s turn our "attention to Protected mode, the more powerful “native” processor mode.
When the processor is running in Protected mode, each program can address up to 4GB of mem-
ory, from 0 to FFFFFFFF hexadecimal. This use of a flat address space is also called the flat
memory model by the Microsoft Assembler. From the programmer’s point of view, the flat mem-
ory model is very simple to use because" it only requires a single 32-bit integer to hold the
address of any instruction or variable. The operating system does quite a bit of background work
to presewe the illusion of simplicity, aided by the processor’s built-in capabilities. The segment
registers (CS, DS, SS, ES, FS, GS) point to segment descriptor tables that the operating system
uses to define the locati_ons of individual program segments.

A typical Protected-mode program has three segments: code, data, and stack. Three seg-
ment registers are used all the time:

- CS references the descriptor table for the code segment.
- DS references the descriptor table" for the data segment.
' SS references the descriptor table for the stack segment.

2.3.2.1 Flat Segmentation Model
In the flat segmentation model, all segments are mapped to the entire 32-bit physical address
space of the computer. You have to create at least two segments, one for program code and one

2.3 IA-32 Memory Management 51

for data. Each segment is defined by a segment descriptor, a 64-bit value stored in a table known
as the global descriptor table (GDT). Figure 2-l2 shows a segment descriptor whose base
address field points to the first available location in memory (00000000). The segment limit field
c-an optionally indicate the amount of physical memory in the system. In the current figure, the
segment limit is 0040. The access field contains bits that determine how the segment can be
used.

;,Suppose a computer had 256 MB of RAM. The segment limit field would contain 10000 hex because
‘iits value is implicitly multiplied by I000 hex, producing 10000000 hex (256 MB). .
F1 r‘-L ll ‘-' V
3;:-Ir Q. _ __ _ __ _ ‘ -_'

2.3.2.2 Multi-Segment Model

In the multi~segment model, ‘each program is given its own table of segment "descriptors, called a
local descriptor table (LDT). Each descriptor points to a segment which can be distinct from -all
segments used by other processes. Each segment is a separate address space. Figure 2—l3 shows
that each entry in the LDT points to a different segment in memory. Each segment descriptor
-specifies the exact size of its segment. For example", the segment beginning at 3000 has size 2000
hexadecimal, which is computed as (0002 * l000 hexadecimal). The segment beginning at 8000
has size A000 hexadecimal.

(400)
. .

pzmjiSegment descriptor. in the H
Global Descriptor Table _.

0" ’ 00040000

base address. pi limit access
l 00000000 l 0040

notsliqtl

WVH

-> ‘re 00000000

Figure 2-12 Flat Segmentation Model.

52 chapter 2 ~ IA-32 Processor Architecture

RAM
iii

l

Local Descriptor Table

11» l‘ 1:." \:_;]1_-.‘ -,',-.':'t'-tiiir;:s--'.-- r -tel
" , 26000

g_ base __ limit” access‘ i P
, 00020000 0010 0 0

00003000 0002 "*“*""‘ ' s000

3000

Figure 2-13 Multi-Segment Model.

2.3.2.3 Paging
The IA-32 supports a feature called paging, which permits a segment to be divided into 4096-
byte blocks of memory called pages. Paging permits the total memory used by all programs
running at the same time to be mu_ch larger than the computer's actual (physical) memory.
Sometimes the complete collection "of pages is-called virmal mem_or_r. An operating system will
usually include a program called a virtual memory manager.

Paging is an important solution to a vexing problem for software and hardware design-
ers. A program must be loaded into main memory before it can run. but memory is expensive.
Users want to be able to load numerous programs into memory and switch between them at
will. Disk storage, on the other hand, is cheap and plentiful. Paging provides the illusion that
memory is almost unlimited in size. Of course,-disk access is much slower than main memory
HCCESS. I

When a task is running, parts of it can be stoned on disk if they are not currently in use. We
say that part of the task has been paged (swapped) to disk. Other parts of the task. which are
actively executing code, can be in memory. When the CPU needs to execute the part of the task
that is currently on disk, it issues a pagejault. causing the page or pages containing the required
code or data to be loaded back into memory. To see how this works. find a computer with some-
what limited memory (32.MB or 64MB), and run 5 or l0 large applications at the same time. You
should notice" a delay when switching from one program to another.because the OS has to trans-
fer parts of each program into memory from disk. A computer runs faster when more memory is
installed because large application files and programs can be kept entirely in memory. This
reduces the amount of paging.

2.4 Components of an IA-32 Mlcrocomputer 53

2.3.3 Section Review

1. What is therange of addressable memory in Protected mode‘?
2. What is the range of addressable memory in R"eal-address mode‘?
3. The two ways of describing an address in Real-address mode are segnent-offset" and

4. In Real-address mode, convert the following segment-offset address to a linear address:
0950:0100.

5-. In Real-address mode, convert" the following segment-offset address to a linear address:
0CDl :'02E0.

6. In the flat memory model used by the Microsoft Assembler. how many bits are used to hold
the ‘address of an instruction or variable‘?

7. In Protected mode, which register references the descriptor for the stack segment‘?
8. In Protected mode, which table contains pointers to the various segnrerrts used by a single

program‘?
9, In the flat segmentation model, which table contains pointers to at least two segmen'ts'.?

l0. What" is the main advantage to using the paging feature of IA-32 processors‘?
ll. Challenge.‘ Can you think of a reason why MS-DOS was not designed to support Protected-

mode .programming'?
12. Challenge: In Real-address mode. demonstrate two segmerrt-offset addresses that point to

the same linear address.

2.4 Components of an IA-32 Microcomputer
This chapter introduces you to the architecture of IA-32 computers from several points of view.
First, the hardware (physical parts of the computer‘) can be viewed on the tnacro level. looking at
peripherals. Then we can look at the internal details of the Intel processor, called the central pro-
cessing unit (CPU). Finally. we look at the software architecture. which is the way the memory
is organized, and how the operating system interacts with the hardware.

2.4.1 Motherboard
The heart of any microcomputer is its motherboard. This is a flat board onto which are placed
the comptrte1"s CPU, supporting processors. main memory, input-output comrectors, power sup-
ply connectors, and expansion slots. The various cornponents are corrnected to each other by a
bus, a set of wires etched directly on the motherboard. Literally dozens of motherboards are
available on the PC market. Although they vary in expansion capabilities and speed, they have a
number of elements in common:

' CPU socket: Within the IA-32 family, the socket can be different sizes, depending on the
type of processor.

' External cache memory "slot: For high-speed cache memory that is used by the CPU to
reduce its access to slower conventional RAM.

54 Chapter 2 - IA-32 Processor Architecture

" Slots to add main memory: Called SIMMs or DIMMs, the memory chips are on small
boards that plug into available memory slots.

- BIOS (basic input-ourpttt system), which is software that has been loaded into a computer
chip". Many BIOS chips can be upgraded as the need arises by copying the software from a
file supplied by the computer manufacturer. They use a type of memoiy called static RAM.

' [DE cable connectors: For internal fixed disk and CD-ROM drives.
' Sound synthesizer.
' Parallel, serial, USB, video, keyboard, joystick, and mouse ports.
' Network adapter.
' PCI bus connectors for sound cards, graphics cards, data acquisition boards, and other I/O

devices.

The following are some of the more important support processors in a typical IA-32 system:

' The-Floating-Point Unit (FPU) handles floating-point and extended integer calculations.
' The 8284l82C284 Clock Generator, known simply as the clock, oscillates at a constant

speed. The clock generator synchronizes the CPU and the rest of the computer.
' The 8259 Programmable Interrupt Controller (PIC) handles exte_rnal interrupts -from hard-

ware devices, such as the keyboard, system clock, and disk drives. These devices interrupt
the CPU and make it process their requests immediately.

' The 8254 Programmable Interval Timer/Cozmrer interrupts the system 18.2 times per sec-
ond, updates the system date and clock, and controls the speaker. It is also responsible for
constantly refreshing memory, as RAM memory chips can remember their data for only a
few milliseconds.

' The 8255 Programmable Parallel Port transfers data to and from the computer using the
IEEE Parallel Port interface. This port is commonly used for printers, but it c_an be used
with other input-output devices as well.

2.4.1.1 PCI Bus Architecture
The PCI (Peripheral Component Interconnect) bus was developed by Intel in 1992 to provide a
convenient upgrade path for increasingly fast Pentium processors. It is. still the dominant" bus in
today’s Pentium systems. The PCI specification supports both 32-bit -and 64-bit motherboards.
The PCI motherboard provides a connecting bridge between the CPU’s local 64-bit bus and the.
system’s external bus.

2.4.1.2 Motherboard Chipset
Most motherboards. contain an integrated set of microprocessors and controllers called a chlpset.
The chipset largely determines the capabilities of the computer. The names you see listed here
are by Intel, but many motherboards use compatible chipsets from other manufacturers:

- The Intel 8237 Direct Memory Access (DMA) controller transfers data between external
devices and RAM, without requiring any work by the CPU.

2.4 Components of an IA-32 Microcomputer 55

' The Intel 8259 Interrupt Controller handles requests from the hardware to interrupt the
CPU.

- The 8254 Timer Counter handles the system clock that ticks 1-8.2 times per second, the
memory refresh timer, and the time of day clock.

- Microprocessor local bus to PCI bridge.
- System memory controller and cachecontroller,
' PCI bus to ISA bus bridge.
' Intel 8042 keyboard and mouse microcontroller.

2.4.2 Video Output
The video adapter controls the display of text and graphics on IBM-compatibles. It has two com»
ponents: the video controller and video display memory. All graphics and text displayed on the
monitor are written into video display RAM, where it is then sent to the monitor by the video
controller. The video controller is itself a _special—purpose microprocessor, relieving the primary
CPU of the job ofcontrolling video hardware.

CRT video monitors use a techniqu.e called raster scanning to display images. A beam of
electrons illuminates phosphorus dots on the screen called pixels. Starting -at the top of the
screen, the gun fires electrons from the left side to the right in a horizontal row, briefly turns off,
and returns to the left side of the screen to begin a new row. Horizontal retrace refers to the time
period when the" gun is off between rows. When the last row is drawn, the gun turns off (called
the vertical retrace) and moves to" the upper left corner of the screen to start all over.

A direct digital LCD monitor receives a digital bit stream directly from the video control-
ler and does not require raster scanning.

2.4.3 Memory
Several basic types of memory are used in PCs: ROM, EPROM, Dynamic RAM (DRAM),
Static RAM (SRAM), Video RAM (VRAM), and CMOS RAM:

- ROM (read-only memory) is memory that is permanently burned into a chip and cannot
be erased.

- EPROM (erasable programmable read—only memory) can be erased slowly with ultravio-
let light, and reprogrammed.

'- Dynamic RAM is where programs and data are kept when a program is running. It mus_t
be refreshed within less than a millisecond or it loses its contents. Because it is inexpen-
sive, it is used for a computer's main memory. Some systems use ECC memory (error
checking and correcting), which is memory that is able to detect multiple-bit errors and
correct single-bit errors.

- Static RAM is the type of RAM chip used primarily for expensive, high-speed cache
memory that greatly improves system performance. It keeps its value without having to be
constantly refreshed.

56 Chapter 2 - IA-32 Processor Architecture

' Video RAM is used exclusively for storing data that appears on a video display. It is usu-
ally located on a video controller board, and is optimized for storing color pixels. VRAM
is dual-ported, allowing one port to continuously refresh the, display whilethe other port
writes data to the display.

' CMOS RAM is used on the system motherboard to store system setup information. It is
rel"reshed by a battery, so its contents are retained even when the computer’s power is
turned off.

2.4.4 Input-Output Ports
USB Port The Universal Serial Bus (USB) port provides an intelligent, high-speed connec-
tion between a computer and US B-supported devices. USB ports support data transfer speeds
(at present) of up to l2 megabytes per second. You can connect either single-function units
(mice, printers) or compound devices that have more than one peripheral sharing the same USB
port. A US.B hub, shown in Figure 2-l4, is a compound device that can be connected toseveral
other devices. including hubs. Each USB cable has two types of connectors (A = upstream),
and (B = downstream).

When a device is attached to the computer via USB, the computer queries the device to get
its name, device type, and the type of device driver it s.upports.T11i's process is called enumera-
rion. The computer can suspend power to individual devices and put devices in a suspended
state'.1

‘ Computer I

A

B

“AA “
-A

A

BB

A B
Figure 2-14 USB Hub Configuration.

I For more intbrniationj. read An Inm't2dur.*tf0n :0 USB De-vt=1o;::::eur. by Jack G. Ganssle. Embedded Systems Program-
ming (ww\v.embedded.c0m).

2.5 Input-Output System 57

Pmfallel Port Most printers connect to a computer via a parallel port. By “parallel” we mean
that 8 or l6 data bits can travel simultaneously from the computer to the printer. Data can be
transferred very quickly over short distances, usually no more than I0 feet. MS-DOS automati-
cally recognizes three parallel ports: LPTI, LPT2, and LPT3. Parallel ports can be bid:'recri0nal,
allowing the computer to both send data to and receive information from a device. The 8255
controller chip is used to program the parallel port.

Serial Port An RS-232 serial port sends binary bits one at a time, resulting in slower speeds
than the parallel and USB ports, but with the ability to send over larger distances. It can be used
to connect a mouse. a modem, or any other serial device to the computer system. The chip that
controls the serial ports is the 16550 UART (Universal Asynclworzous Receiver Transmitter),
which is located either on the motherboard or on an adapter card.

2.4 .5 Section Review

L.»-)l\JI—'

. Describe external 'c‘achemem01jy.

. Which Intel processor was behind the creation of the PCI bus‘?

. In the motherboard chipset, what task does the Intel 8259 perform’?
4. Where is the memory used by the video display located’?
5. Describe raster scanning on a CRT video monitor.
6. Name four types of RAM mentioned in this chapter.
7. Which type of RAM is used for Level-2 cache memory‘?
8. What advantages does a USB device offer over a standard serial or parallel device‘?
9. What are the names of the two types of USB connectors’?

10. Which processor chip controls the serial port‘?

2.5 Input-Output System

Perhaps you have dreamed of writing computer games. Games are very memory and IIO .
intensive, and often push their host computers to their absolute limit. Programmers who excel
at this know a great deal about video and sound hardware, because they write their code in l
such a way that it takes advantage of particular hardware design ieatures. You can write hard- A

l ware-specific code in C-1+, but usually only after you have learned how to do it-in assembly
i language: it

2.5.1 How It All Works
An application program routinely reads input from the keyboard and from files, and it writes
output to the screen and to files. This is accomplished not by directly accessing the computer’s
hardware, but by calling functions in the computer’s operating system. Input-output is accom-
plished via different access levels, similar to the virtual machine concept shown in Chapter l.

58 Chapter 2 - IA-32 Processor Architecture

- A high-level programming language such as C-t—|- or Java contains functions that perform
input-output. These functions are designed to work on a variety of different computer systems.

' The OS (operating system) is at the next level. It deals. with high-level operations, such as
writing entire strings and records to files. reading strings from the keyboard, and allocat-
ing blocks of memory for application programs.

' The BIOS (Basic Input-Output System) is a collection of functions that communicate
directly with hardware devices. The BIOS is installed by the computer’s manufacturer, and
must be tailored to fit the 'computer’s exact configuration down to the selection of specific
chips on thc motherboard. Any operating system installed in the computer must be able to
work with the computer's BIOS.

Device Drivers What happens if a new device is installed in a computer that is unknown to the
BIOS? When the operating system boots, it loads a device driver (program) that contains func-
tions designed to Communicate with the device". The device driver works much like the BIOS.
providing input-output functions for the device. An example of such a driver is CDRONLSYS,
which enables MS-DOS to read CD-ROM drives. It is loaded using a command such as:

DEVICE=CDROM.SYS

Figure 2-15 shows what happens when an application program displays a string of charac-
ters on the screen in a particular color. The following steps are involved:

l. A statement in the application program calls a library function that writes the string to stan-
dard output.

2. The library function (Level 3) calls an operating system function, passing-a string pointer.

I Application Program I Level 3

I OS Function I Level 2

I Hardware I I-68¢] 0

Figure 2-15 Access Levels for lnput-Output Operations.

2.5 Input-Output System 59

3. The operating system function (Level 2) repeatedly calls a function in the BIOS. passing it
the ASCII code and color of each character.'The OS call-s another BIOS function to advance
the cursor to the next position on the screen.

4. The BIOS function (Level l) receives each character. m_aps it to a particular system font.
and sends the character to a hardware port attached to the video controller card.

5. The video controller card (Level 0) generates timed hardware signals to the video display
that control the raster scanning and displaying of pixels.

Progranmmzg at Multiple Levels Assembly language programmers have a great deal of power
and flexibility when it comes to input-output programming. As "shown in Figure 2-l6, an assembly
language program can choose from the following access levels:

' Level 3: Call library functions to perform generic text [IO and file-based IIO. We supply
-such a library with this book, for instance.

' Level 2: Call operating system functions to perform generic text IIO and file-based HO. If
the OS uses a graphical user interface. it has functions to display grapltics in a device-
independent way.

- Level l: Call BIOS functions to control device-specific features such as color, graphics.
sound. keyboard input. and low-level disk IIO.

' Level 0: Send and receive data from hardware points. having absolute control over specific
devices.

What are the tradeoffs‘? Control versus portability isthe primary one. Level 2 (OS) works on any
computer that runs the same OS. If -the particular l;'O device lacks certain capabilities. the OS
will do its best to compromise. Level 2 is not particularly fast because each [IO call must go
through several layers before it executes.

Level l (BIOS) works on all systems that have a -standard BlOS. but will not necessarily
produce the same results on all systems. For example. two computers might have video displays
with different resolution capabilities. The programmer at Level l would have to write code to
detect the user's hardware setup -and adjust the output format to match. Level l runs faster than
Level 2, because it is only one level above the hardware.

l.il'n't||'}' Level El

il i

OS Funct lun 1_,¢v¢[1

ASM Program

B108 Function Level I

0

l-i:lrtl\\ are L,-:\.c| U

Figure 2-16 Assembly Language Access Levels.

60 Chapter 2 - IA-32 Processor Architecture

Level 0 (hardware) works either with generic devices such as serial ports, or with specific
IXO devices produ_ced by known manufacturers. Programs using this level must extend their cod-
ing logic to handle variations in I/O" devices. Real-mode game programs are prime examples,
because they usually take over all operation of the computer. Programs at this level execute as"
quickly as the. hardware will permit.

Suppose, for example. that you wanted to play a WAV file using an audio controller
device. At the OS level, you would not have to know what type of device was installed, and
probably would not be concerned overly much -about the card‘s features. At the BIOS level, you
would query the sound card (using its installed device driver software) and find out whether it
belonged to a certain class of sound cards having known features. And finally, at the hardware
level, you would fine-tune the program for certain brands of audio cards, to take advantage of
"each card’s.spe'cial "features.

Finally, we must point out that not all operating systems permit user p1'0gram_S to directly
access system hardware. Such access is reserved for the operating system itself and specialized
device driver programs-. This is the case with Windows NT, 2000, and XP, where vital system
resources are shielded from application programs. MS-DOS", on; the other hand, has no such
restrictions.

2.5.2 Section Review

1. Of the three levels "of input/output in a computer system, which is the most universal and
portable?

2. What distinguishes the BIOS level of inputloutput?
3. Why are device drivers necessary, given that the BIOS "already has code that communicates

with the computer’s hardware?
4. In the exampleregarding "displaying a string of Cl13.!‘_&C[B1'S, which level exists between the

operating system and the video controller card?
5. At which level(s) can an assembly language program manipulate ll'lpl1U'0_U[pU['?
.6. Why do game programs often send their sound output directly to the sound card’s hardware

ports?
7. Challenge: Is it likely _tl1a't the BIOS for a computer running MS-Windows would be differ-

ent from that used by a computer running Linux‘?

2.6 Chapter Summary
The central processor unit is where" all the calculations _and logic take place. It "contains a limited
number of storage locations called registers, a high-frequency clock to synchronize its opera-
tions, a control unit, and the arithmetic logic unit. The memory storage unit is where instructions
and data are held while a computer program is running. A bus is a series of parallel wires that
transmit" data between various parts of the computer.

2.6 Chapter Summary 61

The execution of a single machine instruction can be divided into a sequence of individual
operations, called the instruction e.reczttz'0n cycle. The three primary operations are fetch,
d@¢0dB, and t‘?.XB¢l1lB- Each Step in the instruction cycle takes at least one tick "of the system clock.
-called a ciock cycle.

The load -and execute sequence describes how a program is located by the operating sys-
tern, loaded into memory, and executed by the operating system.

Pipelined e.r.e'cuti0n greatly improves the throughput of multiple instructions in a CPU by
permitting the overlapped execution of multi-stage instructions. A supersccrlar processor is a
pipelined processor with multiple execution pipelines. This is particularly useful when one of
the execution stages requires more than a single clock cycle.

A multimskirzg operating system is able to run multiple tasks at the same time. It must run
on a processor that supports task switching, which means that the processor saves the state ol’
each task before switching to a new one.

IA-32 processors have three basic modes of operation: Protected mode, Real-address
mode, and System Management mode. In addition, the Virtual-8086 mode is a special case of
Protected mode.

Registers are named locations within the CPU that can be accessed very quickly. The fol-
lowing are brief descriptions of register types:

' The general-purpose registers are primarily used for arithmetic, data movement, and logi-
cal operations.

' The segment registers are used as base locations for preassigned memory areas called
segments.

~ The EIP (instruction pointer) register contains the address of the next instruction to be
executed.

' The EFLAGS register consists of individual binary bits that either control the operation of
the CPU or reflect the outcome of ALU operations.

The IA-32 has a floating-point unit (FPU) that is expressly for the execution of high-speed
floating-point aritl-rmetic.

The Intel 8086 processor rrrarks the beginrrirrg of the modem Intel A.rc':hite¢tu.r*e family.
The Intel386 processor, the first of the. IA-32 family, featured 32-bit registers and "a 32-bit
-address bus and external data path. The P6 processor family (Pentium Pro onward) is based on a
new micro-architecture desigr that improves execution speed.

The earliest Intel processors for the IBM Personal Computer were based on the complex
in-strm:'t1'0rI Se! (CISC) approach. The Intel instruction set includes powerful ways to address
data, and instructions that are relatively high-level complex operations. A completely different
approach to rnicr0Pl'0¢Bssor design is the reduced instrttcfirm set (RISC). A RISC machine lan-
guage consists of a relatively small number of short. simple instructions that can be executed
quickly by the processor.

62 Chapter 2 - IA-32 Processor Architecture

In the IA-32’s Real-address mode, only 1MB of memory can be addressed, from hexadec-
imal 00000 to"FFFFP. In Protected mode, the processor can run multiple programs at the same
time. It assigns each process (running program) a total of 4GB of memory. In Virtual-8086
mode, the computer runs in Protected mode and creates a virtual 8086 machine with its own
[MB address space that simulates an 80x86 computer running in Real-address mode.

In the flat segmentation model, all segments are mapped to the entire physical address
space of the computer. In the multi-segment model, eaclrtask is given its own table of segment
descriptors, called a local descriptor table (LDT). The IA-32. supports a feature called paging,
which permits a segment to be divided into 4096-byte blocks of memory called pages. Paging
permits the total memory used by all programs running at the same time to be much larger than
the computer’s actual (physical) memory.

The heart of any microcomputer is its motherboard, holding the computer‘s CPU, support-
ing processors, main memory, input-output connectors, power supply connectors, and expansion
slots. The PCI (Peripheral ComponentInterconnect) bus provides a convenient upgrade path for
Pentium processors. Most motherboards contain an integrated set of several microprocessors
and controllers, called a chipset. The chipset largely determines the capabilities of the computer.

The video adapter corrt1'ols the display of text and graphics on IBM-compatibles. It has
two components: the video controller and video display memory.

Several basic types of memory are used in PCs: ROM, EPROM, Dynamic RAM (DRAM),
Static RAM (SRAM), Video RAM (VRAM), and CMOS RAM.

The Universal Serial Bus (USB) port" provides an intelligent, high-speed connection
between a computer and USB-supported devices. A parallel port transmits 8 or l6 data bits
simultaneously from one device to -another. An RS-232 serial port sends binary bits one at a
time, resulting in slower speeds than the parallel and USB ports.

Input/output is accomplished via different access levels, similar to the virtual machine
concept. The operating system is at the highest level. The BIOS (Basic Input-Output System) is
a collection of functions that communicate directly with hardware devices. Programs can also
directly access input/output devices.

Assembly Language Fundamentals

3.1 Basic Elements of Assembly Language
3.1.1 Integer Constants
3.1.2 Integer Expressions
3.1.3 Real Number Constants
3.1.4 Character Constants
3.1.5 String Constants
3.1.6 Reserved Words
3.1.7 Identifiers
3. 1.8 Directives
3. 1.9 Instructions
3.1.10 Section Review

3.2 Example: Adding Three Integers
3.2.1 Program Listing
3.2.2 Program Output
3.2.3 Program Description
3.2.4 Pt'Ogran'1 Template
3.2.5 Section Review

3.3 Assembling, Linking, and Running Programs
3.3.1 The Assemble-Link—Execute Cycle
3.3.2 Section Review

3.4 Defining Data
3.4.1 Intrinsic Data Types
3.4.2 Data Definition Statement
3.4.3 Defining BYTE and SBYTE Data
3.4.4 Defining wosn and sworn) Data
3.4.5 Defining DWORD and SDWORD Data
3.4.6 Defining QWORD Data
3.4.7 Defining TBYTE Data
3.4.8 Defining Real Number Data
3.4.9 Little Endian Order
3.4.10 Adding Variables to the AddSub Program
3.4.11 Declaring Uninitialized Data.
3.4.12 Section Review

3.5 Symbolic Constants
3.5.1 Equal-Sign Directive
3.5.2 Calculating the Sizes of Arrays and Strings
3.5.3 EQU Directive

63

64 Chapter .3 ~ Assembly Language Fundamentals

3.5.4. TEXTEQU Directive
3.5.5 Section Review

3.6 Real-Address Mode Programming (Optional)
3,6.l ‘Basic Changes

3.7 Chapter Summary
3.8 Programming Exercises

3.1 Basic Elements of Assembly Language
Chapter 2 gave you some essential basics of computer h-andware "as well as specific knowledge .01’
the IA-32 architecture. Now it’s time to get‘ practical and apply that knowledge. If you were a
cook, I would now be showing you around the kitchen, explaining how to use mixers, ,grinders,
knives, stoves, and saucepans. We’re going to take the ingredients of assembly language, mix
them together, and come up with working programs.

Assembly language programmers absolutely must first know their data backwards and for-
wards before writing executable code. Part of that goal was accomplished in Chapter I, wlrere
you learned about various number systems and the binary storage of integers and characters. In
this chapter, you will learn how to definearrd declare variables and constants, using Microsoft
Assembler (MASM) syntax. Then you will get to see a complete program, which we dissect line
by line. You can expand and modify the programs in this c_hapter- as much as you wish, using the
new knowledge you’ve gained.

3.1.1 Integer Constants
An integer cot-tstcmt (or integer literal) is made up of an optional leading sign, one or more.digits_.
and an optional suffix character (called 'a radix) indicating the nu mber’s base:

[{+|—}] digits [radix]

Microsoft syntax notation is used throughout this chapter. Elements within square brackets [..]
are optional, and elements within braces {..} requirera choice of one of the enclosed elements-
(separated by the I character). Elements in italics denote items which have known det"rn'i1ions' or
descriptions.

The rctdrlr may be one of the following (uppercase or lowercase):

h hexadecimal r encoded real

qlo octal t decimal (cltertrcte)

_d decimal y binary ((llt:’:’l’tt(lltL’)

b binary

3.1 Basic Elements of Assembly Language 65

If no radix is given, the integer constant is assumed to be decimal. I-Iere are some examples using
different radixes:

26 decimal 42.0 Octal

26d decimal l Ah hexadecimal

1 101001 lb binary 0A311 hexadecimal

=l2q ocral

A hex-adecimal constant beginning with a letter must have a leading zero to prevent the assem-
bler trom interpreting it as an identifier.

3.1.2 Integer Expressions
An integer e.rpressr'0n is a mathematical expression involving integer values and arithmetic
operators. The expression must evaluate to an integer -which can be store.d in 32 bits (0 -
FFFFFFFFI1). The arithmetic operators are listed in Table 3-l according to their precedence
order. from highest (1) to lowest (4).

Table 3-1 Arithmetic Operators.

Operator Name Precedence Level ,. ,1 1 ,
_ ' ' ****;*** ‘ *' ****' *' 7*“ 7'1-4*. *' '

() parentheses l

+, - unary plus. minus 2

* , / multiply. divide 3

MOD modulus 3

+, — 1 add. subtract 0 4 i

Precedezzce refers to the itnplied orclcr of operations when an expression contains two or
more Operators. The order of operations is shown for the following expressions:

4 + 5 * 2 multiply, add
12 — 1 MOD 5 modulus, subtract
-5 + 2' unary minus, add

(4 + 2) *' 6 add, multiply

The following are examples of valid expressions and their values:

66 Chapter 3 ' Assembly Language Fundamentals

_ Expression * Value

,16/5 3

,-(3. + 4) * ('6 — ll -35

‘-3+4*-5-1 20

-25 mod 3 1

you don’t' have to remember the precedence rules.
It’s a good idea to use p31‘Cl'lfl‘lBS_€S. in expressions to clarify the -order of operations. Then I

3.1.3 Real Number Constants
There are two types of real number constants: decimal reals and enooded.(hexadecimal) reals. A
decimal real constant contains a sign followed by an integer, a decimal point, an integer that
expresses a fraction, and an exponent:

[sign] integer. [integer] [exponent]

This is how we describe the sign and exponent:

{+; "}

exponent E [{+, —}] integer

The Sign is optional, and the choices are +.or —. Following are examples of valid real constants:

2.
+3.0
—44.2E+O5
26.E5

At; the very least, there must be -a "digit and a decimal point. Without the decimal point, it would
just be an integer constant.

Encoded Reals You can specify a real constant in hexadecimal as an encoded real if you know
the exact binary representation of the number. The following, for example, is the encoded 4-byte
real representation of decimal +1.0:

3F8000OOr

(We will delay the discussion of IEEE real number formats until Chapter 17, stored on the
book‘s CD—ROM.)

3.1 Basic Elements of Assembly Language 67

3.1.4 Character Constants
A character constant is a single character enclosed in either single or double quotes. The assem-
bler converrs it to the binary ASCII code matching the character. Examples are:

IA!

fldll

A complete list "of ASCII codes is printed on the inside back cover of this book.

3.1.5 String Constants
A string constant is a string of characters enclosed in either single or double quotes:

.ABC.
Ix!

"Goodnight, Gracie“
'4096’

Embedded quotes are permitted when used in the manner shown by the following examples:

“This isn't a test“
‘Say "Goodnight," Gracie’

3.1.6 Reserved Words
Assembly language has a list of words called reset-red words. These have special meaning -and
can only be used in their correct context. Reserved words can be any of the following:

' Instruction mnemonics, such as MOV, ADD, or MUL, which correspond to built-in opera-
tions performed by Intel processors.

- Directives, which tell MASM how to assemble programs.
~ Attributes, which provide size and usage information for variables and operands. Exam-

ples are BYTE and WORD.
' Operators, used in constant expressions.
' Predefined symbols. such as '@data, which return constant integer values at assembly time.

A complete list of MASM reserved words will be found in Appendix D.

3.1.7 ldentlfiers
An identifier is a programmer-chosen name. It might identify a variable. a constant. a procedure,
or a. code label. Keep the following in mind when creating identifiers:

- They may contain between l and 247 characters.
' They are not case-sensitive
- The first character must be either a letter (A..Z. a..z). underscore (__}, @. ‘I’. or S. Subse-

quent characters may also be digits.

68 Chapter 3 ~ Assembly Language Fundamentals

- An identifier cannot be the same as an assembler reserved word.

You can make all keywords and identifiers case-sensitive_by adding the —C_p command line
switch when rumring the assembler.

Avoid using a single .@ sign as the first character, because it is used extensively bythe
assembler for predefined symbols. Here are some valid identifiers:

varl Count $first

_rna in MAX" open_file

@@myfile xval _l2345

Common sense suggests that you should make identifier names descriptive and easy to understand.

3.1.8 Directives
A directive is a command that is recognized and acted upon by the assernbler as the program’s_
source code. is being assembled. Directives are used for defining logical segments, choosing a
memory model, defining variable-s, creating procedures, and so on.

Directives .are part of the assembler’s syntax, but are not related to. tho Intel instruction "set.
Various assemblers may generate identical machine code for the Intel processor, but their sets of
directives need no.t be the same.

Different capitalizations of the same directive are assumed to be equivalent. For example,
the assembler does not recognize any difference. between ._data, .DATA, and .Data.

Examples The .DATA directive identities" the area of a program that contains variables:

.data

The .CODE directive identifies the area of a-program that contains instructions:

.code

The PROC directive identifies the beginning of a procedure. Name may be any identifier:

IIEIHIG PROC

It would take a very long time to learn all the.-directives in MASM, so we will necessarily
concentrate on the the few that are most essential. Appendix D contains a complete ‘reference to
all MASM directives and operators.

3.1 .9 Instructions
An instruction is a statement that is executed by the" processor at runtime after the program has
been loaded into memory and "started. An instruction contains four basic parts:

3.1 Basic Elements of Assembly Language 59

' Label (optional)
- Instruction mnemonic (required)
- Operand(s) (usually required)
' Comment (optional)

Source code lines may consist only of labels or comments. The following diagram shows the
standard format for instructions:

I Label: I I Mnemonic I I Operand(s) I I ;Cormnent I

Let's explore "each part separately, starting with the label field, which is optional.

3.1.9.1 Label
A label is an identifier that acts as a place marker for either instructions or data. In the process of
scanning a source program, the assembler assigns a numeric addressto each program statement.
A label placed just before an instruction implies the instruction’s address. Similarly, a label
placed just before a variable implies the var"iable’s address.

Why use labels at all‘? We could directly reference numeric addresses in our program code.
For example, the following instruction moves a 16-bit word from memory location 0020 to the
AX register:'

mov ax, [0020]

But when new variables are inserted in programs, the" addresses of all subsequent variables auto-
matically change. A reference such as [0020] would have to be. modified manually. Clearly, this
would create a headache for programmers, and is not worth the effort. Instead, if location 0020h
is assigned a label, the assembler automatically matches the label to the address. Now the same
MOV instruction can be written as:

mov ax,myVariable

Of course, we’re getting a bit ahead of ourselves. Variable definitions will be explained in
Section 3.4.2, and the MOV instruction will be explained in Section 3 .2 .3.

Code Labels A label in the code area of a program (where instructions are located) must end
with a colon (:) character. In this context, labels are often used as targets of jumping and looping
instructions. For example, the following JMP (jump) instruction transfers control to the location
marked by the label named target, creating a loop:

target:
mov ax, bx

jmp target

I Don’t try to assemble this instruction. It is only here for illustrative purposes.

70 Chapter 3 - Assembly Language Fundamentals

A code label can share the same line with an instruction, or it can be-on a line by itself:

target: mov ax,bx
target:

Dara Labels If a label is used in the data area of a program (where variables are defined), it"
cannot end with a colon. Here is an example that defines a variable named first:

first BYTE 10

Label names are created using the rules for identifiers already shown -in Section 3.1.7. Data
label names must be unique within the" same source file. If, for example, you have. a label named
first, then you cannot have another label named first anywhere in the same source code file.

3.1.9.2 Instruction Mnemonic
An instruction mnemonic is a short word that identifies the operation carried "out by an

instruction. In the English dictionary, a mnemonic is generally described as a device that assists
merrtory. That is why instruction mnemonics have useful names such as mov,"add, "sub, mul, jmp,
and call:

mov move (assign) one value to another

add add two values

sub subtract one value from another

mul mul_tiply two values

jmp jump to -a new location

call call a procedure

3.1.9.3 Operands
An assembly language instruction can have between zero and three operands, each of which can
be a register, memory operand, constant expression, or I/O port. We discussed register names in
Chapter 2, and we discussed constant expressions in Section 3.1.2. (We will leave the discussion
of I10 ports for a later chapter.) A memory operand is specified either by the name of a variable
or by aregiste-r that contains the address of a variable. A variable name implies the address of the
variable, and instructs the computer to reference the contents of memory at the given address,-as
shown in the followingtablez

_ 7 "1Ir'..i .4-In-liq15- .--=5?-pg?-I.f J-. .11 =_--§ ~-,._:;\ -_ 1.1; -.-if 11,-'-if a.r.-.,_- .1-=.!:| 3; -_.' st1,3? '.-;_=eit _'_-3:-ié
.-,f;'('II".“.2

='-Fa
.-'_-‘=‘’*':

96 constant (immediate value)

2 + 4 constant expression

ea:-c register

count memory \

3.1 Basic Elements of Assembly Language 71

Following are some examples of assembly language instructions with various numbers of
operands. The STC instruction, for example, has no operands:

stc ; set Carry flag

The INC instruction has_one operand:

inc ax ; add 1 to AX

The MOV instruction has two operands:

mov count,bx : move BX to count

3.1.9.4 Comments.
Comments, as you probably know, are an important way for the writer of a program to communi-
cate information about how the program works to a person reading the sotu'ce code. The follow-
ing information is typically included at the top of a program listing:

' A short description ‘of the program's overall purpose.
' The name of the programmer(s) who has written and/or revised the program.
' The-date the program was written, along with revision dates.

Comments can be specified in two ways:

' Single-»line continents, beginning with a semicolon character (;). All characters following
the semicolon on the same line are ignored by the assembler and may be used to comment
the program-

- Block comments, beginning with the COMMENT directive and a user-specified symbol.
All subsequent lines of text are ignored by the assembler until the same user-specified
symbol appears. For example:
COMMENT l

This line is a comment.
This line is also_a comment.

I

We can also use any other symbol:

COMMENT &
This line is a comment.
This line is.also a comment.

E:

3.1.10 Section Review

1. List the valid suffix characters that may be used in integer constants.
2. (YesflV0): Is A5h a valid hexadecimal constant‘?
3. (YesflVo): Does the multiply sign (*) have a higher precedence than the divide sign (I) in

integer expressions‘?

72 Chapter 3 ' Assembly Language Fundamentals
t _

\1g\ul;:=-

Write a constant" expression that divides l0 .by 3 -and returns the integer remainder.
Show an example of a valid real number constant with an exponent.
(Yes/N0): Must string constants be enclosed in single quotes?
Reserved words can be instruction mnemonics, attributes, operators, predefined symbols,
and" .

-8-. What is the maximum length of an identifier‘?
9. (Yi'ne./False): An identifier cannot begin with a numeric digit.

10. (True/False): Assembly language identifiers are (by default) case-insensitive.
ll. (True/False): Assembler directivesexecute at run time.
l2. (TI'uefFalse): Assembler directives can be written in any combination .of uppercase and low-

ercase letters.
13. Name the four basic parts of -an assembly language instruction.
14. (Time/False).* MOV is an example of an instruction mnemonic.
15. (True./False)_.' A code label is followed by a colon (:), but a data label does not have a colon.
16. Show an example of a block comment.
17. Why would it not be a good idea to use numeric addresses when writing instructions that

access variables?

3.2 Example: Adding Three Integers

3.2.1 Program Listing
Now it’s time to look at that first working program we promised you in the chapter introduction.
'It’s really trivia'l—it just adds and subtracts three integers, using CPU registers. At the end, the
registers are displayed on the screen:

TITLE Add and Subtract (AddSub.asm)

; This program.adds and subtracts 32-bit integers.

INCLUDE Irvine32.inc
.code
main PROC

mov eax,l0000h 7 EAX = 10000h
add eax,40000h 7 EAX = 5Q000h
sub eax,20000h ; EAX = 30000h
call DumpRegs ; display registers

exit
main ENDP
END.main

3.2.2 Program Output
The following is a snapshot of the the prog'ram’s output, generated by the call to the DumpRegs
procedure:

3.2 Example: Adding Three Integers 73

EAX=00030000 EBX=7FFDF000 ECX=00000l0l EDX=FFFFFFFF
ESI=00000000 EDI=00000000 EBP=00l2FFFO ESP=00l2FFC4
EIP=0040l024 EFL=00000206 CF=0 SF=0 ZF=0 QF=0

The first two rows show the hexadecimal -values of the 32-bit general-purpose registers. Notice
that EA-X equals O0030000h, the value produced by the ADD and SUB instructions in the pro-
gram. The third row shows the values of the EIP (extended instruction pointer) and EFL
(extended flags) regis_ters., as well as the values of the Carry, Sign, Zero, and Overflow flags.

3.2.3 Program Description
Let’s go through the program line by line. In each case, the program code appears before its
explanation:

TITLE Add and Subtract (AddSub.asm)

The TITLE directive marks the entire line as a comment. You can put anything you want on this
line.

; This program adds and subtracts 32-bit integers.

All. text to" the right of a semicolon is ignored by the assembler, so we use it for comments.

INCLUDE Irvine32.inc

The INCLUDE directive copies necessary definitions and setup information from a text file
named Izvine32'.inc, located in the" assembler‘s INCLUDE directory. (The file is described in
Chapter -5.)

.code

The .code directive marks the beginning of the code segment. where all executable statements in
a program are located.

main PROC

The PROC directive identifies the beginning of a procedure. The name chosen For the only pro-
cedure in our program is main.

mov eax,l0000h ; EAX = l0000h

The MOV instruction moves (copies) the integer 10000h to the EAX register. The first operand
(BAX) is called the destination operand, and the second operandis called the source operanrl,

add eax,40000h ; EAX = 50000h

The ADD instruction adds 40000h to the BAX register.

sub eax,20000h ; EAX = 30000h

74 Chapter 3 ' Assembly Language Fundamentals

The SUB instruction subtracts 20000h from the BAX register.

call DumpRegs ; display registers

The CALL statement calls a procedure that displays the. current values of the CPU registers. This
can be a useful way to verify that "a program is working correctly.

exit
main ENDP

The exit-statement (indirectly) calls a predefined MS-Windows function that halts the pro-
gram. The ENDP directive marks the end ofthe main procedure. Note that exit is not a MASM
keyword; instead, it’s a command defined in Irvine32.inc that provides a simple‘ way to end a
program.

END main

The END directive marks the last line of the program to be assembled. It identifies the name of
the program‘s srarrup_ procedure (the procedure that starts the program execution).

Segments Programs are organized around segments, which are usually named code, -data, and
stack. The code segment contains all of a program’s executable instruction_s. Ordinarily, the code
segment contains one or more procedures, with one designated as the smrmp procedure. In the
AddSub program, the startup procedure is main. Another segment, the stack segment, holds
procedure parameters and local variables. The data segment holds variables.

Coding Styles You may be wondering at this point whether you should capitalize any particu-
lar keywords in assembly language programs. Because assembly language is case-insensitive,
you are free to decide how to capitalize your programs, unless your instructor has specific
requirements. Here are some varied approaches to capitalization that you can try:

' Capitalize nothing, except perhaps the initial letters of identifiers. C++ programmers often
feel comfortable with this approach, since all their keywords are in lowercase. This
approach makes the typing of source code lines fairly rapid.

' Capitalize everything: This approach was used in pre-1970 mainframe assembler pro-
grams, when computer terminals often did not support lowercase letters. It has the advan-
tage -of- overcoming the effects of poor-quality printers and less-than-perfect eyesight.

' Use capital letters for all assembler reserved words, including instruction mnemonics and
register names. This makes it easy to distinguish between user-defined names and assem-
bler reserved words.

- Capitalize assembly language directives and operators. Leave everything else in lower-
case. This is the approach used in the example programs throughout this. book, except that
.code and .data are lowercase.

3.2.3.1 Alternative Version of AddSub
You may have looked at the AddSub_ program and wondered exactly what was inside the
I:-vine32.iizc file. To make your coding more convenient, we hide quite a few details that will be

3.2 Example: Adding Three integers 75

covered later in the book. Understandably, you (or your instructor) may prefer to create pro-
grams that do not depend on include files. The following version of AddSub hides nothing:

TITLE Add and Subtract (AddSubAlt.asm)

; This program adds and subtracts 32-bit integers.

.386

.MODEL f1at,stdca11

.STACK 4096
ExitProcess PROTO, dwExitCode:DWORD
Dumpkegs PROTO

,code
main PROC

mov eax,l0000h ; EAX = l0000h
add eax,40000h ; EAX = 50000h
sub eax,20000h ; EAX = 30000h
call DumpRegs

INVOKE ExitProcess,O
main ENDP
END main

Several lines in the program are different from the original version. As before, we show
each line of code followed by its explanation:

. 3 8 6

The .386 directive identifies the minimum CPU required for this program (Intel386).

.MODEL £lat,stdcall

The .MODEL directive instructs the assembler to generate code for a Protected mode program,
and STDCALL enables the calling of MS-Windows functions.

ExitProeess PROTO, dwExitCode:DWORD
DumpRegs PROTO

Two PROTO directives declare procedures used by this program: ExitProcess is an MS-Win-
dows function that halts the current program (called a process), and DumpRegs is a procedure
fromthe Irvine3"2 link library that displays registers.

INVOKE ExitProoess,0

The program ends by calling the ExitProcess function, passing it a return code of zero.
INVOKE is an assembler directive that calls a procedure or function.

76 Chapter 3 ~ Assembly Language Fundamentals

3.2.4 Program Template‘
Assembly language programs have a simple structure, with some small variations. When you
begin to write and assemble your own programs, it helps to start with an empty shell program
that has all the basic elements in place. You can avoid redundant typing by filling in the missing
parts and saving the file under a new name. The following Protected-mode program (Tem-
pIate.a.s"m) can easily be customized. Note that comments have been inserted, marking the points
where your own code should be added:

TITLE Program Template (Template.asm)

; Program Description:
; Author:
; Creation Date:
; Revisions:
; Date; Modified by:

INCLUDE Irvine32.inc
.data

; (insert variables here)

.code
main PROC

; (insert executable instructions here)

exit
main ENDP

; (insert additional procedures here)
END main

Use Comments Several comment fields have been inserted at the beginning of the program.
It’s a very good idea to include a program description, the name of the program’s author, cre-
ation date, and information about subsequent modifications.

Documentation of this kind is useful to anyone who reads the program listing (including
you, months or years from now). Many programmers have discovered, years after writing a pro-
gram, that they must become reaoquainted with their own code before they can modify it. If
you’re taking a programming course, your instructor may insist on additional information.

3.2.5 Section Review
1. In the AdclSub program (Section 3.2), what is the meaning of the INCLUDE directive?-
2. In the AddSub "program, what does the .CODE dircctiveidentify?
3. What are the names of the segments in the AddSub program?
4. In the.AddSub program, how are the CPU registers displayed?
5. In the AddSub program, which statement halts the program‘?
6. Which directive begins a procedure?
7. Which directive ends a procedure?

3.3 Assembling, Linklng, and Running Programs 77

8'. What is the purpose of the identifier in the END statement?
9. What does the PROTO "directive do?

3.3 Assembling, Linking, and Running Programs
In earlier chapters we saw examples of simple machine-language programs, so it is clear that a
source program written in assembly language cannot be executed directly on its target computer. It
must be translated, or assembled into executable code. In fact, an assembler is very similar to a com.-
piler, the type ofprogram you would use to translate a C++ or Java program into executable code.

The assembler produces a file containing machine language called an abjectfile. This file
isn't quite ready to execute. It must be passed to another program called a linker, which in turn
produces an exeeumblefile. This file is ready to execute from the MS-DOSlWindows command
prompt.

3.3.1 The Assemble-Link-Execute Cycle
The process of editing, assembling, linking, and executing assembly language programs is sum-
marized in Figure 3-I. Following is a detailed description of each step:

Step 1: A programmer uses a text editor to create an ASCII text file named the sourcefile.

Step 2: The assembler reads the source file and produces an objecrfile, a machine-language
translation of the "program. Optionally, it produces a listingfile. If any errors occur, the program-
mer must return to Step l and fix the program.

Step 3: The linker readsthe object file and checks to see if the program contains any calls to
procedures in a link library. The linker copies any required procedures from the link library,
combines them with the object file, and produces the mecnrable-file. Optionally, the linker can
produce a mapfile.

Step 4: The operating system loader utility reads the executable file into memory, branches
the CPU to the program’s starting address, and the program begins to execute.

Link ‘
Library

_ __ (OS
Source (assembler) Object l (linker) , Executable loader) _

File ‘ File ‘ I File Output

3 Listing i Map
ll File File

(text editor) ai-

Figure 3-1 Assemble-Link-Execute Cycle.

78 Chapter 3 ~ Aseembly Language Fundamentals

Assembling and Linking 32-Bit Programs To assemble and link a Protected mode assembly
language program, execute the following command at the MS-DOS prompt:

make32 progname

Progname is the base name of your assembly language source file, with no extension. For-exam-
ple, the Add.S‘ub.asm program would be assembled and linked with the following command:

make32 AddSub

.;**" iae ii""ii ,<s,. aeggar * ****"
The malr§32.bat diiectory your ASli’l file or on
the system path. Consult yoga .§documentation to find out how to add a

-=;iirectory§.-to the for inSlI_‘l_.l_Cti0nSJ Qn _setting__i1p your ._. _
- "--'- - ' -73.;-'34‘ v-1:-’.=-' ‘:1-F.'"'-its-<: '1 ' .,.'I.‘I1-_-;.‘.‘;'§"7-_?.'3'l‘ .-55' .
-conuxnen =- ¥- lea» -“gas -

..I-_.. _.,_, ‘_ -

Assembling and Linking I6-Bit Programs lf you are programming in Real-address mode, use
the make16 command to assemble and link. Using the Add{S'ub. program as an example, the com-
mand would be the following:

make16 AddSub

3._.3.1.1 Listing File
A listing file contains a copy of the prog1am’s source code, suitable for printing, with line num-
bers, offset "addresses, translated machine code, and a symbol table. Let's look at the listing file
for the AddSnb program we created in Section 3.2:

Microsoft (R) Macro_Assembler Version 6.15.8803 10/26/01 13:50:21
Add and Subtract (AddSub.asm) Page 1 - 1

TITLE Add and Subtract (AddSub.asm)

; This program adds and subtracts 32-bit integers.

INCLUDE Irvine32.inc
C ; Include file for Irvine32.1ib (Irvine32.inc)
C INCLUDE SmallWin.inc

00000000
00000000

oooooooo
00000005
0000000A
0000O00F

00000015

.code
main PROC

00010000
00040000
00020000
00000O00E

mov eax,l0000h
add eax,40000h
sub eax,20000h
call DumpRegs

exit
main ENDP
END main

Structures.and Unions: (omitted)

EAX
EAX
EAX

looooh
50000h
30000h

3.3 Assembling, Linking, and Running Programs

Segments and Groups:

N'a m
FLAT
STACK
_DATA
_TEXT

I I U .

I I

D 0 I .-

r I 0- 0 I I 1- 1 I O

Size Length
GROUP
32 Bit 00001000
32 Bit 00000000

32 Bit 00000015

Align

Dword
Dword
Dword

Combine Class

Stack ‘STACK’
Public ‘DATA’
Public ‘CODE’

Procedures, parameters and locals (list abbreviated):

N a m e Type Value Attr
CloseHandle . . . F Near 00000000 FLAT Length=00000000 External STDCALL
ClrScr P Near 00000000 FLAT Length=00000000 External STDCALL
I‘

I

main P Near 00000000 _TEXT Length=000000lB Public STDCALL

Symbols (list abbreviated}:

N a m e Type Value Attr
@CodeSize . . . Number 00000000h
@DataSize . . Number 00000000h
@Inter£ace . . Number 00000003h
@Model Number 00000007h
@code
@data

. Text

. Text
@fardata? Text
@fardata . .
@stack . . -

exit

. Text

. Text

_TEKT
FLAT
FLAT
FLAT
FLAT

I O I II In 0' O In - . Text INVOKE ExitProcess,0
0 Warnings
0 Errors

3.3.1.2 Files Created or Updated by the Linker

Map File A map file is a text file (extension MAP) that contains information about the seg-
ments contained in a program being linked. It contains the following information:

' The EXE module name, which is the base" name of the file.
' The timestamp from the program file header (not from the file system).
' A list of segment groups in the program, with each group’s start address, length, group

name, and class.
' A list of public symbols, with each address, symbol name, flat address, and module where

the symbol is defined.
- The‘ address of the progranfs entry point.

80 Chapter 3 I Assembly Language Fundamentals

Program Database File When you assemble a program with the —Zi option _(debugg_ing),
MASM creates a program databasefile (extension PDB). During the link step, the linker reads
the PDB file and updates it. Then, when you run your program using a debugger, the latter is
-able to display the program’s source code and provide supplemental information about the
program.

3.3.2 Section Review

l. Whattypes of files are produced by the assembler?
2. (Tme/False): The linker copies assembled procedures from the link library file.
3. (True/False): When a prograrn’s source code is modified, it must be assembled and linked

again before it can be executed with the changes.
4. What is the name of the part of the operating system thatreads the executable file and starts

its execution‘?
5. What types offiles are produced by the linker?

ReadAppendix D before answering thefollowing questions:

O0-10\

. What command line option tells the assembler to produce a listing file?

. What command line option tells the assembler to add debugging information?

. What does the lin1<e1"s/SUBSYSTEM:CONSOLE option signify?
9. Challenge.‘ List the names of at least four functions in the kernel32.lib file.

l0. Challenge: Which linker option lets you specify the program's entry point?

3.4 Defining Data

"3.4.1 Intrinsic Data Types
MASM defines various intrinsic data types, each of which describes a set of values that can be
assigned to variables and expressions of the given type. A DWORD variable, for ex-ample, can
hold any 32-bit integer value. Some types are slightly-more restrictive, such as REAL4, which can
only be initialized by -a real number constant. In Table 3-2, all data types pertain to integers except
the last three. in those, the notation “IEEE” refers to standard real number formats published by
the IEEE Computer Society.

Table 3-2 Intrinsic Data Types.

Type " ' ' i ‘i ‘ i ‘ "Usage °

BYTE 8~bit unsigned integer

SBYTE 8-bit signed integer

3.4 Deflnlng Data B1

Table 3-2 Intrinsic Data Types. (Continued)
vT;:|;-.1:,_--:= 1» - W -. » "" " s-1- - - . . ., T T-"FI--F1?
‘ ‘n -':'1 ". J ' ’.‘.' ' " - '- ' ' ‘ " ' _—'-'-'\" - -.1}? - ‘ - 1' ' . - ‘r ; ' - 1'."-a . .1.-"""'-Z".-1-.. --. 'L\"| 3 ii "..' .." ' ‘ _ _ ' .‘,'. 1 "_; . . . ' ' ' ' I) "'-' \ ‘ _ _-- I .-.'I.- '.I.'“'J- |.'c'.‘:¢;'|'_."1-g-¢;]- '1==*=ea.-» - <-; e -~ ~ » = ~ - r - - ' t~= Usa e .- ~ - ~ - ~- t ~ ; T' " |.:|.<:'|.-~‘~.!G yr, ,,;._._____ .

_... _,. j -o. _. {— r,‘-"r,!'§f!."_'i-;-'_-1.1";-_.‘
i-'5.*;1|.',=.'.I .' -- '. - - . -. . . .=- _ -. , .»:.,=.~.‘.
.1’-i-i~=:%a5:,?rt¥-- ' " g -- ' - - ~ --._ . '- ' -:- . e=:-'*.=1-,.
‘ WORD l6~bit unsigned integer (can also be a Near pointer in Real~adclress mode)
r T * * tr" r i
f SWORD , l6~bit signed integer

if DWORD 32-bit unsigned integer (can also be a Near pointer in Protected mode)
l

.~ 7;’ 7 T7 —— 7 — — —
‘ l

SDWORD 32-bit signed integer

FWORD 5 48-bit integer (Far pointer in Protected mode)
if QWORD T 64-bit integer

j TBYTE so-an (10-byte) integer
If REAL4 32-bit ('4'-byte) IEEE short real

REAL8 T if 64-—bi't (8~byte) IEEE longreal

, REALIO ‘ 80-bit (10-byte) IEEE extended real

3.4.2 Data Definition Statement
A dam definition smremenr sets aside storage in memory for a variable and may optionally
assign a name to the variable. We use data definition statements to create variables based on the
assembler’s intrinsic types (Table 3-2). Each data definition has the same syntax:

[name] directive initializer [,init.'ial.-izer] . . .

Initializers At least one inirializer is required in a data definition,‘even if it is the ? expression,
which does not assign a specific value to the data. Additional initializers, if any, are separated by
commas. For integer data types, inirialiger is an integerconstant or expression that matches the
size implied by the type (BYTE,WORD, etc.) Integer constants were explained in "Section 3.1.1,
and integer expressions were-discussed in Section 3.1.2.

All initializers, regardless of their number format, are converted to binary data by the assem~
bler. That is why initializers such as 001 10010b, 32h, and 50d all produce the same binary value.

3.4.3 Defining BYTE and SBYTE Data
The BYTE (define byte) and -SBYTE (define signed byte) directives, used in data definition
statements, allocate storage for one or more unsigned or signed values. Each initializer must be
an 8-bit integer expression or character constant. For example:

valuel BYTE ‘A‘ ; character constant
value2 BYTE 0 ; smallest unsigned byte
value3 BYTE 255 ; largest unsigned byte

B2 Chapter 3 - Assembly Language Fundamentals

valueé SBYTE -128 ; smallest signed byte
value5 SBYTE +127 ; largest signed byte

(We’re capitalizing the BYTE and SBYTE keywords here for emphasis, but you can just as eas-
ily code them in lowercase letters.)

A variable can be left uninitialized by using a question mark for the initializer. This
implies that the variable will be assigned a value at runtime by executable instructions:

value6 BYTE ?

Variable Name A variable name is a label that marks the offset of a variable from the begin-
ning of its enclosing segment. For example, suppose that valuel was located at offset 0 in the
data segment and consumed one byte of storage. Then value2 would be located at offset 1:

{data
valuel BYTE 10h
value2 BYTE 20h

DB Directive. Earlier versions of the assembler used the DB directive to define byte data. You
can still use DB, but it permits no ‘distinction between ‘signed and unsigned data:

vall DB 255 ; unsigned byte
val2 DB -128 ; signed byte

3.4.3.1 Multiple Initializers
If multiple initializers are used in the same data definition, its label refers only to the offset of the
first byte. In the following example, assume-that the label list is at offset 0.11’ so, the value 10 is
at offset 0, 20 is at offset 1, 30 is at offset 2, and 40' is at offset 3:

.data
list BYTE 10,20,30,a0

The following illustration shows list as a sequence of bytes, each with its own offset:

Ofisfl \@hm

0000:; 10

(MOM 20

0002: 30

mma 40

Not all data definitions require labels. If we wanted to continue the array of bytes begun
with list, for example, we_could define additional bytes on the next lines:

list BYTE 10,20,30,40
BYTE s0,s0,70,s0
BYTE s1,s2,s3,s4

3.4 Defining Data B3

Within a single datadefinition, its initializers can use different radixes. Also, character and
string constant-scan be freely mixed. In the following example, listl -and list2 have the same
contents:

listl BYTE 10, 32, 41h, 0010l]OlOb
list2 BYTE OAh,20h, ‘A’, 22h

3.4.3.2 Defining Strings
T01 create a string data definition, enclose a sequence ofcharacters in quotation marks. The most
common type of string ends with a null byte, a byte containing the value 0. This type of string is
used by CfC++, by Java-, and by Microsoft Windows FuHCti0nS1

greetingl BYTE "Good afternoon",0

Each character uses a byte of storage". Strings are an exception to the rule that byte values must
be separated by commas. Without that exception, greetingl would have_ to be defined -as

greetingl BYTE ’G’,‘o‘,'o‘,'d‘....etc.

which would be exceedingly tedious.
A string-can be spread across multiple lines without the necessity of supplying a label for

each line, as the next example shows;

greetingl BYTE "Welcome to the Encryption Demo program "
BYTE "created by Kip Irvine.",0dh,0ah
BYTE “If you wish to modify this program, please "
BYTE "send me a -copy.“,0dh,0ah,0

As a reminder, the hexadecimal bytes 0Dh and OAh are called either CRJLF (explained in
Chapter l) or end~'0j3-line clim"acte:"s. When written to standard output, they move the cursor to
the left column of the line following the current line.

MASM’s line continuation character (\) may be used to concatenate twollines into a single
program statement. The\ symbol may only be placed at the end of a line. In other words, the fol-
lowing statements are equivalent:

greetingl BYTE "Welcome to the Encryption Demo program "

and

greetingl \
BYTE "Welcome to the Encryption Demo program "

3.4.3.3. Using the DUP Operator
The DUP operator generates a repeated storage allocation, using a constant expression as "a
counter. I-t is particularly useful when allocating space for a string or array, and can be used with
both initialized and uninitialized data definitions:

BYTE 20 DUP(0) 0 bytes, all equal to zero
BYTE 20 DUP(?) 20 bytes, uninitialized
BYTE 4 DUP("STACK“) ; 20 bytes: "STACKSTACKSTACKSTACK"

'\I‘QC

IQ

B4 Chapter 3 - Assembly Language Fundamentals

3.4.4 Defining WORD and SWORD Data
The WORD (define word) and SWORD (define signed word) directives create storage for one or
more 16-bit integers. Here are some examples:

wordl WORD 65535 ; largest unsigned value
word2 SWORD —32768 ; smallest signed value
word3 WORD ? ; uninitialized, unsigned

Older versions of the assembler used the DW directive to define both signed and unsigned
words. You can still use DW:

vall DW 65535 ; unsigned
val2 DW —32768 ; signed

Army of Words You can create an array of word values either by explicitly initializing each
element or by using the DUP operator. Here is an array containing specific values:.

myList WORD l,2,3,4,5

Following is a diagram of the" array in memory, if we assume that myList starts at offset 0;
Notice that the addresses increment by 2:

Offset Value

OHM: 1

OMB: 2

C0@k 3

CDO& 4

nous: ‘ 5

The DUP operator provides a convenient way to initialize multiple words:

array WORD.5 DUP(?) ; 5 values, uninitialized

3.4.5 Defining DWORD and SDWORD Data
The DWORD (define doubleword) and SDWORD (define signed doubleword) directives allo-
cate storage for one or more 32-bit integers. For example:

vall DWORD l2345678h ; unsigned
val2 SDWORD —2l47483648 ; signed
val3 DWORD 20 DUP(?) ; unsigned array

Older versions of the assembler used the DD directive to define both unsigned and signed
doublewords. You can still use DD:

vall DD l2345678h ; unsigned
val2 DD —2l47483648 ; signed

3.4 Deflnlng Data 35

Array ofDoublewords You can create an array of -doubleword values either by explicitly ini-
tializing each element or by using the DUP operator. Here is an array containing specific
unsigned values:

myList nwoan 1,2,3,4,5 i
Shown below is H diagram of the array in memory, assuming that myList starts at offset 0.
Notice that the offsets increment by 4:

Offset Value

0000: 1

0004: 2

0008: 3

000C: 4

0010: 5

.3.4.6 Defining QWORD Data
The QWORD (define quadword) directive allocates storage for 64-bit (8 byte) values. Here is an
example:

quadl QWORD 1234567s1234567sh
You can also use DQ. for compatibility with older assemblers:

-quadl DQ 12345678l2345678h

3.4.7 Defining TBYTE Data
The TBYTE (define tenbyte) directive creates storage for 80-bit integers. This data type is pri-
marily for the storage ofbinary-coded decimal numbers. Manipulating these values requires spe-
cial instructions in the floating-point instruction set:

vall TBYTE 100oo000001234567s9Ah

You can -also use DT, for compatibility with older assemblers:
vall DT l000000000123456789Ah

3.4.8 Defining Real Number Data
REAL4 defines a 4-byte single-precision real variable. REAL8 defines an 8-byte double-precision
real, and REALIO defines a 10-byte double extended-precision real. Each requires one or more
real constant initializers that can fit into the assigned storage:

rVal1 REAL4 -2.1
rVal2 REAL8 3 .2'E—260

B6 Chapter 3 ' Assembly Language Fundamentals

rVal3 REAL10 4.'6E-t-4096
ShortArray REAL4 20 nUP(o.o)
The following table describes each of the standard real types in terms of their minimum

number of significant digits and approximate range:

, -Sig'nifiean,t. 3 -.
Data Type ‘ Digits ‘ Approximate Flange

Short real 6 1.18 x 1048 to 3.40 x 1033

Long real 15 Y 2.23 X 10‘3°8 to l.79'x 103% W
Extended-precision real 19 3.37 X 10-4932 to 1.1s K 104932 ‘

Programs written under earlier versions of the assembler used DD, DQ, and DT to define
real numbers; these directives c-an still be used:

rvall DD -1.2
rVal2 DQ 3.2E-260
rVal3 DT 4.6E+4Q96

3.4.9 Little Endian Order
Intel processors -store and retrieve data from memory using what is referred to as little endian
order. This means that the least sigtificant byte of a variable is stored at the lowest address. The
remaining bytes are stored in the next consecutive memory positions.

Consider the doubleword l2345678h. If placed in memory at offset .0, 78h would be stored
in the first byte. 56h would bestored in the second byte, and the remaining bytes would be at off-
sets 3 and 4, as the following diagram shows:

0mKk 78

Omfiz, S6
Little endian ~3————

(M02 34
- r

l

0003: 12 i

Some other computer systems use big endian order (high to low). The following "figure
shows an example of 12345678h stored in big endian order at offset 0:

0000: 12
 .

00011 34
Big endian: ii

MR2 56

(ENE 78

3.4 Deflnlng Data 87

3.4.10 Adding Variables to the AddSub Program
Let’s return for a moment to the AddSub program we wrote in Section 3.2. Using the informa-
tion we’ve developed regarding data definition directives, we can easily add a data segment con-
taining several variables. The revised program is named AddSub2:

TITLE Add and.Subtract, Version 2 (AddSub2.asm)

; This program adds and subtracts 32-bit unsigned
; integers and stores the sum in a variable.

INCLUDE Irvine32.inc
.data
vall DWORD 10000h
val2 DWORD 40000h
val3 DWORD zooooh
finalval DWORD ?

.code
main PROC

mov eax,val1
add eax,val2 ;
sub eax,val3 ;
mov "finalVal,eax ;
call DumpRegs ;
exit

main ENDP
END main

; start with l0O00h
add 4000011
subtract"20000h
store the result (30000h)
display the registers

How does. it work? First, the integer inside the variable vall is moved to BAX

mov eax,vall ; start with l0000h

Next, the integer inside Va]2 is added to BAX:

.add eax,val2 ; add 40000h

Next, the integer inside val3 is subtracted from EAX:

sub eax,val3 ; subtract 20000h

Finally, the integer in EA2£ is copied into the variable fi.nalVal:
mov finalVal,eax ; store.the result (30000h)

3.4.11 Declaring Uninitialized Data
The DATA? directive can be used to declare uninitialized data. It is particularly useful for large
blocks of uninitialized data because it reduces the size of a compiled program For example, the
following code is declared efficiently:

.data _
smallArray DWORD 10 DUP(0) ; 40 bytes

B8 Chapter 3 - Assembly Language Fundamentals

.data?
bigArray DWORD 5000 DUP(?) ; 20000 bytes

The following code, on the other hand, produces a compiled program that is 20,000 bytes larger:

.data
smallArray DWORD 10 DUP(0) ; 40 bytes
bighrray DWORD 5000 DUP(?) ; 20000 bytes

Mixing Code and Data The assembler lets you switch back and forth between code and data
in your programs. This can be convenient when you want to declare a variable that will be used
only within a localized area of your program. In the following example, we create "a variable
named temp by inserting it directly within our code:

.code
mov eax,ebx
.data
temp DWORD ?
.code
mov temp,eax

II I U

Although it appears as if temp would interrupt the flow of executable instructionsin this exam-
ple, it turns out that the assembler places temp in the data segment along with all the other vari-
ables. The variable temp has file scope, making it visible to every statement within the same
source code file.

3.4.12 Section Review

l. Create an uninitialized data declaration for a 16-bit signed integer.
2. Create an uninitialized data declaration for an 8-bit unsigned integer.
3. Create an uninitialized data declaration for an 8-bit "signed integer.
4. Create an tminitialized data declaration for an 64-bit integer.
5'. Which datatype can hold a 32-bit signed integer?
6. Declare a 32-bit signed integer variable and it with the smallest possible negative

decimal value. (Hint: refer to integerranges in Chapter l.)
'7. Declare an unsigned 16-bit integer variable named wAr-ray that uses three initializers.
8. Declare a suing variable containing thename of your favorite color. Initialize. it as a null-

terminated string.
9. Declare an uninitialized array of"50 unsigned do.ublewords named dArray.

10. Declare a string variable containing the word “TEST” repeated 500 times.
ll. Declare an array of 20 unsigned bytes named bAr1'ay and initialize-all elements. to zero.
12. Show the order of individual bytes in memory (lowest to highest) for the following double-

word variable:

vall DWORD 87654321h

3.5 Symbolic Constants 89

3.5 Symbolic Constants
A symbolic consmm‘ (or symbol defiziiriorz) is created by associating an identifier (.a symbol) with
either an integer expression or some text. Unlike a variable definition, which reserves storage, a
symbolic constant does not use any storage. S-ymbols are .used only during the assembly of a
program, so they cannot change at runtime. The following table summarizes their differences:

Symbol , Variable

Uses storage? no yes p

\hduechangesatnun no yes
time‘?

First, we will show how to. use the equal-sign directive (=) to create symbols that represent
integer expressions. After that, we will use the EQU and TEXTEQU directives to create symbols
that represent arbitrary text.

3.5.1 Equal-Sign Directive
The equal-sign directive associates a. symbol name with an integer expression (see
Section 3.1.2). The syntax is:

name = expression

Ordinarily, expression is a 32-bit integer value. When a program is assembled, all occurrences of
name are replaced by e.rpressi0n during the assembler‘s preprocessor step. For example, if the
assembler reads the following lines,

COUNT = SUD
mov ax. COUNT

it generates and assembles the following statement:

mov ax,500

Why Use Symbols? We might have skipped the COUNT symbol entirely and simply coded
the MOV instruction with the literal 500, but experience has shown that programs are easier to
read and maintain if symbols are used. SuPPOse COUNT were used ten times throughout a pro-
gram. At a later time, it could be increased to 600 by altering only a single line of code:

COUNT =

When the program was assembled again, all instances of the symbol COUNT would automati-
cally be replaced by 600. Without this symbol, the programmer would h-ave to.manually find and
replace every 500 with 600 in the pi'o'gram’s sourcecode. What if ‘one occurrence of 500 were
not actually related to all of the others? Then a bug would be caused by changing it to 600.

90 Chapter 3 - Assembly Language Fundamentals

Keyboard Definitions Programs often define symbols for important keyboard characters. For
ex-ample, 27 is the ASCH code for the Esc key:

Esc__key = 27

Later in the same program, a statement is more self-describing if it uses the symbol rather than
an immediate value. Use this,

mov al ,Es'c_l-toy ; good style

rather than this:

mov al,27 ; poor style

Using the DUP Operator Section 3.4.3.3 showed how to use the DUP operator to create stor-
age for arrays and strings. It is good coding style to combine a symbolic constant with DUP
because it simplifies program maintenance. In the next example, if COUNT has already been
defined, it can b.e used in the following data definition:

array DWORD COUNT DUP(0)

Redefinitions A symbol defined with == can be redefined any number of times. The following
example shows how the assembler evaluates COUNT each time it changes value:

COUNT = 5
mov a"l,CoUN'I‘ ; AL = 5
COUNT = 10
mov -al,COUN'I' ; AL = 10
COUNT = 100
mov al,COUNT ; AL = 100

The changing value of a-symbol such as COUNT has nothing to do with the runtime execution
order of statements. Instead, the symbol changes value according to the sequential processing of
your source code by the assembler.

3.5.2 Calculating the Sizes of Arrays and Strings
Often when using an array, we would like to -know its size. In the following example, we create a
constant named ListSize and manually count the bytes in list:

list BYTE l0,20,30,40
L:i.stSize = 4

But this is not good practice if this code must be later modified and maintained. If we were to
add more bytes to list, ListSize would also have to be corrected or a program bug would result.
A better way to handle this situation would be to let the assembler automatically calculate List-
Sizefor us. MASM uses the $ operator (current location counter) to return the offset associated

3.5 Symbolic Constants 91

with the current program statement. In the following example, ListSize is calculated by subtract-
ing the offset of list from the current location counter ($):

lIl.St BYTE lU,2U,3U_,4U
ListSize = ($ — list)

It is important for ListSize to follow immediately after list. The following, for example,
would produce too large a value for ListSize because of the storage used by va_r2:

list BYTE l0,20,30,40
var2 BYTE 20 DUP(?)
Listsize = ($ — list)

String lengths are time consuming to calculate manually, so you can let the assembler do
the job for you:

mystring BYTE "This is a long string, containing"
BYTE "any number of characters"

myStringfllen = ($ — myString)

Arrays of Words and DoubleWords If each element in an array contains a 16-bit word, the
array’s total size in bytes must be divided by 2 to produce the number of array elements:

list WORD 100011, 200011, 300011, é000h
Listsize = ($ — list) / 2

Similarly, each element of an-array of doublewords is 4 bytes long, so its overall length must be
divided by 4 to produce the number of array elements:

list DWORD 1000000011,.2000'0000h,30000000h_.40000000h
L:i.stS.:i.ze = ('$ -list) / 4

3.5.3 EQU Directive
The EQU directive assoiciates a symbolic name with either an integer expression or some arbi-
trary text. There are three formats:

name EQU expression
name EQU symbol
name EQU <text>

In the first format, expression must be a valid integer expression (see Section 3.1.2). In the sec-
ond format, symbol is an existing symbol name, already defined with = or EQU. In the third for-
mat, any text may appear within the brackets <.;.:>. When the assembler encounters name later in
the program, it substitutes the integer value or text for the symbol.

EQU can be useful when defining any value that does not evaluate to an integer. A real
number constant, for example, can be defined using EQU:

PI EQU <3. 1416:-

92 Chapter 3 ~ Assembly Language Fundamentals

Example We "can associate a symbol with a character string. Then a variable can be created
using the symbol:

pressKey EQU <"Press any key to continue...",0>

.data
prompt BYTE pressKey

Example Suppose we would like to define a symbol that calculates the number of cells in a 10-
by-l0 integer matrix. We will define symbols two different ways, first as an integer expression,
and second as a text expression. The two symbols are then used in data definitions:

matrixl EQU 10 * 10
matrix2 son <10 * 10>
.data
Ml wonn matrixl
M2 WORD ma:rix2

The assembler will produce different data definitions for M1 and M2. The integer expression in
matrixl is evaluated and assigned to M1. On the other hand, the text in matrix2 is copied
directly into the data definition for M2:

Ml WORD 100
M2 WORD I0 * 10

No Redefinition Unlike the = directive, a symbol-defined with EQU cannot be redefined in the
same source code file. This may be seen as a restriction, but it also prevents an existing symbol
from being inadvertently assigned a new value.

3.5 .4 TEXTEQU Directive
The TEXTEQU directive, introduced in MASM Version 6, is very similar to EQU. It creates
what Microsoft callsi a rexr mrzcro. There are three different formats: the first assigns text; the
second assigns the contents of an existing text macro, and the third assigns a constant integer
expression:

name TEXTEQU <text>
name TEXTEQU textmacro
name TEXTEQU %constExpr

For example, the promptl variable uses the eontinueMsg text macro:

"oontinueMsg TEXTEQU <"Do you wish to continue (Y/N)?">
.data
promptl BYTE continueMsg

3.6 Real-Address Mode Programming (Optional) 93

Text macros can easily build on each other. In the next example, count is set to the value
of an integer expression involving rowSize. Next, the symbol move is defined as mov. Then set-
upAL incorporates the values of move and count:

rowSize = 5
count TEXTEQU %(rowSize * 2) ; same as: count TEXTEQU <l0>
move TEXTEQU <mov>
setupAL TEXTEQU <move al,count>
; same as: setupAL TEXTEQU <mov al,l0>

Unlike the EQU directive, a symbol defined with TEXTEQU can be redefined later in the program.

Compatibility Note: TEXT]-EQU was first introduced in MASM version 6. If you're
assembler code that must be compatible with various assemblers including

versions of MASM, you should use EQU-rather than TBXTEQU. '
-.1 "I __ _ ' " ,i,_mlT_"f“"””"‘A“_*‘_“‘4 ' _ ___ Lil‘)-(’f“T ‘7”"i"___ 'i

3.5.5 Sectlon Review

1. Declare a syrnbolic constant using the equal-sign directive that contains the ASCII" code
(0811) for the Backspace key.

2. Declare a symbolic constant named SecondsInDay using the equal-sign directive and
assign it an arithmetic expression that calculates the number of seconds in a 24-hour period.

3. Show how to calculate the number of bytes in the following array and assign the value to a
symbolic constantnamed ArraySize:

mynrray WORD 20 DUP(?)

4. Show how to calculate the number of elements in the following array and assign the value to
a symbolic constant named ArraySize:

myArray DWORD 30 DUP(?)

5. Use a TEXTEQU expression to redefine “PROC” as “PROCEDURE.”
6. Use TEXTEQU to create a symbol named Sample for a string constant, and then use the

symbol when defining a-string variable named MyString.
'7. Use TEXTEQU to assign the symbol Setup'ESI to the following line of code:

mov esi,OFFSET mynrray

3.6 Fleal-Address Mode Programming (Optional)
If you are programming for MS-DOS or for Linux’"s DOS Emulation feature, you "can easily
code your programs as 16-bit applications to run in Real-address mode. We will assume that you
are using an Intel386 or later processor. When we call this a 16-bit application, we refer to the
use of 16-bit segments, also known as Real-addressmode segments.

94 Chapter 3 ' Assembly Language Fundamentals

3.6.1 Basic Changes
There are only a few changes you must make to the 32-bit programs presented in this-chapter to
transform them into 16-bit programs:

- The INCLUDE directive references a different library:

INCLUDE Irvinel6.inc

-- Two additional instructions must be inserted at the beginning of the startup procedure
(main). They initialize the-DS "register to. the starting location of the data segment, identi-
fied by the predefined MASM constant @data:

mov ax,@data
mov ds,ax

- The batch file that assembles and links your programs is named make16.bat (we will
show an example later).

' Offsets (addresses) of data. and code labels are 16 bits rather than 32 bits.

- - - ' .151-' * 1%.": -,. ' »...|‘_.-. - . ..--'--;.-|,;;~_-_--'" --; -.._*_qf;s7 ' -- - =;,;;_.;,.-_----"-'_'_1;£¢- -' 'i..-- ' i '" 7 _ .7, -F..1 1. Q: _,__u_ _‘.r"l;§,£-. ___ .- -,_-a__l_e' :;, . » ‘J-3?‘? I

a constant to be moved directly to a segment register. _ ,
' I i 11' '. '*_',:'?'g,‘.'-'1‘ ti‘ .3’ ' -'. {I 13- 121'; l"-'- - ..' , ‘-

3.6.1.1 The AddSub2 Program
Here is ‘a listing of the AddSub2.asm Program, revis.ed to run in Real-address mode. New lines
are marked by comments:

TITLE Add and Subtract, Version 2 (AddSub2.asm)

; This program adds and.subtracts 32-bit integers
; and stores the sum in a variable.
; Target: Realeaddress mode.

INCLUDE Irvine16.inc ; new
.data
vall DWORD lOOOOh
val2- DWORD 40000h
val3 DWORD 20000h.
finalval DWORD ?

.code
main PROC

mov ax,@data ; initialize DS
mov ds,ax ; new

mov eax,vall ; get first value
add eax,val2 ; add second value
sub eax,val3 ; subtract third value
mov finalVal,eax ; store the result
call DumpRegs ; display registers

3.? Chapter Summary 95

exit
main ENDP
END main

3.7 Chapter Summary
An integer expression is a mathematical expression involving integer constants, symbolic con-
stants, and arithmetic operators. Precedence refers to the implied order of operations when an
expression contains two or more operators.

A character constant is .a single character enclosed in either single or double quotes. The
assembler converts a character to the binary ASCII code matching the character. A string con-
stant is a string of characters enclosed in either single or double quotation marks, possibly end-
ing with -a null byte.

Assembly language has a list of reserved words, shown in Appendix D, that have special
meanings and can only be- used in their correct contexts. An identifier is a progranuner-chosen
name that can identify a variable, a symbolic "constant, a procedure, or a code label. It cannot be
a reserved word.

A directive is a command that is recognized -and acted upon by the assembler as the pro-
gram’s source code is assembled. An instruction is a statement that is executed by the processor
at runtime. An instruction mnemonic is a short assembler keyword that identifies the operation
carried out by an instruction. A label is an identifier that acts as a place-marker for either instruc-
tions or data.

An assembly language instruction can have between zero and three operands, each of
which can be a register, memory operand, constant expression, or I/O port.

Programs contain logical segments named code, data, and stack. The code segment con"-
tains executable instructions. The stack segment holds procedure parameters, local variables,
and retum addresses. The data segment holds variables.

A source file is a text file containing assembly language statements. A listing file contains
a copy of the program’s source code, suitable for printing, with line numbers, offset addresses,
translated machine code, and a symbol table. A map fle contains information about a program’s
segments. A source file is created with a text editor. The assembler (MASM) is a program that
reads the source file, producing both object and listing files. The linker reads the object file and
produces an executable file. The latter can be executed by theoperating system.

MASM recognizes intrinsic data types, each of which describes a set of values that can be
assiged to variables and expressions of the given type:

' BYTE and SBYTE define 8-bit variables.
' WORD and SWORD define 16-bit variables.
~ DWORD and SDWORD define32-bit variables.
- QWORD and TBYTE define 8-byte and 10-byte variables, respectively.
' REAL4, REAL8, and REALIO define 4-byte, 8-byte, and 10-byte real number variables,

respectively.

96 Chapter 3 ~ Assembly Language Fundamentals

A data definition statement sets aside storage in memory for a variable and may optionally
assign a name to the variable. If multiple initializers are used in the same data definition, its label
refers only to the offset of the first byte. To create a string data definition, enclose a sequence of
characters in quotation marks. The DUP operator generates a repeated storage allocation, using a
constant expression as a counter. The current location counter operator ($) can be used in an
expression that calculates the number of bytes in an array.

Intel processors store and retrieve data from memory using little endian order. This means
that the least significant byte of a variable is stored at the lowest memory address".

A symbolic constant (o_r symbol definition) is created by associating an identifier (a sym-
bol) with an integer or text expression. There are three directives that create symbolic constants:

' The equal-sign directive associates a symbol name with an integer expression.
' The EQU and TEXTEQU directives associate a symbolic name with either an integer

expression or some arbitrary text.

It is easy to switch between writing 32-bit Protected mode and l6-bit Real mode pro-
grams, if you keep in mind. a few differences. The book is supplied with two link libraries con-
taining the same procedure names for both types of programs.

3.8 Programming Exercises
The following exercises can be done in either Protected mode or Real-address mode.

1. Subtracting Three Integers
Using the AddSub program from Section 3.2 as a reference, write a program that subtracts three.
integers using only 16-bit registers. Insert a call Dtm1pRegs statement to display the register
values.

2. Data Definitions
Write a program that contains a definition .of each data type listed in Section 3.4. Initialize each
variable to a value that is consistent with its data type.

3. Symbolic Integer Constants
Write a program that defines symbolic constants for all of the days of the week. Create an array
variable that uses the symbols as initializers.

4. Symbolic Text Constants
Write" a program that defines symbolic names for several string literals (characters between
quotes). Use each symbolic namein a variable definition.

Data Transfers, Addressing,
and Arithmetic
4.1

4.l.l
4.1.2
4.1.3
4.l.4
4.1.5

Data Transfer Instructions
Introduction
"Operand Types
Direct Memory Operands
MOV Instruction
Zero/Sign Extension of Integers

4.1.6" LAHF and SAHF Instructions
4.1.7 XCHG Instruction
4.1.8" Direct-Offset Operands
4.1.9 Example Program (Moves)
4. l .10 Section Review

4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8

4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7
4.3.8

4.4
4.4. l
4.4.2
4.4.3
4.4.4
4.4.5

4.5 JMP
4.5. l

Addition and Subtraction
INC and DEC Instructions
ADD Instruction
SUB" Instruction
NEG Instruction
Implementing Arithmetic Expressions
Flags Affected by Arithmetic
Example Program (AddSub3)
Section Review

Data-Related Operators and Directives
OFFSET Operator
ALIGN Directive
PTR Operator
TYPE Operator
LENGTHOF Operator
SIZEOF Operator
LABEL Directive
Section Review

Indirect Addressing
Indirect Operands
Arrays
Indexed Operands
Pointers
Section Review

and LOOP Instructions
JMP Instruction

98 Chapter 4 - Data Transfers, Addressing, and Arithmetic

4.5.2 LOOP Instruction
4.5.3 Summing an Integer Array
4.5.4 Copying a String
4.5.5 Section Review

4.6 Chapter Summary
4.7 Programming Exercises

4.1 Data Transfer Instructions

4.1.1 Introduction
In this chapter..you’re going to be exposed to "a surprising amount of detailed information. You
will encounter a major difference between assembly language and high-level languages: In
assembly language, you can (and must) control every detail. You have ultimate power, and along
with it, enormous responsibility.

When you took your first programming course (probably C++- or Java), you noticed that
the compiler performed strict type checking on variables and assignment statements. While you
might have found it to be annoying at first, the compiler probably turned out to be your best
friend when it came to preventing logic errors relating to mismatching data. An assembler, on
the other hand, gives you an enormous amount of freedom when declaring and moving data. It
performs little error checking, and it supplies operators and addressing expressions that let you
do just about anything. What price must you pay for this power? You must master a significant
number of details before writing meaningful programs.

If you take the time to thoroughly learn the material presented in this chapter, you will
enjoy much smoother sailing later on. In particular, as the example programs become more com-
plicated, you will rely on your mastery of the fundamental tools presented here. You may be
happy to leam that near the end of this chapter you can begin using loops and arrays. '

4.1.2 Operand Types
There are only three types of instruction operands presented in this chapter: immediate, register,
and memozjr. Of these, only the third is in the least way complicated. Table 4-1 lists a simple
notation for operands that has been freely adapted from the Intel Pentium ntanual. We will use it
from this point on to describe the syntax of individual Intel instructions.

Table 4-1 Instruction Operand Notation.

I Operand Description I I
1 _ _ - -_j' ___________g______*______ ______ __

r8 y 8'-bit general-purpose register: -Al-I, AL, BI-I, BL, CH, CL, DH, DL

H6 A l6-bit general-purpose register: AX, BX, CX, DX. SI, DI, SP, BP

\ r32 32-bit general-purpose register: EAX, EB X, ECX, EDX. ESI, EDI, ESP, EBP

4.1 Data Transfer instructions 99

Table 4-1 instruction Operand Notation. (Continued)
.Q,_>‘,‘-I. _ ’ It _ . ' ' ' ' ' 0

I‘-"" Operand ' Description
__ 1 ta _,. P, s

reg any general-purpose register

17 sreg 16-bit segment register: CS, DS, SS, ES, FS, GS i

imm 8-, l6-, or 32-bit immediate value
L . t

\. r
t'mm8 8-bit immediate byte value

immlo 16-bit immediate word value
1 7

r'mm32 32-bit immediate doubleword value

rfm8 8-bit operand which can be an 8-bit general register or memory byte

"r/mlo A l6-bit operand which can be a l6-bit general register or memory word

2'/m32 32-bit operand which -can be a 32-bit general register or memory doubleword

mem an 8», 16-, or 32-bit memory operand 1

4.1.3 Direct Memory Operands
Section 3.4 in Chapter 3 showed that variable names are simply references to offsets within the
data segment. For example, the following declaration indicates that a byte containing the number
10h has been placed in the data segment: _

. data
varl BYTE 1011

Suppose varl were located at offset l0400h. Then a machine-level instruction referencing this
data would be assembled as:

mov al, [00010400]

The right-hand operand is a 32-bit hexadecimal reference to a memory location. The brackets
around the number indicate that when the instruction executes, the CPU dereferences the offset
and obtains the contents of memory. (To dereference something means to look up the informa~
tion it implies.)

While i_t might be possible to write programs that used numeric addresses as operands, it is
much easier to use symbolic names such as varl. The assembler converts a name to a numeric
offset, and the CPU dereferences the offset when the instruction executes.

mov al ,var1

100 Chapter 4 - Data Transfers, Addressing, and Arithmetic

.; -;-H ._-._ <.--;_-;.._ .. _- . ._. _.---_- _ _,-.. .._-, __-. -... . -, -:_;;5_'=. ,1‘?-7 ._ '* -7. .j ... ;;.< ._ _. . _.73y. * "I-T_;_ I _.. !.. - ._._--__. - .-,. ..[,.: _ '.\:I-:;r__..%‘{._:._:‘1-t:-:.,»i_v_¢f,‘f:_it-get!§‘;,l_\;;_.i_|f‘_;=L(_i:'|¥€;?;i-li;..:i_]:-5|\rm'§i{j£v§‘.j,§éi=: _'_‘1_f:_ k l|;:.\¢,j.‘.:f--i]in“?-;Fi§?r(:’l-:5€_ i_._.1_}_;_":I,i£;,_: 13 _ _*_2,_-_-i-__I;\.f_,f1.;:Q;EfQ-r-:_3f; "_i_ii~;).fi,fl. -‘, :._§;_i_-3,,__.'\1_-_ _..,";\,:_i...“;1_._‘;: _ '_ _§_ _ _: ‘I

_, I
5 5 t,“ _‘ _-,__|;-r . A ._;‘i- I L“-.>., ,_ _ ‘,_|__ ';'.'¢‘_-S~_._ -___, _.. Ir? ._..: . _;,=,_,}= ‘-,"|___._ 4: _ ‘Q; ' - --_,,,- | I. 12.. Q ;-{If 1:115. '- ~_._'\h- ,--I“ | t_--,--m__- ,I_gth€d 7, __:s!-‘t,-__--f.|, -_;-_-'_

.;;‘=;A1,=...L.,.§!i!m...--ill....!?!.1.'.-',,.r.-9.1.,1'1..§-;*.'l3_I.°..B?!7i.3»1..1.1111...-..§F§¥1l?.11@-.-T-..-J€a..9.;l1§§r.tl1:.-$4 g‘--ll°..i€i,.. 9!};-T;w_.-..1=:..1i-..;:§¢;.,:i -9,931.. -':-
I*‘T#':4.E-#T-"Is?"in?»13~;1:'~sr.i:n'-‘*:?@i:r'==i’E5*i*l".~'%-‘155--T=!.<.1tii@E=:i=:*ii::-it--:Fré*'*:'.1-.t-"=1-‘cs=I=‘:?P73I"~s%iaF?'fir;-!I=I5i".1;&@-*;.~.:.»€?;¥s=his-txi=*1“"7114::--'.:T-I.?l%_=-ii"7*‘-.'.-iii 1’-."T1’ T-‘-If‘ IT ;- i.;T-J-:1;-h-‘F - '-;‘.- '*~’r‘ '-i,~;=" }- - . >-,__ -,_ -' I - - *5 ' .~.- .. " -- ' ~ .l_ -" ' ' s,~;.r,---;:_-|-.':~._;v_T--__.=.-.-<..\-1-.-.-t.-: -,:.-.1.» -.-'..:- |...- -‘—.:'1:;.i--.-;~.rI’,-.1.»-'-.A....'i'f"£_..‘. ..25311, -; €Gfi‘LlE‘,»6,=. fie. -. G *8 -‘ - P §fri1il.-' 61$ 1'.“€‘J1GG.1,' Olilw-.---»:.'-;;i*.~"--!-;-'.r-:---11;:-' ~T~T,'.;- ‘T ' ;='-.".- ;Z.'§-'=u'-'-'.;'.='--I=-I - .--=: .'-- :-.'-~.:~...- -<1 - - - - -. -L -_ - 1- “ - I .- -.--- - :_ ---' '.-..== - .---:'-- ~=-1' T‘ . '..-- -T-'r' -"1-T-"'1 -T .'1'-'1" .' -t .'T‘¢.-‘;-|.-‘ T1‘.'.-:“- .—'.'1.:-1»l'=.'-..-I:-.3-_". I..r'..> is.-v'|{--irflt-. 5|‘-l;|_;"?|-:3 . ~.r~|,-. » :.- .,e. ..I‘-- _i}- ,-'-'\.- .4 t‘ -.'.*l.‘-- --1;. ‘=-. .- '- ~',_-- .!- =-- ~.1|‘"i..--'. --= I -. i- . -t.. - - ..'~--..- 5- 1:-. 1., »

--7-1 ‘" -> - -_-_'-j-- -".-L--' :- *5-7 "i ' \i.-\=-s'-‘fill?!-vt‘i‘\I‘9: i-.1 "i~~>",.-"-'*':"." -1';-' I; 1',’\- -".'5-'i:l;--3.‘?-‘~;y-ll‘-Y5 ' "‘.' '.' '3 "-. -T_5.-’2.‘-T-"' .':- -'..'-1:2!-‘-'-'».‘-"'-' ". ' .’_ _\' ' '_'_- "3 '.. ..‘- “"-' ..; . -- "-".':"-‘-.'.-i"’¢'_;__'*T 1. T?=-.~,:.-,;[34;:;:;L.-,i;,;:f;1;5-‘=5i;5iT.=--1E£.i?.?';;:_<t?;;‘;;a=i =55’.--.‘.:-,1‘,-1.:-._I.. :5‘-.:,1--?.*==T§:==-,.:~.i=-!=.;¥Fjf:: ",",'J-,"-1-R-I-13.:i'itii5,_:l;.~£-ii-E '.H’-":-:1;.-.5--1';=-;i::‘;-;;;.--¢=:»;sit;--.3111 -.-11-. 1.5.-;fi=. f-';T=;‘..t.=_, *-r?!.3.T-=¢ ,2
":f**1".="!l.'~' Iu.-.5'1?‘-217131-""if*~i-l~":\'§=i=T3;=é.i=‘Tiii1It}'i:%‘—3l.3‘T'.i*-"E5."FE":."'%il-1--‘F Ii-LlK?-i‘-l".-r-§il;»‘\‘,-'1-,5 1=--1'-731i‘-!'IT;£*i‘i.=I1‘7?".‘.-Z'.--It:’lLJ.i-7;;-.!.;-"3,'-=".‘¥I"..»7§'§-17'! -“Z; Il'=-'lI.--- I -~ 3"."'-'--t-->3-. Z-'L}.=..1‘§,_‘T%-'5-“ii-"i'-".':"-. .5-“Hi ' -t.==’1=T%;?i=-I-?:=::!P+?T~“<*"T“*’i:’i;%--1. ':==.11T inf‘-T---“~'-‘T. T§i?:=-Ti-I-Ii '-.'*‘.a-".-.‘-i.="'::1%.;-IT:: "#2-'iIski?3Z7f¥Fi3'3~i£3;!ii3;T "1-';":=.;-..’."-2 tr-it--.'ti-:-2'» -- .':=;.‘=.:>--is"-1.: 1" 1- iiiL3i;‘lT1J:1i‘i?'T.{§'H'.3.i L LI l’l.:.- -.-.i-¢fl'[Qv‘*¢{- --, “var: -,, -,,— .1.-2-l -,.,....--Tr '.*.'»*--.= =,.':- ---».,.-;-.:-. 2 -1- I-_.--:--: -';;-.-5.,‘ -~ :_=:-:':'='..' - .1 1. . x I. ,-~..,- ._ P-

; -; i\!gi‘- ;1i'.TpIF:-';>€E='a-v-—-.:15‘5§]*-billI--- 0.71‘. ',=.;.-"-- . 2.»! -t"'|'=:%“:~"="~.’-I“-1;='.“§';‘*7l--fi~:}";."I‘"t§T*';-I-3‘iiifT.i§"=“J”: 5'. I="T'“"=-’“f*‘-1i=:',1;;- --'-"I*'.;=""-T.-C-;»; ‘-{.-..- -.--‘4--.~T-"' --11-I ~12 -;*3*£i-“fi€:\.?*€1§i3'-'-‘=‘q14;7Ii-. ~.>---=.--- '~=-1":-,~, -v -at ---1a=.-- -.t-.-'.--*-;';"-r-~‘.\'--':»~I--=-.-- .-.---;=--:-.-_--. .-- :>:.. -1'»------.r-;»-.'.' .~. .-='.'i‘-*?i-- i-'-'- '» . =-.-1-' .. .- . .:.-=.-;-_---»;-1",,='-'=.'=:---... :
;.'.');| i’f=‘.-,.‘).=i|---f1=¢'- E-Ta, l'"!=ri"-r -;,- I i1, - ‘"=,g;' .\.».‘_,' -“-_ = :'.* '.". 1 -; 1 -1,?» .' gt." ’.».~:.'.=".'. ._*- ..- ' ,‘..*: I . .C .-| .-1|‘ -._.:,-.-"1 "--; ', . =‘»"'. I v-' '.'\ ' '1'-‘I.-.‘..‘...--"'. {W .:r,-,"“. -'.;_' . _ f'_\ ' 3' _-I --_._1--rfi_l'1,1=I_ E-_l't-f!r_,.\-€2.I -:..}"- ;:.'_'iY-_._ . ‘ i'I_ _~_!: 1--.-ml.‘ fr ' Eh, ,5 -_~; ,.--__-:__.. _ .'_ .'.J'.*\ ' ---: -4- .. .1 Ll -. _'_ '_ - -._‘ .'<_|_ J; 1 - 3:75» :2. -:-‘; -»’r_.. . |‘1 -
i -"~"=i1iT-l_17T"~’i‘i$i1i==~'-i-'?'='iL"id%r'Q*F GT215‘.’iii¥'=*=!.?T‘.§iZ5§'-37'Q5 '1-'--1"-" ?~_~'.-2‘ ;:"-“-qr? ‘.7’:-fr‘-‘I .2-E -1-.:=-=5». -'*'--7--..-:7 F-:1.-".5 ;r-~:-1'- '--: :1"? .,.". ;;=:- "2-.-.;=-.:>;-.-<54---f-i.-: -_-': :11--._"-i;";i ‘1';_"1£_-4| ._ -g}J.!£.Tf;iif:}1:f'{lJ;I::.:.0.fi‘:Ev F 1'1“-%_i{";;£}'1"-fl;1f-_‘;E.:_!’.;1 i_,_':lp_;."éé-|_;;;.__*,i§_:-'__:;,_-_i. ;:_:;iL).El_:';_\. :.g.l-:1..;="‘-,;__1:;__:!-Eta‘-J 5‘-t_:_ ;-H-;_:;[~|_-|_::;'_.-. -_I ___I_' .___'__ ’__w_:_‘¢ II: _. _|_;-;_;:.l$EikE-L-fig‘--5;2£:;‘r,|:.£}__‘] I _'" errrnrtstins =notauon~-xso Yifiux an T T T T111 T T ‘T TT T an S8 T Tl __-,~ 1- _ . . .-.. . _- , 1 --, _ = .\, - W _, . S 1 -. ..-. . 3, -.-

51*-'151J-5.-iiiiiifi?"!iE5*'*§.i7‘~’.'-'5'..*-5'-iii" ii‘T*"T't5t1:'Z¢i=‘5i'*?=’Z1Tii"FE?" '7'?‘-iii5"ll7'3;Ti'I'-Iii"-:i5»i3€§*fi-fig‘. i'-*.‘-45“5'- -."'-'1']-Q"5I§"?'= ‘L - -“F:.1? -'. iii"-"e":.’::'=H'i'? ' "T 'lf‘1.|T'if§r<\,“F-_1=1_I.|:.-.‘£1.‘¢'_}fl5_£,:;-3"-1-{-3*-L;_'1fi'=[v;f_*I'_l?;_\p-f\:'§_-‘J§1fii.,T ;of‘::.',“'-[Pi -.1."-_.‘='-1"=, I-f‘=---'=;~':I': .3 ~_; _-_-.\»':"~;-.-;--:-_.:x';-"r—"..};.-;.-. .;-,-i._:j.-\..'»-§,;=-?'$:\‘ 5-:-1-;.._--'»' I: 11.1:-'.-_~ If.‘ .~_-. ‘F-'5-‘~:‘ - .-.-=~; .- =I_?-*.'-_;@~.='_~:.',=i-.--' ;x:- _-:.. - r~=: -- T - "~ -T - '=: -- - ft= - - 1th t=-th -bra it ts"--‘W--*w1ll"o l ‘-.-..man3a=pre -ms} ~ ns. g~1l1.Q§§..-.IQi1l.. t ..<;r.@$.@ . J-,are.pr-m . . . e e. . . ct .<-:.e.-.-.. T. . -1.)-I-a.,;r _, i. _;o'r...; _../J ?‘.l_‘[I'_~::.n--‘Q-'|i;[‘§-.;I,-q.-tfivlrd ,5? *_ .-\r....;|_- ._.:.) ,, ~ ig,._.:.;.*.-,‘H-J‘-I-.: '.\-;‘;'. ‘:11 >11 ,-1-, ,-., ._.-.,-,1 t;. I -.' - '.". '.'..' " ".- —' ‘:3. ..‘-,-.;,"..»,':_‘| _-:-E ;
l:"'.F'E ' L=;iT='-.-§'-‘-{$5=r§l'F-Q-‘3il1I‘If.'l.“.=-A ;i‘i:'i§-§r{.ti,!‘l.'\fri\75I' ?l§-3;‘?/-‘Pi“.".7-I-'=.i;iI-'0"-' I'i‘r:i/r I!|I.:i"\.“'.|::‘i*"§:"-‘“li_".V"-¢.\\¢;i:-'l"‘II|':-:'-‘::;;-R;-»<;':-"'E"'l2-I 1131'» I-rlifl '| f"\"' I’-' 3' . -,l'.-"s ~'IL',t".'1"-‘ '.‘.'-‘:‘;".;"":=- "- .." T tth "thT -Tb‘ lc-I-wh wan-1 T itl1m:é't1T = ='i T Tl -. ~11 .1 'L in-6; 't' ¢-',F-.*!;5@»r|-'IIl.'\'-::-,$- \;';-.T\.-pf-I - -;-.~-';i.|§-::I.'- Li. I 1 Isl’. 5-:-_,. '."":’i.
-5" L1 ' 'T:I I-“-f -.:"-.-:.-‘ =-Ti -1;‘-'-i H-"i ‘-a:'EI'. 1--T - - T’ I-.-:-;-"."~"' Jr? |-r-=.-".-"~“'.-_.- --T‘-'—.~"-. T --‘ ' ‘ .-;>.'-I1. -.. .- T 1 L.» Tl;;:,,¢:,:.;-t__:;€T3.‘g_:.,.._n‘1-_i!;1;;§.1,5.-E;_.:.}..»,:-.54-;,,l§1_.L.E;-.;~J»"; .;__‘L.¢_;. ,1 _-__,..‘.,-‘=__.r_.-;;._-|,,_|:_‘h~i,' .e_",|'..j,.,»|,-,1-‘:_|. ,U_:,-;-:...;- 3-; -,‘-h._-__._-_-5 ._-_,_I_-Ii-‘I _:I_--__-,5-_,_.,'f._.,. q , _. t . _ ,', tr _ 1 ,_._;_:_.r:F.._.:._.:_:_:._ I _._..'_ _..
-.‘;i-;E::"~'E§';.'if,‘-'.l:§"Jli'43:’:f'§§?iL~f;’I,L;l.;=’:::=§*-2;»;'Qfi§i1°i-5?‘!i'!ii~:§-Fritz,,-i=€ ;.'--;;=-1; -=.~:g-:=.--- .~-1'-,:t.=»;-,'-.-.-;i;!:'—;-1»i<1~‘=.'-"1,:-_- .-_~:-1;1z:ii-i.-I-4-3!-9;--.-L 17- -.e;.", I .,._=:-,~.-.-=_.-,‘.-:.-",-:-;=' :-:_-;»-‘- '
'.._..'...,'..-1-1!.."_. ,"I4f'._._,. -“-2:. "I..»_ .I|.'11" i;_.;-"...-_1-I.-'-..~_,<,'§ ~12: ,v.¢L.><1Ttr,rf;_|.. __'_,\- - |_,'\.-.' ..T-=- -- -T.. --=-. ‘~-,.:._,1 -_'l--- .--’ " -- __¢'-‘<1 ._-_-- -.5 \- 1_--_-1_ _. ,_-'. . -. -.. - -.-...v __,i .4. -- ..
i':-"it! !F1;i":.i-i-3' bx“ ‘I-'1'"-iiilii‘-,:"§ '\‘l""-ajlirfili-iI‘“!' " -'.~ii;5"i- |_|:\‘;]-.1’ |.L':_-_i.i-_ 5:1‘, 'TI1_.:;._ELE. ;',;_£:T,l~‘|-:I I ‘I 3:-.‘_;.'I<_i i;‘..'-.-;:i':l: .‘,;.."..__;_. _‘ |.T. . ___ |.. i‘Li_'I.'T'*":-ii;'~jn' T"- _*'.-1| :'I‘_-.1.-'=,.f -.,_~;.;_I!'_lQi_iZ<;q-_j-_-.-;_§“-";-=; _;;_-_-;._ 5-r,i.'-:{s::."_-5".-..tf=,:li}§._1r'{. -;.-,1-55,5,.,;-,-,-a;.;.-;-,»,<;; _,-;._k-;;.;4.-¢.;t.~.:i=,---.._1'...-.1..- I ,1 .':@~=-,1-_ _, ' _ ¢'.;;-;.-.;-._".:.-.;-;- '<;.;.'-.'~ ‘ -

T2" . ..-' -.:-‘L-"-t I‘ '-; =’.-T -'- "' .:_'. '2. ' -‘I1-" -7T—i1 ‘P " 'iT’,"‘.:":" - l» '.-_'--_‘- '...'-'-' -' ".'. _'.i _:?‘:.i . -.‘.‘.-T5 ‘_ , 11:1: -'51-‘'.I.'-“' '-' .1: ' .'_ - -' ..: ..’ -' :-:T - . - .-. - -' -1;-1»|ii---;!.-<3_§_-.>,%,tili'1;-5-’a'iL;4i3'a-;fe?rrq=2L:=§i;1T=*'~-1.1-;-.=§ii.=;~i'i:.;.-1-"1-11‘-"F313?»f>;§,f;,§a:3;-.;1L5;i~:-rb=;.=1. :5:-=»~._,-.'-1»-:»:-.-.*-. .-; ’-'. :~.";' :5. ~: : §.;!':.jz,ar,=:*.'@,. - ='=.I.;-“-. ~.1. .-.--,..- __--,,=;- -'_ _' ,-_.;. ;'_;--._"1,—.- ,--< '\4_ _ _ -q¢.'-_¢'_ .-__ .._ :\.-‘- '_';_j - -_ -_, _ _ . ' _.-..!-r . ;'_ ~?_, -_- _.‘ __-¢_ _;..'_- .| '-'-'- '. _-_ ~,_- -4- '1?‘ ,' .-_| _.‘-. _ I _- _:..:.._. ._1.._ _ :-_ -
tgli;-‘.r'q§=:')~'_-1."1-?-,'_-.i:'i::<:l;-l-;:f-"=_;':5"'L!E';,.‘§:Qi;;';:3fly! 1-'1‘;-rain i'3{'i’1.ii T=,i‘iT.-1' ;.’i;a T -'7 ." .-~t-'f- ,Q§"'G"':"1}i'j|'1='."»'. -T;rT; -""131. -;‘~,'-T:£.<'. -5:‘-' 1'i'T<f‘;)5‘\r .' ' _— I_-"i"t\.?! ' .;.r- -- ;. . - Irj';iv§|_:.--_'_’__-.: *,- '»__- '= ---.1 '
==.I.="“ T".-"fies?--"0 :-"-.g.'-.—T-I “'*i:'R.1t;.:i1*.-. "ii::'I,x'&;-1.‘R1tL-I:ia;I"' T‘.'-@'_:1i'-H$.=I"1".-'§:'~l-rib». T:',T-H-"J4 f1i.".’<f-.=lT4,'.¢.1_'-§‘~' -‘-r:-- - >.-l--- s"=';--"'_~. .‘-:‘ :-It|""l= ---I ' '-"i'.": , . -',f.'-' .=' -'Ig',l-"~:--l_:,ii,,‘-I»-Q-.1-. -.-;-.-I-I,-f-H l-_'T'.' T‘ T . ".---' __ '.' T _ "i ' _.1 " " ,- ‘ . ‘ T I’ . T"_1‘ ‘:'.'-.- .\. x= . T s.1s;.c.aLli':.cl<=a. ~ A. .~.[a0liiiSGI-50151611-lI16i;~.a>§l1bJ6Ct;§i1SCl.lS_SBd;.Elt,.16[1gTflfl».,1Il_S_6Qfi10n»4.~1-_ ..=._.;¢., -; ,H.-. .-‘:51 .twat-»7=:r;r3~‘:~'*,;}91'»;;j;ilfl-Ir¢.:!.‘i:|=.n1:n1:;-I=~-|r;,=:r-;;~:;f<;>'\=1:-_:-,-3-;*-=:ii?I>'[-=-_ "J-"-r-.“~T= "--‘:=- .. - ':!1J-,~a,~=.*-b;.+ '7" ‘-'1'”--‘If-' '-.'.;"- .=¢*.;-. -.. .-T-iii-~.*.:—. '--,T-7 ‘.'r=;~';-“= ’Y.“I-'1-rT-?.a‘=-:-,1;;i--.-=:,-:9a=- - .--_~.T-3-=2 . ..!: -‘\-'"..-:-.*I.;"..-5*.-,:r'|. --i.L'-:.:.';‘..- L1.1i.1=~.-_=t>1‘+'.‘-"l.I§ll-Pie "its.-11--r.'..-Tr.iEi_~l'r'.":=‘=i=rIT=‘=i-10*-i'-‘;‘a~%'".— 1- T=hJ".'* \-1111!? -f-'3}7!I ,' '-'*II'-"-‘-"- -'--T-'-'-I--'-'-='-__ hi‘ -"-1-I ~ xi-Y-_-,1’,-~_ .'.-l.--.'|‘:~"lI *:lI!i'. I, . .-l,_. ’__"'f____ . 1 e e... . _ ..=; . .2.'hiI-J

I"

4.1.4 MOV Instruction
The MOV instruction copies data from a source operand to a destination operand. Known as a
dam transfer inTstruction, it is used in virtually every program. Its basic format shows that the
first operand is the destination and the second operand is the source:

MOV destination, source

The destination operandis contents change, but the source operand is unchanged. The right to
left movement of data is similar to the assignent statement in C++ or Java:

dest = source;

(In nearly all assembly language instructions, the left-hand operand is the destination and the
right-hand operand is the source.)

MOV is very flexible in its use of operands, as long as the following. rules are observed:

- Both operands must be the same size.
I Both operands cannot be memory operands.
- CS, EIP, and IP cannot be destination operands.
' An immediate value cannot be moved to a segment register.

Here is a list of the general variants-of MOV, excluding segment registers:

MOV reg, reg
MOV mem, reg
MOV reg,mem
MOV mem,imrn
MOV reg,imtn

Segment registers are not modified by programs running in Protected mode. The following
options are available, with the exception that CS cannot be a target operand:

MOV r'/ml6, sreg
MOV sreg, r/ml6

4.1 Data Transfer Instructions 101

Memory to Memory A single MOV instruction cannot be used to move. data directly from one
memory location to another. Instead, you can move the source operand’s value to a register
before moving it tothe destination operand:

.data
varl WORD ?
var2 WORD ?
.code
mov aX,varl
mov var2,ax

You must consider the minimum number of bytes required by an integer constant when
copying it to a variable or register. For unsigned integer constants, refer to Table 1-4 in Chapter 1.
For signed integer constants. refer to Table 1-7, also in Chapter l .

4.1.5 ZeroISign Extension of Integers

4.1.5.1 Copying Smaller Values to Larger Ones
We have already pointed out that if you try to use the MOV instruction to copy an integer from a
smaller operand to a larger one, an error results. But sometimes you really have to make such a
move. For example, suppose count (unsigned, 1.6-bits) must be moved to ECX (32 bits). A sim-
ple solution is to set ECX to zero and then move count to CX:

.data
count WORD l
.code
mov ecx,0
mov cx,count

What happens if we try the same approach with a signed integer equal to --16‘?

.data
signedval SWORD —l6 ; FFFOh (-16)
.code
mov ecx,0
mov cx,signedVal ; ECX = 0000FFFOh (+65520)

The value in EC_X'(+65520) is completely different from -16. On the other hand, if we had filled
ECX first with FFFFFFFFh and then copied signedVal to CX, the final value would have been
correct:

mov ecx,0FFFFFFFFh
mov cx,signedVal ; ECX = FFFFFFFOh (-16)

This presTents a problem when dealing with signed integers: we don’t want to have to check their
values to see if they are positive or negatTive before deciding how to fill destination operands. For-
tunately, the engineers at Intel noticed this problem when designing the Intel386 processor, and
introduced the MOVZX and MOVSX instructions to. deal with both unsigned and signed integers.

102 Chapter 4 0 Data Transfers, Addressing, and Arithmetic

4.1.5.2 MOVZX Instruction
The MOVZX.instruction (movewith zero-extend) copies the contents of a source operand into -a
destination operand and zero-extends the value to "either 16 or 32 bits. This instruction is only
used with unsigned integers. There are_ three variants:

MOVZX r32,r/m8
MOVZX r32,_r/m16.
Movzx 1-16, r/m8

(Operand notation was explained in Table 4-1.) In each of the three variants, the first operand is
the destination and the.second is the source. The destination must be a register. The following
figure shows an 8-bit"T's'ource operand zero-extended into a 16-bit destination:

0 I 1 0 0 0 1 1 1 1 I -Source

iOOOO0O'OO I 10001111.] Destination

The following examples use registers for all operands, showing all the size variations:

mov bx,0A69Bh
movzx eax,bx = 0000A69Bh
movzx edx,b1 = 0000009Bh
movzx cx,bl = 009Bh52%“

efi

The following examples use memory operands for the source and produce the same results:

.data"
bytel BYTE 9Bh
wordl WORD 0A69Bh
.code
movzx eax,wordl = 0000A69Bh
movzx edx,by"i:el = 000000931-1
movzx cx,bytel = OO9Bhorata""-9:?

2 -~ ~" ' ":%=;+ir:- :;===- - .1: IIf you plan to.;11n_&1;1_1t%lIcst the bo_ol__c_§s exmnplesgrt R:-:;a1;,address mode don’t
H I_'\t 4 “Hi ' A‘ -t I ': F Ir_i"I " I .

BS.

"Termsmain ..Irrr‘ .__:::‘

"T"-Tr -. -i-iii-ii =-: .§Ti"'t’:§.*=‘.:;i!ii-iT». Lu‘-|‘l‘i‘ ‘iizfiiiiii-‘:'-:| I-'§:i"¥*i'--L ITFIH..H.r=-:= --ii" -We ta'-r~rtr.ii*‘+'."1"‘*;iaii%*‘€1""|'itiiii‘FIei‘=i-T*Lil{lii]i-2'§!!i-‘=.iiit_ @ |~l“_., -§__"'~,\ jzt‘ I . |-.',I|._.., I-:,i'|£'i‘}i| ,1-_ .,.L-E_Ffil_.-:».- _.;E|_.I 1.0-: _ _ _ I-:3}?“.71."‘
J-

.-;I. >'_‘
-i_|

2.T

.

_.
‘e ..‘:-

w ~;1T;'ri-"::'-r::—'_ iT:==_
-—:.r;--_'-#1-1-\.-:2-'.,,__ 1-‘E'i:?;7""-'!T‘_'-_:."f.‘-.'_

~—:'

-".1

ant,‘.L.r4-_|
-.1 "e

-'_T‘-1. ..
3?. ,1

i;'_‘-_

Ifi:T7'1
I-»;-._.

_- .. .--- .--. .. ,..|. _.--_.
" T‘ | .»._“_ ,--_. .'¢'- . 1.

P1: F.‘ "“'-.'l‘-"'-$ii1"-"~;--- I“;-._'-.'F?-If‘ ?'1-I» :11\, :2]4 .-...-- l.2;_,:

' - - - - - 1- -.-- .;:‘::' . ';. 1 -... ‘.1331’; ‘- ..- .- : -.
_ I _ £r,Ei" 1_ 1 ‘ ‘_(_ §iLF:t_l.:__ _.|_‘%éi! -|_l_ _ _|Ei|i,hl|'}:l;,5-..\}i_|_:|:lJlll4§Q::<. _ __;<'{:i I __ _ -_‘ :| r 13. ! ilrstu-:2;il‘J1t:.|. .--5'.’-I“.-;-‘.7 ;.-1-Sui‘-...1.-z.i.1-!.i1i-;iI:i"tJ;ii"-.~=:.:1 ::!iaa-.=!=: .-.55, :Fii¥i=?.-:|'.:i"-iii:-512|.§g1-:1=.1‘ -tea:-. '1--"i\|l',.-J-I».-'. --iissarii-1.::§=..:'ii‘iis::i;i| 1%

4.1 Data Transfer instructions 103

4.1.5.3 MOVSX Instruction
The MOVSXinst1uction (move with sign-extend) copies the contents of a source operand into a
destination operand and sign-extends the value to either 16 or 32 bits. This instruction is only
used with signed integers. There are three variants:

MOVSX r32,r/m8
MOVSX r32,r/mla
MOVSX rl6,r/m8

An operand is sign-extended by taking the smaller operand’s highest bit and repeating
(replicating) the bit throughout the extended bits in the destinationToperand. For example, if an
8-bit value of 1000111lb is moved to a 16-bit destination, the lowest 8 bits are copied as is.
Next, as shown in the following figure, the highest bit of the source is copied into each -of the
high 8 bit positions of the destination:

I///////L/1(l00 11 11 H Sbmte

i11111111l10001111lDestination

The following examples use registers for all operands, using all the size variations:

mov bx,0A69Bh
movsx eax,bx ; EAX = FFFFA69Bh
movsx edx,bl ; EDX = FFFFFF9Bh
movsx cx,bl ; CX = FF9Bh

4.1.6 LAHF and SAHF Instructions
The LAHF (load status flags into AH) instruction copies the low byte of the EFLAGS register
into AH. The ‘following flags are copied: Sign, Zero, Auxiliary Carry, Parity, and Carry. Using
this instruction, you can easily save a copy of the flags in a variable for safekeeping:

rdata
saveflags BYTE ?
.code
lahf ; load flags into AH
mov saveflags,ah ; save them in a variable

The SAHF (store AH into status flags) instruction copies AH into the low byte of the
EFLAGS register. For example, you ca.n retrieve the values of flags saved earlier in a variable:

mov ah,saveflags ; load saved flags into AH
sahf ; copy into Flags register

104 Chapter 4 - Data Transfers, Addressing, and Arithmetic

4.1.7 XCHG Instruction
The XCI-IG (exchange data) instruction exchanges the contents of two operands. There are three
variants:

XCHG reg,reg
XCHG reg;mem
XCHG mem,reg

The rules for operands in the XCHG instruction ane the same as those for the MOV instruction
(Section 4.1.4). except that XCHG does not accept immediate operands.

In array sorting applications, XCHG provides a simple way to exchange two array ele-
ments. Here are a few examples using XCHG:

xchg ax,bx ; exchange 16-bit regs
xchg ah,al ; exchange 8-bit regs
xchg varl,bx ; exchange 16-bit mem op with BX
xchg eax,ebx ; exchange 32~bit regs

To exchange two memory operands, use a register as a temporary container and combine
MOV with XCHG:

mov ax,vall
xchg ax,ua12
mov vall,ax

4.1.8 Direct-Offset Operands
You can add a displacement to the name of a variable, creating a direct-offset operand. This lets
you access memory locations that may not have explicit labels. Let‘s begin with an array of
bytes named arrayB:

arrayB BYTE l0h,20h,30h,40h,50h

If we use MOV with arrayB as the source operand, we automatically move the first byte in the
array:

mgv al,arrayB ; AL = 10h

We can access the second byte in the array by adding l to the offset of arrayB:

mov al,[arrayB+l] ; AL = 20h

The third byte is accessed by adding 2:

mov al,[arrayB+2] ; AL = 30h

An expression-such as arrayB+1 produces what is called an ejfecriiwe address by adding a
constant to the variable’s olfset. When we surround an effective address with brackets, it is to
show that the expression is deneferenced to obtain the contents of its target memory location.
The brackets are not required by MASM, so you -can also write:

mov al,arrayB+l

4.1 Data Transfer Instructions 105

Range Checking MASM has no built-in range "checking for effective addresses. If we execute
the following statement, the assembler just retrieves a byte of memory outside the array. This
creates a hard—to-find logic bug, so programmers try to be extra careful when ‘checking array
references:

mov al,[arrayB+20] ; AL = ??

Word and Doubleword Arrays If you‘re using an array of 16-bit words, remember that the off-
set of each array element is two bytes beyond the previous one. That is why we add 2 to
Ar1'ayW in the next example to reach the second element:

.data
arrayw WORD lO0h,200h,300h
.code
mov ax,arrayW ; AX = l0Oh
mov ax,[arrayW+2] ; AX = 200h

Similarly, the second element in -a doubleword array is four bytes beyond the first one:

.data
arrayD DWORD 1000Oh,2000Oh
.code
mov eax,arrayD ; EAX = 1000Oh
mov eax,[arrayD+4] : EAX = 2000Oh

4.1.9 Example Program (Moves)
The following program demonstrates most of the data movement examples -shown in
Section 4.1:

TITLE Data Transfer Examples (Moves.asm)

INCLUDE Irvine32.inc
.data
vall WORD lO00h
val2 WORD 2000h
arrayB BYTE 10h, 20h, 30h, 40h, 50h
arrayw WORD lO0h,200h,300h
arrayD DWORD 1000Oh,20000h

.code
main PROC

; MOVZX
mov .bx,OA69Bh
movzx eax,bx ; EAX = OOOOA69Bh
movzx edx,bl ;-EDX = OOOOOO9Bh
movzx cx,bl ; CX = 0O9Bh

106 Chapter" 4 - Data Transfers, Addressing, and Arithmetic

MOVSX
mov bx.OA69Bh
movsx eax,bx
movsx edx,bl
movsx cx,bl

0-
I

; EAX
; EDX
;.CX

Memory—to—memory exchange:
mov ax,vall
xchg ax,val2
mov val1,ax

F
; AX
; AX
; val

F
mov al,arrayB ; AL
mov al,[arrayB+l] ; AL
mov al,[arrayB+2] ; AL

l

Direct-Offset Addressing (byte array)

FFFEA69Bh
FFFFFF9Bh
FF9Bh

lOOOh
2000h, val2 = 1000h
= 2000h

I-
I-

10h
20h
30h-

; Direct-Offset Addressing (word array):
mov ax,arrayW ; AX = l0Oh
mov ax,[arrayW+2] ; AX = 200h

Direct—Offset Addressing (doubleword array}:
mov eax,arrayD ; EAX = lOOOOh
mov eax,[arrayD+4] ; EAX = 2000Oh

0-
I

exit
main ENDP
END main

This program generates no screen output, but you can (and should) run it using -a debugger.
Please refer to the tutorial on the book‘s Web site that shows how to use the Microsoft Visual
Studio debugger. In Chapter 5 (Section 5.3) -you will learn how to display integer values on the
screen by making calls to a function library supplied with this book.

4.1.10 Section Review

1.
2.
3.

What are the three basic types of operands?-
(True/Faise): The destination operand of a MOV instruction cannot be a segment register.
(True/False): In a MOV instruction, the second operand is known as the destination
operand.
(Tru-e/False): The EIP register cannot be the destination operand of a MOV instruction.

5. In the operation notation used by Intel, what does r/m3_2 indicate‘?
6. In the operation notation used by Intel, what does imm16 indicate?-

4.

Use the following variable definitionsfor the remaining questions in this section:

.data
varl SBYTE -4,-2,3,1
var2'WORD'lOOOh,2000h,3000h,4000h

4.2 Addition and Subtraction 107

vara DWORD 1,2,3,4,5

7. For each of the following statements, state whether or not the instruction" is valid:

a. mov ax,varl
b. mov ax,var2
c. mov eax,var3
d. mov var2,var3
e. movzx ax,var2
f. movzx var2,al
g. mov ds,ax
h. mov ds,l000h

8. What will be the hexadecimal value of the destination operand after each of the following
instructions executes in sequence?

mov al,varl ; a.
mov ah,[varl+3] ; b.

9. What will be the value of the destination operand after each of the following instructions
executes in sequence?

mov ax,var2
mov ax,[var2+4]
mov ax,var3
mov ax,[var3-2] Q-=OD'$lJ

10. What will be the value of the destination operand after each of the following instructions-
executes in sequence?

9'9?”

mov edx,var4 ;
movzx edx,var2
mov edx,[var4+4]
movsx edx,varl

4.2 Addition and Subtraction
Integer addition and subtraction are two of the most fundamental operations that a CPU can per-
form. In this section, we explore instructions that perform binary addition and subtraction: INC
(increment), DEC (decrement), ADD, SUB. and NEG (negate)..

4.2.1 INC and DEC Instructions
The INC (increment) and DEC (decrement) instructions, respectively, add l and subtract l from
a single operand. The syntax is:

INC reglmem
DEC reglmem

106 Chapter 4 - Data Transfers, Addressing, and Arithmetic

Following are some examples:

.data
myword WORD l000h
.code
inc nwwbrd ; l00lh
mov bx,myWord
dec bx ; 1000h

4.2.2 ADD Instruction
The ADD instruction adds a source operand to. a destination operand of the same size. The syn-
tax is:

ADD dest, source

Source is unchanged by the operation, and the sum is -stored in the destination -operand. The set
of possible..operands is the same as for the MOV instruction (see Section 4.1.4). Here is a short
code example that adds two 32-bit integers:

.data
varl DWORD l0000h
var2 DWORD 2000Oh
.code
mov"eax,varl
add_eax,var2 ; 30000h

Flags The Carry, Zero, Sign, Overflow, Auxiliary Carry, and Parity flags are changed accord-
ing to the value of thedestination operand. We will elaborate on flag values in Section 4.2.6.

4.2.3 SUB Instruction
The SUB instruction subtracts a source operand from a destination operand. The set of possible
operands is the same as for the ADD and MOV instructions (see Section 4.1.4). The syntax is:

SUB dost, source

Here is a short code example that subtracts two 32-bit integers:

.data
varl DWORD 30000h
var2 DWORD 10000h
.code
mov eax,varl
sub eax,var2 ;.20000h

The CPU performs "subtraction by first negating and then adding. For example, 4 — l is
really 4 + (-1). Recall that two’s complement notation is used for negative numbers, so -1 is
represented by 11111111, as shown below:

4.2 Addition and Subtraction 109

I-

Chny 1 1 1 1 1 1

+ r—-O r—*CD
._i..ii

|--O
_

CD O l—" CD CD I"'\. -8-H-J

1'111i1l(-1)

7 _ _ 1 7

Iololololololllll <3>
This addition generated a carry out of the highest bit position, but the carry bit is- ignored for all
signed arithmetic.

Flags The Carry, Zero, Sign, Overflow, Auxiliary Carry, and Parity flags are changed accord-
ing to the value of the destination operand. We will elaborate on this in Section 4.2.6.

4.2.4 NEG Instruction
The NEG (negate) instruction reverses the sign of a number by converting the number to its
two‘s complement. The following operands areperrnitted:

NEG reg
NEG mem

Recall that the two’s complement of a number can be found by reversing all the bits in the desti-
nation operand and -adding 1.

Flags The Carry, Zero, Sign, Overflow, Auxiliary Carry, and Parity flags are changed accord-
ing to the value of the destination operand. We will-elaborate on this in Section 4.2.6..

4.2.5 Implementing Arithmetic Expressions
Armed with the ADD, SUB, and NEG insunctions, you now have the means to implement arith-
metic expressions involving addition, subtraction, andnegation in assembly language. In other
words, we can simulate what a C-1+ compiler might do when reading an expression such as:

Rval = -Xval + (Yval - Zval);

The following signed 32-bit variables will be used:

Rval SDWORD ?
Xval SDWORD 26
Yval SDWORD 30
Zval SDWORD 40

When translating an expression, it is useful to evaluate each term separately and combine
the terms at the end. First, we negate a copy of Xval:

; first term: —Xval
mov eax,Xval
neg eax ; EAX = -26

110 Chapter 4 ~ Data Transfers, Addressing, and Arithmetic

Then Yval is copied to a register and Zval is subtracted from it:

; second term: (Yval - Zval)
mov ebx,Yval
sub ebx,Zval ; EBX = -10

Finally, the two terms (in BAX and EBX) are added:

; add the terms and store:
add eax,ebx
mov Rval,eax ; -36

4.2.6 Flags Affected by Arithmetic
Whenever a program performs arithmetic, there is a possibility of errors caused by overflow
(values either too small .or to.o large). High-level languages generally do not detect integer over-
flow, leading to hard-to-catch bugs in program execution. In assembly language, on the other
hand. you have a good deal of control over overflow errors because you can .check the values of
the CPU status flags after each operation.

Our discussion oi’ the status flags in this section applies to the ADD, SUB, INC, and DEC
instructions. Two other status flags, Auxiliary Carry and Parity, are less important and will be
.deferred until later.

1 i ‘

You can display the values of the CPU status flags in your programs inserting acall to the
DumpRegs procedure, shown in--Chapter-3. -:-, g: .;-I

4.2.6.1 Zero and Sign Flags
The Zero flag is set when the destination operand .of an arithmetic instruction is assigned a value
of zero. For example:

mov cx,l
subcx,l ;CX=0,ZF=1
mov ax,0FFFFh
inc-ax ;AX=0,ZF=1
incax ;AX=l,ZF=0

The Sign flag is set when the result of an arithmetic operation is negative. For example:

mov cx,0
sub cx,l ;CX=--1, SF=l
addcx,2 ;CX=l,SF=0

4.2.62 Carry Flag (unsigned arithmetic)
The Carry flag is significant only when the CPU performs unsigned arithmetic. If the result of an
unsigned operation is too large (or too small) for the destination operand, the Carry flag

4.2 Addition and Subtraction 111

is set. For example, the next ADD instruction sets the Carry flag because the sum will not fit into
AL, an 8-bit register:

mov al,0FFh
add al,l ;CF = 1, AL = O0

The following diagram shows what happens at the bit level when we add 1 to 0FFh. The carry
out of the highest bit position of AL is automatically placed in the Carry flag:

Carry:11111111

A l
l on 1» | on I 0 lrl ~10 1

On the other hand, if we add 1 to 00FFh in AX, the sum easily fits into 16 bits and the Carry flag
is. cleared:

-I" CDl--l Q1-1 CDl--l
._._....4.

O1-» O1-» CDI-1' CD;i—"
dime,‘

I-"I-*1

‘.

mov ax,00FFh
add ax,1 ; CF = 0, AX = 0l00h

If we add 1 to FFFFh in the AX register, a Carry is generated out of the high bit of AX:

mov ax,0FFFFh
add ax,l ; CF = 1, AX = O0O0h

If we subtract a larger unsigned integer from a smaller one, the Carry flag is set and the
value in AL is invalid:

mov al,l
sub al,2 ;CF=l

___ ' r _ r '

nec.'arseuerrqn_s_ as, not affect =tl1‘e Can? flag. I

4.2.6.3 Overflow Flag (signed arithmetic)
The Overflow flag is relevant only when performing signed arithmetic. Specifically, it is -set
when an arithmetic operation generates a signed result that cannot fit in the destination operand.
For example, the largest signed value that may be. stored in a byte is +127; if we add 1 to. this-, the
Overflow flag is set:

mov al,+l27
add al,l ; OF = 1

112 Chapter 4 - Data Transfers, Addressing, and Arlthmetlc

Similarly, the smallest negative byte value is -128. If we subtract 1 from this, the Overflow flag
is set:

mov al,-128
sub al,l ; OF = 1

The Addition Test There is a very easy way to tell if -signed overflow has occurred when add-
ing two operands. Overflow has occurred if:

~ Two positive operands were added and their sum is negative.
~ Two negative operands were added and their sum is positive.

Overflow never occurs when the signs of two addition operands are different.

The CPU Knows The CPU detects signed overflow in a mechanical way. It compares the
Carry flag to the bit that is .carried into the sign bit of the destination operand. If they are
unequal, the Overflow flag is set. For example, when adding the binary values 10000000 and
11111110, there is no carry from bit 6 to bit 7, but there is a carry from bit 7 into the Carry flag.
Overflow has occurred, as shown in the following figure:

No fro b't6to77 6ca§ry m 1

c1==1 rooooooo
+ 1 1 1 1 1 1 1 O

= 0 1 1 1 1 1 1 0

A slightly more technical way of explaining overflow is to say that the flag isassigned the result
of exclusive-ORing the carry out of bit 7 with the carry out of bit 6. The exclusive-OR operation
only returns a 1 when its two input bits are different.

NEG Instruction The NEG instruction can produce an invalid result if the destination operand
cannot be Stored correctly. For example, if we move -128 to AL and try to negate it-, the value
+128 cannot be stored in AL. This-causes the Overflow flag to be set, and an invalid value to be
moved to AL:

mov al,-128 ; AL = l0000000b
neg al ; AL = l0000000b, OF = 1

On the other hand, if +127 is negated, the result is valid and the Overflow flag is clear:

mov al,+l27 ; AL = Olllllllb

neg al ; AL = l000000lb, OF = 0

4.2 Addition and Subtraction 3

flags I0. ignore.

Students often ask how the CPU knows whether a number is signed or unsig-red. One can only
give‘ what seems to be a dumb answer". The CPU doesn’t know--only the programmer knows

. The CPU sets all the status flags after an operation, not knowing which of-the flags W111 be
, important to the programmer. The programmer chooses which flags to interpret, and which

4.2.7 Example Program (AddSub3)
Let’s'lo'ok at a simple" example program that demonstrates the ADD, SUB INC DEC, and NEG
instructions, and shows how the CPU status flags are affected:

TITLE Addition and Subtraction (AddSub3.asm)

INCLUDE Irvine32.inc
.data
Rval SDWORD ?
Xval SDWORD 26
Yval SDWORD 30
Zval SDWORD 4 0

.code
main PROC

; INC and DEC
mov ax,lOOOh
inc ax ; l00lh
dec ax ; lOOOh

; Expression: Rval = —Xval + (Yval - Zval)
mov .eax,Xval
neg eax
mov ebx,Yval
sub ebx,Zval
add eax.ebx
mov Rval,eax

; Zero flag example:
mov cx,l
sub cx,l
mov ax,OFFFFh
inc ax

; Sign flag example:
mov cx,O
sub cx,l
mov ax,7FFFh
add ax,2

; Carry flag example:
mov a1,0FFh
add a1,l

1

Q

-.--

ZF

ZF

SF

SF

CF , AL = O0

114 Chaptcr 4 - Data Transfers, Addreaalng, and Arithmetic

; Overflow flag example:
mov al,+l27
add
mov
sub

611,1 ; OF =
al,-
al,l

28
;OF=

exit
main ENDP
END main

4.2.8 Section Review
Use the following datafor the next several questions:

-lib->t\Jr—*

5

6.

7.
8.

9.

10
ll
12

1'

.data
vall BYTE 10h
val2 WORD 8000h
V6113 DWORD OFFFF11
‘V6114 WORD '7FFFh.

Write an instruction that increments val2.
Write an instruction that subtracts val3 from EAX.
Write one-Ior more instructions that subtract val4 from val2.
If val2 is incremented by 1 using the ADD instruction, what will be the values of the Carry
and Sign flags‘?
If val4 is incremented by 1 using the ADD instruction, what will be the values ofthe Over-
flow and Sign flags?
Wh'er'e indicated, write down the values of the Carry, Sign, Zero, and Overflow flags after
each instruction has executed:

mov ax.7FFOh
add é1l,.lQh ,1’ E1. CF = SF = = OF =I:-'1 "13

add ah.l
add ax;2

b..CF
c. CF

SF =
1:111:81 "13"13

q-.-I

-I
an-Q

Implement the following expression in assembly language: A-X = (—val2 + BX) — val4.
(1’esflVo): Is it possible to set the Overflow flag if you add a positive integer to a negative
integer‘?
(1’esflVo).' Will the Overflow flag be set if you add a negative integer to a negative integer
and produce a positive result? 1
(Ye-sflV0).' Is it possible for the NEG instruction -to set the Overflow flag‘?
(1’esflVo): Is it possible for both the Sign and Zero flags to be set at the same time‘?
Challenge: Write a sequence of two instructions that set both the Carry and Overflow flags
at the same time.

4.3 Data-Related Operators and Directives 115

4.3 Data-Related Operators and Directives '
Operators and directives, as we said earlier, are not part of the Intel instruction set. They are only
understood by the assembler (in this case, Microsoft MASM). Various assemblers‘ have differing
syntaxes for operators and_ directives, because there is no single defined standard. The various
assembler makers often seem to be competing with each other, in fact, by providing more and
more sophisticated features.

MASM has a numb.er of operators that are effective tools for describing and addressing
variables:

' The OFFSET operator returns the distance of a variable from the beginning of its enclos-
ing segment.

' The PTR operator lets you override a variable’s default size.
~ The TYPE operator returns the size (in bytes) of each element in an array.
~ The LENGTHOF operator returns the number of elements in an array.
~ The SIZEOF operator returns the number of bytes used by an array initializer.

In addition, the LABEL directive provides a way to redefine the same variable with differ-
ent size attributes. The operators and directives in this chapter represent only a small subset of
the operators supported by MASM. You may want to view the complete list in Appendix D.

"MASM5 used slightly different operator names: LENGTH (rather than LENGTHOF),
SIZE(rather than SIZEOF). Avoid using the old names. because they have slightly different
meanings.

M1--

4.3.1 OFFSET Operator
The OFFSET operator returns the offset of a data label. The offset represents the distance, in
bytes, of the label from the beginning of the data segment. In Protected mode, an offset is always
32 bits long. In Real-address mode, offsets are only 16 bits. To illustrate, the following figure
-shows a variable named myByte inside the data segment:

offset
*1
l ll _ I

myByte

4.3.1.1 OFFSET Example
In the next example, we declare three different types of variables:

.data
bval BYTE ?

116 Chapter 4 I Data Transfers, Addressing, and Arithmetic

wval WORD ?
dval DWORD ?
dVal2 DWORD 2

If bVal were located at offset 00404000 (hexadecimal), the OFFSET operator would return the
following values:

mov esi,OFFSET bval = 00404000
mov esi,OFFSET wval = 00404001
mov esi,OFFSET dval ; ESI = 00404003
mov esi,OFFSET dVal2 ; ESI = 00404007

noH0 D1DUU}U}l—ll—l

The OFFSET operator can -also be used with a direct-offset operand. Suppose that
myArray contains five 16-bit words. The following MOV instruction obtains the offset of
myArray, -adds 4, and moves the sum to. ESI:

.data
myarray WORD 1,2,3,4,5
.code
mov esi,QFFSE'JJ myarray + 4

4.3.2 ALIGN Directive
You can use the ALIGN directive to align -a variable on a byte, word, doubleword, or paragraph
boundary. The syntax is:

ALIGN b0:-incl

bound can be 1, 2, or 4. If it equals l, the next variable or byte is aligned on a 1-byte boundary
(the default). Lf bound is 2, the next variable is aligned on an even~numbered address, and if
bound is 4, the next address is a multiple of .4. If necessary, the assembler inserts one or more
empty bytes before the variable. Why bother aligning data‘? Because the CPU can process data
stored at even-numbered addresses more quickly than those at odd-numbered addresses.

Revising our example from Section 4.3.1.1, we know that bVal is automatically at an
even-numbered offset. Then, if we insert the ALIGN 2 before wVal, it is assigned an even-
numbered offset. To illustrate, we-can arbitrarily locate the first variable at offset 0.0404000:

bval BYTE ? ;00404000
ALIGN 2
wval WORD Z’ ;004040.02
bVal2- BYTE '2 ; 00404004
ALIGN 4
dval DWORD ? ; 00404008
dVal2 DWORD ? ; 0040400C

Note that dVa1 would have been at offset 00404005, but the ALIGN 4 directive bumped it up to
offset 00404008.

4.3 Date-Related Operators and Directives 117

4.3.3 PTR Operator
You can use the PTR operator to override the. default size of an operand. This is only necessary
when you’re trying to access the variable using a size attribute that‘s different from the one used
to declare the variable.

Suppose. for example, that you would like to move the lower 16 bits of a doubleword vari-
able named myDouble into AX. The assembler will not permit the following move because the
operand sizes do not match:

. data
mynouble DWORD 12345678h
. code
mov ax, myDoub1.e ; error

But the WORD PTR operator makes it possible to move the low-order word (5678h) to AX:

mov ax, WORD PTR myDouble

Why wasn’t l234h moved into AX‘? That has to do with the !im'e-endian storage format used by
the Intel CPU, which we first discussed in Section 3.4.9. In the following figure, the memory
layout of myDouble is shown three ways: first as a doubleword, then as two words (5'678h,
l234h). and finally as four bytes (78h._ 56h, 34h, l2h):

doubleword word _ byte offset

1 12345678 I S678 78 0000 myDouble

l 0001 myD0uble + l56
|1234 34 0002 myD0uble + 2

12 0003 myD0uble + 3

The CPU can access memory in any of these three ways, independent of the way a variable
was defined. For example. if myDouble begins at offset 0000, the" 16-bit value stored at that
address is 5678h.We could also retrieve l234h, the word at location myDouble+2 usin-g the fol-
lowing statement:

mov a_.x,.WORD PTR [myDouble+21 ; 1'23 4h

Similarly, we could use the BYTE PTR operator to move -a single byte from myDouble to BL:

mov bl,_BYTE PTR myDouble ; 78h

Note that PTR must be used in combination with one of the standard assembler data types:
BYTE, SBYTE. WORD, SWORD, DWORD, SDWORD, FWORD, QWORD. or TBYTE.

Moving Smaller Values into Larger Destinations We might want to move two smaller values
from memory to a larger destination operand. In the next example, the first word is "copied to the

118 Chapter 4 ~ Data Transfers, Addressing, and Arlthmetlc

lower half of EAX, and the second word is copied to the upper half. The DWORD PTR operator
makes this possible:

.data
wOrdList WORD 5678h,l234h
.code
mov eax.DWORD PTR w0rdList ; EAX = l2345678h

4.3.4 TYPE Operator
The TYPE. operator returns the size, in bytes, of a single element of'a variable. For example, the
TYPE of a byte equals l, the -TYPE of a word equals 2, the TYPE of a doubleword is 4, and the
TYPE of a quadword is. 8. Here are examples of each:

.data
varl BYTE 2
var2 WORD 2
var3 DWORD ?
var4 QWORD ?

The following table shows the value of each TYPE expression:

'1' '.~<'1:=-;:-.r.<-r In-5-iir:r~s;atz]i',§a1fi%p§t;;=.i:1:!ri.q ~|i§];iT i:1.:"+-'_:iI=:f'1n:ir;;1i...;g:gs:5s. .1
i Y1; |""%~ " ' 1' ""'-i"t" ijfllrl !__; ll _1I',-.‘7.ii.‘ I i |';' 'q ==f.; ;.‘ Exp,,,,ess[p_r_j|:~ ' ';!_-fgfl Iahlalue .5 .
; . . _.,_ -.|‘fi;.-_ I |::‘:j. - I . . a, _,= _;.l.._._. .--='.-1 3 _... ..‘eJ_-¢,__ __I.;. - .. . J.-_

'FYPE\m£l l

TYPEvm2 , 2

TYPEvm3 4

TYPEvm4 8

4.3.5 LENGTHOF Operator
The LENGTHOF operator counts the number of elements in an array, defined. by the values
appearing on the same line as its label. We will use the following data as an example:

.data
bytel BYTE 10.20.30
arrayl WORD 30 DUP(?).0.0
Iarray2 WORD 5 DUP(3 DUP(?))
arrey3 DWORD 1.2.3.4
digitStr BYTE "12345678",0

The following table lists the values returned by each LENGTHOF expression:

,.:~a;: -%;}‘_¢s_ii,r=_"‘ '{1pg;1?.}a;-;:i;--:sn;.r;Le3,a1- T ?ir;,|r.=§;.? 2 2-" 2,-4}-~-1 3 3 .:_§.;1 I. =.-'- Expression - = ValueM. It-til. ._-‘ --,|. I- . ‘r:-.1" : if-25* :.L|

3
II

5.‘;-' 1:...-;_.'|j.;'J.: _:'.-iiililgti-.1;-,;.- LL. . _.__ .. .

LENGTHOFbmel

LENGTHOF arrayl 30 + 2

4.3 Data-Related Operators and Directives 119

l Expression Value
LENGTHOFmnw2 5*3

LENGTHOF array3 I L4 I
LENGTI-IOFdigitStr I '9 I I

Note that when nested DUP operators are used in an array definition, LENGTHOF returns the
product of the two counters.

If you declare an array that spans multiple program lines, LENGTHOF only regards the
data from the first line as part of the array. In the following example, LENGTHOF myArray
returns the value 5:

myArray arms 1o,2o,30,4o,50
arms so,7o,so,9o.1oo

Alternatively. you can .end the lirst line with a comma and continue the list of initializers onto
the next line. In the follovring example. LENGTHOF myA1'ray returns the value 10:

myArray BYTE 10,20,30.40.50,
60,70,80,90.l00

4.3.6 SIZEOF Operator
The SIZEOF operator returns a value that is equivalent to multiplying LENGTHOF by TYPE.
For example. intArray has TYPE = 2 and LENGTHOF = 32. Therefore, SIZEOF intArray
equals 64:-

intArray WORD 32 DUP(0) ; SIZEOF = 64

4.3.7 LABEL Directive
The LABEL directive lets you insert a label and give it a size attribute without allocating any
storage. Any of the standard size attributes can be .used with LABEL. such as BYTE, WORD,
DWORD. QWORD or TBYTE.

One common use of LABEL is to provide an alternatixe name and size attribute for some
existing variable in the data segment. In the following example. we declare a label just before
val32 named vallti and give it a WORD attribute:

.data
val16 LABEL WORD
val32 DWORD l2345678h
.code
mov .ax.valL6 ; AX = 5678h
mov dX,[vall6+21 ; DX = l234h

vall6 is just an alias for the same storage location named val32. The LABEL directive itself
uses no storage.

120 Chapter 4 * Data Transfers, Addressing, and Arithmetic

Example. Sometimes we need to constmct a larger integer from two smaller integers. In the
next example, a 32-bit value is loaded into EAX from t.wo 16-bit variables:

.data
Longvalue LABEL DWORD
V311 WORD 5678h
V312 WORD l234h
.code
mov eax,LongValue ; EAX = 12345678h

4.3.8 Section Review

9'5“P’?°F‘

(True/False): In '32-bit Protected mode, the OFFSET operator returns a 16-bit value.
(Trite/False): The PTR operator returns the 32-bit address of a variable.
(7i"ue/False): The TYPE operator returns -a value of 4 for doubleword operands.
(Tme/Fai.s"e).' The LENGTHOF operator returns the number of bytes in an operand.
(True/False): The SIZEOF operator returns the number of bytes in an operand.

Use thefollowing data definitionsfor the next seven exercises:

.data
myBytes BYTE 10h,20h.30h,40h
mywords WORD 3 DUP(?),2000h
mystring BYTE "ABCDE"

6. Insert a directive in the given data that will align myBytes on an even-numbered address.
7. Indicate the value of BAX after each instruction executes:

i-QH\fD'Q=OD'9J

mov eax,TYPE myBytes ; .
"mov eax,LENGTHOF myBytes .
mov eax,SIZEOF myBytes ; .
mov eax,TYPE mywords ;
mov eax,LENGTHOF mywords ; .
mov eax,SIZEOF mywords ; .
mov eax,SIZEOF mystring .

8. Write a s-ingle instruction that moves the first two bytes in rnyBytes to the D-X register. The
resulting value will be 2010h.

9. Write an instruction that moves the second byte in rnywords to the AL register.
10. Write-an instruction that moves all four bytes" in myBytes to the BAX register.
11. Insert a LABEL directive in the given data that will permit mywords to be moved directly

to a 32-bit register.
12. Insert a LABEL directive in the given data that will permit rn'yBytes to be moved directly to

a 1'6-bit register.

4.4 Indirect Addressing
You’ve probably noticed already that direct addressing is completely impractical for array pro-
cessing. We would never provide a different label name for every element of an array, nor would

4.4 Indirect Addressing 121

we use constant offsets to address more than a few array elements. The only practical way to
handle an an'ay is to use a register as a pointer and find ways to manipulate the registers value.
This is called indirect addressing. A register holding an address is called an indirect opemncl.

4.4.1 Indlrect Operands
An indirect operand can be any 32-bit general-purpose register (EAX. EBX. ECX. EDX. ESI,
EDI, EBP. and ESP) "surrounded by brackets. The register is assumed to contain the offset oi
some data. For example. ESI contains the offset of val 1:

.data
vall BYTE 10h
.code
mov esi,OFFSET vall

If a MOV instruction uses the indirect Operand as the source. the pointer in ESI is dereferenced
and a byte is moved to AL:

mov al, [esi] ; AL = 10h

Or, if the indirect operand is the destination operand. a new value is placed in memory at the
location pointed to by the register:

mov [esi],bl

Reel-add:-essMode in Real-address mode, it is usual to use a 16-bit register to hold the offset
of-a variable. Ii’ the register is used as-an indirect operand. it niay only be SI. DI. BX, or BP. Gen-
erally, we avoid BP because it addresses the stack rather than the data segment. In the next
example, we use Si to reference val1:

.data
vall BYTE 10h
.code
main PROC

startup
mov si,OFFSET vall
mov al,[si1 ; AL = 10h

General Protection Fault ln Protected mode. if the effective address points to an area outside
your pi-ogram’s data segment. the CPU executes "a genemi protection (GP) fimir. This happens
even when an instruction does not modify memory. For example. if ESI were uninitialized. the
following instruction would probably generate a general pretemion fault:

mov ax,[esi]

Of course, the best way to avoid this type of error is to carel’ul'ly initialize registers used for indi-
rect addressing. The same applies to high-level language programniing with subscripts and
pointers. General protection faults do not occur in Real-address mode.

122 Chapter 4 ' Data Transfers, Addressing, and Arithmetic

Using PTR with Indirect .Oper¢mds The size of an operand is often not clear from the context
of an instruction. Consider the following instruction, which would cause the assembler to gener-
ate an “operand must have size” -error message:

inc [esi] ; error: operand must have size

The assembler doe_s_n’t know whether ESI points to a byte, word or doubl_eword. The PTR opera-
tor makes the operand size clear:

inc BYTE PTR [esi]

4.4.2 Arrays
Indirect operands "are particularly useful when dealing with arrays because -an indirect operand’s
value -can easily be modified. Similar to an array subscript, an indirect operand can point to dif-
ferent array elements. For example, arrayB contains three bytes. We can increment ESI and
make it point to each byte, in order:

.data
arrayB BYTE l0h@20h.30h
.code
mov esi,OFFSET.arrayB
mov '
inc esi
mov
inc
mov

esi

If we use an array of 16-bit integers, we add 2 to. ESI to address each subsequent an ay element
.data
arrayw WORD l000h,2000h,3000h
.code

esi,OFFSET arrayw
ax,[esi]
esi,2
ax,[esi]
esi,2
ax,[esiI

mov
mov
add
mov
add
mov

Suppose that arrayw is located at offset l'0200h. The following illustration shows ESI 1111813.
tion to the array data:

; AX

; AX

; AX

(lfihet \&due

-1,
-1,

-1,
-.-

._-_-.-

al,[esi] ; AL = 10h

al,[esi] ; AL = 20h

a1,[esi] ; AL = 3011

lO0Uh

2000h

3UUUh

10200 100011 <—[esi]
10101
10204 300011

4.4 Indirect Addressing 123

Example: Adding 32-Bit Integers The following program excerpt adds three doublewords. A
displacement of 4 must be added for each subsequent array value because doublewords are 4
bytes long:

.data
arrayD DWORD lO00Oh,20000h,300U0h
.code

mov esi,OFFSET arrayD
mov eax,[esi] ; first number
add esi,e
add eax,[esi] ; second number
add.esi,4
add eax,[esi] ; third number

If arrayl). were located at offset i0200h, the following illustration would show ESI in relation to
die" array data:

Offset Value
10200 1000011 -=- [esi]
10204 2000011 -<_ [esi] + 4
1020s 3000011 -<— [esi] +.s.

4.4.3 Indexed Operands
An indexed operand adds a constant to a register to generate an effective address. Any "of the 32-
bit general-purpose registers may be used as index registers. There are different notational forms
permitted by MASM (the brackets are partof the notation):

constantlregi
[constant + regi

The first notational form combines the name of a variable with a register. The variable name is a
constant that represents the variable‘s offset. Here areegtamples that show both notational forms;

arrayB[esi] [arrayB + esi]

arrayD[ebx] [arrayb + ebx]

As you probably guessed by looking at the notation, indexed operands are ideally suited to
array processing-. The index register should be initialized to zero before accessing the first array
element:

.data
arrayB BYTE l0h,20h,30h
.code
mov esi,O
mov a1,[arrayB + esi] ; AL = 10h

124 Chapter 4 ~ Data Transfers, Addressing, and Arithmetic

In the last statement above, ESI is added to the offset of arrayB. The address generated by the
expression (arrayB + ESI) is dereferenced, and the byte in memory is copied to AL.

Earlier, we presented an array processing example with indirect operands. Another way to
implement that example would be to add a displacement to a register when accessing the second
and third numbers of the array. This eliminates the need to use separate instructions to increment
ESI:

.data
arrayw WORD l000h,2000h,3000h
.code
mov esi,OFFSE'I‘ arrayw
mov 'ax,[esi] ; = 1000h
mov ax,[esi+2] = 2000h
mov ax, [esi+.4"] = '3'000hits

Using I6-Bit Registers It is usual to. use 16-bit registers as indexed operands in Real-address
mode. In that case, you are limited to using SI, DI, BX, or BP:

mov-a1,arrayB[si]
mov ax,arrayW[di1
mov eax,arrayD[bx]

As with indirect operands, avoid using BP except when addressing data on the stack.

4.4.4 Pointers
A variable that contains the address of another variable is called a pointer variable (or pointer).
Pointers are essential when manipulating arrays and data structures. High-level languages such
as C++ and Java purposely hide the implementations of pointers, because such details are not
portable across different machine architectures. In assembly language, because we deal with a
single implementation, we examine and use pointers at the physical level. This helps to remove
some of the mystery surrounding pointers.

Intel-based programs use" two basic types of pointers, NEAR and FAR. Their sizes are
affected by the processor’s current mode (16-bit Real, or 32-bit Protected), as shown in Table 4-2:

Table 4-2 Pointer Types in 16- and 32-Bit Modes.

. . . l16-bit offset from the beginning 32-bit offset from the beginning
;.a_,=,=;i§.i_;:, .ffa'-, . . _'_-‘ii _ _sgglpgipigfiflshgi of the data segment of the data segmentT41?-f';_1';7_..‘C*La-;:.-:-"1-77'

‘J9Aw

i§§
T'E1E"'?E“.3.EH1-'1-s'i'..=-1;-;.-2'»,-

‘lt "ii

L.‘-

11..
5?Jim‘

3;,-

l,“g'_1fD-1'._*'
llij'__T_

iii 7- see .* I

1,»; ; ’ "‘ ' iiirftig;-1' . if .32-bit segment-offset address 48-bit segment-offset address

ii:iil'§iii.li'ii¥i'i:if's=l3§§E@vn,i£32
_,s;r

2 ti‘.3. E355:-*1?“

4.4 Indirect Addressing 125

The Protected-mode programs in this book use near pointers, so they are s.tored in double-
word variables. Here are two examples: ptrB contains the offset of arrayB,.and ptrW contains
the offset of arrayW:

arrayB BYTE 10h,20h,30h,40h
arrayW WORD l000h,2000h,3000h
ptrB DWORD arrayB
ptrW DWORD arrayW

Optionally, you can use the OFFSET operator to make the relationship clearer:

ptrB DWORD OFFSET arrayB
ptrW‘ DWORD OFFSET arrayw

4.4.4.1 Using the TYPEDEF Operator
The TYPEDEF operator lets you create -a user-defined type which has all the status of a built-in
type when defining variables. TYPEDEF is ideal for creating pointer variables. For ex-ample, the
following declaration creates a new data type PBYTE that is a pointer to bytes:

PBYTE TYPEDEF PTR BYTE

This declaration would usually be placed near the beginning of a pi‘0gt‘3.iTl, before the data seg-
ment. Then. variables could be defined using PBYTE:

.data
arrayB BYTE 10h,20h,30h,40h
ptrl PBYTE ? ; uninitialized
ptr2 PBYTE arrayB ; points to an array

Example Program: Pointers The following program (poimei',r.a.s"m) uses TYPEDEF to create
three pointer types (PBYTE. PWORD, PDWO-RD). It creates pointer variables, and derefer-
ences them at runtime to retrieve data from the arrays:

TITLE Pointers (Pointers.asm)

INCLUDE Irvine32.inc

; Create user~defined tyes.
PBYTE TYPEDEF PTR BYTE ; pointer to bytes
PWORD TYPEDEF PTR WORD ; pointer to words
PDWORD TYPEDEF PTR DWORD ; pointer to doublewords

.data
arrayB BYTE 0h,30h
arrayW WORD
arrayD DWORD i-lb-l—'l—' "n~\@ LHND‘ ""\'II"'Ig O‘iL1J!\)

; Create some pointer variables.
ptrl PBYTE arrayB
ptr2 PWORD arrayw
ptr3 PDWORD arrayD

126 Chapter 4 ~ Data Transfers, Addressing, and Arithmetic

-code
main PROC
; Use the pointers to-access data

mov
mbv
mov
mov
"mov
PROV
exit

esi,ptr1
al,[esi] ; 1
esi,ptr2
ax,[esi] ;
esi,ptr3
eax,[esi] ; 4

main ENDP
END main

4.4.5 Section Review

e-topa»-
script is out of range.

5. (True/False): The following instiuction is invalid: inc [esi]
6. (True/False): The following is an indexed operand: array [esi]

Use thefollowing data definitions for the remaining questions in this section

myBytes BYTE l0h,20h,30h,40h
mywords WORD 8Ah,3Bh,72h,44h,66h
myDoubles DWORD l,2,3,4,5
myPointer DWORD myDoubles

7_ Fill in the requested register values on the right side of -the following insti uction sequence

TROV

TROV

TROV

IROV

TROV

TROV

TROV

TROV

TROV

TROV

8. Challenge: Fill in the requested register values -on the right side of the following instniction
sequence:

mov

esi,OFFSET myBytes
al,[esi]
al,[esi+3]
esi,OFFSET mywords + 2
ax,[esi]
edi,8
edx,[myDoubles + edi]
edx,myDoubles[edi]
ebx,myPointer
eax,[ebx + 4]

esi,OFFSET myBytes

Oh

J
I

u
I

I

.r

I

n
I

a. AL
b. AL

.C. AX

EDX
EDX

f. EAX

. ('Tme/False): Any l6-bit general-purpose register can be used as an indirect operand
(True/Faise): Any 32-bit general-purpose register can be used as an indirect operand

. (True/False): The BX register is usually reserved for addressing the stack

. (True/False): A -general-pro'tec.tion fault occurs in Real-address mode when an anay sub-

@-

mov ax,WORD PTR [esi] ; a. AX =

Z

4.5 JMP and LOOP Instructions 2

ITIOV

ITIOV

ITIOV

ITIOV

ITIOV

eax,DWORD PTR mywords
esi,myPointer
ax,WORD PTR [esi+2]
ax,WORD PTR [esi+6]
ax,WORD PTR [esi—4]

AX:

CI Ax ‘:-

dl Ax ‘:-

e. AX =

4.5 JMP and LOOP Instructions
The CPU automatically loads and executes programs sequentially. As each instruction is
decoded and executed. the CPU has already incnemented the instruction pointer to the offset oi
the next instruction: it has also loaded the instruction into its internal queue. But real-life pro-
grams are not that simple. What about IF statements. gotos. and loops‘? They clearly require pro-
grams to transfer control to different locations within the progranis.

A transfer 0_fc0nrr0l, or branch. is a way of altering the order in which statements are exe-
cuted. All programniin-g languages contain statements to do this. We divide such statements into
two categories":

- Unconditional Transfer: The program branches to a new location in all cases: a new
value is loaded into the instruction pointer, causing execution to continue" at the new
address. The JMP instruction is a good example.

- Conditional Transfer: The program branches if a certain condition is true. Intel provides
a wide. range of conditional transfer instructions that can be combined to make up condi-
tional logic structures. The CPU interprets true/false conditions based on the contents oi
the ECX "and Flags registers. LOOP is a good example.

4.5.1 JMP Instruction
The JMP instruction causes an unconditional transfer" to a target location inside the code seg-
ment. The location must be identified by a code label. which is translated by the assembler into
an offset. The syntax is:

JMP targetLabel

When the CPU executes this instruction, the offset of mrgeiLabel is moved into the
instruction pointer, causing execution to immediately continue at the new location. Ordinarily.
you can only jump-to a label "inside the Cui'i'ent procedure. uiiless the label has been specially
designated as global (see Section 5.5.2.3 in Chapter 5 for details).

Creating a -Loop The JMP instruction provides an easy way to create a loop. simply by junip-
ing to a label at the top of the loop:

top:

jmp top. ; repeat the endless loop

I

\

128 Chapter 4 - Data Transfers, Addressing, and Arlthmetlc

JMP is unconditional, so the loop will continue endlessly unless some other way is found to exit
the loop (there is, but we haven’t explained it yet).

4.5.2 LOOP Instruction
The LOOP instruction provides a simple way to repeat a block of statements a specific number
of times. ECX is automatically used as a counter and is decreinented each time the loop repeats.
Its syntax is:

LOOP destination

The execution of the LOOP instruction involves two steps: First, it subtracts 1 from ECX.
Next. it compares ECX to zero. lf ECX is not equal to zero, a jump is taken to the label identified
by rlesrhiarioii. Otherwise, if ECX equals zero, no jump takes place and control passes to the.
instruction following the loop.

‘ -‘-in *' ' . i-'=':':- '..;.'-J.- '

In Real-address ino_de', LCX is used5'iis'tl1e defaiiiltiloop register‘ rather than ECX. In any mode,
the LOOPD instruction uses ECX as the loop counter, and the LOOPW instruction
uses CX as the l_o_op=counter. _

_ ' »_§-;-5 - _ __ .- __ ____ »;jj'i-.'l-.-;:-- 7-[I - _ __ ._:_,'_'

In the following example, we add I to AX each time the loop repeats. When the loop. ends,
AX = 5 and ECX = 0:

mov ax,0
mov ecx,5

Ll:
inc .ax
loop L1

A common programming error is to inadvertently initialize ECX to zero before beginning
a loop. If this happens, the LOOP instruction decrements ECX to FFFI?-'FFFFh, and the loop
repeats 4,294,967,296 times! Or, if CX is the loop counter (in Real-address mode), it repeats
65.536 times.

The loop destination must be within -I28 to +127 bytes of the current location counter.
Machine instructions have an average size-of about 3 bytes, so a loop might contain, on average,
a maximum of 42 instructions. Following is an example of an error message generated by
MASM because the target label of a LOOP instruction was too faraway:

error A2075: jump destination too far : by 14 byte(s)

If you modify ECX inside the loop, the LOOP instruction may not work properly. In the
following example, ECX is incremented within the loop. It never reaches zero, and the loop
never stops:

top:

130 Chapter 4 ~ Data Transfers, Addressing, and Arlthmetlc

5. In the loop body, use indirect addressing to add a single array eleme_nt to the register holding-
the sum.

6. Point the index register to the next array element.
7. Use a LOOP instruction to repeat the loop from the beginning label.

(Steps l--3 may be performed in any order.)

SumArmy Program Example The following sumA-rray program calculates the sum of an
array of words:

TITLE summing. an Array (SurnArray.asm)

INCLUDE Irvine32.inc
.data
intarray worm 100-1-1,2001-“"3001-1,4001-1
.code
main PROC

mov edi,OFFSET intarray ; address of intarray
mov ecx,LENGTHOF intarray ; loop counter
mov ax,0 ; zero the accumulator

Ll:
add ax,[edi] ; add an integer
add edi,TYPE intarray ; point to next integer
loop Ll ; repeat until ECX = 0

exit
main ENDP
END main

4.5.4 Copying a String
A Very common operation involving arrays and strings is that of copying large blocks of data.
Compiler writers always try to produce code that performs copy operations as quickly as possi—
ble. Let’s see how this can be done in assembly language, by creating a loop that copies a string.
Indexed addressing works well for this type of operation because the same index register can ref-
erence both strings. The only requirement is that the target string have enough available space to
receive the copied characters, including the null byte at the end:

TITLE Copying a.String (CopyStr.asm)

INCLUDE Irvine32.inc
.data
source‘ BXTE "This is the source string",0
target BYTE SIZEOF source DUP(0)

.code
main PROC

mov esi,0 ; index register

4.5 JMP and LOOP lnstructlons 131

mov ecx,SIZEOF source ; loop counter
Ll:

get a character from source
store it in the target
move to next character
repeat for entire string

mov al,source[esi] ;
mov t-arget[esi] ,a1 ;
inc esi ;
loop Ll ;

exit
main ENDP-
END main

Of course, the MOV instruction cannot have two memory operands, so each character is moved
from the source string to AL. then from AL to the target string.

1_ _ _
‘air

jii

programming in C++ or Java, beginning programmers often do not reali*'z'e how o“_l’tiiii*'i5'7
background copy operations take place. In Java, for example, if you exceed the existing capac-
ity of an ArrayList when adding a new element, ‘the runtime system allocates a block of new

g-=,p;stora,ge, copies the existing data to a new location, and-deletes the-old data. .('I}h'e same is,ti;ite
i-ipvhen using "a C++ vector). If a large number of copy operations take place, Urey-"can have’a.§tg-

nificant effecton at program's execution speed. '

. u 2 |- L -5.)‘.

I‘

4.5.5 Section Review

l.

2.
3.

4.

5.

6.
7.
8.

9.

('Trttet'FaIse).' A JMP instruction can only jump to a label inside the current procedure,
unless the label has been designated -global.
(Trnet'FaIse): The JMP instruction is a "conditional transferinstruction.
IF ECX is initialized to zero be-fore beginning "a loop, how many times will the LOOP
instru.ction repeat? (Assume. that ECX is not modified by any other instructions inside the
loop.)
(Tr:-tet'FaIseJ.' The LOOP instruction first checks to see. if ECX is greater than zero; then it
decrements ECX and jumps to the destination label.
(Trnet'FaIse).' The LOOP instruction does the following: It decrements ECX; then, if ECX is
greater than zero, the instructionjumps to the destination label.
In Real-address mode. which register is used as the counter by the LOOP instruction?
In Real-address mode, which register is used as the counter by the LOOPD instruction?
“(True/Falsek The target of a LOOP instruction must be within 256 bytes of the current
location.
(ChaIIenge).- What will be the final value of BAX in this example‘?

mov eax,0
mov ecx,10 ; outer loop counter

L1:
mov eax,3
mov ecx,5 ; inner loop counter

132 Chapter 4 - Data Transfers, Addressing, and Arithmetic

LL’:
add eax,5
loop L2 ; repeat inner loop
loop L1 ; repeat outer loop

10. Revise the code from the preceding question in such a way that the outer loop counter is not
erased when the inner loop is started.

4.6 Chapter Summary
MOV, a data transfer instruction, copies a source operand to a destination operand. The MOVZX
instruction zero-extends a smaller operand into a larger one. The MOVSX instruction sign-
extends a smaller ope rand into a larger one.

The XCHG instruction exchanges the contents of" two operands. At least one operand must
be a register.
The following types of operands are presented in this chapter:

' A direct operand is the name of a variable, and represents the variable’s address.
' A direct-0fi‘set operand adds a displacement to the name of a variable, generating a new

offset. This new offset can be used to access data in memory.
' An indirect operand is a register containing the address of data. By surrounding the regis-

ter with brackets (as in [esi]), a program can dereference the address and retrieve the mem-
ory data.

' An indexed operand combines a constant with an indirect operand. The constant and the
register value are added together, and the resulting address is dereferenced. For example,
[array + esi] and array[esi] are indexed operands.

The following arithmetic instructions are important to remember:

- The INC instruction adds l to an operand.
- The DEC.instruction subtracts l from an operand.
' The ADD instruction adds a source operand to a destination operand.
' The SUB instruction subtracts a source operand from a destination operand.
- The NEG instruction reverses the sign of an operand.

lt’s easy to convert simple arithmetic expressions to assembly language. When doing this,
you must follow standard operator precedence rules when selecting which expressions to evalu-
ate frst.
The. following CPU status flags are affected by arithrnetic operations:

- The Sign flag is set when the outcome of an arithmetic operation is negative.
' The Carry flag is set when the result of an unsigned arithmetic operation is too large for

the destination operand.
' The Zero flag is set when the outcome of an arithmetic operation is zero.

4.7 Programming Exercises 133

- The Overflow flag is set when the result of an signed arithrnetic operation is too large for
the destination operand. In a byte. the CPU detects overflow" by exclusive-ORrng the carry
out of bit 6 with the carry out of bit 7.

After reading this chapter. you should know how to use the following operators:

- The OFFSET operator returns the distance of tr variable from the beginning of its enclos-
ing segment.

- The PTR operator lets you override a r-'ariable"’s default size.
- The TYPE operator returns the size (in bytes) olia single variable, or oi’ a single element in

an array.
' The LENGTHOF operator returns the number of elements in an arr-ay.
' The SIZEOF operator returns the number bytes used by an array i-nitializer.
- The TYPEDEF operator createsa user-defined type.

The JMP and LOOP instructions are useful when creating counting loops. In 32-bit mode.
the LOOP instruction uses ECX as the loop counter. In" l6-bit mode, CX is used rather than
ECX. in both I6 and 32-bit modes. the LOOPD (loop double) instruction uses ECX as a counter.

4.7 Programming Exercises
The following exercisescan be done. in either Protected mode 01'-Real-address mode:

1. Carry Flag
Write a program that uses" addition and subtr'a_ction to set and clear the Carry flag. After each
instruction, insert the call DumpRegs statement to display the registers and flags. Using com-
ments, explain how (and why) the Carry "flag was affected by each instruction.

2. INC and DEC
Write a short program demonstrating that the INC and DEC instructions do not :=ti’l’ect the Carry
flag.

3, Zero and Sign Flags
Write a program that uses addition and subtraction to set and clear the Zero and Sign flags. After
each addition or subtraction instruction. insert the call Du1r1pRegs statement to display the reg-
isters and flags. Using cornnrents, explain how (and wiry) the Zero and Sign flags were '-al’I’ec"tetl
by each instruction.

4. Overflow Flag
Write aprogram that uses addition and subtraction to set and clear the 'OverIlow flag. After each
addition or subutaetion instruction, insert the call Durnpllegs statement to display the r'egister's
and flags. Using comments. explain how (and why) the Overflow flag was affected by each
instructio_n. Opriozrak include an ADD instruction that sets both the Carry and Overflow flags.

134 Chapter 4 - Data Transfers, Addressing, and Arithmetic

5. Direct-Offset Addressing
Insert the following variables in your program:

.data
Uarray wont) 100011, 200011, 3000h, 4000h
Sarray SWORD —l,—2,—3,—4

Write instructions that use direct-offset addressing to move the -four: values in Uarray to the
BAX, EBX, ECX, and EDX registers. When you follow this with a call DumpRegs statement,
the following register values should display:

EA_X=O00_01000 EBX=00'O02.000 ECX=0OOO3000 EDX=000D-’-1000

Next, write instructions that use direct-offset addressing to move.the four values in Sarray
to-"the BAX, EBX, ECX, and EDX registers. When you follow this with-acall Dump]-legs state-
ment, the following register values should display:

EAX=FFF'FFFFF EBX=FFFFFFFE ECX-=FFFFFFFD EDX=FFFFFFFC

6. Fibonacci Numbers
Write a program that uses a loop to calculate the first seven values in the Fibonacci number
sequence { l,l,2,3,5,8,13 }. Place each value in the BAX register and display it with a call
DumpR-egs statement inside the loop.

7. Arithmetic Expression
Write a pr_ogram_t_hat implements the following arithmetic expression:

EAX=-va]2 +7 — val3 + vall

Use the following data definitions:

vall SDWORD 8
val2 snwonn -is
Va-13 S’-DWORD 2'0

In comments next to each instruction, write the hexadecimal value of BAX. Insert a call Dum-
pRegs -statement at the end Iof the program.

8. Copy a String Backwards-
Write a program using the LOOP instruction with indirect addressing that copies a string from
source to target, reversing the character order in the process. Use the following variables;

source BYTE "This is the source string",0
target BYTE SIZEOF source DUP(0)

Insert the following statements immediately after the loop. They will display the hexadecimal
contents of the target string:

mov esi,OFFSET target ; offset of variable
mov ebx,l ; byte format

4.7 Programming Exercises 135

mov ec:-t,S.IZEOF target—1 ; counter
call DumpMem

If your program works correctly, you will see the following sequence of hexadecimal bytes on
the screen when the program runs:

67 6E 69 72 74 73 20 65 63 72 75 6F 73 2.0 65 68
74 20 73 69 20 73 69 68 54

(The DumpMem procedure is explained in Chapter 5, Section 5.3 .2.)

5
Procedures

5.1 introduction
5.2 Linking to an External Library

5.2.1 Background Information
5.2.2 Section Review

5.3 The Book’s Link. Library
5.3.l Overview
5.3.2 Individual Procedure Descriptions
5.3.3 Library Test Program
5.3.4 Section Review

5-.4 Stack Operations
5.4.1 Runtime Stack
5.4.2 PUSH and POP Instructions
5.4.3 Section Review

5.5 Defining and Using Procedures
5.5.1 PROC Directive
5.5.2 CALL and RET Instructions
5.5 .3 Example: Summing an Integer Array
5.5.4 Flowcharts
5.5 .5 Saving and Restoring Registers
5.5.6 Section Review

5.6 Program Design Using Procedures
5.6.1 Integer Summation Program (Design)
5.6.2 Section Review

5.7 Chapter Summary
5.8 Programming Exercises

5.1 Introduction
There are several good reasons why you should read this chapter:

* You need to learn how to do input-output in assembly language.
' You need to learn about the rrurrinre stack. how it is the fundamental mechanism that

makes it -possible to_ call and return from functions (we call them procedures).
' Your programs will grow to the point where you will need to begin logically dividing them

into procedures.

137

138 Chapter 5 ' Procedures

' You will learn how to draw flowcharrs, which are graphing tools that portray program
logic.

- Your professor might give you a test on this chapter.

5.2 Linking to an External Library
If you wanted to spend the time, you could learn to write all the detailed code required for per-
forming even the simplest input-output. It would be about like assembling your caris engine
every time you wanted to go for a ride. Interesting, but time-consuming. Much later in this book,
in Chapter 1 I, you will get a chance to see how input-output is handled in MS-Windows Pro-
tected mo.de. It is great fun, and a.new world will open up to you when you see the kinds of tools
that are available.

For now, however, input-output should be fairly easy while you are just getting.
acquainted with assembly language. Section '5 .3 shows how to call procedures Iirom a library
supplied with this book named Irvine32.lib. The full source code of this library is available on
the CD-ROM attached to the book, and is regularly updated on the book"‘s Web site.

If you are writing I6-bit programs in Real-address mode, the Irvine16.lib link
library conmins-ghe same procedures as;;Iwin,_§32Jib, _ _§,-

5.2.1 Background Information
A link library is a file containing procedures that have been assembled into machine code. The
code in a library begins as one or more gource files containing procedures, constants, and vari-
ables. The source files are assembled into object files, and the object files are inserted into the
library.

Suppose you wanted your program to display .a string on the console by calling a proce-
dure named WriteString. Your program would have to contain a PROTO directive that names
the procedure to be called. The following directive is found in the Irw‘ne32'.inc file:

WriteString PROTO

Next, a CALL instruction would execute the WriteS_tring procedure:

call writestring

When your program was assembled, the assembler would leave the target address ofthe CALL
instruction blank, knowing that it would be filled in later by the linker. The linker would look for
the WriteString name in the link library, and copy the appropriate machine instructions from
the library into your program’s executable file. Also, it would insert WriteString’-s address into
the CALL instruction.

If you try to call a procedure that is not in the link library, the linker issues an error mes-
sage and does not generate an executable file.

5.2 Linking to an External Llbrary 139

Linker Command Options The linker program combines your program’s object file with one
or more object files and link libraries. The following command. for example, links hello.obj to
the irvine32,l'ib and kernel32.lib libraries:

link32 hello.obj irvine32.lib kernel32.lib

The batch file (make3"2.bar or mal<eI6.bar) you have been using to assemble and link the
programs in this book uses nearly the same command. The only difference is that a replaceable
parameter (%l.) is used in place of “hello”. This allows the batch file to link any program:

link32 %l.obj irvine32.lib kernel32.lib

Overall Structure You may be wondering where kernel32.lib fits into the picture. This file
is supplied with the Microsoft Windows Platform Sofrware Developmenr Kit. It contains link-
ing information for operating system functions stored inside another file named kernel32.dll.
The latter is one of the fundamental parts of the MS-Windows operating system. and is called
a dyrmmic link h'_bmr_\'. It contains executable functions that perform character-based input-
output. You might think oi’ kernel32.lib as a bridge to kernel32.dll, as shown in the following
figure:

Fnks . .
l Your program Ito Irv1ne32.l1b

links to"

ca" hm‘ ‘° kernel32 lib

executes

kernel32 dll

Using what you learn in this chapter, your programs link to lrvine32.lib. Later. in Chapter
l l , you will learn how to link your programs directly to kernel32.lib.

5.2.2 Section Review

l. ('I"ruer'Fa!se.).' A link library consists of assembly lan-guage source code.
2. Use the PROTO directive to declare -a procedure named MyProc in an external link library.
3. Write a CALL statement that calls a procedure named MyProc in an external link library.
4. What is the name of the 32-bit link library supplied with this book‘?
5. Which library contains functions called from Irvine32.lib‘?
6. What is kernel32.dll'?
7. What is-the name used for the replaceable filename parameter in the make32.bat file‘?

140 Chapter 5 - Procedures

5.3 The B-ook’s Link Library

5.3.1 Overview
Table 5-1 is a quick reference to the procedure names in the Irvine32 link library. (Some addi-
tional procedures will be introduced in later chapters.) First, a few terms must be explained:

' console: A 32-bit console window, running in color text mode in MS-Windows. By
default, there are 80 columns and 25 rows.

- standard input: The standard input device is the keyboard, although it can be redirected
from the Command prompt to read from a tile or serial port.

' standard output: The standard output device is the video display, although it can be redi-
rected from the Command prompt to write to a file, printer, or serial port.

Table 5-1 Procedures in the Link Library.
Procedure Description C if

Clrscr

Cr] l'

Delay

Dumplvletn

DtnnpRegs

GetCommandtail

GetMseconds

Gotoxy

Randon132

Randomize

RandomRange

ReadChar

ReadHex

Clears the console and locates the cursor at the upper left corner.

Writes an end of line sequence to standard output.

Pauses the program execution for a specified n millisecond interval.

Writes a block of memory to standard output in hexadecimal.

Displays the EAX, EBX, ECX, EDX, ESI, EDI, EDP, ESP, EFLAGS, and EIP
registers in hexadecimal. Also displays the Carry. Sign, Zero, and Overflow
flags.

Copies the program’s command-line arguments (called the contnmnd mil) into
an array of bytes.

Returns the number of milliseconds that have elapsed since midnight.

Locales the cursor -at a specific row and column on the console.

Generates a 32-bit pseudorandonl integer in the range O to PFFFFFFFI1.

Seeds the random number generator with -a unique value.

Generates a pseudorandom integer within a specified range.

Reads a single character from standard input.

Reads a 32-bit hexadecimal integer from standard input, terminated by the
Enter key.

5 3 The BOO|<'S Link Library

Table 5-1 Procedures in the Link Library. (Continued)
Procedure

Readlnt

ReadString

SetTextColor

WaitMsg

WriteBin

WriteChar

WriteDec

Writel-Iex

Writelnt

WriteString

Description

Reads a 32-bit signed decimal integer from standard input, terminated by the
Enter key.

Reads a string from standard input, terminated by the Enter key.

Sets the foreground and background colors of all subsequent text output to the
console. Not available in lrvz'ne16.lt'b.

Displays a message and waits for the _Enter key to be pressed.

Writes an unsigned 32-bit integer to; standard output in ASCII binary format.

Writes a- single character to standard output.

Writes an unsigned 32-bit integer to standard output in-decimal format.

Writes an unsigned 32-bit integer to standard output in hexadecimal format.

Writes a signed 32-bit integer to standard output in decimal format.

Writes a null-terminated string to standard output.

5.3.2 Individual Procedure Descriptions
Clrscr The Clrscr procedure clears the screen. This is typically done at the beginning and end-
ing of a program. If you call it at other times during a progranfs execution, remember to pause
the program (by calling Waitlvlsg) before calling Clrscr. This will allow the user to view the
information already on the screen before it is erased. Example:

call Clrscr

Crlf The Crlf procedure advances the-cursor to the beginning of the next line of standard out-
put. It- does this by writing a string containing two bytes, 0Dh and 0Ah. Example:

call Crlf

Delay The Delay procedure pauses the program for a specified time interval. When calling this
function, set EAX to the desired interval, in rnilliseconds. Example:

mov eax,1oOo. ,- 1 second
call Delay

(The Irvine l6.lib version of this procedure does not work under Windows NT, 2000, or XP.)

DumpMem The DumpMem procedure writes a range of memory to standard output in hexa-
decimal. When you call it, pass the starting address in ESI, the "number of units in ECX, and the

142 Chapter 5 - Procedures

unit size in EBX (l = byte, 2 = word, 4 = doubleword). For example, the following statements
display an array of eleven doublewords named array:

.data
array DWORD 1,2,3;4,5,6,7,8,9,0Ah,0Bh
.code
main PROC

mov esi,OFFSET array ; starting OFFSET
mov ecx,LENGTHOF array ; number of units
mov ebx,TYPE array ; doubleword format
call DumpMem

The following output is produced by DumpMem, using the given data:

00000001 00000002 00000003 00000004 00000005 00000006
00000007 00000008 00000009 0000000A 00000008

DumpRe-gs The DumpRegs procedure displays the EAX, EBX, ECX, EDX. ESI, EDI. EBP,
ESP, El_P, and EFL (EFLAGS) registers in hexadecimal. It alsodisplays the values of the Carry,
Sign, Zeroi and Overflow flags. The following is-.a sample:

EAX=000006l3. EBX=00000000 ECX=000000FF EDX=00000000
ESI=00000000 EDI=00000100 EBP=000009lE ESP=000000F6
EIP=0040l026 EFL=00000286 CF=0 SF=1 ZF=0 OF=0

The displayed value of EIP is the offset" of the instruction that follows the call to DumpRegs.
DumpRegs can be useful when debugging programs because it lets you display a snapshot of the
CPU state w-hile the program is running. It has no input p_arameters and no return value.

GetCommandtail The GetCommandtail procedure copies the program’s command line into a
null-terminated string. IF the command line was found to be empty, the"C_a1Ty flag i-sset: other-
wise. the 'Can*y flag is cleared. This procedure is useful because it permits the user -of a program
to pass information on the command line.

For example, suppose a program named Encrypt read-s an input file named fil'e1.txt, and
produces an output file named file2.txt. The user can pass both lilenames on the command line
wlien running th.B program:

Encrypt file1.txt fi1e2.txt

When it starts up. the Encrypt program can call GetCommandtail and retrieve the two lilenames.
When calling GetCommandtail, EDX must contain the offset of an zuray of at least l29

bytes:

.data
_cmdTail BYTE 129 DUP(0) ; empty buffer
.code
mov edx,OFFSET cmdTail
call GetComandtail ; fills the buffer

5.3 The Book‘s Link Library 143

GetMseconds The Getlvlseconds procedure retums the number of milliseconds that have
elapsed since midnight. This procedure can be useful when you want to measure the time
between events-. The return value is in BAX. There are no input parameters. In the following
example, we call the function once, and s.tore the value it returns. Next, a loop executes. Finally,
we call GctMseconds again, and subtract the two times. We now lmow the approximate duration
of the loop, in milliseconds:

.data
startTime DWORD ?
.code
call Getmseconds
mov startTime,eax
Ll:

; (execute a loop here...)
Loop L1

call GetMseconds
sub eax,startTime ; EAX = loop time, in milliseconds

Gotoxy The Gotoxy procedure locates the cursor at a given row and column on the screen. By
default, the console window’s X-coordinate range is 0-79, and the Y-coordinate range is 0-24.
When you call Gotoxy, pass the Y-coordinate (row) in DH and the X-coordinate (column) in DL.
Example:

mov dh,10 ; row 10
mov dl,20 ; column 20
call Gotoxy ; locate cursor

Random32 The Random32 procedure generates a 32-bit random integer and returns it in
EAX. When called repeatedly, Random32 generates a simulated random sequence in which each
number is called a pseudorandom integer.‘ The numbers are created using a simple function
having an input called a seed. The function uses the seed in a formula to generate the first ran-
dom value. The next random value is generated using the previous random value as its seed.
Generally, we use the term random to imply pseudorandom. Example:

.data
randval DWORD ?
.code
call Random32
mov randVal,eax

Randomize The Randomize procedure initializes the seed of the random-number formula used
by both the Random32 and RandomRange procedures. The seed equals the time of day, accurate

i If you would like to read more about random number generators. see Donald Knuth, The Arr of Compmer P;~0_;;;-(1,,-,-
zmilg (Vol. '2). Addison-Wesley. I997.

144 Chapter 5 - Procedures

to 1/100 of a second. This virtually ensuresj that each time you run aprogram, the starting random
integer will be different, and any sequence of random numbers willalso be unique. YOU H866 0111)’
call Randomize" once at the beginning of a program. In the following example, we produce ten
random integers:

call Randomize
mov ecx,l0
L1: call Random32

; use or display random value in EAX here...
Loop Ll

RandomRange The RandomRange procedure produces a random integer within the range of 0
to (iz—l), where n is an input parameter passed in the BAX register. The random integer is
returned "in BAX. For example, the following statements generate a single random integer
between 0 and 4999 and place it in BAX:

pdata
randval DWORD ?
.code
mov .eax,5000
call RandomRange
mov randVal,eax

ReadChar The ReadChar procedure reads a single character from standard input and returns
the character in the AL register. The character is not echoed on the screen. The following is a
sample call:

.data
char BYTE ?
.code
call ReadChar
mov char,al

ReadHex The ReadHex procedure reads a 32-bit hexadecimal integer from standard input and
retums the value in BAX. No error checking is performed for invalid characters. You can use
both uppercase and lowercase letters. for the digits A through F. A maximum of eight digits may
be entered. Leading spaces are not permitted. Example:

-data
hexval DWORD ?
.code
call ReadHex
mov hexVal,eax

Readlnt The" Readlnt" procedure reads a 32-bit signed integer from standard input and returns
the value in BAX. The user can type an optional leading plus or minus sign, and the test of the

5.3 The Book's Link Library 145

number can only consist of digits. Readlnt will set the Overflow flag and display an error mes-
sage if the value entered cannot be represented as a 32-bit signed integer (range: F-2,147,483,648
to +2,l47,483,647). The following is a sample call:

.data
intval SDWORD ?
.code
call Readlnt
mov intVal,eax

ReadSt:-ing The ReadString procedure reads a string from standard input, stopping when the
user presses the Enter key. It returns a count of the" number of bytes read in the BAX register.
Before calling ReadS.tring, set EDX to the offset of an array of bytes where the input characters
will be stored, and set ECX to the maximum number of characters to read plus l (to reserve
space for the terminating null byte).

The following statements call ReadSt1-ing, passing ECX and EDX.
.data
buffer BYTE 50 DUP(0) ; holds the characters
bytefiount DWORD ? ; holds counter
.code
mov edx,OFFSET buffer ; point to the buffer
mov ecx,(SIZEOF buffer) ; specify max characters
call ReadString ; input the string
mov byteCount,eax ; number of characters

ReadString automatically inserts a null terminator at the end of the string. The following is a
hexadecimal and ASCII dump of the first eight bytes of buffer after the" user has entered the
string “ABCDBFG”:

;,i,»a;r:_.;4-2 as 44 45 -46 4,1 00 rappers |

The variable byteC'ount equals 7..

.S'etTe.1:tC0l0r The SetTextColor procedure sets the current foreground and background colors
for text output. The following color constants are predefined and can be used for both the fore-
ground and background:

black = 0 red = 4 A gray -= S lightRecl = I2

blue =1 magenta = 5 T lightBlue = 9 A lightMagenta = I3

i green = 2 brown = 6 ‘i lightGreen = I0 i yellow = 14

cyan = 3 lightGray = 7 A lightCyan == ll i white = 15

146 Chapter 5 - Procedures

These color constants are defined in Irvz'rte32.i:_z.c (and IrwTne16.t'ne)-. The background color must
be multiplied by l6 before being added to the foreground color.2 The following constant, for
example, indicates yellow characters on a blue background:

yellow + (blue * 16)

Before calling SetTextColor, move the desired color to BAX:

mov eax,white + (blue * le) ; white on blue
call SetTextColor

(If you would like to read more about video colors, see Section 15.3.2. SetTextCol0r is not
available in the lrvinel6 link library.)

WaitMsg The WaitMsg-procedure displays the message “Press [Bnter] to continue...”, and waits
for the. user to press the Enter key. This procedure is useful when you want to pause the screen
display before data scrolls off and disappears. It has no input parameters. An example call is:

call Waitmsg

Wrt'teBin The WriteBin procedure writes an integer to standard output in ASCII binaiy for-
mat. When you call WriteBin, pass the integer in BAX. The binary bits are displayed in groups
of 4 for easy reading. For example:

mov eax,12346AF9h
call WriteBin
; displays: "0001 0010 0.011 0100 0110 1010 llll 1001"

Wl'iteCkar The WriteChar procedure writes a singlecharacter to standard output. Place the
character (or its ASCII code.) in AL before calling the procedure:

mov al,'A'
call WriteChar' : displays: "A"

WriteDec The WriteDec procedure writes a 32-bit unsigned integer to standard output in deci-
mal format with no leading zeros. Before calling it, place the integer in BAX:

mov eax,295
call WriteDec : displays: "295"

WriteHex The WriteHex" procedure writes a 32-bit unsigned integer to standard output in 8-
digit hexadecimal format. Leading zeros are inserted if necessary. Before calling it, place the
integer in BAX:

mov eax,7FFFh
call Writeflex ; displays: "00O07FFF"

3 Tltis-a_n1ount_s to shifting the bits le1't4 positions. which you will read about in Chapter 7.

5.3 The Book's Llnk Library 147

Writelnt The Writelnt procedure writes a 32-bit signed integer to standard output in decimal
format with a leading s_ign and no leading zeros. Before calling it, place the integer in BAX:

mov eax,2l6543
call Writelnt ; displays: "+216543"

WriteSt1'ing The WriteString procedure writes a null-terminated string to standard output.
When calling it, place the string‘s offset in EDX. For example:

.data
prompt BYTE "Enter your name: ",0
.code
mov edx,OFFSET prompt
call WriteString

5.3.2.1 The Irvine32.inc Include File
The following is a partial listing of the Irw'ne32.inc include file. It contains a prototype for each
library procedure, as well as color constants, structures, and symbol definitions. This file will
change over time, so be sure to get the latest copy from the book’s Web site:

; Include file for Irvine32.lib (Irvine32,inc)
INCLUDE SmallWfin.inc
.NOLIST

I “““““““““““““““““““““““““““““““““““““““'
; Procedure Prototypes
F --
Clrscr PROTO
Crlf PROTO
Delay PROTO
DumpMem PROTO
DumpRegs PROTO
Getéomandtail PROTO
GetMseconds PROTO
Gotoxy Pnomo
Randomize PROTO
RandomRange PROTO
Random32 PROTO
Readrnt PROTO
Readchar PROTO
ReadHex PROTO
ReadString PROTO
SetTextColor PROTO
WaitMsg PROTO

148 Chapter 5 - Procedures

WriteBin PROTO
WriteChar PROTO
WriteDec PROTO

WriteHex PROTO
Writelnt PROTO
WriteString PROTO

; Standard 4-bit color definitions
;'—r—r—r—r

black
blue

4_|-
it

green =
cyan =
red =
magenta =
brown =
lightGray =

9raY =
lightBlue =
lightGreen =
lightCyan =
lightRed =
lightMagenta =
yellow =
white =
.LIST

0000b
0001b
0010b
0011b
0100b
0101b
0110b
0111b
1000b
1001b

1010b

lflllb

1100b

llfilb

lllflb

llllb

The .NOLIST directive at the top of this file prevents these lines from being shown in source
listings created by the assembler. At" the end of this file, the .LlST directive enables listing of
source lines again. The INCLUDE directive at the beginning of this file causes another include
file (S:nallWiz_1.inc) to be included in the text stream passed to the assembler. The Sn-:aNWin.in.c
file "contains function prototypes. constants, and data structures required when directly calling
MS-Windows functions. They will be discussed in Chapter 1 l.

5.3.3 Library Test Program
Let’s take a look at a -short program that tests selected procedures in the book’s link library.
Comments have been inserted in the program listing that describe each step:

TITLE Testing the Link Library (TestLib.asm)

; Testing the Irvine32 Library.

3 The Book's Llnk Library

INCLUDE Irvine32.inc
CR = 0Dh ; carriage return
LF = 0Ah ; line feed

.data
strl

str2
str3
str4
str5
str6

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

"Generating 20 random integers between "
"0 and 990:",CR,LF,U

"Enter a 32-bit signed integer: ",0
"Enter your name . H10

"The following key was pressed: ",0
"Displaying the registers:“,CR,LF,0
"Hello, “,0

buffer BYTE 50 dup(0}
dwordval DWORD ?

.code
main PROC

; Eet text color to black text on white background:
mov eax,black + (white * 16)
call SetTextColor
call Clrscr ; clear the screen
call Randomize ; reset random number sequence

; Generate 20 random integers between 0 and 990.
; Include a 50d millisecond delay.

mov edx,OFFSET strl ; display message
call Writestring
mov ecx,20
mov dh,2
mov dl,0

L1:call Gotoxy
mov eax,99l
call RandomRange
call WriteDec
mov eax,500
call Delay
inc dh

add dl,2

Loop Ll

loop counter
screen row 2
screen column 0

indicate top of range + 1
EAX = random integer
display in unsigned decimal

pause for 500 milliseconds
next screen row
move 2 columns to the right

Chapter 5 - Procedures

-call Crlf ;
call Waitfisg ;
call Clrscr ;

new line
"Press [Enter]..."
clear screen

; Input a signed decimal integer and redisplay it in
; various formats:

mov edx,OFFSET str2 ;
call WriteString
call ReadInt ;
mov dwordVal,eax ;
call Crlf ;

-call WriteInt ;
call Crlf
call WriteHex ;
call Crlf
call WriteBin ;
Call Crlf

; Display the CPU registers:
call Crlf
mov' edx,QFFSET str5
call WriteString
call DumpRegs

call Crlf

; Display a memory dump:
mov esi,OFFSET dwordval
mov ecx,LENGTHOF dwordval
mov ebx,TYPE dwordval
call DumpMem
call Crlf
call WaitMsg

“Enter a 32-bit..."

input the integer
save in a variable
new line
display in signed decimal

display in hexadecimal

display in binary

II; Displaying the registersz"

; display registers and flags

7 starting OFFSET
; number of units in dwordval
; size of a doubleword
; display memory
; new line
; Press [Enter]..."

; Ask the user to input their name:
call Clrscr
mov edx,0FFSET str3
call WriteString
mov edX,OFFSET buffer
mov ecx,SIZEOF buffer — 1

; clear screen
; "Enter your name: “

; point to the buffer
; max. number characters

4 7 7 _

5.3 The Book's Link Library 151

call ReadString ; input the name
mov edx,OFFSET str6 ; "Hello, "
call WriteString
mov edx,OFFSET buffer ; display the name
call Writestring
call Crlf

exit
main ENDP
END main

Sample Output Here is a sample of the prograrn’s output. The integers are randomized, so
your own output screen will display different numbers:

mBook4\Examples\chU5‘tTestL|b. exe
nerating 20 random integers between 0 and 990: _

ll
llan

»|
'-

390
2'-I3

1 1'8
’ T75 '

1 51 2
i 240

T89
" 5??

465 '
429

‘ T39
3 T31

932
ress [Enter] to continue... g

fi

J
1

|--In‘-\.u-\n-

‘.'.-1.-l¢1.'.§.‘.__-.....

. __-.. we-1 .4" '| .. -.;i:;.‘'-r-.".I-

152 Chapter 5 - Procedures

After you press Enter, the program displays the following:

<|' '- ' "' ‘ ' "' "‘ ' ‘ ' ' ' "‘-'--"‘ 'I' " ‘ " " " ' "“ " ' " "" - '--‘ " "'

_ . _ i . _ __ __ _ _ _ __ _ _ _i'**1_#_.

Enter E 32~b1tIsignedjihteger: 123558 I I I F" ”

+123&5
88883839
8888 8888 8888 8888 8811 8888 8811 1881

Displaying the registers:

EHH=88883839 EBH=7FFUF888 ECH=88888888 EUH=88A8h8CC
ESI=88888888 EUI=88888888 EBP=8812FFF8_ ESP=8812FFC&
EIP=88d818B6 EFL=88888286 CF=8 SF=l. ZF=8 8F=8

1-l~fl-l-A-on-I-———lq-n_

jflump of offset 88d8d122

|88883839

.Press [Enter] to continue...

._ '_|_ ___ -_-h _ 1”-; U-_ -_-_ _ _--_a-_ - __-‘ --_1__-‘- -_----n--- J

When you enter your name, it is redisplayed by the program. (The final “Press any key” message
was not generated by the program.):

__ _.- -- -. .- . ._._________.__._.-;_.-_._._,._...-._ ___._ _ . .. __ _. ___._ _-. _._ _------- --_--------- -------

C:-KWINDOW5\System32‘tcmd.exe i

iEnter your name: Kip Irvine
iHel1o, Kip IFUIHG _
_Press any key to continue . .
it

‘-

_- - ----r 4-» -v--\ In-1 — -1:!‘8 *‘\'l'Jiimtat i Q1

5.3.4 Section Review

l. Which procedure in the link library generates a random integer within a selected range?
2. Which procedure in the link library displays “Press [Enter] to continue..." and waits for the

user to. press the Enter key?
3. Write. statements that cause a program to pause for 700 milliseconds.
4. Which procedure from the link libraty writes an unsigned integer to standard "output in dec-

imal format?

r __ ___ { _;.__- ‘_._ __ __ __._, . .. ;_‘_._'. q_-_-, -.~".‘_._-_‘_4§é_=‘__.,._. I, -_.:;_,3._-. .-"-_-5.: ' '._;~,§,_- ---\--,3.-,,:;;__,§ _ I-—— _
.1 .'. : f".- 8-3"" wi.-: - 1-“ “"'§"f7"‘-' - V‘; '1'; -It--hf-. .1, ' '- Ff!’ .:!-95 .- -- . .- .\;-5 1.--: :35?9' ‘.':',,"\.;'_‘£-§?Z!_;‘§'::"'f'-l-:",_‘.¢ _._-:_ _A'f_,-_; _ ' ¢"‘=§}:§.;',_-c-:§.'T-I‘-;_--1 '\;1r_ ‘- _ ..2=.'_____4t ;§,1_E,).,:1;.‘-r:'I_-'1-:-:- .- 5'; §
--. -.. .-.......-.. ..-..,--.-..-....._-....-.~.... .--.-_-.. -.- .,-. _.,.,.-..-_\- -,.~... _.- ...,.-. 'II‘lf'I- -._-.._..-- .. -.. - .- '- .. - — '*"--"P '—"-""1;-. .='.-,... .,__~_

~-.~..-_,.
5'-r._-_-,-
i"-‘

Y-.1 ..\.'!

;--3.

i‘-5.".-l“it:‘?.%."C-i_‘.‘€.<.’iJt1P’

.s,_.
‘fi-
"J

I

sass:
1::

\

'-I-I-m._ _._ ___ ._ ,

\

ii

I' _i.|.-34.'5}:1'-'.:;.

>
\

|

inI

F
4.
|

1

I

1

'1
r

-.

--n

5.4 Stack Operations f 153
_ _ I

5. Which procedure from the link library places the cursor at a specific console window
location‘?

6. Write the INCLUDE directive that is required when using the Irvine32 library.
7. What types of statements are inside the [rvine32.iz_zc file‘?
8. What are the required input parameters for the DumpMem procedure?
9. What are the required input parameters for the ReadString procedure?

10. Which processor status flags are displayed by the DumpRegs procedure?
ll. Challenge: Write statements that prompt the user for an identification number and input a

string of digits into an array of bytes.

5.4 Stack Operations
If you were to stack ten dinner plates on top of each other as in the illustration shown below, you
would be creating 'a stack. If the plates were extremely heavy, it would make sense to have a rule
that you cannot pull a plate out from the middle of the stack, but you can remove plates from the
top. New plates should only be added to the top of the stack, never to the bottom or middle:

wnwemoumma

_. -<— top

_ -*—— bottom

A stack is also called a LIFO structure (last-in, first-out), because the last value put into
the stack is always the first value taken out. (LIFO is a well—known accounting term, but I prefer
plates because they remind me of food.)

A stack darn structure follows the same principle: new values are added to the top of the
stack, and existing values are removed from the top. Stacks in general are useful structures for a
variety of programming applications, and they can easily be implemented using object-oriented
programming methods. If you have taken a programming-course that used data structures, you
have worked with the stack abstract data type.

In this chapter, however, we c.0nc.entrate on what is called the rtmrime stack. It issupported
directly by hardware in the CPU, and it is an essential part of the mechanism for calling and
returning from procedures. Most of the time, we just call it the stack.

5.4.1 Runtime Stack
The runtime stack is -a memory array that is managed directly by the CPU, using two registers:
SS and ESP. In Protected mode, the SS register holds a pointer to a segment descriptor and is not
modified by user programs. The ESP register holds a 32-bit offset into some location on the

154 Chapter 5 ~ Procedures

stack. We rarely manipulate ESP directly; instead, it is indirectly modified by instructions such
as CALL, RET. PUSH, and POP.

The stack pointer register (ESP) points to the last integer to be added to, or pushed on. the
stack. To demonstrate, let’s begin with a stack containing one value. In the following illustration,
the ESP (extended stack pointer) Contains hexadecimal 0000 l 000, the offset of the most recently
pushed value (00000O06):

Offset

"°°°“’°° -. -—- Esr
00000FFC

00000FF8 ::

00000FF4
00000FFO 1

~-

Each stack location in this figure contains 32 bits. which is the case when a program is running
in Protected mode. On processors earlier than the Intel 386, the SP register points to the most
recently pushed value‘.

5.4.1.1 Push Operation
A 32-bit push operation decrements the stack pointer by 4 and copies a value into the location in
the stack pointed to by the stack pointer. In. the following figure, we push 000000A5 on the
stack:

00001000

00000FFC

00000FF8

00000FF4

00000FFO

BEFORE

_:;3;.r|:",a't;;tI§_éz-‘3 6
"I -¢——- ESP

‘J

I.

$1
itI:
‘I

if‘:

in

00001000

00000FFC

00000FF3

00000]?F4

00000FFO

AFTER

~r00000006t I - . _. ,|- -5.-1--I_~.-r;. .;.:-.-7».
rl '1': .- .-I I: -i .u.

I .._=':§~v-=i. :‘;‘_ . .. L35.-,. ... ;-‘I '| .

ti.
<Ir‘

i__i‘\

——il~.

ESP

 t

have pmbalfly that shows tl,1'e-stack order opposite to '; l
éthat of the stack of pistes wesaw at the begTihii'i'ng- of this section. There’s no reason why

5 the runtime stack could not grow upward in memory. but the Intel designers decided that it
would grow downward. Regardless of the direction in which it grows. a stack still follows
‘the same last-in first-out principle. 5

5.4 Stack Operations 155

Before the pu sh, ESP === 00001000h, and after the push, ESP = 00000FFCh. The following illus-
tration shows the same stack after pushing two more integers:

Offset
ll .-'-_'.i :5? _j.': * .'7'_;‘,'- 7- qr 'll \.-,\.1l,.'¢\';‘_..§'_'.e3~PQ_.- _"; ‘,-

‘ ~;.-. ' - - --_-,- 11.. 00 06> = .-00001000 W.:.1:_!rj1p,__._,,, la
r ,~-3- 1:11 .tuI.’.~;.=,-_.-\-_,'-' - , ‘

1 .:..".-'5?-':‘\i.'L§§.7t"-" ._ la - L\.,('!..-\}\.\ ,.'1.-\ A. I M‘:00000FFC _ll?..
i,‘-_'.3.."\1!';‘:'-I' "\"I"l5'|“"{r! .'l"' ." . ";
‘_|.'t:'.§"\ U--' ."' ,|..._%_-1-..C_p. 1t.'_’_'l_0000001‘-*0 ==:i:¢;-00 30931-5-‘.53 0ea‘ 1;-:e.-:-r:=-‘- ;-'-."—_"-.==*.='n,~t.~:-'.-

00000FF4. ‘"' "\i='.""§‘ -¢- Esp

00000FFO
ll

5.4.1.2 Pop Operation
A pop operation removes a value from the stack and places it in a register or variable. After the
value is popped from the stack, the stack pointer is incremented to point to the next-highest loca-
tion in the stack. The following diagram shows the stack before and after the value 00000002 is
popped from the stack:

BEFORE AFTER
.J|:%_._-;,..,.;-___; ' _ L: ‘"1-'3» ..~-u -- 1:-'-2‘-II!

3;. . - -._-_.'-_-'|_, ,. i_- fr.00001000 00001000 ,i;»»._00?f 5
~'=:~-'rh_:;T*.'1rI‘?-J1?-‘i = -1*“ hlifiiif =51

_ 1.3_i-iii I 1:.‘ T:_:-jf~'~L'1}_§‘.;7_-T\;‘;'1“_§*‘._'§‘,_l';-.'._..‘:-l:§_f.f0000UFFC 00000r1=c
*1.-5';-‘I95-1‘1:’ :l::;'.3§i‘.'=.-=‘-2:. ‘ '-;'~"-.\~I5:3!e- - a=‘*5$.‘I--151?.

%:f7.’?"'.~!'- *1‘ ‘-"ii." ""§."‘§f'€‘“':-$7-_'=.*l00000FF8 00000FF8 ‘=1
"-.1 1-0:.-:~ U000 - -'~'-r -#1U00FF4 Eff;-fiilf '1' 00000FF4

00 ESP

.

-53-1-=.5Hi-

0tl000Fl'l0 00000FF0
* <-

The area of the stack below ESP is logically empty, and will be overwritten the next time the cur-
rent program executes any instruction that pushes a value on the stack.

5.4.1.3 Stack Applications
There are several important uses of stacks in programs:

- A stack makes a convenient temporary save area for registers when they are used for more
than one purpose. After they are modified, they can be restored to their original values.

' When the CALL instruction executes, the CPU saves the current procedure’s return
address on the stack.

' W-hen calling a procedure, we often pass input values. called arguments. These can be
pushed on the stack.

- Local variables inside a procedure are created on the stack and are discarded when the pro-
cedure ends.

156 Chapter 5 - Procedures

5.4.2 PUSH and POP Instructions
5.4.2.1 PUSH Instruction
The PUSH instruction first decrements ESP and then copies either a 16- or 32-bit source oper-
and into the stack. A 16-bit operand causes ESP to be decremented by 2. A 32-bit operand
causes ESP to be decrementcd by 4. There are three instruction formats:

PUSH r/r016
PUSH r/m32
PUSH imm32

.’2-
,_ e E E _ iii, if ,,_ E E —* i _ _ e T O .-_’ 1 _ ——— i »_ —7— if _ _ _'1' '1 _=,.t - "_._-_ _I:_--»."t=':"'1*"~'~ .|-"2'-‘i?:_=" :~'-':=_9~—‘ -;_!!'1{,'-*_i.r*, 1;.--M: :1‘-.. H -';' --::-g:.|.| "?\'. :1}-g~'=;_[".-: _b-".;‘-'11-=§=\:= _-I‘-_-<-asg qnaw, '|;'-.".;~."' '-in "- ',' H "~~, '..i l. _ 1 - "'3"-',1':r-..;;;::-3: 'm-r"'§;-q- - ~ :1 - -'- |' 1 4.r.1. .-t-. .1.- .< -. ..~ .: -I‘ .. -. .-.._ -- .~ _. .. , - .1. .-.. ..H1" .51‘~Em§Ir:t-1it§il.1i?§5§:1iiF.ii*’-'%€s:F§xiE.>':a.».5i?- -*1-iii-ifiii.-1;» {"£1.;iE“.‘5i;"§5E=;_' sis‘!-'-it’?-5.~ti'?{E'=!§tii§#'?i?f¢i‘?J3r;i»i“»ii£-:<ir?"1 ";»i?’-j"il~I:1F.-Lt-‘i:**‘1-$5.1-“-:ai1~"3';-’-.§‘:‘.<.-:'t;eIi*.:>* F. . _ _ ,. r _ _ _. ,

All M. e‘_.__?l __ (Y. -.... . _,-,.,.~xi. J .- -, ,_» 5._“:-.: ,-_,;.1.,. J -. _.- ¢.D!___ t -:- »..;,1 :-{Isl E .2 -.-,-.;,\,_~:,_ -...1_,‘-|. H, . --.~ .\,t,..- ..|..-___-.1.,=._| I, LJLE .-N,-.-. _--{V .5“,--.-»l--r.-1.1;‘! IE1 '

=;w1se,;fl1erWm§2-Ceiiselefimchemguststibg this lib ha , 1 ~ri1“otm!1otk obn-ficfly _;[Eyour»pt0,gran1,ca11s ,0 _i _.-..:.:r_ :-..':€> .1: Hi ,0-._.-.: I an ‘aim.-. |;_._ , I \..n_= ».-i .,.-I _v- _‘ -__l I; tr . LI_\: . . -i-..r\f-n; i : '5 _-:1 F.-0-v l -ti‘. \-fig-_? '__-___-" 4 _" l_.- ___._:.|, -_ vhf: ,_._

5'. ‘-__ ,_*_ . .- ; '-' - ___'_.“,a" _‘_ll'- "1' _. _,,-_'.":;_" _' _ '_“ '___ -E‘. _ ,6 . . ;_." :'___ ,' 1.. _.. 4- |_ _‘: C, _'_ i 1 . 1. :.'.'1, I _ ___'."\ _.-, ‘ ..: -,_ -,. 1 ‘T ' ,‘-. _ .1; ->__' _: __ ' '_‘ I, _ '_ HI.‘--3' ‘ 1:,
-ii?-l;ii\}2-ii.-ill-_§ ti?-Lt-lllil-‘.i'i**i "<1-“-2;}! ‘ :""," -‘$1-i-in-titer: l%i='.’= -'5ii!?iFl‘7e§-.". -F-. V.-..--" =‘l‘-;~._- -=.-P ‘ P W531’. ti‘-5"i€ii44.i -i=5-.-1 ii.-‘;1*==il*i=. 5.-3%1211;;i.;:>.I‘b1:.*=F-..-:m1i‘~!; i'""'“.J"‘l1!3'i1‘-ii‘.1-1.?-'iT‘i**'"-*£1"i‘?‘3L'f'1‘i_"I-??,=Ilil"t-ieinttet #553 . .1. -“‘.,_l"§1**i11"5It$i1§‘D.i’140fitéiifisllitfillfi-iliibfiilii5§#5i¥i%iIi5i3.%i§iti!1}*>ii?il3ifi"iilssuststeti ' ‘ " ‘ ‘ " "' ‘ Jteghj ' ' ‘ i ‘ P 'h>;_ 4 '_',_i_1'* ,_ ' ' 55g’ ~ +uJ1 r-2 1:-.. '*-ishe"-1/ ‘IQ}-s ‘r.-_ -=-\-N El as

P‘
“\-

Mrs» '7: Tn-'5 P 1?;-"'12 =3’5%”‘T-J— :_Fl‘ jnme '--: .3'5‘J"~4.5"5IE “Y 4: 2-Z!-r 3
1-_4'\ “I§=@,%;,;-1, =1". :,"..- 0 _==.1.L.!.--_,._,,.+. ‘f .:.I-?:!.'It--- iilit--i[‘EC:i}§I3i_lii§ii§tiEQ‘55%-'2"v-1'; =iL“i:I;..':i&.1:;-;: -5-=0-?L-I;< ' -_~I:I'=._ Ffilzl

Immediate values are always 32 bits in Protected mode. In Real-address mode, immediate
values default to 16 bits, unless the .386 processor (or higher) directive is used. (The .386 direc-
tive Was introduced in Section 3 .2.3.1).

5.4.2.2 POP Instruction
The POP instruction first copies the contents of the stack element pointed to by ESP into a 16- or
32-bit destination operand and then increments ESP. If the operand is 16 bits, ESP is incre-
mented by 2; if the operand is 32 bits, ESP is incremented by 4:

POP r/m16
POP r/m3-2

5.4.2.3 PUSHFD and POPFD Instructions
The PUSHFD instruction pushes the 32-bit EFLAGS register on the stack, and POPFD pops the
stack into EFLAGS:

pushfd
popfd

P‘
' 1 ‘1| . i I 1- ' -I -1 1 I ' - 1 5 " ' 2 - l~fl I \..: ' I iq "' J i‘ ‘ fin?’ "3-‘-?"'I:

ti;-r~1:.J rs’-"'"‘-J -it =.--=-:=~§i'.'i£!'ii*iiiiiiii] it-“~=i-=:?"li%:'-:i=.'.“=.11".‘1l=|?:::-.--..ri.-ih-F5:1iai‘l.“3iTL1!.1:li!»§'dftu|iii¢.F=§-tfljlg‘ itzh :i.5.-[:45r?<i~=i_!§:=_'.l1!5.-ii’-?‘;i lib.‘5,31!-§;‘§’1pF¥i!>‘-iktI-iéiithaitiénejrtgfie-illtfxitfigisiifii-lI.‘l'*?i|i’1?'_.\!li~ll---r.r'-: it,‘-i-Y I-'>.,...=-.»'..'.-

C131-. II-Li.

2'. ‘:1: -|

There are times when it is useful to make a backup copy of the flags so you can restore
them to their former values later. One way to do this is to just enclose any block "of code within
PUSHFD and POPFD:

pushfd ; save the flags
%I

any sequence of statements here. . .%I

"ll

popfd ; restore the flags

5.4 Stack Operations 157

When using pushes and pops of this type, you must be very careful that the program ’s exe-
cution path does not skip over the POPFD. When a program is modified (and hopefully
improved) over time, it can be tricky to remember where all the pushes and pops are located. A
less error-prone way to do the same thing is to save the flags in a variable:

.data
saveFlags DWORD ?
.code
pushfd ; push flags on stack
pop saveFlags ; copy into a variable

The Following statements restore the flags from the same variable:

push saveFlags ; push saved flag values
popfd ; copy into the flags

5.4.2.4 PUSHAD, PUSHA, POPAD, and POPA
The PUSHAD ‘instruction pushes all of the 3-2-bit general-purpose registers on the stack in the
following order: EAX. ECX, EDX, EBX, ESP (original value). EBP, ESI, and EDI. The POPAD
instruction pops the same registers off the stack in reverse order. Similarly, the PUSI-IA ‘instruc-
tion, introduced with the 80286 processor, pushes the 16-bit general-purpose registers (AX, CX,
DX, BX, SP original value, BP, SI. DI) on the stack in the order listed. The POPA instruction
pops the same registers in reverse order.

If you write a procedure that modifies a number of 32-bit registers, use PUSHAD at the
beginning of the procedure and POPAD -at the end to save and restore the registers. The follow-
ing code fragment is an example:

MySub PROC
pushad ; save general-purpose registers

mov eax,...
mov edx,...

0 0 0

popad ; restore general—purpose registers
ret

MySub ENDP
5.4.2.5 Example: Reversing a String
The RevSrr.asm program loops through a string and pushes each character on the stack. It then
pops the letters from the stack (in reverse order) and stores them back into the same string vari-
able. Because the stack is a LIFO (last-in,firsr-our) structure. the string is displayed in reverse:

TITLE Reversing a String (RevStr.asm)

158 Chapter 5 ' Procedures

INCLUDE Irvine32.inc
.data
aName BYTE "Abraham Lincoln",0
nameSi2e = ($ — aName) ~ 1

.code
main PROC
; Push the name on the stack.

mov ecx,nameSize
mov esi,0

Ll:movzx eax,aName[esi] ;
push eax ;
inc esi
Loop Ll

get character
push on stack

$1!

Pop the name from the stack, in reverse,
nd.store in the aName array.
mov ecx,nameSi2e
mov esi,0

IQ: pop eax ; get character
mov aName[esi1,al ; store in string
inc esi
Loop L2

; Display the name.
mov edx,OFFSET aName
call Writestring
call Crlf
exit

main ENDP
END main

5.4.3 Section Review

Which two registers (in Protected mode) manage the stack‘?
How is the runtime stack different from the stack abstract data type‘?
Why is the -stack called -a LIFO structure‘?
When a 32-bi.t value is pushed on the stack. what happens to ESP‘?
('I"rue/False) Only 32-bit values should be pushed on the stack when using the Irvine32 library,
('I"rue/Fm‘se) Only l6-bit values should be pushed on the stack when using the Irvine l 6 library.
(True/Fcmre) Local variables in procedures are created on the stack.
(Tme/False) The PUSH instruction cannot have an immediate operand.
Which instruction pushes all of the 32-bit general purpose registers on the stack‘?
Which instruction pushes the 32-bit EFLAGS register on the stack‘?
Which instruction pops the stack into the EFLAGS register?

5.5 Deflnlng and Using Procedures 159

12. Challenge": Another assembler (called-NASM) permits the PUSH instruction to use specific
registers. Why might this approach be better than the PUSHAD instruction in MASM‘? Here
is an example:

PUSH EAX EBX ECX

5.5 Deflnlng and Using Procedures
lfyou’ve already studied a high-level programming language, you know how useful it can be to
divide programs into logical units called functions. Any complicated problem must be broken
into" a series of tasks before it can be understood, implemented, and tested effectively. In assem-
bly language, we typically use the more general term procedure to mean the same thing.

If your orientation is toward object-oriented programming, you might think of all the func-
tions in a single class as being roughly equivalent to a collection of procedures and data in the
same assembly language source code module. Assembly language was created long before
object-oriented programming, of course, so it doesn’t have the formal structure found in C-t—t-,
Java, and similar languages. It’s up to you to. impose whatever formal structure on your pro-
grams you deem necessary.

5.5.1 PROC Directive
5.5.1.1 Defining a Procedure
informally, we can define a procedure as a named block of statements that ends in a return state-
ment. A procedure is declared using the PROC and ENDP directives. It mu st be‘ assigned a name
la valid identifier). Each program we’ve written so far contains a procedure named main, for
example:

main PROC
O

I

main ENDP
QWhen you create a procedure other than your program s startup procedure, end it with a

RET instruction. It forces the CPU to return to the location from where the procedure was called:

sample PROC
O

0

ret
sample ENDP

The startup procedure (main) is a special case because it ends with the exit statement.
When you use the INCLUDE 1m'ne32. inc statement, exit is an alias for a call to ExitProeess, a
MS-\V1ndows function call that terminates the program:

INVOKE ExitProcese.0

160 Chapter 5 - Procedures

(In Section 8.3.1 we introduce the INVOKE directive, which can call a procedure and pass
arguments.)

Ila]-; :' T’ . _.'._d,Zf'._ _ . .: '1-1 .:L:_’-..:'.p:!. _‘.1;';1 . -. . .:_--I -v:- - 3. - ‘ . '
| - ..\ ' 1- av 4- v |- I >-

etfitis tlairslati-id.=to the EXIT" ' " 1‘"‘;t'-.-‘£115....El?‘-'._:-‘ti i"""_';'I'.'-. .,-::- _-.:i 1*‘ '".- ' ‘I-=1‘ . . ' 3l -0-cansets.-‘;=:__ti;1_e_'ass_tf.ml)ler to generateftlzre followrng two if
1 :-'1 ;- t - - 1 "- " +‘ l',,;..'_... _-;.|-‘:1.-?‘f_"_'. :__ _:;:,é1_%,_: ..:_:_-_.- ___ _ I ;_ ._

3'1;i~i-'.E j.f.-rm;-';no.s £_1an'c't:. ion-' ash l
. .* . ; .-pr<:".>sr:a»m-.-- _
-___, _ _' -'='_'\= =_,~. :-_ _,,r__-_,-__ .2 . '_;;-"='- - ,, ___-..

5.5.1.2 Example: Sum of Three Integers
Let’s create" a procedure named SumOf that calculates the sum of three 32-bit integers. We will
assume that relevant integers are assigned to BAX, EBX, and ECX before the procedure is
called. The procedure returns the sum in EAX:

Sumof PROC
add eax,ebx
add eax.ecx
ret

SumQf ENDP

5.5.1.3 Documenting Procedures
A good habit to cultivate is that of adding clear and readable documentation to your programs. The
following area few suggestions for information that you can put at the beginningofeach procedure:

' A description of all tasks accomplished by the procedure.
- A list ofinput parameters and their usage, labeled by a word such as Receives. If any input

parameters have specific requirements fortheir input values, list them here.
-. A description of any values returned by the procedure, labeled by a wood such as Returns.
- A list of any special requirenrents, called preconditions, that must be satisfied before the

procedure is call ed. These can be labeled by the word Requires. For example, for a proce-
dure that "draws a graphics line, a useful “precondition would be that the video display
adapter must already be in graphics mode.

.'fiil-flrcir sigsegsseerves,-"seamsssa Requires, are not abso-
. - ,-. . - ' _. . ; . "¢_._'., --' '_-' . _ . , .- :'-'.\- -‘_ _- ----.. . '

'V;. '.. __ .._.-f.-_. .,. :-_g. '|--_‘:»_\,-. .. _-_:f_-_ " .. __ _ ' - - — . - '4 . - ___.__ __ _ __”7 W

With these ideas in mind. let’s add appropriate documentation to the SumOf procedure:

1 " ' “ ' ' “ “ “ T “ “ T “ “ “ “ “ “ T T “ T “ T “ “ T “ T “ T “ “ “ “ T T T T “ “ T “ “ " ' “ ' ' ' ' “ ' “ “ """
Sumof PROC
I
; Calculates and returns the sum of three 32-bit integers.
; Receives: EAX, EBX, ECX, the three integers. May be
; signed or unsigned.

5.5 Deflnlng and Using Procedures 161

; Returns: EAX =.sum, and the status flags (Carry,
; Overflow, etc.) are changed.
3 --~

add 'eax,ebx
add 'eax,ecx
ret

Sumof ENDP

5.5.2 CALL and RET Instructions
The CALL instruction calls a procedure by directing the processor to begin execution at a new
memory location. The procedure uses a RET (return from procedure) instruction to bring the pro-
cessor back to the point in the program where the procedure was called. Mechanically speaking,
the CALL instruction pushes its return address on the stack and copies the called pro_cedure’s
address into the instruction pointer. When the procedure is ready to return, its RET instruction pops
the -return address from the stack into the instruction pointer. The CPU fetches the next instruction
from the address pointed to by EIP. the instruction pointer register (or IP. in 1'6-bit mode).

5.5.2.-1 Call and Return Example
Suppose that in main, a CALL statement is located at offset 00000020. Typically, this instruc-
tion requires five bytes of machine code, so the next statement (a MOV in this case) is located at
offset 00000025:

main PROC
00000020 call Mysub
00000025 mov eax,ebx

Next, suppose that the first executable instruction in MySub is located at offset 00000040:

Mysub PROC
00000040 mov eax,edx

ret
Mysub ENDP

When the CALL instruction executes, the address following the call (U0000025) is pushed on
the stack and the address of MySub is loaded into EIP, as shown here:

111.. '-- -- Vi mm. [age]-§r'$§ir2§fiQG4g_§.'%I ESP 00000040
Q _-I ,%1 ~"-."—i-*3?‘-'.'l,. '1‘

iii’it-T .'1-1t-Vii.P.-"‘-.E.' E1'---as
{TI;_‘P 1- "3:“-".?_'1ii.14' H":_13 .i'

Li
‘EIP

All the instructions in MySub execute up to its RET instruction. When the RET iI‘lSiILlC-
tion executes, the value in the stack pointed to by ESP is popped into EIP. As the next figure

162 Chapter 5 1* Procedures

illustrates, this causes the processor to resume -execution at offset 00000025 the location of the
instruction following the procedure call:

=‘-.=+*.==‘."§--': "‘ ""' -1“ '*.‘t1>'--'-'---:--.' 2’-g.=-;=-=.-‘i.=_l§'_J,_l~l1,iri:§_=$-L55q=,%:=e€§F;§§- ~ .. . ESP i r 3§s_a__:g.;-25' .r_.-_-..'=:. -1_ar~_E=-.- 1,.
'1‘-.3;

.ci- '-at.- .:7: I' . 1-';T'- -0:,-. .%”.;-*'.-'r“.~‘é:f’I'_'-_'5I§3.i5£".i.‘l,’"’.3Hfi'lhfl 31_.._..'§\,

5.5.2.-2 Nested Procedure Calls

A nested pi-octzdure call occurs when a called procedure calls another procedure before the first
procedure returns. Suppose that main calls a procedure named Subl. While Subl is €X€Cll[lI‘l°
it calls the Sub2 procedure. While Sub2 is executing, it calls the Sub?» procedure The process is
shown in the "next figure:

main PROC

call Subl
exit

main ENDP

Subl PROC
I-

I-

call Sub2

ret
Subl ENDP

Sub2 PROC

call Sub3
ret

Sub2 ENDP

Sub3 PROC

ret
Sub3 ENDP

00000025

5.5 Defining and Using Procedures 163

When the RET instruction at the end of Sub?» executes, it pops the value at stack[ESP] into
the iiisuuction pointer. This causes execution to resume at the instruction following the call
Sub?» instruction. The following diagram shows the. stack just betore the return from Sub?» is
executed:

f;-_.-fa(ret to main) 1

(ret to subl)

__(:Q_,_

§3 (retro S'ub2)_ i _ESP1

x--0 "T t J>.l

A-fter the return, ESP points to the next"-highest stack entry. When the RET instruction at
the end of Sub2 is about to execute, the stack appears as follows:

_ if (ret to main)
to Subl) ,_ ESP

Finally, when Subl returns, stack;[ESP] is popped into the instruction pointer, and execu-
tion resuines in main:

(ret to main) _‘_ ESP

Clearly, the stack proves itself a useful device for remembering infonnation, including
nested procedure calls. Stack structures, in general, are used in situatioiis where programs must
retrace theirsteps in a specific order.

5.5.2.?» Local Labels and Global Labels
By default, a code label (followed by _a single colon) has local scope-, maldiig i_t visible only to
statements inside its enclosing procedure. This prevents you from jumping or looping to -a label
outside the current procedure. In the unlikely event that you really niust transfer control to a
label outside the current procedure, the label name must be declared global. To do this, follow
the label name with two colons. For example:

Glo'b__alL_abel: :

164 Chapter 5 - Procedures

In the following program excerpt, the jump to L2 from main generates a syntax error
because L2 is local to the sub2 procedure. The jump to L1 from sub2, on the other hand, is legal
because L1 is defined as a global label:

main PROC
jmp L2 ; error!

L1:: ; -global label
exit

main ENDP

sub2 PROC
L2: ; local label

jmp Ll ; ok
ret:

su.‘o2 ENDP

5.5.2.4 Passing Register Arguments to Procedures
If you write a procedure that" performs "some standard operation such as calculating the sum of an
integer array, itj’s not a good idea to include references to specific variable names inside the pro-
cedure. If you were to do that, the procedure could never be used with more than one array. A
much better approach is to pass the offset of an array to the procedure, and pass an integer spec-
ifying the number of array elements. We call these arg_umen.rs (or input parameters). In assembly
language, it is common to pass arguments inside general-pu rpose registers.

In the preceding section we created a simple procedure named SumOf that" added the inte-
gers in the BAX, EBX, and ECX registers. In main, before calling SumOf. we assign values to
BAX, EBX, and ECX:

.data
the'Sum DWORD ?
.code
main PROC

mov ea:-t,l0000h ; argurnent
mov ebx,20000h ; argumerit
mov ec:-:,30000h ; argument
call SumOf I EAX = (EAX + EEK + ECX}
mov theSuin, eax ; save the sum

Afterthe CALL statement, we have the option of copying the sum iii BAX to a variable .

5.5.3 Example: Summing an Integer Array
A very common type of loop that you.may have already coded in C++ or Java is one that calcu-
lates the sum of _an integer array. This is very easy to implement in asseinbly language, and it can
be coded in such a way that it will run as fast as possible. For example, one can use registers
rather than variables inside a loop.

5.5 Defining and Using Procedures 165

Let’-s create a procedure name.d ArraySum that receives two parameters from a calling
pi'ogram:'a pointer to an array of 32-bit integers, and a count of the number of array values. It
calculates and returns the sum of the array in BAX:

I “ “ “ ' ' ' ' ' ' “ ' ' ' ' ' ' “ “ “ ' " “ “ * * ' “ ' ' ' ' “ ' * * ' “ ' ' “ ' ' ' “ “ ' ' ' ' “ ' ""
ArraySum PROC

b
I

;-Calculates the.sum of an array of 32-bit integers.
; Receives: ESI = the array offset
; ECX = number of elements in the array
; Returns: BAX = sum of the array elements
* § ¢ m m r § r r § r r r r r § r g @ @ Q Q Q r r r m § r r m m 1 § § 1 r 1 § § m r r § r r m 1 § 1 § 1 an--—
I

push esi ; save ESI, ECX
push,ecx
mov eax,0 ; set the sum to zero

Ll:
add eax,[esi] ; add each integer to sum
add esi,4 ; point to next integer
loop Ll ; repeat for array size

pop -ecx ; restore ECX, ESI
pop esi
ret ; sum is in EAX

Arraysum ENDP

Nothing in this procedure is specific to a certain array name or array size. It could be used in any
program that needs to sum an array of 32-bit integers. Whenever possible, you should also create
procedures-that are flexible and adaptable.

Callirzg A?7'tZySHflI Following is an example of calling ArraySum, passing the address of
array-in ESI and the array count in BCX. After the call, we copy the sum in BAX to a variablei

.data
array DWORD l000Oh,2000Oh,30000h,40000h,50000h
theSum DWORD '?
.code
main PROC

mov esi,OFFSET array ; ESI points to array
mov ecx,LENGTHOF array ; ECX = array count
call Arraysum ; calculate the sum
mov theSum,eax' ; returned in EAX

5.5.4 Flowcharts
Aflowcliarr is a well-established way of diagramrning program logic. Bach shape in a flowchart
represents a-single logical step, and lines with arrows connejctingthe shapes show the ordering
of the logical steps. Figure 5-l -shows the most common flowchart shapes.

166 Chapter 5 - Procedures

_' begin /end

. yes

process (task)

no

procedure
call

Figure 5-1 Basic Flowchart Shapes.

Text notations such as yes and no are added next todecision symbols to show branching
directions. There is no required position for each arrow connected to a decision symbol. Each
process symbol c_an contain one or more closely related instructions. The instructions need not
be syntactically correct. For example, we could add 1 to CX using either of the following pro-
cess symbols:

I cx=cx+1_ I l addcx,1 l

Let’s use" the ArraySum procedure from the preceding section to design a "simple flow-
chart, shown in Figure 5-2. Note that it uses a decision symbol for the LOOP instruction,
because LOOP must determine whether or not to transfer control to a label (based on the value
of CX). A code insert shows the original procedure listing.

5.5.5 Saving and Restoring Fleglsters
You may have noticed in the ArraySum example that ECX and ESI were pushed on the stack at
the beginning ‘of the procedure and popped at the end. This is. typical of most procedures that
modify registers. Always save and restore registers that are modified by a procedure, so that the
calling program can be sure that none of its own register values will be overwritten-

5.5.5.1 USES Operator
The USES operator, coupled with the PROC directive, lets you list the names of all the registers
modified within a procedure. This tells the assembler to do two things: First, generate PUSH
instructions that save the registers on the stack at the beginning of the procedure. Second, generate
POP instructions that restore the register values at the end of the procedure. The USES operator
immediately follows PROC, and is itself followed by a list of registers on the same line separated
by spaces or tabs (not commas).

5.5 Detlnlng and Using Procedures

ArraySnm Procedure

Ipush esi, ecx I

I eax = ll I

I S add ea.\f.[esi]I Kg
I a l
I ecx = ecx — I I .-

I

yes

I10

I pop ecx. esi I

.1 |.-;;.'~if..: 5'
I push esi, 1"

_ ' . t-_I;'k';Tl-3-l':iiif~i '
- ' I‘. Hr" I ... -. .-| ..i|,,---.2 --

pixsh ecx;.;i;§:
. 'ti.‘i'-..-';i- . .17... .-| 3.! '.§.

:5? ea"::t.1'f.i.n-:'1|’:i-.‘.‘-'.'¢ IL4,‘! 01-‘ I '-:3‘ ;.'.:,.i§.- -It §-_ 9-_,-_~ 9-_ .3 B» ,t_1 .- -if In rl.,§ -;.-. i
','?!,-i-- ' ':§i'.F.';i1*5jCw-'»E'l‘T "

.'>l!§."‘- '-
. 4_.. 4. i .-r'~":‘ ...asst‘: 2'." F515: ‘ §

..5|'|.:-Q .
add eax;;i[es:i.l

v eds' '" ;
|',-'_ - '-‘-<ij'f>. Y Zr |. =- ;;.;|.;-..-; -._.fi.. _ I -p_. ..Yidr.-‘.'~':-a -‘ -

'. POP 9¢I!-»'.:r,=-- -~i=:
pop esi“

L‘.ut

Figure 5-2 Flowchart for the ArraySum Procedure.

Let‘s modify the Array/Sum procedure I-‘rorn Section 5.5.3. It used PUSH and POP
instructions to save and restore ESI and ECX because these registers were I‘ll0Clli'lECl by the pro-
cedure. Instead. we can let the USES operator do the same thing:

ArraySum PROC USES esi eox
mov eax, 0

Ll:
add eax, [esi]
add esi,4"
loop Ll

set the sum to zero

add each integer to sum
point to next integer
repeat for array size

168 Chapter 5 - Procedures

ret ; sum is in EAX
ArraySum ENDP

The following code would be generated by the assembler;

Arraysum PROC
push esi
push ecx
mov eax,0 ; set the sum to zero

L1:
add eax,[esi] ; add each integer to sum
add esi,4 ; point to next integer
loop Ll ; repeat for array size

pop ecx
pop esi
.ret

Arrayfium ENDP

Debugging Tip; If you’re using a ‘asiffiliomsoft Visual Studio, you
can view the hidden machine 'i11st1'uctio1i*si’generatcd by MASM’s advanced opera»

. tors and directives. Select Debug Windows from the View menu, and select Disses-
sembly. This window shows_.y__both yot_ttf,,;'5;fp;rog1*am’s-.- source code and all hidden I

1 machine insuuctioris generati-#Ziji:i°3liy the I

Exception There is an important exception to our standing rule about saving registers that
applies when a procedure uses a register to return a value. In this case, the return register should
not be pushed and popped. For example, in the Sum0f procedure, if we were to push and pop
EAX, the procedure’s return value would be lost:

SumOf PROC ; sum of three integers
push eax ; save EAX
add ‘eax,ebx ; calculate the sum
add eax,ecx ; of EAX. EBX, ECX
pop eax ; lost the sum!
1'31;

Sum0f ENDP

5.5.6 Section Review

l. (True/False) The PROC directive begins a procedure and the ENDP directive ends a
procedure.

2. (True/False) It is possible to define a procedure inside an existing procedure.
3. What would happen if the RET instruction was omitted from a procedure?
4. How are the words Receives and Returns used in the suggested procedure documentation‘?

5.6 Program Design Uslng Procedures 169

5. (True/False) The CALL instruction pushes the offset of the CALL instruction on the staclc
6. (Ti-ne/False) The CALL instruction pushes the offset of the instruction following the CALL

on the stack.
7. (“True/False) The RET instruction pops the top of stack into the instruction pointer.
8. (True/False) Nested procedure calls are not permitted by the Microsoft assembler unless the

NESTED operator is used in the procedure definition.
9. (True/False) In Protected mode, each procedure call uses-a minimum of four bytes of stack

space.
l0. (True/False) The ESI and EDI registers cannot be used when passing parameters to

procedures.
ll. (True/False) The ArraySum procedure (Section 5.5.3) can receive a pointer to any array of

doublewords.
12. (True/False): The USES operator lets you name all registers that are modified within _a

procedure.
l3. (7i'ne/Fol-se): The USES operator only generates PUSH instructions, so you must code POP

instructions yourself.
14. (True/False): The register list in the USES directive must use commas to separate the regis-

ter names.
l5. Which statement(s) in the A1-raySum procedure (Section 5.5.3) would have to be modified

so it could work with an array of 1'6-bit words‘? Demonstrate.

5.6 Program Design Using Procedures
Any programming application beyond the trivial tends to involve a number of different steps. It
is possible to write all of the program code in a single procedure, but one quickly finds that such
a program is difficult to read and maintain. Instead, we divide up the various program tasks into
separate procedures. The procedures may all be in the same source code file, or they may be
spread out over multiple files.

When you begin to write a program, it is helpful to already have a set of specifications that
list exactly what the program is supposed to do. They will often be the result of careful analysis
of a real-world problem that needs to be solved. Using the specifications as a starting point, you
can design your program.

A standard design approach is to divide an overall problem into discrete tasks, each of
which can be coded in a single procedure. This process of dividing up a problem into tasks is
often calledfimcrionol decomposition, or top-do-we design. Here a-re some assumptions implied
by this approach:

- A large problem may be more easily divided into small tasks.
' A program is easier to maintain if each procedure can be tested separately.
- A top-down design lets you see. how procedures are related to each other.

W0 Chapter 5 ~ Procedures

- When you are. sure of the overall design, you can more easily concentrate on details, writ-
ing code that implements each procedure.

In the next section, we use the top-down "approach to design and implement the solution to
a fairly simple problem (adding integers). The same approach could be used to design much
more complex programs.

5.6.1 Integer Summation Program (Design)
The followingare specifications for a simple program that we will "call Integer Summation:

Write-a program that promptsithe user for one or more 32-"bit integers,
stores them in anarray, calculates the sum of the array, and displays
the sum on the -stirelirkn. -- _

__ .._..:_-!_- . -.:‘.-H _ - _. .;-1:2."
.'_‘.'w:-,;';_! 53:1" _. 4- 15.‘,-;"‘i"£:i':i| _- - . '. -.-.v\\‘!" - '.

- ..-"-l| ..-.¢' - :' .'-.1-__~ , I \ 1 _" ' |'t _ _i i i : ‘

The following pseudocode shows how we might divide the specifications into tasks:

Integer Summation Program
Prompt user for three integers
Calculate the sum of the array
Display the sum

In preparation for writing a program, let’s assign a procedure name to each task:

Main
PromptForIntegers
Arraysum
Displaysum

In assembly language, input-output tasks often require detailed code to implement. To
reduce some of this detail, we can call procedures that clear the screen, display a string, input an
integer, jand display an integer:

Main
Clrscr ; clear screen
PromptForIntegers

Writestring ; display string
Readlnt ; input integer

Arraysum ; sum the integers
DisplaySum

WriteString ; display string
Writelnt ; display integer

Structure Chart‘ The following diagram, called a S£‘!"uCTm‘€ chair, describes the program’s
structure. Procedures from the link library are shaded:

5.6 Program Design Llslng Procedures 171

Sununauon
Program (main)

5*’ F Yl?mi’»m'" T T T if T
rfifik P

_ PromptForIntegers ArraySum D|splaySum

E -' "" ,1-at ' ii i-1' ‘ ‘Y -1*“< . _, - 1 . , . - , _ ._--_. ,-:;;;,»;--.'-;_c .n_-_ - . .--_' §‘._'3_._-_-41;,-._"-_-"g.'.- ' 1. _- _ - _ ,- 51 __ -- _ . _ -- * _';--;~."f,"..‘,-.-=e-, :*- '. ;-.'.- _ f-3-.~' -5;;-,;; ;2t_-7_-.-Writaseesa Raadlar. -- t-Wnte§$tiEiiie:1;>$- ~.'- .»-- '-'.;7-'--_; _ ' ' - ' ‘ -'-3',“ -'n.-:;‘.§‘§*.- .-- ~ =1.--.=-:11-.=' ."-'
- ' - ‘. > - "' " v ' - _' "'.'| ' "I 5- -"-re‘.---1'“.--II. . 1; _ . _-1,-_... - - . -. --:- _ _ ii;-,1-’.,»3,-; .1‘. - . <3 :¢’.‘T;é-.3;_:_;'=‘.'-.'-_-;.'
'- ‘ '. 1.-. - . - '. -=-' - ‘*2, -'.‘6"-‘=t',-.". - ~ ' ~.=‘~;‘-=“-.'--'

- - -' " -_~_ __'--_I‘;'*_-_ _- _-_'_-_'_ _ __ - _ __ _- '_ 1 "‘

Stub Program Let’s create a" minimal version of the program called a smb program. It-contains
only empty (or nearly empty) procedures. The program assembles and runs, but does not actu-
ally do anything useful:

TITLE Integer Summation Program (Suml.asm)

; This program inputs multiple integers from the user,
, stores them in an array, calculates the sum of the
, array,-and displays the sum.

INCLUDE Irvine32.inc
.code
main PROC
; Main_program control procedure.
; Calls: Clrscr, PromptForIntegers,
, ArraySum, DisplaySum

exit
main ENDP

PromptForIntegers PROC

, Prompts the user for an array of integers, and
, fills the array with the user's input.
; Receives: ESI points to an array of

doubleword integers, ECX = array size.
‘Returns: nothing
Calls: Readlnt, WriteString

“N

‘fin

"5?

F--u--u---u---u-an-u — _ _ _ -_--__----u-u---------—-u-u--u-nu--u»-----u--u--u-u-u—--an-an-u-—--q-an-un----.--

ret
PromptForIntegers ENDP

172 Chapter 5- * Procedures

0 ___
I

ArraySum.PROC
F
; Calculates the sum.of an array of 32-bit integers.
; Receives: ESI points to the array, ECX = array size
; Returns: BAX = sum.of the array elements
F ————————————————————————————————————— ——.—————————————-

ret
ArraySum.ENDP

; ——-
DisplaySum.PROC

Uisplays the sum on the screen.
eceives: EAX = the sum
eturns: nothing
alls: WriteString, WriteIntrixiw

ret
DisplaySum.ENDP
END main

A stub program gives you the-chance to map out -all procedure calls, study the dependen-
cies between procedures, and possibly improve the structural design before coding the details.
You definitely should use comments in each procedure to explain its purpose and parameter
requirements.

5.6.1.1 Integer Summation Implementation
It’s time to complete the summation program. An array of integers is declared in the data seg-
ment, usinga symbol name for -the array size:

IntegerCount = 3
array DWORD IntegerCount DUP(?)

A couple of strings are used as screen prompts:

promptl BYTE "Enter a signed integer: ",0
promptz BYTE "The sum of the integers is: ",0

The main procedure clears the screen, passes an array pointer to the Pr_omptForIntegers
procedure, calls ArraySum, and calls DisplaySum:

-call Clrscr
mov esi,OFFSET array
mov ecx,IntegerCount
call PromptForIntegers
call ArraySum
call Displaysum

5.6 Program Design Using Procedures 173

' P1:omptForIntegers calls WriteString to prompt the user for an integer. It then "calls
Readlnt to input the integer from the user,-and stores" the integer in the array pointed to by
ESI. A loop executes these steps multiple times \

' Array/Sum calculates and returns the sum of an array of integers.
' Disp1aySum displays "a message on the screen (“The sum of the integers is) and calls

Writelnt to display the integer in BAX.

Complete Program Listing The following listing shows the completed Summation program

TITLE Integer Summation Program (Sum2.asm)

; This program inputs multiple integers from the user,
; stores them in an array, calculates the sum of the
, array, and displays the sum.

INCLUDE Irvine32.inc

IntegerCount = 3 ;

.data

array size

promptl BYTE "Enter a signed integer: ",0
prompt2 BYTE "The sum of the integers is: ",0
array DWORD IntegerCount DUP(?)

.code
main PROC

call Clrscr
mov esi,OFFSET array
mov ecx,IntegerCount
call PromptForIntegers
call ArraySum
call DisplaySum
exit

main ENDP
n _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - — - - - - - - - - - ---
I

PromptForIntegers PROC
I
I
, the array with the user's input.
i
I

; Returns: nothing
U-nun--p-p-5-n-I-6-p-;.n-5-;-.-p---.1-5.:-5-p-p-pan-an--p-an-an-p-p—-p-p-p-an-¢-.-or

pushad ~!
mov .edx,OFFSET promptl ;

Ll:
call WriteString
call Readlnt
call Crlf

0
I

0
I

0
I

1r1r—nunu-pun;-a—nu¢-;—;-si--pa-5;-s_

Prompts the user for an array of integers, and fills

Receives: ESI points to the.array, ECX = array size

A-n-In-an-sq-0-an--an--on--an-—-p-nu-an--an--on--an-nun--p

save all registers

address of the prompt

display string
read integer into EAX
go to next output line

Chapter 5 * Procedures

mov [esi],eax ; store in array
add esi,4 : next integer
loop Ll

popad : restore all registers
ret

Pr0mptForIntegers ENDP

;——————-—._.—————._.——.-...-._.—————————.-...-——-...——__—__.;.-...-.;———————_

ArraySum PROC
1
; Calculates the sum of an array of 32~bit integers.
; Receives: ESI points to the array

ECX = number of elements in the array
eturns: EAX = sum.of the array elementsPU

‘II
IIIIIIIIIIIIIIIIIIIIIIIIIIII

push esi ; save ESI, ECX
push ecx
mov eax,0 : set the sum.to zero

L1:
add eax,[esi] ; add each integer to sum
add esi,4 ; point to next integer
loop Ll ; repeat for array size

pop ecx ; restore ECX, ESI
pop es i
ret ; sum is in EAX

ArraySum ENDP

F iii-11;-gq-n--uni-in-sin-o4—-i4—-i4—-11111-iiin—l4—-it-ii1111-it-iiiiiiiigpiigqi-11

Disp1aySum.PROC
F
; Displays the sum.on the screen

Receives: EAX = the sum
eturns: nothing

nonohe

PU
1-iqtviuu-mixes-Q1ii;iii;an-up-Q4-giuxvii1;iiiiqu-,1-aniu1u—siiiiiqiiiiiiiiiiii 1

push edx

mov edx,OFFSET prompt2 ; display message
call WriteString
call Writelnt ; display BAX
call Crlf

pop edx
ret

DisplaySum.ENDP
END main

5.7 Chapter Summary 175

5.6.2 Section Fieview

l. What is the name given to the process of dividing up large task-s into smaller ones‘?
2-. Which procedures in the Summ'at"ion program design (Section 5.6.1) are located in the

lrvi'ne32 library‘?
3. What is "a stub program‘?
4. (Ti-are/FciI.s'e-l." The ArraySum procedure of the Summation program (Section 5.6.1 ,1)

directly rei‘erences the name of an array variable.
5. Which lines in the PromptI<"orIntegers procedure ol’ the Summation program

(Section 5.6.1.1) would have to be modified so it could handle an array of I6-bit words?
Demonstrate.

6. Draw a flowchart for the PromptForIni'e'gers procedure oi‘ the Summation program (flow-
charts were introduced in Section 5.5.4).

5.7 Chapter Summary
This chapter introduces the book's link library. to make it easier l'or you to process input-output
in assembly language applications.

Table 5-l lists most of the procedures l’rorn the lrvine32_ link library. The iriost up-to-date
listing oi’ all procedures is available on the book's Web site.

The Ii'bmr_r test program in Section 5.3.3 .tle11"iorlstmtes a number of input-output funtrtions
from the Irvine32 library. It generates and displays a list oi’ random numbers. a register dump, and
a memory dump. It displays integers in various Ibnnats. and dem'onst-rates string inputloutput.

The runtime .s'mt'k is a special array that is used as a temptnary holding area for addresses
and data. The ESP register holds a 32-bit OFFSET into some location on the stack. The stack is
called a LIFO structure "(last-1'12.first-om). because the last value placed in the stuck is the first
value taken out. A push operation copies a. value into the stack. A pop operation removes a value
from the stack and copies it to a register or variable. Stacks "often hold procedure return
addresses, procedure parameters, local variables. and reg-isters usecl internally by procedures.

The PUSH instruction first decrements the stack pointer and then copies a source operand
into the stack. The POP instruction first copies the contents. of the stack pointed to by ESP into a
16- or 32-bit destination operand and then increments ESP.

The PUSHAD instruction pushes the 32-bit" generzil-purpose registers on thestack. and the
PUSHA instruction does the same for the 16-bit general-purpose regist'ers. The POPAD instruc-
tion pops the stack into the 32-bit general-purpose registers. and the POPA instruction does the
same for the 16-bit general-purpose registers.

The PU-SI-IFD instruction pushes the "32-bit‘ EFl_.AG.S- register on the stack, and POPFD
pops the stack into EFLAGS. PUSI-IF and POPF do the same for the 16-bit FLAGS register.

The RevSn- program, presented in Section 5.4.2.5. uses the stack to reverse a string oi
characters.

In

176 Chapter 5 - Procedures

A procedure is a named block of code, declared using the PROC and ENDP directives.
A procedure always ends with the RET instruction. The SumOf procedure, shown in
Section 5.5.1.2, calculates the sum of three integers. The CALL instruction executes a procedure
by inserting the procedure’s address into the instruction pointer register. When the procedure fin-
ishes, the RET (return from procedure) instruction brings the processor back to. the point in the
program from where the procedure was called. A nested procedure call occurs when a called
procedure calls another procedure before it retums.

By default, a code label (followed by a single colon) is considered local to its enclosing
procedure. A code label followed by :: is a global label, making it accessible from any statement
in the same source code file.

The ArraySum procedure, shown in Section 5.5..3, calculates and returns the sum of the
elements in an array.

The USES operator, coupled with the PROC -directive, lets you list all registers modified
by a procedure. The assembler generates code that pushes the registers at the beginning of the
procedure and pops the registers before returning.

A program of any size should be carefully designed from a set of clear specifications. A
standard approach is to use functional -de_comp.osition (top-down design) to divide the program
into procedures. (functions). First, determine the ordering and connections between procedures,
and later fill in the procedure details.

5.8 Programming Exercises

1. Draw Text Colors
Write a program that displays a string in four different colors, using the SetTextC'olor procedure
from the book’s link library.

2. Integer Array Input
Write a program that uses a loop to input ten signed 32-bit integers fi'om the user, stores the inte-
gers in an array, and redisplays the integers.

3. Simple Addition (1)
Write a program that clears the screen, locates the cursor near the middle of the screen, prompts
the user for two integers, adds the integers, and displays their sum.

4. Simple Addition (2)
Use the solution program from the preceding exercise as a starting point. Let this new program
repeat" the same steps three times, using a loop. Clear the screen after each loop iteration.

5. Random Integers
Write a program that generates and displays 50 random integers between -20 and +20.

5.8 Programming Exercises 177

6. Random Strings
Write a program that generates and displays twenty random strings, each consisting of ten capi-
tal letters {A..Z}.

7. Random Screen Locations
Write a program that displays a single character at I00 random screen locations. Opriomzl: use a
randomized delay between "characters, between 10 and 300 milliseconds.

8. Color Matrix
Write a program that displays a single character in all possible combinations of foreground and
background colors (16><l6 = 256). The colors are numbered from 0 to l5, ‘so you can use a
nested loop to generate all possible combinations.

Conditional Processing

6.1 Introduction
6.2 Boolean and Comparison Instructions

6.2.1 The CPU Flags
6.2-.2 AND Instruction
6.2.3 OR instruction
6.-2.4 XOR Instruction
6.2.5 NOT Instruction
6.2.6 TEST Instruction
6.2.7 CMP Instruction
6.2.8 Setting and Clearing Individual CPU Flags
6.2.9 Section Review

6.3 Conditional Jumps
6.3.-l Conditional Structures
6-3-2 -Tccwd Instruction
6.3.3 Types oi’ Conditional Jump ln'structi'ons
6.3.4 Conditional Jump Applications
6.3.5 Bit Testing lns'tt'uction's (Optional)
6.3"-.6 Section Review

6.4 Conditional Loop Instructions
6.4.1 LOOPZ and LOOPE Instructions
6.4.2 LOOPNZ and LOOPNEInstt1tctions
6.4.3 Section Review

6.5 Conditional Structures
6.5.1 Block-Structured IF Statements
6.5.2 Compound Expressions
6.5.3 WHILE Loops
6.5.4 Table-Driven Selection
6.5.5 Section Review

6.6 Application: Finite=State Machines
6.6.1 Validating an input String
6.6.2 Validating a Signed Integer
6.6.3 Section Review

6.7 Using the .lF Directive" (Optional)
6.7.1 Signed and Unsigned Comparisons
6.7.2 Compound Expressions
6.7.3 REPEAT -and .Wl-IILE Directives

180 Chapter 6 ' Conditional Processing

6.8 Chapter Summary
6.9 Programming Exercises

6.1 Introduction
In the preceding chapters, you may have felt very restricted by not being able to include any
decision-making in your programs. We’ve managed to create counting loops, procedures, data
definitions, and array processing, while carefully avoiding decision making. This was by design,
of course, because IF statements and conditional processing are a little more c.omplicated in
assembly language than in high-level languages.
After reading this chapter, you will be able to answer such questions as:

' I-low can Iuse the boolean "operations introduced in Chapter 1 (AND, OR, NOT)?
- How do I write an IF statement in assembly language?
- How are nested-IF statements translated by compilers into machine language?
~ How can I set and clear individual bits in a bi-nary number?
- I-low can I do simple binary encryption ofdata?
- How do I tell the computer I'm comparing signed numbers versus unsigned numbers?
-' What‘s a Finite State Machine‘?
- Isn’t there any way to create the kinds of IF - ELSE - ENDIF structures in assembly lan-

guage that I’m used to using in C-I-+ and Java?
' Is GOTO really considered harmful?

This chapter follows a bottom-up approach, where you are first shown the binary founda-
tions behind programming logic. Next, you will see how the CPU compares instruction operands,
using the CMP instruction and the processor status flags. Finally, we put it all together and show
how to use assembly language to implement logic structures characteristic ofhigh-level languages.

6.2 Boolean and Comparison Instructions
We’re going to begin the study of conditional processing by working at the binary level, using
the four basic operations from boolean algebra: AND, OR, XOR, and NOT. These operations are
used in the design of computer hardware and software-

The IA-32 instruction set contains the AND, OR, XOR, NOT, TEST, and BT01) instruc-
tions, which directly implement boolean operations between bytes, words, and doublewords (see
Table 6-l)_.

Table 6-1 Selected Boolean Instructions.

‘ Qe-=+'e*i=>"' i J.- ... | .t-- .'\....|-|.s..l. -l.'s..--..-. - - .._ _ r_—_ _ _— _ __ —;:_:_—;:—_—; ————I——e—— —'= ' =4~'—' ' 7" 7'" —"**:~— — — — — ————— ———;_ _ ;

AND Boolean AND operation between a source operand and a destination
operand.

OR Boolean OR operation between a source operand and a destination
operand.

1 r _7________________7_ . W7 _ 1,

-|

P ll l

A-4441.. l l l l l l l lll l l l l l l

6.2 Boolean and Comparison Instructions 181

Table 6.-1 Selected Boolean Instructions. (Continued)
Descriptionpperation

l XOR Boolean exclusive-OR operation between a source operand and a desti-
\ nation operand.

NOT l Boolean NOT operation on a destination operand.

TEST ‘ Implied boolean AND operation between a source and destination oper-
l and, setting the CPU flags appropriately.

I»1 l

BT, BTC, BTR, B‘-IS 1 Copy bit ii front the source operand to the Cany flag and complement!
reset/set the same bit in the destination operand (covered in

, Section 6.3.5).

6.2.1 The CPU Flags
Each instruction in this section affects the CPU flags. You may recall from Chapter 4 that the
Zero, Carry, and Sign flags show the results "of boolean and comparison instructions.

- The Zero flag is set when the result of an operation equals zero.
~ The Carry flag is set when an instmction generates a-result that is too large (or too small)

forthe destination operand.
' The Sign flag is a copy of the high bit of the destination operand, indicating that it is nega-

tive if set and positive if clear. l
' The Overflow flag is set when an instruction generates an invalid signed result.
- The Parity flag is set when an instruction generates an -even nuniber of l bits in the low

byte of the destination operand.

6.2.2 AND Instruction
The AND instruction performs a boolean (bitwise) A-ND operation between each pair of match-
ing bits in two operands and places the result in the destination operand:

AND. dest:i.natio'n,sourc'e

The following operand combinations are pennitted:

AND reg, reg
AND reg, mem
AND

AND

AND

The operandscan be 8, 16, or 32 bits, and they must be the same size. For each l‘l'l3.lICi'lll'l°l bit
in the tw.o operands, the following rule applies-: If both bits equal 1, the result bit is 1;" _Oi.i'l€lWlS€, 1t

reg,imm
mem,reg
mem,imm

182 Chapter 6 ~ Conditional Processing

is 0. The following truth table from Chapter 1 labels the input bits _x and y. The third column
shows" the value .of the expression x A y:

xly xxy

'0 , 0 .0

O 1 O it

10 0;,
__________.,,,

l 1 1 I 1
l
l

' *7? r

The AND instruction is often used to clear selected bits and preserve others. In the follow-
ing example, the upper four bits are cleared and the lower four bits are unchanged:

00111011
AND fi0000llll

cleared 0 0 0 0 1 0 1 1 unchanged

The following instructions carry out this operation:

mov al,00lll0llb
and-al,0OGOllllb

The. lower four bits might contain useful information, while we don’t care about the upper four
bits. It is useful to think of this technique as bit e-.r:racti0n because the lower four bits are
“pulled” from AL.-

Flags The AND instruction always clears the Overflow and Carry flags. It modifies the Sign,
Zero, and Parity flags according to the value of the destination operand.

6.2.2.1 Converting Characters to Upper Case
The AND instruction provides an easy way to translate a letter from lowercase to uppercase. If we
compare the ASCII codes of capital A and lowercase a, it becomes clear that only bit 5 is different:

CDO I-‘I-' Cil-1 CDO CDC) CDO Q0. I-‘I-'

= 61h ('a')
E 41h (‘A')

The rest of the alphabetic characters have the" same relationship. If we AND any character
with l 1-011 1 ll binary, all bits are unchanged except for bit 5, which is cleared. In the following
example, all characters in an array are converted to uppercase:

.data
array BYTE 50 DUP(?)
.code

mov ecx,LENGTHOF array
mov esi,OFFSET array

6.2 Boolean and Comparison Instructions 183

Ll:
and BYTE PTR [esi],ll0lllllb ;clear bit 5
inc esi
loop Ll

6.2.3 OF! Instruction
The OR-instruction performs a boolean OR operation between each pair of matching bits in two
operands and places the result in the destination operand:

OR destination,source

The OR instruction uses the same operand combinations as rhe AND instruction:

OR reg,reg
OR reg,mem
OR reg,imm
OR mem, reg
OR mern-, imm

The operands can be 8, 16, or 32 bits, and they must be the same size. For each matching
bit in the two operands, the output bit is l when at least one of the input bits is 1. The following
truth table (from Chapter 1) describes the boolean expression x v y:

X v ?j;i'>F‘\/"-Y ,
0 0 ‘ 0,

, 0 l 11?‘: -I

"" r .

1 1 is 1
1 .

‘ - 1 -

The OR instruction is often used to set selected bits and preserve others. In the following
figure, 3B'h is 'ORed with 0Fh. The lower four bits of the result -are set and the high four bits are
unchanged:

00111011
oRg00001111

unchanssd 0011 1 1 1 1 set

The OR instruction can be used to convert a byte containing an integer between 0 and 9
into an ASCII digit. To do this‘, you must set bit-S 4 and. 5. If, for example, AL = 05h, you can OR
it with 30h to convert i_t'to the ASCII code for the digit 5 (3 Sh):

184 Chapter 6 ~ Conditional Processing

00000101 031
OR 00110000 um

T00110101 35h,'5‘

The assembly language instructions to do this-are as follows:

mov d]_,5 ; binary value
or dl,30h ; convert to ASCII

Flags The OR instruction always clears the Carry and Overflow flags. It modifies the Sign,
Zero, and Parity flags according to the value of the destination operand. For example, you can
OR a number with itself (or zero) to obtain certain information about its value:

or al,a1

The values of the Zero and Sign flags indicate the following about the contents of AL:

;.;a:1_§!111 _. —- L _ §__j;__:;:£;;-1
. ag=E§"_.§!]gL>'1J;'_:_**::-ff; _ , 1;. "=':=i_,3i_i}g‘-1:1,-;_l1!‘ -f;f!'jf'= ‘i 7i'=o'-

. . ,'_i1 ii-.".r'.“'1_ -- r\|.l_‘r|i*-_1!|_‘fJIgl|‘1 _ '.1"_.1_..'e ;’""'.;1j' . '
J-_____ _ _ _-1"" “ --'- 5* -'-‘-’- ___":-_L-1 ;" A7

': - 1-_'I ' <

53"‘?
st‘

11,95-
»_-éviitin

“$5” -'4'--‘~'i»:»':he
..,,.. K- I —\

F-1

clear clear greater than zero
r1 set clear equal to zero

1 1

clear set less than zero

6.2.4 XOR Instruction ,
The XOR instruction performs a boolean exclusive-OR operation between each pair of matching
bits in two operands, and stores the nesult in the. destination operand:

XOR destination, source

The XOR instruction uses the same operand combinations as the AND and OR instruc-
tions. The operands can be 8, 16, or 32 bits. For each matching bit in the two operands, the
following applies: If both bits are the same (both 0 or both 1) the result is 0; otherwise, the
result is 1 . The following truth table describes the boolean expression x O y:

4

x y xéy
.4O O -O--..r:?:0.=‘iI1'»'_ ,_ 7, -1-. -.1.,-:|_-1=|',:_»:- -_

10-1 1'
l 0

-!,‘I.'1~- ‘ls v . ., 1-r";
'1

lyl 0

Note from this table that any bit exclusive-ORed with 0 retains its value, and any bit exclusive-
ORed with J is toggled (complemented).

6.2 Boolean and Comparison Instructions "185

A special quality of XOR is that it reverses itself when applied twice to the same operand.
The Following truth table sltows that -whert bit .1: is exclusive-ORed with bit _r twice, it reverts to
its original value:

I

Ix y x@y (x-Oy)-Oy

111 0 0 0 I
‘ 1

II _
l

0 1 1. 0 .
1

1 1 0 1 1
.110 1'

As we will Iirttl out in Section (1.3 .-4.3. this “‘re\{ersible" property of XOR rnakes it an ideal tool
for 11 simple l"orrn ol’ data encryption.

Flags The XOR instruction always clears the Overliow and Carry flags. lt modifies the Sign,
Zero. and Parity llags according to the value of the destination operand.

Checking the Par1't_1'= Flag The Parity Hag indicates whether the l011'es1 1'2_rre of the result of a
bitwise o1-aritlnnetic ope'ratio1"1 l"iasar1' even or odd number of l bits. The flag is set when the par-
ity is even, and it is clear when the parity is odd. One way to cheek the parity of a number with-
out changing its value is to exclusive-OR the number with all zeros:

mov al,l0110'l0lb ; 5 bits = odd parity
xor al,0 ; Parity flag clear (PO)
mov al,l100ll00b_ ; 4 bits = even parity
xor al,0 ; Parity flag set (PE)

1Debugge1s olten use PE to indicate even parity, and PO to indicat'e odd parity.)

I6-Bit Pai'it_y You can check the parity of .a 16-bit register by pe1'1'b1'1ning an _exclusive-OR
between the upper and lo\ve1' bytes:

mov ax,64C1h ; 011.0 0100 1100 0001
xor ah,al ; Parity flag set (PE)

Think ol’ the l bits in each register as being members _o'l' an 8-bit set. The XOR instruction elimi-
nates any bits that represent the intersection between the two sets. XOR also forms the union
between the rern:1ir1i1"1g bits- Tlte-parity of this union will be the same as the parity of the entire"
16-bit integer.

What about 32-bit values‘? If we number the-bytes fron-1 Bu through B3. the parity can be
1-ialculated as: Bu X-OR B| XOR B3 XOR B3.

166 Chapter 6 r Condltlonal Processlng

6.2.5 NOT Instruction
The NOT instruction toggles all bits in an operand. The result is called the 0ne’s complement.
The following operand types -are permitted:

NOT reg
NOT mem

For example, the one’-s complement of P0h is 0Fh:

mov al,llll0000b
not al ; AL = 0000ll11b

Flags No flags-are affected by the NOT instruction.

6.2.6 TEST Instruction
The TEST instruction performs an implied AND operation between each pair of matching bits
in two operands and sets the flags accordingly. The only difference between TEST and AND is
that TEST does not modify the destination operand. The TEST instruction permits the same
operand combinations as the AND instruction. TEST is particularly valuable for [inding out if
individual bits in an -operand are set.

Example: Testing Multiple Bits The TEST instruction can "check several bits at once. Suppose
we want to-know if either bit 0 or bit 3 is set in the AL register. We can use the following instruc-
tion to find this out:

test al,00001001b ; test bits 0_and 3

From the following example data sets, we can infer that the Zero flag is set only when all tested
bits are clear:

OOOooo'00!-I OOO0Ho QOHOOOHHH

<- input value
<+ test value
<- result: ZF = 0

CJCJCJ CDCJC5 CJCJI-' CJCJCJ C51-‘O CJCJP-' CJCJCD C5146

<- input value
<- test value
<- result: ZF = 1

F_l;;g.s The TEST instruction always clears the Overflow and Carry flags- It modifies the Sign,
Zero. and Parity flags in the same way as the AND instruction.

6.2.7 CMP Instruction
The CMP (compare) instruction performs an implied subtractionjof a source operand from a des-
tination operand. Neither operand is modified:

CMP des!inan'0n.,s0m"ce
CMP uses the same operand combinations as the AND instruction.

6.2 Boolean and Comparison lnstructlons 187

Flags The CMP instruction changes the Overflow, Sign, Zero, Carry. Auxiliary Carry, and
Parity flags according to the value the destination operand would have had if the SUB instruction
were used. For example. as shown below. when two operands are compared. the Zero and Carry
flags indicate the relation between operands:

A CMP Results z|= t c|= 1?
l destination <-source 0 It _
, destination > source 0 0
t s , __ W s
* destination = source l 0

s _\ _ g

If the two operands being compared are assumed to be signed, the Sign, Zero, and Over-
flow flags indicate the following; relations "between operands:

CMP Results t Flags
. , tdesttnatton < source SF =--= OF

destination > source SF = OF i
l _ _

destination = source ZF = l

CMP is valuable because it provides the basis for most conditional logic structures. When
you follow a CMP with a conditional jump instruction, the result is the assembly language
equivalent of an IF statement.

Examples Let’s look at three code fragments that show how the flags are affected by the CMP
instruction. When we put.5 in AX and compare it to l0. the Carry flag is set because subtracting
l0 from 5 requires a borrow:

mov ax,5
Cmp ax,l0 ; CF = 1

Comparing 10.00 to l000 sets the Zero flag because" subtracting the source from the desti-
nation produces zero:

mov ax,1000
mpv cx,1000
cmp cx,ax ; ZF = 1

Comparing 105 to 0 clears both the Zero and Carry flags because 105 is greater than 0:

mov si,l05
cmp si,0 ; ZF = 0 and CF = 0

183 Chapter 6 ~ Conditional Processing

6.2.8 Setting and Clearing Individual CPU Flags
My students often ask: What is the easiest way to set or clear the Zero. Sign, Carry, and Over~
flow flags‘? There are a numbcr of simple ways to change these flags, most of which require
tnodifying the destination. To set the Zero flag, AND any operand with Zero: to clear the flag,
OR the operand with l:

and al,0 ; set Zero flag
or al,1 ; clear Zero flag

To set the Sign flag, OR the highest bit oi’ an operand with l. To elear the sign flag, AND the
highest bit with 0:

or al,80h ; set Sign flag
and al,7Fh ; clear Sign flag

To set the Carry flag, use the STC instruction; to clear the Carry flag, use CLC:

stc ; set Carry flag
clc ; clear Carry flag

To set the Overflow flag, add twopositive byte- values that produce a negative sum. To clear the
Overflow flag. OR an operand with 0:

mov
inc

al,7Fh
al

or eax,0

6.2.9 Section Review

l. In the following instruction -sequence.
binary:

mov
and
mov
and
mov
or
MQV
X011‘

al,0000lll1b
al,00ll10llb
a1,6Dh
al,4Ah
al,000Ol1llb
al,6lh
a1,94h
al,37h

AL = +127
AL = 80h (-128), OF=1
clear Overflow flag-

show the changed value of AL where indicated, in

a.

b.

c.

d.

2. In the following itlstrttction sequence, show the changed value oi’ AL where indiczitecl, in
hexadecimal:

.mov
not
mov
and
mov

al,7Ah
al
al,3Dh
al,74h
al,9Bh

a.

b.

6.3 Conditional Jumps 189

or al,35h ; c.
mov al,72h
xor a1,0DCh ; d.

3. In the following instruction sequence, show the values of the Carry, Zero, and Sign flags
where indicated:

mov al,0O001lllb
test a1,2 ; a. CF: ZF= sF=
mov al,6
Cmp 31,5 ; b. CF= ZF= SF:
mov al,5
cmp al,7 ; c. CF= ZF= SF:

4. Write a single instruction that clears the high 8 bits of AX and does not change the low 8
bits..

5. Write a single instruction that sets the high 8 bits of AX and does not change the low 8
bits.

6. Write a single instruction that reverses all the bits in E-AX (do not use the NOT instruction).
7. Write instructions that set the Zero flag if the 32-bit value in EAX is even, and clear the

Zero flag if EAX is odd.
8. Challenge: Write" instructions that calculate the parity of the 32-bit memory operand, Hint.-

use the formula presented earlier in this section: B0 XOR Bl XOR B2 XOR B3

6.3 Conditional Jumps

6.3.1 Conditional Structures
There are no high-level logic structures in the IA-32 instruction set, but you can implement any
logic structure, no matter how complex, using a combination of comparisons and jumps. Two
steps are involved in executing a conditional statement: First, an operation such as CMP, AND-,
or SUB modifies the CPU flags. Second, a conditional jump instruction tests the flags and
causes a branch to a new address. Let’s look at a couple of examples.

Example I The CMP instruction compares AL to Zero. The IZ (jump if Zero) instruction
jumps to. label Ll if the Zero flag was setby the CMP instruction:

cmp al,0
jz Ll ; jump-if ZF = 1

Ll:

Example 2 The AND instruction performs a bitwise AND on the DL register, affecting the
Zero flag. The JNZ (jump if not Zero) instruction jumps if the Zero flag is clear:

190 Chapter 6_ ~ Condltlonal Processing

and dl,1011000.0b
jnz L2 ; jump if ZF = 0

L2:

6.3.2 Jcond Instruction
A conditional jumpinstruction branches to a destination label when a flag "condition is true. If
the flag condition is false, the instruction immediately following the conditional jump is exe-
cuted. The syntax is:

Jcond’ destination

c-and refers to a flag condition, identifying the state of one or more flags. For example:

jc jump if carry (Carry flag set)

jnc jump if not carry (Carry flag clear)

jz jump if zero (Zero flag set)

jnz jump if not zero (Zero flag clear)

We have "already seen that flags are set by arithmetic, comparison, and boolean instruc-
tions. Each conditional jump instruction checks one or more flags, returning a result of true or
false. If the result is true, the jump is taken; otherwise, the prograrn skips the jump" and continues
to the next instruction.

Limitations By default, MASM re_quries the destirtarion of the jump to be a label within the
current procedure (we mentioned this with JMP in Chapter 5). To get around this restriction, you
can declare a global label (followed by :1):

jc: l~I§/Label
-I

I

MyLabe1::

Prior to the Intel386, the jump’-s range was limited to a l-byte offset (positive or negative)
from the location of the next instruction following the jump. IA-32 processors have no such
restriction.

Using the CMP'Instmct'zZon Suppose we want to jump to location Ll when AX and 5 are
equal. In the next example, CMP-sets the Zero flag because AX = 5, and the JE instruction jumps
because the Zero flag is set:

mov ax;,5
cmp a_x,5
je L1 ; jump if equal

6.3 ‘Conditional Jumps 191
|-1 - 7 1

On the other hand, the following jump is taken because AX is Iess than 6:

mov ax,5
cmp ax,6
jl Ll ; jump if less

In the following example, the jump is taken because AX is greater than 4:

mov ax,5
cmp ax,4
jg" Ll ; jump if greater

6.3.3 Types of Conditional Jump Instructions
Most people are surprised when they find out how many different types -of conditional jump
instructions are available. Some instruction names are redundant, in that they simply provide a
different name for an existing instruction. But the sheer variety of jumps provides for the full
range of conditional statements programmers might want to invent. It is convenient to partition
the conditional jump instructions into four groups:

' Based on specific flag values.
- Based on equality between operands, or the value of (E)CX.
' Based on comparisons of unsigned operands.
' Based on comparisons of signed operands.

Table'6-2 shows a list of jumps based on specific CPU flag values: Zero, Carry, Overflow, Parity,
and Sign.

Table 6-2 Jumps Based on Specific Flag Values.
‘ _ '*"**’_'"|-In-nun-It 1 7 7_ __ ___——_-_

Mnemonic A Description Flags *

IZ A Jump if zero ZF=l

INZ Jump if not Zero ZF--=0

IC Jump if carry CF==l

i INC T Jump if not carry CF=0

IO" Jump if overflow OF=l

INO Iump if not overflow
1_

OF=0

IS Iump if signed SF=1

INS Iump if not signed SF:-'0

IP Iump it’ parity (even) PP=1

INP Jump if not parity (odd) PF=O

192 Chapter 6 ~ Conditional Processing

6.3.3.1 Equality Comparisons
Table 6-3 lists jump instructions based on evaluating either the equality of two operands or the
values of CX and ECX. In the table, thenotations lefrOp and riglnOp refer to the left (destination)
and right (source) operands in a CMP instruction:

CMP leftOp, right:Op

These operand names reflect the ordering of operands for relational operators in algebra. For
example, in the expression X -=.: Y, X can be called It-:§frOp and Y called rigl:tOp.

Table 6-3 Jumps Based on Equality.

Mnemonic Description

JE Iump if equal (lefi0p = righ.rOp)

JNE Iump if not equal (i_eftOp as righrOp)

1 JCXZ Iump ifCX=0

A IECXZ A Iump ifECX=0

6.3.3.2 Unsigned Comparisons
Jumps based specifically on comparisons of unsigned integers are shown in Table 6-4. This type
of jtunp is useful when comparing unsigned values, such as 7FFFh and 8.000h, where the former
is smaller than the latter.

Table 6-4 Jumps Based on Unsigned Comparisons.

I Mnemonie i Description

1 IA if I I I ump if above (if lefl'Op > rightOp) i

INBE Iump if not below or equal (same as JA)

i IAE Iump if above or equal (if left_0p >= rigit I011.) i

INB Iump if not below (same as JAE)

i JB Jump if below (if Ie_/l‘Op -=1 rt'ghl‘Op)

INAE i Iump if not above" or equal (same as JB)

IBE Iump if below or equal (if left0_p <:= rigin‘Op) j

INA I i Iump if not above (same as JBE) I

6.3.3.3 Signed Comparisons
Table 6-5 displays a list of jumps based on signed comparisons. These are used when
the numbers you"re com-paring can be interpreted as signed values. For example, when the

6.3 Conditional Jumps 193

processor compares 80h to 7Fh, the interpretation is quite different depending on whether JA
or JG is used:

mov al , 7Fh
Cup
ja
HQ

al,80h
Isebove
IsGreater

; (7Fh.or +127)
; (80h or »l28)
; no: 7F not > 80h
; yes: +127 > »128

The JA instruction does not jump, because unsigned 7Fh is smaller than unsigned 80h. The JG
instruction. on the other hand. jumps because +127 is greater than -128.

Table 6-5 Jumps Based on Signed Comparisons.
l __

Mnemonlc Descriptlon

IG i Iump if greater (if leji'0p > rightOp)

INLE I Iump i_l' not less than .or equal (same as JG)

l IGE Iump if greater than or equal (if it-}fi0p >= righrOp)

INL. Iump il’ not less (same as JGE)
_i 7 7 _ . __ _

IL Iump if less (if lefrOp < ri'glzrOp)

l INGE t Iump il’ not greater than or equal (same as IL)

A ILE Iump if less than or equal (iflefl'Op <= riglnOp) p
__ ,_ _ _ _ __l

p ING Iump if not greater (same as JLE) l

6.3.4 Conditional Jump Applications

6.3.4.1 Testing Status Bits
Instructions such as AND, OR, NOT, CMP, and TEST are quite useful when followed by condi-
tional jump instructions that use the status flag values to alter the program flow. For example,
let’s assume that an 8-bit memory operand named status contains status information about a
rnacltine _connected to an interface board. The following instructions jump to a label if bit 5 is
set, indicating that the machine is offline:

mov al , status
test al,00100000b ; test bit 5
jnz EquipO'ff line

Or, we might want tojump to a label ifeither bit 0. l,ot'4 is set:

mov al,status
test al,0001001lb ; test bits 0,1,4
jnz InputDataByte

194 Chapter 6 ~ Conditional Processing

Finally. we mightjurnp to a label il’ bits 2. 3. uncl 7 are all set. This requires hoth the AND
ancl CMP instructions:"

mov al, status
and al,1000ll00b ; preserve bits 2,3,7
cmp al,l000ll00b ; all bits set?
je Resetmachine ; yes: jump to label

Larger 0j'Two Imegers The l'olln\\-'in;~.._: code compares the unsigned integ.crs in AX and BX
and moves the la1'gc1'ol'tl1-e-two to DX:

mov dx,ax ; assume AX is larger
cmp ax,bx ; if AX is >= BX then
jae L1 ; jump to Ll
mov dx,bx ; else move BX to DX

Ll: ; DX contains larger integer

S-nzaZlest.o_fT1z.ree lrztegjcrs The Following inst"ructi'ons compare the unsigned values in the
three variables V l . V2. and V3. and move the smallest ol' the three to AX:

.data
Vl WORD ?
V2 WORD ?
V3 WORD ?
.code

mov
cmp
jbe
HIOV

Ids cmp
jbe
mov

L2:

ax,V1
ax,V2
L1
ax,V2
ax,V3
L2
ax,V3

assume Vl is smallest
if AX <= V2 then

jump to Ll
else move V2 to AX
if AX <= V3 then

jump to L2
else move V3 to.AX

6.3.4.2 Application: Scanning an Array
A common task in many programming applications is to search for \-'alues- in an array that meet
some criteria. When the lirst matching value is Founcl. it is common to either display its Value or
rcturn a po_inte1' to its location. Lets show how easily this is accompl ishecl using an array of inte-
gers. The Arr_rSc'cm .(l.'>'H1 program looks for the lirst nonzero value in an array ol' 16-bit integers,
Il’ it lincls one. it displays the value: otherwise. it displays a inessage stating that a value could
not be found:

TITLE Scanning an Array (ArryScan.asm)

; Scan an array for the first nonzero value.
INCLUDE Irvine32.inc

.data
intarray SWORD 0,0,0,0,l,20,35,-12,66,4,0

6.3 Conditional Jumps 195
-1-1 7 _ _

;int.Array SWORD ; alternate test data
;int.Array SWORD ; alternate test data
;intArray SWORD ; alternate test data
noneMsg BYTE n-zero value was not found",0W ,':§@@i-"Own-"\

@'@@ "awn QQQ "'n"'n"\ I--'@@

Notc that the program contains alternate test data that are currently commented out.
“You can uncomment these lines to test the program with different" data configurations.

.code
main-PROC

mov ebx,OFFSET inthrray ; point to the array
mov ecx,LENGTHOF intArray ; loop counter

Ll:
cmp WORD PTR [ebx],0 ; compare value to zero
jnz found found a value
add ebx,2 point to next
loop L1 ontinue the loop
jmp notFound ne found$30o

found: ; display the value
movsx eax,WORD PTR[ebx]
call Writelnt
jmp quit

notFound: ; display “not found" message
mov edx,OFFSET noneMsg
call WriteString

quit:
call Crlf
exit

main ENDP
END main

6.3.4.3 Application: String Encryption
In Section 6.2.4 we saw that the XOR instruction has a unique quality-—it reverses its effects
on a number when applied twice. This provides an easy way to perform simple data encryp-
tion, in which a message (called plain text) entered by the user is trarislbrmed into an
unintelligible string (called cipher ret!) using another string called a key. The cipher text can
be stored or transmitted to a remote location without unauthorized persons being able to read
it. The intended viewer uses a program to decrypt the cipher text and produce the original
plain text.

Example Program The program we are about to look at uses a process called symmetric
encryption. which means that the same key is used for both encryption and decryption. The fol-
lowing steps occur. in order:

~ The userenters the plain text.

196 Chapter 6 - Conditionai Processing

' The program uses a repeated single-character key to encrypt the plain text. producing the
cipher text, which is displayed on the screen.

- The program decrypts the cipher text. producing and displaying the original plain text.

Herc is the output l’rom -a sample execution of the program:

. I. 2' pf’-p"' _'_ _'.I..|I3f'.|"|f _ "_. '.'|'1 . .lessees mask at dawn.
Cipher text: a¢¢§ia—i¢—ifi§fi—Gs

. _._-"- I
'»= : ' i. .- . =,;.-1,-".'!.. I -_ --; -1':--1. 'f- 1- ;,--._* ‘ ‘ . ,:_ -;.;‘$:;§;1:iQeCryPt§§,§;r_'§;'._ .1‘-,'..j,!_l)a;".;iiI-I. _ at _¢

. . "r?f='§»‘:;‘¥.'1i?5.'-51f"'-.1 -ii.-1‘§~1.=t;1:?.-:se1tl*"l. ‘ ?i"='€'5.l"3.el:l¢i.*£ ' .. '-"-;:.=~‘-;is?’.:;=.'-' - "*2"

Progmm Listing Here is a complete listing of the program:

TITLE Encryption Program (Encrypt.asm)

INCLUDE Irvine32.inc
KEY = 239 ; any value between 1-255
BUFMAX = 128 ; neximum buffer size

.data
sPrompt BYTE “Enter the plain text:
sEncrypt BYTE "Cipher text:
sDecrypt BYTE "Decrypted:
buffer BYTE BUFMAX +1 dup(U)
bufSize DWORD ?

“I-""|-'\-Q00

.code
main PROC

call InputTheString ; input the plain text
call TranslateBuffer ; encrypt the buffer
mov edx,OEFSET sEncrypt ; display encrypted message
call DisplayMessage
call TranslateBuffer ; decrypt the buffer
mov edx,OFFSET sDecrypt ; display decrypted message
call DisplayMessage

exit
main ENDP

: ——— ---
InputTheString-PROC
F
; Asks the user to enter a string from the
; keyboard. Saves the string and its length

in variables.
eceives: nothing
eturns: nothing1|}"llHug FUFU

‘HI
III

6.3 Condltlonat Jumps

pushad
mov edx,OFFSET sPrompt
call WriteString
mov ecx,BUFMAX
mov edx,OFFSET buffer
call ReadString
mov bufSize,eax
call Crlf
popad
ret

InputTheString ENDP '

; ---------------------- “
Displaymessage PROC
F

display a prompt

maximum character count
point to the buffer
input the string
save the length

-¢$--1$1.4-n-$1.-pa-L--'-'------I---~u-I-1:11--11-$1

; Displays the encrypted or-decrypted message.
; Receives: EDX points to the message
; Returns: nothing

pushad
call WriteString

—_.———ppp—pp->1...--¢---¢@———_.

mov edx;OFFSET buffer ; display the buffer
call WriteString
call Crlf
call Crlf
P0Pad
ret

DisplayMessage ENDP

F “ ’ “ “ ’ “ ' ' “ ’ ’ “ ‘ ‘ “ “ ’ ‘ ' ' ’ ' ' ' _ '-"
TranslateBuffer PROC
I
I

1-¢-¢-¢1-¢@@—$q-----------an-1----1-1:1-Q-Q-$1

; Translates the string by exclusive-ORing each
; byte with the same integer
; Receives: nothing
; Returns: nothing
r ' ' ' ' ' ' ' ' ' ' ' ' ' ' _ ' ' - ' - ' ' ' ' --

pushad
mov ecx,bufSize
"mov esi,O

L1:
xor buffer[esi],KEY
inc esi
loop Ll

popad
ret

TranslateBuffer ENDP
END main

tqiiitto---0---0--no-n--_p$--11--1

loop counter
index 0 in buffer

translate a byte
point to next byte

198 Chapter 6 ' Conditional Processing

l Public Key Encryption
‘ Encryption is a hot topic in computer science today. The encryption technique shown in this section

is very simple and could casily be broken. A much stronger form oi’ encryption is called pubiic fray
encr;rpiirm-. It is both convenient to use and diflicult to break because it uses two key values, one
public, the other priva1e.A person wishing to receive messages makes available a publickcy to any-

, one who requests it. Anyone sending mail to this person can use the public key to encrypt the mes-
? sage text. The mess-age can only be decoded by a second, private key. known only to the receiver ol’

the 1ncssage.Thc public key and private key are mathematically rclatcd to each other by a "onc-
way" function. A good analogy is a typical phonc book: ll‘ you know a pcrson’s name you can cas-

l ily lind their phone nt-nnbcr. Butit is nearly impossible to {ind their name if youjust know their
phone number. ll‘ you want to read more about public koy encryption. visit v.-'wn*.pgp.co1ii'tii1cl
www.p'g.pi .org.

l— __ _,,_ , , , , _,_

6.3.5 Bit Testing Instructions (Optional)
The BT. BTC. BTR. and BTS instructions can be collectively called bit i(’.S'iiiI_§ instructions,
They arc important because they perform multiple steps within a single atomic instruction. This
has iinplications for multithreaded progranis. in which it is often very important for ling bits
(called .wnzci;)l:0i'e.~:) to be tested, cleared. set, and complemented without any danger ol' interrup-
tion by -another program‘ thread. See our Web site l"or an example that describes _a simplc multi-
threadi-ng scenario.

6.3.5.1 BT In_struction
The BT (bit test) instruction selects bit n in thc lirst operand and copies the bit into the Carr).
liag:

BT bitBase,n

The first operand. called the l2ir'B¢ise. is n_ot changed. BT permits the lollowing. types oi‘ operands:

so r/111.16, r16
BT r7m32,r32
BT r/m16,imm8
BT r/m32,imm8

In the following example. the Carry llag is assigned the value of bit 7 in the variable
named semaphore:

.data
semaphore WORD l000l000b
.code
BT semaphore,7 ; CF = l

Before the BT instruction was introduced into the Intel instruction set. we would have to cop}
the variable imo a register and shift bit 7 into the Carry llag:

mov ax,ee_maphore'
ehr ax,8 ; CF == 1

6.3 Conditional Jumps 199

(The SI-IR instruction hereshifts all bits in AX eight positions to the right. This causes bit 7 to be
shifted into the Carry flag. SHR is covered in Chapter 7, in Section 7.2.3.)

6.3.5.2 arc Instruction '
The BTC (bit test and complement) instruction selects bit n in the first operand, copies the bit
into the Carry flag, and complements (toggles) bit n:

BTC bitBase,n

BTC permits the same types of operands as BT. In the following example, the Can'y flag is
assigned the value of bit 6 in semaphore, and the same" bit is complemented:

.data
-semaphore WORD l000l000b
.code
BTC semaphore;6 ; CF = 0, semaphore=ll00l000b

Without the BTC instruction, we would have to execute the following instructions:

mov ax,semaphore ; copy the semaphore
shr ax,? ; shift bit 6 into Carry flag
:-tor semaphore-,l000000b ; complement bit 6

6.3.5.3 BTR Instruction
The BTR (bit test and ieset) instruction selects bit n in the first operand, copies the bit into the
Carry flag, and resets (clears) bit n:

BTR bi t:Base, n

BTR permits the same types of operands as BT and BTC. In the following example, the Carry
flag is assigned the value of bit 7 in semaphore, and the same bit is cleared:

.data
semaphore WORD l000lU00b
.code
BTR semaphore,7 ; CF = 1, semaphore=000G1000b

6.3..5,4 BTS Instruction
The BTS (bit test and set) instruction selects bit rt in the first operand, copies the bit into the
Carry flag, and sets bitn:

BTS bitBase,n

BTS permits the same types of operands as BT. In the following example, the Carry flag is
assigned the value of bit 6 in semaphore, and the same bit isthen set:

.data
semaphore WORD 100010U0b
.code
BTS semaphore,6 ; CF = 0, semaphore=ll00lOO0b

200 Chapter 6 1' Conditional Processing

6.3.6 Section Review

Ul-i>-l..»Jt\J|--l

. Which conditional jumps are based on unsigned "'cornparison's?

. Which conditional jumps are based on signed comparisons‘?

. Which-conditional jump instruction is based on the contents of ECX?
. (Y2-:*.s'/No).‘ Are the JA and INBE instructions equivalent?
. (Yes/N0"): Are the JB and JL instructions equivalent‘?

6. Which jump instruction is equivalent to the JA instruction‘?
7. Which jump instruction is equivalent to the JNGE instruction‘?
8-. (YesAVO): Will the following code jump "to the label named Target‘?

mov ax,8109h
cmp ax,26h
jg Target

'9. (Y2-:*s/N0)-: Will the following code jump to the label named Target‘?
mov ax,-30
cmp ax,—5O
jg Target

1.0. (Yes/No): Will the following code jump to the label named Target?

mov ax,-42
cmp a:-c,26
ja Target

11. Write instructions that jump to label L1 when the unsigned integer in DX is less than or
equal to the integer in CX.

I2. Write instructions that jump to label L2 when the signed integer in AX is greater than the
integer in CX.

l3. Write instructions that clear bits 0 and l in AL. If the destination operand is equal to zero,
jump to lab.e1 L3. Otherwise, jump_to label L4.

6.4 Conditional Loop instructions

6.4.1 LOOPZ and LOOPE Instructions
The LOOPZ (loop if zero) instruction" permits a loop to continue while the. Zero flag is set and
the unsigned value of ECX is greater than zero. The destination label must be between -128 and
+127 bytes from the location of the foilowing instruction. The syntax is:

LOOPZ destination

The LOOPE (loop if equal) instruction is-"equivalent to LOOPZ because they share the same cir-
cuitry. This is the execution logic of LOOPZ and LOOPE:

ECX = ECX - 1
if ECX > O and ZF = 1, jump to destination

6.4 Conditional Loop Instructions "201

Otherwise, no jump occurs and control passes to the next instruction.

‘.- programrunning in Real-address mode uses CX as the default loop counter i-n the LOO1‘iZ
If you -want to foroe ECX to be the loop. counter, use the LOOPZD-"instruction

_ii;itir;sr¢aa. '
7 f""W"fi i i

6.4.2 LQOPNZ and LOOPNE Instructions
The LOQPNZ (loop if not zero) instruction is the counterpart of LOOPZ. The loop continues
while the unsigned value" of ECX is greater than zero and the Zero flag is clear. The syntax is:

LOOPNZ destination

The LOOPNE (_Io_op if not equal) instruction is equivalent to LOOPNZ because they share
the same circuitry. This is the execution logic. of LOOPNZ and LOOPNE:

ECX = ECX.— l
if ECX > O and ZF = O, jump to destination

Otherwise, no jump occurs. -and control passes to the next instruction;

Example The following code-excerpt (from L00pn€.£ISm-) scans each number in an array until -a
positive number is found (when the sign bit‘ is clear).:

.data
array SWORD -3,-6,-1,-1o,1o,30,4o,e
sentinel SWORD U
.code

mov esi,OFFSET array
mov eox,LENGTHOF array

next:
test WORD PTR [esi],8000h ; test Sigh bit

pushfd ; push flags on stack
add esi,TYPE array
popfd ; pop flags from stack
loopnz next ; continue loop
jnz quit ; none found
sub esi,TYPE array ; ESI points to value

quit:

Ifa positive value is found, ESI is left pointing at it. If the loop fails to find a positive number, it
-3t0pS when ECX equals zero. In that case, the. JNZ instruction jumps to lab_el quit, and ESI
points to the sentinel value (0) just after the array.

202 Chapter 6 ~ Conditional Processing

6.4.3 Section Review

1. _(Trne/False): The LOOPE instruction jumps to a label when (and only when) the Zero flag
is clear.

2. (film?/False): The LOOPNZinstn1ction jumps to a label when ECX is greater than zero and
the Zero. flag is clear.

3". (flivre/False): The destination label of a LOOPZ instruction must be no farther than -128 or
+l27 bytes from the instruction immediately following LOOPZ.

4. Modify the LOOPNZ example in Section 6.4.2 so that it scans for the first negative value in
the array. "Change the data declaration accordingly so it begins with positive values.

5. Challenge: The LOOPNZ example in Section 6.4.2 relies on a sentinel value to handle the
possibility that a positive value might not be found. What would happen if we removed the
"sentinel?

6.5 Conditional Structures
In this section we will examine a fewof the more common conditional structuresused in high-
level programming languages. You will see how each structure can "easily be translated into
assembly language. Let’s consider a conditional srmcmre to be one or more conditional expres-
sions that trigger a choice between different logical branches. Each branch causes a different
sequence of instructions to execute.

was-'= a Prose-mi‘fl1at translates Pio-

1|-F -——- 7 ’ _ 7

6.5.1 Block-Structured IF Statements
In most high-level languages", an IF statement implies that a boolean expression is followed by
two lists of staternen-ts: one performed when the expression is true, and another performed when
the expression is false:

ifl expression)
"statement list 1

else

statement list 2

The. else portion of the statement is optional. The flowchart in Figure 6-1 shows the two
branching paths in a conditional IF structure, labeled m¢e- and false.

6.5 Conditional Structures

boolcan

expression

i statement list l } i statement list'2 l

Figure 6-1 Flowchart of an IF Structure.

Example 1 Using Java/C++ syntax, two assignment statements are executed if opl is equal to
0p2:

if(Opl == 0p2)

{
X-=
Y:

}
A high-level language compiler might translate the preceding IF statement into a CMP

instruction followed by one or more conditional jumps to labels. Assuming that opl and op2 are
memory operands, one of them must be moved to a‘ register before executing CMP; The follow-

1;
2;

ing code implements the IF statement:

TROV

cmp
j e
jmP

Ll :

TROV

TROV

L2 :

eax,opl
eax,op2 ; compare EAX to op2
Ll ; jump if equal to Ll
L2 ; Otherwise, jump to L2

X,l

Y,2

204 Chapter 6 * Conditional Processing

It's important to realize that the same high-level language code can be translated into assem~
bly language in multiple ways. When examples of compiled code are shown in this chapter,
they represent only what a hypothetical compiler niight produce.

Example 2 In the FAT32 file system used under MS-Windows, the disk cluster size depends on
the disk‘s overall capacity. In the following pseudocode, we set thc cluster size to 4,096 if the disk
size (in the variable named gigabytes) is less than 8 GB. Otherwise. we set the cluster size to 8,192:

clustersize = 8192;
if(gigabytes < 8)

clustersize = 4096;

Here's how one might implement this structure in assembly language:

mov clusterSize,8l92 ;.assume larger cluster
omp gigabytes,& ; larger than 8 GB?
jae next
mov clusterSiae,4096 ; switch to smaller cluster

next:

(Disk clusters are described in Section 14.2.)

6.5.2 Compound Expressions
6.5.2.1 Logical AND Operator
You can implement a boolean expression that uses the local AND operator in at least two ways.
Consider the following compound expression, written in pseudocode:

if (al > bl) AND (bl > cl)
{

x=1
}

We will assume that the values are unsigned. The following is a straightforward implementatiot-_
using JA (jump if above):

cmp al,bl ; first expression...
ja_ Ll
jmp next

Ll:

cmp bl,cl ; second expression...
ja L2
jmp next

L2: ; both are true
mov X,l ; set X to 1

next:

6.5 Conditional Structures 205

But this seems like entirely too much assembly code for such a simple problem. We can
simplify the code if "we reverse the JA condition and use JBE instead. This amounts to a short-
t"ir'cuir (or early exit) evaluation, where the second expression is not evaluated if the first
expression is false:

Cmp al.bl : first expression...
jbe next ; quit if false
cmp bl,cl ; second expression
jbe next ; quit if false
mov X,l ; both are true

next:

The 29% reduction in code size (seven instructions down to tive) results from letting the CPU
fall through to the second CMP instruction if the first JBE is not taken. In general, high~level
language compilers use short-circuit evaluation by default.

6.5.2.2 Logical OR Operator
When multiple expressions occur in a compound expression using the logical OR operator, the
expression is automatically true as soon as any one expression is true. Let’s use the following
pseudocode as an example:

if tal > bl) OR (bl > Cl)
X = 1

In the following implementation, the code branches to Ll if the first expression is true;
otherwise, it falls through to the second CMP instruction. The second expression reverses the >-
operator and uses JBE instead:

cmp al,bl ; 1: compare AL to BL
ja L1 ; if true, skip second expression
cmp bl,cl ; 2: compare BL to CL
jbe next ; false: skip next statement

Ll:mov X,1 ; true: set X = 1
next:

For any given compound expression, there are at least several ways the expression can be imple-
tnented in assembly language.

6.5.3 WHILE Loops
The WHILE structure tests a condition first before performing a block of statements. As long as
the loop condition remains true, the statements are repeated. The following loop is written in C++:

while(val1 < val2)
{

val1++;
val2--;

}

206 Chapter 6 - Conditional Processing

When coding this structure in assembly language, it is convenient to reverse the loop condi-
tion and jump to endwhile when the condition becomes true. Assuming that vail and vai2 are vari-
ables, we must move one of them to a register at the beginning, and restore the variable at the end:

mov eax,val1 ; copy variable to EAX
_while:

cmp eax,val2 ; if not (vall < val2)
jnl endwhile ; exit the loop
inc
dec

eax
val2
while

Vall++;
val2--;

jmp __ repeat the loop
endwhile;

mov val1,eax ; save new value for vall

EAX is a proxy (substitute) For vall inside the loop. Any references to vall nrust be through
EAX. Also, note that JNL was used, inrplying that vail and val2 are signed integers.

6.5.3.1 Example: IF statement Nested in a Loop
l-Iigh-level structtued languages are particularly good at representing nested control structures.
In the following C-t—t- example, an IF statement is nested inside a WHILE loop:

while(op1 < op2){

op1++;
if(op2 == op3 1

X = 2;
else

X = 3;
}
Before we code this loop in assembly language, let's use the flowchart in Figure 6-2 to

describe" the logic. To" simplify the translation to assembly language, registers have been substi-
tuted for variables (EAX = op l , EBX = op2, and ECX = op3), and label names have been added
to the shapes.

Assembly Code The easiest way to generate the assembly code from a flowchart is to imple-
ment the code for each shape. Note the direct correlation between the flowchart labels and the
labels used in the following source code. Tire .code could be shorter, but ther'e’s no denying that it
is easy to Follow the flowchart:

mov eax,op1 ;_copy variables to registers
mov ebx,op2
mov

Ll:cmp
jl

jmp
L2:.inc

ecx,op3
eax,ebx
L2
L7
eax

EAX < EBX?
true
false

6.5 Conditional Structures 2

L3:cmp ebx,ecx ; EBX == ECX?
je L4 ; true
jmp L5

L4 :- mov X, 2
jmp L6

L5; mov X, 3 ;
L6:jnp L1 ;
L7: mov cpl, eax .= update cpl

; false
;X=2

X = 3
repeat the loop

eax = opl
ebx = op2
ecx = op3

true L1: false
eax --: ebx‘?

L2:

itlle false

L4:

Frgure 6-2 Loop Containing lF Statement.

L7=
opl = eax

208 Chapter 6 .- Conditional Processing

6.5.4 Table-Driven Selection
Table-driverr selection is a way of using a table lookup to replace a multiway selection structure. To
usc it, you must create a table containing lockup values and the offsets of labels or procedures, and
use a loop to search the table. This works best when a large number of comparisons are made,

For example, the following is part of a tablecorrtairring single-character lookup values and
addresses of procedures:

.data
CaseTable BYTE fA' ; lookup value-

DWORD Process_A. ; address of procedure
BYTE ‘B’
DWORD Process_B
(etc.)

Let’s assume that Process_A, Process_B, Process_C, and Process_D are located at addresses-
l20h, l30h, l40h, and l50h, respectively. The table would be arranged in rnernory as shown in
Figure 6-3.

|'a'| 00000120" |-B-l 00000130 00000140 |'o*| 00000150 I

i address of process_B

lockup value

Figure 6-3 Table of Procedure Offsets.

Example Program In the following "example program (Pr0cTble.a.sm)', the user inputs a char-
acter fronr the keyboard. Using. a loop, the character is compared to each entry in the table. The
first match found in the table causes -a call to the procedure offset stored immediately after the
lookup value". Each procedure loads EDX with the offset of a different string, which is displayed
during the loop:

TITLE Table of Procedure Offsets (ProcTble.asm)

; This program contains a table with offsets of procedures.
; It uses the table to execute indirect procedure calls.

INCLUDE Irvine32.inc
.data
CaseTable BYTE 'A‘ lookup value

DWORD Processgh ddress of procedure
EntrySize = ($ — CaseTable)

BYTE ‘B’
DWORD Process_B
BYTE 'C'
DWORD Process C

SD

6.5 Conditional Structures

BYTE 'D'
DWORD Process_D

NumberOfEntries = ($ - CaseTable) / Entrysize
prompt BYTE “Press capital A,B,C,or D: ",0

i Define a separatc message string for each procedure: I

'msgA BYTE "Process_A",0
msgB BYTE "Process_B"' , 0
msgC BYTE "Process_§“,0
msgD BYTE "Process_D“,0

.code
main PROC

mov edx,OFFSET prompt ; ask user for input
call WriteString
call Readfihar ; read character into AL
mov ebx,OFFSET CaseTable ; point EBX to the table
mov ecx,Number0fEntries ; loop counter

L1:
cmp al,[ebx] ; match found?
jne L2 ; no: continue
call NEAR PTR [ebx + 1] ; yes: call the procedure

This CALL instruction call}; the procedure whose address is stored in the memory loca-
tion referenced by EBX+l . An indirect call such as this requires the NEAR PTR operator

call WriteString ; display message
call Crlf
jmp L3 ; exit the search

L2:
add ebx,EntrySize ; point to the next entry
loop L1 ; repeat until ECX = 0

L3:
exit

main ENDP

i Each of the following procedures moves a different string offset to EDX: K

Process_A.PROC
mov edx,OFFSET msgA
ret

Process_A ENDP

210 Chapter 6 ~ Condltlonal Processing

Process_B PROC
mov edx,OFFSET msgB
ret

Process_B ENDP

Process;C PROC
mov edx,0FFSET msgc
ret

Process_C ENDP

Process_D PROC
mov edx,OFFSET msgD
ret

Process D ENDP
END main

The table-driven selection method involves some initial overhead, b.ut it can reduce the
amount of code you must write. A table can handle a large numb.er of compa'r'isons_, and it can be
more easily modified than a long series of compare, jump, and CALL instructions. A table can
even be reconfigured at runtime.

6.5.5 Section Review
Notes: In all compound expressions, use short-circuit evaluation. Assume that X, vall, val2.
and val3 are 16-bit variables.

1. Implement the following pseudocode in assembly language:

if(bx > cx)
X = 1;

2. Implement the following pseudocode in assembly language:

if(dx <= cx)
K = 1;

else
X = 2;

3. Imp_lement the following pseudocode" in assembly language:

if("val1 > ex AND cx > dx)
X = 1;

else
X = 2;

4. Implement the following pseudocode in assembly language:

if(bx > cx.OR bx > vall)
X = 1;

else
X = 2;

6.6 Application: Finite-State Machines 211

5. Implement the following pseudocode in assembly language:

if(bx > cx AND bx >.dx) OR (dx > ax l
X = 1;

else
X=2;

6. .Challenge: Rewrite the following code (from Section 6.5.3-.1) ‘so that it‘ is_- functionally
equivalent, but uses fewer in structions:

mov eax,op1 ; copy variables to registers
mov ebx,op2_
mov ecx,op3

Ll: cmp eax,ebX ; EAX <: EBX?
jl L2 ; t-rue
jmp L7 ; false-

L2: inc eax
L3: cmp ebx,ecx ; EBX == ECX?

je L4 ; true
jmp L5 ; false

L4: mov X,2 ; X = 2
jmp L6

L5: mov X,3 ; X = 3
L6: jmp L1 ; repeat the loop
L7: mov op1,eax ; update opl

6.6 Application: Finite-State Machines.
.-Xfinite-stare. machine (FSM) is a machine or program that changes state. based on some input. It

fairly simple to use Ia graph to represent an FSM, which contains squares (or circles) called
nodes and lines with arrows between the circles called edges (or arcs).

A simple example is shown in Figure 6-4. Each node represents a program state, and each
edge-represents -a transition from one state" to another. One node is designated as the start stare,
shown in our diagram with an incoming arrow. The remaining states can be labeled with num-
bers" or letters. One or more states are designated as terminal stares, notated by a thick border
around the square. A terminal state represents a state in which the program might stop without
producing an error. A finite-state machine is a specific instance .of a more general type of struc-
ture called a directed graph (or digraph). The latter is a set of nodes connected by edges having
specific directions.

, i 2 all-2*-4,: 2 . 1 »<a=.-;*.:' 2, 2 1 .g1'aphsfhave many USefi1_1";_appl1CaiIi0I‘lS lncompurer SCIGHCB, related to dynamic data
and advanced searching‘ techniques. r "

212 Chapter 6 - Conditional Processing

Start 'fl

Figure 6-4 Simple Finite-State Machine.

6.6.1 Validating an Input String
Programs that read input streams often must validate their input by performing a certain amount
of error checking. A programming language compiler, for instance, can use a finite—state
machine to scan source programs and convert words and symbols into tokens, which are objects
such as keywords, arithmetic operators, and identifiers.

When using a finite-state machine to check the validity of an input string, you usually read
the input character by character. Each character isrepresented by an edge (transition) in the dia-
gram. A finite-state machine detects illegal input sequences in one of two ways:

- The next input character does not correspond to any transitions from the current state.
- The end of input is reached and the current state is a nonterminal state.

Character String Example. Let’s check the validity of an input suing according to the following
two rules:

' The suing must begin with the letter ‘x’ -and end with the letter ‘z.’
' Between the first and last characters, there can be zero or more letters within the range

{’a’..’y’}.
The FSM diagram in Figure 6~5 describes this syntax. Each transition is identified with a

particular type of inpu_t..For example, the transition from state A to state B can only be accom-
plished if the letter x is read from the input stream. A transition from state B to itself is accom-
plished by the input of any letter of the alphabet except z. A transition from state B to state C
occurs only when the letter z is read from the input stream.

lal“lyI

start 'x' B

IZI

Figure 6-5 FSMlor String.

6.6 Application: Finito-State Machines 213

If the end of the input stream is reached while the program is in state A or B, an error con-
dition results because only state C is marked as a terminal state. The following input strings, for
example, would be recognized by this FSM:

xaabcdefgz
xz
xyyqqrretuvz

6.6.2 Validating a Signed Integer
A finite-‘state machine for parsing a signed integer is shown in Figure 6-6. Input consists of an
optional leading sign followed by a sequence of digits. There is no stated maximum number of
digits implied by the diagram.

.digit

digit

start E

digit

Figure 6-6 Signed Decimal integer FSM.

Finite-state machines are very easily translated into assembly languagecode. Each state in
the diagram (A, B, C, ...) is represented in the program by a label. The following actions are per-
formed at each label:

~ A call to an input procedure reads the next character from input.
' If the state is a terminal state, check to see if the user has pressedthe Enter key to end the

input.
' One or more compare instructions check for each possible transition leading away from

the state. Each comparison is followed by a conditional jump instruction.

For example, at state A, the following code reads the next input character and checks for a possi-
ble transition to state B:

StateA;
call Getnext ; read next char into AL
cmp al,'+' ; leading + sign?
je StateB ; go to State B
cmp al,'~' ; leading - sign?

214 Chapter 6 - Conditional Processing

je 'StateB
call IsDigit
jz StateC
call DisplayErrorMsg

imp -Quit

go to State B
ZF = 1 if AL contains a digit

t'O State C

nvalid input found

0
¥

I
I

‘WQ -a

Also in state A, we call IsDigit, a link library pmcedure that sets the Zero flag when a
numeric digit is read from input. This makes it" possible to look for a transition to state C. Failing
that, the program displays anerror message and
code attached to label StateA.

exits; The flowchart in Figure 6-7 represents the

I I GetNext I I

false"

false

‘"‘° II

““‘ II
| | spa ll

false I

tI'l.1G I I

I I Disp1ayEr1'orMsg I I

Figure 6-7 Signed integer FSM Fiowchart.

6.6 Application: Finite-State Machines

I-'SMImpIementa1ion The following is a complete program that implements the finite-state
machine from Figure ,6-6 describing a signed integer:

TITLE Finite State Machine (Finite.asm)

INCLUDE Irvine32.inc

.data
ENTER___KEY = 13
InvalidInputMsg BYTE "Invalid input",l3,10,0

.code
main PROC

Call Clrscr

StateA:
call Getnext ;
cmp. al,'+' ;
je StateB ;
cmp al,'»‘
je StateB
call IsDigit
jz Statec ;
call DisplayErrorMsg ;
ire Quit

StateB:
call 'Getnext ;
call IsDigit ;
jz StateC
call DisplayErrorMsg ;
jmp Quit

stateC:
call Getnext ;
call IsDigit ;
jz StateC
Cmp al,ENTER_KEY
je Quit
call Di's,playErrorMsg
jmp Quit

Quit:
call
exit

main ENDP

‘ii"MI

‘ha

"ll

‘ha

"\I

Crlf

F““““““““““““““““““““
Getnext PRDC
F
; Reads a character from standard input

read next char into AL
leading + sign?
go to State B
leading - sign?

N!-Q

g0

o to State B
"13 = 1 if AL.contains a digit

to State C
invalid input found

read next char into AL
zs = 1 if AL contains a digit

invalid input found

read next char into AL
Z F = 1 if AL contains a digit

Enter key pressed?

’.:1*<
rnm quit
0: invalid input found

216 Chapter 6 - Conditional Processing

; Receives: nothing
Returns: AL contains the character"1'

‘HI
IIIiIII

(D

call ReadChar input from.keyboard
call WriteChar ch0.on screen
ret

Getnexi: ENDP

: --
DisplayErrorMsg PROC

CPU
isplays an error message indicating that
he input stream.contains illegal input.

; Receives: nothing.
Returns: nothing

push edx
mov edx , OFFSET Inval.i.dInput.Msg
call Writestring
pop edx
ret

DisplayErrorMsg ENDP
END main

‘HI‘ll

The IsDigit procedure from the book’s link library sets the Zero flag if the character in AL
is a valid decimal digit. Otherwise, the Zero flag is cleared:

: ---
Isdigit PROC

\l-no Cietermines whether the character in.AL is a
; valid decimal digit.

eceives: AL = character
_eturns: ZF=l if AL contains a valid decimal

; digit; otherwise, ZF=0.
7575

I __-

cmp al,‘0‘
jb ID1 ; ZF = 0 when jump taken
cmp al , ' 9 '
ja ID1 = 0 when jump taken
test ax,0 et ZF = 1

ID1: ret
Isdigit ENDP

MyMI U)N

'2]

6.6.3 Section Fieview

1. A finite-state machine is a specific application of what type of data structure?
2. In a finite-state machine diagram, what do the nodes represent?

6.7 Using the .lF Directive (Optional) 217

3. In a finite-state machine diagram, what do the edges represent?
4. In the signed integer finite"-state machine (Section 6.6.2), which state is reached when the

input consists of “+5”?
5. In the signed integer finite-s.tate machine" (Section 6.6.2), how many digits can occur after a

minus sign?
6. What happens in a finite-state machine when no more input is available, and the current

state is a nonterminal state?
7. Would the following simplification of a signed "decimal integer finite-state machine work

just as well as the one shown in Section 6.6.2? If not, why not?

den

_*“_Y1,. E

8. Challenge: Diagram a finite-state machine that recognizes real numbers without exponents.
The decimal point is required. Examples are: +3.5, —4.-2342, 5., .2.

6.7 Using the .lF Directive (Optional)
The Microsoft assembler (MASM) provides IF, a high-level directive that makes programming
compound [F statements much easier than if you were to code using CMP and conditional jump
instructions. Here is the syntax:

.IF conditioni
statements

[.ELSEIF condition2
statements]

[.ELSE
statements 1

.ENDIF

The square brackets above show that .ELSEIF and .ELSE are optional, whereas .IF and
ENDIF are required. A condition is. a boolean expression involving the same operators used in
C-|—i- and Java (such as <, :>, =, and !=). The expression is evaluated at runtime. The following
are examples of valid conditions, using 32-bit registers and variables:

eax > 10000h
vall <= 100
val2 == eax
val3 != ebx

The following are examples of compound conditions.
(eax > 0) && (eax > 10000hJ
ivall <= 100) || (val2 <= 100)
(val2 != ebx) && LCARRY?

218 Chapter 6 * ConditionaiProcess1ng

A complete list of relational and logical operators is shown in Table 6-6.

Table 6'—6 Runtime Relational and Logical Operators.
‘:'.,7r’-- ,1‘:-. ‘ _. . , - .‘.;is" ,1|L. .r_ '|~I|%‘|‘1I| ppsmhl Qgg . we . ' as-:4 -1-=1-1'1 1--' - . . . -=1--‘er.-tn.-=:.-. .. -:2-ii!-._.._.,|- .-l,.lf -_ ~_-mi III 5i _:\ | -',-_ _|||-_!I‘ II. ti > ._'|,.\-.\ - 1“--l, /I "-- I.lr -I -I\-- --' "|'.',:i t. - I I -!".|-3-_\:i1-I-t'-yr;r£I;|'_,'i |;|,ii_" - ‘!'.;-[;_|.F |_i'_, -j- '-:;:.' H11»: .:;- ‘|. ' I . t ',"'i=.'- 1g.~.>.,- T ' 9 ' '-‘El.-O-_ "|'_\l_'.=fr-‘mite.-:-‘. '.-eel.’-..-. - -iiistt "'-‘?i§i*=:.. H959-I3 -. '9"-r-'=ii|--i%=‘ ‘ ‘Fifi-:~i=*l=-:11"- s=;1»<1~.= " ~~=‘-in--'~ ' ~=.'-:-:=iI» '- : -*-at-*':* '"-=-I-an

7_ I-:1"-\-|'i'E|_:'. - \--If!-i-:-ii’ :-;.sn:;!'*--- .‘.- -_-:-ii .-'.;.»'-'i=;'§"-$1‘-:11.
. - -.1-".|"'i¢.' I---I: .~.i L. 4_'.!.: '9-‘ii-.-‘_‘I . ‘I'?:I-‘It?

exprl = expr2

exprl != expr2

Retums true when exp:-I is equal to expr2.

Returns true when exprl is not equal to expr2.

-exprl > expr2

exprl >= exp:"2

Returns true when exprl is greater than expr2.

Returns true when exprl is greater than or equal to expr2

exp?!‘ <1 expr2 Returns true when exprl is less than exp_r2.

exprl <= e._rpr2 Returns truewhen exprl is less than or equal to exp'r2.

I expr Returns true. when expr is false.

exprl && expr2 Performs logical AND between exprl and expr2.

I exprl expr2 Performs logical OR between exprl and expr2.

exprl & expr2 Performs bitwise AND between exp:-I and expr2.

CARRY? Returns true if the.Carry flag is set.

OVERFLOW? Retums true if the Overflow flag is set.

PARITY? I Returns true if the Parity flag is set. I
SIGN‘? K Returns true if the Sign flag is set. 7*

ZERO? Returns true if the Zerofiag is set.

Generatin_gASM Code When you use high-level directives such as .IF and .ELSE, the assem
bler takes on the role of code-writer for you. For example, let's write an .IF directive that com
pares EAX to the variable veil:

mov eax, 6
.IF eax > vall

mov result,];
. ENDIF

vall and result are assumed to be 32-bit unsigned integers. When the assembler reads the fore
going lines, it expandsthem into. the following assembly language instructions:

mov eax, 6
cunt: eax,val1
jibe .@C0001 ; jump‘ on unsigned oorrgparison
mov result,Zl.

@CUOOl:

6.7 Using the .lF Directive (Optional) 219

The label name @-C0001 was created by the assembler. This is done in a way that guarantees
that all labels within same procedure are unique.

6.7.1 Signed and Unsigned Comparisons
When you use the .IF directive to compare values, you must be aware of how assembler gener-
ates conditional jumps; If the comparison involves an unsigned variable, an unsigned conditional
jump instruction will be inserted in the generated code. This is a-repeat of a previous example
that compares EAX'to vall, an unsigned doubleword:

.data
vall DWORD 5
result DWORD ?
.code

mov eax,6
.IF sax > vall

mov result,1
.ENDIF

The assembler expands this using the JBE (unsigned jump) instruction:
mov eax,6
cmp eax,va11
jbe @C0001 ; jump on unsigned comparison
mov result,1

@C00O1:

Comparing a Signed Integer Let’s-try a similar comparison with val2,_ a signed doubleword:
.data
val2 SDWORD -1
.code

mov eax,6
.IF sax > val2

mov result,1
. ENDIF

Now the assembler generates code-using the JLE instruction, thejump based on signed comparisons:
mov eax,6
cmp eax,val2
jle @C0001 ; jump on signed comparison
mov result,1

-@COOO1:

Comparing Registers The question we might then ask is, what happens if two registers are
compared? Clearly, the assembler cannot determine whether the values are signed or unsigned:

mov eax,6
mov ebx,val2
.IF sax > ebx

220 j j _ Chapter 6 - Condltlonal Processing

mov result,1
.ENDIF

It tums out that the.assembler defaults to an unsigned comparison, so the IF directive comparing
two registers is implemented using the JBE instruction.

6.7.2 Compound Expressions
Many compound boolean expressions use the logical OR and AND operators. When using the
.IF directive, the II symbol is the logical OR operator:

.IF expressionl || enpression2
statements

.ENDIF

Similarly, the && symbol is the logical AND operator:
.IF enpressionl && expression2

statements
.ENDIF

6.7.2.1 SetCursorPosition Example
The SetCursorPosition procedure, shown in the next example, performs range checking on its
two input parameters, DH and DL (see .S'etC’ur.asm). The y-coordinate (DH) must be between-0
and 24. The x-coordinate (DL) must be between 0 and 79. If either is found to be out of range, an
error message is displayed:

SetCursorPosition PROC
Sets the cursor position.
eceives: DL = X-coordinate, DH = Y-coordinate

Checks the ranges of DL and DH.
eturns: nothing

.data
BadXCOordMsg BYTE "X-Coordinate out of range!";0Dh,0Ah,0
BadYCoordMsg BYTE "Y#C0ordinate out of range!",0Dh,0Ah,0
.code

.IF (<11 < 0) || (<11 > 79)
mov edx,OFFSET BadXCoordMsg
call WriteString
jmp quit

.ENDIF

.IF (_dh <. 0) || (dh > 24)
mov edx,OFFSET BadYCoordMsg
call-WriteString
imp quit

.ENDIF
call Gotoxy

quit:
ret

SetCursorPosition ENDP

9393

6.7 Using the .iF Directive (Optional) 221

6.7.2.2 College Registration Example
Suppose a college student wants to register for courses. We will use two criteria to determine
whether or not the student can register: The first is the person‘s grade average, based on a 0 to
400 scale, where 400 is the highest possible grade. The second is the number of credits the per-
son wants to take. A multiway branch structure can be used, involving .IF, .ELSEIF, and
.ENDIF. The following shows -an example (see Re'gz'sr.asm):

.data
TRUE = 1
FALSE = 0
gradeeverage WORD 275 ; test value
credits WORD 12 ; test value
OkToRegister BYTE ?
.code

mov OkToRegister,FALSE
.IF gradenverage > 350

mov OkToRegister,TRUE
.ELSEIF (gradeAverage > 250) && (credits <= 16)

mov OkToRegister,TRUE
.ELSEIF (credits €= 12)

mov'OkToRegister,TRUE
.ENDIF

Table 6-7 lists the corresponding code generated by the assembler, which you can view by
looking at the Dissassembly window of the Microsoft Visual Studio debugger. (It has been
cleaned up here a bit to make it easier to read.) MASM-generated code will appear in the source
listing file if you use the ISg command-line option when assembling programs.

Table 6-7 Registration Example, MASM-Generated Code.
mov
¢mP
jbe
mov
imp

@C0006:
cmp
jbe
cmp
ja
mov
imp

@CO0O9:
°mP
ja
mov

@C0008:

byte ptr
word ptr
@C0006
byte ptr
@C0008

word ptr
@co0o9
word ptr
@C0009
byte ptr
@C0008

word ptr
@C0008
byte ptr

OkToRegister,FALSE
gradeAverage,350

OkToRegister,TRUE

gradeAveraqe,250

credits,16

OkToRegister,TRUE

credits,12

OkToRegister,TRUE

222 Chapter 6 ¢ Conditional Processing

6.7.3 .FiEPEAT and .WHlLE Directives
The REPEAT and .WI-TILE directives offer alternatives to writing your own loops with CMP-"and
conditional jump instructions. They permit the conditional expressions listed earlier in Table 6-6.

The. .REPEAT directive executes the loop body before testing -the. runtime condition fol-
lowing the .UNTIL directive:

.REPEHT
statements

.UNTIL condition

The .WI-IILE directive tests the condition before executing the loop:

.WHILE condition
statements

.ENDW

Examples.-. The following statements display the values 1 through 10 using the .WI-IILE
directive:

mov eax,0
.WHILE_eax < 10

inc eax
call WriteDec
-call Crlf

.ENDW

The following statements display the values 1 through 10 using the .REPEAT directive:

mov eax,0
.REPEAT

inc eax
call WriteDec
call Crlf

.UNTIL eax == 10

6.7.3.1 Example: Loop Containing an IF Statement
Earlier in this chapter in Section 6.5.3.1, we showed how to write assembly language code for =~u-.__

[F statement nested inside a WI-TEE loop. Here is the pseudocode:

while(opl < op2)
{

Opl++;

iii 0P2 == op3 1
X=2;

else
X = 3;

i

6.8 Chapter Summary 223

The following is an implementation. of the pseudocode using the .WHILE and .IF direc-
tives. Because opl, op2, and 0p3 are variables, they are moved to registers to avoid having two
memory operands in any one instruction:

.data
opl DWORD 2 : test data
op2 DWORD 4 ; test data
op3 DWORD 5 ; test data.
.code

mov-eax,op1
mov ebx,op2
mov ecx,op3
.WHILE eax < ebx

inc eax
.IF ebx == ecx

mov X,2
.ELSE

mov X,3
.ENDIF

.ENDW

6.8 Chapter Summary
The AND, OR, XOR, NOT, and TEST instructions are called bitwise iiisriticrioiis because they
work -at the bit level. Each bit in a source operand is matched to a bit in the same position of the
destination operand:

~ The AND instruction produces 1 when both input bits are l.
- The OR instruction produces 1 when at least one of the input bits is 1.
' The XOR instruction produces 1 only when the input bits are different.
- The TEST instruction performs an implied AND operation on the destination operand, set-

ting the flags appropriately. The destination operand is not changed.
- The NOT instruction reverses all bits in "a destination operand.

The CMP instruction-compares a destination operand to a source operand. It performs an
implied subtraction of the source from the destination and modifies the CPU status tlags accord-
ingly. CMP is usually followed by a conditional jump instmction that may produce a transfer oi
control to a code label.
Four types of conditional jump instructions are shown in this chapter:

- Table 6-2 contains examples of jumps based on specific flag values, such as JC (jump
carry), JZ (jumpzero), and JO Qump overflow).

- Table 6-3 contains examples of jumps based on equality, such as JE Qump equal), JNE
Qump not equal), and JECXZ Qump if ECX = 0).

- Table 6-4 contains examples of conditional jumps based on comparisons of unsigned inte-
gers, such as JA Qump if above), JB (jump if below), and JAE (jump if above or equal).

In

224- Chapter 6 ~ Conditional Processing

- Table 6-5 contains examples of signed jumps, such as JL (jump if" less) -and JG (jump. if
greater).

The LOOPZ (LOOPE) instruction repeats when the Zero flagis set and ECX is greater
than Zero. The LOOPNZ (LOOPNE) instruction repeats when the Zero flag is clear and ECX is
greater than zero. (In Real-address mode, LOOPZ and LOOPNZ use the CX register.)

Encryption is a process that encodes data, and decryption is a process that decodes data.
The XOR instruction can be used to perform simple encryption and decryption, one byte at a
time.

Flowcharts are an effective -tool for visually representing program logic. You can easily
write assembly language code, using a flowchart as a model. It is helpful to attach a label to each
flowchart symbol and use the same label in your assembly source code.

A finite-state machine (FSM) is an effective tool for validating strings containing recog-
nizable characters such as signed integers. It is quite easy toimplement a finite-state machine-in
assembly language if each state is represented by" a label.

The .IF, .ELSE, .ELSEIF, and ENDIF directives evaluate runtime expressions and greatly
simplify .El£$SCiTlb_ly language coding. They arc particularly useful when coding complex com-
pound boolean expressions. You can also create conditional loops, using the .W'l-IILE and
.REPEAT directives.

6.9 Programming Exercises

1. ArrayScan using LOOPZ
Using the ArrayScan program in Section 6.3.4.2 as a model, implement the search using the
LOOPZ instruction. Opnbnrzi: draw a flowchart of the program.

2. Loop Implementation
Implement the following C++ -code in assembly language, using the block-structured IF and
.WHlLE directives. Assume that all variables are 32-bit signed integers:

whilei opl < op2 J
l

opl++;
ifi op2 == op3 J

X=2;
else

X=-3;
l

Optional: draw a flowchart of your code.

3. Test Score Evaluation (1)
Using the-following table as a guide, write a program that asks the user to enter an integer test
score between 0 and 10.0. The program should display the appropriate letter grade:

6.9 Programming Exercises 225

I, .
_ - .2-1-. ‘

U ,‘;$t§_ere Rang? I Letter tfirade
Z: t T _'~_ ffj‘-:'.j=;'_uA_ _ __ _fi__ ‘ ' '_\‘.-'7.--§3.'t':'{ _Tj__C:_ __p I I-'-"*§- ' J,

\ 90 to 100 A

80 to 89 B

70 to 79 C

60 to 69 ml D
1 01059 F

Optionai: draw a flowchart of the program.

4. Test Score Evaluation (2)
Using the solution program from the ‘preceding exercise as a starting point, add the following
features:

- Run in a loop so that multiple test scores can be entered.
- Accumulate a counter of the number of test scores.
- Perform range checking on the user’s input: display an error message if the test score is

less than 0 or greater than 100.

Optional: draw a flowchart of the program.

5. College .Reg'stration (1)
Using the College Registration example from Section 6.7.2.2 as a starting point, do the following:

- Recode the logic using CMP and conditional jump instructions (instead of the .IF and
.ELSElF directives).

- Perform range checking on the credits value; it cannot be less than 1 or greater than 30. If
-an invalid entry is discovered, display an appropriate error message.

Optional: draw a flowchart of the program.

6. College Registration (2)
Using the solution program from the preceding exercise as a starting point, write a complete pro-
gram that does the following:

1. Input gradeAverage and credits from the user. If the user enters zero for either value, halt
the program.

2. Perform range checking on both credits and gradeAverage. The latter must be between 0
and 400. If either value is out of range, display an appropriate error message.

3. Determine whether or not the person can register (using the existing example) and display
an appropriate message.

226 Chapter 6 - Conditional Processing

4. Repeat steps 1 through 3 until the user decides to quit.

Optional: draw -a flowchart of the program.

7. Boolean Calculator (1)
Create a program that functions as a simple boolean calculator for '32-bit integers. It should dis-
play a menu that asks the user to make a selection from the following list:

1. x AND y
2. x OR y
3. NOT x
4.xXORy
5. Exit program

When the user makes a choice, call a procedure that displays the name of the operation about to
be performed. -(We will implement the operations in-the exercise following this one.)
Optionak draw a flowchart of the program.

8. Boolean Calculator (2)
Continue the solution program from the preceding exercise by implementing the following
procedures:

' AND_op: Prompt the user for two hexadecimal integers. AND them together and display
the.result in hexadecimal.

' 0R_op: Prompt the user for two hexadecimal integers. OR them together and display the
result in hexadecimal.

' NOT_op: Prompt the user for a hexadecimal integer. NOT the integer and display the
result in hexadecimal.

- XOR_op: Prompt the user for two hexadecimal integers. Exclusive-OR them together and
display the result in hexadecimal.

Oprio_naZ.' draw a flowchart of the program.

9. Weighted Probabilities
Write a prograrn that randomly chooses between three different colors for displaying text -on the
screen. Use a loop to display twenty lines of text, each with a randomly chosen color. The prob-
abilities for each color are to be as follows: white = 30%, blue = 10%, green = 60%. Hirtt: gener-
ate a random integer between 0 and 9. If the resulting integer i's- in the range 0-2, choose white.
If the integer equals 3, choose blue. If the integer is in the range 4-9, choose green.

Integer Arithmetic

7.1 Introduction
7.2 Shift and Flotate Instructions

7.2.1 Logical Shifts versus A1‘Ii.'i'll‘l1€1I'C Shifts
7.2.2 SHL Instruction
7.2.3 SHR Instruction
7.2.4 SAL and SAR Insuuctions
7.2.5 ROL Instruction
7.2.6 ROR Instruction
7.2.7 RCL and RCR Instructions
7.2.8 SHLDIS-I-IRD Instructions
7.2.-9 Section Review

7.3 Shift and Fiotate Applications
7.3.1 Shifting Multiple Doublewords
7.3.2 Binary Multiplication
7.3.3 Displaying Binary Bits
7.3.4 Isolating a Bit String
7.3.5 Section Review-

7.4 Multiplication and Division Instructions
7.4.1 MUL Instruction
7.4.2 IMUL Instruction
7.4.3 DIV Instruction
7.4.4 Signed Integer Division
7.4.5 Implementing Arithmetic Expressions
7.4.6 Section Review

7.5 Extended Addition and Subtraction
7.5.1 ADC Instruction
7.5.2 Extended Addition Example
7.5.3" SBB Instruction
7.5.4 Section Review

7.6 ASCII and Packed Decimal Arithmetic (Optional)
7.6.1 AAA Instruction
7.6.2 AAS Instruction
7.6.3 AAM Instruction
7.6.4 AAD Instruction
7.6.5 Packed Decimal Integers

7.7 Chapter Summary
7.8 Programming Exercises

221

228 Chapter 7 v Integer Arithmetic

7.1 Introduction
In Chapter 6, you learned how to manipulate individual bits in integers, using boolean opera-
tors. We’re going to extend that knowledge hereby showing you how to move bits around in a
number, using shift and rotate operations. Operations such as these are particularly useful when
controlling various types of hardware devices. Assembly language programmers are experts
with bits.

The question is, then, why does this chapter also cover multiplication and division? It
turns out that multiplication and division are implemented by the processor as left and right
shift operations, respectively. So when you’re learning one of these topics, you’re also learning
the other.-

Did you ever wonder how computers manage to add and subtract extremely large num-
bers‘? By now, you’re aware that the largest integer available in C—I+ is typically 32 bits, which
makes it virtually impossible to do extended arithmetic. In assembly language, on the other
hand, there are simple machine-level instructions (ADC and SBB) that make it easy to add and
subtract integers of virtually any size.

One topic in this chapter that I find particularly useful is on implementing arithmetic
expressions. When I started programming in Pascal and later in C and C++, I wondered how
compilers manage to take complicated expressions apart and break them into discrete machine-
language instructions. In the same way that compilers do, you will learn how to use operator pre-
cedence rules and register optimization when translating expressions into assembly language. If
you later take a course in compiler construction, you will explore the same topic in even more
detail than is offered here.

7.2 Shifi and Rotate Instructions
Along with the bitwise instructions from the previous chapter, shift instructions are among the
most characteristic of assembly language. Shifting means to move bits right and left inside an
operand. All of the following instructions affect the Overflow and Carry flags:

SHL Shift left

SHR Shift right

SAL Shift arithmetic left

SAR Shift arithmetic right

ROL Rotate left

ROR Rotate right

RCL Rotate carry left

RCR Rotate carry right

7.2 Shift and Rotate Instructions 229

SHLD Double-precision shift left

SHRD Double-precision shift right

7.2.1 Logical Shifts versus Arithmetic Shifts
There are two basic ways to shift the bits in a number. The first, called a logical siiifi, fills the
newly created bit position with zero. In the following diagram, a byte is logically shifted one
position to the right. Note that bit 7 is assigned 0:

° -i* 't't:'t%'t**t*fi:*l;:*i-*%

For example, if we do a single logical right shift on the binary value 11001111, it becomes
01 1001 11.

The other type of "shift is called an aritim2etic.shifi. The newly created bit position is filled
with a copy of the original number’s sign bit:

Ertti"t:*t:.'t'*+'i*'i-rig
For example the binary value 11001111 has a 1 in the sign bit. When shifted arithmetically one
bit to. the right, it becomes 1110011 1.

7.2.2 SHL Instruction
The SI-IL (shift left) instruction performs a logical left shift on the destination operand, filling
the lowest bit with 0. The highest bit is moved to the Carry flag, and the bit that was in the Carry
flag is lost:

%‘—t' ‘:t'1i;ri* <i" <i1‘:l* *t'fi- °

The.first operand is the destination, and the second is the shift count:

SHL destination,count

The following lists the types of operands" permitted by this instruction:

SHL reg,imm8
SHL mem,imm8
SHL reg,CL
SHL mem,CL

230 Chapter 7 - Integer Arithmetic

The Intel 8086l8088 processors require im'm.8 to be.equa1 to l. From the Intel 80286 processor
onward, z‘mm8 can be any integer. On any Intel processor, CL may contain an integer that is used
as a shift counter. The formats shown here also apply to the SHR, SAL, SAR, ROR, ROL, RCR,
and RCL instructions.

Example In the "following instructions, BL is shifted once to the left. The highest bit is copied
into the Carry flag and the lowest bit position is cleared:

mov bl,8Fh ; BL = 1000111lb
shl bl,1 ; BL = 0O0l1ll0b, CF = 1

Fast Multiplication One of the best uses of SHL is for perfomting high-speed multiplication
by powers of 2. Shifting any operand left by rz bits multiplies the operand by 2”. For example,
shifting 5 left I bit yields the product 5 *' 2:

mov dl,5
shl dl,l

Before: I 0 o_o ofowi 6 1 | =5
After: lo o_o 0 1 0 1 0 j = 10

If we shift 10 left by 2 bits, the result is the same as multiplying 10 by 22':

mov dl,10
shl dl,2 ; (10 * 4) = 40

7.2.3 SHR instruction
The SHR (shift right) instruction performs a logical right shift on the destination operand,
replacing the highest bit with a 0. The lowest bit is copied into the Carry flag, and the bit that
was in the Carry flag is lost:

0 t ___ __ i___ _ _ ft ___ _ E i, tfi___,_il

CF

SHR uses the same instruction formats as SHL. In the following example, the 0 from the
lowest bit in AL is copied into the Carry flag, and the highest bit in AL is cleared;

mov al,OD0h ; AL = ll010000b
shr al,1 ; AL = 0ll01000b, CF = 0

Fast Division Logically shifting any unsigned operand right by It bits divides the operand by
2". Here, for example, we divide 32 by 21, producing 16;

mov dl,32
shr d1,l

7.2 Shift and Rotate Instructions 231

Beiere=|oo1ooooo|=32
After:|00010000_]=16

In the following example, 64 is divided by 23:

mov al,0l000000b ; AL = 64
shr al,3 ; divide by 8, AL = 00001000b

(Division of signed numbers by shifting is accomplished using the SAR instruction because it
preserves the number’s sign bit.)

7.2.4 SAL and SAR Instructions
SAL (shift arithmetic left) is identical to the SHL instruction. The SAR (shift arithmetic right)
instruction performs a right arithmetic shift on its destination operand:

%rtd":t:*i*;t*
The syntax and operands for SAL and SAR are identical to those for SHL and SHR. The shift
may be repeated, based on the counter in the second operand:

SAR destination, count

The following example shows how SAR duplicates the sign bit. AL is negative before and
after it is shifted to the right:

mov a1,0F0h ; AL = 111100.00b (-16)
sar al_,1 ; AL = 11111000b (-8) CF = 0

SignedDivision You can divide a signed operand by a power of 2., using the SAR instruction.
In the following example, --128 is divided by 23. The quotient is -16;

mov 'dl,—l28 ; DL = 10.000000b
sar dl,3 ; DL = 11110000b

7.2.5 ROL Instruction
The ROL (rotate left) instruction shifts each bit to the left. Also, the highest bit is copied both
into the Carry flag and into the lowest bit. The instruction format is the same as for the SHL
instruction:

232 Chapter 7 ~ Integermlthmetlc

Bit rotation differs from bit shifting in that the former does not lose any bits. A bit that is"
rotated off one end of .a number appears again at the other end. I_n the following example, the.
high bit is copied into b.oth the Carry flag and bit position 0:

mov al,40h = 01000000b
rol al,1 = 10000O00b, CF = 0
rol al,1 = 00000001b, CF = 1
rol al,1 = 00000010b, CF = 0éééé
You can use ROL to exchange the upper (bits 4-'7) and lower (bits 0-3) halves of a byte.

For example, if 26h is rotated four bits in either direction, it becomes 62h":
mov al.26h
rol al,4 ; AL = 62h

all shiftftiiiii oversee-"neg
'.'i$'undetenn;ii1ed when thefshift c_6j_1iit is greatejttt-than 1. ;_,f_ _

1.'-=.Il|i:i.'- '-' ~i'=gfi'..- ;.-~ . ' ‘-1 -*§*i~¢_' l'| - - <:-"i1i§f"=i\55'gr'i-‘»!:'i' flier H=-uiiiii-'*;» = ' "'5'-.1‘=1.j:.'~'=.. . . -.="--=- - - -

;: .-:1 :1 . -.._. ;1r-I, -.3--:=;iii=g:-.—:+. ,_ ,.j;:;i- - _..t=:»_ . ,-
_ é i

7.2.6 ROR Instruction
The ROR (rotate right) instruction shifts each bit to the right. Also, the lowest bit is copied into the
Carry flag and into the highest bit at the same time. The instruction format is the same as for SHL:

1 ;-;_|-u-\.<r,--—~e¢-en,»-e1:;e-s-me-,\,,_..-e-uven. -.;-.-v-—u.;.;-v\--—-n-n.vc.1.;-:..|.zu|:1-. a.n-uu.- mi ‘u-T-C!

In the following example, the lowest bit is copied into the Carry flag and into the highest
bit of the result:

mov al,01h
ror al,1
ror al,l

Z
Z

-,.-e
.-.-

0000000lb
10000000b, CF
01000000b, CF

¢—|-
--p l

0

7.2.7 RCL and RCR Instructions
The RCL (rotate carry left) instruction shifts each bit to the left, copies the Carry flag to the least
significant bit (LSB), and copies the most significant bit (MSB) into the Carry flag:

If you think of the Carry flag as just an extra bit addedto the-high "end of the number, then RCL
becomes a simple rotate left operation-.

In the following example, the CLC instruction clears the Carry flag. The first RCL instruc-
tion moves the high bit of BL into the Carry flag, and Shifts all other bits to the left. The second

7.2 Shift and Rotate Instructions 2'33

RCL instruction moves the Carry flag into the lowest bit position, and shifts all other bits to the
left:

clc ; CF = 0
mov b1,88h ; CF,BL = 0 1000I000b
rcl b1,1 ; CF,BL = 1 00010000b
rcl b1,1 ; CF,BL = 0 00100001b

Recover a Bitfrom the Carry Flag RCL can recover a bit that has previously been shifted into
the Carry flag. The following example checks the lowest bit of testval by shifting its lowest bit
into the Carry flag. Then RCL restores the number to its original value:

.data
testval BYTE 01101010b
.code
shr testva1,1 ; shift LSB into Carry flag
jc quit ; exit if Carry flag set
rcl testva1,1 ; else restore the number

RCR Insmzctwlm. The. RCR (rotate carry right) instruction shifts each bit to. the-right, copies
the Cany flag into the most significant bit, and copies the least significant bit into" the Carry flag:

i‘
i*w~'%-' -» it ,.Mmmi__m_iJll|-,_

Asin the case of RCL, it helps to visualize the integer in this figure as a 9-»bit value, with the
Carry flag to ‘the right of the least significant bit.

In the following example, STC sets the Carry flag before rotating the Carry flag into the
MSB, and rotating the LSB into" the Carry flag:

stc ; CF = 1
mov ah,10h ; AH,CF = 00010000 1
rcr ah,1 ; AH,CF = 10001000 0

Q9

7.2.8 SHLDISHRD Instructions
The SHLD and __SHRD instructions require at least an Intel386 processor. The SHLD (shift left
double) instruction shifts a destination operand a given number of bits to the left. The bit posi-
tions opened up by the shift are filled by the most significant bits of the source. "operand. The
source operand is not affected, but the Sign, Zero, Auxiliary, Parity, and Carry flags areaffected:

SHLD destination, source, count

The SI-1RD (shift right double) instruction shifts a destination operand a given number of
bits to the right. The bit positions opened up by the shift are filled by the least significant bits of
the source operand:

SHRD destination, source, count

234 Chapter 7 ~ Integer Arithmetic

The following instruction formats apply to both SHLD and SHRD. The destination oper-
and can be a register or memory "operand, and the source operand must be a register. The count
operand can be either the CL register or an 8-bit immediate operand:

SHLD regl 6, regl 6, CI»/.i'.mm8
SHLD.meml6,regl6,CL/imm8
SHLD reg32,reg32,CL/imm8
SHLD.mem32,reg32,GL/imm8

Example 1: For example, the following statements shift Wval to the-left 4 bits and insert the
high 4 bits .-of AX into the low 4 bit positions of wval:

.data
wval WORD 9BA6h
.code
mov ax,0AC36h
shld wva1,ax,4 ; wval = BA6Ah

The data movement is shown in the following figure:

nwal Adi
<+9BAe | Aces |

[Basal | AC36 |

Example 2: In the following example,AX is shifted to the right 4 bits and the low 4 bits of DX
are shifted into the high 4 positions of AX:

[Di AQC
| 7654 | 23-4n -|->

| 7654 | 04234 l

mov ax,234Bh
mov dx,7654h
shrd ax,dx,4 ; AX = 4234h

SHLD and SI-IRD can be used to manipulate bit-mapped images, when groups of bits
must be shifted left and right to reposition images on the screen. Another potential application
i-s data encryption, in which the encryption "algorithm involves the shifting of bits. Final1y,_ the
two instructions can be used when performing fast multiplication and division with very long
integers.

7.2 Shift and Rotate instructions 235
I

7.2.9 Section Review

1

2

3
4

5

OO‘-JCTI

9
10

ll

12. In the following code sequence, show the value of AL after each shift or rotate Ii‘lSI1'l.1ClI10i‘l

Which instruction moves each bit in an operand to the left and copies the highest" bit into
both the Carry flag and the lowest bit position?
Which instruction moves each bit to the right_, copies the lowest bit into the Carly flag, "and
copies the Carry flag into the highest bit position‘?
Which instruction ‘shifts each bit to the right and replicates the sign bit‘?
Which instruction performs the following operation?

Before: CF,AL = 1 11010101
After: 'CF,AL = 1 10101011

(CF = Carryflag)
Suppose there were no rotate instructions. Show how we_might use SHR and aconditional
jump instruction to rotate.AL I position to the right.
What happens to the Carry flag when the SHR AX,1 instruction is executed?
Write a logical shift instruction that multiplies the contents of EAX by I6.
Write a logical shift instruction that divides EBX by 4.
Write a single rotate instruction that exchanges the high and low halves of the DL register.
Write a SHLD instruction that shifts the highest bit in the AX register into the lowest bit
position of ox and shifts ox one bit to the left. '
In the following code sequence, show the value of AL after each shift or rotate instruction
has executed:

mov a1,0D4h
shr
mov
sar
ITIOV
sar
mov
rol

a1,1
a1,0D4h
a1,1
a1,0D4h
a1,4
a1,0D4h
a1,1

has executed:
mov
ror
mov
rol
stc
mov
rcl
stc
mov
rcr

a1,0D4h
a1,3
a1,0D4h
a1,7

a1,0D4h
a1,1

a1,0D4h
a1,3

236 Chapter 7 - Integer Arithmetic

13. Challenge: Write a SC1‘lC$_"0f instructions that sliift the lowest bit of A-X into the highest bit
of BX without using the SI-IRD instruction. Next, perform the -same operation using SHRD.

1.4. Challenge: One way to calculate the parityof-a 32-bit number in BAX is to use a loop that
shifts each bit into the Carry flag and accumulates a count of the number of times the Carry
flag was set. Write a code that does this, and set the Parity flag accordingly.

7.3 Shift and Rotate Applications

7.3.1 Shifting Multiple Doublewords
It is possible to shift an extended-precision integer by dividing it into an array of doublewords.
The low-order doubleword is stored at the lowest address, using little-endian order. The follow-
ing steps, for example, show how to shift an integer named array one bit to. the right:

' Set ESI to the offset of array.
' The high-order doubleword at [ESI + 8] is shifted right and its lowest bit is copied into the

Carry "flag.
~ The value at. [ESI + 4] is shifted right, its highest bit is filled from the Carry flag, and its

lowest bit is copied into the new Carry flag.
- The low-order doubleword at [ESI + O] is shifted right, its highest bit is filled from the

Carry flag, and its lowest bit is copied into the new Carry flag.

The following figure shows thearray contents and indirect references:

| 9999999911 | 9999999911 | 9'999999_9h |
I [esi] [esi-i~4] ”[eei+s]

The program named MiilriSiifiasm iniplements the following-code:

.data
ArraySize = 3
array DWORD ArraySize DUP(99999999h) ; 1001 1001...
.code

mov esi,0
shr arrayiesi + 81,1 ; high dword
rcr array[esi + 4],1 ; middle dword, include Carry
ror array[esi],1 ; low dword, include Carry

The program -output sliows the numbers in binary before and after the shift:

| 1?,--.|I_ |I_.» ; , _ - |11u?'h_I_‘::§ I,-,~-Q--er-..-E; _:.;_-_,-.-_.1 :7- ‘ '5' _-_,-__;|: 1_-.=,;i§-.1, 1:5,-1, _ ,- fr-_ .|i ;_-.,:; I: I, --_Il l_- r __:,.i,-_ -5:1-| I :,-(_Ew,_5_ . ___ , 1?: I | ._,::;,;-I ‘:51’ ._?..‘ _ ; I.‘-I it

ii’i1@;@§;L.;@Q-QElf;J‘I§;-@.1;f5§;1iQiQ,9{Ii|i§|iQ,Q=l=.I§@-gig-11?.@‘:ii!:iQ 0511. 31'-G--0:1i.ii'.1i@.0,'1;€iif]J0.0 1.1 ."r.1'.~,@.." (=.e1:c;i:)'.:se“=riY;:§;-lg--_--..-..+ -=1,-=.g'_'\ ¢;:=_‘;f' f__:-'-1fl;::.='-.-"24,-:1__; ::*' "-; t 1.‘-_,;|: :13‘;Irsifg5=§"gi5;~¢5,ii.;=r='i2g;-:i.i;3.11g"%F_-F‘; -.9-I-:-:92;-2._,-'7;I'==.2-f if!=_~l;..;-:,_i_=‘-'7";"=:_:___:_r. .,_.; "-'l_I."i, ;-i_‘—1_‘-_‘».§;.-_-._=_-1-_;§?‘1-ii‘7 1. e» i , . , -... .._ r_--_-___.._--.1 In .1 _ \ ,_~‘_-_;!~'- :' .|_ _ _ , -'- . -.'+y?=-’- !l1i:e;T~i,:;-.-“,1-,-‘_r.=e-Ti-';. -.-.!'é,'I~j_!-;-i-HFiiizli-iii}-117'-.§,§,.,f.;1 Lli‘_~,".:‘-Iiif.-15:1.-=' ’-:.'=: ;-§I_'- -f,‘¥;.,r_'~;:-l :1i;;j~ =1",-, I;-_"~' I-T , Q - -; ‘i:=:5t'-‘,-ii: --"_‘._=' _ . '

1.1-* ---.'\-‘- '-Ir-'-1" '-T-F-II" ':-'5’-’-’-".1-'”.""'-i;ii7‘- -.---.? -—- —- - _ _ "ti" -r--r-rt: ..*r ' -- _”- .. - F": .;-. --,-.--
!;""'-:-_j-"-"'-i-‘II’--¢'Eé'°~='7 ""\1;:|_|l"‘ iri'E -‘I.-1!*!.':i‘i-:_|:!" 1i\.‘i': ¢|‘-313:!‘-J3»-.|i :'E:.- . _.L:',:|:|- .' ' :4_1‘i':i§'.-‘:§|' 1'.l."1":|1' I - --1 i-|'.-. .. :_.'_. _ ,.‘-ll» .,',‘|'};'i,'; 1;-.:'l,|', .Ee!|?

I _, -:-r"\~ I

‘L I' 1'Rt." 3 4‘i .,1. |'_'-
.iJ .‘::'..I'\II“.-5:‘? ,. T -..

7.3 Shlit and Rotate Appllcatlons 237

7.3.2 Binary Multiplication
As we have already seen, SHL performs unsigned multiplication efficiently when the multiplier
is a power of 2. You can express any binary number as a sum of powers of 2. For example, to
multiply unsigned EAX by 36, we write 36 as. (25 + 22) and use the distributive property of mul-
tiplication to carry out the operation:

EAJ{*36=EAX*(32+4)
=(EAX*32')+(EAX*4)

Shifting an unsigned integer n bits to the left multiplies it by 2". The following figure
shows the multiplication 123 * 36, producing 4428, the product:

01111011 123

X 00100100 36
F _

01111011 123SHL2
+ o1111o11_ _ 12ssrn.s
0001000101001100 #93

Notice that bits 2 and 5 are set in the multiplier, 36. These are exactly the shift values used in the
example. The following code implements this multiplication using 32-bit registers:

.code
mov eax,123
mov ebx, eax
shl eax,5 ; mult by 2“5
shl ebx,2 ; mult by 2“2
add eax,ebx ; add the products

As a chapter exercise, you will be asked to generalize this example and create a procedure that
multiplies any two 32-bit unsigned integers using shifting and addition.

7.3.3 Displaying Binary Bits
A good way to apply the SHL instruction is to display a byte in ASCII binary format. We can
take advantage of the fact that -the highest bit is copied into the Carry -flag each time the byte is,
shifted to.the-left. The following program displays each of the bits in BAX:

TITLE Displaying Binary Bits (WriteBin.asm)

; Display a 32-bit integer in binary.

INCLUDE Irvine32.inc

.data
binvalue DWORD 1234ABCDh ; samle binary value
buffer BYTE 32 DUP(0),0

238 Chapter 7 ~ integer Arithmetic

.code
main PROC

mov eax,binVa1ue ; number to display
mov ecx,32 ; number of bits in BAX
mov esi,0FFSET buffer

L_' l\-'5

nononoan(Dl"'°Q

L1: shl 'eax,1 shift high bit into Carry flag
mov BYTE PTR [esi],'0' hoose 0 as default digit
jnc f no Carry, jump to L2
mov BYTE PTR [esi], '1' lse move 1 -to buffer

L2: inc esi ; next buffer position
loop L1 ; shift another bit to left

mov edx,OFFSET buffer ; display the buffer
call WriteString
call Crlf
"exit

main ENDP
END:main

7.3.4 Isolating a Bit String
Often a byte or word contains more than one "field, making it necessary to extract short
sequences of .bits called bit strings. For example, in Real-address mode, MS-DOS function 57h
returns the date stamp of a file in DX. (The date stamp shows the date on which the file was last
modified.) Bits 0-4 represent a day number between 1 and 31, bits 5-'8' are the month" number.
and bits 9-15 hold the year number.

Suppose _a file was last modified on March l0, 1999. The file’s date stamp would "appear as
follows in tiie DX register (the year number is relative to 1980):

DH DL

0 ll‘ if I

__ I
Field: Year Month Day

Bit numbers: 9-15 5-8 0-4

i.c;.___

C) I-3 C) C) 1—=

._...,_t. .__Q_.

C)

I :—\ ~—-:—l ——C>

:—\ C) :—\ C)

To extract a single field, we can shift its bits into the lowest part ofa register and clear the
irrelevant bit positions. The following code example extracts the day number by making a copy
ofDL and masking off all bits not belonging to the field:

mov al,c1l ; make a copy of DL
and al,000l1111b ; "clear bits 5-7
mov c1ay,al ; save in day

7.4 Multiplication and Division instructions 239

To extract the month number, we shift bits 5-8 into the low part ofAL before masking off
all other bits. AL is then copied to a variable:

mov &X,dx ; make a copy of DX
shr ax,5 ; shift right 5 bits
and al,00001111b ; clear bits 4-7
mov month,al ; save in month

The year number (bits 9-15) is completely within the DH register. We move this to AL and
shift it right 1 bit:

mov al,dh ; make a copy of DH
shr al,1 ; shift right one position
mov ah,0 ; clear AI-I to zeros
add ax,19.80 ; year is relative to I980
mov year,ax ; save in year

7.3.5 Section Review

1. Write a sequence of instructions that shift three memory bytes to the right by 1 bit position.
Use the following data definition:

byt.eArray BYTE 81h,20h,33h-

2. Write a sequence of instructions that shift three memory words to the left by l bit‘ position.
Use the following data definition:

w0rdArray WORD 810Dh , 0C064h, 931-\Bh

3. Write instructions that calculate BAX *1‘ 24 using binary multiplication.
4. Write instructions that calculate BAX * 21 using binary multiplication. Hint: 21 = 24 + 22 +

2°.
5. “(hat change would be made to the WrireBin .a.sm program in Section 7.3.3 if you wanted to

display the binary bits in reverse order?
6. The time stamp. of a file uses bits 0-4 for the -seconds, bits 5-10 for the minutes, and bits

11-15 for the hours.Write "instructions that extract the minutes and copy the value to a byte.
variable named bMinutes.

7.4 Multiplication and Division instructions
Finally, we can finish all the basic arithmetic operations on binary integers by introducing inte-
ger multiplication and division instructions. The Intel insi1'11_Ction set lets you multiply and divide
8», 16-, and 32-bit integers, using the MUL (unsigned multiply), DIV (unsigned divide), IMUL
isigned multiply), and IDIV (signed divide) instructions.

240 Chapter 7 ~ integer Arithmetic

7.4.1 MUL Instruction
The MUL (unsigned multiply) instruction multiplies an '8-, 16-, or 32-bit operand by either AL,
AX, or EAX.The instruction formats are:

1!-IUL r/m8
MUL r/m16
MUL r/m32

The single operand is the multiplier. The following -table shows the default multiplicand and
product, depending on the size of the. multiplier:

’ __,-..‘ . 1:'_!.,_,_ ._.__.: .:i._., . . r-_I_._ . I‘ -_ . T

K AL W ri'm8 ‘ AX l
AX K r!m16 DX:AX

EAX r1'm32 EDX:EAX'

The register(s) holding the product are twice the size of the multiplicand and multiplier,
guaranteeing that overflow will never occur. The following illustration shows EAX multiplied by
a 32-bit multiplier:

x
|EDx|EAxj

The MUL instruction sets the Carry and Overflow flags if the upper half of the product is
not equal to zero. (We will focus on the Cany flag here, since it is normally used for unsigned
arithmetic.) For example, when AX is multiplied by a 16-bit operand, the product is stored in
DX:AX. If DX is not equal. to zero, the Carry flag is set.
Example 1: The following statements perform 8-bit unsigned multiplication (5 *- 10h), pro-
ducing 50h in AX:

mov -al,5h
mov bl,10h
mul bl ; CF = 0

The Carry flag is clear because AH (the upper half of the product) equals zero.

Example 2: The following statements perform 16-bit unsigned multiplication (0 l00h * 2000h)_
producing 00200000h in DX:AX:

.data
vall WORD 2000h

7.4 Multiplication and Division instructions 241

Va12 WURD 0l00h
.code

mov ax,val1
mul val2 ; CF = 1

The Carry flag is set because DX is not equal to zero.
Example 3: The following statements perform 32-bit unsigned multiplication (12345h * 1000h),
producing 00000000l2345000h in EDX-:EAX:

mov eax,l2345h
mov ebx,1000h
mul ebx ; CF = O

The Carry flag is clear because EDX equals zero.

7.4.2 IMUL instruction
The IMUL (Signed multiply) instruction performs signed integer multiplication. It has the same
syntax and uses the same operands as the MUL instruction. What is different is that it preserves
the sign of the product.

IMUL sets the Carry and Overflow flags if the high-order product is not a sign extension
of the low-order product. (Because the Overflow flag is normally used for signed arithmetic, we
will focus. on it here.) The following examples help to illustrate:
Example 1: The following instructions perform 8-bit signed multiplication (48 _* 4), producing
+192 in AX:

mov al,48
mov bl,4
imul bl ; AX = GOCOh, OF = 1

AI-I is not a sign extension of AL, so the Overflow flag is set.
Example 2: The following instructions perform 8-bit signed multiplication (-4 * 4), producing
-1.6 in AX:

mov a1,—4
mov bl,4
imul bl ; AX E FFFOh, OF = 0

AH is a sign extension of AL (the signed result fits within AL), so the Overflow flag is clear.
Example 3: The following instructions perform 16~bit signed multiplication (48 *' 4), producing
+192 in DX:AX:

mov ax,48
mov bx,4
imul bx ; DX:AX = ooccooccn, on = 0

DX is a sign extension of AX, so the Overflow flag is clear.

242 Chapter 7 - integer Arithmetic

Example 4: The following. instructions perform 32-bit signed multiplication (4823424 * -423),
producing —2,040,308,352 in EDXEEAX:

mov eax,+4823424
mov .ebx,—423
imul -ebx ; EDX:EAX = FFFFFFFF86635D80h, OF = 0

EDX is a sign extension of EAX, so the Overflow flag is- clear.

7.4.3 DIV instruction
The DIV (unsigned divide) instruction performs 8-bit, 16-b.it, and 32-bit division on unsigned
integers. A single operand is supplied (register or memory operand), which is assumed to be the
divisor. The instmction formats for DIV are:

DIV r/m8
nrv r/ml6
DIV r/m32

The following table shows the relationship between the dividend, divisor, quotient, and remain-
der. Everything is determined by the size of the divisor:

L _ __ ___ _ _ _______. _____7_ LLLL7 7 >

Dividend Divisor h Quotient Remainder i

AX r/m8 AL AH

A DX:AX r/m1'6 AX DX h

EDX:EAX r/11:32 EAX EDX
_r‘|

The following illustration shows EDX:EAX as the default dividend when a 3'2-bit divisor is used;

| nnx | EAXT]
— e 7 (quotient)
—a’m32

(remainder)

Example 1: The following instructions perform 8-bit unsigned division (83h I 2), producing a
quotient of 41h and a remainder of 1):

mov ax,0083h ; dividend
mov b1,2 ; divisor
div bl ; AL = 41h, AH = Olh

Example 2: The following instructions perform 16-bit unsigned division (800311 I l00h), pro-
ducing a quotient of 80h and a remainder of 3. DX contains the high part of the dividend, so. it
must "be. cleared before the DIV instruction executes:

mov dx,0 ; clear dividend, high
mov ax,B003h ; dividend, low

7.4 Multiplication and Division instructions 243

'\Imov cx,100h divisor
div cx AX = 0080h, DX = 0003h'\I

Example 3: The "following inst_ructio_ns perform 32-bit unsigned "division using a memory
operand as the divisor:

.data
dividend QWORD O000000800300020h
divisor DWORD 00000100h
.code

mov edx,DWORD PTR dividend + 4 high doubleword
mov eax,DWORD PTR dividend low doubleword
div divisor ; EAX = 08003000h, EDX = 00000020h

'\I

'\I

7.4.4 Signed integer Division
7.4.4.1 CBW, CWD, CDQ Instructions
Before discussing signed integer division, we need to look -at three instructions that perform
integer sign-extension. The CBW (convert byte to word) instruction extends the sign bit of AL
into the AH register. This preserves" the number’s sign:

.data
byteval SBYTE -101 ; 9Bh
.code

mov a1,byteVal ; = 9Bh
cbw = FF9Bhlie

ln other words, 9Bh and FF9Bh both equal -101 . The only difference between the two is their stor-
age size. (Sign extension was explained in Section 4.1.5.3 "along -with the MOVSX instructijo_n.)

The CWD (convert word to doubleword) instruction extends the sign bit of AX into the
DX register:

.data
wordval SWORD -101 ; FF9Bh
.code

mov ax,wordVal ; AX = FF9Bh
cwd ; DX:A1{ = FFFFFF9Bh

The CDQ (convert doubleword to quadword) ins.truction extends the sign bit of EAX into
the EDX register:

.data
dwordval SDWDRD -101 ; FFFFFF9Bh
.code

mov eax,dmordVa1
cdq ; EDX:EAK = FFFFFFFFFFFFFF9Bh

7.4.4.2 The IDIV Instruction
The IDIV (signed divide) instruction performs signed integer division, using the same operands
as the DIV instruction- When doing 8-bit division, you must sign-extend the dividend into AH

244 Chapter 7 - integer Arithmetic

before IDIV executes. (The CBW instruction can be used.) In the next ‘example, we divide -48
by 5. After IDIV executes, the quotient in AL is -9 and the remainder in AH is -3:

.data
byteval SBYTE -48
.code

mov al,byteVal ; dividend
cbw ; extend AL into AH
mov bl,5 ; divisor
idiv bl : AL = -9, AH = -3

Similarly, 16-bit division requires" that AX be sign-extended into DX. In the next example.
we divide -5.000 by 256:

.data
wordval SWORD -5000
.code
mov ax,wordVal ; dividend, low
cwd ; extend AX into DX
mov bx,256 ; divisor
idiv bx ; quotient AX = -19

; remainder DX = -136

Similarly, 32-bit division requires that EAX be sign-extended into EDX. The next example
divides -50000 by 256:

.data
dwordval SDWORD —50000
.code

mov eax,dwordVal ; dividend, low
cdq ; extend EAX into EDX
mov ebx,256 ; divisor
idiv ebx ; quotient BAX = -195

; remainder EDX = -80

i- ,. .5-~. -in ‘ ' .
__ _ ' ;I__ __1J __ 43-i;i;. ' 7. 7 ___ vrvjlflr" " "';1;ff**i'_ rr *'_ liq "___ _

lforboth all of the grithmetic statusflags are undefined after the operation. 1 1

7.4.4.3 Divide Overflow
If a division operand produces a quotient that is too large to fit into the destination operand, e
dz'vz'de- overjflow condition results. This causes a CPU interrupt, and the current program l‘l3li_-3,
The following instructions, for example, generate a -divide overflow because the quotient (100151
will not fit into the AL register:

mov ax,1000h
mov bl,10h
div bl ; AL cannot hold l00h

7.4 Multiplication and Division instructions 245

When this code executes under MS-Windows, the following dialog window appears:

A similar dialog window appears when you write instructions that attempt to divide by zero:

mov ax,dividend
mov bl,0
div bl

At this point in the book, we’-re not equipped with the proper tools to recover from divide
overflow. We’ll just let the program temiinate, and then use a debugger to find out where the evil
deed occurred. One thing you can do is to use a 32-bit divisor to reduce the probability of a
divide overflow condition. For example:

mov eax.l000h
cdq
mov ebx,10h
div ebx ; EAX = 00000l00h

Prevention of divide by zero is much easier. You can simply test the divisor and jump past
the division instruction if it equals zero:

mov ax,dividend
mov bl,divisor
cmp bl,0 ; check the divisor
je NoDivideZero ; zero? display error
div bl ; not zero: continue

0

I

NoDivideZero:
;(display "Attempt to.divide by zero")

7.4.5 Implementing Arithmetic Expressions
In Section 4.2.5 we showed how to. implement arithmetic expressions using addition and sub-
naction. Let’s expand the possibilities now by including multiplication and division. There are at
leastthree reasons for doing this: First, it's fun to pretend being a C++ or Java compiler, and find
out how they would do it. Second, the best way to test your understanding of the multiplication
and division instructions presented in this chapter is to implement complete expressions. Third,

246 Chapter 7 - Integer Arithmetic
1 7 _7 1

you can implement better error checking than a typical compiler by checldng the size of the
product following multiplication operations. Most high-level language compilers ignore the
upper 32 bits of the product when multiplying two 3'2-»bit operands. In assembly language, how-
ever, you can use the Carry and Overflow .flags to tell you when the product does not fit into 32
bits. The use of these flags was explained in Section 7.4.1 and Section 7.4.2.

If you would like to compare your code to that of a compiler, take" a look at the assembly
code the compiler generates either by opening a debugging window or by generating a source
listing file. Most C++ compilers make this easy to do.

Example 1: Implement the following C—|—i- statement in assembly language, using unsigned
32-bit integers:

var4 = (varl + var2) * var3;

This is a straightforward problem because we can work from left to right (addition, then multi-
plication). After the second instruction, EAX contains the sum of varl and var2. In the third
instruction, EAX is multiplied by var3 and the product is stored in EAX:

mov eax,varl
add eax,var2
mul var3 ; EAX = EAX * var3
jc tooBig ; unsigned overflow?
mov var4,eax
jmp next

tooBig: ; display error message

If the MUL instruction generates a product larger than 32 bits, the JC instructionjumps to a label
that handles the error.
Example 2: Implement the following C-1+ statement, using unsigned 32-bit integers:

var4 = (varl * 5) / (var2 - 3);

In this example, there are two subexpressions within parentheses. The left side can be assigned
to EDX:EAX, so it is not necessary to check for overflow. The right side is assigned to EBX, and
the final division completes the expression:

mov eax,var1 ; left side
mov ebx , 5'
mul ebx ; EDX:EAX = product
mov ebx;var2 ; right side
sub ebx,3
div ebx ; final division
mov var4,eax

Example 3: Implement the following C-1+ statement, using signed 32-bit integers:

vara = (varl * -5) / (-var2 % var3);

7.4 Multiplication and Division instructions 247

This example is a little trickier than the previous ones. We can begin with the expression on the
right side and ‘store its value in EBX. Because the operands are signed, it’s important to sign-
extend the dividend into EDX and use the IDIV instruction;

Next, we calculate the expression on the left side, storing the product in EDX:EAX:

mov eax,var2
neg eax
cdq
idiv var3
mov ebx,edx

sign—extend dividend
EDX
EBX

; begin right side

remainder
right side

mov eax,-5- ; begin left side
imul varl ; EDX=EAX = left side

Finally, the left Side (E_DX:EAX) is divided by the right side (EBX):

idiv ebx ; final division
mov var4,eax ; quotient

7.4.6 Section Review

1
2

m>~ooitnest»

9.

1 0.

Explain why -there can never be overflow when the MUL and IMUL instructions execute.
How is the IMUL instruction different from MUL in the way it generates a multiplication
product?
What has to happen in order for the IMUL to set the Carry and Overflow flags?
When EBX is the operand in a DIV instruction, which register holds the quotient?
When BX is the operand in a DIV instruction, which register holds the quotient?
When BL is the operand in a MUL instruction, which registers hold the product?
Show an example of sign-extension before calling the IDIV instruction with a 16*-bit operand.
What will be the contents of AX and DX after the following operation‘?

mov
mov
mov
mul

What will be the contents of AX after the following operatioii?
mov
mov
div

What will be the contents ofBAX and EDX after the following operation?
mov
mov
mov
div

dx,0
ax,222h
cx,l00h
cx

ax,63h
bl,10h
bl

eax,l23400h
edx,0
ebx,l0h
ebx

248 H j g Chapter 7 - integer Arithmetic

ll. What will be the contents ofAX and DX after the following operation?

mov ax, 4000h
mov‘ dx, 500h
mov" bx, 1.0h
div bx

12. Write instructions that multiply -5 by 3 and store the result in a 16-bit variablevall.
13. Write instructions that divide -2'76 by 10 and store the result in a 16-bit variable vall.
14, Implement the following C++ expression in assembly language, using 32-bit unsigned oper-

ands: vall = _(val2 =1< val3) / (val4 - 3)
15. Implement the following C++ expression in assembly language, using 32-bit signed oper-

ands: vall = (val2 / val3) * (vall + val2)

7.5 Extended Addition and Subtraction
Extended precision addition and subtraction is the adding and subtracting of numbers having an
almost unlimited size. -Suppose you were asked to write a C++ program that adds two. 128-bit
integers. The solution would not be easy! But in assembly language, the ADC (add with carry)
and SBB (subtract with borrow) instructions are well-suited to this type of problem.

7.5.1 ADC Instruction
The ADC (add with carry) instruction adds both a source operand and the contents of the Carry
flag to a destination operand. The instruction formats are the same as for the MOV instruction:

ADC reg, reg
ADC mam, reg
ADC re-g,mem
ADC mam, imm
ADC reg, imm

For example, the following instructions add two 8-bit integers (FPh + FFh), producing a
16-bit sum in DL:AL, which is 0 lFEh:

mov dl,0
mov al,0FFh
add al,0FFh ; AL = FE
-adc dl,0 ; DL = 01

Similarly, the following instructions add two 32-bit integers (FFFFFFFFh + FFFFFFFFh).
producing a 64-bit sum in EDX:EAX: 0000OO0lFFFFFFFEh:

mov edit, 0
mov eax, 0FFFFFFFFh
add eax, 0FFFFFFFFh
_adc edit, 0

L

7.5 Extended Addition and Subtraction

7.5.2 Extended Addition Example
The following Extended_Add procedure adds two integers of almost any size. It uses a loop to
add each pair of doublewords, save the Carry flag, and include the carry with each subsequent
pair of doublewords:

I _____________________________________
Y

Extended___Add PROC

‘K.“I"\I"\I"\I‘KI I211II-El93Cl

F
pushad
clc

Ll: mov eax, [esi]
adc eax,[edi]
pushfd
mov [ebx1,eax
add esi,4
add edi,4
add ebx,4
popfd
loop Ll

adc WORD PTR[ebx1,0
popad
ret

Extendedghdd ENDP

[See ExtAdd.asm on the sample program disk.)
The following is a program excerpt that calls Extended_Add, passing it two 64-b1t integers

Notice that we are careful to allocate an extra doubleword in the sum for any carry that may result

.data
opl QWDRD 0A2B2A4067498l234h
op2 QWORD 08010870000234502h
sum owono 3 DUP(?)
.code
main PROC

mov esi,OFFSET opl
mov edi,0FFSET op2
mov ebx,OFFSET sum
mov ecx,2
call Extended Add
mov esi,OFFSET sum

0
Y

"\I

"\I"\lHI

"\I

"KI

"\l

I

Y

I
Y

"Ki‘W.

I

Y

n
Y

alculates the sum of two extended integers that are
stored as an array of doublewords.

eceives: ESI and EDI point to the two integers,
BX points to a variable that will hold the sum, and
CX indicates the number of doublewords to be added.

clear the Carry flag

et the first integer
dd the second integer
ave the Carry flag
tore partial sum
dvance all 3 pointersfllU3U3Ql\Q

tore the Carry flag
peat the loop“ie

add any leftover carry

first operand
second operand
sum operand
number of doublewords

dump memory

250 Chapter 7 - Integer Arithmetic

mov ebx,4
mov ecX,3
call DumpMem
exit

main ENDP

The following output was produced by the program. As we can see, the addition did p.roduce a
carry:

Dump of offset oo4o¢o1o
-----1Q-1--¢1¢¢11¢nn-----.--...-_;¢----

74BB5736 22C32B06 00000001

Because DumpMem displays the sum as three separate integers in little endian order, the three dou-
blewords must be rearranged in order to show the actual sum: 0000000122C32B06'74BB5'736h.

7.5.3 SBB Instruction
The SBB (subtract with borrow) instruction subtracts both a source operand and the value of the
Carry flag from a destination operand. The possible operands are the same as for the ADC
instruction.

The following example code performs 64»-bit subtraction. It sets EDX:EAX to
0000000100'0'00000h and subtracts 1 from this value-. The lower 32 bits are subtracted-first, set-
ting the Carry flag. Then the upper 32 bits are subtracted, including the Carry flag:

mov edx,1 ; upper half
mov eax,o ; lower half
sub eax,1 ; subtract 1
sbb edx,0 ; subtract upper half

The 64-bit difference in EDX:EAX is 00000000FFFFFFFFh.

7.5.4 Section Review

1. Descr_ibe_ the ADC instruction.
2. Describe the SBB instruction.
3. What will be the values of EDX:EAX after the following instructionsexecute?

mov edx,10h
mov eax,0A000O000h
add eax,2000O0OOh
ado edx,O

4. What will be the values ofEDX:EAX after the following instructions execute?
mov edx,100h
mov eax,80000000h
sub eax,9oooeoooh
sbb edx,0

7.6 ASCII and Packed Decimal Arithmetic (Optional)

5. What will be the contents of DX after the following instructions execute (STC sets the
Carry flag)?

mov dx,5
stc
mov
adc

6. Challenge: The following program is supposed to subtract val2 from vall. Find and correct

ax.l0h
dx,ax

; set Carry flag

all logic errors (CLC clears the Carry flag):

.data
vall QWORD 20403004362047Alh
val2 QWORD 0552lO304A2630B2h
result QWORD 0
.code

mov
mov
mov
clc

top:
mov
sbb
WOV
dec
dec

cx,8
esi.vall
edi,val2

al,BYTE PTR[esi1
al, BYTE PTR Iedil
BYTE PTR [esi],al
esi
edi

; loop counter
: set index to start

; clear Carry flag

: get first number
; subtract second
; store the result

loop top

7.6 ASCII and Packed Decimal Arithmetic (Optional)
The integer arithmetic shown so far in this book has dealt only with binary values. The CPU cal-
culates in binary, but it is also possible to perform arithmetic on ASCII decimal strings.

Suppose that we would like to input two numbers from the user and add them together.
The following is a sample of the program‘s output, in which the user has input 3402 and 1256:

Enter first number: 3402
Enter second number: 1256
The sum.is: 4658

We have two options, when calculating and displaying the sum:

1. Convert both operands to binary, add the binary values, and convert the sum from binary to
ASCII digit strings.

2. Add the digit strings directly by successively adding each pair of ASCII digits (2 + 6, 0 + 5,
4 + 2, and 3 + 1). The sum is an ASCII digit string, so it can be directly displayed on the
screen.

252 Chapter 7 - integer Arithmetic

The second option requires specialized instructions that adjust the sum after addingeach
pair ofASCII digits. The instruction sethas" four instructions that deal with ASCII addition, sub-
traction, multiplication, and division:

AAA (ASCII adjust after addition)

AAS {ASCII adjust after subtraction)

AAM (ASCII adjust after multiplication)

AAD (ASCII adjust before division)

ASCII Decimal and Unpacked De_cim'aI_ The high 4 bits of an unpacked decimal integer are
always zeros, whereas the same bits in an ASCII decimal number are equal to 001 lb. The fol-
lowing example shows how 3,402 is stored using both formats:

ASCII format: I 33 34 30 I 32 Unpacked: I 03 I 04 I 00 I 02 I

(all values are in hexadecimal)

In general, ASCII "arithmetic is slow because it is performed digit by digit, but it offers an
advantage: the ability to process large numbers. For example, the following decimal integer can
be represented accurately in ASCII format, but cannot be represented by a 32-bit binary number:

234567a0002636538345s
When executing ASCII addition and subtraction, operands can be in either ASCII format

or in unpacked decimal format. Only unpacked decimal numbers can be used for multiplication
and division.

7.6.1 AAA Instruction
The AAA (ASCII adjust after addition) instruction adjusts the binary result of an ADD or ADC
instruction. It makes the result in A-L consistent with ASCII digit representation. The following
example shows how to add the ASCII digits 8' and 2 correctly, using the AAA instruction. We
have to clear AH to zero before performing the addition. The last instruction converts both AH
and AL to ASCII digits:

mov
mov
add
aaa
or

ah,0
al,'8'
al,'2'

ax,3030h

"\I

"\I

HI

"iii E-EEK

0038h
006Ah
0100h (-ASCII adjust -result)
3130h = '10‘ (convert to ASCII)

7.6 ASCII and Packed Decimal Arithmetic (Optional) 253
47 " I7 ' 7 7

7.6.2 AAS Instruction
The AAS (ASCII "adjust after subtraction) instruction follows a SUB or SBB instruction that has
subtracted one unpacked decimal value from another and stored the result in AL. It makes the
result in AL consistent with ASCII digit representation. Adjustment is necessary only when the
subtraction generates a negative result. For example, the following statements subtract ASCII 9
from 8:

.data
vall BYTE '8'
val2 BYTE '9'
.code
mov ah,0
mov al,val1 = 0038h
sub al,val2 = 00FFh
aas ; AX = FFQ9h
pushf ; save the Carry flag
or al,30h ; AX = FF39h
popf ; restore the Carry flag

After the SUB instruction, AX equals -00FFh. The AAS instruction converts AL to 09h and sub-
tracts l from AI-I, setting it to FFh and setting the Carry flag.

7.6.3 AAM Instruction
The AAM (ASCII adjust after multiplication) instruction adjusts the binary result of -a MUL
instruction. The multiplication must have -been performed on unpacked decimal numbers. The
multiplication also cannot be performed on ASCII numbers until the highest four bits of each
number are cleared. In the following example, we multiply 5 by 6 and adjust the result in AX.
After adjusting the result, AX = 0300h, which is the unpacked decimal representation of 30:

.data
Ascval BYTE 05h,06h
.code
mov bl,ascVal ; first operand
mov al,[ascVal+l] ; second operand
mul bl ; AX = 001Eh
aaun .; AX = 0-300h

7.6.4 AAD Instruction
The. AAD (ASCII adjust before division) instruction adjusts the unpacked decimal dividend in
AX before a division operation. The following example divides unpacked decimal 37 by 5 . First,
the AAD instruction converts 0_307h to 0025h. Then the DIV instruction yields a quotient of 07h
in AL and a remainder of .02h in AH:

.data
quotient BYTE ?

254 Chapter 7 - integer Arithmetic

remai
.code
mov
aad
mov
div
mov
mov

nder BYTE ?

ax.O307h

bl,5
bl
quotient.al
remainder.ah

dividend
AX= 0025h
divisor
AX= 020711

7.6.5 Packed Decimal Integers
Packed decimal integers store two decimal digits per byte. Each decimal digit is represented by
four bits, as in the storage of 12,345,678.

packedBCD DWORD 1234567an
Packed decimal format has at least two strengths:

' The numbers can have almost any number of significant digits. This makes it possible to
pcrforrncalculations with a grcatdeal of accuracy.

' Conversion of packed decimal numbers to ASCII (and vice versa) is relatively fast.

Two instructions, DAA (decimal adjust after addition) and DAS (decimal adjust after sub-
traction), adjust the result of an addition or subtraction operation on packed decimal numbers,
Unfortunately, no such instructions exist for multiplication and division. In those cases, the num-
ber must be unpacked, multiplied or divided, and repacked.

7.6.5.1 DAA Instruction
The DAA (decimal adjust after addition) instruction converts the binary result of an ADD or
ADC instruction in AL to packed decimal format. For example, the following instructions add
packed decimals 35 and 48. The lower digit of the result (7Dh) is" greater than 9, and it is
adjusted. The upper digit, which is 8 after the first adjustment, is not adjusted:

mov .al,35h
add al,48h ;AL=

daa ; AL =

7.6.5.2 DAS Instruction
The DAS (decimal adjust after subtraction) instruction converts the binary result of a SUB or
SBB instruction in AL to packed decimal format. For example, the following statements subtract
packed decimal 48. from 85 and adjust the result:

mov
mov
sub
das

bl.48h
al.85h
al.bl ;AL=

;AL=

7Dh
83h (adjusted-result)

3Dh
37h (adjusted result)

7.7 Chapter Summary 255

7.7 Chapter Summary
Along with the bitwise instructions fromthe preceding chapter, shift instructions are among the
most characteristic of assembly language. To shift a number means to move its bits right or left.

The SHL (shift left) instruction shifts each bit in a_ destination operand to the left, filling
the lowest bit with 0. One of the best uses of SHL is for performing high-speed multiplication by
powers of 2. Shifting any operand left by n bits multiplies the operand by 2". The SHR (shift
right) instruction "shifts each bit to the right, replacing the highest bit with a 0. Shifting any oper-
and right by n bits divides the operand by 2".

SAL (shift arithmetic left) and SAR (shift arithmetic right) are shift instructions specifi-
cally designed for shifting signed numbers.

The ROL (rotate left) instruction shifts each bit to the left and copies the highest bit to both
the Carry flag and the lowest bit position. The ROR (rotate right) instruction shifts" each bit to the
right and copies the lowest bit to both the Carry flag and the.highest bit position.

The RCL (rotate carry left) instruction shifts each bit to the left and copies the highest bit
into the Carry flag, which is first copied into the lowest bit of the result. The RCR (rotate carry
right) instruction shifts each bit to the right and eopies the lowest bit into the Carry flag. The
Carry flag is copied into the highest bit of the result.

The SHLD (shift left double) instruction shiftsa target operand a given number of hits to
the left. The SHRD (shift right double) instruction shifts a target operand a given number of bits
to the right; Both instructions require an IA-32 family processor.

The MUL instruction multiplies an 8-, 16-, or 32-bit operand by either AL, AX, or
E-\X.The IMULinstn1ction performs signed integer multiplication. It has the same syntax -and
uses the same operands as the MUL instruction.

The DIV instruction performs 8-bit, 16-bit, and 32-bit division on unsigned integers. The
[DIV instruction performs signed integer division, using the same operands as the DIV instruction.

The CBW (convert byte to word) instruction extends the sign bit of AL into the AH regis-
E1‘. The CDQ (convert doubleword to quadword) instruction extends the sign bit of EAX into the
EDX register. The_CWD (convert word to doubleword) instruction extends the sign bit of AX
into the DX register.

Extended addition and shim-action refers to -adding and subtracting very large integers.
The ADC (add with carry) i_nstmr1tion adds both a source operand and the contents ofthe Carry
flag to-a destination operand. The SBB (subtract with borrow) instruction subtracts both a source
operand and the value of the Carry flag from a destination operand.

The following instructions are designed to enable arithmetic using both ASCII decimal
aztegers (strings of digits) and unpacked decimal integers:

' The AAA (ASCII adjust after addition) instruction adjusts the binary result of .an ADD or
ADC instruction.

~ The AAS (ASCII adjust after subtraction) instruction adjusts the binary result of a SUB or
SBB instruction.

256 Chapter 7 ' Integer Arithmetic

' The. AAM (ASCII adjust after multiplication) instruction adjusts the binary result of a
MUL instruction.

' The AAD (ASCII adjust before division) instruction adjusts the unpacked decimal divi-
dend ‘in AX before a di-vision op_eration..

Two additional instructions are for use with packed decimal integers:

' The DAA (decimal adjust after addition) instruction converts the binary result of an ADD
or ADC instruction in AL to packed decimal format.

- The DAS (decimal adjust after subtraction) instruction converts the binary result of a SUB
or SBB instruction in AL to packed decimal format.

7.8 Programming Exercises

1. Extended Addition Procedure-
Modify the Extended__A'tld procedure in Section 7.5.2 to add two 256-bit (32-byte) integers.

2. Extended Subtraction Procedure
Create and test a procedure named Extended,_Sub that subtracts two binary integers of arbitrary
size. Restrictions: The storage size of the two integers must be the same, and their size must be -.,=_
multiple of 32 bits.

'3. Sh0wFileTime
Suppose the time field of a file directory entry uses bits 0-4 for the number of two-second incre-
ments, bits 5-10 for the minutes, and bits ll-I5 for the hours (24-hour clock). For example, the
following binary value indicates a time of" 02: 16: 14, in hh:mm.:ss format:

0.0010 010000 00111

Write a procedure named Sh0wFi1eTime that receives a binary file time value in the AX registe:
and displays the time in hh.-m.m:ss format.

4. Shifting Multiple Doublewords
Write a procedure. that shifts an array of five 32-bit integers using the SHRD il‘lSl1‘tlCtfQ§_
(Section 7.2.8). Write a program that tests your procedure and displays the array.

S. Fast Multiplication
Write a procedure named FastMultiply that multiplies any unsigned 32-bit integer by E'A-_‘{_
using only shifting and addition. Pass the integer to the procedure in the EBX register, and retuq
the product in the EAX register. Write a short test program that calls" the procedure and display;
theproduct. (We will assume that the product is never lager than 32 bits.)

7.8 Programming Exercises 25

6. Greatest Common Divisor (GCD)
The greatest common" divisor of two integers is the largest integer that will evenly divide both
integers. The GCD algorithm involves integer division in a loop, described by the following C++
code:

int GCD(int x, int y)
{

x = abS(X); // absolute value
Y=ab$(Y);
do {

int n = x % y;
x = y;
Y = HF

} While (y > 0);
return x;

}
Implement this function in assembly language and write a test program that calls the function
several times. passing it different values. Display all results on the screen.

7. Prime Number Program
Write a procedure that sets the Zero flag if the 32-bit integer passed in the EAX register is prime.
-A prime number is evenly divisible by only itself and 1.) Optimize the program ’s loop to run as
efiiciently as possible. Your program should prompt the user for a number and then display a
message indicating whether or not the number is prime. The program should then ask for
another number from the user. Continue the loop in this fashion until the user enters a prear-
ranged value such as -1.

8. Packed Decimal Conversion
Write a procedure named PackedToAsc that converts a 4-byte packed decimal number to a
string of'ASCII decimal digits. Pass the packed number to the procedure in EAX, and pass a
pointer to a buffer that will hold the ASCII digits. Write a short test program that demonstrates
several conversions and displays the converted numbers on the screen.

Advanced Procedures

8.1 Introduction
8.2 Local Variables

-8;2.1 LOCAL Directive
8.2.2 Section Review

8.3 Stack Parameters
8.3-.1 INVOKE Directive
8.3.2 PROC'Di1'ective
8.3.3 PROTO Directive
8.3.4 Passing by Value or by Reference
8.3.5 Parameter Classifications
8.3.6 Example: Exchanging Two Integers
8.3.7 Trouble-Shooting Tips
8.3.8 Section Review

8.4 Stack Frames
-8.4.1 Memory Models
8.4.2 Language Specifiers
8.4.3 Explicit Access to Stack Parameters
8.4.4 Passing Arguments by Reference
8.4.5 Creating Local Variables
8.4.6 ENTER and LEAVE Instructions (Optional)
8.4.7 Section Review

8.5 Recursion
8.5.1 Recursively Calculating a Sum
8.5.2 Calculating a Factorial
8.5.3 Section Review

8.6 Creating Multimodule Programs
8.6.1 Example: Arr-aySnm Program
8.6.2 Section Review

8.7 Chapter Summary
8.8 Programming Exercises

8.1 Introduction
Originally, this chapter simply explained how to write-procedures in assembly language. Some-
how, it became much more than that. Perhaps it was because the underlying structures of pro-
gratnnting languages seem to have so much in common.

259

260 Chapter 8 - Advanced Procedures

There is a natural tendency to look for universal concepts that make learning easier, so
we’re going to use this chapter to show you how all procedures work, using assembly language
as a low-level programming tool. In other words, what you leam here is often discussed in mid-
level programming courses in C++ and Java, and in a core computer science course called pl'0-
gram.nn'ng languages. The following topics, discussed in this chapter, are basic programming
language concepts:

s Creating and initializing local variables on the stack
- Variable scope and lifetime
- Stack parameters
' S-tack frames
- Passing parameters by value-and by reference
- Classifying parameters as input; ojur-put, and input-orrrpur
- Recursion

A number of-other topics in this chapter are designed purely to further your knowledge of
assembly language:

- INVOKE, PROC, and PROTO directives
- USES and ADDR operators
- Memory models and language specifiers
- Using indirect addressing to .access stack parameters
- Writing multimodule programs

Above all, your knowledge of assembly language makes it possible for you to peek into the
mind of the compiler writer, as he or she produces the low-level code that makes a program run,

8.2 Local Variables
A local variable is a variable that is created, used, and destroyed within a single procedure.
Assuming that you’ve already programmed in some high-level language, you are familar with
local variables.

In preceding chapters, we declared all variables in the data segment. Such variables are
called sraric global variables. The term static indicates that a variable’s lifetime is the same E
the duration of the current program; The term global indicates a variable’s visibility. A globaj
variable is visible from all procedures in the current source code file.

In this chapter, we create and manipulate local variables in assembly language. Local van-
ables have distinct advantages over global variables:

- Restricted access to. a local variable helps when you're debugging, because only a limited
number of program statements can modify the variable.

- Local variables make efficient use of memory, because their storage space can be released
and made available to new variables.

3.2 Local Variables 261

- The same variable name can appear in two or more procedures without creating a name
clash.

Local variables arexcreated on the runtime stack. They cannot be given default values at
assembly time, but they can be initialized at runtime.

8.2.1 LOCAL Directive
The LOCAL directive declares one or more local variables inside a procedure. It must be placed
on the line immediately following a PROC directive. The syntax is:

LOCAL varlist

rarlisr is a list of variable definitions, separated by commas, which may span multiple lines.
Each variable definition takes the following form:

1-abjel : 1:ype

The label may be any valid identifier, and type can either be a standard type (WORD, DWORD,
etc.) or a user-defined type. (Structures and other user-defined types are explained in Chapter 10.)

Example 1 The MySub procedure contains a single local variable named varl of type BYTE:

MySub PROC
LOCAL var1=BYTE

Example 2 The BubbleSorl: procedure -contains a doubleword local variable named temp and
a BYTE variable named SwapFlag:

BubbleSort PROC
LOCAL temp:DWORD, SwapF1ag:BYTE

Example 3 The Merge procedure contains a local variable named pArray that points to a
memory word:

Merge PROC
LOCAL pArray:PTR WORD

Example 4 The local variable TempArray is an array of ten doublewords. Note the use of
brackets to show the array size:

LOCAL TempArray[lO]:DWORD

_-tutomaiic Code Generation You may be wondering what code is actually generated by the
assembler when local variables are used. The answer may be found by lookingat the Disassem-
bly window of the Visual Studio debugger. Let’s try this by assembling and debugging the
following procedure declaration:

Bubblesort PROC
LOCAL temp:DWORD, SwapF1ag:BYTE
I
I

262 Chapter 8 - Advanced Procedures

ret
BubbleSort ENDP

The following is a slightly edited copy of the debugger’s disassembly of BubbleSort:
Bubblesort:

push ebp
mov
add
F
mov

ebp,esp
esp,0FFFFFFF8h

esp,ebp

,1 add -8 to ESP

; return
pop ebp
ret

The-ADD instruction -adds -—_8'_ to ESP, moving it downward and creating an opening in_ the stack
between ESP and EBP for the two local variables:

return address
* .4.‘\5.E~L‘.'.~'.'i.‘*.-7"

EBP i EBP
i p temp [EBP - 4]V-Q.8IE1"

ESP —>- SwapFlag I [EBP _ 3]
"E.':7I_7i7_7li!TEE='I‘:?.‘¥E€5Eii3l§li11lF_‘*i§l%En:t€1

Sum0fProcedure Example In the following example, tempSum is a local doubleword vari-
able in the SumOf procedure:

Sumof PROC
LOCAL tempSum:DWORD
mov
add
add
mov

tempSum,eax
tempSum,ebx
tempSum,ecx
eax, tempsum

; te.mpSum = sax + sex + ECX

ret
SumOf ENDP

Reserving Stack Space If you plan to create arrays of any size as local variables, be sure to
reserve (allocate) adequate stack space before assembling -the program. Inside the Irvz'ne32.inc
file, for example, the following STACK directive reserves 4.096 bytes of stack space:

.staCk 4096

If procedure calls are nested, the stack space must be large enough to hold the sum of all
local variablesactive at any point in the program’s execution. For example, suppose. Subl calls
Sub2, and Sub2 calls Sub3. Each might have a local array variable:

Subl PROC
LOCAL arrayl[50]:DWORD ; 200 bytes

8.3 Stack Parameters 263

Sub2 PROC
LOCAL array2 [80] =WORD ; 160 bytes

Sub3 PROC
LOCAL array3 [300] ;BYTE ; 300 bytes

When the program enters Sub3 it will have the combined local variables from Sub], Sub2, and
Sub3 on the stack. There will be 660 bytes used by local variables, plus the two procedure
return addresses (8 bytes), plus any registers that might have been pushed on the stack within
the procedures.

8.2.2 Section Review

l. Name three advantages of local variables over global variables.
2. (True/False): Local variables can be assigned default values at assembly time.
3. (True/False): A maximum of four local variables may be defined using a single LOCAL

directive.
-l. (True/False]: The same name may be used for local variables in two different procedures.

. Declare a local variable named pArray that is a pointer to an array of doublewords.
Declare a local variable named buffer that is an array of 20 bytes.
Declare a local variable named pwArray that points to a 16-bit unsigned integer.

. Declare a local variable named myByte that holds an 8-bit signed integer.

. Declare a local variable named myArray that is an array of 20 doublewords.\DOO:--.lQ\U|

8.3 Stack Parameters
There are two basic types of procedure" parameters: register parameters and stack parameters.
The Irvine32 and Irvinel6 libraries use register parameters. In this section, we will show you
how to declare and use stack parameters.

I Values pas sejd to a procedure by a calling program arc. called arguments. When the vglues are :§i;a'?-8 1
received by the called procedure, they are called parameters. ‘ ' ' '_

Register parameters are optimized for program execution speed. Unfortunately, they tend
to create code clutter in calling programs. Existing register contents often must be saved
before they can be loaded with argument values. Such is the case when calling DumpMem, for
example:

pushad
mov esi,OFFSET array ; starting OFFsET

264 Chapter 8 - Advanced Procedures

mov ecx,LENG'I'HOF array ; size, in units
mov ebx, TYPE array doubleword format
call DumpMem display memory
P0-pad

‘HI

NO

Stack parameters are the other option. The requi_red arguments must be pushed on the
stack by -a calling program. For example, if DumpMem used stack parameters, we could call it
using tl1e following sequence of instructions:

push TYPE array
push LENGTHOF array
push OFFSET array
call DumpMem

MASM has a convenient directive named INVOKE that automatically pushes arguments
on the stack and calls a procedure. The original four lines ofcalling statements can be reduced to
just one:

INVOKE DumpMem, OFFSET a;ray,LENG'I‘HOF array, TYPE array

There's another good reason to learn about stack parameters: Nearly all high-level lan-
guages use them. If you want to call functions in the MS-Windows library, forexample, you
must pass arguments on the stack.

8.3.1 INVOKE Directive
The INVOKE directive is -a more powerful replacement for Intel's CALL instruction that lets
you pass multiple arguments. Here is the genez-al.syntax:

INVOKE pr0caduraName [, arg-umemiist]
A_rgum.entList is an optional commasdelimited list of arguments. that may be passed to the proce-
dure. Right away, you can see an important differencebetween LNVOKE and CALL: The latte:
cannot include a List of arguments.

INVOKE permits almost any number of arguments, and the individual arguments C311
appear on separate source code-lines. An argument can be any of the types listed in'Table 8-1.

Table 8'-1 Argument Types Used with INVOKE.
L ______ _,:

‘i‘|J'§"£-;“";-§:'-l€.'i-:'_?g—_ ‘IQ? r£'I;.!-re. L:--F _~: 1' "\.-‘In ' 3,':l'1"; J H’ |' _fl;' ' “ii; LLiiii 7' Tcflri F1" $4iI'l'f¢. ‘l'l‘\f,\-‘vi’ '7 511* 71%‘ vjvpiitr ' I-'-Is-H ' 1- J I ‘up ' '* I 1'» Ti’ ' ::§_r|'|*~ r ' "ff ' r‘ ' I1 F W’ ~;i_g§_;.§3§;?“ i-ii-A “ “ii likfiafjafils .1» If’ §i!'$§ *'@%+.,..§~,‘iT' ' "' s,§.,.*‘ .32 .|"i‘»1— . M»-' r "*5 1 J
st:-‘i-\;!_ _w';uf I ' t _

' ‘ 1='.<:" ta " .
-$4 Is. £1 "' it it - "qt! éifir ;§'*_-J; _ ‘Ed; ,_‘_'=r; . . " ' 'r:,.-ii:f'l-’-;i;.i;§'Z"'1-iii“![fit‘=27-';§*:=1§li?"*=;a§f‘-F1“? £-

immediate value 10, 3000h, OFFSET rnyList, TYPE array

integer expression (10 *' 20), COUNT

k F‘|_ '=-:fi*1-PE "2“rib-t‘-WI!

variable name myList, array, myword, myDword

address expression [myList+2], [ebx + esi]

8.3 Stack Parameters 265

Table 8-1 Argument Types Used with INVOKE. (Continued)

W Type mi F Examplesv F

register name eax, bl, edi

ADDR name ADDR myList

Example INVOKE is used here to call a procedure named AddTw0, passing it two 32-bit
integers:

.data
vall DWORD 12345h
val2 DWORD 23456h
.code

INVOKE AddTw0.val1,val2

The same procedure call could also be accomplished by pushing the parameter values on the
stack (in reverse order) before executing the CALL instruction:

push val2
push vall
call AddTw0

Following is a picture of the stack just prior to the CALL instruction:

(val2) i a '6“:
(rail) 00012345 l -__ - - ~<— ESP

Arguments can be pushed on the stack in different ways, as we will show later in Section 8.4.2,

8.3.1.1 A-DDR Operator
The ADDR operator can be used to pass a pointer when calling a procedure with the INVOKE
directive. Passing an -address as a procedure argument is called passing by rafierance. For exam-
ple, this INVOKE statement passes the address of my/Array to the FillArray procedure:

INVOKE FillArray. ADDR myArray

ADDR returns either a near pointer or a far pointer, depending on what is called for by the
program’s memory model. In Protected mode programs using the flat memory model, ADDR
and OFFSET both return a 32-bit offset. (The .MODEL directive in I:-w'ne32.inc specifies the
flat memory model.)

In Real-address mode, you can create small memory model programs in which ADDR and
OFFSET both reium 16-bit offsets. We specify the small model in Irw'nel6.inc, the include file
used with the Real-address mode programs in this book.

266 Chapter 8 I Advanced Procedures

Far pointers. on the other hand, are 32-bit segment/offset combinations. They are prima-
rily used in either system-level programs or Real-address programs having multiple code and
data segments.

Example I The following code calls the FillArray procedure, passing it the address of an
array of byte values. Notice that the -argument is on a. separate line with its own comment:

.data
myltrray BYTE 50 DUP (?)
.code

IIWOKE Fillitrray,
ADDR.myArray ; points to the array

Example2 The following shows how to call a procedure named Swap, passing it the
addresses of the first two elements in'an array of doublewords:

.data
Array DWORD 20 DUP(?)
.code

INVOKE Swap,
ADDR Array,
ADDR [Array+4]

8.3.2 PROC Directive
The.PROC directive permits you to declare a procedure name with a list of named parameters, as
the following simplified syntax shows:

label PROC,
paraznetr.-=:.r_l ,
parame-ter_2,

para.meter_n

The-list of parameters can also be placed on the same line:

label PROC , parame-ter_1, parameter_2', . . . , parame-ter_n

A sing-le parameter has the following syntax:

paramName: type

Paran-z.Name is an arbitrary name you assign to theparameter. Its scop_e is limited to the current
procedure (called local scope). The same parameter name can be used in more than one proce-
dure, but it cannot be the name of a global variable or code label. The type can be one of the fol-
lowing: BYTE, SBYTE, WORD, SWORD, DWORD, SDWORD, FWORD, QWORD, or
TBYTE. It can also be a qualified type, which maybe a pointer to an existing type. Following
are examples of qualified types:

8.3 Stack Parameters 267

PTR BYTE PTR SBYTE

PTRUWKHU IWIQSVWDRIJ

PTRJUWTHUD l?HRSEWWORI>

PTRIIWKHU PTRIHFYTE

Although it is possible to add NEAR and FAR attributes to these expressions, they are relevant
only in more specialized applications. Qualified types can also be created using the TYPEDEF
and STRUCT directives, which we will cover in Chapter 10.

8.3.2.1 Examples
Let's look at a few examples of procedure declarations using various types-of parameters. Some
of the procedure names appeared earlier in the chapter, but their implementations are unimpor-
tant forthe moment:

Example 1 The following procedure receives two doubleword values:

AddTwo PROC,
val1:DWORD,
val2:DWORD

AddTwo ENDP

Example 2 The following procedure receives a pointer to a byte:

FillArray PROC,
pArray:PTR BYTE

FillArray ENDP

Example 3 The following procedure receives two pointers to doublewords:

Swap PROC,
pValX:PTR DWORD,
pValY:PTR DWORD
I I I

Swap ENDP

Example 4 The following procedure receives a byte pointer named pBuffer. It has a local dou-
bleword variable named fileHandle:

ReadFile PROC,
pBuffer:PTR BYTE
LOCAL fileHandle:DWORD
I I I

ReadFile ENDP

268 Chapter 8 ~ Advanced Procedures

8.3.3 PROTO Directive
The PROTO directive creates a prototype for an existing procedure. A prototype" declares a
procedures name and parameter list. It allows you to call a procedure before defining it. (If
you have programmed in C++, you are already familiar with function prototypes, used in class-
declarations.)

MASM requires a prototype for each procedure called by an INVOKE statement. PROTO
must appear first before INVOKE. In other words, the standard ordering of these directives is as
follows:

MySub PROTO ; procedure prototype

INVOKE MySub ; procedure call

Mysub PROC : procedure implementation

MySub ENDP

An alternative scenario is possible: The procedure implementation can appear in the pro.-
gram prior to the location -of the INVOKE statement for that procedure. In that case, PROC acts
as its own prototype:

MySub PROC ; procedure implementation

MySub ENDP

INVOKE MySub ; procedure call

Assuming that you have already written -a particular procedure, you can easily create its
prototype by copying the PROC statement and making the following changes:

- Change the word PROC to PROTO.
~ Remove the USES operator and its register list, if any.

For example, suppose we have already created the ArraySum procedure:

ArraySum PROC USES“ esi ecx,
ptrArray:l?'I‘R DWORD, ; points to the array
szArray:DWORD ; array size
; (remaining lines omitted. . .)

ArraySum ENDP

The prototype is quite similar:

Ar.'raySum PROTO ,
ptrlkrray: PTR DWORD, ; points to the array
szArray:DWORD ; array size

8.3 Stack Parameters 269

Recall that the USES operator, covered in Section 5.5.5.1 of Chapter 5, automatically
generates push and pop instructions that save and restore selected registers. _

~ .-'.' .

8.3.3.1 Array-Sum Example
For the example in this section, we will create a new version of ArraySum, a procedure from an
earlier chapter that calculates the sum of an array of doublewords. In the original version, we
passed arguments in -registers; now we can use the PROC directive to declare stack parameters:

ArraySum PROC USES esi ecx,
ptrArray:PTR DWORD, ; points to the array
szArray:DWORD ; array size

mov esi,ptrArray ; address of the array
mov ecx,szArray ; size of the array
cmp ecx,O ; length = zero?
je L2 ; yes: quit
mov eax,O ; set the sum to zero

Llzadd eax,[esi] ; add each integer to sum
add esi,4 ; point to next integer
loop L1 ; repeat for array size

L2:ret ; sum is in EAX
ArraySum ENDP

The LNVOKE directive calls ArraySum, passing the address of an array and the number
of elements in the array:

;data
array DWORD l0000h_. 2000Oh, 30000h, 40000h,50000h
theSum DWORD ?
.code
main PROC

INVOKE ArraySum,
ADDR array, ; address of the array
LENGTHOF array ; number of-elements

mov theSum,eax ; store the sum

The INVOKE directive greatly simplifies the passing of arguments. In general, it is easier
to use named parameters than register parameters. Parameter names are self-documenting, and
they free up the registers for other uses.

8.3.4 Passing by Value or by Reference
Passing by Value When a copy of a variable’s value is passed to a procedure, we call this pass.-
ing by value. Generally, arguments are passed by value when we want to protect them against
being changed by the called procedure. This is how it works when the argument is a variable: A

270 Chapter 8 - Advanced Procedures

copy of the variable is pushed on the stack by the calling program. The called procedure
retrieves the value from the-stack and uses it. Even if the procedure modifies the parameter, it
has no access to the corresponding argument variable in the calling program.

The following code example shows a "simple scenario where main passes a copy of
myData to the Subl procedure. Subl te'c.eives_ the input parameter .and-calls it someData, It sets
someData to zero, but that has no effect on myData:

.data
myData WORD 1000h ; this never changes
.code
main PROC

INVOKE Subl, myData
exit _

main ENDP-

Subl PROC s0meData:WORD
mov someData,Q
ret

Subl ENDP

There is, of course, no way to prevent Subl from modifying someData. In any event, the modi-
fication is self-contained within the Subl procedure. If a program bug is detected relating to
someData, it can easily be found and fixed.

Passing by Reference When the address of a -variable. is passed to a procedure, we call this
passing by reference. The called procedure is given the opportunity to" modify the-van'able"’s con-
tents, via the address it was given. A good rule of thumb is that you pass by reference only when
you expect the. procedure to modify thevariable.

In the following example, the address of myData is passed to the Sub2 procedure. The
Sub2 procedure copies the address to ESI, dereferences it, and assigns a value of -zero. r_nyData is
immediately assigned zero:

-data
myData WORD l000h
.code
main PROC

INVOKE Sub2, ADDR myData ; pass by reference
exit

main ENDP

Sub2 PROC dataPtr:PTR WORD
mov esi,dataPtr ; get the address
mov WORD PTR[esil,0 ; dereference, assign zero
ret

Sub2 ENDP

Passing Data Structures There is one important exception to the rule of thumb we just prg-
sented regarding passing by reference. When passing a data structure (such as an array). high-levej

8.3 Stack Parameters 271

languages pass by reference. It is completely impractical to pass a large amount of data by value.
because it would entail pushing the data directly on the stack. This would slow the p1'og1'am down
and use up precious stack space. The only disadvantage to passing by reference is that the called
procedure has the ability to modify the contents of the array. C-l—|- has a crmsr"qualifie1' that prevents
this, but such a qualifier does not exist in assembly language.

8.3.5 Parameter Classifications
Procedure parameters are usually classified according to the direction of data transfer between
the calling program and the called procedure:

' Input: An input parameter is data passed by a calling program to a procedure. The called
procedure is not expected to modify the corresponding parameter variable, and even if it
does, the modification is confined to the procedure itself.

' Output: An output par-aineter is created by passing a pojmer to a variable when a proce-
dure is called. The procedure does not use any existing data from the variable, but it fills in
a new value before it returns. For example, the Win32 Console Library has a function
named ReadC0ns0le that reads a string of characters from standard input into an array of
bytes. The calling program passes a pointer to a doubleword variable, which is filled in by
ReadConsole with an integer indicating the nu1nbe1' of characters read:

ReadConsole PROTO,
handle:DWORD, ; input handle
lpBuffer:PTR BYTE, ; pointer to buffer
nNumberOfBytesToRead:DWORD, ; num chars to read
lpNumberOfBytesWritten:PTR DWORD, ; num bytes read
lpReserved:DWORD ; always zero

In this example. handle, IpReserved, and r1Ntt::tl2er0j'l3y1e.s§T0Read are input parameters.
ZpBu]fFer and lpNumberOfBytesWritten are output parameters.

- Input-Output: An input-output parameter represents a value passed as input to a proce-
dure, which the procedure may modify. The same parameter is then able to return the
changed data to the calling program. Whenever the address of a variable is passed to a pro-
cedure, it has the potential to be an input-output parameter.

8.3.6 Example: Exchanging Two Integers
The following program contains an implementation of the Swap procedure, which exchanges
the contents of two 32-bit integers. We display a dump of the array, exchange the array elements.
and display the array a second time:

TITLE Swap Procedure Example (Swap.asm)

INCLUDE Irvine32.inc

Swap PROTO. ; procedure prototype

272 Chapter B v Advanced Procedures:

pValX:PTR DWORD,
pValY:PTR DWORD

rdata
Array DWORD lOOQOh,2000Oh

.code
main PROC

; Display the array before the exchange:
mov esi;QFFSET Array
mov ecx.2 ; count = 2
mov ebx,TYPE Array
call DumpMem ; dump the array values

INVOKE Swap. ADDR Array, ADDR [Array+4]

; Display the array after the exchange:
call DumpMem
exit

main ENDP
F_._-—-—-_.|_—-_|\4__|—-—--p—-_|~4——-—-—-_|-p_|—--p\4_\4_~4——-~4—~4—~4—~4—~4——-—-—-—--u-—--u--u--u--u-—--u--u--u-_—-uu-—-—-—-—-—-

Swap PROC USES eax esi edi,
pValX:PTR DWORD, ; pointer to first integer
pValY:PTR DWORD ; pointer to second integer

I
I‘

; Exchange the values of two 32-bit integers
; Returns: nothing
F a — x x — x x x x x x x x x x x x x x Q x x x d —-—-

mov esi,pVa1X
mov.edi,pValY
mov eax,[esi] ;
xchg eax,[edi] ;
mov [esi].eax ;

I
I

—-—-—-—-—-a-u—-—n_|—-a-u—-~4—~4-~4—a-ua-n~4——-~4__|_|—-

get pointers

get first integer
exchange with second
replace first integer

ret
Swap ENDP
END main

The two parameters in the Swap procedure; pValX and pValY, are input-output parameters.
Their existing values are input to the procedure, and their new values are also output from the
procedure.

8.3.7 Trouble-Shooting Tips
8.3.7.1 Saving and Restoring Registers
In general, the PUSH and POP instructions perform a valuable service. They make it easy to pre-
serve registers that will be changed by.a sequence of instructions, withthe purpose of restoring
those registers later. There are not very many general-purpose registers, so they tend to be used
up quickly.

8.3 stack Parameters 273

Suppose ECX has been assigned an important value just before a loop, but ECX must also
be used as the loop counter. We can push ECX on the stack before assigning the loop counter,
and restore ECX to its original value after the loop:

mov ecx,importantVal
push ecx ;‘save ECX

mov ecx,LoopCounter ; set up the loop
Ll:

O

I

loop Ll
pop ecx ; restore ECX

But you must be careful to match the PUSH and POP instructions exactly. In the next
example, the POP instruction was mistakenly placed inside the loop and it is likely that the loop
may not end:

mov ecx,importantVal
push ecx ; save ECX

mov ecx.LoopCounter ; set up the loop
Ll:

pop ecx ; restore ECX ??!
loop L1

Multiple values will be popped from the stack, yet ECX was only pushed once. Each POP
instruction increments ESP, and soon it no longer points to valid stack data. The stack becomes
corrupted, and the next time the program executes a return from a procedure (RET instruction),
it branches to an unplanned location in memory. In Protected mode, the code causes a general
protection fault.

8.3.7.2 Wrong Operand Sizes
If you use an array, remember that addresses are based on the sizes of the array elements. To
address the second element of a doubleword array, for ex-ample, you would "add 4 to the array’s
starting address. For example, when we call the Swap procedure from Section 8.3.6, we want to
pass pointers to the first two elements of D0ubleArray. Suppose we incorrectly calculate the
address of the second element as Do.ubleArray + 1:

.data
DoubleArray DWORD lOOOOh,2000Oh
.code

INVOKE Swap, ADDR [DoubleArray + 0], ADDR [DoubleArray + 1]

The resulting hexadecimal values in D0ubleArray after calling Swap will not be what we expect.

274 Chapter 8 ~ Advanced Procedures
__ 1

8.3.7.3. Passing the Wrong Type of Pointer
When using INVOKE, remember that the assembler does" not validate the type of pointer you
pass to a procedure. For example, the Swap-procedure from Section 8.3.6 expects to receive two
doubleword pointers. -Suppose you inadvertently pass it pointers to bytes:

.data
Byl:_eArray BYTE 10h, 2'_0h, 30h, 40h, 50h, 6.0-h. 70h, 8011
.code

INVOKE Swap, ADDR [ByteArray + O]. ADDR [ByteArray + 1]

The program will assemble and run, but when ESI and EDI are dereferenced, 32-bit values are.
exchanged. ByteArray ends up with the following values: 20h, 301:1, 40h, 50h, 40h, _60h_, 70h,
and 80h.

8.3.7.4 Passing Immediate Values
"If a procedure has a reference parameter, you cannot pass it an immediate argument. Consider
the following procedure, which has a single reference parameter:

Sub2 PROC dataPtr:PTR WORD
mov esi,dataPtr ; get the address
mov [esi],e ; dereference, assign zero
ret

Sub2 ENDP

The following INVOKE statement assembles butcauses a runtime error. The Sub2 procedure
receives 1000h as a pointer value and dereferences memory location 1'000h:

IIWOKE 'sub2:, leoioh

When this was tested, it caused a general protection fault because memory location 1000b was
not within the program’s data segment.

8.3.8 Section Review

-esopale

. (True/False): The CALL instruction cannot include procedure arguments.
(Zine/False): Ihe l.'l\lVOKE directive ‘cm include up to a maximum of three arguments.

. (True/False)': The INVOKE directive can only pass memory operands, but not register values.
. (True/False); The PROC directive can contain a USES operator, but the PROTO directive

cannot.
5. _(True/False): When using the PROC directive, all parameters must be listed on the same line.
6. (True/False): It is best to -pass an-array by reference so that it will not have to be.-copied onto

the stack.
7. (True/False): Passing an object _by value is more secure than passing by reference, because

the latter permits the object to be modified by the called procedure.

8.4 Stack Frames 275
4 ___

8. (True/False): if you pass_ a variable containing the offset of an array of bytes to ‘a procedure
that expects a pointer to an array of words, the assembler will not catch your error.

9. (True/False): If you pass an immediate value to a procedure that expects a reference param-
eter, you can generate a general-protecti_on fault (in Protected mode).

10. Is the value retumed by the ADDR operator different from that of the OFFSET operator
when a program is running under the flat memory model’?

11. Declare a procedure named MultArray that receives two pointers to arrays of doublewords,
and a third parameter indicating the number of array elements.

12. Create a PROTO directive for the procedure in the preceding exercise.
13. Did the Swap procedure from Section 8.3.6 use input parameters, output parameters, "or

input-output parameters?
1-L In the ReadC0ns0le procedure from Section 8.3.5, is lpBuffer an input parameter or an

output parameter‘?
15. Chaflenge: Draw a diagram showing the stack parameters created by the following

INVOKE statement (running under the flat memory model):

.data.
count = 10
myArray WORD count DUP(?)
.code
INVOKE SumArray, ADDR myArray, count

8.4 Stack Frames
We have already said that INVOKE pushes arguments on the stack and issues a CALL instruc-
tion. Although LNVOKE is convenient, it generates its own assembly code, which works against
one of the major goals of learning assembly language: learning all the details. Let’s go a little
deeper now and manipulate stack parameters directly, using PUSH and CALL instructions. In
the long run, this approach gives you the flexibility to deal with unusual situations. First, it is
important to understand memory models and language specifiers".

A stack frame (or activation record) is the area of the stack set aside for a procedure’s
return address, passed parameters, any saved registers, and local variables. The stack- frame is
created by the following sequential steps:

- Arguments are pushed on the stack.
- The procedure is called, causing the return address to be pushed on the stack.
- As the procedure begins to execute, EBP is pushed on the stack.
- EBP is set equal to ESP. From this point on, EBP acts as a base reference for all of the pro-

cedure parameters.
- A value can be subtracted from ESP to create space for local variables.

The structure of a stack frame is directly affected by both a program’s memory model and its
choice of argument passing convention.

276 Chapter B - Advanced Pro edures

8.4.1 Memory Models
MASM uses the .MODEL directive to determine several important characteristics of a program;
its memory model type, procedure naming scheme, and parameter passing convention. The latter
two are particularly important when assembly language interfaces to other programming lan-
guages. The syntax-of the .MODEL directive is:

.MODEL memorymodel [,m0delQptions]

Memo_:;yModel The memorymodel field can be one of the models described in Table 8-2. A11
of themodes, with the exception of flat, are used for programming .in 16-bit Real-address mode.

Table 8-2 Memory Models.
.-.-gr ‘"37?-JP . T.- ' ' .'-E"=,-‘,_"?-‘-‘?...' - =1-_-A ii 7 " "‘ ' ‘ - -. ' -1?‘ '3":-".i"='-',"‘-'*~l-i- *TI§5'-ii ' "

tiny l A single segment,- containing both code and data. This model is used
by .com programs.

small One code segment and one data segment. All code and data are. near, by
default.

medium Multiple code segments and a single data segment.

compact One code segment and multiple data segments.

large Multiple code-and data segments.

huge Same as the large model, except that individual data items maybe
larger than a single segment.

flat ‘ Protected mode. Uses 32»-bit offsets for code and data. All data and
code (including system resources) are in a single 32-bit segment.

The Real-address mode. programs shown so far in this book have all used thesmall mem-
ory model because it keeps all code within a single codesegment, .and all data (including the
stack) within -a single segment. As a result, we only have to manipulate code and data offsets,
and thesegments never change.

Protected mode programs use the flat memory model, where all offsets are 32 bits, and the
code and data can be as large as 4GB. The Irvirte32.inc file, for example, cont_ain_s the following
.MODEL directive:

.model flat,stdcall

Model Options The modeloprions field (in the .MODEL directive) can contain both a language
specifier and a stack distance. The language specifier determines calling and naming conver-
tions for procedures -and public symbols. We will elaborate on this in Section 8.4.3.1. The sracf:
dismnce can be either N'EARSTACK'(the default) or FARSTACK. It’s use is specialized, so we
will omit it from now on.

8.4 Stack Frames 277

8.4.2 Language Specifiers
Let’s take a closer look at the language specifiers used in the .MODEL directive. The options are
C, BASIC, FORTRAN, PASCAL, SYSCALL, and STDCALL. The C, BASIC, FORTRAN, and
PASCAL specifiers enable assembly language programmers to create procedures that are com-
patible with these languages. The SYSCALL and STDCALL specifiers are variations on the
other language specifiers.

In this book, we focus. on the three most commonly used language specifiers: C, PASCAL,
and STDCALL. Each is shown here with the flat memory model:

' .model flat, C
~ .model flat, pascal
- .modelflat,stdcal1

The language specifier used in all of the example programs in this book is STDCALL; it is also
the language specifier used when calling MS-Windows functions.

8.4.2.1 STDCALL Specifier
The STDCALL language specifier dictates that-procedure arguments must be pushed on the
stack in reverse order (last to first). For example, the following INVOICE statement

Iuvoxs AddTwo,5,6
would generate the following assembly language code:

push 6
push S
call AddTwo

Another important consideration is how procedure arguments are removed from the stack
after a procedure call. STDCALL dictates that a constant operand must be supplied to the RET
instruction. This constant is added by RET to ESP after the return address is popped from the stack:

AddTwo PROC
0'

U

ret 8 ; add 8 to ESP after returning
AddTwo ENDP

By adding 8 to" the stack pointer, we reset it to the value it had before the arguments were pushed
on the stack by the calling program.

Finally, STDCALL modifies exported (public) procedure names by storing them in the
following format:

__name@rm

A leading underscore is added to the procedure name, and an integer follows the @ sign indicat-
ing the number of bytes used by the procedure parameters (rounded upward to a multiple of 4).

278 Chapter 8 - Advanced Procedures

For example, suppose the" procedure MySub has two doubleword parameters. The name passed
by the assembler to the linker is _MySub@8.

I:-"F_ . "1: = '-.-_;.=aI_.l"Lt'-;_;_1;l_,-Ikfil‘i?3i§,§'5',-5;§§~i;i§‘.§§;Z~:'_T§;41:=}?,Fit?i"¢.-f!,?u5]i!§'!ii.§.?‘§=§ifi5¥i‘¥r75F152;’:-|"§'iififiii:éf;§§}j.éLi'll§l_Lf§*i!.;§,lT{Eli;lgl§:__§}.!ié.-_J;';. *:§=;,.;1=;;..-¢:;=§-_.,l It"s impvoi+ta"fit=src*>£rdte?t1iatfth'eiL>li\T[€i52iE?€E;"regiié;tiit1§1t:ia'se¥se1i§itire?lscrit~¢eo'“nsidcrs%?a?1narne".¢.a1:?. -. --..|.: .--=;;;IT-:;=..»-:-e;’.a%Ii;.pe'a;-~.--:i>.=_e';.:-:5.ii.~.-.r-.'-2-:5 :1! =11:-;~;~'g:-'—.r;-==,-'5!:r.ee::==<.-: :-".-:..,-.yr;:=.;=.=,2sr:ii:i.-n=-;;1rEi .r.:z=.‘£-.i;i-.'5. 1-.=_= -- *1"-'_i~t5“"i_-d.'e_& rl-."-§\,.'l.J=-._!' >\.'\.-"i-2‘:-iI:_F;M~:’>SJ-v1 -',@-8-:;_{|I;-H.-.:'...|‘}'.-*t%r_~t,ll_.‘ -.~.-.--'r_-1' .1. - '.'.--»_.,=.+-r-~.-.-=*I;u, .p-:-_‘f*~ay(.I.-~.--: '.:,.|I.;*- --" -:- ' . -.'~ -- : -1 . . ;-‘fif@ -34." '_ .' . -'-5 ‘-. - - -I cad ~ 1 ‘-1.;

*: _j ~, _, l!_ __ _, _. H:-“.;.;-;.':4_ ;.=-,=.{.¢.:;a;__fr,E<_;'";.;.j=; -,1‘;--_‘--;~gr.-5-.'.-=fi,_-_,
' 1-?~= =.i.-'~.=1*.'=‘i1 ~_ _. . -- ._.- ;__- -t _.__._,.u-».--wt,-,-J" I l_ __: 0 -Hr-ll.-I' ‘i__3_ ‘:" Q_:,j.:'€;_=;.'- j'__=.};,-_'.;;-'-1;-'-_-;}:_ »’§:s‘:'..'-,f—j}',§.1~,.-‘-. J '1". 5;‘; ‘Fm. 4.

.-r .1? .-'v-I" .. ,i¢ r-.. ~;“J Y.' 3 E¢. \.-_ 1I “\‘rs .\'P .O | ‘I1. .‘I, =5 I-. 1.‘. if ___-ug- LI.I.
| "2'; l:-§ _.]u|. ‘1 25'. I.. .l '1-'_ 'r r-r,r_.-- -"-:--. : :.' ' - ~ 4.-._.-’ "r - -. ——. - - -- ~--i- - - :. . » -.--. -. I -_- .\..=|.- ' . '.'-.r'.. - .i -_ .--. -

8.4.2.2 C Specifier
The C language specifier dictates that procedure arguments are pushed on the stack in reverse
order, just like STDCALL.

Regarding the removal of procedure -arguments from the stack after a procedure call, the C
language approach is" different: In the calling program, a constant is added to ESP, resetting it to
the value it had before the arguments were pushed:

fil
push 6 second argument
push 5 first argument
call Ac1dTwo
add esp,8 ; clean up the stack

'1!

The C langiage appends a leading underscore to extemal procedure names.
8.4.2.3 PASCAL Specifier
The PASCAL language specifier dictates that procedure arguments be pushed on the stack in
forward order (first to last). For example, the following INVOKE statement

INVOKE Ac1d'1?wo, 5 , 6
would generate the following assembly language code:

push 5 ; first argument
push 6 ; second argument
call Ac1c1Two

Regarding the removal of procedure arguments from the stack after a procedure call, the
PASCAL specifier is the same as STDCALL.

When the assembler p.asses a procedure name to the linker, the PASCAL specifier causes
the procedure name to be converted to all uppercase letters. A procedure name such as AddTw@
is converted to the name ADDTWO.

8.4.3 Explicit Access to Stack Parameters
You have already seen how to access procedure parameters by name in Section 8.3. Alterna-
tively, you can access parameters explicitly, using notation such as [ebp+8]. This gives you a
greater amount of control over the stack data, and lets you see exactly what’s going on. If you
use this approach, you generally do not declare procedure parameters. This will-also prevent you
from using the INVOK-E statement, since it depends on the existence of procedure prototypes-
The calling program will have to push arguments directly on the stack.

8.4 Stack Frames 279

For example, calling the AddTw0 procedure requires pushing two integers on the stack.
AddTwo returns the sum of the integers in EAX. We can simulate the STDCALL method of
passing arguments in reverse order:

.data
Sum DWORD ?
.code

push 6 ; second argument
push 5 ; first argument
call AddTwo ; EAX = sum
mov sum,eax ; save the sum

The Add'I‘wo procedure pushes EBP on the stack to preserve it. This is critical, because
EBP might have an important value used by the calling program. We also set EBP to the same
value as ESP so. EBP can be the base locator for the stack frame:

AddTwo PROC
push ebp
mov ebp,esp

After the two instructions have executed, the following figure shows the contents iof the stack
frame:

00000006t_ [EBP + 12]
00000005

444..“:4,

-i ="'..a..=:=..-'*""'iv’

[EBP + 8]
‘H returzraddress [EBP + 4]

EBP ~<— EBP ESP

The two arguments, 5_ and 6, are located at EBP+8 and EBP+12, respectively. Recall that 6
was pushed before 5, and the stack grows downward in mem01'}'. Knowing these locations, the
AddTw0 procedure can add their values and store thesum in BAX:

AddTwo PROC
push ebp
mov ebp,esp ; base of stack frame
mov eax,[ebp + 12] ; second argument
add eax,[ebp + 8] ; first argument
pop ebp
ret B ; clean up the.stack

AddTwo ENDP

Notice that we emulate the STDCALL language specifier by passing a constant to the RET
instruction. This approach is not required, but it is a good idea because itmakes Add'I‘w0 consis-
tent with other procedures that use parameter declarations.

280 Chapter 8 ~ Advanced Procedures

{1 .2...,n)=,
.1 " the "expression ‘addresses on the It; is calculatedhs ‘
, ' rt, _= tr + 1) * 4. For example, P, = [EBP +'s']_,- P2 = [EBP + 12],-_end;_1?3~~'=~ [EBP + 16]."-'rn'e: -'

ordering of i is dependent "on the language_'spec_ifier in the memory ijnodel. STDCALL.,;for, I
fromPr. '0'J fl ' '1 " '_ . - H1 .,- -I‘! - .. -. . \ -- .1 -- ".5 _ '3?‘-4 - - .- __ ' "}1'E¢:3i-=:‘r;:rsi‘_=1 --l-3-"=5 - ‘ii I -i ':'- ' ".'.>‘1|.~:‘r: -5- =5:Z2‘ \-'_i~=-. ._.. '5":--I ;-.."-' -If ~.-1.’. -| t:-'. E? gazeI'-

I"-I- '1.‘ .’,,-. ‘H.-5:“ ‘II l . 1i"I i:i _,. -_._ l.. l. ‘IY=r> .'.'_"I1. .:.'_'\T"_-\- E1"
1

;}:1mg.‘|=§;r C1. .“'<..- -

8.4.3.1 Saving and Restoring Registers
Procedures" often have to" push additional registers on the stack irrunediately -after setting EBP to
ESP, so the registers can be restored to" their original values later. (Recall that in Chapter 5 we
explained that a procedure should always restore the state of the registers before returning, so
calling programs.can use the registers for their own data.)

In the next example, we push EDX inside the Add_Tw0 procedure after setting EBP to the
base of the stack frame:

Add'I‘wo PROC.
push ebp
mov ebp,esp ; base of stack frame
push edx ; save EDX

pop edx ; restore EDX
POP ebp
ret 8 _; clean up the st-ack

Add'I‘wo ENDP

Pushing EDX does not affect the displacement of parameters from EBP because the stack grows
downward without afiecting EBP:

A 00000006 E [EBP + 12]
“J000 0005 I. 0 _ W [EBP + s]

i return address W [EBP + 4]

I'EP~"'-"Zl.'i'.'£7-1'75‘-T1!ET??-

EBP EBP
EDX

-~.-em:-. m1'- "' inaueuni-1
—<iESP

8.4.4 Passing Arguments by Reference
In the examples shown in this section so far, all arguments were passed to procedures by value.
There are also occasions when we need to pass the address of a variable, and this is called pass-
ing by reference.

8.4 Stack Frames 281

8.4.4.1 ArrayFill Example
L'et’s write a procedure named ArrayFill that fills an array with 16-bit random integers. It receives
two arguments: the first is the offset of an array, and the second is an integer that specifies the array
length. The first argument is passed by reference, and the second is passed by value. Calling the
procedure is easy. We just push the offset of the array on the stack, followed by the a.rray’s size:

.data
count = 100
array WORD count DUP(?)
.code
push OFFSET array
push COUNT
call ArrayFill

The "stack frame is shown here, containing the offset of array and the value of count:

ol’l'set(array) [EBP-+ 12]
, ._ °‘?““ _ 5 [EBP + s]

L
~i'return address .

_ -"' 7 n

EBP EBP. ESP,1.
0‘\"-'-=_»:-.-:_r-:_.=_-:-"'-r_;_ -- -="=n-"-11'-:e=e=»s1rue~_-gs-n .T A

Inside the ArrayFill procedure, the following statement copies the array’s offset from the stack
into ESI:

mov esi,[ebp+12] ; offset of array

Here is the completed ArrayFill procedure:

ArrayFill PROC
"push ebp
mov ebp,esp
pushad
mov esi,[ebp+12] ; offset of array
mov ecx,[ebp+8] ; array size
cmp eox,0 ,1 ECX <= 0?
jle L2 ; yes: skip over loop

Ll:
mov eax,10000h ; get random 0 - FFFFh
call RandomRange ; from the link library
mov [esi].ax
add esi,TYPE WORD
loop Ll

L2: popad
pop ebp

282 Chapter 8 - Advanced Procedures

ret 8 ; clean up the stack
ArrayFill ENDP

8.4.4.2 LEA Instruction
The LEA instruction returns the offset of any type of indirect operand. Because an indirect oper-
and uses one or more registers, its offset must be calculated at runtime. The assembler OFFSET
operator, on the other hand, only returns constant" assemblytime offsets.

LEA is particularly useful for obtaining the address of a staclcparameter; For example, if a
procedure has a local array variable, you might want to move. its offset into an index register. The
following FillString procedure does this, so it can fill a string with a random sequence of ASCII
ngeo-9;

FillString PROC USES eax esi
LOCAL string[20]:BYTE

; Create and £111 a 20-byte string with nscrr digits.
lea esi,string ; load effective address
mov ecx,2O

Ll:mov eax,l0
call RandomRange ; AL =.0..9
add al,30h convert to ASCII character
mov [esi],al
add esi,1
Loop L1
ret

FillString ENDP

'5-Q

Note that string is an indirect operand, so the following instruction would generate an error
(MOV..OFFSET only works with directoperands):

mov eax,OFFSET string ; error

8.4.5 Creating Local Variables
We’ve already seen that local variables have some advantages over -global variables. As an alter-
native ‘to using the LOCAL directive, you can create local variables on the stack in a more direct
manner.

C++ Example The following C-i—r function declares several local variables named X, Y,
name, and Z:

void Mysubl)
{

char X = ‘X’;
int Y = 10;
char name[29];
name[O] = 'B';
double Z = 1.2;

l

8.4 Stack Frames 283

The foregoing C-|—|- code can easily be implemented in assembly language if we use Visual
C++ as aj guide. Each stack entry defaults to 32 bits,"so each variable’s storage size in bytes is
rounded upward to a-multiple of4. As may be seen in the following table, a total of 36 bytes are
reserved for the local variables:

_.- l -l¢- -. .variables. .. Bytes l- stack Offset,
1' '-'_'::I-'.:[’;I_\;ti'_‘» I -.-M I.‘ '. _ -

X 4 EBP—4

Y 4 ‘ EBP—8

name 20 “ EBP - 2s I
_ _ _ _

Z 8 i EBP—36

The following implementation of MySub creates the same four local variables, assigns
values to them, and destroys them. The constant assigned to Z is a 64-bit encoded real:

MySub PROC
push ebp
mov ebp,esp
sub esp,3'6 ; create variables

mov BYTE PTR [ebp--4],'X'
mov DWORD PTR [ebp—8],l0
mov BYTE PTR [ebp-28],’Y' ; naIne[0]
mov DWORD PTR [ebp-32],3ff_333'33h ; Z(high)
mov DWORD PTR [ebp-36],33_333333h ; Z(low)

NM

mov esp,ebp ; destroy variables
pop ebp
ret

MySub ENDP

8.4.6 ENTER and LEAVE Instructions (Optional)
The ENTER instruction automatically creates -a stack frame for a called procedure. It reserves
-stack space for local variables and saves EBP on the stack. Specifically, it performs three
actions:

- Pushes EBP on the stack (push ebp)
- Sets EBP to the base of the stack frame (mov ebp,esp)
- Reserves space for local variables (sub espmumbyres)

ENTER has two operands: The first is a constant specifying the number of bytes of stack space.
to reserve for local variables, and the second operand specifies the lexical nesting level of the
procedure:

ENTER localbytes, nestinglevel

284 Chapter 8 ' Advanced Procedures

The lexical nesting level is the depth of a procedure in a hierarchy of procedure calls. Because it
is useful only to high-level language compilers, we wou’t' discuss it here.

Erarnple 1 The following example declares a procedure without any local variables:

MySub PROC
enter'0,0

It is equivalent to the following instructions:

MySub pnoc
push ebp
mov ebp,esp

Example 2 The ENTER instruction reserves 8 bytes of stack space for local variables:

MySub PROC
enter 8,0

It is equivalent to the following instructions:

Mysub PROC
push ebp
mov ebp,esp
sub esp,8

If you use the ENTER instruction, it is strongly advised that you also use the LEAVE instruc-
tion at the .end ofqthe S31'I18?;;pI'OC8d1I1‘,6. Otherwise, the stack space you create for -local vari-
ables might n'ever'be released. This would cause the RET instruction topop the wrong return
address off the stack. ..

LEAVE Iizstruct-iorz The LEAVE instruction terminates the stack frame for a procedure. It
reverses the action of a previous ENTER instruction by restoring ESP and EBP to the values
they were assigned when the procedure was called. Using the MySub procedure example again,
we can write the following:

Mysub PROC
enter 8,0

leave
ret

MySub ENDP

The following equivalent set" of instructions l'CSCl'VC and discard 8 bytes of space for local variables:

MySub PROC
push ebp
mov ebp,esp
sub esp,e

8.5 Recu rsion 285

I

I

mov esp,ebp
pop ebp
ret

Mysub ENDP

8.4.7 Section Review

1. (True/False): The EBP register is saved by procedures that use stack parameters whenever
they modify EBP.

2. (True/False): Local variables are created by adding a positive integer to the stack pointer.
3. (True/False): In the procedures shown in this chapter, the last argument to be pushed on the

stack is addressed as [ebp+8].
4. (True/False): Passing by reference requires popping a parameter’s offset from the stack

inside the called procedure.
5. Describe the small memory model.
6. Describe the flat memory model.
'7. How is the C language option (of the .MODEL directive) different from that of PASCAL in

regard to passing procedure names to the linker?
8. I-Iow does the STDCALL language option handle cleaning up the stack after a procedure call‘?
9. Here is a calling sequence for -a procedure named AddThree that adds three doublewords

(assume STDCALL):

push 10h
push 20h
push 30h
call AddThree

Draw a picture of the procedure’s stack frame immediately after EBP has been pushed on
the stack.

10. Write statements in the AddThree procedure (from the preceding question) that calculate
the sum of the three stack parameters.

11. What special ability does the LEA instruction have that MOV-OFFSET does not‘?
12. In the C-l—l- example shown in Section 8.4.5, how much stack space was used by a variable

of type char?
13'. Discussion: What advantages might the C calling convention have over the Pascal calling

convention?

8.5 Recursion
A recursive procedure is one that calls itself, either directly or indirectly. Recursion, the practice
of calling recursive procedures, can be a powerful tool when working with data structures that

236 Chapter 8 -- Advanced Procedures

have repeating patterns. Examples are linked lists and various types-of connected graphs where a
program must retrace its path.
Endless Recursion The most obvious type of recursion occursjwhen a procedure calls" itself.
The following program. for example, has a procedure named Endless that calls itself repeatedly
without ever stopping:

TITLE Endless Recursion (Endless.asm)

INCLUDE Irvine32.inc
.data
endlessStr BYTE "This recursion never st0ps",O
.code
main PROC

call Endless
exit

main ENDP
Endless PROC

mov edx,OFFSET endlessStr
call WriteString
call Endless
ret ; never reaches this instruction

E1’iC1leSS ENDP
END main

Of course, this example doesn't have any practical value. Each time the pt'oce_dure calls itself, it
uses up 4 bytes of stack space when the CALL instruction pushes the return a_ddr'es-s. The RET
instruction is never reached.

If you have access to a perfoifinance-monitoring utility such as the Windows .2000 Task man- i
ager, open it on tl1e.Perfortnance dialog. Then run the Endless. exe program from

will fill up program will consume =-100% of i
- tli'i‘e;T€iZ'3;PU ‘After ‘a‘¥ft‘%'§,ii"f"=irti—nutes"lt1ie‘1prog‘am‘s"§iack will overflow and cause a pro- 3

cessor exceptiotrlftlle program will halt). ' 1
_ ____________________ _ iiiiii 4

8.5.1 Recursively Calculating a Sum
It is still practical for a procedure to directly -call itself, as long as you provide it a terminating
condition. When the terminating condition becomes true, the stack unwinds itself by executing
all pending RET instructions. To illustrate, let’s create a recursive procedure named CalcSum
that sums. the integers 1 to n, where it is -an input parameter passed in ECX. CalcSum returns the
sum in EAX:

TITLE Sum of Integers (CSum.aSm}

INCLUDE Irvine32.inc
.code

8.5 Recursion

main PROC

Ll.

mov ecx,5
mov eax, O
call CalcSum

' call WriteDec
call Crlf
exit

main ENDP

n
I

CalcSum PROC
Calculates the sum of a list of integers‘HI

'\I

'\I

'\I

9393

L2 :
CalcSum ENDP
end Main

eceives: ECX = count
eturns: BAX =

cmp ecx, O
jz L2
add eax , ecx
dec ecx
call CalcSum
ret

SLIIR

'\I

'\I

‘kl

‘QC

I
I

O

h
O

ount = 5
olds the sum
alculate sum

display BAX
1'1ew line

iiq-Q1-vii

I
I

'\I

‘QC

'\I

'\I

Os

ii-iiwliiiiq-n_-111111111111

check counter value
it i-f zero

therwise, add to sum
decrement counter
I1ecursive call

The first two lines of CalcSum check the counter and exit the procedure when ECX = 0
The code bypasses any further recursive calls. When the RET instruction is reached for the first
time, it backs up to the previous call to CalcSum, which backs up to its previous call, and so on.
Table 8-3 shows the return addresses (as labels) pushed on the stack by the CALL instruction,
along with the concurrent values of ECX (counter) and EAX (sum).

Table 8-3 Stack Frame for the CalcSum Program.

P'i.|shed'On i \
S130 .. EAX =-

W
0 \

~25. .'-.1?-=><‘ -'. .J';<:-:1.

\ Ll 5

L2 4 5
t 3 9 a

L2

L2 2 l2

L2 1 14

L2 O 15

283 Chapter 8 I Advanced Procedures
1

From" this example, we see that even the simplest recursive procedure makes ample use of
the stack. At the very minimum, 4 bytes of stack space are used up each time a procedure call
takes place because the return address must be saved on the stack.

8.5.2 Calculating a Factorial
Most recursive procedures use stack parameters because the stack is perfectly designed to save
temporary data during the recursive process. When the recursion unwinds, the data saved on the
stack can be. useful.

The next example we will look at calculates the factorial of an integer it. The factorial
algorithm calculates n!, where n is an unsigned integer. The first time the factorial function is
called, the parameter n is the starting number, shown here programmed in C/C++/Java syntax:

int function factorial(int n)
{

if(n == O)
return 1;

else
return n * factorial(n—ll;

}
Given any number n, we assume that we can calculate the factorial of n—l. If so, we can

continue to reduce n until it equals zero. By defin_ition, 0! equals. 1. In the process of backing up
to the original expression nl, we accumulate the product of each multiplication. For example, to.
calculate 5!, the recursive algorithm descends along the left column of the following figure, and
backs up along the right column‘:

I‘GCU1"SivB calls backing up

= 524=10

53E

Q _‘11--_u_-14>‘_$l-HTeiQ:5sf

|-\tnin

:-w-
$§_1—~M9'1}

H 0*lgt-J

4!= =- T

i ‘ ‘iii

2!=2*1! 2°1=2

1!= =1

(base case)

The following assembly language program implements the recursive factorial. We pass rz
(an unsigned integer between 0 and 12) on the stack to the Factorial procedure, and a value is

8.5 Recursion 289
1;

returned in BAX". Because a 32-bit register is used, the largest factorial it can hold is 12!
(4'79,001 ,600).

TITLE Calculating a Factorial (Fact.asm)

INCLUDE Irvine32.inc
.code
main PROC

push 12 ; calc 12!
call Factorial ; calculate factorial (EAX)

ReturnMain:
call WriteDec ; display it
call Crlf
_exit

main ENDP

Q iiiiiiiiKii_iiiihiiEiiiEiii_ihhEiii_iiiiiiiiiiiiiiii
I

Factorial PROC
; Calculates a factorial.
; Receives: [ebp+8] = n, the number to calculate

Returns: eax = the factorial of n
HI‘HO

push ebp
mov ebp,esp
mov eax,[ebp+8] ; get n
cmp eax,0 ; n > 0?
ja Ll ; yes: continue
mov eax,l ; no: return 1
jmp L2

Id; dec eax
push eax" ; Factorial(n-1)
call Factorial

; Instructions from this point on execute when each
; recursive call returns.

ReturnFact:
mov ebx, [ebp-i-8] ; get n
mul ebx ; EDX:EAX = EAX * Esx

L2 : pop ebp ; return BAX
ret 4 ; clean up stack

Factorial ENDP
END main

When Factorial is called, the offset of the next instruction after the call is pushed on the
stack. From main, this is the offset of the label ReturnMain; from Factorial, it is the offset of
the label ReturnFact. In Figure 8-l, the stack is shown after several recursive calls. You can see
that new values for n and EBP are pushed on the stack each time Factorial calls itself.

290 Chapter 8 ' Advanced Procedures

r ~\
12 hp H

N
R-etumMain

C C \
¢bPo

5' .. ‘tie-'1i:'_' "*--;'iH{;‘?"1;.l"Hr{-_'5'4 ’, .re, 11-1.'-Hiii"i""‘i“.'Y*i'iIi"‘ l_=“'”,:1'I:i,1,=*'-*':.f."i~*1'-:5-1i*"*.i@Tii.'il'f"ig‘lT<ii§**§§iia%1iis=i'
4;-taii:isaF,ts.\t1i.iti%tii3,i!ta=ai§ =Ii’@.3’“1‘.ll=|_J-ifgt l~_;_1i‘. ..:1 isl|, ~-:1.12.»: an:

ta

2ri-5 F?‘ ._1-t,. :25..".. .—_,:re{
.i-.\.-J».-3i_::(‘iv!"".""ii

/_<_=f'.+.~i,#,;:_.*=Z.l-.~.i:i:-1:‘_.-;I?’
l 0

f _ i R-2
" \

Retttrnf-"act
K \

fibpz
7 l-'h_O:lil'\Il7 7:!‘-‘ 7’! gr‘ 7 T

l-ih_fi,,1§:i‘='_|§~;$' |_~Lr|gEi ~i..;i_..‘§§-.3 _
it-_| *;l1:‘|i'5-"i_1"5"' ' L-L;i£_:i'l’iim="'i:fii I1 3

.-<= ~u| .5 {' ' r: =_r zu-!' _:ari.1r'i3, T -s;..h§%fififi1§ s-- ”?@3+ ait
bl’ T. 1-??? ‘Zia-I;-1:51.- is-""1 .‘~"-"‘l

2;*1‘

_ag525%,»

.,,,.ar;-,-,-1.-*"—~:-., :.‘a"'-1r1‘ffidefiri=¢':;h“"?’girl’—€see“ -£532‘.tic-:..';r'-.,_i,

{Q an _
I1“

\.-ii-G‘_’_.-|.¢'-i ill iii» 3 ‘: till:-¥51‘|li_.§p~t Q
4 Wu ;._, ‘ii tr" rd _ ¢;.";;-F :'.,“\

iiglilii aililiiqr "E-‘
>i| 'Y1Fi;.|f_; ll"-.\ [iii v Hl;t§T;r=il1g,i__ taifilisia .lir-fit

(etc...)
\ \.

Figure 8-1 Stack usage by the Factorial Program.

Each procedure call in our example uses l-2 bytes of stack space. Just before Factorial
calls itself, n—1 is. pushed on the stack as the input argument. The procedure returns its own fac-
torial value in BAX, which is then multiplied by the value pushed on the stack before the call.

8.5.3 Section Review

1. (True/False): Given the same task to accomplish, a recursive procedure usually uses less
memory than a nonrecursive. one.

'2. In the Factorial function, what condition terminates the recursion?
3. Which statements in the Factorial procedure execute after each recursive call has "finished?
4. What will happen to the Factorial program’s output when trying to calculate 13 l?
5. ChaUen.ge.' In the Factorial program, how many bytes of stack space are uscd by the Facto-

rial procedure whencalculatin-g 12!?
6. Challenge: Write the pseudocode for a recursive algorithm that generates the first 20 inte-

gers of the Fibonacci series (l,1,2,3,5,8,l3,2l,...). Why would this be an inefficient way to
solve the problem?

8.6 Creating Multimodule Programs
An application program of any size is difficult to manage when all of its source code is in the
same file. It is more convenient to break the program up into multiple source code files (called

8.6 Creating Multimodule Programs 291

modules), making each file easy to view and edit. If you modify a single module, you need only
to reassemble it and then re-link the entire program. In general, linking multiple object modules
is much faster than assembling a large source code file.
There are a few steps that you must follow when creating a multimodule program:

- Create a main source code module (ASM file) for the program. The main procedure will
be in this module.

- If procedures are likely to become large, create a separate source code module for each
procedure. If the procedures are small, you might consider grouping related procedures in
the same module.

- Use the PROTO directive in the main program to identify the names and parameter lists
for the procedures you will be calling.

- Include PROTO directives for all procedures inside each program module. Strictly speak»
ing, each module needs only to have PROTO directives for procedures that it calls. Unused
procedure prototypes are just ignored by the assembler.

It’s usually easiest to keep track of the various files in a multimodule program by creating a
separate. disk directory for the files. That’s what we did for the ArraySum program, to be
shown next.

8.6.1 Example: ArraySum Program
The Array.S‘um program, first presented in Chapter 5, is an easy program to separate into mod—
ules. We will also use the new tools introduced in this chapter for passing parameters: PROTO
and INVOKE. For a quick review of the program’s design, let’s review the structure chart used in
Chapter 5. Recall that the shaded rectangles refer to procedures in the book’s link library:

Summation
Program (main)

Hat‘: -. -T=;};?.-r=_'.»-l':=" "';,: i'1_:.'=“-r -,'-‘-'.-I-:__
F;,',_¢;'=:§-:;5;;‘;jt:‘.a;;|'.‘,';-,_,i,{~'..-.~, 311 _ _ ,

PrumpLFurIntegers Art-aySun1 D1splaySum
L I

;~..-F_..».-. *~_-_,_>,--,' --, ' :1‘:' :z:1.'. ‘1.4 '-‘_ ._ :1- , - ,1‘ . . $1-"““"'Z-!'.."‘S5'-’I‘l9}i".'_1-;\, E~"3"=‘Z§S'1?=?‘.'.'."é'-;I,j.’.~“£‘.1"‘-."'{=T'-[:1 "J:_-Q
-I; "i‘v';‘:-'-.-T557.’-E1rs.‘-\-'..—~_;r7‘*"r' - 5'-1?; '1;-W ‘3';"J'\'\'r"" 14'?-..-\'-"<‘.' - ='-'J:§'.- 1'-;r*',‘-. -‘;- . -.,-*..-rm-‘J\'¥;’ H t.-1-_ , . -' t'_‘;-_\'-_-_‘1e=..;"'r='- <-_":-.,'.'-.- -‘-_.;-'.:;-.' - '-;" ' 5 In "~!'_."~‘_"_\. -t 1 I . _-:3 '-", ._ {Lift " _ _ ‘ -1.3,‘. _ 'i!.,_v\.—<- |_ \F?§._;";, H -L]-"wt f -__-__| ‘fl _‘1;.»:1- :§?Q'.;.'. 3&4 ‘Ag; \'.,\'.- i_t. '- . __'_1. :;‘_>_‘_ '; 0- =1:$17_€5-19$}:_§_§-=_i_-_QLi;§\é_¢_'-
1"‘ ' .23.-'"_.‘<'_'..~.7..‘ , '1.-' " .‘-.1 .- l.-2‘~.;'-'Z1'-.' "'-f'- -Li -ll»-.'_ ' -. '. " : '."-I"? 1- -.". - -u‘ -ff-'.".t'-‘-I 3-'~-‘I?’ 1‘-'-'1 '- "-‘|"$-i-.3"-' -»- 1- '~ '."-'r-'--

'\ u

-nI'§L‘- .4 '1-up -¢ ,-» "bl -Pr! '\ J‘ \,_. L. L 5-. ..x \ 1.-1 ‘N 1' -_;.r(__._.. _ .1_..-_|.-_-‘¢ _ .-,.... l_-J -T‘;-J5.‘-".> I __ §_.|.i*. -_ ' - 7. -- -|-__-""'-.--_ -;,.‘_-_ v--,-_ .-_..._.~‘ \'¢'_\-"- -‘J-.__ _,_'-, 1;.-1-_ -_..*.:i.i,‘,l_I~’;’§§‘;,r'.-'=:I',-J1'=+ ea’-;-..--:-5-¢.z1,.'.i-*._* -.*~,-.":_r-..-"_‘:-:‘3-.-' <*.'.{:;-.*,'—.-:-ii; is-;.;a-1.I.t\'+‘- its it Bi if‘ J I-‘Hi! i 1 5-." 1: 4. '-".."»I\'-5-_->‘=.i-_1,'~' ~—"¢ 1 i iii 1-<3"-' I' \-‘-.\ -1! ';,‘E 13 t 1.;-‘J1 Ii it -1 1 it-H: -'-T 1-‘ P‘ =--.135‘ ~- +4 trig ii: 2 P 7;-11:-"I _".5)\.._ ."-|1n_-\ [.44-. “.':\-2':-1::-".',, . -1 _"-77;‘ _-_.__"' _.‘p1';f'I:"‘-?C"=l‘;'L"f- 1;?» '4'-u l\ -‘Q ‘.‘”|_Ii¢ = "4:-"'3-Jflyiiizwli .1 -1 "_'.",i" HQ‘ “i|..' 1 -.'|'-I‘-an _ ,-“.._-_ .-,' Z‘
'-*5?-_ -_5.'-5.I_‘:“-_*‘i§‘-»"C=-'- r-"5'-:-'7-; 1, -; -=.-P.-,1’-i -.'.- ‘A.-,"-f.1;;,¢ ;.v-'. _';."<§"--,!_-".9:-3 ;-.1-.-IF."-_=.' "' fir r" ---1'13, --‘-*\',F~:- -:.'.I5vf.-- :..*-'1 ""'-1 -3-J i‘-=-_~.'-1 -'1. -j-_r=-':~i1;:-.--j-,-.- 1,’;-;-vi-1 4' ;:-' .|. -'.-.'.'b-1|.-_-'—_=|'17‘-u‘-"ll-ti‘; -lb}-t. ifs‘-.,'l'1 .-'l.‘g§-3,-__l_||.|-.-‘-*1; -w .l,'n_\ 1;.-1.5 -5- 1 u ‘.1-,'. flit;-r-~_'.': :|::.;“"|,-'\;;.'- '.' -'. ' . -\=-2‘-'. '.‘.--'. "F‘ '-‘-.. - .1.“

\-' ii |,
1 ~—u- .- .- .-.. _ _.- -.- _ __. _-. ..___- _._, ,- . _._‘ _. _. ___ ._ ,_- -___.-_ ._ -. -__._,,__-_ _-1,|,_-,- I —__r_ --.__....;.-- -->__.._—;.-___1._._ .

|;- Z_“',.-.'_,-9“_-.'-p -'v~.-..:-:5 r,- ,'7;'3,\. '.’,'-Y‘ .1" .\-. ¢_:_\'-_- -;¢:-_.;'.4 Fir-‘iv .1-I I‘ - ,'i.:" i. '.' '5 1;. 1l:| -- 5-‘ »‘,'-- ,-".' *_' :-_-til-‘-;;~'.' ' - 1" '-': " ‘- \ -,'-1*-,-.* -'-. »i"_'-Z --,'_‘:' ' '_ (,'.1", ,_‘__q, ,_;;|,, ,_.\\- __ __,.-t.____ 1 ,,.t 3 t, ;,..|‘_. -1 11*.-...» _¢_- I1:;-"-f;;\U.'.~'.'~ ‘.1;--. -;:.;t’,*:--'-\- '=- '.-. ‘.- =-- q-=;,~.;'§.: =.*,~..- '.- ;--<1» - ,-". -:,;; ,-'— .‘ = c1- -'-1-'1;\ -.'~,'--:1 1,‘; '-‘,-_",- ‘.- -'-.- - '. -_.=-'--.1-.1-.' =?-\’--.‘--.-'.-.- ' :.'. 1"-"--J--—--' "'1-r ~ "-~'1 - *-'-‘"*=-' .‘tu@_-t..- ‘--' 1‘ '- ' " - '- " ""-'~ L-.".kl:'“$_'-'J.'.'..'.'~Ii-'1'-'-4:;.'-'!_';L:!13:--.‘i

This chart shows, for example, that main calls PromptForIntegers, which in turn calls
WriteString and Readlnt.

292 Chapter 8 - Advanced Procedures

8.6.1.1 Include File: Function Prototypes
The suminc file is a text file that includes Irvine32.inc and three function prototypes for the
procedures in this. program:

Include file for the ArraySum Program (sum.inc)

INCLUDE Irvine32.inc

PromptForIntegers PROTO,
ptrPrompt:PTR BYTE, ; prompt string
ptrArray:PTR DWORD, ; points to the array
arraySize:DWORD ; size of the array

ArraySum PROTO,
ptrArray:PTR DWORD, ; points to the array
count:DWORD ; size of the array

DisplaySum PROTO,
ptrPrompt:PTR BYTE, ; prompt string
theSum:DWORD ; sum.of the array

8.6.1.2 Main Module
First, we will take a look at the program’s main module, named .S‘um_mai'n.asm. It contains the
program’s data. and the main procedure. It includes suminc, which makes all of the function
prototypes available to this module:

TITLE Integer Summation Program (Sum_main.asm)

; This program inputs multiple integers from the user,
; stores them in an array, calculates the sum of the
; array, and displays the sum.

INCLUDE sum.inc ; function prototypes

; modify Count to change the size of the array:
Count = 3
.data
promptl BYTE "Enter a signed integer: ",0
prompt2 BYTE “The sum of the integers is: ",0
array DWORD -Count DUP(?)
"Sum DWORD ?

.code
main PROC

call Clrscr
INVOKE PromptForIntegers, ; input the array

ADDR promptl,
ADDR array,
Count

INVOKE ArraySum, 3 sum the array
ADDR array, ; returns sum in EAX

8.6 Creating Multimodule Programs

Count
mov sum,eax ;

INVOKE Displaysum, ;
ADDR prompt2,
sum

call Crlf
exit

main ENDP
END main

8.6.1.3
The PromptF0rInt'egers procedure is in -a module named _prompr.asm. The" leading underscore
is not required, but it helps to identify the module as being part of a larger program This module

Pr0mptForIntegers Module

also has an INCLUDE directive for .s'um.z'nc:

save in a variable

display the sunl

TITLE Prompt For Integers (;prompt.asm)

INCLUDE sum.inc
I

I
I

code

PromptForIntegers PROC,

QC

‘WC

I
I’

I
I’

F

ptrPrompt:PTR BYTE,
ptrArray:PTR DWORD,
arraySize:DWORD ;

‘HI

QI

"Cl

the array with the user's input.
Returns: nothing

rdmpt string
pointer to array
size of the array

‘U

rompts the user for an array of integers and fills

ix“ —“—Zi-'i———-n-____'i'i'i——i'i—--—-_-—----ii----uZ

_pushad ;

mov ecx,arraySize ;
cmp eCX,0 ;
jle L2 ;

ed3,ptrPrompt
esi,ptrArray

QCITIOV

QCITIOV

L1:
call WriteString ;
call ReadInt ;
call Crlf ;
mov [esi],eax
add "esi,4
loop Ll ;

QC

QC

save all registers

get the array size
array size <= 0?
yes: quit
address of the prompt
ddress of the arrayQ!

display string
read integer into EAX
go to next output line
store in array
ext array position

repeat for array size
$3

294 Chapter 8 ' Advanced Procedures

L2:
popad ; restore all registers
ret

PromptForIntegers ENDP
END

We -are careful to save and restore the general-purpose registers in this procedure, using the
PUSHAD and POPAD instructions. The procedures in the lrvine32 and lrvine16 libraries also
preserve "registers so that calling programs will not have their registers modified in unpredictable
ways.

Finally, because _pr0mpt.asm is -not the program’s startup module, the END. directive has
no operand. The program’s entry point has already been specified in the main module.

8.6.1.4 ArraySum Module
The ArraySum procedure is in a module named _arr{ysum.asm:

TITLE ArraySum Procedure (_arrysum.asm)

INCLUDE sum.inc
.code
; @ @ @ @ $4-. 14-.@@-.@@@@@@@@-@@@@@@@@@@

ArraySum PROC,
ptrArray:PTR DWORD, ; pointer to array
arraySize:DWORD ;-size of array

U
I

@@@@@@@@@@@@@@@@@@@4-.@@—l

; Calculates the sum of an array of 32-bit integers.
; Returns: EAX = sum
O @ @ @ @@

I

push
push

mov
IIIOV

mov
CIIIQ

j le

Ll:
add
add
loop

L2:

‘__—‘__‘_@@@@@---@@

ecx
esi

eax,O
esi;ptrArray
ecx,arraySize
ecx,0
L2

eax,[esi]
esi,4
Ll

pop esi
pop ecx ; return sum in BAX
ret

14-.1-.@@@-@ @@@@@@@@@@-Q-.11-511114-.111

don't push EAX

set the sum to zero

array size <= 0?
yes: quit

add each integer to sum
-next array position
repeat for array size

8.6 Creating Multimodule Programs 295

ArraySum ENDP
END

The ArraySum procedure uses EAX, ECX, and ESI, modifying their contents. It pushes
ECX and ESI on the stack so they can be restored before the procedure retums. EAX, on the
other hand, is assigned the procedure’s retum value-, so we cannot push it on the stack at the
beginning ‘of the procedure.

8.6.1.5 DisplaySum Module
The DisplaySum procedure is located in a module named _dz'splay.asm:

TITLE DisplaySum Procedure (_display.asm)

INCLUDE sum.inc
.code
F ' ‘ ' ' ' ' ' ' ' ' ' ‘ ' ' ' ' ‘ ' ' * ‘ ' ' * ' “ “ “ “ “ “ ""'

DisplaySum PROC,
ptrPrompt:PTR BYTE. ; prompt string
theSum:DWORD ; the array sum

F

; Displays the sum on the console.
; Returns: nothing
I--11¢-1-Q-.r¢—-:011-up-------Qin-Q1-Q1-nottn-1---1-fin-1-1-n-Q11---up--@@bbtbfl-@@@@@@@@¢-.

push eax
push edx

mov edx,ptrPrompt ; pointer to prompt
call WriteString
mov eax,theSum
call WriteInt ; display EAX
call Crlf

pop edx
pop eax
ret

Displaysum ENDP
END

8.6.1.6 Batch File for Assembling and Linking
We use a customized batch file to assemble and link this program. The batch file passes specific
source code filenames to the assembler, and specific object filenames to the linker:

296 Chapter 8 * Advanced Procedures

PATH c:\Masm615
sew INCLUDE=c: \Masm615\include
SET LIB=c:\Masm615\lib

ML —Zi ~c -Fl -coff Sum;main.asm__display.asu:_arrysum.asm__prompt.asm
if errorlevel 1 goto terminate

LINK32-Sum;main.obj _display.obj _arrysum.obj _prompt.obj
irvine32.1ib kernel32.lib /SUBSYSTEM:CONSOLE /nesuoa
if errorLevel 1 goto terminate

zterminate
pause

“ Although the LINK32 command line appears-to wrap around in this text window, it is actually a single line in
the batch file.

Following is the screen" output produced by the batch file:

Microsoft (R) Macro Assembler Version 6.15.8803 \
~ Copyright (C) Microsoft Corp 1981-2000. All rights reserved. ;

Assembling: Snm_main.asm
§\ Assembling: _display.asm
Q‘ Assembling: _arrysum.asm

Assembling: _prompt.asm
* Microsoft (R) Incremental Linker Version 6.00.8447 t

Copyright (C) Microsoft Corp 1992-1998. All rights reserved. l

8.6.2 Section Review

1. (True/False): Linking OBJ modules is much faster than assembling ASM source files.
2. (True/False): Separating a large program into short modules makes a program more difficult to

maintain.
3. (True/False): In a multimodule program, the label next to the END statement occurs only

once, in the startup module.
4. (True/False): PROTO directives use up memory, so you must be careful not to include a

PROTO directive for a procedure unless the procedure is actually called.

8.7 Chapter Summary
The LOCAL directive declares one or more local variables inside a procedure. It must be placed
on the line immediately following a PROC directive. Local variables have distinct advantages
over global variables:

- Access to the name and contents of a local variable can be restricted to its containing pro-
cedure. Local variables help when debugging programs, because only a limited number of
program statements are capable of mofiying the local variables.

8.7 Chapter Summary 297

- A local variable‘s lifetime is limited to the execution scope of its enclosing procedure.
Local variables make efiicient use of memory because the same storage space can be used
for other variables.

- The same variable name may be used in more than one procedure without causing a nam-
ing clash.

There are two basic types of procedure parameters: register parameters and stack parame-
ters. The It-vine32 and Irvine16 libraries use register parameters, which are optimized for
program execution speed. Unfortunately, they tend to create code clutter in calling programs.
Stack parameters are the alternative. The procedure arguments must be pushed on the stack by a
calling program.

The INVOKE directive is a more powerful replacement for Intelis CALL instruction that
lets you pass multiple arguments. The ADDR operator can be used to pass a pointer when calling
a procedure with the INVOKE directive.

A stack frame (or activation record) is the area of the stack set aside for a procedure’s return
address, passed parameters, and local variables. The stack frame is created when the running pro-
gram begins to execute a procedure.

The PROC directive declares -a procedure name with a list of named parameters. The
PROTO directive creates a prototype for an existing procedure. A prototype declares a proce-
dure’s. name and parameter list.

When a copy_of -a variable’s value is passed to a procedure, we call it passing by value.
When the address of a variable" is passed to a procedure, it’s called passing by reference. The
called procedure is given the opportunity to modify the variable’s contents, via the address it was
given. High-level languages pass arrays to functions by reference, which is exactly what you
mould do in assembly language.
Pollowing are several trouble-shooting tips:

1. In general, the PUSH and POP instructions perform a valuable service. They make it easy to
preserve registers that will be changed by a sequence of instructions, with the purpose of
restoring those registers later.

2. When working with an array, remember that addresses are based on the sizes of the array
elements.

3-. When using INVOKE, remember that the assembler does not validate the type of pointer
you pass to a procedure.

-5-. If a procedure has a reference parameter, you cannot pass it an immediate argument.

MASM uses the .MODEL directive to determine several important characteristics of a pro-
gram: its memory model type, function naming scheme, and parameter passing convention. The
Real-address mode programs shown so far in this book have all used the small memory model
because it keeps all code" within a single code segment, and all data (including the stack) within a

298 Chapter 8 - Advanced Procedures

single segment. Protected mode programs use the flat memory model, in which all offsets are 32
bits, and the code and data can be as large as 4GB.

The language specifier used with the .MODEL directive can be C, PASCAL, or STDCALL.
Procedure parameters can be accessed using indirect addressing with the EBP register.

Expressions such as [ebp+8] give you a high level of control over stack parameter addressing.
The LEA instruction returns the offset of any type of indirect operand LEA is ideally suited for
use with stack parameters.

The ENTER instruction creates a stack frame for a called procedure by reserving stack
space for local variables and saving. EBP on the stack. The LEAVE instruction terminates the
stack frame for a procedure by reversing the action of a preceding ENTER instruction.

A recursive procedure is one that calls itself, either directly or indirectly. Recursion, the
practice of calling recursive procedures, can be a powerful tool when working with data structures
that have rep.eating patterns.

An application programof any size is difficult to manage when all of its source code is in
the same file; It is more convenient to break the program up into multiple source code files
(called modules), making each file .easy to view and edit.

8.8 Programming Exercises
The following exercises can be done in either Protected or Real-address mode.

1. Exchanging Integers
Create-an "array of randomly ordered integers. Using the Swap procedure from Section 8.3.6 as a
tool, write a loop that exchanges each consecutive pair of integers in the array.

2. DumpMem Procedure
Write a wrapper procedure for the link library’s DumpMem procedure, using stack parameters.
The name can be slightly different, such as Dump'Memory. The following is an example of h0\=.-
it should be called:

INVOKE DumpMemory,OFFSET array,LENGTHOF array,TYPE array

Write. a test prograrn that calls your procedure several times, using. a variety of data types.

3.» Nonrecursive Factorial
Write a nonrecursive version of the Factorial procedure (Section 8.5.2) that uses a loop. Write 3
short prograrn that interactively tests your Factorial procedure. Let the user enter the value of 1;,
Display the calculated factorial.

4. Factorial Comparison
Write a program that compares the rtmtime speeds of both the recursive Factorial procedure frorz;
Section 8.5.2 and the nourecursive Factorial procedure written for the preceding programming

8.-8 Programming Exercises 299

exercise. Use the GetMseconds procedure from the book’$ link library to measure and display the
number of milliseconds required to call each Factorial procedure several thousand times in a row.

5. Greatest Common Divisor
Write a recursive implementation of Euclid’s algorithm for finding the greatest common divisor
(GCD) of two integers. Descriptions of this algorithm are available in algebra books" and on the
Web. (Note: a nonrecursive version "of the GCD problem was given in the programming exercises
for Chapter 7.)

Strings and Arrays

9.1 Introduction
9.2 String Primitive Instructions

9.2.1
9.2.2
9.2.3
9.2.4
9.2.5
9.2.6

MOVSB, Movsw. and MOVSD
CMPSB, cMPsw,_ and CMPSD
SCASB, scasw. and scaso
srosn, srosw, and sros-n
LODSB, LODSW, and LODSD
Section Review

9.3 Selected String Procedures
9.3.1
9.3.2
9.3.3
9.3.4
9.3.5
9.3.6

Str_compare Procedure
Str_1ength Procedure
Str_copy Procedure
Str_trim Procedure
Str_ucase Procedure
Section Review

9.4 Two-Dimensionai Arrays
9.4-1
9.4.2
9.4.3

Base-Index Operands
Base-Index Displacement
Section Review

9.5 Searching and Sorting integer Arrays
9.5.1.
9.5.2
9.5.3

Bubble Sort
Binary Search
Section Review

9.6 Chapter Summary
9.7 Programming Exercises

9.1 Introduction
By now, you just might be convinced that assembly language programmers have an advantage
over high-level language programmers when it COIIIB5 to writing fast code. The ideal part of a
program to optimize is the code within loops, and loops are always "used when processing arrays
and strings. So here we are, in a chapter that shows you how to get the most of string and array
processing, "and hopefully, shows you how to write better code.

301

302 Chapter 9 ' Strings and Arrays

We will begin with a set of highly optimi.zed string primitive instructions built into the
Intel instruction set. They are designed for moving, comparing, loading, and storing blocks of
data.

Next, we take you through several typical string-handling procedures directly from the
Iwine32 (or Irvinel6) library. Their implementations are fairly similar to the code you might see
in an implementation of the standard C string library.

The third part of the chapter shows how to manipulate two-dimensional arrays, using
advanced indirect addiessing modes: base-index and base-index.-displacement. You may recall
that simple indirect addressing was introduced in Section 4.4.

The last part of the chapter, entitled “Searching and Sorting Integer Arrays,” is the most
interesting. You will see how easy it is to implement two of the most common array processing
algorithms in computer science: bubble sort, and binary search. It’s a great idea to study these
algorithms in Java or C++, as well as assembly language.

9.2 String Primitive Instructions
There are five groups of instructions in the Intel instruction set for processing arrays of bytes,
words. and doublewords. Although they are called string pi'z‘mirz'ves, they are not limited to
character -arrays.

Each of the instructions in Table 9-1 uses either ESI, EDI, or both registers to address
memory. They are unique in that they use only memory operands. String primitives can automat-
ically repeat, making them especially useful for processing strings and arrays.

Table 9-1 String Primitive Instructions.

Instruction Description

MOVSB. MOVSW, MOVSD Move string data: Copy an integer from one memory location to
another.

CMPSB, CMPSW, CMPSD ‘Compare strings: Compare two menroryvalucs-.

SCASB, SCASW, SCASD Sc-an string: Compare an integer to the -contents of memory.

STOSB, STOSW, STOSD Store string data: Store an integer into memory.

LODSB. LODSW, LODSD Load accumulator from string: Load an integer from ntemory into
the accumulator (AL. A-X, or BAX).

In Protected mode programs, ESI is automatically an offset in the segment addressed by
DS, and EDI is automatically an offset in the segment addressed by ES. DS and ES are always
set to the same value and you cannot change them. (In Real-address mode, on the other hand, E5
and DS are often manipulated by ASMprogramme1's.)

9.2 String Prlmitlve Instructions 303

e __ . ———+ * —e——i.' — 4! ._ .7? ,_ *_ _, 17' " ,_ , .".1?_i‘e.— is e*."*. 7 _ ;f;e'
3 -*‘ . "4-"I‘iii-"~"‘>"ifi#~?=-':'.“5#::""i€'i?\T:'=;': .'-l“='ii*"~l-F! !l3-""-'P‘.E1“'?"l-¥?~'31i5i it '. ii?‘-I-'5'*'*?:'?"r'.*!"'-""I-"1§‘11"F"i'=-:=“'“*"~"?'7»=¥?‘?~f-=t"’*’ ‘ = "1'-""-F3?"-‘ii-"i F.‘ '1‘--"-*3-'3"-.7»-'*'=T"-iii!’ 1*-.-!‘.r'-':=-'1“.-‘t*.‘==' “Z1IE4‘ ,l;.:e+;_ e;'r-?i.f”;Z_stt;g-ail--Eiest-flit -_-Qfiaét-igi-.1_..=a;=5i,§F_.,Jg:r;, __$;r_;3gt_;__‘1_L_.,:1_:=,,._:E;_!I,,;,g;;.§e_s,%.?,Ei:§_¥.§Iia$;.hS5;'_‘i;§%i%[-;1?§;I§s.flrJ{ia-jléi-§}!.§;Ei;;;§§l£;:-11>.r:r,f.%;_¢:;"eiafit-";‘E..%t51L$;_?_'q

. 5! .l_ _ ' ' " . '4- 1 -_, " it . , -" < , : _ -' ; *.»- '55‘-_ ' '2 - I -V, ; . .14. .’-- -‘$?§,*.51';t. .€;_._§_*.§1?=>i ::;_-great tits-:.t.r = ',=-'--'5.‘-~.r_‘is_._-,1‘?§tf-rs-;-,::~.=-;€ 1-";'_*;*;;_;,¥ r,»~=>=¢- §_.‘%}ii-_::;.=.<;9_:fl.;’§i';,:--=‘-='- -'1,-‘,1-'=' 511- ' f;{;_;;3ig-' - '-'» -= -E:= '»-i=F41fiE’t"'-‘tr:=,;¢Yi5:'r'-;~,-a;;~;; -; 'e‘q1-.37?-'1-' -;-=; ;§‘-§:=~.£-I -II‘-lK:‘»'1if1‘l‘§I'-§i-"'5"I "1Sg;'3H=Gfi;$6€*i~1’0‘m§-D8‘Eflilldr:@I‘*tlS-=21l1+-GEESGI-3fi*@1’lIl" -ES s--U sua1l~ - - ourw;1]£l+set~1,, "..__ ,__. __'I |r'E.'.' 1', _., -gr-_.__. . .“_;_.i? ; '-._ _, ,,\f, 4: ;-3' ... _ _.,:',....., --,. . _ _. _ ,,, ‘Q, _;=*;i~.z_ _=. , , ‘,3-3“ 1 1'.‘ 1. _ -'- '=¥t¢.ii1?f"=£>\"l‘.-t_j§,’._‘§T‘iT;1r;2E§E§i?*iE‘;",z§ii= ..i='i':?f1§'T1§i;Li§i1}E?§i}§’f_§i§5fi§E§_?j{;;}'IJij;E!_IY-§.£=5§1‘5'i_iE‘r?§{;F§§§1?':'q§1'Il:T-I%5§f§§iffiif; ;£‘s'e,‘-E1‘-’.:.-;@;.;-i;1_|r2,;"§‘;,~;;<r-§r':i=§I..-F3;i ,§1r:_=-ii;-1rigs:-!3;‘FF_r1ET‘i;1E¢fii§:;§i$§§?5!
' -t. i|_‘t\@|.‘rtf'i. -cl‘!-tg, -,.' -..-i|é¢:y\.-‘I |1‘~(I'.'!\ ~-‘,1!-'. -;-‘, in: - 4. I ";-""_1-'-- _ Lg - -- . -{aw ., ' Jr‘ ;. I:§':"' _,v"' ._,_..-. \'- Z:--__:.__-;__ fl‘, -‘F-__‘_ Q,“ Ink 3: _._..*|;‘__1_;T-__,':!-i_-__ 1'; ‘:1 ‘J 1~ ~ t -1* = - sse t » e rev itreea ~ v~-at ~ = -es e it ~ I n ~-re we e.. -. --1'.-, '- -_ ._ ='- ?~..~i,-- . e ..'.»'-~ 1'-‘--';.-'-J“ ' -- -.=--t‘-.1='!i'1I!‘- lU‘.‘*-.1‘= ’1:;.=:: ‘ei*“-‘%- st-*-'?:1, 1t1F.;~'-*.-'~ee-=1==.,.tt1:t'- -1 :’tti=i i“ii3§1.7?’-'-jf’i1‘1efii13$iiliiiil"l:5iHf‘-§l15i'§53#-i'Fiiet$* at i7‘3¥'ii-~'?;§5-i1§ti"’ii7&T1-Q‘?2-T-5hifl'i'?ii:'f3I5;il'i§i=':'1; -F elltthe-t?r%i;it->*i#.=fi‘r* ' --E1; |_,1;=.li%iLlt-rtgrvg; i§;;?.}-‘jti-;;!iigrgirqigrhgii-iiiztti 1 tjfg;-;'_i‘ '1 $1’; .*il'f§|:.'-1i:~'_-i-‘=,§_,r»:,'-*_;';;l'_'.i!g*’E?;=.’1‘i‘»:i[§r:-it -r;"|fl.‘_1 7}71¥:jEI;:!-T—_iEj;i1j~f_»,-.-.'._f_I-'1'?-."F?iii5§\?f-12;‘-1 =,'.i_;r?:;-jI£;’I¢:*i!~'-qg:§Filjqlii7;*_;,

-' -. t"-5-‘.=,'e;'. =,_-.~rE-:'=='-w-"1,-W--e-“--'ie';‘=tr-.;‘;;rj 1141"“-r,,,t.'." . {Pitt-I1.1-.r'.».?='-i-"FZ,!$?--aI‘_§-1:-31.1-7;?-izrl.fii.:';-£}.‘5'iI;!i;'-1"?-t"-Jiliili."r~~Ij="[.1-;;#:¢'-"Pei-:;|g-:;'.I.;;"As.-=-.;-2:".".I 5-"t>,;_£-=21"---;’.:?t==.' 1;.-JetFiaq-;]\ U‘ . ‘J =1 13-3| -‘ii-ii’ '1 H"-l F}. 3 "'5!-'7’ "i :r'r,*-‘- I.3=§\" r'.1\I‘|'-"--l1[l5l"*" -' - ?'1"‘."“ I-4'-:.“.{" I i"‘l|‘> "' t" ‘-'1' -|'T"' ' |- 4' - 1"‘ \l"-" "'1-‘i-I‘-M 5.?‘ ~<“|'-1’ ' q-i""=' '1'-' r - = =1-= - - -Fl‘---.*~:.'= ‘-..-'=."-2»; , :‘-.’r:.i,-_ r‘< -'1‘§':="-“'i='-J-'*\‘.*'~C‘-". -=.'_--.*f.*-,="_:-:»;;..- !=*.-_1=="'r,r!!;?J:,,'",~==' ~ -- -=--:1 .*I== .."-'5-:=: "'§='.1..""-'_f5';.*.--‘fit; e‘--"."m*=?:"'-‘-- '-"3""-; 1‘ 1-.=.' -1! ,.-.I.l§'1£*i~,;~5§;s-eraser:-:;--:-=-21-4itQ.=s~1=§s;1;;;i:t_'i§_t1;r;e!r-i:,;;;;§le~,i:=tIti{es-isE-its1$11;isFE~»:t;s§~;=?s..=it-?;=?g>,:ts.‘-£ei;'4!s"5f;Ei:;=F?s~- ¢!{'e_"‘;§:;Etii;-,'¥£>;5-',-1%-.-$3’r3512??'_?1;§;I%i§i;q.':?<'i}{}$§{1
-f'~'i§I.€1§;§“;L;-_E|gT§1»5_t\:ii;::;I.!j€fi!{;.|>:§.-14:3? ‘._-TE.»'i'!:_fa_;iI-_;!"j: -, ,_t::,_;‘. ‘|‘i':,_'_'-Q-\.'_~,;__';§__*:E,-'1;.5',155",-_-f;i_1;fi'4_ij;1.:-r'.:-,»:.~_-eta,re-JI}Qt,.::;;§};-3}?»-. d-an...,.;,’,§-ti-:;i;l't=e;éf_$£f';?: ‘Iii; "5?-F1(‘FT;;g€r1‘;-R;§;;>;I:’.=F;:;'i§€1-‘E;_lrQ§¥§:|E?Iaddr._ ; 11;, __§__;. --r,;.=_,;.!;_d'i—'L_-'=#.';‘{L:;:-:lE‘~'l‘

--,-\ ":1;-e:-'=.£:'--A-1=,P~r.‘.‘r ” _r;-.»*~,*rt,,. .':rrf';_Ii'- .*=.-an-I:-==;-'~'= '=,"‘,."i="1-=-,3-.5;-',--.,.-I -1-=15, '3'-.-',--.':;?-'.#::..*ai_ rsra-tr-.1L!=~_ '\-*1‘-‘~_ 1*: ‘J,-. =-\5I-I1?.=_~r.‘.f-"-- -."~-'.-:I-:-= ti-1. ',.» :--"er--=’; ._-es :FA:‘i"-51'-'1':;':* _'-',"~.'~- 1.-;¥%'I-r.~-1“Y:"i",|.""_‘;:$,;,4'-.-:r.-;'/-.r%-i3$5-.=.=i-'- i -'-"‘- -'1-it ‘-1 ‘ ' 1-'.--‘P-""|*‘¥f.¥i r!‘l"'I-'-(3?-'-'-‘.' .' '_--=-J1',5.{.—--.1-::<:‘£?.. |-, !i_"'.;:'|'.=\--.1->§4'~_‘3 "I§_"~hrl' -'1 _ -. ---- ‘_!ZQ-,- ‘H’ -_'__'1r_‘.-."*: ;-' ;'r.=_,|-" ."_ {E-!-.1 -'_\-'.=,".: '_.-‘-3,-1-.f‘l\‘ .-'1§§;;~;{,t,€;.-t<fie;@333@:IIiQ§J'F;'i1fd_S>i§i€='i§€u2;bi§i5’-is5<,‘r?EP;f .=.-.Ei71!?;€?,-~‘:{.!'.'§fli?4§'}%;PL-:1i1TIl:t‘£l£a.lEi.aJZQ=.§DS£JTr&'-51"‘?'55'}iii?-§_E-;§'i’i.ills?‘-é‘.-<H";-IijiikiNI~?.1a§1-|-.-"it-'" is-i:e:;'-1: E-‘Jé '¢'=-"'1 -'-‘.-F-.’-1-*"¢-F:-1'-.’-=.-ii Ft-' -‘--*1‘?!-“-;l*1—~.!’» "2";-* --i'.!;3-"P ."-'- 3‘.-W-:-i..'<=I".1re.==i’rs=$=~' -:r.'u'§*.-.1i!!-r%.1"~*.'=‘.= 5;.“ E»; ;~';<t1:.' -‘“=-J=-=-'%;’-:- -M‘-i~.'".1 -»<1*.~.r-.- " = -T ,'r!.-sew;-.'I1-=7e'?1. 2"-.1-.r~'f;[I -I mi J._- -.-'-'1:-1.:--t!'7| I 7'3; - :u' .1; hi-‘I‘-..;-l'I;f'--‘;,".:;{V? w,-‘ _ Jr’,-.--: '||";;I.'-‘Vi. -~-,i‘..----1;-.1’ J1*-';a'!.;[a]-'al-‘--40_- ,1.--.. E1‘. '- ii! .‘.'\:"3‘"!'-"q, »<'-1."~T|;r"_-.‘I" }'- ~ '1" "~;; "._;.'__-_-‘:--1. it-9 *-,.-=|‘J-_ \- ,+ l-- : -"<-,1-_ ~:.' sf I-..=,. F‘ I-,-.-1 ? ---5'. ‘.-. I'."',h .,.* _¢: =-i'-..--- L14». :-,1 - .. -- _-; ,- - ~~-_- -,- _ ;- "'I"'31\?'|: -_ !~..3_l\,-*1 = .- -.~."-'-H.-,' r - -'‘ ‘e;£?-“_,f,";?,$ii;tEi‘;e-"-li:'»:1I1QY{?§=.-$5-tii~?4!_“<?§it;~}si1»rt;§?:gs}~*,i’,ifig,-5=E=@"l -;;’;;-:,.;{;1*:e;§;.£r-,1f;;-:tis,-;;‘e,s$s;,.1J-1- Q3-= ;".*Il=§;1-_;J-"Z._e. :-~E_,$__,;1.¢§rv;-j,=:;;»:,.=;¢.?~i§.~ 1‘;-1;:-_;';1=;"-,1-2:33! ~;_;tz?,i:;,. -.--.';< -_-. |.; .>,_,-t'- ,, l,_.--_1 1 _¢--. -_:_.-;-- ," ‘ 9 -__-_-i. 1 » _. __!- 5,1‘ ‘:‘:‘:-,'.-f- ,_‘- ..:;--,gf|.i.- .-..__;; '__'f1u- -a.-- "'--, -,, »_~»i wfflgfl-2;Ejgf-[:“l§$iEP?=:i‘lTJ?.‘:’!iii1-'-%ih'.::§=i'§-1'-IliJr-ithHIQ-I5-!‘1'..11ktIii7'i5§?-I!fitQL-‘1j"jE'§l'r-.i-§r:.-“ih:-}'I."":iEi',.Fl!!i§'1=[:?ltj~'_LF}f1~;i-ill-{itj5:j.;.7‘:e;-2;-._. *'1'-_-".,*-"~'l‘l:i'*|l'§i1*;iij'=_-;'J‘H:=}i-,_l:',;u;‘I'i§'.:':!E‘;l!.‘1‘.'.l':'{':l§£_'i|j;',

"it

ta~>‘er l‘It0-

-,:Lk.='5

IJ:

Using a Repeat Prefix By itself, a string primitive instruction processes only a single memory
value. If you add a repeat prefix, the instruction repeats, using ECX as a counter. In other words,
you can process an entire array using only one instruction. The following repeat prefixes are used:

REP Repeat while ECX > 0
REPZ, REPE Repeat while the Zero flag is set and ECX > 0

REPNZ, REPNE Repeat while the Zero. flag is clear and ECX > 0

In the following example, MOVSB moves 10 bytes from stringl to strin_g2. The repeat
grefix first tests ECX > 0 before executing the MOVSB instruction. If ECX == 0, the instruction is
igiored and control passes to the next line in the program. If ECX > 0, ECX is decremented and
fae instruction re_peats_:

%I
cld clear direction flag
mov esi,OFFSE'I‘ stringl ESI points to source
mov edi,OFFSE'I‘ s.tring2 EDI points to target
mov ecx,10 set counter to 10
rep movsb ; move 10 bytes

fil

‘HI

'\I

ESI and EDI are automatically incremented each time MOVSB repeats. This behavior is controlled
by the CPU’s Direction flag.
Direction Flag String primitive instructions use the Direction flag to determine whether ESI
and EDI will be automatically incremented or decremented by string primitives:

p-t
-

~;'b“_J:s

__“.‘\

III-%""~§"%» %errzgmt3.- tr~=1""ei ta

.:-vi qt:I-:ri-1;:-"=1 ,3, ._ >2 1;. - 'w"=' 7. 11- _. _ - ..r TF1? :»-..tl-, .=;*1-"T3--._-.-,_,_ -:---~_:f_-+_- aw _ _-5 -- l

i1't‘tiF;'ii,"!i1!t|l*.*r'* "-<;;;r' ' 1 »'i,:_;,=_§%,-ltifii lg , r. _ '"it=>_. 3;T|r'1'*'l[':7-Iliiiii‘F:§'i1ilii..1Ei:-a.‘l:1j '*"'it| '~r§3e";_=fif§*i;T'-‘.5=?it‘---r.H~- ’“- - -'5'-~ - 'i"’t1Ifi‘]‘a Her-‘-tr .1-*'§l"P;J:-='.*1';~_*'- =2 it1tE’i??;:t§*@=r<-t%ii%S-“tr ""*‘*si:ri3t?£>-"eiliiiii ..i":-*t'l- Er '1, , "-1:59.]-;t"_ it-?* t»=st+:Le_~ ."+!1.‘t5!3=»=¥'=*¥t=="¢1ri'1
ii.l?»i;i:F:;ll1_I:,-*_I I-_ i_._ . -:19 : E‘: |..':.‘ . ‘gal ":At‘I7‘}:|\Il:"-*2-I‘lggl-‘I: ;.‘="\:-H-6 r‘i";‘.I-igfi !. ;\r."-2 -':-‘ I 2"’)!_ _ _ __ T __ _ _ __"' A ______ _ iii __h 17:-i

1 clear incremented low-high

set decremented high-low

The Direction flag can be-explicitly changed using the CLD and STD instructions:

‘iicld clear Direction flag
std. set Direction flag‘ii

Ler’s now look at each of the string primitive instructions in more- detail.

304- Chapter 9 - Strings and Arrays

9.2.1 MOVSB, MOVSW, and MOVSD
The MOVSB, MOVSW, and MOVSD instructions copy data from the memory location pointed
to by ESI to the memory location pointed to by EDI. The two registers are either incremented or
decremented automatically (based on the value of the Direction flag):

MOVSB move (copy) bytes

MOVSW move (copy) words-

MOVSD move (copy) doublewords

You can use a repeat prefix with MOVSB, MOVSW, and MOVSD. The Direction flag
determines the incrementing or decrementing of ESI and EDI. The size of the increment!decre~
rnent is shown in the following table:

P" "‘:4\:gt;_-; ‘ =f,,li'51,§f;;.* "_'i§1,I,..i£T""' I= ...~;-e>-fires
E.

' .. l-' 0 .r . {it . . 3. 7 'Fj<l_ ' -‘.' I. . "|.ri:" ' _;|i-ii'.'. ' _ .L‘;L1_:=.g 1-:,_H.y:\::r..' ‘L-.1." 33;.‘ _ .1,"

MOVSB I 1
MOVSW ‘ 2
Movso 4

\ l _

Example: Copy Doubleword Array Suppose we want to copy twenty integers from source rc
target. After we copy the data, ESI and EDI point one position (four bytes) beyond the end Of
each array:

.data
source DWORD 20 DUP(0FFFFFFFFh)
target DWORD 20 DUP(?)

.code
cld ;_ "direction = forward
mov ecx,LENG'I‘HOF source ; -set REP counter
mov esi,OFFSE'I‘ source ; ESI points to source
mov edi,OFFSE'I' target ; EDI points to target
rep movsd ; copy doublewords

9.2.2 CMPSB, CMPSW, and CMPSD
The CMPSB, CMPSW, and CMPSD instructions each compare-a memory operand pointed to by
ESI to a memory operand pointed to by EDI:

CMPSB compare bytes

CMPSW compare words

CMPSD compare doublewords

I

9.2 String Primitive Instructions 305

You can use a repeat prefix with CMPSB, CMPSW, and CMPSD. The Direction flag determines
the incrementing or decrementing of ESI and EDI.

There is another form of the-compare string instruction, called the explicizfomt, in which both oper-. _y
ands are supplied. They must be indirect operands, and PTR must be-used to make the operand sizesfii

ii‘! sttt-5‘-%=?;f-DWORD ‘PTR leSi1;rF.re"=1i1 - -
But CMPS is tricky because the assembler lets you supply misleading operands?

cmps DWORD PTR [eax], [ebx] W

Regardless.of which operands at'e,t_§'ed, CMPS still compares the contents ot"-__111"_eh11ory pointed to by-is
pointed to_ Forthis reason,,'it‘§'§'best to avoid and use the

; , -instead‘..?_’*{_1'.tl§_<i)f;,:';*_illl'1,_t§:.order of epersnasigiiitiemrsis
I to £11-e» inoii€.*i‘%iItiilim' CMP I ‘ ",‘I ' 1‘

J -\.

CMP target, source.
CMPS source, target

Herefs,apo_ther_way to remember the;difference: CMP implies subtraction of saarce from target. at
CMPS;-inipliésrsubuaction of tat="e?‘ifi""from source. .- . {Li . '1‘-.' .* _'.i-'_- . j -.g;|-,1»- ‘ I‘ <a. ' ._-I H '_ _'-I

-2 :‘.‘J"ii=.ii" ' "-'5.-r"§-‘i-l -' ""5 ‘ 1' “<2 ’.L-7.‘:-'E - . :1’-T " ‘ - -' 'f.'r’\I‘ ‘I " . -

Example Suppose we want to compare a pair of doublewords using CMPSD. In the following
sample data, we see that source is less than target. When JA executes, the conditional jump is
not taken; the JMP instruction is executed instead:

.data
source DWORD l234h
target DWORD'5678h
.code

mov esi, OFFSET source
mov edi,OFFSE'I' target
cmpsd ; compare doublewords
ja Ll ; jump if source > target
jmp L2 ; jump, since source <= target

If we wanted to compare multiple doublewords, it would be necessary to clear the Direc-
:ion flag (forward), initialize ECX as a counter, and use a repeat prefix with CMPSD:

mov esi,0FFSET source
mov edi,OFFSET target
cld ; direction = up
mov ecx,LENG'I‘H_OF source ; repetition counter
repe cmpsd ; repeat while equal

The REPE prefix repeats the comparison, incrementing ESI and EDI automatically, until either
ECX equals zero, or any pair of doublewords is found to be different.

306 Chapter 9 ' Strings and Arrays

9.2.2.1 Example: Comparing Two Strings
A pair of strings are typically compared by matching each of their characters in sequence, starting
at the beginning of both strings. For example, the first three characters of “AABC” and “AABB”
are identical. In the fourth position, the ASCII code for “C” (in the first suing) is greater than the
ASCII code for “B” (in the second string). Thus, the first string is considered greater" than the sec.-
ond string.

Similarly, if the strings “AAB” and “AABB” are -compared, the s_6C.ond string has a larger
value. The first three characters are identical, but one additional character exists in the second
string.

The following code uses CMPSB to compare two strings of identical length. The REPE
prefix causes CMPSB to continue incrementing ESI and EDI and comparing characters one by
one until a difference is found between -the two strings:

TITLE Comparing Strings (Cmpsb.asm)

; This program-uses CMSB to compare two strings
; of equal length.

INCLUDE Irvine32.inc
.data
source BYTE "MARTIN "
dest BYTE "MARTINEZ"
strl BYTE "Source is smal1er",0dh,0ah,0
str2 BYTE "Source is not smaller",0dh,0ah,0

.code
main PROC

cld ; direction = forward
mov esi,OFFSET source
mov edi,OFFSET dest
m0v ecx,LENGTHOF source
repe cmpsb
jb source_smaller
mov edx,0FFSET str2-
jmp done

source_smaller:
mov edx,OFFSET strl

done:
call WriteString
exit

'main ENDP
END main

Using the given test data, the message “Source is smaller” displays on the console. As ca
be seen below, ESI and EDI are left pointing one position beyond the point where the two strings
were. found to differ:

9.2 String Primitive Instructions 307

Before Afteree|nA|R|T111~| I I lrlelrlrlllrl l,l
ESI ESI

Before After

Dest: [MI all I I I W A I R I Tl t |N E z
__ __.,,, p t

EDI EDI

ilf the strings had been identical, ESI and EDI would have been left pointing one position
beyond the ends of their respective strings.)

It should be emphasized that comparing two strings with CMPSB only ‘works adequately
when the strings are of equal length. That is why it was important in the preceding example to
pad “MARTIN” with two trailing spaces to make it the same length as “MARTINEZ”. Needless
to say, this imposes an awkward constraint on string handling, which we can eliminate later in
this chapter when showing the Str_compare procedure (Section 9.3.1).

9.2.3 SCASB, SCASW, and SCASD
The SCASB, SCASW, and SCASD‘ instructions compare a value in ALIAXIEAX. to a byte,
word, or doubleword, respectively, addressed by EDI.

These instructions are particularly useful when looking for a single value in a long string
or array. Combined with the REPE (or REPZ) prefix, the string or array is scanned while ECX :-
0 and the value in ALIAXIEAX matches each subsequent value in memory. The REPNE prefix
scans until either AL/AXIEAX matches a value in memory or ECX = 0.

Scanfor "a Matchirzg Character In the following example we search the string alpha, looking
for the letter F. If the letter is found, EDI points one position beyond the matching character. (If
the letter were not found, the JNZ instruction would exit.):

.data
alpha BY'.i‘E_ “ABCDEFGI-I" ,0
.code
mov edi,OFFSET alpha ; EDI points to the string
mov al,'F' ; search for the letter F
mov ecx,LENGTHOF alpha ; set the search count
cld ; direction = up
repne scasb ; repeat while not equal
jnz quit ; quit if letter not found
dec edi ; found: back up EDI

In this example, JNZ was added after the loop to test for the possibility that the loop stopped
because ECX = 0 and the letter (F) was not found.

308 Chapter 9 ~ Strings and Arrays

9.2.4 STOSB, STOSW, and STOSD
The STOSB, STOSW, and STOSD instructions store the contents of ALIAX/EAX, respectively,
in memory at the offset pointed to by EDI. Also, EDI is incrementedfdecremented based on the
Direction flag. When used with the REP prefix, these instructions are useful for filling all ele-
ments of a string or array with a single value. For example, the following code initializes each
byte in stringl to OFFh:

.data
Count = 100
stringl BYTE Count DUP(?)
.code
mov al,0FFh value to be stored
mov edi,OFFSET stringl DI points to target
mov ecx,Count ; character count
cld ; direction = forward
rep stosb ; fill with contents of AL

'\C‘II IF]

9.2.5 LODSB, LODSW, and LODSD
The LODSB, LODSW, and LODSD instructions load a byte or word from memory at ESI intc
AL/AX-/EAX, respectively. Also, ESI is incrementedfdecremented based on the Direction flag,
The REP prefix is rarely used with LODS because each new valuei loaded into the accumulate:
overwrites its previous contents. Instead, it is used to load a single value. For example, LODSB
substitutes for the following two instructions (assuming that the Direction flag is clear):

mov al,[esi] ; move byte into AL
inc esi ; point to next byte

Array Multiplication Example The following program multiplies each element -of a double-
word array by a constant value". LODSD and STOSD work together:

TITLE Multiply an Array (Mult.asm)

; This program.multiplies each element of an array
; of 32-bit integers by a constant value.

INCLUDE Irvine32.inc
.data
array DWORD 1,2,3,4,5,6,7,8,9,10
multiplier DWORD 10

.code
main PROC

cld direction = forward
mov esi,0FFSET array ource index
mov edi,esi ; destination index
mov ecx,LENGTHOF array ; loop counter

‘Q‘Q
U1

9.3 Selected String Procedures 309

Llzlodsd ; load [ESI] into EAX
mul multiplier ; multiply by a value
stosd ; store EAX into [EDI]
loop L1

exit
main ENDP
END main

9.2.6 Section Review

1. In reference to string primitives, which 32~bit register is known as the accumulator?
2. Which instruction compares an integer in the accumulator to the contents of memory,

pointed to by EDI?
3. Which index register is used by the STOSD instruction?
4. Which instruction copies data from the memory location addressed by ESI into the

accumulator?
5. What does the REPZ prefix do for a CMPSB instruction?
6. Which Direction flag value causes index registers to move backward through memory when

executing string primitives?
7. When a repeat prefix is used with STOSW, what value is added to or subtracted from the

index register?
8. In what way is the CMPS.instruction ambiguous or misleading?
9. Challenge: When the Direction flag is clear and SCA-SB has found a matching character,

where does EDI point?
10. Challenge: When scanning an array for .the first occurrence of a particular character, which

repeat prefix would be best?

9.3 Selected String Procedures
In this section, we will create several simple procedures that manipulate null~terminated strings.
Ifyou’re a C programmer, you will probably notice that these procedures are suspiciously simi-
lar to functions in the standard C library. These procedures have been placed in the Irvine32 link

1library, and the following procedure prototypes can be found in l.rvine32.inc:
; Copy a source string to a target string.
Str_copy PROTO,

source:PTR BYTE,
target:PTR BYTE

; Return the length of a string (excluding the null byte} in EAX.
Str_length PROTO,

pStriI1g = PTR BYTE

3 For Real-mode programming, the Irvine16 library contains"the' same procedures.

310 Chapter 9 - Strings and Arrays

; Compare stringl to string2. Set the Zero and
; Carry flags in the same way as the CMP instruction.
Str;pompare PROTO,

string1:PTR BYTE,
StI.'i1’1g2 :P'I‘R BYTE

Trim.a given trailing character from a string.
; The second argument is the character to trim.
Str_trim PROTO,

pString:PTR BYTE,
char : BYTE

0
I

; Convert a string to upper case.
Str_ucase PROTO,

pString:PTR BYTE

9.3.1 Str__compare Procedure
The Str_c0mpare.procedure compares two strings. The calling format is:

INVOKE Str_compare, ADDR stringi, ADDR-string2

The strings are compared byte by byte, using their 8-bit integer ASCII codes. The comparison is
case~sensitive because ASCII codes" are different for uppercase and lowercase letters. The proce~
dure does. not return a value, but the Carry and Zero flags can be interpreted as follows (using the
string] and srrz'ng2 arguments):

;,_§:I,|';€lf§{;§I]F-"Pi'|iL{l*‘,{l;?"?:{11liEl;l§13:, 1;’ -""li.': ii-ii?I'='7i[§"5-'t‘"??i‘5:'fifffl,i ‘Hg l"L5l|*_'_~"-“‘J~ -ti .?j*“~‘=_ 7* 4-'*=i-ifs-Q1-'_j' . 3
1 i~_i_nr_§_~’fi1-ln - r - : . l-_;I_ F-.3-. : g-_=_~§1_!1 IF glf :11, -_ __ h : .

-;. .,,g.. tr ._. , |_..

string I < string2 I 0' JB

stringl == string2 I 0 l JE

i string] > stringfl O O IA l

(You may recall that back in Chapter 6 we explained how the CMP instruction sets the Carry and
Zero flags when comparing unsigned integers.)

The following is a listing of the Str_c0mpare procedure. See the Comparensm program
for a demonstration:

str_compare PROC USES eax edx esi edi,
string1:PTR.BYTE,
string2:PTR BYTE

F
; Compare two strings.

Returns nothing, but the Zero and Carry flags are affected
exactly as they would be by the CMP instruction.

F
F
; ---~

mov esi,stringl
mov edi,string2

9.3 Selected String Procedures

L1: mov
mov
¢mP
jne
¢mP
jne
jmp

L2: inc
inc
¢mP

al,[esi]
dl,[edi]
al,0
L2
d1,0
L2
L3

esi
edi
al,dl

; end of stringl?
; no
; yes: end of string2?
; no
; yes, exit with ZF = 1

; point to next

; chars equal?
je Ll ; yes: continue loop

; no: exit with flags set
L3: ret
Str_compare ENDP

It might be asked, why wasn’t the CMPSB instruction used in this implementation? In
order to use CMPSB, we would have to know the length of the longer string. That would require
two calls to the Str_length procedure (in the next section). In this particular case, it is easier to
check for the null terminators in both strings within the same loop.

9.3.2 Str_length Procedure
The Str_length procedure returns the length of a string in" the EAX register. When you call it,
pass the offset of a string. For example:

INVOKE Strhlength, ADDR myString

Here is the procedure implementation:

Strglength PROC USES edi,
pString:PTR BYTE ; pointer to.string
mov edi,pString
mov eax,0 ; character count

_| I9 if‘ [U

flli3'<.‘

Oil)

U3

IJ4 cmp BYTE PTR [edi],0 end of string?
quit

: point to next
dd 1 to count

inc edi
inc eax
jmp L1

L2: ret
Str_length ENDP

"IO

See the-Lenglhasm program fora demonstration of this procedure.

9.3.3 Str__copy Procedure
The Str_c0py procedure copies a null-terminated string from a source location to a target
In-cation. Before calling this pr.ocedure,'you must make sure the target operand is large enough
m hold the copied string.'The syntax for calling Str_copy is:

INVOKE Str_copy. ADDR source, ADDR target

312 Chapter 9 ~ Strings and Arrays

No values are retumed by the procedure. Here is the implementation:

Stf;COpy PROC USES eax ecx esi edi,
source:PTR BYTE, ; source string
target:PTR BYTE ; target string

I

; Copy a string from source to target.
; Requires: the target string must contain enough
; space to hold a copy of the source string.
l----¢-s--q-p-nq--Q-0-.--In--g-gun--Q;-any¢-s-g;-an--pa-n-p-Q-no--¢-slum-q--ua-n-Q-Q-plan-nun--Q--gq.-.---|,.-...,-._,

INVOKE Str_length,source ; EAX = length source
mov ecx,eax ; REP count
inc ecx ; add 1 for null byte
mov esi,source
mov edi,target
cld ; direction = forward
rep movsb ; copy the string
ret

Str_copy ENDP

See the C0pySn:asm. program for a demonstration of this procedure.

9.3.4 Str trim Procedure
The St_r_trim procedure removes all occurrences of a selected trailing character from a null-
terminated string. You might use it, for "example, to remove all spaces from the "end of a string.
The logic for this procedure is interesting because you have to check a number of possible
"cases (shown here with # as the "trailing character):

l. The string is empty.
2. The string contains other characters followed by one _or more trailing characters, as ii;

“Hello##”.
3. The suing contains only one character, the trailingcharacter, as in “#”.
4. The string contains no trailing character, as in “Hello” or “H”.
5. The string contains one or more trailing characters followed by one or more nontrailing

"characters, as in “#H” or “###Hello”.

The easiest way to truncate "characters from a string is to insert a null byte just after the char-
acters you want to retain. Any characters after the null byte become insignificant. Here is the
pr0cedure’s source code. The T1-'im..asm program tests Str_trim:

Str_trim PROC USES eax ecx edi,
pString:PTR BYTE, ; points to string
char:BYTE ; char to remove

F
; Remove all occurrences of a given character from
; the end of a string.

9.3 Selected String Procedures

; Returns: nothing"
;¢.,-.-

IIIOV

INVOKE Str_length,edi
CWP
je
mov
dec
add
mov
std
repe
jne
dec

Llzmov
L2:ret
Str_trim

In all cases but one, EDI stops two bytes behind the character that we want to replace with

----Q.n-n--n1¢.,---

edi.pString

eax,0
L2
ecx,eax
eax
edi,eax
al,char

scasb
Ll
edi
BYTE PTR [edi+2],0 ;

ENDP

O-IQ-r -Q.--up--up--no-nu-r---Q q-----pg;-a--i our -0-nun---¢-n

; returns length in EAX
; zero—length string?
; yes: exit
; no: counter = string length

; EDI points to last char
; char to trim
; direction = reverse
; skip past trim character
; removed first character?
; adjust EDI: ZF=l && ECX=O

insert null byte

null. Note the following table, which shows various test cases for nonempty strings:

|"r_.|

til? 7" if *~*—;~" J — — —— — —— —17 — '— ——e—1 ‘>1 Jieee iv’? 7 77 7

A EDI, When i Zero “ Ii Position to
i String Definition SCASB Stops 3 Flag ECX Store the Null

str BYTE

7___l_ _ ___ _________‘. __, __, l— We e — sf e e ‘ ——— ‘W’ :_—:: — * _ _1-I

"He1lo##",O su+3 0 i >0 k&+2]

str BYTE ll#ll If 0 sn—l A 1 0 jedi+l:

‘str BYTE "He1lo“,O
"T

str+3 ‘ 0 ‘>0 Icdi+21

str BYTE IIHII I 0 sn—l 0 0 1edil-27-u
lF

str BYTE ||#H||,0 str+0 0 >0 @s+21

Using the first string definition from the foregoing table, the following figure shows the
position of EDI when SCASB stops:

insert null byte

lflle '1' oh t 0!
l l

EDI [EDI+2]

314 Chapter 9 1| Strings and Arrays

When SCASB en_ds,_ a special test is "made for the one case in which the string contains a
single character, and that character is the one to be trimmed. In this case, EDI points only one
byte ahead of the character to replace with null (since the SCASB stopped because ECX=0 and
not because ZF=1). To compensate, we decrement EDI -once before storing a null byte at
[edi+2], as shown in the following figure:

sir

l ? ? #]0 ? ?

l l
EDI [EDI + 2]

9.3.5 Str_ucase Procedure
The Str_ucase-procedure converts a string to all uppercase characters. It returns no value. When
you call it, pass the offset .of a string:

INVOKE Str_ucase, ADDR myString

Here is the procedure implementation:

Str_ucase PROC USES eax esi,
pString;PTR BYTE

; Convert a null—terminated string to uppercase.
; Returns: nothing

---q--nu-Q.---an-q-q--‘...

I _ fi _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ fi _ _ _ _ fi _ _ _ _ _ _ - __-

mov esi,pString
Ll:

mov al,[esi] ; get char
cmp al,0 ; end of string?
je L3 ; yes: quit
cmp al,'a' ; below "a"?
jb L2
cmp al,'z' ; above "2"?
ia." L2
and BYTE PTR [esi],l1011111b ; convert the char

L2:inc esi ; next char
jmp Ll

L3: ret
Str_ucase ENDP

(See the Ucasaasm program for a demonstration of this procedure.)

9.4 Two-Dimensional Arrays 315

9.3.6 Section Review

I. (True/False): The Str_c0mpare procedure stops when the null terminator of the longer
string is reached.

.2. (TmefFaZse): The Str_c0mpare procedure does not need to use ESI and EDI to access
memory.

3. (7?-uefFaZse): The Str_length procedure uses SCASB to find the null terminator at the end
of the string.

4. (True/False): The Str_c0py procedure prevents a string from being copied into too small a
memory area.

5. What Direction flag setting is used in the Str_trim procedure‘?
"6. Why does the Str_trim procedure use the INE instruction?
7. What happens in the Str_ucase procedure if the target string contains a digit?
8. Challenge.- If the Str_length procedure used. SCASB, which repeat prefix would be most

appropriate‘?
9. Challenge: If the Str_length_procedure used SCASB-, how would it calculate and retum the

string length‘?

9.4 Two-Dimensional Arrays
Many applications, mathematical and otherwise, involve the processing of two-dimensional arrays.
The Intel instruction set includes two‘ operand types, base-index and base~index-displacement,
which are well suited to array applications.

9.4.1 Base-Index Operands
A base-index operand adds the values of two registers (called base and index), producing an off-
set address. Any two 32-bit general-purpose registers may be used. Here are examples of various
combinations:

.data
array WORD l000h,2000h,3000h
. code.

mov ebx,OFFSET array
mov esi,2
mov ax,[ebx+esi] ; AX = 2000h

mov edi,OFFSET array
mov ecx,4
mov ax, [edi+ecx] ; AX = 3000h

mov ebp , OFFSET array
mov esi , 0
mov ax,[ebp+esi] ; AX = 1000h

316 Chapter 9. ~ Strings and Arrays

"" "' "'”"””"."""’7”l , '

In Real-address mode, it is possible to use 16-bit registers as ‘base-index operands. In that
pass, onlypermitted combinations are: [bxtsi], [bxjv-di], [bp+si],,,a11d _§As always, _:
avoid tieing BP except when addfessingdata on the. stack.) '

Table Exarnple A base-index operand is very useful when accessing two-dimensional tables.
A base register usually contains a row offset, and an index register contains "a column offset. To
show a simple application of this addressing mode, -let’s create a data definition for a table that
has three rows and five columns:

tableB BYTE 10h, -20h, son, eon, son
BYTE ooh, 70h, son, sch, onon
BYTE UBO-h, 0.C0h, 0_D0h, 0E0h, 0F_0h

Numflols = 5

In memory, this table is simply a continuous stream of bytes as if it were a one-
dimensional array. But we prefer to think of it as a two-dimensional table, and say that it has
three logical rows and five logical columns. We are not required to declare each table -row on a
separate line, but it" does help express the table struC.ture. The physical storage of this array is-" in
row-major order, where the last byte in the first row is followed by the first byte in the second
row, and so on.

Suppose we want .to locate a particular entry in the table using row and column coordi-
nates. Assuming that coordinates "at-‘e zero-based, we can see that the entry at row 1, column 2
contains 80h. All we have to do is set EBX to the table’s offset, add (NumCols * RowNumber)
for the row offset, and set ESI to the column number:

RowNumber = 1
ColumnNumber = 2
mov ebx,OFFSET tableB
add ebx,NumCols * RowNumber
mov esi,ColumnNumber
mov al,[ebx + esi] ; AL = 80h

Arbitrarily, let’s say that the array is located at offset 150. Then the effective address repre~
sented by EBX + ESI is I57. The following figure helps to show how EBX and ESI are added to
produce the effective address:

150 _, gg 155 157, g
L10 L20 L30 Lmiso Ljcivo he L90 Lao L1-so Lgokno LEO
K N ‘ff-I.§".~."-L if-7'7, 7'-';'I3”W "’—i'§<-E'n‘- ' ' rI13:\. ".‘-‘ ‘ ""-'t}"-1-I!’-§i’|&". .11‘ -;i'.§-1:17’"Y-§'i_?Q.i:__7n.i-‘iii;-.1 _'_-_-.55: *f_ __-_1

[ebx] [ebx + esi]

.,, .1;Q

As in the case of the other indirect addressing modes, if the effective address points out~
side the program’s data region, a general pro.tecti_0'n fault occurs.

9.4 Two-Dimensional Arrays 317
_ e 7 7 77 n

Calculating the 16-bit Sum The following program fragment (from Tableasm) calculates
the sum -of row 1 in our example table. It presents an interesting challenge, to add each byte to
a 16»bit accumulator:

RowNumber = 1
mov ecx,NumCols ; loop counter
mov ebx,0FFSET tableB
add ebx,(NumCols * RowNumber); move to row 1
mov esi,O ; beginning of row
mov ax,0 ; zero the sum
mov dx,O ; holds each value

L1:mov dl,[ebx+esi] ; get a byte
add ax,dx ; add to accumulator
inc esi ; point to next column
loop L1

Clearly, we cannot use AL as the accumulator because it would quicldy overflow. The sum,
.?.80h, must be stored in AX, a 16~bit register. As" an exercise, you can write code to calculate the
sum of a single column in the table.

9.4.2 Base-Index Displacement
A base.-index~displacement operand combines a displacement, a base register, and an index reg-
ister to produce an effective address-. Here are the two most common formats:

[base + index + displacement]
displacement[base + index]

Displacement can be either the name of a variable or a constant expression. Any general-purpose
32~bit registers may be used for the base and index. Because Re_al~address mode permits 16~bit
registers to used as baselindex operands, they are subject to the same restrictions as in base-
index addressing.

Table Example As in the case of bas.e~index operands, this type of operand is also well suited
to processing two-dimensional tables. The name of a table can be used as the displacement p01'~
tion of the operand, a base register can contain the. offset of a row within the table, and an index
register can contain the offset of a column within the row. For example:

tableB[ebx + esi]

I_et’s use the" same data definition we used in Section 9.4.1:

tableB BYTE 10h, 20h, 30h, -40h, 50h
BYTE 60h, 70h, 80h, =90h, OA0h
BYTE OBOh, OC0h, ODOh, OEQh, OF0h

NumCols = 5

313 g 7 g i Chapter 9 ~ Strings and Arrays

Suppose we want to locate a particular entry in the table using row and column coordinates.
Assuming that coordinates are zero-based, we can see that the entry at row 1, column 2 contains
80h. All we have to do is set EBX to the offset of row l and set ESI to column number 2:

mov eb:-t,Nu.mCols. ; offset of row 1
mov esi,2 ; column number
mov al,tableE-[ebx + esi] ; [150 + 5 + 2] = [157]

; AL = 80h

Assuming for the moment that tableB begins at offset 150, the following diagram shows
the positions ofEBX and ESI relative to the array:

(150 g _ H W 155 g 15’? _
10 20 30- 40 50 60 70 80 90 A0. B0 C0 D0 E0 F0 "L

..+.s..=..~:. i I “~e+-r‘---rs -— *1 iii Ia-Baits».-

table table[ebx] tabte[ebx + esi]

.é‘§:'i'\‘£"'L1T='3'

(The Table2.asm. program on the sample prograrn disk contains the complete implementation of
this example.)

9.4.3 Section Review

F"!-'°!‘~"‘£“‘

In a base-index operand, which registers can be used?
Show an example of a base-index operand.
Show an example of a base-index-displacement operand.
Suppose a two-dimensional array of doublewords has three logical rows -and four logical
columns. If ESI is used as the row pointer, what value would be added to ESI to move from
one row to the next?

5. Suppose a two-dimensional array of doublewords has three logical rows and four logical
columns. Write several instructions using ESI and EDI that would address the third C0lt1mn
in the second row. (Numbering for rows and columns starts at zero.)

6. Challen.ge: In Real-address mode, is there any problem with using BP to address ar.
array? _

'7. Cltallenge-: In Protected mode, is there any problem with using EBP to address an array?

9.5 Searching and Sorting Integer Arrays
A great deal of time and energy has been expended by computer scientists in finding better ways
to search and sort massive quantities" of data. It has been easily proven that choosing the bes:
algorithm for a particular application is far more useful than buying a faster computer. Most sm-
dents study searching and sorting using high-level lan-guages such as C++ and Java. But it‘s ver_-."
possible that assembly language lends a different perspective to the study of algorithms, as we
are able to see the low-level implementation details. It's interesting to note that the most famous

9.5 Searching and Sorting Integer Arrays 319

algorithm author of the twentieth century, Donald Knuth. used assembly language for his pub-
lished program examplesii‘

Searching and sorting. also gives us an excellent chance to try out some of the addressing
modes introduced in this chapter. In particular, base-indexed addressing turns out to be very use-
ful because we can point one register (such as EBX) to the base of an array. and use another reg-
ister (such as ESI) to index into any other array location.

9.5.1 Bubble Sort
A bubble sort compares each pair oi’ array values. beginning in positions 0 and l. If the two val-
ues are found to be in reverse order. they are exchanged. The following illustration shows one
complete pass through a list of integers:

One Pass (Bubble Sort)
-ii-—v-w-—-—-—-u-uu—uu-in‘ as

lK3 \,._d1M T T T 11g ‘ll ggtl
1 "ls 3 ‘ ‘ 0 0L1} Lid

lit
7

T T E?
T‘,_

l
-in i

2 2
$0

.5
-in. . l

U1

. l
pi

is 3 3 i 3 5'
7 ‘ 7 5 .

2 §
tale

A *-

5 l 5

2. A 7
-----—--i-

ii 7 Z
7? T9 i9g T

b-J-II»
i i l I ‘ -‘g 3 0 3 3 * 3 3 (9-at

4 . :T‘TET"§"T3l:___
(shaded values have been exchanged)

.-Xfter one pass. the array is still not sorted, so an outer loop starts another pass through the array.
After n-l passes, the array is guaranteed to be sorted.

A bubble sort works well for small-sized airays, but it becomes tremendously ineilicient
for larger ones. lt is an O(n2) algorithm. meaning that the sort time increases quadratically in
relation to the number of array elements (n). Suppose, i"or example. that it takes 0.l second to
-sort 1000 elements. As the number of elements increases by a factor of l0, the time required to
son the an-ay increases by a factor of I02 (I00). The following table shows sort“ times for various
array sizes. assuming that i000 array elements can be sorted in 0.l seconds:

Array Site Time (seconds)

L000 0.]

l0.000 I0 .0

'-' Knuth, Donald. The Ar! cf Compare!‘ Pr0gi'cunnu'ug, Volume I: Fu_nc!cmmrm! A!gr11'iflun.s.

320 Chapter 9 ~ Strings and Arrays

’ ’ ’ ' ’ 7’ iiifi _'\ iiiiiii

iflirray-i$i2e*??iiii1“ *'Ti'riie (s§'Eond_s) "

100,000 1000

1,000,000 100,000 (27.7-8 hours)

A bubble sort would not be a.good sort for anarray of 1 million integers, as it would take over 2'7-
hours to-finish! But it is fine for a few hundred integers.

Pseudocode It’s useful to create a simplified version of the bubble sort, using pseudocode that
is similar to assembly language. We will use N to represent the size of the array, cxl to. represent
the outer loop counter, and cx2 to represent the inner loop counter:

"cxl = N — 1
whilei cxl > 0 l
{'

esi = addr(array)
cx2 = cxl
whi1e(cx2 > 0)
l

if(_array[eSi] < array[esi+4])
exchange(arrayiesi], array[esi+4])

add esi,4
dec cx2

}
dec cxl

}
Mechanical concerns, such as saving -and restoring the outer loop counter, have purposely been
left out. At a glance. it is clear that the inner loop cotmt (cx2) is based on the current value of the
outer loop count (cxl), which in turn, decreases with each pass through the array.
Assembly Language Once the pseudo.code is understood, it becomes .a small step to create the
final implementation in assembly language, placing it in a procedure with parameters and local
variables:

. __'_.________..................I
Bubb1eS0rt PROC USES eax ecx esi,

pAxray:PTR DWORD, ; pointer to array
Count:DWORD ; array size

; Sort an array of 32-bit signed integers in ascending
; order, using the bubble Sort algorithm.
; Receives: pointer to array, array size
; Returns: nothing
r _ _ _ _ - _ _ _ _ - _ . _ _ , _
I

mov ecx,C0unt
dec ecx ; decrement count by 1

9.5 Searching and Sorting Integer Arrays 321

‘IIILl: push ecx save outer loop count
mov esi,pA:i:ray point to first value‘II

L2: mov eax,[esi] ; get array value
cmp [esi-I-4] ,eax ; compare a pair of values
jge L-3 ; if [ESI] <= [EDI], don't exch
xchg eax, [esi+4] ; exchange the pair
mov [esi],eax

"HQ"NI i-I.

L3: add esi_,4 move both pointers forward
loop L2 nner loop

pop ecx ; retrieve outer loop count
loop Ll ; "else repeat outer loop

L4 : ret
BubbleSort ENDP

9.5.2 Binary Search
It is surprising how often a simple array search is necessary in everyday programming applica-
tions. For a-small array (I000 elements or less), it’s easy to do a seqzterzrial search, where you
start at the beginning of the array and examine each element in sequence until a matching one is
found. For any array of n elements, such a search requires an average of at I 2 comparisons. If a
small array is involved, one would hardly notice" the time taken to perform a sequential search.
On the Other hand, searching.an array--of 1 million elements might be impractical.

The binczry search algotithm was discovered to be particularly effective when searching for
a single item in a large array. It has one important precondition: the array elements must be
arranged in either ascending or descending"-"order. Herefs an informal description of the algorithm:
Before beginning the search, ask the user to enter an integer, which we will call sea:-ch.Val.

1. The range of the" array to be searched is indicated by the subscripts named first and last. If
first :-- last, exit the search, indicating failure to find a match.

2. Calculate the midpoint of the array, between array subscriptsfirst and last.
3. Compare sea:-c/zVaI to the integer at the midpoint of the array:

~ If the values are equal, return fi'om the procedure with the midpoint in EAX. This return
value indicates that a match has been found in the array.

~ On the other hand, if searchlrzl is larger than the number at the midpoint, reset the first
array subscript to one position higher than the" midpoint.

~ Or, if search Val is smaller than the number at the midpoint, reset the last array subscripfto
one position below the midpoint.

-i. Retum to Step 1.

The binary search is tremendously efficient because it uses a divide and conquer strategy.
The range of values is divided in half with each iteration of the loop. In general, it is described-as

322 Chapter 9 ' Strings and Arrays

an O(log rt) algorithm, meaning that as the number of array elements increases by a factor of)1,
the average search time increases by only a factor of log n. Because the actual search times are
so short, the following table simply records the maximum number of comparisons required for
various array sizes:

Array Si_§e.(n) _ _‘_Maxin1um Number of __
., -ts':s1n‘i§st-traits: (léiii n) +'i

64 7

lfl24 ll

65-.536 A l7
1 .043.-576 ‘ 2|
-4.,294,967,296 N 33 N

Following is -a C++ implementation of a. binary search function that Works with signed
integers:

int BinSearch(int va1ues[], const int searchval, int count J
{

int first = O;
int last = count -- 1;_
whi1e[first <= last)
{

int mid = (last + first) / 2;
if(values[mid] < searchval)

first = mid + 1;
else if(va1ues[mid] > searchval)

last = mid — 1;
else

return mid; // success
}
return -1; // not found

}
Following is an assembly language implementation of the binary search:

- iiiiiiiiiiiiiiiii iiii iiiiiiiiii iiiiiiiiiiiiiiiiiiijjijijiijI14-I
I

BinarySearch PROC USES ebx edx esi edi,
pArray:PTR DWORD, ; pointer to array
Count:DWORD, ; array size
searchVa1:DWORD ; search value

LOCAL first:DWORD, ; first position
1ast:DWORD, ; last position
mid:DWORD' ; midpoint

I

9.5 Searching and Sorting Integer Arrays

§

I

0
I

-0
I

I
I

0 — — w Q Q — ‘-w-
I

mov
mov
dec
mov
-mov
mov

Ll: ; while first <= last
HIOV

cmp
is

; mid = (last + first) / 2
mov
add
shr
IIIOV

first,O
eax,Count
eax
last,eax
edi,searchVal
ebx;pArray

eax,first
eax,last

Search an array of signed integers for a single value.
Receives: Pointer to array, array size, search value.
Returns; If a match is found, EAX = the array position of the
matching element; otherwise, EAX = -1.

--u‘--u-an---av----u‘_-ru—--u--u‘---u--u--u--u--u--1-‘_._.--u-rar__Qr—;aru—-u-ru—‘_ar¢Qr¢Qr

; first = O
; last = (count — 1)

; EDI = searchval
; EBX points to the array

L5 ;-exit search

eax,1ast
eax,first
eax,1
mid,eax

; EDX = values[mid]
IIIOV esi,mid
shl esi,2 ; scale mid value by 4
mov edx,[ebx+esi] ; EDX = values[mid]

; if 1 EDX < searchval(EDI))
; first = mid + 1;

cmp
Il 98
RIOV

inc
RIOV

jmp
; else if(EDX > searchVal(EDI))

edx,edi
L2
eax,mid ; first = mid + 1
eax
first,eax
L4

; last = mid = 1;
L2=cmp

jle
mov
dec
mov
jmp

; else
L3:mov

jmp

edx,edi
L3
eax,mid
eax
last,eax
L4

return mid
eaxgmid
L9

; optional

; last = mid - 1

; value found
; return (mid)

324 Chapter 9 - Strings and Arrays

L4: jmp Ll ; continue the loop

LS:mov eax,-1 ; search failed
L9:ret
Binarysearch ENDP

9.5.2.1 Test Program
To demonstrate both the bubble sort and binary search functions presented in this chapter, let’s
write a short test program that performs the following steps, in sequence:

~ Fills an array with random integers
' Displays the array
- Sorts the array using a bubble sort
' Redisplays the array
~ Asksthe user to enter an integer
' Performs a binary "search for the user’s integer (in the array)
' Displays the results of the binary search

The various procedures have been placed in separate -source" files to make it easier to locate
and edit source code. Table 9-2 lists each module and its contents. Most professionally written
programs arealso written in separ'ate_ modules.

Table 9-2 Mod.lIes in the Bubble Sort/Binary Search Program.

Module 4 __ -Contents
. _.r_ . _ i ' _ I‘ --.-_-’ 1.-;.;-Li. . , - -It - --;. -r__ _ ___: _ ___:-1'4_

. B_mai_n.asm Main module: Contains the main, ShowRes_ults, and Ask-
, ForSearchVal procedures. Contains the prograrn entry

‘i point and manages the overall sequence of tasks,

Bsort.asm BubbleSorl: procedure: Performs a bubble sort on a 32-bit
signed integer array.

A Bsearch.asm BinarySearch procedure: Performs a binary search on" _a
32-bit signed integer array.

E-i11Ar,|'y.asm FillArray procedure: Fills a 32-bit signed integer array
with a range of random values.

PrtAny.asm PrintArr'ay procedure: Writes the contents of a 32-bit
signed integer array to standard output.

The procedures in all modules -except B_main me written in such a way that it would be
easy to use "them in other programs without making any modifications. This is highly desirable,
because we might save time in the future by reusing existing code. The same-approach is used ii;
the Irvine32 and Irvine16 link libraries.

9.5 Searching and Sorting Integer Arrays 325

Following is an include file (Bsearch.inc) containing prototypes of the procedures called
from the main module:

; Bsearch.inc - prototypes for procedures used in
; the BubbleSort / BinarySearch program.

; Searches for an integer in an array of 32-bit signed
; integers.
Binarysearch PROTO,

pArray:PTR DWORD, ; pointer to array
Count:DWORD, ; array size
searchVal=DWORD ; search value

; Fills an array with 32-bit signed random integers
FillArray PROTO,

pArray:PTR DWORD, 7 pointer to array
Count:DWORD, ; number of elements
LowerRange:SDWORD, ; lower range
UpperRange:SDWORD ; upper range

; Writes a 32-bit signed integer array to standard output
PrintArray PROTO,

pArray = PTR nwoan ,.
Count:DWORD

; Sorts the array in ascending order
BubbleSort PROTO,

pArray:PTR DWORD,
Count:DWORD

Following is a listing of B___:mtin.asm, the main module:

TITLE Bubble Sort and Binary Search B_main.asm)

; Bubble sort an array of 32-bit signed integers,
; and perform a binary search.
; Main module, calls Bsearch.asm, Bsort.asm, FillArry.asm

INCLUDE Irvine32.inc
INCLUDE Bsearch.in¢ ;

LOWVAL = -5000
HIGHVAL = +5000
ARRAY SIZE ~ S0

.data
array nwoao ARRAY_SIZE DUP(?)

1
I

I

I

F

.code
main PROC

call Randomize

procedure prototypes

minimum value
maximum value
size of the array

Chapter 9 ~ Strings and Arrays

; Fill an array with random signed integers
INVOKE FillArray, ADDR array, ARRAY_SIZE, Lowvnn, HIGHVAL

; Display the array
INVOKE PrintArray, ADDR array, ARRAY_SIZE
call WaitMsg

; Perform a bubble sort and redisplay the array
INVOKE BubbleSort, ADDR array, ARRAY__SIZE
INVOKE PrintArray, ADDR array, ARRAY_SIZE

; Demonstrate a binary search
call AskForSearchVal ; returned in EAX
INVOKE sinarysearch.

ADDR array, ARRAY_SIZE, eax
call ShowResults

exit
main ENDP

.-u-rt-u-was-u-r-I-r-u-r-I-r-u-r—an-Q-----u-n-i--1-r-r-1-r-1-r—n—n¢—n--u--nu--.-1-r_¢—n¢—¢-n-—----0-w-u-r-I-r-u-r-I-r-u-r-I-r————————————

AskForSearchVal PROC
5

Prompts the user for a signed integer.
; Receives: nothing
; Returns: BAX = value input by user
I-1-v-on--..-.--q---..-...-._...——lIu-————..-.--...-v—;————--—~-v--_...————||-I|—;_...-v---I--'-

.data
prompt BYTE "Enter a signed decimal integer "

BYTE "to find in the array: ",0

I
I

.code
call Crlf
mov edx,0FFSET prompt
call WriteString
call ReadInt
ret

AskForSearchVal ENDP

I--u----i.-1--u-r-r--———---u----u--u----Q___-------u----u-u-r-n--r_——-u---pr--------u-Q-Q-u-r..-.-v-u-r—n-I-r—

ShowResults PROC

; Displays the resulting value from the binary search.
; Receives: EAX = position number to be displayed
; Returns: nothing
F * “ ' “ “ * “ “ “ ' ' ” “ ' “ “ “ “ “ “ ' ' “ “ “ “ “ “ “ “ “ ' “ ' “ ‘ ' ' “ “ ' ' ' "
.data
msgl BYTE "The value was not found.",0
msg2 BYTE "The.value was found at position ",0

9.5 Searching and Sorting Integer Arrays

.code

.IF eax == ~1
mov edx,OFFSET msgl
call WriteString

.ELSE
mov edx,OFFSET msg2
call WriteString
call WriteDec

. ENDIF
call Crlf
call Crlf
ret

ShowResults ENDP
END main

The PrintArray and FillA1‘I‘ay procedures, shown next, are each in their own source code
modules:

;-I-_-clues!-t-.1v—\-w1-I--w-hjjjjijjiijijjjijauijiv-I--t-.u-r--

Printnrray PROC USES eax ecx edx esi,
pArray:PTR DWORD, ; pointer to array
Count:DWORD ; number of elements

‘HI"Inc‘Inc

3

MIHQ‘HI
IIF6llllIllllIlllllllIllIIlIlllllllllll

eturns: nothing

.data
comma BYTE ", ",0
.code

mov esi,pArray
mov ecx,Count
cld

L1:lodsd
call WriteInt
mflv edx,OFFSET comma
call Writestring
loop L1

call Crlf
ret

Printarray ENDP
. jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj11
I

FillArray PROC USES eax edi ecx edx,
pArray:PTR DWORD,
Count:DWORD,
L0werRange:SDWORD,

F

‘Inc

‘Isl

0
I

F
0
I

F

—~I-v-Oiijjjjjjj-I--»--w--»-I-I-1-I-1-I--w-w

rites an array of 32~bit signed decimal integers to
standard output, separated by commas.
Receives: pointer to array, array size

1-I--I--I--t-.0‘!-t-.-I-it-I-111111---t-.1

direction = forward

load [ESI] into EAX
end to outputU3

display comma

pointer to array
number of elements
lower range

p---|—>

Chapter 9 - Strings and Arrays

UpperRange:SDWORD ; upper range
7
; Fills an array with a random sequence of 32-bit signed
; integers between LowerRange-and (UpperRange - I).
; Returns: nothing

mov edi,pArray ; EDI points to the array
mov ecx,Count ; loop counter
mov edx,UpperRange
sub edx,LowerRange ; EDX = absolute range (0..n)

I
I

IJJIMOV eax,edx ; get absolute range
call RandomRange
.add ea_x,LowerRange; ; bias the result
stosd ; store EAX into [EDI]
Loop L1

ret
FillArray ENDP

9 5 3 Section Review

If an array were already in sequential order, how many times would the outer loop of the
BubhleS0rt procedure Section 9.5.1 execute?
In the BubbleSort procedure, how many times does the inner loop execute on the first page
through the array?
In the BubbleS0rt procedure, does the inner loop always execute the same number or
times?
If it were found (through testing) that an array of 500 integers could be sorted in 0.5 sec-
onds, how many seconds would it take to bubble sort an array of 5000 integers?
What is the maximum number of comparisons needed by the binary search algorithm when
an array contains l"28 elements?
Given an array of n elements, what is the maximum number "of comparisons needed by the
binary search algorithm?
ChaHanga.' In the BinarySearch procedure (Section 9.5.2), why is it that the statement at
label L2, could be removed without affecting the outcome"?
Challenge: In the BinarySearch procedure, how might the statement at label L4 be
eliminated?

9 6 Chapter Summary
String primitive instructions are unusual in that they require no register operands and are opti-
mized for hi gh-speed memory access. They are:

' MOVS: Move string data

9.6 Chapter Summary 329

' CMPS: Compare strings
' SCAS: Scan string
' STOS: Store string data
~ LODS: Load accumulator from string

Each of these instructions has a suffix of B, W, or D when manipulating bytes, words, and dou-
blewords, respectively.

“REP repeats a string primitive instruction, with automatic incrementing or decrementing
of index registers. For example, when REPNE is used with SCASB,.it scans memory bytes until
a value in memory pointed to by EDI matches the contents "of the AL register. The Direction flag
’determ-ines whether the index register is incremented or decremented during each iteration of a
string primitive instruction.

Strings and arrays are practically the same. Traditionally. a string consisted of an array of
single-byte ASCII values-, but now strings can also be arrays of 16,-bit Unicode characters. The.
-only important difference between a string and an array is that a string is usually terminated by a
single null byte (containing zero).

Array manipulation is processor-intensive because it nearly always involves a looping
algorithm. Most programs spend a high percentage (80 to 90) of their time executing a small
fraction of their overall co.de. As a result, you can speed up your softwareby reducing the num-
ber and complexity of instructions inside loops. Assembly language is a great tool for code opti-
mization because you can control every detail. For instance, you might choose to use registers
rather than memory variables. Or, you might use one 0|’ the string-processing instructions shown
in this chapter rather than MOV and CMP instructions.

Several useful string-processing procedures were introduced in this chapter: The Str_c0py
procedure copies one string to another. Str_length returns the length of a string. Str_c0mpare
compares two strings. Str_trim removes a selected character from the end of a string. Str_ucase
converts a string to. uppercase letters.

Base-index operands make it easier to process two-dimensional arrays (tables). You can
set a base register to the address of a table row, and poi-nt an index register to the" offset of a col-
umn within the selected row."Any general-purpose 32-bit registers can be used as base-and index
registers. Base-index-displacement operands are similar to base-index, except that this)’ also
include the nameol’ the array:

[ebx + esi] ; base-index
array[ebx + esi] ; base-index-displacement

We presented assembly language implementations of a bubble sort and a binary search. A
bubble sort orders the elements of an array in ascending or descending -order. It is effective" for
arrays having no more than a few hundred elements, but inefficient for larger arrays. A binary
search permits rapid searching for a single value in an ordered array. It is easy to implement in
assembly language.

330 Chapter 9 ~ Strings and Arrays

9.7 Programming Exercises
The following exercises can be done in either Protected mode or Real-address mode. Each of the
following procedures assumes the use of nul.l-terminated strings. Be sure to write a short driver
program that tests each procedure.

1. Improved Str_copy Procedure
The Str_copy procedure shown in this chapter does not limit the number of characters to be cop-
ied. Create a. new version (named Str_copyN) that requires an additional input parameter indi-
cating themaximum number of characters to be copied.

2. Str_concat Procedure.
Write a procedure named Str_concat that concatenates a source string to the end oi’ a target
string. Sulficient space must be available in the target string betore this procedure is called. Pass
pointers to the source and target strings..Here is a sample -call:

.data
targetStr BYTE "ABCDE",1O DUP(0)
s0urceStr BYTE "FGH",O
.code
INVOKE Str_concat, ADDR targetStr, ADDR sourcestr

3. -Str_remove Procedure
Write a procedure named "Str_remove that removes n characters from a string. Pass a pointer tr
the position in the string where the characters are to beremoved. Pass an integer specifying the
number of characters to remove. The following-code, for example, shows how to remove “xxxx"
from target:

.data
target BYTE " abcxxxxdefghijklmop " , 0
.code
INVOKE Str_remove, ADDR [target+3], 4

4. Str_find Procedure
Write a procedure named S.tr_find that searches" for the first matching occurrence 0|’ a source-
string inside a target string and returns the matching position. The input parameters" should be .1
pointer to the source string and a pointer to the target string. If a match is found. the procedure
sets the Zero flag and EAX points to the matching position in the target string. Otherwise, the
Zero flag is clear. The ‘Followin g code, forexample, searches for “ABC” and returns with BAX
pointing to the “A” in the target string:

.data
target BYTE "123ABC342432",0
source BYTE "ABC",0
pos DWORD ?

9.7 Programming Exercises 331

.code
INVOKE Stn_find, ADDR source, ADDR target
jnz notFound
mov pos,eax ; store the position value

5. Str___nextword Procedure
Write. a procedure called Str_nextword that scans a string for the first occurrence of a certain
delimiter character and replaces the delimiter with a null byte. There are two input parameters: a
pointer to the string, and the delimiter character. After the call, if the delimiter was found, the
Zero flag is set and BAX contains the offset of the next character. beyond the delimiter. Other-
wise, the Zero flag is. clear. For example, we can pass the address of target and a comma as the
delimiter:

.data
target BYTE "Johnson,Ca1vin",Q
.code
INVOKE Str_nextword, ADDR target, ’,'
jnz notFound

After calling Str_nextword, EAX would point to the character following the position where the
comma was found (and replaced):

f _ m null bytes g

J 0 l1 n s 0 11 * C a I v i n * E
ssssesseaaseaasnsnnseessnsnensznnszanssassszsrrsnennssesnsssasaessssessassassins

Esfii

6. Constructing a Frequency Table
Write a procedure named Get_£requencies that constructs a character frequency table. Input to
the procedure should be a pointer to a string, and a pointer to an array of 256 doublewords. Each
array position is indexed by its corresponding ASCII code. When the procedure returns, each
entry in the array contains a count of how many times that character occurred in the string. For
example:

.data
target BYTE "AAEBDCFBBC", O
freqTable DWORD 256 DUP(0)
.code
INVOKE Get_frequencies, ADDR target, ADDR freqTab1e

Following is a picture of the string and entries 41 (hexadecimal) through 48 in the frequency
table. Position 41 contains the value 2 because the letter A (ASCII code 41h) occurred twice in
the string. Similar counts are shown for the other characters:

332 Chapter 9 ' Strings and Arrays

Targetstring:IAIAIEIBIDICIFIBIBICIOI
_ I .. __

ASCH code: 41 41 45 42 44 *4? 46 42 42 43 0

Frequencytable: 2I 3 I 2I 1 I 1 It I 0 I 0 I 0 IOI 0 I

Index: 41 4243 44” 450146 47 4s 49 4.4. 4B -etc.

Frequency tables are useful in data compression and other applications involving character
processing. For example, the Huffman encoding algorithm stores the most fiequently occurring
characters in fewer bits than other characters that occur less often.

7. Sieve of Eratosthenes
The Sieve ofErmfosr11e:-res, invented by the Greek mathematician having the same name, pro-
vides a way to find all the prime numbers within a given range. The algorittun. involves creating
an array of bytes in which positions are “1narl<ed” by inserting l’s in the following manner:
Beginning with position 2 (which is a prime number), insert a l in each array position that is a
multiple of 2. Then do the same thing for multiples of 3, the next prime number. Find the next
prime number after 3, which is 5, and mark all positions that are multiples of 5. Proceed in this
manner Imlil all multiples of primes have been found. The remaining positions of the array that
are unmarked indicate which numbers are prime. For this program, create a 65,000-element
array and display all primes between 2 and 65 ,000.

8. Bubble Sort
Add a variable to the Bubblt-:Sort procedure in Section 9.5.1 that is set to l whenever a pair of
values is exchanged within the inner loop. Use this variable to exit the sort before its normal
completion if you -discover that no exchanges took place during a complete pass through the
array. (This variable is commonly known as an exchangeflag.)

9. Binary Search
Rewrite the binary search procedure shown in this chapter by using registers for mid, first, and
last. Add comments to clarify the registers’ usage.

Structures and Macros

10.1
10.1.1
10.1.2
10.1.3
10.1.4
10.1.5
10.1.6
10.1.7
10.1.8

10.2
10.2.1
10.2.2
10.2.3
10.2.4
10.2.5
10.2.6
10.2.7

10.3
10.3.1
10.3.2
10.3.3
10.3.4
10.3.5
10.3.6-
10.3.7
10.3.8

10.4
10.4.1
10.4.2
10.4.3
10.4.4
10.4.5
10.4.6

Structures
Defining Structures
Declaring Structure Variables
Referencing Structure Variables
Example: Displaying the System Time
Nested Structures
Example; Drunkard’s Walk
Declaring and Using Unions
Section Review

Macros
Overview
Defining Macros
Invoking Macros
Macro Examples
Nested Macros
Example Program: Wrappers
Section Review

Conditional-Assembly Directives
Checking for Missing Arguments
Default Argument Initializers
Boolean Expressions
IF, ELSE, and ENDIF Directives
The IFIDN and IFIDNI Directives
Special Operators
Macro Functions
Section Review

Defining Repeat Blocks
WHILE Directive-
REPEAT Directive
FOR Directive
FORC Directive
Example: Linked List
Section Review

10.5 Chapter Sumrnaly
10.6 Programming Exercises

334 Chapter 10 - Structures and Macros

10.1 Structures
A structure is a template or pattem given to -a logically related group of variables. The individual
variables in the "structure are calledfields. Program statements can access the structure as a sin-
gle entity, or they can access individual fields.

Structures have been around a long time, as long as programming languages themselves.
They were essential whenever programs needed to pass a lot of data from one procedure to
another. For example, suppose the input to a procedure consisted of twenty different units of data
relating to a disk drive. It would not be practical to call the procedure and try to pass all the
required arguments in the correct order. Instead, you could place all of the related data in a struc-
ture and pass the address of the structure to the procedure. Very little stack space would be used
(one address), and it would give the called procedure the opportunity to insert new data into the
structure fields.

One bit of good news: structures in assembly language are essentially the same as struc-
tures in" C and C—1—1-. With a small effort at translation, you "can take any structure from the MS-
Windows API library and make it work in assembly language. A good debugger -such as
Microsoft Visual Studio will display the names and contents of structure fields at runtime.
COORD Structure Let’s start with a simple example: The COORD structure used by the MS-
Windows. programming libraty identifies X "and Y screen coordinates. The field named X has an
offset of 0 relative to the beginning of the structure, and the field Y‘s offset equals 2:

COORD STRUCT
X WORD ? : offset 00
Y WORD ? ; offset 02

COORD ENDS
..L :****'*.*1. ..:'* .*".”’. .- ‘TT’.TT”” . 1-’ ir";’I’¢ ~- iiiiw - " — 7| I. ~\.- , _-_ 41.1‘-II\FO‘:‘_:-1].);-(i_t, _.|,-.5,_ X, 1_|__; ___); - L.‘-'__. _;>s_§-1-‘L _.,¢-‘___. ___; , ‘---1- .__,\-_- _ , _ I-15.2‘!-4?-4'5? €-|,.-¢l-n51r,.1-'\";.\-[&-»eJ_- ‘fa, _-‘- _-____-'3-1.’. 1- '- -._-_.£ ..; 2.-.1r_ §,1__.- 111.11 -5 i’-nu; ."_. .-,-_- .-.\-.- .-—-L1 15.!‘ ,"~I _.,._,-._., ---._.- -| - .. _14. *','r_:%...=41'_.' '-" _ -.-".12. ;i.'3"..‘ 1 ; ‘-‘="_'.~1~"'*.:- -1’ .-’ "._-'=€'“*“j-:4, 3 1 1 -"1 " 1 overlapfl1e»1s4m@-area in:Y:.~..:.:e.1~..=::_<;==-:1-"~s.e ~.;='._ .. --- -- -" ~ -~ - -c -... . _ . - . .

‘J10 _ __J_ _._ _‘,I __ -‘I-i V. _.‘.\f:v ___ __ -. _.:_,. _ _ .1. __ 41 -II "_-1",!‘ _ 1

=6‘:-.*.s' ";.‘?=‘?-:;-;'.f;‘rf=_?.-§l§."'.*_- .-'.,1~‘a':.‘5. I-_ _ -._=_;;g\;._ _,_;...--:-Li;-_l;-3-I->j >‘- ='r1;F-_=;.f-’.-;;l;T?_-I:-5-iii‘:2-_-:51;-1“: ___:;_._'_____ __ __ _‘ .‘r_r"N.
s rr\.'|'_ it :1'\‘_ I‘?,1:=1‘ t-

Using a structure involves three sequential steps:

1. Define the structure.
-2. Declare one or more variables of the structure type, called .s'n'ucrure- variables.
3. Write runtime instructions that access the structure fields.

10.1.1 Defining Structures
A structure" is defined using the STRUCT and ENDS directives. Inside the structure, you define
fields using the same syntax as for "ordinary variables. The basic syntax is:

name STRUCT
field-declarations

name ENDS

Structures can contain virtually any number of fields.

10.1 Structures 335

Field Irzitializers When you provide initializers for the fields in a structure, they become the
default values when structure variables are declared. You can use various types of initializers:

~ Undefined: Use ‘? to leave the field contents undefined.
' Strings: Use characters enclosed in quotation marks to intialize a field with a string.
1 Integers: Use either an integer constant or an integer expression to. initialize an integer

field.
~ Arrays: Use the DUP operator to initialize array elements when the field is -an array.

For example, let’s define a structure named Employee that describes employee informa-
tion, with fields such as ID number, last name, years of service, and an array of salary history
values. The following structure definition would be inserted in the program prior to the declara-
tion of any variables of type Employee:

Employee STRUCT
Idbiurtt BYTE "'0_0000'00_00"
Lastltiame BYTE 3.0 DUP(0)
Years WORD 0
Sala.ryt-Iistory DWORD 0,0,0,0

Employee ENDS

The following figure shows a linear representation of the structure:

|f'000000000t | (null) |0I 0 | 0 | 0 I '0 |
IdNum LastName 1———— SalaryHistory ————l

Years

10.1.2 Declaring Structure Variables
You can declare instances of a structure (called sn'ucrure vm'1'abZes) and-initialize them with spe-
cific values. If empty angle brackets <2-=~ are used, the assembler retains a structure’s default field
initializers. Or, you can insert new values in selected fields. Examples of both approaches are
shown here, using the COORD and Employee structures:

.data.
pointl COORD <5,10>
point-.2 COORD <>
worker Employee -0-

It is possible to override some .or all of the default field values. The following example
overrides the IdNum field of the Employee structure:

personl Employee <:"555223333">

.-kn alternative notational form uses curly braces { } rather than angle brackets:

person2 Employee {"55522333-3"}

336 Chapter 10 - Structures and Macros

When the initializer for a string field is shorter than the field, the remaining positions are
padded with spaces. It’s important to note that a null byte is not automatically inserted at the end
of a string field. If you plan to call library functions such as WriteString, you have to insert the
null byte yourself.

You .can skip over structure fields by inserting commas as place-markers. For example, the
following statement skips the. IdNum field and initializes the LastName field:

person3 Employee <,"Jones">

If the field contains an array, use the DUP operator to initialize someor all of the array
elements. If the initializer is shorter than the field, the remaining positions will be filled with
zeros. Here, for example, we initialize the first two Salaryl-Iistory values and set the rest to
zero:

persone Employee <,,,2 DUP(20000)>

Array of Structures You can declare an array of structures, as is done in the next example;
Each element of AllPoints is initialized to <:0,0>:

NumPoints = 3
AllPoints COORD NumPoints DUP(<0,0>)

10.1.3 Referencing Structure Variables
References to both structure variables and structure names can be made using the TYPE and
SIZEOF operators. For example, let’s return to the same Employee structure we saw earlier:

Employee STRUCT : bytes
IdNum BYTE "000000000" ; 9
Last-.Name BYTE so DUP(0) ; 30
Years WORD 0 -; 2
SalaryHistory DWORD 0,0,0,0 ; 16

Employee ENDS ; 57 total

Given the following data definition,

.data
worker Employee <>

each of the following expressions returns the same value:
TYPE Employee ; 57
SIZEOF Employee ; 57
SIZEOF worker ; 57

m$~
urlii11

Zr-il___ ___ iii, __J _ _ _ _ 7 7 77_7 7 _77777_7'7_' _ 7i’ _'l'77777777 7 77 7777’7':* 77717777 777 _ _ _ _ i
' ' - I" - .-"-:"*'-‘.’.'-_'_.'*11":";'.§g't'-t'.'='i'===.~‘-.' "-;.'“ 3-11-:1 ;“ 2:.‘ s-' :?_ 2' *’J~‘.'=>' -A:-_-' -..‘_-."*_.=_ ‘:-:.*_-_-_-' - 1' r"-leg.-.' 1 . -."- . .° _“"CI*'='-'»'-’-'“."'5¥’-;"%":f;'}':-1"-'%’-i"""'1'1"-"'?‘-3‘3‘i":“'¥i‘i’“?iE“ ' 2'}: . ,-3.-J.‘-T-2-:-'-'-;‘t-‘ii._ \-*.i=i-‘=~i->1J'_*_‘-‘.~:»t~";-'-r.:"- “'1-T-=l'>f’“"'.3~tl"':i'i:'"; -'::.-’:~‘-'---'--this-if-T-.-afs'J¢i:5;¢>-Re“:allatha ‘fire;‘I’;-=!=T=YrPErop“esato .- - . Sir n m’b.e1-to r-.- ytes-ruse,d by H181: denttfier-asstorage --' , ""=.'$*i="=*3*.=‘.-‘=»=-.-Tié-‘ ‘+I&Tr'é" ' *1‘-" 2“ -‘=r;»?:?,‘£.R’t~E»T»T~F-*s.§?.-- T=;i-s_.;,.':;~;f_ -=,-;?;- . .-- - at "e r '.. t3FPQ..-Q3.-* . _..=;~. ..-v ._...,;r:1 .»;-..e..; .. .-.:¢.<%1]2.-_,1jf¢1.t;s:>1';fl.=_.,_, . _s~~a.=s=oun,;.o_ _~mm1-»~2'.'.- .. _;-'-'-- -_-:- “ - ‘_'\' .'.-.1‘: _ -_$=‘1'* 1,‘. 'r- .-.--_""-'»_2¥-",;I:‘.",-1.?-"‘!:.1_»:;y ’-1E-*r3- --.L'.t;.'3. ta. -.1‘-.=, ‘-_:I_;-I’. _'_—.F,‘.'_:‘- '37 '.1_‘l'-_-_--<.1- '-.-_',-, .::=_---1.1‘ ‘..'-‘=:§"’T_-_I- '- - .11 _ ._.‘:_-" "__.'._-",-_-';,- _-H -‘- ._-'1 _.-- ..»i- .~ 1-. --.-.»'-'£--- --3'-. --‘--'»* .-.r *1» 7--ti: ls. - - *1 -.1.’-JR?-. --- -:-.‘~“}\:..- "- .126 - - -\ ' -- -- '- - -lfi&bfTEfififi$ifiEfi@fifi“"§$' 1@Ffi“fim I ‘fi'W%"" “ ““T“' *<'es-- r - == - -E » ~ Q = to --nml p11 -K ~ - - 0Fbyr=- e -

1 ".;~_->.:,=t,r;‘-.-r.-=-t::+==.-art":-=.~1~-;trr:ri*;1,*;E~5.-' :=.:1r.eci:';‘:-;-t'=.»:*-¥:-»..:'- r=*.= wit-1-; -‘ -'1-1 - ..=.T -. ' . " -
" 7"ié?§ifi§i‘§fi*'?"ikigméiiwfii-?i33"?=£i&~a’‘*5 as;<.-.-zret:er-‘.-:'+.;-I=¥.rt:1*1:'=it-= IF? * J" -. -' -ti-1 ‘flint-‘=. -§.lln"?$"" -C1 I?:I.".'-' .'1»?»;‘_'t""i"-1¥‘i*"5-:-I"‘“:"'.';ll5"'Eé-iliihfii’i‘-'2:-i“F£'.7"i7;i71255?.- if‘-1'.".‘l:!'-H ‘.144 ""31". .'l.'=-i ="7'1"' +1. .-7'3" . . '- .:'¥'-'|»~-‘.=='-'.'1,;_‘: -----*,f,-.411-,-Ive>¢=5‘¢\;‘.';,£?'1—'\-?'\,1‘1-L:--;‘|:;‘,i,L sag-fi;1=‘-'95 --'- "-ft‘-‘I’-<;-‘};.| 'R:.'\"'-'5-5.‘-' '-"\’-*'-1i\'-*'-.5‘-1"-""=':"-'-1-*i‘.‘,'- f-st '3'... ~r. -""-‘ “- '-1' “.1“?$t '-‘-'-" '. ‘.'I-' ‘-'--1-.---;1w1.‘.n-1:!-.=--.-'..-..-==-:l-+-i-5"-11:121.-.1-nu. J‘.-1. |- '_-_--.15-;..-.-_-$1517-.I.'I_-r-.:_" I--v".-\-_.1—'. ' ?-:--- ‘1.1-E1-.5-' -1..\-7‘;'1-ail.‘t'.=r:i.:&.a-:J.?-..»&.k-.t- -'.:=‘.~.~ - ':_* 51- .|.=¥ "_ _. - 11- ‘t i IL¥

10.1 Structures 337

Field References Direct references to individual fields require a structure variable as a quali~
fier. The following constant expressions can be generated at assembly time, using the Employee
structure:

TYPE Employee.SalaryHistory
LENGTHOF Employee.SalaryHistory
TYPE Employee.Years '\l‘ii'\l M|i=~F-

The following are. runtime references to worker, a structure variable:

.data
worker Employee <>
.code
mov dx,worker.Years
mov worker.SalaryHistory,20000 ; first salary
mov [worker.SalaryHistory+4],30000 ; second salary
mov edx,OFFSET worker.LastName

Indirect Operands Indirect operands permit the use of a register (such as ESI) to address
structure data. Such addressing provides flexibility, particularly when passing a structure’s
address to a procedure, or when using an array of structures. The PTR operator is required when
referencing indirect operands;

mov esi,OFFSET worker
mov ax,(Employee PTR [esi]).Years

I-lad we written the following statement, it would not assemble because Years by itself does not
identify a specific structure":

mov ax,[esi].Years ; invalid

Looping Through an Array A loop_ is often used with indirect or indexed -"addressing to
manipulate an array of structures. The following program (AZIPoinrs.c:sm), assigns coordinates to
the AllP0ints array:

TITLE Loop Through Array (AllPoints.asm)

INCLUDE Irvine32.inc
.data
1ilumPoints = 3
AllPoints COORD NumPoints DUP(<0,0>)

. code
main PROC

mov edi,0 ; array index
mov ecx,NumPoints loop counter
mov ax,1 tarting X, Y values-sq1-... U3

L1 :
mov (COORD PTR.AllPoints[edi]).X,ax
mov (COORD PTR.AllPoints[edi]).Y,ax
add edi , TYPE COORD

338 Chapter 10 - Structures and Macros

inc ax
loop Ll

exit
main ENDP
END main

10.1.4 Example: Displaying the System Time
MS-Windows provides console" functions that set the screen cursor position and get the system
time. To use these functions, you have to create instances of two predefined structures: COORD
and SYSTEMTIME:

COORD STRUCT
X WORD ?
Y WORD ?

COORD ENDS

SYSTEMTIME STRUCT
wY_ear WORD ?
wfionth WORD ?
wDayOfWeek WORD ?
wDay WORD ?
wHour WORD?
wMinute WORD ?
wsecond WORD ?
wMilliseconds WORD ?

SYSTEMTIME ENDS

Both structures are defined in Smalll»VZn.in.c, a file located in the -assembler’s INCLUDE direc-
tory, and referenced by Irvine32.inc

To get the system time (adjusted for your local time zone), call the MS-Windows
GetLocalTime function and pass it the address of a SYSTEMTIME structure:

.data
sysTime SYSTEMTIME <>
.code
INVOKE GetLocalTime, ADDR sysTime

Then retrieve the appropriate values from the SYSTEMTIME structure. For example:
tnovzx ea.~t.sysTime.wYear
call WriteDec

The Snmlll'ViH.inc'file, created by the author, contains structure definitions and function pro-
totypes adapted from the Microsoft Windows header files for C and C++ programmers. It
represents a-.sma'li subset of 'the;pos'sib1e"functions that can be called by application programs.

When a Win32 program p1‘0dl.lCCS screen output, it calls the MS-Windows GetStdHandle
function to retrieve the standard console output handle (an integer):

J

10.1 Structures

.data
consoleflandle DWORD ?
.code
INVOKE GetStdHandle, STD OUTPUT HANDLE

._.-‘. .._..-

mov consoleHandle,eax

(The constant STD_OUTPUT__I-IANDLE is defined SmaIlWin ma)
To set -the cursor position, call the MS-Windows Sel:ConsoleCursorP0sit1on function

passing it the console output handle and a COORD structure variable containing X Y character
coordinates:

.data
XYPos COORD <l0,5>
.code
INVOKE SetConso1eCursorPosition,-consoleflandle, XYPos

Program-Listing The following program (ShowTi'me.asm) retrieves the system time and dis-
plays it at a selected screen location. It runs only in Protected mode

TITLE Structures (Show'1‘ime ASM)
INCLUDE Irvine32.inc
.data
sysTime SYSTEMTIME <>
XYPos COORD <10, 5>
consoleHandle DWORD ?
wbwmBWE%H0

.code
main PROC
; Get the standard output handle for the Win32 Console

IIWOKE GetStdI-Iandle", STD___OUTPU'I‘__HANDLE
mov consoleHandle,eax

; Set the cursor position and get the system.time
INVOKE SetConso1eCursorPosition, consoleflandle, XYPos
INVORE GetLocal'I‘ime, anus sys'I‘ime

; Display the system time (hh:mm:ss).
movzx eax,sysTime.wHour ;
call WriteDec.
mov edx,OFFSET colonStr ,
call WriteString
movzx eax,sysTime.wMinute ;
call WriteDec
mov edx,OFFSET colonStr ,
call WriteString
movzx eax,sysTime.wSecond ;
call WriteDec

call Crlf
call Crlf

hours

— -0

IQ

Q —

minutes

||_n
I

seconds

340 Chapter 10 ~ Structures and Macros

call WaitMsg ; "Press Enter..."
exit

main ENDP
END main

The following definitions were used by this program from Sn1alIWi1t.inc (automatically
included by IrvrTne32. inc):

STD_OUTPUT_HANDLE EQU -11
SYSTEMTIME STRUCT . . .

COORD STRUCT . . .

GetStdHandle PROTO,
nStdHandlerDWORD

GetLocalTime PROTO,
lpSystemTime:PTR SYSTEMTIME

SetConso1eCursorPosition PROTO,
nStdHandle:DWORD,
coords:COORD

Following is a snapshot of the screen output, taken at 12:16 p.m.:

I T 777 ” 777 77 77 7 7

l .
-'1 .‘ _- -. 1

l ' 12:16:35

jg§£ee§%§Enm§%] toacontinue.-:

I

_ >-_- 1. .

ti.’ 1
lei mmmlmmm

10.1.5 Nested Structures
You can create nested structure definitions, where structures contain other structures. For exam-
ple, a Rectangle can be defined in terms of its upper—left and lower-right corners, both COORI3
objects:

Rectangle STRUCT
UpperLeft COORD <>
LowerRight COORD <>

Rectangle ENDS

Rectangle variables -can be declared either without any 0ve_rrides, or by overriding the inri;.
vidual COORD fields. Alternative notational forms are used here":

rectl Rectangle < >
rect2 Rectangle { }

1 0.1 Structures 341

rect3 Rectangle { {10,10}, {50,20} }
rectd Rectangle < <10,l0>, 450,20> >

The following is a direct reference to a nested structure field:

mov rectl.UpperLeft.X, 10

Using an indirect operand, you can access a nested field. In the following example, we
move 10 to the Y coordinate of the upper-left corner of the structure pointed to by ESI:

mov esi,OFFSET rectl
mov (Rectangle PTR [esi]).UpperLeft.Y, 10

The OFFSET operator can be used to return pointers to individual structure fields, includ-
ing nested fields:

mov edi,OFFSET rect2.LowerRight
mov (COORD PTR [edi1).X, 50
mov edi,OFFSET rect2.LowerRight.X
ITLOV WORD PTR [edi], 50

10.1.6 Example: Drunkard’s Walk
A number of programming textbooks over the years have included a “Drunl<ard’s Walk” exer-
cise, where the program simulates the path taken by a less-than-sober professor on his or her
way home. Using a random number generator, you can choose a direction for each step the pro-
fessor takes. Usually, you have to check to make sure the person hasn’t veered off into a campus
lake, but we won’tbot1ier-with that here. Imagine that the person begins at the center of an imag-
inary grid, in which each square represents a step in a north, south, east, or west direction. The
person follows -a random path through the grid:

1 l 1' _ 1. _____ __‘_ ‘ _. _ _ ._ _J H, __ __ _1_ 1 W 1‘ _
‘ i1 l

,__,__ ‘ _ 1 1 __ l 1' ‘ 7 . 11_ ,1 __1 1
,_, 1 j ,fg1_1 i_ ‘_. T z‘, Q _ ‘ 1 1l 11 __1 Q

‘ ‘ l M 1‘ ‘ 1 11 ‘_

l l 1 l 1__1_____,__J ,_ ___ 1 1 1 l 1 _ i
' 1 1'” ‘ ' 1 W i” if" D1 11111

1 . i l_..eJ tel la- T e_1 __,.
1 7 7. . 177 , , 711

i 1 l ‘
_1 V __ _i _‘ i l___ _ 1 _ i ‘ _ _ é- -

1 l I T 1

1 1 T T T 1 T 1 T 1 T 1
1 1 T T ‘ 1 ‘ 1 1 I l_ 7 —* 11 "r '1 ' 1 m I1 ~ mm

, 7 1,: _,1I 1 7 _71 1 1 1 1

1 ‘ l__ _ __ __ _ L _ _ _‘

1 1 l 1 1
1 l D 1 ll" 1 7' 7 7 W 7 ‘ 7 7 1 ' U 7 ‘ ‘F

l1 i1 1 1

i 11 1 i 1i 1 1 i i
7: _ ‘i 1 _ _ 71 _1l _,_1 _ i 1i__ _ T _ _ ii 7 Z 7‘.

11 1 1 .1 1 T 1 1 1 1 1 1 1
____i,,l _l _ i_: 1 1 1

342- Chapter 10 -1 Structures and Macros

The program that is -about to be presented uses a COORD structure to keep track of each
step along the path taken by the professor. The steps are -stored in an array of COORD objects:

WalkMax = 50
DrunkardWalk STRUCT

path COORD Walkfiax DUP(<0,0>)
pathsUsed WORD 0

DrunkardWalk ENDS

WalkMax is a constant that determines the total number of steps taken by the professor in
the simulation. The p'athsUsed field indicates, when the program loop ends, how many steps
were taken by the professor. As the professor takes each step, hisfher position is stored in a
COORD object and inserted in the m=;xt.avai'lab1e position in the path array. The program dis-
plays the coordinates on the screen.
Program Listing I-Iere is the complete program listing:

TITLE Drunkardls-Walk (Walk.asm)

INCLUDE Irvine32.inc
Walkmax = 50
StartX = 25
StartY = 25

DrunkardWalk.STRUCT
path COORD WalkMax DUP(<0,0>)
pathsUsed WORD 0

Drunkardwalk ENDS

DisplayPosition PROTO currX:WORD, currY:WORD

.data
aWalk DrunkardWalk <>

.code
main PROC

mov esi,OFFSET aWalk
call TakeDrunkenWalk
.exit

main ENDP

; tttttt$1-1tt$1

TakeDrunkenWalk PROC
LOCAL currX:WORD, currY:WORD

‘NU

- ake a walk in random directions (north, south, east,
:-_).

eceives: ESI points to a Drunkardwalk structure
eturns: the structure is initialized with random values

I IFUFUI-315IU)III

pushad

10.1 Structures 343

; Point EDI to the array of COORD objects.
mov edi,esi
add edi,OFFSET DrunkardWalk.path
mov ecx,WalkMax ; loop counter
movTcurrX,StartX ; current X—location
mov currY,StartY ; current Y—location

Again:
; Insert current location in array.
mov ax,currX
mov ICOORD PTR [edi1).X,ax
mov ax,currY
mov lCOORD PTR [edi]).Y,ax

INVOKE DisplayPosition, currX, currY

mov eax,4 ; choose a direction (0-3)
call RandomRange

.IF eax == O ; North
inc currY

.ELSEIF eax == 1 ; South
dec_currY

.ELSEIF eax == 2 ; West
dec currX

.ELSE ; East (EAX = 3-)
inc currX

.ENDIF

add edi,TYPE COORD ; point to next COORD
loop Again

Finish:
mov (Drunkardwalk PTR [esi]).pathsUsed. WalkMax
popad
ret

TakeDrunkenWalk ENDP

Q,.,.._._._._._-._._._...-.--..-.-..-.-..-...-...-...-.----___---__---.-...-...-...-...-...-.----.-...-.._...-.._.-.._.._.._..-.

DisplayPosition PROC currX:WORD, currY:WORD
; Display the current X and Y positions.

.data
commaStr BYTE “,",0
.code

pushad
movzx eax,currX ; current X position
call WriteDec
mov edx,OFFSET commaStr , "," string
call WriteString

344 Chapter 10 ~ Structures and Macros

movzx eax,currY ; current Y position
call WriteDec
call Crlf
popad
ret

Disp1ayPosition ENDP
END-main

(Let us note, for the record", that I have never seen, nor recently heard about, any
professors walking home drunk from class.)

TakeDrunkenWalk Procedure Let’s take a closer look at the-TakeDrunkenWalk- procedure.
It receives a pointer (ESI) to a Drunkardwalk structure. Using the OFFSET operator, it calcu-
lates the offset of the path array and copies it to.EDI:

mov.edi,esi
add edi,OFFSET DrunkardWalk.path

The. initial X and Y positions (StartX and StartY) of the professor are set to 25, at-the center of
an imaginary 50-by-50 grid:

mov currX,StartX ; current X-location
'mov currY,StartY ; current Y—l0cati0n

At the beginning of the loop, the first two entries in the path array are initialized:

Again:
; Insert current location in array.
mov ax,currX
mov (COORD PTR [edi]).X,ax
mov ax,currY
mov (COORD PTR [edi]);Y,ax

At the end of the walk, a counter is inserted into the pathsUsed field, indicating how many Steps
were taken:

Finish:
mov (Drunkardwalk PTR [esi]).pathsUsed, WalkMax

In the current version of the program, pathsUsed is always equal to WalkMax, but that
could change if we checked for hazards such as lakes and buildings. Then the loop would termi-
nate before WalkMax was reached.

10.1.7 Declaring and Using Unions
Whereas each field in a structure" has an offset relative to the first byte of the structure, all thg;
fields in a union start at the same offset. The storage size of a union is equal to the length of its

10.1 Structures 345

longest field. When not part of a structure, a union is declared using the UNION and ENDS
directives:

unionname UNION
union~fields

unionname ENDS

If the union is nested inside a structure, the syntax is slightly different:
structname STRUCT

structure—fields
UNION unionname

union—fie1ds
ENDS

Structname ENDS

The field declarations in a union follow the same rules as for structures, except that each
field can have only a single initializer. For example, the Integer union has three different size
"attributes for the same data:

Integer UNION
D DWORD O
W WORD O
B BYTE O

Integer ENDS

You can nest a union inside a structure by using the union name in a declaration, as we
have done here for the FileID field inside the Filelnfo structure:

Filelnfo STRUCT
FileID Integer <>
FileName BYTE 64 DUP(?)

FileInfo ENDS

Or you can declare a union directly inside the structure, as we have done here for the FileID field:
Filelnfo stauct

uutou FileID
D owoao 0
w woau 0
B BYTE 0

ENDS
FileName BYTE 64 DUP(?)

FileInf0 ENDS

Declaring and Using Union Variables A union variable is declared and initialized in much
the same way as a structure variable. There is oneimportant difference: No more than one ini-
tializer is permitted. The following are examples of Integer-type variables:

vall Integer <12345678h>
val2 Integer <lD0h>
val3 Integer <>

346 Chapter 10 e Structures and Macros

To- use a union variable in an executable instruction, you must supply the. name of one of
the variant fields. In the following example, we assign register values, to the Integer union fields,
Note the flexibility we have in being able to use different operand sizes:

mov val3.B, al
mov val3.W, ax
mov val3.D, eax

Unions can also contain structures. The following INPUT_RECORD structure is used by
some MS-Windows console input" functions. It contains a union named Event, which selects
between several predefined structure--types. The EventType field indicates which type of record
appears, in the union. Each structure has a different layout and size, but only one is used at a time:

INPU‘I‘_RECORD STRUCT
Event'I‘ype WORD ?
UNION Event

I{EY_EVENT_RECORD <>
It-IOUSE_EVEN‘I‘_RECORD <-13>
WINDOW_BU.E‘E‘ElR_SIZE_RECORD -14>
12-IE2NU_EVENT_RECORD -0-
E‘OCUS_EVEN‘I‘_RECORD <>

ENDS
INPUT_RECORD ENDS

A complete definition of INPUT__REC__ STRUCT can be found in the Microsofl MSDN Ptar-
form SDK Reference.

10.1.8 Section Review

l . What is the purpose of the STRUCT directive‘?
2. Create a structure named MyStruct containing two fields: fieldl, a single word, and field2_

an array of 20 doublewords. The initial values of the fields may be left undefined.

The structure created in Exercise 2 (MyStruct) will be used in Exercises 3 flzrouglz. 1I:
3. Declare a MyStruct variable with default values.
4. Declare a MyStruct variable that initializesthe first field to zero.

. Declare a MyStruct variable and initialize the second field to an array containing all zeros.

. Declare a variable as an array of 20 MyStruct objects.

. Using the MyStruct array from the preceding exercise, move" fieldl of the first array ele-
ment to AX.

8. Using the M_yStruc_t array from the preceding exercise. use ESI to index to the third arrat
element and move AX to fieldl. -Him: Use the PTR.operator. .

9_. What value does- the expression TYPE MyStruct return‘?
10. What value does the expression SIZEOF MyStruct return ‘?
l l. Write an expression that returns the. number of bytes in field2 of MyStruct.

-10*!-I‘!

102' Macros 347

The following exercises are not related to MyStruct:
12. Assume that the following structure has been defined:

Rentallnvcice STRUCT
inv0iceNum BYTE 5 DUP(' ')
dailyPrice WORD ?
daysRented WORD ?

Rentallnvcice ENDS

State whether or not each of the following declarations is valid:
. rentals RentalInvoice <>
. Rentallnvoice rentals <>
. march RentalInv0ice <'12345',10,0>

Rentallnvoice <,10,0>
. current RentalInvoice <,15,0,0>091069!

13. Write a statement that retrieves the wH0ur field of a SYSTEMTIME structure.
l-l. Using the following ’lriangle structure, declare a structure variable and initialize its vertices

to (0,0), (5, 0), and (7,6):

Triangle STRUCT
Vertexl COORD <>
Vertex2 COORD <>
Vertex3 COORD <>

Triangle ENDS

15. Declare an array of '1?-iangle structures. Write a loop that initializes Vertexl of each trian-
gle to random coordinates in the range (0..I0, 0..I0).

10.2 Macros

1 0.2.1 Overview
A macro procedure is a named block of assembly language statements. Once defined, it can be
invoked (called) as many times in a program as you wish. When you invoke a macro procedure,
a copy of its statements is inserted directly into the program. It is customary to refer to calling -a
macro procedure, although technically there is no CALL instruction involved.

i The term macro procedure is used in the Microsoft Assembler manual to identify macros
i that»djti5§itpt return a value. ‘I-‘here a;e;:also= lfi,zctcro*j_ii¢ncrii.3:{n.r that:1retttrn'.a value. Antoug pros‘-
, grammars, the word macro is usually understood to mean the same thing asmocro proce-
= dares.-ljirqtn this -_point};-on, wg_~_tvil1,use tl1e_s'ho1"tet=~fortn,;.- I1 -' _ls - a r - -

Location Macros ate either coded directly in the source program (usually at the beginning), "or
they are placed in a separate text file and inserted into the source program during assembly using
the INCLUDE directive. A macro definition must be found by the assembler before trying to

348 Chapter 10 - Structures and Macros

assemble any calls to the macro. The assembler’s preprocessor scans the macros and places them
in a buffer. When calls to the macro are found, each macro call is replaced by a copy of the
macro. In the following example, a macro named NewLine contains a single statement that calls
the Crlf library procedure:

Net-:L.i.ne MACRO
call Crlf

anon
This definition would normally be placed just before the data segment. Next, in the code seg-
ment, we call the macro:

.code
NewLine

When the preprocessor scans this program and discovers the call to Ne_wLine', it replaces
the macro call with the following statement:

call Crlf

All that has taken place is text substitution. This particular example could have been accom-
plished using the TEXTEQU directive, but we will soon show how to pass arguments to macros.
making them far more powerful than TEXTEQU.

10.2.2 Defining Macros
A macro can be defined anywhere in a program’s source code, using the MACRO and ENDM
directives. Thesyntax is:

macroname MACRO [parazneter-1 , parameter-2. . .]
statement-list

END!-1

There- is no set rule regarding indentation, but you should indent statements betweer
macroname and ENDM to show that they belong to the macro. For consistency, you may want tr
us_e a special prefix character. In this book, we use a lowercase “tn”-p.refix, creating recognizable
macro names such as mPutchar, mWriteStri'ng, and mGotoxy.

The statements between the MACRO and ENDM directives are not assembled until the
macro. is invoked. There can be" any number of parameters in the-macro definition, as long 15
they are separated by commas.
rnPutchar Macro Example Let's create a macro named mPutchar that takes ~a single inpt:
parameter called char and "displays it-on the console by calling WriteCh_ar from the book’s linj-;
library:

mPutchar MACRO char
push eax
mov al,char
call WriteChar

10.2 Macros 349

pop eax
ENDM

Required Parameters Using the REQ qualifier, you can specify that a macro parameter is
required. If the macrois called without an argument to match the required parameter, the assem-
bler displays an error. For example:

mPutchar MACRO char:REQ
push eax
mov al,char
call WriteChar
pop eax

ENDM

If a macro has multiple required parameters, each one must include the REQ qualifier.
Macro" Comments Commented lines in macros usually begin with a double "semicolon (;;).
The macro comments appear when the macro is defined, but not when the macro is expanded.

In general, macros execute more quickly than procedures because procedures have the extra over-
and RET instruct_1'_ons. There isghowever, one disadvantag_e_-':.t0 using macros:

use of large macros tends to increase a prograrn?s -size because each call to a macro
inserts a new copy of the macro's statements in the program.

_______ ___ _ ‘n_._.A‘_ __ _ ______ 7 _ I __ i i_ ____ ____ A_k_

Using the EQHO Direerive The ECHO directive displays a message on the console as the pro-
sram is assembled. In the following version of mPutchar, the message “Expanding the
mPutehar macro” appears on the console during assembly:

mPutchar MACRO char:REQ
ECHO Expanding the mPutchar macro
push eax
mov al,char
call WriteChar
pop eax

ENDM

10.2.3 Invoking Macros
A macro is invoked (called) by inserting its name into a program’s source code, possibly fol-
lowed by macro arguments. The syntax for calling a macro is:

macroname argument—l, argument-2, ...

Jlacroz-tame must be the name of a macro defined prior to this point in the source code. Each
Esrument is a text value that replaces a parameter in the macro. The order of arguments must
C0iTeSp0nCl to the order of parameters, but the number of arguments does not have to match the
EIEIIIDBI of parameters. If too many arguments are passed, the assembler issues a warning. If too
E.-I arguments are passed to a macro, the unfilled parameters are left blank.

350 Chapter 10 - Structures and Macros

Invoking mPurchar In the previous section, we defined the mPutChar macro. When invoking
niPutchar, we can pass any character or ASCII code. The following statement invokes mPutchar
and passes it the letter A:

mPutchar FA‘

The assembler’s preprocessor automatically expands the statement into the following code.
shown in the listing file:

1-*1-*1-‘!—'

push eax
mov a1,'A‘
call WriteChar
pop eax

The ‘l’ in the left column indicates the macro expansion level, which increases when you call
other macros from within a macro. The following loop displays the first twenty letters of the
alphabet:

mov al,‘A'
mov ecx,2O

Ll:
mPutchar al ; macro call
inc al
loop Ll

This loop is expanded by the preprocessor into the following code (visible in the source listing
file). The macro call is shown just before its expansion:

mov a1,'A'
.mov ecx,2O

L1:
mPutchar al ; macro call
push eax
mov -al,al
call Writeflhar
pop eax
inc al
loop L1

1-*1-‘I-*1-‘

10.2.4 Macro Examples
In this section, we present a number of macros that you might find useful. All of them appear i;-_
a file named Macros. it-zc,.which can be copied into your programs. Use the following sequence
of INCLUDE directives when you test the macros:

INCLUDE Irvine32.inc
INCLUDE Macros.inc

10.2 Macros 351

10.2.4.1 mWriteStr Macro
Let’s create a macro named mWriteStr that writes a string to standard output by calling
Writ:-":String from the book’s link library. There is one parameter containing the name of the
string to be displayed:

mWriteStr MACRO string
push edx
mov edx,OFFSET string
call Writestring
pop edx

ENDM

mWriteStr takes care of the tedious work of saving EDX on the stack, filling EDX with
the string’s offset, and popping EDX from the stack after the procedure call. (Recall that we
should always save and restore EDX because it might hold other important data.)

If mWril;eStr were only used once in a program, the savings of coding time would not be
dramatic. But when the same macro. is used numerous times, a lot of time is saved performing
repetitious tasks.

The parameter called string is replaced each time the macro is called. For example, to dis-
play three different strings, we call the macro three times, passing a different argument each time:

.data
msgl BYTE "This is message 1.",0Dh,0Ah,'$'
msg2 BYTE "This is message 2.",ODh,DAh,'$'
msg3 BYTE "This is message 3.",ODh,OAh,'$'
.code
mWriteStr msg1
mWriteStr msg2
mWriteStr msg3

The following. is excerpted from a listing file in which each call to mWriteStr is followed
by the statements it generates:

mWriteStr msgl
1 push edx
1 mov edx,OFFSET msgl
1 call writeStr1'..ng
1 pop -edx
mWriteStr msg2
1 push edx
1 mov edx,OFFSET msg2
1 call WriteString
1 pop edx
mWriteStr msg3
1 push edx
1 mov edx,OFFSET msg3

call_WriteString
pop edx1"‘)-'4

352 Chapter 10 1 Structures and Macros
_ i—* —

10.2.4.2 mReadStr Macro
The mReadStr macro encapsulates a call to the ReadString library procedure. It receives the
name of an array of characters:

mReadStr MACRO varName
push ecx
push edx
mov edx,OFFSET varName
.mov eoX,(SIZEOF varName) - 1
call ReadString
pop edx
pop ecx

ENDM

Following is a sample call to mReadStr:
.data
first_Name BYTE 39 DUP(?)
.code
mReadStr firstName

10.2.4.3" mGotoxy Macro
The m'Gotoxy macro locates the cursor at a-‘specific row and column on-the screen. Using the
REQ qualifier, we can specify that a macro parameter is required. If the macro is called with-
out an argument to match the required parameter, an en'or message is generated by the
assembler:

mGotoxy MACRO X:REQ, Y:REQ
push edx
mov dh,Y ;; row
mov dl,X ;;-column
call Gotoxy
pop edx

ENDM

The-macro can be called and passed immediate values, memory operands, or register values.
long as they -are 8-bit integers:

méotoxy 10,20 ; immediate values
mGotoxy row,col ; memory operands
mGotoxy ch,cl ; register values

Checkfor Conflicts Be sure that register values passed as arguments do not conflict with reg-
isters used inside a macro. If we call mGotoxy using ‘DH and DL, for instance, the macro does
not work properly. To see why, let’s inspect the expanded code after the parameters have bee;-_
"substituted:

l push edx
2 mov dh,dl ;; row

10.2 Macros 353

3 mov dl,dh ;; column
4 call Gotoxy
5 pop_edx

Assuming that DL is passed as the Y-value and DH is the X-‘value, line 2 replaces DH before we
have a chance to copy the column value to DL on line 3.

10.2.4.4 mDumpMem Macro
As you probably noticed even back in Chapter 5, procedure calls can be awkward when you pass
parameters in ‘registers. For example, the DumpMem procedure from the book's link library
requires passing an address in ESI, the number of displayed units in ECX, and the memory unit size
in EBX (1, 2, or 4). In the following example, we display eight doublewords belonging to array:

push ebx ; save registers
push ecx
push esi
mov esi,OFFSET array ; addr of the array
mov ecx,8 ; item count
mov ebx,TYPE array ; display doublewords
call DumpMem
pop esi ; restore registers
pop ecx
pop ebx

It might be that ESI, EBX, -and ECX were holding other important data before this procedure
call, making it necessary to push and pop their values.

It can be useful to write a macro that acts as a wrapper around a procedure call. The macro
can save existing register values, place each argument in an appropriate register, call the proce-
dure, and restore the register values. The following mDumpMem macro calls the DumpMem
procedure:

mDumpMem MACRO address. ;; address of variable
itemCount, ;; number of items
componentSize ;; size of each item
push ebx ;; save registers
push ecx
push esi
mov esi.address ;; initialize arguments
mov ecx,itemCount
mov ebx,componentSize
call DumpMem ;; call library procedure
pop esi ;; restore registers
pop ecx
pop ebx

ENDM

354 Chapter 10 - Structures and Macros

The following statement invokes mDumpMem:

mDumpMem OFFSET.array, 8, 4

An alternative format for invoking-the macro permits you to use.a line-continuation character (\)
at the end of the first -and second lines:

mDumpMem OFFSET array, \ ; array offset
LENGTHOF array, \ ; number of units
TYPE array ; size of each unit

You can then place a comment on each line, explaining the macro argument.

10.2.4.-5 Macros Containing Code and Data
In addition to producing executable instructions, macros can also produce data-. The mWrite
macro, for example, displays a literal string. on the .console:

mWrite MACRO text
LOCAL string ;; local label
.data
string BYTE text,0 ;; define the string
.code
push edx
mov edx,OFFSET string
call WriteString
.p0p edx

ENDM

Notice that something new was used here. The LOCAL directive instructs the preprocessor
to create a unique label name each time the mWrite -macro is expanded. This avoids the naming
conflict that would result if mWrite were-_ expanded twice within the same file. The following
statements invoke inwrite twice, passing it different string literals:

mwrite "Please enter your first name“
mwrite "Please enter your last name“

The expansion of these two statements by the assembler (copied from the source listing
file) shows how each string is declared with a different label:

mwrite “Please enter your first name"
.data
??0000 BYTE "Please enter your first name“,0
.code
push edx
mOV edx, OFFSET '? '3 O Q0 O
call WriteString
pop edsl—li—*l—'i—*l—'I—'i—*

10.2 Macros 355

mwrite "Please enter your last name"
.data
??000l BYTE "Please enter your last name",0
.code
push edx
mov edx,OFFSET ??000l
call WriteString
pop edxI-'l—'l—'|-4|-4|--‘I--‘

The label names produced by the assembler have the form ??nmm, where mum is a unique inte-
ger. The LOCAL directive should also be used for code labels within a macro. Then the macro
can be invoked more than once.

10.2.5 Nested Macros
It sometimes helps to use a modular approach when creating macros. Keep each macro short and
simple, and use it as a building block to make 1_nore elaborate macros. You can (hopefully) mini-
mize the writing of duplicate code. When a macro is invoked from another macro, it is called a
nested macro. There is really no disadvantage to using nested macros, because the preprocessor
expands them as if all statements belonged to the same macro. A parameter passed to the outside
macro can be passed directly to the enclosed macro.

mWrireLn-Macro For example, it would be nice" to have -a macro named mWriteLn that not
only writes astring literal to the console, but also appends an end of line. The macro can first
invoke mWrite and then -call the Crlf function from the link library:

nMTiteLn MACRO text
mwrite text
call-Crlf

ENDM

The text parameter is passed .directly to the mWrite macro. When the macro" is used in -a pro-
gram, it looks like the following:

mWriteLn “My Sample Macro Program“

In the source listing file, the nesting level (2) next to the statements indicates that a nested macro
has been expanded:

mWriteLn "My Sample Macro Program"
.data
??0002 BYTE "My Sample Macro Program",0
.code
push edx
mov edx,OFFSET ??0002l\Jt\Jl\Jl\Jl\J

356 Chapter 10 ~ Structures and Macros

2 call WriteString
2 pop edx
1 call Crlf

10.2.6 Exampie Program: Wrappers
Let’s create a short program (W:-aps.asm.) that shows off the macros we‘ve already introduced as
procedure wrappers. Because each macro hides a lot of tedious parameter passing, the program
is surprisingly compact. We will assume that all of the macros shown so far are located inside
the Macms.in.c file:

TITLE Procedure Wrapper Macros (Wraps.asm)

INCLUDE Irvine32.inc
INCLUDE Macros-inc ; macro definitions

.data
array DWORD.1,2,3,4,5,6,7,8
firstflame BYTE 31 DUP(?)
lastName BYTE-31 DUP(?)

.code
main PROC

mGotoxy 0 ,'0
mWriteLn "Sample Macro Program“

mfiotoxy 0,5
mwrite "Please enter your first name: "
mReadStr firstflame
call Crlf
mwrite "Please enter your last name: "
mReadStr lastflame
call Crlf

; Display the person's complete name:
mwrite "Your name is "
mWriteS’c.r £irstNa.me
mwrite " "
mWriteStr lastflame

call Crlf
mDumpMem.OFFSET array, LENGTHOF array, TYPE array

exit
main ENDP
END main

10.2 MHCHDS 357

Program Output The following is a sample of the program’s output:

Sample Macro Program -

Please enter your first name: Kip

Please enter your last name: Irvine

Your name is Kip Irvine

Dump of offset 00404000 1

s - --ccccccccc ;cccccccccccccccc -

144+~4

sq-1---——-an-I-r-e—~|~———-—r

0000000]. 00000002 00000003 00000004: 00090005 00000006 1
OOEJUOOEJT 00000008 i

10.2.7 Section Review

l

"3

4

5

6
T
B
9

10

11
11

i3

1-1»

(True/Faise__): When a macro is invoked, the CALL and RET'"instructions are automatically
inserted into the assembled program.
(True/False): Macro expansion is handled by the assembler’s preprocessor.
What is the primary advantage to using a macro versus using the TEXTEQU directive?
(True/False): As long as it is in the code segment, a macro definition may appear either
before or after statements that invoke the macro.
(True/False): Replacing a procedure with a macro containing the procedureis code will
increase the ‘compiled code size of a program if the macro is invoked multiple times.
'_(True/False): A macro cannot contain data definitions.
What is the purpose of the LOCAL directive?
Which directive displays a message on the console during the assembly step‘?
Write a macro named OutChar that displays a single character on the screen. It should have
a single parameter, the character to be displayed.
Write a macro named mGenRand0m that_generates- a random integer between 0 and n—l.
Let :1 be" the only parameter.
Write a nested macro that i'nvo1<'es'the mWrite macro from Section 10.2.4.5.
Write a nested macro that invokes both the mGotoxy macro from Section 10.2.4.3 and the
1nWrite macro from Section 10.2.4.5.
S-how the expanded code produced by the following statement that invokes the mWriteStr
macro from Section 10.2.4.1:

mWriteStr namePrompt

Show the expanded code produced by the following sta-tement that invokes the mReadStr
macro from Section 10.2.4.2:

mReadStr customerName

353 Chapter 10 - Structures and Macros

15. Chatienge: Write a macro named mDumpMemx that receives a single parameter, the name
ofia variable. Your macro must call the mDumpMem macro, passing it the V.ariable’s offset,
number of units, and unit size. Demonstrate a call to the mDumpMemx macro.

10.3 Conditional-Assembly Directives
A number of different conditional-assembly directives ‘can be used in -conjunction with macros
to. make them more flexible. The general syntax for conditional-assembly directives is:

IF-condition
statements

[ELSE
statements]

ENDIF

Table 10-1 lists the more common conditional-assembly directives. When the descriptions say
that a -directive permits ctsserrtigiy, it means that any subsequent statements are assembled up to
the next ENDIF directive. It must be femphasized that the directives listed in the table are evalu-
ated at assembly time, not at runtime.

Tabie 10-1 Conditional-Assembly Directives.
IF expression

IFB <a:;gumer:I>

IFNB <:argnmem.'>

IFIDN <a:g1 >,¢:m;g2>

IFIDNI <:arg1>,<:cu'g2>

IFDIF <:argI>,<:arg2>

IFDIFI <:arg1>,<:a:;g2>

IFDEF name

IFNDEF name

Permits assembly if the value of expression is true (nonzero). Possi-
ble relational operators are LT, GT, EQ, NE, LE, and GE.

Permits assembly if argument is blank. The argument name must
be enclosed in angle brackets _(<>).

Permits assembly if argument is not blank‘. The argument name
must be. enclosed in angle brackets (<>)_.

Permits assembly if the two arguments are equal (identical). Uses a
case-sensitive comparison.

Permits assembly if the two arguments are equal. Uses a case'-
insensitive comparison.

Permits assembly if the two arguments are unequal. Uses .a case-
sensitive conlparison.

Permits assembly if the two argutnents are unequal. Uses a case-
insensitive comparison.

Permits assembly if name has been defined.

Permits assembly if 1-tame has not been defined.
I

10.3 Conditional-Assembly Directives 359

Tabie10-1 Conditional-Assembly Directives. (Continued)
ENDLF Ends a block that was begun using one of the conditional-assembly

directives.

ELSE Assembles all statements up to ENDIF if the condition specified by
a previous conditional directive is false.

EXITM Exits a macro immediately, preventing any following macro state-
ments from being expanded.

10.3.1 Checking for Missing Arguments
A macro can check to see if any of its .arguments are blank. Often, if a blank -argument is
received by a macro, invalid instructions result when the macro is expanded by the preprocessor.
For example, if we invoke the mWriteStr macro without passing an argument, the macro
expands with an invalid instruction when moving the string offset to EDX. The following are
statements generated by the assembler, which detects the missing operand and issues an error
message:

mWriteStr
1 push edx
1 mov edx,0FFSET
Macro2.asm(18) : error A2081: missing operand after unary operator
1 call WriteString
1 pop edx

To prevent errors caused by missing operands, you can use the IFB (if blank) directive,
-which returns true if a macro argument is blank. Or you can use the IFNB (zfnor blank) operator,
which returns true if a macro argument is not blank. Let’s create a new version of mWriteStr
that displays an error message during assembly:

mWriteStr MACRO string
IFB <String>

ECHO - - ~ ~ ~ - ~ - - - - - - - - - - - --
ECHO * Error: parameter missing in mwritestr
ECHO * (no code generated)
ecno --------------------------------------- - -
EXITM

ENDIF
push edx
mov edx,OFFSET string
call Writestring
pop edx

ENDM

350 Chapter 10 - Structures and Macros

(Recall from Section 10.-2.2 that the ECHO directive writes a message to the console while a
program is being assembled.) The EXITM directive tells the preprocessor to exit the macro and
to not expand any more statements from the macro.

The following shows the screen output when assembling a program with -a missing
parameter:

--,. , .- ._ -__».'§f"'-I1.?"'3‘;_-I;ls'\.\;i_'?§|-1:E._1';.i;_- _-,,. . “..-
K '\. “' .'_ ""1-|:%}\\'f-‘ '\-H" -7'-fir1. . '- _',"$'_-.-_ --ff "11’:_.|_;.nf.I-'11-'|\H,E_+'L‘;fiL._g'.'\Ll-1.3.-'..|_ ', --",..--. '_" __;..;::_ - -- ;._ _ ..; _- _- ——. ..__. . -1. _ 1. - - _ - _._\ ' ‘ _-1 ., _, ..." _ , - .. l ‘ I _ - — ' - .,A emb. .. n acmea .asm - . .i‘ __' ‘. ._:._ _- _ . . _ . ';; ;-14 _ , ;'_' ,-- ml}-E-j_“|.-;,i| .-_ 2:" _ I ___‘ 31:: ._J-_ :: - ‘ i. ,. - ' . ,' _ '- _ _ ‘i

} .. . - _.t -;&q;,I:_,- _‘ :2.-_-_ ‘_.__.J““. ._~._“:§,; »l'-.1-'>J:f'!.:__."\-,_l‘E__. ..\;:1.-L61! I _ . __.7i_;_'_ _ ' _. .7 -; _. I . .» ._ ._._.‘ _. 1- ‘ - _r '_ .__ . H ,_ _ I I
1 -. _- . _'- _.-‘-:-.---_-- I -__-_ '1 --_, - Mr, :"_- - ' _._":. I ‘ _* ' _;-;.-.... .1.-.'.-...;: .1.;.;{‘4j'=.3.;-_g’..&_-:,-..r-::'_-av-.9-.__-J-»~.1.*.-.-3? ..:~¢-. _--,-,-,- -'- ---i-_ - -.._.-t 1- :‘_ - _- - ;
,_ 1 _--_-1 - ., _--_ , -_< __Y ,.|.-~ 4-ml-._-.-1-1 “'-- 5;.-,'-_:\- f.?\'!I'_L|'v»- ;,-_ --'J-_"-- :1. .-1__ '."_-1' -‘r _: . -, 1 . - -. ;_ '- - -- . - '1;-_--\'....--1,. .;,-,;.- _.--'.»,_._... -.._~ .--.-__,\.= _.-. .I--1 _ - - -~\-.~_r.'-_--_t;- -_‘." .'_ -_»7-_=. ;'f;.'-_'§.'..-_t.-. -_-.'1-~.-_ -- . .-.1 1», .'_-_;-.-_'.I _-‘- '_ " " _.\-'-Q. 3-flu-I"‘__-I n[r»..--u -1--I-I

-1
c_. _t. .- ,.. . 4;.

..:'4
--_'
'1 .»i,-I u. -.-.

. .
.-.-,. .-..- ._- “___ .‘ 1- t .- - .-, -;,. . - .- - -=;--.n- _ - _ \, _|-. ¢--- H. . -_ - _- - . _ ' ', _\~.'.,"L 1- 1 1;. _ .__, Hf "‘._ _ ._-| . _-| _ _ I-_._ ‘-E-razor.3~.;a~--pa-rtameteezes.ml-ss.:|.1a;g"i.azsn =-mWr.:t.t; es-tax; , ,.. .._-._- - - ‘.‘ -'.‘:;;:;?: -.g.;:i~,..1H_;,. 5- it-; |:,'i;-T;-;-.»_t_:._-1'-l-_-_._‘-;__,.-Q-5-;1£;;é_‘3. ;..:-.:;-._ Q1-_._-,_¢-_;__ .-_-_..4-., f_ _ _.-_-_ -_;q;_=_ - ,1 -. ~---=.-:<=1a~=»->I.ri"=-is-»“»-i .- 1. = :- 1~'=* -HG-‘ '-C6 8-'tr>'-Q?EI'l‘E<I-tatfifi -r -."=<=£i"-:?.n'.-->.=;<.5.sa:;,;=m=-.--1.. -=n=.-_-- '.-:'_: .- - _. ..-1.-e» .;=j--'- .-5.'\!'>'._--'r','._~'.‘t',igZ_-.'i _,~.I.'_",='e_?-_.-.:.'¢;-'i-.;-.'a3,=.--’--'-‘*-3.-,.< ' _',-'_~- ._ I- -_ _ _l-- .-. .;.F.¥-'-'-, ..i--', .};lt-.‘;~?';>--:r§{;?-'-=;€::-f3;=;‘.i§:e=‘i.t-.=si;~I1.=*};='.~'tt?§.-':1t=i:~=;’,§;€_;1-=':-=i§§j' ;;;,..'-='.'-._-_ ._;f.>=.’-_-:-,-.-'. .’:',~.-.=-;:=.~=:-:.=- - = ,_§. .1- .-._. _ ___ -\-- .- - _._. =- I . _.-:: _ H. _ - _"-"*.,'.' _- - - < 1l_ :-_ 1.... '1'-1-'1 ;~-‘_ _;-i-:21-,=,;s==L;:g,-;-s'.:'.:'21‘:.-_~* ~-~'-,‘a_.'..n.""-..§,2--‘2.1.-:-".-.¢".:,-.-.*.-.. .._<!._...;4.-,.f_...~t...~ e--.-.-.-- :.-..‘_'-.:. -- - . .

i -.1; _- -, .- _ -.:',-.. -;i.~.-.'.;. If>51-f-';"'}'_:E1?>'I§-;-Sfi-‘-l'::'§"J'~'*.=_?Ifi:"\'3'-‘T'§{-).£_':> g-£3’--;§';i‘, 1-. '." - ‘.1
< I_I_-.. --_ ..-..‘.-.. ..|__ ; ,_.‘ " -_-- _-r"I"""":'-"I'_._'.'_. -‘ '.'-.'-_- .‘_q_. _ _5-_ _.-_=;;;, r.:..=:-.:_-_ ,2-,\‘.‘v.'-'='~-..Jit-2-.§L:.£r-§'i=t‘T.'5£'s!;_c.;--1 _ =g_:,_i-g__=_. - .1 L 1

10.3.2 Default Argument lnitializers
Macros can have default argument initializers. If a macro argument is missing when the macro is
called, the default argument is used instead. The syntax .is:

paramname := < argument >

(Spaces before and after the operators are optional.)
For example, the mWriteLn macro can supply a string containing a single space as its

default argument. If it is called with no arguments, it still prints a space followed by an end of line:

mixirit-.eLn MACRO text;=<" ">
mltlrite text
call Crlf

ENDM

The assembler issues an error if a null string (“”) is used as the default. argument, so we have to
insert at least one space between the quotes.

10.3.3 Boolean Expressions
The assembler permits the following relational operators to be used in constant boolean
expressions:

LT Less than

GT Greater than

EQ Equal to

NE Not equal to

LE Less than "or equal to

GE Greater than or equal to

10.3 Condltlonal-Assembly Dlrectlves 361

10.3.4 IF, ELSE, and ENDIF Directives
The [F directive must be followed by a constant boolean expression. The expression can contain
integer constants, symbolic constants, or constant macro arguments, but it cannot. contain regis-
ter or variable names. One syntax format uses just IF and ENDIF:

IF expression
statement-list

ENDIF

Another format uses IF, ELSE, and ENDIF:

IF expression
statement—1ist

ELSE
statement—1ist

ENDIF

Example: mGoto;r:yCon'st Macro The mG0t0xyC0nst macro uses the LT and GT operators to
perform range checking on the arguments passed to the macro. The arguments X and Y must be
constants. Another constant symbol named ERRS counts the number of errors found. Depending
on the value of X, we may set ERRS to l. Depending on the value of Y, we" may add 1 to ERRS.
Finally, if ERRS is greater than zero, the EXITM directive exits the macro:

mGotoxyConst MACRO X:REQ. Y:REQ
F
; Set the cursor position
; This version checks the ranges of X and Y.
; are not used.

LOCAL ERRS ;; 1oca1.constant
ERRS = 0
IF (x LT 0) on (X or vs)

-ECHO Warning: First argument to mGotoxy (X) is out of range.
'.I:'.|:'.I:'.|:'.I:‘l:'£.‘-'.I:'.I:‘#'.I:'.I:-.I:‘kir'k‘kiti'i"k'.I:'.I:=i"'.I:1:1:'k'kd:'1r'l:i:'l:'l:-:|r'l::|ri':|:'l:'l:i"kd:i:'l:1i'it'l::|:kid:-.I:

sans = 1
ENDIF
IF (Y LT 0) OR (Y GT 24)

ECHO Warning: Second argument to mGotoxy (Y) is out of range.
'.I:'k‘-|I_.'k‘k'ki:*'k'k'k'kiririqir1:1:'k'k'k'k1:1:1:1:1:'F:'k'k:lt-:|r'.I:.'F:**1-‘it-'.I:-1:1!-1\'_'a'r'k':‘i'1\'"it'.I:'a'r'.!:_:|:'l::|:1:1:

ERRS = ERRS + 1
ENDIF
IF ERRS GT O ;; if errors found,

EXITM ;; exit the macro
ENDIF
push edx
mov dh,Y

362 Chapter 10 - Structures and Macros

mov d1,X
call Gotoxy
pop edx

ENDM

10.3.5 The IFIDN and IFIDNI Directives
The IFIDNI directive performs a case-insensitive match between two symbols (including
macro parameter names"), and returns true if they are equal. The IFIDN directive performs a
case-sensitive match. IFIDNI is particularly useful when you want" to make sure the -caller -of
your macro "has not used a register argument that might" conflict with register usage inside the
macro. Its syntax is:

IFIDNI <symbo1>, <symbol>
statements.

ENDIF

The syntax for IFIDN is identical.
In the following mReadBuf macro, for example, the second argument cannot be EDX

because it will be overwritten when the offset of buffer is moved into EDX. The following
revised version of the macro displays a warning message if this requirement is not met:

r ' ' “ “ “ ' ' ' ' ' ' ' ' ' ' “ ' ' ' ' “ ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' “ ' ' ' ' “ ' ' ' ' ' ' ' ' "

mReadBuf MACRO bufferPtr, maxChars

; Read from standard input into a buffer.
; The second argument cannot be edx/EDX

IFIDNI <maxChars>,<EDX>
ECHO Warning: Second argument to mReadBuf cannot be EDX

'k*it'*1:tlriririttlririririrjlririririttlriririr-itirtlrir*******d:***:3r'k'k*1:*i:**‘ki:i:

EXITM
ENDIF
push ecx
push edx
mov edx,bufferPtr
mov ecx,maxChars
call Readstring
pop edx
pop ecx

ENDM

_u
I

The following statement causes the macro to generate a warning message because EDX is the
second =argument:

mReadBuf 0FFSET.buffer,edx

10.3 Conditional-Assembly Directives 363

10.3.6 Special Operators
.-ks shown below, there are four assembler operators that make macros more flexible:

& Substitution operator ‘

<:> , Literal-text operator
l _

! Literal-character operator

% Expansion ope1'ato1'

10.3.6.1 Substitut_i0_n Operator (&)
The .s'-u.bsrt'rur£0n- (&) operator resolves ambiguous references to parameter names within a
macro. For example, suppose that a macro named Sh0wRt-agister displays the name and hexa-
decimal contents of a 32-bit register. The following would be a sample call:

.code
ShowRegister ECX

Following is a sample of the output".generated by the "call to ShowRegister:

Ecx=.‘t§F§a?a 0 0 1a 1 "
I‘. |7 _ i _ :,,,,,* W iii -

A string variable containing the register name could be defmed inside the macro:

ShowRegister MACRO regName
.data
tempStr BYTE " regName=",0

But the preprocessor would assume that regNar|1e was part of a string literal and would not
replace it with the argument value passed to the macro. Instead, if we add the & operator, it
forces the preprocessor to insert the macro argument (such as ECX) into the string literal. The
following shows how to define tempStr:

ShowRegister MACRO-regName
.data
tempStr BYTE " ®Name=",0

The following listing contains the complete Sh0wRt'-agister macro. It is defined in the
.l.In_r:r0_.s'_. inc file and used by the Dt1mpRegs procedure:

a___-.|.-.,_._......._._...___...--............_._._._._.__._._.__.______------_--___._._._._._._._

ShowRegister MACRO regName
LOCAL tempStr

; Display a 32~bit register name and its contents.
9Ixa—xxx---1--1-._xx¢_xx..-xcna—-u-a_$a-¢_¢_-n_x¢__xx---—|.—'iii*_i*_I-fl—fl—--$a—x

364 Chapter 10 - Structures and Macros

.data
te.mpStr BYTE " ®Name=",O.
.code

push eax
push edx

; Display the register name
mov edx,OFFSET tempStr
call Writestring

; Display the register contents in hexadecimal
mov eax,regName
call WriteHex

pop edx
pop eax

ENDM

10.3.6.2 Expansion Operator (-%)
The expcmsion operator (%) expands text macros or converts constant expressions into their text
representations. It does this in several diffet'ent ways. When used with TEXTEQU, the % opera-
tor evaluates a constant expression and converts the result to an integer.

In the "following example. the % operator evaluates" the expression (5 + count) and retums
the integer 15 (as text):

.count = 10
sumval TEXTEQU %(5 + count) ; = "15"

If a macro requires a constant integer argument. the % operator gives you the flexibility of
passing an integer expression. The ‘expression is evaluated to its integer value, which is then
passed to the macro. For example, when invoking mG0t0x_yC0nst. the expressions here evaluate
to 50 and 7:

mGotoxyConst %(5 * 10), %(3 + 4)

The preprocessor produces the following statements:

i—'l—"i—'i-‘l-'

push edx
mov dh,7
mov dl,5O
Call Gotoxy
pop edx

% at Beginning ofLine When the expansion operator (%) is the first character on a source
code line, it instructs the preprocessor to expand all text macros and macro functions found on
the same line. Suppose, for example, we wanted to display the size of an array on the screen dur-
ing assembly. The following attempts would not produce the intended result:

.data
array DWORD l,2,3,4,5,6,7,8

10.3 cOl'ldit|Ol'lflir'ASSElTIb|Y Directives 365

.code
ECHO The array contains (SIZEOF array) bytes
ECHO The array contains %(SIZEOF array) bytes

The screen output would be useless:

The array contains (SIZEOF array) bytes
The array contains %(SIZEOF array) bytes

Instead, if we use TEXTEQU to create a text macro containing (SIZEOF array). the macro can
be expanded on the next line:

TempStr TEXTEQU %(SIZEOF array)
% ECHO The array contains TempStr bytes

The following output is produced:

I The array contains 32 bytes l
I‘ 7____ 7

Displayirzg the Line Number Let’s look at a macro named Mul32 that multiplies its. first two
arguments together -and returns the product in the third argument. It can handle registers, mem-
ory operands, and even immediate operands (except for the product):

MUL32 MACRO opl, op2, product
IFIDNI <Op2>,<EAX>

LINENUM TEXTEQU %(@LINE)
ECHO -- --

% ECHO * Error on line LINENUM: EAX cannot be the second
ECHO * argument when invoking the MUL32 macro.
ECHO -- --

EXITM
ENDIF
push eax
mov eax,op1
mul op2
mov produCt,eax
pop eax

ENDM

M11132 checks one important requirement, that EAX cannot be the second argument. What
is interesting about the macro is that it displays the line number from where the macro was
called, to make it easier to track down and fix the problem.

The Text macro LINENUM is defined first. It references @LINE, a predefined assembler
operator that retums the current source code line number:

LINENUM TEXTEQU %(@LINE)

366 Chapter to ~ Structures and Macros

Next,'the expansion operator (%.) in the first column of the li ne.co.ntai nin g the ECHO statement
causes LINENUM to be expanded:

% ECHO * Error on line LINENUM: EAX cannot be the second

Suppose the following macro call occurs in a program on line. 40:

MUL32 val1,eax,val3

Then the following message is displayed during assembly:

‘ ."i.
.. - ' - -...|. .. -\- ~! .__,-,'.'_" »_ . - .______1__.____::::::::_________,:_

lafi.Errorpfinfilihéqflfiafifihflecafihofi be the second
' - ~'.."-ii3.'~.'--;‘1_>:=-'=I.*.?l';?.--'5 1, ife::r.'_'-E-"'_':-'1 .:f~’ "~';j'~'i-.;_. ,-1;‘. .-' 1;: -I:-.~'t; ' , , -'* ; -' "8.I"qliI_ll'§3l;€l-?.l3?;§r1Ih8'I1%= ‘film.-3Zi1>ka.ng. - 2 macro ..

_ ' '_ .'.|.' -.;I. '_5-"_-I "__1;'._- __ . _.-j:1!'.'»'.|_|f,.*."~_ ,' ‘.1 _.-...*.¥...as:1asage-lessensi-a.gss.sssn=gas::1;.:a.........._.=..:..........:_l:
., _..|t-.- , - .,

. " . |,- 'r:-... 1‘.‘~' ‘-‘-'i' *‘ -|.- c .. t.- — - 1 | .l'-.- ‘ Ll’? -rlln ':-!.'-.'..|-'. .'.¢-,—f-;- 7* "'~’.-:-!-.--l- '. | ' !- Ht‘-.“i.~ .1‘ I .1 ‘- | ' . - - __ _

You c-an view a test of the Mul32 macro in the program named Mac:-o3.asm.

10.3.6.3 Literal-Text Operator (-::>)
The literal-text operator (<>) groups one or more characters and symbols into a single text lit~
eral. It prevents the preprocessor from interpreting members of the list as separate arguments,
This operator is particularly useful when a -string contains special characters, such as commas.
percent signs (%), ampersands (&), and semicolons (;), that would otherwise be interpreted as
delimiters or other operators.

For example, the mWrite macro presented earlier in this chapter receives -a string literal as
its only -argument. If we were to pass it the following string, the preprocessor would interpret it
as three separate macro arguments:

mwrite "Line three", Odh, Oah

Everything after the first comma would be discarded because the macro expects only one
argument. On the other hand, if we surrounded the string with the literal-text operator, the pre-
processor would "consider it all .to be a single macro argument, commas -and all:

mWrite <"Line three", Odh, Bah?

10.3.6.4 Literal-Character Operator (I)
The literal-character operator (I) was invented for much the same purpose as the literal-tex:
operator: It forces the preprocessor to treat a predefined operator as an ordinary character. In the
following TEXTEQU definition, the l operator prevents.-the > symbol from being a text delimiter:

BadYValue TEXTEQU <Warning: Y—coordinate is.!>-24>

Warning Message. Example The following example helps to show how the %, &, and I opera-
tors work together. Let's assume that we have defined the BadYValue symbol. We can create a

10.3 Conditionai-Assembiy Directives 367

macro named Showwarning that receives a text .argument, encloses it in quotes, and passes the
literal to the mwrite macro. Note the use of the substitution (&) operator:

Showwarning MACRO message
mwrite "&message"

ENDM

Next, we invoke Showwarning, passing it the expression %BadYValue. The % .operator evalu-
ates (dereferences) BadYValue and produces its equivalent string:

.code
Showwarning %BadYValue

As you might expect, the program runs and displays the warning message:

i Warning: Y-coordinate is > 24 I

10.3.7 Macro Functions
A macro function is similar to a macro procedure in that it assigns a name to a list of assembly
language statements. It is different in that it always retums a constant (integer or string) using
the EXITM directive.

In the following example, the IsDefined macro returns true (—l) if a given symbol has
been defined: otherwise, it returns false (0):

IsDefined MACRO symbol
IFDEF symbol

EXITM <-l> :; True
ELSE

EXITM <0> ;; False
ENDIF

ENDM

The EXITM (exit macro) directive halts all ftuther expansion of the macro.

Calling a Macro Function When you call a macro function, its argument list must be enclosed
in parentheses. For example, we can call the IsDefined macro, passing it Reali\/lode. the name of
a symbol which may or may not have been defined:

IF IsDefined(RealMode)
mov ax,@data
mov ds;ax

ENDIF

If the assembler has already encountered a definition of RealM0de before this point in the
assembly process, it assembles the two instructions:

mov ax,@data
mov ds,ax

368 Chapter 10 - Structures and Macros

The same IF directive can be placed inside a macro named Startup:

Startup MACRO
IF IsDefined(Rea1Mode)

mov ax,@data
mov ds,ax

ENDIF
ENDM

A macro such as IsDefined can be useful when you design programs that -are assembled
for different memory models. For example, we can use it to determine which include" file to use:

IF IsDefined(Rea1Mode)
INCLUDE Irvinel6.inc

ELSE
INCLUDE Irvine32.inc

ENDIF

Defining the RealMode Symbol All that remains is to find a way to define the RealM0de
symbol. One Way is to put the following lineat the beginning of a program:

Rea1Mode = 1

Altematively, the "assembler’s command line has -an option for defining symbols, using the —-D
switch. The following ML _con:|n1and defines the Rea.lMode symbol and assigns it a value of 1:

ML —c -DReaIMode=1 myProg.asm

The corresponding ML command for Protected mode programs should not define" the Reallviode
symbol:

ML —c -coff myProg.asm

The HelloNew Program The following program (HeZloNew.asm) uses the macros we have
just described, displaying a message on the screen:

TITLE Macro Functions (He11oNew.asm)

INCLUDE Macros.inc
IF IsDefined(Rea1Mode)

INCLUDE Irvine16.inc
ELSE

INCLUDE Irvine32.inc
ENDIF

.code
main PROC

Startup
mwriteLn “This program can be assembled to run "
mWriteLn "in both Real mode and Protected mode."
exit

10.3 Conditional-Assembly Directives

This program can be assembled in either Real-address mode, using makeHello16 bat, or 1n Pro

main ENDP
END main

tected mode using rnake32.bm.

10.3.8 Section Review

1
2.
3
—l-

‘\D0O*-IU\Ul

IO

ll
12
13
14

ll‘

‘I’

1-

What is the purpose of the IFB directive?
What is the purpose of the IFIDN directive?
Which directive stops all further expansion of a macro‘?
How is IFIDNI different from IFIDN?
What is the purpose of the IFDEF directive?
Which directive marks the end of a-conditional block of statements"?
Show an example of a macro parameter having a default-argument initialtzer
List all the relational operators that can be used in constant boolean expressions
Write a short example that uses the IF. ELSE, and ENDIF directives.
Write a statement using the IF directive that checks the value of macro parameter Z if Z 1s
less than zero, display a mess-age during assembly indicating that Z is invalid
What is the purpose of the & operator in a macro definition?
What is the purpose of the I operator in a macro definition?
What is the purpose of the. % operator in a macro definition?
Write a short macro that demonstrates the use of the & operator when the macro parameter
is embedded in a literal string.
Assume the following m"L0cate macro definition:

mLocate MACRO xva1,yva1
IF xval LT 0

EXITM
ENDIF
IF yval LT 0

EXITM
ENDIF
mov bx,0 ,,
mov ah, 2
mov dh,yva1
mov c1l,xval
int 10h

ENDM

Show the source code generated by the preprocessor when the macro is expanded by each of
the following. statements:

.data
row BYTE 15
col BYTE 60

xval < O?
if so, exit

yval < 0?
if so, exit

video page 0
locate cursor

call the BIOS

370 Chapter 10 - Structures and Macros

.code
mLocate -2.20
mLocate 10,20
mLocate co1,row

10.4 Defining Repeat Blocks
MASM has a number of looping directives for generating repeated blocks of statements:
WHILE, REPEAT, FOR, and FORC. Unlike the LOOP instruction, these directittes work only at
assembly time, using constant values as loop conditions and counters:

~ The WHILE directive repeats" astatement block based on a boolean expression.
- The REPEAT directive repeats. a statement block based on the value ofa counter.
~ The FOR directive repeats a statement block by iterating over a list of symbols.
- The FORC directive repeats a statement block by iterating over a string of characters.

Each is demonstrated in an example program named Repear.asm.

The constant di.rectives shown in this chapter should not be confused with the run-time direc-
tives such as .IF and ENDIF that were introduced in Section 6.7 of Chapter 6. The latter were
able to evaluate expressions based on runtime values such as registers and variables.

10.4.1 WHlLE Directive
The WHILE directive repeats a statement block as 10ng as a particular constant expression is
true. The syntax "is:

WHILE'constExpression
statements

ENDM

The following code shows how to generate Fibonacci numbers between 1 and F0000000h as -a
series of assembly-time constants;

.data
vall = 1
val2 = 1
DWORD vall ; first two values
DWORD va12
val3 = vall + val2
WHILE val3 LT 0F0000000h

DWORD val3
vall = val2
va12 = val3
val3 = va11 + Va12

ENDM

The values generated by this code" can be viewed in a listing (.LST) file.

10.4 Deflnlng Repeat Blocks 371

10.4.2 REPEAT Directive
The REPEAT directive repeats a statement block a fixed number of times. The syntax is:

REPEAT c.'onstExpress.ion
statements

ENDM

C0nsrE.rpress-ion, an unsigned constant integer expression, determines the number of repetitions.
The following REPEAT loop. for example. creates an array of I00 doublewords and initializes
their values in the sequence {l0,20,30,40,...,l.000}:

ival = 10
REPEAT 100

DWORD iVa1
ival = iVa1 + 1.0

ENDM

1 In MASM 5, the REPEATdirective_ was cal led_ _REB..You can still use the old name. i
_<;.

10.4.3 FOR Directive
The FOR directive repeats a statement block by iterating over a comma~delimited list of" sym-
bols. Each symbol in the list causes one iteration of the loop. The syntax is:

FOR parameter, <-Iargl , arg2, arg3, . . .I>
statements

ENDM

On the first Ioop iteration, parameter takes on the value of erg] : on the second iteration, param-
srer takes on the value of m'g2, and so on through the last argument in the list.

MA'SM'5“'programs. used IRP rather than FOE; Youizan still use IRP. ' I

Student Enrollment Example Let’s create a student enrollment scenario in which we have a
COURSE structure containing a course number and number of credits. A SEMESTER structure
contains an array of six courses and a counter named Nt1n1C.ourses:

COURSE STRUCT
Number BYTE -9 DUP(?)
Credits BYTE ?

COURSE ENDS

;.A semester contains an array of courses.
SEMESTER STRUCT

Courses COURSE 6 DUP(<>)
NumCourses WORD ?

SEMESTER ENDS

372 Chapte_r 10 - Structures and Macros

We can use a FOR loop to define four SEMESTER objects, each having a "different name
selected from the list of symbols between angle brackets:

.data
FOR semName,<Fa111999,Spring2000,Summer2000,Fa112000>

semName SEMESTER <>
ENDM

If we inspect the listing file, we find the following variables:

.data
Fa111999 SEMESTER <>
Spring2000 SEMESTER <>
Summer2000 SEMESTER <>
Fa112000 SEMESTER <>

10.4.4 FORC Directive
The FORC directive repeats a statement block by iterating over a string of characters. Each char-
acter in the stringcauses one iteration of the loop. The syntax is-:

FORC parameter, <string>
statements

ENDM

On the first loop iteration, parameter is. equal to the first character in the string; on the second
iteration, parameter is equal to the second character in the string, "and so on, to the "end of the
string.

The following example creates a ‘character lookup table consisting of several nonalpha-
betic characters. Note that -< and .> must be preceded by the literal-character (!) operator to pre-
vent them from violating the syntax of the FORC directive:

Delimiters LABEL BYTE
FORC code,<@#$%*&*l<l>>

BYTE "Rcode"
ENDM

The following data table is generated, which shows in a listing file:

00000000
00000001
00000002
00000003
00000004
00000005
00000006
00000007
00000008 1-*1-*1-‘1-‘1-*1-*1-*1-*1-‘

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
-BYTE

n@u
u#u
nsn
ll%ll

ll&ll

ll-J; It

"(ll

ll>ll

10.4 Detlnlng Repeat Blocks 373

10.4.5 Example: Linked List
It is fairly s-imple to combine a structure declaration with the REPEAT directive to instruct the
assembler to create a linked list data structure. Each node in a linked list contains a data area and
a link area:

i data i link H data i link H data 1 link l—>null

In the data area. one or more variables can hold data that are unique to each node. ln the link
area, a pointer contains the address of the nest node in the list. The link part of the final node
usually contains a null pointer.

Let's create a program that creates and displays a simple linked list. First. the program
defines a list node having a single integer (data) and a pointer to the next node:

ListNode STRUCT
NodeData DWORD ? ; the node's data
NextPtr DWORD ? ; pointer to next node

ListNode ENDS

Next, the REPEAT directive creates multiple instances oi‘ ListN0de objects. For testing
purposes, the NodeData iield contains an integer constant that ranges from I to l5. lnside the
loop, we increment the counter and insert values into the ListNode fields:

'I'otalNoc1eCount = 15
NULL = G
Counter = 0

.data
LinkedList LABEL PTR ListNode
REPEAT TotalNodeCount

Counter = Counter + 1
ListNode <Counter, ($ + Counter * SIZEOF ListNode)>

ENDM

The expression{$ + Counter * SIZEOF ListNode) tells the assembler to multiply the counter
b}‘ the ListN0de size and add their product to the current location ‘counter. The value is inserted
into the NextPtr field in the structure. (lt’s intere.st"i'ng to note that the location counter‘s value
15-) t'6n1ains lixed at the first node of the list.)

The list is given a mi! node that marks the end of the list. lt can be easily ‘identified because
its NextPtr field contains NULL (0):

ListNode <0 , 0;-~

When the program traverses the list, it uses the following statements to retrieve the NextPtr field
and compare it to NULL so the end of the list can be detected:

mov eax, (ListNode PTR [esi1) .NextPtr
cmp eatx,NULL

374 Chapter 10 - Structures and Macros

Program Listing The following is a complete listing of the program. In main, it uses a loop to
traverse the list and display the data values of all the nodes. Rather than use a fixed counter for
the loop, the program checks for the NULL pointer in the tail node and stops looping when it is
found:

TITLE Creating a Linked List (List.asm)

INCLUDE Irvine32.inc

ListNode STRUCT
NodeData DWORD ?
NextPtr DWORD ?

ListNode ENDS

TotalNodeCount = 15
NULL ='U
Counter = 0

.data _
LiHkedLiSt LABEL PTR LiStN0de
REPEAT TotalNodeCount

Counter = Counter + 1
ListNode <Counter, ($ + Counter * SIZEOF ListNode)>

ENDM
ListNode -<0,0:> ; tail node
.code
main PROC

mov esi,OFFSET LinkedList

; Display the integers in the NodeData fields.
NeXtNode:

; Check for the tail node.
mov eax,(ListNode PTR [esi]).NextPtr
cmp eax,NULL
je quit

; Display the node data.
mov eax,(ListNode PTR [esi]).NodeData
call WriteDec
call Crlf

; Get pointer to next node.
mov esi,(ListNode PTR [esi]).NextPtr
jmp NextNode

quit:
exit

main ENDP
END main

10.5 Chapter Summary 375

10.4.6 Section Review

p\Ln;.t»s>»—

. Briefly describe the WHILE directive.

. Briefly describe the REPEAT directive.

. Briefly describe the FOR directive.
Briefly describe the FORC directive.

. Which looping directive would be the best tool to generate a character lookup table‘?
Write the Statements generated by the following macro:

REPEAT val,<100,20,30>
BYTE 0,0,0,va1

ENDM

7. Assume the following mRepeat macro has been defined:

mRepeat MACRO char,count
LOCAL L1
mov cx,count

Ll : mov ah, 2
mov d1,char
int 21h
loop L1

ENDM

Write the code generated by the preprocessor when the mRepeat macro is expanded
by each of the following statements:

mRepeat 'X'.50
mRepeat AL,20
mRepeat byteVa1.countVal

8. Challenge: ln the Linked List example program (Section 10.4.5), what would be the result
if the REPEAT loop were coded as follows?

REPEAT Tota1NodeCount
Counter = Counter + 1
ListNode <Counter, ($ + SIZEOF ListNode)>

ENDM

10.5 Chapter Summary
A structure is a template or pattern that becomes a user-defined type. Many structures are
already defined in the MS-Windows API library, and are used for the transfer of data between
application programs and the library. Structures can contain a diverse set of field types. Each
field "declaration may use a field-initializer, which assigns a default value to the field.

Structures themselves take up no memory. But when a structure variable is declared, it
consumes memory. The SIZEOF operator retums the number of bytes used by the variable.

376 Chapter ‘I0 ~ Structures and Macros

The dot operator '(.) references a structure field by using either a structure variable or an
indirect operand such as [esi]. When an indirect operand references astructure iield, you must
usethe PTR operator to identify the"-structure type, as in (COORD PTR [esi]).X.

When .a structure contains fields that are themselves structures. we call it a nested structure
definition. An example was shown in the Drunkard ’s Walk program (Section l0.l .6). where the
Drunkardwalk structure contained an array of COORD structures-.

Macros are usually defined at the beginning of a program, before the data and code seg-
ments.Then, when calls are made to the macros, the preprocessor inserts-a copy oi’ each macro’s
code into the program at the calling location.

Macros can be effectively used as wrappers around procedure calls, so they can simplify
the passing of parameters and preserving of registers. Macros such as mG0t0xy, mDumpMem,
and mWrite_Str call procedures from the book*s link library.

A macro procedure. (or macro) is a named block of assembly language statements. A
macro]-imcrion is similar, except that it also returns a constant value.

Conditional-assernbl y directives such as IF, IFNB. and IFIDNI provide _a greatdeal of util-
ity to macros because they can be used to check for arguments that are out of range. missing. or
of the wrong type. The ECHO directive displays crror mcsssagcs during assembly, making it
possible to alert the programmer to errors. in arguments passed to macros.

The substitution operator (&) resolves ambiguous references to parameter names-. The
expansion operator (%) expands text macros and converts constant expressions to text. The lit-
eral-text operator (<1 >) groups diverse characters and text into -a single literal. The literal-charac-
ter operator (!) "forces the preprocessor to treat predefined operators as ordinary characters.

Repeat block directives can greatly reduce the amount of repetitive" coding you must
perform:

~ The WHILE directive repeats a statement block based on a boolean expression.
' The REPEAT directive. repeats a statement block based on the value of a counter.
' The FOR directive repeats a statement block by iterating "over -a list of symbols.
' The. FORC directive repeats "a-statement block by iterating over a string Jof characters.

10.6 Programming Exercises

1. mReadkey Macro
This exercise requires reading Section 15 .2 .2. The program must run in Real-address mode. Cre-
ate a macro that waits for a. keystroke and returns the key that was pressed. The macro should
include parameters for the ASCII code and keyboard scan code. For example, the following code
waits for a k'ey;.when it returns, the two arguments contain the ASCII code and scan code:

.data
ascii BYTE ?
scan BYTE ?
.code
mReadkey ascii, scan

10.6 Programming Exercises 377

2. m.WritestringAttr Macro
Create a macro that writes a null-terminated string to the console with a given text color. The
macro parameters should include the string name and the color. For example:

.data
mystring BYTE "Here is my string",O
.code
mWriteStringAttr myString. (white * 16) + blue

3. mMovt-:32 Macro
Write-a macro named mMove32 that receives two 32-bit memory operands. The macro should
move the source operand to the destination operand.

-1. mMult32 Macro
Create a macro named mMuIt32 that multiplies two unsigned 32-bit memory operands and pro-
duces a 32-bit product.

5. mReadInt Macro
Create a macro named mReadInt that reads a 16- or 32-bit signed integer from standard input
and returns the value in an argument. Use conditional "operators to allow the macro to adapt to
the size of the desired result. Write a program that calls the macro, passing it operands of various
sizes.

6. mWriteInt Macro
Create a macro named mWriteInt that writes a signed integer to standard output by calling the
Writelnt library procedure. The argument passed to the macro can be a byte, word, or double-
word. Use conditional operators in the macro so it adapts to the size of the argument. Write a
program that demonstrates the macro, passing it arguments of different sizes.

7. mScroll Macro
tRequires reading Section 15.3.3.5) Create a macro named mScroll that displays a color rectan-
gle on the screen. Include the following parameters in the macro definition:

ULrow Upper-left window row

ULcol Upper-left window column

LRrow Lower-right window row

LRcol Lower-right window column

attrib Color of scrolled lines

Ifattrib is blank. assume a color of light gray characters on a black background.

378 Chapter 10 ~ Structures and Macros

8. D1-unkard’s Walk
When testing the Drunkard Walk program, you may have noticed that the professor doesn't seem
to wander very far from the starting point. This is no doubt caused by the fact that there is an
equal probability of the professor moving in each direction. Modify the program -so that there is a
60% probability that the professor will continue to walk in the same direction as he/she did when
taking the previous step. Hint: You will have to assign a-default starting direction before the loop
begins. Also, recall that a programming exercise in Chapter 6 dealt with weighted probabilities.

32-Bit Windows Programming

11.1 Win32 Console Programming
11.1.1 Background Information
11.1.2 Win32 Console Functions
1 1.1.3 Console Input
11.1.4 Console Output
11.1.5 Reading and Writing Files
11_1_6 Console Window Manipulation
11-1.7 Controlling the Cursor
11.1.8 Controlling the Text Color
11.1.9 Tune and Date Functions
11.1.10 Section Review

11.2 Writing a Graphical Windows Application
11.2.1 Necessary Structures
11.2.2 The MessageBox Function
11.2.3 The Winlvlain Procedure
11.2.4 The W‘mProc Procedure
11.2.5 The Error!-iandler Procedure
11.2.6 Program Listing
11.2.7 Section Review

11.3 IA-32 Memory Management
11.3.1 Linear Addresses
11.3.2 Page Translation
11.3.3 Section Review

11.4 Chapter Summary
11.5 Programming Exercises

11.1 Win32 Console Programming
Hopefully, some ofthe following questions have been in the back of your mind while reading
this book:

' How do 32-bit programs handle text input-output‘?
~ How are colors handled in 32-bit console mode‘?
' How does the Irvine32 link library work‘?
' How are times and dates handled in MS-Windows‘?
1' How can I use MS-Windows functions to read and write data files‘?

379

380 Chapter 11 ' 32-Bit Windows Programming

- Is it possible to write a graphical Windows application in assembly language?
' How do Protected mode programs translate "segments and offsets to physical addresses?
' I’ve heard that virtual memory is good. But why is that so‘?

This chapter will answer these questions and more, as we show you the basics of 32-bit pro-
gramming under Microsoft Windows. Most of the information here is oriented toward 32-bit
console" mode text applications because they are reasonably easy to program, given a knowledge
of str'uctures- and procedure parameters. The Irvine3‘2 link library is completely built on Win32
console functions, so you can compare its source code to the information in this chapter.

Why not write the type of graphical applications you usually see running under MS-Win-
dows‘? The main reason is that they tend to be e.trrem.al;r long and detailed. For years, C’ and C~l—l—
programmers have labored over technical details such as gr-aphical device. handles, message
posting. font metrics.'C1evice bitmaps, and mapping modes, with the help of excellent authors. In
fact, there is a devoted group ofassembly language programmers on the Web who are quite good
at Windows programming. I have links to many of their Web sites from my own, named Assem-
biy Lcmgrrcrge Sources (http:/lwwwnuvisionmiami.comikip/asm.htm).

So that graphical programmers -are not completely disappointed, Section 11.2 does intro-
duce 32-bit graphical programming in a generic sort of way. It‘s only a start, but you might be
inspired to go further into the topic. A list of recommended books for futher study is. given in the
summary at the end of this chapter.

On the surface,'32-bit console mode programs look and behave like- 16-bit MS-DOS pro-
grams running in text mode. Both types of programs read from standard inputand write to standard
output. They can bothdisplay text in color. Beneath the surface, however; 32-bit console programs
and MS-DOS programs are quite different. The Former runs_ in 32-bit Protected mode, whereas
MS-DOS programs run in Real-address mode. By necessity, they use completely different function
libraries. Win32 programs call functions from the same function library used by graphical Win-
dows applications. MS-DOS programs use BIOS and MS-DOS interrupts that have existed since
the "introduction ofthe IBM-PC.

An Application Programming Interface (API) is a collection of types. constants, and func-
tions that provide a -way to directly manipulate objects through programming. Therefore, the
Win32 APT lets you tap into the objects that make up the 32-bit version of MS-Windows.

Closely related to the Win32 API is the Microsoft Platform SDK. The letters SDK stand
for ,;0f;wm-@ "qfeveioprrzerzr kit, which is a collection of tools, libraries, sample code, and docu-
mentation that helps programmers create applications. A ptarfornr is an operating system or :-_
group of"closely related operating systems.

it -sires to “anti!-a*%=1<>;r'iirrii¢ -
"111-sir iisf=1“¢fi¢s"°t all-‘is its Mi¢1‘<i§str=bZI‘$DN.:3}

11.1 Win32 Console Programming 381

11.1.1 Background Information
When a Windows application starts, it creates either a console window or a graphical window.
We have been using the following option with the LINK command in the make32.bar batch file
that tells the linker to create a console-based application:

/SUBSYSTE1-BCONSOLE

A console program looks and behaves like an MS-DOS window, with some enhance-
ments, which we will see later. The console has a single input buffer and one or more screen
buffers:

- The input buflier contains a queue of inprtr records, each containing data about an input
event. Examples of input events are keyboard input, mouse clicks, and the user’s resizing
of the console window.

' A screen brgjfer is a two-dimensional array of character and color data that affects the
appearance of text in the console window.

'l11re;£i}s.!ii>;1ittlr1$"-s‘1¢ii°1tr*'i*-’s3'¢t1I1.'°Y?1r ivrrodvrs Y<?.1’.1"i<? aiH.i1ti?bi=r.°f 1
Tilers-,derar1s-alterbecaii§eii§i'f;sp'ac'ef1ii*h'itatioiis';i'1?o'1%‘fiiid .'o at-more, iasrarhneMSDN L~rsrs_r-i,';i;?,ci;> if ;,

Visual ‘srtitlii-;».,5r -vrsr'rftri'e- Micron-r£‘rirsr§N warns - j;,_
. . - n;_ _| ' .< .. _ ‘, , , . ., \.--.-- --.,.

.:_}-1'. -.. \. —\ _‘. -. F
W.’- ‘| '1 I I .'J -';.“.- ‘..._;‘ I-i 1. -1.)

'_>‘ 1.. I....

_ _ a- , _,-_ __ - » .-u. -* .. . 1.. -' ,.'---, .- . -' ' . -. |_ | .1--_..,¢.,r--r,‘

Character Sets and. Windows API Fauctions There are two types of character sets that can be
:15-ed when calling functions in the Win32 API. The 8-bit ASCIUANSI character set, and the 16-bit
Erricode set (available in Windows NT, 2000, and. XP). Windows API functions dealing with text
:-re usually supplied in two versions , one ending in the letter A (for 8-bit ANSI characters), and the
odier ending in W (for wide character sets, including Unicode). One of these is WriteConsole:

- WrireConsoleA
~ WriteConsoleW

Function names ending in W are not supported by Windows 95 or 98. In Wirrdows NT,
I100, and XP, on the other hancl, Unicocle is the native character set. When you call a function
such as WriteConsoleA, the operating system first converts the characters from" ANSI to Uni-
code, and then calls WriteC:onsoleW.

In the Microsoft MSDN Library-documentation for functions such as WriteConso1e, the
:_-ailing A or W is omitted from the name. In the include file for the programs in this book, we
redefine function names such as WriteConsoleA:

WriteC0ns0le EQU <WriteC0nsoleA>

This definition makes it possible to call WriteConsole using its generic name.

382 Chapter 11 ~ 32-Bit Windows Programming

High-Level and Low-LevelAccess There are two levels of access to the console, permitting
tradeoffs between simplicity and complete control:

' High-level console functions read a stream of characters from the console's input buffer-.
They write character data to the console’s screen buffer. Both input and output can be redi-
rected to. read from or write to text files.

~ Low-level console-functi.ons_ retrieve "detailed information about keyboard and mouse events.
and user interactions with the console window (dragging, resizing, etc.). These functions
also permit detailed conuol of the window size and position, as well as text colors.

11.1.1.1 Windows Data Types
Microsoft Window-s AP1 functions are documented using function declarations for 5C/C-i+ pro—
grammars. In-these declarations, the types of all function parameters are based either on stan~
dand C types or on one of the MS-Windows predefined types (listed in Table 1 l-1). Windows
API functions do not preserve the BAX, EBX, ECX, and EDX registers.

Table 11-1 Translating MS-Windows Types to MASM.
1- - .r_ _n . I. Il _._. 1, .._ 1.

'MS-Windows" “
1 _ Type MASM Type Description

BOOL I DWORD A boolean value I

BSTR PTR BYTE A 32-bit character pointer

1‘ BYTE BYTE An 3-bit unsigned integer 1
L l

COLORREF DWORD A 32-bit value used as a color value I
‘T 7 A

l DWORD DWORD A 32-bit unsigned integer or the address of a segment and its i
associated offset

HANDLE , DWORD A 32-bit unsigned integer

1 LONG 1 SDWORD A 32-bit signed integer '
llfi j . _

LPA-RAM DWORD , A 32-bit value passed as a paranreter to-a window procedure or Y
I callback function (may be a pointer) '

LPCSTR PTR BYTE A 32-bit pointer to a constant character string 1
s _ r

LPSTR l PTR BYTE I l A 32-bit pointer to acharucter string
_ fl__ _

LPCTSTR DWORD l A 32-bit pointer to a constant character string that is portable it
for Unicode and double-byte character" sets ‘

LPTSTR PTR WORD. A 32—bit'pointer to a character string that is portable for Uni-
code and double-byte char'acter sets

11.1 Win32 Console Programming 383

Table 11-1 Translating MS-Windows Types to MASM. (Continued)

F MS-Windows ‘|
i} Type 1 MASM Type I Description-
t I *1 l as a was _ _

LPVOID ; DWORD A fin 3-2—bitpointer to an unspecified type l
L . .-— as _ — :1

LRESULT DWORD i A 32-bit value returned from a window procedure or callback
‘ function i
4 _~ 7 _ _ 7 7

UINT DWORD A 32-bit unsigned integer

WNDPROC DWORD A A 32-bit pointer to a window procedure i
t i v j _ _ 7

wow) 1 WORD A 16-bit unsigned integer
WPARAM I DWORD A 32-bit value passed as a parameter to a window procedure or

callback function

LPCRECT 3 PTR RECT A 32-bit pointer to a constant (nonmodifiable) RECT structure

11.1.1.2 Console Handles
Nearly all Win32 console functions require you to pass a handle as the first argument. A handle

a 32-bit unsigned integer th-at uniquely identifies an object such as a bitmap, drawing pen, or
any input/output device. We will use the following handles:

STD_INPUT_HANDLE standard input
STD_OUTPUT_HANDLE standard output
STD_ERROR;HANDLE standard error output

The latter two handles are used when writing to the console’s active screen buffer.

The S;g;gllWi:i.iric file supplied with this bookcontains all of the sytnbolic_t;:onsta1_1=ts, fun_<;tion1proto¢ __
types_,:"‘i:ii1d related definitions shown in this chapter. You can find it in MAlSM’s'INCLUf)E A

; tory. \ V
' i 'IJ‘1_-i________ _ ___ __ _____ _< _ ' ____\.__'_.______ '__ _ iL _ i _ _ ’ i ’ ’ i ’ ii,-3; ."_,"_-..‘_. --;!"\' ,-'_L;g'._:1'. _ .'_
i 4‘ r ,1 _ _ 1-u—| ___ _

The GetStdHandle function returns a handle to a consolestream: input. output, or error
output. You need a handle in order to do any input/output in a console-based program. Here is
the function prototype:

GetStdHand1e PROTO,
nStdHand1e:DWORD ; handle type

ir..SrdHcmdZe can be STD_INPUT_HANDLE, STD_OUTPUT_I-IANDLE, or STD__ERROR__H_ANDLE.
The function returns the handle in BAX, which should be copied into a variable for safekeeping.
Here is a sample cal l:

.data
inputfiandle DWORD ?

384 Chapter 11 ~ 32-Bitwindows Programming

.code
INVOKE GetStdHand1e, STD_INPU‘I‘_1-IANDLE
mov input!-Iand1e,eax

11.1.2 Win32 Console Functions
lTable ll-2 contains a quick reference to the complete set of Win32 console functions. You can

find a complete .description of each function in the MSDN library either on CD-ROM or at
www.msdn.microsoft.com.

Table 11-2 Win32 Console Functions.

ll Function Descrlptlon
____.-_r_ _

AllocConsole Allocates a new console for the calling process;

CreateConsoleScreenBuffer Creates a console screen buffer.

FillConso'leOutputAttribute Sets the text and background color attributes for a specified number
of character cells.

1 FillConsoleOutpulChflrflCi@r Writes a character to the screen buffer a specified number of times.
F _ ___

FlushConsolelnpu-tBu1'fer Flushes the console input buffer.

FreeConsole Detaches the calling process from its console.

A GenerateConsoleCtrlEvent Sends a specified signal to a console process group that shares the
console associated with the calling process.

t
GetConsolcCP

+

Retrieves the input code page used by the console associated with
the calling process.

GetConsoleCursorInfo Retrieves information about the size and visibility of the cursor for
the specified conS.0le screen buffer.

G.etConsoleMode R R Retrieves the current input mode of a console's input buffer or the
current output mode. of a console screen buffer.

I G.etConsoleOutputCP
l

GetConsoleScreenBufferInfo
i _ _ _

Retrieves the output code page used by the console associated with
the calling process.

J

Retrieves information about the specified console screen bufier.

l _

‘ GetConsoleTitle ‘ Retrieves the title bar string for the current console window.
*>

' Source: Microsoft MSDN Documentation. January 2001. Reprinted with permission from Microsoft Corporation.

11.1 Win32 Console Programming 385

Table 11-2 Win32 Console Functions. (Continued)
}_ _ _____
ll

Function W g Description

GetConsoleWindow Retrieves the window handle used by the console associated with
the calling process.

GetNumberOfConsoleIn-
putEvents

GetLargestConsoleWindowSize 1; Retrieves the size of the largest possible console window.

Retrieves the number of unread input records in the console's inpu
buffer.

I-P

,L __

i GetNun1berOl’ConsoleMouse-
Buttons

Retrieves the number of buttons on the mouse used by the current
console.

etStdHandleQ. Retrieves a handle for the standard input, standard output, or stan-
dard error device.

E HandlerRoutine An application-defined function used with the SetConsoleCtrlHan-
dler function.

PeekConsolelnput Reads data from the specified console input buffer without remov»
ing it from the" buffer.

C ReadConsole C Reads character input from the console input buffer and removes it
from the buffer.

ReadConsolelnput Reads data from a console input buffer and removes it from the
buffer.

ReadConsoleOutput Reads character and color attribute data from a rectangular block of
character cells in a console screen buffer.

ReadConsoleOutputAttribute Copies a specified number of foreground and background col01'
attributes from consecutive cells of a console screen buffer.

ReadConsoleOutputCha.racter

ScrollConsoleScreenBufl'er

Copies a number of characters front consecutive cells of-a console
screen buffer.

Moves a block of data in a screen buffer.

SetConsoleActiveScreenBuffer
'4

Sets the specified screen buffer to be the currently displayed con-
sole screen buffer.

C SetConsoleCP Sets the input code page used by the console associated with the
calling process.

C SetConsoleCtrlHandler Adds or removes an application-defined HandlerRoutine from the
list of handler functions for the calling process.

L

386 Chapter 11 ' 32-Bit Windows Programming

Table 11-2 Win32 Console Functions. (Continued)
*_*_,_ ___ ~~ as it 7, _ "We _ I

Function 1 Descrlptlon

SetConsoleCursorInfo Sets the size and visibility of the cursor for the specified console
screen buffer.

' F ' T’ T’ 7 T

SetConso1eCursorPosition Sets the cursor position in the specified console screen buffer.
_____ _ 7 7 r rrrfr 7 T’ T '7 __ I

SetConsoleMode Sets the input mode of a console's input buffer or the output mode
of a console screen buffer.

___‘ 7 ,7, 7 F

SetC0ns0leOutputCP -Sets the output code page used by the console associated with the
calling process.

SetConsoleSc1eenBufferSize Changes the size of the specified console screen buffer.

. SetConsoleTextAtt1'ibute Sets the fore'ground (text) and background color attributes of char»-
acters written to. the screen buffer.

SetCcnsoleTitle i Sets the title bar -string for the current console window.

. SetConsoleWindowInfo Sets the current size and position of a console screen bttffei-‘s window. j

SetStdHandle Sets the handle for the standard input, standard Output, or standard
error device. .

_ _ _ _ _ _ _

WriteConsole Writes a character string to a console screen buffer beginning at the '
current cursor location. '

WriteConsoleInput Writes data directly to the console input buffer.

WriteConsoleOutpur Writes character and color attribute data to a specified rectangular
1 block of character cells in a console scteen buffer.

WriteConsoleOutputAttribute Copies a number of foreground and background color attributes to
consecutive cells of a console screen buffer.

7 '7 ' * 7 ' J

WriteConso1eOutputCha1'acter Copies a number of characters to consecutive cells of a console
screen bufier.

l

— — — —— ——_:—_

11.1.3 Console Input

By now, you have used the ReadString and ReadChar procedures from the book’s link library
quite a few times. They were designed to be simple and straightforward, so you could concentrate
on other issues. Both procedures are wrappers around ReadC0nsole, a Win32 function. (A wrap-
per procedure hides some of the-details of another procedure.)

11.1 Win32 Console Programming 387

Console InputBuffer The Win32 console has an input bui"'i"'er containing an array of input
"event records. Each input event, such as a keystroke, mouse movement, or mouse-button click,
creates an input record in the console‘s input buffer. I-Iigh-level input functions such as
ReadC0ns0le iilter and process the input data, ret_ur1‘1ing only a-stream of characters.

11.1.3.1 ReadCons0le Function
The ReadC0nsole function provides a convenient way to read text input and put it in a buffer.
Here is the prototype:

ReadConso1e PROTO,
hand1e:DWORD, ; input handle
pBuffer:PTR-BYTE, ; pointer to buffer
maxBytes:DWORD, ; number of chars to read
pBytesRead:PTR DWORD, ; pointer to num bytes read
'notUsed:DWORD ; (not used)

The handle argument is a valid console input handle returned by the GetStdHandle func-
tion. The pBrgj”e:' parameter is the offset of a character array. The ma.rB_vres parameter is a 32-bit
integer specifying the maximum number of characters to read. The pB__vresRead parameter is a
pointer to a doubleword that permits the Function to fill in, when it returns, a count of the number
of characters placed in the buffer. The last parameter is not used. but you must still pass it a value
(zero, for example).

Example Program Suppose we want to write a program to read characters entered by the
user. First, we call GetStdHandle to get the console’s standard input handle. Then we call
ReadC0ns0le, using the same- input handle:

TITLE Read From the Console (ReadConso1e.asm)

; This program reads a line of input from standard input.

INCLUDE Irvine32.inc

BufSize = 80

.data
buffer BYTE BufSize DUP(?)
stdInHandle DWORD ?
bytesRead DWORD ?

.code
main PROC

; Get handle to standard input
INVOKE GetStdHand1e, STD_INPUT_I-IANDLE
mov stdInHand1e,eax

; Wait for user input
INVOKE ReadConso1e, stdInHand1e, ADDR buffer,

BuESize, ADDR bytesRead, 0

388 Chapter 11 - 32-Bit Windows Programming

; Display the.buffer
mov esi,OFFSET buffer
mov eex,l6 ; l6.bytes
mov ebx,TYPE buffer
call DumpMem

exit
main ENDP
END main

We can test this program by entering “abcdefg" from the keyboard. Note the hexadecimal
dump of buffer:

Dump of offset 00404000

61 62 63 64 65 66 67 OD OA 00 O0 O0 00 O0 00 O0

Notice that nine bytes are inserted in the buffet (“abcdefg", plus 0Dh and 0Ah, the end-of-line
characters inserted when the user pressed the Enter key). The bytesRead variable will be
equal to 9.

If you want the buffer to" contain a null-terminated string, replace the byte containing 0Dh
with a null byte. This is exactly what is done by the ReadString procedure from lrvine32.lib.1t
the user enters more data than specified by the" maxByt_es parameter, the. excess Ci'l21i‘21CtEi’>
remain in the console‘s input buffer.

11.1.3.2 Single-Character Input
Single-character input in console mode is a little tricky. You have to do the following steps. ir_
order:

I. Get a copy of the current console flags by calling GetC0ns0leMode. Save the flags in :1
variable.

2. Change the console flags by calling 'SetC0ns.0leM0de.
3. Input a character by calling ReadC'0ns0le.
4. Restore the previous values oi’ the console flags by calling SetC0nsoleM0de.

The GetC0ns0leM0de function gets the current flag mode values of a console's inpt_-;
buffer, or the current output mode of a console screen butter, -and copies the flags to a double-
word variable:

GetConsoleMode PROTO,
hConsoleHandle:DWORD, ; input or output handle"
lpMode:PTR DWORD ; points to DWORD variable

11.1 Win32 Console Programming 389

The SetC0ns0leMode function sets the current input mode of a console's input buffer, or
the current output mode of a console screen buffer:

SetConsoleMode-PROTO,
hConsoleHandle:DWORD, ; console handle
dwMode:DWORD ; console mode flags

The set of possible values for dwMode is somewhat large, so you will need to look up the
SetC0ns0leM0de function in the Microsoft MSDN _online library. For now, we can say that a
value of zero cleats all flags and enables single-character input.
Example The following statements, taken from the link library’s ReadChar procedure, input
a single keyboard" character:

.data
saveFlags DWORD ? ; backup copy of flags
.code
; Get & save the current console input mode flags
INVOKE Getconeolemode,

consoleInHandle,
ADDR saveFlags

; Clear all console flags
INVOKE SetConsoleMode,

consoleInHandle,
0 ; new flag values

; Read a single character from input
INVOKE ReadConsole,

consoleInHandle, ; console input handle
ADDR buffer, ; pointer to buffer
1, ; max characters to read
ADDR.bytesRead,0 ; return value

; Restore the previous flags state
INVOKE SetConsoleMode,

conso1eInHandle,
saveFlags

Aren't you glad you didn’t have to write your own ReadChar procedure in the first week of class?
A final comment on ReadChar: If no characters are waiting in the input stream, the pro»

scam waits for a key to be pressed. Extended keyboard keys such as function keys and arrow
E

keys are ignored. (Look on the book’s Web site for an example that deals with input of extended
keyboard keys.)

11.1.4 Console Output
In earlier chapters, it was important to make console output as simple as possible. As far back as
Chapter 5, the Writt-:String procedure in the Irvine32 link library required only a single argu-
ment, the ofiset of a string in EDX. It turns out that WriteString is actually a wrapper around a
more detailed call to a Win32 function named Writ_eC0ns0le'.

390 Chapter 11 - 32-Bit Windows Programming

In this chapter. however, you learn how to make direct calls to Win32 functions such as
Writt-':Console and WriteConso'leOutputCharacter. Direct calls involve more detailed knowl-
edge, but they also "offer you more flexibility than the Irvine32 library procedures.

11.1.4.1 Data Structures
Several of the Win32 console functions use predefined data structures, including COORD and
SMALL__RECT. The COORD structure specifies X and Y screen coordinates in character m.ea-
surements, which default to 0-79 and 0-24:

COORD STRUCT
X WORD ?
Y WORD ?

COORD ENDS

The SMALL__RECT structure spec ifies a window’s location in character measurements:

SM!-1LL_RECT STRUCT
Left WORD ?
Top WORD ?
Right WORD ?
Bottom WORD 2

SMALL_RECT ENDS

11 .1 .4.2 WriteConsole Function
The WriteCon$_ole function writes a string to the screen, using the console output handle. It is
the simplest to use, and it -acts upon standard ASCII control characters such as tab, carriage
retum, and linefeed. Here is the function prototype:

WriteConsole PROTO ,
handle : DWORD , ; output handle
pBuffer:PTR BYTE, ; pointer to buffer
bufsi2:e:DWORD, ; size of buffer
pCount : PTR DWORD, ; output count
pReserved:DWORD ; (not used)

The first parameter is a console output handle. The second, pBufi"er, is a pointer to an array of
characters. The third parameter is a 3-2-bit integer equal to the length of the str'in"g. The fourth
parameter points to an integer holding the number of bytes actually written when the functior.
returns. The fifth parameter, which is not used, should be set to zero when calling the"function_

11.1.4.3 Example Program: Consolt-:1
The following prograrn, Corts0le1.rtsm, demonstrates the GetStdHandle, ExitProcess, ant-I
WriteConsole"functions by writing a string to the console window:

TITLE Win32 Console Example #1 (Consolel.asm)

; This program calls the fol].-owing Win32 Console functions:
; Get'Stdl-Iandle, ExitProcess, WriteConsole

11.1 WIn32 Console Programming

INCLUDE Irvine32.inc

.data
endl
messa
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

EQU <Odh,0ah> ; end of line sequence
se \
ll _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _._ C01-,sO]_e1_asm __t'1

endl,endl
"This program is a simple demonstration of console ",endl
"mode output, using the GetStdHandle and WriteConsole ",endl
"functions.",endl
ll _ _ _ _ _ _ _ _ _ fi fi _ fi _ _ _ _ _ _ _ _ _ _ _ fi _ _ _ _ _ _ _ _ _ _ ___ll

endl,endl,endl
messageSize = ($-message)

COHSO leHandle DWORD O ; handle to standard output device
byteswritten DWORD ? ; number of bytes written

.code
main PROC

; Get the console output handle:
INVOKE GetStdHandle, STD_OUTPUT_HANDLE
mov consoleHandle,eax

; Write a string to the console:
INVOKE WriteConsole,

; console output handle
; string pointer
; string length

returns num bytes written
not used

consoleflandle,
ADDR message,
messageSize,
ADDR byteswritten,
O

n
I

n
I

INVOKE ExitProcess,0
main ENDP
END main

The program produces the following output:

-n_.-1--_.-n-n--an

-:-?

Hhis program is a simple demonstration of console
mode output, using the GetStdHandle and WriteConsole
functions.

———————————————— —- Console1.asm -~-——------------------

--_--1-n—-I-_---_--1_--1-1Q-1-n_.-u-u_.-q-pr--1-1-1-1-.-r-uIru_.-I-13-1-1-n-1-n_._.-1-1-1-1-n-..4-p_.--_._.4-5..-

11.1.4.4 WriteConsole0utputCharacter Function
The WriteConsole0utputCharacter function copies an array of characters to consecutive cells
of the console -screen buffer, beginning at a specified location. Here is the prototype:

WriteConsoleOutputCharacter PROTO,
handleScreenBuf:DWORD, ; console output handle

3m

392 Chapter 11 - 32-Bltwindows Programming

pBuffer:PTR BYTE, ; pointer to buffer
bufsize:DWORD, ; size of buffer
xyPos:COORD, ; first cell coordinates
pCount:PTR DWORD ; output count

if the text reaches the ‘end oi’ a line, it wraps around. The attribute values in the screen buffer are
not changed. If the function cannot write the character, it returns zero. ASCII control codes such
as rob, carriage retro-n, and litrefeed are ignored.

11.1.5 Reading and Writing Files

11.1.5.1 Creatt-:File Function
The Creatt-:File function either creates a new file or opens an existing file. if successful, it nettrrns a
handle to the open file in EAX; otherwise, it returns a special constant named
lNVALlD__HANDLEl_\/ALUE. Here is the prototype:

'CreateFi1e PROTO,
pFilename:PTR BYTE, ; ptr to filename
desiredAccess:DWORD, ; access mode
shareMode:DWORD, ; share mode
pSecurity:DWORD, ; ptr to security attributes
creationDisposition:DWORD, ; file creation options
flagsAndAttributes:DWORD, ; file attributes
htemplate:DWORD ; handle to template file

The first parameter is a p.ointer to a null-terminated string containing either a partial or
i’ully qualified fiiename (dr‘it-'e:\parh\(iIermme). The de.s'iredAcc'es.s- parameter specifies how the
iile will be accessed (reading or writing). The shcrr"eMode parameter controls the ability for mul-
tiple programs to access the iile while it is open. The pSec:urt'r_v parameter‘ is a pointer to a
security structure that controls security rights under Windows NT. 2000. and XP. The creation-
Dt'sp0.s'irr'0rz parameter lets you-specify what action to take when a file already exists. or does no:
exist. The flctgsArrc1Arr:-r'bzrres parameter consists of bit flags that specify file attributes such as
archive, encrypted, hidden. normal, system. and temporary. The hremplare parameter contains at-_
optional handle to a tcn-iplate. rile that SLlpplIES' iile attributes and extended attributes for the file
being created; although we do not use this parameter. it must be passed to the function with :1
value oi’ zero.

DesiredAccess By setting the de.s'ir'edAt'c‘e$s parameter, you can obtain read access, write
access, readlwrite access, or device query access to the file. You can use any combination of the
valtres listed in Table l l-3, plus a large set of specific flag values not listed here.

11.1 Win32 Console Programming 393

Table 11-3 Desired/Access Parameter Options.

11$ W Value t Meaning l
.‘ li*'__, ll iii i i i 7 ’ ’ if i7Li‘ii . :1

l

0 i Specifies device query access to the object. An application can query t
‘ device attributes without accessing the device. l

l
_ ___ 1

GENERIC_READ i Specifies read access to the object. Data can be read from the file and
. the file pointer can be moved. Combine with GENERIC_WRITE for

* readfwrite access. ii

GENERIC_WRITE Specifies write access to the object. Data can be written to the file and
the file pointer can be moved. Combine with GENERIC_READ for
readfwrite access.

Crea1ionDispositim'z The .creari0n-Disposirz'on-parameter specifies which action to take on files
that exist, and which action to take when files do not exist. It must be one of the values shown in
Table 11-4.

Table 11-4 CreationDlsposition Parameter Options.
-1 _e e —~~ ~—e~—~~~ e~~. . . ._‘. .

}i‘: . Value 1 " Meaning
-‘.... .
- I-.-.. l

I ’—— — I 7* ' ""'
l

CREATB_NEW T Creates a new file. The function fails if the file already exists.

CREATE_ALWAYS Creates a new file. If the file exists, the function overwrites the file,
‘ clears the existing attributes, and combines the file attributes and flags

specified by the amibutes paranteter with the predefined constant
FILE ATTRIBUTE ARCHIVE.

_ ‘ _ _ _ _ *__@

-OPEN EXISTING l Opens the file. The function fails if the file does not exist.-Q-n

l

OPEN_ALWAYS Opens the file if it exists. If the file does not exist, the function creates
the file as if CrearionDfspositi0n were CR.EATE_NEW.

TRUNCATE__EXISTING Opens the file. Once opened, the file is truncated to size zero. You must
open -the file with at least GENERIC_WRITE. access. This function ‘

\ fails if the file does not exist.

Table 11-5 lists the more commonly used values permitted in the flagsAndArrribut*es
parameter. (For a complete list, see the CreateFile entry in the Microsoft MSDN documenta-
fion.) Any combination of the attributes is acceptable, except that all other file attributes override
F[LE__ATTRIBUTE_NORl\rlAL.

394 Chapter 11 ~ 32-Bit Windows Programming

Table 11-5 Selected Flag.sAndAttributes Values.

Attribute Meaning

FILE._ATTRIBUTE_ARCI-IIVE. The tile should be archived. Applications use this attribute to
1 mark liles for backup or removal.

FlLE_A'l'l‘RlBUTE_I-IIDDEN I The file is hidden. It is not to be included in an ordinary direc-
tory listing.

FILE_ATTRIBUTE_NORMAL The file has no other attributes set. This attribute is valid only
ii’ used .alone.

_ _ _ _ __ if l_

‘ FlLE_A'lTRIBUTE_READONLY l The file-is read only. Applications can read the file but cannot
1 write to it or delete it.

FlLE_A'lTRIBUTE__TEMPORARY l The tile is being used for temporary storage.

Examples The following examples are for illustrative purposes only, to show how you might
create and-open files. See the ortline Microsoft MSDN documentation for CreateFile to learn
about the many available options:

' Open an existing file for reading:

INVOKE CreateFile,
ADDR filename, ; ptr to filename
GENERIC_READ, ; access mode
DO_NOI_SHARE, ; share mode
NULL, ; ptr to security attributes
OPEN;EXISTING, ; file creation options
FILE;ATTRIBUTE_NORMAL, ; file attributes
0 ; handle to template file

' Open an existing file for writing:

INVOKE CreateFi1e,
ADDR filename,
GENERIC_WRITE, ; access mode
DO__NOT___Ssass ,
NULL,
OPEN__EXI STING,
FILs_ATTRIsuTs_noRMAL,
o

- Create a new file with normal attributes, erasing-any existing file by the same name:

INVOKE CreateFi1e,
ADDR filename,
GENERIC_WRITE,
DO_NOT_SHARE,

11.1 Win32 Console Programming 395

mum. ,
CREATE;aLWAXS, ; overwrite existing file
FILE__ATTRIBUTE__NORMP.\L ,
O

' Create a new file only if the file does not already exist:

INVOKE CreateFile,
ADDR filename,
GENERIC__WIRITE ,
DO___NOT___SH.ARE ,
mom. ,
CREATE_NEW, ; don't erase existing file
FILE__ATTRIBUTE__NORMAL,
0

.Th_'e constants named DO_NOT_SHARE and NULL are -defi ned in the include file used by pro-
grams in this chapter. See the latest documentation for all our include files and link libraries on
the book’s Web site.)

11.1.5.2 Close'Handle Funetion
The Closel-Iandle function closes an open file handle. Its prototype is-:

C1oseHandle PROTO, handle:Dl-IORD

11.1.5.3 ReadFile Function
The ReadFile function reads text from an input file. ReadFile can optionally run in asynchronous
anode, meaning that the program does not wait for the operation to finish. Here is the prototype:

ReadFile_PROTO, ; read buffer from input file
handle:DWORD, ; handle to file
pBuffer:PTR BYTE, ptr to buffer
"nBufsize:DWORD, num bytes to read
pBytesRead:PTR DWORD, bytes actually read
pOverlapped:PTR DWORD ptr to asynchronous info

‘Ii

‘II-I

‘II-I

‘II-I

The handle parameter is an open file handle returned by CreateFile. The pBn,;fl‘er parameter
points to a buffer that will receive clata read fmm the file- The. r.-.Bufsiza parameter indicates the
zlaximum number of bytes to read from the file. The pByresRead parameter points to an integer
-rat-iable that indicates the number of bytes actually read when the function returns; a value of
zero indicates end of file. The p0verlapped parameter is= optional; it points to a structure that
specifies how the function can read the file_ asynchronously. For synchronous operation (the
default), pass a null pointer (O) as the p-Overlapped value.

11.1.5.4 Wt-iteFile Function
The WriteFile function Writes data "to a file, using an output handle. The handle can be the
screen buffer handle, or it c-an be one assigned to a text file. The function starts. writing data to

396 Chapter 11 - 32-Bit Windows Programming

the file at the position indicated by the file’s internal position pointer. After the write operation
has been completed, the file-‘s position pointer is adjusted by the number of bytes. actually writ-
ten. Here is the function prototype:

WriteFile PROTO,
fileHandle:DWORD, ; output handle
pBuffer:PTR BYTE, i POinter to buffer
nBufsize=DWORD, ;"size of buffer
pBytesWritten=PTR DWORD, r num bytes written
pOverlapped:PTR DWORD ; ptr to asynchronous info

11.1.5.5 Example WriteFile Program
The following program (Wrirejiie.c:sm.) creates a new file -and writes some text to the file. It uses
the CREATE_ALWAYS option, so any existing file is erased:

TITLE Using WriteFile (WriteFile.asm)

INCLUDE Irvine32.inc

.data
buffer BYTE "This text is written to an output file.",0dh,0ah
bufSize = (S-buffer)
errMeg BYTE "Cannot create file",0dh,0ah,0
filename BYTE Woutput.txt",0
fileHand1e DWORD ? ; handle to output.fi1e
byteswritten DWORD ? ; number of bytes written

.code
main PROC

INVOKE.CreateFile,
ADDR filename, GENERIC_WRITE, D0_NOT_SHARE, NULL,
cnsATs_aLnAYs, FILs_aTTnIsuTs_noRMAL, 0

.mov fileHandle,eax ; save file handle
.IF eax == InvaLIo_nanoLE_vALus

mov edx,OFFSET errMsg ; display error message
-call WriteString
_jmp QuitNow

. ENDIF

INVOKE WriteFile, ; write text to file
fileHandle, ; file handle
ADDR buffer, ; buffer pointer
bufsize, ; number of bytes to write
ADDR byteswritten, ; number of bytes written
0 ; overlapped execution flag

INVOKE CloseHandle, fileHandle

11.1 Win32 Console Programming 397

QuitNow:
INVOKE ExitProcess,0 ; end program

main ENDP
END main

11.1.5.6 Moving the File Pointer
The SetFilePointer function moves the position pointer of an open file. This function can be
used to append data to a file or to perform random-"access record processing:

SetFilePointer PROTO,
handle:DWORD, ; file handle
nDistanceLo:SDWORD, ; bytes to move pointer
pDistanceHi:PTR SDWORD. ; ptr to bytes to move, high
moveMethod:DWORD ; starting point

The m0veMerhod parameter specifies the starting point for moving the file pointer. There are
three possible values: FILE_B-EGIN, FlLE_CURRENT, and FILE_END. The distance itself is a
64-bit signed integer value, divided into two parts:

- nDistanceL0 — the lower 32 bits
- pDi-stanceHi — a pointer to a variable containing the upper 32 bits.

If pDismnceHz' is null, only the value in nDistcmceL0 will be used to move the file pointer. The
following is a sample call that prepares to append to. the end of a file:

INVOKE'SetFilePointer,
filefiandle, ; file handle
U, ; distance low
0, ; distance high
FILE_END ; move method

On the samples disk, the AppendFile. asm. program appends data to an existing file.

11.1.5.7 Example ReadFile Program
The ReaalFite.a.s_m program opens the text file created by the WriteF£Ze.asm.- program, reads the
data, closes the file, and displays the buffer:

TITLE Using ReadFile (ReadFile-. asml
INCLUDE Irvine32.inc

.data
buffer BYTE 500 DUP(?)
bufSize = ($-buffer)
errMsg BYTE "Cannot open file",0dh,0ah,0
filename BYTE "output.txt",0
fi1eHandle DWORD ? ; handle to output file
byteCount DWORD ? ; number of bytes written

398 Chapter 11 - 32-Bit Windows Programming

.code
main'PROC

INVOKE CreateFile, ; open file for input
ADDR filename, GENERIC_READ,
DO_NO.'I‘_SI-IARE , NULL, 0PEN_EXISTING ,
FILE_ATTRIBU‘I'E_NORMAL , 0'

mov fileHandle,eax ; save file handle
. IF eax =-= INVALID_HANDLE_VALi.TE

mov edx,OFFSET errMsg ; display error message
call Writestring
jmp QuitNow

.ENDIF

INVOKE ReadFile, ; read file into buffer
fileHandle, ADDR buffer,
bufSize, ADDR byteCount, 0

INVOKE CloseHandle. ; close the file
fileHandle

mov esi,byteCount ; insert null terminator
mov buffer[esi],0 ; into buffer
mov edx,OFFSET buffer ; display the.buffer
call Writestring

QuitNow:
INVOKE ExitProcess,0 ; end program

main ENDP
END'main

(Recall that the .IF and .ENDIF directives were explained in Section 6.7.)

11.1.6 Console Window Manipulation
The Win32 API gives you some limited control over the console window, as well as the screen
buffer that holds data displayed by the window. Figure 1 1-1 shows that the". screen buffer c.an be
larger than the number of lines currently displayed in the console window. The console windov.
acts as a."vicwpo1't,” showing only part of the buffer contents.

There are several functions that affect the console window and its position relative to the
screen buffer. SetConsoleWindowInfo sets the size and position of the console window relative
to the screen buffer. The GetConsoleScreenBufferlnfo function returns (among other things
the rectangle_ "coordinates of the console window relative to the screen buffs;
SetConso1eCursorPosition sets the cursor position to any location within the screen buffer: gf
that area is not visible, the console-window is shiftedto make the cursor visible.

11.1 Win32 Console Programming 399

L sit +31Hctlvo Screen -'11.. Rs;“ée e =--1" if. ,_. ...;"_ l _l' ___-.1’ FF. ‘_,,L-\-":¢3:‘:- I 5?-..l-~ , _. _.:§‘.. 1.buffer §z. ~ 4;. ;.1;.;t.=,- .- -gee e_'= Q *"".e ‘fig.
rigisiq V ii.2ei%e?*:-*e=-’ t '- " 1-1.“-.". -14:. "'-': "

." "- .. ., j-iii. .;._._"
. *4-. ' E-."-f .’ * 1* *-E3 — ° ——"“= ..-mwi.

text text text text text "
console window ' xt text text text text W at

texttexttexttexttext ~ 1*“
.M

.._ .t_,,-5,.-.t ~ e
1- g ,

fwewg"eetfits{I‘E.-+-".'5’“!l{mr"5‘n r'4"

411-=~_‘
L ‘,3:Ir

kI

I‘?-5"‘___;'

text text text text text -
text text text text text f s.’
text text text text text

' ’
F .¥5=”"'} r2tere<”" 1 ~ '13 Lg‘?

-Q o
ii --r-H -'-'§";#-'7" n "1/I" -"15,-"1;1: - e{=;i'*e'{§+-,~ -e‘~*-

? | I '$4 - ‘ '

._|_§‘. ' I o‘ I’ ’ .5

"= .-=1."-_i3-l
 ;"Q':-P‘ -53-‘:¢-; - .-'
§‘£>.‘;¢»~.

‘‘ore~'"*-_.~.r"‘Q‘?"-73*i’.=;.“'9I .1‘!I ,‘‘I i
;'I-::°f:::"JJ\.,_!'|'1;:

~f"-._.1;-' -{El|
..se. 1"qr-p.ewe

-.‘:_1E,._'¢__',_\:P‘:fj-\".-q‘J-.';€"?‘:';jf-

mfiJ;. if',-

a-

l'\""'"'\ 4-I.-.|—Q we

... “___ -»"*gr_'-1 _ ,

f ,5 ,_.“ ‘$.|
‘ efifi Q

-n@§;_
*“~esmx

. air$1?»-... -
ti;f* -:11.~»_i'=*E _ wti;'

_..-..1.

n%%gW
‘-f. Si. es ssisee?\""'l"

“gt;
. , we” ,,_ ,,,_ _ .._ K '~~._:+:.L

Figure 11-1 Screen Butter and Consoie Window.

The "ScrollCons0leScreenBuffer function moves some or all of the text within the screen
buffer, which can affect the displayed text in the console window.

11.1.6.1 SetC0ns0leTitIe
The SetC0nsoleTitle function lets you change the console window’s title. An example is:

.data
tit1eStr BYTE "Console title“,0
.code
INVOKE SetC0ns01eTit1e, ADDR tit1eStr

11.1.6.2 GetC0ns0leScreenBu£ferInf0
The GetC0ns0leScreenBufferInf0 function returns information about t_he current state of the
console window. It has two parameters: a handle to the console screen, and a pointer to a struc-
ture that is filled in by the function:

GetC0ns01eScreenBufferlnfo PROTO,
0utHand1e:DWORD, ; handle to screen buffer
pB11f if-erInf0: PTR CONSOLE_SCREEN_BUFFER_INFO

The following is the CONSOLE_SCREEN_BUFFER_INFO structure:

CONSOLE_SCREEN_BUFFER_INFO STRUCT
-dwSize COORD <>
dwCurs0rP0s COORD e>

400 Chapter 11 - 32-Bitwindows Programming

wAttributes WORD ?
srwindow SMALL_RECT <>
maxWinSize COORD <>

CONSOLE SCREEN BUFFER INFO ENDS

dwSize returns the size of the-screen buffer, in character columns and rows. dwCursorPos returns
the location of thecursor. Both fields are COORD structures. wmrribmes returns the foreground
and background colors of characters written to the console by functions such as W'riteCons0le.
s-rWindow returns the coordinates of the console window relative to the screen buffer. mn.xWirz-
Size returns the maximum size of the console window, based on the current screen buffer size,
font, and video display size. The-following is a sample call to the function:

.data
consolelnfo CONSOLE_SCREEN_BUFFER_INFO <>
.code

INVOKE GetConso1eScreenBufferInfQ, outfiandle,
ADDR.conso1eInfo

Here is aszurnple of the structure data, shown by the Microsoft Visual Studio "debugger:

..._ _ . __._4_- 4 ' __ 4..-1-. ._-__.._..__._ _.?.._.4__-. _4. . 4 _ . .4 . _ .

etch fa WW" i Him-3

, E ccineolelnfo ‘H{ . . . } "'

.;;.'..Lj%:l..li1fli’%'.i:3:E*':.: ..'_.h.“.".’.:.’.'...._....~ I - x _ _ 120 it
--P H13 \-;-:5

-I-1 -|--.-1-. I

P dwCureorPos 5 . .} it
X l 2|] ‘

ii‘

..;.;_

*1till:E I. 1

to—~14::15("*1-.1t .e--.n-

1... Y . 5
“-.-- -r ,-, ...‘. . ,..‘., - _ .“,|. . - -.-._ - . , -0,--sq |-. - . . -. .

mltttributee __ § _
i. ¢erlJin-21012: . . } ‘A

_ l0.,-. ..-|._.-.o_. “-.- ._.- ‘

' Top ' 1

R-191": . A
‘-- Bottom p *. 1

_-iiie»se‘ii_eB@ee._..- é{.~..-..¢...1:... . .
. *-- r its :.~:.§. 4 -

I 1- " .; "'-i4i%i¢'ii'i""'YI'*":1Ea-P»

11.1.6.3 SetC0nsoleWind0wInf0 Function
The SetConsoleWindowInfo function lets you set the size and position of the console Windov;
relative to its screen buffer. Following is its function prototype:

SetConeoIeWindowInfo PROTO, ; set position of console window
nStdHand1e:DWORD, ; screen buffer handle
bAbsolute=DWORD, ; coordinate type
pConso1eRect:PTR SMALL_RECT ; ptr to window rectangle

11.1 Win32 Console Programming 401

The 'bA_I2soIure parameter indicates how the coordinates in the structure pointed to by
pC0ns0IeRecr are to beused. If b/lbsolme is true, the coordinates specify the new upper-left and
lower-right corners of the console window. if b/lbsolnre is false, the coordinates will be added to
the current window coordinates.

The following Sc:-o1I.asm program writes fifty lines of text to the screen buffer. It then
resizes and repositions the console window, effectively scrolling the text backwards. It uses the
SetCons0leWindowInfo function:

TITLE Scrolling the Console Window (Scroll.asm)

INCLUDE Irvine32.inc

.data
message BYTE ": This line of text was written "

BYTE “to the screen buffer“,0dh,0ah
messagesize = ($-message)

outHandle DWORD 0 ; standard output handle
byteswritten DWORD ? ; number of bytes written
lineNum.DWORD 0
windowRect SMALL_BECT <0,0,60,1l> ; left,top,right,bottom

.code
main PROC

INVOKE GetStdHandle, srn_ourPur_nnuoLn
mov outHandle,eax

. REPEAT
mov eax, lineNum
-call WriteDec ; display each line number
INVOKE WriteConsole,

outHandle, console output handle
ADDR;message, tring pointer
messagesize, tring length
ADDR byteswritten, 'eturns num.bytes written
0 ot used

inc lineuum ext line number
.UNTIL 1ineNum > 50

“NIfitfin‘ii"IIMOUU7'1WW

; Resize and reposition the console window relative to the
; screen buffer.

INVOKE SetConsoleWindowInfo,
outHandle,
TRUE,
ADDR windowRect ; window rectangle

call ReadChar ; wait for a key
call Clrscr ; clear the screen buffer
call ReadChar ; wait for a second key

402 Chapter 11 ~ 32-‘Bit Windows Programming

INVOKE ExitProcess,0
main ENDP
END main

It is best to run this program directly from MS--Windows Explorer rather than an integrated
editor environment. The editor may affect the behavior and appearance of the console window,
Note that you must press a key twice at the end: once to clear the screen buffer. and a second
time to end the program. (This was added for testing purposes.)

11.1.6.4 SetCons0IeScre'enBufferSize Function
The SetC0ns0leScreenBufferSize function lets" you set the screen buffer size to X columns by-
Y rows. Here is the prototype:

SetCons'oleScreenBufferSize PROTO,
outHandle:DWORD, ; handle to screen buffer
dwSize:COORD ; new screen buffer size

11.1.7 Controlling the Cursor
The Win32" AP! provides functions to- set the cursor size-, visibility, and screen location. An
important data structure related to these functions is CONSOLE_CURS_0R_INFO._. which con-
tains information about the console’s cursor size and visibility:

CONSOLE_CURSOR__INFO' 'S'I'RUC'I'
dwsize DWORD ?
bViS ible DWORD ?

CONSOLE CURSOR INFO ENDS

c1wSize is the percentage _(l to I00) of the character cell filled by the cursor. bi/isible equals
TRUE if the cursor is visible.

11.1.7-.1 GetC0nso1eCurs0rInfo Function
The GetC0nso1eCursorInfo function returns the size and visibility of the console-cursor. Pass 1:
a pointer to a CONSOLE_C'URSOR_INFO structure:

GetConsoleCursorInfo PROTO,
outi-Iandle :DWORD , ; output handle
pcursw.-In£o=P-TR cot~tsoLE_cuRsoR;_It~tFo ; cursor: information

By default. the cursor size is 25, indicating that the -character cell is 25% filled by the cursor.
11.1.7.2 SetCons0leCursorInfo Function
The SetCons0leCurs0rInfo function sets the size and visibility of the cursor. Pass it a pointer 1.:
a CON SOI_.E__C URSOR_INFO structure:

Set-.Co_nsoleCursorInfo PROTO,
outHandle : DWORD, ; output handle
pCursorInfo:P'I'R CONSOLE-__CURSOR__I.NFO ; cursor information

11.1 Win32 Console Programming 403

11.1.7.3 S'etConsoleCursorP0sition
The SetC0nsoleCursorP0sition function sets the -X, Y position of the cursor. Pass it a COORD
structure and the console output handle:

SetConso1eCursorPosition PROTO,
outHandle:DWORD, ; input mode handle
coords:COORD ; screen X,Y coordinates

11.1.8 Controlling the Text Color
There are two ways to control the color of text in a console window. You can change the
current text color by calling SetCons0leTextAttribute, which affects all subsequent text
output to the console. Alternatively, you can set the attributes of ‘specific cells by calling
WriteC0nsoleOutputAttribute.

11.1.8.1 SetCons0leTextAttribute Function
The SetConsoleTextAttribute function lets you set the foreground and background colors for
all subsequent text output to the console window. Here is its prototype:

SetConsoleTextAttri.bute PROTO ,
outHandle:DWORD, utput handle
nColor : DWORD olor attributeO0

The color value is stored in the low-order byte of the nColor parameter. Colors are created using
the same method as for the video BIOS, shown in Section 15.3.2.

11.1.8.2 WriteConsoleOutputAttribute Function
The WriteCons0le0utputAttribute function copies an array of attribute values to consecutive
cells of the console screen buffer, beginning at a specified location. Here is the prototype:

WriteConsoleOutputAttribute PROTO,
outHandle:DWORD, output handle
pAttri.bute:P'1‘R wont), write attributes
nLength:DWORD, number of cells
xyCo'ord:COORD, first cell coordinates
pCount:PTR DWORD ' umber of cells written

‘Inn

1-0‘III

$3

pAt‘Zribute points to an array of attributes in which the low-order byte of each contains the color.
nLength is the length of" the array. xyC00rd is the starting screen cell to receive the attributes, and
pC‘oum' points to a variable that will hold the number of cells written when the function retums.

11.1.8.3 Example WriteC0_lors Program
To demonstrate the use of colors and attributes-, the WriteC0l0rsasm program creates an array of
characters and anarray of attributes, one for each character. It calls WriteConsoleOutputAttribute
to copy the attributes to the screen buffer, and WriteConsoleOutputCharacter to copy the char-
acters to the same screen buffer cells:

TITLE Writing Text Colors (WriteColors.asm)

404 Chapter 11 ~ 32-Bit Windows Programming

INCLUDE Irvine32.inc
.data
outHandle- Dwonn ?
cellswritten DWORD 2
xyPos coonn <1o,2>
; Array of character codes:
buffer BYTE l,2}3,4,S,6,7,8{9,l0;l1,12,l3,14,15

BYTE l6,l7,l8,l9,20

BufSize = i$ ~ buffer)
; Array of.attributes=
attributes WORD 0Fh,0Eh,0Dh,0Ch,0Bh,QAh,9,8,7,6

WORD 5,4,3,2,1,0F0h,0E0h,0DOh,0C0h,OB0h
.code
main PROC
; Get the Console standard output handle;

INVOKE GetStdHandle,STD_OUTPUT_HANDLE
mov outHandle,eax

; Set the colors of adjacent cells:
INVOKE WriteConsoleOutputAttribute,

outHandle, ADDR attributes,
BufSize, xyPos,
ADDR cellswritten

; Write character codes 1 through 20:
INVOKE WriteConsoleOutputCharacter,

outfiandle, ADDR buffer, Bufsize,
xyPos, ADDR cellswritten

INVOKE ExitProcess,0 ; end program
main ENDP
END main

Here is a snapshot of the program-’s output, which shows that character codes 1-20 are displayed
as graphic characters. Each character is in a different color, although the colors do not appear on
the printed page:

11.1 Win32 Console Programming

11.1.9 Time and Date Functions
The Win32 API provides a fairly large selection of time-and date functions. For starters, you can
get and set the current date and time. We only show a small subset of such functions in the cur~
rent section, but you might also want to look at the Win32 functions listed in Table 11~6.

Table 11-6 Win32 DateTime Functions?

L it I Function Descrlptlon ,
_ L

CompareFi1eTime Compares two 64-bit filetimes. l
1 _ " _

DosDateTimeToFileTime Converts MS-DOS date and time values to a 64-bit file time.

Fi'leTimeToDosDateTime Converts a 64-bit file time to MS-DOS date .and'time values.

7 FileTimeToLoca1FileTime Converts a UTC (umversai coordinated time) file time to a
local file time.

Fi1eTimeToSystemTime
L

Converts a 64-bit file time. to system time format.

GetFile-Time Retrieves the date and time that a file was created, last
accessed, and last modified.

GetLocalTime Retrieves the current local date and time.

GetSystemTime Retrieves the current system date and time in UTC format.

GetSysternTimeAdjustment Determines whether the system is applying periodic time
adjustments to its time-of-day clock.

GetSystemTimeAsFileTime . Retrieves the current system date and time in UTC format.

CrctTicl<Count Retrieves the number of milliseconds that have elapsed since
the system was started.

‘7 _

G~ctTi'meZoneInformation
77 7 7 7 7 l

Retrieves the current time-zone parameters.

LocalFileTimeToFileTime Converts a local file time to a file time based on UTC.

Set.FileTime Sets the date and time that a file was created, last accessed, or ;
last modified. ,

SetLocalTime Sets the-current local time and date. i

i SetS'ystemTime Sets the current system time-and date. ‘
l——' 1

‘ SetSystemTimeAdjustment Enables or disables periodic tirneadjustments to the system's p
time-of-day clock.

i E-etTirneZoneInformation
I

Sets the current time-zone parameters.

406 Chapter 11 ~ 32-Bltwlndows Programming

Table 11-6 Win32 DateTime Functions? (Continued)

.- .- ' iptl - .~
7 77*’ 77 I m'_' fli 1’ - i *7 __

l SystemTimeToFi1eTime Converts a system time to a file time.
1 . s -~ -- - __ ~ s

* SystemTin1e-'I‘_oTzSpecif.icLocal- Converts a UTC time to a specified time zone's corresponding
Time local time.

3 -Source: Microsoft MSDN Windows SDK documentation.

SYSTEMTIME Structure. The SYSTEWIME structure is used by date- and time-related
Windows API functions:

SYSTEMTIME STRUCT
wYear WORD ? ; year (4 digits)
wMonth WORD ? ; month (1-12)
wDayOfWeek WORD ? ; day of week (0-6)
wDay WORD ? ; day (1-31)
wHour WORD ? ; hours (0-23)
wMinute WORD ? ; minutes (0-59)
wSecond WORD ? ; seconds (0-59)
wfiilliseconds WORD ? ; milliseconds (0—999l

-SYSTEMTIME ENDS

The wDay0fWeek field value begins with Sunday = 0, Monday = 1_, and so on. The value in
wrlliliiseconds is not exact because the computer‘.s internal clolck is modified over time.

11.1.9.1 GetLocalTime and SetLocalTime
The GetLocalTime function retums the date and current time ofday, according to the system clock.
The time is adjusted for the local time zone. When calling it, pass a pointer to a SYSTEWIME
structure:

-GetLocalTime PROTO,
pSYStemTime:PTR SYSTEMTIME

The SetLocalTime function sets the system’s local date and time. When calling it, pass a pointer
to a SYSTEMTIME structure:

SetLocalTime PROTO,
pSYStemTime:PTR SYSTEMTIME

If the function "executes successfully, it returns a nonzero integer; if itfails, it returns zero.
The following is a sample call to GetLocalTime:

.data
sysTime SYSTEMTIME'<>
.code
INVOKE GetLocalTime,ADDR sysTime

11.1 Win32 Console Programming 407

11.1.9.2 Get’I‘ickCount Function
The GetTickCount function returns the number of milliseconds that have elapsed since the sys-
tem was started:

GetTickCount PROTO ; return value in EAX

Because the retumed value is a doubleword, the time will wrap around to zero if the system is
run continuously for 49.7 days. You can use this function to monitor the elapsed time in a loop,
and break out of the loop when a certain time limit hasbeen reached. The following program, for
example, displays a dot on the screen every 100 milliseconds, and checks the elapsed time until
5000. milleseconds have been reached. Its code could be used in a variety of programs:

TITLE Calculate Elapsed Time (TimingLo0p.asm)

; This program uses GetTickCount to calculate the number
; of milliseconds that have elapsed since the program
; started.

INCLUDE Irvine32.inc
TIME_LIMET = 5 0 0 0
.data
startTime DWORD ?
dot BYTE ".",0

.code
main PROC

INVOKE GetTickC0unt ; get milliseconds
mov startTime,eax

Ll:mpV edx,OFFSET dot ; display a dot
call WriteString

INVOKE Sleep,100 ; sleep for 100 ms

INVOKE GetTickCount
sub- eax,startTime ;-check the elapsed time
cmp eax,TIME_LIMIT
jb L1

L2:exit
main ENDP
END main

11.1.9.3 Sleep Function
The Sleep function suspends the current program to pause for a specified number of milliseconds:

Sleep PROTO,
dwMillisec0nds:DWORD

408 Chapter 11 ' 32-Bit Windows Programming

11.1.9.4 GetDateTime Procedure
The GetDateTime procedure in the Irvine32 library returns a 64»bit integer holding the "number
of 100-nanosecond time intervals that have elapsed since January l, l60'l. This may seem a little
odd, in that computers were completely unknown at the time. In any "event, Microsoft uses this
value to keep track of file dates and times. The following steps are recommended by the Win32
SDK when you want to prepare a system date/time value for date arithmetic:

l. Calla function such as GetLocalTime that fills in a SYSTEMTIME structure.
2. Convert" the SYSTEMTLME structure to a FILETIME structure by calling the

SysteI'nTimeToFileTime function.
3. Copy the resulting FILETIME structure to a 64-bit quadword.

A FILETLME structure divides a 64-bit quadword into two doublewords:
FILETIME STRUCT

loDateTime DWORD ?
1'.1iDate'I‘ime DWORD '2

FILETIME ENDS

The follovsi-ng GetDateTime procedure receives a pointer to a 64-bit quadword variable-.
It stores the current date and time in the variable, in Win32 FILETIME format:

; I I I I I I _ I I I I I I I I I I I I Q I I I I I Q Q I Q Q W I Q Q Q W Q Q I Q I I I I I I I I _$

GetDateTime PROC,
pStartTime:PTR QWORD
LOCAL sYSTime:-SYSTEMTIME, flTime:FILETIME

; Gets and saves the current local date/time as a
; 64-bit integer (in the Win32 FILETIME format).

; Get the system local time
INVOKE GetLocalTime,

ADDR sysTime

-; Convert the SYSTEMTIME to FILETIME
INVOKE SystemTimeToFileTime.

ADDR sysTime,
ADDR flTime

; Copy the FILETIME .t0 8. 64--bit integer
mov esi,pStartTime
mov eax,flTime.loDateTime
mov DWORD PTR [esi],eax
mov eax,flTime.hiDateTime
mov DWORD PTR [esi+4],eax
ret

GetDateTime ENDP

11.1 Win32 Console Programming 409

11.1.9.5 Creating a Stopwatch Timer
We can use the GetTickCount function as a tool to create two procedures that together act as a
simple stopwatch timer. One procedure, named TimerStart, records the current time. The sec-
ond procedure, TimerStop, retums the number of milliseconds that have elapsed since the last
call to TimerStart.

The following Timenasm program calls both procedures and creates an intentional delay
by calling the Sleep function:

TITLE Calculate Elapsed.Time (Timer.asm)

‘Mi Demonstrate a simple stopwatch timer, using
the Win32 GetTickCount function.Ml

INCLUDE Irvine32.inc

TimerStart PROTO,
pSavedTime: PTR DWORD

'I‘imerStop PROTO,
pSavedTime: PTR DWORD

.data
msg BYTE " milliseconds have elapsed“,0dh,0ah,0
timerl DWORD ?

.code
.main PROC

INVOKE TimerStart, ; start the timer
ADDR timerl

INVOKE Sleep, 5000 ; sleep for 5 seconds

INVOKE TimerStop, ; EAX = elapsed milliseconds
ADDR timerl

call WriteDec ; display elapsed time
mov .edx,OFFSET msg
call WriteString

exit
main ENDP

I‘

TimerStart PROC USES eax esi,
pSav'ed'I‘ime: PTR nwonn

Starts a stopwatch timer.
eceives: pointer to a variable that will hold

the current time.
eturns: nothing

INVOKE GetTickCount
mov esi,pSavedTime

9393

410 Chapter 11 ~ 32-Bit Windows Programming

mov [esi],eax
ret

TimerStart ENDP

- jjjjjjijjjjiiiiijjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjit

I

TimerStop PROC USES esi,
pSavedTime: PTR DWORD

I19393U1.§IQII

tops the current stopwatch timer.
eives: pointer to a variable holding the

saved time
eturns: EAX = number of elapsed milliseconds
emarks: Accurate to about 10ms

INVOKE GetTickCount
mov esi,pSaNedTime
sub eax,[esi]

ret
TimerStop ENDP
END main

The TimerStart procedure receives a pointer to a doubleword, into which it saves the cur-
rent time. The TimerStop procedure receives a pointer to the same doubleword, and returns the
difference (in milliseconds) between the cunent time and the previously recorded time. Because
of slight inaccuracies in the system time functions, the timer shown here is only -accurate to 10
milliseconds .

11.1.10 Section Review

1. What linker command specifies that the target program is for the Win32 console‘?
2. (True/False): -A function ending with the letter W (such as WriteConsoleW) is desi_gned.to

work with a wide (16-bit) character set such as Unicode.
3. (True/False): Unicode is the native" character set for Windows 98.
4. (TrueZFalse): The ReadConsole function reads mouse information from the input buffer.
5. (Tru_e/False).- Win32 console input functions can detect when the user has resized the con-

sole window.
6. N-ame -the MASM data type that matches each of the following standard MS‘-Windows types:

BOOL
COLORREF
HANDLE
LPSTR
WPARAM

7. Which Win32"function returns. a handle to standard input‘?

 \

11.2 Writing a Graphical Windows Appllcetlon 411

8. Which high-level Win32 function reads text input and places the chmacters in a buffer?
9. Show an example call to the ReadConsole function.

10. Describe the COORD structure.
ll. Show an example call to" the WriteConsole function.
12. Show an example call to the CreateFile function that will open an existing file for reading.
13. Show an example call to the CreateFile function that will create a new file with normal

attributes, erasing any existing file by the same name.
' Show an example call to the ReadFile function.

~:o~.u.;i=.

' Show an example call to the WriteFile functi'on._ 1

an- . Which function moves the file pointer?
I . Which function changes the title of the console window‘?
L8. Which function lets you change the dimensions of the screen buffer?
I9. Which function lets you change the size ofthe cursor?
20. Which function lets you change the color of subsequent text output?
21. Which function lets you copy an array of attribute values to consecutive "cells of the-console

screen buffer‘?
22. Which function lets you pause a program for a selected number of milliseconds?

11.2 Writing a Graphical Windows Application
In this section, we will show how to write a simple graphical application for Microsoft Win-
dows. The program creates and displays a main window, displays message boxes, and
responds to mouse events. The information provided here is only a brief introduction; it would
require at least an entire chapter to describe the workings of even the simplest MS-Windows
application. If you want more information, see the Microsoft MSDN Library CD (supplied
with Visual Studio), and look in the section entitled “Platform SDK, Win32 API.” Another
great source is Charles Petzold’s book, Programming in Windows: The Definitive Guide to the
Win32 API.
Required Files You must have the following files available when assembling and running the
example program shown in this section:

.,_,_._.,4. ., ..._,,_=,.._ _.,_ _: __ ,_ ._,_. _.._._ __,__,__, _:__.._, ‘____._.‘.'I_:- ~.;_,; _._____:_—;tiH,-';Ug,l. _ e',_..{.i' r |,| 1;-;_-_,-l .._ II? -IL,,f=' -.-,-.1. -_"I'._-_-,._;.‘i|'5 |.];|..'-..‘a.‘..l ..i 1-5 e ti "I-lI.'l--. "Pl? ‘ii-J--I :9» r‘!"l‘J"~{|." l.-,:‘l=*;j.».-ll. "wt qil
‘iii-l}i I5! fl';'-iii frT-.*-'-Ir-6,.-;_ii1a{-3;.‘I-§}:"'=-hilt ‘~’,'5":"71.'r'fRit',-‘,2:{!'5'i:'I IiiifrFiiiiii‘irfliiifllih-'3;-iii§Zi"}El]“El'.~-;'.-.;=1 .~:.;].-.§;;_ \-rt‘, .,- . i!:\‘i-“".'=..iIif-Iifinlirf-i'::i|ptirHiiiiiiiy-"i\lililii{!Qfl:;i;iii|i'1'i{i.il

‘i“5i:'i,1?‘»’-5 5f:,fr>t!i=!;~f-1%;-rII<i,f?;§ii-ii-' arifitiitef-gr;-iii‘! ’ ’J=L=:_,-=r==:'£E5i'5ca:-=§:§@;_~:?~:- :i- ‘=-l:,I*.~.=;_,;f'i§.?§'_'wr .il.1£1'ii'-".?'l.'_-‘Kr’li‘ii.¥.i-1i‘ifit‘:.=_~i3i£E::.{ij‘E5fi?fi;fi"£L'?*;‘h§E§.fl

1.. -:-

l make32.bat * Batch file specifically for building this program.

WinApp.asm Program source code
_ _ r "*i . _ _ _

GraphWin.inc Include file containing structures, constants, and function pro-
totypes used by the program ,

. kernel32.lib Same MS-Windows API library used earlier in this chapter

user32.lib , Additional MS-Windows API functions

412 Chapter 11 ~ 32-Bit Windows Programming

The m.aice3,2.bar file-contains assembling an_d linking commands that are nearly identical to the
ones we’ve been using throughout the book:

ML ~c -coff %1.asm
LINK %1.obj kernel32.1ib user32.lib /SUESYSTEM:WINDOWS

Note that /SUBSYSTI-3M:WlNDOWS replaces the /SUBSYSTEM:CONSOLE we used in pre-
vious chapters. The program calls functions from two standard MS-Windows libraries:
kernel32._l.ib and user32.lib.

Display Window The program displays a main window which fills the screen. It is reduced in
size here to make it fit on the printed page:

1 1.2-.1 Necessary Structures
The POINT structure specifies the X and Y coordinates of a point on the screen, rneasuredin
pixels. It can be used, for example, to locate graphic objects, windows, and mouse clicks:

POINT srnucr
ptX nwonn ?
ptY nwonn ?

POINT nuns

The RECT s.tru'cture defines the boundaries of a. rectangle. The. left member contains the
X-coordinate of "the left side of the rectangle. The top member contains the “Y-coordinate of the
top of the rectangle. Similar values are stored in the right and bottom members:

RECT STRUCT
left DWORD ?
top DWORD ?
right nwonn '2
bottom DWORD ?

RECT ENDS

11.2 Writing a Graphlcel Windows Application 413

The MSGStruct structure defines the data needed for a MS-Windows mess age-:

MSGStruct STRUCT
msgwnd DWORD ?
msgMessage DWORD ?
msgwparam DWORD ?
msgLparam DWORD ?
msgTime DWORD ?
msgPt POINT <>

MSGStruct ENDS

The WNDCLASS structure defines a window class. Each window in a program must
belong to a class, and each program must define a window class for its main window. This class
is registered with the operating system before the-main window can be shown:

WNDCLASS STRUC
style DWORD ? ; window style options
lpfnWndProc DWORD ? ; pointer to WinProc function
cbClsExtra DWORD ? ; shared memory
cbWndExtra DWORD ? ; number of extra bytes
hlnstance DWORD ? ; handle to current program
hIcon DWORD ? ; handle to icon
hCursor DWORD ? ; handle to cursor
hbrBackground DWORD ? : handle to background brush
lpszMenuName DWORD ? ; pointer to menu name
lpszClassName DWORD ? ; pointer to Winclass name

WNDCLASS ENDS

Here’s a quick summary of the parameters:

- style is a combination of different style options, such as WS_CAPTION and
WSHBORDER, that control the window’s appearance and behavior.

- Zpfi: WndProc is a pointer to a function (in our program) that receives and processes event
messages triggered by the user.

' cbClsExtra refers to shared memory used by all windows belonging to the class. Can be null.
' cbWndExtra specifies the number of extra bytes. to allocate following the window instance.
- hlnstance holds a handle to the current program instance.
- hlcon and h_Cursor hold handles to icon and cursor resources for the current program.
- hb'rBackground holds a background (color) brush.
- ZpszMenuName points" to a menu string.
- ZpszCl'assName p.0ints to a null-terminated string containing the window’s class name.

11.2.2 The MessageBox Function
The easiest way for a program to display text is to put it in a message box that pops up and waits
for the user to click on a button. The Messageliox function from the Win32 API library displays
a simple message" box. Its prototype is:

414 Chapler 11 ' 32-BR Windows Programming

MessageBox PROTO,
hWnd:DWORD,
pText:PTR BYTE,
pCapti0n:PTR BYTE,
Style:DWORD

hWnd is a handle to the current window. pTexr points to a null-terminated string that will appear
inside the box. pCaptz'tm points to a null-terminated string that will appear in the‘ box’s caption
bar. style is an integer that describes both the dialog box’s icon (optional) and the buttons
(required). Buttons are identified by constants such as MB_0K and MB_'YESI_\lO. Icons arealso
identified by constants such as MB_ICONQUESTION. When a message box is displayed, you
can add together the constants for the icon and buttons:

INVOKE MessageBox, nwnd, ADDR QuestionText,
ADDR Questi0nTitle, MB_QK + MB_ICONQUESTION

11.2.3 The Win Main Procedure
Every Windows application needs a -startup procedure, usually named WinMain, which is
responsible for the followingtasks:

- Get a handle to the current program.
- Load the program’s icon and mouse cursor.
- Register the program’s main window class and identifythe procedure that will process

-event messages for the. window.
- Create the main window.
- Show and update the main window.
- Begin a loop that receives and dispatches messages.

11.2.4 The WinProc" Procedure
The WinPr0c procedure: receives and processes all. event messages -relating to a window. Most
events are initiated by the user by clicking and dragging tjhe mouse, pressing keyboard keys, and
so on. This profcedure-‘s job is to decode each message, and if the message is recognized, to "carry
out application-oriented tasks relating to the message. Here is the declaration: u

WinProc PROC,
hWnd:DWORD, ; handle to the window
localMsg:DWORD, ; message ID
wParam:DWORD, ; parameter 1 (varies)
lParam:DWORD ; parameter 2 (varies)

The content of the third and fourth parameters will vary, depending on the specific message.ID_
When the mouse is clicked, for example, ZPar-am contains the X and Y coordinates of the point
clicked.

11.2 Writing a Graphical Windows Application 415
er — — — _

In the example program that we will be looking at soon, the WinProc procedure handles
three specific messages:

- WM_LBUTTONDOWN, generated when the user presses the left mouse button
- WM_CREATE, indicates that the main window was just created
- WM__CLOSE, indicates that the application’s main window is about to close

For example the following lines (from the procedure) handle the WM_LBUTTONDOWN mes-
sage by calling MessageBox to display a popup message to the user:

.IF eax == WM_LBU_TTOND.OW_N
INVOKE MessageBox, hwnd, ADDR PopupText,

ADDR PopupTitle, MB_QK
jmp WinProcExit

Here is the resulting message seen by the user:

Any other messages that we don’t wish to handle are passed on to DefWindowProc, the default
message handler for MS-Windows.

11.2.5 The ErrorHandler Procedure
The ErrorHandler procedure, which is optional, is called if the system reports an error during
the registration and creation of the program’s main window. For example, the RegisterClass
function retums a nonzero value if the program’s main window was successfully registered. But
if it retums zero, we call Erro'rHandler' (to display a message) and quit the program:

INVOKE RegisterClass, ADDR Mainwin
:IF eax == O

call Err0rHandler
jmp Exit_Pr0gram

.ENDIF

The Errorl-Iandler procedure has several important tasks to perform:

- Call GetLast_Error to retrieve the system error number
- Call Formath/Iessage to retrieve the appropriate system-formatted error message string
- Call Messagelilox to display a popup.-message box containing the error message string
- Call L0calFree to free the memory used by the error message string

416 Chapter 11 - 32-Bit Windows Programming
4-; ' 7 77 _"’*_ I __ ___ __

11.2.6 Program Listing
Don’t be distressed by the length of this program. Much of it is code that would be identical in
any MS-Windows application:

TITLE Windows Application (WinApp.asm)

; This program displays a resizable application window and
; several popup message boxes. Special thanks to Tom Joyce
; for the first version of this program.

.386

.model flat,STDCALL
INCLUDE GraphWin.inc

.data

AppLoadMsgTitle BYTE "Application Loaded",D
AppLoadMsgText BYTE "This window displays when the WM_CREATE "

BYTE "message is received",0

PopupTitle BYTE "Popup Window",O
PopupText BYTE "This window was activated by a "

BYTE "WM_LBUTTONDOWN meSSage",0

GreetTitle BYTE "Main Window Active",O
-GreetText BYTE "This window is shown immediately after "

BYTE "Createwindow and Updatewindow are called.",0

C1oseMsg BYTE "WM_CLOSE message received",0

ErrorTitle BYTE "Error",O
WindowName BYTE "ASM Windows App",O
className BYTE "ASMWin",O

; Define the Application's Window class structure.
Mainwin wnocnnss -=:NULL,WinProc,NULL,N'ULL,NULL,NULL,NULL, \

COLOR_WINDOW , NULL , clas SName>
msg. MSGStruct <>
winRect R-ECT <2-
hMainWnd DWORD ?
hInstance DWORD ?

;=================== cons ==:=====:=:=:==-=========
.code
WinMain PROC
; Get a handle to the current process.

INVOKE GetModuleHandle, NULL
mov hInstance, eax
mov MainWin.hInstance,'eax

11.2 Writing a Graphical Windows Application 417
4-; _ _ __ ' ' 7 __

; Load the program's icon and cursor.
INVUKE LoadIcon, NULL, IDI_APPLICATION
mov MainWin.hIcon, eax
INVOKB LoadCursor, NULL, IDC_ARROW
mov MainWin.hCursor, eax

; Register the window class.
INVOKB Registertlass, ADDR Mainwin
.IF eax =='0

call ErrorHandler
jmp Exit_Program

.ENDIF

; Create the application's main window.
INVOKE CreateWindowEx, O, ADDR className,

ADDR WindowName,MAIN;WINDOW_STYLE,
CW_USEDEFAULT,CW_USEDEFAULT,CW_USEDEFAULT,
CW_USEDEFAULT,NULL,NULL,hInstance,NULL

; If CreateWindowEx failed, display a message and exit.
.IF eax == O

call ErrorHandler
jmp Exit_Program

.ENDIF

; Save the window handle, show and draw the window.
mov hNainWnd,eax
INVOKB Showwindow, hMainWnd, SW_SHOW
INVOKB Updatewindow, hMainWnd

; Display a greeting-message.
INVOKB MessageBox, hMainWnd, ADDR GreetText,

ADDR GreetTitle, MB_OK

; Begin the program's message-handling loop.
Message_Loop:

;'Get next message from the queue.
INVOKB GetMessage, ADDR msg, NULL,NULL,NULL

; Quit if no more messages.
.IF eax == O

jmp Exit_Program
.ENDIF '
; Relay the message to the program's WinProc.
INVOKE DispatchMessage, ADDR msg
jmp Message_Loop

Exit_Program:
INVOKE ExitProcess,O

WinMain ENDP

?, -- ,, - .. ' % _ . ~ 5. _ -'.;.- .. -_.;:E{':-.'i$i--_-* "gig. W it-7. ."“5'-3'-‘F-==:=" :5:%I:"‘111"Ji?.F5.1?-i'i{;"’:*=:£~;1".+;.._e_=--P__ - - , - - , _..._ _._,,,,_-__”,_ __ , .:,. _t i _ _ , ..,; _~ r _ ‘i -_ .-P 5.1 -. | -"1_:_ .= f-, 1'-*_:_-,;. ___-_..-£__-»__-1-_;__...-:-2 .~-8*;@.1. 2 'ie~..,._et1~Pa§.s§ti:*tgi- r§;,,..,;, fl1<i.ow.s-B... -r:-;-tr.4-*-Iu.;_:i~F is '@a<.:;n _gL=-e;@sgfs-s-LlaxmggggamasfirsmsaaeQB » .~ - "ii- -1- F‘ :l-I‘ ‘H -.5331 r F ‘bu ___ H’ 1-,} I -5 -. __ _,_-" _, -"1
WI-d _ 15: __-P-' *rf5if~“_t'lr'7:?i"?§‘5'£fl'3“$"f1'¢G1‘:.LJT1="“£f,’,: _ _~--. .._ _--_~'-Li-—*;'_ Ex‘-‘-">—-"ilk '2?‘-='1‘*”_“ 1 _i_ “.5

418 Chapter 11 - 32-Bit Windows Programming

- - -~ ~ -1-75!’ 1:-"7'?-‘L _! — -I T -.-,-‘.":? - ¢|;‘;;\‘./.-_|:,E,jBJ_-_:--1.‘;-CLP: ,%;' -,¢'c":-:1--H13:-' -\%s\':-bai _ _,,~ Q‘,--‘ _:.v__T__...:‘_-_?_‘:;_';j§-5:

f""\ I F 1" .__ ¢- .1.
H J L‘-I at ‘ ’ F, H; “ s ‘I -» I a_%|", $ ‘_ PM -*\!:_€ i 3' r ‘I F F -#5-, E 3% "O: | flit

a t U1. -‘K J‘-' 1 I it _'_ _ A‘ _, H -e ha _,, F ‘ dz -, 14¢ ,,‘I"' _".I'-5?;

\,I
£1

gi.1;p_=_
A-<3mfiggfisan e s a i “"1 J

I I

WinProc PROC,
hWnd:DWORD, localMsg:DWORD, wParam:DWORD, lParam:DWORD

; The application's message handler, which handles
application-specific messages. All Other messages
are forwarded to the default Windows message
handler.

'50

50

fiat

F “ ' “ ' ' ' ' “ ' ' ' ‘ ‘ ‘ “ “ “ “ “ “ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ' ' ' ' ' ' ' ' ‘ ' ' ‘ ' ' ‘ ‘ ‘ “
mov.eax, localMsg

.IF eax == WM_LBUTTONDOWN ; mouse button?
INVOKE MessageBox, hwnd, ADDR PopupText,

ADDR PopupTit1e, MB_oK
j mp Win?roGE:-ti I:

.ELSEIF eax == WM_CREATE ; create window?
INVOKB MessageBox, hwnd, ADDR AppLoadMsgText,

ADDR AppLoadMsgTitle, MB_OK
jmp WinProcExit

.ELSEIF eax == WM_CLOSE ; close window?
INVOKE MessageBox, hwnd, ADDR'CloseMsg,

ADDR WindowName, MB_QK
INVOKB PostQuitMessage,0
jmp WinProcExit

.ELSE ; other message?
INVOKE DefWindowProc, hwnd, localMsg, wParam, lParam
jmp-WinProcExit

.ENDIF

WinProcExit:
ret

WinProc ENDP
Q _ _ _ _ _ _ _ - — — _ _ _ _ _ _ _ _ * _ - _ _ _ _ * _ _ _ -...-.
I

ErrorHandler PROC
; Display the appropriate system error message.
; """ *-
.data
pErrorMsg DWORD ? ; ptr to error message
messageID DWORD ?
.code

INVOKE GetLastError ; Returns message ID in BAX
mov messageID,eax

; Get the corresponding message string.
INVOKE FormatMessage, FORMAT_MESSAGE;ALLOCATE‘BUFFER + \

11.2 Writing a Graphical Windows Application 4

FORMAT;MESSAGE_FROM_SYSTEM,NULL,messageID,NULL,
ADDR pErrorMsg,NULL,NULL

; Display the error message.
INVOKE MessageBox,NULL, pErrorMsg, ADDR ErrorTit1e,

MB ICONERROR-l»MB. OK

; Free the error message string.
INVOKE LocalFree, pErrorMsg
ret

ErrorHandler ENDP
END WinMain

11.2.6.1 Running the Program
When the program first loads, the following message box displays:

When the user clicks on OK to close the Application" Loaded message box, another message
box displays:

- - — — — — --7.7+ E W4 4- — - — — —} * '- " '----""“ ' -- "*' ' ~ -- -— -"* ' - T" '* I ' ' -7 ' - -—-—---' -

1Application Loaded ' I‘
.—-re.-"-"-"="-.-=~as-'~=¢=-:a:"=1*" . -.- W--'.-\~=1»~==-=='-=.»".-'- ..-.=‘-E-..-.-= —¢=;a—.|.-'.-.»-W _.. _:-_,_.'.%_.‘_€..-::f:'- = ,.,__.'-T: ,_ -_;,__.-3.‘? .. .____. .5_-e,'.*,.:__\.__.i_-..-.::.,,2ig-let!--’,.‘._t. sf, ..;.'-'<‘.\§~'$'1*_=_.:.-,»l~;_.'.:r’{;}

' ' F-I" .3 -. " "' '1 “L; ' "‘~“ "~=""l'f-'3'-- .._ *. .1 r. ' r'~ -='-~ --..... - »»-~ »~ -1. ~
F-*1 'I:43? .-ii

IL§t?-Mai
.5‘-iyfiI?-4-~'-I'..f;F

-I .3.I
P1“ ,3.

._-7-I‘rt“1'+:~'F-2';1.Q;-1,.
I1'11] gm

.“_-:6"*1g 1':'<*i¥"..i-3'"
1I

"n-.Ib.&"T7".' sf
I-#1; .E-1-‘ti*' ~=r' *...”:-.’>s' -"'-4'1’‘"r:1 ii i,‘iIi?*_-.1s 3 a§‘..'§‘-ail. ‘fa i. ii, ,3

i~i~:-::.s..;='r.-_*:,- -5‘;.3;.i‘:';»‘.@si?1=;i?-:¢;_::§f'5.-§‘:.;a-i'-
- -.5§-?*l'5»2.*.§5’s:1‘i-ftf==:-i:=_a-sT.—._sr7.f.’*"T‘,'5.1 ..-it*¢€§#=g3.-;,,._,::‘~r~=i'>-'f:¥_§~_-*;;::¢;.I

..-"‘_;_;.:. - --.r -- » .2-3-Ti‘-..-av:" r
'- n."~_- I

2 Q

.1:->i.'f
_ I‘ 1 I‘! ~-Ila?'41 .r . -.- "i"_--g_ '--",-1 ' ' I £1 4* ... -...-I. .. :~. .. _.. . 1. ..-.-..-:..-.1-hl-'_l-,.;_;‘5l;_q_‘L\._¢}S:f-'_-'; #‘q_n§%.:§:-p‘?-rg?nun -_L_.‘_.f‘i _ - ‘El 1 q -_“:;;._|i%_“"_;1.l .:: :__;_‘::.§

‘-.\.-'§»'.\-‘ \.""'§.\. 4-J15‘ "'»"-'7»---'r'_-“-'-'.v:. 1"-“+- . . . - —-3-1_ -.5I:"" :.'-- I.-'3.“ 1'_'i'5-"'I-“.".‘- .-‘P T-5'-'.~ 1'11"‘-'-"‘._-_,,., _ :_.._._.,,, ,J.-$3,.“-J-it-I-re-5_4-1--.1-l . _.-;- In --+3, .,, P11 _*-'53:, --‘.',._ --_.. -..,..._{, _._-*1,‘ ..;_., ._ *;--“=1
JI_f=.|,-5:"; Q‘ __ _. _:"-'."..,_i .-. .;_£_-I-"1:-.7 “5.5!-f‘f __ __ ‘I _,,_,_!'f.".'5,-q ;\:"{; '1 -'_-:.L'I f»'_“_.':' _;|_._.' I,.1__,.._ .__f;-..1l_f.‘ i_€?=_.m='1!'-,“:;"-E_=ii.‘~'_.§5"_!_f-‘.1-.1§_'-:=-;_}§;:~=;iEr'§':tE.‘é§j- _ ._ ‘J ‘-._i:.:I'-sill’ ’ 1'..':1 if-1-“§'= 'ail?P:fi|

4
’"

I,.L "'5
II ‘Pr;(.1-'Lg.I.

J ii"J .- - -~.:.-*:.- if 1‘ =". ,,- ‘_ .
1- -'1_|-4' '-"'--'-Hi -‘-1-.11 ‘... pi- i-_. .'_ 11--, _-='_ r.- Q 1-,... .‘f ‘.'_-M .-.1}. ;-'45.-,1‘:-O,‘-____-5r -._;;:'._—_'—_';,--:_-- '.'|j' '1'':-#.*..-.,:-:1::. .::-.r:.-- r...:= _‘.-.'-~—.-=1 2: 1| -3- .

g. n - -, ' -1 -5-‘¢;__;4_;\-_..-_: 3*-I,|.:1

__'_.‘

- .'; . ‘ -‘I
L&'I5'I nub. r |- \r * \. I -\\'“:J_-K 5'5-I-..n<,_| .._ . Q-».:z' l-or-q,"'4‘1'\-""""" u-lJIxIldll| ii-

.. _ _ g. .
.-~.t;":'_",_-ri-1.-'-:i~"-..-:.,.'-'-‘:..-1"-‘F’-,,e.""—"Hr! .&I_,,..-" "'3' ‘Ti fa‘:-.-. .7 n"-‘-*- -- - - '- ,"'-I.-...... -.w.,'=eassessnssesasnnsaeesssnse. |\.,'.

H .30 id?‘-"311'ir“l‘."l'-""§."-.'~’-‘-“F. -'?-.12.:' _-.:r:¢.-3|.-'-as _-1: *¢=t-.'.'1-:.:.£~_-'1'--11*:1; :- _4¢ E7T-

'-- ' W ' —' - -"'7- * - ‘ "' - -. -T‘="'* - 5' 7 ‘ +- “M '7 ‘ - "‘:7- 7 '- T’ - - ""'T' _ ’_k' ' -'" '- 1 1-1|-Al --T—*

Mainwindow Active {El
ff“-' '.'\'€‘;I';"!l_ "5-I\ K - ‘ .

.in.....ll-.." -if-'-'. .---.¢.—i ,-_*~'=1-;~.i'-r-'.-*:€ii.i.-r~':s»-i"a.>=iqféiiaa;,'-(- ;- =».-:1-1'1‘:-.~.
.- ~'~"'-S . 7‘ "'=-,-1| 3,.-“... '
(575 1_;'.'_§1-;:s -... .'*-.'.r==. ..- ..'-an-"l J¢:',-'.\'»-i-~»-‘- Ia;-5.‘I.-.. :1: ‘.1.-...n.. .-.151 -_.-‘;-= ti ..-':‘j,1';‘.:._."'.‘:.:";.:,'_. 1-. '._.. -.;;,
ri-_.-I -.- l_'-_ 1--.--1.-_ar;,___L-‘-:- ;-‘=~:-.=’*-.=’.-=i»‘=":-"':.:--- '-1 I-.1-I._~.i.i;...-\.|:;J..\-..\-t

‘When the user closes the Main Window Active message box, the program’s main window displays

I--1-'|'u

‘('.‘:i4'1*1\:i -=\.iH- 1-:-z:-:1‘ r 7-:-2, .,?*:‘,¢'»-trap-ix.-1": vi-

§'~'E‘"=-1. ‘Ht i,..**‘. " "'ifi.i_=.i i‘ J“-Y.="‘
._ ,_, - .-- .f -1,.-,-'.1- ; - -.|- 5 - -

. ‘ F ' .1 ‘L -- ‘
1 I. .- _ ‘

Nu!
‘L.

I |,I:AE.,-_ “‘||r:5-|!'I_.1.;':i r 4-. k-T‘-‘Q'I»I—I—-\:q]2U'l§i_III;

it .»1=1%iTF‘=l.._,,§_.
'1"-3".;s"‘;_"'_

-';:;\E:_-'- "::'.= H. -n. -cur:-I,,.i.

K. '_ I‘. iiq T35‘-I it J1- -.u .1.-mp...-on-I
n." -v~q"|.- -_ hi"-I.
‘s .I- .. -

I-1' 1'-‘
11- ' 1

.__.;_.~.'5_s'§
"T5-:'-‘-"ii-'II.»' =-..l;.~. 7-: .‘_'-1,

*:..

\|

‘ii -,_

,.ii-.3-1~ ,r"-,i-"rift1 liirsitrgziil1§*.-;§.=i1;_._=i*5.1.gs,_.‘:1;-melt‘gr;5._;-.._1§;,
,‘ ;§2:§.§1.ei

1.“: . -,. -..» '-|- 'Vr:*J'-’.\,'\- ,-1.--ll‘...-1.-1'-Mr-|'\~=|'| --_F';;- -I-.j";._,_¢; -1': L \ »;-..|'ii-
‘~3-

3'

..fi=i*"-ea."-a*1-at F1 IE‘.-iia
§ -.'1-.‘i'§~

. _, ._ _‘, it 1 ._
- '.-""-"-r-‘-§¢'-'-51-'01:--3.‘ '2-lI_\¥"_}_ -1:1‘;-.'_-.._2_-5;;-rim’
' f ' ' I:-' '-ii? |.' H -I '. I‘ " '~-._'-' ' - '1-I

..=r».r1,1,-1», - '21- i:=‘¢5-.<i:*-_- .~..-_r- - .._g,=,_~_,_. _ __,_._-_J
'- . - r 1- -r~I--. ‘U |_r'-\r.\,,._...,,.

' . . ._ ___ _ --_.‘.r-_‘a:5i4__-,,_"-_‘p_.-:~_E
_ ' 55- .. '-‘ti;-._-.=-=.:'-I;-1.1::-.- , f-,1 ;_'-!I'.',"'_,'_i_\§'§"-

$4I

u.
- ":3:-;-

mi‘. -Ii.

.1.11.?1 -I
.. _--_'\in‘_

f~..{::'i.=h“
-€:'1-‘F1._-ill

:11}*.L-'

“.\-5--.iii..."
L

\,'3?

J

31-]

2'%
Tt

4:1

$1 in!‘
‘P -":1 oi '2 1 n"l"}?sit‘ is2;, 4 1'.‘1..-

-_i|;' .-1;- ‘-3!
1; I .- I-'|:|- pi?-i git

TiaY.-'_:.§_§.'t~t -ix-'-.'_;5-iii-ills.P’-ifs-I1:-ii‘.

-K
IE .. - \‘.'Z¢‘I‘-'5‘-I - '
t "-_:' -.-1*;-;.'-4!‘.--'*-:T:Z_-.:‘.f.=.'-.‘-.1

- ._,1_" . _ 1- if

.-

. I.--.2‘.-. -_.,.,_..,.t.,...:r--- - _ -.- “.._. -In
I" " ‘J; ,.... *]:'."‘-w ~:-I--01 Z’;--.-.

- —f |II- K '
-1&1" ‘ : I t J 3 I p._,:_'q

._ .r-. -kl.-_., 3:“);

E1 .‘IQ

n-Q!

r‘*-‘::‘.1

I. ‘_|_,;§1|‘u-ii.--:i3?3ii.“i"3‘ ,-';|_;L*
1,‘2'5

-;‘aw -9Ij, n‘.~ n-l‘ ‘:='—-i..o\.\. \ 3
n";

. '.'.,E~,j -1:.....gs..-tr '
¥ _

4"" . ‘.4 I-1- x. ||. _-_;_-. 1 . .-~»,._: -.--I 1! --‘-< ' .\l'.0'" - I
'.b .i'J

_ OI.!..';*-1. _l
l‘ ";\ ' I ‘II -,1_' .| .. ' -. H. J1 ¢'.j-‘:4-'-:$;_-_I_;-;_

. i.‘-' §.1f!.;£-1:.-.'...._
-.- .-. ... I"h- “.-i-—-I .44 >13 n---. -.‘.-1.‘:-.'._-. .._.¢I'l. - -.-. J-. »v4_h;‘:- v~\'.1'."' “

£1-1'.
1- .> _ _ '

gnu

1.-:_.;: =fi.i§..
‘I,

5'4" _;_»_.‘flit;
. T‘ . . - ."ii: -.';=- -".'I-'-..'-"'§rI?- ._.- -.. - .3-an-.\§,"' 5; \,'I'," ...»-1 poi-_-fa

- .4 I ' ' 7

‘gt .\':'
.>.i,_

-u
-1._{+!‘i '- ..~1'.‘;;-.-" ' £21-oi:-.2+-?J=e;_:=.;---5-:-=::._;-1-: '-- '- ~-A '[l| ‘ .4 :--_.~:.- p J-‘.4-=2--\..-.-:;':,-_~--1:- ';".?_;r.-t.'.:.:" I-.2-.~'-.--=-=.. ... -_ .- - 4 .._.|_-_.-:---. .‘F,‘."...»-:-._-1--='-'-.-1112'?": l-.'I=‘~‘ ‘='l-is-Z~-—'r-it -.--‘-1'*$1""::-' ' ..:~'_--1-.’--':':h-_.~-‘r ‘-'--*.*‘='- -'“*‘=-"-~'='*-1;-Y‘-- - - . -. -~ -—. ,- .--.. —:__-...--';---_--:---»'.::a-.a»1£&.-.:sw-.-:f.-.~.-.'x- .-;'L.:"-:9-;' is-»-t.-E.ct.--.'; i;.'r!r-.Li=.':I--'x;'-E.t -ea;-"-1\'ti

nu‘ ,rII3: 2.2:“ Iii
win- .9ii‘-‘.

§.‘i..l;"-1:.I-.1" .'..=l..;*;~L..'.;; .._'-.."..., - ‘* -:=r.¢-..;;=i:*‘,.-r!‘.*{.-.s_ir5.:
- "-.- -...:I'- - '_ ,. .. .:_.._. .

2'1 ' rt1

I-€'.i_i-ll‘.'2 L-I]it iii:a=

-**: _ ;e. """ .;.d.~' . 1I'1.=='-._ “="’=‘_‘-'T‘fl- 1"‘ -"""- - - .=' I‘ ‘-'“-""'- "'"_._1. -. ,_- ... 52::-"
tr .._.-

' CE

\-, .

_-c
.4 I

I

...-....
':i_\.r-

+_l|

.l $3-‘I7
. I‘-Y:1‘,.... » -_1._ '....-'¢iE'.:=e1

'J:'1'.5"’-,'.
,':1!":'."-._-*.-.--'-1—'"'-;‘_n

..-.';;-‘.3:

I-‘JI
, ‘:"‘ r
;::i.T
I \r_: .‘ .'._-,,..,___;-_?,~..t_=."_-‘-'3?-'2'-t.~':::*'.~;.=:..
'\‘A5'

1
.11.."-
-uu

ml.

,._5;r'1'
-c

A. \;.,[_
cf“-

..-1:"
up-I*.

-3

-“if: '-53'-‘;_"iT

.-'\.\-.1-_, 1-..-»:\:-.'.-'.*--
'“-' "5'-'1'. .' ‘- '+',.-7.,-‘I ._ ._ . 'c‘- f _

Fit-271:?-'3:-iii‘-i=»'T.'r.'.§» i‘cl,’-_;‘_-_w.‘-in
v - -5 -I

-.
-1"; ‘ 1 _ _- -‘I-I.‘1.2,. 1". ‘P -~*~,&

; "-' ...1i--4

- .¢-Ki???-5:5; =,'i'-IQTZ.-. "w '
r“ ' - ‘ L
'r.'..‘;-_

.>’.¥‘~I'
-5)‘-phi

‘--- "1-. '.'. -‘-. .-~ .1 '- ._‘.':.r2.'u'.;T-.- \I\4-;;'1i.-,1-:-.-.3. ‘ls.,$.u . 3')‘-_ -- _ -- I}! "5 ..;-.--l. I _ .£ v-3% _ >.... _ -_'-_ ’* . I ‘F:

»El :,:"—_'i

."3', V1
.c

:3‘'-A

.J‘

)

,.
{» ..I

iii
1

..~...*"1

,-

is .-.-
,_

,,-.J»
.

-J.;-.--l\--nl. r in: r.-(.IF!-v‘ H ,1
.¢1

,_f_i\-r.5!-1!’ii-ti;2:: :'5!“
'£"'!£f&'J3!

'1‘~31
iv= ling‘;--1 "71:-Y1

T-u

:.5:.1.

. * ,vASP-1 Wmdows App teal?! FI-s
.' _"_|‘-mu '| - . . ' ' ""TF',::a'-.=-_,1-.?$Y'"?T:'E¥F.;.¢;'r-_-54$?

.11 -1--.:}=;'iTE;-1|;>?r.1<-2.1115 '5' ' _-- $9};
Jig, he -7"-"v:-"-ir‘{,{*.iff:.:-.1lt?4"5 .3‘-'1=;'-..‘ '*i.‘:'=."[_;*“:‘°.. I5;-fl-‘=‘=':L~‘—¢?;'¥?' .-.€£_lE;e-¥.;§,;i_Q$‘~£>,2_=;'i;Ts9,1i==."-‘53'-3?" =5.-ti.;7=IT-2!-=;’r.'.=§='s.;.\.tI=r¢i{¥~=s:I- ._ ';: '-' -'-_ ,‘h_ ' '_1'-5', f_'.:';_. _' -P -i_ _. _'=._| -' _ .__',,;,_.;.L'.= . _ _ v. _.-pr; ' _ ..'\; -- _..\,-\._-._' - _'_-31.1.-_ 2.. 1.-. _-|,l._.,-i \- -

'_J_ "Z§\',,_.-L . .:._" ‘_._ . _ I. . .",.‘-L IV. __ l_ . I '1' r__ i 1,-. _ ..|\ E?-_ . -.__e-4 ~.]__. __: __
_ '- I-__ ' . ".';, - '\$':.i"‘;-_--_'_"'__§'\.- ‘_- ." "_='i __‘-r ". .- "|' .;_ '1-3' " _ . . . _' . ‘f ,- 1 . -‘- :>' - .' ‘_

1?-:5!‘ Q‘ ' - -. '-=' - . Xi “ -"_ " ‘ ' '1? I-if: I!-‘ s \ U;-4 1-" >5!

- . e‘*=*=-=- it ’ -- ‘a ' 1 ' -<‘a-- -=1 ‘L.Z_‘ ,1‘; # l - 'Fi- M4-:o~ ‘ts:-q‘__,_f'K_ -I E I ‘?"3Lnb_L: -"54-h;_ .:‘ L.
I‘ ._ F: _;. 1 r_°- ‘L A I , _L 1: 1, .. f‘ 'A£ '\ 1

R -

T .L‘-5.-:
'Q11."1-=:!‘l

1.‘:'51-""1°=1v"':2"
L-.~:~*'

.-IT 1 -.1‘ rt:-_‘J1 P}
I fl

I

‘B?\ ‘ff‘F ‘#5 {+1.=r w -.'t:":-':.-
fie

fl§%,'~i'|l:firf.'+I

--.- -1-r- ,, .-. -..-."
-1 .. - \' H

I II"
‘Y-‘ti...-r=">_-as

'\-1'-:-.1-.. .

':=:."'§|':_d -.»_\‘___-‘-_.-U-;_: i
L‘ ..\-- ; --fa rm. ..q_-:‘—..-r. | H- ‘K -4-nu...-.-..1:1——. ~ ~ I-* -.:-_*=.-1.,1 . --|::|'...-_¢:..‘n,»5.-... ,1.-» .1-; - . - 1.:-u .

. _.-31:3. - _ "
* '. ' '1' ' '

5 1, . - -.-‘ 1 _ -.. -. .-- :-_ | -||.. . p\.u.1\l-,-| p...'h\vu- 1- IQ,
\h_ '§_,,“""" ' 0 Y» "J'v~ Y‘-:~‘.:I-H‘ u we :'_., 1- It -tur 4- ‘ .9. I; -\1u,||..vq-4-.a:_'

- 4-- am -Eu-wrul N -.1. IR:--gs It-Ll.‘-s .,.,., ; ‘.._. ~|.\f_ ln’I'In'I'I’h'\.1’ l:f>1 »_.|‘ vu - “-.- --1.1.4 -In-/v-.\\.
._ 'i':"Tfl£'i.',\,(j‘:‘|€;._‘

...» iv'Tr'.,,-. 51'" .17,‘ '-" _4 E».-.\r->~ 11.-.4.» .10 1'1 -:;—';;--\
' “H -{T$'\...‘-T".-",- .'-'-'\$Y"""-um. Uh-'l—I-I an --v'~-'.-

1:1]-1
Q;:“i

il-r 0!-In L-'*-g‘‘ ‘:"-'.'=r""“'a .1:J 1| ,1; 1 II -1-ii’ _ _
\ %\ ->1’ I “J _ rh-peg? In n: _ L-'H\v.‘4. 1:,-E ‘:1. _.

-0. ' . . . ' ' - -1.’..1

-. ‘:- \
\

i
-02:‘.-n-.p -0- ‘.q:-.',.I' ‘:-la

4. -‘I. . [..~::.:=~ . xi "J-...". --:2‘-. ‘-.- ..'=:.=..'r...--'-1.._....-. .‘_ - ,,

*3;ii._.__.},
-in-..\;
hr-1L.-.:'11

1
|‘T.I1:

I‘.-v.-="'= ~ .1 —- -- -
'- .'_-23::-‘1.3 '. :35‘-5""? :"‘i5'7".='1.-i=1. "5". I '. - ~- 1* .~—; ""-+'="e— '

,_ -{<1 -F--:1-"'3'-"-;1'“~F:*iw'i.=,','§."Ilr,".';‘.-:£~.'- 5: :-.:;-i.-it '1";“.:'; 1*-'1?-,% ,,..- =" 1 '.""I. - .-"-'r.':- - '- ' .: " .. .,. _-“;'i-E-,'_1‘..;‘..._;~z-j',r.‘s§...‘a§-1-,:*,'-5gi2t'r.§:.,=?'.5.'“.it;-§'.§I'.!!;.t'L:.'§_~,,1{j§,*~gig 1-"
1-:_".-1'... '- -_'1_.~'—.~;.':»_f-'-"=.:?.'-1111.1.;'-"."‘\;'-"‘F-I;f""*" ~d'_' ;- . ;--. -' -'- -_

‘ __r|.\._2\ . ~l,._.." 1'“-' ' - ' 1- . - -. ' ._
-‘- ‘- . '__ ,1 \.ul.-. . i..'i"'

... _- _ . . '._’_‘ -_._ vs-I... .

fl i‘W_. .'-
‘ 1f ii}-‘-:.~:..,.-'- ~.,.;i

I‘ \

E»F’
‘:"*;'§"iaflfi

Q.--I'I“ -i;i.‘;{F:“,i5'!5‘_

-i-- '.--_,u - "*'“ .-.
1

;

\

14' _S
<.u‘-\- “.'-‘-E -"arr
"-'- !'.'-"‘5'--;r-i'.I-

4'.-:' -If '-.-£51$ r?
I-I

I iii I

- .'.i .0-
"'r,'l‘1q\ Jim!-\'v=-'-;. *
2 -_ -'-'3' ":1:-1'-|" ‘§.‘,i4 1'5... , . -. - -..—- .11.-,1

- - J .- - “I
.1 1“'~ ' -atJ5‘?

T-1' I
-

1. I:-:17 --‘ .“ E.‘ ...».='.rI_‘..,Ip'-’,-?» an:
-?‘.~.i'='.~_-*.‘-’-1'

1 1;“ -1%‘: *.".="J.'=.-."-*3**“_€*F '

11?. ;= _._: _|:_.J.,. 1

-Ei~1i*i..x:§."iil_iwt.- _1|_f''fi._.f'l*‘iii

C1
33.1.1A '1 r 1 5*-1""I _ . 11- ...-L.|_ _.__..__.lx.

§“i.'*~
-|

I»! ---,,.._-
-u'Jl' I II‘I‘-1|-|_l -_\. -"‘-- 1.ii-3'.I-‘_-._!-12"" 1-is

“$111
igrirl.-‘.91

QF31?=--1'‘Hr’.
:51'-v-..: .i‘.

|
ll

"v
1- 1- ‘I K 1

1* ,,i-Pita.,1-:-'.;.§ ii.I1 5-I
I.s"-fiil|

,5; .,.
-*.'»_---‘.'.§,+ _,

='1-.'—‘.zi:‘.--
'..a- ,

-‘ '. -
-1 '. --

_' _
11;" ‘;>_I -

. - _
fir

--I.--o-‘F -QF a-r -i. _,
-Jr
0"‘

I

_ ---\ .. J. ' -- .", _-;.,_.,,..._.i..-_ -"._.._._ :..-.'.::.~_..--'" '- -...--‘-""? -1“ ”
..§,...*_ --_.r
' I ;- _ . _ . .. 1'-1___ .

F I "'

- , ""2..»,':. *=#- __;§,-;;_'_‘;?__';;—?--_ "mt H.1 ___. _ ., ,.,_ __
?-;,-'?'-,',:- 11* 1. I.1 .-"?.‘t\‘.!t .’-i-‘=53:-Y -1' _ J . I -.-|-- '-_1,..-"1... fin ". ._ ._ -_..i., - . ._;_1_-;__|

at =1‘;. . - “ cat. .-:2"
J 1-. _1}' .-' ' ..

_ ._~ I -e» '-.=',-:.2.r.»'.='.-
' . ' """ .\. ' -;l- . - J-. - . - 1‘? -.- - _.~.-‘.--.. ..-‘1'- _.. .

.if ...';:-31%.‘; \

‘, —

"I¢

13:3].1-1‘I-5‘;-,\{LI .‘I;Ii.'.i:i!‘-" .-R-'1'.

."u
--1

..=il'ct-.... .--_a_ .- - ..'
_. _.-......_, ..._ _ . _._

-—‘-'.'~'=>r.7-'~f*=' ‘ ".'-‘.;‘.'?.:i....".. --.1~5»'.‘i'.“,';'E':.’5li*',;¢.=.‘T*'-:'..—:."'i'=.':"-1" 1* -. a ¢.,...>-.= ,1-Qgpq '--_c-_\-.-/.fi§o_.- __
‘,.g|': -, . ' '1:.-'1 ' . e-~1__

1.
1.;-u I

."u.'seasll-1:ii'F7;ii“‘Ir,-mitgi- Ya

...: >-v.12,-_~.. ‘-,,
‘nu..4: ,' E -
I, 0 fir 1.4-~-9.1-:~'.::.-..~='_=.’ ': ~ '-' ‘1:..:;¢"‘

-i-16-. gr -up -L -r

2.’-Pi‘ was .21.'§::'.'.-.'E'a=-‘;k'-,-‘fit-":’i=-'i.'tr='*_~=

5. ".',;.:L.::~.-..,
.1 as,. ,1

.21“-
P I L,

J

'n

,1i-T "'-': 11:} .
-1-1'

.-.’,"1friiiI-‘til"J
‘E,-I.

-I‘I’. I‘: ;'
i"rifl"*'\"rer

.0‘ ,l.
1» ___. __ ' ,_ I-*' '_'.""‘-.-. '9» "- ;,: "-5-'"¢_\‘|

,..“"..|,.-...... _-. ...

\-

.,. -.....r.,_.- ...-...: --"%'%:‘FF .._ t .-

_
._;:__

atti-2;,
t iii’.‘Yeah,.~l1r.q1-ilivioiii‘fi’.‘ili1~‘Tllf an

§_-it;
‘I:-I tiiiilili-”;iii-aii=

M .-
In

bl i.
:52’

~

-PIxii--r:
I»IEi‘‘
‘III

-1111,.91'I-7|?

1 itJ15

£2"
7'

' \l.-1.1-H
I L‘ I'D

1 urn

n.¢--¢—- h ‘r -rw- Q;I ,=..,;'.,‘... ..,, 1-nu-1 J3
-5‘.-.'-___-,u.-

______,:.1~,r,;..?';r.TJ‘,'§..1_*.5-‘i_§f..r;s...: . _
~2.'.‘.-‘ii-';-—I~;-I->o.'-',':'.-.é-..-.+"'"="‘;T,+ rage... -" ..- "“".:'1':‘.§_fi;'.':5‘=*'.-$3-,*..r,g_:¢-.7,':*,,§\.~,'1:"_ .. -,=;_3 ~'3'~_""..£1'.'-".1-'i.'rt=.1r."‘1*-t =.' -"‘- .r--i=--. . _._ ___. . . _ ,:11: .

'-‘I -F‘-u-:::‘.{_-:
d-in,..v- _ -.-L‘.

._- '1I\n.\ -. , .
T723:139+‘-i'~

1e l'\.2 ._-
;._... . _ __,..~:i_%.1t-_:i'j,;.,*--'::-,~,5g.t:-y-,-:2.-'. - -1- ' ‘-1'\;'-vf"“"‘.’£ .3",_.-. gs ‘*___. -,._ - .___.. _ ..-. . ..-... - ‘=:-‘3‘.;=~_;.-.-:--.-:.‘:-:'.,.*.*-.*-=1’-.'~r-.\\'lr.v.v.'.~.J‘¢-'.,;g.' .-H" ,1 -.., gr,-rs-. -fl:*j:""'B:'-0K4;-_'..‘&|.gi_1_ I ___@,__._._--., ¢-.3"; :‘l‘\II-9'1 1':.t=i=.-'=.,,n'-'-'=‘--- v-.--:-'---.- 5;:-.~:=_“.=1:-. ‘'1-"P-:""1-.~-»1-(L‘!'-‘.159’ .."".\-- 1-; W

..:7,=l'_:?.‘lY1:-',:¢:-.';."-L"-"'F‘ ;~'I:'::..'.?-._ ".'3;‘-"'.h.t' "7"E::..
.._..=.__-a-) -1

-
*_'.- . --12.1 i. '7‘ 1.-__. . - . T...

cl‘ .1"» 1.'1 \I :56it-"L. -.-‘Ia:-' '
1;-
'l_L

J

\'l\

4‘

...RB -1..
1
v till

1:-"2
._‘I r .1- n

;!'r_ {T‘
Jar"-

"ir-is-a-"1:-'~s2-£3‘-= -..:.-.. ~ I.“-..":‘-.. *Y':,!r.~.-"-'?i':i‘:-*.'*'?.:.‘+":-*.t1.':.?:'.=j."i.‘..; -J_||-Le.)--|'i}' -~u-eel‘-._ Atytfl-ll_-I‘. 1.;-.-_
|__l_._“£i'.,'.}.J"_:‘.'{.*',. -1.-=. 2'1‘-5' __.|J?1_T,

--3.535‘-3 1:-.-;-'.;-..~..|.i.l.'-i,-.-.--J1-l‘,‘i§§¢"' wllf .-;~.1:'l':.1\-p\.-A] _ -1 .:...n -I-_¢h-1. _r;-_-_.--J|r;:.-3-1'2-~q [_.vd&f5v"l-4 _-1\.__-yflif,-fa +_
.2-.-Q--.1“-f *.“1\J-I-"-‘r-;H-'7='~\v Iii-1’ J1?-t='£.\!-_ E";-P-§~f.I'“"‘:’ -I. -11_ --..--3. ---:‘:'-'1-- * '-.=;.>.. "2-:.a-;;..r!;;".~--:-it-;s_r:-,2-Fr“.-:5‘ .1='=*-" _,; .. .1-r-3-_, __ I _,-~;-,¢~;'I’-E-?T'f!'-"2;_,., ~ -":*..-.':"-"2.i_z=1i1&:r.::'§"';:'.n_.-‘=:'i:=Jl:i=2:-3:.:_:m.,-Hue 1.1 r:_{hri,‘":rL|;a::&_u_:*i-:5; . _,¢_.f§.,;:_c.;_.._‘\-_,_,.-.$,,, r_::.,,_l1.,,..i?......r-...._.s;f;;-|2L~_i;~;*:{~4:.»j..,;_,, .

.ir'r§
r

I-~15‘‘"1;-"'1':r-'-"... ~.1-'''H
liq?i_.3‘ L.

._--11 .;h!t'
r.;§""."iI.:-.=f*t.'li¥-

.,,_'-';-n '1i‘ E‘.-I
‘F.-I-' .u

.21-
1-

rl.ii: tieea“E115
..-11.1 153.1

.15, =2-.-
u..‘_:l.£‘

7'1.is
-L-1!,

-"-*1?‘
\

1

.iE\'fi1
.

.4‘\ .-..,.__ . .\..\1:-... -..l» x.".- ,,g,,,,,,_..:ii‘ifl" _Ed ‘Eil-id--31. :=--
'-'.i -ii::-\

420 Chapter 11 ' 32-Bit Wlndowa Programming

When the user clicks the mouse anywhere inside the main \vindow,_ the following message box
displays:

When the user closes this message box -and then clicks on the X in the upper-right "corner of the
main window, the following message displays just before the window closes:

When the user closes this message box, the program ends.

11.2.7 Section Review

1
2
3
4-
'5.
6

'7.
8

11

13

15

O

I

9.
10

12-

14.

Describe a POINT structure.
How is the WNDCLASS st1'Ll.Cture used‘?
In a WNDCLASS structure, what is the meaning of the ZpfizWndPr0c field‘?
In a WNDCLASS _-structure, what is the meaning of the style field?
In a WNDCLASS structure, what is the meaning of the hlnstance field?
When CreateWindowEx is called, how is the window's appearance information transmit‘-
ted to the function‘?
Show an example of calling the MessageBox function.
Name two button constants that can be used when calling the MessageB0x function.
Name two icon constants that can be used when calling the Messag_eB0x function.
Name at least three tasks performed by the WinMain (startup) procedure.
Describe the role of the Win.Proc procedure i-n the example program.
Which -messages -are processed by the WinPr0c procedure in the example program?
Describe the role of the ErrorHandler procedure in the. example program.
Does the message box activated immediately after calling Createwindow appear before or
after the application’s main window‘?
Does the message box activated by WM__CLOSE appear before or after the main window
closes?

11.3 IA-32 Memory Management 421

11.3 IA-32 Memory Management
When MS-Windows 3.0 was first released, there was a great deal of interest among program»
mers about the -switch from Real mode to Protected mode. (Anyone who wrote programs for
Windows 2.x will recall how difficult it was "to stay within 640K in Real-address mode!) With
Windows Protected mode (and soon after, Virtual mode), whole new possibilities seemed to
open up. One must not forget that it was the Int-e13 86 processor (the first of the IA-32 family)
that made all of this possible. What we now take for granted was a gradual 10'-year evolution
from the unstable Windows 3.0 to the sophisticated (and stable) versions of Windows and Linux
offered today.
This section of the chapter will focus on two primary aspects of memory management:

' Translating logical addresses into linear addresses
~ Translating linear addresses into physical addresses (paging)

Let"‘s briefly review some of the IA-32 memory-management terms introduced in Chapter
2, beginning with the following:

' Multitasking permits multiple programs (or tasks) to run at ‘the -same time. The processor
divides up its time between all of the running programs.

- Segments are variable-sized areas of memory used by a program containing either code or
data. "

~ Segmentation provides a way to isolate memory segments from each other. This permits
multiple programs to run simultaneously without interfering with each other.

~ A segment descriptor is a 64-bit value that identifies and describes a_ single memory seg-
ment: -it contains information about the segment’s base address, access rights, size limit,
type, and usage.

Now we will add two new terms to the list:

' A segment selector is a 16-bit value stored in a segment register (CS, DS, SS, ES, FS, or GS).
~ A logical address is a_combination of a segment selector and a "32-bit offset.

Segment registers have been ignored throughout this book because-they are never modi-
fied directly by user programs. We have only been concerned with 32-bit offsets. From a s ys-
tem programmer’s point of view, however, segment registers are important because they
contain indirect references to memory segments.

11.3.1 Linear Addresses
11.3.1.1 Translating Logical Addresses to Linear Addresses
A multitasking operating system allows several programs (tasks) to run in memory at the same
time. Each program has its own unique area for data. Suppose three programs each had a
variable at offset 200h; how could the three variables be separate from each other without "being

422 Chapter 11 - 32-Bit Windows Programming

shared? The answer to this is that the IA-32 processor uses a one- or two-step process to convert
each vat'iable’s offset into a unique memory location.

The first step combines a segment value with a" variable‘s offset to create a linear address.
This linear address could be the variable’s physical address. But operating systems such as MS-
Windows and Linux employ an IA-32 feature called paging to permit programs to. use more lin-
ear memory than is physically available in the computer. They must use a second step called
page translation. to convert a linear address to a physical address. We will explain page transla-
tion in Section 11.3.2.

First, let’s look at the way the processor uses a segment and offset to determine the linear
address of a variable. Each segment selector points to a segment descriptor (in a descriptor
table), which contains the base address of a memory segment. The 32-bit offset in the logical
address is added to the segment’s base address, generating the linear address, as shown in
Figure ll-2.

Linear Address A linear address is a 32-bit integer ranging between 0 and PFFFI-"'FFFh, which
refers to a memory location. The linear address may -also be the physical address of the target
data, if a feature called paging is disabled.

1'

Logical address
1.

Selector Offset
 ‘g1‘ ff";-9T'W‘\ “I_‘1“-TI‘; I

1'\ . _ - l. .-.L-L‘-

—

GDTRILDTR
i Linear address i

(contains base. address
of descriptor table)

Figure 11-2 Converting a Loglcai Address Into a Linear Address.

11.3 IA-32 Memory Management 423

11.3.1.2 Paging
Paging is an important feature of the IA-32 processor that makes it possible fora computer to
run a combination of programs that would not otherwise fit into memory. The processor does
this by initially loading only part of a program in memory, while the remaining parts are kept on
disk. The memory used by the programis divided "into small units called pages, typically 4 KB
each. As each program runs, the processor selectively unloads inactive pages from memory and
loads other pages that .are immediately required.

The operating system maintains a page directory and a set of page tables to keep track of
the pages used by all programs currently in memory. When a program attempts to access an
address somewhere in the linear address space, the processor automatically converts the linear
address into a physical address. This conversion is called page translation. If the requested page
is not currently in memory, the processor intemrpts the program and issues a pagefault. The
operating system copies the required page from disk into menrory before the program -can
resume. From the point of view of an application program, page. faults and page translation hap-
pen automatically.

In Wmdows 2000, for example, you can activate a utility named Task Manager and see the
difference between physical memory and virtual memory. The following example shows a com-
puter with 256 MB of physical memory:

,»"_-,_----..-_»_-._--_.-_----.. . _.__;___ -____. - - - -. --.--_---»-- - . ..,- . I|_\ -. . . -q

424 Chapter 11 - 32-Bit Windows Programming

The total amount. of virtual memory currently in use is in the Commit Charge frame of the Task
Manager. Notice in the figure that the virtual memory limit is 633 MB, considerably larger than
the computer’s physical memory size.

11.3.1.3 Descriptor Tables
Segment descriptors can be found in two types of tables: global descriptor tables (GDT), and
local descriptor tables (LDT).

Global Descriptor Table (GDT) There is only -one global descriptor table, which is created
when the operating system switches the processor into Protected mode. Its base address is held
in the GDTR (global descriptor table regis_ter). The table_ contains entries (called segment
descriptors") that point to segments. The operating system h-as the '0pti0l1 of storing the segments
used by all programs: in the GDT.

Local Descriptor Tables (LDT) In -a multitasking "operating system, each task or program is
usually assigned its own table ofhegment descriptors, called a local descriptor table (LDT). The
LDTR register contains the address of the program’s LDT.

Each segment descriptor "contains the base address of a segment within the linear address
space. This segment is usually distinct from all other segments, as is the case in Figure ll-3. Three
different logical addresses are shown, each selecting a different entry in the LDT. In this figure we
assume that paging is disabled, so the linear address space is also the physical address space.

Linear address space

(unused)

Logical addresses
Local Descriptor Table DRAM 1

SS cw" 1-1-i=-'1“--str-'--r-..-*.='-'1"""""" 1
"'93"(‘-¢"7‘.'7I 1'DS oi-fsét (index

00000136 OUIAOQOO

0002A000
0001A000

cacccaco

‘i=5.-"""1I-=.-'~#.-..5'u"IH'L'|-'-1 .__,;-.'..f,_,,,__|.‘..-_:-_;_..'_..'15’it"=--t-i"‘.,’;"'i'"~ ,'l}'=".-=1-fist?-,?~"v ___IL~.-'..r.g,_r-";~_t__\-- 's--a-' ._- :-:'-A,\‘l“u-._-:-,-ruT'_.L.-c’.3:’'1':25;-er-.-.=;3=--‘if-*%='en-r1 as--"'..as~rr-r.3.1:".

1'41 is,»i .-..,
00003000 ,1-=*iis h e

000s 00002003 r-11$
% arei lull -:-

LDTF-l register I

Figure 11-3 Indexing into a Local Descriptor Table.

11.3 IA-32 Memory Management 425

11.3.1.4 Segment Descriptor Details
A segment descriptor contains bit-mapped fields that specify the segment limit, as well as the
segment type. A code segment is automatically designated read-only, for example. if a prograrn
tries to modify a code segment, a processor fault is generated. Segment descriptors can contain
protection levels that protect operating system data from access by application programs. The
following are descriptions of individual selector fields:

Base address: 32-bit integer that defines the starting location of the segment in the 4 GB
address space.
Privilege level: Each segment can be-assigned a privilege level between 0 and 3, where 0

is the most privileged, usually for operating system kemel code. If a program with a higher-num-
bered privilege level tries to access a segment having a lower-numbered privilege level, a proces-
sor fault is‘ generated.

Segment type: Indicates the type of segment and specifies the type-of access that can be
made to the segment, and the direction the segment-can grow (up or down). Data (including
Stack) segments can be read-only or read/write, and can grow either up or down. Code segments
can be execute-only or execute/read-only.

Segmentpresentflag: This bit indicates whether the segment is currently present in phys-
ical memory.

Granularity flag: Determines the interpretation of the Segment limit field. If the bit is
clear, the segment limit is interpreted in byte units. If the bit is set, the segment limit is inter-
preted in 4,096-byte units.

Segment limit: 2_0-bit integer that specifies the size of the segment. It is interpreted in one
of two ways, depending on the Granularity flag:

~ Segment size of 1 byte to 1 MB.
~ Segment size of 4096 bytes to 4 GB.

11.3.2 Page Translation
When paging is enabled, the processor must translate a 32-bit linear address into a 32-bit physi-
cal address.2 There are three structures used in the process:

~ Page directory: An array of up to 1024 32-bit page-directory entries.
- Page table: An array of up to 1024 32-bit page-table entries".
~ Page: A 4-K or 4-MB address space.

To simplify the following discussion, we will assume that 4—KB pages are used:
A linear address is divided into threefields: a pointer to a page directory entry, a pointer to

a page table entry, and an "offset into a page frame. Control register (CR3) contains the starting

3 The Pentium Pro and later processors permit a 36-bit address option, but i_t will not be covered here.

426 Chapter 11 - 32-Bit Windows Programming

address of the page directory. The following steps are carried out by the processor when translat-
ing a linear address to a physical address, as shown in Figure 11-4:

1. The linear address references a location in the linear address space.
2. The 10-bit directory field in the linear address is an index to a page directory entry. The

page directory entry contains the base address of a page t_able.
3. The 10-bit table field in the linear address is an index into the page table identified by the"

page directory entry. The page table entry at that position contains the base location of a
page in physical memory.

4. The 12-bit oflset field in the linear address is added-to the baseaddress of the page, generat-
ing the exact physical address of the operand.

The operating system has the option of using a single page directory for all running programs
and tasks, or one page directory per task, or a combination of the two.

11.3.2.1 MS-Windows Virtual Machine Manager
Now that we have a general idea of how the IA-32 manages memory, it might be interesting to
see how memory management is handled by MS-‘Windows. The following passage is para-
phrased from-the M.icrosoft.Platform SDK documentation for W'mdows 95 and 98:

Linear Address
p to _, 10 __ _12_
Directory Table Offset

-|._-3191-_---,,-9-, ;-q,-.-1-q.-¢—~»_ -_-Q-v-._--+--rn v-we;----~I'-:-inw- £§

Page Frame
' _ ... --.-..... .-.-'. l. .'_. .-1 - -'1- _- -I ' -._. .1: ._.-.;...'..'. _. ‘.'; .‘

.-_‘ -_'._‘-'_ - ._ __-.' . - -
.<‘.,,;._.. ,._ 2- _ > -

Page Direewry Page Teble
‘ .

..g- ;|.|._ ,___1._ ___.-_.j¢_,_:;_.,_._, __.::'.- .'; -,_- _.=,_ |.. :..,__ -..-‘.... ._ |....-..-,__._-.__..._._..'
" .'.J' *" ‘I -2-‘-'. ~' "‘~;¢.'.'-.-' *.':?;- 0- -r ' |- .. .- .=--.--- Ph lAdd, _ _ __ _ _ _, __ , ystca ress

‘ ' " ' " -. ".-"':-I- .-.‘ -1*--\ -1-“l-'|:_¢_'- _-‘-.._-_ - _- '_ _'. .-_:-:" _7 .‘ 1- '.,'-.‘. '_ ,’- _T \\"|-_.i“.“~T,‘-','§"‘-':'=-2":-_‘ 12".‘ f-2' -'- -‘.'-._".'_"_'.>;
,,-i‘ -: -. ._-._.-.~.' - - '- :'.,-_:.---_,- I --_._-_ _- 1-1;; _' . ' _ _ - .ht. ;__.__-.___.". -_;_.\-_ -..-.7.:_._4 1-. :_ ,. _ _ _- ___ _- , . _, _

.1‘-v-,4‘-,'--_'_' - ~_-_|-‘~-.,-.'-;\-‘- -.. ;|. .>1_'. .' - - _ _.---,-_, . ' '|_. . .. , . \ . .,; I-r__._\-J:_v. _-.,-1-:,i:,..'~:.- -.-1-"-'--_'._§';'._!.I .-luv:-,‘.-.1;‘
.-;.'\|_‘.__1'_'.'|'

I|»,:-"I =21"-.-:-,"--P.:-.';‘=‘-

-.'-<_'\53' . '.'._.v*.-.-" ;"ac,-t- .''_!--r-'>"1 .-..-._
-.;-'-.-.|..-.

-~._-| ',-4. _.
,‘I1...

‘ll; ';,'.-'l"_-'2»J. ‘|.:-'ij'J-_.'_|
‘.1"..".-‘-2,..._,.__:

_.-.

-- ' - - .- r P: .,'-.- '. -" .- " 5'. --.-- _ . -
"-1" -.1. ‘. "3"-' '--.‘ :-" .“- :'-- ‘ ."-".-.,'-'~-."'- ‘.-' -'. "‘.'.‘fi_-3 - - '- " -' - ' - - -' .' '-' ' . .3’. ' '-. _- ' ., _--_...--.-_- _..--- . -- ,--,5. .._ . ,__--, . 1._ - |‘ V. .- .|-. -- .._. - . , _ .-__ _._._. _

___,!T._.,._.:__._._......._.I._; _'.:';):_..'\..'-' _.,._.. -1-! "-"._‘:.'_'2: -..'f:j_I_|1. .-_-.I_I :-_ ___. ..’1,-I. I.‘-:~'=' 2.':‘. '.-.",'i_ -'L\- .2‘-,~|;_"'.|-;-2". ‘‘-..’!0'

__-...-..-r

.1'; ;' .*_' _, 5r-..'.;_-.-. .-T'-’,.-_I ,1’ |-_-__;;-_-___‘ --=_ =,- ' ~ _;_:'_' '_ .-'-' ..; .;v___., ‘. 1" Tl .: -_-1 __..- .- _- - _- ._- _-, -‘ _ _. _;
-1 H __ I _ ___’ L'\._....m'_-‘-_'.".<'.;.._;_-.;:;;_-r.-.2 ;-'..'_'-.‘-_t‘.-'_':.._-.-.IF: '_;.'-.,i.:=_:'_- ‘__"'§_ ._ -, .:_.,._ I; - 3;;
.- -.,._. -- ,-.-' - "-‘ - -:- -"-.-.'. . _.-‘ ' .1 1.. __ . , Page_Tab1e . _g

1-: '.-'.‘.*-‘.‘-."t=,"'.=*.-r-,r.".1-" “F1I:‘r':I':Tm;I_.;-; _1._'. -jg _-'_ .. .'_ I 3' '_' _. -. 1 '_-- ._‘_. 11.-._:-;'\'_'--_:_-_.-_..'; _‘.~_1\'_-- .-_ - '-_ _l-.—---.-‘.-_ ..__:»-1‘ ¢".1;-;- _'. _. .- _-r'f _-'.-.-' 3 _-‘ - .- - 511;.-.';;'--_:._.\ .¢,__;;,; .‘- ._;.._-l._-_'_'_ ; _.;__:~' -__~
' " ' ' .:¥'---."-:.r§".‘"- -- . I--.-.3" -"-.-.'-- =.-'--5'.‘-1.-r .I' K a_.'

......‘ :1 3..- "J _'¢ 1.; _-t
. ,-~I. . .- -_.-.- - .--.-..- ' -"~--. |

‘E pi, ___.:,',.v_|. _-_.=n___ _'.'., ||,..@_|....-.' .-_1n.;-'.!-_--_.- _~_-_q1._-1. .:. ‘ _, '__ ___ ..
' " in-.';"--._-, -. ',= .~ !--._-__;'_'." _'.-_-..- __.~.'_.=f'-..": .“i'

1 \ J
\.L .. _._ I-.Directory Entry

:-.<.=::‘r=r-=f.a'.*:r.e"=r—'r '-=¢:-*--l"-:-"2%?-2:-1-?
n_-_--._-..-,.....|.-.1. .-.-,-1\.--..\.--- ,-l._.'- .-.-- . .-_-i-..-.1.“ .'~ -'--.--_._-c-e-1..-.. 1

CR3 l 32 I

Figure 11-4 Translating Linear Address to Physical Address.

11.3 IA-32 Memory Management 427

The Virtual Machine Manager (VMM) is the 32-bit Protected tnode operating system at the core 1
of Windows 95 and 98. Its primary responsibility is to create, run, monitor, and terminate virtual
machines. The VMM provides services that manage memory, processes. interrupts, and excep-
tions. It works with virtual devices, 32-bit Protected mode‘ modules, to allow the virtual devices to
intercept interrupts and faults to control application programs’ access to hardware and installed
software.

i Both the VMM and the virtual devices run in a single 32-bit flat model address space at
j privilege level 0. The system creates two global descriptor table entries {segment descriptors), one A

for code and the other for data. Both segments begin at linear address 0, and never change. The l
VMM provides rnultithueaded, preemptive multitasking. It runs multiple applications simulta-
neously by sharing CPU time between the virtual machines in which the applications run.

-1__ e_.__ _ .

In the foregoing passage, we can interpret the term virtual rrmchine to be what Intel calls a
process or task. It consists of program code, supporting software, memory, and registers. Each
virtual machine is assigned its own address space, I/O port space, intermpt vector table, and
local descriptor table. Applications mnning in virtual-8086 mode -run at privilege level 3. Pro-
tected-mode programs" run at privilege level 1, 2, or 3.

11 .3.3 Section Review

1. Define the following tenns:

a. multitasking.
b. segmentation.

2. Define the following terms:

a. segment selector
b. logical address

~..lr--_@\DOO'--’lQ‘tLh-limb.)

. Ifiirze/False): A segment selector points to -an entry in a segment descriptor table.
<1 True/False): A segment descriptor contains the base location of a segment.

. (Tine/False): A segment selector is 32 bits.

. [True/False): A segment descriptor does not contain segment size information.
. Describe a linear address.
. How does paging relate to linear memory?
. If paging is. disabled, how does the processor translate a linear address to a physical address?

I What advantage does paging offer‘?
I . Which register contains the base location of a local descriptor table?
I.... Which register contains the base location of a global descriptor table‘?
I3. How many global descriptor tables can exist?
I-l. How many local descriptor tables can exist‘?
15. Name at least four fields in a segment descriptor.

428 _ i Chapter 11 - 32-Bit Windows Programming

16. Which structures are involved in the paging" process?
17. What structure contains the base address of a page table‘?
I8, What structure contains the base address of a page frame?

11.4 Chapter Summary
On the surface, 32-bit console mode programs look and behave like 16-bit MS-DOS programs‘
running in text mode. Both types of programs read from standard input and write to standard
output, they -support command-line redirection, -and they can display text in color. Beneath. the-
surface, however, Win32 "consoles and MS-DOS programs are quite different. Win32 runs in 32-
bit Protected mode, whereas MS-DOS runs in Real-address mode. Win32 programs can call
functions from the same function library used by graphical Windows applications. MS-DOS
programs "are-limited to a smaller set of BIOS and MS-DOS interrupts that have existed since the
introduction of the IBM-PC.

There are two types of -character sets used in Windows API functions: the 8-bit ASCII}
ANSI character set, and the 16-bit wide/Unicode character set.

Standard MS-Windows data types used in the API functions must be translated to MASM
data types (see Table 11-1)..

Console handles are 32-bit integers used for inpulloutput in console windows. The
GetStdHandle function retrieves a console handle. For high-level console input, .call -the
ReadCons'0le function; for high-level output, call Write_C'0nsole. When creating or opening a
file, call CreateFile. When reading from a file, call ReadFile, and when writing, call WriteFile.
Closeliandle closes a tile. To move a file pointer, call SetFilePointer.

To manipulate the console screen buffer, call SetConsoleScreenBufferSize. To change the
text color, call SetC0nsoleTextAttribute. The WriteColors program in this chapter demon-
strated the WriteConsole0utputAttribute and WriteCons0le0utputCharacter functions.

To get the system time, call Ge'tLocalTime; to set the time, call SetLocalTime. Both
functions use the SYSTEMTIME structure. The GetDate'I‘ime function example in this chapter
returns the date and time as a 64-bit integer, specifying the number "of l_O0-nanosecond intervals
that have occurred since January 1, 1601. The TimerStart and TimerStop functions can be
used to create a simple stopwatch timer.

When creatring a graphical MS-Windows application, you must fill in a WNDCLASS.
structure with information about the program’s main window class. You must create a WinMain
procedure that gets H handle to the current process, loads the icon and mouse cursor, registers the
program’s main window, creates the main window, shows and updates the main windows, and
begins a message lo_op that receives and dispatches messages.

The WinProc procedure is responsible for handling incoming Windows messages, ‘often
activated by user -actions such as a mouse click or keystroke. The example program processes a
WM_LBUTTONDOWN message, a WM_CREATE message, and a WM_CLOSE message. It
displays popup messages when these events are detected.

The memory management" section of this chapter focuses on two main topics: translating
logical addresses into linear addresses, and translating linear addresses into physical addresses.

11,5 Programming Exercises 429

A logical address points to an entry in a segment descriptor table, which in turn points to a
segment in linear memory. The segment descriptor contains information about the segment,
including its size and type of access. There -are two types of descriptor t-ables: a single global
d6_S.C1'ipt01' table (GDT) and one or more local descriptor tables (LDT).

Paging is an important feature of the IA-32 processor that makes it possible for a computer
to run a combination of programs that would not otherwise fit -into memory. The processor does
this by initially loading only part of a program in memory, while the remaining parts are kept on
disk. The processor uses a page directory, page table, and page frame to generate the physical
location of "data. A page directory contains pointers to page tables. A page table contains point-
ers to pages.

Reading For further reading about Windows programming, the following books may be helpful:

- Kauler, B arry. Windows Assernbly Language"and System Programming-. R & D Books, 1997.
- Petzold, Charles. Programming Windows: The Definitive Guide to the Win32 API.

11.5 Programming Exercises

1. ReadString
Implement your own version of the ReadString procedure, using stack parameters. Pass it a
pointer to a string and an integer indicating the maximum number of characters to be entered.
Return a count (in BAX) of the number of characters "actually entered. The procedure must input
a string from theconsole and insert a null byte at the end of the string (in the position occupied
by 0Dh). See Section 11.1.3.1 for details on the Win32 ReadCons0le function. Write a short
program that tests your procedure.

2. String Input/Output
Write a program that inputs the following information from the user, using the Win32 ReadConsole
function: First name, last name, age, phone number. Redisplay the same information with labels and
attractive formatting, using the Win32 WriteConsole function. Do not use any procedures from the
Irvine32 library.

3. Clearing the Screen
Write your own version of the link library‘s Clrscr procedure that clears the screen.

4. Random Screen Fill
Write a program that fills each screen cell with a random character, in a random color. Extra:
assign a 50% probability that the color of any character will be red.

5. DrawB0x
Draw a box on the screen using line-drawing characters from the character set listed on the
inside back cover of your book. Hint: Use the WriteConsoleOutpntCharacter function.

430 i i Chapter 11 ' 32-Bit Windows Programming

6. Student Records
Write a prograrn that creates a new text file. Prompt the user for a student identification number,
last name, first name, and date of birth. Write this information to the file. Input several more
records in the same manner and close the file.

7. Scrolling Text Window
Write a program that writes 50 lines of text to the console screen buffer. Number each line.
Move" the console window to the top of the buffer, and begin scrolling the text upward at a steady
rate (two lines per second). Stop scrolling when the console window reaches the end of the
buffer.

8. Block Animation
Write a program that draws a small square on the screen using several blocks (ASCII code DBh)
in color. Move the square around the "screen inrandomly generated directions. Use a fixed delay
value of 100 ms. Extra: Use a randomly generated delay value between 10 ms and I00 ms.

High-Level Language Interface

12.1 Introduction
12.1.1 General Conventions
12.1.2 Section Review

12.2 lnline Assembly Code
12.2.1 ___as'm Directive in Microsoft Visual C++
12.2.2 File Encryption Example
12.2.3 Section Review

12.3 Linking to C++ Programs
l2.3.l Linking to Borland C++
12.3.2 ReadSector Example
12.3.3 Example: Large Random Integers
12.3.4 Using Assembly Language to Optimize C++ Code
12.3.5 Section Review

12.4 Chapter Summary
12.5 Programming Exercises

12.1 lntroduction
Most programmers do. not write large-scale applications in assembly language, .simply because it
takes too long. High-level languages -are designed to relieve the programmer of details that
would otherwise slow downa project’s development. But assembly language is still used widely
to. configure hardware devices and optimize both the speed and code"-size of programs.

In this chapter, we focus on the interface, or connection, between assembly language and
high-level programming languages. In the first section, we will show how to write inline assem-
bly code in C-H-. In the next section, we will link separate assembly language modules to C++
programs. Examples are shown for both Protected mode and Real-address mode.

12.1.1 General Conventions
There are a number of general considerations that must be addressed when "calling assembly lan-
guage procedures from high-level languages:

First, the naming convention" used by a language refers to the rules or characteristics
regarding the naming of variables and procedures. For example, we. have to answer an important
question: Does the assembler or compiler alter the names of identifiers placed in object files, and
if so, how‘?

431

432 Chapter 12 - High-Level Language Interface

Second, the memory model used by a program (tiny, small, compact-, medium, large, huge,
or flat) determines the segment size (16 or 32 bits), and whether calls and references will be 116211"
(within the same segment) -or far (between different segments).
Calling Convention The calling convention refers to the low-level details about how proce-
dures are called. The following details niust be considered:

- Which registers must be preserved by called procedures.
- The method used to pass arguments: in registers, on the stack, in shared memory, or by

some other method.
- The order in which arguments are passed by calling programs to procedures.
' Whether arguments are passed by value or by reference.
' How the stack pointer is restored after a procedure call.
' How functions return values to calling programs.

External Identtfers When calling an assembly language procedure from a program written in
another language, external identifiers must have compatible naming conventions. External identifi-
ers are names that have been placed in a module’s object file in such a way that the linker can make
the names available to other program modules. The linker resolves references to external identifi-
ers, but can only do so if the naming conventions being used are consistent.

For example, suppose "a C prograrn named maincpp calls an external procedure named
ArraySum.- As illustrated below, the C compiler automatically preserves case and appends a
leading underscore to the external name, changing it to _ArraySum:

calls: exports: W
_ _ArraySu1n _ _ xnnmtsum may-fltm

Marn.epp Linker
.model flat, Pascal

The Arraymsm. module, written in assembly language, exports the ArrayS|1m procedure name
as ARRAYSUM, because the module uses the Pascal language option in its. MODEL directive.
The linker fails to produce an executable program because. the two exported names are different.

Compilers for older programming languages such as COBOL and PASCAL usually con-
vert identifiers to all uppercase letters. More recent languages such as C, C++, and Java preserve
the "case of identifiers. In addition, languages that support function" overloading (such as C++)
use a technique known as name decoration that adds additional characters to function names. A
function named MySub(int n, double b), -for example, might be exported as MySub#int#clouble.

In an assembly language module, you can control case sensitivity by choosing one of the
language specifiers in the .MODEL directive (see Section 8.4.2 for details).

Segment Names When linking an assembly language procedure to a program written in a high-
level language, segment names must be compatible. In this chapter, we use Microsoft simplified

12.2 lnline Assembly Code 433

segment directives such as .CODE and .DATA because they are compatible with segment names
produced by most C++ compilers.

Memory Models A calling program and a called procedure must both use the same" memory
model. In Real-address mode, for example, you can choose from the small, medium, compact,
large, and huge models. In Protected mode, you must use the flat model. We show examples of
both modes in this chapter.

12.1.2 Section Review

1. What is meant by the naming convention used by a language?
2. Which memory models are available in Real-address mode?
3. Will an assembly language procedure that uses the Pascal language specifier link to a C++

program?
4. When a procedure written in assembly language is called by a high-level language program,

mus.t the calling program and the procedure use the same memory model’?
5. Why is case-sensitivity important when calling assembly language procedures from C, and

C++ programs‘?
6. Does a language’s calling convention include the preserving of certain registers by pro-

cedures?

12.2 lnline Assembly Code

12.2.1 _asm Directive in Microsoft Visual C++
Inline assembly code is assembly language source code that is inserted directly into high-level
language programs. Most C/C++ compilers support this feature, as do Borland C++, Pascal, and
Delphi.

In this section, we demonstrate how to write inline assembly code for Microsoft Visual
C++ running in 3-2-bit Protected mode with the flat memory model. Other high-level language
compilers support inline assembly code, but the exact syntax varies. See the book’s Web site for
any changes to inline assembly code in Visual C-H-.NET.

Inline assembly code is a straightforward alternative to writing assembly code in external
modules. The primary advantage to writing inline code is simplicity, because there are, no exter-
nal linking issues, naming problems. and parameter passing protocols to worry about.

The primary disadvantage to using inline assembly code is its lack of portability. This is an
issue when a high-level language program must be compiled for different target platforms. Inline
assembly code that runs on an Intel Pentium processor will not run on a RISC processor, for
example. To some extent, the problem can be solved by inserting conditional definitions in the
program’s source code to enable different versions of functions for different target systems. But
it is easy to see that maintenance is still a problem. A link library of external assembly language

434 Chapter 12 ~ High-Level Language Interface

procedures, on the other hand, could easily be replaced by-a similar link library designed for a
different target machine.

The _asm Directive In Visual C++, the ____asm directive can be placed at the beginning of a
single statement, or it can mark the beginning of a block of assembly language statements
(called an asm. block). The syntax is:

__asm statement

__asm {
statement-1
statement-2

statement-n
}

(There are two underline characters before “asm.”)

Comments Comments can be placed after any statements in the asm block, using either
"assembly language syntax or C/C++ syntax. The Visual C++ manual suggests that you avoid
assembler-style comments because they might interfere with C macros, which expand on a 'sin~
gle logical line. Here are examples of permissible comments:

mov esi,bu£ ; initialize index register
mov esi,buf // initialize index register
mov esi,buf /* initialize index register */

Features Here is what you can do when writing inline assembly code:

' Use any instruction from the Intel instruction set.
' Use register names as Operands.
- Reference function parameters by name.
- Reference code labels and variables that were declared outside the asm block. (This is

important‘, because local function variables must be declared outside the asm block.)
- Use numeric literals that incorporate either assembler-style or C-style radix.notation. For

example, 0A26h and 0xA26 are equivalent and can both be used.
'- Use the PTR operator in statements such as-inc BYTE PTR [esi].
' Use the EVEN and ALIGN directives.

Limitations You cannot do the following when writing inline assembly code:

' Use data definition directives such as DB (BYTE) and DW (WORD).
' Use assembler operators (other than PTR).
' Use STRUCT, RECORD, WIDTH, and MASK.
' Use macro directives, including MACRO, REPT, IRC, IRP, and ENDM, or macro

operators (<:>, l, &, %, and .TYPE).
' Reference segments by name. (You can, however, use segment register names as operands.)

12.2 lnline Assembly Code 435

Register Values You cannot make any assumptions about register values at the beginning of an
asm block. The registers may have been modified by code that executed just before the "asm
block. The ____fastc-all keyword in Microsoft Visual C++ causes the compiler to use registers to
pass parameters. To avoid register conflicts, do not use ___fastcall and _.-asm together.

In general, you can modify EAX, EBX, ECX, and EDX in your inline code, because the
compiler doe_s not expect these values to be preserved between statements. If you modify too
many registers, however, you may make it impossible for the compiler to fully optimize the C++
code in the same procedure because-optimization requires the use of registers.

Although you cannot use the OFFSET operator, you can still retrieve the offset of avari-
able using the LEA instruction. For example, the following instruction. moves the offset of
buffer to E-SI:

lea esi,buffer

Length, Type, and Sire You can use the LENGTH, SIZE, and'TYPE operators with the inline
assembler. The LENGTH operator returns the number of elements in an array. The TYPE opera-
tor retums one of the following, depending on its target:

' The number of bytes used by a C-or C++ type or scalar variable
' The number of bytes used by a structure
' For an array, the size of a single array element

The SIZE operator returns LENGTH * TYPE. The following program excerpt demonstrates the
values returned by the inline assembler for various C++ types.

l Microsoftvisual C++ 6.0’s inline assemblerdoes not support the SIZEOF and LENGTHOF]
operators that were introduced in MASM 6.0. _

i i _ _ _ _ _ i __ _ . | .____,_____

12.2.1.1 Using the LENGTH, TYPE, and SIZE Operators
The following program contains inline assembly code that uses the LENGTH, TYPE, and SIZE
operators to evaluate C++ variables. The value returned by each expression is shown as a" com-
ment on the same line:

struct Package {
long originzip; // 4
long destinationzip; // 4
float shippingPrice; // 4

l.-
char myChar;
bool myB0ol;
short myshort;
int mylnt;
long myLong;
float myFloat;

436 Chapter ‘I2 - High-Level Language Interface

double myDouble;
Package myPackage;

long double myLongDouble;
long myLongArray[10];

__asm {
mov

IIIOV

IIIOV

IHOV

IHOV

IIIOV

IHOV

IIIOV

IIIOV

IIIOV

IIIOV

IIIOV

IHOV

IIIOV

IHOV

IIIOV

}

eax,myPackage.destinationZip;

eaX,LENGTH myInt;
eax,LENGTH myLongArray;

eax,TYPE
eax,TYPE
eax,TYPE
eax ', TYPE
eax,TYPE
eax,TYPE
eax,TYPE
eax,TYPE
eax,TYPE
eax,TYPE

eax,SIZE
eax,SIZE
eax,SIZE

//
//

//'
//
//
//
//
//
//
//

1
10

1
1
2
4
4
4
8
12

mY@1"-or 2
ngflool;
mySh0rt;
myInt;
myLong;
myFloat;
mybouble;
myPackage;
myLongDouble; // 8
nqLongArray; //-4

4
12
40

myLong;
myPackage;

//
//

myLongArray; //

12.2.2 File Encryption Example
Let’s write a short program that reads a file, encrypts it, and writes the output to another file. The
Trans!-ateBuffer function uses an _asm block to define statements that loop through a charac-
ter array -and XOR each character with a predefined value. The inline statements can refer to
function parameters, local variables, and code labels. Because this example was compiled under
Microsoft Visual C++ as aWin32 Console application, the unsigned integer data type is 32 bits:

void TranslateBuffer(char * buf,
unsigned count, unsigned char encryptChar)

{
__§5m {

mov
mov
mov

L1:
.XOr
inc

esi;buf
ecx,count
a1,encryptChar

[esi],al
esi

loop L1
}

}
// asm

12.2 lnllne Assembly Code 437

In main(), TranslateBuffer is called from a loop that reads blocks of data from a file,
encrypts it, and writes the translated buffer to a new file:

// ENCODE..CPP - Copy and encrypt .a file
#include <iostream>
#include <fstream>
#include "translat.h“
using namespace std;

int main()
{

const int sussrzs = 200;
char buffer[BUFSIZE];
unsigned int count;

unsigned short encryptCode;
cout << "Encryption code [0-255]? ";
cin >> encryptCode;

ifstream infile("infile.txt", ios::binary);
ofstream outfile("outfile.txt", ios::binary);

while (linfile.eof())
{

infile.read(bu£fer, BUFSIZE);
count = infile.gcount();
TranslateBuffer(buffer, count, encryptCode);
outfile.write(buffer, count);

}
return 0;

}
The transl'ar.!_z header file contains a single function prototype for TranslateBuffer:

void TranslateBuffer(char * buf, unsigned count,
unsigned char eChar);

12.2.2.1 Procedure Call Overhead
If you view the Disassembly window while debugging this program in a debugger, it is interest-
ing to see exactly how much overhead can be involved in calling and returning from a procedure
The following statements push the arguments on the stack and call Ti-anslateBuffer:

const EncryptCode = 0Flh
.code
push Encryptcode
mov ecx,DWORD PTR [count]
push ecx
push OFFSET buffer
call TranslateBuffer
add esp,0Ch

438 Chapter ‘I2 ~ High-Level Language Interface

The following is the assembly language code.for TranslateBufi'er. Note that a number
of statements were automatically inserted by the compiler, to set up EBP and save a standard
set of registers that are always preserved whether or not they are actually modified by the
procedure:

push
mov
push
push
push
mov
mov
mov

L1:
xor
inc
loop
POP
PQP
PQP
PQP
ret

ebp
ebp,esp
ebx
esi
edi
esi,buf
ecx,count
al,eChar

[esi],al
esi
L1
edi
esi
ebx
ebp

; inline code starts here

; inline code ends here

'f ' ,Il|I|I"'*i

Ths=-eampflg instmctaslrlta generate-;a Dab"-.8.;.tass¢L Wlfish is nwevfimsd C-0'5-1.9 suit-
flle-coriipiler have

St.=:Cti0l1‘?‘l2.3.4.2 wé will showylyou

.
The six inline instructions in the 'I‘ranslateBufl’er function shown at the beginning of this

section turned out to require a total of 22 instructions to execute. If the function were called
thousands of times, the execution speed loss might be measurable. To avoid this, we can insert
the inline code directly in the loop that called TranslateBuffer, creating a much more efficient
program:

encryptChar = unsigned char (encryptCode);
while (linfile.eof())
{

infile.read(buffer, BUFSIZE);
count = infile.gcount();

asm {
lea esi,buffer
mov ecx,count
mov al,encryptChar

Ll:
xor [esi],al
inc esi

12.3 Linking to C++ Programs 439

Loop L1
} // asm
outfi1e-write(buffer, count);

}
Notice that we had to cast eneryptC0de from an unsigned short integer into an unsigned cfmr
and store it in encryptChar, because short integers are 2 bytes and characters are 1 byte.

12.2.3 Section Review

1. How is inline assembly code different from an inline C++ procedure‘?
2. What advantage does inline-"assembly code offer over the use ofexternal assembly language

procedures?
Show at least two ways of placing comments in inline assembly code.

. (Yes/no): Can an inline. statement refer to code labels outside the ___asm block?"

. (Yes/no): Can both the EVEN and ALIGN directives be used in inline assembly code‘?
(Yes/no): Can the OFFSET operator be used.in inline assembly code"?
(Yes/no): Can variables be defined with both DW and the DUP operator in inline assembly
code?

8. When using the __fastcall calling convention, what might happen if your inline assembly
code modifies registers‘?

9. Rather than using the OFFSET operator, is there another way to move a variab1e"s offset
into an index register?

10. What value is returned by the LENGTH operator when applied to an array of 32-bit integers?
ll. What value is returned by the SIZE operator when applied to an array of long integers"?

.“J9‘*”"'=“§*‘

12.3 Linking to C++ Programs
We want to show how to write extemal procedures in assembly language that can be called from
C and C++ programs. Such programs consist of at least two modules: the first, written in assem-
bly language, contains the external procedure; the second module contains the C/C++ code that
starts and ends the program. There are a few specific requirements and features of C/C++ that
affect the way you write assembly code.

Arguments Arguments are passed by C/C++ prograins from right, to left, as they appear in the
argument list. After the procedure retums, the calling program is responsible for cleaning up the
stack. This can be done by either adding a value to the stack pointer equal to the size of the mgu-
ments or popping an adequate number of values from the stack.

External Names C/C-1+ automatically appends an underscore (_} to the beginning of each
external identifier. For example, if we call a procedure named ReadSect0r from a C/C-H pro-
grarn, the procedure name must begin with an underscore in the ASM module:

public _ReadSector Public declaration
_ReadSe¢tor PROC Procedure name

440 Chapter 12 - High-Level Language Interface

When assembling a module containing an extem-al procedure, you must use a command
line option that preserves case-sensitive names. Otherwise, a name such as _ReadSector would
be automatically jconverted to _READSECTOR by the assembler. Then, when linking this mod-
ule to -a C/C++ program, the linker would not be able to match up the procedure name being
called by the C++ program. To assure case sensitivity for public names, use M_A_SMTs /C_x com-
mand line option.

Declarirzg the Function In a "C language program, use the extern qualifier when declaring an
external assembly language function. For example, this is. how to declare ReadSect0r:

extern ReadSect0r(char bufferllr long startSect0r,
int driVeNum, int numSect0rs);

If the function is called from a C++ program, you must -also‘ add a “C” qualifier that prevents
name decoration:

extern "C" ReadSect0r(char buffer[], long startSecu0r,
int driveNum, int numSect0rs);

Name decoration is a standard C++ compiler technique that involves modifying a function
name with extra chmacters that indicate the exact type of each function pmameter. It is required
in any language that supports function overloading (two functions having. the same name, with
difierent parameter lists). From the assembly language programmer‘s point of view, the problem
with name decoration is that the C++ compiler tells the linker to look for the decorated name
rather than the original one when producing the executable file.

12.3.1 Linking to Borland C++
In this section of the chapter we will use the 16-bit version of Borland C++ 5.01 and select MS-
DOS as the target operating system with a small memory model. We use Borland TASM 4.0 as
the assembler for these examples, because most users of Borland C++ me likely to use Turbo
Assembler rather than MASM. We will also create 16-bit real mode applications using Borland
C++ 5.01, and demonstrate both small and largememoly model programs, showing how to call
both near and far procedures.

Function Return Values In Borland C++,'functions return 16-bit values in-AX and 32-bit val»
ues in DX:AX. Larger data structures (structure values, arrays, etc.) are stored in a static data
location, and a pointer to the data is returned in AX. (In medium, large, and huge memory model
programs, a 32-bit pointer is returned in D-X:AX.)

Setting Up a Project In the Borland C++ integrated development environment-(IDE), create a
new project. Create a source code module (CPP file) and enter the code for the main C++ pro-
gram. Create the ASM file containing the procedure you plan to call. Use TASM to assemble the
program into an object module, either from the DOS command line or from the Borland C++
IDE, using its transfer capability.

12.3 Linking to C++ Programs "441

If you have assembled the ASM module sepmately, add the "object file "created by the
assembler to the C++ project. Invoke the MAKE or BUILD command from the menu. It com-
piles the CPP file, and i-f there are no errors, it links the two object modules to produce an exe-
cutable program. Suggestion: limit the "name of the CPP source file to eight characters, or the
Turbo Debugger for DOS will not be able to find it when you debug the program.

Debugging The Borland C++ compiler does not allow the DOS debugger to be run from the
IDE. Instead, you need to run Turbo Debugger for DOS either from the DOS prompt or from the
Windows desktop. Using the deb.ugger’s File/Open menu command, select the executable file
created by the C++ linker. The C++ source code file should immediately display, and you can
begin tracing and running the program.
Saving Registers Assembly procedures called by Borland C++ must preserve the values of BP,
DS, SS, SI, DI, and the Direction flag.

Storage Sizes. A 16-bit Borland C++ program uses specific storage sizes for all its data types.
These are unique to this particular implementation and must .be adjusted for every C++ compiler.
Refer to Table 12-1.

Table 12-1 Borland C++ Data Types in 16-Bit Applications.

, C++ Type 1 Storage Bytes ASM Type
char, unsigned char 1 byte

l . 1, V . _ _

int, unsigned int, short int 2 word

enum 2 word

long, unsigned long 4 dword

float 4 dword
——\-

1 double ' I s qword

‘ long double 10 I tbyte

near pointer 2 word

far pointer l 4 dword

12.3.2 Readsector Example
Let’s begin with a Borland C++ program that calls an external assembly language procedure
named ReadSector. C++ compilers generally do not include library functions for reading disk
sectors, because such details me too hardware-dependent, and it would be impractical to imple-
ment libraries for all possible computers. Assembly language programs can easily read disk sec-
tors by calling INT 21h Function 7305h (see Section 14.4 for details). Our present task, then, is

442 Chapter 12 - High-Level Language Interface

to create the interface between assembly language and C++ that combines the strengths of"both
languages.

The ReadSect0r example requires the use of a 16-bit compiler because it involves calling
MS-DOS. intermpts. (Calling 1'6-bit interrupts from 32-bit programs is possible, but it is beyond
the scope of this book.)1 The last version of Visual C++ to produce 16-bit programs was version
1.5. Other compilers that produce 16-bit code are Turbo. C and"Il1rbo Pascal, both by B.orland.

Program Execution First, we will demonstrate the program’s execution. When the C++_pro-
gram starts up, the user selects the drive number, starting sector, and number of sectors to read.
For example, this user wants to read sectors 0-19 from drive A:

Sector display program.
Enter drive number [1=A, 2=B, 3=C, 4=D, 5=E,...]; 1
Starting sector number to read: 0
Number of sectors to read: 20

This information is passed to the assembly language procedure, which reads the sectors
into a buffer. The C++ program begins to display the buffer, one sector at a time. As each sector
is displayed, non-ASCII characters are replaced by dots. For example, the following is the pro-
gram’s display of sector 0 from drive A:

‘Reading sectors O - 20 from Drive 1

Sector O —— —-
.<.(P3j2IHC@)Y...MYDISK -FAT12 .3.
....{...x..v..V.U."..~..N...|.E...F..E.8N$}"....w.r...:f..

3[12,..w.u.....v....s.3..r'...£..F..v..F....v.‘".F..v..
A..N.a....#.r98—t."....}..at9Nt... ;.r.....}t.<.t
1..}....}.....*.f}..}..E_..N'....F..Vr....p..B.-‘fj.RP.sj‘
.j...t...3..v...v.B...vV$...d.ar,@u.B.“.Iuw....'..I
nvalid system disk...Disk I/O error...Replace the disk, and then
press any key....IOSYSMSDOS SYS...A....~...@...U.

Sectors continue to be displayed, one by one, until the entire buffer has been displayed.

12.3.2.1 Main C++ Program That Calls ReadSect0r
We can now show the complete C++ program that calls the ReadSect0r procedure:

// mainrcpp - Calls the ReadSector Procedure
#include <iostream.h>
#include <conio.h>

l See Barry Kaulet"s book, mentioned at the end of Chapter 11.

12.3 Linking to C++ Programs

#include <stdlib.h>
const int SECTOR_SIZE = 512;

extern "C" ReadSector(char * buffer, long startSector,
int driveNum, int.numSe¢tors J;

void DisplayBuffer(const char * buffer, long startSector,
int numSectors)

int I1 = U;

long last = startSector + numSectors;
for(long sNum = startSector; sNum < last; sNum++)
{

cout << "\nSectOr “ << snum
<< ll - - _ _ _ _ _ H _ _ - - _ * ~ _ - - _ _ - - H - _“

<< " — — ~ — — " " e — - — - " - - - - — - - — - - - - — " --\n";
for(int i = O; i < SECTOR_SIZE; i++)
{

char ch = buffer[n++];
if(unsigned(ch) < 32 || unsigned(ch) > 127)

cout << ‘.';
else

cout << Ch;
}
cOut << endl;
getch();

}
}
int main()
{

char * buffer;
long startSector;
int driveNum;
int numSectors;

system("CLS");
cout << "Sector display program.\n\n"
<< "Enter drive number [1=A, 2=E, 3=C, 4=D, 5=E,...]: ",
cin >> driveNum;
cout << "Starting sector number to read: ",
cin >> startSector;
cout << "Number of sectors to read: ",
cin >> numSectors;
buffer e new char[numSectors * SECTOR;SIZE];

cout << "\n\nReading sectors " << startSector << " — "
<< (startSector + numSectors) << " from Drive "
<< driveNum << endl;

444 Chapter 12 - High-Level Language Interface

ReadSector(buffer, startSector, driveNum, numSectors J;
DisplayBuffer(buffer, startSector, numSectors);
system("CLS“);
return O;

}
At the top of the listing, we find the declaration, or prototype, of the ReadSect0r function:

extern "C" ReadSector(char *buffer, long startSector,
int driveNum, int numSectors);

The first pmameter, bufler, points to the sector data after it has been read from the disk. The sec-
ond pmameter, startSector, is the starting sector number to read. The third pmameter, d:‘iveNum,
is the disk drive number. The fourth parameter, numSectors, specifies the number of sectors to
read. The first pmameter is" passed by reference and all other parameters me passed by value.

In main, the user is prompted for the drive number, starting sector, and number of-sectors‘.
The program also dynamically allocates storage for the bufier that holds the sector data:

cout <¢ "Sector display program.\n\n"
<< "Enter drive number [l=A, 2=B, 3=C, 4=D, 5=E,...]: ",
cin >> driveNum;
cout << "Starting sector number to read: ";
cin >> startSector;
cout << "Number of sectors to read: ";
cin >> numSectors;
buffer = new char[numSectors * SECTOR;SIZE];

This information is passed to the external ReadSector procedure, which fills the buffer with
sectors from the disk:

ReadSector(buffer, startSector, driveflum, numSectors);

The buffer is passed to DisplayBuffe1'f, a function in the C++ program that displays each sector
in ASCII text format:

DisplayBuffer(buffer, startSector, numSectors J;

12.3.2.2 Assembly Language Module
The assembly language module containing the ReadSector procedure is shown here. Note that
because this is a Real-mode application, the. .386 directive must appear after the .MODEL direc-
tive to tell the assembler to create 16-bit segments:

TITLE Reading Disk Sectors (ReadSec.asm)

; The ReadSector procedure is called from a 16-bit
; Real~mode application written in Borland C++ 5.01.
; It can read FAT12, FAT16, and FAT32 disks under
; MS~DQS, Windows 95, Windows 98, and Windows Me.

12.3 Linking to C++ Programs 5

Public _ReadSector
.model small
.386

Diekro srauc
strtSector DD ?
nmSec
bufferOfs

tors DW 1
DW ?

bufferSeg DW ?
DiSkIO ENDS

.data
diskStruct DiskIO <>

.code
;.-‘.1

ReadSector PROC NEAR C
ARG bufferPtr:WORD, startSect0r:DWQRD, driveNumber:WORD, \

c
I

numSectors:WORD

starting sector number
number of sectors
buffer ofrset
buffer segment

@@@@@@@@@@@@@@@@@@-¢-¢._.-p-p-¢@

; Read.n sectors from a specified disk drive.
; Receives: pointer to buffer that will hold the sector,

data, starting sector number, drive number,
and number of sectors.

; Returns: nothing

1-
I

I

“t1
I

-1--1-1-1--_-----1-1-'$'-I"'-'$'--@-$--1------¢.-.--n-~Q-nn-o-1-

enter 0,0
pusha
mov
mov
mov
mov
mov
mov
push
POP
IHOV
mov
mov
mov
mov
int
P°Pa
leave
ret

eax,startSector
diskStruct.strtSector,eax
ax,numSectors
diskStruct.nmSectors,ax
ax,bufferPtr
diskStruct.bufferOfs,ax
ds
diskStruct,bufferSeg
ax,7305h
CX,GFFFFh
dx,driveNumber
bX,OFFSET diskstruct
si,0
21h

_ReadSector ENDP
END

-1------'1'-40-I-I---1-1-1-4-o'$"$'@@@@@@@@@@

ABSDiskReadWrite
must be OFFFFh
drive number
sector number
read mode
read disk sector

446 Chapter 12 I High-Level Language Interface

Because Borland Turbo Assembler was used to code this example, it uses the Borland
ARG keyword to specify the procedure arguments. Note that the ARG directive allows us to
specify the arguments in the same order as the corresponding C++ function declaration:

ASM: __ReadSector PROC NEAR C
ARG bufferPtr:word, st-.artSector:dword, \

drivehhutlber :word, numSectors :word

C++; ext-.ern "C" ReadSector(char irbuffer,
long startSector, int drivelslum,
int numSectors);

The arguments are pushed -on the stack in reverse order, which is the standard C calling
convention. Farthest away from EBP is numSectors, the first parameter pushed on the stack, as
shown by thefollowing stack frame:

_ \
:BP + 12: numSectors ‘

Z Z X
IBP + 10: driveNum

.‘-

IBP + 06.: star.tSector ill

IBP + 04: ofs_(buffer) __';-9'-.5‘;;'

IB-P + 02: I (return addr) ,5,‘

SP, BP ?*- BP I

~.-.-,4‘

Keen .=.'a=rc|': .=,-safins=.sn.:-;.‘-r_j_».=";m=7-it.-w 5"‘? 1-1,:

Note that startSect0r is a 32-bit doublewordand occupies locations [bp+6] through [bp+09]
on the stack. This program was compiled for the small memory model,-so buffer is passed as
a I6-bit near pointer.

12.3.3 Example: Large Random Integers
To show a useful example of calling an extemal function from Borland -C++, we can call
L0ngRand, an assembly language function that returns a pseudorandom unsigned 32-bit
integer. This is useful because the standard rand() function in the Borland C++ library only
returns an integer between 0 and RAND_MAX (32,767). Our procedure retums an integer
between 0 and 4,294,967,295.

This program is. compiled in the large memory model, allowing the data to be larger than
64K, and requiring that 32-bit values be used for the return address and data pointer values. The
external function declaration in C++ is:

extern "C" unsigned long LongRandom();

12.3 Linking to C++ Programs 447

The listing of the main program is shown here. The program allocates storage for an array
called rArray. It uses a loop to call LongRandom, inserts each number in the array, and writes
the number to standard output:

// main.cpp
// Calls the external LongRandom function, written in
// assembly language, that returns an unsigned 32-bit
// random integer.-Compile in the Large memory model.

#include <iostream.h>
extern "C" unsigned long LongRandom();
const int ARRAI;SIZE = 500;

int main()
{

// Allocate array storage, fill with 32-bit
// unsigned random.integers, and display:

unsigned long * rArray = new unsigned long[ARRA!;SIZE];
for(unsigned i = 0; i < ARRAX_SIZE; i++)
{

rArray[i] = LongRandom{);
cout << rArray[i] << ',’;

}
cout << endl;
return-0;

}
TheL0r1gR¢md0m Function The assembly language module -containing the LongRandom
function is a simple adaptation of the Rand0m32 procedure from the book’s link library:

; LongRandom.module (longrand.asm)

.model large

.386
Public _LongRanddm
.data
seed DWORD 12345678h

N0

it

end

I-"93
code

_;LongRandom PROC FAR, C
mov eax, 343FDh
imul seed
add eax, 269EC3h
mov seed, eax ;
ror eax,8 ;
shld edx,eax,l6
ret

_LongRandom ENDP

eturn an unsigned pseudo-random 32-bit integer
n DX:AX,in the range 0 — FFFFFFFFh.

save the seed for the next call
rotate out the lowest digit

448 Chapter 12 1 High-Leuei Language interface

Borland C++ expects the 32-bit function return value to be in the DX:AX registers, so we copy
the high 16-bits -from EAX into DX with -the SHLD instruction, which seems conveniently
designed for this task:

shld edx,eax,16

12.3.4 Using Assembly Language to Optimize C++ Code
One of the waysyou can use assembly language to optimize programs written in other languages
is to look for speed bottlenecks. Loops are -good candidates for optimization because any extra
statements in a loop may be repeated enough times to have. a noticeable effect on your program’s
performance.

Most C/C++ compilers have. a command-line option that automatically generates an
assembly languagelisting of the C/C++ program. In Microsoft Visual C-t—t-, for example, the list-
ing file can contai-n any combination of C++ source code, assembly code, and machine code,
shown by the options in Table 12-2. Perhaps the most useful is /FAs, which "shows" how C++
statements are translated into assembly language.

Table 12-2 Visual C++ Command-Line Options for ASM Code Generation.
,3 Command Line v ~ Contents of Listing-.File ». 1,

/ FA As sembly-Only Listing

/FAc U Assernbly with Machine Code
/ FAs Assembly with Sotu'ce Code

/ FAcs Assernbly, Machine Code, and Source

The following C++ procedure named FindArray searches for a single value in an array of
long integers. The function returns true if the search is successful, or false if it is not:

#include "findarr.h"

bool FindArray(long searchval, long array[], long count)
{

for(int i = O; i < count; i++1
if{ searchval == array[i])

return true;
return false;

}
The header file_findcn-izh contains the function prototype for FindArray. This identifies it-

as an extemal procedure that is called in the manner 'of'a C language procedure, without any
name -decoration:

extern "C" {
bool FindArray(long searchVal, long array[], long count);

}

12.3 Linklng to C++ Programs 449

12.3.4.1 FindArray Code Generated by Visual C++
Let’s look at the assembly language source code generated by Visual C++ for the FindArray
function, "alongside the function’s C++ source code. This procedure was compiled to a Win32
Debug target, which automatically turns .off the compiler’s code optimization feature. The flat
memory model is selected:

TITLE findArr.cpp
.386P
.model FLAT
PUBLIC _FindArray
_TEXTSEGMENT
_searchVal$ = 8
_array$ = 12
_count$ = 16
_i$ = ~4

_FindArray PROC NEAR
; 29 : {

push ebp
mov ebp, esp
push ecx ; create local variable i

; 30 : for(int i = O; i < count; i++)
mov DWORD PTR__i$[ebp], 0
jmp SHORT $Ll74

$Ll75:
mov eax, DWORD PTR _i$[ebp]
add eax, 1
mov DWORD PTR _i$[ebp], eax

$Ll74:
mov ecx, owonb PTR _i$[ebp]
cmp ecx, DWORD PTR _count$[ebp]
jge SHORT $Ll76

; 31 : if(searchval == array[i])
mov edx, DWORD PTR _i$[ebp]
mov eax, DWORD PTR _arr&Y$[ebp]
mov eca, DWDRu.PTR _eearchVal$[ebp]
cmp ecx, DWORD PTR_[eax+edx*4]
jne snonr $Ll77

; 32 : return true;
mov al, 1
jmp SHORT $L172

$Ll77:
;33 :
; 34 : return false;

jmp SHORT $L175

450 Chapter 12 ' High-Level Languagelnterface

$L176:
xnr al, a1

$L172:
; 35 : }

mov esp, ebp ; restore stack pointer
Popebp

0ret
__F indsrray ENDP

TEXT ENDS
END

(The C++ compiler uses the .386P directive, which enables the assembly of both privileged and
nonprivileged Intel386 instructions. All instructions in our examples are nonpri-vileged, since
privileged instructions are only for advanced system programming.)

Three 32-bit arguments were pushed on the stack in the following order: count, array, and
searchVal. Of these three, array is the only one passed by" reference, because in C/C++, an
array name is an implicit pointer to the a.rray’s first element. The procedure saves EBP on the
stack and creates space for the local variable i by pushing an extra doubleword on the stack:

‘l_J3'-'-'5'-Ii»".~t1“'5-"QE3?""195-;'3'="'

ZEBP + 16: i count

IEBP + 12: [array]

IEBP + 08: I searchVal

IEBP + 04: ret addr

ESP, EBP -—+ EBP '

|-nI

-2‘‘E!;"_-;"I=‘*-

[EBP — 04]
' '-'. '-'.‘ .' I'_\-' ' r 1'. _ ' ‘

Inside the procedure, the compiler reserves local stack space for the variable i by pushing
ECX (line--29). The same storage is released at the end when EBP is copied back into ESP
(line35.).

There are l4 assembly code statements between the labels $L175 and $L176, which con-
stitute the main body of the loop. We can -easily write an assembly language procedure that is
more efficient than the code shown here.

12.3.4.2 Linking MASM to Visual C++
Let's create a hand-optimized version of FindArray. A few basic principles can be applied to
the optimization of this procedure:

- Move as much processing.out of the repeated loop as possible.
' Move stack parameters and local variables to registers.
~ Take -advantage of specialized instructions (in this case, SCASD).

12.3 Linklng to C++ Programs

‘=y‘{e;.=-1.1.:-:-,;,§-fi-§.2-1.5-1--.4-.<-.112‘.»;'I‘--==5-C--;=3.;e;;,[;:2-Q;-<';-:.a'-fig“;-,. -. . ,-< ,1 _.. - ,---s, ..t<- . .. ,-_._ ,.-__ _,_.
I qlfill‘ ' iii"-i_"i1'fi"‘l"i'\F‘\ »1lI "“~'s“‘ no-\||| G’ <1‘? U‘?\'fL'r!i'r), ’ \."L:*_ - I |b. a 1:‘.

7-
__J5

Ht.

a%;$_;._.,_,__

:- \a

I
5- '-

-\.‘--.- --i. - .. .5."
. M ; ;-_-_|- ._..--- u-I-'. | ._ -.. __- ; ..

ii':I-‘l-'-":=' 17'.-"!'~._'a'F. '_'.:'-'.- - " "‘: .' .:. ‘. .- 1 -- - .»

-w-r 1: -.'~ - 5 S S 7%)’ - '1 1*-r ‘F11 , 1 --1;; - » -- .'--3|;--’r.¥‘..¢~". , i_t,-,‘_.. .-..._.-|;|;- ptr;-_-;:: , LP-',;.-1 -, _-_- -I"-| .,. ,;'\- - -,__- . ,_‘_._ ,- _ _,__1_.. 5- r _ ._ .-. , , _ , _ _.‘ g _,__‘.,_| -__ _ {,>___.‘t? .-J_5_.-_1-gt. _ 7_...:|_-|\|_ _; ,|,_a_. f____ _‘ 1,: ‘. :_ ._§, ...-__ -.v_.,_, _ ,,p |._.gig. ‘egg, 1. _{;".1.-2"?’ 1- " -._- . L,_.\ *, __I .-.; LL. . __-.d;_;_|._.,_,_,§;,i_“;:_'.Jfiff‘. _.|"¢’;‘| "*|',,,r\'11:-|-I ,_.:;_‘)‘~.~-I-‘Mn-ii','$‘p.';=\?>1?‘l'lr-\‘r 1’:

._ .-1,-,._t-. ,.,l‘ _\.-t;.—.|\@ ---:1!:._-_g,.._ u_l. - _r._.<! ,.r-»- _ l1'._..__,_ , l,, .. _.,.-ft __ ;-3 -l. _ 5‘ _ _ .1-._ I _ ,_ - _, :,:-=

---_,..=_-;._- ,» H-. _ : -,;_...:,|,--._.,-_,.;_-=, {£13}-'? -"P U "-'*“.-'-‘_._ -.-»-t~.'1--*- --’-1' -- '..,,_..__, - ,_ _. LN _____. ._ =__,;_.,._ __. -»_-,_-- ; _- ,-;--- -,---_-t, _ e- - -»_‘,,_~--:='.e»=-._---_-- ~..-,,5--.-_ _.,-.q,,-;.-,..-,_q

".r.t-2-'~;q";'>'-I, -'-L--".=‘;.. t-I7‘?-‘--.'--‘='-'-1:‘-‘mi -.E:‘».- -'t.'*<"'*'-' “-'-L31’?-‘L:-".==-2.-;-,1-_;...._.' “-.:._Z‘, —'-‘-._-as-...‘:=~‘-Iii» ""‘.-'.>.'.‘.r1"*~‘;'"_'*‘.'I:==,£'--~‘-:*5,:.1;?» ‘-7-. ‘.@.:1_‘,;;-_-'.~_i.<_~_{-1:-it-' ~"'*'t‘-TY}-'.it,'-'31-;'

I
-;; - ;1.;' '.-=_-_ .;-,~, , ,~ ,. _ ,;. :- -_ ,,,';-9-_. ~~;_-=;-_--~._,-,_ _-. -_-=__- ;,_' .-; _,-. -,_ . ._-_. -,-1,--,2-'-;~ 5.;--:--';---.; 1; __. '..-, .-,_ -_-:__-_. __,.-1;-_ ;-___ __~_"ér Elite-.'sn~aarun‘e

" ’ '“ ‘ " "' ' 1 " “ , I L 4 ..

_ _|' "_¢',--_.-.-~ -._-- -1. -_.-. -'-. ,- 1. r.'- 1._--»-- t.--\ ._ .._ -. =. 4 _ , , . _,

,4 I . ‘I, -'~..\.'..‘-.'P -‘-.. -:1‘ -'11’ ' , x-.12 :_-. .- -'_ . ‘:_'I§,;..._".-fr, -_-;¥_1_1!-I-_‘.Lr g't_"‘7._ "-'. 1;; g _ :',_";...-$7-Q, ' -.'I‘:."' _-55!‘-. in-: 1-. '.'i." '1' :" ' §-2;! --C-'-7.43. §‘~‘.*:" .1 \ U1,"-.1;'._. ' i'.:" "I,\';j_ '1'-‘fig-'. ‘ISL’ _'.'.‘._,_j.‘,,;.".I-.t;~,,-_|=§3*~.*i>-:---- -;1I-'-j - .-.<-.'---._-_-', -.»,‘,, -1.; gr -T-';.;:r,1-_»!,!- ,~,-,;s,‘- 1?. ;'=',"- '5=!;'-'.p-','s=,»".L.—f;i;e:-::4‘":~>-;-gi'.i;'-.'..~;.-*:f:;' ,-.1-. I-it ' _-".-'-j;;'iT:'J;'l-' -L '=."I-..f:l"‘m--..-‘-3-_ 'f_ 3-137 ==,-r. —l-inf":-i';i:< T
“ ' ~ ' h " ‘ J’ ' C" 8 F IT!‘ "-'-=~:11='=“i--'~ -.'.'~i'~'?-".1Tris-'-I’-1?:-= ;-r,--a-»~.* -11'»-11-1----:==’;i"‘fi'i""5.~i E':'<~<;.-=ri.~.:-'-2 . ' Qt‘; . .' ' , . ‘-'- JI. ' . . ' 1' " -- '.1‘.'=-"'= .~','-<.-.:~.'-If-r*-=‘.~Z=.= -5:-4:;-“.-1.1...-~=!'-'1-"='. -:'!-":-.'-'-- ,,-Il'.,'.'&-"‘.'.'.j,1,'.r ¢-1.-,-»=‘»!.'?~r:J.-.;-f,‘.'"-3;:-‘<21.-~=.*.'-1?" .--.111-lbs-111;.'1" ' - -- ~- "err ‘-' - - » - !-\-:.».'~.-'.--"r:< .-+1-:~:.a=‘.~= .'I=-4..--1; l='J:':ai*.-->,=r-~a-:-as s='1I--‘i|‘-=1(,IP’-ii-.'»w?' .--.=-¢~-...=a.-.,= 1;-1--~'=-9-» .-: l"j."?- !.--*»:-- r>'=*1—--1.,,-:.--.-3 1. I : "ll-:' '1' \-J-is-‘ti =~ ‘..' I * f‘ :.f:-1---1-IE.-.| "-2 1 :'.~_i'_-i?::~::-'-~=..--.»_~ C;_:-_.' ',-...-‘fiat '.;i'_~, _,!T1f'-'_'..1iflu~¢1;_;¢;-i'<i!f.1f:EI?L=§'\i'j. J1,-',.!' '_.j!_:;: -.,;'..-+.-".:_'t:.;

\
:-kl

Our FindArray code is slightly more readable than the code generated by the C++ com-
piler because we can use meaningful label names and define constants that "simplify the use of
stack parameters. Here is the complete program listing:

TITLE The Findhrray Procedure (Scasd.asmJ

“HI

"ii

.386

.model flat
public _FindArray
true = 1
false ='0

; Stack parameters:
srchval EQU [ebp+08]
arrayPtr EQU [ebp+l2]
count EQU [ebp+l6]

.code
_FindArray

push
mov
push

PROC NEAR
ebp
ebp,esp
edi

eax, srchval
ecx, count
edi, arrayPtr

ITIOV

ITIOV

ITIOV

repne scasd
jz returnTrue

returnFalse:
mov al, false
jmp saour exit

returnTrue:
mov al , true

exit:
pop edi

"'\l

"ii

"ii

‘HI

‘ll

This version uses hand—optimized assembly
language code, with the SCASD instruction.

search value
number of items
pointer to array

do the search
ZF = 1 if found

452 Chapter 12 * High-Level Language Interface

pep -ebp
ret

_FindArray ENDP
end

Code Optimization by the C++ Compiler Before we develop an overblown sense of superior-
ity over the C++ compiler, let’s ask the compiler to" try again, this time optimizing its code for
speed. The new version of FindArray is shown here:

HsearchVal$ = 8
_array$ = 12
_count$ = 16

_FindArray PROC NEAR
mov edx, DWORD PTR _count$[esp-4]
xor eax, eax
push esi
test edx, edx
jle SHORT $Ll76
mov ecx, DWORD PTR _arraY$[esp]
mov esi, DWORD PTR ___searchVa1$ [esp]

$Ll'I-'4:
cmp esi, DWORD PTR [ecx]
je SHORT $Ll82
inc eax
add ecx, 4
cmp eax, edx
jl SHORT $L174
xor al, al
pop esi
ret O

$L182:
mov al, 1
pop esi
ret O

$Ll76:
xor al, al
pop esi
ret 0

_FindArray ENDP

The improvement of this version over the compiler’s nonoptimized version is dramatic. Variables
have been moved to registers, and the loop portion has been reduced n-om twelve instructions to
six. In fact, the timed execution of this new version is roughly the same as the hand-optimized
code we showed earlier.

Dangers ofLeavirzg Out EBP You may have noticed that the C++ compiler eliminated all
references to EBP, shaving off a few more clock cycles. It took advantage of the fact that ESP

12.3 Linking to C++ Programs 453

can be used as an indirect operand, so stack parameters can be accessed without the need of
EBP. Count, for example, located at stack offset ESP + 12, is assigned to EDX. The stack off-
set is calculated in a roundabout sort of way as _c0unt$ + (ESP - 4), where _c0unt$ is equal
to 16:

mov edx, DWORD PTR _count$ [esp-4]

Here is a picture of the revised stack frame used by the program in'Example 10:

ESP+12' count

ESP ret-addr :3

Before you get the idea that all stack parameters should be handled this way, think again.
For instance., without EBP, the procedure cannot push any registers on the stack without
adjusting the offsets between ESP and- the stack parameters. Suppose we had the following state-
ments at the beginning of FindArray:

arrayPtr EQU [esp+10]

_Find1-trray PROC NEAR
push esi
mov esi, a.rrayPtr ; ESI = arrayPtr

This code doesn’t work, of course, because as soon as ESI is pushed, the predefined stack offset
of arrayPtr changes. And yet, if we don’t push ESI before modifying it, we violate the
Microsoft rule that says ESI must be preserved in high-level language procedures. The C++
compiler compensates for this by adjusting the stack offsets after any PUSH instructions have
taken place. This is fine for a compiler, but not easy for humans to do accurately.

Pointers Versus Subscripts It’s not unusual for CfC++ programmers to assertthat processing
arrays with pointers is more efficient than using subscripts. For example, the following version
of FindArray uses a. pointer:

bool FindArray(long searchval, long array[], long count)
{

long * p = array;
for(i = 0; i < count; i++, p++)

n == rkp)

return true;
return false;

}

454 Chapter 12 - High-Level Language Interface
1 m _ _ _ T l7 ___

Running this version of FindArray through the C++ compiler produced virtually the
same assembly language code as the earlier version using subscripts. At least in this instance,
using .a pointer variable was no more efficient than using a subscript. I-Iere is the loop from the
FindArray target code that was produced by the C++ compiler:

$L176'.
cmp esi, DWORD PTR [ecx]
je_ saoar sures
inc eax
add ecx, 4
cmp eax,'edx
jl SHORT $L1'7_6

In closi_ng, let us say that most high-level language compilers do a very effective job ofcode
optimization. Your time would be well spent studying the output produced by a C++ compiler, to
learn about optimization techniques, parameter passing, and object code implementation. In fact,
many computer science students take a compiler-writing course that includes such topics. It is
also important to realize that compilers take the general case, as they usually have no specific
knowledge about individual applications or installed hardware. Some compilers provide special-
ized optimization for a particular processor such as the Pentium, which can significantly improve
the speed of compiled programs.

Hand-coded assembly language can also "take full advantage of specialized hardware fea-
tures that might be found in a computer system. Some examples are video cards, sound cards,
and "data acquisition boards.

12.3.5 Section Review

1. When the following C language function is called, will the argument x be pushed on the
stack first or last?

void MySub(x, y, 2 l;

2. What is the purpose of the “C” specifier in the exrem declaration in procedures called from
C++"?

3. Why is name decoration important when calling extemal assembly language procedures
from C++?

4. Which registers and flags must be preserved by assembly language procedures called from
Borland C++‘?

5. In Borland C++, how many bytes are used by the following types‘? 1) int, 2) enum, 3) float,
4) double.

6. In the ReadSect0r module. in this section, if the ARG directive were not used, how would
you code the following statement?

mov eax,startSector

12.4 Chapter Summary 455

7. In the LongRandom Function shown in this section, what would happen to the output if the
ROR instruction were eliminated‘?

_8. In this chapter, when an optimizing C++ compiler was used, what differences in code gener-
ation occurred between the loop. coded with array subscripts and the loop coded with
pointer variables?

12.4 Chapter Summary
Assembly language is the perfect tool for optimizing, selected parts of a large application written
in some high-level language. Assembly language is also a good tool for customizing certain pro-
cedures for specific hardware. These techniques require one of two approaches:

- Write inline assembly code embedded within higli-level language code.
~ Linkassembly language procedures to high-level language code.

Both approaches have their merits and their limitations. In this chapter, we. presented both
approaches.

The naming convention used by a language refers to the way segments and modules are
named, as well as rules or characteristics regarding the" naming of variables and procedures. The
memory model used by a program Jdeterrnines whether calls and references will be near (within
the same segment) or far (between different segments).

When calling an assembly language procedure from a program written in another lan-
guage, any identifiers that -are shared between the two languages must be compatible.You must
also use segment names in the procedure that are compatible with the calling program. The
writer of a procedure uses the high-level language’s calling convention to determine how to
receive parameters. The calling convention also affects whether the stack .pointer must be
restored by the called procedure or by the calling program.

In Visual C++, the ___asm directive is used for writing inline assembly code in a C++
source program. In this chapter, a File Enciyption program was used to demonstrate inline
assembly language.

This chapter showed how to link assembly language procedures to both Microsoft Visual
C++ programs and Borland C++ programs. Visual C++ uses only Protected mode, whereas Br>r-
land C++ can generate programs in either Real-address mode or Protected mode. Aside from
this, the two languages have similar interfaces to assembly language.

The ReadSector program showed a useful combination of Borland C++ running in Real-
address mode, calling an assembly language procedure that reads individual sectors from a disk.

A procedure named FindArray was written in assembly language" and called from a
Visual C++ program running in Protected mode. We compared the assembly language source
file generated by the compiler to hand-assembled code, in our efforts to learn more about code
optimization techniques.

456 Chapter 12 - High-Level Language Interface

12.5 Programming Exercises

1. ReadSector, Large Model
Convert the ReadSector procedure “(Section 12.3.2) to the large memory model, and call it from the
same C++ program. Remember that‘ the buffer parameter will now be passed as a 32-bit pointer,
containing a segment and offset. Compile the C-H- program under the large memory model.

2. ReadSector, Hexadecimal Display
Add a new procedure to the C++ program in Section 12.3.2 that calls the ReadSector proce-
dure. This new procedure should display each sector in hexadecimal. Be sure to use the setfill-
char manipulator from the istream class to pad each byte with a leading zero.

3. LongRandomArray Procedure
Using the LongRandom procedure in Section 12.3.3: as a starting point, create a procedure
called LongRandomArray that fills an array with 32-bit unsigned random integers. Pass an
array pointer from a C or C++ program, along with a count indicating-the number of array ele-
ments to be filled:

exterfi "C" void L0ngRand0mArray(unsigned long * buffer,
unsigned count J;

4. External Tra-nslateBuffer Procedure
Write an external procedure in assembly language that performs the same type of encryption
shown in the TranslateBuffer inline procedure that appeared in Section 12.2.2. Run the com-
piled program in the debugger, and judge whether this version runs any faster than the
Encode.cpp program from Section 12.2.2.

5-. Prime Number Program
Write an assembly" language procedure that returns -a value of l if the 32-bit integer passed in the
EAX register is prime, or 0 if EAX is nonprime. Call this procedure from a high-level language
p_rogram. Let the user input some very large numbers, and have your program display a_ message
for each one indicating whether or not it is prime.

6. FindRevArray Procedure
Modify the FindArray example from Section 12.3.4-.2. Name your function FindRevArray and
let it begin searching at the end of the array. Search in the reverse direction for the first matching
value and return the index position of the matching element. If no match is found, return -1.

1 3
16-Bit MS-DOS Programming

13.1 MS-DOS and the IBM-PC
13. 1.1 Memory Organization
13.1.2 Redirecting Input-Output
13.1.3 Software Interrupts
13.1.4 INT Instruction
13.1.5 Section Review

13.2 MS-DOS Function Calls (INT 21h)
13.2.1 Selected Output Functions
13.2 .2 Hello World Program Example
13.2.3 Selected Input Functions
13.2 .4 Date1'Time Functions
13-.2 .5 Section Review

13.3 Standard MS-DOS File I/O Services
13.3.1 Close File Handle (3Eh)
13.3.2 Move File Pointer (4211)
13.3.3 Selected Library Procedures
13.3.4 Example: Read and Copy a Text File
13.3.5 Reading the MS-DOS Command Tail
13.3.6 Example: Creating a Binary File
13.3.7 Section Review

13.4 Chapter Summaty
13.5 Chapter Exercises

13.1 MS-DOS and the IBM-PC
IBM’s PC»-DOS was the first operating system to-implement Real-address mode on the IBM Per-
sonal Computer, using the Intel 8088 processor. Later, it evolved into Microsoft MS-DOS.
Because of this history, it makes sense to use MS-DOS as the environment for explaining all
about Real-mode programming. Real-address mode is frequently called 16-bit mode because
addresses are constructed from 1'6-bit values.

In this chapter, you will learn the basic memory organization of MS-DOS, how to activate
MS-DOS function calls (called interrupts), and how to perform basic input-output operations at
the operating system level. All of the programs in this chapter run in Real-address mode because
they use the INT instruction. Interrupts were originally designed to run under MS-DOS in Real-
address mode. It is possible to call interrupts in Protected mode, but the techniques for doing so
are beyond the scope of this book.

457

458 Chapter 13' - 16-Bit MS-DOS Programming

Real-address mode programs have the following characteristics:

' They can only address l megabyte of memory.
' Only one program can run at once (single tasking") in a single session.
- No memory boundary protection is" possible, so any application program can overwrite-

memory. used by the operating system.
- Offsets are I6 bits

When it first appeared, the IBM PC had a strong appeal because it was affordable, and it
ran Lotus I-2-3, the electronic spreadsheet program that was instrumental in the PC‘s adoption
by businesses. Computer hobbyists loved the PC because it was an ideal tool for learning how
computers work. It should be noted that Digital Research CP/M, the most popular .8-bit operat-
ing system before PC-DOS, was only capable of addressing 64K of RAM. From this point of
view, PC-DOS’s 640K seemed like a gift from heaven.

Because of the obvious memory and speed l'imitatio'ns of the early Intel microprocessors,
the IBM-PC was a single-user computer. There was no built-in protection against memory cor-
ruption by application programs. In contrast, the minicomputer systems available" at the time
could handle multiple users, and prevented application programs from overwriting each other’s
data. Over time, more robust operating systems for the PC have become available, making it -a
viable alternative to minicomputer systems, particularly when PCs are networked together.

13.1.1 Memory Organization
In Real-address mode, the lowest 640K of memory is used by both the operating system and
application programs. Following this is video memory and reserved memory for hardware con-
trollers. Finally, locations C0000 to FFFFF are reserved for system ROM (read-only memory).
Figure 13'-l shows a simple memory map. Within the operating system area of memory, the low-
est 1,024 hytes of memoty (addresses 00000 - 003FF) contain a table of 32-bit addresses named
the in.tet't'upt vector table. These addresses, called im‘et't'upt vectors, are used by the CPU when
processing hardware and software interrupts.

Just above the vector table is the BIOS and MS-DOS data area. Next is the software BIOS,
which includes procedures that manage most"IlO devices, including the keyboard, disk drive,
video display, serial and printer ports. BIOS procedures are loaded li'orn a hidden system file on
an MS-DOS system (boot) disk. The MS-DOS kernel is a collection "of procedures "(called ser-
vices) that are also loaded from a file on the system disk.

Grouped with the MS-DOS kernel are the file buffers and installable device drivers. Next
highest in memory, the resident part "of the command processor is loaded from an executable file
named comma:-zd.com-. The command processor interprets commands typed at the MS-DOS
prompt, and loads and executes programs stored o_n disk. A second part of the command proces-
sor sits in high memory just below location A0000.

13.1 MS-DOS and the IBM-PC 459

Address

FFFFF it ROM BIOS 0 0F0000 Q
Reserved

C0000 ‘ _
U Video Text & Graphics VRAM
1 _ _ , _-B8000

‘ Video Graphics .‘

A0000 _ .. ._ H .. _ —-r I-I ------------------ --, -
\ 1 Tl'3l'lSlCl1I Command Processor 1

Transient Program Area
(available for application programs)

Resident Command Processor if i v 640K RAM

DOS Kernel, Device Drivers
l r r \
i Software BIOS l

BIOS & DOS Data
00400 .‘ -

Interrupt Vector Table
00000

Figure 13-1 MS-DOS Memow Map.

Application programs can load into memory -at the first address above the resident part of
the command processor, and can use memory all the way up to address 9FFFF. If the currently
running program overwrites the transient command processor area, the latter is reloaded from
the boot disk when the program exits.

Video Memory The video memory mea (VRAM) on an IBM-PC begins at location A0000,
which is used when the video adapter is switched into -graphics mode. When the video is in color
text mode, memory location B8000 holds all text currently displayed on the screen. The screen
is memory-mapped, so that each row and column -on the screen corresponds to a 16-bit word in
memory. When a character is. copied into video memory, it immediately appears on the screen.

ROM BIOS The ROM BIOS, at memory locations F0000 to FFFFF, is an important part of the
computer’s operating system. It contains system diagnostic and configuration software, as well
as low-level input-output procedures used by application programs. The BIOS is .stored in a
static memory chip on the system board. Most-systems follow a standardized BIOS specification
modeled after IBM's original BIOS.

460 Chapter 13 - 16-Bit MS-DOS Programming

1 3.1.2 Redirecting lnput-Output
Throughout this chapter, references will be made to the standard input device and the srandcrrd
output‘ device. Both are collectively-called the console, which involves the keyboard for input
and the video display for output.

When running. programs from the command prompt, you can redirect standard input so
that it is read from a file or hardware port rather than. the keyboard. Standard output can be redi-
rected to a file, printer, or other I/O device. Without this capability, programs would have to be
substantially revised before their input-output could be changed. For example, the operating sys-
tem has a program named s0rt.e.re that sorts an input file. The following command sorts a file
named myfile.rxr and displays the output:

sort < myfile.txt

The following command sorts m_vfi1e.rxr and sends the output to 0mfi1e.r.rr.-

sort e myfile.txt > 0utfile.txt

You can use the pipe (I) symbol to-"copy the output from the DIR command to the input of
the so:-'r.exe program. The following command sortsthe current dislcdirectory and displays the
output on the screen:

dir | sort

The following command sends the output of the sort program to the "default (non-networked)
printer (identified by PRN):

dir | sort > prn

The complete set of device names is shown in Table 13-l.

Table 13-1 Standard MS-DOS Device Names.

Device Name § Description
, ______________ .1 _ i t

CON Console (video display or keyboard)

LPT1 or PRN First parallel printer K
LPT2, LPT3 Parallel ports 2 and 3

COM1, COM2 A stni.-.11 ports 1 and 2
~ NUL 3 Nonexistent or dummy device

13.1 MS-DOS and the IBM-PC 461

13.1.3 Software Interrupts
A software interrupt is a call to an operating system procedure. Most of these procedures, called
interrupt service routines, or interrupt handlers, provide input-output capability to application
programs. They are used for such tasks as:

- Displaying characters and strings
' Reading characters and strings from the keyboard
- Displaying text in color
' Opening and closing files
- Reading data from files
' Writing data to files
' Setting and retrieving the system time and "date

13.1.4 INT Instruction
The INT (call to interrupt procedure) instruction pushes the CPU flags on the stack and calls an
interrupt handler. Before the INT instruction is executed, one or more parameters must be
inserted in registers. At the very least, a number identifying the particular procedure must be
moved to the AH register. Depending on the function, other values may have to be passed to the
interrupt in registers. The syntax is

INT number

Where number is an integer in the range 0 - FF hexadecimal.

13.1.4.1 Interrupt Vectoring
The CPU processes the INT instruction using the interrupt vector table, which we’ve- already
mentioned, is a table of addresses in the lowest 1,024 bytes ofmemory. Each entry in this table
is a 32-bit segment-offset address that points to an interrupt handler. The actual addresses in this
table vary from one machine to another. Figure 1'3-2 illustrates the steps taken by the CPU when
the INT instruction is invoked by a program:

' Step 1: The number following the INT nmemonic tell-s the CPU which entry to locate in
the interrupt vector table. In the illustration, the INT l0h instruction executes.

' Step 2: The CPU pushes the flags on the stack, disables hardware interrupts, and executes
a call to the address stored in the interrupt vector table (F000:F065).

' Step 3: The interrupt handler at F000:F065 begins execution and finishes when the IRET
instruction is reached.

' Step 4: The IRET (interrupt return) instruction causes the program to resume execution at
the next instruction after INT 10h in the calling program.

462 Chapter 13 ~ 16-BitMS-DOS Programming

_ Interrupt Handler
Calling program -

mov, _ _ H s-000::-065 -j-I--stzi. G)
int 10h F066 cld

. add,,, F067 push es
F066 i .

. I IRET

I I

\so69 | s-o'oo=s-065 | s-oooezt-aaa |_\
(entry for INT to) I

Interrupt Vector Table

Flgure13-2 interrupt Vectoring Process.

13.1.4.2 Common Interrupts
Software interrupts call interrupt set"/ice routines (ISRs) either in the BIOS or in DOS. Some
frequently used interrupts are:

' INT 10h Vide0.Services. Procedures that "display routines that control the "cursor position,
write text in color, scroll the screen, and display video graphics.

' INT 16h Keyboard Services. -Procedures that read the keyboard and check its status.
' INT 17h Printer Services. Procedures that initialize, print, -and return the printer status.
' INT IA}: Time ofDay. Procedure that gets the number of clock ticks since the machine

was turned on or sets the counter to."a new value.
' INT 1Ch User "Timer Interrupt. An empty procedure that is executed 18.2 times per

second.
' INT 21h MS-DOS" Services. Procedures that provide input-output, file handling, and

memory management. Also known as MS-DOSfimcti0n calls.

13.1.5 Section Review

l. What is the highest memory location into which you can load an application program?
2. What occupies the lowest 1,024 bytes of memory?
3. What is the starting location of the BIOS and MS-DOS data area?
4. What is the name. of the memory area cont_aining.1ow-level procedures used by the computer

for input-output?
5. Show an example of redirecting a program’s output to the printer.
6. What is the MS-DOS device name for the first parallel printer?
'7. What is an intemlpt service routine?

13.2 MS-DOS Function Calls (INT 21 h) 463

8. When the INT instruction executes, what is the first task carried out by the CPU?
9. What four steps are taken by the CPU when an INT instruction is invoked by a program?

Hint.‘ See Figure 13-2.
10. When an interrupt service routine finishes, how does an application program resume

execution?
11. Which interrupt number is used for video services?
12. Which interrupt number is used for the time of day?

13.2 MS-DOS Function Calls (INT 21 h)
The first program I ever wrote in Intel assembly language.displayed a “*” on the screen, using
the following three instructions:

mov ah,2
mov-d1,'*’
int 21h

I was excited, at least for a few minutes. I had heard that assembly language was difficult, but
this was encouraging. Of course, I didn’t k.now what lay ahead, which you have already learned
by reading the first twelve chapters of this book.

It turns out that MS-DOS provides a lot of easy-to-use functions for displaying text on the
console. They are all part of "a group typically called INT 21h. MS-DOS Function calls. There are
some 90 or so different functions supported by this interrupt, identified by a function number
placed in the AH register. An excellent, if somewhat outdated source is Ray Duncan’s book,
Advanced MS-DOS Programming. A more comprehensive and up-to-date list is available on the
Web, named RaIfBr-own ‘s Interrupt List.

F_or each INT 21h function described in this chapter, we will list the necessary input paran1e_-
ters, return values, notes about its use, and include a short code example that calls the function.

A number of functions require that the 32-bit address of an input parameter be stored in
the DS:DX registers. DS, the data segment register, is usually set to your program’s data area. If
for some reason this is not the case, use the SEG operator to set DS to the segment containing
the data passed to INT 21h. The following statements do this:

.data
inBuffer BYTE 80 DUP(?)
.code
mov ax,SEG inBuffer
mov ds.ax
mov dx, osassr :i.nBuffer

INT2Ih Function 4Ch: Terminate Process INT 21h Function 4Ch terminates the current
program (called a process). In the Real-address mode programs presented in this book, we have
relied .on a macro definition in the lrvinel6" library named exit. It is defined as:

exit TEXTEQU <.EXIT>

464 Chapter 13 - 16.-BitMS-DOS Programming

In other words, we redefine exit as EXIT (a MASM directive that ends a program). This was
done to make the programs as similar -as possible to our 32-bit Protected mode programs", which
also use an exit macro. The code generated by .EXIT is:

mov ah,4Ch ; terminate process
int 21h

If you supply an optional return code argument to the .EXIT macro, the assembler generates.
one more instruction that moves the return code to AL:

.ExIT 0 ; macro call

Generated code:

mov ah,4Ch ; terminate process
mov al,0 ; return code
int 21h

The value in AL, called the process-return code, is received by the calling process (includ-
ing a batch file) to indicate the return status of your program. By convention, a return code of
zero is considered successful completion. Other return codes between l -and 255 can be used to
indicate additional outcomes that have specific meaning for your program.

13.2.1 Selected Output Functions
In this section we present some of the most common INT 2111 functions for writing _chara_cters
and text. None of these functions alter the -default current screen colors. so output will only be in
color ifyou have previously set the screen color by other means-. (For example, you can call the
link libra1y’s SetTextCoIor procedure, or you can call video BIOS functions from Chapter I5.)

Filtering Control Characters All of the functions in this section filter, or interpret ASCII con-
trol characters. If you write a backspace character to standard output, for example, the cursor
moves one column to the left. Table l3-2 contains a list of control characters that you are likely
to encounter.

Table 13-2 ASCII Control Characters.
'

' 1, ASCII ,; _
Code ' Description

08h Backspace (moves one column to the left)

09h Horizontal tab (skips forward it columns)

'0Ah Line feed (moves to nextoutput line)

OCI1 Form feed (moves to next prinl.c|' page)

13.2 MS-DOS Function Calls (INT 21 h) 465

Table 13-2 ASCII Control Characters. (Continued)

ASCII
Code Descrlptlon ~

7 ___ __ I ____ Yrs‘ _

0Dh Carriage return (moves to leftmost output column) I
___ ,, __ _ __ _ L

1Bh Escape character

|p Appendix c contains a fairly extensive list of BIOS and MS-DOS interrupts. I

The next several tables describe the important features of INT 21h Functions 2, 5, .6, 9, and
40h. INT 21h Function 2 writes a single character to standard output. INT 2lh Function 5 writes
a single character to the printer. INT 21h Function 6 writes a single unfiltered character to stan-
jdard output. INT 21h Function 9 writes a string (terminated by a $ character) to standard output.
INT 21h Function 40h writes an array of"bytes to a- file or device.

1 —— ——'— ———— — —— ' " '

INT 21 h Function 2
t 1 T ****** "T *” * — '. . . . I FIT I

‘ Descrlptlon 1 Write a stngle character to standard output and advance the cursor one col-
‘; umn forward

3 Receives AH = 3 I
I DL = character value

.L_ _ ____ __p __ __ _ _
I

Returns nothing

Sample call mov ah, 2
‘mov dl,'A'
int 21h

1 INT 21’h Function 5
I er * rs
‘ Description Write a single character to the printer

I Fleeelves AH = 5
I DL = character value

Returns nothing

Sample call mov ah,_5 ; select printer output
mov dl, "Z" ; character to be printed
int 21h ; call MS—DOS

Notes MS-DOS waits until the printer is ready to accept the character. You can
‘ terminate the wait by pressing the Ctrl-Break keys. The default output is to

the printer port for LPT1.

466 Chapter 13 ~ 16-Bit MS-DOS Programming

:**** A ;.;.,.;. "' ;

1 Function 6 l
_l,, --'"__ ' _. , , , , , __ _ , ,

Description Write a character to standard output

Receives AH = 5
DL = character value

l __ _ 7

Returns If ZF = 0, AL contains the character’s ASCII code.

"Sample call mov at-t,6
mov dl,"A"
int. 21h

Notes Does not check for Ctrl-bt'e.al< ("C.).

T‘ INT_f_.Q1h Function 9
. ___.i‘.->.- -. » ____________ __

A Description Write a.$-terminated string to standard outp.ut

Receives AH = 9
if d DS:DX = segmentfoffset of the string

* Returns i nothing
‘ .data

Sample call string BYTE "This is a st'ring$"
.code
mov ah,9
mov dx,OFFSET string
int 21h

Notes The string must be terminated by a dollar-sign character ($).

INT 21 h Function 40h
-,- c.\",- - ' . -

. J‘

Description I Write an array of bytes to a file or device

Receives AH = 40h
BX = file or device handle (console = 1)
CX = number o_f bytes to write
DS:DXT = address of array ‘

I .
Returns AX = number of bytes written

13 2 Ms-DOS Function Calls (INT 21 h)

.-_'--.'- ' .';‘ - '_ _ . - 13- .._-.._ _ ‘T ' .- _ -..*.;“-': _. . 7 ~ -'_—9: '- ..'-MIA-"‘*s-I|-"..;‘o.r‘:1_'_ __._..;'L‘ . - -.'_-~ I'_--_;_'=_; - ‘.2--.1‘/_--' ‘];."r~-_I‘-'.|-.-;:k- T. -r It '|-. II -.-4"‘-L'.'§. ‘ '1 ’_ ‘L, /;=:_i_5_ 1 I-=::"‘ PH‘-‘ 0- "1; !fi§'T>_4:_‘Jl_;:,_'i- - -- ' '-'---- -- ~* '“-- -~ > - r. '1‘ -0. '- -1...-.-.' -. ;.‘.-.* "'. ' .' . “gt gn.40|'|- .--~.‘-.-.-.<-.-.-..: ' ;.—.--=.==-- 1- - “"i"'-tr .1 =.=,~ %t-=..:_$-'1»-»= ‘-.-!- ~ ‘ ~-:?=-.'-'~I-'§':%~i-I."' * 1 * * **“‘*"‘~e ~ '~r3¥‘i' 155* "~:=::rr;==.=r:"."I"?:: -:-;-"..-.-‘.-:e'-. ~ _~“ii‘é'».1‘L~?' » '_ '2 es’ »- ..e- ~1-—e——7—#—74-1 T *-——~ —L-r~—' —~—7 ti.‘sit are
Sample call .data

message "Hello, world"
d .code
A mov ah,40h

mov bx,1
mov cx,LENGTHOF message

‘ mov dx,OFFSET message
int 21h

13 2 2 Hello World Program Example
The following is 'a simple program that displays a strtng on the screen ustng an MS-DOS
function call:

TITLE Hello World Program (Hello asm)

INCLUDE Irvinel6.inc
.data
message BYTE "Hello, world!",0dh,oah

.code
main PROC

initialize DSmov ax,@data ;
mov ds,ax

mov ah,40h ;
mov bx,1 ;
mov cx,SIZEOF message ;
mov dx,OFFSET message ;
int 21h

exit
main ENDP
END main

13 2 3 Selected Input Functions
In this section, we describe a few of the most commonly used MS DOS functtons that read from
standard input. For a more complete list, see Appendix C As shown 1n the followtng table, INT
21h Function 1 reads a single character from standard input

, . _. ‘.._ . _ . 7 "';i.";;;_,’ ';;t__'.-1, .--..,\-.
I- \-

r" :\P_---;.. -.-’. '.-‘-._ -‘.. -.-. ..-9: 1-i'°\"--'.' '\._7_‘,.'\:= f-_ '..-"-::,_.-_,._~_.g.-l_-e. .._.’__.i -.-._ -.._-.-,__1_4.____ L.

write to file/device
output handle
number of bytes
addr of buffer

.-ir_-.-.=n~.'-_';"r-_-,-;<.~ , ;._'.j;‘t.;=-;;:1.jr=;j._,_ '. = ;_ - '- ._.'.--=..:', _ -, 1. ':' t-.5,-I . \ ._ ha. '52. "_;‘ "-", 5:.-’-l3.*. A F -\~_L_§-,f’==‘
-I ,' ' ~ ~ "-- ." - '. II ' —_ I - -> -up ,_- --u F -‘,, ‘_p-' - -'-.-:1-.1-.0‘:‘—¢ -I-."-‘.--" .'-'1.-1--".1-'1". -J t ' Y "H:,s'2fl‘h'=:'_ ;l_u"_c‘tl°;n- Ii-. -“-|‘.;_‘J" ,'f_-‘_‘1i..'_;"-\'.', .."". \, . . . i— 1; 1 -_\7Il‘5_'_- >|'l'_'I:T_-_1'\ ",1" ' - ' T “yr ‘£1 E-4 L ‘H, C‘-Q %"-git.

-. --'.-\'.- -. ; ,-.--. _- _.' _ -_ - I: .,;_ ;-- -_-t. ‘..- '_-‘_ _. - ._€ 7.: - -- ',.- ..-'.:.:'-;'.. -..’ . -_- '. - .‘ - _-r.-'. J4‘-''.=' '.t_- . .-'4--_l' -2:-‘F .'.'e'.~'- se 1;-."--'3:-.-1.-3=!.-.1at.-2.; t'-‘-=“-.t'-:'-'-.--'.-;'. - _ .- >- --|.- r -1'. ~.:.<=-" ‘T "5 A <'=.er=u ii-“"-e
7*’ 4% 41*’ 4-—~—|-r ——— _

I2 I-_.

Description Read a single character from standard input

Receives AH = 1

468 Chapter 13 ~ 16-Blt ms-nos Programming

‘L - - 1 | 7' -.-’-
" ' "" .-.

<_| . It I > ', - ¢ '-‘.“_r .
I _|_. . . .- . - _'.--re-‘ . . _ _ _ ____ _ -. 1 _ _1 _ 7 _

Returns AL = character ("ASCII code)

Sample call mov ah,1
int 21h

A mov char,al

Notes If no character is present in the input buffer, the program waits. This func-
\ tion echoes the character to standard output,
I

INT 21h Function 6 reads a character from standard input if the ‘character is already wait-
ing in the input buffer. If the buffer is empty-, the function retums with the Zero flag set and no
other action is taken:

-_ .¢'|
I'\- < ' .INT 21h Function 6 - = . . .»
Description A Read a character from standard input without waiting

Receives AH = 5
DL = FFh

Returns A If ZF = 0, AL contains the character’s ASCII code.

Sample call mov ah, 6
mov dl,0FFh
int 21h
jz skip
mov char,a1

skip:

Notes The interrupt only returns -a character if one is already waiting in the input
buffer..Does not echo the character to standard output, and does not filter
control characters.

INT 21h Function 0Ah reads a buffered string from Standard input, terminated by the
Enter key. If you call this function, you must pass a pointer to an input structure having. the “fol-
lowing format [count can be between O and 128):

_count = 80
toarsoano STRUCT

maxlnput BYTE count
inputijtount BYTE ?
buffer BYTE count DUP-(?)_

KEYBOARD ENDS

max chars to input
actual input count
holds input chars

13.2 Ms-DOS Function Calls (INT 21h) 469

The maxlrtpttt field specifies the maximum number of characters the user can input, including
the Enter key. The backspace key can be used to erase characters and back up the cursor. The
user terminates the input either by pressing the Enter key or by pressing Ctrl-Break. All non-
ASCII keys, such as P-ageUp and Fl , are filtered out and are not stored in the buffer. After the
function retums, the t'nptttC0z.tn.t field indicates how many characters were input, not counting
the Enter key. The following table describes Function OAh:

. _ __— _____ _— __ _ _ _ _ _ _ _ _ __ ,
‘ ._ _ - . _ -1j_‘.;;'-_ -..'-',J_:_ - r_.,_ - ' ‘.l- -'.’-1"’, '5'"-'.'--e‘ " __ - -1 | I '- "UV| :1-_~_-p ___ _’_ a _ _ _ |___..-. . -,.-,_' |= .‘. P, ,._._|t_;5.- _ -_t:._,,., _l lw 1 .. It i-|.....

..-_ . ' - - _I Q - __~-_n<-!-~- _| - _._._.| . I_|,'\ _. _‘ .~. _ ;_ __1_ -H‘I ..-t:-'.- - 1-,~ :1 131 J? -. _1_I....= ‘ I - 1, -_ '~_- - I -E5 I, ..t,. i, ,- '11 r I 1--.;.' - _ _ ._.- ‘.. Y- . - _ ‘ _ ._ _ |_-;_ (-___._ _,_._- __... ft‘ - ; '_ | -, ._._ . I-_---__.=|_>‘_ t_ \ i_.=.. ._ _I, ___l5_._.t__' I‘
1 -.- ,_ ; - '1 ' ' _ . _..'1. . ;'.. -_'_. I - 1', tr, It" ,1. -_j _ I .--. ,-. e4'_';_ ,“ ' -3- -.'“, ' --' -' ' - ‘ I, I,_'-.,";:;- ..- ' rt '_ .i'- . I_\.'__‘I.-,..-- . i - ---.----'-\--.-- - .. - .- --- - --- < _.\ 1 I _|:__,....»_.t.._r._],l_.l., _ A ,-_ at, ...
' L',=f " ' I.-1.--.-.- 51:". " '.‘ F: ' - '- -- ':‘=‘--';'- ' - .I \.~T.-".=.'-‘ J '1‘, "" '-' - ." "-; -".'_- t.- ii ~.:~.5~ T‘-‘ - I I ;','.‘~ I-1.‘

I T I

Description I Read an array of buffered characters from standard input

Receives AH = 9Ah
DS:DX = address of keyboard input structure

Returns The structure is initialized with the input characters.
, Sample call .data

I kybdData.KEYBOAR1'J -=:>
.code

mov ah,0Ah
\ mov dx,OFFSET kybdData

int 21h

INT 21h Function 0Bh gets the status of the standard input buffer:

. I-i|I..\. |t.I _ 1,,-__ I -. -- . .|n||':., , .\ --~- -4~- '|'- F." 'i.'. .¢ .' ml -|: '.'."'"—v .I '1 .‘."'.t"-' . , - -----.. . .. I .. .-'- - .t .- -. ‘ .-.-.. . . ., .,.- . _ _l_ ,. tr; t _ __ 5 _:_%;'_.__5.I._:_l ML;-..., L ;._:|,_,‘¢,__:_,_..;'¢_._. .._: _| ,-I, H . t,‘_-Q7‘;-_:_ -_=;-_I§t5.‘__n!I .I. _; , _I ,, ;._. .i. .__:.“._;,._;,i¢,ii:_‘,_,1;_:;|-1:‘;3|‘ 3-._..It:__t ;.I _ l_ ,3-1 P __ !_*_..,!_._
F“: _ _.- .. _. . ._ __‘ |_._.I~r ;_. ..____,I 2‘. _. b ‘ u_|_:i- L |_ ‘, :__h.14;.;_ __,_'_,I__{=___-_0-I e, .I. . ‘ _‘__| J-> ,l '..‘.,_.‘:__.a__':_‘._" ,,f,:.—‘ ..:..|‘.__ i. _--_.‘_._i_ ._:1_-_ . tlblitlhl. "K". .._-Q} I
.= . - - -I . . unc -I I1-" . t-:'.I_ -I --J -,~:--.-.I-.-.-I-I 'I -Y '- rt‘-.Ir;--I-:.-'.-.IF.»-:-.2 .-;." t-Ari. -‘P-‘»I=?II &'-- i . -- -»..’; -T‘.---T: .-ti‘;-I’! -.' 5-5*":-'--'.‘--'-.-"'-‘.t~';-.:1 " i--"-I ‘ =: ‘LI -.e.=.==L;!~‘f--1 .'=?l=-'=- iii-1.-:.' ' ' -. . '.=-.-;=‘;-. 91- '1-"-.?!F'iI-'.‘Ii:'.'-I-1 -;t:-'.-2;.~'».. .- . . "-3"--.'.-;1;:<stl-I--.1.50111;-2-'--L1.‘ .2" t“ -Jr.-r‘ '-'1'?"- ' .I‘" u" .- '-'; 1?!‘ I"il' ' ‘*'=' ‘ - ‘ ‘"11" *1‘ " -‘

e-IiiZ
_ J -- -- i-7---..-_ . I i -- '\"'*\ .--..-. . ---~.--.-...-__.__'-->=

Description I Get the status of the standard input buffer

Receives AH = OBh

Returns I If a character is waiting, AL = OFFI1; otherwise, AL = O.

I mov ah,0Bh
Sample Call int 21h

cmp al,0
‘ je skip ,

; (input the character)
Skip:

; Notes Does not remove the character.
I _____ ____ _____ _ _ _ _

13.2.3.1 Example: String Encryption Program
INT 21h Function .6 has the unique ability to read characters from standard input without paus-
ing the program or filtering control characters. This can be put to good use if we run a program
from the command prompt and redirect the input. That is, the input will come from a text file
rather than the keyboard.

470 Chapter 13 - 16-Bit MS-DOS Programming

The following program (Eu_crypr.asm) reads each character from standard input, uses the
-XOR instruction to alter the character, and writes the altered character to" standard Output:

TITLE Encryption Program (Encrypt.asm)

; This-program uses MS-DOS function calls to
; read and encrypt a file. Run it from the
; command prompt, using redirection:
; Encrypt < in£ile.txt > out£ile.txt
; Function 6 is also used for output, to avoid
; £iltering.ASCII control characters.

INCLUDE Irvine16.inc
XORVAL = 239 ; any value between 0-255
.code
main PROC

HIOV

HIOV

L1:
mov
mov
int
jz
xor
mov
mov
int
jmp

L2:exit

ax,@data
ds,ax

ah,6
dl,0FFh
21h
L2
al.XORVAL
ah,6
dl,al
21h
L1

main ENDP
END main

direct console input
don't wait for character
AL = character
quit if ZF = 1 (EOF)

write to output

repeat the loop

The choice of 239 as the encryption value is completely arbitrary. You can use any value
between 0 and 255 in this context. The encryption is weak, of course, but it might be enough to
discourage the average user from trying to defeat the encryption. When you run the program "at
the command prompt; indicate the name of the input file (and output file, if any). The following
are two examples:

encrypt < infile . txt Input from file (inl’ile.txt), output to-‘console

encrypt < infile.txt > outfile.txt "Input from file (int'ile.txt), output to
file (outfile.txt)

13;2.3.2 Int 21h Function 3Fh
INT 21h Function 3Fh, as shown in the following table, reads an array of bytes from a file or
-device. It can be used for keyboard input when the device handle in BX is equal to" zero:

13.2 MS-DOS Function Calls (INT 21h) 471

. . _ -

5 INT 21h Function 3Fh

l Description l Read an array of bytes from a file or device
in a ~‘_ ___ _ i, i _ .- _ _ l

Receives i AH = 3Fh
BX = filefdevice handle (O = keyboard)
CX -= maximum bytes to read
DS:DX = address of input buffer

.‘ . _ [1.... 1

A Returns * AX = number of bytes actually read
l T l

‘ Sample Call . data f
inputEuf£er BYTE 127 dup(0)
bytesRead WORD ? l
.code
mov ah,3Fh
mov bx,D ; keyboard handle
mov cx,LENGTHOF inputBuffer

1 ‘ mov dx,OFFSET inputBuffer I
int 21h
mov bytesRead,ax

Notes A If reading from the keyboard, input terminates when the Enter key is
pressed, and the 0Dh, 0Ah, characters are appended to the input buffer.

If the user enters more characters than were requested by the function call, excess characters
remain in the MS-DOS input buffer. If the function is called anytime later in the program, execu-
tion may not pause and wait for user input, because the buffer already contains data (including the
0Dh, 0Ah, marking the end of the line). This can even occur between separate instances of pro-
gram execution. To be absolutely sure your program works as intended, you need to flush the input
buffer, one character at a time, after calling Function 3Fh. The following code does this (see the
Keybdnsm program for a complete. demonstration):

I¢--Q___;-—-Q-p-u-vlo-~-pp-u-1--lg;--plo-~-I-vlololol-n-no-0--10-0-0non-1010-01010:-no

FlushBuffer PROC
; Flush the standard input buffer.
; Receives: nothing. Returns: nothing
F ‘ ’ ' " ” ” " “ “ ‘ ‘ “ ' “ “ ‘ ” ” ’ ” ” ' ” ” ' ' “ ’ ’ “ ' “ ' “ ' “ ' ' “ "“
.data
oneByte BYTE ?
.code

pusha
L1:

mov ah,3Fh ; read filefdevice
mov bx,0 ; keyboard handle

472 Chapter 13 ' 16-Bit MS-DOS Programming

mov cx,1 ; one byte
mov d.x,OFFSET oneiiiyte ; save it here
int 21h ,- call ns-nos
cmp oneByte,.0Ah ; end of line yet?
jne Ll ; no: read another
P°Pa
ret

FlushBuffer ENDP

13.2.4 DatelTime Functions
Many popular software applications display the current date and time. Others retrieve the date
and time and use it in their intemal logic. A scheduling prograrn, for example, can use the cur-
rent date to verify that a user is not accidentally scheduling an -appointment in the past.

As shown in the next series "of tables, INT 21 h Function 2Ah gets the system date, and INT
21h Function 2Bh sets the system date. INT 21h Function 2Ch gets the system time, and INT
21h Function 2Dh sets the system time.

re ~ ~ . * * l
A INT 21h Function -2Ah

Description it Get the system date F
i Receives AH = 2Ah

1 Returns CX = year i
l DH, DL = month, day

AL = day ofweek (Sunday = O, Monday = i, etc.)
_ *r

Sample Call mov ah, 2Ah
int 21h 1
mov year,cx

, mov month,dh
, "ymov day,dl

mov dayOfWeek,al

INT 21 h Function 2Bh
l _ _ _,} _ __ _____________ W __ I

Description Set the system date

AI-I = 2Bh
CXk=ymn ‘
DH = month
DL = day

Receives

13.2 MS-DOS Function Calls (INT 21h)

.‘-.__T

INT 21 h Function 2Bh "

Returns If the change was successful, AL = 0; otherwise, AL = FFI1.

Sample Call ah,2Bh
cx,year
dh,month
dl,day
21h
al,0
failed

mov
mov
mov
mov
int
cmp
j ne

Notes Probably will not work if you are running Windows NT, 2000, or XP with a
restricted user profile.

. . I-I_ L, _ ___ _ ____

\
l ¢INT 21"h_Function 2c|1 - - .. - . I

" '- '}- - '52:’:-

Description Get the system time

Receives AH = 2Ch F

Returns i CH = hours (0 - 23)
CL = minutes (0 - 59)
DH = seconds (O -— 59)
DL = hundredths of seconds (usually not accurate)

Sample Call ah,2Ch
21h
hours,ch
minutes,cl
seconds,dh

mov
int
mov

‘ mov
mov

INT 21h Function 2Dh

Description Set the system time

Receives AH = 2Dh
CH = hours (0 — 23)
CL = minutes (0 ~ 59)
DH = seconds (0 -—~ 59)

Returns Ifthe change was successful, AL = O; otherwise, AL = FFh

474 Chapter 13 ' 1-6-Bit MS DOS Programming

I __ _________
-...-' - -I. .._ ___ _ _ ,_ ,_ _ . .

'| I-1.‘. -.-. ' - 1-... I, ' ‘,,

_r

_:__L‘r_,.__r__-1;: _; ;.—_.-...-'_r.*——.—.-—

, Sample Call 1 mov ah,2Dh
” mov -ch,hours

mov cl,minutes
mov dh,seconds
int 21h
cmp al,0
jne failed

l

Notes i
,‘ , restricted user profile.
H ‘ ___

r 1 '_’_T.-,. .
-~-.- .- .. 1:t-.- <. 2 =-_*_5'-.'=-§‘-'~- ' - , .;.;_ ‘-, --IN1121-hFunction:-2.Dh -is ._ » . -.- -= ~ I . » t A- '-=-=‘ .-~'==:-‘-‘ ‘-‘-'-~' . é =1.‘ 1'-I-'~I='.-.'. -' - "-- - 1- -<=~'-.1". ::-.'».--:--=~ " -~ = '- c 0—-Il“'.-:"l- - '. ,-

___ sq..-
__.._._::fi: rrrrvr l__ __

Probably will not worltif you are running Windows NT, 2000, or XP with a

13.2.4.1 Example: Displaying the Time and Date
The following program (DareTime.asm) displays the system date -and time The code 1S a little
longer than one would expect, because the program inserts leading zeros before the hours,
minutes, and seconds:

TITLE Display the Date and Time (DateTime.asm)

Include Irvine16.inc
Write PROTO char:BYTE
.data
strl BYTE "Date: ",0
str2 BYTE ", Time: ",0

.code
main PROC

mov ax,@data
mov ds,ax

; Display the date:
mov dx,OFFSET strl
call Writestring
mov ah,2Ah
int 21h
movzx eax,dh
call WriteDec
INVOKE Write,‘-'
movzx eax,dl
call WriteDec
INVOKE WIite,'~'
movzx eax,cx
call WriteDec

; Display the time:
mov dx,OFFSET str2

-get system date

month

day

year

13.2 MS-DOS Function Calls (INT 21h) 475

call WriteString
mov ah,2Ch
int 21h
movzx eax,ch
call WritePaddedDec
INVOKE Write,‘
movzx eax,cl
call WritePaddedDec
INVOKE Write,':'
movzx-eax,dh
call WritePaddedDec
call Crlf

exit
main ENDP
\ - _ _ & — -..-
I

Write PROC char:BYTE
; Display a single character.
I 1 1 1 1 1 an-1
I

push
push
mov
mov
int
POP
P°P
ret

eax
edx
ah,2 ; character output function

1&1-1&1-e--1

11-e-e-out-e-~—

dl,char
21h
edx
eax

Write ENDP
Q--Q--....--.-..-.-.
F

WritePaddedDec PROC '
-¢-.-‘@--.-.—-.-.

-e-e-no-.1-1-1-1--e-.1-n--¢-.-¢-¢1--e-Q

@-u-n-@q--~-~-~1nu-u-n--n@-.n-n-@@1-

get system time

hours

minutes

seconds

-Qlnln-q_-0-0-0-u1_1_-0-Q-0-4

1--e-e-e-e-e-e--1-1-@@@

-.-.1-1-—-._-.-.-.-¢-¢-¢-¢-41-‘$1-4-.-.1--.-.-.1-—-.

; Display unsigned integer in EAX, padding
; to two digit positions with a leading zero.
I ¢ _ @ @ @ -_..
F

.IF eax
push
push
mov
mov
int
POP
POP

.ENDIF

-.:lO
eax
edx
ah,2
dl,'0'
21h
edx
eax

call WriteDeC
ret

WritePaddedDec ENDP
END main

1--¢—q--.1-.-.0-0--.-.-.-.-u-rtt @@-~-~@@-.-u-r-.q-——u-

; display leading zero

; write unsigned decimal
; using value in EAX

476 Chapter 13 ' 16-Bit MS-DOS Programming

Sample" output:

I Date: l2—8—2001, Time: 23:01:23 I

13.2.5 Section Review

'.-»=-—-

. Which register holds the. function number when calling INT 21h‘?

. Which INT 21h function terminates a program?
Which INT 21h function writes a single character to standard output‘?

4. Which IN h function writes a string terminated by a $ character to standaid output‘?
5. Which]1\i'T lh function writesa block of data to a file or device‘?
6 Which INT h function reads a single character from standard input?
7. Which INT 21h function reads a block of data from the" standard input device?
8 If you want to get the system date, display it, and then change it, which INT 21h functions

are required?
9. Which MT 21h functions shown in this chapter probably will not work under Windows NT,

2000, or XP with a restricted user profile‘?
10. Which INT 21h function would you use to check the standard input buffer to see if a charac-

ter is waiting to be processed?

to_t\>t\>

13.3 Standard MS-DOS File I/O Services
INT 21h provides such an enormous number of file and directory I/O services that it would be
impossible to even come close to showing them here. Table l3—3" -shows a few of the functions
that you are likely to use.

Table 13-3 File— and Directory-Related INT 21 h Functions.

L Function Description

7l6Ch A Create or open a file

set ‘ -Close file handle
42h Move file pointe1'

5706h g Get file creation date and time

File/Device Handles Both MS-DOS and MS-Windows use 16-bit integers called handles to
identify files and I/O devices. There are five predefined device handles. Each, except handle -2_(error
output), supports redirection at the command prompt. These handles are available all the time:

13.3 Standard MS-DOS File I10 Services

0

l

2

3

4

Each I/O function has a common characteristic: if it fails, the Carry flag 1S set and an error code
is returned in AX. You can use this error code to display an appropriate messave Table 13-4

Keyboard (standard input)

Console (standard output)

Error output

Auxiliary device (asynchronous)

Printer

contains a list of the" error codes and their descriptions.

Table 13-4 MS-DOS Extended Error Codes.

. . It-
+— ———~‘—;::;::—

, 01
02
03
04
as
05

or
. os

09
. on

on
0c
on

‘ OE
* or

10
11
12

- asst
_ 1- ---u .

'1' 7

‘tr-iPseerlP!!P!1:s.%F:iiai": '2: P 1
Invalid funbtion number

File not found

Path not found

Too many open files (no handles left)

Access denied

Invalid handle

Memory control blocks destroyed

Insufficient memory

Invalid memory block address

Invalid environment

Invalid format

Invalid access cede

Invalid data

Reserved

Invalid drive was specified

Attempt to remove the current directory

Not same device

No more files

478 Chapter 13 - 1s-an MS-DOS Programming

Table 13-4 MS-DOS Extended Error Codes. (Continued)
p Error Code Description

:3
:4
:5
:6
:7
18
19
1A
LB
1c
11)
LE
LF 4-

Diskette write-protected

Unknown unit

Drive not ready

Unknown command

Data error (CRC)

Bad request structure length

Seek error

Unknown media type

Sector not found

Printer out of paper

Write fault
Read fault

General failure

13.3.0.1 Create or Open File (716Ch)

INT 21h Function 7l6Ch can either create a new file or open an existing file. It permits the use
of extended filenames and file sharing. As shown below, the fiiename may optionally include a
directory path.

INT 21h Function 716Ch

Description Create new file or open existing file

i Receives A AX=7l6Ch
BX = access mode (D = read, 1 = write, 2- = read“/write)
CX = attributes (O = normal, l = read only, 2 = hidden, 3 = system, -8 =
volume ID, 20h = archive)
DX = action (1 = open, 2 = truncate, 10h = create.)

l DS:SI = segment/offset of fiiename
DI = alias hint (optional)

Returns If the createfopen was successful, CF = 0, AX = file handle, and CX =
action taken. If create/open failed, CF = l.

13.3 Standard MS-DOS File IIO Services 7

77 7———— 7 T YWWW '1-re:

INT 21 h Function 716.Ch *
-a~———~~**"*~***** *— ——— ;—— _

Sample Call mov
imov
‘mov

mov
mov
int
jc
mov
mov

.ax,7l6Ch ; extended open/create
bx,0 ; read—only
cx,0 ; normal attribute
dx,1 ; open existing file
si,OFFSET Filename
21h
failed
handle,ax ; file handle
actionTaken,cx ;.action taken to open file

Notes ‘ The access mode in BX can optionally be combined with one of the follow-
ing sharing mode values: 0 = share__co1npatible, 10h = share_denyreadwrite,
20h = share_deny.write, 30h = share_denyread, 40h = share__denynone. For

1 details about the sharing modes and optional alias hi:-nf field (in DI), consult
the Microsoft Platform SDK documentation.

Additional Examples The following code either creates a new file or truncates an existing file
having the same name:

mov
mov
mov
mov
mov
int
jc
mov
mov

The following code attempts to create a new file. It fails (with the Carry flag set) if the file
already exists:

mov
mov

"mov
mov
mov
int
jc
mov
mov

ax,7l6Ch
bx,2
cx,0
dx,l0h +

; extended open/create
; read-write
; normal attribute

02h ; action: create + truncate
si,OFFSET Filename
2111 -
failed
handle,ax ; file handle
actionTaken,cx ; action taken to open file

ax,7l6Ch
bx,2
cx,0
dx,l0h

; extended open/create
; read-write
; normal attribute
; action: create

si,OFFSET Filename
21h
failed
handle,ax ; file handle
actionTaken,cx ; action taken to open file

13.3.1 Close File Handle (3Eh)
INT 21h Function 3-Eh closes a file handle. This function flushes the file’s write buffer by copy-
ing any remaining data to disk, as shown in the following table.

480 Chapter 13 - 16-Bit MS-DOS Programming

1 INT 21h Function 3Eh
_____ __ 1

Description Close file handle

Receives AH=3Eh
BX = file handle

Returns If the file was closed successfully, CF = 0; otherwise, CF = I

Sample Call .data
filehandle WORD ?
.code
mov ah,3Eh
mov bx,filehandle
int 21h
jc failed

A Notes If the file has been modified, its time stamp and date stamp are updated.

13.3.2 Move File Pointer (42h)
INT 21-h Function 42h, -as can be seen in the following table, moves the position pointer of an
open file to a.new location. When Calling thi-s function, the method code in AL identifies how the
pointer will be set:

0 Offset from the beginning of the file

1 Offset from the current location

2 Offset from the end of the file

l INT 2111 Function 4211 .
Description Move file pointer

Receives AH = 42h
AL = method code
BX = file-handle
CX:DX = 32-bit offset value

Returns If the. file pointer was moved successfully, CF = 0 and DX:AX returns the
i new file pointer offset; otherwise; CF = l

13.3 Standard MS-DOS File U0 Services 481

F 77- - — — — — —— —

I INT 2111 Function 4211 i
“ Sample Call mov ah,4=2h

mov al,0 ; method: offset from beginning
mov bx,handle
mov cx,o££setHi

l mov dx,o££setLo
* int 21h

Notes The returned file pointer offset in DX:AX is aln-'a}'s 1'elati've to the begin-
ning ol’ the file.

13.3.2.1 Get File Creation Date and Time
INT 2 l h Function 5706l1. shown in the following table. obtains the date and time when a lile was
created. This is not necessarily the same date and time when the file was last modiliecl. or even
accessed.

ix 11111" 2111 Function 570611 K
Q ' ' 111Description Get e creation date and time

Receives A AX = 570611
BX = file handle

Returns If the function call was successful. CF = U. DX = date. CX = time. and SI = 1
1 milliseconds. If the function failed. CF = I.

! Sample Call p mov ax, 5706h ; Get creation clate/time
“ mov bx,handle

int 21h
jc error ; quit if failed

1 mov date , dx
*1 mov time, cx

mov milliseconds , si

Notes The file must already be open. The m1'lli.m-rmds value indicates the number cl‘
I0-millisecond itttcwals to add to the MS-DOS time. Range is O to 199. indi-
cating that the licld can add as many as 2 seconds to the twcntll time.

13.3.3 Selected Library Procedures
Two procedures from the Irvinelo link library are shown here: ReadString and WriteString.
ReadString is the trickiest of the two. since it must read one character at a time until it encoun-
ters either the end of an input line or a specified number ol’ cha1"a'cters.

482 Chapter 13 2 16-Bit MS-DOS Programming

13.3.3.1 ReadString
The ReadString procedure reads a string from standard input. and places the characters in an
input buffer as a null-terminated string. It terminates when the user presses the Enter key.

0
_l

ReadString PROC
; Receives: DS:DX points to the input buffer,

CX = maximum input size, plus 1.
turns AX = size of the input string

‘hi‘N10"11!

FE!

;

L1:

L2‘:

-1--ii 1:1-nu--anj-

push cx
push si
push ox
mov 'si,dx
dec cx

mov ah,l
int 21h
cmp. a1,0Dh
je E2
mov- [si],al
inc si
loop L1

mov" BYTE PTR [si],0
pop ax
sub ax,cx
pop si
pop cx
ret

ReadString ENDP

13.3.3.2
The WriteString procedure writes a null-terminated string to standard output. It calls a helper

WriteString

ii-an-iiiiii-an-ciiiiijiiiiiiiiiiiii

I
1'

I
I

F

I
I

F
.

I

I
I

H0"11:

KI

I1

F

F
Ir

iiZZZiiZiiZZiiZiiZiiiiiiiiiiiiiiiiiiiiiiii33312

e :
Comments: Stops when the Enter key (0Dh) is pressed.

save registers

save digit.count again
point to input buffer

function: keyboard input
returns character in AL
end of line?
yes: exit

store the character
increment buffer pointer
loop until CX=0

33O

end with a null byte
original digit count
AX = size of input string
restore registers

procedure named Str_length that returns the number of bytes in a string:
I...-I‘ 1u1-n-1u1-n-- in-nu-1111 iiiiiiqniim-iiiianianiii

WriteString PROC
; Writes a null-terminated string to standard output
,1 Receives: DS:DX = address of "string
; Returns: nothing
F,--_

pusha
INVOKE Str_length, dx
mov“ cx,ax

1-an-an-011:1-I-u-11:1:-I-u--uniiiiijiiiiiiiiiiiiiiiiiijiii

-I
1'

I
I

.
I

10114-1-1|;-111'-nu-111'-nu-11'-nu-11'-nu-inn-quip01:-u-4-.1‘;-1-1-1|—ni

-|I1¢1*—i*—-i :**—-mini--—*—i**0-can

set ES to DS
AX = string length
CX = number of bytes

13.3 Standard MS-DOS File IIO Services 483

mov ah,e0h ; write to file or device
mov bx,1 ; standard output handle
int 21h ; call MS-DOS
PQPa
ret

WriteString ENDP

13.3.4 Example: Read and Copy a Text File
We presented INT 21h Function 3Fh earlier in this chapter, in the context of reading from start-
dard input. This function can also be used to read -a file, if the handle in BX identifies a file that
has been opened for input. When Function 3Fh retums, AX indicates the number of bytes actu-
ally read from the file. When the end of the file is reached, the value returned in AX is less than
the number of bytes requested (in CX).

We also presented INT 21h Function 40h earlier in this chapter in the context of writing to
standard output (device handle" 1). Instead, the handle in BX can refer to -an open file. The func-
tion automatically updates the file’s position pointer, so the next call to Function 40h begins
writing where the previous-call left off.

The Readfile.asm program we’re about to show you demonstrates several INT 21h func-
tions presented in this section:

~ Function 716Ch: Create new file or open existing file
' Function 3Fh: Read from file or device
' Function 40h: Write to file or device
' Function 3Eh: Close file handle

The following program opens a text file for input, reads no more than 5,000 bytes from the
file, displays it on the console, creates a new file, and copies the data to a new file:

TITLE Read a text file (Readfile.asm)

; Read, display, and copy a text file.
INCLUDE Irvine16.inc

.data
BufSize = 5000
infile BYTE "my_text_file.txt",0
outfile BYTE "my_output_file.txt",0
inHandle WORD ?
outHand1e WORD ?
buffer BYTE BufSize DUP(?)
bytesRead WORD ?

.code
main PROC

mov ax,@data
mov ds,ax

Chapter 13 v 16-Bit MS-DOS Programming

; Open the input file
mov ax,716Ch
mov'bx,0
mov cx,0
mov‘dx,1
mov si,OFFSET infile
int 21h
jc quit
mov inHandle,ax

; Read the input file
mov ah,3Fh
mov~bx,inHandle
mov cx,BufSize
mov dx,OFFSET buffer
int 21h
:i<= suit
mov bytesRead,ax

; Display the buffer
mov ah,4Qh
mov bx,1
mov“cx,byteeRead'
mov dx,OFFSET buffer
int 21h '
jc quit

; Close the file
mov ah,3Eh
mov bx,inHandle
int 21h
jc quit

; Create the output file
mov ax,716Ch
mov~bx,1
mov cx,0
mov“dx,12h
mov si,OFFSET outfile
int 21h
jc quit
mov outHandle,ax

; Write buffer to new file
mov ah,40h
mov*bx,outHandle
-mov cx,bytesRead
mov dx,OFFSET buffer
int 21h
jc quit

extended create or open
mode = read-only
normal attribute
action: open

call MS-DOS
quit if error

read file or device
file handle
max bytes to read
buffer pointer

quit if error

write file or device
console output handle
number of bytes
buffer pointer

quit if error

function: close file
input file handle
call MS-DOS
quit if error

extended create or open
mode = write-only
normal attribute
action: create/truncate

call MS-DOS
quit if error
save handle

write file or device
output file handle
number of bytes
buffer pointer

quit if error

13.3 Standard MS-DOS File I/0 Services 485

; Close the file
Imov ah,3Eh ; function: close file
mov bx;outHandle ; output file handle
int 21h ; call MS-DOS

quit:
call Crlf
exit

‘main ENDP
END main

13.3.5 Reading the MS-DOS Command Tail
In the programs that follow, we will often pass information to programs on the command line.
Suppose we needed to pass the namefileLdoc to a program named ctmzexe. The MS-DOS com-
mand line would be

attr FILE1 . DOC

"When a program runs, any additional text on its command line is automatically stored in
the 128-byte MS-DOS command tail area,.at offset _80h in an area named the program -segment
prefix (PSP). The first byte contains a count of the number of characters typed on the command
line. Using our example of the ctmzexe program, the hexadecimal "contents of the "command tail
areas follows:

Offset: 80 81 82 83 84 85 86 87 E88 89 SA 8B

Contents: |0A|l'0l46|49l4C|45l31|TE|44I4FI43IOD|

F I L E 1 . D O" C

You can see the "command tail bytes using CodeView, if you load the program and set the com-
mand-line arguments before running the program.

To set command-line parameters in Codeview, choose Set Rttrttinte A1;gume1tt.r,.. from the Run
menu. To view the patameters, press F10 to executeitlte first program insttuction, open a
memory window, select Memory from the Options menu, and enter ES:Ox80 into the Address
Expressfonzfield.

There is ‘one exception to the rule that MS-D.OS stores_ all characters after the command or
program name: It doesn’t keep the file and device names used when redirecting input-output. For
example, MS-DOS does not save. any text in the command tail when the "following command is
typed because. both t'nfile.tx'r and PRN are used for redirection:

progl < infile.txt > prn

486 Chapter 13 ~ 16-Bit MS-DOS Programming

The GetC0mmandtail procedure from the book’s link library re_turn_s a copy of the com-
mand tail. When calling this procedure, set DX to the offset of the buffer where the command
tail will be copied. It skips over leading spaces with SCASB and sets the Carry flag if the com-
mand tail is empty. This makes it easy for the calling program to execute, a JC (jump cctrry)
instruction if nothing is typed on the command line:

.data
buffer BYTE 129 DUP(?)
.code

mov
mov

ax,@data
ds,ax

mov dx;OFFSET buffer ; point to buffer
call Getqflommandtail

The following is a listing of Ge_tC'0mmandtail:

Get_Commandtail PROC
I-
I

; Gets a copy of the MS-DOS comand tail at PSP:80h.
; Receives: DX contains the offset of the buffer

‘I‘I‘I

I
I

push es
pusha

mov
int
ITIQV

nwv
11101?‘
mov
mov
cmp
je
cld
mov
repz
jz
dec
inc

ah,62h
21h
es,bx

si,dx
.<:1'i,s11-t
cx,0
cl,es:[di—l]
cx,0
L2

al,20h'
scasb
L2
di
cx

that receives a copy of the
eturns: CF=l if the buffer is

CF=0.

I
I

I
I

I
I

I

I

‘II

'\I

I
I

I

I

I
I

I
I

I
I

F
I

I

I
I

O
I

.command tail.
empty; otherwise,

save general registers

get PSP segment address
returned in BX
copied to ES

as nt to buffer
SP offset of command tail

byte count
get length byte
is the tail empty?
yee:"exit
no: scan forward
space character
scan for nonrspace
all spaces found
non space found

'=; is -an Offsti from me seglfient ¢1ddl'@$$“-in D3
‘ The segmefittlivenide (stint]) tells macro to use the segment address in ES instead

-C _-

13.3 Standard MS-DOS File IIO Services 487

Ll: mov al,es:[di] _ py tail to buffier
mov [si],al nted to by DS;SI
inc si
inc 'di
loop'L1
clc : CF=0 means tail found
jmp L3

38

L2: stc ; set CF: no command tail
L3: mov BYTE PTR [s:i.],0 ; ‘store null byte

popa ; restore registers
POP "ES
ret

GetCommandtail ENDP

INT 21h Function 62h returns the segment portion of the program -segment prefix"'s
"address..The following statements from the example program call this function:

mov ah,62h ; get PSP segment address
int 21h ; returned in BX
mov es,bx ; copied to ES

It is necessary to set ES to the PSP segment before using SCASB to scan for the first nonblank
character in the command tai.l.

13.3.6 Example: Creating a Binary File
A binaryfile is- given its name because the data stored in the file is simply a binaly image of pro-
gram data. Suppose, for example, that your program created and filled an .ar1ay of doublewords:

myarray DWORD 50 DUP(?)

If you wanted to-write this array to a text file, you would have to conven each integer to "a string
and write it separately. A more efficient way to store this data would be to just write-a binary
image "of myAr'ray to a file. An array of 50 doublewords uses 200 bytes of memory, and that is
exactly the amount of disk space the file would use.

The following Bz'nfile.asm program fills an array with random integers, displays the inte-
gers on the screen, writes the integers to a bina1y file, and closes the file. It reopens the file, reads
the integers, and displays them on the screen:

TITLE Binary File Program (Bin£ile.asm)

; This program creates a binary file containing
; an array of doublewords.
INCLUDE Irvinel6.inc

.data
myArray DWORD 50 DUP(?)

Chapter 1a - 1a-anus-nos Programming

filemame BYTE "binary array file.bin",0
fileHandle WORD ?
commaStr BYTE ", ",0

; Set CreateFile to zero if you just want to
; read and display the existing binary file.
CreateFile = 1

.code
main PROC

mov ax,@data
mov ds,ax

.IF CreateFile EQ 1
call FillTheArray
call DisplayTheArray
call CreateTheFile
call WaitMsg
call Crlf

.ENDIF
call ReadTheFile
call DisplayTheArray

quit:
call Crlf
exit

main ENDP
\ @ @ @ @ @ @ 4 @ @ @ @ @ @ @ @ @ — @ — — — w -.--
I

.ReadTheFile PROC
F
; Open and read the binary file

-wnrppnnu-nrrr___‘--,-,p'4_q-p'p'4_¢_-4_g,_g

9

; Receives: nothing. Returns: nothing.
| _ _ _ _ _ - fl — _ _ _ _ _ - _ - _ _ — - _ _ -.-
I

mov ax, '716_Ch
mov bx,0
mov cx,O
mov dX,l
mov si,OFFSET fileName
int 21h
jc quit
mov fileHandle,ax

¢-4-an-ma-an--I;-¢-¢-4-ma-ma-ma-ma-sq-.¢-4-ma-ma-sq-.¢-1-ma-ma-s

extended file open
mode: read-only
attribute: normal
open existing file
filename
call MS-DOS
quit if error
save handle

; Read the input file, then close the file.
mov.ah,3Fh
mov bx,fi1eHandle
mov cx,SIZEOF myArray
mov dx,OFFSET myarray
int 21h
jc quit

read file or device
file handle
max bytes to read
buffer pointer

quit if error

3.3 Standard MS-DOS Fiie U0 Services

mov ah,3Eh : function: close file
mov bx,EileHandle ; output file handle
int 21h ; call MS-DOS

quit:
ret

ReadTheFi1e ENDP

DisplayTheArray"PROC

; Display the doubleword array
; Receives: nothing. Returns: nothing
I _ _ ~ _ # _ _-..
I

mov cx,LENGTHOF myArray
mov si,0

Ll:
mov eax,myArray{si]
call WriteHex
mov edx,OFFSET commaStr
call WriteString
add si,TYPE myArray
loop Ll
ret

DisplayTheArray ENDP

Fil1TheArray PROC
F

A-ma-n.n_._—_—n_.wIIn_.n_.wIIn—owIIn_.q-IwIIn—owIIn—on—owIIjn—o

; get a number
; display the number
; display a comma

; next array position

; Fiil the array with random integers.
; Receives: nothing. Returns: nothing

mov cx,LENGTHOF myArray
mov si,0

Ll:
mov eax,1000
call RandomRange-
mov myArray[si],eax
add si.TYPE myhrray
loop Ll
ret

FillTheArray ENDP

CreateTheFile PROC
I
I

u-nu-v-s-sgiiiin-.;;1¢-.i;-I;-I-I1;

generate random integers
between 0 — 999 in BAX
store in the array
next array position

-.4-.4-.-.-.4-.4-.-.4-.4-.4-.4-.4-.4-.n—-¢-4-.4-.4-.n—-1-1-u-v-as-s

; Create a file containing binary data.
; Receives: nothing. Returns: nothing
0
I

????????,_?,_,,-.-,_,_?,_,,-_.11,,-_-u-1--1-w-viv-nu-vi-siia-‘iv-viiiu-vu-'4-mu-vs-ma-s4-ma-‘iii;

mov ax,7l6Ch ; create file

490 j Chapter 13 ' 16-Bit MS-DOS Programming,

mov bx,l ; mode: write only
.mov cx,O ; normal file
mov dx,12h ; action: create/truncate
mov si,OFFSET fileName ; filename
int 21h ; call MS>DOS
jc quit ; quit if error
mov fileHandle,ax ; save handle

; Write the integer array to the file.
mov ah,40h _ ; write file or device
mov bx,fileHandle ; output file handle
mov cx,SIZEOF myArray ; number of bytes
mov dX,OFFSET myArray ; buffer pointer
int 21h
jc quit ; quit if error

r Close the file.
mov ah,3Eh ; function: close file
mov .bx,fileHandle ; output file handle
int: 21-h ; call MS-DOS

quit:
ret

CreateTheFile ENDP
END main

It is worth -noting that the writing of the entire -array can be done with a single call to INT
21h Function 40h. There is no need for a loop:

mov ah,40h ; write file or device
mov bx,fileHandle ; output file handle
mov cx,SIZEOF myArray ; number of bytes
mov dX.0FFSET myArray ; buffer pointer
int 21h

The same is true when reading the file back into the array. A single call to INT 21h Function 3Fh
does the job:

mov ah,3Fh ; read file or device
mov bx,fileHandle ; file handle
mov cx,SIZEOF myArray ; max bytes to read
mov dx,OFFSET myhrray ; buffer pointer
int 21h

13.3.7 Section Review

l. Name the five-standard MS-DOS device handles-.
2. After calling an MS-DOS I/O function, which flag indicates that an error has- occurred‘?
3. When you call Function 716Ch to create a file, what arguments are required?

13-.4 Chapter Summary 491

4. Show an example of opening an existing file for input.
5. When you call Function 7I_6Ch to read a binary array from a file that is already open, what

argument values are required?
6. How do you check for end of file when reading an input file using INT'2lh Function 3Fh‘?
7. When calling Function 3Fh, how is reading from a file different from reading from the key-

board?
8. If you wanted to read a random-access file, which INT 21h function would permit you to

jump. directly to a particular record in the middle of the-. file?
9. Write a short code segment that positions the file pointer 50 bytes from the beginning of a

file. Assume that the file is already open, and BX contains the file handle.

13.4 Chapter Summary
In this chapter, you learned the basic memory organization of MS-DOS, how toactivate MS-DOS
function calls, and how to perform basic in put-output operations at the operating system level.

The standard input device and the" standard output device are collectively called the com
sole, which involves the keyboard for input and the video display for output.

A sofnvare 1':-trerrtzpi is a call to an operating system procedure. Most of these procedures,
called imermpr" hart-diets, provide input-output capability toapplication programs.

The INT'('call to interrupt procedure) instruction pushes the CPU flags on the stack and
calls an interrupt handler. The CPU processes the INT instruction using the irnerrupr vector
table, a table containing 32-bit "segment-offset addresses of interrupt handlers.

When a program runs, -any additional text .on its command line is automatically stored in
the 128-byte MS-DOS command tail area, at offset 80h in an area named the program segment
prefix (PSP). The GetC_ommandtail procedure from the book’s link library retums a copy of the
command tail.
Some frequently used interrupts are:

- INT 10h Video Services: Procedures that display routines that control the cursor position,
write text in color, scroll the screen, and display video graphics.

- INT 16h Keyboard Services: Procedures that read the keyboard and check its status.
- INT 17h Printer Services: Procedures that initialize, print, and return the printer status.
- INT lAh Time of Day: A procedurt: that gets the "number of clock ticks since the machine

was turned on or sets. the counter to a new value.
~ INT lCh User Ttmer In terrupt: An empty procedure that is executed 18.2 times per second.

A number of important INT 2l h functions were presented in this chapter:

- INT 2.1h MS-DOS Services. Procedures that provide input-output, file handling, and
memory management. Also known as MS-DOS function calls.

' INT 21h is. usually called an MS-DOS function call. There are some 9.0 or so different func-
tions supported by this interrupt, identified by a function number placed in the AH register.

' INT 21 h Function 4Ch terminates the current program (called a process).

492 Mg W j p Chapter 13 ~ 16-Bit M§-DOST Programming

- INT 21h Functions 2 and 6 write a single character to standard output.
- INT 2ih Function .5 writes a single character to the printer.
- INT 21h Function 9 writes a string to standard output.
- INT 21 h Function 40h writes an array of bytes to a file or device’.
' INT 21 h Function 1 reads a single character from standard input.
~ INT 21h Function 6 reads a character from standard input without waiting.
' INT 21h Function OAh reads a buffered string from standard input.
- INT 21h Function OBh gets the status of the standard input buffer
- INT 21h Function 3Fh reads an array of bytes from a file or device.
' INT 21 h Function 2Ah gets the system date.
' INT 2-1 h Function 2Bh sets the system date.
' INT 21h Function 2Ch gets the system time.
' INT 2i.h Function 2Dh sets the system time.
- INT 21h Function 716Ch either creates a file or opens an existing file.
' INT 21h Function 3Eh closes a file handle.
' INT 21h.Funct_ion 4_2h moves a file‘s position pointer.
' INT 2i.h Function 5'70_6h obtains a file’s creation date and time.
- INT 21h Function 62h returns the segment portion of the program segment prefix address.

The following sample programs showed how to apply MS-DOS functions:

' The Daz‘eT:'me.asm program -displays the system date and time.
- The Reaafiiensm program opens a text file for input, reads the file. displays it on the con-

sole, creates a new file, "and copies the data to a new file,
' The B:'nfile.as-m program fills an array with random integers, displays" the integers on the

screen, writes the integers to a binary file, and closes the file. It‘ reopens the file, reads the
integers, and displays them on the screen.

A binary file is given" its name because the data stored in the file is a binaiy image of pro-
gram data;

13.5 Chapter Exercises
The following exercises must he done in Real-address mode. D0 not use -any functions from the
Irvinel6 library. Use INT 21h function calls for all input-output, unless an exercise specifically
says to do otherwise.

1. Read a Text File
Open a file for input, read the" file, and display its contents on the screen in hexadecimal. Make
the input buffer smaller than the file and use a Ioop_ to repeat the call to. Function 3Fh as many
times as necessary until the entire file has been processed.

13.5 Chapter Exercises "493

2. Copy a Text File
Modify the Readfile program in Section 13.3.4 so that it can read a file of" any size. Assuming
that the buffer is smaller than the input file, use a loop to read all data. Display appropriate_ error
messages if the Carry flag is set after any INT 2l h function calls.

3. Setting the Date
Write a program that displays the current date and prompts the user for a new date. If a non-
blank date is entered, use it to update the system date.

4. Upper Case Conversion
Write a program that uses INT 21h to input lower case-letters from the keyboard and convert
them to upper case. Display only the upper case letters.

5. File Creation Date
Write a procedure that displays the date when a file was created, along with its filename. Write a
test program that "demonstrates the procedure with several different filenames, including
extended filenames. If a file cannot be found, display an appropriate error message.

6. Text Matching Program
Write a prograrn that opens a text file containing up to 60K bytes and performs a case-insensitive
search for a string. The string and the fiiename. can be input by the user. Display each line from
the file on which the string appears and prefix each line with a line number. Review the Str_find
procedure from Section 9-7, but note that your program must run in Real-address ITlOCi6.

7. File Encryption Using XOR
Enhance the file encryption program from Section 6.3.4.3 as follows:

~ Prompt the user for the name of a plain text file and a cipher text file.
- Open the. plain text file for input, and open the cipher text file for output-.
~ Let the user enter a single integer encryption code (0-255).
~ Read the input file into a buffer, and exclusive-OR each byte with the encryption code.
- Write the buffer to the cipher text" file.

The only procedure you may call from the book‘s link library is Readlnt. All other input/output
must be performed using INT 21h.

8. Count_Words Procedure
Write a program that counts the words in a text file. Proinpt the user for a file name, and display
the word count on the screen. The only procedure you may call from the book’s link library is
WriteDec. -All Other input/output must be performed using INT 2l h.

Disk Fundamentals

‘14.1
14.1.1
14.1.2
14.1.3

‘14.2
14.2.1
14.2.2
14.2.3
14.2.4
14.2.5
14.2.6

14-.3
14.3.1
14.3.2
14.3.3
14.3.4

14.4 _
14.4. 1
14.4.2

14.5
14.5.1
14.5.2
14.5.3
14.5.4
14.5.5
14.5.6

Disk'Storage Systems
Tracks, Cylinders, and Sectors
Disk Partitions (Volumes)
Section Review

File Systems
FAT 1'2
FAT1 6'
FAT32 .
NTFS
Primary Disk_ Areas
Section Review

Disk Directory
MS"-DOS Directory Structure
Long Filenames in MS.-Windows
File Allocation Table (FAT)
Section Review

Reading and Writing Disk Sectors (7305h)
S ector Display Program
Section Review

System-Level File Functions
Get Disk Free Space (7303h)
Create Subclirectory (39h)
Remove Subdirectory (3Ah)
Set Current Directory (3Bh)
Get Current Directoly (47h)
Section Review

14.6 Chapter Summary
14.7 Programming Exercises

14.1 Disk Storage Systems
As _a well-rounded programmer and/or computer scientist, you should know somethmg about
the whole disk storage picture. Your interests might be in the areas of runtime efficiency, or
system-level acoess to data, data security and integrity, or just a general understanding of
what goes on inside the computer. With.such interests‘ in mind, we will bjegin this chapter with
a discussion of basic disk hardware, show how it relates to the BIOS-level disk storage, and

495

496 Chapter 14 -- Disk Fundamentals

finally show how the operating system interacts with application programs to provide access
to files and directories. (Recall that BIOS stands for Basic Input-Ouurpnr System, discussed in
Chapter 2.)

As always, the interaction between a computer’s virtual layers is apparent. At the operat-
ing system level, it is not useful to know the exact disk geometry (physical locations) or brand-
specific disk information. The BIOS, which in this case amounts to disk-controller firmware,
acts as a broker between the disk hardware and the -operating system. Similarly, application pro-
grams are not concerned with the particular choice of file storage system. They depend on the
operating system to provide straightforward access to files and directories.

Using assembly language, you can bypass the operating system completely when access-
ing data. This can be useful: .you might have to store .and retrieve data stored in an unconven-
tional format, to recover lost data, or to perform diagnostics on disk hardware. In this chapter,
for example, we show how to read one disk sector at a time. At the end of the chapter, as an illus-
tration of typical OS-level access to data, we include a number of MS-DOS functions used for
drive and directory manipulation.

14.1.1 Tracks, Cylinders, and Sectors
Disk storage systems all have- certain common characteristics: They have physical partitioning
of data, they allow direct access to data, and they have a. way of mapping filenames to physical
storage. At the hardware level of a disk storage system are platters, sides, tracks, cylinders, and
sectors, all of which describe the physical layout of a disk. At the. software level are clusters and
files, which MS-DOS uses to locate data.

-A typical hard zdrive, shown in Figure 14-1, is made up of multiple platters attached to a
spindle that rotates at constant speed. Above the surface of each platter is "a read/write head that
records magnetic pulses. The read/write heads move in toward the center and out toward the rim
as a group, in small steps.

platter (7 .g5,=_*-If" ."j{_5t-_*;-_-I ii" ',:.1\.*-f.§;=-§_Y*’”TlI$t.ZfiT.T”5 ET'T"t;_..= . J i
l

if W 7 i _l 7 7 7
' p_

Q11!

l
l

-.1=:=".m'.-.-tzt.-=...;-.:.:".-zue-~.-.-. :-_@-=.:-er.t-1.'~:-;;.-s-;--,.'£_a-'a_-r_.--._-,-."-=--

l.
(I I Q I I Q I 1 n. Q I I I I I Q

.._._..D.._.3 .
_ movement

f." .' F‘ .' D

Figure 14-1 Physical Elements of a Hard Drive.

14.1 Disk Storage Systems 497

The surface of a disk is formatted into invisible concentric bands called tracks, on which
data are stored magnetically. A typical 3.5" hard drive may contain thousands of tracks. Moving
the readlwrite heads from one track to another is called seeking. The average seek time is one
type of disk speed measurement. Another measurement is RPM (revolutions per minute), typi-
cally 7,200. The outside track of a disk is track 0, and the track numbers increase as you move
towards the center.

A cylinder refers to -all tracks accessible from a single position "of the read/write heads. A
file is" initially stored on a disk using adjacent cylinders. This reduces the "amount of movement
by the read-write heads.

A sector is a 512-byte portion of a track, as shown in Figure 14-2. Physical sectors are
magnetically (invisibly) marked on the disk by the manufacturer, using what is called a low-level
jbrrnar. Sector sizes never change, regardless of the installed operating system. A hard disk may
have 63 or more sectors per track.

Physical disk geomemr is a way of describing the disk’s structure to make it readable by
the system BIOS. It consists of the number of cylinders per disk, the number of read/write heads
per cylinder, and the number of sectors per track.

Fragrnerztation Over time, as files become more spread out around a disk, they become frag-
mented. A_fmgmem‘ed file is one whose sectors are no longer located in contiguous areas of the
disk. When this happens, the read-write heads have to skip across tracks when reading the file’s
data. This slows down the reading and writing of files, and makes the data more susceptible to
errors.

Translation to Logical Sector Numbers Hard disk controllers perform a process called trans-
lation, the conversion of physical disk geometry to a logical structure. that is understood by the
operating system. The controller is usually embedded in firmware, either on the drive itself or on
a separate controller card. After translation, the operating system can work with what are called
logical sector numbers. Logical sector numbers are always numbered sequentially, starting at
zero.

§ sector

track

Figure 14-2 Disk Tracks and Sectors.

498 Chapter 14 - Disk Fundamentals

14.1.2 Disk Partitions (Volumes)
"On a typical microcomputer, a single physical hand drive is divided into one or more logical
units named parririens, or volumes. Each formatted partition is represented by a separate drive
letter such as C, D, or E, and it can be formatted using one of "several. file systems.

A drive may contain two types of partitions: primary and extended. Two configurations- are
possible, depending on whether you want an extended partition:

' Up to three primary partitions and -one extended partition.
' Up to four primary paititionsand no extended partition.

An extendedpartition can be divided into an un'limite'd number of logical partitions. Each
logical partition appears as a separate drive letter. Primary partitions can be made bootable,
whereas logical partitions cannot. It is possible to format each system or logical partition with a
dil’l’erent file system.

Suppose for example, that a .20 GB hard drive was assigned a primary I0 GB. partition
(drive C), and on it, we installed the operating system. Its extended partition would be 10 GB.
Arbitrarily, we could divide the latter into two logical partitions of 2 GB and 8 GB. and format
them with various file systems such as FATl 6, FAT32, or NTFS. (We will discuss the details of
these file systems in the next" section of this chapter.) Assuming that no other hard drives were
already installed, the two logical partitions would be assigned drive letters D and E.

Mala’-Boat Systems It is quite common ‘to create multiple primary partitions. each capable" of
booting (loading) a different operating system. This makes it possible to test software in dil’l"er-
cnt environments, and to take advantage of security Features in the more advanced systems.
Many software developers use one primary partition to create a test environment For solitware
under development. Then they have another primary partition that holds production software
that has already been tested and is ready for use by customers.

Logical partitions", on the other hand, areprimarily intended for data. It is possible for dif-
ferent operating systems to share dat-a stored in the same logical partition. For example, all
recent versions of MS-Windows and Linux can read FAT32 disks. A computer can boot from
any of these operating systems and read the same data files in a-shared logical partition.

_ '_.{'--_;_-_ r -- -.---,3-_. ._ _ -_.;.-_ _ T
L.-.:*\ .' '.""| . '. 2 : ‘-,_tl-I I" ."-' '.|- -|'.‘;' . . .'| -‘:01 .-

cantlnder and Windows 98 to create and
remf6vé'partitions, but it "does not preserve data. Betterrya, Windows 2000 and XP have a Disk

T Manager utility that provides the ability to create,'d'elete, and resize partitions without destroy-
‘ ing data. There are also third-party partitioning programs such as PartirlonMagic by Power-

Quj§st;tl1at pennit ngndestmctive resi_z.ing and moving_;_partitions.
' - -_-'-j=§.'.'. .. .-3-_’.’ .7.’ __ ,__ _- . g-1.. - .-.!. .*

Dual-Boar Example In the following example, the Windows 2000 Disk Management tool dis-
plays all six paztitions on a single hard drive:

14.1 Dlsk Storage Systems.

%

E3 WKUP (E1)
5§DATA__l {U2}
@SY3TEM '33

Partition
Partition
Partition
Partition
Partition
Partition

Basic
Basic
Basic
Bash:
Basic
Basic

FAT32
FAT32
FAT32
NTFS

Healthy
Healthy
Healthy
Healthy
Healthy

5.13 GB
2.01 GB
7.50 GB
7-80 GB
1.95 GB
13.91 GB

5.13 GB
2.01 GB
4-34 GB
2.56 GB
‘I. 12 GB
1.43 GB

" ‘ i‘ asm... 1‘11.=srear. .. ;,_ 5eegwjre
1111095
10096
82%
34 %
51-’%
36%IQWINZUUD-A (C1) Healthy (System)

t§ztP-1ou(o:) Partition Basic FAT Healthy (Active) as MB as MB sass

The displayed figure is for a system that boots under both Windows 98 and Windows 2000. There
are two primary partitions, arbitrarily named SYSTEM 9_8 and WIN2000.-A. Only one primary
partition can be active at one time. When active, a primary partition is called the systempartition.

In the figure, the system partition is currently WlN'2000-A, assigned to drive C. Note that
the inactive system partition has no" drive letter. If we should restart the computer and boot from
SYSTEM 98, it would become drive C, and the WIN2000-A partition would be inactive.

The extended partition, meanwhile, has been divided into four logical partitions, two" of
which are unformatted, and the remaining two, named BACKUP and DATA_1, are formatted
using the FAT32 file system.
Master Boot Record The Master Boot Record (MBR), created when the frst partition is cre-
ated on a hard disk, is located in the drive’s first logical sector. The MBR contains the following:

' The disk partition table, which describes the sizes and locations of all partitions on the disk.
- A small program that locates the partition’s boot sector and transfers control to a program

in the sector that loads the operating system.

14.1.3 Section Review

1. (True/False): A t1'ack is divided into multiple units called sectors.
2. (litre/False): A sector consists of multiple tracks.
3. A consists of all tracks accessible from a single position of the readlwrite heads

of a hard drive.
4. (T:-ae/False): Physical sectois are always 512 bytes because the sectois are marked on the

disk by the manufacturer.
S. Under FAT32, how many bytes are used by a logical sector?
6. Why are files initially stored in adjacent cylinders?
7. When a file’s storage becomes fragmented, what does this mean in terms of cylinders and

seek operations performed by the drive?
8. Another name for a drive partition is a "drive .
9. What does a drive-’s average seek time measure‘?

10'. What is a low-levelformat?
ll. How many primary partitions can there be on a hard drive‘?
12. How many extended partitions can there be on a hard drive?

500 Chapter 14 ~ Disk Fundamentals

I3. What is contained in the master boot record?
I4. How many primary partitions can be active at the same time‘?
15. When a primary partition is active, it is called the partition.

14.2 File Systems
Every operating system has some type of disk management system. At the lowest level, it man-
ages partitions. At the next-highest'lev.el, it manages files and directories. A file system must
keep track of the location, sizes, and attributes of each disk file. Let’s take a look-at the FAT-type
file systems commonly used on IA-32 systems. Each provides the following connections;

- A mapping of logical sectors to; clrt.s‘te1‘s, the basic unit-of storage for -all files and directories.
' A mapping of file and directory names to sequences of clusters.

A c.-luster is the smallest unit of space used by a tile; it consists of one or more adjacent
disk sectors. A file system stores each file as a linked sequence of clusters. The size of a cluster
depends on both the type of file system in use and the size of its disk partition. The following
shows a file made up of two 2,048-byte clusters, each containing four 512-byte sectors:

S6C[OI'

Y BE
Cluster 1 Cluster 2

A chain of clusters is referenced by a file ellocarimv table (FAT) that keeps track of" all
clusters used by a file. A pointer to the first cluster-entry in the FAT is stored in each file’_s direc-
tory entry. Section 14.3.3 explains the FAT in greater detail.

Wasted Space Even a small file requires at lea_st"one cluster of disk storage, -which can result in
wasted space. The following shows an 8,200 byte file, which completely fills "two 4,096-byte
clusters and uses only 8 bytes of a third "cluster. This leaves 4,088 bytes of wasted disk space in
the third cluster:

File size: 8.200 bytes

S bytes used.
4,096 used 4.096 used 4-033 empw

‘ -..‘'1'
1')’.
E -$3

Ciilusterli ldciiisiéiz Cluster 3
Actually, a cluster size of 4,096 (4 KB} is considered an efficient way to store small files.

Imagine what would result if our 8,200-byte file were stored on a volume having 32 KB clusters.
In that case, 24,568 bytes (32,768 — 8,200) would be wasted. On volumes having a large- number
of small files, small cluster sizes are best.

14.2 File Systems 501

Standard cluster sizes and file system types for hard drives are shown in Table 14-l . These
values have changed slightly with each new Microsoftoperating system. The values shown here
apply to Windows 2000 and XP.

Table 14-1 Partition and Cluster Sizes (over 1 GB).
7 " -'-"*7 ' . . i . , ,, . --.' ---. -.---.. -. , ___,.-,...-.-,._,- _-; -,-_.:-; ---_ . ; ...,_ .. _ , _--,-., -.-_-_.” - -,' ..; '7’ ;-:I"Q.,' ;_ IT; . .-.. .. .,.j.i"I;@513:_-I:-;,1ajv;;;_;'_u;il3,irfiggfg-_;s=ii:-Iiieggg.5:-;;--fi;!::lT- 1-, [-__;?;:§ja‘i‘i-—-'r.'-t'.:!5=-.' -..--1};1=|=~;-zgqqg::f‘%i{gZ'~;;;:_;-fig} 5"_‘§;rf?l;~'~:;|_:¢1:-i=§‘s,=‘.!:i§t-1=!f"Ihis g;-r-ifaltiitfigi-Zlizll :i._-‘§~;1t'i="-=-t=i§‘=| ~*;=='-i.»-Zm‘;-3i>z*j5:l.".'r-=-1-.-i-.; .'_.|‘,.:!.‘..|;_V=. .,|._t. .~ ESI". ,5; If ._,- ipv _;|-IJJJFAQF -Bncll. - 1- :iE;M,'-,_'FA¢32.:~er.4—§t.. ._L; ‘hut l 1-t‘; -.r.a__1_§_.|;

1-=:‘era:t*=fi=‘~.i°. .l=ll‘l'l..e."=..' »..ze-"‘-"*’»li"=5'i=‘ 15¢ ll-"‘ ‘ ‘- -it ‘.~.- -u,§. -9 .":*=eit 5.; -- .4 .Y,; - is '--. 5!, .- 1’-5|T==-fir"-ii- t=i;;; :- t -1". I-15.9 -'<=-»=écs. --_. --3.. . __-..-.7‘.'.I.; _;_:;-'-., ._;-.-_ _:‘_t't:¢; .' ,t ,-.4 _ -;_i"" __"f§ :I_n._ ;-, -L .-.,-"- ;_-' ‘_._; -,'- ,3... - f. 1:-_-_* _-' |-‘ '-at-I‘ ;.::;_> _-<,.¢ :1 , _-,, _;-‘._.--__;-fe ._-_-\--,.- _--..-,3‘; -'.-.'\-.' -{ '__-;.-J-_':',:._.*=_'-;tg;=: 1Jw.-:1‘-tl-L=T¥§:.=~~-sis-s.r-1..L'-F -' - '..!1.-- :-.6 is-:-'.;.I.u--iilisjfs-.-;-F:L-. ::=.-*1’;--.l".i.>-T.-i'.*:.-.-1-¢i!'.i-J Li i‘_.-.1?!’-iii--!.~=:-.1't‘.a-‘==1!§=--"-1-'~t-=.1=e‘i.?e1 1:1 .*i=_=2.-.!;,il~.1i'.-'.'f‘,--LL-ac».--"r~tt%g;tt¢'.$iL51:’ _ . .

1.25 GB-2 GB 32 KB 4KB ‘ ZKB.
.5.".)._'1-

—2GB-4GB ll 64KB“ 4KB 4KB 9
4 GB - 8 GB t ns (nor supported) 4 KB 4 KB *

-8GB—l6GB ns ass 4xs
_ _ . 2 _ , _l l

l6GB~32GB ins 16KB 4xs ‘
1 lA 7 , g g ,

A 32 GB — 2TB ns' nsc 4 KB

a Default sizes under NTFS. Can be changed when disk is formatted.
b 64KB clusters with FATI6 are only supported by Windows 2000 and XP;
° A software patch is available that permits Windows 98 to format drives over 32 GB.

14.2.1 FAT12
The FATI2 file system was first used on IBM-PC diskettes. It is still supported by all versions of
MS-Windows and Linux. The cluster size is only 512 bytes, so it is ideal for storing small files.
Each entry in its File Allocation Tableis l2 bits long. A FATI2 volume holds fewer than 4,087
clusters.

1 4.2.2 FAT1 6

The FATI6 file system is the only available format for hard drives formatted under MS-DOS. It
is supported by all versions of MS-Windows and Linux. There are some drawbacks to FATI6:

' Storage is inefficient on volumes over 1 GB because FATI6 uses large cluster sizes.
' Eachentry in the File Allocation Table is 16 bits long, limiting the total number of clusters.
- The volume can hold between 4,087 and 65,526 clusters.
' The boot sector is not backed up, so a single sector read error can be catastrophic.
' There is no built-in file system security or individual user permissions.

14.2.3 FAT32
The FAT32 file system was introduced with the OEM2 release of Windows 95, and was refined
under Windows 98. It has a number of improvements over FAT16:

~ A single file can be as large as 4 GB minus 2 bytes.

502 Chapter 14 I Disk Fundamentals

' Each entry in the File Allocation Table is 32 bits long.
~ A -volume can hold up to 268,435,456 clusters.
' The root folder can be located anywhere on the disk, and it can be almost any size.
~ Volumes can hold up to 32 GB.
' It uses.a smaller cluster size than FATI6 on volumes holding 1-8 GB, resulting in less

wasted -space.
- The boot record includes a backup copy of critical data structures. This means that FAT32

drives are less susceptible to a single point of failure than FATl6 drives.

14.2.4 NTFS

The NTFS file system is supported by Windows NT, 2000, and XP. lt has significant" improve-
ments over FAT32:

' NTFS handles very large volumes, which can be either on a single hard drive or spanned
across multiple hard drives.

' The default cluster size. is 4 KB for disks over 2 GB.
' Supports Unicode filenames (non-ANSI characters) up to 255 characters long.
' Allows the-setting of permissions on files and folders. Access can be by individual users or

groups of users. Different levels of access are possible (read, write, modify, etc.)
' Provides built—in data encryption and compression on files, folders, and volumes.
' Can track individual changes to files over time in a change journal.
- Disk quotas can be set for individual users or groups of users.
' Provides robust recovery from data errors. Automatically repairs errors. by keeping a trans»

action log.
' Supports disk mirroring, in which the same data are simultaneously written to multiple

drives.

Table 14-2 lists each of the different file systems commonly used on Intel-based comput~
ers, showing their support by various operating systems.

Table 14-2 Operating System Support for File Systems.
f.12iT?1j?éT~_——= — . "_ '— ’:'_ _;', , ’ __ —— L — ~—~—— ————~—--
"',’LI-"..:’.","!f['_1_i'|];.=_|‘.1._11'»"\-;.1-'|,-L ' '-', -;Z '-' - _f ".23. - ‘I .'_‘ .."§-_.} 1 ,. _- {_3f'_\ 1 _-,:.- 3“ '-' ‘ , ' _ ‘ ‘ - _;' -, '-,'_ . ‘.‘ ,'- . -_. _-' ‘ -I . i

\ .|!-d- . . \- 1- f I - . .'I _. h 1 ‘ I‘l , E I’ } I \ -. -... . l i'5"?-_ -; 't.r:'~;. ' ‘ 1";-'-“ '1 - -f5=_p_-_=;. -:j*.j|l 1|.“ . ' ' 1- - l l '
-.. B"-I-“=-' ‘i-i~-1 -- - -' ---<:..-5 =lFl% ll . ‘ ‘ In 1.-_ .n_ ‘._ ___ _ _---' - - -.. -.-- .---._!-_\ _ -,\-I-_ . __>__~ . - , l _, . --,. .l--*3-'-"i-'.=-31,‘:--.=---‘Ft?-ii=*,‘¢.-i‘-""‘-QT. . -, §~?;'-=1»?'-.'.'.-~'=;--J;-.'-‘:_-.';:l;-:*"- I -5 - _-‘::_~-"-i' -1'-,1-_-_-L - ll - _ . - - - - l1| K _|<1_' -.--¢..‘_.u‘_;:-:. _ __| .. - _._» 1 -|._._, .l_5-,;|_.- -I ‘ '-- , _-|;'..__.__ . .--.. l - I l.-ms ns -LI ux -..‘. 7».-as l Win NT 4 XPr - i.e ~.. -.- n- ~* . ~..' 4-_ ..-_ -_-,-1 1 __.|‘-q|-'._=_- __ ..‘_‘.'-..=:, '1,'.. - .-__.' '3' L-|:._I§'._'.}.I_'. ".' .‘.' Jl-‘Sf 1'-_- -.-- ; _- *. .".'.-l 'f_.'.'-. ' '1 '.'-, . - . ,_"-.-.--==.-:-..-_.=.~..--_-.-"‘er-rs-.--e.=r."-i :.".---::. -1:5:-1:-= 1 "~.-=.;,~;-r- . - ‘I ‘ ' . mg,

FAT12 X X ; X X X

FATI6 X X ~ X X , X

FAT32 X X X

, NTFS x x

14.2 File Systems 503

14.2.5 Primary Disk Areas

FATI 2 and FATI 6 volumes have "specific locations reserved for the boo.t record, file allocation
table, and root directory. (The root directory on a FAT32 drive is not stored in a fixed location.)
The-"size of each area is determined when the volume is formatted. For example, a 3 .5-inch, 1.44
MB diskette is divided into the following areas:

i Logical Sector Contents

0 Boot record

l—-I 8 File allocation table (FAT)

I9—32 3 Root directory

33-2,879 Data area I

The boot‘ record contains both a table holding volume information, and a short boot pro-
gram that loads MS-DOS into memory. The boot program checks for the existence of certain
operating system files and loads them into memory. Table I4-3 shows a representative list of
fields in a typical boot record. It should be noted that the exact arrangement of lields varies
between different versions of the operating system.

Table 14-3 MS-DOS Boot Record Layout.

Offset Length Description

O0
O3
OB
OD
OE
IO
I I
I3
I5
I6
I8
IA
IC
20
24
25

\.Jr--~l\JOOLaJ

2
2

I--"-'-l>--l>-l'-JI\JI\-J'—'

Jump to boot code (JMP instruction)
Manufacturer name. version number
Bytes per sector
Sectors per cluster (power of 2)
Number of reserved sectors (preceding FAT #l)
Number of copies ol’ FAT
Maximum number ol’ root directory entries
Number of disk sectors fordrives under 32MB
Media descriptor byte
Size of FAT. in sectors
Sectors per track
Number oi’ drive heads
Number of hidden sectors
Number of disk sectors l'or drives over 32MB
Drive number (modified by MS-DOS)
Reserved

504 Chapter 14 ¢ Disk Fundamentals

Table 14-3 MS-DOS Boot Record Layout. (Continued)

Offset Length Description

2'6 1 Extended boot signature (always 29h)
27 4 Volume ID number (binary)
2B 1 l Volume label
36 8 File-—system type (ASCII)
3E — Start of boot program and data

The root directory is a disk volume’s main directory. Each entry in the. root directory
contains information about a file, including its name, size, attribute, and starting cluster num-
ber. The data area of the disk is where files are stored. The data area can contain both files and
subdirectories.

14.2.6 Section Review

1. (Tme/False): A file system maps logical. sectors to clusters.
2. (True/False): The starting cluster number of a file is stored in the disk parameter table.
3'. (True/False): All file systems except NTFS require the use of at least one cluster to store a

file.
4. (Tme/False): The FAT32 file. system allows the setting of individual user pennissioiis for

directories, but not files-.
5. (True/False): Linux does not support the FAT32 file system.
6. Under Windows 98, what is the largest permitted FATl6 volume?
7. Suppose. your disk volume’s bool‘ record was corrupted. Which file system(s) would provide

support for a backup copy of the boot record?
8. Which file system(s) support 16-bit Unicode filenames‘?
9, Which file system'(s) support disk mirroring, where the same data are simultaneously writ-

ten to multiple drives?
10. Suppose you need to keep a record of the last ten changes to a file. Which file system('s)

support this feature?
ll. If you have a 20 GB disk volume and you wish to have a cluster size <:= 8 KB (tolavoid

wasted space), which file system(s)_ could you use?
12. What is the largest FAT32 disk volume that "supports 4 KB clusters?
13. Describe t_he four areas (in order) of a 1.44MB diskette.
14. On a disk drive forntattedwith MS-DOS, how might one find out how many sectors are

used by each cluster?
15. Challenge‘: If a disk has a cluster size of'8 KB, how many bytes of wasted space will there

be when. storing an 8-,-200-byte file?

14.3 Disk Directory 505

16. Challenge.‘ Explain how NTFS stores sparse files. (To answer this question, you will have to
visit the Microsoft MSDN Web site and look for the information.)

14.3 Disk Directory
Every disk has a root direcror_\-'. which is the primary list of files on the disk. The root directory
may also contain the names of other directories, called subdirecrories. A subdirectory may be
thought of as a. direc.tory whose name appears in some other directo'ry—-the latter is known as the
parent directory. Each subdirectory can contain filenames and additional directory names. The
result is a treelike structure with the root directory at the top, branching out to other directories at
lower levels. An example is shown in the following-"figure:

(root)

/SK /JAvA&\ /P\us souticr crasses SOURCE RUN sooner

Each directory name and each file within a directory is qualified by the names of the-directories
above it, called the path. For example, the path for the file PROGI .ASM in the SOURCE direc-
tory below ASM is

C : \ASM\SOURCE\ PROG1 . ASM

Generally, the drive letter can be omitted from the path when an input-output operation is carried
out on the current disk drive. A complete list of the directory names in our sample directory tree
follows:

C:\

\ASM
\ASM\LIB
\ASM\SOURCE
\JAvA
\JAvA\cLAssEs
\JAvA\soURcE
\cPP
\CPP\RUN
\CPP\SOURCE

Thus, afile specification can take the form of an individual fiiename or a directory path followed
by a filename. It can also be preceded by a drive specification.

14.3.1 MS-DOS Directory Structure
If we tried to explain all the various directory formats available today on Intel-based computers,
we would at least have to include Linux, MS-DOS, and all the versions of MS-Windows.

506 Chapter 14 - Disk Fundamentals

Instead, let’s use MS-DOS as a basic example and examine its structure more closely. Then we
will follow with a description of the extended filename structure "available in MS-Windows.

Each MS-DOS directory entry is 32 bytes long and contains the fields shown in Table 14-4.
Thefiiename field holds the name of a file, a subdirectory, or the disk volume label. The first byte
may indicate the file’s status, or it may be the first character of a filename. The possible status val-
ues are shown in Table 14-5. The 16-bit srarririg cluster" number field refers to the number of the
first cluster allocated to the file, as well as its starting entry in the file allocation table (FAT). The
file size field is a 32-bit number that indicates the file size, in bytes.

Table 14-4 MS-DOS Directory Entry.

1Hexade_ci|'ha'l1.0f_fset Field Name f Format
O0-07 ‘ Filename ASCII

08-DA 1 Extension ASCII
OB Attribute 8-bit binary

0C- l S Reserved by MS-DOS

16-17 Time stamp 16-bit binary
_|

13-19 Date stamp , 16-bit binary
r

ZA-IB Starting cluster nunrbjer 16-bit binary

1C-1F File size 32-bit binary

Table 14-5 Filename Status Byte.

Status Byte gl Description
00h The entry has never been used. W

‘ Olh If the -attribute byte = OI-Th and the status byte = Olh, this is the last long file- j
l name entry. ‘

05h Thefirst character of the fiiename is ‘actually the E5h character (rare).

E511 i The entry contains a fiiename, but the file has been erased.

2Eh A Theentry (.) is for a directory name. ll’ the second byte i_s also 2Bh (..), the i
y cluster field contains the cluster number of this di1ectory’s parent directory.

4!-ih First long fiiename entry: If the attribute byte = OFI1, this marks the first of
multiple entries containing a single long filename. The digit n indicates the
number of entries used by the filename.

14.3 Dlsk Directory 507

Attribute The attribute field identifies the type of file. The field is bit-mapped and usually con-
tains a combination of one of the values shown in Figure 14-3. The two reserved bits should
always be 0'. The archive bit is set when a file is modified. The subdirectory bit is set if the entry
contains the name of a subdirectory. The volume label identifies the entry as the name of a disk
volume. The systemfile bit indicates that the file is part of the operating system. The hiddenfile
bit makes the file hidden; its name" does not appear in a display of the directory. The read-only
bit prevents the file from being deleted or modified in any way. Finally, an attributevalue of 0Fh
indicates that the current directory entry is for an extended filename.

— (reserved, 0)

— (reserved, 0)

e ~ archive bit

subdirectory

e volume label

r "system file

r'1'F1'|‘| ll]: M
Figure 14-3 File Attribute Byte Fields.

Date and Time The date stamp field indicates the date when the file was created or last
changed, expressed as a bit-mapped value:

I-,4 -.i,'g'."‘;_.. ix’ ..' .._ 17:. '_ , --.'_.aamamma wemmm:='.* .-:..\.¢1,;---. =r-:- --~ 1;,-1» I,-_-_-_g§--=-1. -.-: -it-5-__.;-.__

year month day

The year value is between 0 and 119, and is automatically added to 1980 (the year the IBM-PC
was released). The month value is between 1 and 12, and the day value is between 1 and 3.1.

The time stamp field indicates the time when the file was created or last changed, expressed
as a bit-mapped value. The hours may be 0-23, the minutes 0-59, and the seconds '0-29, stored as
a count of 2.-second increments:

15 0
1+-1..-.1 :-_", =-:'!f_-' ,.,T;* T * .-;.- ,.,. * .- _ -. _.,,
iiiri :-:1~:-'.=1 ;;.=;§t;:

hours minutes seconds

.-_‘:- 1-

508 Chapter 14 - Disk Fundamentals

For example, a value of 10100 equals 40 seconds. The following indicates a time of
14:02:40: ~

01ll000001010100
iihours -—| l?minutes——l |— seconds -—l

Let’s examine the entry for a file named MAIN.CPP, shown in the following figure. This
file has a normal attribute and its archive bit (20h) has been set, showing that the file was modi-
fied. Its "starting cluster number is .002.0h, its size is 000004EEh bytes, the Time field equals,
4DBDh (9:45:58_), and the Dare field equals 247Ah (March 26, I998):

Filename Extension F Attribute
l if l .l I I l I l

4D 41 49 4E 20 20 20 20 - 43 50 50 20 00 22 E8 Si] MAIN CPP .
AS 24 as 2'4 no '00 an 413" 7». 24 20 00 1:5 04 00 on .$.$...iviz$.....

I T l I I l I F l t - . I. .---l
Tirnc Date 31a;-ting File size

Cluster

In this figure, the time, date, and starting cluster number are 16-bit values, stored in little endian
order (low byte, followed by high byte). The File size field is a doublewotrl, also stored ‘in little
endian order.

14.3.2 Long Filenames in MS-Windows
In MS-Windows, any fiiename longer than 8 + 3 characters, or any filename using both upper-
case. and lowercase. letters is assigned multiple directory entries. If the attribute byte equals
0Fh, the system looks at the byte-at offset 0. If the upperdig-it = 4, this entry begins a series of
long fiiename entries. The lower digit indicates the number of directory entries to be used by
the long filename. Subsequent entries count downward from n—l to 1, where n = the number of
entries. For example, if a fiiename requires three entries, the first status byte will be. 43h. The
subsequent entries will be status bytes equal to 02h and 01h, as may be seen in the following
table:

Status Byte Description
43 Indicates that three entries are used for the long fiiename, total,

and this entry holds the last part of the filename. I

O2 Holds the second part of the filename.

O1 Holds the first part of the filenante.

14.3 Dlsk Directory 509

To illustrate, let‘s use a file having the 26-character filename ABCDEFGHIJKLIVL
NOPQRSTUV.TXT and -save it as a text file in the root directory of drive A. Next, we run
DEBUG.EXE from the Command prompt and load the directory sectors into memoiy at offset
I00. This is followed by the D (dump command): '

L 100 '0 13 5 (load sectors 13h - 17h)
D 100 (dump offset 1_00 on the screen)

Windows creates three directory entries for this file. as shown in Figure l4-4.
Let’s start with the entry at 0lC0h. The first byte, containing 01, marks this entry as the

last of a sequence of long fiiename entries. It is followed by the first 13 characters of the file-
name “ABCDEFGHIJKLM". Each Unicode character is 16-bits, stored in little endian order.
Note that the attribute byte at offset 0B equals 0F, indicating that this is an extended fiiename
entry (any fiiename having this attribute is automatically ignored by MS-DOS).

The entry at 0lA0h contains the final I3 characters of the long fiiename, which are
“NOPQRSTUV.TXT.”

At offset 0lE0h, the auto-generated short filename is built from the first six letters- of the
long fiiename, followed by --I , followed by the first three characters after the last period in the
original name. These characters are l-byte ASCII codes, The short fiiename entry also contains
the file creation date and time, the last access date, the last modified date and time, the starting
cluster number, and the file size. Here is the information displayed by the Windows E.t'pl0l‘€t'
Property dialog, which matches the raw directory data:

first long en try
mg; “mg em,-y attribute. (long entry)

auto ylztizs u*ti*4s oo 5e org‘ 51 too 5;2_g0ioFqr-1 00 2v|fit;'6] Bfl’,Q,P,Q,,R,,,'$_
0130 [541 on 55 coo 5e 00 525: on 54 ooloo oo|5s co 54 out '1'.U.v...'1'...x.'1'.

o1co |7;I1l:tiil41 as 42 ottW45, up 44,00 5455 ooflgrjl 00 37546 on .n.e.c.o.s...-2'.
011:0 |47 on 4*s**tm 49 00 4n 00 4s no 0'0 |p;gi]|4c no 4o oU| e.H.:r.J.1t...L.t-:t.

015:0 41 42 43 44 45 46 Zr: 31 54 se 54 20 00 li';t>;'e';*.£#‘r.-'lt'B7=;t=,77i5l‘;=; nncnee-1'1'x'1' ..xb
also entree: Haitian 00 noltsniesll:em;;1=r2el|ioast:?6| llT5*2;'iJilli0;~IL=‘,~'ilIliiiiiifi I +°+ - -’I~ 0+ ~ ~F-- ~ -

I I ’create date last access . last modified: file size create time
date I date

last modified time first cluster

Figure 14-4 Sample Disk Directory.

l Sec the DEBUG tutorial on this book's Web site.

510 Chapter 1'4 -- Disk Fundamentals

J ' .- '. --'-2. ' '7 - -2. . ' ’ . - -<:,._-.:".-I-r:"~":'"'.:r;*':;- --‘r-='=1;=#;
,"-_t-., "1" "-4':‘F":‘ ,.. _ 'i- , -_';' Q, _ ';,.,_. .- "ti-I-‘ 5,‘-'§j7i%_~\'*,?'=fF;.-QT?-H{'?|"_"f,_',,_|>L,E'3i";

. _= ~“'.", - -.v "ii 7*“F»3iéi<" flfiafibyte‘’f”i§‘t{5”"‘ '" ~*@113 .21 1- . -- ... we-;;=:1- fie":-.v'“§,§ai¢*1-§==*» 1;.-= ‘:=-=3 =32 '--5-in 's41=.\$ "1 wt. =-= =*._"fi'~13~-at‘-“'11-" a';<*.e¥‘i»-é +1v'E~~a*e1-=--=v=' -""' -‘ T?_-;="-.'_.‘ ¥-' 4 ; “r:I“~;; ' _‘_J§:*' it
11-I-5., '{l"'3‘\rlIl-I" 1 __ JP?" '-' {-51- ‘_h'_"" ; ‘l""'

-_ -J _.r;.-.* _- ' ...
" -Q. |:,__L;:_‘_'n!_'-n

.._:€,_5gg:,;.- '

=, ‘xv-K. 5%ifiltfla _iM":"":\'

ff. *3:itit
fiiis.1

1"

J3
4‘_‘i'|-1 3v‘Q ._"'"t-'5:0%it-I-* ~.*-‘edi‘i;--,'

Re
M‘i‘1;§5t;'19,-I‘-v‘

-"-7}‘ '1
,1»:

1 :?"~§?'r=..-- <'l"5i¢?»!53'§F§ tie ..:.§*M h \l.1_:‘1i‘;'4-*11“nE‘ * '_‘g' Iii‘ Mi‘ 1 ,

5 - ems“
.- -H.

_f._n-_\ J1.

,_ -... __ r ‘F49 ""' 3. -t. ‘-.-: 1- fig".-ll--*mi ~ “»g.,- *’*'i‘a .=“r=- if ea.» ~= " ~ ...-:~

. ‘I,., Z: |LF!I‘"| _s'.,._:_j.;-"'q_;a-.1,.352‘'-':1".'|
-ell:-‘-.;;‘_'.;_I.113

J-1- '-1"E1.1“.- ‘..é'fjI-w-t.u;-L-5Cr:.K:--1 -e1T.@..a‘§':,'

llE"1..,s%‘tFé§I€§~'3::\%1."

41'!-{lg-._t..'1

¢='l-."..- 5 15we.1 1* 1;". 1-I-I‘_‘-:'w*"‘“ ' S}; _:=- ‘:--. -5'1‘. . ,_:._"-'|:- |If."|"I':-“-_'5§"__‘-‘ Q, ‘.9

J5?" ""'*-:11'*"‘-3:3?--‘,=*==~':-?'~‘E’$‘-*7*g‘*=’-.~*‘~“=.*i~~i1*i_‘?',.. S . @- a - =»- _:..4, -. -**~‘-
é"° "‘ "-~" T§.=.='l. =5‘ .=i1."I.-. " _ ,s:'=-.-_i.\...,; *.'i‘j“-75_.='-' :'

-. , . ' ' 3* *.-‘-‘a:.“"..-r~?»I-- if. '1’

‘ .11 .

>- -.- ‘I - - ' "‘- "I-““..: . I-Q "'..\v""‘1 P ' --. ‘ 1' " p' "' ‘tr, ,'(:'- -- .71 1"" --"-'-iii:|_-kg, . ._ »_. -__ _:.-__=_~,.- ;.;_..- t ';..-_- _~ _,1,_. 1-1;-

._ ,_., -'m:”<;e; -I-'=‘;,";-I9,-.=-:-.-_-1=,\._--.r1r~;-.‘ik-.~.f."~*~“.*F;'.-e1=a;.3==~:i;-;i.-=-..':&='=—;e"g- ;¢¢:q',=.
I" -E_J_1-£1 ‘ 1!;-_ - if" -'fLr'-i;Ii5.i,'L“' :f§1—,|-=!'-;-:&-'-,-'1§=-

t »»"='*~ E . _ Pk:-E.- " 2
I‘ I '7'” '=-bI;t1:_'; -' ..;’-'.;-:'.-.'_‘ ;’_-; - '

5'
“ "Wife-iii:J __ 5'.... t,_,_

v I -i '.,_;':'- '1";."-.=:&§-1.‘:i.‘;; \-'2‘-ii-. 3":¢ ,1 I, -3:.»;-.=-t- -. .- ---
- . , , '\-".r"*fe:' ""'.:§=1't. ‘IE-'-511-, -,1 ->31-.1 '--'-.-6315*"-5'-'.-1'?-‘ ‘-I-3'1

. ,‘__\ ‘W l“ 5 ‘I J-F; L!‘-I-' \bw-y F"1 "1 1.;-H-H" ;-Ii!-,'\\‘;;hw fir.I-3 "-'»-' I - - -" ". ‘_ -' I.» 1_.-.“ 1., ~;* -51 --7. ,_ir- - :0:-'» .'-- ..-:--: " _aaa » ea, .-1.. » a€~J.==:"£=:a_»1~r'_,_.. K ,1“ ~ ., .:::,. ._, Y *=~*----_:'.—;,;—;_-,.,..,,.,...,,=,_-.,.--. .-., ,---- -
‘-Li‘-E9 _,-1 ,- - -"'i' ‘F33 1, »-.\-‘~w-“ 51') lg ii. "l'I!‘.'.._-3'7.;;'_=%'.¥'v.l_;_--J_.'1"-1.; -_:I -.‘,-E|'l_}:_»,.,*.Y\-‘-";"5‘.-1<'::- “-- ' \-5:; _,{" ---= H -»».-aw-..' ;3.g-"1¢-1-*"--'»'-.*- E.-‘it -*-~.'r.-'-.‘.'‘$31.: =5-:,'g~'i5% - 5---H-»-1 re an “i P‘-*et'~='%-.3-"-=‘a-.1» - -- 4- -. —.- -— 1: : ' -» 1,.‘-*-1. -=- it ..-:5,' "-~ H » Int - 1a -1*..~;~:-*=‘~"=*.@*»l‘“<»1 ' .. - ' ‘ -- - .-. .,..'-. _ _ .-_ ' , . 1.1,-_ ‘_:"" ~--v. _. M} \f,.g-:-3:1*. ,5, '; ..-;-_h,»§‘*.'.-i;1'=-,, , --="_ ' . , '._.'_, __ 1,‘ . -. '_».-.""1.*~.-3 Y‘-‘."i"\r,’§:.‘.=ii‘~;-,Li\gt'i:.~r3-9_-:._fl-'.i\'E»a¢I'5E§$l-.-.‘»1‘-‘S-.\'.|r a. . _ .~.:--rs:-f = '-' _ .11} ; ..' -;'.\¢-‘- ";i.*.='t~;--‘-*1"‘:-.==--I~.--"-:.~.-=1-‘-"£25-;.-glgrg»§§~.;%§~2-J '1E;-'-.14%? “T-" $117‘-:5?-F?-"iiUL

14.3.3 File Allocation Table (FAT)
As we’ve mentioned before, the FAT12, FATI6, and FAT32 file systems use a table called tliefile
allocation table (FAT) to keep track of each file’s location on the disk. The FAT is a map of all
clusters on the disk, showing their ownership by specific files. Each entry corresponds to a clus-
ter number, and each cluster contains one or more sectors. In other words, the 10th FAT entry
identifies the 10th cluster on the disk, the 11th entry identifies the 11th cluster, and so on.

Each file is represented in the FAT as a linked list, called a cluster chain. Each FAT entry
contains an integer that identifies the next entry. Two cluster chains are shown in the following
diagram, one for Filel, and another for File2:

Filel: starting cluster number = 1, size = 7 clusters

I I J l I l I I
it it i 9 10 11 12 13 14 15 16

File2: starting cluster number = S, size = 5 clusters

From this diagram, we see that Filel occupies clusters l, 2, 3, 4, 8,-9, and 10. File'2 occupies
clusters 5, 6, 7, 11, and 12. The eof in the last FAT entry for a file is a predefined integer value
that tells the OS that the final cluster in the chain has been reached.

When a file is created, the operating system looks for the first available cluster entry in the
FAT. Gaps often occur because there are not enough contiguous clusters to hold the entire file. In
the preceding diagram, this. happened to both Filel and File2. When a file is modified and saved
back to disk, its cluster chain often becomes increasingly fragmented. If many files become frag-
mented, the disk’s perfonnance begins to degrade because the readlwrite heads I_11l.lSlI jump between

"4=1-. Pd DJ -l'-‘- U‘! OK '--J Q9ii...

P-‘ P0 U} -F U’! CB

*5!-3“?
O0 \O l-"'-l C3 i—" i—" W5 P0 i—" Ll-3 I-4- -F W5 U‘! l'—"' OH

1 ,4 Reading and Writing Dlsk Sectors (7305h) 5114

different tracks to locate all of a file's clusters. Most operating systems (including MS-Windows)
supply a built-in disk del’ragmenting utility.

14.3.4 Section Review

. (‘Fuse/False): A file specification includes both a file path and a file name.

. (‘line/False): The primary list of files on adisk is called the base di'recr0r_v.

. (True/False): A file’s- directory entry contains the fileis starting sector number.
'Ii'ne/False): The MS-DOS date field in a directory entry must be added to l980.

. I-low many bytes are used by an MS-DOS directory entry‘?
. Name the seven basic fields of an MS-DOS directory entry (do not include the reserved field)_.
. In an MS-DOS filename entry, identify the six possible status byte values.
. Show the. format oi’ the time stamp field in an MS-DOS directory entry.
. When along lilename is stored in a volume directory (under MS-Windows). how is the first

long filename entry identified?
l0. If a filenamc has l8 characters. how many long filename entries are required?
l l. MS-Windows added three new date fields to the original MS-DOS file directory entry. What

are their names‘?
12. Chafleng-e.' illustrate the file allocation table links For a file that uses clusters 2, 3, 7", 6, 4, 8,

in that order.

14.4 Reading and Writing Disk Sectors (7305h)
INT 2 l h, Function 730511 (absolute disk read and write) lets you read and write logical disk sec-
tors. Like all INT instructions, it is designed to run only in l6-bit Real-address mode. We will
not atttempt to call [NT 2lh (Or any other interrupt) from Protected mode because of the com-
plexities involved.

Function 7305h works on FAT12, FATl6, and FAT32 file systems, under Windows 95,98,
and Windows Me. It does not work under Windows NT, 2000, or XP, because of their tighter
security. Any program permitted to read and write disk sectors could easily bypass lile and direc-
tory sharing permissions. When calling function 7305h, pass the following arguments:

‘ AX 730511

DS:BX Segment.'ol'fset of a Dl_SKlO structure
variable ,

CX 0FFFFh

DL Drive number (0 = default. I = A. 2 =
B. 3 = C.etc.)

Fr " "

\ Si Rcadlwritc flag
4‘__

512 Chapter 14 1 Disk Fundamentals

A DISKIO structure contains the starting sector number, the number of sectors to read or
write, and the segmentfoffset address -of the sector buffer:

DISKIO STRUCT
startsector DWORD 0
numSectors WORD l
bu£ferOfs WORD buffer
bufferseg WORD @DAIA

DISKIO ENDS

starting sector number
number of sectors
buffer offset
buffer segment

The following are examples of an input buffer to hold the sector data, along with a DISKIO
structure variable:

.data
buffer BYTE 512 DUP(?)
diskstruct DISKIO <>

When calling Function 73-05h, the argument passed in SI determines whether you want to
read or write sectors. To read, clear bit 0; to write, set bit 0. In addition, bits 13, 14, and 15 are
configured when writing sectors using the following scheme:

‘Bits 13-1-5 § Type of Sector \

000 Otheflurlknown

001 FAT data

010 directory data

01 l normal file data

The remaining bits (1 through 1'2) must always be clear.

Example 1: The following statements read one or more sectors from drive C:

m.OV
HIQV
mov
ITIOV

mov
int

ax,7305h
cx,0FFFFh
dl,3
bx,OFFSET diskStruct
ei,o
21h

absolute Read/Write
always this value
drive'C
DISKIO structure
read sector

Example 2: The following statements write one or more sectors to drive A:

mov
mov
mov
mov
mov
int

ax,7305h
cx,0FFFFh
dl,1
bx,OFFSET diskStruct
si,600lh
21h

absolute Read/Write
always this value
drive A
DISKIO structure
write normal sector(s)

14.4 Reading and Writing Dlsk Sectors (7305h)

14.4.1 Sector Display Program
Let’s put what we’ve learned about sectors to good use by writing a program that reads and CitS-
plays individual disk sectors in ASCII format. The pseudocode is listed here:

Display heading
Ask for starting sector number and drive number
do while (keystroke €> ESC)

Read one sector
If MS-DOS error then exit
Display one sector
Wait for keystroke
Increment sector number

end do

Progrzmz Listing Here is a complete listing of the Sector-16.asm program. It works under W -
dows 95, 98, and Me, but not under Windows NT, 2000, or XP because of their [I2i'1ll61' security
relating to disk access:

TITLE Sector Display Program (Sectorl6.asm)

Ii

INCLUDE Irvine16.inc
Setcursor PROTO, row:BYTE, col:BYTE
EOLN EQU <0dh,0ah>
ESC_KEY = 112.11
DATA___ROW = 5
DATA_COL = o_
SECTOR_SIZE = 512
READ_MODE = 0
DISKIO STRUCT

startsector DWORD ?
numSectors. WORD 1
bufferOfs WORD buffer
bufferSeg WORD @DATA

DISKIO ENDS

.data
driveNumber BYTE ?
diskstruct DISKIO <>

0
I

I
I

I
I

‘I40‘\I

Demonstrates INT 21h function 7305h (ABSDiskReadWrite)
his Realemode program reads and displays disk sectors.

for Function 7505h

starting sector number
number of sectors
-buffer offset
buffer segment

buffer BYTE SECTOR;SIZE DUP(0),0 ; one sector

curr;row BYTE ?
curr;col BYTE ?

; String resources
s’c.rLine srcrs sons, 79 DUP(0C4h) ,EOLN, 0
strHeading BYTE “Sector Display Program (Sector16.exe)"

srrn EOLN,EOLN, 0

Chapter 14 ~ Disk Fundamentais

strAskSector BYTE "Enter starting sector number: “,0
strAskDrive BYTE "Enter drive number (1=A, 2=B, “

BYTE "3=c, 4=n, 5=E, 6=F): ",0
strCannotRead BYTE EOLN,“*** Cannot read the sector. "

BYTE "Press any key...", EOLN, 0
st.rReadingSector \

BYTE "Press Esc to quit, or any key to continue..."
BYTE EOLN,EOLN,"Reading sector: ",0

code
main PROC

L1:

L2:

L3:

ax,@data
ds,ax
Clrscr
-dx,0FFSET strHeading ;
Writestring ;
AskForSectorNumber

mov
mov
call
mov
call
call

call Clrscr
call ReadSector ;
jc L2 ;
call Displaysector
call ReadChar
cmp al,ESC_KEY ;
je
inc
jmp
mov .dg,OFFSET strCannotRead ;
call Writestring
call ReadChar

call
exit

C"'C"i—‘Ln

diskStruct.startSector _

Clrscr

main ENDP
I
I
iiiiiiiiiiiiiiiiiilnn-iian-opniii-—---11111-—-iii-—-lip--—-ii;

AskForSectorNumber PROC
0
I

I
I

HI

QI

0
I

0
I

display greeting
ask user for...

read a sector
quit if error

Esc pressed?
yes: quit
ext sector
epeat the loopF133

error message

Prompts the user for the starting sector number
and drive number. Initializes the startSector
ield of the DISKIO structure, as well as the

driveflumber variable.
|'h

pusha
mov dx,OFFSET strAskSector
call Writestring
call ReadInt
mov diskstruct.startSector,eax
call Crlf

14.4 Reading and Writing Disk Sectors (7305h)

mov 'dx,OFFSET strAskDrive
call WriteString
call ReadInt
mov driveNumber,al
call Crlf
P°Pa
ret

AskForSectorNumber ENDP

. lZZZZlXZ1 ZZZIIiiZiiIZIZZZZZZZIZZZZZZZZIiZiZlXZIIIZZ I—u—I
I

ReadSector PROC

WW‘\Q‘\I eceives: DL = Drive number
F

‘\Q‘\I

error code.
‘\I‘\I

pusha
mov
mov
mov
mov
mov
int
P°Pa
ret

ReadSector ENDP

ax,7305h
cx,-1
dl,driveNumber
bx,OFFSET diskstruct
s :1‘. , READ_MODE
21h

0
I

0
I

0
I

‘HI‘HID

QI

F ¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢$1

DisplaySector PROC
F
F
F
; control codes.
F
F
F

mov dx,OFFSET strHeading ;
call Writestring
mov eax,diskStruct.startSector ;
call WriteDec
mov dx,OFFSET strLine
call WriteString
mov si,OFFSET buffer
mov curr_row,DATA;ROW
mov curr_col,DATA;QOL
INVOKE SetCursor,curr_row,curr_col

I
I

0
I

I
I

Receives: nothing. Returns: nothing.
Requires: buffer must contain sector data.

eads a sector into the input buffer.

Requires: DiskIO structure must be initialized.
Returns: If CF=0, the operation was successful;

otherwise, CF=1 and AX contains an

ABSDiskReadWrite
always -1
drive number
sector number
ead mode
ead disk sector|"i|'1

Display the sector data in <buffer>, using INT 10h
BIOS function calls. This avoids filtering of ASCII

display heading

display sector number

horizontal line

point to buffer
set row, column

WW Chapter 14 ~ Disk Fundamentals

mov cx,SECTOR_SIZE
mov bh,O

L1:push cg
mov ah,0Ah
mov al,[si]
-mov cx,1
int 10h
call MoveCursor
inc si
pop cx
loop L1
ret

Displaysector ENDP

: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~-
MoveCursor PROC

E

loop counter
video page 0
save loop counter
display character
get byte from buffer
display it

point to next byte
restore loop counter
repeat the loop

1-nn-n-Q40-on-no-on-no-0-1-we-to-0-u-r-u-r-I-we-to-0

; Advance the cursor to the next column,
; check for possible wraparound on the screen.
94-.4-.¢-sq-.¢-sq-.1-Q-04¢-sq:in-so-so-s-I-rte-so-so-so-01¢-sq-Q-0-on-in-so-01...-0-on-s

"cmp curr_col,79
jae‘ Ll
inc curr_col
jmp L2

Ll:mov" curr_col,0
inc curr_row

Q40-o_0-0-1-ra--|--u-r-1-r-1-we-A-1-r-1-rq

last column?
yes: go to next row
no: increment column

next row

L2:INVOKE Setcursor,curr_row,curr_col
ret

MoveCursor ENDP
U 1-1--.1-1--.4-.4-.—‘--we-we-we-0-pro-@040-we-at-0-we-we-we-we-an-Q-inn-.4-.¢_._.

Setcursor PROC USES dx,
row=BYTE,.col:BYTE

Q-
I’

; Set the screen cursor position

mov dh, row
mov dl,_col
call Gotoxy
ret

Setcursor ENDP
END main

The core of the program is the ReadSector procedure, which reads each sector from the
disk using INT 21h Function '73 05h. The sector data are placed in a buffer, and the buffe1 rs d1s
played by the DisplaySector procedure.
DisplaySect0r Procedure Most sectors contain binary data, and if INT 21h we1e used to d1s-
play them, ASCII control characters would be filtered. Tab and Newline characters, for example,

an.-.4-.0-ran-an.-.4-.4-.4-.¢_¢-.4-.0-ra--prn-sq-.1-¢_¢_¢-.

an;-in-in-sq-.¢-in-sq-.¢-sq-.¢-in-sq-.¢-in-;¢_¢-s-prn-;¢_¢-sq-.

14.5 System-Level Fiie Functions 517

would cause the display to become disjointed. Instead, it’s better to use INT 10h Function 9 (see
Section 15.3.3), which displays ASCII codes 0-31 as graphics characters. Since INT I.0h Func-
tion 9 does not advance the cursor, additional code must be written to move the cursor one col-
umn to the right after displaying each character. The SetCurs0r procedure simplifies the calling.
of Gotoxy from the Irv'inel6 library.

Variations There "are. many interesting variations that could be created from the Sec'r'0r Display
program. For ex-ample, you could prompt the user for a range of sector numbers to be displayed.
Each sector could also be displayed in hexadecimal. You could also let the user scroll forward
and backward through the sectors using the PageUp and PageDown keys.

14.4.2 Section Review

l. (True/False): You can read sectors from a hard drive using INT 21h Function 7305h under
Windows Me, but not under Windows XP.

2. (Tine/False): INT 21h Function '7305h reads one or more disk sectors only in Protected
mode.

3. Which input parameters. are required by INT 21h Function 7305h?
4. In the.Sector Display Program (Section 14.4.1), why is Interrupt 10h used to display

characters‘?
5. Challenge: In the Sector Display Program (Section 14.4.1), what would happen if the start-

ing sector number was out of range?

14.5 System-Level File Functions
In Real-address mode, INT "21h provides many useful functions (Table 14-6) that create and
change directories, change file attributes, find matching files, and so forth. These functions tend
to be less available in high-level languages. When calling any of these services, the function
number is placed in AH or AX. Other registers contain additional values passed to MS_-DOS..

Table 14-6 Selected INT 21 h Disk Services.
‘ -'-. ""-. '-.-‘~: tr-1"-" 1.1: -- .| -:'- :1. .9" .--. - -I--‘.;- .. T17»1"_,£"'lq__ "IL.i_§l |¢lL.,1 '1 1 | .,_| .I' t ' .. .-'11." -‘=3-‘.-=.ll;=-&-'1..;;;1-'t--;- 1»;-‘:-5-7!? -.-‘ .*;_-I- Ir--.;. iii‘-;f'1~;--,1-_-i;_"j 7-;-113.3;-;""l'a "-..=" -;--'-23;‘:-.'-t-:1 -. -.-;g;.-;‘-';-;-_ .F.--.~:-

-",' ' , '1 |' 4-”: u',-f- I:-,! -,_-., -'- l'_'l‘:=" :' 'TI’.’?L".. '.:'. "._‘:'.<
. 'I'.',‘ _|'{ , __ I, : : .,, , 1' i. (,.'.F'l;‘iT_;‘:."f'|"_;1|'.' .' :1 '."r;‘-2 it ,: -' _ _ I‘-C_",".'fi.:;.; 1' _ ‘:3, _ '
i 11- 3| |- '.|_.' '3 gr *3 vi .- _ .11 _‘ (_-;- ._;- '-:,';.l_ _ 1 - 1 :=|._»:'- _ .-: _ _-.' 2 - -=.-:- -'- ‘rt .' .: ' ' '. _ _-_-__,__ _ 1 . -'__l§‘?"'-'l’i'i:}'i'Pii:'I°.i‘I:'Pi§i§‘I'g§'§*7{Ir*i?:'Ii’. 4' 5'-!-1.‘.-"F-._=.i+i'.’€=E!’:-!.>5i:3T.-itiiiéii-11*?-I‘1'~:-: '»?'-'|.’--7-:- 1" ' " ‘ .-....L:' '- J

0Eh i Set default drive
l9h Get default drive

7303h , Get disk free space
39h § Create subdirectory
3Ah Remove subdirectory
3Bh i ‘Set current directory
4-lh Delete file
43h Get./set file attribute
47h Get-current directory path

:.‘
__2

}.
_‘J.

f..I 4:‘.
.-I..-

-'-:

Chapter 14 ' Disk Fundamentals

Level
SectorsPerCluster
BytesPerSector
AvailableClusters
TotalClusters
AvailablePhysSectors
TotalPhysSectors
Avai1ableA1locationUnits
TotalAllocationUnits
Rsvd

Table 14-6 Selected INT 21 h Disk Services. (Continued)

5 Function Number Function Name

, Rename file
Gelfset file date and time
Get extended error information

l

‘ Find first matching -file
Find next matching file-

14 5 1 Get Disk Free Space (7303h)
INT 21h Function 7303h can be used to find "both the size of a disk volume. and how much
flee CIlSl(space is available. The information is returned in a -standard structure named
ExtGetDskFreSp.cSt-rue, as shown b.elow:

ExtGetDskFreSpcStruc STRUC
StructSize

ExtGetDskFreSpcStruc ENDS

WORD

WORD

DWORD

DWORD

DWORD

DWORD

DWORD

DWORD

DWORD
DWORD

DWORD DUP (?)

Let s take a detailed look at a few commonly‘ used functions. A more detailed list of MS-DOS
interrupts and their descriptions can be found in Appendix C.

(A copy of this structure is in the 1rvz'neI6.inc file.) The following list contains a short descrip-
uon or each field:

StructSize: A return value that represents the size of the ExtGetDskFreSp'cStruc struc-
ture, in bytes. When INT 21h Function 7303h (Get_ExtFreeSpace) executes, it places the
structure-size in this member.
Level: An input and return level value. This field 1nust be initialized to zero.
SectorsPerCluster: The number of sectors inside each cluster.
BytesPerSect0r: The number of bytes in each sector.
Ava1lableClusterst The number of available clusters.
T0talClusters: The total number of clusters on the volume.

14.5 System-Level Flle Functions 519

' AvailablePhysSectors: The number of physical sectors available on the volume, without
adjustment for compression.

- T0talPhysSect0rs: The total number of physical sectors on the volume, without adjust-
ment for compression.

' AvailableAll0cati0nUnits_: The number of available allocation unit-s on the volume, with-
out adjustment for compression.

' T0talAll0cati0nUnits: The total number of allocation units on the volume, without adjust-
ment for compression.

' Rsvd: Reserved member.

Calling, the Function When calling INT 21h Function 7303_h,_ the following input parameters
are required:

~ AX must equal 7303"h.
- ES:DI must point to a ExtGetDskFreSpcStruc variable.
- CX must contain the "size of the ExtGetDskF1'eSpcStruc variable.
' DS:DX must point to a null-terminated string containing the drive name. You can use the

MS-DOS type of drive specification such as (“C:\”), or you can use a universal naming
convention volume specification such as (“\\Serve'r\Share”).

If the function executes successfully, it clears the Carry flag and fills in the structure. Oth-
erwise, it sets the Carry flag. After calling the function, the following types of calculations might
be useful:

- To find out how large the volume is in kilobytes, use the following formula: (TotalClusters
* SectorsPerCluster * BytesPerSector)/ 1024.

- To find out how much free space exists. in the. volume, in kilobytes, the formula should be:
(AvailableClusters * SectorsPerCluster * BytesPerSector)/ 1024.

14.5.1.1 Disk Free Space Program
The following. program uses. INT 21h Function '7303h to get free space information on a FAT-
type drive volume. It displays both the volume size and free space:

TITLE Disk Free Space (DiskSpc.asm)

.= This program produces meaningful output under Windows
; 95, 98, and Me, but not under Windows NT, 2000,
; or XP.

INCLUDE Irvinel6.inc
.data
buffer ExtGetDskFreSpcStruc <>
driveName BYTE "C:\",0
strl BYTE "Volume size (KB): ",0
str2 BYTE "Free space (KB): ",0
str3 BYTE "Function call failed.",0dh,0ah,0

Chapter 14 ~ Disk Fundamentais

.code
main PROC

mov
mov
mOV

mov
mov
mov
mov
mov
int
jc

mov
call
call
call
call

mov
call
call
call
call
jmp

error:
mov
call

quit:
exit

ax,@data
ds,ax
es,ax

buffer.Leve1,0
di, OFFSET buffer
cx, SIZEOF buffer
dx, OFFSET DriveName
ax, 7303h
21h
error

dx,OFFSET strl
WriteString
CalcVolumeSize
WriteDec
Crlf

dX,OFFSET str2
WriteString
CalcV0lumeFree
WriteDec
Crlf
quit

dX,OFFSET str3
WriteString

main ENDP

| _ _ _ _ __-
-I

Calcvolumesize-PROC
; Calculate and return the disk volume size, in kilobytes.
; Receives: buffer variable, a ExtGetDskFreSpcStruc structure
; Returns: EAX = volume size

ES must point to data segment

must be zero
ES:DI points to buffer
buffer size
ptr to drive name
Get disk free space

Failed if CF = l

volume size

free space

function call failed

¢-.¢-.----n-_--.---i--m------------------m----_-_-—---n-Fr-Fr--n---_-__-

; Remarks: (SectorsPerCluster * 512 * TotalClusters) / 1024
I ____ __

mov
shl
mul
mov_
div
ret

CalcVolumeSize ENDP
; i i i i —n—n

CalcVolumeFree PROC

-m-|----n---m--pun---m--m-m-m-an---mun--n--m-m-n-n-----m--.-m-..--Q-.-m--m-m-‘_._-_._-_._,-_,_,_,_,,_,

eax,buffer.SectorsPerCluster
eax,9 ; mult by 512
buffer.TotalClusters
ebx,l024
ebx ; return kilobytes

-m----n---m-m-m-m--m-..-‘___-‘____-n-n-m-m-m-pp--ii_---_-----—--—i_-i-m--m-\--F,

14-5 System-Level File Functions 521

; Calculate and return the number of available kilobytes on the
; given volume.
; Receives: buffer variable, a ExtGetDskFreSpcStruc structure
; Returns: EAX = available space, in kilobytes
; Remarks: (SectorsPerCluster * 512 * AvailableClusters) / 1024
I

mov eax,buffer.SectorsPerCluster
shl eax,9 ; mult by 512
mul buffer.AvailableClusters
mov ebx,l024
div ebx ; return kilobytes
ret

CalcVolumeFree ENDP
END main

14.5.2 Create Subdirectory (39h)
INT 21h Function 39h creates a new subdirectory. It receives a pointer in DS:DX to a null-
terminated string containing a path specification. The following example shows how to create a
new subdirectory called ASM "off the root directory of the default drive:

.data
pathname BYTE "\ASM",0
.code

mov ah,39h ; create subdirectory
mov dx,OFFSET pathname
int 21h
jc display_error

The" Can-y flag is set to 1 if the function fails. The possible error return codes are 3 and 5.
Error 3 (path not found) means that some part of the pathname does not exist. Suppose we have
asked MS-DOS to create the directory ASM\PROG\NEW, but the path ASM\PROG does not
exist. This would generate the error 3. Error 5 (access denied) indicates that the proposed subdi-
rectory already exists or the first directory in the path is the root directory -and it is already full.

14.5.3 Remove Subdirectory (3Ah)
INT 21h Function 3Ah removes a directory. It receives a pointer to the desired drive and path in
DS:DX. If the drive name is left out, the default drive is assumed. The following code removes
the \ASM directory from drive C:

.data
pathname BYTE ‘C:\ASM‘,0
.code'

mov ah,3Ah ; remove subdirectory
mov dx,OFFSET pathname
int 21h
jc display_error

522 Chapter 14 ~ Disk Fundamentals

The Carry flag is set if ‘the function fails. The possible errorcodes are 3 (path not found), 5
(access denied: the directory contains files), 6 (invalid handle), and 16 (attempt to, remove the
cm'rent dir'ect'0_ry).

14.5.4 Set Current Directory (3Bh)
INT 21h Function 3Bh sets the. current directory. It receives "a pointer in DS:DX to a null-tenni-
nated string containing the target drive and path. For example, the following statements set the
current directory to C:\ASM\PRO_GS:

.data
pathname BYTE "C:\ASM\PROGS",0
.code

mov ah,3Bh ; set current directory
mov dx,OFFSET pathname
int 21h
jc display_error

14.5.5 Get Current Directory (47h)
INT 21h Function 47h returns .a string containing the current directory. It receives a drive num-
ber in DL (0 = default, 1 = A, 2 = B, etc.), and a pointer in DS:SI to a 64-byte‘ buffer. In this
buffer, MS-DOS places a null-terminated string with the full pathname from the root directory
to the current directory (the drive letter -and leading- backslash are omitted). If the Carry flag is
set when the function retums, the only possible error return code in AX is 0Fh (-i’nvah'd drive
specification).

In the following example, MS-DOS returns the current directory path on the default drive.
Assuming that the current directory is C:\ASM\PROGS, the string retumed by MS-DOS is
“A'SM\PROGS”:

.data
pathname BYTE 64 dup(0) ; path stored here by MS-DOS
.code

mov ah,d7h ; get current directory path
mov dl,0 ; on default drive
mov si,OFFSET pathname
int 21h
jc display;error

14.5.6 Section Review

l. Which INT 21h function would you use to get the cluster size of a disk-drive?
2. Which INT 2ll1 function would you use to find out how many clusters are free on drive C‘?
3. Which INT 21h functions would-you call if you wanted to create a directory named D:\apps

and make it the current di_re.cto1y?
4. Which INT 21h function would you call if you wanted to make a file read-only?

14.6 Chapter Summary 523

14.6 Chapter Summary
At the operating system level, it is not useful to know the exact disk geometry (physical loca-
tions) or brand-specific disk information. The BIOS, which in this case amounts to disk control-
ler firmware, acts as a broker between the disk hardware and the operating system.

The surface of a disk is formatted into invisible concentric bands called tracks, on which
data are stored magnetically. The average seek time is one type of disk speed measurement.
Another measurement is RPM (revolutions per minute).

A cylinder refers to all tracks accessible from a single position of the read/write heads.
Over time, as files become more spread out around a disk, they become fragmented and are no
longer stored on adjacent cylinders.

A sector is a 512-byte portion of a track. Physical sectors are magnetically (invisibly)
marked on the disk by the manufacturer, using what is called a low-level “format.

Physical disk geometry describes a d'isk’s structure to make it readable by the system BIOS..
A single physical hard drive is divided into one .01‘ more logical units named partitions, or

volumes. A drive may have as many as four main partitions. If one is an extended partition, the
remaining three must be primary partitions. The extended partition can be subdivided into an
unlimited number of logical partitions. Each logical partition appears as a separate drive letter,
and may have a different file system than other partitions. The primary partitions can.e_ach hold a
bootable operating system.

The master boot record (MBR), created when the first partition is created on a hard disk, is
located in the drive’s first logical sector. The MBR contains the following:

~ The disk partition table, which describes the sizes and location-s of all partitions on the disk.
~ A small program that locates the partition’s boot sector and transfers control to a program

in the boot sector, which in turn loads the operating system.

A file system keeps track of the location, size and attributes of each disk file. It provides a
mapping of logical sectors to clusters, the basic unit of storage for all files and directories, and a
mapping of file and directory names to sequences of clusters.

A cluster is the smallest unit of space used by -a file; it consists of one or more-adjacent
disk sectors. A chain of clusters is referenced by a file allocation table (FAT) that keeps track of
all clusters used by a file.
The following file systems are used in IA-32 Systems:

~ The FAT12 file system was first used on IBM-PC diskettes.
' The FATI6 file system is the only available format for hard drives formatted under

MS-DOS.
' The FAT32 file system was introduced with the OEM2 release of Windows 95, and was

refined under Windows 98.
' The NTFS file system is supported by Vlfindows NT, 2000, and XP.

Every disk has a root directory, which is the primary list of files on the disk. The root
directory may also contain the names of other directories, called subdirectories.

524 Chapter 14 - Disk Fundamentals

MS-DOS and Windows use a table called the file allocation table (FAT) to-keep track of
each file’s location-on the disk. The FAT is a map.of all clusters on the-disk, showing their own-
ership by specific files. Each "entry corresponds to a cluster number, and each cluster is associ-
ated with one or more sectors.

In Real-address mode, INT 21_h provides many useful functions (Table 14-6) that create
and change directories, change file"a_ttributes, find matching files, and so forth. Thesefunctions
tend to be less available in high-level languages.

The Sector Display program reads and displays selected sectors from a disk volume.
The Disk Free. Space program displays both the "size of the selected disk volume and the

amount of free space.

14.7 Programming Exercises
The following exercises must be ‘done in Real-address mode. Many of the programs suggested
here will alter your disk or directory. Be -sure to make a backup copy of any disk affected by
these programs, or create a temporary scratch disk to be used while testing them- Under no cir-
cumsrtlnees s'h0uld_y0u run rhe programs on afixed disk mm‘! you have debugged rhem carefirllyf

1. Set Default Disk Drive
Write a procedure that prompts the user for a disk drive letter-(A, B, C, "or D), and then sets, the
default drive to the user‘s choice. (See Appendix C.)

2. Disk Space
Write a procedure named Get_DiskSize that returns the amount of total data space on a selected
disk drive. Inpur: AL = drive number (O = A, l = B, 2 = C, ...). Output: DX:AX = data space, in
bytes".

3. Disk.Free Space
Write a procedure named Get_DiskFreespac'e that returns the amount of free space on a
selected disk drive. Input: DS:DX points to a string containing the drive specifier. Output.-
EDX:EAX = disk free space, in bytes. Write" a program that tests the procedure and displays the
64-bit result in hexadecimal.

4. Create a Hidden Directory
Write a procedure that creates a hid-den directory named \temp. Use the DIR ‘command to verify
its hidden status.

5. Disk Free Space, in Clusters
Modify the Disk Free Space program from Section 14.-5.1.1 so that it displays the following
information:

Drive specification: "C:\"
Bytes per sector: 512

14.7 Programming Exercises 525

Sectors per cluster: 8
Total Number of clusters: 999999
Number of available clusters: 99999

The following group of exercises are" all variations on the Sector Display program pre~
sented earlier in this chapter. Most of these exercises canbe done either individually or in
clusters ofexercises. '

6. Displaying the Sector Number
Using the Sector Display program (Section 14.4.1) as a starting point, display a string at the top
of the.screen that indicates the drive specifier and current sector number (in hexadecimal).

7. Hexadecimal Sector Display
Using the Sector Display program as a starting point, add code that lets the user press F2 to dis-
play the c.urrent sector in hexadecimal, with 24 bytes on each line.'The offset of the first byte in
each line should bedisplayed at the beginning of the line. The display will be 22 lines high with
a partial line at the end. The following is a sample of the first two lines, to show the layout:

'OOO'O 173116.25 25425375 279A4909 ZOODO655 D73-03825 4=B6F9234
0018 273A4655 25324-B55 ’273A4'95'9 293134655 A'732298C FF2323DB
(etc.l

15
BIOS-Level Programming

15.1 Introduction
15.1.1 BIOS Data Area

15.2 Keyboard Input with INT 16h
15.2.1 How the Keyboard Works
15.2.2 INT 16h" Functions
15.2.3 Section Review

15.3 VIDEO Programming with INT 10h
l5._3.1 Basic Background
15.3 .2 Controlling the Color
15.3.3 INT '1 Oh Video Functions
15.3-.'4 Library Procedure Examples
15.3.5 Section Review

15.4 Drawing Graphics Using INT 10h
15.4.1 INT 10h Pixel-Related Functions-
15;4.2 DrawLine Program
15.4.3 Cartesian Coordinates Program
15.4.4 Converting Cartesian Coordinates to Scr'een'Coordinates
15.4.5 Section Review

15.5 IvIemory—I\/lapped Graphics
15.5.1 Mode l3l’1I32D X 200, 256 COIOFS

'15.5.2 Memory-Mapped Graphics Program
15.5.3 Section Review

15.6 Mouse Programming
15.6.1 Mouse INT 33h Functions
15.6.2 Mouse Tracking Program
15.6.3 Section Review

'15.7- Chapter Summary
15.8 Chapter Exercises

15.1 Introduction
As soon as the first IBM-PC appeared, droves of programmers (including myself) wanted to
know how to get inside the box and work directly with the computer hardware. Peter Norton was
quick to discover all sorts -of useful and secret infonnation, leading to his landmark book-entitled
Inside the IBM-PC. In a fit of generosity, IBM actually published all the assembly language
source code for the IBM PC/XT BIOS (I still have a copy). Important game designers- such as

527

528 Chapter 15 ~ BIOS-Level Programming

Michael Abrash (author of Quake & Doom) learned how to optimize graphics and sound soft-
ware, using their knowledge of PC hardware.‘ Now you can join this esteemed group, and work
behind the scenes, below DOS and Windows, at the BIOS (bc1.s'ir: irtptt!-ottrpttr s_r.s'r“em) level.
In this chapter, you’re going to learn such useful things as:

' What happens when a keyboard key is pressed, and where all the characters end up.
' How to check the keyboard buffer to see if characters are waiting, and how to clear old

keystrokes out of the buffer.
- How to read non-ASCII keyboard keys such as function keys and cursor arrows.
' I-Iow to display color text, and why colors are based on the video display’s RGB color

mixing_system.
' How to divide up the screen into color panels, and scroll each one separately.
' How to drawbit-mapped graphics" in 256 colors.
~ How to detect mouse movements and mouse clicks.

15.1.1 BIOS Data Area
The BIOS data area, shown in Table 15-1, contains system data used by the ROM BIOS service
routines- For example, the keyboard typeahead buffer (at offset 00lEh) contains the ASCII
codes and keyboardscan codes of keys waiting to be processed by the BIOS.

Table 15-'1 BIOS Data Area, at Segment 0040h.

Hex Offset I Description

0000 — 0007

0008 — 000F

00: 0 — 001 I

001?.

‘, 00:3-.0014
‘ 0015 -0016

0017-0018

0019

001A-001B.

0OIC—00]D

Port addresses, COM I — COM4

Port addresses, LPT1 - LPT4

Installed hardware list

Initialization flag

Memory size, in Kbyles

Memory in I/O channel

Keyboard status flags

11> lternate key entry storage

Keyboard butler pointer (head)

Keyboard buffer pointer (tail)

1 Michael Abrash's hook. entitled The Zen of Code Opn'nu'I:rm'mi. is a |)I'Il]']C example,

15.2 Keyboard Input with INT 16h 529

Table 15-1 BIOS Data Area, at Segment 0040h. (Continued)

Hex Offset Description

001E — 003D

003E — 0048

0049

004A - 004B
004C — 004D

004E - 004F

0050 -- 005F

0060

0061

0062

0063 -- 0064

0065

0066

0067 — 006B

006C -- 0070

Keyboard typeahead buffer

Diskette data area

Current video mode

Number of screen columns

Regen buffer length, in bytes

Regen buffer starting offset

Cursor positions, video pages I - 8

Cursor end line

Cursor start line"

Currently displayed video page number

Active. display base address

CRT mode register

Register for color graphics adapter

Cassette data area

Timer data area

15.2 Keyboard Input with INT 16h
You may recall that in Section 2.5 we differentiated the various levels of input-output available
to assembly language programs. In this chapter, you are given the opportunity to work directly at
the BIOS level by calling functions that were (for the most part) installed by the computer man-
ufacturer. At this level, you are only one level above the hardware itself, and you have a great
deal of flexibility and control over the computer. One major restriction to our approach is that all
programs must run either in Real-address. mode or Virtual-8086 mode. That does not present a
problem, as you can easily run them from MS-Windows or from a DOS emulator running under
"Linux.

In the current chapter, we introduce keyboard input using the BIOS keyboard handler, INT
16h. It does not permit redirection, but it is the best way to read extended keyboard keys such as
function keys, arrow keys, PgUp, and PgDn. Each one of these extended keys -generates an 8-bit
scan code, shown "on the inside cover of this book- The scan codes are unique to IBM-compati-
ble computers.

530 Chapter 15 ' BIOS-Level Programming

In fact, all keyboard keys generate scan codes, but we donit usually pay attention to scan
codes- for ASCII characters because the ASCII codes are universal. When an extended key is
pressed, ‘its ASCII code is either 00h or E0h, shown in the following table:

ASCII
cl - '_-"Keys code

' Ins. Del. PageUp. PageDown. Home. End. Up arrow, EOh
Down arrow. Left arrow. Right arrow

Function keys (Fl — F12) 00h

15.2.1 How the Keyboard Works
Keyboard input follows an event path beginning with the keyboard controller chip and ending
with characters being placed in a 30-byte array called the ke_rb0c:rd 1ypeaherm' l2zg_'fér (see
Figure I5-I). Up to fifteen keystrokes can be held there at any given moment. because each key-
stroke generates two bytes (ASCII code + scan code). The following events occur when the user
presses a key:

- The keyboard controller chip sends an 8-bit numeric scan code (sc) to the PC’s keyboard
input port.

~ The input port is designed so that it triggers an inrerrupr, which is a" predefined signal to
the CPU that an input-output device needs attention. The CPU responds by executing the
INT 9h "serv ice routine.

- The INT 9h -service routine retrieves the keyboard scan code '(.rc) from the input port and
looks up the corresponding ASCII code (ac), if any. It inserts both the scan code and the
ASCII code into a buffer called the r_\-pealiead bzgffer. (If the scan code has"-no matching
ASCII code. the ASCII code in the typeahead buffer is set to zero.)

.5-‘C.’ = SC-‘£11’! CO(I(£ fyrpgf par;

ac = ASCII code 1 sc
Kc)-ht>'zi rd .

SC

1”” H I 36,-{TC __ d I InI typeahead bullet‘ H l.\ I ‘Jh hnndlcr |

sc, ac ac

| li\"l" loll handler I i lI\l'I'2ll1 handler 1

Figure 15-1 Keystroke Processing Sequence.

15.2 Keyboard Input with INT 16h 531

Once the scan code and ASCII code are safely in the typeahead buffer, they stay there until the
currently running program retrieves them. There are two ways to do this:_

' Call a BIOS-level function using INT 16h that retrieves both the scan code and ASCII
code from the keyboard typeahead buffer. This is useful when processing extended keys
such as function keys-and cursor arrows, which have no ASCII codes.

- Call an MS-DOS-level function using INT 21h that retrieves the ASCII code from the
input buffer. Ifan extended key has been pressed, INT 21h must be called a second time to
retrieve the scan code. INT 21h keyboard input was explained in Section.13.2.3.

15.2.2 INT 16h Functions
INT 16h has some clear advantages over INT 21h when it comes to keyboard handling. First,
INT 16h can retrieve both the scan code and ASCII code in a single step. Second, INT 16h has
additional -operations such as setting the typematic rate and retrieving the state of the keyboard
flags. The rypematic rare is the rate at which a keyboard key repeats when you hold it down.
When you don’t know whether the user will press an ordinary key or an extended key, INT 16h
is usually the best function to call.

15.2.2.1 Set Iypematic Rate (03h)
INT 16h Function 03h lets you set the keyboard typematic repeat rate, as illustrated in the fol-
lowing table. When you hold -down a key, there is a delay of 250-1000 milliseconds before the
key starts to repeat. The repeat rate can be between 1Fh (slowest) and 0 (fastest).

INT 16h Function 03h
y .1 Description Sett pemattc -repeat rate

AH = 3
AL = 5
BH = repeat delay (0 = 2501115; 1 = 500 ms; 2 = 750 ms; 3 =1000 ms)
BL = repeat rate (O = fastest, 1Fh = slowest)

. Receives

Returns nothing

Sample Call mov ax, 030511
mov bh,1 ; 500 ms repeat delay
mov bl,0Fh ; repeat rate I
int 16h

15.2.2.2 Push Key into Keyboard Buffer (05h)
As shown in the next table, INT 16h Function 05h lets you push a key into the keyboard typea-
head buffer. A key consists of two 8-bit integers: the ASCII code and the keyboard scan code.

532 Chapter 15 - BIOS-Level Programming

INT 16h Function 05h

Description Push key into keyboard buffer

AI-I = 5
CH = scan code
CL = ASCII code

Receives

7 I

Returns If typeahead buffer is full, CF = I and AL = I; otherwise, CF = 0, AL = 0.

Sample Call mov ah, 5 I
mov ch,3Bh ; scan code for F1 key
mov cl,0 ; ASCII code
int 16h

15.2.2.3 Wait for Key (1011)
INT 16h Function 10h removes the next available key from the keyboard typeahead buffer. If
none is waiting, the keyboard handler waits for the user to press a key, as shown in the following
table:

I I '7 I iiiiiiiif I

INT 16h Function 10h I
Description Wait for key

I Receives AH=10h
T-

Retumg AH : keyboard scan code
AL = ASCII code

I — ‘ 7 .

Sample Call mov ah, 1011
int 16h
mov scanCode,ah
mov ASCIICode, al

I I T I
1 — I *r

Notes If no key is already in the buffer, the function waitsfor a key.

Sample Program The following" keyboard display program uses a loop with INT 16h to input
keystrokes and display both the ASCII code and scan "code of "each key. It terminates when the
Esc key is pressed:

TITLE Keyboard Display (Keybd.asm)

; This program displays keyboard scan codes
; and ASCII codes, using INT 16h.

INCLUDE Irvine16.inc
.code

15.2 Keyboard Input with INT 16h 533

main PROC
mov ax,@data
mov ds,ax
call Clrscr ; clear screen

Llzmov ah,10h ; keyboard input
int 16h ; using BIOS
call DumpRegs ; AH = scan, AL = ASCII
cmp al,1Bh ; ESC key pressed?
jne L1 ; no: repeat the loop

call Clrscr ; clear screen
exit

main ENDP
END main

The call to DumpRegs displays all the registers, but you need only look at AH (scan code)
and AL (ASCII code). When the user presses the F1 function key, for example, this is the result-
ing display (3B00h):

EAX=OO003B00 EBX=0O000000 ECX=OO0000FF EDX=OO0005D6
ESI=OO000000 EDI=O0002000 EBP=0000091E ESP=0000200D
EIP=00OOOO0F EFL=OOOO3202 CF=O SF=O ZF=O OF=O

15.2.2.4 Check Keyboard Buffer (1111)
INT 16h Function 11h lets you peek into the keyboard typeahead buffer to see if any keys are
waiting. It returns the ASCII code and scan code of the next available key, if any. You can use
this function inside. a loop that carries out other program tasks. Note that the function does not
remove the key from the typeahead buffer. See the following table for details:

INT16h Function 11h
i Description N Checkkeyboard buffer I I

I Receives AH = I 1h Kl
‘ I

‘e — —* 7 e ~ 1-

Returns II"a key is waiting, ZF = 0, AH = scan code, AL = ASCII code; otherwise, ‘
ZF = 1.

Sample Call , mov ah,11h I
int 16h
jz NoKeyWaiting ; no key in buffer
mov scanCode,ah

\ " mov ASCIICode,al

Notes Does not remove the key (if any) from the buffer.

‘534 Chapter 15 ~ BIOS-Level Programming

15.2.2.5 Get Keyboard Flags
INT 16h Function 12h, as demonstrated below, returns valuable information about the current
state of the keyboard flags. Perhaps. you have noticed that word-processing programs often "dis-
play flags or notations at the bottom "of the screen when keys such as CnpsLock, NmnLo::l<, and
Insert are pressed. They do this by continually examining the keyboard status flag, watching for
any changes.

INT 16h Function 12h

Description if Get keyboard flags‘

I Receives AH = 12h

Returns AX = copy of the keyboard flags

Sample Call mov ah, 1211
int 16h
mov keyFlags,ax

Notes The keyboard flags are located at addresses coma - 00-nan, in the BIOS
data area.

The keyboard flags,.shown in Table 15-2, are particularly interesting because they tell you a
great deal about what the use-r is doing with the keyboard. Is the user holding down the left shift
key or the right shift key‘? Is he or she also holding down the Alt key? Questions of this type can
only be answered using INT 16h. Each bit is a l when its matching key is currently held down.

Table 15-2 Keyboard Flag Va|.ues.a
I

‘ Bit , Descrlptlon
.____________ ___~L _ . . _ -~~_--_~_- _

0 Right Shift key is down

I Left Shift key is down
‘.-_

2 I I Either Ctrl key is down I

3 Either Alt key is down
I I' - —-—7—r

4 Scroll Lock toggle is on

5 Num Lock toggle is on

6 Caps Lock'- toggle is on
_. _ I _

7 Insert toggle is on

8 Left Ctrl. key is down

15.2 Keyboard Input with INT 16h 535

Table 15-2 Keyboard Flag Values? (Continued)

Blt Description

I 9 N Left Alt key is down

I0 1 Right Ctrl key is down

1-I I Right Alt key is down
I * I

I2 Scroll key is down
I

I3 ‘ Nurn Lock key is down

I4 ‘ Caps Lock key is down

I5 SysReq key is down

" Source: Ray Duncan. -A'c1|-‘curved MSDOS_. 2l1'd ed. I-I983). pp.
536-537.

15.2.2.6 Clearing the Keyboard Buffer
Programs often involve a looping operation that can only be interrupted by certain keys. Game
programs, for example, often must "check for keyboard arrow keys and other special keys while
repeating a graphic animation. The--user might press any numb.er of irrelevant keys that only fill
up the keyboard typeahead buffer. But when the right key is pressed, the program is expected to
immediately respond to the command.

Using the INT 16h functions, we know how to check the keyboard buffer to see if any keys
are waiting (Function Ilh), and we know how to remove a key from the buffer (Function 10h).
The following program demonstrates a procedure named Clea'rKeyboard that uses-a loop to
clear the keyboard buffer, while checking for a particular keyboard scan code. For testing pur-
poses, the program checks for the ESC key, but the procedure can check for any key:

TITLE Testing ClearKeyboard IClearKbd;asm)

This program shows-how to clear the keyboard
buffer while waiting for a particular key.
To test it, rapidly press random keys to fill

; up the buffer. Then press Esc and note that the
; program ends immediately.

I
I

0
I

n
I

INCLUDE Irvine16.inc
ClearKeyboard.PROTO, scanCode:BYTE
ESC_key = 1 ; scan code

.code
-main PROC
L1:

; Display a dot, to show.program's progress
mov ah,2

536 Chapter 15 1 BIOS-Level Programming

mov d1,'.‘
int 21h
mov eax,300 ; delay for 300 ms
call Delay

INVOKE'ClearKeyboard,ESCHkey ;.check for Esc key
jnz Ll ; continue loop if ZF=0

quit:
call Clrscr
exit

main ENDP

F1111-:1------I----I---I------I---I-‘I---I-‘I-n1-1.--na-.1--na-.-at-.-------‘anal1+1»-1+1+1+----up

ClearKeyboard PROC,
scanCode:BYTE

I
; Clears the keyboard while checking for a
; particular scan code.
; Receives: keyboard scan code
; Returns: Zero flag set if the ASCII code is
; found; otherwise, Zero flag is clear.
F “ “ “ “ “ “ “ “ “ “ “ ' “ “ ' “ ' ' ' ' ' ' ' ' ' ' ' ' ' T T ' ' ' ' ' ' ' ' “ ' ' “ ' ' ' “ ' ' ""

push ax
L1:

m@v.ah,11h ; check keyboard buffer
int 15h ; any key pressed?
jz nokey ; no: exit now
mov ah,10h ; yes: remove from buffer
int 16h
cmp ah,scanCode ; was it the exit key?
je quit ; yes: exit now (ZF=l)
jmp Ll ; no: check buffer again

noKey: ; no key pressed
or al,l ; clear zero flag

quit:
pop ax
ret

ClearKeyboard ENDP
END main

The program displays a dot on the screen once every 300 milliseconds. When testing it, press
any number of random keys, which are both ignored and removed from the typeahead buffer.
Note that as soon as ESC is pressed, the program stops immediately.

15.3 VIDEO Programming with INT 10h 537

15.2.3 Section Review

l. Which" interrupt (16h or 21h) is best for reading user input that includes function keys and
other extended keys?

2. Where in memory are keyboard input characters kept while waiting to be processed by
application programs?

. What operations are performed by the INT 9h service routine?

. Which INT 16h function pushes keys into the keyboard buffer?
. Which INT 16h function removes the next available key from the keyboard buffer‘?

. . Which INT 16h function examines the keyboard buffer and returns thescan code and ASCII
code of the first available input‘?

7. (yes/n-0): Does INT 16h function I 1h remove -a character from the keyboard buffer?
8. Which INT 16h function -gives you the value of the keyboard flagbyte?
9. Which bit in the keyboard flag byte indicates that the ScrollLock key has been pressed?

I0. Write statements that input the keyboard flag byte and repeat a loop until the Ctrl key is
pressed.

ll. Challenge: The Cleai-Keyboard procedure in Section 15.2.2.6 checks for only a single
keyboard scan code. Suppose your program had to check for multiple scan codes (the four
cursor arrows, for example). Without writing actual code, suggest modifications you could
make to the procedure to make this possible.

oxui-I’-*-be

15.3 VIDEO Programming with INT 10h

15.3.1 Basic Background
15.3.1.1 Three "Levels of Access
When an application prograrn needs to write characters on the screen in text mode, it can choose
between three types of video output:

- MS-DOS-level access: Any computer running or emulating MS-DOS can use INT 21h to
write text to the video display. Input/output can easily be redirected to other devices such
as a printer or disk. Output is quite slow and you cannot control the text color.

~ BIOS-level access: Characters are output using INT 10h function, known as BIOS services.
This executes more quickly than INT 21h, and permits the control of text color. Vifhen filling
large screen areas, a slight delay can usually be detected. Output cannot be redirected.

I Direct video access": Characters are moved. directly to video RAM, so the execution is
instantaneous. Output cannotbe redirected. During the MS-DOS era, word processors and
electronic spreadsheet programs all used this method. (Usage of this method is restricted
to full-screen mode under Windows NT, 2000, and XP.)

Application programs vary in their choice of which level of access to use. Those requiring the
highest perform'ance- choose direct video access; others choose BIOS-level access. MS-DOS-level

538 Chapter 15 I BIOS-Level Programming

access is used when the output may have to be redirected, or when the screen is shared with other
programs. It should be mentioned that MS-DOS interrupts use BIOS-level routines to do their
work, and BIOS routines use direct video access to produce their output.

15.3.1.2 Running Programs in Full-Screen Mode
Programs that draw graphics using the Video BIOS should be executed in -one of the following
environments:

' Pure MS-DOS
' A DOS emulator under Linux
' Under MS~Windows in full-screen mode.

In MS-Windows, there are two ways to switch into full-screen mode:

- Create a shortcut to the program’s EXE file. Then open the Properties dialog for the-short»
cut, select the .S‘creen properties,.and select Flt”-.S‘(.‘l-'86?! mode.

' Open a Command window from the Start menu, then press Alt-Enter to "switch to full
screen mode. Using the CD (change directo1y) command, navigate to your EXE file’s
directory, and run the program by typing its name. Alt-Enter is a toggle, so if you press it
again, it will retum the program to. Window mode-.

15.3.1.3 Understanding Video Text
There are two general types of video modes: text mode and graphics mode. When a computer is
booted in MS-DOS, the video controller is set to Video Mode 3 (color text, 80 columns by 25 rows).
There are a number of graphics modes, some of which are listed in Table 15-6 in Section 15.4.

In text 1node, rows are numbered from the top of the screen, row O. Each row is the height
of a character cell, using the currently active font. Columns are numbered from the left side of
the screen, column 0. Each column is the width of a character cell.

Fonts Characters are. generated from a memory-resident table of character fonts. Originally,
the table was in ROM, but later versions of the BIOS permitted programmers to rewrite the char-
acter tables at run time. This makes it possible to" create custom fonts in text mode.

Wdea Ikxt Pages Text mode video memory is divided into. multiple separate video pages,
each with the ability to hold a full screen of text. Programs can display one page while writing
text to other hidden pages, and they can rapidly flip back and forth between pages. In the days
of high-performance MS-DOS applications, it was often necessary to keep several text screens
_in memory at the same time. With the current popularity of graphical interfaces, this text page
feature is no longer so important. The default video page is Page 0.
Attributes As illustrated below, each screen character is assigned an attribute byte that controls
both the color of the character (called the foregmtmd) and the screen color behind the character
(called the background).

'§g;j;§;g;§§g background

15.3 V1DEO Programming with INT 10h 539

Each position on the video display holds a single character, -along with its own attribute
(color). The attribute is stored in a separate byte, following the.-character in memory. In the fol»
lowing figure, three positions on the screen contain the letters ABC:

l»;~1~~ I‘? 1 ~~1 <5 | I
char i char" i char i

attribute attribute attribute

Blinking Characters on the video display can blink. The video controller does this by revers~
ing the "foreground and background colors of a character at a predetermined rate. By default,
when a PC boots into MS-DOS mode, blinking is enabled. It is possible to tum blinking off
using a video BIOS function. Also, blinking is off by default when you open up" an MS-DOS
emulation window under MS-Windows.

15.3.2 Controlling the Color

15.3.2.1 Mixing Primary Colors
Each color pixel on a video display is generated using threeseparate electron beams: red, green,
and blue. A fourth channel controls the overall intensity, or brightness of the pixel. All available
text colors. can therefore be represented by 4-bit binary values, in the following form (I = inten~
sity, R = red, G = green, B = blue). The following diagram shows the composition of a white
pixel:

lllilélgl
By mixing three primary colors, new colors can be generated, as can be seen in the following
diagram. Further, by tuming on the inte_nsity bit, the mixed colors have a brighter shade:

— t , = . . _ . _ . _ . _ .1
l

Mix these primary ~ To get this color L Add the Intensity y
colors . . . 5 bit 1

red + green + blue light" gray white"

green -1- blue cyan light cyan

red + blue magenta light magenta

540 Chapter 15 ' BIOS Level Programming

OO|Ol'S . . .
, Mix these primary 3 To get this color Add the Intensity

bit
I ted + green blown yellow

(no colors) ~ bl-ack dark gray

The primary colors and mixed colors are compiled into a list of all possible 4-but colors,
shown in Table I 5-3. Each color in the right-hand column has its intensity bit set

Table 15-3 Four-Bit Color Text Encoding.

IRGB I: Color iiiiiiI U mos Color I '
ClClOO i black coo stay

l 0001
cu 1 O

y blue
‘i

l gl'€-C11

001
O10

light blue

light green

ClCll 1 cyan (lll light cyan

0100 l l'€(i l00 light red

0:01
‘W

magenta l l 101 light magenta

Ii Oll0 brown 110 I yellow
It

Dill light gray lll ‘ white

15.3.2.2 Attribute Byte
In color text mode, each character is assigned an attribute byte, which consists of two 4-blt col Ol
codes: background and foreground:

i,Ii.R- is Blflrlsl B iil
Blinking There is one complication to this simple color scheme. If the" video adapter cunently
has blinking enabled, the high bit of the background color controls the character blinking When

background foreground

this bit is set, the character blinks:

[start ii oi B l 1 in l o l B H warm»
_ - , N , g H enabled

I .. . I L. _. __ I
background foreground

15.3 VIDEO Programming with INT 10h 541

When blinking is enabled, only the low-intensity colors in the left-hand column of Table 15-3 are
available as background colors (black, blue, green, cyan, red, magenta, brown, and light gray).
The default color when MS-DOS boots is 00000111 binary (light gray on black background).

Carzsrr-uctirzgAttribute Bytes To -construct a video ‘attribute byte from two colors (foreground
and background), use the as-sembler’s SHL operator to shift the background color bits four posi-
tions to the left, and OR it with the foreground color. For example-, the following statements cre-
ate an attribute of light gray text on a blue background:

blue = 1
lightGray = 111b
mov bh,(blue SHL 4).0R lightGray ; 00010111

The following creates white characters on a red background:

white = llllb
red = 100b
mov bh,(red sat. 4) on white ; 01001111

The following lines produce blue letters on a brown background:

blue = 1
brown = 110b
mov bh,((brown SHL 4) OR blue ; 01100001

Fon'§t§§at1d_fc?§l§rs- may.‘appe'a1' sliglitly different Iwhen running the same program under different oper-
'anrigf's'ystenisj§§§For eitample, iifwindows 2000. blinking is disabled unless you switch to full-screen
'"l"°.¢ii=- 5' 551:1. : Y. C

15.3.3 INT 10h Video Functions
Table l5-4 lists the most frequently used INT 10h functions. Each will be discussed separately,
with its own short example. The discussion of functions 0Ch and 0Dh will be deferred until the
graphics section of this chapter (Section l5.4).

Table 15-4 Selected INT 10h Functions.
1Fun;gne,n- '- --1-

‘5-:|
r.

i:i§,- ' . ,1 ._ - Description
;’.i.i..-,_‘t-£165 1'1 - _, - - -

Set the video" display to one of the text or graphics modes.

1 Set cursor lines, controlling the cursor shape and size.

2 Position the cursor on the screen.

3 Get the c_ursor’s screen position and size.
l , .

542 Chapter 15 ~ BIOS-Level Programming

Table 15-4 Selected INT 10h Functions. (Continued)

Function \
Number -' Description

6

. W 7

Scroll a window on the current video page upward. replacing scrolled lines with
blanks.

Scroll a window on the current video page downward. replacing scrolled lines with
blanks.

8 Read the character and its attributc at the current cursor position.

9 Write a character and its attribute at the current cursor position.

0Ah Write a character on ly (no ztttribute).at the curr_ent_cursor position.
l

OCh Write a graphics pixel on the s_creen in graphics mode.

0Dh Read the color of a single graphics pixel at a given location.

i OFh
l

IGet video mode information.

l0h
l

F

Toggle blinking and intensity modes.

is. . .* . Z W WfilWrite a string. to the screen il'l teletype mode.

It‘s a good idea to preserve the general-pulpose registers (using PUSH) before calling INT IOh.
becauseéthe different BIOS versions are not consistent in the way they affect registers.

15.3.3.1 Set Video Mode (00h)
INT IOh Function O lets you set the current video mode to one of the text or graphics modes. The
text modes are listed in Table l5-5:

Table 15-5 Video Text Modes Recognized by INT 10h.

Mode‘ l Resolution (columns X rows) Number of Colors
.0 40 X 25 I

1 40 X 25 I6

2 . so x 2s 2
80 X 25 16

7 SOX25 ‘ 2

3 1

1411 132x25 K us i i

1-5.3 VIDEO Programming with lNT10h- 543

It’s a good idea to get the current video mode (INT 10h Function OFh) and-save it in a vari-
able before setting it to a new value. Then you can restore the original video mode when your
program exits. The following table shows how to set the video. mode;

INT 10h Function 0

Description Set the video mode l

Receives AH = 0
= video modeAL

Fieturns i nothing

Sample Call mov ah, 0
mov al,3 ; video mode 3 (color text)
int 10h

Notes The screen is cleared automatically unless the high bit in AL is set before
calling this function.

15.3.3.2. Set Cursor Lines (01h)

INT l-Oh Function Olh, as shown in the next table, sets the. text cursor size. The text ‘cursor is dis-
played using starting and ending scan lines, which make it possible to control its size. Applica-
tion programs can.do this in order to show thecurrent status of an operation. For example, a text
editor might increase the cursor size when the NumLock key is toggled on; when it is pressed
again, the cursor returns to" its original size.

‘l

l
l lNT10h Function01h U U “

Description Set cursor lines ‘

‘ AI-I = Olh
Ci-I = top line

\ CL = bottom line

Receives

w

Returns nothing I

Sample Call mov ah,1 ‘
mov cx, 060711 ; default color cursor size
int 10h

Notes The monochrome display uses l2 lines for its cursor. while all other dis- A
plays use 8 lines.

544 Chapter 15 ~ BIOS-Level Programming

The cursor is described as a sequence of horizontal lines, where 1ine"O is at the top. The
default color cursor starts at line 6 and ends at line 7, as shown in the following figure:

'--1CJ\Ln-Ii-L:-Jt\Jr-‘CD

top
bottom

15.3.3.3 Set Cursor Position (02.h)
INT 10h Function 2 locates the cursor at a specific row -and column on the video page of your
choice, as seen in the following table.

INT 1011 Function 02h
-c;* * * * s s: ‘ .

l l

Description i Set ctusor position ,
_‘. __ _ _ .7

Receives AH = 2
DH, DL = row, column values
BH = video page

Returns nothing

Sample Call mov at-1.2
mov dh,.10 ; row 1-0
mov _dl,2.0 ; column 20
mov bh, 0 ; vi.deo page 0
int 10h 1

15.3.3.4 Get Cursor Position and Size (03h)
INT 10h Function 3, shown in the next table, returns the rowicolumn po_siti.on of the cursor as
well as the starting and ending lines that determine the cursor -size. This function can be quite
useful in programs where the user is moving the cursor around a menu. Depending on where the
cursor is, you know which menu choice has. been selected.

INT 10h Function 03h

Description Get cursor position and size

Receives" AH = 3
BH = video page

15.3 VIDEO Programming with INT 10h

.11 ¢.. .IJ' ___:_ i-1
. .|.' . -|<|

s
- 'i-< - '

| , I -| | I -- <

Returns-

Sample Call

CHQ
REL

mov
mov
int
mov
mov

CL = starting, ending cursor scan lines
DL- = row, column of cursor’s location

ah,3
bh,0
10h
cursor,CX
position,DX

; video page 0

Showing and Hiding the Cursor It is useful to be able to temporarily hide the cursor when
displaying menus, writing continuously to the screen, or reading mouse input. To hide the cui-
sor, you can set its top line value to an illegal (large) value. To redisplay the cursoi retuin the
cursor lines to their defaults (lines 6 and 7)

HideCursor PROC
mov
int
or
mov
int
ret

ah,3
10h
ch,30h
ah,l
10h

HideCursor ENDP

ShowCursor PROC
ITLOV ah,1

get cursor size'

set upper row to illegal value
set cursor size

set cursor size
mov cx,O607h ; default size
int.
ret

10h

ShowCursor ENDP

Of course, weire ignoring the possibility that the user might have set the cursor to a differ -
ent size before hiding the cursor. I-Iere’s an alternate version of ShowCursor that simply clears
the high 4 bits of CI-I without touching the lower 4 bits where the cursor lines are stoied

ShowCursor PROC
ITLOV

int
mov
and
int
ret

ah,3
10h
.ah,1
¢i~i,osn
10h

Showcursor ENDP

get cursor.size

set cursor size-
clear high 4 bits

546 Chapter 15 - BIOS-Level Programming

K is i is

‘£i§§.=:.i§‘=_.g’-
-.*.“serrate

it_.;_’.

ro|i_|It.Ii

1eagt"-iii??sineswaetvststg

I Ii’.Q iu__i__r *CH "'- »'_ ca-v-i-|__ _.__ 1-‘
_ -I 1-_--

.C' “’ ' >"".tl?."f-t-"'»3i'¢i'=-5" ""’ ‘Er-:§“h".‘f**-'5'-'
:\;T‘;-1;sIF1?[-' '_-
-!'.'.4 -1 _ vs

i ;1J=‘;':P;:-::.I‘JI"'-:-
-J 1. ‘W1’ \P-Tn?

1-I .»- ‘Jr-.r s$'1d'l:.
IJV 5* -i.a- ‘P i--1:5

v_""l T1 5._»u

irgéglr“eige-ittgffiiias

-4- I“
p

,-

gi{'§"-:-- §_-'tj'I1;f-
i...i-_ _,i- ,. 1 ‘
§t.,:;-'-;:'-7;:H. _. ; - - '.. _..... eax-lg-~15 at

“ "-3'5‘-" '1'-"'~'§“."?-1-_:5": '-".1-Q»--..-.
'li*\‘\‘ ii Z‘HA __ '1‘: ~.‘-c 'l'-I’

1 ' V '14- ll
... “i"'{.;-:1'T‘.'§‘;PH‘-P 1%

its ‘E?
-"l..-..'».'Q'.li‘5:I-it

‘Tr, E Le
~e?et

—-——— 1—~ T‘ L‘ Eh—n' I :- (Eh ll

\ DL
\ _ /

Flgure15-2 Defining a Window Using INT 10.h.

Unfortunately, this method of hiding the cursor does not always work. An alternative method is to
use INT 10h. Function 02h to position the cursor off the edge of the screen (row 25, for example).

15.3.3.5 Scroll Window Up (06h)
INT 10h Functions 6.scrolls all text within a rectangular area of the screen (called a iviridow)
upward. A window is defined using row and-column coordinates for its upper-left and lower-
right corners. The default MS-DOS screen ha_s rows numbered 0-24 from the top, and columns
numbered 0-79 from the left. Therefore, a window covering the entire screen would be from 0,0
to 24,79. In Figure 15-2, the CI-IICL registers define the row and column of the upper-left corner,
and DH/DL define the row and column of the lower right corner.

As a window is scrolled up, its bottom line is replaced by a blank line. If all lines are
scrolled, the window is cleared (made blank). Lines scrolled out of the window cannot be recov-
ered. The following table describes INT 10h Function 6.

_ .' 77 7 7 l. - 1'11 ..

INT 1-Oh "Function 0't_5h

Description Scroll window up

Receives AH = 6 ,
AL = number of lines to scroll (0 = all)
BH = video attribute for blanked area

i CH, CL = row, column oi’ upper left window corner
l DH, DL = row. column of lower right window corner

Returns nothing

15 3 VIDEO Programming with INT 10h 47

INT 1-Oh 'Funct'ion' ooh ‘
Sample Call mov

mov
mov
mov
mov
mov
mov
int

1

ah,6
al,0
ch,0
cl,0
dh,24
dl,79
bh,7
10h

F
F
I

F
'F
F

F
F

scroll window
entire window
upper
upper
lower
lower right c
attribute for
call BIOS

left co
right row

o

‘ -

up
left row

lumn

lumn
blanked area

data

code
main PROC

mov ax,@data
mov ds,ax

Scroll a window.
IHOV
mov
mov
mov
int

INCLUDE Irvine16.inc

15 3 3 6 Example: Writing Text to a Window
When INT 10h Function 6 (or 7) scrolls a window, it sets the attributes of the scrolled lines
inside the window. If you subsequently write- text inside the window using a DOS function call,
the text will use the same foreground and background colors. The following program (Tex-
rWirz asm) demonstrates this technique:

message BYTE "Message in Window". 0

ax,0600h ; scroll window
bh,(blue SHL 4) OR yellow ; attribute
cx,050Ah ; upper—le£t corner
dx,0A30h ; lower—right corner
10h

Position the cursor inside the window.
mov ah,2 ; set cursor position
mov dx.0714h ; row 7. col 20
mov bh,0 ; video page O
int 10h

Write some text in the window.
mov dx.OFFSET message
call Writestring

TITLE Color Text Window (TextWin.asm)

, Display a color window and write text inside.

548 Chapter 15 - BIOS-Level Programming

; Wait for a keypress.
mov ah,10h
int 16h
exit

main ENDP
END main

15.3.3.7 Scroll Window Down (0'7h)_
The scroll window down function is-" identical to Function 06h, except that the text inside the
window moves downward. It uses the same input parameters.

15.3.3.8 Read Character and Attribute (08h)
INT 10h Function 8 returns the character and its attribute -at the current cursor position, as shown
below, This is used by programs to read text directly off thescreen (a technique known as _screen
scraping). Programs thatscan the "contents of-a text screen and convent the text to spoken sounds
for hearing-impaired users can use this function.

lNT1_0h Function 08h I
Description Read character and attribute

Receives AH = 3
BH video page

1 t t _ _ i_t _. 1 _ I A
Qetums AL = ASCII code of the character A

AH = attribute of the character I
l

.. — _ — — .

* Sample Call mov ah,8
mov bh,O ; video page 0

l ‘ int lqh
mov charpal ; save the character
mov attribeah ; save the attribute y

15.3.3.9 Write Character and Attribute (0911)
INT 1011 Function 9 writes a character in cjolor at the current .cursor position. As can be seen in
the following table, this function can "display any ASCII character, including the special IBM
graphics characters matching ASCII codes 1 to 31.

m1'1on Function can ll I
Description I Write character and attribute

15.3 VIDEO Programming with INT 10h 549

INT 10h Function 09h

Receives AH = 9 i
AL = ASCII code oi’ character I
Bl-I = video page

, BL -= attribute
1 A CX -= repetition count

I Returns nothing

Sample Call I mov ah,9
mov al,'A’ ; ASCII character
mov bh,0 ; video page 0
mov bl,0F1h ; attribute (blue on white)
mov cx,1 ; repetition count
int 10h

Notes Does not advance _thc cursor after writing the character.
_ _ _ _ __ J

The repetition count in CX specifies how many times the character is to be repeated. (The
character should not be repeated beyond the end of the current screen line .) After a character is
written, you must call INT l0h Function 2 to advance the cursor if more characters will be writ-
ten on the same line.

15.33.10 Write Character (0Ah)
INT l0h Function 0Ah writes a character to the screen at the current cursor position without
changing the current screen attribute. As shown in the next table, it is identical to Function 9
except that the attribute is not specified.

INT 10h Function 0Ah

Description Write character

Receives AH = OAI1
3 AL character

BH = video" page
CX = repetition count

Returns nothing

T Sample Call mov ah,0Ah
mov al,'A' ASCII character \
mov bh,0 ideo page 0 ‘
mov cx,1 ; repetition count
int 10h

‘EC‘I.

550 Chapter 15 - BIOS-Level Programming

|N'r10h Furrction oAh - K K
Notes I Does not advance the cursor.

153.3.11 Toggle Blinking and Intensity Modes

INT l0h Function l0h has a number of useful subfunctions, including number 0'3h that permits
the highest bit of a color attribute to either-control the color intensity or blink the character. See
the following table for details:

|_, _ .;, .0‘

Description

INT 10h Function 1.0h, Subfunction 03h

Togelc bltttktttgrfintetistty Bit \

Receives AH
AL
B.L

10h
3 I

blink lnode (0 = enable intensity. l = enable blinking)

Returns. nothing

i Sample Call ah,10h
al,3
bl,1 ; enable blinking
10h

mov
mov
mov
int

Notes Under MS-Windows, the video display must still he running in-a full-
scrcen window.

15.3.3.-12 Get Video Mode Information ('0Fh)

INT IOh Ft_1nctio_n OFI1 returns information about the current video mode. including the mode
number. the number ofdispltty columns, and the active video page number. as seen below.

I INT 10h Function 0Fh

t Description Get current video ntodjc inI_'o'r|nation

Receives AH = (IFh

. - AL -= current display modei Returns
AH = number of coluntns (characters or pixels)
BH =-active video page

15.3 VIDEO Programming with INT 10h 551

I lNT1,0h"Function ash I
Sample Call mov -ah, 0Fh

int 10h
mov vmode,al ; save the mode
mov columns,ah ; save the columns

I mov page,bh ; save the page

1 Notes Works in both text and. graphics modes.

15.3.13.13 Write String in Teletype Mode (-13h)
INT l'0h Function l'3h, shown in the following table, writes a string to the screen at a given row
and colutrm location. The string can optionally contain both characters and attribute values. (See
the C0l0rsr2.nsm program on the bo.ok’s Web site for a working ex-ample.)

- lN.T 10h.'=Function 1sn ' i
T Description ~ Write string in tcletype mode p

Receives AH=13h
AL = write mode (see notes)
BH = video page
BL = attribute (if AL = 00h or _0 1_. h)
CX = string length (character count)
DH, DL = screen row, column
E.S:BP = segment:offset of string

Returns nothing

Sample Call .data
c0l0rString BYTE 'A' ,. 1FI‘t,. '13‘, 1Ch, "C' , 1Eh, ‘D’ , 1Ch
row BYTE 10 I
column BYTE 20 I
.code
mov ax,SEG colorString ; set ES segment
mov esyax ,
mov ah,13h ; write string .
mov al,2 ; write mode \
mov bh,0 ; video page \
mov cx,(SIZEOF colorString) / 2 ; string length 1
mov dh,row ; start row ;
mov dl,column ; start column A
mov bp,OFFSET co1orString ;-string offset I
int 10h r

I
_ 4.

.552 Chapter 15 - BIOS-Level Programming

INT inn Function ash ' ‘
Notes Write mode values:

* 00h = string contains only character codes; cursor not updated after
write, and attribute is in BL.

* 01h = string contains only character codes; cursor is updated after p
write, and attribute is in BL.

- 02h == string contains alternating character codes and attribute bytes;
cursor position not updated after write.

- 03h = string contains alternating character codes and attribute bytes;
cursor position is updated after write.

15.3.3.14 Example: Displaying a-Color String
The following program (Co.l0rStr:nsm) displays a string on the console, using "a different color
for each character. It must be" run in full screen mode if you want tosee characters blink. By
default, blinking is enabled, but you can remove the call to EnableBlinkin_g and see the same
suing on a dark gray background:

TITLE Color String Example (ColorStr.asm)

INCLUDE Irvine16.inc
.data
ATTRIB_HI = 10Q00000b
string BYTE "ABCDEFGI-IIJKLMOP"
color BYTE (black SHL 4) OR blue

.code
main PROC

mov ax,@data
mov ds,ax

call ClrScr
call EnableBlinking ; this is optional
mov cx,SIZEOF string
mov si,OFFSET string"

L1:push cx ; save loop counter
mov ah.9 ; write character/attribute
mov al,[si] ; character to display
mov bh,0 ; video page 0
mov bl,color ; attribute
or bl,ATTRIB_HI ; set blink/intensity bit
mov cx,1 ; display it one time
int 10h
mov cx,1 ; advance cursor to
call AdvanceCursor ; next screen column
inc color ; next color

15.3 VIDEO Programming with INT 1 Oh 5

inc si ; next character
pop cx ; restore loop counter
Loop L1

call Crlf
exit

main ENDP

-----___.--v-lI—n.-_—n.-_wlI—n____—n—..Qiu—..—..
I

EnableBlinking PROC
\
I

—----_n>—n.-_n>.-_.-_—n-_--.-_.-4-------------___p_—_—..

; Enable blinking (using the high bit of color
0
I attributes). In Ms-Windows, this only works if
; the program is running in full screen mode.
F
F

push ax
push bx
mov ax,1003h ; toggle blink/intensity

Receives: nothing. Returns: nothing
.--_n>-_n>—n-_---_-1+-p+_____

mov bl,1 ; blinking is enabled
int 1 Oh
pop bx
PQP ax
ret

EnableBlinking ENDP

The AclvanoeCursor procedure can be used in any p;0gran1
that writes to the console using -INT 10h.

F — — ¢ — ¢ — ¢ ——.

AdvanceCursor PROC
_Q
I

F
1
I

I

pusha
L1:

push
mov
mov
int
inc
mov
int
POP
loop

-w-4--w-w-w—..-w—..—..—..—..

cx
ah,3
bh,0
10h
dl
ah,2
10h
ck
L1

—--_—n—n__—n________1-—n-p-e——"—"

—.._______—..—.._—~-p-w-w—~—..—..—..

____—..—..—n—-,4--p+p+p+-p+p+_-__-___

Advances the cursor n columns to the right.
Receives: CX = number of columns

; Returns: nothing
....-_-p—..—..-w-wq-Q-n-_-n-____-_-___,-,,

save loop counter
get cursor position
into DH, DL
changes CX register!
increment column
set cursor position

restore loop counter
next column

554 .Chapter 15 I BIOS-Level Programming

popa
ret

AdvanceCursor ENDP
END main

15.3.4 Library Procedure Examples
Let’s take a look at two useful, but s-imple procedures from the. Irvine16 link library, Gotoxy and
Clrscr.

15.3.4.1 Gotoxy Procedure
The Gotoxy procedure sets the cursor position on video page 0:

r - - - - - - - _ --
I

Gotoxy PROC
I
I

; Sets the cursor position on video page 0.
; Receives: DH,DL = row, column
; Returns: nothing
I
I

pusha
mov ah,2 ; set cursor position
mov bh,0 ; video page 0
int
popa
ret

10h

Gotoxy ENDP

15.3.4.2 Clrscr Procedure
The Clrscr procedure clears the screen and locates the cursor at row 0, column 0 on video page 0:

r - - - - -.-.
I’

Clrscr PROC
-0
I

; Clears the screen (video page 0) and locates the cursor
; at row 0, column 0.
; Receives: nothing
; Returns: nothing
I
I

pusha
mov
mov
mov
mov
int
mov
mov
HIOV

ax,O600h
cx,0
dx,184Fh
bh,7
10h
ah,2
bh,0
dx,0

; scroll window up
; upper left corner (0,0)
; lower right corner (24,79)
;-normal attribute
; call BIOS
; locate cursor at 0,0
; video page 0
; row 0, column 0

15.4 Drawing Graphics Uslng INT 10h 555

int 10h

P°Pa
ret

.Clrscr ENDP

15.3.5 Section Review

l. What are the three levels of access to the video display mentioned in the beginning of this
section? l

2. Which level of access produces the fastest output?

ce-aoxu-4=--1.»:

I-Iow do. you run a program in full-screen mode?
. When a computer is booted in MS-DOS, what is the default video mode?
. Each position on the video display holds what information for a"-single character?
. Which electron beams are required to generate any color on a video display?
. Show the mapping of foreground and background colors in the video attribute byte.
. Which INT 10h function positions the cursor on the screen?

9. Which INT 10h function scrolls text in a. rectangular window upward?
10. Which INT 10h function writes a character and attribute at the current cursor position?
l 1. Which INT IOh function sets the cursor size?
l2.. Which INT 13h function gets the current video mode?
13. What parameters are required when setting the cursor position with INT 10h?
14. How is it possible to hide the cursor?
I5. Which parameters are required when scrolling text in a window upward?
I6. Which parameters are required when writing a character and attribute at the current cursor

position?
1'7. Which INT 10h function toggles the blinking and intensity mode bit?
18. Which values should be moved to AH and AL when clearing the screen using INT l0h

function 6?
19. Chcz.llenge.' If you have 21 dog, why do you think he/she might be surprised that you spend

hours at a time staring at a blank computer screen?

15.4 Drawing Graphics Using INT 10h
It’s fairly easy to draw graphics points and lines using INT 10h Function 0Ch. (We will start
with this function and later show how to draw graphics by writing data directly to video
RAM.) Before drawing pixels, you have to put the video adapter into one of the standard
graphics modes, shown in Table 15-6. Each mode can be set using INT 10h function 0 (set
video mode).

556 Chapter 15 - BIOS-Level Programming

Table 15-6 Video Graphics Modes Recognized by INT 10h,

l Modelllllllllll W KResolution (columns X rows, § Number of Colors a
in pixels)

6
640 X 200

0Dh ‘ 320 X 200

0Eh I 640 X 200

UlFh 640 X 350

IOh ‘ i 640 X 350

Ilh

12h

640 X 480

640 X480

I.3h 320 X ZOQ

6Ah 800 X 600

Coordinates For each video mode, the resolution is expressed as XMa.t, YMa.r. The screen
coordinates range from x = 0, y = _0 in the upper-left corner of the screen, to x = XMrn—l y =
YMa.r—1 in the lower-right corner of the screen.

15.4.1 INT 10h Pixel-Related Fu l'lC'|IiOl'lS

15.4.1.1 Write Graphics Pixel (0Ch)
INT 10h Function OCh, as shown in the next table, draws a pixel on the screen when the video
controlleris in graphics mode. Function 0Ch executes rather slowly, particularly when drawing
lot of pixels. (Most graphics applications write directly into video memory, after _C¢'1lCl.llfllIlll° e
number of colors per pixel, the horizontal resolution, and so on.)

1 INT 10h Function 0Ch

Description i Write graphics pixel

Receives y AH = 0Ch
AL = pixel value

pi BH = video page
i -CX = x-coordinate
I DX = y-coordinate"

I Returns nothing

15.4 Drawing Graphics Using INT 10h 557

INT 10h Function 00h
* Sample Call mov

mov
mov
mov
mo'v
int

ah,0Ch
al,pixelValue
bh,videoPage
cx,x;coord
dx,y_coord
10h

Notes The video display must be in graphics mode. The pixel value is (O —- I) in
two‘-color mode, and (O — 15) in 16-color mode. Ifbit 7 is set in AL, the
new pixel will be XORed with the current contents ol‘ the pixel (allowing
the pixel to be erased).

15.4.1.2. Read Graphics Pixel (0Dh)
Function 0Dh, shown below, reads a graphics pixel froth the "screen at a given row and column
position, and returns the pixel value in AL.

1 INT 10h Function 0Dh
________ ____________7___ _______ _ L77 _ r

.'
l

Description Read graphics pixel

Receives AI-l = 0Dh
BI-1 = video page
CX = -x-coordinate
DX = y-coordinate

A Returns AL = pixel value . . 1
y Sample Call mov

mov
mov
mov
int
mov

ah,0Dh
bh,0
cx,x_coord
dx,y;coord
10h
pixelValue,al

5 video page 0

Notes The video display must be in graphics mode. The pixel value is 0 or I in 2-
color mode, and (O- l5) in I6-color mode.

15.4.2 DrawLine Program
The D'rmvLine program switches into graphics mode using INT 10h and draws a straight hori-
zontal line. You can tryout different graphics modes by modifying a single program statement
that currently selects video Mode 11h:

mov ah", 0 ; set video mode
mo'_v al,Mode 11 ; modify for different modes
int 10h ; call BIOS routine"

Chapter 15 ~ BIOS Level Programming

In MS-Windows, this program should be run in full-scrc-zen mode? Followms IS the complete
program listing

TITLE DrawLine Program (Pixel1.asm)

; This program draws a straight line, using INT 10h
; function calls.
INCLUDE

Mode_06
Mode_0D
Mode_0E
Mode_0F
Mode_10

Mode_11
Mode_12
Mode_13
Mode_6A

.data
saveMode
¢urrentX
currentY
color

; In 2-color modes, white = 1
; In 16-color modes, blue = 1

.code

Irvine16.inc

main PROC
mov ax,@data
mov ds,ax

; Save the current video mode

--- Video Mode Constants
6
ODh
0Eh
OFh
10h

11h
12h
13h
6Ah

BYTE ?
WORD 100
WORD 100
BYTE 1

mov ah,OFh
int 10h
mov saveMode,al

: Switch to a graphics mode

640
320
640
640
640

640
640
320
800

save the current video mode
column number (X-coordinate)
row number (Y—coordinate)

200,
200,
200,
350,
350,

480,
480,
200,
600,

2 colors
16 colors
16 colors

2 colors
16 colors

2 colors
16 colors
256 colors
16 colors

default color

mov ah,0 ; set video mode
mov al,Mode_11
int 10h

; Draw a straight line
LineLength = 100

* You may have lroublc running P:'.reH.u.s-m and Pi,\'eL?.g:.\‘::: under MS—Windows on computers having a relatively lou
amount of video RAM. Ifihis is a problem. switch lo mode I lh or bool inlo pure MS-DOS mode

15.4 Drawing Graphics Using INT 10h

mov dx,currentY
mov cx,LineLength ; loop counter

L1:
push
mov
mov
mov
mov
int
inc

POP
Loop

cx
ah,0Ch ; write pixel
al,color ; pixel color
bh,O ; video page 0
cx,currentX
10h
currentX

;inc color ; try this for multi—color modes
cx
L1

; Wait for a keystroke
mov ah,0
int 16h

; Restore the starting video mode
mov ah,0 ; set video mode
mov al,saveMode ; saved video mode
int 10h
exit

main ENDP
END main

15.4.3 Cartesian Coordinates Program
The Camrsian Coordiimres program draws the X and Y axes of a Cartesian coordinate system,
with the intersection point at screen locations X = 400 and Y = 300. There are two important
procedures, DrawH0rizLine and DrawVerticalLine._. which could easily be inserted in other
graphics programs. The program sets the video adapter to Mode 6A (800 x 600 i6 colors)

TITLE Cartesian Coordinates (Pixel2.asm)
O
I‘ This program switches into 800 X 600 graphics mode and
; draws the X and Y axes of a Cartesian coordinate system
; Switch to full-screen mode before running this program
; Color constants are defined in Irvine16.inc.

INCLUDE

Mode 6A =
X_axisY =
X. a.XiElX =

.-_‘-

X_axisLen

Y axisX —
Y:axisY =
Y axisLen

.-_‘-

Irvine16.inc

6Ah ; 800 X 600, 16 colors
300
50
= 700

400
30
= 540

560 Chapter 15 I B108-Levellilrogrammlng

.data
saveMode BYTE ?

.code
main PROC

mov ax,@data
mov ds,ax

; Save the current video mode
mov
int
mov

ah , - CF11 ;
10h
saveMode,al

get video mode

; Switch to a graphics mode
mov
mov
int

set video mode
800 X 600, 16 colors

ah,0
al,Mode_6A
10h

F
F

; Draw the X-axis
mov
mov
mov
mov
call

cx,X_axisX
dx,X_axisY
ax,X_axisLen
bl,white
DrawHorizLine

X-coord of start of line
Y~coord of start of line
length of line
line color (see IRVINE16.inc)
draw the line now

I
I

I

I

F

F
F

; Draw the Ysaxis
mov
mov
mov
mov
call

X—coord of start of line
Y—coord of start of line
length of line
line color
draw the line now

cx,Y;axisX
dx,Y_axisY
ax,Y_axisLen
bl,white
DrawVerticalLine

F
F
I
I

F

F

; Wait for a keystroke
mov
int

ah,10h
16h

; wait for key

; Restore the starting video mode
‘(HOV
mov
int

exit

ah,0 ; set video mode
al,saveMode ; saved video mode
10h

main endp
F 1 3 i i its

DrawHorizLine PROC
J‘

; Draws

F
F
F
I
I _ _ - _ -.-.
I

a horizontal line starting at position-X,Y with
a given length and color.
Receives: CX X-coordinate, DX = Y—coordinate,

AX = length, and BL = color
Returns: nothing"

15.4 Drawing Graphics Using INT 10h

.data
currX WORD-?

.code
pusha
mov
mov

DHL1:
push
mov
mov
mov
mov
int
inc
POP
Loop

popa
ret

currX,cx
cx,ax

cx
al,bl
ah,0Ch
bh,0
cx.currX
10h
currX
cx
DHL1

save X-coordinate
loop counter"

F

F

; save loop counter
; color
; draw pixel
; video page
; retrieve X-coordinate

; move 1 pixel to the right
; restore loop counter

DrawHorizLine ENDP
\ — — — — — _._.
J‘

nun;-1-u-u-1-1----1-1--u-an-1-1--u-u.nn.nn—..—..-.—..—-—..—..-.—..—..-.—..—..-p;..-_._-

DrawVerticalLine PROC
I
I

; Draws a vertical line starting at
; a given length
; Receives: CX
n
I

AX =

position X,Y with
and color.
X-coordinate, DX =
length, BL = color

Y-coordinate,

; Returns: nothing-

.data
currY WORD ?

.code
pusha
mov
MOV

MOV

DVL1:
push
mov
mov

mov

mov
mov
int
inc

currY,dx
currX,cx
cx,ax

cx
al,bl
ah,0Ch
bh,0
cx,currX
dx,currY
10h
currY

Y-coordinate
X-coordinate
counter

; save
; save

loopI

; save loop counter
; color
; function: draw pixel

set video page
set X-coordinate

; set Y—coordinate
; draw the pixel

move down 1 pixel

F

F

0
I

562 Chapter 15 - BIOS-Level Prograrnrnlng

pop cx ; restore loop counter
Loop DVL1

popa
ret

DrawVerticalLine ENDP
END main

15.4.4 Converting Cartesian Coordinates to Screen Coordinates
Points on a Cartesian graph do not correspond to the absolute coordinates used by the BIOS
graphics system. In the preceding two program examples, it was clear that screen coordinates
begin at sx = 0, sy = 0 in the upper left corner of the screen. sx values grow to the right, 3J1Cl.S‘_‘i'
values grow toward the bottom of the screen. You can use the following formulas to convert Car-
tesian X, Y to screen coordinates st, sy:

sx = (.90:-igX + X) sy = (sOri'gl’— Y)

where s0ri'gX and s0ri'gY are the screen coordinates of the origin ol’ the Cartesian coordinate
system. In the Cartesian Coordinates Program (Section I5.4.3), we used s0n‘gX = 400, and
.s'0rigY= 300, placing the origin in the middle of the screen. Let's use the following four points
to test our formulas:

1_

0 '(l1.1|1'.3)

e I 0 at
(-lUU J3) (‘IUD J3)

-I (U,-llllll)

15.5 Memory-Mapped Graphics 563

The following table summarizes the conversions of the four points:

*-:i; :17I1-.2’-*_ii'§??:“:':f-;i}7":"ii-'5':-'1_;—'lF-\§..€':"']I -- -:-r-.,-=;;."-;‘-. . »;=- *:.T '="=ll-;-*1».-. _- ' .-:-.-.;i.~:

due‘-f"'~‘[--\I".'.kill:-.}-:-I-j—" '-:-!-:, -:1.-;-j-j .';,-..;; -~ g4--, -.:.- ~ ~‘ ~.--—.-.--.'_‘:-"-_ -_'.--" l--""-:--‘ '- -:-. ‘;-' .'- ' '»' ;..\.“.' - -

(O, I00) (400 + 0,300 — IOO) (4-OD, 200}

I (I00, 0') (400 + IOO, 300 — O) (500, 300}

(O, —lOO) (4-O0 + O. 30.0 — (—lOO)) (400. 400)

I (-100, 0) (400 + (-100). 300 - 0) (300, 300;.

15.4.5 Section Review

I . Which INT l0h function drawsa single pixel on the video display?
2. When using INT IOh to draw a single pixel, what values must be placed in the AL, Bl-I, CX,

and DX registers‘?
. What is the inain disadvantage to drawing pixels using INT 10h‘?

Write ASM statements that set the video adapter to Mode I lh.
. Which video mode is 800 x 600 pixels, in I6 colors‘?
. What is the formula to convert a Cartesian X coordinate to screen pixel coordinates‘? .(Use

the variable sx for the scieen column, and use s0ri'gX for the screen column where the Car-
tesian origin point (0,0) is located.)

7. If a Cartesian origin point is located at screen coordinates sy = 250, EX = 350, conveit the
following Cartesian points in the form (X, Y) into screen coordinates (ax, sy):

O\'-J"l-i>=~l.:-1

a. (0, 100)
lo. (25, 25)
c. (-200, -150)

15.5 Memory-Mapped Graphics
In the preceding section we showed how to draw pixels and lines using Interrupt l0h. The primary
disadvantage to that approach was the slow speed, because so much OS cocle had to be executed
eveiy time a pixel was drawn. In the current section, we can draw graphics more efficiently by" pl ac»
ing graphics values directly in VRAM, a technique commonly called memory-mapped grrr.p!*u'cs.

15.5.1 Mode 13h: 320 X 200, 256 Colors
Video Mode l3li is the easiest to use when using direct memory. The screen pixels are mapped as
a two-dimensional anay of bytes, with a separate byte for each pixel. The arraybegins with the
pixel in the upper-left comer of the screen, and continues across the top of the screen for 320
bytes. The next byte maps to the first pixel in the second screen line", and so on. The last byte in the
array is mapped to the pixel in the lower-right comer of the screen. Why use a whole byte for each
pixel? Because you need 256 different integer values to represent each of the available colors.

564 Chapter 15 ~ BIOS-Level Programming

OUT Irzstruction. Pixel and color values are transmitted to the. video adapter using the OUT
(output to port) instruction. A 16-bit port address is assigned to DX, and the value sent to the
port is placed in AL. For example, the video color palette is located at port address 3C8h. The
following instructions send the value 20h to the port:

mov dz-c,3C8h ; port address
mov al,20h ; value to be output
out dx,al ; -send value to" port

Color Indexes The interesting thing about colors in Mode 13h is that each color integer does
not directly indicate a color Instead, it represents an index into a table of colors called a palette.
Each entry in the palette consists of three separate integer values (0-63) known as RGB (red,
green, blue). Entry 0 in the color palette controls the screen's background color.

You can create 262,144 different colors (643) with this scheme. Only 256 different colors
can be displayed at a given time, but your program can easily modify the palette at run time to
vary the colors.

RGB Colors RGB colors are based on the additive mixing of light, as opposed to the sub.trac-
tive method one uses when mixing liquid paint. With additive mixing, for example, you create
the color black by keeping all color intensity levels at zero. White, on the other hand, is created
by setting all color levels at 63 (the maximum). In fact, as the following table demonstrates,
when -all three levels are equal, you get varying shades of gray:

Red Green 3 Blue Color
p l

0_ i 0 O black"

20 20 20 dark gray

5 35 35 35 medium gray I i

50 50 50 light gray

63 63 63 white

Pure colors are created by setting all but one color level to zero. To get a light color,
incr_ease- the other two COIOIS in equal amouiits. Here are variations on the color red:

| lllnnlwnn l

Red 3 Green Blue Color

63 O_ O bright red

io 0 0 dark red ;
so 0' I 0 I niediumied ‘
63 40 :40 , pink

15.5 Memory-Mapped Graphics 565

Bright blue, dark blue, light blue, bright green, dark green, and light green are created in a
similar manner. Of course, you can mix pairs of colors in other amounts to create colors such as
magenta and lavender. Following are examples:

Red -i- Green Blue Color
1 1

ll ll. -..l _ _ _ _ , . ,

of 30 ' 30 cyan
30 30 O yeflonr l

l i ll
l 30 I 0 ‘ 30 magenta
. i _ l

i 40 l 0 63 (lavender

15.5.2 Memory-Mapped Graphics Program
The Memory Mapped Gmpliics program draws a row of 10 pixels on the screen using direct
memory mapping in Mode 13h. Following is the program listing:

: Memory Mapped Graphics. Mode 13 (Mode13.asm)

INCLUDE Irvine16.inc
.data
saveMode BYTE ? ; saved video mode
xval WORD ? : x-coordinate
yval WORD ? ;_y-coordinate

The main procedure sets tlievideo mode to Mode ‘I3h, sets the screen’s back-
ground color, draws several .color',pixels,' and restores the video -adapter to its
mmfimgnwde ‘ J :

.code
main PROC

mov ax,@data
mov ds,ax

call SetVideoMode
call SetScreenBackground
cal l Draw___S0me___Pixe l s.
-call RestoreVideoMode
exit

main ENDP
n-.-...-._---.._-..-.-..-..-..-....-..._-.-..-.-.-...--...-..--.--.._.-i.-.-.-.-.--.¢-..---.-.-.-.-.._.-.-6-.--.-.--.---.._.._..._.-.-.-.

SetScreenBackground PROC

; This procedure sets the screen's background color.
: Video palette index 0 is the background color.
‘I’ _---_-—-_—-_-wr_1--—-_--n—-_-—-_1-.._--n-1-1-1-1-_1--1--1-1--1--v—_1-1-1-1---ha-1-1-1-1----_-----1

Chapter 15 - BIOS-Level Programming

mov dx,3c8h ; video palette port (3C8h)
mov
out

al,0 ; set palette index
dx,a1

__ve '_ _7 _ |.;:: ' _

Two output pQ1'tS control the video color palette. The value sent to port 3C8h
indicates which video palette entry you plan to change. Then. the color values
themselves are sent to port 3C9h.

; Set screen background color to dark blue.
mov
mov
out
mov
out
mov
out
ret

dx,3c9h ; colors go to port 3C9h
al,0 ; red
dx,al
al,0 ; green
dx,al
al,35 ; blue (intensity 35/63)
dx,al

SetScreenBackground ENDP
;I_1-_-\-1-_

SetVideoMode PROC
F
; This procedure saves the current video mode, switches to
; a new mode, and points ES to the video segment.
I__-\-__-\--\--v-\----u--

mov
int
mov

mov
mOV

int

push 0A00Oh ;
POP
ret

ah,0Fh
10h
saveMode,al ;

; get current video mode

.save it

ah,0 ; set new video mode
al,13h ; to mode 13h
10h

video segment address
es ; ES =.A000h (video segment)

SetVideoMode ENDP

F—I'='I'a'§1:'=':"-"':':":""_1§':'2:--'='?!"-'-"-"-"-"-"-" “ “ “ “ “ “ “——““=='-"Q-'1.“-“*=2z—$a"n:22':—

RestoreVideoMode PROC
I
I

; This procedure waits for a key to be pressed and
; restores the video mode to its original value.
F---.---.--.

mov
int
mov
mov
int

-.1-.111__11111___-u-r___1-u-r____-111111_ _1xq_---.1-----.-n--\--1--\--1-

ah,10h ; wait for keystroke
16h
ah,0 ; reset video mode
al,saveMode ; to saved mode
10h

1-1-1-1--.1--.1--.._-r-r-_-1--r—-r-------r—---_--_--_--_--_--.--.--he-._--_-—-—-—-—-—-—-‘p

-..-_-1--.1--‘-1--.----.-------1-----_-Q--u1--\------.-||--n-..-.-_--q-—-_--\--\--u-p-\--n--_-

15.5 Memory-Mapped Graphics 67

ret
RestoreVideoMode ENDP

0-----.
I’

Draw_Some_Pixels PROC
I
I

; This procedure sets individual palette colors and
; draws several pixels.
I _ _ r r r _00-
I

; Change color at index 1 to
mov dx,3c8h

--@---1

mov al,1
out

mov
mov
out
mov
out
mov
out

; Calculate the video_buffer offset of the first pixel
; Specific to mode 13h, which is 320 X 200
mov xVal,160 ; middle of screen
mov yVal,100
mov ax,320 ; 320 for video mode 13h
mul yval ; y-coordinate
add.ax,xVAl ; x-coordinate

; Place the color index into the video buffer
mov cx,10 ; draw 10 pixels
mov di,ax ; AX contains buffer offset

; Draw the 10 pixels now.
DP1:

mov BYTE PTR es:[di],1 ; store color index

dx,al

dx,3c9h
al,63
dx,al
al,63
dx,al
al,63
dx,al

11--.--‘-1-1-1-1-1-1-1111--‘-1-1-Q-aq-.-.-1.-.

-Q1-1-1-1--Q-.--n-11-.111_111--I-1--1-l

----o-\--\-

white (63 63 63)
video palette port (3C8h)
set palette index 1

colors go to port 3C9h
red

green

blue

_ ____7 __ ' 7" “D-I

By default, the assembler assumes that DI is an offset from the segment
address in DS. The segment override (es:[di]) tells the CPU to use the seg-
ment address in ES instead. (ES currently points to VRAM)

add di,5 ; move 5 pixels to the right
Loop DP1
ret

Draw Some Pixels ENDP
END main

568 Chapter 15 - BIOS-LevelF-lrogrammlng

This program is fairly easy to implement because the pixels happen to be on the -same
screen line.'To draw a vertical line, on the -other hand, you could add 320 to each value of Dl to
move to the next row of pixels. Or, a diagonal line with slope --I could be drawn by adding 32l
to DI. Drawing arbitrary lines between any two points is best handled by Brese:ih_c'mi‘.s' Algo-
rirlu-n, which is well-documented on many Web sites.

1-5.5.3 Section Review

I. (True/False): Video mode l3h maps screen pixels as a two-dimensional array ol’ bytes,
where each byte corresponds" to two pixels.

. (True/False): In video mode l3h, each screenrow uses 320 bytes of stora'ge.
. In one sentence, explain how video mode l3h sets the colors oi’ pixels.
. How is the color index used in video mode l3h?
. In video mode l3h, what is contained in each element ol’ the color palette‘?
. What ere the three RGB values for dark gray‘?
. What are the three RGB values for white?
. What are the three RGB values for bright red‘?
. Cha'Henge.' Show how to set the screen background color in video mode l3h to green.

Chaflenge: Show how to set the screen background color in video mode l3h towhitc.'_5\ooo-=:o~u1-e-cow

15.6 Mouse Programming
The mouse is usually connected to the computer’s- motherboard through an RS-232 serial port, a
PS-2 mouse port, or a wireless connection. Before detecting the mouse, MS-DOS requires a
device driver program to. be inst-alled in memory. MS-Windows also has built-in mouse drivers,
but for now we will concentrate on Functions provided by MS-DOS.

Mouse movements are tracked in a unit of measure called 1-m'cke,r.r (guess how they came
up with that nam_e‘?). One mickey represents approximately l/200 of an inch of mouse travel.
The mickeys to pixels ratio can be set for the mouse, which defaults to 8 mickeys for each hori-
zontal pixel,-and I6 mickeys for each vertical pixel.3

15.6.1 Mouse INT 33h Functions
INT 33h provides information about the mouse, including its "current position, last butto.n
clicked, speed, and soon. You can also use it to display or hide the mouse cursor. ln this section,
we cover a few of the more essential mouse functions. INT 33h receives the function number in
the AX register rather than ‘AH (which is the norm for BIOS interrupts).

15.6.1.1 Reset Mouse and Get Status
INT 33h Function 0 resets the mouse and confirms that it is available. The mouse (if Found) is
centered on the screen, its display page is set to video page 0., its pointer is hidden, and its

3 From ‘Ray D'uncan-Advrurced MS-DOS Programmiilg t 1938)- p. 601.

15.6 Mouse Programming 569

mickeys to pixels ratios and speed are set to default values, The mouse’.s range of movement is
set to the entire screen area. Details are shown in the following table:

INT 33h Functionti T T ,
Description Reset mouse and get status

Receives AX = O
d , 7 _ . .

Rettlms If mouse support is available AX = FFFFh and BX = number of mouse but-
tons; otherwise, AX = 0. i

Sample Call mov ax, 0
int 33h
cmp ax,0
je MouseNotAvailable

Notes If the mouse was visible before this call, it is hidden by this function.

15.6.1.2." Showing and Hiding the Mouse Pointer
lNT 33h Functions l and 2, shown in the next two tables, display and hide the mouse pointer,
respectively. The mouse driver keeps an internal counter, which is incremented (if nonzero) "by
calls to Function 1 and decremented by calls to Function 2. When the counter is zero, the mouse
pointer is displayed. Function 0 (reset mouse pointer) sets the counter to --l.

INT 33h Function 1 T TV T I

Description Show mouse pointer

Receives AX = 1

Returns , nothing

Sample Call mov ax, 1
int 33h

Notes The mouse driver keeps a ‘count of the number of times this function is
called.

INT 33h Function 2

, Description Hide mouse pointer

Receives AX = 2

Returns nothing l

570 Chapter 15 - BIOS-Level Programming

INT 33h Function 2

Sample Call mov ax,2 I
int 33h l

Notes The mouse driver continues to track the mouse position.

15.6.1.3 Get Mouse Position and Status
INT 33h Function 3 gets the mouse position and mouse status, as can be seen in the following
table:

INT 33h Function 3

Description Get mouse position and status

p Receives AX = 3
Returns BX = mouse button status

CX = X-coordinate (in pixels)
‘ DX = Y-coordinate (in pixels)

Sample Call mov ax, 3
l int 33h
* test bx,l
I jne Left_Button_Down
‘ test.bx,2
, jne Right_Button_Down
, test bx,a
l jne Middle_Button_Down

q‘ ' _ _ ‘.
I

Notes The mouse button status is returned in BX as follows: If bit 0 is set, the left
button is down; if bit l is set, the right button is down; if bit 2 is set, the
middle button is down.

Converting Pixel to Character Coordinates Standard text fonts in MS-DOS are 8 pixels wide"
and -8 pixels high, -so you can convert pixel coordinates to character coordinates by dividing the
former by the c'ha'racter size. Assuming that both pixels a'nd'characters start nulnbering at zero,
the following formula converts a pixel-coordinate P to a character-coordinate C, using character-
dimension D:

C = im(P I D)

For example, let’s assume that characters are 8 pixels wide. If the X-coordinate ieturned by
INT 33 Function 3 is 100 (pixels), the coordinate would "fall within character posit-ion I2: C =
r'nr(lOO / 3).

15.6 Mouse Programming

15.6.1.4 Set Mouse Position
INT 33h Function 4, shown in the following t-able, moves the mouse position to -specified X and
Y pixel coordinates.

-TFunctiflo’n4'-7,' l
Description Set mouse position

Receives AX = 4
CX = X-coordinate (in pixels)
DX = Y-coordinate (in pixels)

Retums nothing

Sample Call mov ax,4
mov cx,200
mov dx,l00
int 33h

; X—position
; Y-position

Notes N If the position lies within an exclusion area, the mouse is not displayed.
1 _

Converting Character to Pixel Coordinates You can convert a screen character coordinate to
using the following formula, where C = character coordinate, P = pixel coor-a pixel coordinate

dinate, and D == character dimension:

P=CxD

In the horizontal direction, P will be the pixel coordinate of the left side of the character cell In
the vertical direction, P will be the pixel coordinate of the top of the character cell. If characters
are 8 pixels wide, and you want to put the mouse in character cell 12, for example, the X-coo1d1~
nate of the leftmost pixel of that cell is 96.

15.6.1.5 Get Button Presses and Releases
Function 5 returns
In an event-driven

the status of all mouse buttons, as well as the position of the last button press
programming enviromnent, a drag event always begins with a button press

Once a call is made to this function for a particular button, the button’s state is reset, and a sec~
ond call to the function returns nothing:

I 1 _'.'__-:-__‘- -I-_.|-;'. , _i’- - ___, _ __ _ .

...‘ _ _ _ . .
;.'..- 'r' '.' '.-n|-- - __ _ ..

Description

=j...Ifli.li'»3.3h¥.:FvneiI'on sect . , l
Get button press information

Receives AX = 5
BX = button ID (O = left, 1 = right, 2 = center)

‘I

572 Chapter 15 ' BIOS-Level Programming

INT 33h Function 5 -

Returns AX = button status
BX = button press counter
CX = X-coordinate of last button press
DX = Y-"coordinate of last button press

Sample Call mov ax, 5
mov bx,0
int 33h
test ax,1
jg skip
mov X_c.oord,-cx
mov Y coord dx___ r.

4
I

; button ID

; left button?
no

; yes: save coordinates
— skip

middle button is down.

Notes The mouse button status is returned in AX as follows: If bit 0 is set, the left
button is down; if bit 1 is set, the light button is down; if bit 2 is set, the

Function 6 gets" button release information from the mouse, as shown in the followznv
table. In event-driven progrannning, a mouse click even occurs only when a mouse button 1s
leleased. Similarly, a drag event ends when the mouse button is released.

5 INT 33h Functionfi . .
1 7 t" *'*"'* 7 *************** 7' 7

Its we as 1 1 1 1 1 1 1 1 1 _ as _

Description Get button release information

Receives = 5
BX = button ID (0 == left, 1 = right, 2 = center)

Returns AX = button status
r BX = button release counter

CX = X-coordinate -of last button release
DX = Y-coordinate of last button release

-.L e i —

Sample Call mov ax, 6
mov bx,0
int 33h
test ax,1
jz skip
mov X_coord,cx
mov X_coord,dx

I

Q
I

I
I

I
I

button ID

left button?
no
yes: save coordinates

- skip

set, the middle button was released0

Notes The mouse button status is returned in AX as follows: If bit 0 is set, the left
button was released; ifbit 1 is set, the right button was released; if bit 2 is

1

15.6 Mouse Programming 573

15.6 .-1 .6 Setting Horizontal and Vertical Limits
INT 33h Functions 7 and 8', as illustrated in the next two tables, let you set limits on where the
mouse pointer can go on the screen. You do this by setting minimum and maximum coordinates
for the mouse cursor. If necessary, the mouse pointer is moved so it lies within the new limits.

..._i s if _:_: _.";§E;| _ (:11‘:23?-.';‘,-_-§,_?:q:_;:a1Iigh,2-J5!‘ i_:|;_;|_v .;|| -1-‘ l;—-.-' ulfffq I i\L'|| ‘ _r£.!fvL{|r I: \i;:!:} 1'11‘, ' 1I;‘T§I§_:* F vflifvl _ 1|:-i-:fB%L*€*?_-RIF iii‘-T. 5:1“ .-|

‘ii 4 c-fife.£34.s;“e!h?}§;iL1i?kfgiatlgiqs-in:-ii-nlsfiiifiiiii i.-‘§1§‘I§I~5‘§@a';.,% it §;l;.';5l.i-.*'§§=a.=i"5i;.:3.7=_l;_:»=‘e:a.%'§=.tiii:§i:aiiiilr>.I. -'.-Qflifilillfigs-till aaa.-nae" 1II~.=I%i*i~il¥**;1fi“ 2 zlileiii * e-[<.-<=it>s.=.*'%:ir ;;~;1=i=lE*gi:;r=@:ir'e:.:’§liI ':§'I?'*’ = ' ‘*="=Iré5i<e£i>‘a."'i'®a.,I~*ii1Iarmpit_,g;§stig§' Q-_,',_:j]f1j;§ff|;ii§'§{1fj[_i‘_;§'_-;-'3'; pi.‘-3-;;=ii1z;r,;:f-:i1_~:i;!'5t£tQ.'.=t'I-' =5r~I-‘;?e’-:I;i=i'=.'§'=.- it Ilmzij. _\ii’§"‘<liiifr:... .'}.\1':*=.sg_rH1'I_i._'i'il‘.'.-:.T='..'l .._ " ‘_ " * _' _..= =' ‘ _'_.*“[.";5_‘g;:,,{g'_.:ia§i§.-lei;-';f;E‘1

Description Set horizontal limits
_ _ I

11-‘:E
=1"I

"T1-:-& 9.

J1

__'~____.:'.iii...A - PL ELL|'|'atu—l-l- 1'-15*"EI15T -.9‘5' ii
-.-=-.-.-.=

Receives AX = 7
CX = minimum X-coordinate (in pixels)

* DX = maximum X-coordinate (in pixels)

Returns nothing

E Sample Call mov ax,7
mov cx,l00 set X-range to
mov dx,700 (100,700)
int 33h

‘HO

‘HO

133;.;Ia:|-i|1a;;.;;;;t;;;:';_1 1'-_;;1‘_'_'i;_vl.j<-"I.lfi"i:;§F}}i§§‘-1i~l§iiilié115%;1;?-g§r;'*EE-1;';iI}§l¢iii§=§=i‘§~??'3ig-if§i-“ -I33-it-*'--;-_ '1-. _.-; =- . -._.._ '..-_-‘.3: ." . _ _.i‘Ili'3'-Q’§tFli.;:Z;:t.!fififiqihh-{T;i I-. ‘- r =* - ' '1; ". -r ‘IL, I :- i-3-"1 *'.=-.--.. Ll t't‘- .--*.‘l=* -* ; ‘:. 1:‘--‘I-kl ‘-2 “I-.. 1-: .5 -- '?».'. "-.': . ---"Fm... ii "'5 Fir" .-Ll ctien.-mi. ii7~i$>I?‘ii'“ii£T'-i§_.¢'?.'-§|;ii‘l".!’"1"fgili=1ijEHail‘i'iiiifiEii?'§§ii;i5:1,ii;illiifiiiifi.ii}§IiliiihifiE§E§ifii:jfl*I51*'£i tiiliv Ii‘: 5-I‘ * ti =a=l~i?s.:§il; Ilsirlsat-it
r J-r ' 1- _ ‘ -:-‘ I’ '_'!' I -1:‘ _"_-1' 1- :|.l|.1:_.j II ,- _; .-.’ 1 . ' -- ._ - T._; _.] 1 ‘:- 1' '_. I; ' '-I " = ';,' -- '0 ' _ 1 I ‘ r

|_i' ii“ 5 P _ , _ .i_'_._'f -I 1 Q“ "L \- ii: ‘f9 ." L -7 ‘aria Z ‘ Fiji - -_-I_<;_|_ l ;- It jg" ':. _ ‘ 7 7 -1 ~.3 _§I.,__;».g~_~iii-|g"-l. i=!=..;n .E;.;.§....s» 51.. l__.ar:lttE , I{f.asrz=:£l|
Descrip Set vertical l-imits.-.."L .,'-'~“1"-7'---aifia;5

I.'I.'.'I'.r'..5.

k" § J‘ F

E2__,_

"\- E "ii¥ r’ 5" -L .-"J1“Y

::"=511 3:3»itHinil er-‘Q=~=‘ =',E;7§-=_-I-‘gym"Iii‘
'3?L‘Q,“ -IE3.Ex‘)!

any

CX minimum Y-coordinate (in pixels)
Receives AX = 8

DX = maximum Y-coordinate (in pixels)

Returns nothing

Sample Call mov ax,8
int'33h
mov cx,100 ; set Y-range to
Ill-OV dJl;,500 } (100,500)
int.33h

1 _

15.6.1.7 Miscellaneous Mouse Functions.
A number of other INT "33h functions -are useful for configuring the mouse and -controlling its
behavior. We don’t have the space to elaborate on these functions, but they are listed in Table 15-'7 .

Table 15-7 Miscellaneous Mouse Functions.
. WF€II,ietili£l.i:§:i iiiiiiiiiiiaifiiii{i£§i§ii5Hé$.9ii3 Eili.i5'=ltiliit *Pari'3l11e ier~$@e>ir-i"

__25__:-:0"rm:_ ‘II-;1=;—"-'. '»-.2. 42.“.' -n__..- 5.1:»- -.1“:_-3-'15
5'5‘$-

.. :1'\ v'-3..'_ 2
-5--76-.J.-'1

'1 -1.
._.‘_' y..as .-.. ‘=5 2!'2J_F- -i‘-;“‘,-....'.i‘ J-2‘. T". I2:-“' -'2'-8_____. _,,._1. ‘~‘-F-¥.'B*=-"‘lg:3: fié

‘L4-

H. .-s".G"*’5"-:11 -I'§-..I|;;-1-..as _=;‘is;

-s
rt _ I. I |.-=|i;;dl.; r- $.r-r';;,=;_"= }l;?l=-;‘%‘jrr1.:.-I. J .g 2-.;:;._;s-‘in;-.-.: Q31;-___=§;;;i>';]El_; 13;_;=5§}i_;.§;§;.}.€§:..;-;;%;I1ji:g;2fl

_ »... F.‘ ...I; .". -- ."'-’r¢r..i'ifi':E1iil-éirifit-.2 .. | '1?-' "-. ,-i ‘E-Ir. ..- :" ..'ri.-:.-':>I|3'-'8!-I r Ln. =9‘ - 1' I-:1 ‘E; 'r.. 1 I1: ! ‘-¢»,,'.;=-J5-,;--= ___*-IL -.-- ‘J1 -!‘.r;

AX = 0Fh Set mickeys to 8 pixels ratio Receives: CX = horizontal mick-
eys. DX = vertical mickeys. The
defaults are CX = 8., DX = 16.

574 Chapter 15 I BIOS-Level Programming

Table 15-7 Miscellaneous Mouse Functions. (Continued)

Function I,
i l

Description 5 lnputl0utput Parameters

AX=l0h , Set mouse exclusion area (prevents Receives: CX, DX = X, Y coor- i
mouse from entering a rectangle) dinates of upper-left corner. SI,

DI =-X, Y coordinates of lower-
right corner

AX= l3h Set double speed threshold Receives: DX = threshold speed
in mickeys per second (the
default is 64)

AX=lAh 5
Il

Set mouse sensitivity Receives: BX = horizontal "speed
(mickeys per second), CX = ver-
tical speed (mickeys per sec-
ond), DX = double speed
threshold in mickeys per second

\ AX=lBh Get mouse sensitivity Retums: BX = horizontal speed,
CX = vertical speed, DX = dou-
ble speed threshold

-AX=lFl1 Disable mouse driver
—_ 1-

Retums: If unsuccessful, AX =
FFFFII

7 AX=20h I Enable mouse driver 110113

S AX=24h Get mouse information Retums FFFFh on error; "other-
wise, returns: BH = major ver-
sion number, BL = minor
version number, CH = mouse
typ.e (1 = bus, 2 = serial, 3 =
InPort, 4 = PS/2, 5 = HP); CL =

I IRQ number (0. for PS/2 mouse)

15.6.2 Mouse Tracking Program
The Mouse Tracking program presented in this section tracks the movement of the text mouse
cursor. The X and Y coordinates are continually updated in the lower-right corner of the screen,
and when the user clicks the left button, the mo_use’s position is displayed in the lower-left cor-
ner of the screen. Following is the program listing:

TITLE Tracking the Mouse (mouse.asm)

INCLUDE Irvine16 . inc

.data
ESCkey = 1Bh
Greetingusg BYTE "Press Esc to quit",0dh.0ah,0

5.6 Mouse Programming

StatusLine BYTE “Left button: ll

BYTE "Mouse position: “,0
blanks BYTE " ",0
Xcoordinate WORD 0
Ycoordinate WORD 0
Xclick WORD 0
Yclick WORD 0

.code
main PROC

mov ax,@data
mov ds,ax

TI

‘WI

‘HO

F

current X—p0sition
urrent Y-position

X—pos of last button press
Y-pos of last button press

O

; Hide the text cursor and display the mouse.
call HideCursor
mov dX,OFFSET Greetingmsg
call Writestring
call ShowMousePointer

; Display a status line on line 24.
mov dh,24
nunr d1,0
call Gotoxy
mov dx,OFFSET StatusLine
call WriteString

; Loop: show mouse coordinates, check for left mouse
; button click, or for a keypress (Esc key).
L1: call ShowMousePosition

call LeftButtonClick
mov ah,11h
int 16h
ja L2
mov ah,l0h
int 16h
cmp al,ESCkey
je quit

L2: jmp L1

l'|'
quit:

call HideMousePointer
call Showflursor
call Clrscr
call weieneg
exit

main ENDP

I
I

I

I

0
I

I

I

‘HI‘HI

10.0

check for button click
key pressed already?

no, continue the loop
remove key £rom.buf£er

Is it the ESC key?
es, quit the program
o, continue the loopl3"'<"'<

(D [D

Hide the mouse, restore the text-cursor, clear
he screen, and display "Press any key to continue."

Chapter 15 - BIOS-Level Programming

F ” _ H ~ ~ H --_._-—

l

¢-.1-1 4-m;-.1-14-m4-m4-@-1|.-11.4-@-1|.-1|.-n.

GetMousePosition PROC
0
I

-1.-¢.¢_¢_-1.-1.-1.-¢.¢_¢_¢_¢_¢_-1.:-.4-4--4-4---0-u-1.0-an-.

; Return the current mouse position and button status.
; Receives: nothing
; Returns: EX

I

push
mov
int
POP
ret

(1
CX
DX

0-no-u;-.-u-¢-.4-‘-4--1.-n.-1.-n.n--

ax
ax,3
33h
ax‘

= button status (0 = left button down,
right button down, 2 = center button down)
X-coordinate
Y-coordinate
4-ma-u-n4-m-....-1|.-1|.-1|.-11.1-.-11.0-I

GetMousePosition ENDP

F " “ ” " “ “ ‘ “ “ “ “ “ ““
HideCursor proc
I
I

4-m;-.-1|.-1|.-n.-n.-1.0-In-1.0-In-1.0-I

0-4---.-n.

-n.a-an-1.-n.

on—an|4__4_—-n.-n.q_-n.-n.4_n-mg;-4-;a—a—4-;¢_4-‘._-.-.

-1.-1.0-un-1.-1.-n.a-u-n.-1.-n.4_-n.4_na—4_¢_-0-sq-‘--n-no-no-I

; Hide the text cursor by setting its.top line
; value to an illegal value.
;-Q.-.-

IHOV

int
or
mov
int
ret

ah,3
10h
ch,30h
ah,1
10h

HideCursor ENDP

ShowCursor PROC
mov
int
mov
mov
int
ret

ah,3
10h
ah,1
CX,O607h
10h

ShowCursor ENDP
Q _ _ _ _ _ ~ _._
I

4-m4-‘-11.0-I4-@-1. -:-

q---4-in-n4-m4-m4-m4-m4-n4-mo-In-1.

0-u-1|.-11.000-00-n-0-In-nn-nn-nn-n

HideMousePointer PROC
:0-we-u-1.1-‘-0-I-

push ax

n—-—r-—r4_q-4_¢O-—rn—¢_o-u-nou-

0
I

I
I

I
I

0
I

.

I

0
I

4-m4-mo-I

4-is-we-u

1-.4-1-.._;-an-1-.1-.¢_--.1»--Q-.4-no-no-u-.--¢_-,-,-._¢_¢_

get cursor size

set upper row to illegal value
set cursor size

get cursor size

set cursor size
default size

u--11.4-sq-0-no-004-In-a-0-no-4-m4-m-.-.4-ma-1-pa-1-an-n-...-n.n--1.

0-004-m-wry-u-—r¢_.-wry-q-4-‘-0-In-n.o-no-In-n.--4-@-n.-1.4-m4-m4-m

mov ax,2 ; hide mouse cursor
int 33h
pop
ret

ax

HideMousePointer ENDP

55 Mouse Programming

.0-nan;-1.1:;-u-ra-no-I-u-we-no-I-no-no-I an on 0-we-no-an-so-no-no-sq-0-no-In-11.0-I

ShowMousePointer PROC
; ----------- ""

push ax
-1|.-1|.-11.0-u-1-0-u—a-an-.--.-1.0-no-sq-0-I

one-na-_|.—u_~a-u_~a-a-u--.o-u-.-Qo-uo-uo-uo-uo-u-po-u--.¢-

0-no-u;-.0-no-no-4-1-n-.0-no-no-u0--.._¢_.-.-,-.¢_._._,_|vu-on

mov ax,1 ; make mouse cursor visible
int 33h
pop ax
ret

ShowMousePointer ENDP
:0-an-in-0-no-u-11.0-an-In-n-1.1-nun-no-no-I on -1|.--1.0-u-1|.-11.0-no-In-1|.-III-II--lo-I

LeftButtonClick PROC
F

-1.0-no-u-0-no-u-no-ca-no-no-no-no-I-q-aq-Q-p;-¢-4-4--p-p¢_

; Check for the most recent left mouse button press,
y and display its location.

button number (0=left, 1=right, 2=middle)
button press counter

; Receives: BX
; Returns: BX
; CX
, DX
Q * ~ — — @ _ _ _ — _ _ -.1-
I

pusha
mov ah,0
mov al,5
mov bx,0
int 33h

X-coordinate
Y—coordinate
-pa-ua-u-.-pn-a-_u.¢-._n.a—-upq- -n.-|..-.¢-au-¢.o-u-u-vo-uo-u-¢.o-uq-.o-uq-.nn.¢-—. -—.-1.-1.:-¢--1.

get mouse status
(button press information)
specify the left button

; Exit proc if the coordinates have not changed.
cmp cx;Xclick
jne LBC1
cmp dx,Yclick
je LBC_exit

LEC1:
; Save the mouse coordinates.

mov Xclick,cX
mov Yclickgdx

; Position the cursor,.clear the old numbers.
mov dh,24 ; screen row
mov dl,15 ; screen column
call Gotoxy
push dx
mov dx,OFFSET blanks
call WriteString
pop dx

; Show the mouse click coordinates.
call Gotoxy
mov ax,Xcoordinate
call WriteDec

78 Chapter 15 - BIOS-Level Programming

mov
call
mov
call

LBC_exit
popa
ret

LeftButt

F ~ w ~ w w --

SetMouse

Set th
Receiv

;
I
F
; Return
; _____ __

mov
int
ret

dl,20 ; screen column
Gotoxy
ax,Ycoordinate
WriteDec

onClick ENDP

on-u-r-u-we-u-u-r-u-we-u0-no-u-u-r-u-r-n.o-no-u-no-u-u-r-u-we-u-1.0-u-n.-1.0-unu.-n.-1.:-n-0-I0-no-u_u.o-no-no-'-‘!-II-I0-Ilnno-no-ulna-no-no-no-Inna-uIn~

Position PROC

e mousels position on the screen.
es: CX = X-coordinate

DX = Y-coordinate
s: -nothing

ax,4
33h

SetMousePosition ENDP
11,-,--|._|.o-no-no-u
I

0-no-no-no-no-no-no-no-no-u0-no-no-no-no-u0-no-no-u0-no-no-u0-an-m0-no-no-u0-no-unu;--r-rm-r-r-1.--1;--~¢_¢-¢-‘--1-~¢.,¢.,-r-_-p

5howMousePosition PROC
;
;
; bottom
I
;
F-n.a-no-u;-n-1.-n.-1.

Get and show the mouse coordinates at the
of the screen.

Receives: nothing
Returns: nothing

-no-u-11.0-u-n.-11.;-.-11.0-u0-u-1.;-.¢-.-1--1.-n.-1.-1.-n.-n.a-u0-u-1.0-u-n.o-Iau¢_aunm.n-1..-n-1.11.-man.-In-flrlnnauwrauau-wa--—rIn~au-nu

pusha
call GetMousePosition

; Exit proc if the coordinates have not changed.
cmp
jne
cmp
je

SMP1:
ITIOV
ITIOV

cx,Xcoordinate
SMP1
dx,Ycoordinate
SMP_exit

Xcoordinate,cx
Ycoordinate,dx

; Position the cursor, clear the old numbers.
mov dh,24 ; screen row
mov dl;60 ; screen column
call G0t0XY
push dx
mov dx,OFFSET blanks

15.6 Mouse Programming 579

call Writestring
pop dx

; Show the mouse coordinates.
call Gotoxy ;
mov ax,Xcoordinate
call WriteDec
mov dl,65 ;
call Gotoxy
mov aX,Ycoordinate
call WriteDec

(24,60)

screen column

SMP__exi c =
P°Pa
ret

ShowMousePosition ENDP
END main

15.6.3 Section Review

CJ\'-1'1-I-Kl-1-‘>|\-7*-*

K000"--J

10

ll
12

13
14
15

16

Q

0

Q

Which INT 33h function resets "the mouse and gets the mouse status?
Write ASM statements that reset the mouse and get the mouse status.
Which INT 33h functions show and hide the mouse pointer?
Write ASM statements that hide the mouse pointer.
Which INT 33h function gets the mouse position and status?
Write ASM statements that get the mouse position and store it in the variables m0useX and
m0useY.
Which INT 33h function sets the mouse position?
Write ASM statements that set the mouse pointer to X = 100 and Y -= 400.
Which INT 33h function gets mouse button press information?
Write ASM statements that jump to label Buttonl when the left mouse button has been
pressed.
Which INT 33h function gets mouse button release information?
Write ASM statements that get the mouse position at the point when the right button was
released, and store the position in the variables m0useX and m0useY.
Write ASM statements that set the vertical limits of the mouse to 200 and 400.
Write ASM statements that set the horizontal limits of the mouse to 300 and 600.
Challenge.‘ Suppose" you want the mouse pointer to point to the upper-left corner of "the
character cell located at row 10, column 20 in text mode. What X and Y values will you
have to pass to INT 33h Function 4? l
Challenge: Suppose you want the mouse pointer to point to the middle of the character cell
locate.d at row 15. column 22 in text mode. What X and Y values will you have to pass to
INT 33h Function 4'?

580 Chapter 15 ~ BIOS-Level Programmlng

15.7 Chapter Summary
Working at the BIOS level gives you more control over the computer’s input-output devices than
you would have at the.'MS-DOS level. This chapter "shows how to program the keyboard using
INT 16h, the video display using INT l0h, -and the mouse, using INT 33h.

INT 16h is particularly useful for reading extended keyboard keys such as function keys
and cursor arrow keys.

Keyboard hardware works with the INT 9h, INT 16h, and INT 21h handlers to make key-
board input available to programs. The chapter contains a program that polls the keyboard. and
breaks out of a loop.

Colors are produced on the video display using additive synthesis of-primary colors. The
colorpixels are mapped to the video attribute byte.

There are a wide range of useful INT 10h functions that control the video display at the
BIOS level. The chapter contains an example program that scrolls a color window and writes
text in the middle.

You can draw color graphics using INT 10h. The chapter containstwo example programs
that show how to do this. A simple formula can be used to convert logical coordinates to screen
coordinates (pixel locations).

An -example program with documentation shows how to draw high-speed color graphics
by writing directly to video memory.

Numerous INT 33h functions manipulate and read the mouse. An example program tracks
both mouse movements and mouse button clicks.

For More Information Digging up information on BIOS functions is not easy, because many
of the good reference books have gone out of print. Here are my favorites:

' Brown, Ralf, and Jim Kyle, PC Imerruprs, A Programmer's Reference to BIOS, DOS, and
Third-Par-r'y Calls, Addison-Wesley, 1991.

' Duncan, Ray. IBM ROM BIOS, Microsoft Press, 1998.
' Duncan, Ray. Advanced MS-DOS Pmgramming, 2nd ed. Microsoft Press, 1988.
' Gilluwe, Frank van. The Undocumerned PC: A Pr0grammer’s Guide to I/O, CPU.s, and

Fixed Memory Areas, Addison-Wesley, 1996.
' Hogan, Thom. Pmgrammerr PC Sonrcebook : Reference Tables for IBM PCs and Com-

patibles, Pr/2 Sysremr, Elsa-Based Systems, Ms-DOS Opernri-ng Sy_.s'rem Th rough Version,
Microsoft Press, 1991.

° Kyle, Jim. DOS -6 Devel0per’s Guide, SAMS, 1993.
' Mazidi, Muhammad Ali, and Janice Gillispie Mazidi. The 80x86 IBM PC & Compatible

Computers, Volumes I & II, Prentice-Hall, 1995.

15.8 Chapter Exercises
The following exercises must be done in Real-address mode:

15.8 Chapter Exercises 581

1. ASCII Table
Using INT 10h, displayall 256 characters from the IBM Extended ASCII character set (inside
back cover of the book). Display 40. columns per line-, with a space following each character.

2. Scrolling Text Window
Define a text window that is approximately 3!-4 of the size of the video display. Let the program
carry out the following actions, in sequence:

- Draw a string of random characters on the top line of the window. (You can call
Random_range from the Irvinel 6 library.)

' Scroll the window down one line.
' Pause the program for approximately 200 milliseconds. (You can call the Delay function

from "the Irvinel 6 library.)
- Draw another line of random text.
- Continue scrolling and drawing until 50 lines have been displayed.

._..,__ in ... | -.t.=.-._ . |-1-; _ Trh
"‘ - |_|-It.=-I-.=:=~;r1f<-r»¢_- ~_ ,:= . r:. . :5-.'i:*:: ' --- ii-1 1:. - -- Ha-1~ - .'f1Is‘f't?;=i~'.- '.-‘F-".‘f=5‘:"'1zi'I"’.l’~"‘=_r§-z‘‘ "'-'_I.‘l1IS program and [IS var1'ous-enhancements-were given a"n1cl<name by my assembly langugge

students based on a popular movie where characters interact in a virtual world. (We can’t _n'_f§,n-
tion the name of the movie here, but you williprobably figure it out_.b_y the tinie‘1'you compligte
~*' -- -1-*---'1' - . -, ;i_= -'_=:‘i:--:3 . : -. ' ..'!'1'".'-' ' -.';.'-.i"i'*-I ' --"'i“-:iii§§.'ii§.=“il'::1;=;~,§i'1,f-1 pFOgF@1'Q-.55) 2-‘ .- ' '.Ii'i:;="' ., _ ' ':-." ' . '~!;'if

--_ 7 - i 7 i i_ 7 i i i ll i i j J .i_||:iiiPi,|i* ii’ 7:. 7-.--1 if _ |‘| I -,---_- I _‘ _,_|I_,___.__. -_;_.

3. Scrolling'Color Columns
Using the Scrolling Text Window exercise as a startingpoint, make the following changes:

- The.random string should only have characters in columns 0, 3, 6, 9, 78. The other col-
umns should be blank.- This will create the effect of columns as it scrolls downward.

' Each column should be in a different color.

4. Scrolling Columns in Different Directions
Using the Scrolling Color Columns exercise as a starting point, make the following change:
Before the loop -starts, randomly choose each -"column to "scroll either up or down. It should con-
tinue in the same direction for the duration of the program. Him“: Define each column as a sepa-
rately scrolling window.

5. Drawing a Rectangle Using INT 10h
Using the pixel-drawing capabilities of INT 10h, create a procedure named DrawRectangle. that
takes input parameters specifying the location of the upper-left corner and the lower-right cor-
ner, and the color. Write a short test program that uses the INVOKE directive to draw several
rectangles of different sizes and colors.

6. Plotting a Function Using INT 10h
Using the pixel-drawing capabilities of INT 10h, plot the line determined by thc equation Y =
2(X2).

582 Chapter 15 ~ BIOS-LevelProgrammlng

7. Mode 13 Line
Modify the Memory Mapped Graphics program in Section 15.5.2 so that it draws a single verti-
cal line.

8. Mode 13, Multiple Lines
Modify the Memory Mapped Graphics program in Section 15.5.2 so that it draws a series of 10
vertical lines, each in a different color.

9. Box-Drawing Program
Write a procedure -that draws .a single-line frame anywhere on the screen. Use the following
extended ASCII codes": C0h, BFh, B3h, C4h, D9h, and DAh, from the table on the inside back
cover of this book. The procedure_’s only input parameter should be a pointer to a FRAME
structure:

FRAME STRUCT
Left BYTE ? ; left side
Top BYTE ? ; top line
Right BYTE ? ; right side
Bottom BYTE ? ; bottom line
FrameColor BYTE ? ; box color

FRAME ENDS
Writ_e a program that tests your procedure, passing it pointers to various FRAME objects.

Expert MS-DOS Programming

16.1 Introduction
16-.2 Defining Segments

16.2.1 Simplified Segment Directives
16.-2.2 Explicit Segment Definitions
16.2.3 Segment Overrides
1.6.2.4 Combining Segments
16.2.5 Section Review

16.3 Runtime Program Structure
16.3.1 COM Programs
16.3.2 EXE Programs
16.3-.3 Section Review

16.4 Interrupt Handling
16.4.1 Hardware Interrupts
16.4.2 Interrupt Control Instructions
16.4.3 Writing a Custom Interrupt Handler
16.4.4 "Terminate and Stay Resident Programs
16.4.5 Application: The No_Reset Program
16.4.6 Section Review

16.5 Chapter Summary

16.1 Introduction
This is a good chapter to read if you’re planning. to be an engineer who works at the hardware
level on Intel processors. It’s also a good chapter if you want to understand the amazing things
MS-DOS experts were able to do with very limited resources a few years ago. It will give you
some useful background if you plan to become a systems-level programmer. It is a chapter on
MS-DOS system resources and programming. Here’s what we’re going to do:

* "Show yo.u how to get as much flexibility as possible from the .MODEL, .CODE, STACK
and related directives.

' Show you how to define segments from scratch, using explicit segment directives.
- Demonstrate a large memory model program that has multiple code and data segments.
* Explain the-runtime structure of COM and EXE-programs, including EXE headers.
- Map out the Program Segment Prefix (PSP) and show how you can find the MS-DOS

environment; string.

583

584 Chapter 16 ~ Expert MS-DOS Programming

' Show you how to replace existing interrupt handlers with your own. We will demonstrate
this by writing a Ctrl-Break interrupt handler (also called an interrttpt service routine, or
ISR).

- Explain how hardware interrupts work and list the various interrupt request (IRQ) levels
used by the Intel 8259 Progranunable Interrupt Controller (PIC).

* Write .a termincite and stay resident'(TSR) program that intercepts the Ctrl-Alt-Del key
combination. If you learn to_this, you can join the ranks of MS-DOS experts.

If you've been around experienced programmers for a few years, you’ve probably heard a lot of
the terms from the foregoing list. Notice how the old-time experts seem to. drop terms like IRQ,
TSR, PSP, and 8.259 into their conversations? Now you can find out what they‘ve been talking
about

16.2 Defining Segments
Programs written for the early versions of MASM had to create rather elaborate definitions for
code, data, and stack segments. Instructors all breathed "a sigh of relief when simplified segment
directives (.code, .stack, .data) came along, because_they made the first week of class go much
more "smoothly. But it was also clear that expert programmers would probably prefer flexibility
over simplicity, and stick with the traditional way of doing things. If you’ve reached this chapter
(and understood all preceding chapters), you are now ready to master the arcane details of
explicit segment directives.

First, however, we’re.going to explore the various ways the simplified directives can be
used, just in case they satisfy your needs.

16.2.1 Simplified Segment Directives
When you use the .MODEL SMALL directive, the assembler automatically defines DGROUP
for your near data segment. The segments in DGROUP hold near .data, which can normally be
accessed directly through DS or SS. Recall that memory models were explained in Section 8.4.1.

The .DATA and DATA?“ directives each create a near data-segment, which -can be as large
as .64 kilobytes when running in Real-address" mode. It is placed in a special group identified as
DGROUP, which is also limited to-64K.

When you use .FARD_ATA or .FARDATA? in .the.small and medium memory models, the
assembler creates far data segments FAR_DATA and FAR___BSS, respectively. DS- must point to a
variable’s enclosing segment before the variable can be accessed. Use the SEG operator to set DS:

mov ax, SEG farvar2
mov ds, ax

Code Segments Code segments are" defined, as you know, by the .CO.DE directive. In a small
memory model program, the .CODE directive causes the assembler to generate a segment
named _TEXT. You-can see this in the Segments and Groups section of a listing file:

_IEXT16 Bit.0009-Word.Public ‘CODE‘

16.2 Deflnlng Segments 535

(This entry indicates that a 16-bit segment named __TEXT is 9 bytes long. It is aligned on an
even word boundary, it is a public segment, and its segment class is ‘CODE’.)

In medium, large, and huge model programs, each source code module is assigned a dif-
ferent segment name. The name consists of the module name followed by __TEXT. For example,
in a program named MyProg.asm that uses the .MODEL LARGE directive,'the listing file gener-
ates the following code segment entry:

MYPROG_IEXT16 Bit 0009 Wbrd Public ‘CODE’

You can also declare multiple code segments within the same module, regardless of the
memory model. Do this by adding an optional segment name_to the .CODE directive:

.code Mycode

There is, however, something you should keep in mind: You can only call the book’s 16-bit
link library procedures from procedures in segments named _TEXT because the library uses the
small memory model. The following statements, for example, cause the linker to generatefixnp
overflow message:

.code MyCode
mov dx,OFFSET msg
call WriteString

Multiple Code SegmentPr0gra-m. The following MnltCode.asm program contains two code
segments. By not including the IrvineI6.inc file, we can show you all the MASM directives
being used in the program:

TITLE Multiple Code Segments (MnltCode.asm)

; This small model program contains multiple
; code segments.

.model small,stdcall

.stack l0Oh
Writestring PROTO

.data
msgl db "First Message",0dh,0ah,0
msg2 db "Second Message",0dh,0ah,"$"

.code
main PROC

mov ax,@data
mov ds,ax
mov dx,OFFSET msgl
call WriteString ; NEAR call
call Display ; FAR call
.exit

main ENDP

586 Chapter 16 - Expert MS-DOS Programming

.code 0therCode
Display PROC EAR

mov ah,9
mov dx,OFFSET msg2
int 21h
ret

Display ENDP
END main

ln the foregoing example, the _TEXT segment contains the main procedure, ‘and the Oth-
en-Code segment contains the Display procedure. Notice. that the Display procedure must have a
FAR modifier, to tell the assembler to generate the type of call instruction that saves both the.
current segment and offset on the stack. For confirmation, we can see thenames of the two code
segments in the MultCode.lst listing file:

OtherCode . . .16 Bit 0008 Word Public ‘CODE’
'I‘EX'I'16 sit 0014 Word "Public ‘cons’

16.2.2 Explicit Segment Definitions
There are a few occasions when you may prefer to create explicit segment definitions. You may
want to define multiple data segments with extra memory buffers. for instance. Or, you may. be
linking your program to an object library that uses its own proprietary segment names. Finally,
you may be writing -a procedure to be called from a high-level language compiler that does not
use Micr.osoft’s segment names-_.

A program with explicit segment definitions has two tasks to perform: First. a Segment regis-
ter (DS, ES, or SS) must be set to the location of each segment before it may be used. Second, the
assembler must be told how to calculate the offsets of labels_ within the correct segments.

The SEGMENT and ENDS directives define the beginning and end of a segment. A pro-
gram may contain almost any number of segments, each with a unique name. Segments can also
be grouped together (combined.). The syntax is:

name SEGMENT [align] [combine] ['class‘]
statements

name ENDS

' name identifies the segment; it can be unique or it can be the name of an existing segment.
' align can be‘ BYTE, WORD, DWORD, PARA, or PAGE.
' cottzbitte can be PRIVATE, PUBLIC, $TAO-K, COMMON, MEMORY, or AT address.
' class is an identifier enclosed in single quotes that is used when identifying a particular

type of segment such as CODE or STACK.

For example, this is how a segment called ExtraData could be defined:
ExtraData SEGMENT PARA PUBLIC ' DATA-’

varl BYTE l
var2 WORD 2

Extrafiata ENDS

16.2 Defining Segments 587

16.2.2.1 Align Type
When two or more segments are combined, their align types tell the linker how to align their
starting addresses. The default is PARA, which indicates that each segment must begin on an
even 16-byte boundary. Here are examples of 20-bit hexadecimal addresses that fall .on para-
graph boundaries. Note that the last digit is always zero:

0Al50 81330 07460

To create the specified alignment, the assembler inserts bytes at the end of any existing
segment until the correct starting address for the each segment is reached. The extra bytes are
called slack bytes. This only affects segments that are joined to an existing segment, because the
first segment in a group always begins" on a paragraph boundary. (Recall from Chapter 2 that
segment addresses always contain four implied low-order zero bits.) The following align types
are available:

- The BYTE align type starts the segment on the next byte following the preceding segment.
' The WORD align type starts the segment at the next 16-bit boundary.
' DWORD starts the segment at the next 32-bit boundary.
- PARA starts the segment at the next 16-byte boundary.
' PAGE starts the segment at the next 256-byte boundary.

If a program will likely be run on either an 8086 or -80286 processor, a WORD align type
(or larger) is best for data segments because the processors have _a 16~bit data bus. Such proces-
sors always move two bytes, the first of which has an even-numbered address. Therefore, a vari-
able on an even boundary requires one memory fetch, while a variable on an odd boundary
requires two. An IA-32__p.1‘ocessor,-on the "other hand, fetches 32 bits at a time, and sho.uld use the
DWORD align type.

16.2.2.2 Combine ‘lype
The combine type tells the linker how to combine segments having the same name. The default
type is PRIVATE, indicating that such a segment will not be combined with any other segment.

The" PUBLIC and MEMORY combine "types" cause a segment to be combined with all
other public or memory segments by the same name; in effect, they become a single segment.
The offsets of all labels are adjusted so they are relative to the start of the same segment.

The STACK combine type resembles the PUBLIC type, in that all other stack segments-
will be combined with it. MS-DOS automatically initializes SS to the start of the first segment
that it finds with -a combine type of STACK; MS-DOS sets SP to the segment’s length (minus 1)
when the program is loaded. In an EXE program, there should be at least one segment with -a
STACK combine type; otherwise, the linker displays a warning message.

The COMMON combine "type" makes a segment begin at the same address as any other
COMMON segments with the same name. In effect, the segments overlay each other. All offsets
auecalculated from the same starting address, and variables can overlap. l

568 Chapter 16 - Expert MS-DOS Programming

The AT address combine type lets you create a segment at an absolute -address; it is often
used for data whose location is predefined by the hardware or operating system. No variables or
data may be initialized, but you can create variable names that refer to specific offsets. For
example-:

bios SEGMENT AT 40h
ORG 17h
keyboard_flag BYTE ? ; MS-DOS keyboard flag

bios ENDS_

.code
mov ax,bios ; point to BIOS segment
mov degax

"and ds:keyboard;flag.7Fh ; clear high bit

In this example, a segment "override (DS:) was required because keyb0ard_flag is not in the
standard data segment. We will explain segment ovenides in Section 16.2.3.

16.2.2.3 Class Type.
A segmenfs class type provides another way of combining "segments, in particular, those with dif-
ferent names. The class type is simply a string (case-insensitive) enclosed .in single quotes. Seg-
ments with the same class type are loaded together, although they may be in a different order in the
original program. One standard type, CODE, is recognized by the linker and should be used for
segments containing instructions. You must include this type l-abel if you plan to use a debugger."

16.2.2.4 ASSUIVIE Directive
The ASSUME directive makes it possible for the assembler to calculate the offsets of labels and
variables at assembly time. It is usually placed directly after the SEGMENT directive in the code
segment, but you can have as many additional ASSUMEs as- you like. If a new one is encoun-
tered, the assembler modifies the way it calculates addresses.

ASSUME does not actually change the value of a segment register. You still must set seg-
ment registers at run time to the addresses of the desired segments. For example, the following
ASSUME tells the assembler to use DS as the default register for the datal segment:

ASSUME dezdatal

Thefollowing statement associates CS with cseg and SS is associated with mystack:

ASSUME cszcseg, sszmystack

16.2.2.5 Example: Multiple Data Segments
Earlier in this section we showed a program havingtwo code segments. Let’s now create a pro-
gram (MaZtData.asm.) containing two data segments named datal and data2. Both are declared
with class name DATA. The ASSUME directive associates‘ DS with datal, and ES with data2:

ASSUME ce=cseg, dszdatal, eszdataz, sszmystack
datal SEGMENT ' DATA '
data2 ssonsnr 'DATA'

16.2 Defining Segments 589

The following is a complete program listing:

TITLE Multiple Data Segments (MultData.asm)

; This program.shows how to explicitly declare
;'multiple data segments.

cseg SEGMENT ‘CODE'
ASSUM cs:cseg, ds:data1, es:data2, ss:mystack

main PROC
mov ax,datal ; point DS to datal segment
mov ds,ax
mov ax,SEG val2 ; point ES to data2 segment
mov es,ax

mov ax,vall ;-datal segment assumed
mov bx,val2 ; data2 segment assumed
mov ax,4C00h ; exit program
int 21h

main ENDP
cseg ENDS

datal SEGMENT ‘DATA'
vall WORD l00lh

datal ENDS

data2 SEGMENT ‘DATA'
val2 WORD l002h

data2 ENDS

mystack.SEGMENT PARA STACK ‘STACK’
BYTE 100h.nuP(‘s')

mystack ENDS
END main

If we examine the listing file created by the assembler, we can see that the two variables vall
and va12 have the same values (offsets), but different segment attributes:

Name Type Value Attr
vall Word 0000 datal
val2 Word 0000 data2

16.2.3 Segment Overrides
A segment override instructs the processor to use a different segment register from the-default
(created by the. ASSUME directive) when calculating the effective address. It can be used, for
example, to access a variable in a segment other than the one currently referenced by DS:

mov a1,os:varl ; segment pointed to by CS
mov a1,es:var2 ; segment pointed to by ES

590 Chapter 16 - Expert MS-DOS Programming

The following instruction obtains the offset of a variable in a segment not currently
ASSUME’d by DS or ES:

mdv bx,OFFSET AltSeg:var2

Multiple references to" variables should be handled by inserting an ASSUME to change the
default segment references:

ASSUME ds:AltSeg ; use AltSeg for a while
mov ax,AltSeg
mov ds,ax
mov al,var1

I

I

ASSUME ds=data ; use the default data segment
mov ax,data
mov de,aX

16.2.4 Combining Segments
We have shown in several places "earlier in this book that larger programs can be effectively
divided into separate modules, to simplify editing and debugging. It is possible to combine the
segments by giving them the same name and specifying a PUBLIC combine type. This is what
happens when you link a 16-bit asm program. with the book’s Irvinel6 link library, using simpli-
fied segment directives.

If you use a BYTE align type, each segment will immediately follow the preceding one. If
a WORD align type is used, the segments will follow at the next even word boundary. The align
type defaults to PARA, in which each segment follows at the next paragraph boundary.

Program Example Let’s look at two program modules with two code segments, two data seg-
ments, and one stack segment, which combine to form three segments‘ (CSEG, DSEG, and
SSEG). The main module contains all three segments; CSEG and DSEG have a PUBLIC com.-
bine type. A BYTE align type is used for CSEG toavoid creating a gap between the two code
segments when they are combined. The EXTRN directive in the main program identifies var2. as
a variable existing in a module other than the current one (see the Seg_2-a.asm file).

Main Module

TITLE Segment Example- (main module, Seg2.asm)

EXTRN var2:WORD
subroutine_1 PROTO

cseg SEGMENT BYTE PUBLIC 'CODE'
ASSUME cs:cseg,ds:dseg, ss:sseg"

main PROC
mov ax,dseg ; initialize DS
mov ds,ax

16.2 Defining Segments

mov ax,var1
mov bx,var2
call subroutine_l

mov ax,4C00h
int 21h

main ENDP
cseg ENDS

dseg SEGMENT WORD PUBLIC ‘DATA’
varl WORD 1000h

dseg ends

sseg SEGMENT STACK'STACK'
BYTE l0Oh dup('S‘)

sseg ENDS
END main

Submaduler

local variable
external variable
external procedure

exit to OS

local data segment

stack segment

TITLE Segment Example (submodule, Seg2a.ASM)

PUBLIC subroutinE_1, var2

cseg SEGMENT BYTE PUBLIC 'CODE'
ASSUME cs:cseg, dszdseg

subroutine_l PROC ; called from MAIN
mov ah,9
mov dx,OFFSET msg
int 21h
ret

subroutine_1 ENDP
cseg ENDS

dSeg SEGMENT WORD PUBLIC 'DATA'

varz WORD 2000h ;_accessed by MAIN
msg BYTE ‘Now in Subroutine_l'

BYTE ODh,OAh,'$'

dseg ENDS
END

The following MAP file was created by the linker. showing one code segment, one data segment,
and one stack segment:

Start Stop Length Name
OOOOOH 00OlBH O001CH CSEG
O0O1CH U0O35H 00O1AH DSEG
OODQOH 0013FH O0100H SSEG

Program entry point at 000 O:00OO

Class
CODE
DATA
STACK

592 Chapter 16 - Expert MS-DOS Programming

16.-2.5 Section Review

l--I

. What is the purpose of the SEGMENT directive‘?

. What value does the SEG operator return‘?

. Explain the function of the ASSUME directive.
n a segment definition, what are the possible align types?

. In a segment definition, what are the possible combine types‘?

. Which align type is most efficient for an IA-32 processor?

. What is the purpose of the combine type in a segment definition‘?

. How do you define a segment at an absolute address such as 40h‘?
9. What is the purpose of the class type option in "a segment definition‘?

10. 'Write an instruction that uses a segment override.
ll. In the following example, assume that segA begins at address lA060h. What will be the

starting address of the third segment, also called segA?

segA SEGMENT COMMON
varl WORD ?
var2 BYTE ?

segA ENDS

stack SEGMENT STACK
BYTE looh DUP(0)

stack ENDS

segA SEGMENT COMMON
var3 WORD 3000h
vara BYTE -40h.

segA ENDS

16.3 Runtime Program Structure
An effective assembly language programmer needs to know a lot about MS-DOS. This section
describes COl\/lMAND.COM, the Program Segment Prefix, -and the structure of COM and EXE
programs.

The COMMANDCOM program supplied with MS-DOS and Windows] is called the
command processor. It interprets each ‘command typed "at a prompt. The following sequence
takes place when you type a command:

1. MS-DOS checks to see if the command is internal, such as DIR, REN, or ERASE. If it is,
the command is immediately executed by a memory-resident MS-DOS routine.

2. MS-DOS looks for a matching file with an extension of COM. If the file is in the current
directory, it is executed.

' Windows 2000 and XP use CMD.EXE.

16.3 Fluntlme Program Structure 593

3. MS-DOS looks for a matching file with an extension of EXE. If the file is in the current
directory, it is executed.

4. MS-DOS looks for a matching file" with an extension of BAT. If the file is in the current
directory, it is executed. A file with an extension of BAT is "called a batch file, which is a text
file containing MS-DOS commands to be executed as if the commands had been typed at
the console.

5. If MS-DOS is unable to find a matching COM, EXE, or BAT file in the current directory, it
searches the first directory in the current path. If it fails to find a match there, it proceeds to
the.next directory in the path and continues this process untileither a matching file is found
or the path search is exhausted.

Application programs with extensions of COM and EXE are called tmnsiem‘ programs. In
general, they are loaded into memory long enough to be executed; when they finish, the memory
they occupy is released. Transient programs can, iif needed, leave a portion of their code in mem-
ory when they exit; these are called memory-resident programs.

Program Segment Prefix MS-DOS creates a special 256-byte block at the beginning of a pro.-
gram as it is loaded into memory, called the program segment prefix. The structure of the Pro-
gram Segment Prefix (PSP) is shown in Table 16-1.

Table 16-1 The Program Segment Prefix (PSP).
-t—e,— ~ ~—— ~~~~~~~~ ~~ ~~~~~~~~~~~

lOffset Comments
____________ __ .. l

00-15 MS-DOS pointers-and vector addresses
, ,,, _ l

16-2B Reserved by MS-DOS

2C—2D Segment address of the current environment string

2E—5B Reserved by MS-DOS

5C—'iF , File control blocks l and 2, used mainl-yby pre-MS-DOS 2.0 programs l

80-FF Default-disk transfer area and a copy of the current MS-DOS com-
mand tail

16.3.1 COM Programs
There are two types of transient programs, depending on the extension used (COM or EXE). A
COM program is an unmodified binary image of a machine-language program. It is lo_aded into
memory by MS-DOS at the lowest available segment address, and a PSP is created at offset 0.
The code, data, and stack are all stored in the same physical (and logical) segment. The program
may be as large as 64K", minus the size of the PSP and two reserved bytes at the end of the stack.
As illustrated below, all segment registers are set to the base address of the PSP. The code area

594 Chapter 16 - Expert MS-DOS Programming

begins at offset 100h,_ and the data area immediately follows the code. The stack area is atthe
end of the segment because MS-DOS initializes SP to FFFEh:

0000 0100 (PTTUE)

I PSP l Code |Data ----------------------- --Stack 1

CS,IDS
ES SS

Let’s look_ at a simple program written in COM format. MASM requires a COM program
to use the tiny memory model. Also, the ORG directive must be used to set the starting location
counter for program code to ofiset l0Oh. This leaves l0Oh bytes available for the PSP, which
occupies locations 0 through 0FFh:

TITLE Hello Program in COM format (HelloCom.asm)

.model tiny

.code
org 100h ; must be before main
main PROC

mov ah,9
mov dx,OFFSET hello_message
int 21h
mov ax,4C00h
int 21h

main ENDP

hello_message BYTE ‘Hello, worldl',0dh,0ah,‘$'

END main

Variables are usually located .after the main procedure, because there is no separate seg-
ment for data. If we put the data at the top of the program, the CPU would try to execute the
data. _An alternative is to place a JMP instruction at the beginning that jumps over the data to the
first actual instruction:

TITLE Hello Program in COM format lHelloCom.asm)

.model tiny

.code
org-l00h ; must be before entry point
main proc

jmp start ; skip over the data
hello;message BYTE ‘Hello, world!',0dh,0ah,‘$'

start:
mov ah,9

15.3 Fluntlme Program Structure 595

mov dx,OFFSET hello_message
int 21h
mov ax,dC00h
int 21h

main ENDP
END main

The Microsoft liul-zer requires the IT parameter IO tell it to create a COM file rather than an
EXE file- COM programs are always smaller than their EXE countcipa1m—,Heii0C'0nl-asm, for
example, is only 1'? bytes long when stored on disk. When in memory, however, a COM pro-
gram cats up an entire 64K memory segment. whether it needs the space or not. COM programs
were not designed to run in a multitasking environment.

16.3.2 EXE Programs
An EXE program is stored 011 disk with an EXE header followed by a load module containing
the prograrn itself. The prograrn header is not actually loaded into memory; instead, it contains
information used by MS-DOS to load and execute the program.

When MS-DOS loads an EXE program, a prograrn segment prefix: (PSP) is created at the
i'u'sl available address. and the program is placed in memory just above it. As MS-DOS decodes
the program header, it sets DS and ES to the programs load address. CS and [P arc set to the
entry poiul of the program code, where the program begins executing. SS is sci tn the beginning
of the stack segment, and SP is set to the stack size. Hera is a diagram showing overlapping
code, data, and stack segments:

Offset

[D C?‘

Hedi-Q-5‘_f-".i';L'-'£“"'|lIM

lon

*1"|

-ii»<3I.
re": I 'was I “WK?ht

r.-is as-. - * c *-5?-,f.': f“.data , ,;.,;\.;:_ ‘pi, I (64K)
' '3 I I“-'F'_~_vl_ _;-W .-. . 7I '<:-.- --*-"'.>’I',{- 1', ‘

1-'11:!’ II‘fir’:'-i‘lI.'_r.-- .r,._- H"\.l _ l
In this program, the code area is 2011 bytes, the data area is 10h bytes, and thc slack area is l0[lh
bytes.

An E}-{E program may contain up to 55.535 segments, although it would be unusual to
have that many. If a prograrn has multiple data segments, the programmer usually has to manu-
ally set D5 or ES to each new Segment.

16.3.2.1 Mernory Usage
The amount of memory an EXE program uses is determined by its program headers-~iu particu-
lar, the values for the rniuiruurn and rrtas-ciruurn number of paragraphs { 16 bylcs cach] needed

596 Chapter 16 ~ Expert MS-DOS Programming

above the program. By default, the linker sets the maximum value to 65,535 paragraphs, which
is more memory than could be available under MS-DOS. When the program is loaded, therefore,
MS-DOS automatically allocates whatever memory is available.

The maximum allocation may be set when a program is linked, using the /CP option. This
is shown here for a program named pr0g1.0bj. The number 1,024 refers to the number of 16-byte
paragraphs, expressed in decimal:

link/cp:1024-progl;

These values can also be modified after an EXE p'r_ogram is compiled, using the EXEMOD pro-
gram supplied with the Microsoft assembler. For example, the command to set the maximum
allocation to 400h paragraphs (16,384 bytes) fora program named pr0g1.e..re is

exemod progl/max 400

The EXEMOD program can also display important statistics about a program. Sample
output is shown here describing the progfere program after it was linked with the maximum
allocation set at 1,024 paragraphs:

PROG1 (Hex) (Dec)
EXE size (bytes) 876 2166
Minimum load size (bytes) 786 1926
Overlay number 0 0
Initial CS:IP 0000:0010 16
Initial SS:SP 0068:0100 "256
Minimum allocation (para) 11 17
Maximum allocation (para) 400 1024
Header size (para) 20 32
Relocation table offset 1E 30
Relocation entries 1 l

16.3.2.2 EXE Header
The header area of an EXE program is used by MS-DOS to correctly calculate the addresses of
segments and other components. The header contains information such as the following:

' A relocation table, containing addresses to" be calculated when the program is loaded.
' The Iile size of the EXE program, measured in 512.-byte units.
- Minimum allocation: the minimum number of paragraphs. needed above the program.

Some of this storage might be used for a runtime heap that holds dynamic data. In C++,
for example, the new operator creates dynamic data.

' Maximum allocation: the maximum number of paragraphs needed above the program.
' Starting values to be given to the IP and SP registers.
- Displacement (measured in 16-byte paragraphs) of the stack and code segments from the

beginning of the load module.

16.4 lnterrupt Handllng 597

- A checksrrm of all words in the file, used in catching data errors when loading the program
into memory.

16.3.3 Section Fieview

I. When a command is typed at the MS-D.OS prompt, what happens if the command is not an
internal MS-DOS command?

2. (yes/no): Does MS-DOS look for BAT files before EXE files in the current directory when
executing a command?

3. What are transient programs?
4. What is the name of the 256-byte area at the beginning of a transient program?
5. Where does a transient program keep the segment address of the current environment

"string?
6. What is a COM -prograrn?
7. Which memory model(s) are used by COM programs‘?
8. Which linkercommand-line switch is required when creating a COM program?
9. What is the memory limitation of a" COM program?

10. When running, how efficient is a COM program’s use of memory?
ll. How many segments can a COM program contain?
12. What are the starting values of all segment registers in a COM program?"
13. What is the purpose of the ORG direc-tive?
14. When stored on disk, the two main parts of an EXE program are the header and the

module.
15. Where do DS and ES point when an EXE program is loaded?
I6. What determines the amount of memory allocated to an EXE program?
17. What is the purpose of the EXEMOD program?
18. If you wanted to know the number of relocation entries in an EXE file, where would you

look?

16.4 Interrupt Handling
In this section we discuss ways to customize the B-IOS and MS -DOS by installing interrupt hem-
dlers (interrupt service routines). As we have seen in earlier chapters, the BIOS and MS-DOS
contain interrupt handlers that simplify input/output as well as basic system tasks. We have seen
many of these so far—the INT 1011 routines for video manipulation, the INT 16h keyboard rou-
tines, the INT 21h disk services, .and so on. But an equally important part of the operating'sys-
tem is its set of interrupt handlers that respond to hardware interrupts. MS-DOS allows you to
replace any of these. service routines with one of your own.

598 Chapter 16 - Expert MS-DOS Programming

The interrupt handlers presented in this chapter work only when your computer is booted
to MS-DOS mode. You can do this using Windows 95 and 98, but not Windows NT, 2000,
or XP. The latter operating systems mask the system hardware from app.licatioi1 programs
to achieve"greater system stability and security. If the OS were to allow two simultaneously

l running programs to modify internal settings on the same hardware device, the results
would be unpredictable at best.

An interrupt handler might be written for a variety of reasons. You might want your own
program to activate when a hot key is pressed, even when the user is running another application.
Borland’s SideKickTM, for example, was one of the first programs that was able to pop up a note-
pad or calculator whenever a special combination of hot keys was pressed.

You can_ also replace one of MS-DOS’s default interrupt handlers in order to provide more
complete services. For example, the divide by zem. interrupt activates when the CPU tries to
divide a number by zero, but there is no standard way for a program to recover.

You can replace the MS-DOS critical error handler or the Ctrl-Break handler with one of
your own. MS-DOS’s default critical error handler causes a program to abort and retum to MS-
DOS. Your own handler could recover from an error and let the user continue to run the current
application "program.

A user-written intenupt service routine can handle hardware intenupts more effectively
than MS-DOS. For example, the PC’s asynchronous communication handler (INT 14h) per-
forms no input/output buffering. Thismeans that an input character is lost if it is not copied from
the port before another character arrives. A memory-resident program can wait for an incoming
character to generate a hardware interrupt, input the character from the port, and store it in a cir-
cular buffer. This frees an application program from having to take valuable time away from
other tasks to repeatedly check the serial port.

Interrupt Vector Table The key to MS-DOS’s flexibility lies in the interrupt vector table
located in the first 1,024 bytes -of RAM (locations 0':'0 through 0:03FF). Table 16-2 contains a
short sample of vector t-able entries. Each entry in the table (called an interrupt vector) is a 32-bit
segment-offset address that points to one of the existing service routines.

Table 16-2 Interrupt Vector Table Example.
. , r: -:-.‘ 7777777777”? 7' '7 """""'77 TTTTTWYYT

Interrupt ' Offset Interrupt Vectors
Number

1~ ;e~ ~-Z
00-03 0000 02C1:518'6 O070:0C67 0DAD:2C1B 0070:0.C67

04-0'7 0010 0070:.0C67 F000:FF54 F000:837B F0'00:837B

08-013 0020 0D70:022C 0DAD_':2BAD_. 0070:0325 0070:039F

0_C—0F 0030 0-070:0'419' 0'07'0:0433 007-0:'050D_ 0.07'0:0C67

10-13 004-0 CO00:0CD'7 F_00'0-:F84D F'000:F841 0070:237D

16.4 Interrupt Handling 599

On any given computer, the vector values will vary because of. different versions. of the
BIOS and MS-DOS. Each interrupt vector corresponds to an interrupt number. In the table, the
address of the INT 0 handler (divide by zero) is 02Cl :5l86h. The offset of "any intenupt vector
may be found by multiplying its “interrupt number by 4. Thus, the offset of the vector "for INT 9h
is 9 * 4, "or 0024 hexadecimal.

Executing -Interruptffarzdlers An intenupt handler may be executed .in one of two ways: An
application program containing an INT instruction automatically calls the handler, executing
what is known as a software interrupt. -Another way for an intenupt handler to be executed is via
a hardware interrupt, when a hardware device (asynchronous port, keyboard, timer, and so on)
sends a signal to the Programmable Interrupt Controller chip.

16.4.1 Hardware Interrupts
A hardware intenupt is generated by the Intel 8259 Pr0grammable- Intermpt Controller (PIC),
which signals the CPU to suspend execution of the current program and execute an interrupt ser-
vice routine. For example, a keyboard character waiting at the input port would be lost if not
-saved by the CPU, or characters received from the serial port would be lost if not for an inter-
rupt-driven routine that stores them in a buffer.

Occasionally, programs must 'disab_le.hardware interrupts when performing sensitive oper-
ations on segment registers and the stack. The CLI (clear interrupt flag) instruction disables
interrupts and the STI (set interruptflag) instruction enables interrupts.

IRQ Levels Interrupts can be triggered by a number of different devices on a PC, including
those listed in Table 1'6-3. Each device has a priority, based on its interrupt reqr.re.s_'t level (IRQ).
Level 0 has the highest priority, and level 15 has the lowest. A lower-level intenupt cannot inter-
rupt a higher-level one still in progress. For instance, if communications port 1 (COM 1) tried to
intenupt the keyboard intenupt handler, it would have to wait until the latter was finished. Also,
two or more simultaneous intenupt requests are processed according to their priority levels. The
scheduling of interrupts is handled by the 8259 PIC. '

Table 16-3 IRQ Assignments (ISA Bus).
s», _ - - - --..,.. .¢f;:_‘l.;-:3».T-,:-K;-_§§_.¢_' “.-_ _ ;_ .: L-_L_'| . 1' _-_-__._= ,1.-'._.-,. 1 __-_._ _ _ _ 1 . .~ _ _ _ _ 7 7

.‘i5L;' ;__°'£‘:j.‘;. '_:,_ I-"',t'__‘; _‘l_ - _. -‘J-_:£\,. _ :_l_Ii : ‘. ‘J . Ia‘ L‘-:5: H‘ I A‘.

.'F-‘=5-‘-:-I-ll+=‘.-er.~.'E.-. . -.==.~E"l=t -. - . Ft -.'-~f-= , =5--;I‘ lI; ;-'51-gel ,-1.-.<=.='-= l-.-.- - -- :21.->?.-1--;-1-;...-I . - 5. -';_--;..'.~ - " ‘ '\'|"-1'1"-'.'-':»,--1171;‘_T ' - . - -it '. ; -- ‘ - ' _-:-| ;' .»-.-; L I1 --- '-.r _.t;-%§:]Bfl~.=‘e.r.-1lstre?eeN.UmIiEI1-r -.5; -;§t.‘;e'.-'-. -T3,-_-$1 '--.» _=‘-'-,',:£-‘r-'i-‘=-‘;-:!DB3GHptIOI7l _=4-it-1-;-1-I~; '..'.-...;.t';.:-_
’ “ IA. "

I - -- J -..|\l | - I | n I I | I . ' ww | I - ~ ' I II-:‘-.'|£¢qt '._’-'!:i,ul-_-°_-.--~-'_-_':}-2--;'- =.:f-.;- -,.-<;-=-'.- _.r--.--_,' '-,- . - .:1-- -__ _ ' : I_= - '-.,-=--- 1 -r . ' .
i;'-l}.|‘?j:|.t.:|'1l‘.'-r‘,'.'E11'g;fl':'l"}~1}'!;%:_\:i‘§?.?::;€j.:|:?1.!':..?\.t;“ig'_:;'l'_._‘é1:t:'Il -!-':'r_i:F-_l= l"<_.;_'-_"!_ _‘___.'_'f_-1.I'-'jf;_.’_', -7.'-‘Qt;-_.f3=1!_';'1f§',‘_1 _'__ ,_-j .'_-;f‘ij,7.;'.:,__i",'?_'-ri:1""‘§3eZg5’: ’.§:"-"'31, ',

0 8 System timer (18.2 times/second) p

1 9 Keyboard

2 0Ah Programmable Interrupt Controller

3 I oer COM2 (serial port 2) I
4 0Ch COMI (serial port 1)
5 0Dh LPT2 (parallel port" 2)

6'00 Chapter 16 ~ Expert MS-DOS Programming

Table 16-3 IRQ Assignments (ISA Bus). (Continued)

l _ §* Interrupt .
‘I=~5IBQ -2 "Number f H ' -‘Description -

l_______ ii I _ ________ __\

6 OBh Floppy disk controller

7 OFh LPT1 (parallel port 1)"

8 70h if -CMOS real-time clock

9 71h (redirected to INT OAh)
"‘—~ .

IO 72h (available) Sound card

I I 73h (available) SCSI card
1 _ _ _

I2 74h l PS/-'2 mouse

. 13 75h l Math coprocessor
-‘*7’ _ _ 7 . 7

‘ I4 76h Hard disk controller

l5 77h (available)

Let ‘s use the keyboard as an example: When a key is pressed, the 8259 PIC sends an INTR
signal to the CPU, passing it the interrupt number; if external interrupts are not currently dis-
abled, the CPU does the following, in sequence:

Fri-"!°t-'

Pushes the Flags register on the stack.
Clears the Interrupt flag, preventing‘ any other hardware interrupts.
Pushes the current'CS_and IP on the stack.
Locates the intenupt vector table entry for INT .9-and places this address in CS and IP.

Next, the BIOS routine for INT 9 executes, and it does the following in sequence:

1. Reenables hardware interrupts so the system timer is not affected.
2. Inputs a character from the keyboard port and stores it in the keyboard buffer, a 3'2-byte cir-

cular buffer in the BIOS ‘data area.
3. Executes -an IRET (intenupt return) instruction, which pops IP, CS, and the Flags register off

the stack. Control returns to the program that was executing when the intenupt occunred.

16.4.2 Interrupt Control Instructions
The CPU has a flag called. the. Interrupt flag (IF) that controls the way the CPU responds to
external (hardware) interrupts. If the Interrupt flag is set (IF = 1), we say that interrupts are
enabled; if the flag is clear (IF = 0), then interrupts are disabled.-

STI Instruction The STI instruction enables external interrupts. For example, the system
responds to keyboard input by suspending a program in progress and doing the following: It

1 6.4 Interrupt Handling 601

calls INT 9, which stores the keystroke in a buffer and then retums to the current program. Nor-
mally, the Interrupt flag is enabled. Otherwise. the system timer would not calculate the time and
date properly, and input keystrokes would be lost.

CLI Instruction The CLI. instruction disables" external interrupts. It should be used spar-
ingly—only when a critical operation is about to be performed, one that cannot be interrupted.
When changing the value of SS and SP on the 8086/8088,. for example, it is advisable to disable
interrupts by clearing the Interrupt flag. Otherwise, the correct values of SS. and SP could be lost
if a hardware interrupt should occur between transfers:

cli ; disable interrupts
mov ax,mystack ; reset SS l
mov ss,ax
mov sp,l00h ; reset SP
sti ; reenable interrupts

Interrupts should never be disabled for more than a few milliseconds at a time", or you may
lose keystrokes and slow down the__systen1 timer. When the CPU acknowledges either a software
or a hardware interrupt, other interrupts are disabled. One of the first things the MS-DOS and
BIOS. interrupt service routines do is to" reenable interrupts.

16.4.3 Writing a Custom Interrupt Handler
One might ask why the interrupt vector table exists at -all. We could, of course, call specific pro-
cedures in ROM to process interrupts. The designers of the IBM-PC wanted to be able to make.
modifications and corrections to the BIOS routines without having to replace the ROM chips. By
having an interrupt vector table, it was possible to replace addresses in the interrupt vector table
so they would point to procedures in RAM.

Application programs can replace an address in the table with one that points to a new
interrupt" handler. For example, we could write a custom keyboard interrupt handler. There
would have to be a compelling reason to do so, because of the effort involved. A more likely
alternative would be for an interrupt handler to directly call the default INT 9 keyboard to read a
keystroke from the keyboard port. Once the key was placed in the keyboard typeahead buffer, we
could manipulate its contents.

INT 21.11 Functions 25h and 35h make it possible to install interrupt handlers". Function
3511 (get interrupt vector) returns the segment--offset ad.d1'ess of an interrupt handler. Call the
function with the desired interrupt number in AL. The 32-bit vector is returned by MS-DOS in
ES:BX. The following statements would retrieve the INT 9 vector. for example:

.data
int9Save LABEL WORD
DWORD ? ; store old INT 9 address here

.code
mov ah,35h ; get interrupt vector
mov al,9 ; for INT 9

602 Chapter 16 - Expert MS-DOS Programming

‘III‘hi U1

call MS-DOS
tore the offset

; store the segnent

int 21h
mov int9Save,BX
mov [int9Save+2], ES

INT 2 lh Function 25h (set interrupt vector) lets you replace an existing interrupt handler
with a new handler. Call it with the intenupt number in AL and the segment-offset address of
your own interrupt handler in DS:DX. For example:

mov ax,SEG kybd_rtn ;
mov ds,ax ;
mov dX,OFFSET kybd_rtn ;
mov ah,25h
mov al,9h
int 21h

keyboard handler
segment
offset
set Interrupt vector
or INT 9hH0‘I0 H1

kybd_rtn PROC ; (new INT 9 interrupt handler begins here)

16.4.3.1 Ctrl-Break Handler Example
If Ctrl-Break is pressed by the user when an MS-DOS program is waiting for lllpllli control
passes to the default INT 23h interrupt handler procedure. The default Ctrl-Break handler tei mi-
nates the currently running program. This can leave the current program in an unstable state
since files might be left open, memory not released, and so on. It is possible, however, to substi-
tute your own code into the INT 23h handler and prevent the prog-|*an1 from halting The follow-
ing prograrn installs a simple Ctrl-Break handler:

TITLE Control-Break Handler (Ctrlbrk.asm)

; This program.installs its own Ctrl-Break handler and
; prevents the user from using Ctrl-Break (or Ctrl—C)
; to halt the program. The program.inputs and echoes
; keystrokes until the Esc key is pressed.

INCLUDE Irvine16.inc

.data
breakflsg BYTE “BREAK",0
msg BYTE “Ctrl-Break demonstration."

BYTE 0dh;0ah
BYTE
BYTE
BYTE
BYTE

0dh,0ah
"keys to continue, or press ESC to end the program
0dh,0ah,0

.code
main PROC

mov ax,@data
mov ds,ax

mov dx,OFFSET msg ; display greeting message
call WriteString

“This program.disables Ctrl-Break (Ctrl-C). Press any

16.4 Interrupt Handling 603

install_handler:
push ds ; save DS
mov ax,@code ; initialize DS to code segment
mov ds.ax
mov ah,25h ; set interrupt vector
mov al,23h ; for interrupt 23h
mov dx,OFFSET breakmhandler
int 21h
pop ds ; restore DS

L1:mov ah,1 ; wait for a key, echo it
int 21h
cmp al,1Bh ; ESC pressed?
jnz L1 ; no: continue

exit
main ENDP

; The following procedure executes when Ctrl-Break is
; pressed. All registers must be preserved.

break_handler PROC
push ax
push dx
mov dX,OFFSET breakMsg
call Writestring
pop dx
P0P ax
iret

break_handler ENDP
END main

The main procedure initializes the interrupt vector for INT 2311. The required input parameters
for INT 21h function ‘25h are:

- AH = 25h
' AL = interrupt vector to be handled (23h)
' DS:DX = segmenfloffset address of the new Ctrl-Break handler

The program’s main loop simply inputs and echoes keystrokes until the Esc key is pressed.

mbn somesysterns, you may have to press Ctrl—C rather than Ctrl-Break to activate the U
' Ciffl-Brealtiliandler me's's‘age, ‘ ' r ' F‘:

The break_handler procedure executes when Ctrl-Break is pressed; it displays a message
by calling WriteString. When IRET (retum from interrupt) executes at the end of
break__handler, control returns to the main program. Whichever MS-DOS function was in
progress. when Ctrl-Break was pressed is restarted. In general, you can call any MS-DOS inter-
rupts from inside a Ctrl-Break handler. You must" preserve all registers in an intenupt handler.

604 Chapter 16 - Expert MS-DOS Programming

You do not have to restore-the INT 23h vector because MS-DOS automatically does this
when a program ends. The original vector is stored by MS-DOS at offset 000Eh in the program
segment prefix.

16.4.4 Terminate and Stay Resident Programs
A terminate and stay resident (TSR) program is one that is installed in memory and stays there
either until it is removed by special utility software or the computer is rebooted. Such a program
can -remain hidden and then be activated by some event such as pressing a key.

In the early days of TSRs, compatibility problems would arise when two or more programs
replaced the same intenupt vector. ‘Older programs would make the vector point to their own pro-
gram and provide no" forward chain to other p1‘Qgrams using the same vector. Later, to remedy this
problem, TSR authors would save the existing vector for the interrupt they were replacing, and
would forward-chain to the original intenupt handler after their own procedure was finished deal-
ing with the interrupt. This, of course, was "an improvement over the old method, but it meant that
the last TSR to be installed automatically had top priority in handling the interrupt. It meant that
users" sometimes had to be careful to load TSR programs in a particular order There are now corn-
mercia] programming tools you can use to manage multiple memory-resident programs.

16.4.4.1 Keyboard Example
Suppose we write an interrupt service routine. that can inspect each "character typed at the key-
board and store it at location 10B’2:0020. To install the ISR, we fetch the current INT 9 vector
from the intenupt vector table, save it, and replace the table entry with the address. of our ISR.

When a keyboard key is pressed, a single byte is transferred by the keyboard controller to the
computer’s keyboard port, and a hardware intenupt is trigger'ed. The 8259 PIC passes the interrupt
number to the CPU, and the latter jumps to the INT 9 address in the interrupt vector table, the
-address -of our ISR. Our procedure gets an opportunity to inspect the keyboard byte. When our key-
board handler exits, it executes a jump to the original BIOS keyboard handler procedure.

This chaining process is shown in Figure 16-1. The addresses are hypothetical. When the
BIOS INT 9h routine finishes, the IRET instruction pops the Flags register from the ‘stack and
returns control to the program that was executing when the character was pressed.

l0B2:.0020 |i>- 0DAD:2BAD
Interrupt ‘ * ‘=

Vector Table (our program) (Bios INT 9 ‘

(INT 9) '
jmp ODAD r-ZBAD i -

IRET

Figure 16-1 Vectoring an Interrupt.

16.4 Interrupt Handling 605

16.4.5 Application:The No_,,Fteset Program
A simple" type of memory-resident program is one that prevents the system from being rebooted
by the Ctrl-Alt-Delete keys. Once our program is installed in memory, the system may only be
rebooted by pressing a special combination of keys: Ctrl-Alt-RightShift-Del. (The only other
way to deactivate the program is to turn off and restart the computer.) This program only works
if you boot the computer in MS-DOS, Windows 98, or Windows Millenium. Microsoftwindows
NT, 2000, and XP prevent a TSR program from intercepting keyboard keys.

The MS-DOS Keyboard "Status Byte. One bit of information we need before we start is the loca-
tion of the keyboard status byte kept by MS-DOS in low memory, shown in Figure 16-2. Our
program will inspect "this flag to see if the Ctrl, Alt, Del, and RightShift keys are held down. The
keyboard status flag is stored in RAM at location 0040:0017h. An additional keyboard status
byte, located at 0040:00l8h, duplicates the preceding flags, except that bit 3 shows, when Ctrl-
NumLock is currently active.

Installing the Program. The memory-resident code must be installed in memory before it will
work. From that point on, all keyboard input is filtered through the program. If the routine has
any bugs, the keyboard will probably lock up and require you to cold-start the machine. Key-
board interrupt handlers are particularly hard to debug because we use the keyboard constantly
when debugging programs. Professionals who regularly write TSR programs usually invest in
hard ware-assisted debuggers that maintain a trace buffer in protected memory. Often the most
elusive bugs appear only when a program is running in real time, not when you are single-
stepping through it. Note: you must boot the computer in MS-DOS mode before r'nsta!!in_g this
program.

Insert mode on
‘ r — Caps lock is on

——— Num lock is on
to - Scroll lock is on

l ALT key held down
l

\ ‘ — ~ CTRL key held down
i e be e e e —~ Left shift key held down

\ ‘ [— Right shift key held down

Y i r r r
i 1 I 1 i llli 1 ll ill 1 I

7 6 5 4 3 2 1 0 (bit position)

Figure 16-2 Keyboard Status Flag Byte.

606 Chapter 16 I Expert MS-DOS Programming

Program Listing In the following program listing, the installation code is located at the end
because it will not remain resident in memory. The resident portion, beginning with the label
int9__handle_r, is left in memory and pointed to by the I-NT 9h vector:

TITLE Reset-Disabling program (No_Reset.asm)

; This program-disables the usual DOS reset command
; (Ctrl<Alt-Del), by intercepting the INT 9 keyboard
I-
I hardware interrupt. It checks the shift status bits
; in the MS-DOS keyboard flag and changes any Ctrl-Alt—Del
; to Alt-Del. The computer can only be rebooted by
; typing Ctrl+Alt+Right shift+Del. Assemble, link,
;.and convert to a COM program by including the /T
;-comand on the Microsoft LINK command line.
; Boot into pure MS-DOS mode before running this program.

.model tiny

.code
rt__shift EQU 011: ;
ctrl_key EQU 04h ;
alt;key' EQU 08h ;
del_key EQU 53h ;
kybd_port EQU 60h :

ORG l0Oh :
start:

jmp setup :

Right shift key: bit 0
CTRL key: bit 2
ALT key: bit 3
scan code for DEL key
keyboard input port

this is a COM program

jump to TSR installation

: Memory-resident code.begins here
int9_handler PROC FAR

sti ;
pushf ;
push es
push ax
push -di

enable hardware interrupts
save regs & flags

; Point ES:DI to.the DOS keyboard flag byte:
Ll:mov ax,40h ;

mov es,ax
mOV -di,17h ;
mov ah,es:[di] ;

; Test for the CTRL and ALT keys
L2:test ah,ctrl_key :

jz L5 ;
test ahsalt_key ;

L5 ;jz

; Test
L3:in

cmp

DOS data segment is at 40h

location of keyboard flag
copy keyboard flag into AH

CTRL key held down?
no: exit
ALT key held down?
no: exit

for the DEL and Right-shift keys:
al,kybd_port ; read keyboard port
al,del;key ; DEL key pressed?

16.4 Interrupt Handling

jne L5
test ah,rt__shift
jnz

IA; and
mov

L5:‘p0p
POP
PQP

L5

ah,NOT ctrlgkey
es:[di],ah

di
ax
es

P°Pf
jmp cs:[old;interrupt9]

old;interrupt9 DWORD ?

int9_handler ENDP
end ISR label BYTE

I
I (end of TSR program)

I
I

I
I

I
I

I
I

I
I

I
I

I
I

no: exit
right shift key pressed?
yes: allow system reset

no: turn off bit for CTRL
store keyboard_flag

restore regs & flags

jump to INT 9 routine

; Save a copy of the original INT 9 vector, and set up
; the address of our program as the new vector. Terminate
; this program.and leave the int9_handler procedure in memory.

setup:
mov
int
mov
mov

mov
mov
int

mov
mov
shr
inc
int

ax,3509h ; get INT 9 vector
21h
wont: PTR old_interrupt9',bx ; save INT 9 vector
WORD PTR old;interrupt9+2,es

ax,25Q9h ; set INT 9 vector
dx,OFFSET int9_handler
21h

ax,3l00h
dx, orssncr end_ISR
dx,4
dx
21h

END start

I
I

"ii

K.

I
I

I
I

terminate and stay resident
point to end of resident code
divide by 16
round upward to next paragraph
execute MS-DOS function

First let’s look -at the instructions that install the program. At the label called setup, we
call INT 21h Function 35h to get the current INT 9h vector, which is then stored in
old_jnterrupt9. This is done so the program will be able to forward-chain to the existing key-
board handler procedure. In the .same part of the program, INT2 l h Function 25h sets interrupt
vector 9h to the address of the resident portion of this program. At the end of the program, the
call to INT 21h Function 31h exits to MS-DOS, leaving the resident program in memory.
The function automatically saves everything. from the beginning of the PSP to the offset
placed in DX.

603 Chapter 15 ' Expert MS-DOS Programming

The Resident Program The memory-resident interrupt handler begins at the label named
int9_handler. It is executed every time a keyboard key ‘is pressed. We reenable interrupts as
soon as the handler gets control, because the 8259 PIC has automatically disabled interrupts:

int9_handler PROC far
sti ; enable hardware interrupts
pushf ; save registers and status flags
(etc...)

Bear in mind that a keyboard intenupt often occurs while another program is executing. If we
modified the registers or status flags here, we would cause. unpredictable results in an applica-
tion program.

The following statements locate the keyboard flag byte stored at address 0040:0017 and
copy it into AH. The byte must be tested to see which keys are currently being held down:

L1:mov ax,40h ; MS»DOS data segment is at 40h
mov es,ax
mov di,17h ; location of keyboard flag
mov ah,es:[dil ; copy keyboard flag into AH

The following statements check for both the Ctrl and Alt keys. If both are not currently
held down, we exit:

L2:test ah,ctrl_key ; CTRL key held down?
jz L5 ; no: exit
test ah,alt_key ; ALT key held down?
jz L5 ; no: exit

If the Ctrl and Alt keys are both held down, someone may be trying to boot the computer.
To find out which character was pressed, we input the character from the keyboard port and
compare it to the Del key:

L3: in al,kybd_port ; read keyboard port
cmp al,del_key ; Del key pressed?
jne L5 ; no: exit
test ah,rtmshift ; Right-Shift key pressed?
jnz L5 ; yes: allow system reset

If the user has not pressed the Del key, we simply exit and let INT 9h process the key-
stroke. If the Del key is held down, we know that Ctrl-Alt-Del was pressed; we only allow the
system to be reset if the user is also holding "down the. Right Shift key. Otherwise, the Ctrl key
bit in the keyboard flag byte is cleared, effectively disabling the user’s attempt to reboot the
computer:

L4:and ah,NOT ctrlflkey ; no: turn off bit for CTRL
mov es:[di],ah ; store keyboard_flag

16.5. ‘Chapter Summary 609

Finally, we execute a far jump to the existing_BIOS INT 9h routine, stored in the variable
old__interrupt9. This allows all normal keystrokes to be processed, which is vital to the com-
puter’s basic operation:

jmp cs: [old___interrupt.9] ; jump to INT 9 routine

16.4.6 Section Review

®*@@PPNn

What default action is carried out by the crificcz! error handler?
. What is contained in each entry of the intenupt vector table‘?

At which address is the interrupt vector for INT 10h stored‘?
Which controller chip generates hardware interrupts?
Which instruction disables hardware interrupts?
Which instruction enables hardware interrupts‘?

. Which IRQ level has the highest priority, 0 or 15?

. Based on what you know about IRQ levels, if a program is in the process of creating a disk
file and you press a key on the keyboard, when do you think the key will be placed in the
keyboard buffer—before or after the file has been created?

9. When a key is pressed on the keyboard, which hardware intenupt is executed?
10. When an intenupt handler "finishes, how does the CPU resume execution wherever it was

before the intenupt was triggered?
11. Which MS-DOS functions get and set interrupt vectors?
12. Explain the-difference between an interrupt handler and a memory-resident program.
13. Describe a TSR program.
14. I-low can a TSR program be removed from memory?
15. If a-. memory resident program replaces one of the intenupt vectors, how can it still take

advantage of some functions in the interrupt’s existing handler?
16. Which MS-DOS function terminates a program and l-eaves part of the program resident in

memory?
17. In the No__reset program, what key combination will actually boot the computer‘?

16.5 Chapter Summary
There are a few occasions when programmers need to create explicit segment definitions, partic-
ularly when adapting to existing code libraries that use their own segment names. The SEG-
MENT and ENDS directives define the beginning and end of a segment. When the segment
being defined is combined with another segment, its align type tells the linker how many bytes to
skip. The combine type tells the linker how to combinesegments having -the same name. A seg-
ment’s class type provides yet another way of combining segments. Multiple segments". may be
combined by giving them the same name and specifying a PUBLIC combine type.

The ASSUME directive makes. it possible for the assembler to calculate the offsets of
labels and variables at assembly time. A segment override instruction instructs the processor to
usea different segment register from the default segment.

"610 Chapter 16 - Expert MS-DOS Programming

The MS-DOS command processor interprets each "command typed at a command prompt.
Programs with extensions of COM and EXE "are called transient programs. They are loaded into
memory, executed, "and then the memory they occupy is released. MS-DOS creates a special
256-byteblock at the beginning of a transient program named the program segment prefix."

There are two types of transient programs, depending on the extension used: COM and
EXE. A COM program is an unmodified binary image of a machine-language program. An EXE
program is stored on disk with an EXE header followed by a load module containing the pro-
gram itself. The header area of an EXE program is used by MS-DOS to correctly calculate the
addresses of segments and other components.

Interrupt handlers (interrupt service routines) simplify input/output as well as basic system
tasks. You -can also replace the default interrupt handlers with your own code in order to provide
more complete or customized services. The interrupt vector table is located in the first 1,024
bytes of RAM (locations 0:0 through 0:03FF). Each entry in the table is a 32-bit segment-offset
address that points to an interrupt service routine.

A hardware interrupt is generated by the 8259 Programmable Interrupt Controller (PIC),
which signals -the CPU to suspend execution of the current program and execute an interrupt ser-
vice routine. Hardware interrupts allow important events in the background to be noticed by the
CPU before essential data are lost. Interrupts can be triggered by a number of different devices,
each having .a priority based "on its interrupt request level (IRQ).

The Interrupt flag controls the way the CPU responds to external (hardware) interrupts. If
-the Interrupt flag is set, interrupts are enabled; if the flag is clear, interrupts are disabled. The
STI (set interrupt) instruction enables interrupts; the CLI (clear interrupt) instruction disables
interrupts.

A terminate and stay resident (TSR) program leaves part of itself in memory. The most
common use for TSR programs is for installed interrupt handlers that remain in memory until
the computer is rebooted or the TSR is removed by a special uninstaller.

The No__reset program presented at the end "of this chapter is a TSR program that prevents
the system from being rebooted by the usual Ctrl-Alt-Delete keys.

Installing and Using the Assembler

A-.1 lnstalling the Book’s. CD-ROM
A.2 Assembling and Linking 32-Bit Protected Mode Programs

A.'2.l Debugging Protected Mode Programs
A.2.2 The make32.bat File.

A.3 Assembling and Linking 16-Bit Real-Address Mode Programs

A.1 Installing the Book’_s CD-ROM
To install the book’s CD-ROM, run setup from the root directory. The CD-ROM attached to this
book contains the following software:

~ Microsoft Macro Assembler, version 6.15. By default, this is installed in the C:\Masm6l5
directory.

' Microsoft 16-bit and 32_-bit linkers, (!irik.exe and Zink32.exe). By default, they are installed
in the C:\Mas'm6l5 subdirectory.

~ Evaluation copy of the TextPad editor, by Helios Software. To install TextPad, run the
TexrPad4.exe program in the \TextPad directory.

- All examples programs from this book. By default, they are installed in the Examples sub-
directory.

- Chapter 1'7, a supplemental chapter, stored as an Adobe Acrobat "file, located on the CD-
ROM with this book.

~ Batch files for assembling, linking, and debngging. By default, they are installed in the
same directory as MASM. Following is a list:

make32.bat i Assembles-and links 32-bit Protected mode programs.

makel6.bat it Assembles and links 16-bit Real-address mode programs.

runCV.bat Runs the Microsoft Codeview 16-bit debugger.

runQH.bat Runs the Microsoft Quickl-Ielp utility, which displays help
information for the assembler, linker, Codeview, and other
utilities.

' Link- libraries for use with the sample programs. By default, they are installed in the-LIB
subdirectory. They include kernel32._lib, r4ser32.lib, irvine5.’2.lt'b, and i_rvt'n_e16.lt'_b.

611

612 Appendix A - installing and Using the Assembler

' Include files for use with the sample programs. By default, they are installed in the
INCLUDE subdirectory. Irvine32. inc, Irvir2e16.inc, Small“/irz. inc, GraphWirz'.incf," mac-
rosjnc, and wiminc.

- Various utility programs supplied with the Microsoft assembler, such -as crefiexe,
evp_ack.exe, and n.make.exe. They are in the same directory as MASM.

A.2 Assembling and Linking 32-Bit Protected Mode Programs
Use the make32.bar batch file to -assemble and link Protected mode assembly language pro-
grams. Following is the syntax‘, which is not case-sensitive:

make32 progname

Progname is the name of an assembly language source file, minus the extension. The following
command assembles and links a source file named AddSttb.asm.:

make32 AddSub

Assuming that no errors were generated, the following files would be- created in the current
directory:

AddSub.obj Object file

AddSub.lst Listing file

AddSub.exe Executable: file

. Yionmest-have-ga e_.o_py,,of:;nalge32._battin_.tl1e-_same directory as your sourocfile before you run I
the ‘flgu gan-geopy rrgzke____i’2._§2at from the assernbIer’s ittstall-directory.

There -are two ways to execute the make32. command:

1. Change to the directory where your source file (such as. AddS_nb.as_m) is located, and type
the following at the command prompt:

mak_e32 Add§ub

2. Alternatively, you can use an -editor such as Helios TextP.ad to edit and assemble your
source file. An evaluation copy of TextPad is provided on the book’s CD-ROM. See our
Web site for details on setting up TextPad.

A.2.1 Debugging Protected Mode Programs
The Microsoft Assembler package. does not include a 32-bit debugger, but you can use either the
Microsoft Developer Studio debugger (msdev.exe)_ supplied with Microsoft Visual C++ 6.0, or
you can download Windows Debugger front the Microsoft Web site. Look for specific informa-
tion on the topic: Debugging 32-bit Programs on our Web site for more details.

A.2 Assembllng and Linklng 32-Blt Protected Mode Programs 613

A.2.2 The make32.bat File
A barchfile' is a text file that contains commands that execute as if they were typed at the MS-DOS
command prompt. It usually has a BAT fiiename extension, and it can be executed either from
the command prompt or from another program.

Table A—l contains an annotated listing "of ma_ke32.l:'ar. Two of the commands in the left
column of the table (REM and LINK32) wrap around in the table because of their length. In the
batch file, however, they each occupy a single line.

Table A-1 Batch File Description (make32.bat).

A Batch File Command Description
A REM I-iake32 .bat., for assembling and link— Any line beginning with REM is a com-

ing Pro_te'cted mode programs ment line that documents the batch file.
l REM does not execute.

PATH C : \Masm615 Set environment path to the C:\Masm6 l 5
directoty. This enables the operating system
to locate the ML and LINK32 programs.

A SET INCLUDE=C : \t~iasm6 1 5\INCLUDE Set the INCLUDE environment variable.
This allows the INCLUDE directive in
assembly language programs to locate cer-
tain liles. For example, we use the
lrvirze32.inc' file.

SET LIB=C: \Masm615\LIB Set the LIB environment variable. This
enables the linker to locate the library files
used by out" programs, such as lrw‘:ze32.lib. =

l
l l

7 ML —Zi -c --F1 -coff %1.asm invoke the Microsoft assembler(ML.EXE).

IF errorlevel 1 goto terminate If the previous command generated an
error, jump to the label named terminate
(last line of the tile).

LINK32 %1 . obj Irvine32 . lib kernel32 . lib. Invoke the-Microsoft 32-bit linker
/SUBSYS'I'E'M:CONSOLE (LINK3-2.EXE). Two library liles are speci-
/DEBUG lied here: _Irvt':1e32.l:'b and kc:'nel3_2.lt'b.

IF errorLevel 1 ‘goto terminate ‘ If the previous command generated an"
error, jump to. the label named terminate.

DIR %1 . *i i Display a list of all tiles produced by the
assembler and linker, as well as the source
file being assembled.

:terminate This label acts- as a place marker For GOTO
commands.

iii

61-4 Appendix A - installing and Using the"Assembler

Your copy of make32.bar may have a different directory name for the assembler and linker
because of the setup requirements in your computer laboratory. For example, if the assembler
were located in the D:\Apps\Masm615 directory, the following three batch file commands would
be changed accordingly:

SET PATI-I=D : \App_S\ Mastu6_1 5
SET INCLUDE=D:\Apps\Masm615\include
sea LIB=D:\Apps\Masm615\lib

A.3 Assembling and Linking 16-Bit Heal-Address Mode Programs
To assemble and link a 16-bit Real-address mode program, use the make16 command. For exam-
ple, if your program is named AddSub.a.5‘m, use the following command at the MS-DOS prompt:

make16 Acldsub

the 1'nal<e16 command. You can copy the file from the assembler‘s install dnectory.
You must have acopyof mak_e16.bar in the same-directory as your source file before you run }

You can run the Microsoft C0.deView debugger with the AddSub'. program by typing the
following command at the MS-DOS prompt:

C:\Masm615\runCV Addsub

CodeView will load AddSub.e.1'e into memory, display its -source code (from AddSr;b.asm), and
let you trace and"debug the program’s execution. Be sure to check the book‘s Web site for a tuto-
rial on using Codeview.

The 16-bit linker only recognizes itilenames having eight or fewer characters (not including
the extension). Also, none of the directory names along your program’s path can be more
than eight characters long.

Table A-2 contains an annotated listing jof make} 6. bar. Two of the commands -in the left
column of the table (REM and LINK) wrap around in the table because of their length. In the
batch file, however, they occupy a single line. For a detailed description of the command line
arguments passed to the assembler‘ and linker, refer to Appendix D.

Table A-2 Batch File Description (makeifibat).

Batch File Command Description

REM Make16 . bat , for assembling and Any line beginning with REM is a comment
linking Real-address mode programs line that documents the batch file. REM does

not execute.

A.3 Assembling and Linking 16-Blt Real-Address Mode Programs 615

Table A-2 Batch File Description (make 16.bat). (Continued)

Batch File Command _Description Z
ml, , , . ,, L L f

PATH C:\Masm615
_ 'fit

Set environment path to the. C:\Masm615
directory. This enables the operating system
to .locate the ML and LINK programs.

SET INCLUDE=C:\Masm615\INCLUDE Set the INCLUDE environment variable. This
allows the INCLUDE directive in assernbly
language programs to locate include files, For
example, we use the Ir_w'ne16.z'nc file.

SET LIB=C:\Masm615\LIB Set-the LIB environment variable. This
enables the linker to locate the library files
used by our programs, such as Ir'w':»ze16.lib.

ML /nologo —c —Fl —Zi %1.asm Invoke the Microsoft assembler (ML.EXE).

IF errorlevel 1 goto terminate If the previous command generated an error,
jump to the label named terminate (last line
of the file).

w

LINK /nologo /CODEVIEW
%1,,NUL,Irvine16;

Invoke the Microsoft 116-bit Linker. A single
library file is specified here: Ii'w'neI6.ii12.

IF errorLevel 1 goto terminate If the previous command generated an error,
jump to the label named terminate.

DIR'%1.* Display a list of all files produced by the
assembler and linker, as well as the source file"
being assembled.

:terminate Label acts as a place marker for GOTO com-
mands.

4a

The Intel Instruction Set

B.1 Introduction
B .1 .1 Flags
B .1 .2 Instruction Descriptions a-nd Formats

B.2' The Instruction Set

B.1 Introduction
This appendix is a quick guide to all real-mode instructions in the lntel IA-32' processor family.

B.1.1 Flags
E-ach instruction description contains a series of boxes that describe how the instruction will
affect the CPU status flags. Each flag is identified by a single letter:

O Overflow S Sign P Parity

D Direction Z Zero C Carry

I Interrupt A Auxiliary Carry

Inside the boxes, the following notation shows how each instruction will -affect the flags:

l Sets. the flag,

0 Clears the flag.

‘? May change-the flag to an undetermined value.

(blank) The flag is not changed.

* Changes the flag according to. specific rules associated with the
flag.

For example, the following diagram of the CPU flags is taken from one of the instruction
descriptions:

ODISZAPCI<'| I l?l?l*|'-*|*l
617

It____ __ ________ . __ 7

‘ imm32 3

618' Appendix B - The lntel instruction Set

From the. diagram, we see that the Overflow, Sign, Zero, and Parity flags will be changed to
unknown values. The Auxiliary Carry and Carry flags will be modified according to rules associ-
ated with the flags. The Direction and Interrupt flags will not be changed.

B.1.2 Instruction Descriptions and Formats
When a reference to source and destination operands is made, we use the natural order of oper-
ands in all Intel 80x86 instructions, in which the first operand is the destination and the second is
the source. In the MOV instruction, for example, the destination will be assigned a copy "of the
data in the source operand:

MOV destination, so_urc~e'

There may be several formats available for a single instruction. Table B-I contains a list of
symbols used in instruction formats". In the descriptions of individualinstructions, we use the
notation “(IA-'-32)” to indicate that an instruction or one of its variants is only available on pro-
cessors in the IA-32 family (Intel386 onward). Similarly, the notation “(80286)” indicates that at
least an 80286 processor must be used.

Register notations such as (E)CX, (E)SI, ('E)DI, (E)SP, (E)BP, and (E)IP differentiate
between IA-32 processors that use the '32-bit registers and all earlier processors that used 16-bit reg-
isters.

Table B-1 Symbols Used in Instruction Formats.

1' Symbjfili*‘ Description I u ' '
reg An 8—, 16-, or 32-bit general register from the following list: AH, AL, BH, BL,

CH, CL, DI-I, DL, AX, BX, CX, DX, SI, DI, BP, SP, EAX, EBX, ECX, EDX,
ESI, EDI, EBP, and ESP.

reg8, regI6, reg32 A general register, identified by its number of bits.

segreg A I6-bit segment register (CS. DS. E5, SS. F5, G3)-

accum AL, AX, or BAX.

mam A memory operand, using any of the standard memory addressing modes.

mem8, memié, A memory Operand, identified by its number of bits.
mem32

l shorrlabei A location in the code segment within -128 to +127 bytes of the current location.

I nemlabal A- location in the "current code segment, identified by a label. ‘

fariabel A location in an external code segment, identified by a label.
_ _ I __ f

imm An immediate operand.

. imm8, immlé, i An immediate operand, identified by its number of bits.

irtsrrucriort ‘ An Intel-assembly language instruction.

B.2 The Instruction Set 619

B.2 The Instruction Set

AAA ASCII Adjust Alter Addition
o D 1 s ,2. A {P cI:-*l I l?l'~>|*lil*l

Adjusts the result in AL after two ASCII digits have been added together. IfAL > 9,
the high digit of the result is placed in AH, and the Carry and Auxiliary Carry flags
are set.-
Instruction Format:

AAA

AAD ASCII Adjust Before Division
O D I S Z A P C
‘P *L>l¢J'7 s '7

Converts unpacked BCD digits in AH and AL to a single binary value in preparation
for the DIV instruction.
Instruction Format:

AAD

AAM ASCII Adjust After Multiply
o D 1 s z A P c

Adjusts the result in A-X after two unpacked BCD digits have been multiplied together.
, Instruction Format:

P-AM
I

 Z 7’

. AAS ASCII Adjust After Subtraction
o D I sq z A P c

Adjusts the result in AX after a subtraction operation. IfAL > 9, AAS decrements AH
and sets the Carry and Auxiliary Carry flags.
Instruction Format:

AAS

620 Appendix B - Thelntellnstruction Set

ADC AddCarry
'0 D I S Z A P C

Adds both the source operand and the Carry flag to the destination operand. Operands
must be the same size.
Instruction Formats:

It

l

ADC reg, reg ADC reg, imm
ADC mem, reg ADC mem, imm
ADC reg,mem ADC -accum, inrm

Add

ODISZAPC I

A source operand is added to. a destination operand, and the sum is stored in the'desti~
nation. Operands must be the same size.

‘I Instruction Formats:

ADD reg, reg ADD reg,_1'_mm
ADD mem, reg ADD -mem, .'l.mm
ADD reg,mem ADD accum, imm

We _ _

AND Logical AND
O D I S Z A P“ C l

to l I i*l* l ‘ii rt l <1
Each bit in the destination operand is ANDed with the corresponding bit in the source
operand.
Instruction Formats:

AND reg, reg ADD reg, imm
AND mem, reg ADD mem, imm

l AND reg,mem ADD .acc_um,imm

B.2 The Instruction Set 621

U N D Check Array Bounds (80286)

i ODISiZAPC
lllllllll

Verifiesthat a signed index value is within the bounds of an array. On the. 80286 pro-
; cessor, the destination operand can be any 16.-bit register containing the index to be
y checked. The" source operand must be a" 32-bit memory operand in which the high and

low words contain the upper and lower bounds of the index value. On the IA-32, the
destination can be a 32-bit register and the source can be a 64~bit memory operand.

ii Instruction Formats:

t BOUND reg16,mem32 BOUND reg32,mem64

BSF, Bit Scan (IA-32)
BSR n0yo*1szAPc_

f:_J l-. W. ‘Ll "* L? I1.
-Scans-an operand to find the first set bit. If the bit is found, the Zero flag is cleared and
the destination operand is assigned the bit number (index) of the first set bit encoun-
tered. If no.set bit is found, ZF = 1. BSF scans from bit 0 to the highest bit, and BSR
starts at the highest bit and scans toward bit 0.
Instruction Formats (apply to both BSF and BSR):

BSF régl 6, r/ml6 BSF reg32, r/m3 2

B Byte Swap (IA-32)

lOlDlIiSIZIAlP|iCJ
Reverses the byte order of a'32-bit destination register.
Instruction Format:

BSWAP reg32

622 Appendix B ~' The Intel Instruction Set

Bit Tests (IA-32) I K KlBT,
BTC, 0 Dily$ a AHP op
BTR, ‘ill. 1 l-’='-.-.I._.'-’ 1 "‘..i_'-LI
BTS ‘ "

Copies a specified bit (rt) into the Carry flag. The destination operand contains the
value in which the bit is located, and the source operand indicates the b'it's position
within the destination. BT copies bit n to the Carry flag. BTC copies bit-rt to the Carry
flag and complements bit it in the destination operand. BTR copies bit :2 to the Carry

I flag and clears bit n inthe destination. BTS copies bit n to the Carry flag and sets bit 21
» in the destination.

Instruction Formats:

ET r/ml6, imm8 BT r/ml6,rl6
ET r/m3.-2 , imm8 ET r/m32, r32

CALL Call a Procedure F F will I

ODISZAPCIII I III ll
Pushes the location of the next instruction on the stack and transfers to the destination
location. If the procedure is near (in the". same segment), only the offset of the next
instruction is pushed; otherwise, both the segment and the. offset are pushed.
Instruction Formats:

CALL nearlabel CALL mem16
CALL farlabel CALL mem32
CALL reg

CBW Convert Byte to Word

O D I S Z A P C

I I I I II I I l
Extends the sign bit in AL throughout the AI-I register.
Instruction Format:

CBW

B.2 The Instruction Set 623

4»

I CDQ Convert Doubleword to Quadword (IA-32)
yODiIyS_ZAiP*(fiI ,

I I I I I I I I I
Extends the sign bit in EAX throughout the EDX register.
Instruction Format:

CDQ

CLC

I

Clear Carry Flag

IOIDIIISIZIAIPIEI I
Clears the Carry flag to zero. I
Instruction Format: ‘

CLC.

I c|_o Clear Direction Flag I
O D I S Z A P C

;II<>IIIIIIl _
Clears the Direction Flag to zero. String primitive instructions. will automatically I
increnrent (E)SI and (E)DI.
Instruction Format:

CLD

C|_| I Clear Interrupt Flag I
ODISZAPC

IIIOCI III ll
Clears the Interrupt flag to zero. This disables maskable hardware interrupts until an P
STI instruction is executed. I
Instruction Format:

CLI

624 Appendix B ' The Intel Instruction Set

CMC

‘ IIIIIII*

Complement Carry Flag

O D I S

Toggles the current value of the Carry flag.
Instruction Format:

CMC

CMP i Compare ;

ODISZAPC
it

Compares the destination to the. source by performing an implied subtraction of the
source from the destination.
Instruction Formats:

CMP reg, imm
CMP mem, imm
CMP accum, imm-

CMP reg, reg
CMP mem, reg
CMP reg,mem

CMPS,
CMPSB,
CMPSW,
CMPSD

Compare Strings

D I S Z A P C \

Compares strings in memory addressed by DS:(E)SI and ES:(E)DI. Carries out an
implied subtraction of the destination from the source. CMPSB compares bytes,
CMPSW -compares words, and CMPSD compares doublewords "(on IA=3'2 proces-
sors). (E)SI and (E)DI are increased or decreased according to the "operand size I
and the status of the direction flag. If the Direction flag is "set", (E)SI and (E)DI are
decreased; otherwise (E)SI and (E)DI are increased. p
Instruction Formats (formats using explicit operands have intentionally been
omitted):

CMPSB CMPSW
CMPSD

B.2 The lnatruction Set 625

Compare and Exchange
I ODISZAPC

I Compares the destination to the accumulator (AL, AX‘, or BAX). If they are
equal, the source is copied to the destination. Otherwise, the destination is cop-
ied to the accumulator.
Instruction Formats:

CMPXCHG reg, reg CMPXCHG meal, reg

CWD Convert Word to Doubleword
0,1) I s z A P c

,_ I I II I I I I I
Extends the sign bit in AX into the DX register.

I Instruction Format:
I I

DAA Decimal Adjust After Addltlon
I O D I S Z A P C

Adjusts the binary sum in AL after two packed BCD values have been added. Con-
verts the _sum to two BCD digits in AL.

I Instruction Format:
DAA

__ _ I _ _ 7

DAS Decimal Adjust After Subtraction

'0 D I S Z A P C
'7 | =rLeJ=r e tit

__ ____ _ W _ ___ _ r -

, Converts the binary result_of a subtraction operation to two packed BCD digits in AL.
Instruction Format:

DAS

626 Appendix B - The Intel Instruction Set

DEC Decrement

‘ I ti | s t | * $7
ODISZAPC

Subtracts l from an operand. Does not affect the Carry flag.
Instruction Formats:

DEC reg DEC morn

IMV Unsigned Integer Divlde
O D_ I S Z A P CI=*I II'->I<'I'?I<*I?I 1

Performs either 8-, I6-, or 32_-bit unsigned integer division. If the divisor is 8 bits, the
dividend is AX, the quotient is AL, and the remainder is AH. If the divisor is 16 bits,
the .dividend is DX:AX, the quotient is AX, and the remainder is DX. If the -divisor is
32 bits, the dividend is EDX:EAX, the quotient is EAX, and the remainder is EDX.
Instruction Formats:

DIV reg DIV morn

ENTER Make Stack Frame (80286)
O D I S Z A P C

I I I I I II II
Creates a stack frame for a procedure that receives stack parameters and uses local
stack variables. The first operand indicates the number of bytes to reserve for local
stack variables. The second operand indicates the procedure nesting _level (must be set
to 0 for C, Basic, and FORTRAN).
Instruction Format:

ENTER imtnl6,.imtn8

HET Halt K

IOIDIIISIZIAIPIICI
Stops the.CPU until a hardware interrupt occurs . (N0te.' The Inten'up'It flag must be set
with the STI instruction before hardware interrupts can occur.)
Instruction Format:

HLT

B.2 The instruction Set 627

I |D|v Signed lnteg_er Divide

onlszarc I
. I'?I II'*I?I'P:I'PI1'I

, Performs a signed integer division operation on BDX:BAX, DX:AX, or AX. If the I
_ divisor is. 8 bits, the dividend is AX, the quotient is AL, "and the remainder is AH. If
I thedivisor is 16 bits, the dividend is DX:AX, the quotient is A-X, and the remainder is I

I DX. If the divisor is 32 bits, the dividend is BDX:BAX, the quotient is BAX, and the
remainder is BDX. Usually the IDIV operation is prefaced by CBW, CWD, or CDQ
to sign-extend the dividend.
instruction Formats?

IDIV reg IDIV mem

I "bits, the multiplicand is AL and the product is AX. If the multiplier is 16 bits, the mul- I

IMUL 1532,11‘/m32 IMUL 1'32, imma I

Signed integer Multiply

0 DWI s z A P c_t l*III<'I='I'?l<'I*l
I _ _ __
#7

I Performs a signed integer multiplication on AL, AX, or BAX. If the multiplier is 8 7

tiplicand is AX and the product is D_X:AX. If the multiplier is 32 bits, the multipli-
cand is BAX and the product is BDX:BAX. The Carry and Overflow flags are set if a t
16-bit product extends into AH, or a'32-bit product extends into DX, or a 64-bit prod-

I uct extends into BDX.
I Instruction Formats:

Single operand:

IMUL r/m8 IMUL r/11116
IMUL r/11132

Two operands-:

IMUL r16,r/11116 IMUL r16,imm8

IMUL r.'i.6,imm.'i.6 IMUL r32,.i.mm32

Three operands:

IMUL rl6,r/ml6,imm3 IMUL r16,r/m16,imm16
IMUL r32,r/m32,imm8 IMUL r32,r/m32,imm32

626 Appendix B ' The Intel Instruction Set

_, 7

|N Input from Port
O D I S Z A P CIIIIIIIII 1

Inputs a byte or word from a port into AL or AX. The source operand is a port
address , expressed as either an'8-bit constant or a I6-bit address in DX. On the IA-32,
a doubleword can be input from a port into BAX.
Instruction Formats:

IN accum,.imrn IN accwn,DX

|Nc increment
O D I -S Z A P C

Adds 1 to a register or memory operand.
Instruction Formats:

I rm mg rm mm

|N$’ Input from Port to String (80286)
|NSB, I own r s z A P c
|N3w, IIIIIIIII __

I Inputs a string pointed to by ES:(B)DI from aport. The port number is-specified in
DX, For each value received, (B)DI is adjusted in the same way as LODSB and simi- I
lar-string primitive instructions. The REP prefix may be used with this instruction.
Ins.truction--Formats: I

INS dest,DX REP INSB dest.,DX
REP INSW dest,DX REP INSD dest,DX

|N'|' Interrupt
O D I S Z A P CI I IOII II I I

Generates -a software interrupt, which in turn calls an operating system subroutine.
Clears the Interrupt flag -and pushes the flags, CS, and IP on the stack before branch-
ing to’ the intenupt routine.
Ins truction Formatsr

INT.imm INT3

B.2 The instruction Set 629

|N'|'Q ‘ Interrupt on Overflow
'0 D I S ZI A P CI I I l--.I I-

Generates internal CPU Interrupt 4 if the Overflow flag is set. No action is taken by
MS-DOS if INT 4 is called, but a user-written routine may be substituted instead.
Instruction Format: I

INTO I

|RE'|' Interrupt Return
O D I S Z A- P C

Returns from an interrupt handling routine. Pops the stack into (E)[P, CS‘, and the
flags.
Instruction Format:

IRET
_t _

I Jcondffion Conditional Jump
I ODXISZAPC

. I II I I I I I I

_ 1

I Jumps to a label if a specified flag condition is true. Prior to. the IA-32 processor,
I the label must be in the range of --128 to +127 bytes from the current location.

On IA-32 processors, the label's offset can be-a positive or negative 32-bit value.
See Table B-2 for a list of mnemonics.
Instruction Format:

Jcondition label

Table B-2 Conditional Jump Mnemonics.
J __ ___ __1____ ._______ _‘_______7___ __ _7

'__f. -' I -r -- I I-T, _-_-:|';;-, -..-I
' .l',- ' ‘ - .'_-I. II '_- ',I- ' ‘I":'I .I T"-1;--if-MIi‘.e1n.1-°n.!,-0-IEEE I .; c9,I!!F!!!i'.-‘Ht . .-e;:I:~‘@:.=i.lI I .|I!IIi!1.'r'i.i1?.!'i?l'!i-'7-i-.2 Iz.-.§,€.i..|'.".|I'l.'?'-?..|7.i.!'i:itI’.':-I-It ...:I.:=1iI:;t};;i1E.,I..I:.:-;~@:If-‘at,,r:r~,'E~.=.{1‘fii§II:I<;,,rI!;---.;;§~,a_i&;tI.‘Li;;,I= . -.»zI?.::ir.¢iIr$-‘;!=:%.*~-.- .-:-'4-efir‘I'.-:;_=I3I IIi'I'-tititiviliiiftiiii-i I I=r;a:1ItlI.lI:ifii'I:5<rIi't:§!IIIl .'.+.I'.;; ts.-.I?;:=1rI'.tI;~.:i;-Ts;agr-;1:trIrF:i‘r_;;_Itil:a.-:.‘.r=.-:s~:I:-first sw"eirI’.I»tIi\I1III:‘J§1£1.‘&i_tiIr H, ,_ _ A _N , 2 “___ __ri _, W‘

JA jump if above JB jump if equal I
, _, II I _ I

INA I jump if not above Th I I jump if not equal I
I

. Hg __

I JAE jump if above or equal t JZ \ jump if zero

JNAB jump if not above" or equal JNZ jump if not zero I

. JB jump if below I JS I jump if sign W

Appendix B ~ The lntellnstruction Se

Table B-2 Conditional Jump Mnemonics. (Continued)

IZ":

»'.-I.3‘. -rm“;.-;§.; .__ _-fiht
-:5:5!?!

I'_.: .'.;-r.
I1

nu._._!_._,.._...'-:6‘I. .. I| II I;I- I-I. ,. I.I.,.
-"G"?

.'-.r:i .-*‘;'.§-Iif-'' I ‘-T"-I-.
,...

I“Fl.-Ei."~' I"*-.?.--

' I jump if not below ms

I i’.1"-..‘i'I-'!-I‘-fr.-.I.-._-_ .*.F'?4:@'I~-Is. rat“-ii‘-r:”i II.-I TIFF! I *'I'-r Il"‘I’ Li"? ",1 iii’ <3-I_.i at-"Li 1: ll ‘J if-_..!.r'-34!‘-Lrlil 7!; -.-ti fa .-.‘. 1| :1?
‘*I| i__*1“

‘W LL‘- 1’-1?
atZ 761-

__m_' __ __

.'jq_»§‘-.. Ii';'i§-J 1‘.-.‘:.-_ -..-.-.._-.-. t_-.

l—'-.

_.-;-'-:I _.£-gs"<=I“"".:-_=.-—- .'\r.§I -=r:mr-'It2

us:

—IeiI‘<~*-I.r'i .I~',-Iii‘-"'lI'-I1 '.-IF-?.!-.I.'=-
I-1’.‘

1-

\-
‘fa- .I

rt-

"' "~':ii.G':" I ; . .7I.#i6:l9.Ih1'me!I‘t'I:'
I \;J'.._ ‘ ' “--.: ' "‘f|_l|t.“;

_:__:; _"‘t-—i
I

jump if not sign

IBB If jump if below or equal I JC jump if carry

INBB I jump if not below or equal IIIJNC jump if no carry

CG I jump if greater JO jump if overflow

ING jump if not_greater JNO jump if no overflow

Joe jump if greater or equal JP jump if parity

INIGB jump if not greater or equal JPB jump if parity equal

IL jump if less JNP jump if no parity

INL jump if not less- JPo jump if parity odd

ILE jump if Iess or equal JNLBTI jump if not less than or equal I

JCXZ’ Jump If CX ls Zero

"Em IOIDI I I IISZAPC

III
Jump to.a short label if the CX register is equal to zero. The short label must be in the
range —l-28' to +127 bytes. from the next instruction. On the IA-32 processor, JBCXZ
jumps if ECX equals zero.

. Instruction Formats:

JCX-Z shortlabel JECXZ shortlabel

J MP Jump Unc.onditionally to Label
O D I S Z A P C

IIIIIIIII
I Jump to a code label. A short jump is within -1-28 to +127 bytes from the current

location. A near jump is within the same code segment, and a far jump IS outside the
current segment.
Instruction Formats:

JMP shortl-abel JMP regl 6
JMP nearlabel JMP mem16
JMP farlabel JMP mem32

‘L _ 7” 7 _

B.2 The Instruction Set 631

LAHF Load AH from Flags
, 0iDISZAPC‘ I I I I II I I I

\ The lowest 8 bits of the flags are transferred: Sign. Zero, Auxiliary Carry, Parity, and
\ Carry.

Instruction Fomtat:

LAHF

, LDS
LES
LFS

LSS
LGSI, I

a I Load Far Pointer
g0'gt>1 S_ZiHA P c_7 I I I II 1| I I5

Loads the contents of a doubleword memory operand into a segment register and the
3 "specified destination register. Prior to the IA-32 processor, LDS loads into DS, LES

loads into ES. On the IA-32 processor, LFS loads into PS, LGS loads into GS, and
LSS loads into SS.
Instruction Format (same for LDS, LES, LFS, LGS, LSS):

LDS reg,mam

I LEA Load Effective Address
own I s_ z "A P gc"

g ”__ I II I I I I I I _
Calculates and loads the l6-bit or 32-bit effective address of a memory operand. Sim-
ilar to MOV..OFFSET, except that only LEA can obtain an address that is calculated
at run time.
Instruction Format:

LEA reg,mam

1 LEAVE I High-Level Procedure Exit
ODISZAPC

I Terminates the stack frame of a procedure. This reverses the action of the ENTER
instruction at the beginning of a procedure by restoring (E)SP and (E)BP to their orig-
inal values.
Instruction Format:

LEAVE

-iii

632 Appendix B - The Intel Instruction Set

LQCK Lock the System Bus

I ODISZAPC

\ , _
I Prevents other processors from executing during the next instruction.This instruction

is used when another processor might modify a memory operand that is- currently
being accessed by the CPU.
Instruction Format:

LOCK instruction

I II II I III I I

LQDS’ Load Accumulator from String W I I I

LODSB, 0 D 1 s z A P c
LODSW, I I I I I I I I I
LODSD Loads a memory byte or word addressed by DS:(E)SI into the accumulator (AL,

I AX, or EA-X). If LODS is used, the memory operand must be specified. LODSB
3 loads a byte into AL, LODSW loads a word into AX,-and LODSD on the IA—32

loads a" doubleword into-EAX. (E)SI is increased-or decreased according to the.
"operand size and the status of the direction flag. If the Direction flag (DP) = I ,
(E)SI is decreased; if DF = 0, (E)SI is increased.
Instruction Formats:

LODS. mem LODSB
LODS segregrmem LODSW
LODSD

LOOP, I-°°P
LQQPW opp I s 2 A P c

I I I I I II I I
Decrernents-(E)CX and jumps to a short label if (E)CX is greater than zero. The des-
tination must be -1'28 to +127 bytes from the-current location. On IA-32 processors,
ECX is used as the default loop counter.
Instruction Format:

LOOP shortlabel LOOPW shortlabel

B.2 The Instruction Set 633

Loop (IA-32)

IOIDIIISIZIAIPICI I
I Decrements ECX and jumps to a short label if ECX is greater than zero. The destina-

tion must be -128 to +127 bytes from the current location.
Instruction Format:

I LOOPD shortlabel

LooPE’ Loop If Equal (Zero)
ODISZAPC

I I I I I I I I I
Decrements (E)CX and jumps to a short label if (E)CX :> 0 and the Zero flag is set.
Instruction Formats:

LOOPE shortlabel LOOPZ shortlabel

|_QQpN E, Loop If Not Equal (Zero)

L°°P"'z IOIDIIISIZIAIPICI
Instruction Formats:

I

LOOPNE shortlabel LOOPNZ shortlabel

I Decrements (E)CX and jumps to a short label if (E)CX > 0 and the Zero flag is clear.

Move
ownr s z A P c

I II I II I I II
.C0pies a byte or word from a source operand to a destination operand.
Instruction Formats:

MOV reg, reg MOV reg, imm
MOV mem,reg MOV mem, imm

, MOV reg,mem MOV meml 6, segreg
MOV regl 6, segreg MOV segreg, merrr16
MOV segreg, regl 6

634 Appendix B - The Intel Instruction Set

‘I _ _ _7 ____ __

Move String
MQVSB, ODISZAPC
Movsw, IIIIIIIII j

, Copies "a byte or word from memory addressed by DS-:(E)SI to memory addressed
I by ES:(E)DI. MOVS requires both operands to be specified. MOVSB copies a
‘ byte, rvrovsw copies a word, and on the IA-32, rvrovso copies a doubleword. I

(E)SI and (E)DI are increased or decreased according to the operand size and the j
status of the direction flag. If the Direction flag (DF) = 1-, (E)SI and (E)DI are I
decreased; if DF = 0, (E)SI and (E)DI are increased.
Instruction Formats:

MOVSB
MOVSW
MOVSD
MOVS -dest , source
MOVS ES : dest , segreg: source

Move with Sign-Extend
O D I S Z A P C

IIIIIIIII
Copies a -byte or word from a.source operand to a destination register and sign-
"extends into the upper half of the destination. This instruction is used to ‘copy an 8-bit
or 16-bit operand into-a larger destination.

I Instruction Formats;

MOVSX reg32, r.egl6 MOVSX reg32,meml6
MOVSX regl 6, reg8 MOVSX regl'6,m8

Move with Zero-Extend
O D I S Z A P jC

I I I I I I I I I
Copies a byte or word from a source operand to a destination register and zeroi-
extends into the upper half of the destination. This instruction is used to copy an 8-bit
"or 16-bit operand into alarger destination.
Instruction Formats:

MOVZX reg32 , regl 6 MOVZX reg3-2 , meml 6
MOVZX regl 6, reg8 MOVZ-X regl 6 ,m8

B.2 The Instruction Set 635

m 7.. eff —— —

MUL Unsigned Integer Multiply
O D I S Z *A Pi

Multiplies AL, AX, or EAX by a source operand. If the source is 8 bits, it is multi-
plied by AL and the-product is stored in AX. If the source is 16 bits. it is multiplied by

, AX and the product is stored in DX:AX. If the source is 32 bits, it is multiplied by
EAX and the product is stored in EDX:EAX.
Instruction Formats:

MULreg I-IULmem

N Negate
ODISZAPC

Calculates the twos_ complement of the destination operand, and stores the result in
the destination.
Instruction Formats:

use reg use mem

I NQP No Operation
ODISZAP-C

IIIIIIIII
This instruction does nothing, but it may be used inside a timing loop or to align aI . .I I subsequent instruction on a word boundary.
Instruction Format:

NOP

NOT Not
ODISZAPC

‘ IIIIIIIII
Performs a logical NOT operation on an operand by reversing each of its bits.
Instruction Formats:

NOT reg NOT mem

636 Appendix B s The Intel Instruction Set

OR inclusive OR

O D I S Z A P C

Performs -a boolean (bitwise) OR operation between each matching bit in the-destina-
tion operand and each bit in the source operand.
Instruction Formats:

OR reg,imm
OR merit, imrn

OR reg, reg
OR merit, reg
OR reg,-merit OR accum,imm

OUT

‘I

Output to Port
0 D I s Z A P c
II I I I I I II

Prior to the IA-32, this instruction outputs a byte or word from the accumulator to a
port. The port address may be a constant if in the range 0—FFh, or DX may contain a
port address -between 0 and FFFFh. .On an IA-32 processor, a doubleword can be out-
put to a port.
Instruction Formats:

I_ I

OUT imm8, accum OUT DX , accum

QUTS, Output String to Port (80286)

OUTSW
OUTSD

OUTSBI ODI-SjZAPC
! IIIIIIIII

Outputs a string pointed to by ES:(E)DI to a port. The port number is specified in
DX, For each value output, (E)DI is adjusted in the same way as LODSB and similar
string primitive instructions. The REP prefix may be used with this instruction.
Instruction Formats:

OUTS dest , DX REP OUTSB dest , DX
REP OUTSW de'St , DX REP OUTSD dest , DX

B.2 The Instruction Set 637

Pop from Stack
O D I S Z A P CU IIIIIIIII

Copies a wor.d or doubleword at the current stack pointer location into the destination
operand, and adds 2 (or 4) to (E)SP. ,
Instruction Formats:

POP regl6/reg32 POP segreg
IPOP meml 6/mem32

1, _ 7 I

pQpA’ Pop All

'°°'°A° IOIDIIISIZIAIPICI
Pops 1'6 bytes from the top of the stack into the eight_general-purpose registers, in the I
following order: DI, Sl, BP, SP, BX, DX, CX, AX. The value for SP is discarded, so I

I SP is not reassigned. POPA pops into. 16-bit registers,'and POPAD on the IA-32 pops I
I into 32'-bit registers. *

Instruction Formats:

POPA POPAD

Pop Flags from Stack
ODISZAPC
ii! Ii‘ Iii lit lit lit is 5?

POPF pops the top of the stack into the l6.-bit FLAGS" register. POPFD on the IA-32 I
pops the top of thestack into the 32-bit'EFLAGS register.
lnstruction Formats:

POPF POPFD

.[__ ‘r 7 _

I Push on Stack
0 D I S Z A P C
II I I I II I I j

a

I I Subtracts 2 from (E)SP and copies the source operand into thestack location pointed
I to by (E)SP. From the 80186 onward, an immediate value can be pushed on the stack.

I Instruction Formats:

PUSH regl 6/r.eg32 PUSH segreg
PUSH meml 6/mem32 PUSH imml 6/ .i.mm32

638 Appendix B 1 TI1e Intel Instruction Set

pU_S|-|A, Push All (ao2as)

PUSHAD IOFUIISIZIAIPICI
Pushes the following l6-bit registers on the stack, in "order: AX, CX, DX, B-X, SP,
BP, SI, and DI. The PUSHAD instruction for the IA-32 pushes BAX, ECX, EDX,
EBX, ESP, EB P, ESI, and EDI.
Instruction Formats:

PUSHA PUSHAD

PUSHF’ Push Flags

P“S“F° IOIDIIISIZIAIPICI
PUSI-IF pushes the 16-bit FLAGS register onto the stack. PUSHFD pushes the 32-
bit EFLAGS onto the stack '(IA-32').
Instruction Formats:

PUSHF PUSHFD

PUSHW, Push on Stack
_0 D I s z A P jcPUSH“ II I I I I II I

PUSHW pushes a 16-bit word on the st-ack, and on the IA-.32, PUSHD pushes a 32-
bit doubleword on the stack.
Instruction Formats:

PUSHW regl 6/meml 6/1'.mm32
PUSHD reg32/merri32/imm32

RCL Rotate Carry Left
-O D I S Z A -P C

Rotates" the destination operand left, using the source operand to determine the number
ofrotations. Tl'1e'Carr'y flag is copied into the lowest bit, and the highest bit is copied
into the Carry flag. The r'mm8 operand must be a l when using the 8086r’8088' processor.
Instruction Formats:

RCL reg,imm8 "RCL mem,.t'.mm8
RCL reg, CL RCL Inem, ct.

B.2 The Instruction Set 639

RCR Rotate Carry Right

ODISZAPC I-I II I I I Iii
Rotates the destination operand right, using the source operand to determine the num-

\ ber of rotations.The Carry flag is copied into the highest bit, and the lowest bit is cop-
I Q ied into the Carry flag. The iImm8 operand must be a I when using the 8086:’80_88.

processor.
Instruction Formats:

RCR reg, imm8 RCR merit, imm8
RCR reg, CL RCR mem, CL

4

REP Repeat String

O D I S Z A P C

IIIIIIIII
Repeats a string primitive instruction, using (E)CX as a counter. (E)CX is decre-
mented each time the instruction is repeated, until (E)CX = (]_
Format (shown with MOVS):

REP MOVS dest, source

REPcOnd|'fion I Repeat String Conditionally

I O D I S Z A PI C

I II I I.-I I I
Repeats a string primitive instruction until (E)CX = 0 and while a flag con-
dition is true. REPZ (REPE) repeats while the Zero flag is set, and R-EPZ
(REPNE) repeats while the Zero flag is clear. Only SCAS and CMPS
should be used with REPc0riditi0n, because they are the only string primi-
tives that modify Ihe Zero flag.
Formats used with SCAS:

REPE SCAS dest REPNE SCAS dest
REPZ SCASB REPNE SCASB
REPE SCASW REPNZ SCASW

640 Appendix B 1 The Intel Instruction Set

RET,
RETN
RETF

Return from Procedure

IOIDIIISIZIIIIIIIICI
Pops a return address from the stack. RETN (return near) pops only the top of the
stack into (E)IP. In Real-address mode, RE-IITF (return far) pops the stack first into
(E)IP, and then into CS. RET may be either near or far, depending on the attribute
specified or implied by the PROC directive. An optional 8-bit immediate operand tells
the CPU to add a value to (E)SP after popping the return address.
Instruction Formats:

I

RET RET .II.IIIIII3
RETN RETN .II.IIIIII3
RETF RETF .II.IIIII'I3 I

ROL RotateLett

O D I S Z A P C

j.

Rotates the-destination operand left, using the source operand to determine the num-
ber of rotations. The highest bit is copied into the Carry flag and moved into the low-
est bit position. The iiiim8 operand must be a 1 when using the 8086:’8088 processor.
Instruction Formats:

ROL reg, iiitiii8 ROL merit,J'Jrim8
ROL reg,CL ROL merit,CL

L 7 7 __ 1

ROR RotateRight
0 n r s z A P cI*I I I I I I Iii

Rotates the destination operand right, using the source operand to determine the num»-
ber of rotations. The lowest bit is copied into both the Carry flag and the highest bit I
position. The z'mm8 operand must be a l when using the 80.86/80.88 processor. I
In_struction Formats:

ROR reg, imm8 ROR merit,J'.mm8
ROR reg, CL _ROR merit, CL

B.2 The Instruction Set 641

SAH F Store AH into Flags

O D I S Z A P C
it

Copies AH into bits 0 through 7 of the Flags register. This includes the Sign, Zero,
Auxiliary carry, Parity, and Carry flags.
Instruction Format:

SAI-IF

SAL Shift Arithmetic Left

O D I S Z A P C
iii =2: =1: '7 as =1; I

I Shifts each bit in the destination operand to the left, using. the source operand to
‘ determine the number of shifts. The highest bit is copied into. the Carry flag, and the i

1 lowest bit is filled with a zero. The t'mm8 operand must be a l when using the 8086:‘
i 8088 processor.

Instruct_ion Formats:

SAL reg, imm8 SAL mam,-irnm8
SAL reg, CL SAL mem,CL

; SAR Shift Arithmetic Right
i O_ D I S Z A P C

|=l¢l=i="?|$I==i=I

Shifts each bit in the destination operand to the right, using the source operand to
determine the number of shifts. The lowest bit is copied into the Carry flag, and the .

\ ‘ highest bit retains its prev-ious value. This shift is often used with signed operands,
because it preserves the numbefis sign. The imm8 operand must be a 1 when using the
8D86:’8088 processor.
Instruction Formats:

SAR reg, imm8 SAR mem, .imm8
SAR reg, CL SAR mem, CL

642 Appendix B ~ The intei instruction Set

——~ ‘—*' hr?

~ |..|||..]........

SBB Subtract with Borrow

‘ O D I S Z A P C

\ Subtracts the source operand from the destination operand and then subtracts the
Carry flag from the destination.
Instruction Formats:

-SBB reg, reg SBB reg, imm
‘ SBB mem, reg SBB mam, imm

SBB reg,men:

I Scans a string in memory pointed to by ES:(B)DI for a value that matches the accu-
i

i

SCAS’ -Scan String
SCASB, 0 D I S_ZfiA P c
SCASW, § I 1

mulator. SCAS requires the operands to be specified. SCASB scans for an 8-bit
value matching AL, SCASW scans for a 16-bit value matching AX, and SCASD I
scans for a 32-bit value matching EAX. (E)DI is increased or decreased according to
the operand size and the status of the. direction flag- If DF = 1, (E)DI is decreased; if
DF = O, (E)DI is increased-
Instruction Formats; 1

scase scasw
SCASD SCAS ES:dest
SCAS dest

SE‘|'cOnd|'f-[On i Set Conditionally F
O D I .S Z A P CW _ ||| | 1|: ||

If the given" fiagcondition is true, the byte specified by the destination
operand is assigned the value 1. If the flag condition is false, the destina-
tion is assigned a value of 0. The possible values for condition are listed in
Table B,-2, earlier in this appendix.
Instruction Formats:

SE'J.‘cond reg8 SE']3cond mem8

B.2 The Instruction Set 643

SHL ShiftLef‘t

ODISZAPC ,... ||..].,-».,.|
Shifts each bit in the destination operand to the left, using the source operand to deter-
mine the number of shifts. The highest bit is copied into the Carry flag, and the lowest
bit is filled with a zero (identical to SAL). The imm8 operand must be-a 1 when using
the 8086/8088 processor.
Instruction Formats:

SHL reg,imm8 SHL mem,imm8
SHL reg,CL SHL mam, CL

s|-||_o
_ _ _ _ ii *_i_‘_

Double-Precision Shift Left (IA-32)

O D I S Z A P "C
iii I *1 iii-I9 =2: 1:‘

_ A

Shifts the bits of the second operand into the first operand. The third operand indi-
cates the numberof bits to. be. shifted.'The positions opened by the shift are fiiied by
the most significant bits of the second operand. If llreshift count is > i, the Overflow
flag.’s vaiue is undetermined.
Instruction Formats:

SHLD meml 6, regl 6, imm8
SHLD mem32,reg32,inm18
SHLD meml6,regl6,CL

SHLD regl6_,reg1_6,_1'.mm8
SHLD reg32,reg32,imm8
SHLD reg16,regl6,'CL
SHLD reg32,reg32,CL SHLD me.rn32,reg32-, CL

SHR
*7.’ _ -

Shift Right

ODISZAPC
=1: =1: nu‘? =1: ml

Shifts each bit in the destination operand to the right, using thejsource operand to
determine the number of shifts. The highest bit is fiiied with a zero, and the lowest bit
is copied into the Carry flag. The imm8 operand must be a l when using the 8086!
8088 processor.
Instruction Formats:

SHR reg,imm8 SHR mem, immfi
SHR reg,CL SHR me-m,CL

644 Appendix B ~ The Intel Instruction Set

SHRD Double-Precision Shift Right (IA-32)
D 1 s z

=1: I =2: =2: '7 =2: at

‘ 7

flow fiagis value is undetermined.
Instruction Formats:

SI-IRD
SHRD
SHRD
SHRD

regl 6, regl 6, immé?
reg32, reg3-2, imm8
regl 6, regl 6, CL
reg32, reg32, CL

Shifts the bits of the second operand into the first operand. The third operand indi-
cates the number of bits to be shifted. The positions opened by the shift are filled
by the least-significant bits of the second operand. If the shift count is > l, the Over-

SHRD me-ml 6, regl 6, imm8
SI-IRD mem32,reg32,.'i.nm18
SI-IRD mernl 6, regl-6, CL
Si-IRD mem32,reg32,CL

Set Carry Flag"

O D ISZAPC ‘

41174

l

. ll ll i I I lll
Sets the Carry flag.
Instruction Format:

STC

” ’ |°|1||||||1
STD Set Direction Flag

D I S Z A,PC .

addresses .
Instruction Format:

STD

Sets the Direction flag, causing (E)SI and/or (E)DI to be decremented by string prim-
it itive instructions. Thus, string processing will be from high addresses to low

B.2 The instruction Set 645

I S'|'| "Set interrupt Flag

O.DISZA,PC.
I I I1I I I I I I

Sets the Interrupt flag-, which enables maskable interrupts. Interrupts are automati-
cally disabled when an inter‘1'I.1p_t occurs, so an interrupt handler procedure in:n'nedi- p
ately reenables them, using STI. I
Instruction Format:

STI

-I t *~ A -- t e 1

l - r —

STQS’ Store String Data

STOSB, ODISZAPC
!5TTJE“flL I I I I I I I I I
STOSD . .

I Stores the accumulator in the memory location addressed by ES:(B)DI. If STOS is
used, a destination operand must be specified. STOSB copies AL to memory,
STOSW copies AX to memory, and STOSD for the IA-32 copies EAX to memory.
(E)DI is increased or decreased according to the operand size and the status of the

direction flag. If DF = l, (E)DI is decreased; if DF = O, (E)DI is increased.
1 Instruction Formats:

srose srosw
srosn sros ES:mem ,
sros merit

I SUB Subtract
,*ODllSZAP,C,

Q r*.II I* *I *I *
Subtracts the -source operand from the destination operand.
instruction Formats:

SUB reg, reg SUB reg, imm
SUB mam, reg SUB mam, imm
SUB reg,mem SUB accum, imm

646 Appendix B ~ The Intel Instruction Set

TEST Test
ODISZAPC

~--t-_ r L 1, -- ir — -—-—-|—- I i

-°.r_i I * * I ‘?I * ._.-°
t , I

Tests individual bits in the destination operand against those in the source operand.
Performs a logical AND operatiorr that affects the flags but not the destinatiol1_oper-
and .
Instruction Formats:

TEST reg, reg
TEST mern, reg

rest reg,imm
TEST mem, imrn

TEST reg,mem TEST accum, imm

I

VMMT Wait for Coprocessor
O D I S Z A P C

IIIIIIIII
Suspends CPU execution until the coprocessor finishes its current instruction.
Instruction Format: I

WAIT

XADD Exchange and Add (Intel486)
0 D Wt s z A P cI*I I l*=I-**

Adds the source operand to the destination operand. At the same time, the original
destination value is moved to the source operand.
Instruction Formats:

XADD reg, reg XADD mern, reg I

XCHG Exchange
ODISZAPC

I I IIII I II
Exchanges the contents of the source and destination operands.
Instruction Formats:

XCI-IG reg, reg XCHG mem, reg
XCHG reg, IIIQITI

B.2 The instruction Set 647

XLATB
I
‘r

I

Uses the value in-AL to index into a table pointed to by DS:BX (EBX in protected ,
mode). The byte pointed to by the.index is moved to. AL. An operand may be specified I
in -order to provide a segment override". XLATB may be substituted for XLAT. I
Instruction Formats:

XLAT’ Translate Byte I

_ IOIDIIISIZIAIPIICI

XLAT XLAT "segregunem
XLAT men: XLATB

I‘

XQR Exclusive on "

Each bit in the source operand is exclusive ORed with itsccrresponding bit in the
destination. The destination bit is a 1'only when the original source and destination
bits are different.
Instruction Formats:

XOR reg, reg XOR reg, imm
XOR mem, reg XOR mem, imm
XOR reg,ntem XOR accum, imm

if I I C
BIOS and MS-DOS Interrupts

0.1 introduction
0.2 PC interrupts
C.3 interrupt 21H Functions (MS-DOS Services)
C.4 interrupt 10H Functions (Video BIOS)
0.5 Keyboard BIOS INT 16h Functions
C.6' Mouse Functions ‘(INT 33h)

0.1 introduction
In thisappendix, we list some of the more commonly used interrupt numbers, in four groups:

' General list of PC interrupts. These interrupt numbers correspond to the Interrupt vector
table stored in the first 1,024 bytes of memory.

' INT 21h MS-DOS functions
- INT 10h Video BIOS functions
' INT 16h Keyboard BIOS functions
~ INT 33h mouse functions

In fact, documenting PC interrupts is a huge task,-due to the many differentversions of MS-DOS,
as well as various DOS extenders and PC hardware controllers. The definitive source for inter-
rupts is Ralf Brown’s Interrupt List, available in various forms On the Web. Of course, information
about Web sites changes almost daily, so check my own Web site for reasonably up-to-date links
to the R-alf Brown Interrupt List and other assembly'Web sites:

http:h‘www.nuvisionmiami .comI‘asmso'urces

C.2 PC interrupts

Table 0-1 General List of PC Interrupt Numbers.“
"Z. _ I I ‘ ’ ’ ' ’ ’ I I j T if ’= N l:.~' n ‘ | '. , .';!-_"l:ii§‘-1'. _.'. _.,.'-'.'-.'I'i~;-[.;!. '- II:t':;]i;|=!-i. _ 'I'-.1:i'i‘.;! -,ji'>,‘i’ll ~ - -:‘_"<'-.:i'-:i_‘iii"ijI-1'5-J--i'Ei=i§;i"§i "-4+;n=tt:tt:t;e;1i'_-1'"c;:;‘:iin:!-$45,: *".=."r‘."-_i:;;.=:i;l'-;IE‘..-:'._»_;-;iiii1im11T;=;' , Its-=,.~a::r;-;e.-~'..,.,;;ts;:.&.a.--_,-.- is;-‘.1-!I:Ii~ _,__,3j-?1;=-‘ __ 'I.rI=2if-1.-Isl

I O Divide Ei'i‘0i". CPU-generated: activated when attempting to divide by zero. d

l Single Step. CPU-generated: active when the CPU Trap flag is set.

2 Nonmaskcrbic"Interrupt. Extemal hardware: activated when a memory error occurs.

3 Brcakpoim. CPU-generated: activated when the OCCh (INT 3) instruction is executed.

649

650 Appendix C - BIOS and MS-DOS interrupts

Table C-1 General List of PC Interrupt Numbers.‘-‘ (Continued)

Number Description
4

I

I

INTO Detected Overflow. CPU-gener'ated: Activated "when the INTO instruction is exe-
cuted and the Overflow flag is.set.

5 Prim Screen. Activated either by the INT 5 instruction or pressing the Shift-PrtS'c keys.

6 Invalid OpCode (sozso-I-)
7 Processor Errerrsiorr Nor Available (80286+)

8 IRQO: System. Timer interrupt. Updates the BIOS clock 18.2 times per second. For your
own programming, see INT lCh.

9 IRQ-l: Keyboard Hardtvctre Irtrerr‘ttpr. Activated when a key is. pressed. Reads the key from
the keyboard port and stores it in the keyboard typeahead -buffer.

DA .IRQ2: Programmable Interrupt Controller-

be IRQ3: Serial Communications (COM2)

OC IRQ4: Serial Communications (.COMl) F

OD IRQ5: Fixed Disk

OE IRQ6: Diskette Imerrupr. Activated when a disk seek is in progress.

OF IRQ7: Parallel Primer

IO Video Services; Routines formanipulating the video display (see the complete listin Table C-3)

ll Eqm'pmem'Cl1eck. Return a word showing all the peripherals attached to the system.

I2 Memory Size. Return the amount of memory (in 1,024-byte blocks) in AX.

I3 Floppy Disk Services. Reset the disk controller‘, get the status of the most recent disk
access, read and write physical sectors, and format a disk".

l4 Asyncltrorrotts (Serial) Port Services. Initialize and read or write the asynchronous commu
nicationsport, and return the port's status.

I5 Cassette Controller.

1Z6 Keyboard Services. Read and inspect keyboard input (see the complete list in Table C-4].

1? Primer Services. Initialize, print, and return the status of the printer.

I8 ROM BASIC. Executecassette sxstc in ROM. O O K
19. Bootstrap Loader: Reboot MS-DOS.

1A Time ofDa)'. Get the number‘ of timer ticks since the machine-was turned 011, or set the
counter to "a new value. Ticks occur 18.2 times per second.

C.2 PC Interrupts 651

Table C-1 General List of PC Interrupt Numbers? (Continued)
____7v________ ___ _i_'_"' __ __7___7 rs’ is j______v____ _ lg.-

- - .-.-. -‘ .. -_-.v_| -- -_ -- - - — I - - s , _ - _-1.4‘

1 ' Description '- i
' - ~___~____ a_,__..-..--.__ J _,__ ._ -si

ii IB Keyboard Break. This interrupt handler is executed by [NT 9h when CTRL-BREAK is
‘i pressed.

1C User Timer Interrupt. Empty routine, executed 18.2 times per second. May be used by
YOU? Own P1'.°g1'al1.1- g

1D Video Parameters. Point to a table containing initialization and information for the video
F controller chip.

__ I _ 7
i

IE ‘ Diskette Param_eters. Point to a table containing initialization information for the diskette
controller.

. F _ _ _ so _ s c
i lF Graphics Table. 8 X 8 Graphics font. Table kept in memory of all extended graphics char-

; acters with ASCII codes higher than 127.

20 Terminate Program. Terminate a COM program (INT 21h Function 4Ch should be used
i instead).

21 A MS-DOS Services (see the complete list in Table c-2).
22 MS-DOS Iernzittatemidress. Point to -the address of the parent program .or process. When

the current program ends, this will be the retum address.

23 MS-DOS Break Address. MS-DOS jumps here wash CTRL-BREAK is pressed.
i * 7 7 1:

. I *7 _ -
i 24 i MS-DOS Critical Error Acicit-ess. MS-_DOS jumps to this address when there is a critical

en-or in the current program, such as 8 disk media error.
\ s — — _

25 Absoiute Disk Read (obsolete).
is s _ _1 _ s _ __

26 Absolute Disk Write (obsolete).

2'7 Terminate and Stay Resident (obsolete). \

t 28-FF (Reserved)

33 Microsoft Mouse. Functions that track and control the mouse.
t v e es. aw
M 34 - 3E Floating-Point Emulatiott.

T 3F A Overiay manager.

— 7 Ju-

l

‘ 40-4.1 Fixed Disk Services. Fixed disk controller.

42-5F Reserved: specialized uses

60-6B Available for application programs to use.

6C-7F Reserved: specialized uses

652 Appendix C - BIOS and MS-DOS Interrupts

Table C-1 General List of PC Interrupt Numbers? (Continued)

i’ _ A Descrlptlon‘
80-F0 Reserved: used by ROM BASIC.

F1-FF Available for application programs.

3 *Sources: Ray Duncan, Advanced MS-DOS 2nd ed. I998. RalfBr-awn ’s intei-rapt List, available on the Web.

0.3 Interrupt 21H Functions (MS-DOS Services)
Thereare so many MS-DOS services available through INT 21h that we could not possibly doc-
ument them all here. Instead, Table C-2 is simply "a brief overview of functions that are com-
monly used.

Table C-2 Interrupt 21 h Functions (MS-DOS Services).

Function Description
___ __ _ _ _ _ _ __ ________________ _ __ _ t _ __ _ _

l Read characterfrom standard input. If no character is ready, wait for input. Returns: AL
= character.

-

2 Write character to.-standard output. Receives: DL = character.

3 Read citaracterfnpm. standard auxiliary inpnt (serial port).

L
4 Write -citaracter to standard auxiliary output (serial port).

5 Write character to printer. Receives: DL = Cl'1€l1'a6l6I‘-

6 Direct console input/output. If DL = FFh, read a waiting charact_e1' from standard input. If
DL is-any other value. write the character in DL to -standard output.

7 Direct character input without echo. Wait for a character from standard input. Retums:
AL = character.

3 Character input without echo. Wait fora character from the standard input device-.
Returns: AL = character. Character not echoed. May be terminated by Ctrl-Break.

9 Write string to standard output. Receives: DS:DX = address of string.

DA Bu_fi”ered keyboard input. Read a string of characters "from the standard ‘input device.
Receives: DS:DX points to a predefined keyboard structure.

OB

,_I

Check standard input status. Check to see if an input character is waiting. Returns": AL=
OFFh if the character is ready; otherwise, AL = 0.

OC Clear keyboard buffer-and invoke inputjitnction. Clear the console input buffet; and then
execute-an input function. Receives: AL = desired function (1. 6. '7. 8, or 0Ah).

OE
I

Select default drive. Receives: DL = drive number (O = A, I = B, ctc.).

,I_
OF-18 FCB- file "functions (obsolete).

C.3 Interrupt 21 H Functions (MS-DOS Services) 653

Table C-2 Interrupt 21h Functions (MS-DOS Services). (Continued)

619

at __ _ __ __ _ 7 "' ' i_"**’**
. ‘~ _ ;--.':->-'3-.*;‘*_}'_';-'4 _ .',;§.:: .'_ - - . - .- ._.; '--_.'.="-I-,
:-_ ‘.-:1‘ - --., - - " -. _.-_ . - '.-;.* 0 I I - \. . _- - _.n,n_-5:>:v- .=-3-.-1-.--. . ,;.;t’-3-2-; - . -.:-6 ‘- ' -.-".-' - _'-_‘;~ »- .1 --1--,,.»=~lr'-unetlort R ~ ~ - . s escr on. _s - =~ =.-I-1':-4, - - --:15:-=-P”-9% *"7‘-"-"3'-73 §.§".’-*r*'="é’“'i'F"‘.'i‘I.--- ' r~'_=.€.7~*.=; 3" -T:-Iii’?-=7?---‘ ~- l ' . :3.‘-':"_€1F‘T-.-"-L‘-.-"_" - - -.‘ ‘I _. '- ' ‘ '-'“. ’P,"'-»L'-.='-r-. -"-_\;:\;- §.. - - -"_-_'._;:_.;:;;.g_-.___ _ . _- _':_,_‘-1., . . _- - j',:_-__._. -_*- - -E _.fu- '-" --._ ggg-111-'3-P.1',..v.7 "5

II I I if I _ _ _ _ _ _ _ _ _ _ _ _ _ __!;______ i _ ____ ___. _ n

Get current defauit drive. Returns: AL = drive number (O = A, 1 = B, ...).

IA Set disk transfer address. Receives: DS:DX contains address of disk transfer area.

25 6 ~ Set interrupt vector: Set an entty in the Interrupt Vector Table to a new address. Receives:
DS:DX points to the inten"upt-handling routine that is inserted in the table; AL = the
interrupt number.

26 Create newprogram segment prefix. Receives: DX = segment address for new PSP.
7%

27-"29 FCB fle functions (obsolete). 6

2A Get system date-.Retums: AL = Day of the week (0-'6, where Sunday = 0), CX = year,
DH: month, and DL = day.

At.

2B
l _

Set sysrem date. Receives: CX = year, DH = month, and DL = day. Returns: AL = 0 if the
date is valid.

2C Get system time. Returns: CH = hour, CL = minutes, DH =- seconds, and DL= hundredths
of seconds.

2D
i

Set system time. Receives: CH = hour, CL = minutes, DH = seconds, and DL = hun-
dredths of seconds. Retums: AL = 0 if the time is valid.

in
_41ur

Set Verifyflag. Receives: AL = new state ofMS-DOS Verify flag (O = off, 1 = on), DL = 0011.

2F Get disk transfer address (DTA).Returns: ES:BX = address. 6

30 GetMS-DOS version number. Returns: AL = major version number, AH = minor version
number, BH = OEM serial number, BL:CX = 24~bit user serial number.

31 Terminate and stay resident. Terminatethe current program or process, leaving part of
itself in memory. Receives: AL = return code, and DX = requested number of paragraphs.

32 Get MS-DOS drive parameter block. Receives: DL = "drive number.iReturns: =status;
DS:BX points to drive parameter block.

(33 Extended break ctzecking. Indicates whether or not MS-DOS is checking for Ctrl-Break.

34 on c'I'ddress0fINDO5'flag. (undocumented)
35 Get interrupt vector. Receives: AL = interrupt number. Returns: ES:BX = segment/offset

of the intenupt handler.

36

l

Get diskfree space. (FAT l 6 only) Receives: DL = drive number (O = default, l = A, etc.).
Returns: AX = sectors per cluster, or FFFFI1 if the drive number is invalid; BX = number
of available clusters, CX = bytes per sector, and DX = clusters per drive.

37 Get switch character. (undocumented)

38 Get or set country information. (See Duncan or Brown for details.)

654 Appendix C I BIOS end MS-DOS Interrupts

Table ‘C-2 Interrupt‘ 21 h Functions (MS-DOS Services). (Continued)
I
4

Li?!

I l

.1 I ‘L _ _ __.- _'. _ _ 3 _ ' v _ _ _.k'I_. . ___-__ _ _.,_ _ _ _ _ ._.I-,_ “_._, la: ‘ _- _ —.-_.-1--t=-_. . - "' . .-*1-,~ '- 5.1. =1‘.-' - -.~~'- _ . .-.»" _-\ . s 1-; . ;-;5- ,_"--I-.-» ,_ -I1- . . .-=3, '7\I- ...- ;_-52'» 1': -.-u . ---*.--"-,4 _.1;-{Ii : -,.- ;'.\- A-_‘g__ .' -.-, -¢;- -,."-:- _- :-,- .-= - ..-*1 '-- ~:- - -,
‘V .- q~_{- -q1,=;£:r 5-_'.¢'_'-__;- >'_'|;"2-"._'.’1o; - .-H’-£1: L ' '-§;-‘mug: _- -'*_'.'. 17,1»-5 - P.-'$f_*_\- -- -'.__-i v,.,- '1 -.;-'.n;_- _ , _—= ' -35 -':_.-13' '-,‘;_-11. ' :-_‘ - n 1 ""' ’-._ '*--'-'5':--.1» .'~§“!f" "F." ' ' \-'.-" 1+-==>‘F ' -"‘».—.*Z¢.',"'-. -zT€l-?.=.- --:-rf=:-f- - -'=-'=:-1".»-"1 -, ~ ‘-:~.’I:~‘.-‘Y r ?f~:I§L__-_;-3"-;-rt-: *1’ ~

39

ii -- ' ' "_.|.___” ' "' ' . T 7 iiiiiiiiii if

,rti="_

Create subdirectory. Receives: DS:DX points to an ASCIIZ string with the path and
directory name. Returns: AX = error code if the Carry flag is set.

3A Remove subdirectory. Receives: DS:DX points to. an ASCHZ string with the path and
directoty name. Returns: AX = error code if the Carry flagis set.

3B Change current directory. Receives: DS:DX points to an ASCIIZ string with the new
directory path.-R6l1lI'IlS1 AX = error code if the Carry flag is set.

33c Create or truncatefile. Create a_ new "file or truncate an old file to zero bytes. Open the
file -for output. Receives: DS:DX points to an ASCIIZ string with the file _name,.and CX =
file attribute. Returns: AX = error code if the.Carry flag is set; jotherwise AX = the new i
file handle. I

1

I

3.D Open existingfile. Open a file-for input, output, "or input~output. Receives: DS:DX points =6
to an ASCIIZ string with the fiiename, and AL = the access code (O = read, 1 = write, 2 =
read/write). Returns: AX = error code-if the Carry flag is set, otherwise AX = the new file
handle.

3E Closefile -handle. Close the file or device specified by a file handle. Receives: BX = file
handle from previous open or create. Returns: If the Carry Flag is set, AX = error code.

33F Readfromfile or device. Read a specified number of bytes from a file or device.
Receives: B-X = file handle, DS:DX points to an input buffer, and CX = number of bytes
to read. Returns: If the Carly flag is set, AX = error code; otherwise, AX = number of (I
bytes read.

40 Write rofile or device. Write a specified number of bytes to a file or device. Receives: .
BX = file handle, DS:DX points to an output buffer, and CX = the number of bytes to A
write. Returns: If the Carry flag is set, AX = error code; otherwise, AX = number of I
bytes written.

'41 Deletefile. Remove a filefrom a specified directory. Receives: DS:DX points to an
ASCIIZ suing with the filename. Returns; AX = error code if the Carry flag is set.

42" Movefile pointer. Move the file read/write pointer according to a specified method.
Receives: CX:DX = distance" (bytes) to move the file pointer, AL = method code, BX =
file handle. The method codes are as "follows:-0 = move from beginning of file, l = move
to the current location plus an offset, and 2 E move to the end of filc plus an offset.
Returns: = error code if the Carry flag is set.

_ ___ _ _ _ _ _ _ _ _ _ |

43 Get/Serfiie attribute. Get or set the attribute-of a file. Receives: DS:DX = pointer to "an
ASCIIZ path and fiiename, CX = attribute, and AL = function code (1 = set "attribute, O = I
get attribute). Returns: AX = error code if the Carry flag is set. i

__ ____ ___- ___ _ ' _ i 1
44 I/0 controlfor devices. Get or setdevice information associated with an open device han~

dle, or send 3 control string to the device handle, or receive a control string from the
device handle.

C.3 Intarrupt 21H Functions (MS-DOS Services) 655

Table C-2 Interrupt 21h Functions (MS-DOS'Services). (Continued)
%§"’ '6' ' 'I1I'F = 'II-_ ' ' - pl 1 -t "Ir .'- F "=,r' t-‘I|7- - -- X ‘-5775 -I-' .1 . \.I- ' I-I - ' - - ' |I\'v- -I I1, '&'q a ‘,-"1-"-"'1 E"

I _' ‘It - l,,. “-.., '- ~' Z , -.'_-. .,~_ .- - ' 0~ ' | - , -. _- ' arr _. w_:|,_ -1_ - ,,,-, -- 1- -' _| ~_>. -.! - . '\ - -.- 5 '_ tl, :."'~ . .1 '|- ._ - _,--_.,, 2 ' . ,' rt,‘ 1;-5 I .e"'\‘=Y _ .,' “’ r . '1 * _ _.-111%‘ ;*j:T“:.“e_-' *:>:-=:‘r‘>;:E""=’-‘= . “E; ';.v-=-'#r‘._f-'_1P';:r§_"*1-:“’&’:=~“i£",3,:. '>=§'.*"‘\‘§.-1:' 1.-_‘<*' _". *;;*'"_'_:,'~_’,r».": of st _‘_.:1".= .- . tie?‘‘ti-tfitttirie
.3 I A r \5:, 1 qt‘ *1“ -F .1 V»-\' .4“ "_ ‘-

1-1 , ‘H.-I

‘- - - - = . e - " - .=.-- - - -e--- - -H- ~_ -- - - :4‘. '.*=I-.¢:.'?-¢=*'.‘-.- .--.. r.e.='~4===r-*:-=‘:-s.-I-1.11:"--:."'-.'-<--£-i-1;, - . - -. -' - . . -_|: _ '. . .- ._-,,n _-;§..'_,-,4 - .- i . .v-_:-r'-;r.- ,- .- -:- '~_.\ .._.-»_-_ -'-__,_'.|-_,f.'_1 ..y’\ .._-.__':- -.--,,,\&----;.,- 1- ‘_‘|-,?!- 1-5., J|_(r_1'-‘.I - . '. -‘ * I'-‘ ' $2“ ="-‘ti ‘F’ "- ' :- *-‘t- - - . >'»='-—- --r:-_~.-.5 -~:1,-r- -'-<-‘»r~:~11-'-.:'--:-3,".‘-:=-.-' - ':-‘-‘~‘-i---.w;- ‘§L'-.-'-- *-<=-.-="~1a~'-e-»c-.'- E-st. ~ - '-Q"~=.'!»-r- '._Ie%‘.g .»ti%:='~‘~'i '-‘‘ ."' .t;F.r»='f”-= ..-E?n'=?.__=_:;.'<,1:.*;-ii.-?'.i.'l‘Trl>‘~t=.%t*»-:PL’i-=A>t:t€:?; -‘ii#t‘i.*~.'E'..t'?'¢‘=’:.%i'é§1:=.ree§T'=.t*:¢-sTit:=.tf'-2»=5‘?i*.1._;\.g?r'ispifisitfiéiii

Duplicarefile handle. Return a new file handle for a file that is currently open. Receives:
BX = file handle. Returns: AX'= error code if the Carry flag is set.

46 Force duplicarefile handle. Force the handle in CX to refer to_ the same file at the same
position as the handle in BX. Receives: BX = existing file handle, and CX = second file
handle. Returns: AX = error code if the Carry flag is set.

47 G€tcnrren1.‘directory.'Get the full path name of the current di1'ectory.- Receives:
DS:SI points to a 64-byte area to hold the directory path, and DL = drive numb
Returns: a buffer at DS:SI is filled with the path, and AX = error code ‘if the Carry

CI‘.

48

.4

flag is s_et.

aAliocate memory. Allocate a requested number ofparagraphs of memory, me sured. in
16~byte blocks. Receives: BX = number of paragraphs requested. Returns: AX
of the allocated block, and BX = size of the largest block available (in paragra
AX = error code if the Carry flag is set.

= segment
phs), and

49 Free allocated metnory. Free memory thatwa_s previously allocated by Function 48h.
Receives: ES '= segment of the block to be freed. Returns: AX = error code if the Carry

4A
I
I

Modify memory blocks. Modify allocated memory blocks tocontain a new bl
The block will shrink or grow. Receives: ES = segment of the block, and BX
number of paragraphs. Returns: AX = error code if the Carry flag is set, and

flag is set.

if o

B
mum number of available blocks.

ck size.
requested
X = maxi-

its Load or execute program. Create a program segment prefix for another program, load it
into memory, and execute it. Receives: DS:DX points to an ASCIIZ string wi the drive,th
path, and filename of the program; ES.:BX points to a parameter block, and AL = func-
tion value. Function values in AL:O = load and execute the program;'3 = load but do not
execute (overlay program). Returns: AX = error code if the Carry flag is set.

4C Tertm-‘nate process. Usual way to terminate a program and return to either MS-DOS or a
calling program. Receives: AL = 8-bitreturn code, which "can be queried by D.
tion '4Dh or by the ERRORLEVEL command in a batch file.

OS func-

4D Get return code ofprocess. Get the return code of a process or program, generated by
either function call'31h or function call 4Ch. Returns: AL = 8~bit code return by theed
program, AH = type of exit generated: 0 = normal temtination, 1 = terminated by CTRL-
BREAK, 2 .= terminated by a critical device error, and 3 = terminated by a call to function
call 31h.

4E Findfirst'm.atch.ingfile. Find the first filenatne that matches a given file specification.
Receives_: DS:DX points to an ASCIIZ drive, path, and file specification; CX = File
attribute to be used when searching. Returns: AX = error code if the Carry flag
erwise, the current DTA is filled with the filename, attribute, time, date, and si
function call 1Ah (set DTA) is usually called before this function.

is set; oth-
ze. DOS

656 Appendix C - BIOS and MS-DOS Interrupts

Table C-2 Interrupt 21h Functions (MS-DOS Services). (Continued)
Funcfion i Description '

4F is Find next matching file. the next fiiename" that matches a given file specification.
This is always called after DOS function 41-3h. Returns: AX = error code if the Carry flag
is set; otherwise, the current DTA is filled with the file's information.

T54 Get Verifjtflag. Returns: AH = Verify fiag for disk I/O (O = off. 1 = on).

56 Rename/movefile. Rename a file or move it to another directory. Receives: DS:DX
points to an ASCIIZ string that specifies the current "drive, path, and fiiename; ES:DI
points to the new path and filename. Returns: AX = error code if the Carry flag is
set.

if 57 Get/Setfiie date/titne. Get or set the date and time stamp for a file. Receives: AL = O to
get the datet’-time, or AL.= l to set the datet’time; BX = file handle, CX = new file time,
and DX = new file date. Returns: AX = error code if the Carry flag is set; otherwise, CX
= current file time, and DX = current file date.

58 Get or set tnenzotjv aiiocation strategy. .(See Duncan or Brown for details).

59 Get extended error information. Return additional information about an MS-DOS error,
including the error class, locus, and recommended action. Receives: BX = MS -DOS ver-
sion number (zero for version 3.xx). Returns: AX = extended error code, BH == error
class, BL = suggested action, and CH = locus.

SA Create tetrtpot-aryfiie. Generate -a unique filename in a specified directory. Receives:
DS:DX points to an ASCIIZ pathname. ending with a backslash (\); CX = desired file
attribute. Returns: AX = error code if the Carry flag is set; otherwise, DS:DX points to
the path with the new filename appended.

5B . Create newfiie. Try to create a new file, but fail if the fiiename already exists. This pre-
vents you from overwriting an existing file. Receives: DS:DX points to an ASCIIZ string
with the path and filename. Retums: AX = error code if the Carry flag is set.

SC-61 \()nfiued.
62 Getprogram segment prefix (PSP) address. Returns: BX ="the segment value of the cur-

rent program’s PSP.

7303s K Get disIc_fi-ee space. Fills a structure containing detailed disk space information.
Receives: AX =1 730311, E.-§:Di points tn a Ext.GetD$kPreSpcStruc sirtlcture, (IX = size
of the ExtGetDskFreSpcStruc structure, DS:DX points to a null-terminated string con-
taining the drive -name. Returns: The ExtGetDskFreSpcStruc is filled in with disk infor-
mation. See Section l4_.'5.l for details.

7305h Absolute disk read and write. Reads individual disk sectors or groups of sectors. Does
not work under_Wi.ndows NT, -2000, or XP. Receives: AX = 730511, DS:B_X = segment!
offset of a DISKIO structure variable, CX = OFFFFh, DL = drive number (_O= default, l =
A, 3 = B, 3 = Q, gig“), 51 = Readiwr-ire flag, See Section 14.4 for details.

(2.4 Interrupt 10H Functions (Video BIOS) 657

C.4 Interrupt 10H Functions (Video BIOS)

Table C'-3 Interrupt 10h Functions (Video BIOS).

3 Ftii1'ctlon 'l5escr|ptlon ‘
________'____________ l . 7 , , _ , , _ _ _ _ ___ _ _ _ _ _ _ _ _ _ _ _ _ _ __

Set video mode. Set the -video‘ display to monochrome, text, graphics,_ or color mode.
Receives: AL = display mode.

Set cursor lines. Identify the starting and ending scan lines for the cursor. Receives: CH =
cursor starting line, and CL = cursor ending line.

Set cursor position. Position the cursor on the screen. Receives: B'H = video page, DH =
row, and DL = column.

Get cursor position. Get the cursor’s screen position and itssize. Receives: BH = video
page. Returns: CH = cursor starting line, CL = cursor ending line, DH = cursor row, and
DL = cursor column.

R-ead light pen. Read the position and status of the light pen. Returns: CH = pixel row,
BX‘: pixel column, DH = character row, and DL = character column.

Setdisplaypage. Select the video pageto be displayed. Receives: AL= desired page number.

Scroll window up. Scroll a window on the current video page upward, replacing scrolled
lines with blanks. Receives: A-L = number of lines to scroll, BI-I = attribute for scrolled
lines, CX = upper-left corner row and column, and DX = lower-rightrow and column.

7 Scroll -window down. Scroll a window on the current video page downward, replacing
scrolled lines with blanks. Receives: AL = number of lines to scroll, BH = attribute. for
scrolled lines, CX = upper-left corner row and column, and DX = lower-right row and
column.

-t

Read ch'aracter"and-'attrihate. Read the character and its attribute at the current cursor
position. Receives: BH =-display page. Returns: AH = attribute byte, and AL = ASCII
character code.

Write character and attribute. Write a character and its attribute-at the current cursor
position. Receives: AL = ASCII character, BH = video page, and CX = repetition factor.

‘ OA Write character Write a character only (no attribute) at the current cursor position.
Receives: AL = ASCII character, EH = video page, BL = attribute, and CX = replication
-factor.

OB Set color palette. Select a group of available colors -for the color or EGA adapter.
Receives: AL = display mode, and BH = active display page.

OC Write graphicspixel. Write a graphics pixel when in color graphics mode, Receives: A1 =
pixel value, CX =-x-coordinate, and DX = y coordinate.

OD Read graphics pixel. Read the color of a single graphics-pixel at a given location.
Receives: CX = x coordinate, and DX = y coordinate.

658 Appendix C -1 BIOS and MS-DOS Interrupts

Table ‘C-3 Interrupt 10h Functions (Video BIOS). (Continued)

,§%,;,ai‘1§Funt'§)"ti,lon _, -- --Deseiiiptioni-P - -. ,
IF _ _ _

OE I Write character: Write a character to the screen, and advance the cursor. Receives: AL =
. ASCII character code, BH = video page, BL = attribute or Icolor.

OF Get current video mode. Get the current video mode. Returns: AL = video mode, and BH
= active video page.

10 Set video palette. (EGA and PCjr only) Set the video palette register, border color, or
blinldintensity bit. Receives: AL = function code (O0 = set palette register, OI = set bor-
der color, 02 = set palette and border color, O3 =-setlreset blinkiintensity bit), BH = color,
BL = palette register to set. If AL = 2, ES:DX points to a color list.

ll Character generator: Select the character size for the EGA display. For example, an 8 by
8 font is used for the 43-line "display, and an 8 by I4‘ font is used for the 25-line display.

I2 Alternate selectfim.cti_on.. Return technical information about the EGA -display.

13 Write string. (PCIAT only) Write a suing of text to the video display. Receives: AL =
mode, BH = page, BL = attribute, CX = length of string, DH = row, DL = column, and

‘ ES:BP points to the string (will not work "on the IBM-PC or PC/XT).

'C.5 Keyboard BIOS INT 16h Functions

Table C-4 Keyboard BIOS Interrupt 16h Functions.
" * *;*,"~-In-.-. * ..'_-_ . ___'?-5-_._‘_' .' . _ .F;-:-1-. _., , . 5- ,;:.]. Desc1_'_iption-

we 11; ' "

03h Set typematic repeat rate. Receives: AH =_03h, AL = 5, BH = repeat delay, BL = repeat
rate. The delay values in BH are: (O = 250 ms; 1 = 500 ms;. 2 = 750 ms; 3 = I000 ms).
The repeat rate in BL varies from 0' (fastest) to lFh (slowest). Returns: nothing.

05h Push key into bufien Pushes a keyboard character and corresponding scan code into the
keyboard typeahead buffer. Receives: AH = 05h, CH = scan code, and CL = character
code. If the typeahead buffer is already full, the Carry flag will be set, and AL = l.
Returns? nothing

10 Waitfor lcey. Wait for an input -character and keyboard scan code. Receives: AI-I = 10h.
Returns: AH = scan code, AL = ASCII character. (Function 0011 duplicates. this func-
tion, using an older type of keyboard.)

11 Check keyboard bufier. Find out if a character is waiting in -the keyboard typeahead
buffer. Receives: AH = Olh. Returns: If a key is waiting, its scan code is returned in AH
and its ASCII code is returned in AL, and the Zero f1ag_is cleared (the character will
remain in the input bufier). If no key is waiting, the Zero flag is set. (Function Olh
duplicates this function, using an older typeof keyboard.)

c.s Mouse Functions (INT 33h) ass

Table C-4 Keyboard BIOS Interrupt 16h Functions. (Continued)
__ _ _ _ ' .w~'7l-i T T — —7’ __

I ' E I ‘ .;|'.: II

12 Get keybaattlflags. Return the Keyboard Flag byte stored in low RAM. Receives: AI-I =
12h. Returns: Keyboard flags in AX. (Function 02h duplicates this function, using an
older type of keyboard.)

C.6 Mouse Functions (INT 33h)
INT 33h mouse functions receive their function number in the AX register. For more informa-
tion about these functions, see Section 15-.6". For additional mouse functions, see Table 15-7 on
page 573.

Table C-5 INT 33h Mouse Functions.

- ‘.21. if-' - §'rT.5*'-I.-‘iii:-."vI - -:-‘ *51Ii:§-'>1:- -31"‘-fr

0000b
i

. -'=-"'- 1. '-1». hill . - - - .- -- - . I --='-vc¢=t.:..5, tFl.-.lll;I.G1~lOliI§1!'— 1_=.;:- . |n(,!.' _" ' .;_;r-,:__.~_ -=;:-=;-:~i-'f.' ,-=.1,.;: . -DB_.S,0,I'lptIO_I"l . ';;- . -, _ -;e_.'=,g1j.t-. . carat, -1'al':l$- I ., 11 '-5._, l_ $1,), ___?“ _ _ _'l‘I_ __!.. I[,I\"'\ r \-'0“, r-I - :__|.-ff.”-_|_ 1,: 1- . _ - l|.._1 1 .:¢|I1';{-,|.- I t ,. ‘,-_.,..I,I_q.p, .4_- I I1a_.|l F-1u__’._,fI_1L!1;|_].
--'-!-'.-=.- ‘-‘.~'r».~tt!=- - ';»:-..-':;I~I~ -‘-:' :.' ‘ ' ;1’»':t.-.'- - '-‘»':--t.=' era" "-6.: -‘ '=‘t'*-‘-'~.‘it-:- ' - -il°.l.=1_-:.t-l.",'»-i '" tl-tfitlil

T '7 Z 7 _ _ *L_ L L

Reset tnonse and get status. Receives: AX = 0000b. resets the mouse and con firms that it
is available. The mouse"(if found) is centered on the screen, its display page is set to
video page 0, its pointer is hidden, and its mickeys-to-pixels ratios and speed are set to
default values. The mouse’s range of movement‘ is set to the.entire screen area;

000th Show mouse pointer. Receives: AX = O__00lh. Retums: nothing..The mouse driver keeps a
count of the number of times this function is called.

in 0002s Hide mouse pointer. Receives: AX = U002h. Returns: nothing. The mouse position is still
tracked when it is invisible.

0U03n Get mouse position and status. Receives: AX = 000311. Returns: BX = mouse button sta-
tus, C-X = X-coordinate (in pixels), DX =Y-coordinate (in pixels).

0004b Set mouse position. Receives: AX = OOO4h, CX = X-coordinate (in pixels), DX =Y-coor-
dinate (in pixels)". Retums: nothing

-I7

0005b Get button press information. Receives: AX = 0005b, BX = button ID (0 = left, I = right,
2 = center). Retums: AX = button status, BX = button press counter, CX = X-coordinate
of last button press, DX E Y-coordinate of last button press.

"OO_O6h Get button release informattott. Receives: AX = 0006h, BX = button ID (0 = left, I =
right, 2 = center). Retums: AX = button status, BX = button" releasecounter, CX = X-
cootdinate of last button release, DX = Y-coordinateof last button release.

0007b Set horizontal limits. Receives: AX = 0007'h, CX = minimum" X-coordinate (in pixels),
DX = maximum X-"coordinate (in pixels). Retums: nothing.

ooosn Set vertical limits. Receives: AX = 0008b, CX = minimum Y-coordinate (in pixels), DX
= maximum Y-coordinate (in pixels). Retums: nothing.

D
MASM Reference

D.1 Introduction
D.2 MASM Reserved Words
D.3 Register Names
D.4 Microsoft Assembler (ML)
D.5 LINK
D.6 Codeview Debugger
D.7 MASM Directives
D.8 Predefined Symbols
D.9 Operators
D.10 Runtime Operators

D.1 Introduction
The Microsoft MASM 6.11 manuals were last printed in 1992, and consisted-of three- volumes:

' Programmers Guide
* Reference
' Environment and Toots

Unfortunately, the primed manuals have not been available for many years, but Microsoft sup-
plies electronic copies of the manuals (MS-Word files) in its Platfomt SDK package. The printed
manuals are definitely collectors’ items.

The information in this chapter was-excerpted from Chapters 1—3 of the Reference manual,
with updates from the -MASM 6.14 readr'ne.rxt file. The Microsoft license "agreement supplied
with this book entitles the reader to a single copy of the software -and acompanying documenta-
tion, which we- have, in part, printed here.

Syntax Notation Throughout this appendix, a consistent syntax notation is used. Words in all
capital letters indicate a MASM reserved word that may appear in your program in either upper-
case or lowercase letters. In the following example, DATA is a reserved word:

.DK['A-
Words in italics indicate a defined term or category. In the following example, number refers to
an integer constant:

ALIGN_ '[[numberll

66'!

662 Appendix D ~ MASM Reference

When double brackets [[..]] surround an item, the item is optional. In the following example, rexz
is optional:

ll text ll
When a vertical "separator I appears between items in a list of two "or more items, you must select
one of the items. The following example indicates a choice between NEAR and FAR:

NEAR I FAR
An ellipsis (. . .) indicates repetition of the last item in a list. In the next example, the comma
followed by "an iniriaiizer may repeat multiple times:

[[tunnel] BYTE iniriaiizer [[, initiaiizer-']] . . .

D.2 MASM Reserved Words
The following are operands to various MASM directives. They are also reserved words,

meaning thatthey cannot be used as identifiers (labels, constants, et_c.).

$ PARITY?

‘? PASCAL
@B QWORD

@F REAL4

l ADDR REAL8

BASIC REAL10

BYTE SBYTE

C SDWORD

CARRY? SIGN?

DWORD STDCALL
FAR SWORD

FARI6 SYSCALL

FORTRAN TBYTE

A FWORD VARARG

NEAR WORD

NEARI6 ZERO‘?
OVERFLOW‘?

D.3 Register Names 663

D.3 Register Names

AH ' CRO out EBX SI

l AL l CR2 DR2 ECX SP

AX CR3 DR3 EDI SS

BH CS DR6 EDX ST

BL CX DR?

BP DH DS
1

ES

ESI

TR3

TR4

J r . . 7

BX or ox ; ESP TR5

I CH DL 3 BAX FS T TR6

"CL ‘ DRO I EBP GS TR?

D.4 Microsoft Assembler (ML)
The ML program (MLEXE) assembles and links one or more assembly language source files.
The command-line options are case sensitive. The syntax is:
ML [[options]] fiiename [[[[' options]] fiiename]]. . . [[/link iinkoptions]]
The only required parameter is at least onefiiename, the nameof a source file written in assem-
bly language. The -following command, for example, assembles the source file AddSub.asm and
produces the object file.AddSnb.obj:

ML —c Addsub . asm

The options parameter consists of zero or more command-line options, each starting with a slash
(/) or dash (—). Multiple options must be separated by at least one space. Table D-1 lists the com-
plete set of command-line opt-ions. The command-line options are case-sensitive.

Table D-1 ML Command-Line Options.
.'..~‘_. _ ‘--- _,.-I_:- --_.-_'-_'| -

- __—.1.-Q .-5»-" 51:!" ' '._§ .: _*"**.'-.'--'---,- *"" -r'-\..»- : . : . - ..-.-+'.=.t'---.i~.i..*.;» -2 in "_. _._ _. __

4‘ "-'“ ‘ . 7 ._ . _ - . .:...__.,&-{-._é.-_._-_-?;,i§:° ~ '_»-‘.'-- ‘..-.'-.*__‘§.‘_=:'»':='-. I Act’ ' I? 1 - - ,|-_{I;§_~_=:'-'1’. K.-.
. ‘ '-T- 117' 2- -' ','_ . , '-- '-_ — _ _ P. - _.-". “ ". _ ll

-!- p .1 $\'-"-:~'!‘..» ' .. 7'-'-"5 _ 11;?-. . v '= or--'1. - _» - .é..'.-'7-li-7.!-es? ‘QT - ‘'- “fix "‘-PM . - ." .1---'23:"-11' '. -" '-" '.:;_.- ,- .'= .- ""=.=§,-‘.»':5,'_;:-';" .>‘. ~'_'-?;-‘-!}-f-':l- ’ , F ‘
‘.2. '.‘_'."';‘-;=1;- *6-_'- - - '_':-__ -1;'%.'-1&5-p;1_-f':;-1'5;5.?-'¢;"i:~:_£‘;5‘:'¢¢='_ _ . _ |

77 W 777777777777 777 7 I I 777 7 7 I 7 W 7' 7 ‘l

” .---.;s-v-'1;~.~.=.l
‘Pn-

/AT Enables tiny—memo1y-model support. Enables error messages for code con-
structs that" violate the requirements for .COM format files-. Note thatthis is
not equivalent to the .MODEL TINY directive.

/B"lfiIename Selects an alternate linker.

/.c ‘ Assembles only. Does not link.
r W _

664 Appendix D ~ MASM Reference

Table D-1 ML Command-Line Options. (Continued)

. ._.. Option . _ . ..Action .

r’Cp Preserves case of all user identifiers.

A {Cu Maps all identifiers to uppercase.

r’Cx Preserves "case in public. and external symbols (default).

-A /Dsymboi [[=vaiue|| Defines a text macro with the given name. If value is missing,.it is blank.
Multiple tokens separated by spaces must be enclosed in quotation marks.

IEP Generates a preprocessed source listing_ (sent to STDOUT). See /Sf.

/F ltexnum Sets ‘stack size to hexnmn bytes (this is the same as ilink fSTACK:number).
The value must be expressed in hexadecimal notation. There-‘must be a space
between IF and ltexnum.

lFefiiename Names the executable file.

IFIIU-iienamell Generates an-assembled code Listing. See r’Sf.

/Fmllfiienamell Creates a linker map tile.

fFofiiene_zme Names an object file.
l

lFPi Generates emulator fixups for flo_alin'g—point arithmetic (mixed-language
only).

/Frllfiienamell Generates a_Sou1'ce Browser .SBR file.

iFR[[fiie:tame||' Generates an extended form of a Source Browser .SBR file.

'l

.1
l

r’Gc i Specifies use of FORTRAN- or Pascal-style function calling and naming
7 conventions. Same as OPTION LANGUAGE:PASC-AL.

‘ /Gd l Specifies use of C-style function calling and naming. conventions. Same as
OPTION LANGUAGE:C.

/H number

H

Restricts external names to number significant characters. The default is 3|
character's.

fhelp Calls Quickl-Ielp for help on ML.

II pathname Sets path for include file. A- maximum of IO /I options-is allowed.

fnologo Suppresses messages for successful assembly.

/Sa Turns on listing of all -available information.

{Sc I Adds instruction timings to listing file.

l
T

l

l

l

l:1-

D.5 LINK 665

Table D-1 ML Command-Line Options. (Continued)

i Option :_ i Action I i
- .t‘

t’Sf Adds first-pass listing to listing file.

tSg

lSl width

Turns on listing "of assembly-generated code.

Sets the line width of source listing in characters per line. Range is 60 to 255
"or 0. Default is 0. Same as PAGE width.

lSn Turns off symbol table when producing a listing.

{Sp length Sets the page-length of source listing in lines per page. Range is 10 to 255 or
O. Default is 0. Same as PAGE length.

I t’Ss text U Specifies text for source listing. Same as SUBTITLE text.

{St text Specifies title for source listing. Same as TITLE text.

tSx Turns on false conditionals in listing.

ffafilename Assembles source file whose name does not end with the .ASM extension. I

lw Same as (W0.

lwlevei Sets the warning level, where level = 0, 1, 2, or 3.

twx Returns an error code if warnings a1'e_'genera_ted.

lZd Generates line-number information in object file.

lZf Makes all symbols public.

lZi Generates CodeView information in object file.

lZm Enables M510. option for maximum compatibility with MASM 5-.1.

lZpllalignment|| Packs structures on the specified byte boundary. The alignment may be 1, 2,
or 4.

lZs Performs a syntax check only.

rt I Displays a summary of ML command-line syntax.

D.5 LINK
The following information applies to the 16-bit linker supplied with the Microsoft assembler.
The LINK utility combines o_bject files into a single executable file or dynamic-link library. The
syntax is:
LINK 0p1‘i0t1-5' .0l?jf3l@~Sll. ll@1J@fil@llfl.llPWPfil-all ll.lllibml‘i@S|l ll.lld@flil@|l ll ll ll ll ll;|l

666 Appendix D ~ MASM Referenoe

Options Table D-2 -describes the LINK command -options, with the exception of several rarely
used options that are described in Help.

Table D-2 LINK Command Options.

Option ‘ Action .

lA:size
_ _ _ _ _ _ _ _________7_ 7___________________________n

Option name: IAIILIGNMENTII. Directs LINK to align segment data in a
segmented-executable file along the boundaries specified by size bytes,
where size must be a power of two.

/B Option name: IBIIATCHII. Suppresses prompts for library or object files not l
found.

/CO

/CP:number

Option name: lCOl[DEVIEW]|. Adds symbolic data and line numbers
needed by the Microsoft CodeView debugger. This option is incompatible
with the IEXEPACK option.

Option name: lCPI[ARMAXALLOC||. Sets the program’s maximum mem-
ory allocation to number of 16-byte paragraphs.

IDO Option name: lDOl[SSEG||. Orders segments in the "default order used by
l Microsoft high-level languages.

/DS Option name: /DS[[ALLOCATE]]. Directs LINK to load all data starting at
the high end of the data segment‘. The /DSALLOC "option is for assembly-
language programs that create MS-DOS .EXE files.

IE L Option name: rnllxnracrql. Packs the executable file. The IEXEPACK
option is incompatible with IINCR and ICO. Do not use._t'-EXEPACK on a

l Windows-based application.
l ___ _

IF Option name: /'Fl[ARCALLTR_ANSLATION]|. Optimizes far calls. The!
FARCALL-option is automatically on when using /TINY. The IPACKC
option is not recommended with /FARCALL when linking a ‘Windows-
based program.

/HE

{HI

Option name: II-IEIILPII. Calls QuickHelp for help on LINK.

Option name: IHIIIGHII. Places the executable file as high in memory as
possible. Use {HIGH with the IDSALLOC option. This option is for
assembly-language programs that create MS-DOS EXE files.

FINC Option name: /INCIIREMENTALII. Prepares for incremental linking with
ILINK. This option is incompatible with IEXEPACK and /TINY.

/INF Option name: fINF[lORMATIONl|. Displays to the standard output the
phase "of linking and names of object files being linked.

D.5 LINK 66

Table D-2 LINK Command Options. (Continued)

Option 1 Action

{LI Option name: ILIIINENUMBERSII. Adds source file line numbers and asso-
ciated addresses to the map file. The object.file must be created with line
numbers. This option creates a map file even if mapfile is not speci lied.

/M Option name: IMIIAPII. Adds public symbols to the map file. I
/NOD[[:libraryname]| Option name: /NODIIE FAULTLIBRARYSEARCI-Ill. Ignores the speci-

fied default library. Specify without liln-ntjvrictrrze to ignore all default
libraries.

Option name: /NOEIIXTDICTIONARY]]. Prevents LINK from searching
extended dictionaries in libraries. Use {NOE when redefinition of a symbol
causes error L2044.

/NOE

/NOF
zafion.

/NOI Option name: fNOI[lGNORECASE]]. Preserves case in identifiers.

/NOL Option name: [NOLllOGO||. Suppresses the LINK copyright message.

/NON Option name: INONIIULLSDOSSEGII. Orders segments as with the [DOS-
SEG option, but with no additional bytes_at the beginning of the __TEXT
segment (if defined). This option overrides IDOSSEG.

INOP i Option name: INOPIIACKCODEII. Turns off code segment packing.

lPACKC[[:numb'er]} l Option name: lPACKC[[ODE]|. Packs neighboring code segments together.
i Specify number bytes to‘ set the maximum size for physical segments

formed by ./PACKC.

t’PACKD[l:mtmber|l l Option name: ./PACKDIIATAII. Packs neighboring data segments together. I
I Specify number bytes to set the maximum size for physical segments
1 formed by IPACKD. This option is for Windows only.

IPAU i Option name: ./PAUIISEII. Pauses "during the link session fordisk changes.

tPM:type Option name: IPMIITYPEII. Specilies the type of Windows-based applica-
tion Where._t_vpe is one of the fnllriwingz PM (or IEIINDOWA Pl). VIO (or
WINDOWCOMPAT), 01' NOVIO (O_1‘ NOTWI-NDOWCOMPAT).

tST:number Option name: tSTI[ACK||, Sets the stack size to mtmberbytes, from l byte
to 64K.

IT Option name:. /T[lINY1I. Creates a_ tiny-model MS-DOS program with a
.COM extension instead of .EXE. Incompatible with IINCR.

I’? Option name: t'?. Displays a summary ol' LINK command-line syntax.

Option name: /NOFIIARCALLTRANSLATIONH. Turns ofl’l"ar-call optimi- ‘

aas Appendix n - MASM Reference

Environment Variables

Variable i Description

i INIT \ Specifies path for the TOOL-S.INI file.

1 LIB i Specifies search path for library files.

LINK A Specifies default command-line options.

TMP Specifies path for the VM.TMP file.

D.6 C.odeView Debugger
The Microsoft Codeview debugger runs the assembled or compiled program while simulta-
neously displaying the program source code, program variables, memory locations, processor
registers, and other pertinent information. The syntax is:

CV llopriomll e.re'cutabiefiZe llmgumerztsll
Table D~3 lists the command-line options for the version of Codekiiew that runs under MS-DOS.

Table D-3 Codeview Command-Line Options.

Option * Action iiiiiiiiiif
,________, ,__ l. . ___ . . _. Z _ ________ __ 1

12 Permits the use of two monitors. ‘

‘ 125 Starts in 25-line mode.
i-, .

y I43 Starts in 43-line mode.
i

5‘ 7

1 /50 Starts in 50-line mode-.

KB Starts in black-and-white mode.

:’Cc0nm1ands Executes commands on startup.

/F . Exchanges screens by flipping between video pages.

{G A Eliminates refresh snow on CGA monitors.
i

A /Il[0 I 1]] i Turns nonmaskable-interrupt and 825.9-interrupt trapping on (/Il) or ofl’ (/I0).

i {K Disables installation -or keyboard monitors for the program being debugged. i

{M Disables .CodeView use of the mouse. Use this option when debugging an appli- *
cation that supports the mouse under Windows 3.x.

/Nl[O I ll] {N0 tells Codeview to trap nonmaskable interrupts;-{N1 tells it not to trap.

DI? MASM Directives 669

Table D-3 Codeview Command-Line Options. (Continued)
I‘ 7 7" ' 11- .5 -'--t ' ‘ ' ‘I1. - .. ' ' 1 . 7 7 117]" - _ ~, ;_ ‘jiii,-€r:§?I-_§i--,5;_‘: - _ ';'-'=,.- '- _ . ' . ‘ ;.-

0Pii.'0I1*-r -- - ~ ."=A°tl0l1 _8 ”_;__."- . ‘.A;<;.=;'--:2.-1-.7.;:;;!t;s;'-.-1,113.ggggif-_ . . _ _,_ M *- =.. ‘ ».. I-'-...‘-“|
/R_ Enables 803861486 debug registers,

/5 Exchanges screens by changing buffers (primarily for use with graphics programs).

RTSF Tbggles TOOLS.INI entry to readlnot read the-CURRENT.STS file.

D.7 MASM Directives
name = expression

Assigns the numeric value of expression to name. The symbol may be redefined later.
.186

Enables assembly of instructions for the-80186 processor; disables assembly of instructions
introduced with later processors. Also enables 8087 instructions.

.286
Enables assembly of nonprivileged instructions for the 80286 pi‘OC€SSO1‘; disables assembly
of instructions introduced with later processors. Also enables 80287 instructions.

.286P
Enables assembly of all instructions (including privileged) for the 80286 processor; disables
assembly of instructions introduced with later processors-. Also enables 80287 instructions.

.287
Enables assembly of instructions for the 80287 coprocessor; disables assembly of instruc-
tions introduced with later coprocessors.

.386
Enables assembly .of nonprivileged instructions for the 803.86 processor; disables assembly
of instructions introduced with laterprocessors. Also enables 80387 instructions.

.386P
Enables assembly of all instructions (including privileged) for the 80386 processor;_. disables
assembly of instructions introduced with later processors. Also enables 803 87 instructions.

.387
Enables assembly of instructions for the 80387 coprocessor.

.486
Enables assembly of nonprivileged instntctions for the 80486 processor.

.486P
Enables assembly of all instructions (including privileged) for the 80486"processor.

.586
Enablesassembly of nonprivileged instructions for the Pentium processor.

670 Appendix D ¢ MASM Reference

.S86P
Enables assem-bly of all instructions (including privileged). for the Pentium processor.

.686
Enables assembly of nonprivileged instructions for the Pentium Pro processor.

.686P
Enables assembly of-all instructions (including privileged) for the Pentium Pro processor.

.8086
Enables assembly of 8086 instructions (and.the identical 8088 instructions); disables assem-
bly of instructions introduced with later processors. Also enables 8087 instructions. This is
the default mode for processors.

.8087
Enables -"assembly of 8087 instructions; disables assembly "of instructions introduced with
later coprocessors. This is the default mode for coprocessors.

ALIAS <alias> = eactual-name>
Maps an old function name to a new name. Alias is the alternate or alias name, and acmal~
name is the actual name of the function or procedure. The -angle brackets are required. The
ALIAS directive can be used for creating libraries that allow the linker (LINK) to map an old
function to "a new function.

ALIGN [[number]]
Aligns the next variable or instruction on a byte that is. a multiple ofmrmber.

.ALPHA
Orders segments alphabetically.

ASSUME segregisterzname [[, segregistermame]]. . .
ASSUIVIE dataregistemype [[, dataregister.-type]]. . .
ASSUME register:ERROR [[, regz1s'ter:ERROR]]. . .
ASSUME llregister:]] NOTHING [[; register:NOTHING]]. . .

Enables error~checking for register values. After an ASSUME is put into effect, the assem-
bler watches for changes to the values _of the given registers. ERROR generates an error if
the register is used. NOTHING removes register error-checking. You c-an combine different
kinds of assumptions in one statement.

BREAK [[.IF condition]]
Generates code to terminate a .WHILE or .REP-EAT block if condition is true.

[[nam.e]] BYTE initializer [[, im'z‘ializer]] . . .
Allocates and optionally initializes a byte of storage for each iniriaiizer. Can also" be used as
a type-specifier anywhere a type" is legal.

D.7 MASM Dlrectives 671

name CATSTR [[textitem1 [[, textitem2]] . . .]]
Concatenates text items. Each text item can be a literal suing, a constant preceded by a %, or
the suing returned by a macro function.

.CODE llnamefl
When used with .MODEL, indicates the start of acode segment called name (the default
segment name is _TEXT for tiny, small, compact, and flat models, or moduie_TEXT for
other models).

COMM definition [[, definition]] . . .
Creates a communal variable with the attributes specified in definition. Each definition has
the following form:
[[iangrype"]] [[NEAR I FAR]] label:typel[:c'ount]]
The label is the name of the variable. The type can be any type specifier (BYTE, WORD,
and so on) or an integer specifying the number of bytes. The count specifies the number of
data objects (one is the default).

COMMENT delimiter |[text]]
|[text]]
[[text]] deiimite'r [I text]]
Treats all text between or on the same line as the delimiters as a comment.

.CONST
When used with .MODEL, starts a constant data segment (with segment name CONST).
This segment has the read~only attribute.

.CONTINUE [[.1F condition 1]
Generates code to jump to the top of a .WH1LE or .REPEAT block if condition is true.

.CREF
Enables listing of symbols in the symbol portion of the symbol table and browser file.

.DATA
When used with .MODEL, starts a near data segment for initialized data (segment name
_DATA).

.DATA?
When used with .MODEL, starts a near data segment for uninitialized data (segment name
___BSS).

.DOSSEG
Orders the segments according to the MS-DOS segment convention: CODE first, then seg-
ments. not in DGROUP, and then segments in DGROUP; The segments in DGROUP follow
this order: segments not in BSS or STACK, then BSS segments, and finally STACK seg-
ments. Primarily used for ensuring CodeView support in MASM stand-alone programs.
Same as DOSSEG.

672 Appendix D ' MASM Reference

DOSSEG
Identical to .DOSSEG, which is the preferred form.

DB
Can be used to define data like BYTE.

DD
Can be used to define data like_DWORD.

DF
Can be used to define data like FWORD.

DQ
Can be used to define data like QWORD.

DT
Can be used to define data like TBYTE.

DW
Can be used to define data like WORD.

[[name]] DWORDini1ializer[[,ini1ializer]]. . .
Allocates and optionally initializes a doubleword (4 bytes) of storage for each initiaiizer. Can
also be used as a type specifier anywhere a type is legal.

ECHO message
Displays message to the standard output device (by default, the screen). Same as %OUT.

.ELSE
See .IF.

ELSE
Marks the beginning of an alternate block within a conditional block. See IF.

ELSEIF
Combines ELSE and IF into one statement. See IF.

ELSEIF2.
ELSEIF block evaluated on every assembly pass if OPTION:SETIF2. is TRUE.

END [[address 1]
Marks the end of a module and, optionally, sets the program entry point to address.

.ENDIF
See .IF.

ENDIF
See IF.

ENDM
Terminates a macro or repeat block. See MACRO, FOR, FORC, REPEAT, or WHH.E.

D.7 MASM Directives 673

name ENDP
Marks the end of procedure name previously“ begun with PROC. See PROC.

name ENDS
Marks the end of segment, structure, or union name previously begun with SEGMENT,
STRUCT, UNION, or asimplified segment directive.

.ENDW
See .WHILE.

name EQU expression
Assigns numeric value of expression. to name. The name cannot be redefined later.

name EQU <texi>
Assigns specified text to nanre. The name can be assigned a different text later. See
TEXTEQU.

.ERR [[message]]
Generates an error.

.ERR2. [[message]]
.ERR block evaluated on every assembly pass if OPTION:SETIF2. is TRUE.

-.ERRE <textitem> [[, message]]
Generates "an error if textiteiit is blank.

.ERRDEF naine [[, message]]
Generates an error if name is a previously defined label, variable, or symbol.

.ERRDIF[[I]] <textitem1>, <t_extitem2> '[[, message]]
Generates an error if the text items are different. If I is given, the comparison is case-
insensitive.

.ERRE expression [[, message]]
Generates anerror if expression is false (0).

.ERRIDN[[I]] <t.extitem1>, <te'J_ctitern2-> [[, message]]
Generates an error if the text items are identical. If I is given, the comparison is case-
insensitive.

.ERRNB <textitem> [[, message]]
Generates an error if textitem is not blank.

.ERRNDEF name [[, message]]
Generates an error if name has not been defined.

.ERRNZ expression [[, message]]
Generates an error if expression is true (nonzero).

EVEN
Aligns the next variable or insttuc.tion on aneven byte.

674 Appendix D ' MASM Reference

.EXIT [[expressian]]
Generates termination code. Returns optional expression to shell.

EXITM [[textitem]]
Terminates expansion of the current repeat or macro block and begins assembly of the next
statement outside the block. In a macro function, rexrirem is the value returned.

EXTERN [[1¢m3lJ’P@ll flame ii(altid) ll =l)’P@" [[, [[lw18l)’P'@ ll mww[l(alfirI)]I=lJ’11@ll-- -
Defines one "or more external variables, labels, or symbols called name whose type is type.
The lype can be ABS, which imports name "as a constant. Same as EXTRN.

EXTERNDEF [Hangtype]] mzme:type [[, [Hangtype-]] name:type]]. . .
Defines one or more external variables, labels, or symbols called name whosetype" is type. H
name is defined in the module, it is treated as PUBLIC. If name is referenced in the module,
it is treated as EXTERN. If name is not referenced, it is ignored. The rype can be ABS,
which imports name as a constant. Normally used in include files.

EXTRN
See EXTERN.

.FARDATA [lname]]
When used with .MODEL, starts a far data "segment for initialized data (segment name
FAR_DATA O1'!t{1l?Z8.).

.FARDATA? [[name]]
When used with .MODEL, starts a far data segment for uninitialized data (segment name
FAR_BSS. or name).

FOR parameter [[:REQ I :=default]] , <argument [[, argument]]. . . >
stateuzents
ENDM

Marks a block that -will be repeated ‘once for each a.rgw_'nem*, with the current m'gum.enr
replacing parameter on each repetition. Same as IRP.

FORC
parameter; <srring> sraremenrs
ENDM

Marks .a block that will be repeated once for each character in string, with the current
character replacing pammerer on each repetition. Same as IRPC.

[[name I] FWORD initializer [[, inn‘ia£izer]]. . .
Al locates and optionally initializes 6 bytes of storage for each initialize:-. Also can be used as
a type specifier anywhere a type is legal.

GOTO macralabel.
Transfers assembly to the line marked :macr'0[abel. GOTO is pfiffllittfid only inside
MACRO, FOR, FORC, REPEAT, and WHILE block-s. The labe1_ must be the only direc-
tive on the line and must be preceded by a leading colon.

D.7 MASM Directives 675

name GROUP segment [[, segment]]. . .
Add the specified segments to the. group called name. This directive has no effect when
used in 32-bit flat-model programming, and will result in error when used with the /coff
command-line option.

.IF condition]
statements
[LELSEIF condition2.

statements]]
[[.E-LSE

.starem.e.nrs]]
ENDIF

Generates code that tests condition] (for example, AX :=- '7) and executes the statements if
that condition is true. If an .ELSE follows, -its statements are executed if the original con-
dition was false. Note that the conditions are evaluated at 1un time.

IF expressionl
ifwatements
[[ELSEIF expressz'0n2

eisezfsratenzenrsll
[[ELSE

elsesrarenrenrsll
ENDIF

Grants assembly of zjfistaremerzrs if expression] is true (nonzero) or eZ_s'e§fsmremenrs if
expression] is false (0) and expressi0n2 is true. The following directives may be substi-
tuted for ELSEIF: ELSEIFB, ELSEIFDEF, ELSEIFDIF, ELSEIFDIFI, ELSEIFE,
ELSEIFIDN, ELSEIFIDNI, ELSEIFNB, and ELSEIFNDEF. Optionally, assembles"
elsesmremenrs if the previous expression is false. Note that the expressions are evaluated
at assembly time.

IF2 expression
IF block is evaluated on every assembly pass if OPTION:SETIF2. is TRUE. See IF for
complete syntax.

IFB rexrirem
Grants assembly if rexnrem is blank. See IF for complete syntax.

IFDEF name
Grants assembly if name is a previously defined label, variable, or symbol. See IF for com-
plete syntax.

IFDIF[[I]] textiteml, texlitem2
Grants assembly if the. text items are different. If I is. given, the comparison is case insensi-
tive. See IF for complete syntax.

676 Appendix D * MASM Reference

IFE expression
Grants assembly if expression is false (0). See IF for complete syntax.

IFlDN[[I]] texiiteml , rextitem2
Grants assembly if the text items are identical. If I is given, the comparison is case insensi-
tive. S.ee IF for complete syntax.

IFNB texiitem
Grants. assembly if rexiiren-z is not blank; See IF for complete syntax.

IFNDEF name
Grants assembly if name has not been defined. See IF for complete syntax.

I,NCLUDEfi'lename
Inserts source code from the source file. given by fiiename into -the current "source file during
assembly. Thefiiename must be enclosed in angle brackets if -it includes a backslash, semico-
lon, greater-than symbol, less-than symbol, -single quotation mark, or double quotation mark.

INCLUDELIB librarjvname
Informs the linker that the current module" should be linked with iibraryname. The.
iibraryname must be enclosed in .angle brackets if it includes a backslash, semicolon,
greater-than symbol, less-than symbol, single quotation mark, or -double quotation mark.

name INSTR [[posiiio'n,]] textiieml, textitem2
Finds the first occurrence of rextirem2 in rexrirem]. The starting position is optional. Each
text item can be a literal string, a constant preceded by a %, or the string returned by a macro
function.

INVOKE expression [1, arguments 11
Calls the procedure at the address given by expression, passing the arguments on the stack or
in registers according to the standard calling conventions of the language type". Each argu-
ment passed to the procedure may be-an. expression, a register pair, or an address expression
(an expression preceded by ADDR).

IRP
See FOR.

IRPC
See FORC,

name LABEL type
Creates a new label by -assigning the -current location-counter value and the given type" to
name.

name LABEL IINEAR I FAR I PROC]] PTR [lt)’Pe]]
Creates. a new label by assigning the current location-counter value and the given type to
name.

D.7 MASM Directives 677

.K3D
Enables assembly of K3D instructions.

.-LALL
See .LISTMACROALL.

.LFCOND
See .LISTIF.

.LIST
Starts listing of statements. This is the default.

.LISTALL
Starts listing of all statements. Equivalent to the combination .of .LIST, .LISTIF, and
.LISTMACROALL.

-.LISTIF
Starts lis_ting "of statements in false conditional blocks. Same as .LFCOND.

.LISTMACRO
Starts listing of macro expansion statements that generate code or data. This is the default.
Same as .XALL.

.LISTl\/IACROALL
.Starts listing of all statements in macros. Same as .LALL.

LOCAL Iocalname [[, Iocalnamell. . .
Within .a macro, LOCAL defines labels that are unique to each instance of the macro".

LOCAL label [1 [count]]] [[:type]] [[, label [I [count]]] [[type]]]]. . .
Within aprocedure definition (PROC), LOCAL creates stack-based variables that exist for
the duration of the procedure. The iabei may be" a simple variable or an array containing
coanr elements.

name MACRO [[parameter [[:REQ I :=defanli I :VARARG]]]]. . .
staiernents
ENDM [[vaiae]]

Marks a macro block called name and establishes parameter placeholders for arguments
passed when the macro is'"called. A macro function returns valae to the calling st_atement.

.MMX
Enables assembly of MM-X instructions.

.MODEL memorymodel [[, langtypell [[, stackoption]]
Initializes the program memory model. The memorymodei can be TINY, SMALL, COM-
-PACT, MEDIUM, LARGE, HUGE, or FLAT. The iangrype can be C, BASIC, FOR-
TRAN, PASCAL, "-SYSCALL, or STDCALL. The srackoprion can be NEARSTACK or
FARSTACK.

678 Appendix D - MASM Reference

NAME modnlename
Ignored.

.NO87
Disallows assembly of all floating-point instmctions.

.NOCREF [[na'me[[, name]].- . .]]
Suppresses listing of symbols in the symbol table .and browser file. If names are specified,
only the given names are suppressed. Same -as .XCREF.

.NOLIST
Suppresses program listing. Same as .XLIST.

.NOLISTIF
Suppresses listing of conditional blocks whose condition evaluatesto false (0). This is the
default. Same as .SFCOND.

.NOLISTMACRO
Suppresses listing of macro expansions. Same as .SALL.

OPTION optionlist
Enables and disables features of the assembler. Available "options include CASEMAP, DOT-
NAME, NODOTNAME, EMULATOR, NOEMULATOR, EPILOGUE, EXPR16,
EXPR32. LANGUAGE, LIMP, NOLJMP, M510. NOM510, NOKEYWORD, NOSIGN-
EXTEND, OFFSET, OLDMACROS, NOOLDMACROS, OLDSTRUCTS, NOOLD-
STRUCTS, PROC, PROLOGUE, READONLY, NOREADONLY, SCOPED,
NOSCOPED, SEGMENT, and SETIF2.

ORG expression
Sets the location counter to expression.

%OUT
See ECHO.

[[name]] OWORD initializer [[, initializerll. . .
Allocates and optionally initializes an octalword (16 bytes) of storage for each iniriaiizer.
Can also be used as a type specifier anywhere a type is legal. This data type is used primarily
by Streaming SIMD instructions; it holds an array of four 4-byte reals.

PAGE [[[[iengtk 1], width]]
Sets line length and character width of the program listing. If no arguments. are given, gener-
ates a page break.

PAGE "
Increments the section number and resets the page number to l.

POPCONTEXT context
Restores part or all of the current context (saved by the PUSHCONTEXT directive). The
context can be ASSUMES, RADIX, LISTING, CPU,_ or ALL.

D.7 MASM Directives 679

label PROC lldistance]] lllangiypell llvisibility]] [[<prolognearg>]]
[[USES reglistll [[,_parameier [[:tag]]]1. . .
statements

label ENDP
Marks start and end of a procedure block called label. The statements in the block can be
cal-led with the CALL instruction or INVOKE directive.

label PROTO lldisiance]] [[l£mgtypé’ ll ll, [[parameier]]:tag 1|. . .
Prototypes a function.

PUBLIC [[langtype]] name [[, lllangiype]] name]]. . .
Makes each variable, label, or absolute symbol specified as name available to all other mod-
ules in the program.

PURGE macroname [[, macroname]]. . .
Deletes the specified macros .from memory.

PUSHCONTEXT context
Saves part or all of the current "context. segment register assumes, radix value, listing and cref
flags, or processor/coprocessor values. The context can be ASSUMES, RADIX, LISTING,
CPU, or ALL.

[[name]] QWORD z'nit12zlizer[[, inilializerll. . .
Allocates and optionally initializes 8 bytes of storage for each initializer. Also-can be" used as
a type specifier anywhere a type is legal.

.RADIX expression
Sets the default radix, in the range 2 to 16., to the value of expression.

name REAL4 iniiinlizer [[, iniiializerll. . .
Allocates and optionally initializes a s'ingl'e-precision (4-byte) floating-point number for each
initiali.2,_*er.

name REAL8 initializer [[, initializerll. . .
Allocates and optionally initializes a double-precision (8-byte) floating-point number for
each initiaiizer.

name REAL10initializer[[,inii12zlizer]]. . .
Allocates and optionally initializes a 10-byte floating-point" number for each initicilirer:

recordname RECORDfieldn'arne:widilz [1--= expression]]_
[[,fieldnam.e:widtlz [[= expression]]]]. . .

Declares a record type consisting of the specified fields. The fieldname" names the field,
width specifies the number of bits, and expression -"gives its initial value.

.REPEAT
statements

660 Appendix D ~ MASM Reference

.UI\iTHe condition
Generates code that repeats execution of the block of statements until condition becomes
true. .UNTILCXZ, which becomes true when CX is zero, may be substituted" for
.UNTIL. The condition .is optional with .UNTILCXZ.

REPEAT expression
statements
ENDM

Marks a block that is to be repeated expression times. Same as REPT.
REPT

See REPEAT.
.SALL

See .NOLISTMACRO.
name SBYTEini1ializer[[, inirializerll. . .

Allocates and optionally initializes a signed byte of storage for each initializer. Can also be
used as a type specifier anywhere a type is legal.

name SDWORD initializer [[, initializeril. . .
Allocates and optionally initializes a signed doubleword (4 bytes) of storage for each initial-
izer. Also can be used as .a type specifier anywhere a type is legal.

name SEGMENT [[_READONLY]] [[align]] [[combine]] [iuse]] [[‘class‘]]
statetnents
name ENDS

Defines a program segment called name having segment attributes align (BYTE,
WORD, DWORD, PARA, PAGE), combine (PUBLIC, STACK, COMMON, MEM-
ORY, AT address, PRIVATE), use (USE16, USE32, FLAT), and class.

.SEQ
-Orders segments sequentially (the default order).

.SFCOND
See .NOLISTIF.

name SIZESTR textitem
Finds the size of a text item".

.STACK [[size]]
When used with .MODEL, defines a stack segment (with segment name STACK). The
optional size specifies the number of bytes for the stack (.default 1,024). The .STACK direc-
tive automatically closes the stack statement.

.STARTUP
Generates program start-up code.

D.7 MASM Directives 681

STRUC
See STRUCT.

name STRUCT [lalignmentll ll, NONUNIQUEII
fielddeclarations
name ENDS

Declares a structure type having the specified fielddeclamrions. Each field must be a
valid data definition. Same as STRUC.

name SUBSTR rextirem,position [[, length]]
Retums a substring of rexzirem, starting at position. The rexrirem can be a literal string, a con-
stant preceded by a %, or the string returned by a macro function.

SUBTITLE text
Defines the listing subtitle. Same as SUBTTL.

SUBTTL
See SUBTITLE.

name SWORD inirializer [[, initializerll. . . .
Allocates and optionally initializes a signed word (2 bytes) of storage for each im'riaZizer.
Can also be used as a type specifier anywhere a type is legal.

llname]] TBYTE initializer [[, im'tialz2er]]. . .
Allocates and optionally initializes l0 bytes of storage for each iniriaiizer. Can also be used
as a type specifier anywhere a type is legal.

name TEXTEQU |[textitem]]
Assigns texrirem to name. The texrirem can be a literal string, a constant preceded by a %, or
the String returned by a macro function.

.TFCOND
Toggles listing of false conditional blocks.

TITLE text
Defines the prog1'.%.-1111 listing title.

name TYPEDEF type
Defines a new type called name, which is equivalent to type.

name UNION [[alignment]] [[, NONUNIQUEIJ

felddeclarations
[[name]] ENDS

Declares a union of one or more data types. Thefieiddeclazmioizs must be valid data defini-
tions. Omit the ENDS name label on nested UNION definitions.

.UNTIL
See .REPEAT.

682 Appendix D - MASM Reference

.UNTILCXZ
See .REPEAT.

.WHILE condition
statements

.ENDW
Generates code that -executes the block of statements while condition remains true.

WHILE expression
statements

ENDM
Repeats assembly of block statements as long as expression remains true.

[lname]] WORD init_ializer[[,ini11'aZ_izer]]. . .
Allocates. and optionally initializes a word (2 bytes) of storage for each initializer. Can also
be used as-a type specifier anywhere a type is legal.

.XALL
- See .LISTMACRO.

.XCREF
See .NOCREF.

.XLIST
See .NOLIST.

.XMM
Enables assembly of Internet Streaming SIMD Ex-tension instructions.

D.8 Predefined Symbols
$

The current value of the location counter.
'7'

In data declarations, a value that the assembler allocates but does no.t initialize".
.@@:

Defines a code label recognizable only between Zabell and Zabel_2, where label! is either
start of code or the previous @@-: label, and label2 is either end of code or the next @ @:
label. See @B'and @F.

@B
The location of the previous @.@: label.

@CatStr(strz1ngI [[, s_tring2. . .]])
Macro ‘function that concatenates one or more strings. Returns a string.

@c0de
The name of the. code segment (text macro).

D.B Predefined Symbols 683

@'CodeSize
0 for TINY, SMALL, COMPACT‘, and FLAT models, and 1 for MEDIUM, LARGE, and
HUGE models (numeric equate).

@Cpu
A bit mask specifying the processor mode. (numeric equate).

@Cur'Seg
The name of the current segment (text macro).

@data
The name" of the default data group. Evaluates to DGROUP for all models except FLAT.
Evaluates to FLAT under the FLAT memory model (text macro).

@DataSize
0 for TINY, SMALL, MEDIUM, "and FLAT models, 1 for COMPACT and LARGE mod-
els, -and 2 for HUGE model (numeric equate).

@Date
The system date in the format mm/dd/yy (text macro).

@Environ(' envvar)
Value of environment variable envvar (macro function).

@F
The location of the next @ @: label.

@fardata
The name" of the segment defined by the .FARDATA directive (text macro).

@fardata?
The name of the segment defined by the .FARDATA? directive (text macro).

@FileCur
The name of the current file (text macro).

@FileName
The basename of the main file being assembled (text macro).

@InStr([[position]], stringl , string2)
Macro function that finds the first occurrence of srring2 in srringl, beginning at position
within string] . If position does not appear, search begins at start of string]. Returns a posi-
tion integer or 0 if sm‘ng2 is not found.

@I1'1terface
Information about the languageparameters (numeric equate).

@Line
The source line number in the current file (numeric equate).

684 Appendix D ~ MASM Reference

@M0del
1. for TINY model, 2 for SMALL model, 3 for COMPACT model, 4 for MEDIUM model,
5 for LARGE model, 6 for HUGE model, and 7 for FLAT model (numeric equate).

'@ SizeStr(string)
Macro function that returns the length of the. given string. Returns an integer.

@stack
DGROUP for near stacks or STACK for far stacks (text macro).

@SubStr(string, position [[, length]])
Macro function that returns a substring starting at position.

"@ Time
The system time in 24-hour hh:mrn:ss format (text macro).

!@ Version
610 in MASM 6.1 (text macro).

@W0rdSize
Two for a l6-bit segment or 4 for a 32-bit -segment (numeric equate).

D.9 Operators
expressionl + expressz'on2

Returns expression} plus expression2.
expression] — expression2

Returns expression} minus -expression2.
expression)! =:= expreSSi0ll2

Returns expression] times expressr'on2.
expression] /expression-2

Returns expression] divided by expression2.
—expressz'on

Reverses the sign of expression.
expressionl [expression2]

Returns -expression] plus [expression2].
segment: expression

Overrides the default segment of expression with segrnenr. The segment can be a segment reg-
ister, group name, segment name; or segment expression. The expression must be a constant.

expression. field [[.field]]. . .
Returns expression plus the offset offield within its structure or union.

[register].fieldll . field]] . . .
Returns value at the location pointed to by register plus the offset offield within its structure
or union.

D.9 Operators 635

<text>
Treats text as a single literal element.

“text”
Treats. “text” as a string.

’.text’
Treats ‘text’ as a string-.

Icharacter
Treats character as a literal character rather than as an operator or symbol.

;text
Treats text as .a comment.

;;text
Treats text as -a comment in a macro that appears only in the macro definition. The listing
does not show text where the macro is expanded.

%expression
Treats the value-of expression in .a macro argument as text.

¶tneter&
Replaces parameter with its corresponding argument value.

ABS
See the EXTERNDEF directive.

ADDR
See the INVOKE directive.

expression] AND expression2
‘Returns the result of a bitwise AND -operation for expre.s.rionl and expressionz,

count DUP (initialvalue ll, initialvalue]]. . . _')
-Specifies count number of declarations of fnitirtlvolue.

expression] EQ expression2
Returns true (-—-l') ifexpression] equals expression2, .or returns false (.0) il’ it does not.

expression] GE expression2
Returns true (-—-1) if expression] is greater than or equal to -expression2, or returns false (0) if
i_t is not.

expression] GT expression2
Returns true (-1) if expression] is greater than exp'ression2, or returns false: (0) if it is not.

HIGH expression
Returns the high byte of expression.

HIGHWORD expression
Returns the high word of expression.

636" Appendix D I MASM Reference

expression] LE expression2
Returns true (—l) if expression] is less than or equal to expre.s'sion2, or returns false (0) if it is
HOE.

LENGTH variable
Returns the number of data items in variable created by the first initializer.

LENGTHOF variable"
Returns the number of data objects in variable-.

LOW expression
Returns the low byte of express_ion.

LOWWORD expression
Returns the low word of expression.

LROFFSET expression
Returns the offset of expression. "Same as OFFSET, but it generates -a loader resolved offset,
which allows Windows to relocate. code segments.

expression] LT expression2
Returns true (-1) if expression] is less than expression2, or returns false-(0) if it is not.

MASK {- recorafieldname l record }
Returns a hit mask in which the bits in recordfieldnnme or record are set'an_d' all other bits are
cleared.

expression] MOD expression2
Returns the integer value of .the remainder (modulo) when dividing expression] by
expression-2.

expression] NE expression2
Returns true (-1) if expt'8.S'.S'i0t’t] does not equal .expression2, or returns false (0) if it does.

NOT expression
Returns expression with all bits reversed.

OFFSET "expression.
Returns the offset of expression.

OPATTR expt*essiott
Retums a word defining the mode and scope of expression. The low byte is identical to the
byte returned by .TYPE. The high byte contains additional information.

expression] OR exp:-ession2
Returns the result of a bitwise OR operation for expression] and expression2.

type PTR expression
Forces the expression to be treated as having the specified type.

D.10 Runtime Operators 637

|[a'istance]] PTR type
Specifies a pointer to type.

SEG expression
Returns the segment of e.rpressr'o;z.

expression SHL count
Returns the result of shifting the bits of expression left count number of bits.

SHORT label
Sets the type of label to short. All jumps to label must be short (within the range -128 to
+127 bytes from the jump instruction to label).

expression SHR count
Returns the result of shifting the bits of expression right connr number of bits.

SIZE variable
Returns the" number of bytes" in variable allocated by the first initializer.

SIZEOF {variable I type}
Retums the number of bytes in variable or type.

THIS type
Returns an operand of specified type whose offset and segment values are equal to- the cur-
rent location-counter value.

.'_I‘YPE expression
See OPATTR.

TYPE expression
Returns the type "of expression.

WIDTH {recordfieldname I record}
Returns the width in bits of the current recordfieidname or record.

expressionl XOR expre'ssion2
Returns the result of a bi twise XOR-operation for expression! and expression2.

D.10 Runtime Operators
The following operators are used only within .IF, .WHILE, or .REPEAT blocks and are evalu-
ated at run time, no_t at assembly time:
expression] .= expression2

Is equal to.
expressionl != expression2

Is not equal to.
expressionl :> expression2

Is greater than.

63.3

expression] >= expression2
Is greater than or equal to

expression] < expression2
Is less than.

expression] <= expression2
Is less than or equal to.

expression] II expression2
Logical OR.

Appendix D MASM Reference

expression] && expression2
Logical AND.

expression] 8: expression2
Bitwise AND.

Iexpression
Logical negation.

CARRY?
Status of Carry flag.

OVERFLOW?
Status of Overflow flag.

PARITY?
Status of Parity flag.

$IGN?
Status of Sign flag.

ZERO?
Status of Zero flag.

Index

Ti " Address bus, 33

_asm Directive (Visual c++), 433-435 Address SF’-"°°' 41
AAA (ASCII adjust after additio11),252', 619 ADDR °P°’a‘°’* 265466
AAD (ASCII adjust before division),253-254, 619 Addsub P’°g‘a“‘= 74
AAM. (ASCII adjust -after multiplication), 253-, 6'19 adding“ Variables {oi 37
AAS (ASCII adjust after subtraction), 253, 619 alternative version. 74-75
Absolute address, 49-50 AddThree procedure, 285
Access AddTwo procedure, 278-280

levels, 38?. Advanced procedures, 259-299
three levels, 537 Align

Activation record, 275 align type‘, 587
ADC (add \¥’itl'1 ¢fllT.)')= 620 segment syntai:,586

i"5Yl'l1¢ti011i 243 ALIGN directive, [16
ADD -(add), 70» 520 Allocate adequate stack space, 262--263

example» 73 American Standard Codefor Information
Addition andsubtraction, 107--114 Interchange (ASCII), 21

binary, 15 AND (logical AND) instruction, 181-183, 620
example program, 113-1 14 Application Prograimning Interface (API), 380
flags, I 10-113 Archive bit, 507
implementing. arithmetic expressions , 109'-110 Arguments, 155 , 164
INC and DEC instructions, 107-10.8 checking for missing, 359-360
instructions, 108--109 C++ programs, 439
NEG iiistructioii, 109 initializerg

Additive inverse, 19. default, 360
Address_, 48-50

69.0 Index

types
IN VOKE,264-265

Arithmetic es pression
implement. 245-247

Ariilimetic logic unit (ALU). 32
Arithmetic operators. 65
Arithmetic shifts-

rs. logical shifts, 229
Aritlimetie status flags

DIV and IDIV,243'-244
An‘ayFill Example. 28 I -282
Array multiplication example, 308-309
Array of doubleword values. 84-85
Array 6|‘ word values. 84
Arrays

calculating the sizes. 9'0-91
indirect addnessing-. I 20-I 2|
cl‘ structures, 336
two-diniensional . 3 I 5-3 I 8

Array sire
niax imuni number 'oI" comparisons, 322
time. 3 I 9-320

An'aySum
procedure. I72. 268. 432

llowchart, 166-I67
program. 29 I -296

ASCII
and packed decimal arithmetic . -'25 I -254
control cliai-actors. 464-465
decimal. 25 I-252
digit striiig. 22
strings. 22
table. 23

ASM code generation
Visual C++ eoinrnand-line options, 448

Assemble-link-csecutc cycle, 77-78
Assenibler, 2, 3-4

installing and using. 6| I-6 I 5
Assembling and linking

batch file. 295-296
Asst-zmbly language. I I . 63--96

acccss levels. 59

applications. 7-8
assembling. linking. and running progranis.

77-80
basic elenients, 64-72
iii‘. C-t—t-, 5
deI’ining data. 80-88
example . 72-77
liigh-level languages

comparison, 7-8
rs‘. Java. 5
vs. machine Iaiiguage. 5
Optimize C++ code. 448-455
|'eal-addrcss- mode" programiiiiiig. 93-95
rules. 7
symbolic colistants, 89-93

Assembly Language Sources. 380
ASSUME directive. 5-88
Attribute byte. 540

constructing. 5-II
Automatic code generation. 261-262
Auxiliary carry flag. 44
Average seek time. 497

Backglcuiid color (attribute). 538-53-9
Base address field. 5l . 425
Base-index displacement. 317-318
Base-index operands. 3 I 5-3 I 7
Batch files

assembling and linI_<in_g. 2-95-296
.conimand.~i. 6 I 3 . 614-6| 5

Big endian order. 86
Binary addition. I5
Binary bit position values. I4
Biliary equivaleiits. I7
Binary file

creating. 4.87-49 I
Binary multiplication. 237
Binary numbers. I3-I5. 2?.
Biliary search. 32 I-328

test. program . 324-328
BIOS (Basic lnput-Output System). 54. 58. 59-60

Index 691

458, 649-659
data area, ‘528-529

segment 0040h, 528-529
level access,'537-538
level programming. 527-582

Bit extraction, 182
Bits, I 3-I4
Bit string

isolating, 238-239
Bit testing instructions, 198- I 99
Blinking attribute, 5 39, 540-54l
BIock—structured IF statements , 202-204
Boolean algebra,2$-26-
Boolean and comparison instructions

conditional processing, I 80-I 89
Boolean expressions, 2'6-27

relational operators, 360
Boolean function. 27-29
Boolean operations

AND ope1'atior1,26-27
NOT operation, 26
OR operation,27

Borland C++
data types in I6-bit applications, 441
linking, 440-44]

BOUND (check array bounds) instruction, 62]
Break_handler procedure, 603
BSF (bit scan forward), 62l
BSR (bit scan reverse), 62]
BSWAP (byte swap), 62I
BT (bit test) instruction, 196-199. 622
BTC (bit test and complement) instruction,

199, 622
BTR (bit test and reset) instruction, 199, 622
BTS (bit test and set) instruction, I99, 622
Bubble sort, 3 l9—32l

test program, 324-328
Bus, 33
Bus Interface Unit (BIU), 35
BYTE align type. 587
Byte

defining byte data, 8 I-83

storage sizes, I6

oi i_t‘
C-1+

linking to, 439-455
vs. assembly language, 5

Cache memory, 37
CalcSum program. 286-288

stack frame, 287
Calculating I 6-bit sum, 3 I 7
Calculating a factorial, 288-290
CALL (call procedure) instiuction, 74. I6I-I64,

62?.
Calling ArraySum, I65
Calling convention, 432
Capitalization

approaches to, 74
Carry flag (CF). 44. I I0-I I I

boolean and comparison instructions. 180-
I89

recovering a bit from the Can-y flag, 233
Cartesian Coordinates

converting to screen coordinates. 562-563
demonstration program. 559-562

CBW (convert byte to word). instruction, 243, 622
CDQ (convert doubleword to" quadword (lA—32)),

623
instruction, 243

Central processor unit (CPU). 32-35
flags, 181

Carry Flag, I I0-I I I
Overflow flag, lll-I I2
setting and clearing, I88

Chai'actei's
converting to pixel coonclinates ,57 I
scan for matching characters. 307
character constants, 67
converting characters to upper case. I82-I 83
character storage, 21-23
string example, 2 I2-213

Check keyboard buffer (I Ih). 533
Checksuni, 597
Chipset, 54-55

692 i Index

Cipher text, l95
Class type. 5'88
CLC (clear carry flag) instruction, 232-233, 623
CLD (clear direction flag) instruction, 623
CIearKeyboard procedure, 535-536
LI (clear interrupt flag) instruction, 601, 623
Iock,33
ock cycle, 33-37
ock Generator, 54
ose file handle (3Eh), 479-480

CIoseHandle function, 395
Clrscr procedure, l4l , 554-555
Clustets. 50.0-50l
CMC (complement carry Flag) instruction, 624
ctvtos RAM, 56
CMP (compare) instruction, 186-187, 624
CMPSB (compare bytes) instruction, 304-307, 624

QF'1.f'>.°O

CMPXCI-IG (compare and exchange) instruction,
625

CMPS (compare strings) instruction, 305,329, 624
CMPSD (compare doublewords) instruction.

304-305, 624
CMPSW (compare words-) instruction, 304-305.

624
Code directive

example. 73-74
Code labels, 69-70
Code optimization, 452
Code Pne'fetch_ Unit, 35
Code segment. 74, 5'84-586'
CodeView

command-line options, _.668-669
debugger, 668-669

Color
controlling, 539-541
displaying a color-string, 552-554
indexes (Mode l3h), 563-565

Combine type, 587-588
Combining segments. 590-591
Command processor, 458
Command tail

MS-DOS , 485-487
Comments, 7l , 76

Comparing two strings, 306-307
Complex Instruction Set (CISC), 46-47
Compound expressions , 204-205 , 220-221
COM programs, 593-595
Conditional-assembly directives, 358-370
Conditional processing, 179-226

application, 2l 1-217
Boolean and comparison instructions , l 80-1 89
finite-state machines , 211-217
.IF directive, 217-223
junips, l-89-200, 629-630
loop instructions, 200-202
structures, 202-2| l

Conditional transfer, I27
Console

definition, 140
functions, 384-386
handles, 383-384
input, 386-389
output, 389-392
window manipulation, 398-402

Control bus, 33
Control flags, 44
Control unit (CU), 32
Conventional machine language, l0
COORD structure, 334
Copying a doubleword array, 304
Copying a string, 130-1 3l
CreateFi1e function, 392-395
Create or open file (716Ch), 478-479
Create subdirectory (39h), 521
Creating local variables, 282-283
Creating multimodule programs, 290-296
Crlf proccdunc, 141
C Specifier, 278
Ctrl-Break Handler example, 602-604
Current location counter, 90-91
Cursor

controlling, 402-403
showing and hiding, 545-546

Custom inten'upt_handler, 601-604
CWD (convert word to doubleword) instruction,

243, 625

Index g 693

Cylinders (disk), 496-497

D -
DAA (decimal adjust after addition) instruction,

254, 625
DAS (decimal adjust after subtraction) instruction,

254, 625
Data area (BIOS), 458
Data bus, 33
Data definition statement, 8l
Data labels, 70
Data-related operators and directives, 115-120
Data representation, 12-25
Data segment, 74
Data transfer, 98-107

direct memory operands, 99--100
direct-offset operands, 104-105
example program, 105-106
LAHF and SAHF instructions, 103
MOV instruction, 100-101
operand types, 98-99
XCHG instruction, 104
zerofsign extension of integers, 101-103

Date stamp field, 507
Dateftime function, 472-476
DB directive, 82
Debugging

Borland C++, 441
protected mode programs, 612
fip,168

DEC (decrement) instruction, 107-108, 626
Decimal arithmetic, 251-254
Decimal reals, 66
Defining repeat blocks, 370-375
Delay

procedure, I41
Descriptive labels

ptupose-, 160
Descriptor tables , 3 8, 424
Destination operand, 73, 233-234
Device drivers, 6, 58-59
Digraph, 21 1

DIMMs, 54
Directed graph, 211
Direction flags, 44, 303
Directives, 68
Direct memory access (DMA) controller, 54
Direct memory mapped graphics, 563-568
Direct memory operands, 9'9-100

data transfer, 100-101
Direct-offset-operands, 100, 104-105
Directory-related file INT 21h functions, 476
Direct video access, 537
Disassembly window, 22l
Disk directory, 505-5l 1
Disk free space program, 519-521
Disk fundamentals, 495-525
DISKIO structure, 51 1-51.2
Disk partitions, 498-499
Disk storage systems‘, 495-500
Disk tracks and sectors illustrated, 497
Displacement, 596
Displaying binary bits, 237-238
Disp1aySector procedure, 5 16-517
DisplaySum procedure, 172-174, 295
Divide overflow condition, 244-245
Division instructions

integer arithmetic, 242-245
DIV (unsigned integer divide) instruction , 242-243 ,

626
DLL (dynamic link libraries), 6
Documenting procedures, 160-161
Do.ubleword arrays

direct-offset operands, 104-I05
Doublewords

arrays of, 85, 91
storage sizes, 16

Downward compatibility, 46
Drag event (mouse), 572
Drawing graphics

INT 10h, 555-563
DrawLine program, 557-559
Dual-boot examp1e,498-499
DumpMem procedure, 141-142, 263-264, 353-

354

594 Index

DumpRegs procedure, 72-73, 75, 142
DUP operator, 83, 90
DWORD (doubleword), 84-85, 586, 587
Dynamic link library (DLL), 139
Dynamic RAM, 55

E :
EBP register, 262, 275', 279, 280, 283-284

usage when linking to C++ programs, 452-453
Effective address, 104
EFLAGS register, 44
.ELSE directive, 217-218
ELSE directive

description, 359
directives, 361-3 62

.ELSEIF directive,"217
Embedded systems programs, 6
Encoded (hexadecimal) reals, 66
END directive, 74
.END[F directive, 217
ENDIF directive, 359, 361-362
ENDS. directive, 3'34
ENTER (make stack frame) instruction, 283-285,

626
Environment

environment string, 593
MASM variables, 668

EPROM memory, 55
Equality comparison,_ I92
Equal-sign directive, 89-90
EQU directive, 91-92
ErrorHandler procedure, 415
ESP register, 280, 284-285
Exabyte, 16
Execution Unit, 35
EXE header, 596-597
EXEMOD prograrn, 596
EXE programs, 595-597'
EXITM directive, 359
ExitProcess.function, 75
Exit statement, 74
Expansion operator (%), 364-366
Expert MS-DOS programming, 583-.610

Explicit.acce.ss to stack parameters, 278-280
Explicit segment definitions, 586-589
Extended accumulator register (EA-X), 43
Extended addition and subtraction

integer arithmetic, 248-25_l
Extended addition example, 249-250
Extended_Add procedure, 249-250
Extended destination index registers, 43
Extended frame pointer register (EB P), 43
Extended disk partition, 498
Extended source index register (ESI), 43
Extended stack pointer register (ESP), 43
External cache memory slot, 53
External identifiers, 432
Extemal library

linking to, 13,8-139"
Extemal names

C++ programs, 439

F
Factorial

algorithm, 288
function, 288
procedure, 288-289
program stack frame, 289-290

Fast di-vision (S I-IR), 230-231
Fast multiplication (SHL), 230
FAT File Systems

FAT12, 5.01
FATI6, 50-1
FAT32 , 501-502

FDISK.EXE program, 498
Fetch (processor step), 34
Field initializers

structures, 335
Field references

structures, 337
File Allocation Table (FAT), 500-502, 510-5l I
File attribute byte fields, 507
Filefdevice handles, 476-477
File encryption example, 436-439
Filename status byte

Index 695

description, 506 G

File poinier General protection fault (GPF), 121
moving’ 397 General»-purpose registers. 42-44

File scope’ 88 Get button presses and releases, 57 l -572
Fiieisize field’ 50:6’ 508 GetCommandtail procedure. 142
Fi ie is ysiems ’ 500-505 GetConsoleCursorInfo funclion, 402

operating system support’ 502 GetConsoleMode function, 3'88
FiiiAm‘iy procedure’ 265 GetConsoleScreenBufferInfo. function, 399-400
FillStrin'g procedure, 282 -Get currem directory‘ 522

Fiiieiiiig coiiiioi characters‘ 464 Get cursor position and size, 544-546
FiiidAmiy code GetDateTime procedure", 408

Visual C‘i"i’~ 449452 Get disk flee space, 518-5'21
Finite-state machine (FSM), 211-217 Ge, me cl.ea,io,, date and ti-me, 43]
Flags Get keyboard flags, 534.-535

ADD in5ll'll¢li0n, 103 GetLocalTime function, 406
addition and subtraction, l l0-113 Get mouse position and status, 570
AND instruction, 181-183 Getl\/Iseconds procedure, 143
CMP instruction, 135-137 GetStdHandle function, 383-384
[me] , 5174513 GetTickCount function, 407, 409-410
NEG instruction‘ 109 Get video mode information, 550-551

NOT instruction, I86 Gigabyte (G§i=' i6’ 204 _OR I84 3122:: P;°,r?;:‘“°“*’r5'
register‘ 44 Gotoxy procedure, 1-43. 554
SUB instruction, 108-I09 Granular“! flag! 4-25

TEST iiismiciioiit 186 Graphical Windows application
XOR instruction, 184-185 - ~ -

Flat -segmentation model, 50-51 ivrltliéggjxtiitiir procedure’ 4 I 5
Fl°uun8'"P°ini Unu (FP"U)i 54 MessageBox function, 4 l 3-4 l 4
Fl0W¢h==11'£5. 155-155 program listing,416-420
Fonts, 538 structures, 412-413
FORC directive, 372 Witflulain Procedure 414
FOR directive, 371-372 WinPr<><= Procedure, 414-415
Foreground color, 5-38, 539- Graphics 111055» 533
Four-bit color text encoding, 540 Gn?iu5$i Common ui\'i$01‘ (GCD), 257
Full-Screen Mode

running programs in, 538 H
Function, I59 Handle, 383-384. 415, 461, 602-604
Functional decomposition, 169 Hard drive
Funcuon number: 453 physical elements, 496
Function PY°i°i§’P55= 292 Hardware interrupts, 599-600
Fun¢u0n retum Values Hexadecimal equivalents, l7

Borland C++, 440 Hexadecimal integers, 16-18'

696 Index

Hidden file bit, 507 IF structure flowchart, 203
High-level access, 382 Implementing arithmetic expressions, 245-247
Higl'1—|evel language, ll addition and subtraction, I09-1l0

interface, 43]-456 IMUL (signed integer multiply) instruction, 241-
inline assembly code, 433-439 242, 627
linking to C-H- programs. 439-455 INC and DEC instructions, 107-108, 626, 628

High-speed multiplication,23O INCLUDE directive,73,94, I60
HLT (halt) instruction. 626 Indexed operands, 123-l24
Horizontal retrace (video), 55 Indirect addressing, 120-127

__ indexed operands. 12-3-l24
I __ indirect operands, I21-I22
IA—32 Intel Architecture Software Developer‘s pointers. I24-l26

Manual Indirect operands. 12 l—-I22, 337
Web URL, 48 IN (input from port) instruction. 628

IA-32 memory management, 42 l-428 Initiaiizers, 8l
IA-32 processor architecture, 31-62 Inline assembly code

basic execution environment, 4l-44 high-level language interface, 433-439
components, 53-57 Input buffer, 381
floating_poim unit (FPU), 44_45 Input functions (MS-DOS), 467-472

general concepts, 3.1-40 Input‘°utput operations
input-output system, 57-60 access levels! 58"59
Intel microprocessor history. 45-47 :nput'°utput ports‘ 56-57
memory management‘ 48_53 Input parameters. I64, 27l

. Input records, 38]modes ofoperat|on,4l _ _ rd _ 2|2 713
IA-32 processor family, 46 Input string va I anon’ “Z”
Ideal Mode (Borland TASM), 1] _NSB (input from port to string), 628
IDE cable connectors‘ 54 INSD (input from port to string), 628

Identification number (process ID), 39 IN S" (mlfiut from port {cf suing)‘ 628
Identifiers.‘ 67_68 Znstructton Decode Unit. 35

IDIV (signed integer divide) instruction, 243-244, "nstmcnon execuuon cycle’ 3346
627 ' Instruction formats, 618

ll: directive’ 2 l7__223 IIISIFLICEIOII ITIIICITIOIIIC, 70

tr, ELSE, and ENDIF directives. ass-359, 361- 3"$'I1‘"<='li0" Pointer (EIP>~43
352 Instruction queue, 34

IFB directive, ass-3-<50 Irntru¢tioi1s.68-Y1
IFDEF directive, 358- addition and subtraction, 108-109
IFDIF directive, 358 Instruction set architecture, 10
IFDIFI directive, 358 INSW (input from port to string) instruction, 628
IFIDN directive, 358, 362 INT. See also Interrupt
IFIDNI directive, 358, 362 INT lAh time of day, 462
IFNB directive, 358-360 INT lCh user timer interrupt,462
IFNDEF directive, 358 INT 1011, 517
IF statement nested in a loop, 206-207 drawing graphics, 555-563

Index 697

video graphics-modes, 556
VIDEO programming, 537-555 I
video text mode, 542-543

2252 '°f°.“’.'*?INT l0h I T Ih function 5706h,48l

INT.‘
IN'I‘
IN’?
IN‘?
INT
IN":
INT

descrip__tion, 542,-657-658
l0h function 0 543

l0h function 0Fh, 550-55 I
l0h function 0 I I1, 543-544
I0h function 02h, 544
l0h function 03h, 544-545
l0h function 06h, 546-547
10h function 08h, 548
l0h function 09h, 5'48-549

l\J

Zzse
I 2 I h function .OAh, 469N" .

INT l.0h function 0Ch-, 556-557 I 'I‘ 2Ih function OBh, 469
IN'I‘ l0h function 0Dh, 557 I 'I‘ 3311

description. 659
INT 33h function 0, 569
INT 33h function I, 569
INT 33h function 2, 569, 570
INT 33h function 3, 570
INT 33h function 4, 57l
INT 3_3h function 5, 57] , 572

INT I0h function l0h, subfunction 03h, 550 :NT 33h function 6, 572
INT IOh filnction l3h, 551-552 ZNT 33,, function 7 573
INT l'.0h function OAI1, 549-550' INT 33h function 8,573
INT I0h pixel-related functions, 556-557 NT (call to imewupt proced
INT l'0h video functions,541-554 462 628 u
INT
INT

INT
INT
INT
INT
INT
INT
INT
INT

INT

iii
l""1

l""1

22222222

r-1

- r-1

l""1

l""1

l""1

l""1

l""1

l0h video services, 462
l6h
keyboard input, 529-537
I6h function 05h, 53 I-532
I6h function l0h,532-533
I6'h function I lh,533
3611 function 1211, 534-535
16h fI.IIlCIliQI'IS, 531-536
.I6h keyboard services, 462
17h printer services, 462
2Ih

Integer _arithm_etic.. 227-257

I "I" h function 40h, 466, 467
Ih function 42h. 480-48]

I T h function 71'6Ch,478-479

I _ II1 function 7303h,518-52l

re) instruction, 46l-

ASCII and packed decimal arithmetic,
25 I-254

extended addition and subtraction, 248-25l
multiplication and division instruction.~;,

239--248
shift and rotate applications, 2'36-239
shift and rotate instructions, 228-236

Integer arrays,.3 I 8-328
Summing, I29-130

description, 462, 518, 652-656' Integer constant‘ 644155
2Ih function I, 467, 468
2 I h filnction 2, 465
2 I11 function 2Ah, 472
2 I h function 2Bh, 472, 473
2Ih function 2Ch, 473
2 lh function 2Dh, 473, 474
2 lh function 3Eh, 479-480
2 I h function 3Fh, 470-472
2Ih function 4Ch, 463.-464
21 h function 5, 465-
2 I h function 6, 466, 468

Integerexpression, 65-66
Integer literal, 64
Integer storage"siZes, I6
InIt:ger.su'ucIures, 335
Integer sumniation implementation, I 7'2--I 74
Integer suniniation program

design, I70-I74
Integer union

fields. 344-346
size, 344-345

Int_el 486 processor, 46
T 2 I h function 9,466 Intel 8086:’8088 processjor, I I, 45

698 Index

Intel -8237 Direct Memory Access (DMA)
controller, 54

based on unsigned comparisons, 192'
conditional

Intcl 8259 Programmable Interrupt Conti'oller_(PIC), types, 191
599

Intel 80286 processor, 46
Intel lA~32 processor architecture, I1
Intel instruction set, 617-647

Interrupt, 48. 457, 46l . See also INT
Interrupt control instructions, .600-'60l
Interrupt flag (IF), 44, 600
Interrupt handler, 461 , 584, 597-609

application, 605-609
executing, 599

Interrupt request level (IRQ), 599

conditional processing, I89-200
destination, I90-l9l
flag values, l9_l

JCXZ i'iistruction, 630
_ntcnsity ntodcs (graphics). 550 JECXZ instmcfion 630
Interpi'ctation,9 ' '. , . IJMP instruction, 70, I-27-I28, 630

K
Kemel32.lib, I39
Key (encryption), I95

ASCII code, 530
Keyboard BIOS INT 16h functions, 658-659

Intcirupt service routine. See also Interrupt handler Keybom-ditypeahead) buffer’ 530
Interrupt vectors. 458, 46 I-462

example, 598-599
INTO (interrupt on overflow) instruction, 629
Intrinsic data types, 80-8l
INVOKE directive, 75, I 60, 264-266

argument types, 264-265
IRET (interrupt return) instruction, 629
IRQ assignments , 599-600
Irvine32.inc include file, I47-I48
Irvine16.lib, I38-I39
Irvine32.lib, I38-I39
IsDefined macro, 367-369
IsDigit procedure, 214, 2 I 6
Isolating a bit string 238-239

J
Java

vs. assembly language, 5
Java byte code, -I0, I I
Java virtual machine (WM), I0
Jcorid (conditional jump) instruction, 190-191

application of
conditional jumps, I93
based on equality, I92
based on signed comparison, 192-193

clearing, 535-536
pushing keys. into, 53 I-532

Keyboard definition, 90, 5'30-531
Keyboard example

terminate and stay resident (TSR), _604
Keyboard flag values

description, 534-535
Keyboard input

INT 16h, 529-537
Keyboard Status Flag byte, 605
Keystroke processing sequence, 530
Kilobyte. (KB), I 6

Li '
Labels, 69-70
LABEL directive, I 19'-120
LAHF (load AH from flags) instruction, 631
Language specifier, 277-27-8
Large random intcgcrs, 446-448
LDS (load far pointer) instruction, 631
LEA (load effective address) instruction, 2-82, 63 I

679430 ’ Least significant bit (LSB), 13
with RCL and RCR instructions, 232, 233

LEAVE (I1igh-level procedure exit) instruction,
631

instructions, 283-285

Index 699

LENGTHOF operator, 118-119
LENGTH operator, 435-436
LES (load far pointer) instruction, 631
Level-1 cache memory, 37
Level-2 cache memory, 37
Lexical nesting level, 284
LFS (load far pointer) instruction, 63l
LGS (load far pointer) instruction, 631
Library procedures

examples, 554-555
MS-DOS, 481-483

Library test program, 148-152-
LIFO structure (last-in, first-out), I53
Linear address, 49-50, 421-425

translating to physical address, 425-426
LINK

MASM, 665-668
command options, 666-667

Linked list example, 373-374
Linker, 3, 77

files created or updated, 79-80
Linker command options, 139
Linking

using a batch file, 295-296
Link library

definition, 133
procedures and description, 140-I41

Listing file, 77, 78-79
ListSize, 90-91
Literal-character operator (I), 366-367
Literal-text operator < >, 366
Little endian order, 86, 1l7
Load and execute process, 38-39
Load slams flags into AH, I03
Local dcscriptor table (LDT) instruction, 51, 424
LOCAL directive, 261-263
Local labels, 163-164-
Local scope, 163, 266.
Local variables, 260-263
LOCK (lock the system bus) instruction, 632

LODS (load accumulator from string) instruction,
308, 329, 632

LODSW (load accumulator from string) instruction,
308-309, 632

Logical address, 42l
converting into a linear address,.422
translating to Ii near addresses, 421-422

Logical AND operator, 204-205
Logically empty, I55
Logical OR operator, 205
Logical partition, 498
Logical sector numbers, 497
Logical shifts

vs. arithmetic shifts,'229
Logic unit, 32
Long filenarnes

MS-Windows, 508-5 I0
LongRandom function, 447
Loop Containing IF Statement, 207, 222-223
LOOPD (loop (IA-32)) , 633
LOOPE (loop if equal) instruction, 200-201, 633
Looping through an array, 337-338
LOOP instruction, I28-I29, 632

conditional processing, 200-202
LOOPNE (loop if not equal) instruction , 201, 633
LOOPNZ (loop if not zero) instruction, 201, 633
LOOPW (loop using CX), 632
LOOPZ (loop if zero), 200-201, 633
Low-level disk access, 382
Low-level disk format, 497
LSS (load far pointer) instruction, 631

IIII

Machine cycle, 33
Machine language, 9, I0

compared to" assembly language, 5
Macro functions, 367-369
Macros, 347-358

containing code and data, 354-355

LODSB (load accumulator from string) instruction , defining» 343"349
308-309, 632 examples, 350-355

LODSD'(1oad accumulator from suing) instruction, example program, 355_357
308-309, 632

700 Index

invoking, 349-350
location in program, 347-348
macro procedures, 347
nested, 355-356

Makel6.bat file, 78, 614-615
Make32.bat file, 78, 613-614
Map file, 79
MASM (Microsoft Assembler)

CodeView command-line options, 668-669
CodeView debugger, 668-669
compatibility mode, ll
different operator names, l 15
directives, 669-682
-environment variables, 668
LINK, 665-668

command options, 666-667
linking to Visual C++, 450-454
operators and directives, I I5-I20
predefined symbols, 682-684
reference, 661-688
register names, 663
reserved words, 662
runtime operators, 687-688

Master boot record, 499
Maximum values, 2l
MDumpMem Macro, 353-354
Megabyte (MB)

equivalency, l6
Memory, 55-56
Memory-mapped graphics program, 565-568
Memory models, 276, 432, 433

description, 276
Memory organization

MS-DOS, 458-459
Memory read cycle,38
Memory storage unit, 33
Memory usage

EXE program, 595-597
Mes sageBox function, 413-414
MGotoxy macro, 352-353
Microarchitecture, l0
Microcomputer

block diagram, 32
design, 32-33

Microsoft assembler (ML)
command-line options. 663-665

Microsoft Platform SDK, 380
Microsoft Visual C++

__asm Directive, 433-436
Minimum values, 21
Mode l3l1 (graphics). 563-565
Most significant bit (MSB). l3

RCL and RCR, 232'. 233
Motherboard , 53-55

chipset, 54-55
Mouse functions

-description, 659
INT 33 functions. 568-574
miscellaneous, 57 3-574

Mouse Pointer
showing and hiding, 569-570

Mouse programming, 568-579
Mouse tracking program, 574-579
Move File Pointer function, 480-481
MOV instruction , 248, 633

data transfer, 100-l0l
example, 73

MOVSB (move bytes) instruction, 304, 634
MOVSD (move doublewords). 304. 634
MOVS (move string). 328. 634
MOVSW (move words). 304. 634
MOVSX (move with sign-extend), 103, 634
MOVZX (move with zero-extend), 102, 634
MReadStr macro, 352
MS-DOS

boot record layout, 503-504
command tail, 485-487
data area, 458
device name, 460
directory entry, 506
directory structure, 505-508
extended error codes. 477-478
file U0 services. 476-491
function calls (INT 2 l h). 463-476

Index 701

history , 457-463
interrupts, 649-659
kemel, 458
level access, 537
memory map, 459
programming, 583-610
runtime program structure, 592-597
services

function and description, 652-656
MSGStruct structure, 413
MS Windows

data types
translating to MASM, 382-383

long filenantes", 508-5 l 0
programming

Web site, 380
virtual machine manager (VMM), 426-427

Multi-boot systems, 498
Multiple code segment program, 585-586
Multiple data segments

example, 588-589
Multiple initializers, 82-83
Multiple-level programming, 59-60
Multiplexer, 29
Multiplication and division instructions

integer arithmetic, 239-248
Multi—segment mode, 51 , 52
Multistage pipeline, 34'-36
Multitasking, 39-40, 421
MUL (unsigned integer multiply) instruction,

240-241, 635
MW1'iteLn macro, 355
MWrite macro, 354-355
MwrireStr macro‘, 35 l

N

Name
segntent syntax, 586

Name decoration
C++ programs, 440

Naming convention, 431
NASM (Netwide Assembler), 12

NEAR PTR operator, 209
Negative integers, 18-19
NEG (negate) instruction, I09, 635
Nested loops. I29
Nested procedure calls, 162-l 63
Nodes, 211-2l2
NOP (no operation) instruction, 635
NOT (not) instruction, 186, 635
NTFS filesystem, 502
Null-terminated string, 22
Numeric data representation

terminology, 22
Numeric strings

types of, 23
Nybble, 232

O
Object file, 77
OFFSET operator, 115-l l6

Operating system (OS), l l, 38-39, 58. 77
support for tile systems, 502

Qperator precedence, 27
Operators

MASM, 684-687
Optimizing C++ compiled code, 448-455
OR (inclusive OR) instruction, l83-l 84, 636
OS. See Operating system (OS)
OUT (output to port) instruction, 564, 566-567 , 636
Output function

MS-DOS , 464-467
Output operations

access levels, S8-59.
Output parameters, 271
Output ports, 56-57
OUTSB (output string to port) instruction,636
OUTSD (output string to port) instruction, 636
OUTS (output string to port) instruction, 636
OUTSW (output string to port) instruction, 636
Overflow flag (OF), 44, I I2, 181,228-236

793 i Index

- 16- and 32-or modes, 124
P6P cessorfamrly 46 indirect addressing,l24-126

ro ,
Packed-decimal integers, 254 Intel-based programs’ [24

' vs. SLl1'JSCl'iptS, 453-454PAGE l.'g t _ , 5-86, 587 _ _
Page 5;! H ype POP (pop from stack) instruction, 156, 637

Lfirectory 423 trouble-shooting tips, 27-2-273.
_ 1 operation, 155
fault’ 52’ 423 POPAD (pop.-all) instruction, 157,637
‘ab'°5- 423' POPA (pop all) instruction, 157, .637
translation , 422, 425,-427- - POPFD (pop flags from stack) instruction , 156-157,

Paging, 52, 422, 423-424 637
Paging Uilili 35 POPF (pop flags from stack) instruction, 156,637
PARA align type, 586, 587 power-5 of 15
Pa1'm¢lP°1Ti57 decimal values", l7-l8
Parameters Precedence, 65-66

classifications, 27 l P;-econd i{iQ1'|3: 160
Parity "flag, 44, I81, 185 Predefined Symbols
Partition (disk), 498-499 MASM: '53-'_)__534
PASCAL 5-Pacifiers 273 Preemptive multitasking, 39
Passing arguments by reference, 280-282 primary ee|er5
Passing by reference,'265, 269-271 , 230-232 mixing? 539__540

Passive by va1u@=269-271 Primary "disk areas, 503-s04
Passing data structures, 270-271 privnege |eve|_ 425
Passive immediate values PROC directive, 159'-161.-zoo-26?

trouble shooting tips, 274 Procedure call overhead, 437-439
Passing register arguments, 164 Proced1u'e offsets, 208
Passing wrong type of pointer Procedures, l37-l 77

trouble shooting tips, 274 book’s link library, 140-153
PC assemblers defining and using, l59-169

history, ll-12 linking to an external library, l38-139
PC im@1T'1P1i5 program design using, 169-175

number and description , 649-652 ere-ck operations, 153_| 59
PCI (Peripheral Component Interconnect) bus, 54 Processor cl_o'ck (CLK), 37
Pentium, 46 Program counter, 34
Pentium 4, 46 Program database file (PDB). 80
Petabyte, l6 Program description
Physical disk geometry, 497 exam-r,|_e_ 73.7-5
PiPeliT1iT18= 34 Program design
Pixels’ 55 using procedures, 169-I75

converting to character coordinates, 570 program execution registers, 4g_44
Plain text-(encryption),-195 Program listing
Platform, 380 example? 72
Pointers Programmable Interrupt ‘Controller (PIC) , 54

704 Index

Reserved bits, 507
Reserved words. 67
Reserving stack space, 262-263
Reset mouse, 568-569
Rcstoring registers

trouble-shooting tips, 272-273
RETF (retum from procedure) instruction. 640
RETN (return from procedure) instruction. 640
RET (return from procedure) instruction , l59, 161-

l64. 640
Reversing a string, 157-l 58
RGB colors, 564-565
ROL (rotate left) instruction, 231-232, 640
ROM BIOS. 459
ROM (read-only memory), 55
Root directory, 504, 505
ROR (rotate right) instruction, 23.2. 640
Round-robin scheduling. 39-40
RS-232 serial port, 57
Running programs

in full~serecn mode, 538
Runtime operators

MASM. 687-688
Runtime program structure, 592-597
Runtime relational and logical operators, 218
R-untime stack, l53-l 55

S
SAHF (store AH into flags) instruction, 641
SAL (shift arithmetic left) instruction . 23 l . 64l
SAR (shift arithmetic right) instruction, 231. 64l
Saving and restoring registers, 280

trouble-shooting tips. 272-273
SBB (subtract with borrow) instruction, 250, 642
SBYTE signed byte, 81-32
-Scanningan array. 1-94-I95

application, I94-l97
SCASB (scan string) instruction. 307. 642
SCASD (scan string) instruction, 307. 642
SCAS (scan string) instruction, 329, 642
SCASW (scan string) instruction. 307. 642
Scheduler, 39
Screen buffer. 381 , 398-402

Screen scraping. 548
Scroll window down, 548
Scroll window up, 546
SDWORD directive, 84
Sector display program. 497, 513-5 l7
Sectors, 496-497
Segment. 48. 74, 421

defining, 584-592
list, 79

Segment 0040h
BIOS data area, 528"-529

Segmentation , 42l
Segment descriptor. 42l

details, 425
tables, 50

Segmented memory map. 49
Segment limit field, 51, 425
Segment names, 432-433
Segment-offset address . 49-50
Segment overrides, 589-590
Segment present flag, 425
Segment registers, 43
"Segment selector, 421
Segment type. 425
Sequential search, 321
Serial port, 57
SET condition (set condition), 642
SetConso1eCursorPosition. 403
SetConsoleMode function. 388-389
SetConsoleScreenBufferSize function, 402
SetConsoleTextAttribute function . 403
SetConsoleWindowInfo function , 40.0—402
Set current directory function, 522
Set cursor lines function, 543-544
Set cursor position function. 544
SetCursorPosition example, 220
SetFilePointer function , 397
SetLocalTime function , 406
Set mouse position, 57l
SetTextColor procedure, 145-146
Setting mouse limits, 573
Set typematic rate function. 531
Set video mode function, 542-543

Index i g i 705

Shift and rotate applications
integer arithmetic, 236-239

Shift and rotate instructions
integer arithmetic, 228-236

Shifting multiple doublewords, 236
SHLD (double-precision shift left) instruction,

233-234, 643
SHL (shift left) instruction, 229-230, 643
SI-IRD (double-precision shift right) instruction,

233-234, 644
SI-IR (shift right) instruction, 230'-231, 643
Signed and unsigned comparisons, 219-220
Signed arithmetic

overflow flag, 111-113
Signed binary

converting to decimal, 20
Signed comparison-

jumps, 19.3
Signed decimal

converting to binary and hexadecimal, 20
Signed decimal integer FSM, 213
Signed division

SAL and SAR instructions, 231
Signed hexadecimal

converting to decimal, 21
Signed integer, 18-21

comparing, 219-220
FSM flowchart, 214
storage sizes and ranges, 21
validating, 213-216

Sign f1ag(SF), 44,110
boolean and comparison instructions-, 180-

181
SIMMs (memory), 54
Simplified segment directives, 584-586
Single-character input, 388-389
Single-instruction, multiple-.data (SIMD)

operations, 44
Six—stage non-pipelined instruction execution, 35
Six~stage pipelined execution, 36
16-bit MS-DOS programming, 457-493
16-bit Parity

XOR instruction, l85

16-bit programs
assembling and linking, 78

16-bit real-address mode, 3, 614-615
16-bit registers, 124
16-bit starting cluster number field, 506
16550 UART (Universal Asynchronous. Receiver

Transmitter), 57
SIZEOF operator, 1 19-
SIZE operators, 435-436
Slack bytes (fill bytes), 587
Sleep function, 407
Software BIOS, 458
Software development kit, 380
Software interrupts (MS-DOS), 461
XOR (exclusive OR) instruction, 647
Source file, 77
Stack abstract data type (ADT), 153
Stack applications, 155
Stack data structure, 153
Stack frames, 275-285

CalcSum program, 286-287
Factorial program, 288-290

Stack operations, 153-159
Stack parameters, 263-275
Stack segment, 74
Standard input

definition, 140
device, 460

Standard output
definition, 140
device, 460

Start state (FSM), 211
Startup procedure, 74
Static global variables, 260
Static RAM, 55
Status flags, 44
STC (set carry flag) instruction, 233, 644
STDCALL specifier, 277-278
STD (set direction flag) instruction, 644
STI (set interrupt flag) instruction, 600-601 , 645
Stopwatch timer, 409-410
Storage sizes

Borland C++, 441

706 Index

Store AH into status flags (SAHF), 103
STOSB (store string data) instruction, 308, 645
STOSD (store string data) instruction, 308, 645
STOS (store string data) instruction, 329, 645
STOSW (store string data) instruction, 308, 645
Str_compare procedure, 3l0-3 I 1
Str_copy procedure, 31 1-312
String, 2 I , 282

calculating size of string, 90-9|
copying strings, 130-13l
defining strings, 83
FSM, 2l I--212
procedures . 309-315
string constants, 67
string encryption , 195- I 97

program example, 469-470
string primitive instructions, 302-309

description, 302
structures. 335

Str_length procedure, 31 I
Str_trim procedure, 3 I 2-3 I 4
Str_ucase procedure, 314
STRUCT directive, 334
StructSize field description, 5 l 8
Structures, 334-347

chart example, 170-I71
conditional processing, 202-2l l
declaring and using unions, 344-346
declaring variables, 335-336
defining a structure, 334-335
example, 338-340,341-344
nested structures, 340-34l
referencing variables, 336-338

Stub program example, I71-I72
Subdirectories, 505
Subdireotory bit, 507
Subscripts

vs. pointers, 453-454
Substitution operator (&), 363-364
SUB (subtract) instruction, 73, 645
Subtraction, l.07-1l4

example program. I I 3-I I4

flags, IIO-I I3
implementing arithmetic expressions. I09-I I0
INC and DEC instructions. I07-I08
instructions, I08-I09
NEG instruction, I09.

Summing an integer array. I29-I30. I64-I65
Superscalar

architecture, 36-37
example: six-stage pipelined processor, 37
processor. 36

Support processors
IA-32 system, 54

Swap procedure. 266. 27 I-272
SWORD signed word. 84
Symbols, 79, 89. 618
Symmetric encryption. I95
Syntax notation

MASM. 661-662
System file. 507
Systen1-level file functions, 517-522
System management mode (SSM), 4l
System partition. 499
System time

displaying, 338-340
SYSTEMTIME structure. 406

 '
Table-driven selection. 208-210
Task Manager, 423
Task switching, 39
TASM (Borland Turbo Assembler). l I
TBYTE (tenbyte). 85
Terabyte (TB), I6
Terminal state (FSM), 2| I
Terminate and stay resident (TSR) program, 584,

604
Terminate process function. 463-464
Testing status bits, I93-I94
TEST (test) instruction, I86, 646
Text color

controlling, 403-404
Text editor, 77
TEXTEQU directive. 92-93

Index

Text macro, 92
Text mode, 538
32-bit programs

assembling and linking, 78
32-bit protected mode, 3

assembling and linking programs, 612-614
3'2-bit Windows programming, 379-430
Time and date functions, 405-410
TimerStart procedure, 4l0
TimerStop procedure, 4l0
Time slice, 39-
Time stamp field, 507
TITLE directive, 73
Toggle blinking, 550
Top-down design, I69
Tracks, 496-497
Trailing edges, 37
Transfer control

execution, 127
Tr-anslateBuffer function, 436-439
Translation

between virtual machines, 9
to logical sector numbers, 497

Trouble-shooting tips, 272-274
Truth table

for Boolean functions, 27-29
for Boolean operations, 25-27

20-bit linear address calculation, 49-50
Two-dimensional arrays , 315-318
Two integers

exchanging example,.271-272
Two’s complement

of hexadecimal, 19-20
representation, I-9-2l

TYPDEF operator, I25-126'
Typeahead buffer, 530
Typematic rate, -53 1
TYPE operators, I 18, 435-436

{Iii-
Unconditional transfer, I27
Unicode Standard

website address, 21

Uninitialized data
declaring, 87-88

Union, 334
declaring and using, 344-346

Union variables
declaring and using, 345-346.

Universal Serial Bus (USB),56
Unpacked decimal (ASCII), 252
Unsigned arithmetic

carry flag, 1l0'-I I I
Unsigned binary integers, l3-14

translating to decimal, I4
Unsigned comparison

jumps based -on, I92
Unsigned decimal

converting to hexadecinral, l.8
Unsigned decimal integers

translating to binary. 14-15
Unsigned hexadecimal

converting to decimal, I7-I 8
Unsigned integers

comparisons, I92
ranges, I6

U-pipeline, 36
User-defined type, I25
USES operator, 166

V
Validating

input string, 2 I 2-2 I 3
signed integer. 2 I 3-2 I 6

Variable name
defining, 82

Vertical retrace (video), 55
Video BIOS

function and description, 657-658
pages, 538
programming, 537-555

Video memory area (VRAM), 56', 459
Video modes,

graphics. 556
text, 538

708 Index

Virtual-8086 mode, 1 I, 41 WriteChar procedure, 146
Virtual machine Write Character function, 549-550

-concept, 3_1g Write Character and Attribute function, 548-549
|eve|51 9_11 WriteColors program, 403-404

Virtual Machine Manager (VMM), 427 wriiec-°"5°|e' Eunction = 39-O
virtual memory, 52 WrireConsoleOutputAttribute function, 403
visual C++ WriteConsoleOutputCharacter function, 39 I -392

command-line options WriteDec function, 146
ASM C-ode generation, 448 WfitBFII6 fl.lIlCllIOIl. 39.5--396

FindAn_ay code‘ WIIICFIIC P['OgI'3IH,

Volume label! 507 Write Graphics Pixel function, 556-557
Volumes: 498499 WriteHex procedure, 146
“pipeline, 36 WriteInt procedure, I47

WriteString procedure, 138, I47

Iv?“ ' ' MS-DOS function, 482-483
“ii ' ' Write String in Teletype Mode function, 55 I-552
Wait for key function, 532-533 W_ rit'n txtWartivlsg procedure, l.46 I g e_
Wait states, 33, 37 to Window, 547-548

WAIT (wait for coprocessor) instruction, 646 Wrong‘ operand mes .
Warning message example, 366-367
Weighted positional notation, I4
.WHILE directive, 222-223 X

trouble shooting tips, 273

WHILE directive, 370 XADD (exchange and add) instruction, 646
WHILE loops XCHG (exchange) instruction, I03, 646

implementing with conditiona1jurnps,205-207 XI-AT (ifaflslate 9346) iI15iI'11¢li0I1= 547
Win32 console functions, 384-386 XLATB (translate b§’i@) iT151Tl1¢ii0T1~. 547
Win32 console programming, 379.-41 1 XOR (exclusive-OR) instruction, 184-I 85

reading and writing files. 392-398

Win32 date time function,405—406 Y I
Windqw Yottabyte, 16'

defining using INT 10h, 546
Windows 2000 Disk Management tool, 498-499 T
Windows data types, 382-383 Z81,0 flag (ZF) 44 I lo
WinMain procedure, 4l4 boolean/comparison instructions, I 80-I 8 IWinPrc¢ procedure, 414-415 , ._ , ,,WNDCLASS structure 413 Zerofsrgn extension of integers, l0l-103

WORD
align type, 587
defining data_, 84

Word
arrays of, 84, 91
storage sizes, 16

WriteBin procedure, I46

' ’ Zettabyte, I6

r

Microsoft License Agreement
Microsoft MASM Version 6.11 and 6.15

Licenses: I

lMPORTANT—FiEAD CAREFULLY BEFORE OPENING SOFTWARE PACKETS(S). Unless a separate multilingual
license booklet is included In your product package, the following License Agreement applies to you. By opening the
sealed pact<et(s) containing the software, you indicate your acceptance of the following Microsoft License Agreement.

Single-User Products This is a legal agreement between you (either an individual or-an entity) and Microsoft Corporation. By
opening the-sealed software packages and for by using the software you agree to be bound by the terms, of this Agreenrent. if you do not
agree to the terms of this Agreement, promptly return the unopened software packer(s) and the accompanying items (including printed
materials and binders or other containers) to the place from which you obtained them for a full refund.

Microsoft Software License
1. Grant of License. 'H1is-License Agreement ("License") permits you to use one copy of the specified version of the Microsoft soft~
ware product identified above. which may include "online" or electronic documentation (the “Software"'] on a single computer. if this
pacl-cage is a License Pair, you may make and use additional copies of the Software up to the number of Licensed Copies authorized
above. The Software is in "use" on a computer when it is loaded into temporary memory (i.e.. RAM) or installed into permanent memory
(e.g.. hard disk. CD-ROM. or other storage device) of that computer except that a copy installcd on a network server for the-sole purpose
of distribution to other computers is not “in use.“
2. Upgrades. If the Software is an upgrade you may use or transfer the Software only in conjunction with the prior versionisl of the
Software.
3. Copyright, The Software (including any images. "applets." photographs. animations. video. audio. music. and text incorporated into
the Software is owned by Microsoft or its suppliers and is protected by United States copyright laws and international treaty provisions
Therefore. you must treat the Software like any other copyrighted material (e.g.. a book or musical recording) except that you may either
(a) mai-re one copy of the Software solely for backup or archival purposes. or (b) transfer the Software to a single hard disk provided you
keep the original sotely for backup or archival purposes. You may not copy the printed materials accompanying the liottware.
4..Other Restrictions. You may not rent or l_ease the Software. but you may transfer the Software and accompanying written materials
on a permanent basis provided you retain no copies and the recipient agrees to the terms of this Agreement. If the Software is an upgrade.
any transfer must included the most recent upgrade and all prior versions. You may not reverse engineer. decompile._or disassemble the
Software. except to the extent such foregoing restriction is e._'pressly prohibited by applicable law.
5. Dual Media Software. You may receive the Software on more than one medium. Regttrdlcss of the type or size of medium you
receive, you may us_e only the medium appropriate for your single use computer. You -may not use the other medium on another computer
or load. rent. lease. or transfer the disks to another user except as part of the permanent transfer as ‘provided abovc of all -Software and
printed materials. not print copies of any user documentation provided in "online" or electronic form.
6. Language ‘Software. If the Software ls a Microsoft language product. then you have a royalty-free right to reproduce and distribute
executable files created using the Software. if the l_anguage product is-a Basic or COBOL product. the_n Microsoft grants you a royalty-
free right to reproduceancl distribute the run-time modules of the Software provided that you (:1) distribute the run-time modules only in
conjunction with and as a part of your software product; (b) do not use Microsoft's name. logo. or trademark to market your software
product: (c) include a valid copyright notice on your software product: and (d) agree to indemnify. hold harmless. and defend Microsoft
and its suppliers from any against any claims or lawsuits. including attorney's fees. that arise or result from the use or distribution of your
software product. The “run-time modules“ are those files in the'Software that are identified in the accompanying printed materials as
required during execution ofyour software program. The run-time modules are limited to run-time files and ISANI and REE\'lOLD files.
if required in the Software documentation. you agree to display-the designated patent notices on the packaging and in the README tile
in your software product.

Miscellaneous
Ifyou acquired the product in the United States. this EULA is governed by the laws-of the State of Washington.

If you acquired this product in Canada. this EULA is governed by the laws of the Province of Ontario. Canada. Each of the parties hereto
irrevocably attorns to the jurisdiction of the-courts of the Province of Ontario and further agrees to commence any litigation which may
arise hereunder in the courts located in the Judicial District of York. Province of Ontario.

Ifthis product was acquired outside the United States. then local laws may apply.
Should you have any questions cottccrtting the EULA. or if you desire to contact Microsoft for any reason. please contract the lyllcrosoft
subsidiary serving your country. or write: Microsoft Sales Information (.'enteri'On_c Microsoft Vt"it!}"l'Rtl'(li‘l1tIJl‘ltIi. WA 9805-6399.

Limited Warranty
No. Warranties. Microsoft expressly disclaims any warranty for the Software Product. The Software Product and any related documen-
tation is provided “as is" without warranty of any it-ind. cithcr csprcss or implied. including. without limitation; tile implied warranties or
merchantability, fitness for a particular purpose, or noninfringcrncnt. ‘l'hc entire risk arising out of use or performance of the Software
Product remains withyou. '
No Liability For Damages. In no event shall Microsoft or its suppliers he liable for any darnagcs whatsoever (including. without limita-
tion. danmges for loss of business profits. business interruption. loss of business in formation. or any other pecuniary loss) arising out uf
the use of or inability to use this Microsoft product. cvcn if Microsoft has bcen advised of the possibility of such datnngcs. Because some
statestjurisdictions do norallow the exclusion or limitation of liability for consequential or incidental damages. the above limitations may
not apply to you.

ASSEMBLY LANGUAGE FOR
||\|TEL®-BASED COMPUTERS

FOlJR'i"l=-l sol"
KIP R. IRVINE

This text is designed for students and professionals interested in learning the
basics of operating systems, architecture, ancl programming in the context of a
microprocessor. In his eagerly anticipated folurth edition, Kip Irvine concentrates
on the combined Windows/MS-DOS operating system and thoroughly covers
32-bit assembly language applications for Intel-based computers.

Q

Focussing on how to approach programming problems with a machine—level
mindset, Assembly Language for Intel-Based Computers includes the
following features:
s Detailed tutorials on numbering systems a|nd data storage fundamentals.
~ All programs tested with the Microsoft® MASM 6.15"“ assembler.
<~ lnline assembly code, as well as linking assembly language to C/C++ in both

Real and Protected modes.
* Extensive instruction set reference that includes instruction formats and

CPU flag usage.
Interrupt vectoring and device IIO.

@ CD-ROM that includes the full professional version of the Microsoft MASM
6.15"" Assembly Language Development System, a programmer's editor, a
macro library, and the book’s source code.

New to the fourth edition:
st Win32 programming, including the console API and a graphical application.
s» Expanded coverage of procedures, recursion, stack parameters, structures,

and unions.
e Boolean expressions, truth tables, and flowcharts.
st Basic string handling, sorting and searching algorithms.
e Bit-mapped graphics in both Real and Protected modes.
=> IEEE floating—point binary representation.
* Virtual machine architecture; IA-32 Protected mode segmentation and paging.
w Introductory explanations of the instruction execution cycle, memory I/O,

multitasking, pipelining, and superscalar alrchitecture.
* Disk fundamentals, including disk geometry, FAT32 and NTFS file structures.

ISBN 0-La-nsmoma-H
90000

Prentice Hall
Upper Saddle River, NJ 07458
wWw_pI_enhau_cOm 9 780130 910134

