
Undergraduate Topics in Computer Science

Guide
to Assembly
Language

James T. Streib

A Concise Introduction

Second Edition

Undergraduate Topics in Computer
Science

Series Editor

Ian Mackie, University of Sussex, Brighton, UK

Advisory Editors

Samson Abramsky , Department of Computer Science, University of Oxford,
Oxford, UK
Chris Hankin , Department of Computing, Imperial College London, London, UK
Mike Hinchey , Lero – The Irish Software Research Centre, University of
Limerick, Limerick, Ireland
Dexter C. Kozen, Department of Computer Science, Cornell University, Ithaca,
NY, USA
Andrew Pitts , Department of Computer Science and Technology, University of
Cambridge, Cambridge, UK
Hanne Riis Nielson , Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Kongens Lyngby, Denmark
Steven S. Skiena, Department of Computer Science, Stony Brook University, Stony
Brook, NY, USA
Iain Stewart , Department of Computer Science, Durham University, Durham, UK

https://orcid.org/0000-0003-3921-6637
https://orcid.org/0000-0001-9149-8577
https://orcid.org/0000-0001-5110-561X
https://orcid.org/0000-0001-7775-3471
https://orcid.org/0000-0002-2484-5580
https://orcid.org/0000-0002-0752-1971

‘Undergraduate Topics in Computer Science’ (UTiCS) delivers high-quality
instructional content for undergraduates studying in all areas of computing and
information science. From core foundational and theoretical material to final-year
topics and applications, UTiCS books take a fresh, concise, and modern approach
and are ideal for self-study or for a one- or two-semester course. The texts are all
authored by established experts in their fields, reviewed by an international advisory
board, and contain numerous examples and problems, many of which include fully
worked solutions.

The UTiCS concept relies on high-quality, concise books in softback format, and
generally a maximum of 275–300 pages. For undergraduate textbooks that are likely
to be longer, more expository, Springer continues to offer the highly regarded Texts
in Computer Science series, to which we refer potential authors.

More information about this series at http://www.springer.com/series/7592

http://www.springer.com/series/7592

James T. Streib

Guide to Assembly
Language
A Concise Introduction

Second Edition

123

James T. Streib
Department of Computer Science
Illinois College
Jacksonville, IL, USA

ISSN 1863-7310 ISSN 2197-1781 (electronic)
Undergraduate Topics in Computer Science
ISBN 978-3-030-35638-5 ISBN 978-3-030-35639-2 (eBook)
https://doi.org/10.1007/978-3-030-35639-2

1st edition: © Springer-Verlag London Limited 2011
2nd edition: © Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-35639-2

Preface

Purpose

The purpose of this text is to assist one in learning how to program in assembly
language on an Intel processor using Microsoft Assembler (MASM) in a minimal
amount of time. In addition, through programming the reader learns more about the
computer architecture of the Intel processor and also the relationship between
high-level languages and low-level languages.

Need

In the past, many departments have had two separate courses: one in assembly
language programming (sometimes called computer systems) and a second course
in computer organization and architecture. With today’s crowded curriculums, there
is sometimes just one course in the computer science curriculum in computer
organization and architecture, where various aspects of both courses are included in
the one course. The result might be that unfortunately there is not enough coverage
concerning assembly language programming.

Importance of Assembly Language

Although the need for assembly language programmers has decreased, the need to
understand assembly language has not, and the reasons why one ought to learn to
program in assembly language include the following:

• Sometimes just reading about assembly language is not enough, and one must
actually write assembly language code to understand it thoroughly (although the
code does not have to be extremely complicated or tricky to gain this benefit).

• Although some high-level languages include low-level features, there are times
when programming in assembly language can be more efficient in terms of both
speed and memory.

• Programming in assembly language has the same benefits as programming in
machine language, except it is easier. Further one can gain some first-hand

v

knowledge into the nature of computer systems, organization, and architecture
from a software perspective.

• Having knowledge of low-level programming concepts helps one understand
how high-level languages are implemented and various related compiler
concepts.

Comparison to Computer Organization and Other Assembly
Language Textbooks

Many textbooks on computer organization have only a few sections or chapters
dealing with assembly language, and as a result, they might not cover the aspects of
assembly language thoroughly enough. Also, instead of discussing a real assembly
language, they might just use a hypothetical assembly and machine language.
Although this can be helpful in understanding some of the basic concepts, the
student might neither see the relevance nor appreciate many of the important
concepts of a real assembly language.

On the other hand, there are a number of assembly language texts that go into
significant detail which can easily fill an entire semester and almost warrant a
two-semester sequence. Unfortunately, some of the more comprehensive assembly
language texts might not be the best choice for learning to program in assembly
language due to the same reasons that make them excellent comprehensive texts.

This current text does not attempt to fill the needs of either of these two previous
varieties of texts because it falls between the scopes of these two types of texts. The
purpose of this text is to provide a concise introduction to the fundamentals of
assembly language programming, and as a result, it can serve well as either a
stand-alone text or a companion text to the current popular computer organization
texts.

Features of This Text

The primary goal of this text is to get the student programming in assembly lan-
guage as quickly as possible. Some of these features that make this possible include
simplified register usage, simplified input/output using C-like statements, and the
use of high-level control structures. All of these features help the reader begin
programming quickly and reinforce many of the concepts learned in previous
computer science courses. Also, many of the control structures are implemented
without the use of high-level structures to allow readers to understand how they are
actually implemented. Further, many of the assembly language code segments are
preceded by C program code segments to help students see the relationships
between high-level and low-level languages. Other notable features at the end of
each chapter include the following:

vi Preface

• One or more complete programs illustrating many of the concepts introduced in
that chapter.

• Chapter summaries, which by themselves do not substitute for reading a chapter,
but after reading a chapter they serve as a nice review of important concepts for
students preparing for a quiz or exam.

• Exercises composed of a variety of questions, from short answer to program-
ming assignments. Items marked with an � have solutions in Appendix D.

Features New to the Second Edition

The second edition retains all of the features of the first edition. Of course, any
known errors have been corrected and areas that could be clarified have been
reworded. Features new to the second edition include the following:

• Many illustrations have had color added to them to help readers visualize
important concepts.

• A new section has been added to Appendix B on floating-point number
representation.

• A new chapter has been added on floating-point number processing.
• 32-bit processing has been retained throughout the text, and a new chapter has

been added on 64-bit processing.
• A new section has been added to Chap. 12 on floating-point and 64-bit machine

language.
• Additional exercises have been added to various chapters.

Brief Overview of the Chapters and Appendices

If this text is used in conjunction with another text in a computer organization
course, then there is a potential for some duplication between the texts. For
example, many texts in assembly language begin with an introduction to binary
arithmetic, which of course is incredibly important in a low-level language.
However, should this text be used in conjunction with a computer organization text,
then many of those concepts will have already been introduced. As a result, this text
begins at the outset to get students into programming quickly and introduces or
reviews binary on an as-needed basis. However, should this text be used as a
stand-alone text, then Appendix B introduces binary numbers, hexadecimal num-
bers, conversions, logic, arithmetic, and floating-point number representation,
should the instructor or student wish to examine this material first. What follows is
a brief overview of the chapters and the appendices:

• Chapter 1 provides an overview of assembly language and an introduction to the
general-purpose registers.

Preface vii

• Chapter 2 introduces the reader to input/output in assembly language, specifi-
cally using the C programming language scanf and printf instructions.

• Chapter 3 explains basic arithmetic in assembly language, including addition,
subtraction, multiplication, division, and operator precedence.

• Chapter 4 shows how to implement selection structures in assembly language,
such as if-then, if-then-else, nested if structures, and the case (switch) structure.

• Chapter 5 continues with iteration structures, specifically the pre-test, post-test,
and definite iterations loop structures, along with nested loops.

• Chapter 6 introduces the logic, shift, arithmetic shift, rotate, and stack
instructions.

• Chapter 7 discusses procedures, introduces macros, and explains conditional
assembly.

• Chapter 8 presents arrays, sequential searching, and the selection sort.
• Chapter 9 discusses strings, string instructions, arrays of strings, and compar-

isons of strings.
• Chapter 10 provides an introduction to the floating-point register stack, arith-

metic, input/output, and instructions.
• Chapter 11 explains basic 64-bit input/output, storage, and processing.
• Chapter 12 introduces machine language from a discovery perspective and can

serve as an introduction to some of the principles of computer organization or it
might be used as a supplement to a companion computer organization text.

• Appendix A illustrates how to assemble programs using MASM.
• Appendix B provides an overview of binary and hexadecimal conversions,

logic, arithmetic, and representation of floating-point numbers. The first three
chapters of the text require limited use of binary and hexadecimal numbers, so
one might not need to read this appendix until later in the text. However,
Chap. 6 requires extensive use of binary numbers and logic. Depending on the
reader’s background, this appendix should be read prior to that chapter. If not
covered elsewhere or it has been a while since one has studied numbering
systems, this appendix can serve as a basic introduction or a good review,
respectively. If one has had exposure to these topics in a previous course,
concurrent course, or from another textbook in the same course, then this
appendix can be skipped.

• Appendix C summarizes the assembly language instructions introduced in this
text.

• Appendix D provides answers to selected exercises marked with an � that
appear at the end of each chapter and at the end of Appendix B.

• The Glossary contains terms that are first introduced in italics in the text. The
descriptions of terms in glossary should not be used in lieu of the complete
descriptions in the text but rather they serve as a quick review and reminder
of the basic meaning of various terms. Should a more complete description be
needed, then index can guide the reader to the appropriate pages where the terms
are discussed in more detail.

viii Preface

Scope

This text includes the necessary fundamentals of assembly language to allow it to
be used as either a stand-alone text in a one-semester assembly language course or a
companion text in a computer organization and architecture course. As with any
text, decisions then must be made on what should be included, excluded, empha-
sized, and deemphasized. This text is no exception in that it does not include every
idiosyncrasy of assembly language and thus it might not contain some of the
favorite sub-topics of various instructors. Some of these might include 16-bit
processing and Windows programming among others, but these, of course, can be
supplemented at the instructor’s discretion. However, what is gained is that readers
should be able to write logically correct programs in a minimal amount of time,
which is the original intent of this text.

The Intel architecture is used because of its wide availability, and Microsoft
Assembler (MASM) is used due to a number of high-level control structures that
are available in that assembler. Note that Java is a registered trademark of Oracle
and/or its affiliates, Intel and Pentium are trademarks of Intel Corporation, and
Visual Studio, Visual C++, and Microsoft Assembler (MASM) are registered
trademarks of Microsoft Corporation.

Audience

It is assumed that the reader of this book has completed a two-semester introductory
course sequence in a high-level language such as C, C++, or Java. Although a
student might be able to use this text only after a one-semester course, an additional
semester of programming in a high-level language is usually preferred to allow for a
better understanding of the material due to increased programming skills and
knowledge of data structures, specifically stacks and linked lists.

Acknowledgements

The author wishes to acknowledge both his editor Wayne Wheeler and associate
editor Simon Rees for their assistance; thank his reviewers Mark E. Bollman of
Albion College, James W. Chaffee of the University of Iowa, and Takako Soma of
Illinois College for their suggestions; and offer personal thanks to his wife Kim-
berly A. Streib and son Daniel M. Streib for their patience. On a special note, this
second edition is written in remembrance of Curt M. White who served as a
reviewer of the first edition.

Preface ix

Feedback

As with any work, the possibility of errors exists. Any comments, corrections, or
suggestions are welcome and should be sent to the e-mail address listed below. In
addition to copies of the complete programs at the end of each chapter, any sig-
nificant corrections can also be found at the Web site listed below.

Website: http://www.jtstreib.com/GuideAssemblyLanguage.html

Jacksonville, Illinois, USA James T. Streib
September 2019 e-mail: james.streib@jtstreib.com

x Preface

http://www.jtstreib.com/GuideAssemblyLanguage.html
mailto:james.streib@jtstreib.com

Contents

1 Variables, Registers, and Data Movement . 1
1.1 Introduction . 1
1.2 The First Program . 2
1.3 Variable Declaration . 4
1.4 Immediate Data . 6
1.5 Registers . 7
1.6 Data Movement . 10
1.7 Character Data . 11
1.8 Errors . 13
1.9 Complete Program: Implementing Inline Assembly in C 13
1.10 Summary . 15
1.11 Exercises (Items Marked with an * Have Solutions

in Appendix D) . 15

2 Input/Output . 17
2.1 Introduction . 17
2.2 Hello World . 17
2.3 Integer Output . 19
2.4 Integer Input . 21
2.5 Complete Program: Using Input, Data Transfer,

and Output . 24
2.6 Summary . 25
2.7 Exercises (Items Marked with an * Have Solutions

in Appendix D) . 25

3 Arithmetic Instructions . 29
3.1 Addition and Subtraction . 29
3.2 Multiplication and Division . 32
3.3 Implementing Unary Operators: Increment, Decrement,

and Negation . 36
3.4 Order of Operations with Binary and Unary Operators 39
3.5 Complete Program: Implementing I/O and Arithmetic 42

xi

3.6 Summary . 43
3.7 Exercises (Items Marked with an * Have Solutions

in Appendix D) . 44

4 Selection Structures . 47
4.1 Introduction . 47
4.2 If-Then Structure . 48
4.3 If-Then-Else Structure . 53
4.4 Nested If Structures . 54
4.5 Case Structure . 58
4.6 Characters and Logical Operations . 59
4.7 Arithmetic Expressions in High-Level Directives 64
4.8 Complete Program: Using Selection Structures and I/O 67
4.9 Summary . 70
4.10 Exercises (Items Marked with an * Have Solutions

in Appendix D) . 70

5 Iteration Structures . 73
5.1 Pre-test Loop Structure . 73
5.2 Post-test Loop Structures . 76
5.3 Fixed-Iteration Loop Structures . 78
5.4 Loops and Input/Output . 81
5.5 Nested Loops . 85
5.6 Complete Program: Implementing the Power Function 87
5.7 Summary . 90
5.8 Exercises (Items Marked with an * Have Solutions

in Appendix D) . 90

6 Logic, Shifting, Rotating, and Stacks . 95
6.1 Introduction . 95
6.2 Logic Instructions . 96
6.3 Logical Shift Instructions . 100
6.4 Arithmetic Shift Instructions . 105
6.5 Rotate Instructions . 108
6.6 Stack Operations . 111
6.7 Swapping Using Registers, the Stack, and the xchg

Instruction . 113
6.8 Complete Program: Simulating an OCR Machine 115
6.9 Summary . 119
6.10 Exercises (Items Marked with an * Have Solutions

in Appendix D) . 120

7 Procedures and Macros . 123
7.1 Procedures . 123
7.2 Complete Program: Implementing the Power Function

in a Procedure . 127

xii Contents

7.3 Saving and Restoring Registers . 130
7.4 Macros . 132
7.5 Conditional Assembly . 138
7.6 Swap Macro Revisited Using Conditional Assembly 141
7.7 Power Function Macro Using Conditional Assembly 145
7.8 Complete Program: Implementing a Macro Calculator 148
7.9 Summary . 155
7.10 Exercises (Items Marked with an * Have Solutions

in Appendix D) . 156

8 Arrays . 159
8.1 Array Declaration and Addressing . 159
8.2 Indexing Using the Base Register . 162
8.3 Searching . 166
8.4 Indexing Using the esi and edi Registers 168
8.5 Lengthof and Sizeof Operators . 173
8.6 Complete Program: Implementing a Queue 175
8.7 Complete Program: Implementing the Selection Sort 180
8.8 Summary . 185
8.9 Exercises (Items Marked with an * Have Solutions

in Appendix D) . 185

9 Strings . 189
9.1 Introduction . 189
9.2 String Instructions: Moving Strings (movsb) 191
9.3 String Instructions: Scanning (scasb), Storing (stosb),

and Loading (lodsb) . 194
9.4 Array of Strings . 196
9.5 String Instructions: Comparing Strings (cmpsb) 198
9.6 Complete Program: Searching an Array of Strings 204
9.7 Summary . 206
9.8 Exercises (Items Marked with an * Have Solutions

in Appendix D) . 207

10 Floating-Point Instructions . 209
10.1 Memory Storage . 209
10.2 Floating-Point Register Stack . 210
10.3 Pushing and Popping . 210
10.4 Simple Arithmetic Expressions . 213
10.5 Complex Arithmetic Expressions . 215
10.6 Mixing Floating-Point and Integers . 219
10.7 Input/Output . 221

10.7.1 float and real4 . 222
10.7.2 double and real8 . 223

Contents xiii

10.7.3 long double and real10 225
10.7.4 Inline Assembly . 225

10.8 Comparisons and Selection Structures 226
10.9 Complete Program: Implementing an Iteration Structure 229
10.10 Complete Program: Implementing an Array 232
10.11 Summary . 234
10.12 Exercises (Items Marked with an * Have Solutions

in Appendix D) . 235

11 64-Bit Processing . 237
11.1 Four General Purpose Registers . 237
11.2 Other 64-Bit Registers . 240
11.3 64-Bit Integer Output . 241
11.4 64-Bit Integer Input . 245
11.5 Logic and Arithmetic Applications . 247

11.5.1 Shift and Rotate . 247
11.5.2 Logic . 249
11.5.3 Arithmetic . 250

11.6 Control Structures . 251
11.7 Arrays . 254
11.8 Procedures and Macros . 254

11.8.1 Calling 64-Bit Procedures . 255
11.8.2 Using a Macro to Call printf 256

11.9 Complete Program: Reversing an Array 258
11.10 Summary . 260
11.11 Exercises (Items Marked with an * Have Solutions

in Appendix D) . 261

12 Selected Machine Language Instructions . 263
12.1 Introduction . 263
12.2 inc and dec Instructions . 264
12.3 mov Instruction . 266
12.4 add and sub Instructions . 271
12.5 mov offset and lea Instructions . 272
12.6 jmp Instructions . 274
12.7 Instruction Timings . 275
12.8 Floating-Point and 64-Bit Instructions 276

12.8.1 Floating-Point Instructions . 277
12.8.2 64-Bit Instructions . 277
12.8.3 Memory Addressing . 280

12.9 Complete Program: 32-Bit Assembly Listing 281
12.10 Complete Program: Floating-Point and 64-Bit

Assembly Listing . 283

xiv Contents

12.11 Summary . 284
12.12 Exercises (Items Marked with an * Have Solutions

in Appendix D) . 285

Appendix A: Directions for MASM in Visual Studio 2019
Community Edition . 289

Appendix B: Binary, Hexadecimal, Logic, Arithmetic,
and Data Representation . 293

Appendix C: Selected Assembly Language Instructions 319

Appendix D: Answers to Selected Exercises . 329

Glossary . 335

References . 339

Index . 341

Contents xv

1Variables, Registers, and Data
Movement

1.1 Introduction

High-level languages, such as C, C++, and Java, have similarities with natural
languages which help make programs easier to read and write whereas low-level
languages are closer to the machine and offer a look at the machine organization
and architecture. There is a one-to-many relationship between high-level languages
and low-level languages, where language translators such as compilers and inter-
preters convert each high-level instruction into many low-level instructions. The
native language of a particular machine is a low-level language known as machine
language and is coded in ones and zeros. Further, the machine language of an Intel
microprocessor is different than that of other microprocessors or mainframes, thus
machine language is not transferable from one type of machine to another.

Programming in machine language can be very tedious and error prone. Instead
of using ones and zeros, an assembly language has an advantage, because it uses
mnemonics (abbreviations) for the instructions and variable names for memory
locations, instead of ones and zeros. There is also a one-to-one correspondence
between the instructions in assembly language and in machine language. Programs
can be written more easily in assembly language and do not have many of the
disadvantages of programming in machine language. The advantage of program-
ming in assembly language over a high-level language is that one can gain a very
detailed look at the architecture of a computer system and write very efficient
programs, in terms of both increasing speed and saving memory.

Just as compilers convert a high-level language to a low-level language, an
assembler converts assembly language to machine language. Although some newer
compilers convert high-level languages (such as Java) to an intermediate language
(such as bytecode) which is then interpreted to machine language, the result is that
the final code is in the machine language of the machine the program is to be
executed. Figure 1.1 illustrates how a language might be translated.

© Springer Nature Switzerland AG 2020
J. T. Streib, Guide to Assembly Language, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-35639-2_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35639-2_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35639-2_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35639-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-35639-2_1

There are a number of assemblers available to convert to Intel machine language,
but the one used in this text is MASM (Microsoft Assembler). The method used for
assembling and executing a program will probably be explained by one’s instructor
or might be demonstrated by colleagues at one’s place of employment. However, if
one is reading this text independently and wants to run an assembly language
program on a home computer, the instructions can be found in Appendix A.

When learning any new programming language, whether high-level or
low-level, it is helpful to start with a very simple program. Often when learning a
high-level language, the first program is the infamous “Hello World” program,
which when keyed in allows the programmer to have a correctly compiled and
executable program. Unfortunately, when starting to learn a low-level language, the
input/output (I/O) facilities are much more complicated and it is not necessarily the
best place to start. As a result, this text will first look at some of the fundamentals of
assembly language and then subsequently examine I/O to verify that the funda-
mentals have been learned and implemented properly.

1.2 The First Program

The first program to be implemented will be the equivalent of the following C
program, which merely declares two variables, assigns a value to the first variable,
and then assigns the contents of the first variable to the second variable:

int main(){
int num1,num2;
num1=5;
num2=num1;
return 0;

}

Compiler Assembler

C-Like Languages
High-Level Languages

English-Like

Assembly Languages
Low-Level Language

Mnemonics

Machine Languages
Low-Level Language

1’s and 0’s

Fig. 1.1 High-level language and assembly language translation to machine language

2 1 Variables, Registers, and Data Movement

The assembly language program shown in Fig. 1.2 implements the same logic as
the C program above. Although at first it might look a little intimidating, it can
serve as a useful starting point in learning the basic layout and format of an
assembly language program.

The first thing to understand is that some of the statements above are directives,
while others are instructions. Although it will be discussed in more detail later,
simply put, instructions tell the central processing unit (CPU) what to do, whereas
directives tell the assembler what to do. Similar to directives, operators also tell the
assembler what to do with a particular instruction.

The .686 at the beginning of the program is a directive and indicates that the
program should be assembled to run on a 686 processor such as the Pentium Pro or
newer processor.

The .model flat directive specifies that the program uses protected mode
which indicates that 32-bit addresses will be used and thus it is possible to address
4 GB of memory. Although there exist some previous forms of addressing, this
protected mode is fairly common now, is simpler to understand, and can address
more memory. The c in the model directive indicates that it can link with C and
C++ programs and is needed to run in the Visual C++ environment.

The .stack directive indicates the size of the stack in hexadecimal (see
Appendix B) and indicates the stack should be 100 hexadecimal bytes large, or 256
bytes. The use of the stack will be discussed later in Chap. 6. The .data and
.code directives will be discussed shortly, but the proc directive stands for
procedure and indicates that the name of the procedure is main. Although other
names can be used, the name main is similar to naming a C, C++, or Java program
main and allows the assembly program to be run independently of other programs.
The ret instruction serves as a return 0 statement as in C or C++. The main
endp label and directive indicate the end of the procedure and the end directive
indicates the end of the program for the assembler.

num1 sdword ? ; first number

num2 sdword ? ; second number

.code

main proc

mov num1,5 ; initialize num1 with 5

mov eax,num1 ; load eax with contents of num1

mov num2,eax ; store eax in num2

ret

main endp

end

.686

.model flat, c

.stack 100h

.data

Fig. 1.2 First assembly language program

1.2 The First Program 3

In the past, different assembly languages have used specific columns to place the
various fields of the assembly language instructions. Although the rules as to which
exact columns the fields need to be placed in have become more relaxed, it is still
customary to line up the fields in columns to help with the readability of the code.

In order from left to right, the four columns or fields of an instruction are the
label, operation code (opcode), operand, and comment fields. The first field is
typically reserved for the names of variables and possibly labels used for branching
to various instructions.

The second field is typically used for operation codes (opcodes) that represent
executable instructions and also assembler directives. The third field, typically only
separated by a space from the second field, is used for operands of which there can
be anywhere from zero to three operands. The optional last field is typically used
for comments, but note that comments are not restricted to the fourth field, can start
anywhere on a line, and must begin with a semicolon.

As an example, consider Fig. 1.3 illustrating a couple of lines from the previous
program. Note that although the label, opcode, and comment fields typically line
up, the operand field is usually separated only by a single space from the opcode
field. Also as can be seen, there are two major sections to an assembly language
program, the data segment and the code segment indicated by the .data and
.code directives. The next section will discuss the data segment, while the fol-
lowing section will discuss the code segment.

1.3 Variable Declaration

The data segment in the program above declares two variables called num1 and
num2 as indicated by the names listed in the label field of each of these two lines.
The rules for variable names are not unlike high-level languages, with some minor
differences. Similar to high-level languages, a variable name should begin with a
letter and then be followed by letters or digits. They can also include the special
symbols _, @, or $ anywhere in the name, but typically these three symbols should
be avoided to help with readabilty. Unlike languages such as C, C++, and Java, the

Label Opcode Operand Comment
.data

num1 sdword ? ; first number
num2 sdword ? ; second number

.code
main proc

mov num1,5 ; initialize num1 with 5
mov eax,num1 ; load eax with contents of num1
mov num2,eax ; store eax in num2
ret

Fig. 1.3 Label, opcode, operand, and comment fields

4 1 Variables, Registers, and Data Movement

names are not case sensitive, so the variables cat and CAT refer to the same
memory location. The maximum length of a variable name is 247 characters, but
typically a variable is only 1–10 characters long. Table 1.1 contains some examples
of valid and invalid variable names.

When declaring a variable, the opcode field has the assembler directive
sdword, which stands for signed double word, is 32 bits long, and is the same as
an int variable in C. The word bit stands for binary digit, where 1 bit can hold a
single binary digit, a 0 or a 1, and a group of 8 bits is called a byte. On the Intel
processor, a word of memory or a signed word, sword, contains 2 bytes or 16
bits, and a double word, dword, or signed double word, sdword, contains 4 bytes
or 32 bits. Should the reader not have had previous experience with bits, bytes, and
binary numbers, or just needs a good review, then refer to Appendix B. Note that
the 64-bit floating-point number, real8, and the 64-bit quad word, qword, are
discussed in Chaps. 10 and 11, respectively.

There are other declarations possible, as shown in Table 1.2, indicating the
number of bits allocated to each data type. Also included is the range of values that
can be stored in each type of memory location. For now, this text will use only
signed double words for positive and negative integers and bytes for characters,
both for the sake of simplicity.

The third field, or operand field, for the two variables in the declaration section
of the previous program each contains a question mark, which indicates that the
variable would not be initialized by the assembler. It is also possible to put a
number in place of the question mark, which would cause the assembler to initialize
the variable at assembly time. This is similar to initializing a variable in C when one
writes the following,

Table 1.1 Valid and invalid
variable names

Valid Invalid

Auto 1num

num1 7eleven

z28 57chevy

Table 1.2 Types, number of
bits, and range of values

Type Number of
bits

Range (inclusive)

sdword 32 –2,147,483,648 to
+2,147,483,647

dword 32 0 to +4,294,967,295

sword 16 –32,768 to +32,767

word 16 0 to +65,535

sbyte 8 –128 to +127

byte 8 0 to +255

1.3 Variable Declaration 5

int num3 = 5;

and the equivalent of the above C code in assembly language is as follows:

num3 sdword 5 ; num3 initialized to 5 at assembly time

Lastly, comments can be in the fourth field or prior to the line of code they are
describing, and in each case they must be preceded by a semicolon. Both types of
comments are used in assembly language, where comments located prior to a line of
code tend to be more general in nature, while the ones to the right tend to be specific
to the line they are on. Comments are usually not placed off to the side as much in
high-level languages, due to the indenting of code in selection and iteration
structures. However, since assembly language is typically not indented, there is
plenty of room to the right and comments are often placed there.

1.4 Immediate Data

Moving from the data segment to the code segment, if one does not initialize a
variable in the data segment, how does one assign a constant to a memory location?
The instruction necessary to do this is the mov instruction, pronounced “move,” but
be careful not to spell it with the letter e at the end or it will cause a syntax error. A
mov instruction always moves information from the operand on the right, called the
source, to the operand on the left, called the destination. The mov instruction is
similar to the assignment symbol, the equals sign in C, C++, and Java, where the
instruction does not necessarily move data, but rather makes a copy of it. Some of
the formats of the mov instruction are shown in Table 1.3 and the abbreviations
stand for the following:

imm = immediate mem = memory reg = register

Table 1.3 Mov instructions

Instruction Meaning

mov mem,imm move the immediate data to memory

mov reg,mem move the contents of memory to a register

mov mem,reg move the contents of a register to memory

mov reg,imm move immediate data to a register

mov reg,reg move the contents of the source (second) register to the
destination (first) register

6 1 Variables, Registers, and Data Movement

For example, if one wants to move the integer 5 into the memory location num1,
such as num1=5; in the previous listed C code, then the corresponding assembly
language instruction would be as shown below and also shown in the previous
assembly language code segment:

mov num1,5

The variable num1 is the previously declared memory location (abbreviated as
mem in Table 1.3) and 5 is what is known as an immediate value (abbreviated as
imm in Table 1.3). The reason the integer is known as immediate data is because it
is immediately available in the assembly language instruction as a part of the
instruction and it does not need to be retrieved from a variable in memory. For more
information on how data is stored immediately in an instruction, see Chap. 12.

1.5 Registers

As can be seen, the initializing of a variable with an immediate value is relatively
easy, so how does one transfer the contents from one memory location to another?
If there is one thing that the reader should learn about computers, it is that data is
typically not moved directly from one memory location to another. Although the
high-level C/C++/Java instruction y=x; looks as though the contents of memory
location x are being copied directly to y, in reality it has to in a sense make a
detour. With the exception of a few specialized string processing instructions, the
way most computers work is that the contents of one memory location in random
access memory (RAM) need to be moved or loaded into the central processing unit
(CPU) and from there moved or stored back into a memory location in RAM. This
is accomplished via a fast short-term memory location in the CPU called a register,
where in some computers registers might be called accumulators.

Initially the contents of the register and memory location y are indeterminate.
The contents of memory location x are first copied into the register by an operation
that is often generically called a load operation. Then the contents of the register are
copied into the memory location y by an operation that is often generically called a
store operation. The results of these two operations are illustrated in the green cells
in Fig. 1.4. Although some computers have instructions called load and store, as
will be seen shortly in the Intel processor, these load and store operations can both
be accomplished with the mov instruction.

In examining any new processor architecture, one of the first things one
should do is examine the register set of the processor. There are a number of
registers in all processors, but the ones that are accessible to the programmer are
called general purpose registers. The original Intel processors were only 16-bit
machines, hence their general-purpose registers were only 16 bits long. These
registers were called ax, bx, cx, and dx. When the 386 microprocessor came
along in the late 1980s, it used 32-bit registers, so the original four register names

1.4 Immediate Data 7

were preceded by the letter e to indicate the extended length from 16 to 32 bits. So,
the four 32-bit general purpose registers in an Intel processor are called eax, ebx,
ecx, and edx. Later in the early 2000s when AMD and Intel introduced their
64-bit processors, the general-purpose registers were preceded with the letter r and
called rax, rbx, rcx, and rdx. However, since there are some special consid-
erations when using the 64-bit registers, they will be discussed in Chap. 11.

Continuing, it should further be noted that the four original 16-bit registers are
still accessible as the lower order, first 16 bits of the 32-bit extended registers as
indicated in Fig. 1.5. Not only is the ax register the first 16 bits of the eax register,
but the ax register is further subdivided into the higher order 8 bits and lower-order
8 bits, as the ah register and the al register, respectively. Although the lower 16
bits of each 32-bit register have their own name, such as ax, the upper 16 bits of the
32-bit register do not have their own name. If they do not have their own name, can
they still be accessed? The answer is yes, and this will be discussed later in Chap. 6.
Only a drawing of the eax, ax, ah, and al registers is given in Fig. 1.5, but the
same drawing can be applied to the other registers as well, by substituting the letters
b, c, and d for the letter a in the figure.

Each of the above four general purpose registers can be used for data movement,
and as will be seen later they can also be used for arithmetic and logic. Further, they
also have some special purposes as indicated by the letters a, b, c, and d in the
names of the four registers. Although all registers might be called accumulators on
some machines, only the eax register is sometimes referred to as the accumulator
in the Intel processor because it is useful in various arithmetic operations. The ebx

eax

31 16 15

ax

ah al

8 7 0

Fig. 1.5 Format of the eax, ax, ah, and al registers

CPU

Register Load

RAM

Memory Location x

Store
 Memory Location y

5

5

5

Fig. 1.4 Load and store
operations

8 1 Variables, Registers, and Data Movement

register is sometimes called the base register and is useful in array processing. The
ecx register can be used as a counter and is useful in special loop instructions.
Lastly, the edx register is used as a data register in various arithmetic instructions.
For now, the register that will be used the most is the eax register which will be
demonstrated shortly.

Beyond the above four general purpose registers, there are other registers that will
be used later in this text. In particular, these are ebp, esp, esi, and edi. The first
two have to do with the stack and are usually accessed indirectly. The esp is a stack
pointer and indicates the top of the stack and ebp is the base pointer and indicates
the bottom of the stack, both of which will be discussed further in Chap. 6. The esi
and edi registers indicate the source index and the destination index, respectively,
and are useful with arrays and extremely useful with strings as will be seen in
Chaps. 8 and 9. The cs, ds, and ss registers are 16-bit segment registers that point
to the code, data, and stack segments and are set by the .code, .data, and .stack
directives, respectively. Three other segment registers, es, fs, and gs, are extended
segment registers that can be used for data. Beyond this basic information, the segment
registers are not needed for the rest of this text.

Two more registers are the eip and eflags registers. The former is the
instruction pointer and indicates which instruction is going to be executed next.
Although not directly accessible, it is indirectly accessible when changing the flow
of control of the program using the equivalents of selection and iteration structures
discussed in Chaps. 4 and 5. Among other functions, the eflags register indicates
the status of the CPU after executing various instructions and directs the flow of
control of the program as will be discussed further in Chap. 4. For the sake of
convenience, Table 1.4 summarizes the registers used most in this text.

Table 1.4 Summary of 32-bit registers

32-Bit
registers

Name 16- and 8-bit
sub-registers

Brief description and/or
primary use

eax Accumulator ax,ah,al Arithmetic and logic

ebx Base bx,bh,bl Arrays

ecx Counter cx,ch,cl Loops

edx Data dx,dh,dl Arithmetic

esi Source index si Strings and arrays

edi Destination
index

di Strings and arrays

esp Stack pointer sp Top of stack

ebp Base pointer bp Stack base

eip Instruction
pointer

ip Points to next instruction

eflags Flag flags Status and control flags

1.5 Registers 9

1.6 Data Movement

Returning back to the problem of transferring information from one memory
location to another, the data needs to pass through an intermediate stop in a register.
What should be noted in Table 1.3 concerning the various formats of the mov
instruction is that there is no format to move from one memory location to another
memory location. In other words, there is no format for mov mem,mem. Again, if
there is one thing that should be learned from studying assembly language, it is that
instructions typically do not exist for memory to memory operations and such
transfers must first go through a register. So, if the instruction num2=num1; needs
to be implemented, mov num2,num1 cannot be used. Instead, the contents of
num1 must be copied to a register and then the contents of the register copied to the
memory location num2, as shown below:

; num2 = num1
mov eax,num1 ; load eax with the contents of num1
mov num2,eax ; store the contents of eax in num2

Although at first this might seem a little awkward, it is a fundamental concept of
computer architecture and low-level languages. It is not unique to the Intel pro-
cessor, but exists in other processors as well. Once one gets used to the idea, it just
becomes a matter of habit for the experienced assembly language programmer. Also
notice in the above that although the semicolon is at the beginning instead of at the
end in order to form a comment, the original C instruction makes a nice comment
prior to the assembly language code segment.

Similar to the previous generic drawing in Fig. 1.4, the initial contents of eax
and num2 are indeterminate. When the two instructions are done executing in
Fig. 1.6, the number 5 in num1 is copied into the eax register and then the number
5 is copied from the eax register into the variable num2.

In the previous code segment, notice that the comments on the side indicate load
and store instead of move. The reason for this is that on other types of CPUs, the act
of moving the contents of memory into a register or an accumulator in the CPU is
often called a load operation, whereas the reverse operation of moving the contents
of a register in the CPU into memory is called a store operation.

 eax
mov eax,num1

num1

mov num2,eax

num2
5

5

5

Fig. 1.6 Mov instruction

10 1 Variables, Registers, and Data Movement

Since registers are located in the CPU itself, they can be accessed much faster
than memory and it is possible to leave data in the register to gain the advantage of
speed. In fact, this is one of the reasons why programmers sometimes program in
assembly language. Although it might be tempting to use only registers, it should be
noted that there are only four general purpose registers, where as mentioned above
many of those registers in spite of being general purpose registers also have spe-
cialized uses. For example, if the ecx register was being used for loop control, the
ebx register for indexing an array, and the edx register for multiplication (as will
all be explained and demonstrated later), then eax would be the only register left. It
might then be the case that data would have to be moved from the eax register
back into memory so that the eax register could be freed up to load more data in
from memory.

Furthermore, since register names are not very descriptive of their content and
memory locations can be given descriptive variable names as discussed in the
previous section, it is usually easier to program using variable names rather than
trying to remember what is stored in which register at any particular time in a
program. Although there is a performance penalty when moving data back into
memory, the penalty for lost time trying to debug an assembly program as a
beginning student of assembly language programming is much greater during the
course of a semester. Also, since most programs written in the academic environ-
ment are used only a few times (for testing and grading), as opposed to being
executed many times in the industrial environment, time is better spent writing a
program that is easier to read, understand, and debug. Besides, it is usually easier to
go back and modify an easy-to-read program to make it run faster and use less
memory than it is to try to debug a supposedly optimized and difficult-to-read
program. Once a program is written and works properly, it can always be easily
modified to perform faster and use less memory in the places where it counts the
most. These techniques will be introduced later, on an as-needed basis. So for now,
resist the temptation to save that extra byte or nanosecond and make sure that your
programs are implemented logically, correctly, and are easy to read and modify.

1.7 Character Data

Character data can also be declared. For example, to declare two variables in C/C+
+/Java, the first called grade1 which is not initialized and the second called
grade2 initialized to the letter ‘A’, would be done as follows:

char grade1;
char grade2='A';

The same can be done in assembly language similar to using sdword previ-
ously, except byte is used instead. Although shown here using single quotes, note
that character data can also be enclosed in double quotes:

1.6 Data Movement 11

grade1 byte ?
grade2 byte 'A'

Further, a string as an array of byte can also be declared. Although the
instructions to process a string will be postponed until Chap. 9, it is sometimes
necessary to output a string as a message or to serve as a prompt for input.
Occasionally a string can be declared as separate letters as follows:

grades byte 'A','B','C'

But unless each letter is going to be processed separately, they are usually
declared as a complete string for the sake of readability as in the following example:

name byte 'Abe'

As will be seen in Chap. 2, strings are often terminated with a binary zero taking
up 1 byte to indicate the end of the string. This is often used in output statements
and is declared as follows:

name byte 'Abe',0

Continuing, recall the code in Fig. 1.2 works well when moving numbers, but
what if one wanted to move a character from one location to another? The same
principles apply, except instead of moving 32-bit double words around, only a
single byte needs to be moved because a character is only 8 bits long. For example,
how would the following C code segment be implemented in assembly language?

char letter1,letter2;
letter1 = 'A';
letter2 = letter1;

As before, the variables letter1 and letter2 would need to be declared in
the data section, but instead of being declared as type sdword, they would need to
be declared simply as type byte. The first line of executable code would be
implemented as an immediate instruction and the transfer of data between the
memory locations would be done via a register, but instead of a 32-bit register, only
an 8-bit register would be used. The following assembly language code segment
implements the above C code:

.data
letter1 byte ?
letter2 byte ?

.code
; letter1 = 'A'
mov letter1,'A' ; store 'A' in letter1
; letter2 = letter1
mov al,letter1 ; load al with letter1
mov letter2,al ; store al in letter2

12 1 Variables, Registers, and Data Movement

What if one wanted to move more than a single character? Again, this can be
done using special string instructions which will be introduced in Chap. 9.

1.8 Errors

As with high-level programs, there can of course be various types of errors in
assembly language. The first type of error usually encountered is a syntax error
which is an error in the grammar of the language. For example, if move was typed in
the above code segment instead of mov, then a syntax error would occur. The second
type of error is an execution or a run-time error, in which although the syntax might
be correct, the instruction being executed cannot be performed by the processor.
A typical error like this might be a division by zero error, where division will be
discussed in Chap. 3. The last type of error is the most difficult to resolve because it
does not give the programmer an error message and is known as a logic error. In the
previous code segment, what would happen if the last two lines were reversed? The
contents of letter1 would never be copied from the al register into letter2
because the contents of letter2 would contain the indeterminate contents of the
al register. At first, one will probably make a number of syntax errors due to the
newness of the language, but with the help of the assembler’s error messages and
with practice, the number of syntax errors will decrease. However, as with any
language, it is the logic errors that can take the most time to debug, but with careful
attention to the logic of the code being written and following many of the sugges-
tions presented throughout this text, the number of logic errors can be minimized.

1.9 Complete Program: Implementing Inline Assembly
in C

If one looks at the first complete C and assembly programs at the beginning of this
chapter, what is noticeably absent is any form of input/output (I/O). The reason for
this is that I/O in stand-alone assembly language programs can be quite complex.
To help simplify the I/O in stand-alone programs, it is possible to use the I/O from
the C programming language as introduced in the next chapter. Until then, in order
to get a glimpse to see that the above programs do indeed work, it is possible to run
32-bit assembly instructions in a C program using Visual C++. This process is
known as inline or embedded assembly and is a quick way to test program seg-
ments. However, there are some disadvantages to this method. Note that 64-bit
processing introduced in Chap. 11 and also the high-level assembly directives if
and while introduced in Chaps. 4 and 5, respectively, cannot be used in
embedded assembly. These are some of the reasons why stand-alone assembly
language programs are used in all subsequent chapters, but for quick testing of
some assembly language code segments, inline assembly can be convenient.

1.7 Character Data 13

In order to include assembly language instructions in a C program, the ___asm{
statement must be placed at the beginning of the assembly language code segment,
which is a double underscore and the word asm followed by an opening brace. After
including the needed assembly language statements, a closing brace } is included at
the end of the segment. The advantage of using inline assembly is that C input and
output can be used to see if the processing has been done correctly. Further, input
and output from the C language will be utilized in stand-alone programs since it is
easier to use and will be described in more detail in the next chapter.

To see how assembly language can be included in a C program, consider the
following program:

#include <stdio.h>
int main(){

int num1,num2;
num1 = 5;
num2 = num1;
printf("%s%d n","The answer is: ",num2);
return 0;

}

Although some of the code above may seem a bit cryptic to those readers who
are not familiar with C, where many of the details of the above will be discussed in
Chap. 2, it should be obvious the printf is the output of the variable num2. The
key part of the above program is the assignment statement num2=num1; and given
the mov instruction and the eax register presented in this chapter, it can easily be
converted to assembly language. The above C program can be implemented using
assembly language for the assignment statement shown below:

#include <stdio.h>
int main(){

int num1,num2;
num1 = 5;
 asm {

mov eax,num1
mov num2,eax

}
printf("%s%d n","The answer is: ",num2);
return 0;

}

Go ahead and key in the above program using Visual C++ (see Appendix A.1)
to prove to yourself that the code works. Also, feel free to try some of the other
instructions introduced in this chapter to become more familiar with the mov
instruction and registers. For example, try converting the num1=5; statement to
assembly language and move it to the inline assembly section of the program.

14 1 Variables, Registers, and Data Movement

1.10 Summary

• Directives tell the assembler what to do and instructions tell the processor what to
do.

• A byte is 8 bits, a word is 16 bits, a double word (dword) is 32 bits, and a
quad word (qword) is 64-bits.

• The four 32-bit general purpose registers are eax, ebx, ecx, and edx.
• Immediate data is data that appears in an operand.
• The mov instruction cannot move data directly from one memory location to
another memory location.

• Typically, a variable name will begin with a letter and is followed by any
combination of letters and numbers. Although _, @, or $ can be used anywhere in
the name, in this text the use of these characters is avoided.

• To declare integers, use sdword and for characters, use byte.
• Inline or embedded assembly is good for testing small assembly language code
segments, but it has limitations. Note that high-level directives, such as if
statements and while structures, and also 64-bit processing cannot be used in the
segment.

• As with high-level languages, error messages are given for syntax and execution
(or run-time) errors, but not for logic errors.

1.11 Exercises (Items Marked with an * Have Solutions
in Appendix D)

1. Which of the following are syntactically correct variable names in assembly
language?

A. RX8 B. 325i C. Total$
D. @1234 E. $1000 F. Pi3.14

2. Implement each of the following declarations in assembly language:

A. char initial;
B. char grade = 'B';
C. char x = 'P', y = 'Q';
D. int amount;
E. int count = 0;
F. int number = -396;

3. Assuming that the variables have been declared properly, indicate whether the
following statements are syntactically correct or incorrect. If incorrect, indicate
what is wrong with the statement:

1.10 Summary 15

A. move cat,5 B. mov dog,cat *C. mov eax,ebx
D. mov mouse,-7 *E. mov 1,frog F. mov horse,ecx
G. mov rat,-eax *H. mov edx,2

4. Assuming all the variables are declared as sdword, write assembly language
instructions to implement each of the following C statements or segments:

A. i = 1;
B. x = y;
C. c = 2;

b = c;
a = b;

D. x = y = 1;
E. a = 1;

b = 2;

c = a;

a = b;

b = c;

5. Assuming all the variables are declared as byte, write assembly language
instructions to implement each of the following C statements or segments:

A. a = 'B';
B. b = c;
C. d = 'E';

e = d;
D. d = 'z';

a = d;
b = a;

*E. a = '2';
'?';b =

a = b;

16 1 Variables, Registers, and Data Movement

2Input/Output

2.1 Introduction

As mentioned in Chap. 1, input and output (I/O) in assembly language can be quite
difficult and complicated. Although the exploration of I/O at the assembly language
level is a subject worthy of study, it often times gets in the way of many of the other
important topics and reasons for studying assembly language. The result is that it is
helpful to have a simplified form of input/output. To that end, it is possible to access
the input/output capabilities that are available in the C programming language and
of the various high-level languages that MASM can interface with, C is probably
the easiest. If one has studied C before, then the following will seem fairly
straightforward. If one has not studied C previously, but rather has experience with
other languages like C++ or Java, the transition to the C language I/O should not be
too difficult. Although all the fundamentals of I/O in C that are necessary for this
text will be presented in this chapter, the reader can always refer to any number of C
programming language texts to explore some of the other options available. Note
that floating-point I/O is essentially the same and the subtleties will be discussed in
Chap. 10. Also, 64-bit I/O is different and after learning the fundamentals of 32-bit
I/O in this chapter, the differences for 64-bit I/O will be discussed in Chap. 11.

2.2 Hello World

When learning a new programming language, one of the first programs learned is
the infamous “Hello World” program. The advantage of such a program is to ensure
that the program has compiled or assembled correctly and subsequently executed
properly. This program in C often appears as follows:

© Springer Nature Switzerland AG 2020
J. T. Streib, Guide to Assembly Language, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-35639-2_2

17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35639-2_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35639-2_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35639-2_2&domain=pdf
https://doi.org/10.1007/978-3-030-35639-2_2

#include <stdio.h>
int main(){

printf("Hello World! n");
return 0;

}

where printf is the method used for output, the string to be output is in double
quotes, and the \n means advance to the next line, similar to using endl in a cout
statement in C++ and similar to the ln portion of a system.out.println()
statement in Java. The corresponding program to output “Hello World” in MASM
would appear as follows:

.686

.model flat, c

.stack 100h
printf PROTO arg1:Ptr Byte

.data
msg1 byte "Hello World!",0Ah,0

.code
main proc

INVOKE printf, ADDR msg1
ret

main endp
end

The PROTO directive, preceded by the label printf, indicates a prototype for the
function printf. When the assembler encounters the printf, it does not cause an
error but rather leaves space for the address of the instruction to be filled in later by the
linker prior to being loaded into memory for execution. The parameter arg1:Ptr
Byte indicates that the argument of the printfwill be a pointer to a string of bytes.

In order to call the printf function, the INVOKE directive is used, which is
like calling a subprogram (see Chap. 7), but is simpler to use because it takes care
of the parameter passing. However, be very careful to note that the INVOKE
directive destroys the contents of the eax, ecx, and edx registers. Again as
mentioned in Chap. 1, it is wise to save data in memory locations instead of leaving
them in registers to avoid the possibility of long debugging sessions.

Continuing, the argument ADDR msg1 in the INVOKE above indicates the address
of the string to be output. The actual message to be output is in the .data section as
msg1 byte “Hello World”,0Ah,0, where string data was discussed in Chap. 1.
The difference here is that the string is followed by a 0Ah, which is the hexadecimal
code for a new line, such as \n in C (see Appendix B for a discussion of hexadecimal).
The 0Ah is followed by a 0, which is the code to terminate a string used with output.

The above code is good for outputting a single string, but what if there is a need
to format and output a number of parameters? As a transition step to the ability to
output more than one argument, the original C program above could be rewritten as
follows:

18 2 Input/Output

#include <stdio.h>
int main(){

printf("%s n","Hello World!");
return 0;

}

The advantage of the above code segment is that the formatting is separated from
the data to be output. The %s indicates that there is a string in the first argument
following the current formatting argument. Although in C the formatting and data
are often together, their separation makes for a little cleaner code in assembly
language when there is more than one item to be output. Although the cleaner code
might not be readily apparent in the segment below, it paves the way for multiple
arguments in subsequent examples:

.686

.model flat, c

.stack 100h
printf PROTO arg1:Ptr Byte, printlist:VARARG

.data
msg1fmt byte "%s",0Ah,0
msg1 byte "Hello World!",0

.code
main proc

INVOKE printf, ADDR msg1fmt, ADDR msg1
ret

main endp
end

First note that the PROTO statement has an additional argument printlist:
VARARG, which indicates that a variable number of arguments can now follow the
first argument, where the first argument will now serve as the format string. In the
data declaration section, note that the %s is in a separate data declaration called
msg1fmt, where %s indicates that string data will be output. Also, the string to be
output is only terminated by the 0 string terminator and the 0Ah has been moved to
msg1fmt. Lastly, the first ADDR in the INVOKE directive references the format
string and the second one references the string to be output.

2.3 Integer Output

In addition to outputting a single string, the previous example can be expanded to
output multiple strings. Further, it can be expanded to output multiple integers or a
combination of strings and integers. The advantage of this is that the integer output

2.2 Hello World 19

can be identified to the users with matching strings. For example, in the following C
program, the integer 5 is output along with an identifying string:

#include <stdio.h>
int main(){

int number;
number 5;
printf("%s%d n","The number is: ",number);
return 0;

}

The first argument of the printf says that a string will be output (%s), fol-
lowed by an integer (%d), followed by a line feed. The second argument of the
printf is the string and the third is the variable number. The corresponding
MASM code is as follows:

.686

.model flat, c

.stack 100h
printf PROTO arg1:Ptr Byte, printlist:VARARG

.data
msg1fmt byte "%s%d",0Ah,0
msg1 byte "The number is: ",0
number sdword ?

.code
main proc

mov number,5
INVOKE printf, ADDR msg1fmt, ADDR msg1, number
ret

main endp
end

As in the last example of the previous section, the PROTO statement remains
unchanged. Note that the msg1fmt string has the %d added to it. The variable
number has been declared as a signed double word in the data section and the
number 5 assigned to it in the code segment. Lastly, the variable number has been
added as an argument to the INVOKE directive. Both msg1fmt and msg1 need
ADDR because they are pointers to the strings, but ADDR is not needed for number
because it is a simple integer variable.

The following example further illustrates how multiple arguments work and
includes two integers in addition to a string. It also includes cleaner output by
including better vertical spacing by using \n and better horizontal spacing by using
spaces in the string as shown below:

20 2 Input/Output

#include <stdio.h>
int main(){

int num1 5, num2 7;
printf(" n%d%s%d n n",num1," is not equal to ",num2);
return 0;

}

The above C program would be implemented in assembly as follows:

.686

.model flat, c

.stack 100h

printf PROTO arg1:Ptr Byte, printlist:VARARG
.data

msg1fmt byte 0Ah,"%d%s%d",0Ah,0Ah,0
msg1 byte " is not equal to ",0
num1 sdword 5
num2 sdword 7

.code
main proc

INVOKE printf, ADDR msg1fmt, num1, ADDR msg1, num2
ret

main endp
end

Without any change to the PROTO directive in the above program, there are now
three arguments after the msg1fmt string in the INVOKE directive. As mentioned
previously, the reason extra arguments are allowed is due to the VARARG in the
PROTO directive which allows for a variable number of arguments. Again, notice
that 0Ah is used instead of \n and the careful use of spaces in the string, both to
assist in the vertical and horizontal spacing. As an aside, also note that the variables
num1 and num2 are initialized in the data section during assembly time rather than
during execution time, corresponding to the prior C program.

2.4 Integer Input

Although having the ability to output is extremely important, it does lead to some
dull programs unless one can also input data. Just as printf can be invoked to
allow for output, so too can scanf be invoked for input. Instead of merely
assigning an integer to the variable number, the following C program inputs a

2.3 Integer Output 21

number from the user and then outputs the same number (note that when using
scanf, a warning message might be issued, where one can use scanf_s instead
or just ignore the warnings):

#include <stdio.h>
int main(){

int number;
scanf("%d",&number);
printf(" n%s%d n n","The number is: ",number);
return 0;

}

Notice in the above code that number is preceded with an ampersand (&) in the
scanf but not in the printf. Although experienced C programmers are probably
familiar with this, programmers coming from other languages might not be familiar
with it. The ampersand indicates the address of number is being passed to scanf
to allow the value read in from the keyboard to be passed back to the variable
number. Whereas with output, the value in number being passed to printf will
be output and since no number will be passed back, an ampersand is not needed.
The passing back of values through arguments is known as a reference parameter in
languages like C++, but the equivalent is not available in Java since values can be
returned from methods only via a return statement. The following assembly
program implements the above C program:

.686

.model flat, c

.stack 100h
printf PROTO arg1:Ptr Byte, printlist:VARARG
scanf PROTO arg2:Ptr Byte, inputlist:VARARG

.data
in1fmt byte "%d",0
msg1fmt byte 0Ah,"%s%d",0Ah,0Ah,0
msg1 byte "The number is: ",0
number sdword ?

.code
main proc

INVOKE scanf, ADDR in1fmt, ADDR number
INVOKE printf, ADDR msg1fmt, ADDR msg1, number
ret

main endp
end

22 2 Input/Output

Although there are a number of similarities between the scanf and printf
above, such as the similarity between the two prototypes, there are some important
details that need to be pointed out. First, note that a%s does appear in the input format,
because only an integer is being input in this example. Further, the input format is
terminated only by a 0 and does not contain a 0Ah. The reason is that during input a
new line is not needed because it is supplied by the user after the data has been entered
and they press the “enter” or “return” key, which supplies the new line on the screen.
Lastly, notice that the variable number is preceded by ADDR in the invoking of
scanf, but it is not preceded by ADDR in the printf. The reason for this is that
ADDR serves the same function as the ampersand (&) in C as discussed above.

Although the above code works, it is not very helpful to the user. The reason is
that when either the above C or the MASM program executes, there is just a cursor
blinking on the screen and no indication to the user that any input is needed or what
type of input is needed. Instead, as with any language, it is a good idea to prompt
the user for the type of input needed as shown in the C program below, where the
prompt and output message have been changed to specify an integer instead of
just a generic number:

#include <stdio.h>
int main(){

int number;
printf(" n%s","Enter an integer: ");
scanf("%d",&number);
printf(" n%s%d n n","The integer is: ",number);
return 0;

}

The corresponding assembly code is given as follows:

.686

.model flat, c

.stack 100h
printf PROTO arg1:Ptr Byte, printlist:VARARG
scanf PROTO arg2:Ptr Byte, inputlist:VARARG

.data
in1fmt byte "%d",0
msg0fmt byte 0Ah,"%s",0
msg1fmt byte 0Ah,"%s%d",0Ah,0Ah,0
msg0 byte "Enter an integer: ",0
msg1 byte "The integer is: ",0
number sdword ?

.code

2.4 Integer Input 23

main proc
INVOKE printf, ADDR msg0fmt, ADDR msg0
INVOKE scanf, ADDR in1fmt, ADDR number
INVOKE printf, ADDR msg1fmt, ADDR msg1, number
ret

main endp
end

Notice that the prompt in the C code does not contain a \n nor does the prompt in
the MASM code contain a 0Ah, because in both cases the cursor will remain on the
same line as the prompt awaiting the user to enter the integer, and then only when
the user presses the “enter” key will the cursor move to the next line.

2.5 Complete Program: Using Input, Data Transfer,
and Output

As one more modification to the above program to implement both the concepts
learned in Chap. 1 and this chapter, consider the following program. It prompts for
and inputs an integer into num1, copies it to num2, and then outputs the contents of
num2:

#include <stdio.h>
int main(){
int num1, num2;
printf(" n%s","Enter an integer for num1: ");
scanf("%d",&num1);
num2 num1;
printf(" n%s%d n n","The integer in num2 is: ",num2);
return 0;

}
This program is then implemented in assembly language as follows:

.686

.model flat, c

.stack 100h
printf PROTO arg1:Ptr Byte, printlist:VARARG
scanf PROTO arg2:Ptr Byte, inputlist:VARARG

.data
in1fmt byte "%d",0
msg0fmt byte 0Ah,"%s",0

24 2 Input/Output

num1 sdword ? ; first number
num2 sdword ? ; second number

.code
main proc

msg1fmt byte 0Ah,"%s%d",0Ah,0Ah,0
msg0 byte "Enter an integer for num1: ",0
msg1 byte "The integer in num2 is: ",0

INVOKE printf, ADDR msg0fmt, ADDR msg0
INVOKE scanf, ADDR in1fmt, ADDR num1
mov eax,num1 ; load eax with the content of num1
mov num2,eax ; store the contents of eax in num2
INVOKE printf, ADDR msg1fmt, ADDR msg1, num2
ret

main endp
end

2.6 Summary

• Use the PROTO and INVOKE directives to implement the C functions scanf and
printf.

• Be careful, the INVOKE directive destroys the contents of the eax, ecx,
and edx registers.

• Use separate formatting to make the assembly language equivalents more
readable.

• The 0Ah in assembly language is like a \n in C, an endl in C++, and a
println in Java.

• Be sure to terminate a string for output in assembly language with a 0.
• On output, do not forget to include an ADDR for strings.
• On input, do not forget to include an ADDR for all variables, which is like an & in C.
• For floating-point and 64-bit I/O see Chaps. 10 and 11, respectively.

2.7 Exercises (Items Marked with an * Have Solutions
in Appendix D)

1. Indicate whether the following statements are syntactically correct or incorrect.
If incorrect, indicate what is wrong with the statement:

2.5 Complete Program: Using Input, Data Transfer, and Output 25

A. printf PROTO arg1:Ptr Byte, printlist:VARARG
B. msg1fmt byte " n%s%d n",0
C. INVOKE printf, ADDR msg1fmt, ADDR number
D. msg2fmt byte 0Ah,0Ah,"%s",0Ah,0Ah,0
E. msg3fmt byte "%s%d", n,0

2. Assuming that the .data section is set up properly, what is wrong with the
logic of the following code segment? How could it be rewritten to avoid the
difficulty?

mov num1,5
mov eax,num1
INVOKE printf, ADDR msg1fmt, ADDR msg1, num2
mov num2,eax

�3. Given the following MASM program, what will be output to the screen? Be
sure to line everything up properly. Use a lowercase letter b to represent a blank
and the words blank line to represent a blank line:

.686

.model flat, c

.stack 100h
printf PROTO arg1:Ptr Byte, printlist:VARARG

.data
msg1fmt byte "%s%d",0
msg2fmt byte "%s%d",0Ah,0Ah,0Ah,0
msg3fmt byte "%s%d",0Ah,0
msg1 byte "x ",0
msg2 byte " y ",0
msg3 byte "z ",0
num1 sdword 1
num2 sdword 2
num3 sdword 3

.code
main proc

INVOKE printf, ADDR msg1fmt, ADDR msg1, num1
INVOKE printf, ADDR msg2fmt, ADDR msg2, num2
INVOKE printf, ADDR msg3fmt, ADDR msg3, num3
ret

main endp
end

26 2 Input/Output

4. Given the following MASM program, what will be output to the screen. Be
sure to line everything up properly. Use a lowercase letter b to represent a blank
and the words blank line to represent a blank line:

.686

.model flat, c

.stack 100h
printf PROTO arg1:Ptr Byte, printlist:VARARG

.data
msg1fmt byte 0Ah,"%s%d%s%d%s",0Ah,0
msg2fmt byte 0Ah,"%s%d",0Ah,0Ah,0
msg11 byte "The first number is ",0
msg12 byte ", but the second number is ",0
msg13 byte ",",0
msg2 byte "while the third number is ",0
num1 sdword 5
num2 sdword 7
num3 sdword 11

.code
main proc

INVOKE printf, ADDR msg1fmt, ADDR msg11, num1,
ADDR msg12, num2, ADDR msg13

INVOKE printf, ADDR msg2fmt, ADDR msg2, num3
ret

main endp
end

5. Implement the following C program in MASM. Be sure to use proper spacing
on all output. If necessary, first key in the C program and then implement the
MASM program to insure the MASM program works identically to the C
program:

#include <stdio.h>

int main(){

int x, y, z;
x 1;

y 2;

z 3;

printf(% n%d%s%d%s%d n n", x, " + ", y, " ",z);

return 0;

}

2.7 Exercises (Items Marked with an * Have Solutions in Appendix D) 27

6. Implement the following C program in MASM. Be sure to use proper spacing
on all output. If necessary, first key in the C program and then implement the
MASM program to insure the MASM program works identically to the C
program:

#include <stdio.h>

int main(){

int num1, num2;

printf(" n%s","Enter a value for num1: ");
scanf("%d",&num1);

printf(" n%s","Enter a value for num2: ");
scanf("%d",&num2);
printf(" n%s n n","num1 num2");

printf("%s%d%s%d n n"," ",num1," ",num2);

return 0;

}

7. Given the following input and output, write both the C and assembly code
necessary to make it look exactly as below. Pay careful attention to spacing and
the blank lines:

Input and Output

Enter a number: 1
Enter a larger number: 3
Enter an even larger
number: 5

1 < 3 < 5

5 > 3 > 1

8. Write an assembly language program to create the following input and output
with the spacing shown.

Enter a number: 1
Enter a number: 2

Numbers
1
2

28 2 Input/Output

3Arithmetic Instructions

3.1 Addition and Subtraction

After learning how to load a register, transfer data between memory locations, and
perform I/O, the next step is to learn how to perform various arithmetic operations.
One of the simplest ways to learn how to perform arithmetic in assembly language
is to first write the equation as a high-level statement. Assuming the integer vari-
ables num1 and num2 already contain values, then how could one implement the
following C statement in assembly language?

sum = num1 + num2;

Just like the discussion concerning data movement, where the contents of one
memory location cannot be copied directly into another memory location without
first being copied to a register, the same concept applies to arithmetic operations,
where arithmetic cannot be performed between two memory locations as indicated
in Table 3.1 concerning the add instruction.

Again note that an add mem,mem instruction does not appear in the list of
instructions, just as there was not a mov mem,mem listed previously. Instead, one
must usually move the contents of one memory location into a register, add the
contents of the other memory location to the register, and then copy the contents of
the register into the specified memory location. The following assembly language
code segment implements the C statement from above:

; sum = num1 + num2
mov eax,num1 ; load eax with the contents of num1
add eax,num2 ; add the contents of num2 to eax
mov sum,eax ; store eax in sum

© Springer Nature Switzerland AG 2020
J. T. Streib, Guide to Assembly Language, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-35639-2_3

29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35639-2_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35639-2_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35639-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-35639-2_3

As before, the C statement makes a nice general comment prior to the assembly
language code segment. In the above segment, the contents of num1 are copied into
the eax register, then the contents of num2 are added to eax, and lastly the
contents of eax are copied into the variable sum. Assuming num1 initially con-
tains a 5 and num2 contains a 7, then Fig. 3.1 shows the results after execution of
the previous code segment, where eax and sum shown in green contain a 12.

Although it is possible to use any of the other three registers and accomplish the
same task, it is usually better to use the accumulator, the eax register, because the
arithmetic instructions that use the eax register tend to use less memory and are
also a little faster, as will be seen in Chap. 12. Also, just like there are often many
ways to solve a problem in high-level languages, the same is true in low-level
languages. Further, just like some solutions are better solutions in high-level lan-
guages, the same is also true in low-level languages. For example, the previous
assembly code segment could have been written as follows:

mov sum,0 ; initialize sum to zero
mov eax, num1 ; load eax with the contents of num1
add sum, eax ; add the contents of eax to sum
mov eax, num2 ; load eax with the contents of num2
add sum, eax ; add eax to sum

Table 3.1 Add instructions

Instruction Meaning

add mem,imm add the immediate value to memory

add reg,mem add the contents of memory to the register

add mem,reg add the contents of the register to memory

add reg,imm add immediate value to the register

add reg,reg add the contents of the source (second) register to the
destination (first) register

eax

12

mov eax,num1

add eax,num2

num1

5

num2

7

mov sum,eax

sum

12

Fig. 3.1 Results of an
addition operation

30 3 Arithmetic Instructions

Although the above code segment works, in that sum contains the sum of
both num1 and num2, it is not necessarily implementing the original C statement:
sum = num1 + num2; but rather it is implementing the following C code segment:

sum = 0;
sum = sum + num1;
sum = sum + num2;

Although both of the above assembly language and C code segments work, in
that the variable sum contains the sum of both num1 and num2, the second one in
both languages is less efficient in terms of both memory and speed. With respect to
memory, the second code segment takes up more memory because there are more
instructions. Also, if there are more instructions, then the code segment will tend to
take more time to execute.

As demonstrated above, one way to help write somewhat cleaner code is to not
necessarily think in assembly language but rather think in a high-level language and
then convert the high-level instructions into the low-level assembly language.
Although at times this might introduce some inefficiencies into the low-level code
with regard to register usage, the results would not usually be nearly as bad as in the
last example, thus demonstrating that one can still be concerned with efficiency
when programming either high or low-level languages.

Similar to the addition instruction is the subtraction instruction outlined in
Table 3.2, where the same formats of instructions that apply to the addition
instruction also apply to the subtraction instruction. Note again that a memory to
memory instruction does not exist. As before, a simple high-level subtraction
statement such as

difference = num2 - num1;

would be implemented in assembly language as follows:

; difference = num2 - num1
mov eax,num2 ; load num2 into eax
sub eax,num1 ; subtract num1 from eax
mov difference,eax ; store answer in variable difference

Table 3.2 Sub instructions

Instruction Meaning

sub mem,imm subtract the immediate value from memory

sub reg,mem subtract contents of memory from the register

sub mem,reg subtract contents of the register from memory

sub reg,imm subtract the immediate value from the register

sub reg,reg subtract the contents of the source (second) register
from the destination (first) register

3.1 Addition and Subtraction 31

3.2 Multiplication and Division

While addition and subtraction seem to be fairly straightforward, multiplication and
division can be just a little more complicated. When adding two numbers together,
it is possible that the answer will be larger than the size of the register or memory
location that can hold that value which would cause an overflow error. For example,
adding the numbers 999 and 999 in base 10 will result in the number 1,998, which
is one digit larger than the two original numbers. The same applies to base 2, where
adding the numbers 111 and 111 would result in the number 1110 (as discussed in
Appendix B). However, when using 32-bit signed double words, unless the sum is
greater than 2,147,483,647 as indicated Table 1.2, this should not be a problem at
this time.

However, with multiplication, the situation is worse. For example, when mul-
tiplying the numbers 999 and 999 in base 10, the answer is 998,001, where there is
not just one extra digit but potentially twice as many digits as is the case in this
example. The same holds true for binary, where multiplying the numbers 111 and
111 results in the answer 110,001, where again there are twice as many digits.

The result is that when multiplication occurs in the computer, there needs to be
room for the extra digits when two 32-bit registers are multiplied together, because
the result could take up 64 bits. Although there are many variations of the multi-
plication instruction that can use two operands or three operands, this text will
examine only the one-operand versions of the instruction which has been available
since the first Intel processor (although then only in 16-bit form). Also, the
one-operand instructions most closely resemble the one-operand division instruc-
tions which are the only form of division instructions available. As a result, this will
help provide consistency when studying that instruction later. Although there is an
unsigned version of the multiply instruction called mul which can work with
slightly larger numbers (see Chap. 1 and Appendix B), it cannot work with negative
numbers. As a result, this text will consider only the signed versions of the mul-
tiplication instruction, signified by i at the beginning of the instruction as imul.
The two formats of these two versions of the imul instruction are shown in
Table 3.3.

The way these two one-operand versions of the signed multiplication instruction
work is that the eax register must first be loaded with the number that needs to be
multiplied (the multiplicand). Then, the number to be multiplied by (the multiplier)
either is placed into a register or can be located in a memory location. Note that
with the one-operand imul instruction, there is no provision for an immediate
operand and that the use of the eax register for the multiplicand is implied.

Table 3.3 Imul instructions

Instruction Meaning

imul reg multiply eax by an integer in a register

imul mem multiply eax by an integer in a memory location

32 3 Arithmetic Instructions

During execution of the imul instruction, the number in eax is multiplied by
the number either in the specified register or in the memory location and the answer
(product) is placed into what is called the edx:eax register pair. Recall from
Chap. 1 that edx is the data register that is used in various arithmetic instructions,
where imul is one of those arithmetic instructions. As mentioned above, it is
possible that the answer from multiplication could be twice the size of the original
numbers being multiplied, so what happens is that the low-order bits of the product
are placed into the eax register and the high-order bits of the product are placed
into the edx register. For now, there is no plan to multiply any numbers where the
product is greater than 32 bits, or in other words a positive 2,147,483,647 or
negative 2,147,483,648 and if larger numbers are needed, 64-bit numbers can be
used as discussed in Chap. 11. Regardless, it is still important to realize that the
edx register will be filled with any high-order bits, which in our case will usually
be zeros or ones depending on whether the product is positive or negative,
respectively. As a result, this would destroy any values that might have been placed
in the edx register previously. Given the above, one can implement the following C
instruction

product = num1 * num2;

as follows in assembly language:

; product = num1 * num2
mov eax,num1 ; load eax with the contents of num1
imul num2 ; multiply eax by mum2
mov product,eax ; store eax in product

Again, at the end of the above segment the contents of the edx register will have
been destroyed. Assuming num1 contained a positive 2 and num2 contained a
positive 5, the results in the edx:eax register pair would be that the 0 located in
the 31st bit (leftmost bit) of the eax register would be copied or propagated
throughout all 32 bits of the edx register. If num1 instead contained a negative 2
and num2 still contained a positive 5, then the results in the edx:eax register pair
would have been that the 1 located in the 31st bit of the eax register would have
been copied or propagated throughout all 32 bits of the edx register as shown in
Fig. 3.2. (See Appendix B for a discussion of positive and negative numbers.) This

1 --------------1 1---------110110

31 ------------ 0 31 ----------- 0
edx eax

Fig. 3.2 The edx:eax registers after execution of the imul instruction

3.2 Multiplication and Division 33

is yet another good reason not to keep values in registers, but rather to store values
in memory.

Given the above description of the imul instruction, how would one implement
the following C statement?

product = num1 * 2;

Although it is possible to use immediate values with the two- and three-operand
versions of the imul instruction, it is also possible to easily solve this problem
using only the one-operand version. The immediate value can first be moved into an
empty register and then that register can be used in the imul instruction. Again,
this mimics the idiv instruction to be discussed immediately after the following
code segment:

; product = num1 * 2
mov eax, num1 ; load eax with the contents of num1
mov ebx,2 ; load ebx with the value 2
imul ebx ; multiply eax by ebx
mov product, eax ; store eax in product

Just as there is an instruction for the multiplication for unsigned numbers (mul),
there is also a division instruction for unsigned numbers (div). Although it can
divide somewhat larger numbers, it cannot divide negative numbers, so this text
will consider only the signed division instruction called idiv. As mentioned
previously, the idiv instruction follows the same format as for the previously
introduced one-operand imul instruction. The only two formats of the idiv
instruction are shown in Table 3.4.

The division statement works much like the multiplication statement, except in
reverse. Just like the product of multiplication can be larger than the multiplier and
multiplicand, so it is that the answer (quotient) and remainder can be smaller than
the original number to be divided (the dividend). The result is that where the
product for multiplication is in the edx:eax pair, with division the dividend must
be initially placed in the edx:eax pair prior to using the idiv instruction. After
execution of the idiv instruction, the quotient is in the eax register and the
remainder is in the edx register.

But how does one take a number, whether immediate data or in memory, and put
it in the edx:eax pair? Without any special instructions, one already has the ability
to do this. For example, what if one wanted to implement the following C statement?

answer = number / amount;

Table 3.4 Idiv instructions

Instruction Meaning

idiv mem divide the edx:eax register pair by memory

idiv reg divide the edx:eax register pair by a register

34 3 Arithmetic Instructions

First, the contents of number would be moved into the eax register. Then
assuming that the contents of number are positive, a 0 could be moved into the edx
register. But what if the contents of numberwere negative? Then instead of moving
a 0 into edx, a -1 could be moved into the edx register. This would cause each of
the bits in the edx register to be set to a binary 1, thus setting the sign bit to 1.
However, this solution would require the use of a selection structure which has not
been discussed yet and would be a clumsy solution at best. Luckily the designers of
the Intel processor thought of this problem and have special instructions to propagate
or extend the sign bit from a smaller register to a larger register. These instructions
are shown in Table 3.5.

It is the latter instruction in Table 3.5 that is of interest here. The cdq instruction
allows the sign bit, whether a 0 or a 1, to be propagated throughout the edx register
and thus avoids the initial messy solution proposed above. For example, if the eax
register originally contains a -2, then the sign bit (a 1 in bit position 31) of eax is
copied into each bit position of the edx register as illustrated in Fig. 3.3. The
solution to the previous C code is as follows:

; answer = number / amount
mov eax,number ; load eax with number
cdq ; propagate sign bit into the edx register
idiv amount ; divide edx:eax by amount
mov answer,eax ; store eax in answer

Assuming that the contents of number is a 5, and the contents of amount is a
2, then the contents of the edx:eax pair would be as follows after the execution of
the above code segment, where the remainder of a 1 is in the edx register and the
quotient of a 2 is in the eax register shown in binary in Fig. 3.4:

Although the two- and three-operand formats for the imul instruction allow for
an immediate operand, the idiv does not have this luxury and the single operand
can only be a memory location or a register. So how would one implement an

Table 3.5 Convert instructions

Opcode Meaning Description

cbw Convert byte to word Extends the sign from al to ax

cwd Convert word to double Extends sign from ax to eax

cdq Convert double to quad word Extends sign from eax to edx:eax pair

1 -------------11 1------------110

31 ------------ 0 31 ----------- 0
edx eax

Fig. 3.3 Propagating the sign bit from eax through edx

3.2 Multiplication and Division 35

immediate value as in answer = number/2? As a hint, look at the proposed
solution using an immediate value in the discussion concerning multiplication.
Further, how would one implement the % operator in the C programming language,
as in answer = number % amount? If one remembers what the % operator does
(the mod or remainder function) and reviews how the idiv instruction works, the
answers to the above two questions should be obvious and both of these problems
are left as exercises for the reader at the end of the chapter.

3.3 Implementing Unary Operators: Increment,
Decrement, and Negation

In high-level languages, the arithmetic operations presented in the previous two
sections are known as binary operators, not because they perform arithmetic on
binary numbers but rather because they have two operands as in x + y. However
other high-level language operators have only one operand, such as the negative
sign –y, and these are known as unary operators.

Although it is possible to implement all of the arithmetic necessary to implement
unary operators with the instructions presented previously, there are some extra
arithmetic instructions that tend to take up a little less memory, might be a little
faster, and also make life a little easier for the assembly language programmer. In
addition to introducing these instructions, some of the concepts concerning the
order of operations are introduced in this section.

For example, if one needed to increment a variable x by 1 and decrement a
variable y by 1, such as

x = x + 1;
y = y - 1;

or one could alternatively use the increment and decrement operators

x++; or ++x;
y--; or --y;

0 -------------01 0------------010

31 ------------ 0 31 ----------- 0
edx eax

Fig. 3.4 Contents of edx:eax after execution of the idiv instruction

36 3 Arithmetic Instructions

where in a stand-alone statement it does not matter whether the ++ or –– goes
before or after the variable. The above can be implemented by merely using the
add and sub instructions:

add x,1
sub y,1

Although the above works, the designers of the Intel processor built in two
instructions that specifically increment and decrement by only 1. The format of
each of these instructions is shown in Table 3.6.

As mentioned at the beginning of this section, these instructions take up less
memory than do add or sub instructions. In fact, on older 16-bit processors if one
needed to add or subtract the number 2 to or from a register, it was faster to use two
inc or dec instructions than it was to use a single add or sub instruction to add
or subtract the number 2. Although this is not true with newer 32-bit processors, a
single inc or dec instruction is still more memory efficient than using an add or a
sub instruction to increment or decrement by 1 (see Chap. 12). The result is the
following:

inc x
dec y

As shown previously, it does not matter in C/C++/Java whether the increment or
decrement operators in a stand-alone statement are used in prefix or postfix nota-
tion. However, as may have been learned in a previous computer science course, it
is quite different when they are used in conjunction with other operators in an
arithmetic expression. Although these combinations should probably be avoided by
the novice programmer, they do arise on occasion and one should understand how
they work in a high-level language and how to implement them in a low-level
language. As either a review or an introduction, how do the following two
instructions differ?

x = y++; x = ++y;

In the first case on the left, the value of y is first assigned to x and then the value
of y is incremented. In the second case, the value of y is first incremented and then
it is assigned to x. Assuming in both cases that y initially contains the number 2,
the results of both are illustrated respectively on the left and right in Fig. 3.5.

Table 3.6 Inc and dec
instructions

Instruction Instruction

inc reg dec reg

inc mem dec mem

3.3 Implementing Unary Operators: Increment, Decrement, and Negation 37

Clearly there is a difference between the two, and the above two statements can
alternatively be implemented as

x = y; y = y + 1;
y = y + 1; x = y;

and thus can be implemented correspondingly in assembly language as

mov eax,y inc y
mov x,eax mov eax,y
inc y mov x,eax

What if one needed to negate a number, or in other words find the two’s
complement of a number (see Appendix B), and store it in another memory loca-
tion? For example,

x = -y;

As shown before with increment and decrement, one could accomplish negation
using the instructions that have already been introduced:

mov eax,0
sub eax,y
mov x,eax

Again as before, there is another instruction that is shorter and faster for negation
called neg and has the format shown in Table 3.7.

Using the neg instruction, the code segment above can then be rewritten as

mov eax,y
neg eax
mov x,eax

Table 3.7 Neg instructions

Instruction Meaning

neg reg two’s complement of the contents of the register

neg mem two’s complement of the contents of a memory location

x x

y 3 y 3

2 3

Fig. 3.5 Results of x = y++ and x = ++y

38 3 Arithmetic Instructions

Notice that the variable y is not negated, since the negation symbol does not alter
the contents of the variable it precedes. Rather, the value of y is first moved to a
register and then negated prior to being moved to the variable x. Although it takes the
same number of instructions as the previous assembly language code segment, the
neg instruction takes up less memory than does the corresponding sub instruction.

Although there was some possible confusion of using the increment and
decrement instructions in an expression, the negation instruction is less compli-
cated. One must remember that the unary minus symbol for negation has prece-
dence over the other binary operators of +, -, *, and /. Given the following
statement on the left, the negation of y occurs prior to the addition, and if one wants
to negate after the addition, parentheses must be used as shown on the right:

x = -y + z; x = -(y + z);

The above two statements are implemented correspondingly below in assembly
language:

mov eax,y mov eax,y
neg eax add eax,z
add eax,z neg eax
mov x,eax mov x,eax

3.4 Order of Operations with Binary and Unary Operators

Although the previous section delved into some issues concerning order of operation,
it did so only with respect to the unary operators. This section discusses order of
operation in more depth with all arithmetic operators, including the binary operators,
and in conjunctionwith the unary operators. To help understand the order of operation
and sharpen one’s skills using assembly language arithmetic instructions, this section
examines how slightly more complicated arithmetic statements might be imple-
mented. Again, it helps to first write it out as a high-level instruction:

answer = num1 - 3 + num2;

Remembering the order of operations from C, C++, and Java, since addition and
subtraction have the same level of precedence, the order of operation is from left to
right. In this case, the subtraction should be done first and the addition done second.
Although some compilers and skilled assembly language programmers might
change the order of various arithmetic operations to help optimize the efficiency of
the machine code, this text will adhere to the pre-defined rules for the sake of
consistency and help reinforce the rules regarding the order of operation.

First, the contents of the variable num1 should be loaded into the eax register,
then the number 3 needs to be subtracted from to the eax register, where the
number 3 is not in a memory location but rather is implemented as an immediate

3.3 Implementing Unary Operators: Increment, Decrement, and Negation 39

value. Next the value in num2 needs to be added to the eax register and lastly, the
contents of the eax register need to be copied into the variable answer, as shown
below:

; answer = num1 - 3 + num2
mov eax,num1 ; load eax with the contents of num1
sub eax,3 ; subtract 3 from eax
add eax,num2 ; add num2 to eax
mov answer,eax ; store the result in answer

As before, there is usually more than one way to solve a problem in assembly
language, such as the following code segment suggests:

; *** caution: poorly implemented code ***
sub num1,3 ; subtract 3 from num1
mov eax,num1 ; load num1 into eax
add eax,num2 ; add num2 to eax
mov answer,eax ; store the result in answer

At first the code immediately above seems to be just as good as the code given
previously. It has the same number of instructions and it places the correct number
into the memory location answer. However, it should be noticed that it references
memory one additional time, which might cause it to be just a little bit slower than
the first code segment.

However, there is something else wrong with the code segment that does
not concern speed or memory, but rather with the implementation of the original
C/C++/Java code segment. Note that in the original high-level instruction
answer = num1 - 3 + num2; the only variable altered is the variable answer
that appears on the left of the assignment symbol (=). The variables num1 and
num2 would not be altered by this statement. However, in the second assembly
language implementation, the immediate value 3 is added to the variable num1,
thus altering its contents. The above assembly language code segment does not
implement the C statement answer = num1 - 3 + num2; but rather imple-
ments the following C code segment:

num1 = num1 - 3;
answer = num1 + num2;

If the value in the variable num1 was not going to be used again, this might not be
a problem. However, if one is not sure at the time the code segment is written whether
that value is going to be used again or not, then as a general rule it is probably better
not to alter the contents of the variable in the first place. Again, it is best to write out
the original arithmetic operation in a high-level language (or pseudo-code), use it as
a general comment, and then carefully implement the assembly language to insure
that it does indeed implement the high-level statement correctly.

40 3 Arithmetic Instructions

To illustrate further the rules concerning order of operation, consider the fol-
lowing C statement:

answer = num1 + 3 * num2;

First, it must be remembered that multiplication has a higher precedence over
addition so that the value 3 must be loaded into the eax register first and then
multiplied by the value in num2. Then the value in num1 must be added to eax
and lastly the value in eax should be stored in answer as follows:

; answer = num1 + 3 * num2
mov eax,3 ; load eax with the number 3
imul num2 ; multiply eax by num2
add eax,num1 ; add the contents of num1 to eax
mov answer,eax ; store the contents of eax in answer

Again, be sure to remember that any value in the edx register is altered by the
imul instruction. As another example, consider the following C statement:

result = num3 / (num4 - 2);

Although division has a higher precedence over subtraction, remember that the
expression in parentheses should be evaluated first so that the subtraction must be
performed prior to the division. Then the value in num3 must be divided by the
results of the subtraction and lastly the value in eax should be stored in result:

; result = num3 / (num4 - 2);
mov ebx,num4 ; load ebx with num4
sub ebx,2 ; subtract 2 from ebx
mov eax,num3 ; load eax with the contents of num3
cdq ; propagate the sign bit into the edx register
idiv ebx ; divide edx:eax by num4 - 2
mov result,eax ; store the contents of eax in result

Note that the ebx register was used to store the temporary results of the sub-
traction so that the difference could be used later in the division instruction.
Combining the unary instructions from the previous section and the binary
instructions from the current section, consider the following C statement:

v = -w + x * y - z++;

The order of operation should be that the value in w should be negated first,
followed by the multiplication of x and y, then the addition of the negated value of
w, then the subtraction of z, then the results assigned to v, and finally the value of z
should be incremented since it is a postfix ++, as shown in the assembly code below:

3.4 Order of Operations with Binary and Unary Operators 41

; v = -w + x * y - z++
mov ebx,w
neg ebx
mov eax,x
imul y
add eax,ebx
sub eax,z
mov v,eax
inc z

Again note that the value in w is not actually negated, and the value in z is only
incremented after the assignment to v. The best way to become more familiar with
operator precedence is to attempt some problems on one’s own. For further prac-
tice, there are a number of problems in Sect. 3.7.

3.5 Complete Program: Implementing I/O and Arithmetic

Combining all the material from Chaps. 1, 2, and 3, one can now write a complete
program to prompt for and input various numbers, perform a wide variety of
calculations, and output answers as needed. Derived from the last program in
Chap. 2, the following program is still relatively simple, but it can serve as a model
for even more complicated programs to test various arithmetic equations as needed
and help implement some of the programs in the exercises at the end of this chapter.

For example, how would one write a program to calculate the number of amperes
given the number of volts and ohms? The solution uses Ohm’s law and is often
written as E = IR, where E is the electromotive force (volts), I is the impedance
(amperes), and R is the resistance (ohms). Obviously the equation will not work as
written, but it is nothing that a little algebra cannot fix, hence I = E/R. Granted the
answer will be off a little since the program is written using only integers; however it
will serve the purpose of illustrating a complete program. As in the past, it is helpful
to see the solution in C first as follows:

#include <stdio.h>
int main(){

int volts, ohms, amperes;
printf("\n%s", "Enter the number of volts: ");
scanf("%d", &volts);
printf("%s", "Enter the number of ohms: ");
scanf("%d", &ohms);
amperes = volts / ohms;
printf("\n%s%d\n\n","The number of amperes is: ", amperes);
return 0;

}

42 3 Arithmetic Instructions

The corresponding assembly code is given below:

.686

.model flat, c

.stack 100h
printf PROTO arg1:Ptr Byte, printlist:VARARG
scanf PROTO arg2:Ptr Sdword, inputlist:VARARG

.data
in1fmt byte "%d",0
msg1fmt byte 0Ah,"%s",0
msg2fmt byte "%s",0
msg3fmt byte 0Ah,"%s%d",0Ah,0Ah,0
msg1 byte "Enter the number of volts: ",0
msg2 byte "Enter the number of ohms: ",0
msg3 byte "The number of amperes is: ",0
volts sdword ? ; number of volts
ohms sdword ? ; number of ohms
amperes sdword ? ; number of amperes

.code
main proc

INVOKE printf, ADDR msg1fmt, ADDR msg1
INVOKE scanf, ADDR in1fmt, ADDR volts
INVOKE printf, ADDR msg2fmt, ADDR msg2
INVOKE scanf, ADDR in1fmt, ADDR ohms
; amperes = volts/ohms
mov eax,volts ; load volts into eax
cdq ; extend the sign bit
idiv ohms ; divide eax by ohms
mov amperes,eax ; store eax in amperes
INVOKE printf, ADDR msg3fmt, ADDR msg3, amperes
ret

main enp
end

3.6 Summary

• Be careful not to alter any variables that appear only to the right of an assignment
symbol, unless þþ or �� is used.

• Remember that the contents of the edx register contain the high-order bits after
multiplication.

• Do not forget to use the cdq instruction prior to division.

3.5 Complete Program: Implementing I/O and Arithmetic 43

• Follow the order of operations when implementing arithmetic statements:

– Parentheses first with the most nested first.
– Unary minus sign has precedence over multiplication and division.
– Multiplication and division prior to addition and subtraction.
– In a tie, go left to right.

• Be careful with increment and decrement (++ and ––) operators:

– When stand-alone, no difference between prefix and postfix.
– In an assignment statement, prefix is performed first prior to an assignment

and postfix is performed after an assignment.

3.7 Exercises (Items Marked with an * Have Solutions
in Appendix D)

1. Indicate whether the following statements are syntactically correct or incorrect.
If incorrect, indicate what is wrong with the statement:

∗A. inc eax,1 B. add ebx,ecx ∗C. add dog,cat
B. idiv 3 ∗E. sub 2,number F. imul eax

2. Convert the following C arithmetic statements to the equivalent Intel assembly
language statements (hint: as discussed in the text, do not forget to move any
immediate values into a register first for the imul and idiv instructions, if
necessary):

∗A. product = 3 ∗ number;
B. result = number % amount;

∗C. answer = number / 2;
D. difference = 4 - number;

3. Using order of operations from C, convert the following arithmetic statements
into the equivalent assembly language statements. Be sure not to destroy the
contents of any of the variables that appear only to the right of the assignment
symbol, unless ++ or �� is used.

44 3 Arithmetic Instructions

4. Using the order of operations from C, convert the following arithmetic state-
ments into the equivalent assembly language code segment. Be careful to
implement the unary minus sign, increment, and decrement operators carefully:

∗A. --i;
B. j = ++k - m;

∗C. z = -(x + y);
D. a = ++b - c++;
E. x = -y + z--;

5. Write a complete assembly language program to implement the following C
program:

#include <stdio.h>

int main(){

int number;

printf("

number=7-number*3;

\n%s","Enter an integer: ");

printf(" \n%s%d\n\n","The integer is: ",number);
return 0;

}

scanf("%d",&number);

6. Given Ohm’s law from the complete program at the end of this chapter and
Watt’s law as W = IE, whereW stands for the number of watts, write a complete
assembly language program to prompt for and input the number amperes and
ohms, and then calculate both the number of volts and number of watts. The
form of the input and output can be found below, and as always be careful with
the vertical and horizontal spacings:

Input and Output

Enter the number of amperes: 5
Enter the number of ohms: 4

The number of volts is: 20
The number of watts is: 100

∗A. x = x ∗ y + z ∗ 2;
B. a = b - c / 3;

∗C. total = num1 / num2 - (num3 ∗ num4);
D. r = -s + t++;
E. m = n ∗ ((i - j) ∗ k);

 F. q = a – b + c / d * e;

3.7 Exercises (Items Marked with an * Have Solutions in Appendix D) 45

7. Write a complete assembly language program to prompt for and input the
temperature in degrees Fahrenheit, calculate the degrees in Celsius, and then
output the degrees in Celsius. The equation to be used is C = (F −32)/9 * 5,
where C stands for Celsius and F stands for Fahrenheit. Note that the answer
will be off slightly due to using integers and be very careful to use the proper
order of operations. The form of the input and output can be found below. Be
sure to use proper vertical and horizontal spacings:

Input and Output

Enter the degrees in Fahrenheit: 100

The degrees in Celsius is: 35

46 3 Arithmetic Instructions

4Selection Structures

4.1 Introduction

As one should have learned in Computer Science I, there are two basic types of
control structures available regardless of the language used. These two types of
control structures are selection structures and iteration structures, also commonly
known as ifs and loops.

At a lower level, all control structures can be created using if and branch
statements. There are two types of branch statements known as conditional and
unconditional branches, where the former branches only under certain conditions
(such as if equal to 0) and the latter branches unconditionally, regardless of the
conditions. The unconditional branch or goto is often avoided in high-level lan-
guages, but in low-level languages the unconditional branch or goto statement can
hardly be avoided, since it is the use of the goto statement that allows all the other
high-level control structures to be created via a compiler or an interpreter. As a
result, most assembly languages often use the equivalent of a goto statement in
their programs.

MASM, however, is relatively unique in that it allows the programmer to use the
equivalent of high-level control structures with 32-bit integers and 8-bit characters.
Although this somewhat negates the reason why one might use an assembly lan-
guage, it does provide a nice segue from high-level languages to low-level lan-
guages and provides an opportunity to see how high-level language control
structures can be implemented in a low-level language. After examining the
high-level control structures in a low-level language, the corresponding low-level
implementation of the structure will also be examined.

Note that although floating-point numbers can be used within the body of
high-level control structures, they cannot be used to control the high-level struc-
tures. Also, high-level control structures cannot be used in 64-bit mode. However,
after reading this and the next chapter, both of the above can be implemented using
low-level structures and further discussion can be found in Chaps. 10 and 11,
respectively.

© Springer Nature Switzerland AG 2020
J. T. Streib, Guide to Assembly Language, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-35639-2_4

47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35639-2_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35639-2_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35639-2_4&domain=pdf
https://doi.org/10.1007/978-3-030-35639-2_4

Continuing, of the selection structures, the most common are the if-then and
if-then-else structures. These structures can also be nested to form the if-then-else-if
and if-then-if structures, where the former is probably the more commonly used of
the two. Lastly, there is what is known as the case structure, also known as the
switch statement in C, C++, and Java. Although a high-level version of this is not
available in MASM, it can be constructed fairly simply out of conditional and
unconditional branches. The longest of the following sections is the first one on the
if-then structure, because once all of the details are covered there, the others are
essentially variations on theme.

4.2 If-Then Structure

The common if-then structure has the following form in C, where if there is only
one statement in the then section, the use of the opening and closing braces { } is
optional. However, should more than one statement be used in the then section of
the if structure, the use of the braces is required as shown on the right:

if (number == 0) if (amount != 1) {
number--; count++;

amount = amount + 2;
}

Assuming number is declared as an sdword, the corresponding MASM code
for each of the above is shown below:

.if number == 0 .if amount != 1
dec number inc count

ddafidne. amount,2
.endif

First, notice that there is a decimal point prior to the words if and endif which
indicates that these words are not actual executable instructions but rather directives
that tell the assembler to insert the necessary code to implement the directives, not
unlike the .data and .code directives encountered previously in Chap. 1. Also
note that there are no parentheses around the relationals as in C, but rather they are
optional in MASM, where any of the relationals available in C are available in
MASM as well. Also, the use of the directive .endif is required, whether there
are many instructions in the then section or just one instruction. By now the
implementation of the arithmetic statements introduced in Chap. 3 should be
starting to become familiar, and given an understanding of if statements in lan-
guages such as C, the above should look fairly straightforward.

However, there are some additional capabilities in MASM, as well as some limi-
tations. With respect to additional capabilities, instead of just comparing a variable to a
literal as shown above, a register can be compared to a literal and two registers can be

48 4 Selection Structures

compared. However a limitation in these two later instances is that the assembler
assumes by default for the purpose of comparison that the values are unsigned, which
can lead to some logic errors. In these two cases, be sure to compare only non-negative
numbers or should negative numbers need to be compared, be sure one of the two
values being compared is declared in a variable as an sdword. With respect to another
limitation, what if one wants to compare two memory locations as follows in C?

if (count > number)
flag = -1;

As might be suspected, given the mov instruction in Chap. 1, two memory
locations cannot be compared in the .if directive. The reason why the memory to
memory comparison cannot be performed is due to the compare instruction (cmp)
generated by the .if directive. Like the mov instruction, the cmp instruction
cannot have both operands reference memory locations. As will be seen in the
discussion of the cmp instruction, the contents of one of the two variables need to
be copied into a register and then a comparison between the register and the other
variable can be performed as illustrated below:

mov eax,count
.if eax > number
mov flag,-1
.endif

Although the above is a mild inconvenience, the use of MASM directives makes
the implementation of the if-then structure fairly easy. But if MASM did not have
high-level directives, how could the if-then structure be implemented? One might
say that since MASM has high-level directives, why should this be a concern?
However, not all low-level languages have high-level structures nor for example,
can high-level directives be used in 64-bit mode. So, knowledge of how high-level
structures are implemented can be very useful. It is also helpful in understanding
how high-level control structures, whether in a high-level or a low-level language,
are ultimately implemented in a low-level language.

As discussed in Chap. 1, a programmer has direct access to the four general
purpose registers. Although there are other registers that a programmer cannot
directly access, they can often be accessed indirectly. One of the most important of
these registers is the eflags register that controls various aspects of the CPU and
contains the status of the CPU at any particular time. As various instructions
execute, they set various 1-bit and 2-bit flags within the eflags register. Instead of
having to use logic instructions to access the individual bits as is done in many
other processors, each flag is given an individual two-letter abbreviation and some
of these flags can be accessed in high-level control structures using a high-level
operator as will be discussed later in this chapter. As seen in Table 4.1, the direction
flag does not contain a high-level operator because it is a control flag and there are
specific instructions to manipulate it as will be seen in Chap. 9. In addition to the

4.2 If-Then Structure 49

direction flag, Table 4.1 indicates some of the more common flags used by
assembly language programmers.

Two of the most important flags for the discussion here indicate whether the result
of the last instruction executed was zero, negative, or positive. If the result was zero,
the zero flag (ZF) would be set to 1 and the sign flag (SF) would be set to 0. At first
the setting of the zero flag to 1 might seem counter-intuitive, but if 1 is thought of as
representing true, it makes more sense. Continuing, if the result was negative, then
SF would be set to 1 and ZF would be set to 0. Lastly, if the result was positive, then
both ZF and SF would be set to 0, as can be seen in Table 4.2.

One convenient way to alter these flags is by using the cmp instruction which
compares the two operands and sets the flags accordingly. The comparison is
accomplished by the CPU performing an implied subtraction between the two
operands and then setting the corresponding flags accordingly, where an implied
subtractionmeans that neither of the operands is altered in the operation. For example,
if the first and second operands are equal, then a subtraction would result in a value of
0, or should the first operand be greater than the second, then the result of the
subtractionwould be positive. The format of thecmp instruction is given in Table 4.3.

Table 4.1 Commonly used flags

Flag Abbreviation High-level operator Bit position Indication when set to 1

Carry CF CARRY? 0 A carry out of an unsigned integer

Parity PF PARITY? 2 An even number of set bits

Zero ZF ZERO? 6 The result of an operation is zero

Sign SF SIGN? 7 The result is negative

Direction DF 10 Process strings from high to low

Overflow OF OVERFLOW? 11 Overflow of a signed integer

Table 4.2 ZF and SF flags

Result ZF SF

Zero 1 0

Negative 0 1

Positive 0 0

Table 4.3 Cmp instruction

Instruction Meaning

cmp reg,imm compare a register to an immediate value

cmp imm,reg compare an immediate value to a register

cmp reg,mem compare a register to memory

cmp mem,reg compare memory to a register

cmp mem,imm compare memory to an immediate value

cmp imm,mem compare an immediate value to memory

cmp reg,reg compare a register to a register

50 4 Selection Structures

As can be seen in Table 4.3 and as mentioned previously, one can compare a
register to an immediate value, a register to memory, an immediate value to
memory, or compare two registers, but one cannot compare two memory locations.
Once two operands have been compared, the corresponding flags will be set and
then one can branch or jump based on the flags, where two of the conditional jump
instructions are as shown in Table 4.4.

The je and jne instructions can be used with either signed or unsigned data.
The conditional jump instructions for signed numeric data are listed in Table 4.5.

Notice in Table 4.5 that the instructions on the same line in the columns on the
right are equivalent to the instructions on the left. Although the instructions on the
right are equivalent, the use of the word “not” can sometimes be confusing and as a
result, these instructions are not used as much as their counterparts on the left. To
help illustrate how the above instructions can be used to implement if-then struc-
tures, consider a previously introduced example:

.if number == 0
dec number
.endif

The decrementing of number occurs when it is equal to 0; otherwise number
remains unchanged. As mentioned previously, in order to implement the .if
directive, one needs to use the cmp instruction along with one of the conditional
jump instructions listed above. However, there is one small complication: When the
condition in an if statement is true in a high-level implementation, the code
immediately below the if in the then section is executed; otherwise the flow of
control branches to the code following the then section. Unfortunately, the jump
statements mentioned above branch when the result is true and do not fall through
to the code immediately below, but rather jump or branch around the code.

There are a couple of ways to resolve this problem, but the easiest is to just
reverse the relationship. The result is that the code above could be implemented as
shown below, where first the comparison is done between number and 0. If the

Table 4.4 Je and jne instructions

Instruction Meaning

je Jump equal

jne Jump not equal

Table 4.5 Signed conditional jump instructions

Instruction Meaning Instruction Meaning

jg Jump greater than jnle Jump not less than or equal to

jge Jump greater than or equal to jnl Jump not less than

jl Jump less than jnge Jump not greater than or equal to

jle Jump less than or equal to jng Jump not greater than

4.2 If-Then Structure 51

two are not equal, a jump not equal (jne) occurs to the endif01 label, but should
the two be equal, the flow of control falls through to the decrement statement
immediately below, which was the original intent:

; if number == 0
if01: cmp number,0 ; compare number and zero

jne endif01 ; jump not equal to endif01
then01: dec number ; decrement number by one
endif01: nop ; end if, no operation

A few other remarks are necessary concerning the above code segment. First,
since the jump is opposite of the equivalent high-level statement, a good high-level
comment prior to the assembly code is always helpful. Second, the label endif01
is used instead of just endif to help distinguish it from other subsequently
numbered endifs that can appear in the program. Also, the label if01 is used
instead of just if1, because if1 is used for a process known as conditional
assembly as discussed in Chap. 7. The nop statement takes up 1 byte of memory,
means “no operation,” and is a statement that does nothing. At first this might sound
unusual, but it is sometimes useful to place a label on a nop instruction. In the case
above, the nop could be omitted and the opcode area left blank. However, for
beginning assembly language programmers, it is often a good idea to include it to
make it easier to add statements before or after the nop. The if01: and the
then01: labels are optional, since there are no jumps to them, but they help to
indicate the beginning and middle of the if-then structure and including them is
highly recommended. Lastly, notice that the labels end in a colon, as with the
if01: label, where should the colon is omitted, a syntax error will occur.

If one expanded the .if directive of the previous code segment to see what the
underlying code would look like, one would see very similar results using cmp and
jne instructions. This can be accomplished by following the directions Appen-
dix A.4, reassembling the program, and then opening the .lst fie.

The first thing one would notice is the use of @C0001 as a label generated by the
assembler. For each label generated by the assembler the number is incremented so
that the next label would be @C0002. The use of the @ symbol at the beginning of
the label is to make it less likely that there would be a duplicate label error with a label
created by a programmer. This is one of the reasons why it was suggested in Chap. 1
that programmers should avoid the use of the @ symbol when creating label names.
The other thing one should notice is that a nop statement is not included at the bottom
of the code segment. Asmentioned previously, although nop statements are optional,
they will be included in the programmer-generated code in this text to help readability
and they can always be removed later if memory and speed were a concern:

. cmp number,000h
jne @C0001
dec number

@C0001:

52 4 Selection Structures

For further practice, how would the following previously introduced segment be
implemented without using the .if directive?

mov eax,count
.if eax > number
mov flag,-1
.endif

At first, it might be tempting to implement it with a jump less than (jl)
instruction, but be careful. What is the opposite of greater than? It is not less than,
but rather it is less than or equal to, which is one of the more common mistakes that
are made by beginning assembly language programmers when trying to write
low-level implementations. This would also be a difficult logic error to debug,
because until there was an instance where the two operands are equal, the code
would work correctly. The following is the correct implementation:

; if count > number
if02: mov eax,count

cmp eax,number
jle endif02

then02: mov flag,-1
endif02: nop

4.3 If-Then-Else Structure

Given the above, it is relatively easy to extend the implementation of if-then
structure to the if-then-else structure. For example, the following C code on the left
would be implemented using the .else directive as shown on the right:

if x >= y ; if x >= y
x--; mov eax,x

else .if eax >= y
y--; dec x

.else
dec y
.endif

Further, it can be implemented without the use of directives by using compares,
jumps, and labels. The first part of the implementation is just like a simple if-then,
but instead of branching to the endif03 label, control is transferred to an else03
label as follows:

4.2 If-Then Structure 53

;if x >= y
if03: mov eax,x

cmp eax,y
jl else03

then03: dec x
jmp endif03

else03: dec y
endif03: nop

The most important thing about the above implementation is that one must not
forget to include the unconditional jump (jmp) at the end of the then section,
otherwise the flow of control will fall through into the else section, which would not
correctly implement the if-then-else structure. An unconditional jump means that it
will jump regardless of the conditions, or in other words, it will jump no matter how
the flags in the eflags register are set. Also, since the unconditional jump
instruction can branch to anywhere in the program, extra care must be taken to
insure that it branches only to the end of the if-then-else structure, otherwise the
program will be unstructured and difficult to subsequently modify.

4.4 Nested If Structures

Just as one can nest if structures in a high-level language, the same can be done in a
low-level language. This is especially easy with the use of high-level directives in
MASM. For example, the following C code segment on the left can be implemented
in MASM as shown on the right:

if (x < 50) .if x < 50
y++; inc y

else .else
if (x <= 100) .if x <=100
y=0; mov y,0

else .else
y--; dec y

.endif

.endif

It should be noted that since there are two .if directives, then there also need to
be two corresponding .endif directives. Should an .endif be omitted, a syntax
error will occur, although there is an exception to this as will be shown later with
the .elseif directive. The C code above can also be implemented without the use
of the directives as shown in Fig. 4.1, where the entire nested if is contained within
the else of the outer if.

54 4 Selection Structures

Note that each if-then-else has a complete set of labels so that there are two if,
then, else, and endif labels. Sometimes it is helpful to draw what are known
as scoping lines as shown in Fig. 4.1 to help insure that there is the correct number
of labels in the appropriate locations. It is possible to have the first jge jump
directly to the if02 instead of the else01 and also terminate both ifs with a
single endif label which would make the code a little shorter. As mentioned
before, it is usually better to include both the jump to else01 label and the two
endif labels. This allows statements to be added both before and after the nested
if structure in the outer else section and makes it easy to modify the code at a later
date. An example of this is included in the complete program in Sect. 4.8.

It might be argued further that the additional labels and nop instructions take up
extra memory, but as mentioned previously, the nop instructions could be removed
from the labels and memory would be saved. One could further ask, what about the
labels? In response, it should be pointed out that although labels need to be
accounted for by the assembler in what is known as a symbol table during the
assembly process, the labels do not take up any extra memory in the corresponding
machine language and it does not hurt to leave them in the program.

Although C, C++, and Java do not have what is known as an elseif statement,
MASM does have an .elseif directive. This can simplify the previous assembly
code that contains the MASM directives and the code could be rewritten as follows:

.if (x < 50)
inc y
.elseif (x <=100)
mov y,0
.else
dec y
.endif

; if x < 50
if01: cmp x,50

jge else01
then01: inc y

jmp endif01
else01: nop

; if x <= 100
if02: cmp x,100

jg else02
then02: mov y,0

jmp endif02
else02: nop

dec y
endif02: nop
endif01: nop

Fig. 4.1 Nested
if-then-else-if structure

4.4 Nested If Structures 55

The advantage of the above code segment is that it is a little less cluttered in that
it does not have two .endif directives. The disadvantage is that it does not
facilitate adding code prior to the nested if structure in the outer else section, nor
does it easily allow code that does not belong in the inner else section to be added at
the bottom of the outer else section. If code is not going to be modified in the future,
then the above code works fine, but if there is a good chance that code will be
modified in the future, then the first example is probably the better choice. Again,
an example of this is included in the complete program in Sect. 4.8.

Given the previous discussion of the nested if-then-else-if structure, it should be
fairly straightforward to implement the nested if-then-if structure both with and
without the use ofMASMdirectives, where the nested if structure could be in the then
section of the outer if structure instead of the else section. Instead of having thefirstif
simply check whether x is less than 50, it should check for the equivalent of two
possibilities. The first if structure would now check whether x is less than or equal to
100 and then subsequently check with another if structure whether x is less than 50:

if (x <= 100) .if x <= 100
if (x < 50) .if x < 50

y++; inc y
else .else

y = 0; mov y,0
fidne.esle

y--; .else
dec y
.endif

Note that in the assembly code to the right it is necessary to include the .endif
to terminate the nested if within the then portion of the outer if structure. The above
assembly code can also be implemented without the use of high-level directives
using only compare and jump statements as shown in Fig. 4.2.

; if x <= 100
if03: cmp x,100

jg else03
; if x < 50

then03: nop
if04: cmp x,50

jge else04
then04: inc y

jmp endif04
else04: nop

mov y,0
endif04: nop

jmp endif03
else03: dec y
endif03: nop

Fig. 4.2 If-then-if structure
with double jump

56 4 Selection Structures

As always, one needs to be careful with the conditional jump statements to be
sure that they are actually implementing the opposite relation to help avoid logic
errors. Likewise, one needs to be sure not to forget to include the unconditional
jump statements in the necessary locations and jump to the appropriate places.
Again, the use of scoping lines makes it easier to insure that appropriate labels have
not been forgotten.

As before, the code segment could be modified to avoid the possibility of a
double jump from the end of the then04 section to the endif04 label and again
from just after the endif04 label to the endif03 label as illustrated by the
arrows on the right in Fig. 4.2. However, again that would make the code less
modifiable should code need to be added at the end of the outer if structure’s then
section. For example, what if one wanted to add an instruction such as mov x,0
after the endif04 label in the original code in Fig. 4.2? The answer is that x
would be set to 0 whenever x is 100 or less. However, what would happen if the
jump to endif04 were modified to jump directly to endif03 label as illustrated
in Fig. 4.3?

The result would be that x would not be set to 0 when x is less than 50 as was
originally intended. As the code in Fig. 4.3 illustrates, it is usually best not to
modify the code to avoid what appear to be unnecessary jumps. For the beginning
assembly language programmer, doing so can result in rather messy logic errors that
are difficult to debug and probably should not be done unless execution efficiency is
of critical importance.

With respect to nested if statements, given the choice between if-then-else-if and
if-then-if structures, the if-then-else-if is probably the more common of the two
since it more closely mimics the way one normally states a problem in natural
languages. However, on occasion, some logic can be implemented more simply as a

; if x <= 100
if03: cmp x,100

jg else03
; if x < 50

then03: nop
if04: cmp x,50

jge else04
then04: inc y

jmp endif03 ; modified jmp instruction
else04: nop

mov y,0
endif04: nop

mov x,0 ; new instruction
jmp endif03

else03: dec y
endif03: nop

Fig. 4.3 If-then-if structure with inadvisable jump

4.4 Nested If Structures 57

nested if-then-if structure or it is possible that previously written code might have
been implemented using this structure, so it does not hurt to have knowledge of the
if-then-if structure as part of one’s repertoire.

4.5 Case Structure

As mentioned previously, a case structure directive (known as the switch state-
ment in C) does not exist in MASM. When a case structure is unavailable, a nested
if structure can always be used instead. However, should there be too many nested
if statements in a program, the resulting code can be difficult to read and maintain,
thus the reason why many languages include a case structure. Even though MASM
does not have a case structure directive, one can be created using a combination of
conditional and unconditional jumps. Consider the following C switch statement:

switch (w) {
case 1: x++;

break;
case 2:
case 3: y++;

break;
default: z++;
}

The above switch structure can be implemented as a series of cmp and je
instructions. When the variable in question is equal to the various constants, control
is transferred to the corresponding particular case. The default case can be imple-
mented simply as an unconditional jump. Just as a break statement is usually
entered at the end of each particular case in C, an unconditional jump needs to be
included in assembly language as well to cause the flow of control to be transferred
to the end of the case structure. Also, just as the last case or default does not
need a break statement in C, neither does assembly language need an uncondi-
tional jump, because the flow of control will merely fall through to the next
statement. Unlike the break statement in C, where control is only transferred to
the end of the switch statement, the jmp instruction can transfer control to
anywhere in the program, so care should be taken by the programmer to only
transfer control to the end of the switch statement. Otherwise unstructured code
can be created that can become very difficult to modify or debug, especially in
assembly language.

The assembly language code segment below implements the C code segment
above, and continues to use unique numbers in the labels, so as not to cause a
syntax error should more than one switch structure be used in a program. For

58 4 Selection Structures

example, the label case12 indicates that it is the second case in the first switch
structure. Other labeling schemes can be used at the discretion of the instructor or
the programmer:

switch01: cmp w,1
je case11;
cmp w,2
je case12
cmp w,3
je case12
jmp default01

case11: inc x
jmp endswitch01

case12: inc y
jmp endswitch01

default01: inc z
endswitch01: nop

Granted, a switch statement in a C program can sometimes provide cleaner
code compared to a series of nested if statements. However, given all the jump
statements in the low-level implementation in an assembly program, it is a matter of
taste as to whether the above implementation is better than a series of nested .if
directives. Should the if statements be implemented without the directives, the
above case structure would probably be easier to read and modify, but with the
availability of the .if directive, the above case structure might be more compli-
cated. Regardless, knowledge of how a case structure is implemented is useful,
especially if one uses a low-level language that does not have any high-level control
structures.

4.6 Characters and Logical Operations

Just as it is possible to compare individual characters in high-level languages like C,
it is also possible to do the same in assembly language using high-level directives.
Assuming that the variable initial is declared as type char in the C code on the
left below, it can be implemented in assembly language as shown on the right,
assuming that initial is declared as a byte:

if (initial < 'e') .if initial < 'e'
count++; inc count

.endif

4.5 Case Structure 59

It is also possible to implement the above without using high-level directives by
using a compare and appropriate jump instruction. It might be possible to use the
previously introduced signed conditional jumps for character data (see Table 4.5),
since many characters (such as the letters of the alphabet) contain a 0 in the sign bit
and do not risk the possibility of being considered as smaller values. For example,
the character ‘a’, which is a binary 01000001, is less than the character ‘b’, which
is a binary 01000010. However, what if one is comparing one of the extended
ASCII characters that use the sign bit such as ‘ä’ which is a binary 10000100 (see
Appendix B) to an ‘a’ which is a binary 01000001? The result is that the ‘ä’ would
be considered smaller than the ‘a’, which is not true. This would result in a logic
error and might be difficult to debug. Given the old adage “use the right tool for the
job,” it is good programming practice to use instructions that were designed for the
particular circumstances under consideration. In addition, it again provides some
self-documenting code to use unsigned jump instruction to indicate that it is
unsigned data that is being compared. The corresponding unsigned jump instruc-
tions are given in Table 4.6.

Note that je and jne are not included in Table 4.6. As mentioned previously,
they can be used with either signed or unsigned data, because when two things are
equal, it does not matter whether they are signed or unsigned. As before, the
instructions in the right column of Table 4.6 are equivalent to the instructions in the
left column. Again, the use of a “not” in an instruction can be confusing, so the
instructions on the left are generally preferred over the instructions on the right.

Given the above and similar to past examples, the assembly code at the
beginning of this section can be implemented without high-level directives as

if initial < 'e'
if01: cmp initial,'e'

jae endif01
inc count

endif01: nop

Turning to high-level logical operators, how might they be implemented in
assembly language? The simplest of these is the “not” operator (!). Returning to
the use of integers for the sake of convenience, the following C code segment on

Table 4.6 Unsigned conditional jump instructions

Instruction Meaning Instruction Meaning

ja Jump above jnbe Jump not below or equal to

jae Jump above or equal to jnb Jump not below

jb Jump below jnae Jump not above or equal to

jbe Jump below or equal to jna Jump not above

60 4 Selection Structures

the left can be easily implemented in assembly language using high-level directives
as shown on the right:

if (!(x == 1)) .if !(x == 1)
y++; inc y

.endif

Given the code above, how can this be implemented without using high-level
directives? Although the “not” operator is the simplest of the logical operators, it
sometimes can cause the largest number of errors in logic. The simplest way to
avoid any problems is try to avoid the use of the “not” in the first place. However,
there are times that the use of the “not” cannot be avoided, so the easiest way is to
try to simplify the code as much as possible to minimize many of the potential
pitfalls. In this case the solution is simple, because the previous code !(x==1)
could be implemented as x!=1. It can then easily be rewritten at the assembly level
without using high-level directives:

; if !(x == 1)
if02: cmp x,1

je endif02
then02: inc y
endif02: nop

What about an expression that contains the logical “or” operator (| |)? Given the
C code on the left below, it could be implemented as one might suspect in assembly
language to the right:

if(x==1 || y==2) .if x==1 || y==2
z++; inc z

.endif

Again, how would this be implemented without the use of MASM directives? In
order to implement the logical “or” operator, two compare instructions would need
to be used. At first, one might be tempted to reverse the jump statement immedi-
ately after the first compare as was discussed previously. However, if one thinks
about it for a few minutes, is there any need to check the second conditional if the
first cmp is true? It should be obvious that there is no need to fall through and check
the second conditional, since in a logical “or” statement, only one of the relationals
needs to be true. The result is that the first jump needs to branch around the second
compare and go straight to the then section. As should be recalled from Introduction
to Computer Science, this is known as “short circuit,” where if the first part of the
logical “or” is true, the second part need not be tested. In the second compare, the
jump is the same as in a simple if-then structure discussed previously in Sect. 4.2,
where the conditional jump is reversed.

4.6 Characters and Logical Operations 61

; if x==1 or y==2
if03: cmp x,1

je then03
cmp y,2
jne endif03

then03: inc z
endif03: nop

How then would the logical “and” operator (&&) in C be implemented?
Remember that with a logical “and”, both conditionals must be true. Given the C
code on the left and the assembly language using high-level directives on the right,
how would they be implemented in assembly language without using high-level
directives?

if (x==1 && y==2) .if x==1 && y==2
cni;++z z

.endif

Using analysis similar to that demonstrated in the previous example, the correct
use of jump statements can be determined. In this case, one cannot jump around the
second condition because with an “and” operation, both conditions must be true
before the whole expression can be considered to be true. However, if the first one
is false, then there is no need to compare the second relational and the jump can be
to the end of the if structure:

; if x==1 and y==2
if04: cmp x,1

jne endif04
cmp y,2
jne endif04

then04: inc z
endif04: nop

In more complicated examples, the rules of precedence for logical operators
should be remembered. First, similar to the unary arithmetic minus sign, the logical
unary “not” operation (!) has the highest precedence. Next, the “and” operator (&&)
has higher precedence over the “or” operator (| |). A helpful way to remember this
is to know that an “and” operation is sometimes called logical multiplication and an
“or” operation is sometimes called logical addition, where similar to arithmetic,
logical multiplication has a higher precedence over logical addition. As with
arithmetic, parentheses can always be used to override these rules of precedence
where the most nested parentheses are evaluated first. Lastly in the case of a tie
between operations, the order is from left to right. Given this information, how
would the following logical expressions in the C and assembly language code

62 4 Selection Structures

segments be implemented in assembly language without using high-level
directives?

if (w==1 || x==2 && y==3) .if w==1 || x==2 && y==3
cni;++z z

.endif

Remember that the && has precedence over the | |, so the && should be handled
first. One might think at this point in time that it really does not matter whether the
w==1 is handled first or the (x ==2 && y==3) is handled first. Although this
might be true under some circumstances, it might not be what the writer of the
original C code intended. For example, what if w is undefined when x==2 && y==3
is true? Then obviously the w==1 should not be checked first and there might be a
logic error. The result is that it is usually best to do a direct translation of the code as
written to avoid any possible unforeseen circumstances which might cause subse-
quent errors:

; if w == 1 || x==2 && y == 3
if05: cmp x,2

jne or05
cmp y,3
je then05

or05: cmp w,1
jne endif05

then05: inc z
endif05: nop

Notice that if x does not equal 2, then the && will be false, but that does not
mean that the entire logical expression is false. So if the && operation is false, then
the w==1 must be checked indicated by the code at the or05 label. If x==2 is true,
it is necessary to check to see if the y==3 is true and if so, then the rest of the | | can
be short circuited. However, if it is false, then the && expression is false, and as
before, the w==1 needs to be checked.

What would happen if parentheses were added around the w == 1 | | x == 2 in
the segments above? How could it be implemented in assembly language without
using high-level directives? Again using the techniques presented in this section,
the problem can carefully be solved and this is left as an exercise at the end of the
chapter.

In previous classes, the reader may or may not have heard of De Morgan’s rules.
These rules allow the distribution of a “not” over an “and” or an “or”, provided the
“and” is changed to an “or” and conversely an “or” is changed to an “and” as shown
in Table 4.7.

For example given the following C program on the left and assembly language
program on the right, it might be difficult to implement the equivalent code in
assembly language without using high-level directives:

4.6 Characters and Logical Operations 63

Table 4.7 De Morgan’s
rules

not (x and y) ¼ not x or not y

not (x or y) ¼ not x and not y

if (!(x==1 || y==1)) .if !(x==1 || y==1)
cni;++z z

.endif

This is where De Morgan’s rules come in handy, where each of the above can be
rewritten as follows:

if (!(x==1) && !(y==1)) .if !(x==1) && !(y==1)
;++z inc z

.endif

Note that each of the “not” operators (!) has been distributed over the two checks
for equality and that the “or” operator (| |) has been changed to an “and” operator
(&&). To help further convert the above code to assembly language without
directives, the !(x==1) and the !(y==1) above have been changed to x! = 1 and
y! = 1 below, respectively:

if (x!=1 && y!=1) .if x!=1 && y!=1
z++; inc z

.endif

Now the code can be converted easily to assembly language without using
high-level directives, where the relations are reversed and only when both variables
are not equal to 1 does the flow of control fall through to the then06 label of the if
structure as shown below:

if06: cmp x,1
je endif06
cmp y,1
je endif06

then06: inc z
endif06: nop

4.7 Arithmetic Expressions in High-Level Directives

When programming in C and C++ it is possible to not use a relational in an if
statement, whereas in Java this is not possible. As might already be known, the
reason for this is that in C and C++, the result of an expression is not true or false,
as it is in Java, but rather the result is non-zero or zero. This means that if the result

64 4 Selection Structures

is zero, it is treated as though it is false and the then portion of the if is not
executed, but if the result is anything but zero (positive or negative), then the result
is considered to be true and the subsequent then portion of the if is executed.
Given this, a statement such as the following is possible:

if (x-1)
y++;

Notice that there is no equality symbol (==) in the expression. When x is equal
to 1, then x-1 would be equal to 0 which is considered to be false and the then
portion of the if statement is not executed. In any other case the result is non-zero
which is considered as true and the then portion of the if would be executed. For
example, if x is equal to 0, the result would be that x-1 is equal to -1 which is
considered true and the then portion would be executed. Of course the above code
could have been written as if(x != 1) and this code is much more straightfor-
ward. Although this is the preferred method of this text, one might run into code
written using only arithmetic statements, so it does not hurt to understand how it
might be implemented.

At first, one might be tempted to write the above code segment in assembly
language using directives as follows:

; *** Caution: Incorrectly implemented code ***

.if x-1
inc y
.endif

However, the above code does not implement the same thing as the C code
shown previously. Instead, if one looks at the code generated by the assembler in
the .lst file, one would see something similar to the following:

@C0001:

cmp x-001h,000h
je @C0001
inc y

Although it appears that a 1 is being subtracted from the variable x in the
compare statement, in fact it is not being subtracted from the contents of the
variable x at all, but rather a 1 is being subtracted from the address of the variable x
for the purpose of the comparison. As will be discussed in Chap. 8, it is possible to
access other variables by way of a positive or a negative offset using an addition or
a subtraction symbol. For example, assume the following variables are declared:

4.7 Arithmetic Expressions in High-Level Directives 65

w byte 0
x sdword 0
y sdword 0

In the original C code segment, when x is 0, the intent was that x-1 would
result in -1, which is non-zero, and y would be incremented. However, in the
generated assembly language code segment, x-1 refers to the byte above x, which
is the variable w that contains a 0. Since w is equal to 0, the flow of control branches
around the then section and does not increment y. This was not the original intent
and it might be a difficult logic error to uncover. The result is that unless accessing
an element of an array or a string, arithmetic statements should generally not be
used in high-level directives. Further, when writing questionable code, it does not
hurt to examine the .lst file to insure that the instructions generated are correct.

Although all of the past examples that have been written without high-level
directives in assembly language have been implemented utilizing a cmp instruction,
it is not always necessary to do so and a statement like if(x-1) above is a good
example. As discussed in Sect. 4.1, the cmp instruction sets various flags in the
eflags register and the same is true for arithmetic expressions. After a subtraction,
an addition, an increment, or a decrement, the zero flag (ZF) and the sign flag
(SF) are set accordingly. Should x be equal to 1, then x−1 is 0 and the zero flag
would be set to 1. Further, if the result is positive or negative, the zero flag would
be set to 0 and the sign flag would be set to 0 or 1, respectively.

There are two methods that can be used to solve this problem. The first uses
high-level directives and the second uses conditional jump instructions. Recall from
earlier in this chapter (Table 4.1) that there were high-level operators that returned
the value of various flags. One of these was ZERO? that returns a 1 should the zero
flag be set, and a 0 otherwise. Using this operator, the following code can be written:

mov eax, x
dec eax
.if(!ZERO?)
inc y
.endif

Note that the value in x is first moved into a register and then decremented.
Since an assignment symbol (=) does not appear in the expression of the previous C
code segment, the value of x was not and should not be altered. Should x be equal
to a 0, then x-1 would be equal to -1. The result is that the zero flag would not be
set, !ZERO? would be true, and y would be incremented.

In the second way to solve this problem, a new conditional jump instruction is
needed. Listed in Table 4.8 are branch instructions that jump based on the contents
of various flags in the eflags register. Note that the instructions on the left branch
when the corresponding flag is set (true) and the instructions on the right branch
when the corresponding flag is not set (false). The instructions that are of most
interest here are the ones that are concerned with the zero flag and the sign flag.

66 4 Selection Structures

Given the information in Table 4.8, the previous C code segment can be written
in assembly language as follows:

if07: mov eax,x
dec eax
jz endif07

then07: inc y
endif07: nop

Unlike using relationals, there is no reversing of the logic since when the result is
not zero, the code falls through to the then section, otherwise when the result is
zero, the jump is to the endif07 label. As before, note that the value in x is first
moved into a register and then decremented so that the value in x is not altered.
Again, the preferred method of this text is the use of relationals, but when neces-
sary, if statements can be implemented without them.

4.8 Complete Program: Using Selection Structures and I/O

It is now possible to start creating some more interesting programs using both
selection structures and I/O. For example, suppose that one wanted to input a value
representing an alternating current (AC) voltage, indicate whether the voltage was
either too high, too low, or at an acceptable level, and then output an appropriate
message according to Table 4.9.

Table 4.10 contains three samples of the prompt and messages needed in order
from left to right. First, notice that there is a blank line after the prompt and input,
but prior to the output. Also notice that the “Warning!” message appears on a
separate line. In order to write the program, it should be obvious that a nested
if-then-else-if structure would be the best choice. The question should then be
which test should be done first. A good choice might be to go in the order as they

Table 4.9 Voltages and messages

Voltage Message

109 and below Warning! Voltage too low

110–120, inclusive Voltage is acceptable

121 and above Warning! Voltage too high

Table 4.8 Jump instructions based on eflags register

Instruction Description Flag Instruction Description Flag

jc Jump if carry CF = 1 jnc Jump if not carry CF = 0

jp Jump if parity (even) PF = 1 jnp Jump if not parity PF = 0

jz Jump if zero ZF = 1 jnz Jump if not zero ZF = 0

js Jump if sign (neg) SF = 1 jns Jump if not sign SF = 0

jo Jump if overflow OF = 1 jno Jump if not overflow OF = 0

4.7 Arithmetic Expressions in High-Level Directives 67

Table 4.10 Sample input/output

Sample I/O Sample I/O Sample I/O

Enter an AC voltage: 109 Enter an AC voltage: 110 Enter an AC voltage: 121

Warning!
Voltage too low

Voltage is acceptable Warning!
Voltage too high

are presented in the table, starting with the low voltages. In terms of logic, this is the
simplest order to implement. However, given that there is a separate output line for
the “Warning!” message, it might be best to group these two together to make the
I/O simpler. Although this would mean the use of logical operators, the I/O is
sufficiently more complicated at this level and starting with the acceptable voltages
first appears to be the better solution.

To help understand the logic and I/O better, it is probably best to show the
solution in a C program first and then convert it to assembly language as has been
done in the past:

#include <stdio.h>
int main () {

int voltage;
printf("%s", "Enter an AC Voltage: ");
scanf("%d", &voltage);
if (voltage >= 110 && voltage <= 120)

printf("\n%s\n", "Voltage is Acceptable");
else {

printf("\n%s\n","Warning!");
if voltage < 110)

printf("%s\n","Voltage too Low");
else

printf("%s\n","Voltage too High");
}

printf("\n");
return 0;

}

Notice that there are two occurrences of \n in both the acceptable message and
the warning message, where the one before the %s causes the blank line after the
prompt and input. Also note that only two ifs are needed because if the voltage is
not in the first two ranges, it must be in the third. Lastly, notice that the “Warning!”
message appears prior to the nested if, thus avoiding having to output it in two
different locations within the nested if statement. This is a very good example to
illustrate why an elseif statement in any language is not always as effective. In
this particular situation in assembly language, the .elseif directive would not
allow the “Warning!” message to be placed between an .else and an .if
directive and would result in code that would be more difficult to maintain. The
code below illustrates the benefit of using separate directives. Of course the code
below could be implemented without using directives and this is left as an exercise:

68 4 Selection Structures

.686

.model flat,c

.stack 100h
scanf PROTO arg2:Ptr Byte, inputlist:VARARG
printf PROTO arg1:Ptr Byte, printlist:VARARG

.data

in1fmt byte "%d",0
msg1fmt byte "%s",0
msg2fmt byte 0Ah,"%s",0Ah,0
msg4fmt byte "%s",0Ah,0
msg6fmt byte 0Ah,0
msg1 byte "Enter an AC voltage: ",0

msg2 byte "Voltage is Acceptable",0
msg3 byte "Warning!",0
msg4 byte "Voltage too Low",0

msg5 byte "Voltage too High",0

voltage sdword ?

.code

main proc

INVOKE printf, ADDR msg1fmt, ADDR msg1
INVOKE scanf, ADDR in1fmt, ADDR voltage

.if voltage >=110 && voltage <= 120
INVOKE printf, ADDR msg2fmt, ADDR msg2

.else
INVOKE printf, ADDR msg2fmt, ADDR msg3
.if voltage < 110
INVOKE printf, ADDR msg4fmt, ADDR msg4

.else
INVOKE printf, ADDR msg4fmt, ADDR msg5
.endif
.endif

INVOKE printf, ADDR msg6fmt
ret

main endp

end

4.8 Complete Program: Using Selection Structures and I/O 69

4.9 Summary

• If possible, avoid instructions that contain “nots” (for example, jg is preferred to
jnle).

• When implementing if statements without high-level directives, the conditional
jump often needs to be reversed to implement the if statement correctly.

• Nested if-then-else-if structures are usually preferred over if-then-if structures.
• MASM does not have a high-level case structure (switch statement), but one
can be constructed using compare and jump statements.

• The complexity of creating a case structure without high-level directives needs to
be compared to the simplicity of using nested high-level .if directives.

• When used properly, the .elseif directive can be helpful but can make it
slightly more difficult to modify code segments in various situations.

• When not using high-level directives, use good label names to help readability.
• When comparing characters, use unsigned jumps instead of signed jumps (for
example, use ja instead of jg).

• Remember that a logical “and” operation (&&) has precedence over a logical “or”
operation (| |).

• Unless accessing an element of an array or a string, avoid using arithmetic
expressions in high-level directives. Instead write the corresponding code using
relationals.

4.10 Exercises (Items Marked with an * Have Solutions
in Appendix D)

1. Indicate whether the following statements are syntactically correct or incorrect
in MASM. If incorrect, indicate what is wrong with the statement:

∗A. .if (number = 0)
add number,2
.endif

B. .if count >= 0 then
sub count,2
.else
add count,3
.endif

∗C. .if x-1
dec x
.endif

D. if01: cmp x,y
jle endif01
then01: inc x

endif01: nop

70 4 Selection Structures

2. Using MASM directives, write an assembly language code segment to imple-
ment the following:

if (a > b)
a = a - 1;

else
if (b >= c)

b = b − 2;
else

if (c > d)
c = c + d;

else
d = d / 2;

3. Convert the following C selection structures to the corresponding assembly
language code segments. Do not use MASM directives, but rather only com-
pares, jumps, and appropriate labels (hint: Problem B, use De Morgan’s rules):

∗A. if (w == 1 && x == 2)
y-;

 B. if (!(num > 0 && num <= 3))
count=count-2;

∗C. if ((w == 1 || x == 2) && y == 3)
z++;

D. if (a == 1 || b == 2 && c > 3 || d <= 4)
e--;

4. Given the example of the if-then-else-if structure in Problem 2 above,
re-implement it using a nested if-then-if structure:

A. Use MASM directives.
B. Do not use MASM directives, but rather compares, jumps, and appropriate

labels.

5. Implement the following C switch statement, which does not have a default
statement, using compares, jumps, and appropriate labels. If number does not
contain a 0 through 3, then the value of count should not change:

switch number {
case 0:
case 1: count = count +2;

break;
case 2:
case 3: count = count - 2;

}

6. Implement the program in Sect. 4.8 in assembly language without using
high-level directives with only compares, jumps, and appropriate labels.

4.10 Exercises (Items Marked with an * Have Solutions in Appendix D) 71

5Iteration Structures

As should be recalled from previous courses, there are many different types of
iteration structures available to a programmer in a high-level programming lan-
guage. Just as there are many structures in a high-level language, there are corre-
sponding structures in assembly language, such as the pre-test, post-test, and
fixed-iteration loop structures. Depending on the circumstances, one should use the
best structure for the task at hand.

5.1 Pre-test Loop Structure

Probably the most versatile loop is the count-controlled pre-test while loop, where
any number of tasks can be performed in the body of the loop. The basic structure
of this loop can be found below in the C code segment:

i 1;
while(i< 3) {

// body of loop
i++;

}

The three parts of any loop are “initialization,” “test,” and “change.” In the
segment above, i is known as the loop control variable (LCV), where it is ini-
tialized to 1, it is then tested, and loops when i is less than or equal to 3, and it
changes when it is incremented by 1. As with the if-then structure, MASM has
directives that simplify the implementation of the while loop structure. The direc-
tives are the .while and .endw directives as shown below:

© Springer Nature Switzerland AG 2020
J. T. Streib, Guide to Assembly Language, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-35639-2_5

73

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35639-2_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35639-2_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35639-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-35639-2_5

mov i,1
.while i< 3
; body of loop
inc i
.endw

The .while directive has the same limitations as the .if directive, where a
comparison cannot be made between two memory locations. Also, unless
addressing elements of an array or a string, the use of arithmetic expressions should
be avoided. Further, regardless of the number of statements in the body of the loop,
the structure must end with the .endw directive. Lastly, a register could be used in
place of the variable i to help increase speed, but as will be seen shortly, there is
another loop that could be used if speed is a concern.

As with the if structure, the while structure can be implemented using a compare
statement and the appropriate jump statements. As before, one must be sure to use
the opposite jump from the relational. Also as with the if-then-else structure, one
must be careful to include an extra unconditional jump, but in this case the jump is
back to the beginning of the loop:

mov i,1
; while i< 3

while01: cmp i,3
jg endw01
; body of loop
inc i
jmp while01

endw01: nop

Keeping the label scheme used with the if structure, numbers are used to avoid
multiple label names with the same name when more than one loop is used in a
program. As mentioned above, notice the inclusion of the unconditional jmp
while01 at the bottom of the loop, because without it, the loop would execute the
body of the loop only once.

As an example of how the while loop could be used, some very small micro-
processors do not have a multiplication or a division instruction as part of their
instruction set. These processors are not designed to solve mathematical problems,
but rather to control devices. Further, these types of processors have very little
memory and are known as embedded systems. Although a processor might not have
a multiplication instruction, it would have a way to perform iteration. If multipli-
cation does need to be performed, one way is to implement it is as repetitive
addition. For the sake of convenience, assume that multiplication can only be
between non-negative numbers, similar to the mul instruction in the Intel proces-
sor:

74 5 Iteration Structures

ans 0;
i 1;
while(i < y) {

ans ans+x;
i++;

}

In the C code above, should y be 0, then the loop will never be executed and the
ans will be equal to 0. However, if x is 0, then it is possible that the loop will
iterate y times and redundantly add x to ans. How could this problem be solved?
An if statement could be added as shown below:

ans 0;
if(x! 0) {

i 1;
while(i< y) {

ans ans+x;
i++;

}
}

The above C code can be implemented in assembly language below illustrating
the use of the .while directive and further illustrating the use of the .if
directive:

mov ans,0 ; initialize ans to 0

.if x ! 0
mov i,1 ; initialize i to 1

mov eax,y ; load eax with y for while

.while i< eax
mov eax,ans ; load eax with ans
add eax,x ; add eax to ans

mov ans,eax ; store eax in ans

mov eax,y ; reload eax with y for while

inc i ; increment i by 1

.endw

.endif

Note in the .while directive, as with the .if directives in the previous
chapter, one of the variables is moved into the eax register to be compared in the
.while directive. Using eax might seem incorrect at first, since it is being used
for addition in the body of the loop, but since ans is loaded into and subsequently
stored back into ans, using eax is acceptable. Note that toward the bottom of the
body of the loop, the value of y is copied back into eax for the subsequent times
through the loop. Although another register could have been used, this method
minimizes the number of registers used and on completion of the segment, all the

5.1 Pre-test Loop Structure 75

values of the respective memory locations contain the same values as in the pre-
vious C code.

Alternatively, instead of using i as a loop control variable, a register could be
used as shown below. Since ecx is known as the counter register, this would be a
good choice and would cause the loop to execute quicker at the expense of using
one more register to implement the code. If the variable i needs to contain the
corresponding final value as it would in the previous C code, then the value in ecx
can simply be moved into the variable i at the end of the segment as illustrated
below. Provided one does not branch out of the middle of the loop, which would
result in unstructured code and should be avoided, the code below would work and
should be acceptable:

mov ans,0 ; initialize ans to 0
.if x! 0
mov ecx,1 ; initialize ecx to 1
.while ecx< y
mov eax,ans ; load eax with ans
add eax,x ; add x to ans
mov ans,eax ; store eax in ans
inc ecx ; increment ecx by one
.endw
mov i,ecx ; store ecx in i
.endif

Although embedded processors might not have high-level directives, the solu-
tion to the problem is still the same and the above can be implemented with
compares and jumps in their respective assembly languages. The result would be
similar to implementing the code without directives in MASM, which is left as an
exercise at the end of the chapter.

5.2 Post-test Loop Structures

The C programming language has a post-test loop structure called the do-while. The
unique feature of post-test loops is that the body of the loop is executed at least one
time, unlike the pre-test loop where the body of the loop might not be executed at
all. It is because of this difference that the pre-test loop is sometimes used more
often than the post-test loop, but the latter is helpful in various circumstances in
some languages, such as filtering interactive input or reading files. In MASM, the
post-test loop structure is implemented using the .repeat and .until direc-
tives. Given the following C do-while loop on the left, the corresponding assembly
language appears on the right:

76 5 Iteration Structures

i 1; mov i,1

do { .repeat

// body of loop ; body of loop
i++; inc i

} while (i< 3); .until i>3

Note that instead of i<=3, the .until has i>3. This is not a mistake. Whereas
the do-while continues to loop while i is less than or equal to 3 and falls through
when i is equal to 4, the repeat-until loops until i is greater than 3, where it also
falls through to the next instruction when i is equal to 4. This is similar to other
languages such as Pascal and VBA (Visual Basic for Applications), where the latter
has both do-while and repeat-until instructions. One just has to be careful to use the
exact opposite relational and must not forget to consider the case where the values
are equal, which could result in a subsequent logic error. The implementation of this
loop without MASM high-level directives using compares, jumps, and labels is
shown below. As before, the relation of the jump is reversed from the one in the
.until directive above:

mov i,1
repeat01: nop

; body of loop
inc i
cmp i,3
jle repeat01

endrpt01: nop

Implementing the multiplication of the previous section using .repeat -
.until directives requires a little rethinking, since the body of a post-test loop
structure is executed at least once. If the value of y is equal to 0, then the loop will
execute once and the answer will be incorrect. As a result, there needs to be an if
statement prior to either do-while in the C code on the left or the .repeat -
.until directives in the assembly code on the right. The requirement that there
often needs to be an if statement prior to a post-test loop is one of the reasons why
these types of loops are not usually the first choice when solving many problems:

ans 0; mov ans,0

if (y! 0) { .if y! 0

i 1; mov ecx,1
do { .repeat

ans ans+x;
i++;

mov eax,ans
add eax,x

}
} while (i< y); mov ans,eax

inc ecx

.until ecx>y

mov i,ecx

.endif

5.2 Post-test Loop Structures 77

However, if the value of x is checked to see if it is equal to 0 as done in the
while loop in the previous section, then this is not much of an imposition, where the
values of both x and y could be checked in the if statement using an “and”
operation. As with the previous section, notice that the above code is implemented
using the ecx register. The advantages and disadvantages of using ecx as a loop
control variable will be made more apparent in the next section where it is not an
option, but rather a requirement. Given that an if statement is often needed prior to
the .repeat, the .while loop will tend to be used more often in this text.

5.3 Fixed-Iteration Loop Structures

As found in many high-level languages, there usually exists a fixed-iteration loop
structure often called a for loop structure. Its primary advantage is that it is used
when a loop needs to iterate only a fixed number of times. An example of such a
loop is the for loop in C, where the braces are optional when there is only one
statement:

for(i 1;i< 3;i++) {
// body of loop

}

Typically most machine architectures have a specialized instruction to accom-
plish this task and it can often execute a little faster than the loops discussed in the
previous two sections. In MASM, the directives that can be used for this task are the
.repeat and .untilcxz directives. If one recalls when the general purpose
registers were first introduced in Chap. 1, it was mentioned that the ecx register
was sometimes used as a counter register. As with some other instructions, the
.repeat and .untilcxz directives use the ecx register as a counter. Unlike
using the separate compare and jump instructions in the previous two loop struc-
tures, the .untilcxz directive performs two tasks: it decrements the ecx register
by 1 and then jumps to the .repeat directive when ecx is not equal to 0. In other
words, it loops until the ecx register equals 0 (cxz). Unfortunately, unlike the for
statement which is typically implemented as a pre-test loop, the .repeat and
.untilcxz directives are implemented as a postfix loop structure, which means
the body of the loop is executed at least once. However, if one is careful with the
.repeat and .untilcxz directives, they can prove to be very useful. An
understanding of how it works can be helpful later in Chap. 9 when learning how to
manipulate strings. The above for loop can be implemented as follows:

mov ecx,3
.repeat
; body of the loop
.untilcxz

78 5 Iteration Structures

First, the ecx register is loaded with the number of times the body of the loop
should be executed. Then, each time the .untilcxz directive is executed, the
value of the ecx register is decremented by 1 and then compared to 0. If the value
is not equal to 0, the loop repeats. When the value is 0, the flow of control is passed
onto the instruction immediately following the .untilcxz directive.

One temptation that the beginning assembly language programmer has is to
decrement the ecx register within the body of the loop. Just like with a for loop in
many high-level languages, where the loop control variable should not be altered in
the body of the loop, neither should the ecx variable be altered in the body of the
.repeat - .untilcxz loop.

As with the other structures before, the .repeat and .untilcxz directives
can be implemented using only assembly language instructions. In this case, it is the
loop instruction which implements the .repeat and .untilcxz directives:

mov ecx,3
for01: nop

; body of the loop
loop for01

endfor01: nop

The loop instruction works the same as the .repeat and .untilcxz
directives, where the ecx register is loaded with the number of times to iterate and
the loop instruction then decrements the ecx register by 1, branches to the label
indicated in the operand field when ecx is not equal to 0, and falls through
otherwise.

With both the .repeat and .untilcxz directives and the loop instruction,
one has to be careful that the ecx register does not contain a 0 or a negative
number. If one takes a moment and thinks of how the loop instruction works, the
potential problem should be apparent. If ecx is initially 0, then what is the first
thing the loop instruction does? It decrements the ecx register by 1, thus causing
ecx to be a negative one. Since it is not 0, it branches back to the beginning of the
loop and the process continues. Would this be an infinite loop? No, because the
loop instruction would continue to decrement ecx until it hits −2,147,483,648
and on the subsequent decrement, the negative number would turn to a positive
2,147,483,647 (see Appendix B). Eventually it would decrement that number back
to 0. Although it would not be an infinite loop, it would loop over four billion times.

If the value is merely being assigned to ecx prior to the loop, this might not be
as much of a problem. However, if, for example, the value of ecx is being input
from a user, then the value ecx should be checked. An instruction that can help
with this problem is the jecxz instruction that will jump to a label after the loop
should the value of ecx be equal to 0. This is especially useful when using the
loop instruction where labels are already being used. Although this works to
prevent a situation where ecx might contain a 0, it does not check for negative
values which can cause just as much havoc as a value of 0. If necessary, an if
structure can be used to check for a non-positive value and the .if directive would

5.3 Fixed-Iteration Loop Structures 79

work well when using the .repeat - .untilcxz directives. An example of
each can be seen below, where the value of ecx is not assigned and it can be
assumed to already have a value that needs to be checked:

; check for zero ; check for non-positive
jecxz endfor01 .if ecx >0

for01: nop .repeat
; body of the loop ; body of the loop
loop for01 .untilcxz

endfor01: nop .endif

Another problem with this loop is that the .repeat directive can only be 128
bytes prior to the .untilcxz directive, or the label referenced in a loop
instruction can also only be 128 bytes prior to the loop instruction. As will be
discussed in Chap. 10, the instructions used in this text vary from 1 byte (such as
the inc eax instruction) to 6 bytes (such as a mov ebx,amount instruction).
Given that the loop instruction is 2 bytes long, there could be 126 one-byte
instructions and in the worst case only 11 six-byte instructions could be in the body
of a .repeat - .untilcxz loop. If the number of bytes is exceeded, the
assembler will generate an error message indicating how many bytes the loop has
exceeded this limit. Although this seems rather restrictive, in practice this does not
occur too often, and if it does, a .while loop can always be used instead.

In spite of some of the above restrictions, the .repeat-untilcxz directives
and loop instructions are very useful and can be used in a variety of situations. For
example, the previous multiplication problem can be solved with this loop as well:

ans 0;

if (y ! 0)

for(i 1; i< y;i++)

ans ans + x;

mov ans,0

.if y ! 0

mov ecx,y

.repeat
 mov eax,ans
add eax, x

mov ans,eax

.untilcxz

.endif

Note that in the assembly code on the right, the final value of the ecx register is
not moved into i. The reason is that unlike the previous two loops, where i or ecx
started at 1 and ended up being one more than the variable y, here the ecx register
starts at the variable y and counts down to zero. It is possible that the final value of
i could be mathematically calculated to be equal to the correct value whether
through normal termination or branching outside from somewhere within the
loop. However, in many languages the final value of the loop control variable in a
fixed-iteration loop structure is said to be indeterminate, and the result here is
consistent with those languages.

80 5 Iteration Structures

5.4 Loops and Input/Output

If a code segment needs to be written to input, process, and output a fixed number
of items, then a fixed-iteration loop is probably the best choice. Although a simple
example, assume that the segment needs to input and sum exactly 10 integers and
then output the sum:

sum 0;
for(i 1; i< 10; i++) {

printf("%s","Enter an integer: ");
scanf("%d",&num);
sum sum+num;

}
printf(" n%s%d n n","The sum is ",sum);
return 0;

Assuming all the formats and variables are declared correctly, the partial
equivalent in assembly is shown below. Note that the value of ecx is stored in a
memory location called temp at the top of the loop and then the value of ecx is
restored at the bottom of the loop. Recall from Chap. 2 that the INVOKE directive
can destroy the eax, ecx, and edx registers. Since the .repeat-untilcxz
directive uses the ecx register, care must be taken to save and restore its value. In
the next chapter, the stack will be discussed and will be a convenient way to
accomplish the same task:

.data
msg1 byte "Enter an integer: ",0
msg2 byte "The sum is ",0

.code
mov sum,0
mov ecx,10
.repeat
mov temp,ecx
INVOKE printf, ADDR msg1fmt, ADDR msg1
INVOKE scanf, ADDR in1fmt, ADDR num
mov eax,sum
add eax,num
mov sum,eax
mov ecx,temp
.untilcxz
INVOKE printf, ADDR msg2fmt, ADDR msg2, sum

Should more or fewer than 10 numbers need to be input and summed, the above
code segments would be rather restrictive. In order to allow more versatility, a
prompt and input for the number of integers could be added prior to the loop. Also, to
help avoid the problems of entering a 0 or a negative number, the loop could be
changed from a .repeat - .untilcxz to a .while - .endw. Again, assuming
the formats and data declarations are correct, the partial program is as follows:

5.4 Loops and Input/Output 81

.data
msg0 byte "Enter the number of integers to input: ",0
msg1 byte "Enter an integer: ",0
msg2 byte "The sum is ",0

.code
mov sum,0
INVOKE printf, ADDR msg1fmt, ADDR msg0
INVOKE scanf, ADDR in1fmt, ADDR count
mov ecx,1
.while ecx< count
mov temp,ecx
INVOKE printf, ADDR msg1fmt, ADDR msg1
INVOKE scanf, ADDR in1fmt, ADDR num
mov eax,sum
add eax,num
mov sum,eax
mov ecx,temp
inc ecx
.endw
INVOKE printf, ADDR msg2fmt, ADDR msg2, sum

However, what if one did not want to enter the number or integers to be input
and summed? A convenient way to solve this problem is to use what is known as a
sentinel-controlled loop, or what is sometimes called an end-of-data loop (EOD).
As commonly presented in a first semester computer science text, it contains two
input statements, where the first one appears prior to the loop and is sometimes
referred to as a priming read and the second one appears as the last statement in the
body of the loop. The appearance of two input statements sometimes confuses the
beginning programmer, but remembering the three parts of any loop, “initializa-
tion,” “test,” and “change,” this priming read can be thought of as the initialization
portion of the loop. Next, the test does not check a loop control variable (LCV), but
rather the test is of the value input. Of course this is not to say that a counter cannot
be added to the loop, where the counter may or may not be part of the control of the
loop. Lastly, the second input statement appears as the last statement in the body of
the loop, which serves as the change in the loop:

sum 0;
printf("%s","Enter an integer or a negative integer to stop: ");
scanf("%d",&num);
while (num >0) {

sum sum+num;
printf("%s","Enter an integer or a negative integer to stop: ");
scanf("%d",&num);

}
printf(" n%s%d n n","The sum is ",sum);

82 5 Iteration Structures

Again assuming that all the formats and variables are declared properly, the
partial assembly language equivalent is as follows:

.data
msg1 byte "Enter an integer or a negative integer to stop: ",0
msg2 byte "The sum is ",0

.code
mov sum,0
INVOKE printf, ADDR msg1fmt, ADDR msg1
INVOKE scanf, ADDR in1fmt, ADDR num
.while num > 0
mov eax,sum
add eax,num
mov sum,eax
INVOKE printf, ADDR msg1fmt, ADDR msg1
INVOKE scanf, ADDR in1fmt, ADDR num
.endw
INVOKE printf, ADDR msg2fmt, ADDR msg2, sum

It is possible to implement a sentinel-controlled loop using only one input
statement, but this is not considered good programming practice. This is usually not
a problem in many high-level languages because of the lack or discouraged use of a
goto statement. If it is not a good method, then why present it here? The reason is
that some older programs may have been written with this style of loop and should
the code need to be debugged or modified, then knowledge of this type of loop
might be helpful. At the same time, by understanding the loop, the disadvantages of
such a structure can be understood and its use in the future limited.

This style of loop is written by having only one input statement in the body of
the loop and then comparing the value to see if it is equal to the sentinel value, and
if so branching out of the middle of the loop. The actual loop is often written to
possibly loop an infinite number of times so that the only way out of the loop is the
comparison from somewhere in the middle of the loop. Another and possibly more
common way that these loops are written is that the loop itself is controlled by a
loop control variable, which is then the default number of times to loop. Should the
sentinel value be encountered prior to the default number of times, the branch is
then taken to some point outside the loop. Using the equivalent of a goto state-
ment, this can be anywhere else in the program, creating a very hard to follow
program known as spaghetti code. In C, this effect can be minimized by using the
break statement, which restricts the branch to the end of the current structure, not
unlike with the switch statement discussed previously. The following C code
segment loops infinitely until the sentinel value is detected by the if statement and
the break is executed:

5.4 Loops and Input/Output 83

sum 0;
while (1) {

printf("%s","Enter an integer or a negative integer to stop: ");
scanf("%d",&num);
if (num <0)

break;
sum sum+num;

}
printf(" n%s%d n n", "The sum is ",sum);

Since the above code does not exit from either the beginning or the end of the loop
but rather from themiddle, some purists would say that the code is unstructured, while
others would say that since the break statement limits the branch to the end of the
while statement, it is an acceptable branch. In the purist’s defense, it is possible that
the if might not appear as the first statement immediately after the scanf and it
might be tempting for a programmer to add code prior to the if statement. This can
possibly introduce a potential logic error that when the loop terminates, some pro-
cessing has occurred that should not have prior to the input of a sentinel value.
Although it might be counter-argued that was the intended reason for placing code
prior to the if statement anyway, it does introduce the possibility of misplaced code
and subsequent unintended logic errors, especially by beginning programmers.

Unlike the break statement in C which only branches to the end of the loop
structure, in assembly the jump instructions can branch anywhere in the program.
So, the endl: label in the code segment below does not necessarily need to be
located at the end of the loop but placed anywhere in the program, even pages away
from the loop itself which is not recommended. The above C code can be imple-
mented as shown in the partial assembly language code segment below:

.data
msg1 byte "Enter an integer or a negative integer to stop: ",0
msg2 byte "The sum is ",0

.code
mov sum,0
.while 1
INVOKE printf, ADDR msg1fmt, ADDR msg1
INVOKE scanf, ADDR in1fmt, ADDR num
cmp num,0
jl endl

mov eax,sum
add eax,num
mov sum,eax
.endw

endl: nop
INVOKE printf, ADDR msg2fmt, ADDR msg2, sum

84 5 Iteration Structures

As mentioned above, the result of this approach of using the single input is
some-what controversial and will not be used in this text. However, if the instructor
of the class says it is okay to use this method or if it is used extensively at work,
then hopefully the reader has learned the potential dangers of this method and will
thus use it sparingly and carefully.

5.5 Nested Loops

As one might recall from a first or a second computer science course, nested loops
are helpful when accessing a two-dimensional array or with various sorting algo-
rithms, such as the selection, bubble, or insertion sorts. In this section, the equiv-
alent of nested while and for loop structures will be introduced and the actual
application of nested loops will be deferred until Chap. 8.

As might be suspected, the implementation of a nested while loop is not much
more difficult than the implementation of a nested if statement. The most important
thing that should be remembered is to be sure to use different loop control variables
for each of the loops as shown in the C code segment below to the left and the
assembly code using high-level directives to the right:

i 1; mov i,1
while(i< 2) { .while i < 2

j 1; mov j,1
while(j< 3) { .while j < 3

// body of nested loop ; body of nested loop
j++; inc j

} .endw
i++; inc i

} .endw

Of course, the code gets a little more complicated without the benefit of
high-level directives. One must pay particularly close attention to the conditional
jumps to make sure that the relational is reversed properly and also that the
unconditional jumps branch to the appropriate location as shown below:

5.4 Loops and Input/Output 85

mov i,1
while02: cmp i,2

jg endwhile02
mov j,1

while03: cmp j,3
jg endwhile03
; body of nested loop
inc j
jmp while03

endwhile03: nop
inc i
jmp while02

endwhile02: nop

Often when dealing with two-dimensional arrays and sorting algorithms, when
there are a fixed number of times to loop in both the outer and inner loops, a
fixed-iteration loop structure is understandably used for convenience and speed as
shown below:

for (i 1; i < 2; i++)
for (j 1; j < 3; j++) {

// body of nested loop
 }

As learned previously, the above can be implemented using the .repeat and
.untilcxz directives in assembly language. However, care must be taken when
writing the code or it can be implemented incorrectly as shown below:

; *** Caution: Incorrectly implemented code ***

mov ecx,2
.repeat
mov ecx,3
.repeat
; body of nested loop
.untilcxz
.untilcxz

What is wrong with the above code? Although it is syntactically correct, there is
a logic error. Unlike the while loops above that can use two different variables, or
alternatively could use two different registers, the .repeat and .untilcxz
directives can work with only one register. The result is that the value of ecx is 0
upon completion of the nested loop, which causes the outer loop to never terminate.
Could another register be used with the .repeat - .untilcxz directives?
Unfortunately no, because as should be recalled, the underlying loop instruction
that implements the .untilcxz directive works only with the ecx register. The
question then is how can the above problem be solved? One way is to store the

86 5 Iteration Structures

value of ecx in a memory location prior to the inner loop and then restore the value
of ecx when the inner loop is complete as follows, where it can be assumed that
tempecx is declared as a temporary memory location:

; *** Note: Correctly implemented code ***

mov ecx,2
.repeat
mov tempecx,ecx
mov ecx,3
.repeat
; body of nested loop
.untilcxz
mov ecx,tempecx
.untilcxz

There is of course another way to save and restore the value of ecx. Again, a
stack is a convenient way to save and restore registers, and this will be discussed in
the next chapter. Could the above be implemented without using the .repeat and
.untilcxz directives? Of course, by using the loop instruction and that is left as
an exercise at the end of this chapter.

5.6 Complete Program: Implementing the Power Function

The selection structures of the previous chapter and the iteration structures of this
chapter can obviously be combined. As an example of a complete program, con-
sider the implementation of the power function (xn), where an iterative definition of
the power function is as follows:

xn = If x < 0 or n < 0, then negative message
Else if x = 0 and n = 0, then undefined message

Else if n = 0, then 1
Otherwise 1 * x * x * … * x (n times)

For the purposes of this program, it will not calculate the case where either x or
n is negative and should both x and n be 0, the result is undefined. In each case, an
appropriate error message is output. The following C program implements the
above definition:

5.5 Nested Loops 87

#include <stdio.h>
int main() {

int x,n,i,ans;
printf("%s","Enter x: ");
scanf("%d",&x);
printf("%s","Enter n: ");
scanf("%d",&n);
if(x<0 || n<0)

printf(" n%s n n","Error: Negative x and/or y");
else
if(x 0 && n 0)
printf(" n%s n n","Error: Undefined answer");

else {
i 1;
ans 1;
while(i< n) {

ans ans*x;
i++;

}
printf(" n%s%d n n","The answer is: ",ans);

}
return 0;

}

The above can be implemented in assembly language using directives and as
follows:

.686

.model flat,c

.stack 100h

scanf PROTO arg2:Ptr Byte, inputlist:VARARG
printf PROTO arg1:Ptr Byte, printlist:VARARG

.data

in1fmt byte "%d",0

msg1fmt byte "%s",0

msg3fmt byte "%s%d",0Ah,0Ah,0

errfmt byte "%s",0Ah,0Ah,0

errmsg1 byte 0Ah,"Error: Negative x and/or y",0

errmsg2 byte 0Ah,"Error: Undefined answer",0

88 5 Iteration Structures

msg1 byte "Enter x: ",0
msg2 byte "Enter n: ",0
msg3 byte 0Ah,"The answer is: ",0
x sdword ?
n sdword ?
ans sdword ?
i sdword ?

.code
main proc

INVOKE printf, ADDR msg1fmt, ADDR msg1
INVOKE scanf, ADDR in1fmt, ADDR x
INVOKE printf, ADDR msg1fmt, ADDR msg2
INVOKE scanf, ADDR in1fmt, ADDR n
.if x<0 || n<0
INVOKE printf, ADDR errfmt, ADDR errmsg1
.else
.if x 0 && n 0
INVOKE printf, ADDR errfmt, ADDR errmsg2
.else
mov ecx,1
mov ans,1
.while ecx < n
mov eax,ans
imul x
mov ans,eax
inc ecx

.endw
mov i,ecx
INVOKE printf, ADDR msg3fmt, ADDR msg3, ans
.endif
.endif
ret

main endp
end

5.6 Complete Program: Implementing the Power Function 89

The implementation of the above MASM code is fairly straightforward and
follows the corresponding C program. Note that ecx is used for loop control, but
the value of i is updated upon completion of the loop to reflect the logic of the
corresponding C code.

5.7 Summary

• The .while - .end directives implement a pre-test loop structure.
• The .repeat - .until and .repeat - .untilcxz directives are both
post-test loop structures.

• The .repeat - .untilcxz directives are a fixed-iteration loop structure.
• The loop instruction underlies the .repeat - .untilcxz directives.
• As with the .if directive, the .while - .end and .repeat - .until
directives cannot compare memory to memory due to the underlying cmp
instruction.

• Be extra careful to initialize ecx to a positive number (not zero or negative)
when using the loop instruction or the .repeat - .untilcxz directives. The
jecxz instruction or an .if directive, respectively, can be helpful in avoiding
this problem.

• When using either the loop instruction or the .repeat - .untilcxz
directives, it is a good idea to not alter the contents of the ecx register in the body
of the loop.

• When nesting .repeat – .untilcxz directives or loop instructions, be
careful to save and restore the ecx register just before and after the inner loop.

• The beginning of the .repeat - .until directives or loop instruction cannot
be more than 128 bytes away.

5.8 Exercises (Items Marked with an * Have Solutions
in Appendix D)

1. Given the following assembly language statements, indicate whether they are
syntactically correct or incorrect. If incorrect, indicate what is wrong with the
statement:

90 5 Iteration Structures

A. .for i 1;i< 3;i++
;body of loop
.endfor

B. mov i,1
while i < x
;body of loop
inc i
.endw

C. mov i,0
.repeat
; body of loop
add i,2
.until i>10

D. mov edx,3
.repeat
;body of loop
.untiledx

E. mov ebx,2
.do
;body of loop
.while ebx>0

2. Implement the last code segment in Sect. 5.1 without using directives and using
only conditional and unconditional jumps.

3. Given the following while loops implemented using conditional and uncondi-
tional jumps, indicate how many times the body of each loop will be executed:

A. mov i,2

while04: cmp i,8

jge endwhile04

; body of loop
add i,2

jmp while04

endwhile04: nop

B. mov k,0

repeat05: nop

; body of loop
add k,3

cmp k,3

jl repeat05

endrepeat05: nop

5.8 Exercises (Items Marked with an � Have Solutions in Appendix D) 91

C. mov j,1

while06: cmp j,0

jg endwhile06

; body of loop

inc j

jmp while06

endwhile06: nop

4. Implement the .repeat and .until directive at the end of Sect. 5.2 using
only compare and jump instructions, along with the appropriate label names.

5. Implement unsigned divide (similar to the div instruction) using repetitive
subtraction, with your choice (or your instructor’s choice) of any of the fol-
lowing (start with the dividend in eax and the divisor in ebx, then place the
quotient in eax and the remainder in edx. Note: Do not worry about division
by zero or negative numbers):

A. .while

B. .repeat - .until

C. .repeat - .untilcxz

6. Implement the following C segment using the .repeat - .untilcxz directives.
What if the value of n is 0 or negative? Does your code segment still work
properly? How can this problem be rectified?

sum 0;
for (i 1; i< n; i++)

sum sum + i;

7. Implement the following do-while loop first using the .repeat - .until
directives and then using only compares, and conditional and unconditional jumps:

i 10;
sum 0;
do {

sum sum+i;
i i-2;

} while i>0;

92 5 Iteration Structures

8. Implement the last code segment in Sect. 5.5 using the loop instruction instead
of .repeat and .untilcxz directives.

9. Given the factorial function (n!) defined iteratively as follows:

If n = 0 or n = 1, then 1
If n = 2, then 1 � 2 = 2
If n = 3, then 1 � 2 � 3 = 6
If n = 4, then 1 � 2 � 3 � 4 = 24
etc.

Implement the above function iteratively with your choice (or your instructor’s
choice) of any of the following:

A. .while
B. .repeat - .until
C. .repeat - .untilcxz

10. Given the Fibonacci sequence defined iteratively as follows:

if n = 0, then 0
if n = 1, then 1
if n = 2, then 0 + 1 = 1
if n = 3, then 1 + 1 = 2
if n = 4, then 1 + 2 = 3
etc.

Implement the above function iteratively with your choice (or your instructor’s
choice) of any of the following:

A. .while
B. .repeat - .until
C. .repeat - .untilcxz

5.8 Exercises (Items Marked with an � Have Solutions in Appendix D) 93

6Logic, Shifting, Rotating, and Stacks

6.1 Introduction

As introduced in most first semester computer science courses and previously
discussed in Chap. 4, various relationals in an if statement can be connected via the
use of logical operators such as “and” (&&), “or” (| |), and “not” (!), where these
operators in assembly language work with comparisons between variables, regis-
ters, and literals. However, sometimes it is necessary to not just compare the
contents of variables or registers but check the individual bits within a memory
location or a register. These types of operations are known as bit-wise operations.
An example of this is when interfacing with an external device, when often only a
single bit is needed to be checked or set on the external device.

As may or may not have been learned in a previous course, one of the reasons
why the C-like languages are very popular is that they have some capabilities to
manipulate individual bits. Instead of having to learn a particular low-level lan-
guage for a particular processor, basic bit-wise operations can be done in a
high-level language that is transferable from processor to processor, provided there
is a C or C++ compiler for that particular processor. Of course, assembly language
has these same capabilities by using logic, shifting, and rotating instructions for
manipulating the contents of registers and memory locations, as well as built-in
instructions for manipulating a stack.

Although previous exposure to both bit-wise manipulations (such as in a course
in C or C++) and binary arithmetic (such as in a course in computer organization) is
helpful, it is not a requirement for this text since this material is contained in
Appendix B. Should one not have the above previous experience, then Appendix B
is recommended reading prior to starting this chapter.

© Springer Nature Switzerland AG 2020
J. T. Streib, Guide to Assembly Language, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-35639-2_6

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35639-2_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35639-2_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35639-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-35639-2_6

6.2 Logic Instructions

There are many times in low-level programming that individual bits need to be set,
cleared, tested, or toggled in a register or a memory location. In order to do so, the
use of the logic operations “or”, “and”, and “exclusive-or” can be very useful. As
also shown in Appendix B, Table 6.1 can be helpful in summarizing which logic
operation is used under which circumstances.

So how are the above logic operations to set, clear, test, and toggle bits
implemented in assembly language? As before, it is helpful to start with similar
code in a language like C. As mentioned previously, one of the advantages of the
C-like languages is their ability to perform some logic operations. To help introduce
this topic, what happens if the second ampersand (&) is accidentally left off when
performing an “and” (&&) operation in an if statement? Depending on the compiler
or the level of the warning messages set in the compiler, either a warning would be
issued or there might be some unintended results. The reason for this is that using
only one of the symbols causes a bit-wise logic operation to be performed which
might not be what was originally intended. However, this is precisely how logic
operations are performed in a programming language like C.

For example, to test if a particular bit is a 1, a single ampersand logical “and”
operator (&) would be used instead of the double ampersand logical “and” operator
(&&). In the code segment below, the variable flag contains various bits that are set
as a result of some previous operation. The variable maskit is what is known as a
mask that has a particular bit set to 1 that will be used to test and others at 0 to filter
or clear all the other bits that do not need to be tested in this instance:

The above is not trying to determine whether both flag and maskit are true,
but rather assuming that flag equals 01101110 in binary and maskit equals
00000100 in binary, the above is a bit-wise & operation between flag and
maskit, where the result is equal to 00000100 as shown below:

Table 6.1 Logic operations

Operation Logic

Set Or
Clear And
Test And
Toggle Xor

if(flag & maskit)
count++;

96 6 Logic, Shifting, Rotating, and Stacks

Since anything that is not zero is assumed to be true, the then section of the if
statement is performed. On the other hand, should flag equal 01101010 in binary,
then the result of the bit-wise & operator would be 00000000, where zero is
interpreted to be false, and the then portion would not be executed. As one might
suspect, given the high-level directives in MASM, the above is very easy to
implement as shown below:

In the above code segment, why do the contents of maskit need to be moved to
a register prior to the .if directive? As indicated in the past two chapters, many
assembly languages do not have the benefit of having high-level directives, so it is
necessary to use the logic instructions that are part of the instruction set. In the case
of the Intel processor, these are and, or, xor, and not as shown in Table 6.2.

Further, just like the compare and arithmetic instructions, these logic instructions
cannot have two operands that are memory locations. Given the above, the previous
code can be implemented without directives as follows:

if01: mov eax, flag
and eax, maskit
jz endif01

then01: inc count
endif01: nop

Table 6.2 Logic instructions

And instructions Or instructions Xor instructions Not instructions

and reg,reg or reg,reg xor reg,reg not reg
and reg,imm or reg,imm xor reg,imm not mem
and reg,mem or reg,mem xor reg,mem
and mem,reg or mem,reg xor mem,reg
and mem,imm or mem,imm xor mem,imm

01101110
00000100
&
00000100

mov eax, flag
.if eax & maskit
inc count
.endif

6.2 Logic Instructions 97

Note the use of the jz instruction instead of jne, where the jz instruction was
introduced in Chap. 4. The reason for this is that variables such as flag and
maskit are typically unsigned numbers and are not compared to determine if one
is greater or less than the other. As before, care must be taken to reverse the jump to
allow the if-then logic to work correctly.

Is there a way to use both the logic instructions and the high-level directives?
Yes, the logic instruction can be used followed by the .if directive as shown
below. The advantage of this format is that one can gain familiarity with the use of
the actual logic instructions and still have relatively clean code using high-level
directives:

mov eax,flag
and eax, maskit
.if !ZERO?
inc count
.endif

As with the cmp and other arithmetic instructions, the result of the and operation
sets various bits in the eflags register. These individual bits can be accessed via the
logical operators introduced inChap. 4. In particular, theZERO? operator is of interest
here which returns true should the zero flag be set. Thus in the above code segment, if
the result of the and operation is 1, indicating a bit is set, then ZERO? would be false
and !ZERO? would be true allowing the increment of the variable count.

It should be noted that instead of using a variable such as maskit, an imme-
diate value in any of the above examples could be used, thus avoiding the need to
move the mask into a register prior to the and instruction. The disadvantage of this
method is that if the mask has to be used many times, the chance of making an error
in one of the instances is greater. However, if the mask is going to be used only
once, then the literal method is acceptable. Of course, do not forget to use the letter
b after the literal to indicate a binary number, otherwise a decimal number will be
assumed and a logic error would probably occur. Although it is possible to use
decimal numbers with logic operations, they are rarely used in these situations
because the exact bit pattern cannot be seen by other programmers. If the number is
larger than 8 bits, then a hexadecimal number followed by an h can be used.
Further, it is always a good idea to show all the bit positions used to help any reader
of the code understand how many bits are being compared. Below are three dif-
ferent ways of using an immediate value as a mask:

.if flag & 00000010b and flag,00000010b and flag,00000010b
inc count if02: jz endif02 .if !ZERO?
.endif then02: inc count inc count

endif02: nop .endif

98 6 Logic, Shifting, Rotating, and Stacks

Lastly, it should be noticed that in the process of testing an individual bit, the
other bits are cleared to zero. In this sense the and instruction is useful in not only
testing bits but clearing bits as well. But what if when testing bits, one does not
want to clear the other bits? Although on some processors this is not a possibility,
this can be accomplished in MASM with the test instruction which is illustrated
at the end of the next section.

Although probably not seen much in a first-year computer science sequence, a
particular bit can be set in a memory location in the C programming language using
the bit-wise or (|) operator:

flag = flag | maskit;

The same can be accomplished in assembly language using the or instruction.
As in previous chapters, notice the high-level comment prior to the code segment
below:

; flag = flag | maskit
mov eax,flag
or eax,maskit
mov flag,eax

As application of the bit-wise or, consider the changing of an uppercase
character to a lowercase character. In looking at the ASCII table in Section B.8,
notice that the bit pattern for an uppercase character always has bit 5 (sixth from the
right) equal to 0, whereas the bit pattern for lowercase characters always has bit 5
equal to 1. For example, the letter “S” is equal to 53 in hexadecimal or 01010011
in binary and the letter “s” is equal to 73 in hexadecimal or 01110011 in binary.
In order to convert an uppercase character to a lowercase character, an or
instruction using a mask of 00100000 in binary could be used to set bit 5.
Assuming the variable letter is declared as a byte and already contains a letter,
the following instruction would work:

or letter,00100000b

To convert a lower-case letter “s” to an upper-case letter “S”, bit 5 is cleared to
zero. This is accomplished using an and operation as follows:

and letter,11011111b

Although C does not have a logical exclusive-or operation that could be used
between two relationals in an if or a while statement, it does have a bit-wise
exclusive-or operation (ˆ). As mentioned above, the “xor” operation can be used for
toggling a bit. For example, if one wanted to toggle bit 1 from a 0 to a 1 or from a 1
to a 0, the following instruction would accomplish that task:

6.2 Logic Instructions 99

flag = flag ˆ maskit;

which can be written in assembly language using the xor instruction as

; flag = flag ˆ maskit
mov eax,flag
xor eax,maskit
mov flag,eax

On occasion, when examining code previously written by someone else, one
might see something similar to the following instruction:

xor eax,eax

At first, it may seem a bit strange to see a logic operation with the same register
for both operands. If this was done with any of the other logic instructions, it would
not accomplish anything. For example, with the or operation, 0 or 0 is 0 and 1 or
1 is 1. However, it is in this second case that there is a difference with the xor
instruction where 1 xor 1 is 0. In other words, all the bit positions with a 0 remain
a 0 and all the bits with a 1 become a 0, thus clearing all the bit positions in the
register to 0. Logic instructions are some of the fastest instructions in most pro-
cessor architectures and using xor eax,eax is usually faster than using mov
eax,0. This is one of those tricks used by experienced assembly language pro-
grammers to speed up the execution of a program, but unless it is used in a critical
location such as within a loop or nested loops, the speed gained is negligible
compared to the loss of readability for inexperienced assembly language
programmers.

6.3 Logical Shift Instructions

Sometimes if there are more than one bit to test, set, or toggle in a register or a
memory location, it is easier to move the bit patterns instead of having multiple if
statements. This can be accomplished by using a shift or a rotate instruction. The C
programming language has the ability to shift bits to the left or the right in a
memory location by using the \\ or [[operators, respectively. For example,
if the memory location num contained a 2 and the following instruction was
executed, the contents of num would then be a 16:

num = num << 3;

Assuming only 8 bits for the sake of convenience, the 2 in num would be
represented as a 00000010 in binary. Then shifting the bits three places to the left
would cause num to contain a 00010000, which is a 16 in base 10. Once the bit in

100 6 Logic, Shifting, Rotating, and Stacks

question is in the correct location, the previous logical operators could be applied to
the memory location.

However, a question arises as to whether to move the bits in the mask or move
the bits in either the register or the memory location to be tested. Which should be
moved is largely up to the application, the preference of the instructor, or the
preference of the programmer. There are, however, some guidelines that can help
one make a choice. If only part of the register or the memory location needs to be
checked and it is moved, then the original contents of the register or the memory
location will be altered. Of course, if it is no longer needed, then this is not a
concern, but if the original contents are needed again in the future or if there is a
chance that they might be needed, it might be better to move the mask instead.

However, if the mask is relatively complicated, where more than a single bit is
set, then it might be better to move the register or the memory location. Also, by
shifting the data, the mask can be kept as immediate data and the actual code might
be a little cleaner. One technique is to save the original contents in a temporary
location, shift the data, and then the original data in the temporary location can
always be restored back into the original location later. (An alternative to using a
temporary memory location is to use a stack, which will be discussed later in this
chapter.) A second option is to move the original to a temporary memory location
or register and then shift the temporary location, which would preserve the original
contents from alteration. A third technique to be discussed later is to rotate the bits
back to the original location so that subsequent logic can access the data in its
original format. All three of these methods have their advantages under various
circumstances, but for the time being the first alternative will be used to illustrate
how data must be saved and restored.

Two very helpful instructions are the logical shift instructions, which shift the
contents of a register or a memory location to either the left or the right of a
specified number of bits. The instructions are known as logical instructions, because
they do not assume the presence of a sign bit. These two instructions are listed in
Table 6.3.

Note that on older 8086/8088 processors, the only immediate number in an
operand that could be used was 1 so that any other number would first need to be
loaded into the cl register. Although any number can now be used on newer
processors, on occasion, some programmers who originally programmed these
older processors might carry on that tradition. These instructions move each bit the

Table 6.3 Shift instructions

Shift left instructions Shift right instructions

shl reg,cl shr reg,cl
shl reg,imm shr reg,imm
shl mem,cl shr mem,cl
shl mem,imm shr mem,imm

6.3 Logical Shift Instructions 101

number of positions indicated to the left or the right, accordingly. Assuming an
8-bit register is being used, the shl instruction moves the contents of the leftmost
bit (bit 7) into the carry flag (CF), moves the contents of the other 7 bits to the left
one bit, and then moves a 0 into the rightmost bit (bit 0). For example, assume that
the al register contained the bit pattern in Fig. 6.1 and that the content of the carry
flag on the left was unknown, as indicated by the question mark.

After the execution of the instruction shl al,1, the 0 in bit position 7 on the
left would be moved into the carry flag, the contents of bit position 6 would be
moved into bit position 7, the contents of bit position 5 would be moved into bit
position 6, and so on, where finally the contents of bit position 0 would be filled
with a 0 as shown in Fig. 6.2.

What happens to the previous contents of the carry flag? Some might say it
disappears into thin air or some “old timers” might say that its contents are moved
to the bit bucket. With respect to the latter, the old timers might sometimes further
inform beginning assembly language programmers that when the bit bucket gets
full, it needs to be emptied. However, be aware there is no such thing as a bit bucket
nor does it need to be emptied. It is just an expression to mean that bit is no longer
accessible and more importantly it is merely a way to have a little fun at the expense
of beginning assembly language programmers!

The shifting of bits in the reverse direction is also possible, where if a shr al,1
were executed on the original contents of al in Fig. 6.1, the contents of al would
appear as shown in Fig. 6.3. The contents of the carry flag would go into the bit
bucket (see how convenient the terminology is?), the contents of bit position 0
would move into the carry flag, the contents of bit position 1 would move into bit
position 0, and so on, where a 0 would be placed into bit position 7.

? 0 1 0 1 0 1 0 1

CF 7 ------------ 0

Fig. 6.1 Initial contents of al register

? 0 1 0 1 0 1 0 1 0 0

bit CF 7 ----------- 0 (bits)
bucket

Fig. 6.2 Results in al register after shl instruction

102 6 Logic, Shifting, Rotating, and Stacks

The carry flag is now drawn on the right side of the al register just for the sake
of convenience. For the most part, one usually does not worry about the carry flag
when doing logical shifting. In a number of other processors, the end bit usually
goes directly to the bit bucket.

Given the original contents of the al register in Fig. 6.1, what would happen if
instead of a shl al,1 the instruction shl al,8 was executed? If each bit was
shifted to the left eight times, bit 0 would end up in the carry flag, the other 7 bits
would be in the bit bucket, and all 8 bits of the register would be filled with zeros.
This same concept could be expanded to 32 bits and on rare occasions, one might
see code such as this to clear a 32-bit register such as eax to zero. However, shift
instructions are traditionally some of the slower instructions on most processors and
this method can be slower than using either the mov instruction or the xor
instruction mentioned in the last section. If however each of the bits in a register
needed to be processed one at a time and the register also needed to be cleared to
zeros, then clearing a register to zero is a nice by-product of using the shl
instruction in a loop as discussed below.

As an example of processing each bit individually and using only a byte instead
of a double word to save space, assume that each bit in the al register represents a
device that is connected to the processor. Further, if a bit is a 1 or a 0, it would
indicate whether the device is turned on or off, respectively. For this task, also
assume that the original data needs to be retained. Given these assumptions, how
could one determine how many devices are turned on?

In order to solve this problem, there are a number of questions that need to be
answered. First, a loop is obviously needed, but which loop should be used? Since
there are a fixed number of bits in a byte, the equivalent of a for loop structure
appears to be the best choice, which in MASM is the .repeat-.untilcxz
loop. Another question is should the mask be shifted or should the register be
shifted? As mentioned previously, it often depends on whether the original data
needs to be retained and since it was mentioned above that it needs to be retained, it
might be simpler to shift the mask. However, as also mentioned previously, shifting
the data means that the mask can be kept as immediate data. This makes the actual
code a little simpler even though the original data will need to be saved and restored
in a temporary memory location. Lastly, should the shl or the shr instruction be
used? Often it really does not make a difference, unless one is only processing the
bits on one side of the register or the other. By default it is probably best to process

0 0 0 1 0 1 0 1 0 1 ?

(bits) 7 ----------- 0 CF bit
bucket

Fig. 6.3 Results in al register after shr instruction

6.3 Logical Shift Instructions 103

the bits in the order in which the bit positions are numbered, which is from right to
left. In the following code segment, assume that the memory location temp is
declared as an unsigned byte:

mov count,0 ; initialize count to zero
mov ecx,8 ; initialize loop counter to zero
mov temp,al ; save al in temp
.repeat
mov ah,al ; mov data in al to ah for testing
and ah,00000001b ; test bit position zero
.if !ZERO? ; is the bit set?
inc count ; yes, count it
.endif
shr al,1 ; shift al right one bit position
.untilcxz
mov al,temp ; restore al from temp

Note that the first thing prior to the loop is that the data in al is saved in memory
location temp declared as a byte and the last thing after the loop is that the data in
temp is restored to the al register. Further, notice that there appears to be an extra
move instruction at the top of the body of the loop. The reason for this is that since
there are bits set to 0 in the mask and as a result the and instruction will destroy
other bits in the al register, the data needs to be moved to another register. Since
the upper 8 bits of the ax register are not being used, the ah register is a good
choice. At the bottom of the body of the loop, the al register is shifted one bit to
the right and then back at the top of the loop the al register is again moved into the
ah register so that the next bit can be tested.

However, would it not be nice to have a method of checking a particular bit
without having to destroy the other bits around it? Luckily, the designers of the Intel
processor have designed just such an instruction. It is called the test instruction,
and instead of performing an actual and operation, it performs what is known as an
implied and operation. This means it performs the and operation and sets the
eflags register, but it does not actually alter the corresponding register or memory
location. Although in the example above the contents of the al register will still be
altered due to the shift instruction, the contents will not be destroyed each time
through the loop by the test instruction and the above code can be rewritten
without the extra mov instruction as shown below:

104 6 Logic, Shifting, Rotating, and Stacks

mov count,0 ; initialize count to zero
mov ecx,8 ; initialize loop counter to zero
mov temp,al ; save al in temp
.repeat
test al,00000001b ; test bit position zero
.if !ZERO? ; is the bit set?
inc count ; yes, count it
.endif
shr al,1 ; shift al right one bit position
.untilcxz
mov al,temp ; restore al from temp

6.4 Arithmetic Shift Instructions

Besides the logical shift instructions, there are also the arithmetic shift instructions
called sal and sar, which stand for shift arithmetic left and shift arithmetic right,
respectively. The arithmetic shifts have the same operand formats as their logical
counterparts as shown in Table 6.4.

Unlike the logical instructions, the arithmetic shifts assume that the leftmost bit
in a register or memory location is a sign bit. With the sal instruction, this does not
make any difference and it performs the same as the shl instruction because when
shifting to the left, the leftmost bit is moved into the carry flag whether the leftmost
bit is or is not a sign bit. Using the original data from Fig. 6.1, the result of the shl
in Fig. 6.2 is the same as the sal in Fig. 6.4.

Although the sal instruction works the same as the shl instruction, this is not
the case with the sar instruction. With the sar, the leftmost bit is copied to the bit
to the right as with the slr, but instead of bringing in a 0 into the leftmost position,
the leftmost position is copied into itself, thus preserving the sign bit as shown in
Fig. 6.5.

Table 6.4 Arithmetic shift instructions

Shift arithmetic left Shift arithmetic right

sal reg,cl sar reg, cl
sal reg,imm sar reg, imm
sal mem,cl sar mem, cl
sal mem,imm sar mem, imm

6.3 Logical Shift Instructions 105

The result is that the arithmetic shifts can be used for performing arithmetic.
Again for the sake of simplicity in the following examples, 8-bit registers and
memory locations will be used instead of 32-bit ones. Assume that the memory
location number contains a 5 as 00000101 in binary. If this number was shifted
to the left one bit, the result would be 00001010, which is the number 10 and is
twice the number 5. Likewise, shifting number to another bit position results in
00010100, which is the number 20. In other words, for every bit position shifted
to the left, the number in the register is effectively multiplied by a power of two.
Likewise, shifting the number 00010100 two bits to the right results in the
number 00000101 and is the equivalent of dividing by 4.

However, what about negative numbers? For example, when shifting a −4,
11111100 one bit to the right using a shr instruction, the result would be a
01111110, which is a positive 125 and is clearly incorrect. This is the reason for
the arithmetic sar instruction, which would cause the sign bit to be copied not only
to the right but also back into the leftmost bit position. This would result in a
11111110, a −2 which is correct. If the original number was a –5, 11111011,
then a sar al,1 would result in a 11111101, which is a −2 demonstrating that it
is the equivalent of integer division, where the remainder would be in the carry flag.

When multiplying, choosing either the sal or the shl instruction is not really a
problem, because to multiply 11111100 by 2 the result would be 11111000 in
binary, which is a –8. The reason why one would use a sal instead of a shl in this
instance is to indicate to others that the purpose of the shift is the arithmetic
operation of multiplication. Although a good comment is always in order, this is in
a sense an example of self-documenting code.

? 0 1 0 1 0 1 0 1 0 0

bit CF 7 ----------- 0 (bits)
bucket

Fig. 6.4 Results in al register after sal instruction

0 0 1 0 1 0 1 0 1 ?

(bits) 7 ----------- 0 CF bit
bucket

Fig. 6.5 Results in al register after sar instruction

106 6 Logic, Shifting, Rotating, and Stacks

However, should a number be shifted too many times to the left, a negative
number would eventually become a positive number. Although the numbers used in
the examples in this text will be smaller, as with the arithmetic instruction coun-
terparts from Chap. 3, one should always be careful with the possibility of overflow
and underflow.

So given the above and for further practice, how would the following C state-
ment be implemented using a shift instruction?

product = num1 * 8;

Assuming 32-bit words and using the sal instruction, it could be implemented
as follows:

; product = num1 * 8;
mov eax,num1 ; load eax with num1
sal eax,3 ; multiply by 8
mov product,eax ; store eax in product

Notice that num1 above is not shifted, but rather it is first moved to the eax
register and then it is shifted. As in Chap. 2, num1 appears to the right of the
assignment symbol in the original high-level code implementation and it should not
be altered. Another common mistake made by beginners is putting the multiplier in
the second operand of the shift instruction instead of the number of positions to be
shifted. For example, if the number 8 was accidentally used as the second operand
in the shift instruction in the above example, it would cause num1 to be multiplied
by the number 256 which is clearly incorrect. As another example to help reinforce
these concepts, how would one implement the following using shift instructions?

answer = amount / 4;

With positive numbers the choice of slr or sar does not really make a dif-
ference. For example, if amount in the above example contained a 32
(00100000 in binary), then after shifting to the right 2 times to divide by 4, the
result would be 8 (00001000 in binary). Since the sign bit is 0, it would not make
a difference whether a 0 was shifted into bit position 7 by a slr instruction or it
was copied onto itself by a sar instruction.

However, it cannot always be known whether the number in a memory location
such as amount is positive or negative. Unlike above with multiplication, the
choice of which shift to use, logical or arithmetic, is of critical importance with
division when dealing with negative numbers or the possibility of negative num-
bers. Consider the following implementation:

6.4 Arithmetic Shift Instructions 107

; *** Caution: Possible incorrect code ***

; answer = amount / 4
mov eax,amount
shr eax,2 ; divide by 4
mov answer,eax

Again assuming 8-bit words for convenience, if in the above code segment,
amount contains a −8, or 11111000 in binary, then shifting the eax register to
the right two positions would result in a 00111110 in binary, or 62 in decimal,
which is clearly not correct. However, if the above code segment is rewritten with
the appropriate instruction as follows:

; *** Note: Correctly implemented code ***

; answer = amount / 4
mov eax,amount
sar eax,2 ; divide by 4
mov answer,eax

Then when 11111000 in binary is shifted to the right arithmetically, the result
is that eax contains 11111110 in binary, because in addition to being moved the
right, the sign bit is copied back into bit 7 and answer is a −2 as it should be.

The result is that when using shift instructions to perform multiplication and
division, it is best to use the arithmetic versions to not only help alert other pro-
grammers that the shift is being done for the purposes of arithmetic but also avoid a
potential logic error in the event that the quotient in the division operation is a
negative number. If the code using shifts is not as clear as using imul and idiv,
why would one want to use this method? The answer is that it can be faster and
more convenient than are its multiplication and division counterparts, especially
when multiplying and dividing by multiples of two, respectively.

6.5 Rotate Instructions

There are many cases with shifting where the unused bits are not needed and their
disappearance into the bit bucket is not a problem, especially with multiplication
and division. However, there are other cases where it might be convenient to keep
the unused bits. The instructions that help in these cases are known as rotate
instructions. The rotate instructions are similar to the logical shift instructions in
that the end bit goes into the carry flag, and the previous contents of the carry flag
go into the proverbial bit bucket. However, instead of zeros being inserted at the
other end as with the logical shift instructions, with the rotate instructions the bits
from the one end are carried around and inserted into the other end as will be shown
shortly.

108 6 Logic, Shifting, Rotating, and Stacks

The format of the two rotate instructions can be found in Table 6.5, where rol
means rotate left and ror means rotate right. Although there are two other rotate
instructions, rcl and rcr that rotate out of the carry flag, they will not be con-
sidered here.

Using the same initial drawing from Fig. 6.1 used previously with the shift
instructions and as repeated in Fig. 6.6, a rol al,1 instruction would have the
results shown in Fig. 6.7.

Similarly, rotating the drawing in Fig. 6.6 to the right using ror al,1 would
work as shown in Fig. 6.8.

Table 6.5 Rotate instructions

Rotate left instructions Rotate right instructions

rol reg,cl ror reg,cl
rol reg,imm ror reg,imm
rol mem,cl ror mem,cl
rol mem,imm ror mem,imm

? 0 1 0 1 0 1 0 1

CF 7 ------------ 0

Fig. 6.6 Initial contents of al Register

? 0 1 0 1 0 1 0 1 0

bit CF 7 ----------- 0 (bits)
bucket

Fig. 6.7 Results in al register after rol instruction

6.5 Rotate Instructions 109

The advantage of the rotate instructions is that if the bits are rotated the exact
number of times as there are bits in a register or a memory location, the register or
the memory location is returned back to its original state. The advantage of this is
that there is no need to save or restore the register or the memory location prior to
testing it and the same would apply if one were to rotate the mask instead of the
data.

The example of testing the 8 bits shown previously is now redone below using a
rotate instruction instead of a shift instruction:

mov count,0 ; initialize count to zero
mov ecx,8 ; initialize loop counter to zero
.repeat
test al,00000001b ; test bit position zero
.if !ZERO? ; is the bit set?
inc count ; yes, count it
.endif
rol al,1 ; shift al left one bit position
.untilcxz

Again, the advantage here of using a rotate instruction instead of a shift
instruction is that the contents of the al register need not be saved and restored.
The only danger is that sometimes when only part of the register or the memory
location needs to be processed, one might forget to rotate the rest of the register or
the memory location back to its original location, or inadvertently rotate the wrong
number of times, which could lead to a logic error later in the program. When in
doubt, one can always save and restore the register or the memory location, whether
either a shift or a rotate instruction is used.

0 0 1 0 1 0 1 0 1 ?

(bits) 7 ----------- 0 CF bit
bucket

Fig. 6.8 Results in al register after ror instruction

110 6 Logic, Shifting, Rotating, and Stacks

6.6 Stack Operations

If one took the second semester computer science course that is usually required in
a computer science major or minor, there is a good chance that one has been
exposed to the data structure called the stack and the related methods or functions,
push and pop. A stack is a LIFO (last in first out) structure, where the last item
pushed onto the stack is the first one popped off the stack. As should be recalled,
there are number of useful applications for stacks. Some of those applications
include reversing data, matching, number conversions, evaluation of expressions,
and implementing recursion. Given the usefulness of a stack, most processors
include built-in stack instructions and this is true with the Intel processor as well.

In order to use the stack instructions, one must be sure to reserve memory space
for the stack itself. As introduced in Chap. 1, this is accomplished by using the
.stack directive which indicates how much memory should be reserved, where
typically 100 hexadecimal bytes, or in other words 256 decimal bytes, is usually
sufficient as shown below:

.stack 100h

Although there are other variations of the push and pop instruction, only the
two simplest versions are introduced at the present time. As would be expected, the
instructions push and pop are used to put data on top of the stack and remove data
from the top of the stack, respectively. Note that 16, 32, or 64-bit registers and
memory locations work with the push and pop instructions. However, if the al
register needs to be pushed on the stack, then either the entire ax, eax, or rax
register would need to be used. The format of these instructions can be found in
Table 6.6, where obviously it is possible to push an immediate value onto a stack,
but it is not possible to pop a value off the stack and put it into an immediate value.

The use of push and pop instructions is typically a good way to save and restore
values. On some processors the use of a stack can be faster than using a temporary
memory location. However, on the Intel processor it tends to be a little slower when
saving and restoring a memory location but is about the same speed when saving
and restoring a register. If there is not much of a difference and in some cases using
the stack might be a little slower, what is the advantage of using the stack to save
and restore values over a temporary memory location? The benefit of using the

Table 6.6 Push and pop instructions

Push instructions Pop instructions

push reg pop reg
push mem pop mem
push imm

6.6 Stack Operations 111

stack is primarily convenience. Since memory for the stack has already been
allocated using the .stack directive, extra temporary memory locations do not
need to be declared. Further, the stack is always available and the names of various
temporary memory locations do not need to be remembered.

As indicated in the last section, it is often useful to use a stack to hold the
original contents of a register or a memory location prior to manipulation of the bit
pattern. Instead of moving the original bit pattern into a memory location, it can be
pushed onto the stack prior to the loop and then restored to its original pattern after
the loop as shown below. Although this might not be necessary when using a rotate
instruction as mentioned in the last section, sometimes one might accidentally not
rotate the register or the memory location the correct number of times. So saving or
restoring the original pattern is inexpensive insurance and the push and pop
instructions make this easy. For example, the following uses the shift instruction to
demonstrate the use of the push and pop instructions. As mentioned previously,
note that although only the al register needs to be pushed on and popped off the
stack, the eax register is used here, where the ax register would have worked as
well:

push eax
mov count,0 ; initialize count to zero
mov ecx,8 ; initialize loop counter to zero
.repeat
test al,00000001b ; test bit position zero
.if !ZERO? ; is the bit set?
inc count ; yes, count it
.endif
shr al,1 ; shift al right one bit position
.untilcxz
pop eax

If for some reason more than one register needs to be saved and restored, the
order of the pushes and pops must be taken into consideration. For example, what if
following arithmetic statement needs to be evaluated?

w = x / y - z;

push eax
push edx
mov eax,x
cdq
idiv y
sub eax,z
mov w,eax
pop edx
pop eax

Fig. 6.9 Saving and
restoring multiple registers

112 6 Logic, Shifting, Rotating, and Stacks

Assuming that the previous contents of the registers used to evaluate the
expression should not be altered, they would need to be saved and restored. Using
the stack, Fig. 6.9 illustrates how this could be accomplished.

It should be noted that both the eax and edx registers are pushed onto the stack.
Although it is obvious that the eax register is used by the sub and mov instruc-
tions, do not forget that the cdq instruction extends the sign bit through the edx
register and that the idiv instruction leaves the remainder in the edx register. As a
result, both registers need to be pushed onto the stack. As can be seen, the first
register popped off the stack is the edx register. Recall that a stack is a LIFO
structure, where the last item pushed onto the stack is the edx register, so it is the
first item that needs to be popped off the stack.

A possible problem when using the stack extensively is that one might forget
which items were pushed onto the stack and in what order. This can result in some
difficulty in debugging logic errors. To help avoid these errors, one possibility is to
avoid overusing the stack. Further, when using the stack it is a good idea to keep the
associated pushes and pops relatively close to one another so that the connections
between the two can easily be seen. It can be quite confusing to see a push in a
middle of a code segment only to find the corresponding pop many pages further
away in the code. Yet another technique that can help is to use scoping lines to help
match push instructions with the corresponding pop instructions to insure that the
item being popped off the stack is the correct one. Scoping lines can be drawn on a
program listing by hand to help with creating or debugging code and are illustrated
in the code segment in Fig. 6.9.

6.7 Swapping Using Registers, the Stack, and the xchg
Instruction

As another example of using the stack, assume that two values need to be swapped,
such as is done in a number of sorting algorithms. The typical high-level code is as
follows:

temp = num1;
num1 = num2;
num2 = temp;

This could be implemented on a line-by-line basis in assembly language using
registers, but that would require two instructions for each line of code as follows:

6.6 Stack Operations 113

mov eax,num1
mov temp,eax
mov eax,num2
mov num1,eax
mov eax,temp
mov num2,eax

Clearly, the above seems inefficient. Instead, a register such as edx could be
used instead of the temporary memory location temp. The edx register is chosen
as the temporary register to make sure that the ecx register is free to be used for
loop control and ebx is free to be used as an index register, both of which will be
discussed further in Chap. 8. However, the middle high-level instruction would still
need to use another register such as eax to enable the transfer between the two
memory locations:

mov edx,num1
mov eax,num2
mov num1,eax
mov num2,edx

The above use of the registers can be rearranged as follows to help in readability:

mov eax,num1
mov edx,num2
mov num1,edx
mov num2,eax

Instead of using registers and mov instructions, another possibility is to use the
stack. Not only is a stack a nice way to save and restore values, it can also be useful
in swapping two values. An advantage over the mov instructions is that the stack
does not need to use any of the general purpose registers which free them up for
other uses. The following code segment swaps the values in num1 and num2:

push num1
push num2
pop num1
pop num2

Is the order of the pop instructions above correct? Yes, since the purpose of the
above code is not to save and restore the contents of num1 and num2 but rather to
swap their contents. In other words, since the last value pushed onto the stack is the
contents of num2, it is the first value popped off the stack. Instead of being popped
back into num2, it is popped into num1. The same happens with the value origi-
nally in num1, thus swapping the two values.

114 6 Logic, Shifting, Rotating, and Stacks

Yet another method of swapping two values is to use the exchange (xchg)
instruction. When swapping two registers, it is faster than the two methods pre-
viously presented. The format of this instruction is given in Table 6.7.

Of course the one instruction that would directly allow the swapping of two
memory locations is noticeably absent. Like many previous instructions, memory to
memory exchanges are not possible. However, the above does allow an exchange
between two memory locations to occur in only three instructions, instead of the
four needed in the previous three examples:

mov eax,num1
xchg eax,num2
mov num1,eax

This is accomplished by moving one of the two values into a register, swapping
the register with the other memory location, and then moving the contents of the
register back into the original memory location. Assuming that num1 originally
contains a 5 and num2 originally contains a 7, the three diagrams in Fig. 6.10
illustrate the three instructions in the above code segment.

With respect to register usage when swapping to memory locations, the stack
does not use any general purpose registers, the xchg instruction uses one register
and mov instructions require two registers. With respect to speed, using mov
instructions is the fastest, the xchg instruction is just a little slower, and using the
stack is the slowest. The result is that the xchg instruction is a nice compromise
between the other two methods in terms of both register usage and speed. Also,
given the convenience of the xchg instruction, it will usually be the method of
choice in subsequent examples.

6.8 Complete Program: Simulating an OCR Machine

As alluded to in many of the preceding sections, computers use individual bits in a
register or a memory location to indicate the status or to control various parts of the
CPU or peripheral devices. One such machine might be an optical character

Table 6.7 Exchange instructions

Xchg instructions

xchg reg,reg
xchg reg,mem
xchg mem,reg

6.7 Swapping Using Registers, the Stack, and the xchg Instruction 115

recognition (OCR) device that reads typed or handwritten characters from a piece of
paper. On larger machines, they use a transport device that can handle more than a
single piece of paper at one time, similar to a copying machine, where a memory
location might be used to indicate the status of the paper in the transport. For the
following simulation, the memory location used will be called the document status
byte (DSB). There are a variety of problems that can happen with any sheet of paper
in a transport as indicated in Table 6.8.

Table 6.8 Simulated error messages

Bit Message Meaning

0 Short document The document just read is shorter than anticipated
1 Long document The document just read is shorter than anticipated
2 Close feed Current document is too close to the preceding document
3 Multiple feed Two documents were detected at the same time
4 Excessive skew The document is skewed (crooked) in the transport
5 Document misfeed The document fails to feed into the transport
6 Document jam The document jammed in the transport
7 Unspecified error An unknown/unspecified error occurred

num1 5

num2 7

mov eax,num1

5 eax

num1

num2

5

xchg eax,num2 7

5

eax

 7 eax

num1 7

num2 5

mov num1,eax

Fig. 6.10 Swapping using the xchg instruction

116 6 Logic, Shifting, Rotating, and Stacks

As can be seen, the bit number indicates the corresponding location of the error
bit in the DSB, remembering that the low-order bit in a byte is located on the right.
It is also possible that more than one of the above conditions could occur at the
same time. For example, if two documents are overlapped, it might cause both a
multiple feed and a long document error condition.

To help create appropriate input to test the program, it would be inconvenient to
input the bit patterns in decimal (base 10). Instead it would be easier to input in binary
or hexadecimal, where fortunately C has the ability to input hexadecimal numbers.
This is accomplished by using the letter x instead of the letter d in the format string as
shown below. Further, in writing this program, one might be tempted to use nested if
statements in order tomake the codemore readable and efficient. However, recall from
above that it is possible to have more than one error condition and the use of nested if
statements would rule out this possibility. It might be possible to use the equivalent of
the switch statement but leave the break statements out of the code to allowmore
than one case to be tested. However, not using break statements in a switch
statement might be considered by some to be unstructured. Further, given that there is
no high-level directive equivalent of the case structure, it would have to be imple-
mented using only low-level code. As has been seen previously, sometimes the code
can get rather ugly using a lot of jump statements. Instead the approach taken here is
the use of non-nested high-level if directives:

.686

.model flat,c

.stack 100h
scanf PROTO arg2:Ptr Byte, inputlist:VARARG

printf PROTO arg1:Ptr Byte, printlist:VARARG
.data

.code

msg1fmt byte "%s",0
in1fmt byte "%x",0

msg2fmt byte "%s%x",0Ah,0Ah,0

msg1 byte 0Ah,"Enter a hexadecimal number: ",0
msg2 byte "The hexadecimal number is: ",0
msgshort byte "SHORT DOCUMENT",0Ah,0

msglong byte "LONG DOCUMENT",0Ah,0

msgclose byte "CLOSE FEED",0Ah,0
msgmult byte "MULTIPLE FEED",0Ah,0
msgskew byte "EXCESSIVE SKEW",0Ah,0

msgfeed byte "DOCUMENT MISFEED",0Ah,0
msgjam byte "DOCUMENT JAM",0Ah,0
msgerror byte "UNSPECIFIED ERROR",0Ah,0

dsb dword ?

main proc

6.8 Complete Program: Simulating an OCR Machine 117

INVOKE printf, ADDR msg1fmt,ADDR msg1
INVOKE scanf, ADDR in1fmt,ADDR dsb
INVOKE printf, ADDR msg2fmt, ADDR msg2, dsb
.while dsb<=0ffh
test dsb,00000001b

0tibfi;?OREZ!fi. = 1 then
INVOKE printf, ADDR msg1fmt,ADDR msgshort
.endif
test dsb,00000010b

1tibfi;?OREZ!fi. = 1 then
INVOKE printf, ADDR msg1fmt,ADDR msglong
.endif
test dsb,00000100b
.if !ZERO? ; if bit 2 = 1 then
INVOKE printf, ADDR msg1fmt,ADDR msgclose
.endif
test dsb,00001000b
.if !ZERO? ; if bit 3 = 1 then

INVOKE printf, ADDR msg1fmt,ADDR msgmult
.endif
test dsb,00010000b
.if !ZERO? ; if bit 4 = 1 then
INVOKE printf, ADDR msg1fmt,ADDR msgskew
.endif
test dsb,00100000b
.if !ZERO? ; if bit 5 = 1 then
INVOKE printf, ADDR msg1fmt,ADDR msgfeed
.endif
test dsb,01000000b
.if !ZERO? ; if bit 6 = 1 then
INVOKE printf, ADDR msg1fmt,ADDR msgjam
.endif
test dsb,10000000b
.if !ZERO? ; if bit 7 = 1 then
INVOKE printf, ADDR msg1fmt,ADDR msgerror
.endif
INVOKE printf, ADDR msg1fmt,ADDR msg1
INVOKE scanf, ADDR in1fmt,ADDR dsb
INVOKE printf, ADDR msg2fmt,ADDR msg2, dsb
.endw
ret

main endp
end

118 6 Logic, Shifting, Rotating, and Stacks

As can be seen in the while loop, any bit combination that is less than or equal to
0FFh, or 11111111b is allowed, where the h and b stand for hexadecimal and
binary, respectively. Note that when a hex number begins with a letter, it has to be
preceded with a 0 so that the assembler does not confuse it with a variable name.
Once a number of 100h or greater is entered, the loop stops, as can be seen in the
sample input/output below.

Sample Input/Output

Enter a hexadecimal number: 1
The hexadecimal number is: 1

SHORT DOCUMENT

Enter a hexadecimal number: 2
The hexadecimal number is: 2

LONG DOCUMENT

Enter a hexadecimal number: 3
The hexadecimal number is: 3

SHORT DOCUMENT
LONG DOCUMENT

Enter a hexadecimal number: ff
The hexadecimal number is: ff

SHORT DOCUMENT
LONG DOCUMENT
CLOSE FEED
MULTIPLE FEED
EXCESSIVE SKEW
DOCUMENT MISFEED
DOCUMENT JAM
UNSPECIFIED ERROR

Enter a hexadecimal number: 100
The hexadecimal number is: 100

Press any key to continue . . .

6.9 Summary

• The inclusive-or includes the case when both operands are true and the result is
true, whereas the exclusive-or excludes this case and the result is false when both
operands are true.

6.8 Complete Program: Simulating an OCR Machine 119

• To set, clear or test, and toggle bits, use the or, and, and xor instructions,
respectively.

• If data is needed later, be sure to save the data when using the shl and shr
instructions.

• As a by-product of other tasks, a register or amemory location can be cleared to zero
using the shl and shr instructions. However, the shift instructions can be slower
than the mov or xor instructions and the latter two are usually a better choice.

• To multiply or divide by powers of two, use sal and sar, respectively, to
communicate to others that arithmetic is being performed and to insure that
negative numbers are handled properly with division.

• If a bit pattern is rotated exactly the same number of bits that are in a register or a
memory location, then the bit pattern does not need to be saved and restored.

• When saving and restoring data using push and pop instructions, be sure to
remember that the last one pushed on the stack should be the first one popped off
the stack (LIFO).

• The use of scoping lines when using push and pop instructions can be helpful
when creating or debugging code.

• Data inmemorycanbe swappedusingonlymov instructionswhichusemore registers
and are faster compared to using thepush andpop instructionswhich do not use any
general purpose registers.Using thexchg instruction alongwith the appropriatemov
instructions is a good compromise in terms of register usage and speed.

6.10 Exercises (Items Marked with an * Have Solutions
in Appendix D)

1. Given the following assembly language statements, indicate whether they are
syntactically correct or incorrect. If incorrect, indicate what is wrong with the
statement:

2. Given the following C arithmetic instructions, implement them using arithmetic
shift instructions, where possible:

A. answer = num - total / 32;
∗B. result = (amount + number) * 4;

C. x = y * 8 + z / 2;
D. a = a / 16 – b * 6;

∗A. or eax,ebx B. xor al,ah ∗C. rotate al,1
D. shr ax,2 ∗E. sar eax,3 F. xchg dog,cat
G. ror exc,1 H. lol dx,8 I. shift 2,ax

120 6 Logic, Shifting, Rotating, and Stacks

3. Write a code segment that takes the contents of eax, ebx, ecx, and edx, and
puts them in the reverse order of edx, ecx, ebx, and eax using only the push
and pop instructions. In other words, eax should contain the contents of edx
and vice versa, etc.

4. Assume that a status register in a processor indicates the current state of a
photocopying machine according to the following table. For each bit, output an
appropriate message indicating the status of the machine. Note that although
there can be more than one bit set at one time, only one error message can be
generated, where bit 0 has the highest priority, followed by bit 1, etc. At the
discretion of the instructor, implement using high-level directives, without
high-level directives, or a combination as shown in the text.

Bit Message

0 Paper jam
1 Paper misfeed
2 Paper tray empty
3 Toner low
4 Toner empty

5. Similar to the program in Sect. 6.8, write a program to simulate a security alarm
system according to the following table,where it is possible that any of the first three
high-priority items could happen at the same time. Although the last three items can
also occur at the same time, the program should check and outputmessages for them
only when none of the higher priority first three items have occurred.

Bit Message

0 Fire alarm
1 Carbon monoxide
2 Power outage
3 Gate unlocked
4 Door open
5 Window open

6.10 Exercises (Items Marked with an � Have Solutions in Appendix D) 121

7Procedures and Macros

This chapter will first show the reader how procedures are implemented in assembly
language. The implementation of macros is introduced next which is probably a
new topic to most readers. Both procedures and macros are tools that allow pro-
grammers to save time by not having to rekey the same code over and over again,
but there are important differences between the two mechanisms. The chapter then
continues with the introduction of conditional assembly which can be a difficult
concept for new assembly language programmers. Lastly, this chapter shows the
beginning of the implementation of what might be called a macro calculator which
simulates a one register (accumulator) computer.

7.1 Procedures

Most readers are probably familiar with procedures from a previous programming
class. Depending on what language was used in that class, procedures may have
also been called subprocedures, subprograms, subroutines, functions, or methods.
The most generic of these terms is subprograms, which encompass all the others.
Functions and many methods can or should return only a single value, whereas
procedures, subprocedures, and subroutines are designed to return anywhere from
zero to many values. In assembly language, subprograms are called procedures and
belong to this last group. Although there are ways to make it possible to utilize
parameters, the simplest way to communicate between a program and a procedure is
to use either global variables or registers.

The instruction used to invoke a procedure is the call instruction. The call
instruction has one operand that specifies the name of the procedure to be invoked.
Upon return from the procedure, execution will continue with the instruction after
the call instruction. An example is given below, where pname is a placeholder
for the procedure name:

© Springer Nature Switzerland AG 2020
J. T. Streib, Guide to Assembly Language, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-35639-2_7

123

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35639-2_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35639-2_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35639-2_7&domain=pdf
https://doi.org/10.1007/978-3-030-35639-2_7

call pname

Although the actual procedure can be placed in a number of locations in the
program, probably the most convenient place is after the endp statement in the
main program and prior to the end statement. The first line of the procedure
contains the name of the procedure in the label field, represented by the word
pname, followed by the proc directive in the opcode field. Next comes the body
of the procedure, followed by the return instruction ret, followed by the endp
directive, which has the name of the procedure in the label field as shown below:

pname proc
; body of the procedure
ret

pname endp

The proc and endp directives indicate to the assembler the beginning and the end
of the procedure, respectively. The ret instruction, during the execution of the pro-
cedure, indicates when to return to the calling program. Unlike many high-level lan-
guage, the ret instruction does not return a value to the calling program but rather
indicates that the execution of the program should return to the calling program. One of
the most common errors made by beginning assembly language programmers is for-
getting to include theret instruction, allowing the executionof the program tocontinue
past the end of the procedure and possibly into another procedure following the current
procedure. Although there can be more than one ret instruction in a procedure, like in
many high-level languages, it is recommended to include only one return statement in a
procedure. This helps to keep the program structured with only one entry point and one
exit point. Further, almost any procedure can be rewritten to contain only one ret
instruction. For example, given the following procedure with two ret instructions:

sample1 proc
.if eax == 0
mov edx,1
ret
.else
mov edx,0
ret
.endif

sample1 endp

it can be rewritten to utilize only one ret instruction:

sample1 proc
.if eax == 0
mov edx,1
.else
mov edx, 0
.endif
ret

sample1 endp

124 7 Procedures and Macros

The result is cleaner code that is less prone to logic errors duringmodification. Also,
it is usually best to be sure that the ret instruction is the last statement in a procedure
prior to the endp directive. Can you determine what is wrong with the following
procedure that is supposed to add all the registers together and return the value in eax?

; *** Caution: Contains a logic error ***

sample2 proc
add eax, ebx
add eax, ecx
ret
add eax, edx

sample2 endp

Yes, the value in the edx register is never added to the eax register, and eax
only contains the sum of eax, ebx, and ecx upon return to the calling program.
The add eax,edx instruction in the above procedure is sometimes referred to as
“dead code,” because although it takes up space in memory, it is never executed. In
larger programs, whole sections of code might never be executed if the code is
located incorrectly and it might create a difficult situation to debug. The correct
procedure is given below:

; *** Note: Correctly implemented code ***

sample2 proc
add eax, ebx
add eax, ecx
add eax, edx
ret

sample2 endp

What if one wanted to implement the multiplication algorithm from Chap. 5 in
two different locations? The code could be written twice in two different sections of
the program, but instead of writing the code twice, it would be much easier to put
the logic in a procedure and then call the procedure from two different locations in
the main program:

.
call mult
.
.
call mult
.

Then after the main program, the code for the mult procedure could be written.
Recall this algorithm from the end of Sect. 5.1 which used the .while directive.
The variables x and y could still contain the two values to be multiplied, but instead

7.1 Procedures 125

of using the variables i and ans, the following procedure uses the ecx and eax
registers, respectively, along with other minor changes:

mult proc
mov eax,0 ; initialize eax to 0
.if x != 0
mov ecx,1 ; initialize i to 1
.while ecx<=y
add eax,x ; add x to eax
inc ecx ; increment i by 1
.endw
.endif
ret

mult endp

Is there a potential problem with the above procedure? Since ecx is being used
as a temporary variable to implement the loop, the contents of ecx will be
destroyed. If the main program is not using the ecx register, this would not be a
problem. However, if ecx is being used to hold various values, such as a counter
for another loop in the calling program, this routine could cause problems. It could
be difficult to debug if a programmer did not know that ecx is being used by the
procedure. Although it is fairly obvious in this case, it can be difficult to notice in
larger procedures.

One solution is to document the procedure carefully and include a comment right at
the beginning of the procedure indicating which registers are destroyed by the pro-
cedure to warn potential users of the procedure. The responsibility for saving the
contents of the affected register then lies with the programmer of the calling program.
Although for some small, seldom-used procedures, this effectively solves the prob-
lem, it is still possible that the programmer using the procedure might miss the
warning. Further, if the procedure is going to be called many times, then the calling
program needs to save and restore the affected registers many times, thus wasting
memory. Also, the possibility of forgetting to save and restore the registers at some
point in time is increased.

When writing procedures, it is often a good idea to have the procedure take the
responsibility of saving and restoring any registers being destroyed. This saves
memory, since there is only one copy of the code and also lessens the chance for
error by the calling program. What is the best way to accomplish this task?
Although a temporary variable could be used, this is an excellent situation to use the
stack as discussed in Chap. 6. The following multiplication procedure includes the
pushing and popping of the ecx register:

126 7 Procedures and Macros

mult proc
push ecx ; save ecx
mov eax,0 ; initialize eax to 0
.if x != 0
mov ecx,1 ; initialize i to 1
.while ecx<=y
add eax,x ; add x to eax
inc ecx ; increment i by 1
.endw

.endif
pop ecx ; restore ecx
ret

mult endp

Although the act of calling and returning a procedure is a little slower than
straight line code, it does save memory because the code needs to be written only
once. Of course, the memory saving is compounded as the size of the procedure and
the number of calls increase.

7.2 Complete Program: Implementing the Power Function
in a Procedure

To illustrate a complete example, consider the problem of calculating xn from
Sect. 5.6. Instead of having the code to calculate xn in the main program, it could be
placed in a procedure. The procedure can then be invoked more than one time from
the main program without having to duplicate the code each time. For the sake of
simplicity both in the C program and more importantly in the subsequent assembly
language program, power is implemented as a procedure (void function) and x, n,
and ans are implemented as global variables. In addition to outputting a message in
the case of an error, the procedure also returns a -1 in the variable ans:

#include <stdio.h>
int x,n,ans;
int main() {

void power();
printf("%s","Enter x: ");
scanf("%d",&x);
printf("%s","Enter n: ");
scanf("%d",&n);
power();

7.1 Procedures 127

printf("\n%s%d\n\n","The answer is: ",ans);
return 0;

}
void power() {

int i;
ans=-1;
if(x<0 || n<0)

printf("\n%s\n","Error: Negative x and/or y");
else

if(x==0 && n==0)
printf("\n%s\n","Error: Undefined answer");

else {

i=1;
ans=1;
while(i<=n) {

ans=ans∗x;
i++;

}
}

}

As mentioned previously, global variables are used for x, n, and ans both in the
C program above and in the assembly language below. Since i is declared as a local
variable in the C code above and is not needed in the main program, ecx is used as
the loop control variable in the assembly language procedure below:

.686

.model flat,c

.stack 100h

scanf PROTO arg2:Ptr Byte, inputlist:VARARG
printf PROTO arg1:Ptr Byte, printlist:VARARG

.data

in1fmt byte "%d",0
msg1fmt byte "%s",0

msg3fmt byte "%s%d",0Ah,0Ah,0

errfmt byte "%s",0Ah,0

errmsg1 byte 0Ah,"Error: Negative x and/or y",0

errmsg2 byte 0Ah,"Error: Undefined answer",0

msg1 byte "Enter x: ",0

msg2 byte "Enter n: ",0

msg3 byte 0Ah,"The answer is: ",0
x sdword ?

n sdword ?

128 7 Procedures and Macros

ans sdword ?
.code

main proc
INVOKE printf, ADDR msg1fmt, ADDR msg1
INVOKE scanf, ADDR in1fmt, ADDR x
INVOKE printf, ADDR msg1fmt, ADDR msg2
INVOKE scanf, ADDR in1fmt, ADDR n

call power

INVOKE printf, ADDR msg3fmt, ADDR msg3, ans
ret

main endp
power proc

push eax ; save registers
push ecx
push edx
mov ans,-1 ; default value for ans
.if x<0 || n<0
INVOKE printf, ADDR errfmt, ADDR errmsg1
.else
.if x==0 && n==0
INVOKE printf, ADDR errfmt, ADDR errmsg2
.else
mov ecx,1 ; initialize ecx loop counter
mov ans,1 ; initialize ans
.while ecx <= n
mov eax,ans ; load eax with ans
imul x ; multiply eax by x
mov ans,eax ; sotre eax in ans
inc ecx ; increment eax loop countere
.endw
.endif
.endif
pop edx ; restore registers
pop ecx
pop eax
ret

power endp
end

Could the assembly language procedure above use registers instead of global
variables to communicate back and forth between the procedure and the main
program? Yes, but in the procedure above, x and y are checked to see if they are
negative in the .if directive. Recall from Chap. 4 that the default in high-level
directives is unsigned data unless a memory location declared as sdword is used.

7.2 Complete Program: Implementing the Power Function in a Procedure 129

Also, INVOKE directives are being used in the procedure to output error messages
and remember from Chap. 2 that they destroy the contents of the eax, ecx, and
edx registers. The result is that for smaller and simpler procedures the use of
registers is probably the preferred method, but in instances like this, the use of
global variables might be the better choice.

Note that the eax, ecx, and edx registers are saved at the beginning and
restored at the end of the procedure. This is done not only because of the INVOKE
directives but also because even if the procedure did not perform any output, the
three registers should be saved and restored. It is obvious that eax is used in the
mov instructions and the contents of ecx are destroyed when it is used for loop
control. However, the edx register does not appear in the procedure, so why should
it be saved and restored? Again, look carefully at the code and recall what happens
with the imul instruction. The imul instruction extends the sign of the eax
register into the edx register and destroys the contents of edx, so it should be
saved and restored also. Even if the main program that called the procedure does
not use the eax, ecx and edx registers, the procedure should save and restore
them so that the procedure could easily be used by other programs that might use
these registers. Lastly, as discussed in Chap. 6, be careful to insure that the pop
instructions are in the correct order to properly restore the three registers.

7.3 Saving and Restoring Registers

Note that if registers are not being used to communicate back to the main program,
it is possible to save and restore all the registers, whether they were altered or not.
Although this might be an easy way to avoid having to think about whether a
register is altered, it is a sloppy method and does not help other programmers
understand what is happening in the procedure. In other words, even though it
might be simpler for the person writing the code, it is not necessarily easier for
subsequent people reading and modifying the code. By saving and restoring only
the registers that are altered, it helps others understand which registers are being
altered and also helps makes the code more self-documenting. Of course whether
code appears to be self-documenting or not, documentation is always a good idea to
supplement any code written.

However, what if a routine was altering all the registers and does not use a
register to communicate back from a procedure to the main program? It could get a
little messy trying to push and pop all the registers and further, there could be a
chance for a logic error if the pop instructions were accidently written in the wrong
order. Luckily it is possible to save the four general purpose registers (eax, ebx,
ecx, and edx) along with the esi, edi, ebp, and esp registers with only one
instruction. The pushad instruction pushes contents of all the above registers onto
the stack and the popad instruction subsequently pops the values from the stack
and puts them back into their respective register locations.

130 7 Procedures and Macros

As an example, consider a procedure that outputs blank lines a variable number
of times. It would be nice that it does not destroy the contents of any registers and
also not use any global variables, both of which would make it a very portable
procedure that could be used in many different programs. As is known, using the
INVOKE directive to output the blank lines can cause the contents of the eax, ecx,
and edx registers to be altered. Since global variables will not be used, the ebx
register could be used to communicate to the procedure how many blank lines need
to be output. At the same time, since ebx would not be destroyed by the INVOKE
directive, it would also make a good candidate for a loop control variable. Given
these circumstances in this example, all four registers should probably be saved and
restored. In the first example, each of the four general purpose registers are saved
and restored individually:

blankln proc
push eax
push ebx
push ecx
push edx
.repeat
INVOKE printf, ADDR blnkfmt
dec ebx
.until ebx<=0
pop edx
pop ecx
pop ebx
pop eax
ret

blankln endp

Note the order of the push and pop instructions above to properly save and
restore the contents of the four registers. In the example below, the four general
purpose registers are saved all at once using the pushad and popad instructions:

blankln proc
pushad
.repeat
INVOKE printf, ADDR blnkfmt
dec ebx
.until ebx<=0
popad
ret

blankln endp

7.3 Saving and Restoring Registers 131

As can be seen, clearly the second procedure is much cleaner than the first
procedure. Since the above procedures do not return a value via a register and all
four general purpose registers need to be saved and restored, this is a good example
of when the pushad and popad instructions should be used. However, since most
of the time the majority of the procedures in this text will be returning a value, the
previously described method of saving and restoring registers individually will be
used more frequently.

7.4 Macros

Another method to avoid having to write the same code again and again is the
macro. However, be forewarned that even though it executes faster than a proce-
dure, it tends to waste memory. Although most readers have probably not
encountered macros in previous programming classes, they might have encountered
the term in working with application software packages. Probably the most com-
mon occurrence of macros is in spreadsheet packages, where one can record a
macro that consists of a series of steps performed by the user. Although a macro in
assembler can contain a series of instructions, it is different from a macro in a
spreadsheet, where the instructions are not recorded but rather need to be written by
the programmer.

Like procedures, macros can be declared in many different places. Whereas
procedures are usually declared after the main program, macros are usually written
and located prior to the main program, just after the .code directive. This first
writing of the macro is sometimes called the macro definition and does not take up
any memory in the executable program. Further, a macro has a similar structure to a
procedure, where on the first line the name of the macro is in the label field, indicated
by mname below, and the macro directive is in the opcode field. The body of the
macro follows, which is then followed by the endm directive which unlike an endp
does not repeat the name of the macro in the label field as shown below:

mname macro
; body of the macro
endm

However, a question here might be, should there be a ret instruction just prior
to the endm directive above? The answer is no, because there is not a set of
instructions in a common place that are branched to and executed as with a pro-
cedure. Rather, a set of instructions exist only in the source code file (.asm), a copy
of the instructions is inserted into the listing file (.lst), and the machine language
equivalent is inserted into the execution file (.exe), wherever the macro is
invoked.

132 7 Procedures and Macros

Instead of a call instruction as with a procedure, a macro invocation is done by
just using the name of the macro, mname in this instance, in the opcode field of the
invoking program as demonstrated below:

.
mname
.
.
mname
.

Thus unlike a procedure, where the flow of executions jumps to the procedure
and then returns back to the calling program, a copy of the macro is inserted into the
program at each point where the macro is invoked. The result is that macros are
faster because there is no calling or returning. Further, it is possible that if the macro
is never invoked, it will never take up any memory because the code exists only in
the source code file (.asm). However, usually macros tend to take up more
memory due to the copying of the instructions at every location it is invoked and
this is especially true when macros are large and/or invoked many times.

Consider an example of swapping two memory locations num1 and num2,
where a macro could be written as follows:

swap macro
mov ebx,num1 ; copy num1 into ebx
xchg ebx,num2 ; exchange ebx and num2
mov num1,ebx ; copy ebx into num1
endm

As mentioned above, notice the lack of a ret instruction in the macro decla-
ration. The invoking of a macro is done by just specifying the macro name in the
opcode field in the calling program, as shown below, where it can be assumed that
the programmer wanted to swap num1 and num2, and then turn around and swap
them back to their original locations:

.
swap
.
.
swap
.

A common mistake made by beginning assembly language programmers is that
they include the call instruction when trying to invoke the macro, where this
should be avoided and would cause a syntax error. A question that many readers
might have at this point is: Why haven’t push and pop been included in the macro

7.4 Macros 133

definition above? Couldn’t there be the same problems with the calling program as
with procedures, since the contents of the ebx register are being destroyed by the
macro? The answer to the second question is yes, the same problem still exists. But
in answer to the first question, the reason why the push and pop instructions have
not been included is because they take up memory. One must remember that every
time a macro is invoked, another copy of the macro is inserted into the code in the
invoking program. As a result, many times the contents of registers are not saved in
macros in order to save memory and a programmer needs to be extra careful
whenever invoking a macro.

This can be especially confusing, because unlike the procedure which is invoked
via the call instruction, a macro is invoked only by using the name of the macro.
Many times the name of a macro almost appears to be like the name of an
instruction, so the user of the macro might be lulled into believing it is an
instruction and forget about the hidden instructions in the macro that might destroy
the contents of the registers. Many a programmer has accidentally made this mis-
take and spent much time trying to subsequently debug a program.

To help illustrate how macros take up memory and remind programmers that
they are not instructions, it is sometimes useful to examine the assembly listing file
(.lst) to see what is known as the macro expansion and all the instructions from
the macro that are inserted into the code. For example the above calling program
that invokes the macro swap twice would look as follows in the .lst file:

swap
00000000 8B 1D 00000046 R 1 mov ebx,num1 ; copy num1 into ebx
00000006 87 1D 0000004A R 1 xchg ebx,num2 ; exchange ebx and num2
0000000C 89 1D 00000046 R 1 mov num1,ebx ; copy ebx into num1

swap
00000012 8B 1D 00000046 R 1 mov ebx,num1 ; copy num1 into ebx
00000018 87 1D 0000004A R 1 xchg ebx,num2 ; exchange ebx and num2
0000001E 89 1D 00000046 R 1 mov num1,ebx ; copy ebx into num1

In the above listing, both the relative memory address and machine language
equivalent in hexadecimal can be seen to the left. However, since the .lst file can
sometimes get rather messy and have a cluttered appearance when macros are
expanded, the addresses and machine code have been removed to make this
example easier to read in both the listing below and many subsequent listings (for
more information on machine language, see Chap. 12):

swap

swap

mov ebx,num1 ; copy num1 into ebx
xchg ebx,num2 ; exchange ebx and num2
mov num1,ebx ; copy ebx into num1

mov ebx,num1 ; copy num1 into ebx
xchg ebx,num2 ; exchange ebx and num2
mov num1,ebx ; copy ebx into num1

134 7 Procedures and Macros

A nice feature that should be noticed above is that any comments placed in the
macro definition also appear in the macro expansion. Although the macro expan-
sion might cause the program to appear more cluttered and also waste more paper
when printing out the listing of the program, the possibility of avoiding errors
during program development might well be worth it. It can also be especially
helpful during the debugging process when trying to track down pesky logic errors.

A very useful feature when using macros is the ability to use arguments and
parameters. Recall from high-level languages that the calling program sends
arguments to procedures which correspond to parameters in the procedure. How-
ever, parameters in macros are different from many of the parameters that one may
have encountered in various high-level languages. Depending on which language
the reader has used previously, it should be recalled that reference and value
parameters are used in C++ and that only value parameters are used in Java.
Reference parameters refer to their corresponding arguments via an address and
value parameters copy the values from the corresponding arguments. If the reader
has had an upper-level course in programming languages, then name parameters
might be familiar. Although name parameters are not used by very many modern
programming languages, they were used in the past in languages such as Algol in
the 1960s. For those who have not encountered them before, name parameters are
essentially substitution parameters, where the names of the arguments are merely
substituted in place of the parameter names.

For example, in the previous swap macro, what if one wanted to swap the
contents of any two memory locations instead of just num1 and num2? The swap
macro could be rewritten as follows, where p1 and p2 are the two name parameters:

swap macro p1,p2
mov ebx,p1 ; copy p1 into ebx
xchg ebx,p2 ; exchange ebx and p2
mov p1,ebx ; copy ebx into p1
endm

Now, the above macro would work with any two memory locations as arguments.
For example,

.
swap num1,num2
.
.
swap x,y
.

Although at first glance the macro invocations look somewhat like memory to
memory instructions, they are not. In order to understand how the above macros
work it is best to look at the macro expansions. In the first swap, the code would
look similar to the previous example without parameters because the argument

7.4 Macros 135

names are the same as the previously used variable names. However, the second
swap looks different because different memory locations are used in the arguments:

.
swap num1,num2

mov ebx,num1 ; copy p1 into ebx
xchg ebx,num2 ; exchange ebx and p2
mov num1,ebx ; copy ebx into p1
.
.

swap x,y
mov ebx,x ; copy p1 into ebx
xchg ebx,y ; exchange ebx and p2
mov x,ebx ; copy ebx into p1
.

The above example shows the versatility of parameters, where different argu-
ments can be used with each invocation. Although the comments from the macro
definition are included in the expansion, unfortunately the comments refer to the
parameter names rather than the argument names. Should one want to document the
macro definition using comments, but not see the comments in the macro expan-
sion, double semicolons (;;) should be used prior to the comment in the macro
definition instead of the single semicolons (;) as used above.

What if a programmer left one or both arguments blank when trying to invoke
the swap macro? With this particular macro it is not much of a problem, because in
this instance a syntax error would occur from the instructions themselves in the
macro that are missing a required operand. However, there are a few instructions,
such as the imul instruction, that have optional operands and not requiring an
argument might cause a syntax error to be missed. As a result, it is good pro-
gramming practice to indicate whether or not the arguments are required. This can
be accomplished by using the :REQ statement in the parameter list. Should a
required argument not be included, a syntax error would be generated regardless of
the instructions used in the macro. To require both arguments in the swap macro,
the resulting macro definition would look as follows:

swap macro p1:REQ,p2:REQ
mov ebx,p1 ;; copy p1 into ebx
xchg ebx,p2 ;; exchange ebx and p2
mov p1,ebx ;; copy ebx into p1
endm

Note also the comments above have been changed to use double semicolons
(;;) so that they do not appear in subsequent macro expansions. Although the
problem of a missing argument is solved, what would happen if an incorrect
argument was used? For example, what would happen if an immediate value was
inadvertently used as one of the arguments instead, as in swap num,1? The result
is that this would cause a syntax error in the second instruction of the macro

136 7 Procedures and Macros

expansion in the .lst file, because immediate values cannot be exchanged as
illustrated below:

.
swap num1,1

mov ebx,num1
xchg ebx,1

error A2070: invalid instruction operands
mov num1,ebx
.

In another potential problem, what if registers were used instead of memory
locations? Would this cause a problem, especially if one of the registers was ebx as
in the second example below?

.
swap eax,ecx
.
.
swap ebx,ecx
.

The above invocations would generate the following macro expansions. As an
aside, note that comments are not generated in the macro expansion due to the use
of the double semicolons (;;) in the previous macro definition:

.
swap eax,ecx

mov ebx,eax
xchg ebx,ecx
mov eax,ebx
.
.

swap ebx,ecx
mov ebx,ebx
xchg ebx,ecx
mov ebx,ebx
.

Although both of the above work, they are very redundant. In the first example,
the value of eax is placed into ebx, then swapped with ecx, and then the value
originally in ecx is placed into eax, where just a simple xchg eax,ecx would
have sufficed instead. The second example is even more redundant where the value
of ebx is moved into itself, then ebx is exchanged with ecx, and then ebx is
moved again back into ebx. Although both of these expansions are redundant, they
are syntactically correct and logically harmless. But what would happen if the two
registers in the last example were reversed, as in swap ecx,ebx? The answer can
be found in the following macro expansion:

7.4 Macros 137

.
swap ecx,ebx

mov ebx,ecx
xchg ebx,ebx
mov ecx,ebx
.

As can be seen, the contents of ebx are wiped out by the contents of ecx in the
first line of the macro expansion, then ebx is swapped with itself, and then ecx is
reloaded with the results that were originally in ecx. The result is that both ebx
and ecx would now contain the contents of ecx. Would this produce an error
message? No, this is not a syntax or an execution error but rather a logic error and
points to a problem with using parameters with macros. As a result, where some
problems produced syntax errors and some produced redundant code, this last one
is the most serious. Programmers must be very careful when using macros and be
sure to understand how they work before invoking them. It might be argued that a
mistake like this is solely the responsibility of the programmer using the macro and
let the user beware. However, can the problem be fixed? Yes, where a possible
solution to this problem will be addressed in Sect. 7.6.

7.5 Conditional Assembly

Conditional assembly can be a confusing topic to beginning assembly language
programmers. It uses what looks like if statements so that it seems like it is altering
the flow of control during the execution of the program, but it is not the same as the
selection structures learned in Chap. 4. Instead, the key to understanding condi-
tional assembly is from its name, where it is “conditional assembly,” not “condi-
tional execution.” Specifically, conditional assembly controls the assembler, not the
flow of execution. Instead of having one or two possible routes for the execution to
follow as with an .if statement, conditional assembly tells the assembler whether
to put in a possible instruction or a possible set of instructions into the program as
opposed to other possible instructions or no instructions at all.

There are a number of ways that conditional assembly can work, and this section
will look at a few of the more commonly used methods. Table 7.1 lists the con-
ditional assembly directives used in this and subsequent sections. Probably the best
way to illustrate the concept and the directives is through an example.

Although somewhat simplistic, the first method to be examined is whether or not
there is an argument in a macro invocation. In other words, instead of causing an error
from a :REQ or subsequent instruction in the macro expansion, whether caused by an
intentional or an unintentional missing argument, alternative code can be generated.

For example, suppose one wanted to create a macro called addacc, that when
invoked without an argument, the default is to add the number 1 to the eax
register. Since the most efficient way to do that is to use the inc instruction, that is

138 7 Procedures and Macros

what the macro will use. However, when a number, a register, or a memory location
is used as an argument, the macro will then add that number, register, or memory
location to the eax register. Clearly the inc instruction would not work in this
second instance, so an add instruction must be used. How would the conditional
assembly work in this example? If the argument is blank, then the inc instruction
would be inserted into the code, otherwise the add instruction with the appropriate
argument would be inserted into the code. The macro would be written as follows:

addacc macro parm
ifb <parm>
inc eax
else
add eax,parm
endif
endm

Note that :REQ is not used in the parameter list, because a blank argument is one
of the options. The first directive in the macro is ifb, which stands for “if blank.”
Again, it is not an instruction, nor is it like one of the directives from Chap. 4 which
generate the instructions like cmp and je. Rather as the assembler is inputting
statement after statement from the assembly language source file (.asm), it checks
to see if the argument from the macro invocation statement is blank. If it is blank, it
inserts the inc eax instruction into the .lst file and the equivalent machine
language instruction into the .exe file. Otherwise the mov eax,parm instruction
after the else directive is inserted with the corresponding argument in place of the
parameter parm. Lastly, the endif indicates the end of the ifb. It should be
carefully noted that unlike the selection statements introduced in Chap. 4, none of
these three directives have a decimal prior to the directive.

Table 7.1 Conditional assembly directives

Directive Meaning

if If (can useEQ,NE,LT,LE,GT,GE,OR,AND)
ifb If blank
ifnb If not blank
ifidn If identical
ifidni If identical case insensitive
ifdif If different
ifdifi If different case insensitive

7.5 Conditional Assembly 139

The following contains four different invocations of the preceding macro definition:

.
addacc
.
.
addacc 5
.
.
addacc edx
.
.
addacc num
.

The complete resulting codewith the macro expansions is given below to show how
it would actually look in the .lst file. Although it appears that there are a number of
instructions, the only real lines of executable code that are generated are the ones that
have addresses and machine code off to the left in hexadecimal (again see Chap. 12):

addacc
1 ifb <>

0000000A 40 1 inc eax
1 else
1 add eax,
1 endif
addacc 5
1 ifb <5>
1 inc eax
1 else

0000000B 83 C0 05 1 add eax,5
1 endif
addacc edx
1 ifb <edx>
1 inc eax
1 else

0000000E 03 C2 1 add eax,edx
1 endif
addacc num
1 ifb <num>
1 inc eax
1 else

00000010 03 05 0000003A R 1 add eax,num
1 endif

140 7 Procedures and Macros

The above code segment does save a little memory under some circumstances
because as mentioned back in Chap. 3 and will be demonstrated in Chap. 12, the
inc instruction takes up less memory. Although it is getting a little ahead here in
the text, it is interesting to point out that depending on the argument, a different
machine language instruction is generated based on the operand. To illustrate, the
inc eax instructions generates at relative memory location 0000000A a hex-
adecimal 40 machine language instruction that is only 1 byte long and the add
eax,num instruction generates at relative memory location 00000010 a hex-
adecimal 03 05 0000003A machine language instruction that is 6 bytes long (see
Chap. 12). As before, since the above is rather cluttered, by eliminating the other
lines of source code, the following shows a copy of each macro invocation followed
by only the assembly instruction that would be generated and executed:

addacc
inc eax

addacc 5
add eax,5

addacc edx
add eax,edx

addacc num
add eax,num

Although the above cleaned up code segment seems relatively simple, it illus-
trates how different code can be used in place of other code when using conditional
assembly, even though the source code containing the macro definition looks as
though there might be more instructions. Again, there is only one actual assembly
language instruction generated for each invocation in the above example.

7.6 Swap Macro Revisited Using Conditional Assembly

Returning to the swap example in Sect. 7.4, what would happen if invocations such
as the ones on the left in Table 7.2 were used to invoke the previous definition
repeated on the right?

The result would be that the following code would be generated:

7.5 Conditional Assembly 141

.
swap num1,num1

mov ebx,num1
xchg ebx,num1
mov num1,ebx
.
.

swap eax,eax
mov ebx,eax
xchg ebx,eax
mov eax,ebx
.

As has happened before, redundant code is generated in both cases, but is there a
possible solution to this problem? The answer is yes and it can be solved by using
conditional assembly. As per Table 7.1, an ifidn (if identical) checks to see if the
two arguments are equal using case sensitivity and an ifidni does the same thing
but is case insensitive. The directive ifdif (if different) uses case sensitivity to
check to see if the arguments are different and ifdifi does the same thing with
case insensitivity.

The statement that can help in this instance is ifidni directive. For example, if
the arguments are the same, then there is no need to swap the contents and thus no
code needs to be generated as shown in the following macro definition:

swap macro p1:REQ, p2:REQ
ifdifi <p1>,<p2>
mov ebx,p1
xchg ebx,p2
mov p1,ebx
endif
endm

Table 7.2 Macro invocations and definition

Invocations Definition

. swap macro p1:REQ,p2:REQ
swap num1,num1 mov ebx,p1 ;; copy p1 into ebx
. xchg ebx,p2 ;; exchange ebx and p2
. mov p1,ebx ;; copy ebx into p1
swap eax,eax endm
.

142 7 Procedures and Macros

The invocation of swap using various different scenarios is shown below:

swap num1,num2
swap num1,num1
swap eax,ecx
swap eax,eax

The resulting macro expansions are as follows:

swap num1,num2
mov ebx,num1
xchg ebx,num2
mov num1,ebx

swap num1,num1

swap eax,ecx
mov ebx,eax
xchg ebx,ecx
mov eax,ebx

swap eax,eax

Note that code is not generated in the second and fourth examples because of the
ifdifi directive and thus the redundant code need not be generated. The swapping of
two memory locations is carried out easily in the first example and although the third
example is still redundant, there is no harm done. As can be seen, this helps clean up
much of the redundant code but still allows for some redundant code as in the third
case above. However, what about the more serious problem at the end of Sect. 7.4
when the ebx register was used as the second argument resulting in a logic error?

In addition to seeing if the two arguments are the same or different, the above
directives can be used to see if the parameters are equal to a particular register. In other
words, by putting a particular register in brackets in one of the two positions of the
ifidni, and the name of the parameter in brackets in the other position, it can then
compare the parameter to the particular register and generate the appropriate code.

swap macro p1:REQ,p2:REQ
ifidni <ebx>,<p2>
xchg p1,ebx
else
mov ebx,p1
xchg ebx,p2
mov p1,ebx
endif
endm

7.6 Swap Macro Revisited Using Conditional Assembly 143

In the code above, <p2> is compared to see if it is identical to <ebx>, and if so,
different code can be generated, otherwise the original code is executed in the else
section. The following invocations

.
swap ebx,eax
.
.
swap eax,ebx
.

show how the code is different when the ebx is in either of the argument positions:

swap ebx,eax
mov ebx,ebx
xchg ebx,eax
mov ebx,ebx

swap eax,ebx
xchg eax,ebx

Again, some of the code is still redundant, but the danger of the logic error has
now been eliminated. Can this last bit of redundancy be eliminated? Yes, by nesting
another set of if, else, and endif directives after the outer else directive.
Even an elseif directive could be used as follows:

swap macro p1:REQ,p2:REQ
ifidni <ebx>,<p2>
xchg p1,ebx
elseifidni <p1>,<ebx>
xchg ebx,p2
else
mov ebx,p1
xchg ebx,p2
mov p1,ebx
endif
endm

Using the same two swap invocations from above, the following code is gen-
erated:

144 7 Procedures and Macros

swap ebx,eax
xchg ebx,eax

swap eax,ebx
xchg eax,ebx

If a macro is going to be used only a few times by knowledgeable programmers,
does one need to create such an elaborate macro using conditional assembly? The
answer is probably no, because the time and effort needed to create the macro is most
likely not worth the savings in terms of memory and execution speed. However, if
the macro will be used a lot and by programmers with a variety of different skill
levels, then the savings not only in terms of memory and execution speed might be
worth it, but also the savings in terms of not having to correct syntax, redundancy,
and logic errors may prove to be well worth the additional effort too.

7.7 Power Function Macro Using Conditional Assembly

In another example, what if one wanted to implement the power function in a
macro? Recall from Chap. 6 the definition of the power function, which is reiterated
below. For the sake of convenience, instead of outputting error messages, only a
flag such as a -1 could be returned to indicate error had occurred:

xn = If x < 0 or n < 0, then -1
Else if x = 0 and n = 0, then -1

Else if n = 0, then 1
Otherwise 1 * x * x * … * x (n times)

Although the above definition would ideally be better implemented as a procedure
because only one copy of it would be needed, it is a good example that can help
illustrate some more important concepts concerning macros and conditional assem-
bly. Of course, a macro could be written without conditional assembly, but then every
time the code was generated, both the selection statements and loop would need to be
inserted whether they were needed or not, which would be a waste of memory.

However, by using conditional assembly, not all of the if statements need to be
included every time the macro is invoked. Further, in some of the cases a loop is not
needed and the code for the loop would not need to be generated. For example,
when n is 0, then the answer is 1, when n is 1 the answer is x, and when x is either
0 or 1, the answer is x. Thus, the above definition can be further revised as follows
to better reflect how the macro could be written. Only when both x and n are
greater than 1 would the code for the loop need to be generated. Below is the
modified definition used in this example:

7.6 Swap Macro Revisited Using Conditional Assembly 145

xn = If x < 0 or n < 0, then -1
Else if x = 0 and n = 0, then -1

Else if x = 0 or x = 1, then x
Else if n = 0, then 1

Else if n = 1, then x,
Otherwise 1 * x * x * … * x (n times)

In addition to the directives used previously (ifb, inb, idif, etc.), it is
possible to use just a simple if directive that can use the equivalent of relationals
(eq, ne, lt, gt, le, ge) and logic (and, or) as shown in Table 7.1. The
implementation of the above definition can then be accomplished as below.
However, note that the simple if directive cannot contain memory locations or
registers, but only constants. Also, it should be noted to use parentheses when using
the logical operators as shown below. For this example, a constant for x will be
passed as the first argument and a constant for the exponent n as the second
argument, and the answer returned in the eax register:

power macro x:REQ,n:REQ
if (x lt 0) or (n lt 0)
mov eax,-1
elseif (x eq 0) and (n eq 0)
mov eax,-1
elseif (x eq 0) or (x eq 1)
mov eax,x
elseif n eq 0
mov eax,1
elseif n eq 1
mov eax,x
else
mov eax,x
mov ebx,eax
mov ecx,n
dec ecx
.repeat
imul ebx
.untilcxz
endif
endm

When eitherx orn is less than 0, or if bothx andn are equal to 0, theeax register is
set to -1. Should x be equal to either 0 or 1, the result is x, if only n is 0, the answer is
1, or ifn is1, then the answer is x, where in all of these cases the loop does not need to
be executed nor does it even need to be generated. Lastly, notice that the loop is
implemented using a .repeat-.untilcxz directive instead of a while
loop. Since the case when n is equal to one is already handled, the loop only needs to

146 7 Procedures and Macros

iteraten-1 times. Although the above code segment looks rather large, remember that
not all of the code is used in each invocation. Only the last case is the largest and since
it is generated onlywhenx andn are greater than 1, it does not need to be generated for
all of the other cases. Note that all the registers are used, so care must be used when
invoking this macro. The following sample invocations test seven different cases:

.
power 2,-1
.
power 0,0
.
power 0,2
.
power 1,2
.
power 2,0
.
power 3,1
.
power 2,3
.

Given the invocations above, the following macro expansions would be gen-
erated in each of the seven cases. Note that it is in only the last case that the loop is
actually generated, where the .repeat-.untilcxz directive is implemented as a
loop instruction:

.
power 2,-1

mov eax,-1
.

power 0,0
mov eax,-1
.

power 0,2
mov eax,0
.

power 1,2
mov eax,1
.

7.7 Power Function Macro Using Conditional Assembly 147

power 2,0
mov eax,1
.

power 3,1
mov eax,3
.

power 2,3
mov eax,2
mov ebx,eax
mov ecx,3
dec ecx

@C0001:
imul ebx
loop @C0001
.

7.8 Complete Program: Implementing a Macro Calculator

A nice way to illustrate the use of macros is to create what could be thought of as a
macro calculator that simulates a one register (accumulator) computer. In a sense, the
macros created and subsequently invoked almost appear to be a new set of instructions
that can be used by the programmer. Although it somewhat looks like a new assembly
language has been created and it is even sometimes mistakenly called an assembler, it
is not really a new assembly language because that would require a separate program
to assemble the instructions into the corresponding machine language. Instead,
macros are used to create what looks like new instructions for the programmer and
thosemacros in turn use existing assembly language instructions. Even though it is not
really an assembler, it is still interesting to invoke the macros that appear to be like
instructions that come from another hypothetical assembly language.

To implement this macro calculator, it is assumed that there is only one register
called the accumulator. The eax register naturally can assume the role of this
accumulator. As far as the macro calculator instruction set is concerned, there are no
other registers. However, that does not mean that the other registers cannot be used
on occasion as necessary to implement some of the other instructions. In a sense,
the other registers are hidden from the macro calculator programmer. For those who
are taking or have had a computer organization course, this is not unlike many
processors that have registers that are not directly accessible by the programmers,
such as the MAR (memory address register) and MDR (memory data register) in
the CPU. The instructions for this macro calculator are given in Table 7.3.

148 7 Procedures and Macros

As mentioned above, the only register that should be modified is the eax
register, which serves as the accumulator for the macro calculator. When imple-
menting the various macros, care should be taken not to alter any of the other
registers needlessly. For example, with the MULTACC macro, it will be necessary
to alter at least one other register. As stated previously, macros typically do not save
and restore the registers because that can take up time and memory. However, the
purpose of this program is not necessarily to be efficient but rather to simulate a one
accumulator machine where the only register that should be altered is eax and this
will provide further practice in using the stack.

As mentioned previously in Chap. 6, a possible solution to saving and restoring
registers is to use the pushad and popad instructions, but many of the above
macros return a value via the eax register. Also, many of the macros will only alter
a single register, so this method would almost be overkill. Another solution is that
instead of trying to determine which registers are indeed altered, just save and
restore all the other registers not being used to return values to insure that none of
them will accidently be altered. Although this solution would work and is some-
times employed by some programmers, it is again overkill and also a sloppy
solution. Instead, it is best to save and restore only those registers that are indeed
altered, which helps other programmers examining the macros to understand the
code and also helps cut down on the number of instructions necessary to implement
the macro when saving and restoring registers.

In looking at a few of the above macros, the LOADACC macro simply loads the
contents of the specified memory location into the accumulator. Obviously, this is
like the mov instruction and it forms the body of the macro. The ADDACC macro is
similarly just the implementation of the add instruction. In both cases, no other
registers are altered, so there is no reason to save and restore any other registers.
The implementation of each can be found below:

Table 7.3 Macro calculator instructions

Instruction Implemented as Description

INACC proc Prompt for and input an integer into the accumulator
OUTACC proc Output message and integer in the accumulator
LOADACC macro Load the accumulator with the operand
STOREACC macro Store accumulator in the operand
ADDACC macro Add operand to the accumulator
SUBACC macro Subtract operand from the accumulator
MULTACC macro Multiply accumulator by the operand (iterative)
DIVACC macro Divide accumulator by the operand (iterative)

7.8 Complete Program: Implementing a Macro Calculator 149

LOADACC macro operand
mov eax,operand
endm

ADDACC macro operand
add eax,operand
endm

TheMULTACCmacro could obviously be implemented using animul instruction,
but for the sake of practice the iterationmethodwill be used. Again, since there ismore
than one instruction, it might be better to have it implemented as a procedure, but to
allow for additional practice, a macro will be used. The algorithm presented here is
somewhat similar to the algorithm presented in Sect. 5.1; however, the one presented
here stresses some different concepts. Although there are some inefficiencies in the
following algorithm, a more interesting concern here is the multiplying by a negative
number which will allow another demonstration of conditional assembly.

If the multiplier in the operand is positive, there is no problem, because the loop will
repetitively add the value of themultiplicand in the accumulator (eax) and whether the
value in the accumulator is positive or negative does not matter. But if the multiplier in
the operand is negative, it needs to bemade positive in order to loop the correct number
of times. Then if the value of themultiplicand in the accumulator is positive, the answer
will need to be made negative and if the value of the multiplicand in the accumulator is
negative, the answer will need to be made positive, because a negative number multi-
plied by a negative is positive. Table 7.4 illustrates these four possibilities.

Using the simple conditional if directive, the following can use only immediate
integer values for the operand:

Table 7.4 Four possibilities

Accumulator Operand Iteration Answer Answer corrected

2 3 2 + 2 + 2 = 6
-2 3 -2 + -2 + -2 = -6
2 -3 2 + 2 + 2 = 6 -(6) = -6
-2 -3 -2 + -2 + -2 = -6 -(-6) = 6

150 7 Procedures and Macros

MULTACC macro operand
push ebx ;; save ebx and ecx
push ecx
mov ebx,eax ;; mov eax to ebx
mov eax,0 ;; clear accumulator to zero
mov ecx,operand ;; load ecx with operand
if operand LT 0 ;; if operand is negative
neg ecx ; make ecx positive for loop
endif
.while ecx >0
add eax,ebx ;; repetitively add
dec ecx ;; decrement ecx
.endw
if operand LT 0 ;; if operand is negative
neg eax ; negate accumulator, eax
endif
pop ecx ;; restore ecx and ebx
pop ebx
endm

Since the eax register is serving as the accumulator and it contains the value that
needs to be returned as a result of the multiplication operation, note that the ebx
and ecx registers are obviously saved and restored and that the eax register is not.
Also notice the negation of ecx prior to the loop and the negation of eax after the
loop are done using conditional assembly, where only if the operand is negative will
these instructions be generated in the macro expansion. If the value of the operand
is 0, then the loop will not iterate, but if the value in eax is 0, then the loop will
iterate redundantly. Can this be solved using conditional assembly? Yes, and this is
left as an exercise for the reader at the end of the chapter.

Obviously there is no single instruction to output the contents of the accumu-
lator. Since the implementation of the output is really a call to a procedure via the
INVOKE directive and to incorporate some procedures in this example, the OUT-
ACC is implemented below as a procedure. Of course the format statements and the
temporary memory location temp will need to be defined as is shown in the
program skeleton shortly:

7.8 Complete Program: Implementing a Macro Calculator 151

OUTACC proc
push eax ; save eax, ecx, and edx
push ecx
push edx
mov temp,eax
INVOKE printf, ADDR msg1fmt, ADDR msg1, temp
pop edx ; restore eax, ecx, and edx
pop ecx
pop eax
ret

OUTACC endp

Why does the above code save and restore the contents of the eax, ecx, and
edx registers? Again remember from Chap. 2 that the INVOKE directive destroys
the contents of these three registers. Although the pushad and popad might have
been able to be used here, only three registers are used, the code is more
self-documenting, and since the above is implemented as a procedure, space is not
as much of a concern.

The following is the skeleton of the programwhich loads the accumulator with the
value 1, adds the number 2 to the accumulator, adds the contents of memory location
three which contains a 3, multiplies the accumulator by 4, and then multiplies the
accumulator by a −3. Lastly, it outputs the contents of the accumulator:

.686

.model flat,c

.stack 100h

scanf PROTO arg2:Ptr Byte, inputlist:VARARG
printf PROTO arg1:Ptr Byte, printlist:VARARG

.data

msg1fmt byte 0Ah,"%s%d",0Ah,0Ah,0

msg1 byte "The contents of the accumulator are: ",0
temp sdword ?

three sdword 3

.code

LOADACC macro operand

mov eax,operand ;; load eax with the operand
endm

152 7 Procedures and Macros

ADDACC macro operand

add eax,operand ;; add to eax the operand
endm

MULTACC macro operand

push ebx ;; save ebx and ecx

push ecx

mov ebx,eax ;; mov eax to ebx

mov eax,0 ;; clear accumulator to zero
mov ecx,operand ;; load ecx with operand

if operand LT 0 ;; if operand is negative

neg ecx ; make ecx positive for loop

endif

.while ecx >0

add eax,ebx ;; repetitively add

dec ecx ;; decrement ecx

.endw

if operand LT 0 ;; if operand is negative

neg eax ; negate accumulator, eax

endif

pop ecx ;; restore ecx and ebx

pop ebx

main

endm

proc

LOADACC 1
ADDACC 2

ADDACC three
MULTACC 4

MULTACC -3

CALL OUTACC

ret

main endp

OUTACC proc

push eax ; save eax, ecx, and edx
push ecx

push edx

mov temp,eax

INVOKE printf, ADDR msg1fmt, ADDR msg1, temp

pop edx ; restore eax, ecx, and edx

pop ecx

pop eax

ret

OUTACC endp

end

What is interesting is that the main program above only contains the following
macro invocations and procedure call. As alluded to at the beginning of this section,
they almost look like a new assembly language has been created:

7.8 Complete Program: Implementing a Macro Calculator 153

LOADACC 1
ADDACC 2
ADDACC three
MULTACC 4
MULTACC -3
CALL OUTACC

When the above macros are expanded, the following code is generated:

LOADACC 1

mov eax,1
ADDACC 2

add eax,2

ADDACC three

add eax,three

MULTACC 4

push ebx

push ecx

mov ebx,eax

mov eax,0

mov ecx,4

jmp @C0001

@C0002:

@C0001:

add eax,ebx

dec ecx

cmp ecx, 0

ja @C0002

pop ecx

pop ebx

MULTACC -3

push ebx
push ecx

mov ebx,eax

mov eax,0

mov ecx,-3
neg ecx ; make ecx positive for loop

jmp @C0004

@C0005:

@C0004:

add eax,ebx

dec ecx

cmp ecx, 0

ja @C0005

neg eax ; negate accumulator, eax

pop ecx

pop ebx

CALL OUTACC

154 7 Procedures and Macros

When this program is assembled, it is advisable to get a copy of the assembly
listing in the .lst file. As hinted at previously and to pique the reader’s interest to
read Chap. 12, although the instructions for the ADDACC macro are both add
instructions, it is interesting to note that the machine code in hexadecimal is dif-
ferent. An add eax,3 in machine language is 83 C0 02 and this is different than
an add eax,three which in machine language is 03 05 00000032. When
using different arguments for the parameter, the instructions are different as a result
of using name parameters which use strict substitution. Another thing to note is the
conditional assembly of the MULACC macro when the operand is negative, where
the additional neg instructions are inserted along with their associated comments
due to their single semicolons (;). Lastly, note the somewhat unusual way in which
the .while directive is implemented with the comparison at the bottom. Although
it appears to be implemented as a post-test loop where it seems possible that the
loop will execute at least once, be sure to note the jmp instruction at the beginning
of the loop that prevents that from happening.

The reader is encouraged to use this program to experiment with, by using the
macros given. It also forms the skeleton to add the other macros listed previously
which are a part of the exercises at the end of this chapter. The reader can also add
other macros and procedures as requested by the instructor or can experiment on
their own initiative.

7.9 Summary

• Procedures create only one copy of the code, whereas macros create a new copy
of the code every time they are invoked.

• Procedures often save and restore registers, whereas macros often do not attempt
to save and restore registers.

• Procedures tend to save memory, whereas macros tend to save execution time.
• To invoke a procedure, use the call instruction followed by the name of the
procedure, whereas to invoke a macro, merely put the name of the macro in the
opcode field.

• Always include a ret instruction in a procedure but do not include one in a
macro.

• Although more than one ret instruction can be included in a procedure, it is best
to have only one and include it as the last instruction in a procedure.

• Remember to include the name of a procedure in the label field of theendp statement
but do not include the name of the macro in the label field of the endm statement.

7.8 Complete Program: Implementing a Macro Calculator 155

• When arguments are required when invoking a macro, use :REQ after the
parameter name in the macro definition.

• When using any of the conditional assembly directives, such as if, ifb, else,
and endif, do not include a period prior to the directive.

• When using the conditional assembly directive if, do not use registers or
memory locations for arguments in the macro, rather use only constants. Also,
when using logical operators or and and, use parentheses as in if(x lt 0)or
(y gt 0).

• Use the ifb conditional assembly directive to check for a blank matching
argument and ifnb to check for a non-blank matching argument.

• Use the conditional assembly directive ifid to check if two items are identical
and ifdif to check if they are different. Both of these are case sensitive, so to
make them case insensitive, add the letter i to the end of the directive as in
ifidi and ifdifi.

7.10 Exercises (Items Marked with an * Have Solutions
in Appendix D)

1. Given the following assembly language statements and assuming memory
locations and labels are properly declared, indicate whether they are syntacti-
cally correct or incorrect. If incorrect, indicate what is wrong with the statement:

∗A. return B. endm ∗C. .ifb <parm>
C. ifdif <p>,<q> ∗E. if eax lt 0 F. elseif

G. call dog H. endif I. ifne <p1>,<p2>

2. Write a procedure to implement the factorial function as defined in the exercise
section of Chap. 5.

3. Write a procedure to implement the Fibonacci numbers as defined in the
exercise section of Chap. 5.

4. Write a macro to implement the factorial function as defined in the exercise
section of Chap. 5.

5. Write a macro to implement the Fibonacci numbers as defined in the exercise
section of Chap. 5.

6. Using conditional assembly, modify the MULACC macro defined in this chapter
to not only eliminate the redundant looping but also not generate the loop
instruction itself in the case that the multiplier in the operand is 0 and the answer
is 0, or when it is 1 and the answer is just the value in the accumulator. (Hint:
Use the power macro as an example.)

156 7 Procedures and Macros

7. Implement the following instructions as macros as part of the macro calculator
problem in the last section of this chapter. For the division macro, use condi-
tional assembly to solve any problems with negative numbers. Also, when
dealing with the possibility of division by 0, a -1 should be returned from the
macro to indicate an error:

INACC
STOREACC
SUBACC
DIVACC

7.10 Exercises (Items Marked with an � Have Solutions in Appendix D) 157

8Arrays

Up until this point, arrays have not been needed in the examples shown. However,
this chapter will introduce the declaration of arrays, array access, indexing arrays,
and how to input, process, and output arrays. Although there are many ways one
can index an array, this text will present only two of them. This chapter will be
concerned with the declaration of arrays of signed double words (sdword), while
the declaration of an array of bytes will be introduced in the next chapter on strings.
Lastly, this chapter will illustrate the use of arrays in a number of examples.

8.1 Array Declaration and Addressing

There are a couple of different ways to declare an array based on the data and the
needs of the programmer. The simplest way to declare an array is to list memory
location after memory location. In fact, it is entirely possible to address the next
memory location after any other memory location by adding a constant to the
address. For example, given the following two memory locations, it is possible to
address the memory location result when referring to memory location
number:

.data
number sdword 2
result sdword 7

In other words, instead of an instruction such as mov eax,result, which
would move the integer 7 into the eax register, mov eax,number+4 could also
be written which would accomplish that exact same thing. Note that the +4 does not
add 4 to the contents of number, rather an add instruction would be needed to
accomplish that task. Instead, it adds a 4 to the address of number. However, one
might ask isn’t result only one memory location away from number? That

© Springer Nature Switzerland AG 2020
J. T. Streib, Guide to Assembly Language, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-35639-2_8

159

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35639-2_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35639-2_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35639-2_8&domain=pdf
https://doi.org/10.1007/978-3-030-35639-2_8

would be true if number was declared as a byte, but note that number is
declared as an sdword which takes up 4 bytes as shown in Fig. 8.1.

Although the above form of addressing memory is allowable and useful in
specific situations, trying to address memory locations by another variable name
other than the variable name assigned to it is known as aliasing. It is not considered
to be very good programming practice because it can make programs very difficult
to debug and maintain, where a program that uses two different variable names for
the same memory location can cause difficultly when trying to make updates to a
program. To help illustrate the sort of problems that might be encountered, what if
one added another variable between the variables number and result above,
such as demonstrated below?

.data
number sdword 2
answer sdword 5
result sdword 7

The problem would be that when the previous instruction mov eax,number+4
is used, the number 5 would be moved into the eax register instead of the number
7. Although in small programs, it might be relatively easy to find all such refer-
ences, it would be very difficult in large programs. This is the reason why this
method should be avoided when addressing individually declared variables.

However, it is also possible to create an array as follows, where it should be
noticed that the subsequent memory locations do not have variable names attached
to them:

numary sdword 2
sdword 5
sdword 7

Although using offsets should be avoided when addressing individual labeled
memory locations, it is necessary when dealing with arrays. In the case above, the
programmer has no choice but to use the variable name numary to access the
subsequent memory locations in the array and since there are no other variable
names, each of the subsequent memory locations would not be referred to via an
alias. However, what if there were many entries in the above array? It could take up
quite a few lines of code to create the array. Luckily, MASM has an easier way to
declare the above on just one line, where the directive sdword need to appear only

number = 100

result = 104

00000002

00000007

Fig. 8.1 Signed double words

160 8 Arrays

once, and each of the entries would appear on the same line, each separated by a
comma as follows:

numary sdword 2,5,7

In both cases, the array would appear in memory as shown in Fig. 8.2.
Continuing, what if each element of an array were to be initialized to the same

number, such as 0, or what if each memory location in the array did not need to be
initialized? Each of the following could be used, respectively:

zeroary sdword 0,0,0
empary sdword ?,?,?

Although the above works okay for small arrays, what if there were hundreds of
elements needed to be declared? Then clearly the above method would be cum-
bersome. Instead, the dup operator is very convenient, where the above would be
rewritten as follows:

zeroary sdword 3 dup(0)
empary sdword 3 dup(?)

With only three elements the previous method of individually listing each ele-
ment is sufficient, but as the number of elements increases, using the dup operator
is obviously more convenient.

Given the above, how does one access individual elements of an array? For
example, assume that the last element of the previously declared numary needed to
be moved to the first element of numary. Remembering that arrays in C start with
the zeroth element, the C equivalent of this operation would be numary[0]
=numary[2]; and the equivalent assembly code would be as follows:

mov eax,numary+8 ; load eax with third element
mov numary+0,eax ; store eax in first element

and would appear in memory as shown in Fig. 8.3.
Of course, regardless of whether one is dealing with a single memory location or

with the elements of an array, memory to memory transfer needs to go through a
register. As with C, the first element in an array is the zeroth element. Also, since
numary is two memory locations away, the offset needs to be multiplied by 4 to
determine the correct address because as mentioned previously, each memory

numary = 100

= 104

= 108

00000002

00000005

00000007

Fig. 8.2 Array of signed double word

8.1 Array Declaration and Addressing 161

location is 4 bytes long. Lastly, numary in the second mov statement technically
does not need to have the +0, since by default the offset of a stand-alone memory
location is +0. However, including the +0 is a nice way of indicating to others who
might read the program that the memory location specified is part of an array
instead of a stand-alone memory location.

8.2 Indexing Using the Base Register

Although occasionally only access to a single element of an array is needed, more
often than not access to many elements of the array is necessary and simply
accessing them one at a time would prove to be inefficient. As mentioned at the
outset of this chapter, there are two major ways of indexing an array. The first one is
similar to indexing an array using subscripts in a high-level language, whereas the
second one is similar to using pointers and is helpful when trying to process strings
as discussed in the next chapter.

Although high-level languages typically use a variable as an index when
indexing arrays, in assembly language indexing is accomplished using registers.
Recall from Chap. 1 that the ebx register is known as the base register and is very
useful when indexing arrays. Although it is a register, it is used much like an index
variable in the C programming language.

How would one use the ebx register to index an array? As an example, what if
one wanted to sum all the elements of an array? To make things simpler at first,
assume that the array already contains values as introduced in the last section and as
shown below:

numary sdword 2,5,7
sum sdword ?

In C, the variable sum would first need to be initialized to 0. Further, since there
are a fixed number of items to be summed, a for loop would be the best choice.
Lastly, for each iteration of the for loop, the ith element of the numary would need
to be added to sum using sum=sum+numary[i];. Optionally, the summation
could be done using the shorthand notation sum+=numary[i]; as shown below:

numary = 100

= 104

00000007

00000005

= 108 00000007

Fig. 8.3 Copying individual elements of an array

162 8 Arrays

sum 0;
for(i 0; i<3; i++)

sum + numary[i];

Of course since the for loop is the best choice as used above, the equivalent
code in assembly language would be the use of the .repeat-.untilcxz
directive. Unlike C code, where the variable i is being used both as a loop counter
and as an index, in assembly language, two separate registers need to be used. So in
addition to using the ebx register for indexing, the ecx register would be used for
loop control. Lastly, since sum was not initialized in the data section, it must be
initialized to 0 during execution time. The resulting code is as follows:

mov sum,0 ; initialize sum to 0
mov ecx,3 ; initialize ecx to 3
mov ebx,0 ; initialize ebx to 0
.repeat
mov eax,numary[ebx] ; load eax with element of numary
add sum,eax ; add eax to sum
add ebx,4 ; increment ebx by 4
.untilcxz

As discussed in the previous section, note that a 4 needs to be added to the ebx
register to access the next signed double word. Also, do not forget that the ecx
register should not be altered, since the .untilcxz directive decrements the ecx
register by 1 automatically. After walking through the above code segment, the
contents of the registers and memory locations would be as shown in Fig. 8.4,
where all values are in hexadecimal.

Why does the ebx register have the hexadecimal number 0000000C (decimal
12) in it? Could it not end up addressing the memory location sum? Prior to the
loop, the ebx register is initialized to 0 to access the first element in the array. After
accessing and summing the current element in the array, the value in ebx is
incremented by 4 in anticipation of accessing the next element in the array the next
time through the loop. To answer the first question, during the last iteration of the
loop and after the third memory location has been accessed, ebx is incremented by
4 to 0000000C in anticipation of accessing the next element in the array. The
answer to the second question would then be yes, where the memory location sum

numary = 100 00000002 eax 0000000E

= 104

= 108

sum = 10C

00000005

00000007

0000000E

ebx

ecx

0000000C

00000000

Fig. 8.4 Using ebx for array processing

8.2 Indexing Using the Base Register 163

could be accessed via ebx upon completion of the loop. Would this have caused an
execution or run-time error if the contents of sum were accessed via ebx? As
discussed in the previous section, accessing another memory location like this is
possible, and no, it would not cause an error. However, it is not advisable and the
result is that extra care must be taken when addressing arrays in assembly language.

In all of the previous examples, the array already contains data. How can one
input data into an array? To add a small twist, how could the array also be output in
reverse order? Obviously this problem will require the I/O capabilities learned in
Chap. 2 and will require two non-nested loops. Furthermore, assume that the user
will need to first be prompted and will then enter the number of integers to be input.
The code in C is as follows:

int arry[20],n,i;
printf(" n%s","Enter the number of integers to be input: ");
scanf("%d",&n);
if (n>0){

for (i 0; i<n; i++){
printf(" n%s","Enter an integer: ");
scanf("%d",&arry[i]);

}
printf(" n%s n n","Reversed");
for (i n-1;i> 0;i--)

printf(" %d n n",arry[i]);
}
else

printf(" n%s n n","No data entered.");

The user is first prompted to enter the number of integers to be input followed by
prompts to enter the integers themselves. After the integers have been placed into
the array, a loop then outputs the array in reverse order. In the event that a 0 or a
negative number is entered for the first prompt, a message stating that no data was
entered is displayed. The above C code can then be implemented as follows in the
partial .data and .code segments below:

164 8 Arrays

.data
msg1fmt byte 0Ah,"%s",0
msg2fmt byte 0Ah,"%s",0Ah,0Ah,0
msg3fmt byte " %d",0Ah,0Ah, 0
in1fmt byte "%d",0
msg1 byte "Enter the number of integers to be input: ",0
msg2 byte "Enter an integer: ",0
msg3 byte "Reversed",0
msg4 byte "No data entered."
n sdword ?
arry sdword 20 dup(?)

.code
INVOKE printf, ADDR msg1fmt,ADDR msg1
INVOKE scanf, ADDR in1fmt, ADDR n
mov ecx,n ; initialize ecx to n
mov ebx,0 ; initialize ebx to 0
.if ecx>0
.repeat
push ecx ; save ecx
INVOKE printf, ADDR msg1fmt, ADDR msg2
INVOKE scanf, ADDR in1fmt, ADDR arry[ebx]
pop ecx ; restore ecx
add ebx,4 ; increment ebx by 4
.untilcxz
INVOKE printf, ADDR msg2fmt, ADDR msg3
mov ecx,n ; initialize ecx to n
sub ebx,4 ; subtract 4 from ebx
.repeat
push ecx ; save ecx
INVOKE printf, ADDR msg3fmt,arry[ebx]
pop ecx ; restore ecx
sub ebx,4 ; decrement ebx by 4
.untilcxz
.else
INVOKE printf, ADDR msg2fmt, ADDR msg4
.endif

Notice in the assembly code segment that the use of the .if directive to check
whether n is greater than 0 is not only helpful in outputting a message that no data
was entered but also necessary to help insure that the value of the ecx register does
not start off at 0 or a negative number for the .repeat-untilcxz directives that
follow. Also, note that the ecx register is saved and restored before and after the
INVOKE directives in the body of the loop so that the count is not destroyed.
Should the contents of the ebx register also be saved and restored in the loop? No,
because it is the only register that is not altered by the INVOKE directive.

8.2 Indexing Using the Base Register 165

8.3 Searching

As another example of using the ebx register for indexing, there are two main
searches that the reader has probably heard about in a previous high-level pro-
gramming course: the sequential search and the binary search. The former works
with either unordered or ordered data, whereas the latter works with only ordered
data. Since the binary search is the more complicated of the two, it is probably best
to leave that to be implemented in a high-level language and this text will examine
only the sequential search.

Assuming that the data has already been entered into an array, that the number of
elements in the array is known, and that there are no duplicates in the array, the first
thing that should be done is to request from the user what data needs to be found.
Then a flag must be initially cleared indicating the data has not yet been found. Next
the program should loop through the array to determine whether the data being
searched for is in the array. If the data is found, the flag must be set to indicate that
it was found, the index set to the location of the data, and the rest of the array need
not be searched. The following C program is one way of solving this problem:

int arry[20],n 20,i,number,found;

printf(" n%s","Enter the integer to be found: ");
scanf("%d",&number);
i 0;
found 0;
while(i<n && !found)

if(number arry[i])
found -1;

else
i++;

if (found)
printf(" n%s n n", "The integer was found");

else
printf(" n%s n n","The integer was not found");

Note that the code was written using a while loop instead of a for loop. The
use of a for loop would require the code to branch out of the middle of the loop
and in C this would require the use of a break statement. This would be the
equivalent of a “goto” or a jump statement in assembly language and could cause
unstructured code to be written which this text has been trying to avoid. Assuming
that the PROTO statements have already been written correctly, the following partial
.data and .code segments implement the preceding C program:

166 8 Arrays

.data
msg1fmt byte "%s",0
msg2fmt byte 0Ah,"%s",0Ah,0Ah,0
in1fmt byte "%d",0
msg1 byte "Enter the integer to be found: ",0
msg2 byte "The integer was found",0
msg3 byte "The integer was not found",0
arry sdword 20 dup(?)
n sdword 20
number sdword ?
found sbyte ?

.code
INVOKE printf, ADDR msg1fmt,ADDR msg1
INVOKE scanf, ADDR in1fmt, ADDR number
mov ebx,0 ; initialize ebx to 0
mov ecx,0 ; initialize ecx to 0
mov edx,number ; load edx with number
mov found,0 ; initialize found to 0
.while(ecx<n && !found)
.if(edx arry[ebx])
mov found,-1 ; set found to -1
.else
add ebx, 4 ; increment ebx by 4
.endif
inc ecx ; increment ecx by 1
.endw
.if(found)
INVOKE printf, ADDR msg2fmt, ADDR msg2
.else
INVOKE printf, ADDR msg2fmt, ADDR msg3
.endif

In the above code segment, note that since only single byte is needed instead of 4
bytes to create a flag, so the found flag is only a signed byte (sbyte) instead of a
signed double word (sdword). Also, notice that the ecx register is used instead of
the memory location i. Although i could be used, it could not be easily used in the
.while because memory to memory comparisons are not allowed. Since it would
need to be transferred to a register anyway and ecx is also known as the counter
register, it did not hurt to somewhat mimic the .repeat-.untilcxz directives
and use the ecx register. The primary difference is that the count is going forward
instead of backward and the increment of the ecx register should not be forgotten
at the bottom of the loop. The other difference is the .repeat-.untilcxz
directive is a post-test loop structure and the .while directive is a pre-test loop
structure, and if n was equal to 0, the .while loop would not loop at all.

8.3 Searching 167

8.4 Indexing Using the esi and edi Registers

Although the use of the base register ebx is fairly straightforward, being limited to
a single register can prove to be somewhat restrictive. To help with this matter,
there are two index registers esi and edi, where the esi register is known as the
source index register and edi is known as the destination index register. The subtle
difference between the use of the ebx register and the esi and edi registers is that
the former is used with the name of the array as an index and the latter are used
more like pointers. In this latter case, the address of the array is first loaded into the
register and the name of the array is not subsequently used. Also, these two registers
are very useful when manipulating strings, as will be discussed in the next chapter.

To demonstrate the different way of addressing using these registers, it is easier
to examine the addressing of only a single element of an array first. For example, if
only the second element of an array needed to be moved into the eax register, the
instruction mov eax,numary+4 could be written as done in the first section of
this chapter. However, could the contents of numary+4 be moved into eax
without using +4 attached to the name of the array? Yes, the same thing could be
accomplished by using a register as an index. The following code segment would
work the same assuming the existence of the previous array, numary:

mov ebx,4
mov eax,numary[ebx]

Although a bit cumbersome compared to using numary+4, this code segment
should make sense given the previous section, where ebx contains a 4, and nu-
mary indexed by ebx would be the address of the second element of numary.
The dashed arrows in Fig. 8.5 show how the address of numary, which is 100, is
added to or indexed by the 4 in the ebx register to create the address 104, which is
the address of the second element of the array numary. The solid arrow in Fig. 8.5
shows the contents of memory location 104 being copied into the eax register.

Using the esi register could accomplish the same task in the following code
segment which introduces the new offset operator:

mov esi,offset numary+4
mov eax,[esi]

+

numary = 100 00000002 ebx 00000004

= 104

= 108

00000005

00000007 eax 00000005

Fig. 8.5 Using ebx register to access a single element

168 8 Arrays

Instead of causing the “contents” of numary+4 to be loaded into the esi
register, the word offset causes the “address” of numary+4 to be loaded into
the esi register. In the second statement, notice that there is no reference to
numary because the address of numary+4 was loaded into the esi in the first
line. Now the address in esi can be used like a pointer, indicated by the square
brackets, to point to the data in the second element in the array, where its contents
are transferred to the eax register. The dashed arrow in Fig. 8.6 shows the esi
register pointing to the second element of numary at memory location 104 and the
solid arrow in Fig. 8.6 shows the contents of memory location 104 being copied
into the eax register.

Care must be taken when using this form of indexing. If the word offset was
not included on the first line, then the “contents” of memory location numary+4,
which is a 5, would be loaded into the esi register instead of the “address” of
numary+4. This would have caused havoc on the second line of code because the
unknown contents of memory location 5 would be loaded into the eax register.
Further, if the square brackets were accidently omitted on the second line of code,
then the 104 in the esi register would be transferred to the eax register, and this is
clearly not what is intended in this example.

In addition to using the offset operator, there is an alternative method. Instead
of using the mov instruction with the word offset, the lea instruction, which
stands for “load effective address,” can be used as follows:

lea esi,memory + 4
mov eax,[esi]

Although in these two instances, the end results are the same, there is a subtle
difference between these two ways of getting an address. In a sense, using offset
is static and lea is dynamic. When using offset, the address is calculated at
assembly time, and with lea, the address is calculated at run-time. The only time
the latter would need to be used is when there is a register in the second operand,
where the register value could change during the course of the execution of the
program and the address would need to be recalculated. Since in the above example
there is no register as part of the second operand and a recalculation of the address
is not necessary, either the mov and offset or the lea can be used. Further, since
the use of registers in a second operand will not be used in this text, either method is
acceptable. This text will use both methods interchangeably to allow readers to get
use to both methods. Although the offset operator can be used with the lea

numary = 100 00000002 esi 00000104

= 104

= 108

00000005

00000007 eax 00000005

Fig. 8.6 Using esi to access a single element

8.4 Indexing Using the esi and edi Registers 169

instruction it is not needed, nor is it recommended, in order to keep these two
methods separate and distinct.

The above shows the use of the esi register, but what of the edi register?
Actually, the edi register could have been used equally well in the above example.
However, as will be seen in the next chapter, some string instructions have specific
uses for each register and substituting one for the other would not work. In the
above case; however, if both could have been used equally well, why should one be
used over the other? The answer can be found in the names of the registers men-
tioned above, where esi is the source index register and edi is the destination
index register. As a general rule, when retrieving data from memory, it is best to use
the esi register because memory is the source from which the data is coming.
When storing data back into memory, the edi register indicates the destination
where the data will be placed. This use of these registers corresponds to how the
string instructions work and it provides a common way of using the registers to help
programmers who might look at the code in the future.

As should be recalled from Chap. 1, data can be moved from one memory
location to another by simply moving the contents of one memory location to a
register and then from that register to the other memory location as follows:

mov eax,num1
mov num2,eax

Although the following example is clearly less efficient than the above, it helps
demonstrate how the esi and edi registers can be used to transfer data between
memory locations and will be helpful in subsequent examples of array processing:

lea esi,num1 ; load the address of num1 into esi
lea edi,num2 ; load the address of num2 into edi
mov eax,[esi] ; move contents of where esi is pointing into eax
mov [edi],eax ; move contents of eax to where edi is pointing

Instead of having the memory locations as part of the two latter mov statements,
they appear in the first two lea instructions, where the addresses of num1 and
num2 are transferred into the esi and edi registers, respectively. Then instead of
moving the contents of num1 into eax, the contents of where esi is pointing to,
which is num1, are moved to eax, and then the contents of eax are moved to
where edi is pointing, which is num2 as shown in Fig. 8.7.

As discussed previously, note that esi points to the source of the transfer,
num1, and edi points to the destination of the transfer, num2. Could one have
saved an extra instruction and just coded mov [edi],[esi]? At first, the answer
may appear to be yes because it looks like a simple register-to-register mov
instruction. However, if one thinks about it for a moment, this is not a simple
register transfer, rather those registers are pointers to memory locations, and as
learned in Chap. 1, memory to memory mov instructions are not allowed. As
always with this form of addressing, care must be taken. For example, if the
brackets around esi and edi were left off, then a 100 would be moved into eax

170 8 Arrays

and the 100 would then be moved into the edi register, which is not the intended
goal.

Clearly the first example is simpler, but the code above accomplishes the same
task and can be expanded to transferring elements of an array. Given how the esi
and edi registers work, can they be used to implement some of the array functions
introduced previously? The answer is yes. As an example, consider the previous C
segment which summed the elements of an array,

sum 0;
for(i 0; i<3; i++)

sum + numary[i];

which can be implemented in assembly language using the esi register as follows:

sum,0 ; initialize sum to zero
ecx,3 ; initialize ecx to 3
esi,numary+0 ; load the address of numary into esi

 eax,[esi] ; move contents of where esi pointing to eax
 sum,eax ; add eax to sum
esi,4 ; increment esi by 4 to next element

v
v
a

t
v
d
d

mo
mo
le
.repea
mo
ad
ad
.untilcxz

In comparison to the previous version, notice that instead of initializing the ebx
register to 0, the esi register is initialized to the address of numary+0. As
mentioned previously, the +0 alerts other programmers that numary is not just a
simple variable, but rather is an array. The other change is that instead of accessing
numary indexed by [ebx], only [esi] is used. Lastly, esi instead of ebx is
incremented, but regardless of which index is used, it is incremented by 4 to access
the next sdword in the array.

What if one wanted to reverse the contents of an array? Instead of trying to just
write in assembly language, first think through the problem in a high-level lan-
guage. Also, it is a good idea to expand the array from 3 to 5 elements so that more
of a pattern can be seen:

eax

5

mov eax, [esi]

num1 = 100

5

num2 = 104

esi

00000100

edi

mov [edi], eax 5 00000104

Fig. 8.7 Using esi and edi to move data from memory to memory

8.4 Indexing Using the esi and edi Registers 171

n sdword 5
numary sdword 2,4,7,9,12

One of the common mistakes to be made here is an assumption that a
fixed-iteration loop structure that loops five times is needed. What often happens in
such circumstances is that the array is returned back to its original order. Instead, by
drawing arrows to indicate which elements need to be swapped as shown in
Fig. 8.8, it should be noticed below that only approximately half the elements in the
array need to be swapped. Since in this example there are an odd number of items,
the middle element does not need to be swapped. Integer division can then be used
to determine the number of items that need to be swapped, where in this case 5
divided by 2 is 2. The result is that the loop should iterate a fixed number of times
as n/2.

Although this algorithm can be implemented with just one index, the i and j
indexes are helpful in this example and will lend themselves to the use of the esi
and edi registers in the subsequent assembly language program:

j n-1;
for(i 0; i<n/2; i++){

temp numary[i];
numary[i] numary[j];
numary[j] temp;
j--;

}

However, the only major change that will probably be needed is to remember
that esi and edi are initially loaded with the appropriate addresses of the array, as
can be seen prior to the .repeat-.untilcxz loop below. The esi register is
loaded with the address of the first element of the array, numary+0. To calculate
the address of the last element of the array, the number of elements in the array is
first decremented by 1 and then multiplied by 4. As seen in Fig. 8.8, 5 minus 1 is 4,
times 4 is 16, which when added to 104 is 120 in decimal or 114 in hexadecimal:

Variable Address Contents

n =

numary =

100

104

108

10C

110

114

00000005

00000002

00000004

00000007

00000009

0000000C

Fig. 8.8 Swap routine

172 8 Arrays

mov ecx,n ; load ecx with contents of n
sar ecx,1 ; divide ecx by 2, number of times to loop
lea esi,numary+0 ; load address of numary into esi
mov edi,esi ; move contents of esi to edi
mov eax,n ; load eax with contents of n
dec eax ; decrement eax by one
sal eax,2 ; multiply eax by 4
add edi,eax ; add eax to edi for ending address of array
.repeat
mov eax,[esi] ; move contents where esi is pointing to eax
xchg eax,[edi] ; exchange eax and where edi is pointing
mov [esi],eax ; move eax to where edi is pointing
add esi,4 ; add four to esi for next element
sub edi,4 ; subtract four from edi for next element
.untilcxz

Note that the idiv instruction is not used in the code segment above. Since the
n needs to be divided by 2, arithmetically shifting ecx one bit position to the right
accomplishes the same task. Likewise, when calculating the ending address of the
array, after subtracting 1, multiplication by 4 is needed, so a 2-bit arithmetic shift to
the left is a simple solution (see Chap. 6). Of course, both esi and edi need to be
adjusted by 4 each time through the loop. Lastly, would xchg [esi],[edi]
have worked in the above segment? Although it would be nice if it did, remember
that the xchg instruction cannot work between two memory locations as mentioned
in Chap. 7. Also as discussed earlier in this chapter, just because it seems that two
registers are being exchanged, [esi] and [edi] are actually pointing to two
memory locations and thus at most only one of the operands in the exchange
instruction can reference a memory location.

8.5 Lengthof and Sizeof Operators

In the previous example, the following declarations were used to declare the array
and indicate its length:

n sdword 5
numary sdword 2,4,7,9,12

Putting the number of elements in a variable is clearly a better choice than to
leave the number of elements as an immediate value in an instruction. The
advantage of using a variable is that any time the number of elements in the array is
changed, the programmer can easily change the variable n, which is hopefully
declared in close proximity to the declaration of the array.

8.4 Indexing Using the esi and edi Registers 173

Although this method works and is better, it is still rather clumsy. Consider if the
number 15 was added to the end of numary and the number of elements in the
array changed from 5 to 6. In addition to adding the extra element to the array, the
value for n would also need to be changed as follows:

n sdword 6
numary sdword 2,4,7,9,12,15

What would happen if one forgot to update the value of n from 5 to 6? In this
case, the previous swapping program would process only the first five elements of
the array. Now consider instead of adding an additional element to the original
array, an element was removed from the array as in the following:

n sdword 4
numary sdword 2,4,7,9

What would happen if one forgot to decrease the value of n in this case? The
previous swapping program code segment would still attempt to process five ele-
ments, and whatever memory location was declared after numary would also be
involved in the swap routine, which is clearly incorrect.

The solution to this problem is to neither leave the length of the array as an
immediate value in an instruction nor leave it in a variable, but rather declare it
using the lengthof operator. This operator instructs the assembler to calculate
the length of the array at assembly time. For example, in the previous code segment
from the end of the last section that reverses an array, the instruction mov ecx,n
could be replaced with mov ecx,lengthof numary. Then every time the length
of the array is changed, the assembler would recalculate the length of the array.

Whereas the lengthof operator indicates how many elements there are in an
array, the sizeof operator indicates how many bytes there are in an array. So if
with a five-element array of sdword the lengthof operator would return a 5,
what would the sizeof operator return? Since there are 4 bytes in a sdword and
there are 5 elements in the array, the answer would be 20.

Although the mov eax,n instruction in the program in the previous section
could also be replaced with a mov eax,lengthof numary instruction, there is
an even better way. Since the purpose of that section of the code segment was to
calculate the number of bytes to determine the address of the last element in the
array to be stored in the edi register, the sizeof operator could be utilized. The
result is that the following code segment

mov eax,n ; load eax with contents of n
dec eax ; decrement eax by one
sal eax,2 ; multiply eax by 4

174 8 Arrays

could be replaced with

mov eax,sizeof numary ; load eax with the size of numary
sub eax,4 ; decrement eax by four

In the first case, eax is decremented by 1, where the 4 times 4 bytes per
sdword would be 16. Then the 16 needs to be added to the beginning address of
the array to calculate the address of the last element of the array. In the second
example, the size of numary is 20, where 4 is subtracted to get 16, which again is
used to calculate the address of the last element of the array. Using both the
lengthof and sizeof operators, the previous code segment could be rewritten
as follows:

mov ecx,lengthof numary ; load ecx with length of numary
sar ecx,1 ; divide ecx by 2, of times to loop
lea esi,numary+0 ; load address of numary into esi
mov edi,esi ; move contents of esi to edi
mov eax,sizeof numary ; load eax with size of numary
sub eax,4 ; decrement eax by four
add edi,eax ; add eax to edi for ending address of array
.repeat
mov eax,[esi] ; move contents where esi is pointing to eax
xchg eax,[edi] ; exchange eax and where edi is pointing
mov [esi],eax ; move eax to where edi is pointing
add esi,4 ; add four to esi for next element
sub edi,4 ; subtract four from edi for next element
.untilcxz

8.6 Complete Program: Implementing a Queue

A common structure that sometimes needs to be implemented in assembly language
is the queue. As learned in a second semester computer science course, a queue is
known as a FIFO data structure, where the first item put into the queue is the first
item taken out. The operation used to put an item in a queue is often called enqueue
and the operation to remove an item from a queue is known as dequeue. Although
the Intel processor has instructions to push and pop items from a stack, it does not
have instructions to enqueue and dequeue items from a queue.

A queue is especially helpful when there is a faster process trying to commu-
nicate with a slower process, where data can be placed into a queue by a faster
process and the slower process can then remove that data from the queue at a later
time. A common example is when a fast processor needs to send something to a

8.5 Lengthof and Sizeof Operators 175

slow printer and data is placed in a print queue. In another example, when an
interrupt occurs in a processor, it must be attended to immediately in what is known
as the foreground environment. However, the foreground environment may not
have time to completely process the interrupt, so the information is placed in a
queue, sometimes called a foreground/background queue. Then when there are no
pending interrupts, the background environment will complete the processing of the
information that was previously placed in the foreground/background queue.
Although the implementation of interrupts is beyond the scope of this text, the
implementation of a queue provides an excellent opportunity to demonstrate the use
of an array and indexing.

Before looking at assembly code, it might be helpful to be reminded how queues
can be implemented in a high-level language. Although ideally it would be best to
use parameters, the following code again uses global variables to mimic the sub-
sequent assembly language program. The main program uses a sentinel-controlled
loop to continue to iterate until the letter s is input, which stands for stop. Then for
each iteration of the loop, it checks for the letter e for enqueue or d for dequeue,
otherwise an appropriate error message is output.

The enqueue routine should look somewhat familiar to those who have taken a
second semester computer science course in data structures. Although there can be
some complex ways to determine whether a queue is full, the simplest method is to
use a counter such as count, which is checked to see if it is less than the length of
the queue, n in this case. If so, number is placed in the rear of the queue. The
variable rear is incremented by 1. The mod function (%) is used to cause rear to
be reset to 0 should it exceed the length of the queue (n). For example, if rear is
equal to 3, the 3%3 is equal to 0. The dequeue routine is similar and it is left for
the reader to walk through the procedure:

#include <stdio.h>
const int n 3;
int queue[3],number,front=0,rear=0,count 0;
char command;
int main() {

void enqueue();
void dequeue();
printf(" n%s","Enter a command, e, d, or s: ");
scanf("%s",&command);
while (command ! 's'){

if (command 'e'){
printf("\n%s","Enter a positve integer: ");

scanf("%d",&number);
enqueue();

}

176 8 Arrays

number queue[front];
front (front+1)%n;

}

else{

printf(" n%s n","Error: Queue is empty");

number -1;
}

}

else

if (command 'd'){
dequeue();

if (number>0)

printf("\n%s%d\n","The integer is: ",number);
}

else

printf(" n%s","Invalid entry, try again");

printf(" n%s","Enter a command, e, d, or s: ");
scanf("%s",&command);

}

printf(" n");
return 0;

}

void enqueue(){

if (count<n){

count++;

queue[rear] number;
rear (rear+1)%n;

}

else

printf(" n%s n","Error: Queue is full");
}

void dequeue(){
if (count>0){

count--;

Since there needs to be a pointer for both the front and the rear of a queue,
the use of the esi and edi registers, respectively, makes an excellent choice.
Although procedures are often used for the enqueue and dequeue operations, the
use of macros will mimic the push and pop instructions and also provide another
opportunity to reinforce the concept of macros. Although not very versatile, global
variables are used to communicate between the main program and the macros as
with the previous C program:

8.6 Complete Program: Implementing a Queue 177

.686

.model flat,c

.stack 100 h
scanf PROTO arg2:Ptr Byte, inputlist:VARARG
printf PROTO arg1:Ptr Byte, printlist:VARARG

.data
in1fmt byte "%s",0
in2fmt byte "%d",0
msg1fmt byte 0Ah,"%s",0
msg3fmt byte 0Ah,"%s%d",0Ah,0
msg4fmt byte 0Ah,0
errfmt byte 0Ah,"%s",0Ah,0
msg1 byte "Enter a command, e, d, or s: ",0
msg2 byte "Enter a positive integer: ",0
msg3 byte "The integer is: ",0
errmsg1 byte "Error: Invalid entry, try again",0
errmsg2 byte "Error: Queue is full",0
errmsg3 byte "Error: Queue is empty",0
queue sdword 3 dup(?)
command sdword ?
number sdword ?
count sdword 0

.code
enqueue macro

.if count < lengthof queue
inc count ; increment count
mov eax,number ; load eax with number
mov [edi],eax ; store eax in rear
mov eax,edi ; copy edi (rear) to eax
sub eax,offset queue ; subtract address of queue
add eax,4 ; increment eax by 4
cdq ; convert double to quad
mov ecx,sizeof queue ; get size of queue (bytes)
idiv ecx ; divide
mov edi,offset queue ; load address in rear
add edi,edx ; add remainder to rear
.else
INVOKE printf, ADDR errfmt, ADDR errmsg2
.endif
endm

dequeue macro
.if count > 0

178 8 Arrays

cdq ; convert double to quad
mov ecx, sizeof queue ; get size of queue (bytes)
idiv ecx ; divide
mov esi,offset queue ; load address in front
add esi,edx ; add remainder to front
.else
INVOKE printf, ADDR errfmt, ADDR errmsg3
mov number,-1 ; store -1 (flag) in number
.endif
endm

main proc
mov edi,offset queue+0 ; use edi as front of queue
mov esi,offset queue+0 ; use esi as rear of queue
INVOKE printf, ADDR msg1fmt, ADDR msg1 ; priming
INVOKE scanf, ADDR in1fmt, ADDR command ; read
.while command ! "s" ; while not stop
.if command "e" ; enqueue?
INVOKE printf, ADDR msg1fmt, ADDR msg2
INVOKE scanf, ADDR in2fmt, ADDR number
enqueue ; enqueue number
.elseif command "d" ; dequeue?
dequeue ; deque number
.if number >0 ; not -1 (flag)?
INVOKE printf, ADDR msg3fmt, ADDR msg3, number
.endif
.else
INVOKE printf, ADDR errfmt, ADDR errmsg1
.endif
INVOKE printf, ADDR msg1fmt, ADDR msg1
INVOKE scanf, ADDR in1fmt, ADDR command
.endw
INVOKE printf, ADDR msg4fmt
ret

main endp
end

dec count ; decrement count
mov eax,[esi] ; load eax from front
mov number,eax ; store eax in number
mov eax,esi ; copy esi (front) to eax
sub eax,offset queue ; subtract address of queue
add eax,4 ; increment eax by 4

Although much of the assembly code is similar to its C counterpart, there are a
few sections that might need some explanation, such as the enqueue routine. As
previously indicated, the edi register is used to point to the rear of the queue.
However, instead of merely adding a 1 to rear as with the previous C code, a 4

8.6 Complete Program: Implementing a Queue 179

needs to be added for the sdword elements of queue. Also note that offset
queue is subtracted from edi prior to the division and then offset queue is
added back to edi after the division. This is because edi does not contain a simple
index within queue as in the previous C program but rather edi is acting as a
pointer to queue and the address of queue needs to be removed before the
division can take place and then added back afterward.

8.7 Complete Program: Implementing the Selection Sort

Although sorting could be done more easily in a high-level language, it provides an
excellent opportunity to examine nested loops, ifs, and again the use of the esi and
edi registers. As should be recalled from a first-year sequence in computer science,
there are a number of sorts called in-place sorts, which can sort the contents of an
array. These sorts typically use two loops and on average if the array contains n
elements, they have a time complexity of O(n2). Compared to other sorts, these are
relatively slow but are acceptable with smaller sets of data and are relatively easy to
learn. Three common O(n2) sorts are the selection sort, the bubble sort, and the
insertion sort, of which the bubble sort is one of the more popular. Although all
three sorts have a number of similarities, the selection sort tends to be a little easier
to understand and a little simpler to implement, especially when trying to imple-
ment a sort in assembly language. Since many students may have already imple-
mented a bubble sort previously in a high-level language, the implementation of the
bubble sort in assembly language is left as an exercise at the end of this chapter.

The implementation of the selection sort (and the bubble sort for that matter) can
be implemented in two different ways. The first method is what could be called the
simplified method, where only the two loops, an if structure, and a swap routine
need to be written. In this form, the sort is very inefficient but the technique of
accessing various elements in the array is made quite clear. The second method of
implementing the sort could be called the modified method, where the sort is
modified to be more efficient and avoid any unnecessary swapping of elements or
passes through the data in the array. The simplified method of the selection sort will
be presented first and then it will be subsequently modified. Should the reader
already be familiar with the selection sort, the following paragraph could be
skipped, but it could also serve as a quick refresher as to how the sort works.

The simplified way of implementing the selection sort is to perform n-1 passes
through the array. During the first pass, the first element of the array will be
compared with each of the subsequent elements in the array. If the array is to be

180 8 Arrays

sorted in ascending order (smallest to the largest) and if a subsequent element is
smaller than the first element, a swap occurs. Comparison continues on through all
of the subsequent elements. After comparing the first element with all the subse-
quent elements on the first pass, the smallest element will be in the first position.
The process then continues on with the second element being compared to all the
subsequent elements, the third element being compared to all subsequent elements,
and so on until the second to the last element is compared to the last element, where
the entire array will be sorted. Notice that the number of elements that need to be
compared in each pass decreases by one with each subsequent pass.

The simplified selection sort can be implemented as follows in C:

// number of passes
for(i 0; i<n-1; i++)

//number of comparisions
for (j i+1; j<n; j++)

// compare the ith and jth element
if (arry[j]<arry[i]) {

// swap the elements
temp arry[j];
arry[j] arry[i];
arry[i] temp;

}

Note that the outer for loop iterates n-1 times for the number of passes needed
through the array and that the inner for loop starts at the i+1 position to compare to
the subsequent number of elements. The if statement compares the subsequent
element to the current element, and if it is smaller, it swaps the subsequent element
with the current element as shown in Fig. 8.9.

However, the above algorithm is somewhat inefficient because it keeps swapping
each time it finds a smaller number. Wouldn’t it be easier to only swap once? The

arry

Compare and if smaller,
swap

Fig. 8.9 Simplified selection sort

8.7 Complete Program: Implementing the Selection Sort 181

answer is yes. First, the index of the starting element would be copied into a
variable called smallest. Second, should a smaller element be found, its index is
copied into smallest. Third, at the end of the pass the element that contains the
smallest number indicated by the index in smallest is swapped with the element
in the starting element. Now instead of a potential swap with every comparison,
there is only one swap at the end of each pass as illustrated in Fig. 8.10.

The C code implementing the above algorithm can be found below:

// number of passes
for(i 0; i<n-1; i++) {

// save index of first element of pass in smallest
smallest i;
//number of comparisions
for(j i+1; j<n; j++)

// compare jth elelemnt with smallest
if(arry[j]<arry[smallest])

// save new smallest element
smallest j;

// swap first element of pass with smallest
temp arry[i];
arry[i] arry[smallest];
arry[smallest] temp;

}

The use of the two indexes i and j makes it easy to implement these two loops
in assembly language using the esi and edi registers. Conversely, the use of i
and j as loop counters makes it a little more difficult because only the ecx register
can be used as a counter in nested .repeat-.untilcxz loops. One solution is to
use the equivalent of two while structures and thus the memory locations i and j

arry 1. Copy index smallest

3. Swap
starting
element
with ?
smallest
index
element

2. Compare and if smaller,
save index

Fig. 8.10 Modified selection sort

182 8 Arrays

could easily be used as loop counters. However, the alternative is to use two
.repeat-.untilcxz loops and to be careful to save and restore the contents of
the ecx register at the beginning and end of the outer loop structure. In the code
below, the esi register in a sense does double duty. At the beginning and the end
of the sort, it points to the starting element, but in the middle part of the sort, it
points to the smallest element. To be consistent, the input and the output also use
the esi and edi registers:

.686

.model flat,c

.stack 100 h
scanf PROTO arg2:Ptr Byte, inputlist:VARARG
printf PROTO arg1:Ptr Byte, printlist:VARARG

.data
msg1fmt byte 0Ah,"%s",0
msg2fmt byte "%s",0
msg3fmt byte 0Ah,"%s",0Ah,0Ah,0
msg4fmt byte " %d",0Ah,0
msg5fmt byte 0Ah,0
in1fmt byte "%d",0

msg 1 byte "Enter the number of integers to be input: ",0
msg2 byte "Enter an integer: ",0
msg3 byte "Sorted",0
n sdword ?
arry sdword 20 dup(?)
temp sdword ?

.code
main proc

INVOKE printf,ADDR msg1fmt,ADDR msg1
INVOKE scanf,ADDR in1fmt,ADDR n
INVOKE printf,ADDR msg5fmt
.if n>0 ; if n < 0, don’t continue
mov ecx,n ; load ecx with n
mov edi,offset arry+0 ; load address of arry into edi
.repeat
push ecx ; save ecx
INVOKE printf,ADDR msg2fmt,ADDR msg2
INVOKE scanf,ADDR in1fmt,ADDR [edi]
add edi,4 ; incrment edi by 4
pop ecx ; restore ecx
.untilcxz
.if n>1 ; check >1 elements in array
mov ecx,n ; load ecx with n
dec ecx ; loop n-1 times
mov esi,offset arry+0 ; load esi with address of arry
.repeat

8.7 Complete Program: Implementing the Selection Sort 183

push ecx ; save ecx
push esi ; save address, esi now smallest
mov edi,esi ; load address of esi in edi
add edi,4 ; move edi to the next element
.repeat
mov eax,[esi] ; move smallest to eax to compare
.if [edi]<eax ; compare smallest to next
mov esi,edi ; save the new smallest in esi
.endif
add edi,4 ; move to next element to compare
.untilcxz
mov edi,esi ; edi points to smallest element
pop esi ; esi points to the start element
mov eax,[esi] ; move start element to temp
xchg eax,[edi] ; exchange start and smallest
mov [esi],eax ; move smallest back to start
add esi,4 ; move start index to next
pop ecx ; restore ecx to be decremented
.untilcxz
.endif
INVOKE printf, ADDR msg3fmt, ADDR msg3
mov ecx, n ; load ecx with n
mov esi,offset arry+0 ; load esi with address of arry
.repeat
push ecx ; save ecx
mov eax,[esi] ; load eax with element from arry
mov temp,eax ; store eax in temp for output
INVOKE printf, ADDR msg4fmt, temp
add esi,4 ; increment esi to next element
pop ecx ; restore ecx
.untilcxz
INVOKE printf, ADDR msg5fmt
.endif
ret

main endp

end

Notice that edi is used on input because the array is the destination of the data
and esi is used on output because the source of the data is the array. Again, esi
does double duty, where at the beginning and the end of the sort, it points to the
starting element, but in the middle part of the sort, it points to the smallest element.

184 8 Arrays

The push and pop instructions are carefully used when making the transition
between these two tasks. Lastly, note that a temporary memory location is used to
help output the array.

8.8 Summary

• The dup operator allows for the declaration of large initialized or uninitialized
arrays.

• The ebx register can be used as an index for an array, much like a variable such
as i in a high-level language.

• The esi and edi registers are known as the source index register and destination
index register, respectively. They work like pointers and are especially useful
with strings.

• When dealing with arrays of sdword, remember to increment by 4 instead of 1,
because a signed double word takes up 4 bytes.

• The mov instruction and offset operator, or the lea instruction, allows for
getting the address of a variable, where the former is static and the latter dynamic.

• Use square brackets [] around the ebx, esi, and edi registers, not to get the
contents of the register, but rather to get the contents of the memory location to
which they are indexing or pointing.

• The lengthof operator returns how many elements are in an array, whereas the
sizeof operator returns how many bytes there are in an array.

8.9 Exercises (Items Marked with an * Have Solutions
in Appendix D)

1. Given the following assembly language statements, indicate whether they are
syntactically correct or incorrect. If incorrect, indicate what is wrong with the
statement:

A. x sdword ?,?,? B. y sdword 3 dup(0) C. mov eax,x+8
D. mov eax,y[ebx] E. mov esi,edi F. mov [esi],[edi]

2. Given the contents of the following memory location, what is stored in the eax
register at the end of each segment?

8.7 Complete Program: Implementing the Selection Sort 185

temp = 200

= 204

00000005

00000007

A. mov eax,temp B. mov eax,offset temp

C. lea eax,temp D. mov eax,offset temp+4

E. mov esi,offset temp F. mov edi,offset temp
mov eax,esi mov eax,[edi]

G. lea esi,temp H. mov esi,offset temp+4
lea edi,temp+4 mov eax,2

mov eax,[esi] imul [esi]

add eax,[edi]

3. Implement the following C instructions using assembly language. Assume all
variables are declared as sdword:

A. num[0] 1;
B. x[1] x[2];
C. y[i+1] y[i];
D. z[i] z[j];

4. Given the declarations below, indicate what would be stored in the eax register
for each of the following instructions. Note that oarray is of type sword, not
sdword (hint: see Chap. 1):

narray sdword 1,2,3,4,5
marray sdword 10 dup(?)
oarray sword 15,20,25

A. mov eax,lengthof narray B. mov eax,sizeof narray
C. mov eax,lengthof marray D. mov eax,sizeof marray
E. mov eax,lengthof oarray F. mov eax,sizeof oarray

5. Write both the C code and the assembly code to transfer the contents of a
20-element array of integers to a second 20-element array of integers.

6. Just as there is a simple and modified version of the selection sort, so is there
both a simple version and a modified version of the bubble sort. The simple
version in C is the same length as the simplified version of the selection sort
presented in Sect. 8.6.

186 8 Arrays

a. Write both the C code and the assembly code to implement the simplified
version of the bubble sort which compares every element of every pass
through the array whether there was a swap on the previous pass or not.

b. First write the C code for the modified version of the bubble sort and then
write the modified version in assembly language. With the modified version,
if there is not a swap on the previous pass through the array, the array is in
order and there is no need to make any subsequent passes through the array.

8.9 Exercises (Items Marked with an � Have Solutions in Appendix D) 187

9Strings

9.1 Introduction

This chapter concerns string processing. Specifically it examines various string
processing instructions that are available in MASM. Continuing on with the last
chapter, it also examines the manipulation of arrays of strings.

In its simplest case, a string is nothing more than an array of bytes as opposed to
an array of signed double words. So, it is possible to use all of the techniques for
arrays introduced in the last chapter with strings. For example, what if one wanted
to copy the contents of one string to another string? As with arrays, the ebx register
could be used an index for both strings. However, there are a couple of subtle but
important changes in the following code:

.data

string1 byte "Hello World!",0
string2 byte 12 dup(?),0

.code

mov ecx,12 ;load ecx with 12
mov ebx,0 ;load ebx with 0

.repeat

mov al,string1[ebx] ;load al with string1[ebx]

mov string2[ebx],al ;store al in string2[ebx]
inc ebx ;increment ebx by 1

.untilcxz

First, note that the strings are declared as byte instead of sdword. As a result,
notice that the mov instructions are using only a 1-byte register, al, instead of a
32-bit register eax, where it should be recalled from Chap. 1 that al is the
rightmost byte of the eax register. Lastly, instead of incrementing ebx by four, it is

© Springer Nature Switzerland AG 2020
J. T. Streib, Guide to Assembly Language, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-35639-2_9

189

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35639-2_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35639-2_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35639-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-35639-2_9

incremented only by one to account for the size of byte as opposed to the size of a
sdword.

Just as arrays can be indexed using the esi and edi registers, so too can strings
be indexed using these registers. The esi register can be used for string1 as the
source of the transfer, and the edi can be used for the destination of the transfer to
string2:

.data
string1 byte "Hello World!"
string2 byte 12 dup(?)

.code
mov ecx,12 ; load ecx with 12
lea esi,string1 ; load esi with address of string1
lea edi,string2 ; load edi with address of string2
.repeat
mov al,[esi] ; load al with [esi]
mov [edi],al ; store al in [edi]
inc esi ; increment esi by 1
inc edi ; increment edi by 1
.untilcxz

As with the ebx register previously, esi and edi are incremented by one
instead of four. As seen in the previous chapter, arrays are typically drawn verti-
cally, and in representing how strings are processed, they are typically drawn
horizontally. This is especially helpful when trying to represent arrays of strings
later in this chapter. The above code could be illustrated just prior to the mov al,
[esi] instruction the second time through the loop as shown in Fig. 9.1, where b
represents a blank or a space.

First, the letter H has been transferred from the first byte in name1 to the first
byte in name2. Also, the ecx register has been decremented by one from 12 to 11,
0000000B in hexadecimal. Lastly, the esi and edi registers have been incre-
mented by one and are pointing to the next byte in each of the strings.

ecx 0000000B

name1 = 100 H E L L O b W O R L D !

esi 00000101

Name2 = 10C H

edi 0000010D

Fig. 9.1 Using esi and edi to move a string

190 9 Strings

In looking at the above code, it seems to be more complicated than its previous
ebx counterpart. Although, if the array were to be transferred in reverse order, then
clearly using esi and edi would be easier because there are two registers
available to accomplish the task. But in a purely simple transfer, ebx has the
advantage because the same register can be used as both the source and the des-
tination. However, as alluded to in Chap. 8, the use of esi and edi in the above
example is a good preview of some of the string processing instructions that use
these two registers.

9.2 String Instructions: Moving Strings (movsb)

Since there are a number of functions that need to be performed on strings, many
high-level languages include specialized libraries with instructions that perform
many of the unique functions that help in string processing. Although assemblers
usually do not come with a library of string functions, that does not prevent users
from creating their own libraries. Whether or not a library of string functions is
created, or code for string processing is written on an as-needed basis, creating the
code needed using the same instructions that can be used for arrays can be tedious
and cumbersome. Luckily, there are some instructions provided in the Intel archi-
tecture that help to make the task a little easier.

Before looking at these instructions, it should be pointed out that some of the
instructions are designed to help with array processing as well. But since the needs
when processing an array tend to be different, programmers often times use the
mechanisms described in the previous chapter and use the following instructions
primarily for string processing. As will be shown later, having the ability to use
both techniques can be helpful in some instances. As with previous instructions,
there are many different options available, but only the basic and most useful ones
will be discussed here.

Instruction Meaning

movsb Move string byte

cmpsb Compare string byte

scasb Scan string byte

storsb Store string byte

lodsb Load string byte

Although the above instructions have their word and double word counterparts,
which can be created by substituting the letter b in the instructions with the letters w
and d, respectively, only the byte instructions are listed above. One of the most
useful instructions listed above to be discussed in this section is the movsb
instruction which is used to move a string of bytes. This instruction is not a simple
instruction because it does more than one thing. In particular, the movsb instruc-
tion does two things. First, it moves the contents of the byte pointed at by the esi

9.1 Introduction 191

register to the byte in memory pointed at by the edi register. Then it decrements
the ecx register and either increments or decrements the esi and edi registers by
1. So, for example, if one wanted to move only a single byte, then whether the esi
and edi registers are incremented or decremented would not matter and one could
write the following code segment:

However, obviously the above code segment could be written much easier by
simply writing the following:

mov al,letter1 ; load al with letter1

mov letter2,al ; store al in letter2

As can be seen, by itself the movsb instruction is not terribly useful, but when
used in conjunction with some other instructions, it becomes a fairly powerful
instruction. The fact that the movsb instruction can alter esi and edi can be very
useful when moving a number of bytes. The way to determine which way esi and
edi will be altered is based on the direction flag (mentioned previously in Chap. 4).
The direction flag can be cleared or set by using the cld or std instructions, which
stand for clear direction flag or set direction flag, respectively. If the esi and edi
registers need to be incremented, the direction flag then needs to be cleared (cld),
otherwise the direction flag needs to set (std) to cause the registers to be decre-
mented. Using this information, the movsb instruction could be used to simplify the
loop used in the previous section and relisted below on the left, where the modified
code using the movsb instruction is listed on the right:

mov ecx,12 mov ecx,12

mov esi,offset string1 mov esi,offset string1
mov edi,offset string2 mov edi,offset string2

.repeat cld

mov al,[esi] .repeat

mov [edi],al movsb

inc esi .untilcxz

inc edi
.untilcxz

Note that ecx, esi, and edi all need to be initialized as before, but notice that
the body of the loop is much smaller because of the power of the movsb
instruction. An intermediate general purpose register is not needed to move from
one memory location to another. Also note that it is not necessary for the

.data
letter1 byte 'a'
letter2 byte ?

.code
lea esi,letter1 ; load esi with address of letter1
lea edi,letter2 ; load edi with address of letter2
movsb ; move string byte from [esi] to [edi]

192 9 Strings

programmer to increment the esi and edi registers, because it is automatically
done by the movsb instruction. The only thing that needs to be done is to clear the
direction flag using the cld instruction to cause the two registers to be incremented
as opposed to being decremented, which only needs to be done once prior to the
loop.

To help with making string processing even simpler, the above code can be
further simplified by using a prefix. There are three prefixes that are useful here as
listed below:

Prefix Meaning

rep Repeat

repe Repeat while equal

repne Repeat while not equal

The rep prefix works just like the.repeat-.untilcxz directives, where it
decrements the ecx register until it reaches 0. Unlike the.repeat-.untilcxz
directives which can have any number of instructions in the body of the loop, the
rep prefix works only in conjunction with instructions like movsb. Thus the above
code on the right and shown again below on the left can be further simplified as
follows on the right:

mov ecx,12 mov ecx,12

lea esi,string1 lea esi,string1

lea edi,string2 lea edi,string2

cld cld

.repeat rep movsb

movsb

.untilcxz

As mentioned previously, the movsb instruction is not very useful when used as
a stand-alone instruction, but when used in conjunction with other instructions, its
power is evident. However, as with any instruction that has a lot of power, it loses
some of its versatility. If each character needed to be processed as it was moved
from one string to another, then the movsb instruction is not very useful. Since all
it does is move bytes, which it does very well, it cannot do much of anything else.
This is not to disparage the power of the movsb, but rather to show its limitations.
For example, if each letter moved from one string to the other needed to be changed
from lowercase to uppercase, the movsb would not be as useful and the following
code segment would instead accomplish this task. For the sake of convenience in
the example below, it is assumed that each character in the variable name1 is a
letter of the alphabet:

9.2 String Instructions: Moving Strings (movsb) 193

name1
name2

.data
byte "MaryJo"
byte 6 dup(?)

.code
mov ecx,lengthof name1 ; load ecx with length

lea esi,name1
lea edi,name2
.repeat
mov al,[esi]
and al,11011111b
mov [edi],al
inc esi
inc edi
.untilcxz

; load esi with address of name1
; load edi with address of name2

; load al with [esi]
; convert lower to upper case
; store al in [edi]
; increment esi by 1
; increment edi by 1

9.3 String Instructions: Scanning (scasb), Storing
(stosb), and Loading (lodsb)

The scasb instruction is a fairly useful instruction when used with either the repe
or repne prefixes. For example, what if one wanted to scan a string of bytes to find
whether there was a particular character in a string, such as a blank? First, the al
register is loaded with the character that needs to be found. Then the edi register is
loaded with address of the string to be scanned. And lastly, the ecx register needs
to be loaded with the number of characters to be scanned in the string. Then each
time a character is scanned in the string, the ecx register is decremented by 1 and
the edi register is incremented by 1. Using the repne prefix, the string will be
scanned until the character is found or until the ecx is equal to 0:

name1
.data
byte "Abe Lincoln"

.code
mov al,' ' ; load al with a space

mov ecx,lengthof name1 ; load ecx with length

lea edi,name1 ; load address of name1

repne scasb

194 9 Strings

In the above code segment, ecx is initially loaded with the length of name1,
which is 11 (B in hex). After scanning for a space, or in other words, a blank as
indicated by a lowercase b in Fig. 9.2, the ecx register will have been decremented
to 7, which is how many characters are left to be scanned in name1, and the edi
register would be pointing to the next character in the string as shown.

The stosb instruction is useful to store the contents of the al register at the
location in a string pointed at by the edi register. The lodsb instruction loads the
al register with the contents of the string pointed at by the esi register. In both
cases the edi or the esi register is incremented after their respective operations.
The semantics of each instruction is shown below using equivalent mov and inc
instructions.

String instruction Equivalent

stosb mov al,[edi]
inc edi

lodsb mov [esi],al
inc esi

As can be seen, the string instructions are a little cleaner and have the option of
using the rep prefix. Although both instructions could be used with a rep prefix,
only the stosb instruction would benefit the most by its use when initializing a
string to blanks or some other character. As an example of how many of the above
instructions might be used, consider the task of taking someone’s name in the
normal first name followed by last name order and then reversing it so that the last
name is first, followed by a comma, followed by a space, and then followed by the
last name:

ecx 00000007

name1 = 100 A B E b L I N C O L N

edi 00000104

Fig. 9.2 Using repne scasb

9.3 String Instructions: Scanning (scasb), Storing … 195

name1

name2

.data

byte "Abe Lincoln"
byte 12 dup (?)
.code

mov al,' ' ; load al with space

mov ecx,lengthof name1 ; load length of name1

lea edi,name1 ; load address of name1

repne scasb ; find space in name1

push ecx ; save ecx
mov esi,edi ; move edi to esi

lea edi,name2 ; load adress of name2
rep movsb
mov al,', '

; copy last name to name2
; load al with comma

stosb
mov al,' '

; store comma in name2

; load al with comma
2emanniecapserots;bsots

mov ecx,lengthof name2 ; store length of name2

xaeotnixceerotser;xaepop
sub ecx,eax ; sub length of last name

ecapsrofxcetnemerced;xceced
lea esi,name1 ; load address of name1

rep movsb ; copy first name to name2

In the above program, first the space needs to be found between the first and the
last name in name1 using the scasb instruction. After ecx is saved for subse-
quent processing, the last name from name1 would be copied to name2 using the
movsb instruction. A comma and a space then need to be inserted into name2
using the stosb instruction. Then using the previously saved value of ecx to
determine the length of the first name, the first name can be copied from name1 to
name2 using the movsb instruction.

9.4 Array of Strings

What if one wanted to move an array of strings to another array of strings? It is
possible that one could just treat the entire array of strings as one giant string and
use a single rep movsb instruction. Given the following array of strings,

names1 byte "Abby","Fred","John","Kent","Mary"

it could be viewed as shown in Fig. 9.3.

196 9 Strings

Although using only a rep movsb would work, the disadvantage of this
approach is, what if one wanted to process each string individually? Instead it is
helpful to not view names1 as just a single string but rather to view it as an array
of strings as shown in Fig. 9.4.

Although the following solution to the problem does not address the issue of
processing each string separately, it lays the groundwork for that in a future
problem and illustrates a more versatile way to process an array of strings. What are
needed are two loops: one to control the array of strings and the other for each
character in the string:

.data

names1 byte "Abby","Fred","John","Kent","Mary"
names2 byte 20 dup(?)

.code

main proc

mov ecx,5 ; load ecx with 5

lea esi,names1 ; load esi with address of names1
lea edi,names2 ; load edi with address of names2

cld ; clear direction flag

.repeat

push ecx ; save ecx

mov ecx,4 ; load ecx with 4

rep movsb ; move string from names1 to names2
pop ecx ; restore ecx
.untilcxz

names1
A b b y F r e d J o h n K e n t M a r y

Fig. 9.3 Strings viewed as a single string

names1 A b b y
F r e d
J o h n
K e n t
M a r y

Fig. 9.4 Strings viewed as
an array of strings

9.4 Array of Strings 197

Note that the value of ecx needs to be pushed and popped prior to and after the
rep movsb instruction since the rep prefix uses the ecx register too. Further, the
cld could have been placed in the loop prior to the rep movsb instructions, but
since the value of the direction flag does not change, there is no need to clear it each
time and it can be placed just prior to the outer loop. Again, although the above
code could have been done with only a rep movsb instruction, it lays the foun-
dation for a problem in a subsequent section.

9.5 String Instructions: Comparing Strings (cmpsb)

What if one wanted to compare two strings to see if they are equal? As might be
suspected, this can be done with a loop and an if structure, but the code for this is
rather ungainly. Instead of showing this option, it is much easier to go straight to the
instruction designed for this task, which is the cmpsb instruction used to compare a
string of bytes. It is very similar to the movsb instruction, where it performs two
major tasks. First, it compares the two bytes pointed to by the esi and edi
registers and sets the appropriate flags such as the zero and sign flags. It then
decrements the ecx register, and increments or decrements the esi and edi
registers as indicated by the direction flag, just like with the movsb instruction.
Also, similar to the rep operator with the movsb, a repe prefix can be added to
allow loop control. The repe repeats, while the two characters being compared are
equal. For example, given the following declaration with equal length strings, what
would happen in the following code segment?

.data

name1 byte "James"

name2 byte "James"

.code

mov ecx,lengthof name1 ; load ecx with length

lea esi,name1 ; load address of name1

lea edi,name2 ; load address of name2

cld ; clear direction flag

repe cmpsb ; repeat while equal

First, upon completion of the segment, ecx would be 0. Assuming that name1
was at memory location 100 and name2 was at memory location 105 as in the
drawing in Fig. 9.5, the final values of esi and edi would be 105 and 10A (in
hex), respectively.

But what if name1 and name2 contained James and Jamie, respectively?

198 9 Strings

.data

name1 byte "James"

name2 byte "Jamie"

Since the repe cmpsb instructions stop after a difference is found, the value of
ecx would be 1, after being decremented four times for the four characters that
were compared. The value of esi and edi would be 104 and 109, respectively,
as shown in Fig. 9.6.

At first, it would seem that the final two values of the ecx register would be
useful in determining whether two strings are equal or not. However, what if the
difference between the two strings was only in the last position as in the following?

.data

name1 byte "Marci "
name2 byte "Marcy "

Again, since repe cmpsb stops when a difference is found, the value of ecx
would be 0 after being decremented five times, the value of esi would be 105, and
edi would be 10A, as shown in Fig. 9.7.

ecx 00000000

name1 = 100 J a m e s

esi 00000105

name2 = 105 J a m e s

edi 0000010A

Fig. 9.5 Using repe
cmpsb with identical strings

ecx 00000001

name1 = 100 J a m e s

esi 00000104

name2 = 105 J a m i e

edi 00000109

Fig. 9.6 Using repe
cmpsb with non-identical
strings

9.5 String Instructions: Comparing Strings (cmpsb) 199

If the difference between the two strings is in the last position of the strings, then
the results in the registers are no different than if the two strings were identical as in
Fig. 9.5. The simple solution to this problem is to make sure that the strings are at
least 1 byte longer than the data they contain and there is a blank in the last position
as in the following:

.data

name1 byte "Marci"
name2 byte "Marcy"

Then the previous code can be used to check whether two strings are equal or
not. For example, if ecx is 0, then it is known that the repe cmpsb made it
throughout the entire string, including the blanks at the end, and that they are equal.
However, if ecx is not 0, then it is known that the two strings were not equal as
shown in Fig. 9.8.

ecx 00000000

name1 = 100 M a r c i

esi 00000105

name2 = 105 M a r c y

edi 0000010A

Fig. 9.7 Using repe
cmpsb with difference in last
character

ecx 00000001

name1 = 100 M a r c i b

esi 00000105

name2 = 105 M a r c y b

edi 0000010A

Fig. 9.8 Using repe
cmpsb with extra blanks

200 9 Strings

So after the repe cmpsb instructions in the code segment above, an .if
directive could be added to test the contents of the ecx register and act accordingly.
However, what if adding extra bytes to the string is not a possibility? What would
happen if the difference occurred in the last element of the string and ecx was a 0?
Returning to the previous example which did not contain the extra spaces,

.data

name1 byte "Marci"

name2 byte "Marcy"

the code would still need to check to see if ecx was 0, but there would need to
be an additional check to determine whether there was a difference between the last
two characters. Since the values of esi and edi would be one beyond the last
character as they are in Fig. 9.7, they would need to be “backed up” or decremented
by 1 to determine whether there was a difference in the last character as illustrated
in Fig. 9.9.

Modifying the previous code segment above to include input and output, the
following complete program illustrates how this would work. Should ecx be
greater than 0, then the two strings are different. However, if ecx is equal to zero,
then esi and edi would need to be decremented to determine whether the strings
are same. Note that this program assumes that equal length strings will be input:

ecx 00000000

name1 = 100 M a r c i

esi 00000104

name2 = 105 M a r c y

edi 00000109

Fig. 9.9 Using repe
cmpsb and backing up one
character

9.5 String Instructions: Comparing Strings (cmpsb) 201

.686

.model flat,c

.stack 100 h

scanf PROTO arg2:Ptr Byte, inputlist:VARARG

printf PROTO arg1:Ptr Byte, printlist:VARARG

.data
msg1fmt byte "%s",0
msg2fmt byte 0Ah,"%s",0Ah,0Ah,0

in1fmt byte "%s",0
msg1 byte "Enter a first name: ",0

msg2 byte "Enter another first name: ",0
msg3 byte "The names are not the same.",0

msg4 byte "The names are the same.",0
name1 byte 6 dup(" ")

name2 byte 6 dup(" ")

.code
main proc

INVOKE printf, ADDR msg1fmt, ADDR msg1

INVOKE scanf, ADDR in1fmt, ADDR name1
INVOKE printf, ADDR msg1fmt, ADDR msg2

INVOKE scanf, ADDR in1fmt, ADDR name2
mov ecx,lengthof name1 ; load ecx with length

lea esi,name1 ; load address of name1
lea edi,name2 ; load address of name2

cld ; clear direction flag

repe cmpsb ; compare while equal

.if ecx > 0 ; check if ecx > 0
INVOKE printf, ADDR msg2fmt, ADDR msg3
.else

dec esi ; back up esi one position

dec edi ; back up edi one position

mov al,[esi] ; load al with [esi}

.if al != [edi] ; if not equal
INVOKE printf, ADDR msg2fmt, ADDR msg3

.else

INVOKE printf, ADDR msg2fmt, ADDR msg4

.endif

.endif

ret

main endp
end

Looking carefully at the declaration of name1 and name2, it should be noted
that they have been declared to be 6 bytes long instead of 5 bytes. Is the reason for
adding the extra byte to make the comparisons easier as discussed previously? The

202 9 Strings

answer is no, because the data is not a pre-defined string, but rather it is being input
via an INVOKE scanf instruction. When the user keys in a string, the last thing
they do is press the Enter or Return key at the end of the string. The Enter key
appears at the end of the string as a binary zero, not unlike the 0 that appears at the
end of a string such as msg3 and msg4 in the.data section in the above program.
The result is that space needs to be made for the binary zero, otherwise it could spill
over into other memory locations and could cause various logic errors.

What if one wanted to determine if the content of one string is less than or
greater than another string? For example, what if one wanted to put the names in
alphabetical order? Unfortunately, an instruction does not exist for this, but looking
back at the previous program, there is a hint of a possible solution to the problem.
Previously, when ecx was 0, esi and edi needed to be backed up to determine
whether or not the strings were equal. What would need to happen if ecx was not 0
in the previous case as shown below?

.data

name1 byte "James"

name2 byte "Jamie"

The repe cmpsb instruction stopped after a difference was found and in this
case the value of ecx was 1 after being decremented four times for the four
comparisons. However, to determine whether the character is less than or greater
than the other, the values of the esi and edi registers would again need to be
backed up in this case to 103 and 108, respectively, as shown in Fig. 9.10.

In other words, regardless of whether ecx is 0 or not, esi and edi need to be
backed up so that the last two characters can be compared to determine whether they
are the same, or whether one is larger or smaller. Using some of the same code from
the previous example, where it is assumed that equal length strings for name1 and
name2 have already been prompted for and input, it can be modified as follows:

ecx 00000001

name1 = 100

esi 00000103

name2 = 105 J a m i e

 J a m e s

edi 00000108

Fig. 9.10 Backing up to
determine name1 is greater
than or less than name2

9.5 String Instructions: Comparing Strings (cmpsb) 203

; *** assume previous INVOKEs, prompts, and formats
msg3 byte "The names are the same.",0

msg4 byte "The first name is less than the second.",0

msg5 byte "The first name is greater than the second.",0
name1 byte 6 dup(" ")

name2 byte 6 dup(" ")

.code
main proc

;*** assume previous prompts and input
mov ecx,lengthof name1 ; load ecx with length
lea esi,name1 ; load address of name1

lea edi,name2 ; load address of name2

cld ; clear direction flag
repe cmpsb ; compare while equal

dec esi ; back up esi one position

dec edi ; back up edi one position
mov al,[esi] ; load al with [esi}

.if al == [edi] ; if equal

INVOKE printf, ADDR msg2fmt, ADDR msg3

.else

.if al < [edi] ; if less than

INVOKE printf, ADDR msg2fmt, ADDR msg4

.else

INVOKE printf, ADDR msg2fmt, ADDR msg5

.endif

.endif

9.6 Complete Program: Searching an Array of Strings

As mentioned previously, although an array of strings can be moved by simply
using a single loop or by using merely a rep movsb instruction, the disadvantage
is that the individual strings cannot be processed. In order to accomplish individual
processing of each string in the array, two loops should be employed. To illustrate
this, consider the problem of searching an array of fixed length strings sequentially.
As before, an outer loop is needed to iterate through each string in the array and an
inner loop is needed to compare each character in the string. For this latter task, the
repe cmpsb instructions learned in the previous section is the obvious choice.
Note that since ecx is used for the loop control variable of the outer loop, its value
must be pushed prior to the repe cmpsb instruction and then popped prior to the
end of the outer loop:

204 9 Strings

Scanf PROTO arg2:Ptr Byte, inputlist:VARARG
printf PROTO arg1:Ptr Byte, printlist:VARARG

.686

.model flat,c

.stack 100h

.data

msg1fmt byte 0Ah,"%s",0

msg2fmt byte 0Ah,"%s",0Ah,0Ah,0

in1fmt byte "%s",0

msg1 byte "Enter the state to be found: ",0

msg2 byte "The state was found.",0

msg3 byte "The state was not found.",0

arrystr byte "Illinois ","Michigan ","Iowa ",

"Missouri ","Arkansas ","Tennessee ",

"Louisiana ","Arizona ","Montana ",
"Ohio "

n sdword 10

string byte 10 dup(?)

found sdword ?

.code

main proc

INVOKE printf, ADDR msg1fmt,ADDR msg1

INVOKE scanf, ADDR in1fmt, ADDR string

mov ecx,0 ; initialize ecx to 0

mov found,0 ; initialize found to 0

lea edi,arrystr+0 ; load edi with address

.while(ecx<n && found != -1)
push ecx ; save ecx

lea esi,string+0 ; load address of string

cld ; clear direction flag

mov ecx,lengthof string ; load length of string

repe cmpsb ; compare while equal

dec esi ; decrement es1

dec edi ; decrement edi

mov al,[esi] ; load al with [esi]

mov ah,[edi] ; load ah with [edi]
.if (al==0)&&(ah==" ") ; compare for 0 and space
mov found,-1 ; if yes, found

.endif

inc edi ; increment edi back

9.6 Complete Program: Searching an Array of Strings 205

add edi,ecx ; adjust edi to next string

pop ecx ; restore ecx

inc ecx ; increment ecx

.endw

.if (found == -1)

INVOKE printf, ADDR msg2fmt, ADDR msg2

.else

INVOKE printf, ADDR msg2fmt, ADDR msg3

.endif

ret
main endp

end

Although each string in the array of strings in the above program is of equal
length, each string entered is of variable length. Again these strings are terminated
by the pressing of the Enter key which appears at the end of the string as a binary 0.
In the case where the input string is equal to the fixed length string in the array,
repe cmpsb will stop because the binary 0 will not equal the space in the array.
For example, “Tennessee”,0 will not be equal to “Tennessee “. So, the esi
and edi registers are backed up to check for the 0 and the space, and if they are
there, the string has been found.

However, in the case that the strings are different, such as “Tennessea”,0, the
difference will occur before the binary 0, and thus when backing up the esi
register, the binary 0 will not be found. In the case where the string that is input is
longer, such as “Ioway”,0 as compared to “Iowa”, again the difference would
occur before the binary 0 is encountered. However, if all these cases are caught by
checking for the binary 0, why check for the space? If the presence of the space was
not checked for, then “Iow”,0 would end up being equal to “Iowa”, which is
clearly incorrect.

Also notice that when the string is not found in the array, the value edi will be
incorrect, so it is necessary to adjust the values to point to the beginning of the next
string in the array. This is accomplished by first incrementing edi back to its
original location to account for the decrement discussed in the previous paragraph.
Then, the number of characters left in the string needs to be added, which is the
value in the ecx register, to the edi register.

9.7 Summary

• The movsb instruction moves a string of bytes from where the esi register is
pointing to where the edi register is pointing. The registers are then incremented
or decremented based on the direction flag.

• The cmpsb instruction compares a byte in a string pointed to by the esi and
edi registers. The registers are then incremented or decremented based on the
direction flag.

206 9 Strings

• Do not forget to clear the direction flag using cld to increment esi and edi or
set the direction flag using std to decrement esi and edi prior to either the
cmpsb or movsb instructions.

• The rep prefix prior to movsb loops the number of times indicated by the ecx
register, decrements the ecx register by 1, and continues until ecx is 0.

• The repe prefix prior to cmpsb works like the rep prefix in that it will quit
looping when ecx equals 0, but it will also quit looping when the 2 bytes pointed
to by esi and edi are not equal. The repne prefix is like repe but will instead
quit looping when the 2 bytes are equal.

• The scasb instruction will scan a string for the character located in the al
register and the edi register will point 1 byte after the location it is found. The
stosb instruction will store the character in the al register in a string at the
location pointed at by the edi register. And the lodsb instruction will load the
character in a string pointed to by the esi register into the al register.

9.8 Exercises (Items Marked with an * Have Solutions
in Appendix D)

1. Given the following assembly language statements, indicate whether they are
syntactically correct or incorrect. If incorrect, indicate what is wrong with the
statement:

A. movesb B. cmpsb C. scasb
D. stosb E. rept strsb F. loadsb

2. Given the following declarations, walk through the following code segments
and indicate the contents of the ecx, esi, edi, and al registers upon com-
pletion of each segment. You may assume that string1 starts at memory
location 100 and string2 at memory location 105. With problem D, in
addition to the registers, what would be the contents of string2?

9.7 Summary 207

string1 byte "abcde"

string2 byte "abcyz"

A. mov ecx,5

mov al,"c"

mov edi,offset string1

rep scasb

B. mov esi,offset string1+3
Lodsb

C. mov ecx,5
mov esi,offset string1
mov edi,offset string2

repe cmpsb

D. mov ecx,5
mov esi,offset string1

mov edi,offset string2

repne cmpsb

E. lea edi,string2
mov al,"d"

stosb

3. Using the esi and edi registers and a.repeat-untilcxz loop, determine
whether the word in a string is a palindrome. For the sake of convenience,
assume that the string is 10 elements long and all the words in the string are also
10 characters long. Do not use a stack.

208 9 Strings

10Floating-Point Instructions

This chapter introduces the fundamentals of floating-point instructions. This
includes registers, memory storage, input/output, the instructions needed to perform
arithmetic, and basic control structures. In order to learn the concepts in this chapter
one should understand how floating-point numbers are represented in memory from
a computer organization class or text. Alternatively, one can review or learn the
basic concepts needed as presented in Appendix B.7 of this text. Also, one should
have knowledge of stacks usually discussed in a second semester computer science
course or text such as Guide to Data Structures [3].

10.1 Memory Storage

In addition to integer, string, and Boolean data, programs can be written to store and
process floating-point data. For example, in the C programming languages,
floating-point data can be stored as a float which takes up 32 bits, as a double
which uses 64 bits, or a long double which uses 80 bits. Using more bits allows
for a larger range and more precision, but takes up more memory. In assembly
language these three types can be declared as real4, real8, and real10,
respectively, where the number indicates the number of bytes. Examples of
declaring each are as follows:

x real4 ?
y real8 3.14
z real10 -27.1

© Springer Nature Switzerland AG 2020
J. T. Streib, Guide to Assembly Language, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-35639-2_10

209

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35639-2_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35639-2_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35639-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-35639-2_10

10.2 Floating-Point Register Stack

As with integers, data must be loaded into a register from memory, processed, and
then stored back into memory. However, instead of using the four general purpose
registers eax, ebx, ecx, and edx, an eight-element floating-point register stack is
used. The registers in the stack are called ST(0) through ST(7), where ST(0) is
the top of the stack as illustrated below:

ST(0)

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

top

This stack is different from the stack discussed in Chap. 6, where that stack is
created in memory, can be declared to be different lengths, and to hold different
types of data. The floating-point register stack is not declared in memory but is
rather composed of registers in the CPU. Further it is used to store floating-point
numbers of type real4, real8, and real10, and the stack has a fixed length of
eight elements.

10.3 Pushing and Popping

Note that the instructions used to push and pop floating-point numbers cannot use
immediate operands, so to illustrate these instructions, assume that the following
have been declared:

num1 real4 2.71
num2 real4 3.14
num3 real4 ?
num4 real4 ?

First, it should be noted that all instructions that will be used to process
floating-point data begin with the letter f. Initially, this may seem a little strange,
but it helps distinguish the floating-point instructions from the instructions used
with integers. In order to push the contents of a memory location onto the stack, a

210 10 Floating-Point Instructions

floating-point load instruction, fld, must be used. There are many variations on
this instruction, but for the purposes of this text only this simple one will be used.

To demonstrate how to take a copy of the contents of memory location num1
and load, or push, it onto the stack the following would be used:

fld num1

which would cause the stack to appear as follows with the change indicated in
green:

ST(0) 2.71

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

top 2.71num1

3.14

num4

num3

num2

If num2 needed to be pushed onto the stack, the following would be used,

fld num2

and the stack would look as follows:

ST(0) 3.14

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

2.71

top 2.71

3.14

num1

num4

num3

num2

Note that the 2.71 is pushed further down on the stack and the 3.14 is now at the
top of the stack. At first, the use of a floating-point load instruction may seem a little
confusing because it might seem that a push instruction should be used instead. But

10.3 Pushing and Popping 211

if one thinks of the process as loading a register which just happens to be the first
position on a stack of registers, then with time it becomes a little more natural.

What if one wanted to copy or pop a number off the top of a stack? Again, there
are many variations, but two instructions will be shown here. The first is a
floating-point store instruction which makes a copy of the number at the top of the
stack and stores it in a memory location. For example, to make a copy of the
number 3.14 at the top of the stack and store in num3, the following would be used,

fst num3

and the stack would look as follows:

ST(0) 3.14

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

2.71

top 2.71

3.14

3.14

num1

num4

num3

num2

Notice that there is no change on the stack and the number 3.14 is still at the
top. This is because the fst instruction is not really a true pop instruction but is
rather like a peek instruction that one might have learned about in a second semester
computer science course or text. The number is not popped from the stack, but
rather a copy is made of the item at the top of the stack and stored in the specified
memory location. This is convenient at times, but can cause some confusion if one
isn’t careful.

Should one want to actually pop an item from the stack, the fstp must be used,
where the p stands for pop. So, if the following instruction is executed:

fstp num3

the results would appear as follows:

212 10 Floating-Point Instructions

ST(0) 2.71

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

top 2.71

3.14

3.14

num1

num4

num3

num2

In this example, note that the 3.14 is no longer on the stack and the 2.71 has
moved up to the top. Lastly, executing the following,

fstp num4

would cause the stack to be empty as shown below:

ST(0)

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

top 2.71

2.71

3.14

3.14

num1

num4

num3

num2

This is the typical result that one often expects when removing items from a
stack and is also the instruction that will be used most often in this chapter.

10.4 Simple Arithmetic Expressions

In order to perform addition, the floating-point add instruction is used. As with the
fld and fstp there are a number of variations but only the simplest ones will be
shown here. The first is fadd which will take a number from memory and add it to
the number at the top of the stack.

Given the previously declared variables with new values and an additional
variable called answer as declared below,

10.3 Pushing and Popping 213

num1 real4 2.5
num2 real4 3.5
num3 real4 4.0
num4 real4 5.5
answer real4 ?

how could the following be implemented?

answer = num1 + num2;
First, num1 would need to be pushed onto the stack. Could num2 be pushed

instead? Yes, but it is much more convenient to keep the order from left to right to
help with readability and consistency. Then using the fadd instruction, num2
would be added to the number at the top of the stack. Lastly, the sum would be
popped off the stack and stored in answer. The resulting code would be as
follows:

fld num1 ; push num1 onto the stack
fadd num2 ; add num2 to the first element on the stack
fstp answer ; pop the sum off the stack into answer

What about the following expression using subtraction?

answer = num1 – num2;

As might be suspected the corresponding instruction is fsub. However, does
the order of operands matter in this case? In one sense yes, but in another no. Note
that there exists an instruction which allows the reversal of the operands call fsubr
where the r stands for reverse. However, again it helps consistency and readability
to use the standard order of left to right and use the fsub instruction. The resulting
code is as follows:

fld num1 ; push num1 onto the stack
fsub num2 ; subtract num2 from the first

 fstp answer ; pop the difference off the

element on the stack
stack into answer

Multiplication works as addition but instead uses the fmul instruction. So, the
following expression,

answer = num1 * num2;

would result in the following code segment:

fld num1 ; push num1 onto the stack
fmul num2 ; multiply num2 to the first element on the stack
fstp answer ; pop the product off the stack into answer

214 10 Floating-Point Instructions

Likewise, division is similar to subtraction but instead the fdiv instruction is
used. However, note that there is no reverse instruction, so care must be taken with
the order of the operands and the following expression:

answer = num1 / num2;

would be implemented as follows:

fld num1 ; push num1 onto the stack
fdiv num2 ; divide num2 into the first element on the stack
fstp answer ; pop the quotient off the stack into answer

10.5 Complex Arithmetic Expressions

As done in the previous examples, one can take each equation encountered and
proceed directly to trying to create the necessary assembly language code. With
simple examples this might be acceptable, but with more complicated expressions,
the chances of making mistakes increase dramatically. A far more efficient method
is to first convert the expression to postfix as might have been discussed when
learning about stacks from a second semester course or text. Then the postfix
expression can be easily written in the necessary floating-point instructions.

At first the extra step of converting to postfix might seem to be slowing down the
process since code is not being written immediately. However, the time needed to
produce the code is quicker and much less prone to time-consuming debugging.
Using the following variables and values,

w real4 2.5
x real4 3.5
y real4 4.0
z real4 5.25
answer real4 ?

consider the following C-like statement:

answer = w + x + y;

Recall that to do the conversion, first the variables are placed in the same order
that they appeared in the original expression. Then since the addition on the left is
done first, it is placed immediately after the two variables w and x. Then the second
addition is placed after the variable y to add the sum of w and x and the variable y.
The postfix equivalent of the right side of the expression is as follows:

w x + y +

Now to write the code of the corresponding expression going from left to right,
the first step is to push any operands onto the stack. In this case the first two
variables are pushed onto the stack as follows:

10.4 Simple Arithmetic Expressions 215

ST(0) 3.5

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

2.5

top 2.5 w

5.25

4.0

3.5

 z

 y

x

answer

When encountering an operator, the operation should be performed on the top
two numbers on the stack and the results pushed back onto the stack. To accomplish
this task, the fadd instruction without an operand can be used. It takes the item on
the top of the stack in ST(0) and adds it to the second item on the stack in ST(1).
Then the first item is popped off the stack and the sum now occupies ST(0).

ST(0) 6.0

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

top 2.5 w

5.25

4.0

3.5

 z

 y

x

answer

A question that might be asked at this point is what happened to the 3.5 that was
popped off the stack? Where did it go? Since there is no operand in which to put the
item, it simply is discarded.

Continuing, next the value in y is pushed onto the stack

216 10 Floating-Point Instructions

ST(0) 4.0

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

6.0

top 2.5 w

5.25

4.0

3.5

 z

 y

x

answer

Then as before when the fadd instruction is executed, the item at the top of the
stack in ST(0) is added to the item in the second element in the stack in ST(1). Then
the item at the top of the stack in ST(0) is popped off the stack and the second item
in the stack in ST(1) moves up to the position in ST(0).

ST(0) 10.0

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

top 2.5 w

5.25

4.0

3.5

 z

y

x

answer

Lastly, the item on the top of the stack is popped off the stack and put into
answer as follows:

10.5 Complex Arithmetic Expressions 217

ST(0)

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

top 2.5 w

5.25

4.0

3.5

 z

 y

x

10.0answer

Putting all the above together results in the following assembly language code
segment:

fld w ; push w onto the stack
fld x ; push x onto the stack
fadd ; add the top two items leaving the sum at the top
fld y ; push y onto the stack
fadd ; add the top two items leaving the sum at the top
fstp answer ; pop the result off the stack into answer

In another more complex example that uses other operations, consider the
following:

answer = w / x – y * z;

Remembering that multiplication and division have a higher priority than
addition and subtraction and that in a tie the order is from left to right, the division
is performed first, then the multiplication, and lastly the subtraction. The resulting
postfix expression has the division after w and x, the multiplication after the y and
z, and the subtraction is last after the quotient and product of the previous two
operations as follows:

w x / y z * -

The resulting assembly code derived from the postfix expression is given below:

fld w ; push w onto the stack
fld x ; push x onto the stack
fdiv ; divide leaving quotient at top of the stack
fld y ; push y onto the stack
fld z ; push z onto the stack
fmul ; multiply leaving product at top of the stack
fsub ; subtract leaving difference at top of the stack
fstp answer ; pop the result off the stack into answer

218 10 Floating-Point Instructions

As should be seen, the conversion from the postfix expression to the assembly
language code is rather straight forward. However, if one is having difficulty
converting an expression to postfix, be sure to go back to the text from a second
semester course to review the process. Also, there are various practice exercises at
the end of this chapter to help reinforce the process.

10.6 Mixing Floating-Point and Integers

Although it might be easier to not usually mix integers with floating-point numbers,
on occasion it might be necessary. This section is not a comprehensive discussion
of the matter, but gives a basic introduction so that one can be aware of some of the
potential pitfalls when mixing these two types.

Since a floating-point number cannot be used with the general-purpose registers
such as eax, it is instead necessary to use integers with the floating-point stack. In
order to do so, the letter i (for integer) must be used after the letter f in a
floating-point instruction. For example, instead of fld, the fild instruction would
be used, and instead of fstp, the fistp instruction would be used, and so on. To
illustrate how these instructions work, assume the existence of the following
declarations:

one sdword 1
one2 real4 1.2
one5 real4 1.5
one7 real4 1.7
two5 real4 2.5
three sdword 3
ansint sdword ?
ansflt real4 ?

So, to transfer the integer contents of the variable one to the integer variable
ansint using the floating-point stack, the following instructions would work:

fild one
fistp ansint

Although it would be much easier to use the eax register and mov instructions
to transfer an integer, the above illustrates how the fild and fistp instructions
work. Continuing, how could one move an integer to a floating-point variable? As
one might suspect, the i is removed from the fistp instruction as follows:

fild one
fstp ansdbl

10.5 Complex Arithmetic Expressions 219

When moving a floating-point number to an integer, one needs to be careful with
respect to rounding. Consider the following two sets of instructions from left to
right that move the floating-point numbers 1.2 and 1.7, respectively.

fld one2 fld one7
fistp ansint fistp ansint

As one might suspect the rounded results from left to right would be 1 and 2,
respectively. What about moving the number 1.5 as follows?

fld one5
fistp ansint

As many have been taught, if the number is a 1.5, it should be rounded upwards.
The result in the above example is 2, but not necessarily for the reason one might
expect. Continuing, consider moving the number 2.5 in the following:

fld two5
fistp ansint

It would seem that the result in ansint would be 3, but in reality, it would be 2.
Why? The reason is that the floating-point default mode for rounding a 0.5 is to
round up or down to the nearest even number. In the case above the nearest even
number to 2.5 is 2 and in the previous example that the nearest even number to 1.5
is 2. Although this may seem strange to some, it is a commonly used way of
rounding numbers to avoid the accumulation of rounding errors and is known as
bankers rounding. For example, adding the following numbers:

1:5þ 2:5þ 3:5þ 4:5þ 5:5

the answer would be 17.5. But what if all the above numbers were rounded up? The
numbers would then be as follows:

2þ 3þ 4þ 5þ 6

The answer would be 20 which is significantly different than 17.5. But what if
bankers rounding was used? The 1.5 would be rounded to 2 and the 2.5 would be
rounded to 2, and so on, as follows:

2þ 2þ 4þ 4þ 6

The sum would be 18, which is much closer to the original answer of 17.5.
Although this is a short list of numbers, the difference between using numbers that
are rounded-up and the original numbers could be quite significant and the bankers
rounding method helps mitigate this difference.

220 10 Floating-Point Instructions

What if one didn’t want to use rounding, but rather just truncate all numbers?
This can be done by altering the floating-point control word, but this is beyond the
scope of this text. Another solution is to use instructions that truncate, and this is
accomplished by inserting the letter t just prior to the letter p in the fistp
instruction so that it becomes the fisttp instruction. Taking the four real4
numbers previously declared above and using them from left to right with the
fisttp instruction results in the following:

fld one2 fld one7 fld one5 fld two5
fisttp ansint fisttp ansint fisttp ansint fisttp ansint

Instead of resulting in the answers 1, 2, 2, and 2 as would have happened with the
fistp instruction, the above fisttp instruction would result in 1, 1, 1, and 2,
respectively. Which instruction should be used? It depends on the application;
however, rounding using the fistp instruction is probably going to be more useful.

How does all this affect arithmetic? Consider the following three code segments:

fld two5 fld two5 fld one5
fiadd three fiadd three fiadd three
fstp ansflt fistp ansint fistp ansint

The first one on the left adds 2.5 and 3, stores the result using ftsp, and the
floating-point answer is 5.5. The second example uses the same numbers, uses the
integer fistp instruction instead, and the answer is 6 which is the closest even
number to 5.5. However, the answer to the third one on the right adding 1.5 and 3
also using the integer fistp instruction rounds the 4.5 to 4 since it the closest even
integer.

The result is that when mixing integers and floating-point numbers, it must be
done carefully. If one is just placing some integer values into floating-point vari-
ables, then there probably isn’t as much of a problem, but if floating-point results
are being placed into integer variables, then extra care must be taken. The problem
can only be exacerbated in more complex arithmetic expressions with intermediate
results stored in integer variables. Instead of just coding and excepting the answers
to be correct, it is important to walk through the code with key examples to ensure
that the answers are what are expected. Of course, the simplest way to avoid many
of these problems is to use just floating-point numbers with floating-point numbers,
but when integers need to be used along with floating-point numbers, careful coding
and testing is necessary.

10.7 Input/Output

Before continuing with some more complex code examples that utilize control
structures and a complete program, the topic of input and output should be dis-
cussed. As with integer input and output, it is helpful to first look at how
floating-point input and output work in a C program.

10.6 Mixing Floating-Point and Integers 221

10.7.1 float and real4

First, consider a simple program that inputs, transfers, and outputs a number of type
float:

#include <stdio.h>
int main() {

float x,y;

printf("\n%s", "Enter a float for x: ");
scanf_s("%f", &x);

y = x;

printf("\n%s%6.4f\n\n", "The float in y is: ", y);

return 0;
}

If the number 3.14159 were input, the output would be as follows:

The float in y is: 3.1416

Note that in the scanf_s the %f indicates that a number of type float will be
input. Also recall that just as with integers discussed in Chap. 2, an ampersand, &,
must proceed the variable x on input to indicate the address where the number
being input will be stored. On output the first number in the format prior to the
decimal point indicates the total number of positions allocated to output the
number, in this case 6. The second number after the decimal point indicates the
number of positions that will be after the decimal point, in this case 4. Notice that
since there are only four positions available for the five digits after the decimal
point, the fourth position is rounded on output.

Although in assembly real4 numbers can be input, they need to be moved to a
real8 variable before they can be output, as can be seen in the corresponding
assembly code that follows:

222 10 Floating-Point Instructions

.686
 .model flat,c
 .stack 100h

printf PROTO arg1:Ptr Byte, printlist:VARARG
scanf PROTO arg2:Ptr Byte, inputlist:VARARG

 .data
in1fmt byte "%f",0
msg0fmt byte 0Ah,"%s",0
msg1fmt byte 0Ah,"%s%6.4f",0Ah,0Ah,0
msg0 byte "Enter a float for x: ",0
msg1 byte "The float in y is: ",0

x real4 ?
y real8 ?

 .code
main proc

 INVOKE printf, ADDR msg0fmt, ADDR msg0
 INVOKE scanf, ADDR in1fmt, ADDR x
 fld x
 fstp y
 INVOKE printf, ADDR msg1fmt, ADDR msg1, y

 ret
main endp
 end
The above is all rather similar to integer input and output. Again, as a reminder,

notice the ADDR prior to the variable x in the scanf statement. Also, in the
msg1fmt note the %6.4f formatting for the output. Further, notice that x is
declared as real4 and y as real8 and the transfer of x to y via the stack to allow
for the output of the floating-point number.

10.7.2 double and real8

Given this need to move from a real4 to a real8 for output, it might be more
convenient to just use real8 numbers for both input and output unless there is a
concern for conserving memory, especially with arrays. Consider the following C
program using type double:

10.7 Input/Output 223

#include <stdio.h>
int main() {

 double x,y;

 printf("\n%s", "Enter a double for x: ");
 scanf_s("%lf", &x);

 y = x;

 printf("\n%s%6.4f\n\n", "The double in y is: ", y);

 return 0;
}

Notice above that to input a number of type double, lf is used. However, lf
is not needed for output and a simple f is sufficient. Although the transfer from x to
y is not really needed and the contents of x could be output, the assignment
statement remains for consistency between the preceding and subsequent programs.
The equivalent code in assembly language is as follows:

.686

.model flat,c

.stack 100h

printf PROTO arg1:Ptr Byte, printlist:VARARG
scanf PROTO arg2:Ptr Byte, inputlist:VARARG

.data

in1fmt byte "%lf",0
msg0fmt byte 0Ah,"%s",0
msg1fmt byte 0Ah,"%s%6.4f",0Ah,0Ah,0
msg0 byte "Enter a double for x: ",0
msg1 byte "The double in y is: ",0
msg2fmt byte 0Ah,"%s",0Ah,0Ah,0

x real8 ?
y real8 ?

.code
main proc

INVOKE printf, ADDR msg0fmt, ADDR msg0
INVOKE scanf, ADDR in1fmt, ADDR x
fld x
fstp y
INVOKE printf, ADDR msg1fmt, ADDR msg1, y

ret
main endp

end

224 10 Floating-Point Instructions

Again, as with the C program, the important thing to notice is that lf is used for
input and f is used for output.

10.7.3 long double and real10

Although real8 numbers should be sufficient for most processing, the input and
output of real10 numbers are discussed in passing should they be needed. As
done previously, first consider a C program using the long double type below:

#include <stdio.h>
int main() {

long double x,y;

printf("\n%s", "Enter a long double for x: ");
scanf_s("%Lf", &x);

y = x;

printf("\n%s%6.4Lf\n\n", "The long double in y is: ", y);
return 0;

}

Probably the most important thing to notice in the above C program is that for
both input and output the Lf format must be used. Also note that it uses an
upper-case L and not a lower-case l. Since the code for real10 in assembly
language would be very similar to the previous two examples, it is left as an
exercise at the end of this chapter. Again, since type real8 is more convenient to
use in output than type real4 and has close to the same precision as real10, the
type real8 will be used in subsequent examples.

10.7.4 Inline Assembly

As will be seen in the next chapter, unfortunately inline assembly does not work
with 64-bit integers. However, it can be used with all three floating point numbers:
float, double, and long double. For example, the program from Sect. 10.7.2
can be rewritten using inline assembly for the transfer of x to y as follows:

10.7 Input/Output 225

#include <stdio.h>
int main() {

double x,y;

printf("\n%s", "Enter a double for x: ");
scanf_s("%lf", &x);

__asm {
fld x
fstp y

 }

printf("\n%s%6.4f\n\n", "The double in y is: ", y);

return 0;
}

As can be seen, the assembly code pushes the value of x onto the floating-point
stack and then the value is popped off the stack into y. Although high-level control
structures cannot be used with inline assembly, the advantage of inline assembly is
that floating-point instructions and formatting can be tested without having quite the
intricacy of assembly language input and output. Once they have been tested and
debugged, they can be transferred and converted to an assembly language program.

10.8 Comparisons and Selection Structures

When comparing floating-point numbers using the 586 and earlier processors, there
were various instructions, including the fcom, fcomp, fcompp instructions,
which were rather cumbersome to use. However, starting with the 686 processors
the additional less cumbersome fcomi and fcomip instructions were introduced.
Whereas the original instructions needed to have the condition codes C0, C2, and
C3 copied into the Carry, Parity, and Zero flags, respectively, the new instructions
set the flags automatically. Due to this advantage, these new instructions are the
ones will be discussed in this text.

Starting with a simple comparison using an if-then structure, consider the fol-
lowing C program segment:

if(x > y)
printf("\n%s\n", "x is greater than y");

The segment simply compares to floating-point numbers, x and y, and if x is
greater than y it outputs the corresponding message. First, it should be noted that
unfortunately the previous high-level control structures used with integers intro-
duced in Chap. 4 cannot be used with floating-point numbers. This is because the
high-level structures use the cmp instruction which uses implied integer subtrac-
tion. However, this should not pose too much of a problem because the fcomi and

226 10 Floating-Point Instructions

fcomip instructions can be used with the label names such as if01: that were
also introduced in Chap. 4. Another consideration is that although floating-point
values are signed, instead of using signed conditional jumps such as jg, jge, jl,
and jle, unsigned conditional jumps such as ja, jae, jb, and jbe are used
which branch based on the contents of the flags set by the fcomi and fcomip
instructions.

So, how do these instructions work? Looking first at the fcomi instruction, the
two values that need to be compared are loaded onto the floating-point register
stack. For example, using the C program from above the values x and y are loaded
as follows:

fld y
fld x

Does it matter which value is loaded first? The answer is again yes and no. If the
value on the right side of the conditional in the if statement is pushed on first, then
the conditional jump statement that follows the fcomi statement will need to be
reversed as was done back in Chap. 4 when dealing with integers. However, if the
order in which the two values are pushed onto the stack is opposite from the above
order, then writing the unconditional jump statement will unfortunately tend to be
more complicated. So, although reversing the order might initially seem to be more
confusing, the resulting code is simpler and will be more consistent with the pre-
vious technique used with integers. Assuming x and y contained a 5.0 and 7.0,
respectively, then the stack would look as follows:

ST(0) 5.0

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

7.0

top 5.0 x

7.0 y

Next the fcomi has the following form:

fcomi st(0),st(i)

It compares the zeroth item at the top of the stack with the ith item on the stack.
Although any item on the stack can be used for the second parameter, this text will
use the second item on the stack, which is st(1) as shown below:

fcomi st(0),st(1)

10.8 Comparisons and Selection Structures 227

However, one problem with the above code is that although it would work cor-
rectly, it does not pop the values off the stack. Thismight not be a problemwith a small
program with only a few numbers on the stack, but if there are more than 8 items
loaded onto the stack an exception can occur. So, it makes more sense to get into the
habit of popping the values off the stack using the fcomip instruction as follows:

fcomip st(0),st(1)

Then since the original code in the C program was,

if(x > y)

then reversing the condition as has been done previously with integers, the corre-
sponding conditional jump statement is as follows:

jbe endif01

Putting all of the above pieces together along with the corresponding labels and
output statement, the assembly code segment would be as follows:

;if x > y
if01: fld y

fld x
fcomip st(0), st(1)
jbe endif01

then01: INVOKE printf, ADDR msg2fmt, ADDR msg2
endif01: nop

In another example, consider the nested if-then-else-if structure in the following
C code segment:

if (x > y)
printf("\n%s\n", "x is greater than y");

else
if(x < y)

printf("\n%s\n", "x is less than y");

In this example, if x is greater than y or x is less than y, the corresponding
message is output, but no message is output when they are equal. The first part of
the assembly code segment for the outer if will be the same as before, but instead of
branching to endif01, it will branch to else01. Instead of the then section
falling through to the endif01, it will need to branch around the else01 section
to the endif01.

;if x > y
if01: fld y

fld x
fcomip st(0), st(1)
jbe else01

then01: INVOKE printf, ADDR msg2fmt, ADDR msg2
jmp endif01

else01: nop

; nested if to be inserted here

endif01: nop

228 10 Floating-Point Instructions

In the else section there will be the nested if-then structure as follows:

;if x < y
if02: jae endif02
then02: INVOKE printf, ADDR msg2fmt, ADDR msg3
endif02: nop

Does there need to be another comparison in the nested if? And if so since the
values were popped of the stack, do they need to be pushed back on the stack? In
this case the answer to both questions is no because the flags are still set the same
from the previous comparison. However, if the flags are altered by other instruc-
tions prior to the second if in the outer else section, then the answer would be yes to
both questions. When in doubt, it doesn’t hurt to reload and compare the values as
part of the second if structure and this is done in the following segment:

;if x > y
if01: fld y

fld x
fcomip st(0), st(1)
jbe else01

then01: INVOKE printf, ADDR msg2fmt, ADDR msg2
jmp endif01

else01: nop

;if x < y
if02: fld y

fld x
fcomip st(0), st(1)
jae endif02

then02: INVOKE printf, ADDR msg2fmt, ADDR msg3
endif02: nop

endif01: nop

10.9 Complete Program: Implementing an Iteration
Structure

Having looked at a couple of selection structures, it is time to examine a loop
structure using floating-point numbers as part of a complete program. First, are
there any changes needed with respect to loops that use a counter for loop control
such as the.repeat-.untilcxz, .repeat-.until, or .while-.endw?
The answer is not really because typically floating-point numbers are not used as
loop control variables, but rather integers are used. However, one might use
floating-point numbers with a sentinel-controlled loop, but a.while-.endw
cannot be used because it is implemented using a cmp instruction which uses
implicit integer subtraction. Again, the while loop will need to be implemented

10.8 Comparisons and Selection Structures 229

using labels and the fcomip instruction. Starting with a C program, consider the
following which continues to sum values until a zero or negative number is entered:

#include <stdio.h>
int main() {

 double x, sum;

 sum = 0.0;
 printf("\n%s", "Enter a positive double for x:");
 scanf_s("%lf", &x);

 while (x > 0.0) {

 sum = sum + x;
 printf("\n%s", "Enter a positive double for x: ");
 scanf_s("%lf", &x);
 }

 printf("\n%s%6.1f\n\n", "The sum is: ", sum);

 return 0;
}

First looking at just the while loop, the values to be compared must be loaded
into the floating-point register stack. Again, the second value is loaded first and the
conditional jump is reversed. Also, there needs to be an unconditional jump back to
the beginning of the loop.

;while x > 0.0
while01: fld zero

fld x
fcomip st(0), st(1)
jbe endw01

; body of loop

jmp while01
endw01: nop

Of course, without a change in the loop control variable, there would be an
infinite loop. As discussed in Sect. 5.4 previously and shown in the C program
above, there will be a priming read prior to the loop and it will be repeated as the
last instruction in the body of the loop. Putting all the pieces together results in the
following complete program:

230 10 Floating-Point Instructions

 .686
 .model flat,c
 .stack 100h

printf PROTO arg1:Ptr Byte, printlist:VARARG
scanf PROTO arg2:Ptr Byte, inputlist:VARARG

 .data
in1fmt byte "%lf",0
msg0fmt byte 0Ah,"%s",0
msg1fmt byte 0Ah,"%s%6.1f",0Ah,0
msg0 byte "Enter a positive double for x: ",0
msg1 byte "The sum is: ",0

x real8 ?
sum real8 ?
zero real8 0.0

 .code
main proc
 ;sum = 0.0
 fld zero
 fstp sum

 INVOKE printf, ADDR msg0fmt, ADDR msg0
 INVOKE scanf, ADDR in1fmt, ADDR x

 ;while x > 0.0
while01: fld zero
 fld x
 fcomip st(0), st(1)
 jbe endw01
 ;sum = sum + x
 fld sum
 fadd x
 fstp sum
 INVOKE printf, ADDR msg0fmt, ADDR msg0
 INVOKE scanf, ADDR in1fmt, ADDR x
 jmp while01
 endw01: nop

 INVOKE printf, ADDR msg1fmt, ADDR msg1,

sum

 ret
main endp
 end

10.9 Complete Program: Implementing an Iteration Structure 231

10.10 Complete Program: Implementing an Array

Just as with integers, it is possible to create an array of floating-point numbers. To
keep the complete program simple, assume the existence of the following
five-element array:

array real8 1.0, 2.3, 3.7, 4.9, 5.1

The array could have been declared as follows:

array real8 5 dup(?)

and then the data could be input, but this is left as an exercise at the end of the
chapter. In either case, in order to output the contents of the array, the number of
elements could be stored in a variable n and since there is a fixed number of
elements a post-test .repeat-.untilcxz loop could be used. Using the esi
register, the address of the array would need to be placed into that register prior to
the loop. Also, instead of incrementing the esi register by 4, it would need to be
incremented by 8 because each element of the array is eight bytes long. The basic
loop structure is as follows:

lea esi,array
mov ecx,n
.repeat

; body of loop

add esi,8
.untilcxz

An INVOKE statement can be used to output the contents of each element.
However, one cannot just output the contents of [esi]. Instead the INVOKE
printf statement needs to know the size of each element so real8 ptr [esi]
must be used as follows:

INVOKE printf, ADDR msg2fmt, real8 ptr [esi]

Lastly, recall that the INVOKE statement destroys a number of registers
including the ecx register, so it must be saved before and restored after the call.
A temporary variable could be used or it could be pushed onto the stack which is
what is done in the instance. The code segment is as follows:

lea esi,array
mov ecx,n
.repeat
push ecx
INVOKE printf, ADDR msg2fmt, real8 ptr [esi]
add esi,8
pop ecx
.untilcxz

232 10 Floating-Point Instructions

Could the same be done with the ebx register? Yes, where the loop control is
the same, but instead ebx is initialized to a zero and the INVOKE statement uses
array[ebx] instead. As before ebx is incremented by eight and the ecx still
needs to pushed and popped as shown in the following segment:

mov ebx,0
mov ecx,n
.repeat
push ecx
INVOKE printf, ADDR msg2fmt, array[ebx]
pop ecx
add ebx,8
.untilcxz

Of the two methods the second one is probably the simpler due to the less
complicated INVOKE statement and mimicking the more common indexing method
used in high-level languages. The complete program outputting the array twice
using the two different registers and including headings prior to the two sets of
output is shown below:

.686

.model flat, c

.stack 100h

printf PROTO arg1:Ptr Byte, printlist:VARARG

.data
msg1fmt byte 0Ah,"%s",0Ah,0Ah,0
msg2fmt byte " %3.1f",0Ah,0
msg1 byte "Array",0
n sdword 5
array real8 1.0, 2.3, 3.7, 4.9, 5.1

.code
main proc

INVOKE printf, ADDR msg1fmt, ADDR msg1
lea esi,array
mov ecx,n
.repeat
push ecx
INVOKE printf, ADDR msg2fmt, real8 ptr [esi]
pop ecx
add esi,8
.untilcxz

10.10 Complete Program: Implementing an Array 233

INVOKE printf, ADDR msg1fmt, ADDR msg1
mov ebx,0
mov ecx,n
.repeat
push ecx
INVOKE printf, ADDR msg2fmt, array[ebx]
pop ecx
add ebx,8
.untilcxz

ret
main endp

end

10.11 Summary

• Use f for outputting Real4 and Real8 numbers, and use Lf for outputting
Real10 numbers.

• Just like with integers, use an & prior to the variable when inputting floating-point
numbers.

• Remember to use f for inputting Real4 numbers, lf for Real8 numbers, and
Lf for Real10 numbers.

• Remember when using the fistp instruction the answer is rounded to the
nearest even number and when using the fisttp instruction the answers are
truncated.

• Although the fsubr instruction could be used when performing subtraction with
numbers in reverse order, it is easier to push the numbers onto the floating-point
stack from left to right and use the fsub instruction instead.

• Note that floating-point variables cannot be used to control high-level structures
because the cmp instruction uses implied integer subtraction, so the floating-point
compare (fcompi) and unsigned conditional jumps (ja, jb, etc.) must be used
to create the control structures.

• Although the order of pushing numbers onto the floating-point stack is not really
important when using the fcompi instruction, the resulting code is easier to
write when the second number being compared is pushed on first and the con-
ditional jump is reversed as done previously with integers.

• Depending on which is used to declare an array, real4, real8, real10, be
sure to increment the index by 4, 8, or 10, respectively.

234 10 Floating-Point Instructions

10.12 Exercises (Items Marked with an * Have Solutions
in Appendix D)

1. Given the following variables, what are the results in the variable z for each of
the following code segments?

w real8 2.0
x real8 5.5
y real8 6.5
z sdword ?

*a. fld w b. fld y c. fld y d. fld w
fld y fld w fld w fld y
fadd fdiv fsub fadd
fistp z fld x fistp z fist z

fadd fld w
fisttp z fadd

fistp z

2. Convert the following C-like arithmetic instructions into post-fix form and then
write the corresponding assembly language instructions. Assume that all vari-
ables are of type real8.

*a. answer = x – y + z;
b. result = (w + x) / (y – z);
c. info = a / b * c – d;
d. data = i * j + (k / (m – n));

3. Can pre-fix form of an arithmetic statement be used to create the corresponding
assembly language instructions? If not, why not? If so, how? For either answer,
show how it can or cannot be done by giving an example of a conversion to
pre-fix and the corresponding assembly instructions.

4. Write the equivalent assembly language code segment for the C program in
Sect. 10.7.3 (which uses type long double).

5. Given the code using inline assembly in Sect. 10.7.4, rewrite it to work with
float and long double types (Hint: For type float, see Sect. 10.7.1).

6. Alter the if-then code segment at the begining of Sect. 10.8 to implement an
if-then-else structure to output the message “x is less than or equal to
y” in the else section.

7. Alter the if-then-else-if code segment in Sect. 10.8 to add an else section to the
nested if statement to output the message “x and y are equal”.

10.12 Exercises (Items Marked with an * Have Solutions in Appendix D) 235

8. Change the complete program in Sect. 10.9 to implement a do-while structure
(post-test loop) instead of while structure (pre-test loop). Make sure that it works
properly for 0.0 and negative numbers.

9. Change the complete program in Sect. 10.10 to instead prompt for and input the
five numbers.

236 10 Floating-Point Instructions

1164-Bit Processing

To store larger 64-bit numbers in a high-level language such as Java, variables are
declared as long, or in the C programming language long long is used. In
assembly language a quad word, qword, or signed quad word, sqword, is used.
Just as a 32-bit double word is twice as big as a regular 16-bit word, a 64-bit quad
word is two times larger than a 32-bit double word or four times larger than a 16-bit
word, thus the name quad word. In comparison with double words, Table 11.1
indicates the range of numbers that are capable of being stored in quad words.

Note that in comparison with a 32-bit double word which can store a signed
positive number of approximately two billion, a 64-bit quad word can store a signed
positive number of approximately 9 quintillion. Of course, with the advantage of
being able to store larger numbers, there is the disadvantage of using more memory.
Although using a single variable of 8 bytes instead of 4 bytes does not seem to be
much of a disadvantage, this increase in memory is especially noticeable when
using large arrays.

There are two other disadvantages of using 64-bit registers. First is that they
cannot be used in in-line assembly. Although this presents some inconvenience, the
focus of this text has been to use stand-alone assembly. A greater inconvenience is
that the high-level directives such as .if, .while, and so on, cannot be used in
64-bit mode. However, as discussed in Chap. 4, it is possible to mimic high-level
language structures and some examples will be given in Sect. 11.6.

11.1 Four General Purpose Registers

Of course, without registers to store 64-bit numbers, 64-bit processing would be
difficult. Just as the letter e was added to indicate the 32-bit version of the ax
register, the letter r is added to the ax register to indicate the 64-bit version. The

© Springer Nature Switzerland AG 2020
J. T. Streib, Guide to Assembly Language, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-35639-2_11

237

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35639-2_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35639-2_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35639-2_11&domain=pdf
https://doi.org/10.1007/978-3-030-35639-2_11

following is a variation of Fig. 1.4 to show the relationship between the 8-bit al
register, 16-bit ax register, 32-bit eax register, and 64-bit rax register.

ah

rax
eax

ax
al

63 32 31 16 15 8 7 0

As before, the same diagram could be used to show the relationship with the
rbx, rcx, and rdx registers by substituting the letters b, c, and d in place of the
letter a.

Although the above appears fairly-straight forward, there are some interesting
similarities and differences in the relationship between the different size registers.
Recall that in 32-bit mode when the al register is altered, it does not alter the upper
bits of the ax register and when the ax register is altered, the upper bits of the eax
register are not altered. The same is true for these registers in 64-bit mode. For
example, assuming that the ax register contained the following in hexadecimal,

ax F7E5

and the following instruction was executed,

mov al,00h
then only the lower 8 bits would be altered as follows:

ax F700

Likewise, if eax contained the following,

eax FEDCBA98

Table 11.1 Types, number of bits, and range of values

Type Number of
bits

Range (inclusive)

sqword sdword 64 –9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

qword 64 0 to +18,446,744,073,709,551,615

sdword 32 –2,147,483,648 to +2,147,483,647

dword 32 0 to +4,264,967,295

238 11 64-Bit Processing

and the following instruction was executed,

mov ax,0
the eax register would look as follows:

eax FEDC0000

However, when altering eax, the equivalent is not true in rax. If the rax
register contained the following,

rax 0123456789ABCDEF

and the following instruction clearing eax to 0 was executed:

mov eax,0

the entire rax register would be cleared to 0 as follows:

rax 0000000000000000

What has happened is that zero was moved into the eax register which is the
lower 32 bits of the rax register, and then the upper 32 bits are cleared to zero.
Using the original number in the rax register from above, consider the following
example:

mov eax,-1

Since a negative one is represented as FFFFFFFFh in eax, the contents of eax
are copied into the lower 32 bits of rax and the upper 32 bits are of the rax
register are again cleared to zero as shown below:

rax 00000000FFFFFFFF

What if one wanted to have the above result in all F’s in hex to indicate a
negative one? To accomplish this task the movsxd instruction would be used. It
copies from a 32-bit memory location or register to the lower 32 bits of a 64-bit
register and then extends or propagates the sign-bit from the leftmost position of the
lower 32 bits into the upper 32 bits of the 64-bit register. Further, instead of initially
placing the data into eax as in this case, it could be placed into another register
such as ebx. From there the movsxd would copy the contents of ebx into rax as
follows:

mov ebx,-1
movsxd rax,ebx

11.1 Four General Purpose Registers 239

This would result in the following:

rax FFFFFFFFFFFFFFFF

What would happen with the segment below?

mov ebx,0
movsxd rax,ebx

In this case the results would look the same as when using the mov instruction,
although the process is different. In the case of the mov instruction the upper bits
are cleared to zero and in the movsxd case the sign-bit is propagated into the upper
32-bits. If the end result is the same, why would one use movsxd? The reason is
that if there is unknown data in a 32-bit register or memory location then the
movsxd would extend the sign-bit, whether a zero or a one, accordingly. For
example, assume the variable num32 contains a signed integer:

mov ebx,num32
movsxd rax,ebx

Then regardless of what is in the sign-bit in num32, it will be extended into the
upper 32 bits of rax. This principle also applies to the other three general purpose
registers as well: rbx, rcx, and rdx.

Does the default of clearing the upper 32 bits of a 64-bit register cause any
difficulties? If one is using just 32 bits in a 64-bit environment, then there is really no
concern what is happening in the upper 32 bits of rax or the other registers. And if
one is using only 64-bit registers and instructions then again this should be of no
concern. Only if one is moving from the 32-bit environment to the 64-bit environment
and is accustomed to the upper bits of a register being maintained or if one is mixing
32-bit and 64-bit registers and processing, then it could cause some difficulties.
However, provided one is aware of the differences and is careful when choosing the
correct instructions such as movsxd, then it should not pose much of a problem.

11.2 Other 64-Bit Registers

In addition to the four general purpose registers, other registers also have 64-bit
variations. These include the index registers esi and edi which are available as
rsi and rdi, and the stack registers esp and ebp as rsp and rbp, respectively.
The eflags register also has a 64-bit counterpart as rflags, but although this could
allow for more error flag bits in the future, at present the upper 32 bits of this
register are not used. Also, the instruction pointer register eip has a corresponding
64-bit register rip.

240 11 64-Bit Processing

Lastly, in addition to the 64-bit variations of the previous 32-bit registers, there
are also eight new numbered 64-bit registers available. They are r8 through r15,
which each have corresponding sub-registers. These registers include the 32-bit
double word registers r8d through r15d where the d stands for double word, the
16-bit word registers r8w through r15w where the w stands for word, and the 8-bit
byte registers r8b through r15b where the b stands for byte.

Note that whereas the upper 8 bits of the original 16-bit registers are directly
accessible, such as ah in the ax register, there is no name for the upper 8 bits in the
corresponding r8w through r15w registers. Given this, how does one access these
bits if there is no corresponding name? It is no different than when there is no name
for the upper 16 bits of a 32-bit register or no name for the upper 32 bits of a 64-bit
register. The solution is to use logic and shifting instructions.

Also, note that although registers such as r8b can be used with registers such as
al, they cannot be used in the same instruction with registers such as ah. Then, how
does one move information from ah to r8b? Again, the answer is logic and shifting
instruction from Chap. 6 and as will be shown in Sect. 11.5 of this chapter. For
convenience, all the registers discussed in this section are summarized in Table 11.2.

11.3 64-Bit Integer Output

As was mentioned earlier, 64-bit processing cannot be used with in-line assembly.
This is unfortunate because it would make it easy to use C input/output instructions
to test various 64-bit code segments. Further, the technique for inputting and

Table 11.2 Summary of 64-bit registers

64-bit
registers

Name 32-, 16, and 8-bit
sub-registers

Brief description and/or
primary use

rax Accumulator eax, ax, al Arithmetic and logic

rbx Base ebx, bx, bl Arrays

rcx Counter ecx, cx, cl Loops

rdx Data edx, dx, dl Arithmetic

rsi Source index esi, si Strings and arrays

rdi Destination index edi, di Strings and arrays

rsp Stack pointer esp, sp Top of stack

rbp Base pointer ebp, bp Stack base

rip Instruction
pointer

eip, ip Points to next instruction

rflags Flag eflags, flags Status and control flags

r8 – r15 Numbered r8d – r15d General use (where

r8w – r15w d = double word, w = word,
and b = byte)

r8b – r16b

11.2 Other 64-Bit Registers 241

outputting 64-bit integers is also different than the one used previously for 32-bit
integers and this section gives examples of simple I/O to facilitate testing of code
presented in this chapter.

As before, a simple program to output a 64-bit integer in C is given first followed
by the equivalent program in assembly language. Consider the following C program
which is similar to the program at the end of Sect. 2.3 except the variables are
declared as type long long instead of type int and formatting using %lld
instead of %d, respectively:

#include <stdio.h> int main(){
long long num1=5, num2=7;
printf("\n%lld%s%lld\n\n",num1," is not equal to ",num2);
return 0;

}

In order to implement the above program using 64-bit output, there have been
some changes made compared to 32-bit processing. Along with other important
information in the directions for using Visual Studio in Appendix A.3, be sure to
change the Solutions Platforms in the ribbon in from x86 to x64.

In the program itself, note that the following statements are no longer needed and
can simply be deleted from the program.

.686

.model flat, c

.stack 100h
As will be discussed shortly, input and output is no longer done via parameters,

so it is not necessary to include the parameter list after the PROTO statements as
done previously and the new statements are as shown below:

printf PROTO
scanf PROTO
The data segment is similar to what has been used previously and appears as

follows:

msg1fmt byte 0Ah,"%lld%s%lld",0Ah,0Ah,0
msg1 byte " is not equal to ",0
num1 sqword 5
num2 sqword 7
The only change to notice is that instead of the variables being defined as

sdword, they are defined as sqword. Also note the change in formatting from %d
to %lld.

242 11 64-Bit Processing

If parameters are not used as mentioned above, then how is information com-
municated to the input and output procedures? The information is sent either
through registers or the stack, where it is more convenient to use registers. This is
because the stack needs to be adjusted before and after calling a printf or scanf
to allow for what is known as shadow space. This space is used for storing
parameters and should be at least 32 bytes in length although larger amounts to
ensure sufficient space can be used such as the 64 bytes in this text. This is
accomplished by adjusting the stack pointer by subtracting 64 (40 h) from the stack
pointer prior to the call and adding back 64 (40 h) after the call. Also note that the
INVOKE statement is not used but rather the CALL statement is used instead. So, a
call to a printf statement will appear as follows:

sub rsp,40h
CALL printf
add rsp, 40h
To communicate with the printf routine using registers, the information is

sent via the rcx, rdx, r8, and r9 registers. Since these registers are being used for
communications, any information in these registers can be lost during the I/O
process. Further, the contents of the rax and r9 through r11 are altered by the
printf statement. So if these registers are being used, it is important to save their
contents prior to any I/O and have them returned to the registers afterwards.
However, recall back in Sect. 1.6 that unless speed is a very important concern, it
was recommended not to keep data in the registers in the first place and that it be
returned to memory to avoid such complications. Again, it is easier to optimize a
correctly implemented program than to get a supposedly optimized program to
work correctly.

Prior to calling the printf statement, the registers need to be loaded with the
format and data in the same order that was used previously with parameters. Instead
of sending the address of the format statement or strings using ADDR, the address is
loaded into the registers using mov and offset or using the lea instruction. In
this first example mov offset is used but in later examples lea is used. So, the
format statement can be loaded first into rax followed in order with the data in the
subsequent registers. The resulting code would look as follows:

mov rcx,offset msg1fmt
mov rdx,num1
mov r8,offset msg1
mov r9,num2
Putting everything together results in the following program:

11.3 64-Bit Integer Output 243

printf PROTO
scanf PROTO

.data
msg1fmt byte 0Ah,"%lld%s%lld",0Ah,0Ah,0
msg1 byte " is not equal to ",0
num1 sqword 5
num2 sqword 7

.code
main proc

mov rcx,offset msg1fmt
mov rdx,num1
mov r8,offset msg1
mov r9,num2

sub rsp, 40h
CALL printf
add rsp, 40h

ret
main endp

end
But what if more items need to be output in one line and only four registers are

being used? For example, consider the following modification of the preceding C
program code segment which outputs three numbers instead and uses “ ! = ” to
save space:

#include <stdio.h> int main(){
long long num1 = 5, num2 = 7, num3 = 9;
printf("\n%lld%s%lld%s%lld\n\n",num1," != ",num2," != ",num3);
return 0;

}

The problem is that in addition to the format there are five additional items to
output on one line and there are only four registers. Although the stack could be
used, it is easier to move the last two items and their formatting along with the “\n
\n” to a second printf statement so that all of the output stays on one line as
follows:

#include <stdio.h>
int main(){

long long num1 = 5, num2 = 7, num3 = 9;
printf("\n%lld%s%lld",num1," != ",num2);
printf("%s%lld\n\n"," != ",num3);
return 0;

}

244 11 64-Bit Processing

The corresponding assembly code would be as follows:

printf PROTO
scanf PROTO

.data
msg1fmt byte 0Ah,"%lld%s%lld",0
msg2fmt byte “%s%lld”,0Ah,0Ah,0
msg1 byte " != ",0
num1 sqword 5
num2 sqword 7
num3 sqword 9

.code
main proc

mov rcx,offset msg1fmt
mov rdx,num1
mov r8,offset msg1
mov r9,num2
sub rsp, 40h
CALL printf
add rsp, 40h
mov rcx,offset msg2fmt
mov rdx,offset msg1
mov r8,num3

sub rsp, 40h
CALL printf
add rsp, 40h
ret

main endp
end

Although this takes up a little more code, it is relatively simple to implement and
avoids any complications that might occur when using the stack. As an aside, all of
the other types of formats in C can be used by attaching the letters ll after the %
and before the format letter. For example, should one want to output the contents of
a 64-bit memory location as unsigned, %llu should be used, and to output in
hexadecimal, %llx should be used.

11.4 64-Bit Integer Input

Input is similar to output and using a C program that is similar to the one at the end
of Sect. 2.4, consider the following program that inputs number, adds 1 to it, and
then outputs number:

11.3 64-Bit Integer Output 245

#include <stdio.h>
int main(){

long long number;
printf("\n%s","Enter an integer: ");
scanf("%lld",&number);
number++;
printf("\n%s%lld\n\n","The integer is: ",number);
return 0;

}
As before, there needs to be a prompt prior to the input and also the number

input needs to be output, both of which are relatively simple given in the last
section. The new part of interest here is the scanf. First, the address of the input
format is loaded into rcx and then the address of the location number loaded into
the rdx register. In both cases, the mov and offset or the lea instruction should
be used. Notice that the stack has to be adjusted before and after the call just as it
was with the printf statement all as shown below:

lea rcx, in1fmt
lea rdx, number
sub rsp,40h
CALL scanf
add rsp, 40h
The instruction to increment number by 1 is the same as with the 32-bit

instruction as follows:

inc number
In fact, many of the instructions will be very similar between 32-bit and 64-bit

processing as will be discussed in the next section. Further, it should be noted that the
scanf alters the same registers,rax,rcx,rdx, andr8 throughr11, as theprintf.
So again, care must be taken by the programmer to not leave any relevant data in these
registers. The program to implement the above C program can be found below:

printf PROTO
scanf PROTO

.data

in1fmt byte "%lld",0
msg0fmt byte 0Ah,"%s",0

msg1fmt byte 0Ah,"%s%lld",0Ah,0Ah,0
msg0 byte "Enter an integer: ",0
msg1 byte "The integer is: ",0
number sqword ?

.code
main proc

246 11 64-Bit Processing

lea rcx, msg0fmt
lea rdx, msg0

sub rsp,40h
CALL printf
add rsp,40h

lea rcx, in1fmt
lea rdx, number

sub rsp,40h
CALL scanf
add rsp, 40h

inc number

lea rcx, msg1fmt
lea rdx, msg1
mov r8,number
sub rsp, 40h
CALL printf
add rsp, 40h

ret
main endp

end

11.5 Logic and Arithmetic Applications

Although as seen in the previous section, much of the processing using 64-bit registers
and memory locations are the same as with 32-bit registers, it does not hurt to give
some examples of code to illustrate this similarity. Also, of particular interest is to
show some applications and the interaction between 32-bit and 64-bit processing.

11.5.1 Shift and Rotate

As discussed in Sect. 11.2, instructions cannot access both a register such as ah in
the rax register and r8b in the r8 register. In other words, the instruction mov
r8b,ah is illegal. Although it would be nice to have such an instruction for the

11.4 64-Bit Integer Input 247

relatively rare occurrences that this type a transfer is necessary, it is really just a
minor inconvenience. Since such an instruction does not exist, how would one
accomplish it? Remembering various instructions from Chap. 6, shifting or rotating
could be used. First the data in ah, which are bits 8 through 15 of the rax register,
would need to be moved to the al register. A simple mov al,ah could be used,
but this would destroy the contents of the al register. If that data is no longer
needed then this method would not be a problem.

However, what if that data needed to be kept? It could be stored in another
register or a memory location, but that might destroy other data or require the use of
memory. So, how could it be done without having to use any other registers or
memory locations? An alternative is to shift the contents of the rax register 8 bits
to the right. But again, the data that was previously in al would be destroyed. The
solution is to rotate the contents of the rax register to the right 8 bits, which would
cause the contents of the lower 8 bits to be rotated to the upper 8 bits in bit positions
56 through 63 of rax. For example, if rax originally contained the following:

rax 0123456789ABCDEF

And the instruction ror rax,8 was executed, then rax would look as follows:

rax EF0123456789ABCD

Then, the contents of al could be transferred to r8b. Further, if the contents of
rax could be restored back by rotating it to the left 8 bits. This set of instructions is
as follows:

ror rax,8
mov r8b,al
rol rax,8
But why rotate all 64 bits of the rax register? Alternatively, only the ax subset

of the rax register could be rotated by 8 bits as shown below:

rax 0123456789ABEFCD

Then the contents of ax could be rotated back and the code for this is solution is
as follows:

ror ax,8
mov r8b,al
rol ax,8

248 11 64-Bit Processing

11.5.2 Logic

Also as discussed in Sect. 11.1, two alternatives of moving 32 bits into a 64-bit
register resulted in either the upper-32 bits becoming all zeros or extending the sign
bit into the upper 32 bits. What if one did not want to alter the upper 32 bits of a
64-bit register?

The way this can be accomplished is by using various logic instructions. This
would involve clearing out the lower 32 bits of the 64-bit register to zero, creating a
mask to not alter the upper 32 bits, and using an and instruction to put the new data
into the lower 32 bits. Again, assume the data in the rax register is as follows:

rax 0123456789ABCDEF

The mask necessary to clear out the lower 32 bits yet maintain the upper 32 bits
is as follows:

FFFFFFFF00000000

At first, one might be tempted to put the above in an operand of an and
instruction, but it is too large. Instead it can be placed into a memory location using
an unsigned qword. Remember when using hexadecimal number that the left most
position of the number must be a digit and not a letter, so note the leading 0 as
follows:

mask64 qword 0FFFFFFFF00000000h
Then an and instruction can be used,

and rax,mask64
which results in the following:

rax 0123456700000000

Now if the new data to be put into the lower 32 bits was AABBCCDDh, it could
be loaded into a 32-bit register such as ebx,

mov ebx,0AABBCCDDh
which would automatically clear out the upper bits of rbx as follows:

rbx 00000000AABBCCDD

And lastly, the data in rbx could be placed into the lower 32 bits of rax using
an or instruction as follows:

11.5 Logic and Arithmetic Applications 249

or rax,rbx

which would result in the new data in the lower 32 bits while the original data in the
upper 32 bits would remain undisturbed as shown below:

rax 01234567AABBCCDD

The completed code segment is as follows:

and rax,mask64
mov ebx,0AABBCCDDh
or rax,rbx

The result is that if a particular instruction does not exist to do precisely what
needs to be done, it is usually not a problem because given the vast number of other
instructions available, the appropriate task can be accomplished. If necessary, the
resulting group of instructions can be placed into a macro using parameters as
introduced in Chap. 7 and reviewed in Sect. 11.8. Further, this is left as an exercise
at the end of the chapter.

11.5.3 Arithmetic

The use of 64-bit arithmetic is very similar to 32-bit arithmetic except much larger
numbers can be used. Whereas there is very little difference with addition and
subtraction, there are a few differences with multiplication and division.

Recall from Chap. 3 that when two 32-bit numbers are multiplied the result
occupied 64 bits in the edx:eax register pair. A similar result occurs when two
64-bit numbers are multiplied where the results are placed in the 128 bits of the
rdx:rax register pair. Consider the following code example:

mov rax,2147483647
mov rbx,2
imul rbx

The above number loaded into the rax number is the largest signed positive
number that can be stored in 32 bits. If 32-bit multiplication were to be used the
results would have extended into the edx register. However, when using 64-bit
registers, the resulting product can be contained in the 64-bit rax register and only
the sign-bit would be propagated into the rdx register. If the number were much
larger than this, then it too would extend into the rdx register, but in this text, 64
bits should be more than sufficient.

Similar to 32-bit division where the edx:eax register pair contains the 64-bit
dividend, 64-bit division needs to have the dividend initially in the 128-bit rdx:

250 11 64-Bit Processing

rax register pair. Instead of using the cdq (convert double to quad) instruction
prior to the 64-bit division, one must use the cqo (convert quad to oct, where oct
refers to eight words) instruction. This extends the sign bit of rax into rdx prior to
64-bit division as illustrated in the following code segment:

mov rax, 7fffffffffffffffh
cqo
mov rbx,2
idiv rbx
A hexadecimal number is used to show that the largest possible positive number

is being stored in the rax register where bit 63 is a 0. Similar to the previous 32-bit
division, the quotient is stored in rax and the remainder is stored in rdx.

11.6 Control Structures

As mentioned at the beginning of this chapter, unfortunately high-level directives
do not work in 64-bit mode. Fortunately, most of the ways that control structures
can be created using comparisons and branches in 32-bit mode can be also be done
in 64-bit mode. However, there are some potential areas that could cause problems
when mixing 32-bit and 64-bit data. For example, consider the following code
segment which loads a number into eax and then compares a number in rax
register with the number 2. It then stores in rdx the address of msg3 indicating that
it is equal or msg4 indicating that it is not equal for later output:

; **** Caution: possibly incorrectly implemented code ****
mov eax,2
; if rax == 2

if01: cmp rax,2
jne else01

then01: lea rdx, msg3
jmp endif01

else01: lea rdx,msg4
endif01: nop

As before, the condition is reversed using jne to branch to else01 if not equal
and falls through to then01 if it is equal. Yes, it is probably not a good idea to
initially load eax and then compare using rax, but assume for the time being that
the data to be compared was originally in the eax register. The above code segment
works okay in this particular instance, but what is a potential problem with the code
segment? Instead, consider if eax contained a -2 and was compared to a -2 instead
as shown below:

11.5 Logic and Arithmetic Applications 251

; **** Caution: incorrectly implemented code ****
mov eax,-2
; if rax == -2

if01: cmp rax,2
jne else01

then01: lea rdx, msg3
jmp endif01

else01: lea rdx,msg4
endif01: nop

Although the previous code segment worked, would the above code work? The
answer is no because recall from Sect. 11.1 that when data is moved into the eax
register or related registers, the contents of the upper 32 bits of rax is set to zeros.
The result is that the negative number in eax is a positive number in rax. To
correct this problem, the movsxd instruction should be inserted in the second line
to extend the sign bit into the upper 32 bits as follows:

mov eax,-2
movsxd rax,eax
; if rax == -2

if01: cmp rax,2
jne else01

then01: lea rdx, msg3
jmp endif01

else01: lea rdx,msg4
endif01: nop
Although it was technically not needed in the initial code using positive num-

bers, it should probably be inserted there as well to ensure that if a negative number
is input instead of assigned, the code would work correctly.

In another example, what if one wants to use the loop instruction with 64-bits?
In the following segment the rcx register would be loaded with the appropriate
number.

mov rcx, 100000000h
for01: nop

;body of loop
loop for1

endfor01: nop
In the above case a hexadecimal number is being used to show that the number

in rcx is larger than 32 bits. However, note that the loop will iterate over four
billion times and it might be slow depending on the speed of the computer being
used. Further, even larger numbers can be used with 64 bits in the above code
segment and the loop could take a significant amount of time to execute.

252 11 64-Bit Processing

As with preceding examples using an if statement and mixing 32-bit and 64-bit
registers, care must be taken. Although one would not want to load a negative
number into the rcx register using a loop instruction, a similar error could occur
with other forms of loop control. Consider for example the following loop that
starts with a negative number in ecx, adds one to it until it reaches zero, and the
count of the number of iterations is kept in rax.

; **** Caution: incorrectly implemented code ****
mov rax,0
mov ecx, -3
; while ecx < 0

while01: cmp rcx,0
jge wend01
inc rax
inc ecx
jmp while01

wend01: nop
Although ecx is a negative number there are all zeros in the upper 32 bits of the

rcx register. The result is that rcx is a positive number and the count of iterations
would be zero. If the movsxd instruction is added, note that there is yet another
problem with the above code segment. Notice that ecx is being incremented in the
body of the loop instead of rcx which again causes the upper 32 bits to be zero and
the loop only iterates once. The corrected code is as follows:

mov rax,0
mov ecx, -3
movsxd rcx,ecx
; while ecx < 0

while01: cmp rcx,0
jge wend01
inc rax
inc rcx
jmp while01

wend01: nop
The simple solution to such problems is to avoid mixing 32-bit and 64-bit

registers. However, if one must use both, be careful that the code works the way one
intended by running sufficient tests.

11.6 Control Structures 253

11.7 Arrays

Indexing 64-bit arrays is similar to indexing 32-bit arrays. Instead of declaring the
array with sdword, they are declared using sqword. The code is very similar
except that 64-bit registers are used. A simple example that uses only a five-element
array, sums the contents of the array in rax, uses rsi for the index, and uses the
loop instruction is as follows:

mov rax,0
lea rsi,numarray
mov rcx,5

for2: add rax,[rsi]
add rsi,8
loop for2

endfor1: nop
As before, the rsi register needs to be initialized with the address of the array.

Notice that it is similar to an array of 64-bit real8 numbers. Since eight-byte quad
words are being used instead of four-byte double words, rsi is incremented by 8
instead of 4.

Likewise, an example using the rbx register in conjunction with the name of the
array is as shown in the code segment below:

mov rax,0
mov rbx,0
mov rcx,4

for2: nop
add rax,numarray[rbx]
add rbx,8
loop for2

endfor2: nop
Again, ebx should be incremented by 8 instead of 4. Both ways of addressing

an array are similar to the 32-bit methods and either can be chosen based upon the
task at hand or whichever is more convenient.

11.8 Procedures and Macros

As initially discussed in Chap. 7, procedures and macros are extremely helpful for
taking common code and not having to rewrite it over and over again. It is sug-
gested to review that chapter if necessary before proceeding with this section.

254 11 64-Bit Processing

11.8.1 Calling 64-Bit Procedures

Having called the printf and scanf procedures, much has already been learned
on how to use procedures. Simple procedures can be called using memory locations
and various registers as done with 32-bit procedures, but then their use would be
restricted to only those memory locations and registers. Instead, the same con-
ventions that are used to call procedures like printf and scanf can be used
which would allow for consistency in the passing of information via rcx, rdx, r8,
and r9 as necessary and a value could be returned via rax.

Recall that there is a complete program in Sect. 7.2 to implement the power
function. A limitation to this program is that when restricted to just the 32 bits of the
eax register, the largest signed number that could be calculated would be slightly
over two billion and the largest non-signed number is slightly over four billion.
When using 64-bits the largest signed number that can get calculated, as mentioned
at the beginning of this chapter, is in excess of nine quintillion and the largest
unsigned number is over eighteen quintillion.

Without rewriting the entire program, which is left as an exercise at the end of
this chapter, the following only implements the calculation portion using only
positive integers to illustrate the sending and returning of values. First, the calling
program segment is shown below:

mov rcx,x
mov rdx,n
call power
mov answer,rax
Recall that values are passed in the registers rcx, rdx, r8, and r9, and that a

value is returned in rax, so that x and n are passed via rcx and rdx, and answer
can be returned via the rax register. The procedure is implemented as follows:

power proc
push rbx
push rdx
push r8
mov r8,rdx
mov rbx,1
mov rax,1
; while rbx <= r8

while01: cmp rbx,r8
jg endw01
imul rcx
inc rbx
jmp while01

endw01: nop
pop r8
pop rdx
pop rbx
ret

power endp

11.8 Procedures and Macros 255

Notice that the value in rdx is copied to the r8 register in the procedure; why is
this? The reason is that the product from the imul instruction is stored in the rdx:
rax register pair, so that the exponent n passed in rdx would get destroyed the
first time through the loop. As a result, the value is moved to r8 for comparison in
the loop. Since rbx and r8 are destroyed in the implementation of the loop, and
rdx is destroyed via the multiplication, they are pushed and popped off the stack.

11.8.2 Using a Macro to Call printf

The problem when using input and output is that there are a number of instructions
that need to be written before and after the calling of printf and scanf. Further,
if one is not careful, there could be cases where information that was left unin-
tentionally in registers could be lost. Is there a way that this can be simplified? One
way is to write a procedure that could contain all the necessary code. But the
problem would be that a procedure would be written that would call another pro-
cedure and this could get a little confusing.

As an alternative, a macro could be written to contain all the required infor-
mation that in turn would call the appropriate input or output procedure. As should
be recalled from Chap. 7, the disadvantage of this would be that each time the
macro is invoked a copy of all the code in the macro is inserted into the program.
However, this would be no more code than what would have to have been written in
the first place. As discussed previously, there are a number of alternatives than can
be used when writing macros. To keep it somewhat simple here only the common
case where a string is followed by an integer will be considered. For example, the
following typical code segment,

lea rcx, msg1fmt
lea rdx, msg1
mov r8,num64
sub rsp, 40
CALL printf
add rsp, 40

could be placed into a macro as follows,

output64 macro
lea rcx, msg1fmt
lea rdx, msg1
mov r8,num64
sub rsp, 40
CALL printf
add rsp, 40
endm

256 11 64-Bit Processing

and could be invoked by just typing:

output64
Although this cleans up the main program considerably, it only allows the user

to output the contents of num64 with msg1 according to the format in msg1fmt.
To allow more versatility, parameters should be used. To again keep things simple
and to make sure that exactly three parameters are used, the :REQ directive is used
in the following macro definition:

output64 macro format:REQ, message:REQ, number:REQ

lea rcx, format
lea rdx, message
mov r8,number

sub rsp, 40
CALL printf
add rsp, 40
endm

To invoke it would be as follows:

output64 msg1fmt,msg1,num64
Of course, when using parameters as above, other formats, messages, and

integers could be used as arguments. Though this works well, sometimes users of
procedures such as printf forget that registers can be altered. Further, macros
tend to hide any other registers that are being altered. Although programmers
should be extra careful when using procedures and macros to ensure that the data in
registers is saved, it is sometimes helpful to have the macro save the registers.
Though this takes up even more memory space each time they are invoked, the
subsequent time saved in debugging might be worthwhile especially in the early
stages of writing a program. Then later the saving and restoring of registers in the
macro could be removed and the code optimized.

Of the 12 general purpose registers rax through rdx and r8 through r15,
seven of them have their contents altered by the macro and subsequent procedure
call. Obviously rcx, rdx, and r8 are altered by the macro, but also recall that rax
and r9 through r11 are altered by printf as well. Only rbx and r12 through
r15 are left untouched. Unfortunately, there is not a 64-bit equivalent of the 32-bit
pushad and popad instructions that saves and restores all the registers on the
stack. Instead the seven affected registers need to be saved and restored individu-
ally. This can be done either by using the stack, storing them in separate memory
locations, or using an array. Using a different name for the macro can be helpful so
that the programmer can chose between the one that saves registers and the one that
does not as needed. Looking at the stack option, the macro definition for out-
put64s where the s stands for save is as follows:

11.8 Procedures and Macros 257

output64s macro format:REQ, message:REQ, number:REQ

push rax
push rcx
push rdx
push r8
push r9
push r10
push r11
lea rcx,format
lea rdx,message
mov r8,number
sub rsp, 40
CALL printf
add rsp, 40
pop r11
pop r10
pop r9
pop r8
pop rdx
pop rcx
pop rax
endm

Yes, the appearance of seven push and seven pop instructions does look rather
unwieldy and takes up a number of memory locations. Again, if one is careful to
always return data from registers to memory locations, then using the non-saving
macro would not cause a problem.

If one does not want to use the stack for saving the registers, then as mentioned
previously, seven different memory locations each with the name of the saved
register as part of their names could be created to save and restore the seven
registers, Also, a seven element array maybe called saveregs could be used.
Although neither of these two options would save any instructions and would in
fact use just a little more memory, they are alternatives to using the stack and are
left as exercises at the end of the chapter.

Also, instead of having two separate macros, one macro could be written using
conditional assembly as discussed in Sect. 7.5 and this is left as an exercise. Fur-
ther, a macro could also be written for scanf and this is also left as an exercise at
the end of the chapter.

11.9 Complete Program: Reversing an Array

To incorporate a number of the items in this chapter, a simplified version of the
program at the end of Sect. 8.2 to reverse an array is rewritten using 64-bit pro-
cessing and shown below:

258 11 64-Bit Processing

printf PROTO
scanf PROTO

.data
msg1fmt byte "%s",0
msg2fmt byte 0Ah,"%s",0Ah,0Ah,0
msg3fmt byte " %lld", 0Ah,0Ah,0
in1fmt byte "%lld",0
msg2 byte "Enter an integer: ",0
msg3 byte "Reversed",0
n sqword 5
arry sqword 5 dup(?)

.code
main proc

mov rcx,n ; initialize rcx to n
mov rbx,0 ; initialize rbx to 0

for01: nop
push rcx ; save rcx
lea rcx, msg1fmt
lea rdx, msg2
sub rsp, 40
CALL printf
add rsp, 40
lea rcx, in1fmt
lea rdx,arry[rbx]
sub rsp,40
call scanf
add rsp,40
pop rcx ; restore rcx
add rbx,8 ; increment rbx by 8
loop for01

endfor01: nop

lea rcx, msg2fmt
lea rdx, msg3
sub rsp, 40
CALL printf
add rsp, 40
mov rcx,n ; initialize rcx to n
sub rbx,8 ; subtract 8 from rbx

for02: nop
push rcx ; save rcx
lea rcx, msg3fmt
mov rdx, arry[rbx]
sub rsp, 40
CALL printf

11.9 Complete Program: Reversing an Array 259

add rsp, 40
pop rcx ; restore rcx
sub rbx,8 ; decrement rbx by 8
loop for02

endfor02: nop
ret

main endp
end

Notice that the value of rcx is pushed onto the stack at the beginning of each
loop and popped off the stack at the end of each loop since rcx is used to
communicate information to the printf and scanf procedures. Also, the sim-
plified code only inputs a fixed number of items, but to input a variable number of
items by inputting and checking that the value in n is non-negative is left as an
exercise at the end of the chapter.

11.10 Summary

• Remember that moving data into the lower 32 bits of a 64-bit register causes the
upper 32 bits to be cleared to zeros.

• The movsxd instruction copies the contents of a 32-bit register or memory
location into a 64-bit register and then extends or propagates the sign into to the
upper 32 bits of the 64-bit register.

• One cannot mix in an instruction using the upper 8 bits of the corresponding
16-bit register, such as ah in the ax register, with the lower 8 bits of the new
numbered 64-bit registers such as r8b.

• Use %llx format to be able to output all the bits of a 64-bit word in hexadecimal.
• The PROTO statements do no need a parameter list.
• Both the printf and scanf statements use CALL statement instead of
INVOKE.

• Use the rcx, rdx, r8 and r9 registers to send information to the printf
statement.

• Remember that when invoking a macro all the code in the macro is inserted into
the program.

• Remember to load the address of the input format into rcx and the address of the
memory location to be input into rdx prior to calling scanf.

• When accessing the elements of an array of 64-bit integers, be sure to increment
the register, rsi, rdi, or rbx, by 8 instead of 4.

260 11 64-Bit Processing

11.11 Exercises (Items Marked with an * Have Solutions
in Appendix D)

1. Given the following code segments, indicate the contents of the 64-bit register
(show all 64 bits in hexadecimal).

a. mov rax, 0FFFFFFFFFFFFFFFFh b. mov rbx, 0
mov eax, mov ebx, -2

*

*c. mov rcx, 0011002200330044h d. mov rdx, 0FFFFFFFF01234567h
mov cx, -1 mov edx, 789ABCDEh

0

2. Implement the following C code segments in MASM assembly language as
done in Sect. 11.3.

 a. #include <stdio.h>
int main(){

long long num1 = 5, num2 = 7;
printf("\n%lld\n",num1);
printf("%s\n"," is not = ");
printf("%lld\n\n",num3);
return 0;

}

b. #include <stdio.h>
int main(){

long long num1 = 1, num2 = 2, num3 = 3, num4 = 4;
printf("\n%lld%s%lld",num1," < ",num2);
printf("%s%lld%s," < ",num3," < ");
printf("%lld\n\n",num4);
return 0;

}

3. Write a macro to implement the code segment at the end of Sect. 11.5.2.
4. Rewrite the program from Sect. 7.2 to incorporate 64-bit processing and

parameter passing as described in Sect. 11.8.1.
5. Rewrite the macro definition output64s in Sect. 11.8.2 to use each of the

following and then invoke them in a program:

a. Use memory locations saverax, savercx, etc., to save and restore the
seven affected registers.

b. Use a seven-element array called saveregs to save and restore the seven
affected registers.

11.11 Exercises (Items Marked with an * Have Solutions in Appendix D) 261

6. As an alternative to having two macros to output, one that saves registers and
one that does not, write a single macro using conditional assembly as discussed
in Sect. 7.5. A fourth parameter could be used and if the parameter is blank it
does not save the registers, otherwise it does.

7. Write a macro called input64 that incorporates a prompt via a parameter,
inputs using scanf, and returns the value input via the rax register.

8. Write a macro using parameters to move data from a 32-bit memory location
into the lower 32 bits of another 64-bit memory location without altering the
upper 32 bits.

9. Modify the complete program in Sect. 11.9 to input the value of n and make sure
that it is not a negative number as done in the original program in Sect. 8.2.

10. Modify the complete program in Sect. 11.9 to use rsi instead of ebx. Start by
replacing the second instruction mov ebx,0 with lea rsi,arry.

262 11 64-Bit Processing

12Selected Machine Language
Instructions

12.1 Introduction

The purpose of this chapter is to help draw further connections between assembly
language and computer organization. The advantage of using assembly language is
that one can see computer organization from a software perspective. Further, by
examining machine language one can see some of the principles discussed in a
computer organization text. It is especially helpful to see these principles imple-
mented in a real machine language.

As may have been learned from a computer organization text, there are many
considerations that need to be taken into account and many different formats that
can be used for machine language instructions. One of the first considerations is the
size of the instruction. With a larger the instruction, more opcodes can be included,
more registers can be referenced, and more memory locations can be addressed.
Also, how a particular instruction is divided up indicates how many of each of the
above can be included. For example, assume a 16-bit word is divided up as follows:
bits 15–13 for the opcode, 12–11 for referencing registers, and 10–0 for addressing
memory locations, as shown in Fig. 12.1.

Since there are 3 bits allocated for the opcode, there are 23 or 8 possible opcodes.
Given 2 bits for the register, there are 22 or 4 possible registers, and given 11 bits
allocated for addresses, there are 211 or 2,048 possible addresses for memory
locations.

Although there is a very formal procedure and elaborate mechanism for deter-
mining the machine code for Intel machine language, one can discover the format
of many instructions by examining the machine code of particular instructions.
What is interesting about this method is that one can examine the machine language
of almost any given processor and see some of the instruction layouts merely by
inspection.

© Springer Nature Switzerland AG 2020
J. T. Streib, Guide to Assembly Language, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-35639-2_12

263

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35639-2_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35639-2_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35639-2_12&domain=pdf
https://doi.org/10.1007/978-3-030-35639-2_12

12.2 inc and dec Instructions

By turning on the assembly language listing option as discussed in Appendix A.4,
the .lst file can be generated and the corresponding assembly language can be
seen in the left columns of the listing. The complete program listings used in this
chapter are shown in Sects. 12.9 and 12.10. Although the programs do not do
anything relevant in terms of an algorithm, their sole purpose is to list out selected
machine language instructions for comparison. Of course the machine language is
given in hexadecimal, but it can always be converted to binary (see Appendix B) in
order to see the corresponding bit patterns. Then the bit patterns can be carefully
examined to help one understand the machine language.

For example, in the following section of code taken from the complete listing in
Sect. 12.9, there are listed a number of similar instructions. Again, the code listed
does not actually do anything useful, because the purpose is to understand the
corresponding machine language. In this first example, only the single register inc
instructions are shown for the sake of simplicity, where multiple register instruc-
tions, immediate data instructions, and instructions that address memory locations
will be examined later:

Address Machine Assembly Address Machine Assembly

00000000 40 inc eax 00000004 44 inc esp

00000001 41 inc ecx 00000005 45 inc ebp

00000002 42 inc edx 00000006 46 inc esi

00000003 43 inc ebx 00000007 47 inc edi

First note that the above inc instructions are only two hex digits long, or in
other words these are 1-byte instructions, where each byte has its own sequential
memory address to the left. In looking at the above code, it should be noticed that
the last hexadecimal digit changes as the register changes, where the hexadecimal
digits 0, 1, 2, 3, 4, 5, 6, and 7 correspond to the registers eax, ecx, edx, ebx,
esp, ebp, esi, and edi, respectively. The equivalent numbers in binary would be
0000, 0001, 0010, 0011, 0100, 0101, 0110, and 0111, respectively. Note as
discussed above, it took three binary digits (the three low-order bits of the second
hex digit) to represent the eight registers, leaving five binary digits (four from the
first hex digit and the one high-order bit from the second hex digit) to represent the
opcode for inc as 01000. The format for inc 32-bit register instruction is as in
Fig. 12.2.

Opcode Register Address

15 13 12 11 10 0

Fig. 12.1 Hypothetical instruction

264 12 Selected Machine Language Instructions

Expanding on the above, the following is a listing of the dec reg instruction:

Address Machine Assembly Address Machine Assembly

00000008 48 dec eax 0000000C 4C dec esp

00000009 49 dec ecx 0000000D 4D dec ebp

0000000A 4A dec edx 0000000E 4E dec esi

0000000B 4B dec ebx 0000000F 4F dec edi

Again, it should be noticed that each instruction is only 1 byte long as before.
Yes, there is a hex 4 in the first four bits, but the second hex digit is not as obvious
as the previous example. However, looking at the binary for these instructions, it
becomes much more obvious:

Hex Binary Assembly Hex Binary Assembly

48 01001000 dec eax 4C 01001100 dec esp

49 01001001 dec ecx 4D 01001101 dec ebp

4A 01001010 dec edx 4E 01001110 dec esi

4B 01001011 dec ebx 4F 01001111 dec edi

In examining the binary carefully, it should be noticed that the same bit pattern
appears again in the right three bit positions representing the registers eax through
edi. The only difference is that bit position 3 (fourth from the right) is a 1 instead
of a 0. The result is that the only difference between the inc and dec instructions
is this one bit, where a 0 tells the processor to increment the specified register by 1,
whereas a 1 tells the processor to decrement the specified register by 1. The
machine code for the dec 32-bit register instruction is as in Fig. 12.3.

For convenience, a summary of the machine code representation of the registers
can be found below, where the first column shows the machine code and the second
column shows the corresponding register:

Machine code Register

000 eax

001 ecx

010 edx

011 ebx

100 esp

101 ebp

110 esi

111 edi

inc reg 01000XXX ,where XXX is the register.

Fig. 12.2 Format for the inc instruction

12.2 inc and dec Instructions 265

12.3 mov Instruction

Before looking at how memory is addressed, it is helpful to first examine the mov
instructions that are used with registers to notice some similarities and differences
between them and the inc reg and dec reg instructions. First, the mov reg,
reg instructions will be examined, but instead of listing out all possible register
combinations, only some of the possibilities are shown in the interest of saving
space. Besides, the patterns should become obvious by examining only a select few
of these instructions:

Address Machine Assembly

00000010 8B C0 mov eax,eax

00000012 8B C1 mov eax,ecx

00000014 8B C2 mov eax,edx

00000016 8B C3 mov eax,ebx

00000018 8B C4 mov eax,esp

0000001A 8B C5 mov eax,ebp

0000001C 8B C6 mov eax,esi

0000001E 8B C7 mov eax,edi

00000020 8B C8 mov ecx,eax

00000022 8B C9 mov ecx,ecx

00000024 8B CA mov ecx,edx

00000026 8B CB mov ecx,ebx

The first thing to notice is that the address of each instruction is incremented by 2
each time and that the machine language is now 4 hex digits long, which is 16 bits
or 2 bytes long. The first byte in all the instructions is an 8B which one can
probably assume is part of the opcode of the instruction indicating a register-to-
register mov instruction. Although there appears to be somewhat of a pattern in the
second byte of the first eight instructions, it probably would not hurt to convert
these to binary to see the pattern in all of the instructions more clearly as in
Table 12.1.

dec reg 01001XXX ,where XXX is the register.

Fig. 12.3 Format for the dec instruction

266 12 Selected Machine Language Instructions

The suspicions of the first set of instructions appear to be correct, where eax
through edi are 000 through 111,respectively, just like the inc and dec
instructions previously. Then looking at the last four instructions, the same pattern
appears to begin again with eax through ebx with 000 through 011, respectively.

In examining bits 3 through 5 (the 4th through 6th bits from the right), it can be
noticed that for the first eight instructions, the bits are set at 000 and for the second
four instructions they are set at 001, which happens to correspond to the first reg-
isters in the operand, eax and ecx, respectively. So part of the reason why this mov
reg,reg instruction is larger than the inc reg instruction is that it needs to have
room to reference two registers instead of one. The result is that one should be able to
surmise that the mov between two registers has the format shown in Fig. 12.4.

Having looked at a few of the single and double register instructions, what does
an instruction with immediate data look like? Staying with the mov instruction is a
convenient next step:

Address Machine Assembly

00000028 B8 00000001 mov eax,1

0000002D B9 0000000A mov ecx,10

00000032 BA FFFFFFFF mov edx,-1

00000037 BB FFFFFFF6 mov ebx,-10

Table 12.1 Binary of
second byte of the mov reg,
reg instruction

Hex Binary (2nd byte) Assembly

8B C0 11000000 mov eax,eax

8B C1 11000001 mov eax,ecx

8B C2 11000010 mov eax,edx

8B C3 11000011 mov eax,ebx

8B C4 11000100 mov eax,esp

8B C5 11000101 mov eax,ebp

8B C6 11000110 mov eax,esi

8B C7 11000111 mov eax,edi

8B C8 11001000 mov ecx,eax

8B C9 11001001 mov ecx,ecx

8B CA 11001010 mov ecx,edx

8B CB 11001011 mov ecx,ebx

mov reg,reg 10001011 11XXXYYY

where XXX is the destination register
and YYY is the source register

Fig. 12.4 Format for the mov reg,reg instruction

12.3 mov Instruction 267

Note that the addresses of each instruction is incremented by 5 and that each
instruction is 10 hexadecimal digits long, equating to 40 bits, indicating that each
instruction is 5 bytes long. It should be noticed that the last four bytes of each
instruction is the hexadecimal equivalent of the immediate data in the instruction,
where it should be remembered that negative numbers are represented in two’s
complement notation (see Appendix B). Again it helps to convert the first byte to
binary to determine the machine code as follows:

Hex Binary Register

B8 10111000 eax

B9 10111001 ecx

BA 10111010 edx

BB 10111011 ebx

As before, the last three binary digits 000, 001, 010, 011 are the same digits as
in previous instructions representing the eax, ecx, edx, and ebx registers,
respectively. The format then is as illustrated in Fig. 12.5.

As can be seen, the immediate data instructions are fairly straightforward, so
how would memory addresses be represented in an instruction? Just as the first
instruction in the .code segment starts at relative address or relative memory
location 00000000, the first memory location declared in the .data segment will
also start at relative memory location 00000000 as shown below:

Address Machine Assembly language

.data

00000000 00000003 num1 sdword 3

00000004 00000005 num2 sdword 5

00000008 00000000 num3 sdword ?

A relative memory location is relative to the beginning of either the .data or
the .code segment, because at the time of assembly it is not known where in
memory the segments will be loaded. When the machine language is subsequently
loaded into memory, the relative addresses are eventually changed into the absolute
addresses or absolute memory locations within RAM, where the first memory
location in RAM is absolute memory location 00000000. Using the memory
locations declared above, consider the following mov instructions that use the eax
register and address memory locations num1 and num2:

mov reg,imm 10111XXX YYYYYYYY YYYYYYYY YYYYYYYY YYYYYYYY

where XXX is the register and YYY is the immediate data

Fig. 12.5 Format for the mov reg,imm instruction

268 12 Selected Machine Language Instructions

Address Machine Assembly

0000003C A1 00000004 mov eax,num2

00000041 A3 00000008 mov num3,eax

As with immediate data, note that these two instructions are both 5 bytes long.
Unlike the immediate instructions, where the data in the rightmost four bytes was
the actual number contained in the instruction, here it should be noticed that address
of the memory locations num2 and num3 appears in the right four bytes. In other
words, instead of the numbers 00000005 or 00000000 appearing in the
instruction, the addresses of the memory location num2 and num3, 00000004 and
00000008, appear in the instructions, respectively. In converting the first byte to
binary, notice that there is only one bit difference between the instructions:

Hex Binary Assembly

A1 10100001 mov eax,mem

A3 10100011 mov mem,eax

When moving from memory to the eax register, bit 1 (second from the right) is
set to 0, and when moving from the eax register to memory, note that bit 1 is set to
1. The format of these instructions is as shown in Fig. 12.6.

But what about moving to and from memory into the other registers? Consider
the following instructions using the other three general purposes registers:

Address Machine Assembly

00000046 8B 0D 00000004 mov ecx,num2

0000004C 8B 15 00000004 mov edx,num2

00000052 8B 1D 00000004 mov ebx,num2

00000058 89 0D 00000008 mov num3,ecx

0000005E 89 15 00000008 mov num3,edx

00000064 89 1D 00000008 mov mum3,ebx

The address part of the instruction in the rightmost four bytes looks okay. Also
the mov reg,mem instructions all have an 8B in the first byte and all the mov
mem,reg instructions have an 89 in the first byte. Again looking at the binary:

Hex Binary Assembly

8B 10001011 mov reg,mem

89 10001001 mov mem,reg

Note that some of the leftmost five bits are different from the eax instructions in
Fig. 12.6, where instead bit 3 (fourth from the right) is a 1 instead of a 0 and bit 5

12.3 mov Instruction 269

(sixth from the right) is a 0 instead of a 1. Further, it is opposite from the mov
eax,mem and mov mem,eax instructions, where bit 1 (second from the right) is a
0 when transferring from memory to a register and a 1 when transferring from a
register to memory.

The most noticeable difference is that these instructions are 1 byte longer than
their eax counterparts, 6 bytes instead of 5. Recall from Chap. 1 when discussing
registers, it was said that the eax instruction is usually the preferred register,
because it tends to be shorter. Further, in many of the code examples in this text, the
eax register tends to be used more often than any other register. As can be seen in
the code segment above, the use of the other registers is indeed a little less efficient
in terms of memory utilization.

The first byte above is indeed the opcode, but look carefully at the binary of the
second byte below. Clearly the first two bits on the left are the same. Also, the last
three bits are the same and do not contain the register bits as they have in the past.
However, in examining the middle bits, specifically bits 3 through 5 (fourth through
sixth from the right), they are different with each instruction. As with previous
instructions, 001, 010, and 011 correspond to the registers ecx, edx, and ebx,
respectively:

Hex Binary Register

0D 00 001 101 ecx

15 00 010 101 edx

1D 00 011 101 ebx

Since this instruction format is a little more complicated than all the other ones
examined thus far, in order to analyze the bits of this second byte, it is helpful to
break it down and look at the machine language format of this byte. Although there
are many possible bit combinations, this text only looks at a few of them. The basic
format of this byte is shown in Fig. 12.7.

As seen previously, the bits in the middle (bit positions 3 through 5) indicate the
register and is abbreviated as reg. The two bits on the left (bit positions 6 and 7)
indicate the mode of the instruction and is abbreviated as mod. The three bits on the
right (bit positions 0 through 2) indicate the register and mode, abbreviated as r/m.
With a 00 in the mod field and a 101 in the r/m field, this means that it is

mov eax,mem 10100001 YYYYYYYY YYYYYYYY YYYYYYYY YYYYYYYY

mov mem,eax 10100011 YYYYYYYY YYYYYYYY YYYYYYYY YYYYYYYY

where the eax register is implied and YYY is the address

Fig. 12.6 Format for the mov eax,mem and mov mem,eax instructions

270 12 Selected Machine Language Instructions

displacement only addressing mode or in other words direct addressing mode.
Again, the meaning of the contents of this byte can be very complicated and will
vary with other instructions that use different addressing schemes, but only a few of
the simpler instructions are discussed here to serve as an introduction.

12.4 add and sub Instructions

Having looked at some of the inc, dec, and mov instructions, what about some of
the arithmetic instructions? Instead of looking at all the registers as done in previous
examples, only a few select registers will be examined, since the bit patterns of the
registers have already been established. Consider the following register-to-register
add and sub instructions:

Address Machine Assembly Binary equivalent

0000006A 03C0 add eax,eax 00000011 11 000 000

0000006C 03C1 add eax,ecx 00000011 11 000 001

0000006E 03C2 add eax,edx 00000011 11 000 010

00000070 03C3 add eax,ebx 00000011 11 000 011

00000072 2BC8 sub ecx,eax 00101011 11 001 000

00000074 2BC9 sub ecx,ecx 00101011 11 001 001

00000076 2BCA sub ecx,edx 00101011 11 001 010

00000078 3BCB sub ecx,ebx 00101011 11 001 011

Note that instead of separating the binary equivalent of the opcodes on separate
lines, it is now included off to the right for convenience. The first thing to notice is
that the opcode for the add instruction and sub instruction differs by only 2 bits,
where bit position 3 and 5 of the first byte (fourth and sixth from the right) are each
a 1 instead of a 0 for the subtract instruction. Also notice that the rightmost six bits
of the second byte appear to represent the registers, just like the register-to-register
mov instruction earlier. However, given the previous information on mod, reg, and
r/m sections in the mov instruction, it sheds some further light on the format of this
and the previous mov reg,reg instruction. The reg section is indeed the first
register that appears in the operand. However, the 11 in the leftmost two bits of the
second byte is actually part of the mod section and indicates that the r/m section
holds the code for the second register in the operand. This is true for all three of the

mod reg r/m

7 6 5 4 3 2 1 0

Fig. 12.7 Format of mod reg r/m

12.3 mov Instruction 271

reg,reg instructions examined in this chapter: the mov reg,reg, add reg,
reg, and sub reg,reg instructions.

Given the reg mod r/m byte, there can be up to 256 bit combinations which
allow for a large number of addressing modes. This is one of the reasons the Intel
processor is known as a complex instruction set computer (CISC) as opposed to a
computer with fewer instructions and addressing modes known as a reduced
instruction set computer (RISC).

Looking at add and sub instructions referencing memory locations below, what
similarities and differences can found between them and various previous
instructions?

First, one should notice that the first byte is the same as the previous add and
sub register-to-register instructions. Next, the last four bytes (32 bits) are the
relative addresses of the memory location num2, just like the previous mov reg,
mem instructions. Lastly, the mod reg r/m byte is different than the add reg,
reg and sub reg,reg instructions, but they are the same as the previous mov
reg,mem instructions because they are addressing memory in the same fashion.

Address Machine Assembly Binary equivalent

0000007A 03 05 00000004 add eax,num2 00000011 00 000 101

00000080 03 0D 00000004 add ecx,num2 00000011 00 001 101

00000086 03 15 00000004 add edx,num2 00000011 00 010 101

0000008C 03 1D 00000004 add ebx,num2 00000011 00 011 101

00000092 2B 05 00000004 sub eax,num2 00101011 00 000 101

00000098 2B 0D 00000004 sub ecx,num2 00101011 00 001 101

0000009E 2B 15 00000004 sub edx,num2 00101011 00 010 101

000000A4 2B 1D 00000004 sub ebx,num2 00101011 00 011 101

12.5 mov offset and lea Instructions

Having looked at the moving of the contents of a memory location to a register,
what is the difference between that type of instruction and a lea instruction or mov
offset instruction. First consider the following mov and lea instructions:

Address Machine Assembly Binary equivalent

000000AA 8B 35 00000004 mov esi,num2 10001011 00 110 101

000000B0 8B 3D 00000004 mov edi,num2 10001011 00 111 101

000000B6 8D 35 00000004 lea esi,num2 10001101 00 110 101

000000BC 8D 3D 00000004 lea edi,num2 10001101 00 111 101

272 12 Selected Machine Language Instructions

The first two instructions are the same as previous mov instructions, where in
this case they use the esi and edi registers and the middle bits of the mod reg
r/m byte are 110 and 111, respectively. The two lea instructions have the same
format in the second byte as the mov instructions. The only difference is in the first
byte, where bit positions 1 and 2 (second and third from the right) are opposite of
each other. As before, the result is that when the processor encounters the mov
instructions, the “contents” of memory location num2 are loaded into the specified
register and with the lea instructions the “address” of memory location num2 is
loaded into the specified register. In this instance in the former case, the contents 5
is loaded and in the latter case the address 4 is loaded.

Remember from Chap. 8 that the mov offset and lea instructions effectively
perform the same task, where they both load the address of the memory location
into the specified register. The only difference is that the mov offset instruction is
static and the lea instruction is dynamic, where in the former the address is
determined at assembly time, and in the latter the address can be indexed by a
register and is determined at run-time. In looking at the machine language for the
mov offset instruction below, the address is in the last four bytes of the
instruction as with many other instructions before. Further, its machine language
equivalent is 1 byte shorter than its lea counterpart, where instead of the esi and
edi registers being included in a mod reg r/m byte, they are in the rightmost
three bits (bit positions 0 though 2) of the opcode byte as 110 and 111,
respectively:

Address Machine Assembly Binary equivalent

000000C2 BE 00000004 mov esi,offset num2 10111 110

000000C7 BF 00000004 mov edi,offset num2 10111 111

The significant difference, as discussed in Chap. 8, is that instead of the “con-
tents” of the memory location being moved to the register, the “address” of the
memory location is moved to the register. Although probably not readily apparent,
the machine language for the opcode of the mov offset instruction should be
familiar. In fact it is the same, 10111, as the mov reg,imm instruction discussed
in Sect. 12.3. Compare the following instructions with the instructions above:

Address Machine Assembly Binary equivalent

000000CC BE 00000004 mov esi,4 10111 110

000000D1 BF 00000004 mov edi,4 10111 111

Note that the machine language of the mov reg,imm instructions looks the
same as that of the mov reg,offset mem instructions. Does this mean that one
should use the immediate instructions to try to load the address of a memory
location? The answer is no, because if the contents of the register in both cases were

12.5 mov offset and lea Instructions 273

to be output, there would be a difference between the two. Recall from Sect. 12.3
the discussion of relative and absolute addresses. Although the value in the
immediate case is 4, the value in the offset case is not the relative address of num2
which is 4, but rather the absolute address of the memory location num2 which can
vary depending on where the program is loaded in memory. For example, when
running a test program on one computer, the value in the register was 00404008
(in hex) and when running the same program on another computer, the value in the
register was 010F4008 (in hex).

Even if one could use the correct address of a particular variable, is this method
of addressing memory a good idea? As might be suspected, the answer is no,
because the location of the variable could change and cause potential logic or
execution errors. Using immediate values to access memory instead of variable
names or pointers essentially reduces an assembly language instruction back to that
of a machine language instruction, thus eliminating the purpose of using an
assembler in the first place.

12.6 jmp Instructions

As discussed in Chap. 4, the jmp instruction is known as an unconditional jump
because it jumps regardless of the setting of the eflags register. Although the code
is somewhat nonsensical, the machine language of the jmp instruction can be found
in the following sample code segment:

Address Machine Assembly language instruction

000000D6 EB 04 jmp around

000000D8 90 above: nop

000000D9 90 nop

000000DA EB FC jmp above

000000DC 90 around: nop

The opcode for the jmp instruction is EB, but what is interesting to note is that
the machine code for the jmp around instruction does not contain the address of
the around: nop instruction. Why is this and is it referring to memory location
04? The answer to the latter part of this question is no, because the jmp instruction
is referring to a location that is relative to itself. However, if a 04 is added to the
address of the memory location where the jmp around instruction is located,
000000D6, the new address is 000000DA. But looking at the above code seg-
ment, 000000DA is the address of the jmp above instruction and not the
around: nop instruction. If the 04 is the address relative to jmp around
instruction, why does the number seem incorrect? The answer is that the number is

274 12 Selected Machine Language Instructions

not incorrect because the number is relative to where the instruction pointer is
pointing.

To those who have had or are currently taking a computer organization course,
the following explanation should be somewhat familiar. As a program executes, the
instruction pointer or instruction counter in the CPU points to the instruction that it
is about to fetch and subsequently execute. After an instruction is fetched, the
instruction pointer is then incremented to point to the next instruction that follows
the current instruction. Then when the current instruction is decoded and executed,
the instruction pointer is no longer pointing at the current instruction but rather to
the next instruction in anticipation of fetching it. In the above case, the instruction
pointer is not pointing to memory location 000000D6, but rather 000000D8, so
that when 04 is added to 000000D8, the answer is 000000DC which is the
address of the correct instruction. The value 000000DC is then placed into the
instruction pointer so that when the next instruction is fetched, it is not to the
above: nop instruction but rather the around: nop instruction.

However, what about the jmp above instruction? Shouldn’t it be a jump
backward and not a jump forward? The answer is yes, where the FC is not a positive
number but rather a negative number (11111100 in binary) and it is in two’s
complement form. Using the techniques learned in Appendix B, 11111100 in
binary is equal to –4 in decimal. Remembering that the instruction pointer is not
pointing to the current instruction, jmp above, but rather the instruction after it at
memory location 000000DC, subtracting a 04 results in the address 000000D8,
which is the correct location and instruction.

Notice that only 1 byte is used to store the relative offset address and this allows
for jumps of only +127 bytes or −128 bytes away. On older 16-bit machines, this
sometimes posed a problem and on occasion a code segment needed to be rewritten
to accommodate jumps in excess of the above limitations. Fortunately, with the
newer 32-bit processors, this does not pose a problem because should the uncon-
ditional jump be more than the above limits, a 32-bit relative offset is generated.

12.7 Instruction Timings

As has been mentioned at various points throughout this text, some instructions are
faster than others. It has been implied that the faster instructions should be used
over their slower counterparts when necessary, and also when it does not interfere
with the readability and maintainability of the program. Why is it that some
instructions are faster than others? The reasons for this can have to do with many
different factors including the size of the instruction, whether the instruction ref-
erences registers as opposed to memory locations, the complexity of the operation,
and how the processor is designed. When a processor is said to be rated at a speed
2.0 GHz, that means that the processor can execute at two billion cycles per second,

12.6 jmp Instructions 275

where different instructions take different number of cycles to execute. For the
discussion that follows, the instruction timings are based on a 32-bit Pentium
processor.

Generally, instructions that do not reference memory tend to be faster than
instructions that do reference memory. For example, an inc eax instruction takes
only one clock cycle of the CPUs time, whereas an inc instruction that references
memory such as inc number takes three clock cycles. The reason why registers
are faster is that registers are internal to the CPU, whereas memory is external to the
CPU and it takes time for data to be transferred from RAM to the CPU or from the
CPU to RAM.

Does this mean that memory should be avoided? No, because there are only four
general purpose registers in the 32-bit Intel processor and it would be impractical to
restrict a program to only four registers. What it does mean is that when in a critical
section of the program where speed is important, a value might be left in a register
in lieu of returning the value back to memory so that readability is sacrificed for
efficiency.

In looking at a few other instructions, take the imul instruction for example. To
multiply the contents of eax by the contents of another register such as the ecx
register would take 10 clock cycles. Similarly, the idiv ecx instruction takes 46
clock cycles. However, if in each case the contents of the ecx register are a power
of 2, an arithmetic shift instruction could be used instead. For example, if the
contents of the ecx register in an imul ecx instruction were a 4, then a sal
eax,2 instruction could be used instead, which would take only three clock cycles
which is over three times faster. Likewise, if the contents of ecx in an idiv ecx
instruction were a 32, a sar eax,5 instruction could be used which also takes
only three cycles and would be 15 times faster. This is the reason why some
programmers will use arithmetic shift instructions instead of multiplication and
division instructions. Does this mean that arithmetic shifts should always be used
over their arithmetic counterparts? No, not necessarily. If the code appears in a
non-critical section of a program that is executed only once, then the increase in
speed may not be worth the decrease in readability. However, if the arithmetic
operation occurs in a time-sensitive section of a program, then the increase in
execution speed far outweighs any loss of readability or maintainability.

12.8 Floating-Point and 64-Bit Instructions

Having examined 32-bit integer instructions, it is interesting to look at some of the
similarities and differences in comparison with floating-point and 64-bit integer
instructions. Because the instructions sets are so large, only a few of these latter
instructions will be examined in this section.

276 12 Selected Machine Language Instructions

12.8.1 Floating-Point Instructions

Just as there were differences in the machine language between various 32-bit
integer instructions, there are also differences in the machine language of
floating-point instructions. For example, assuming that the variables x, y, and z are
declare as real4, consider the fld, fst, and fstp instructions as shown below:

Machine language Assembly language Binary of the second byte from the left

D9 05 00000000 fld x 000 00 101

D9 15 00000004 fst y 000 10 101

D9 1D 00000008 fstp z 000 11 101

Note that the instructions are six bytes long, where the last four bytes is the
operand that contains address of the memory location. In the second byte from the
left there are some differences and the binary equivalent is shown on the last
column on the right. It is separated by spaces to help indicate where the differences
are in the bit patterns. Notice that it is the middle set of bits that indicate whether the
instruction is a fld, fst, or fstp instruction.

Similarly, differences can be found between the fadd and fsub instructions as
shown below:

Machine language Assembly language Binary of the second byte from the left

D8 05 00000000 fadd x 00000101

D8 25 00000004 fsub y 00100101

Again, the operand is in the last four bytes and contains the address of the
memory location. Notice the difference between the two instructions is in the
second byte from the left. Note that in the binary, the third bit from the left is a 0 or
1 for the fadd or fsub, respectively. The result is that just like with 32-bit integer
instructions, the differences between various operations such as adding or sub-
tracting can be just a single binary digit.

12.8.2 64-Bit Instructions

The similarities between 32-bit and 64-bit integer instructions are quite noticeable.
However, with more registers, the instructions need to be larger. Although it is a
rather large list, consider the following partial list of register to register instructions

12.8 Floating-Point and 64-Bit Instructions 277

Machine
language

Assembly
language

Right 4 bits of first byte on
the left

Binary of the last byte on
the right

48 8B C0 mov rax,rax 1000 11 000 000

48 8B C3 mov rax,rbx 1000 11 000 011

48 8B D8 mov rbx,rax 1000 11 011 000

48 8B DB mov rbx,rbx 1000 11 011 011

49 8B C0 mov rax,r8 1001 11 000 000

49 8B C7 mov rax,r15 1001 11 000 111

49 8B D8 mov rbx,r8 1001 11 011 000

49 8B DF mov rbx,r15 1001 11 011 111

4C 8B C0 mov r8,rax 1100 11 000 000

4C 8B C3 mov r8,rbx 1100 11 000 011

4D 8B C0 mov r8,r8 1101 11 000 000

4D 8B C7 mov r8,r15 1101 11 000 111

4C 8B F8 mov r15,rax 1100 11 111 000

4C 8B FB mov r15,rbx 1100 11 111 011

4D 8B F8 mov r15,r8 1101 11 111 000

4D 8B FF mov r15,r15 1101 11 111 111

First, note that the second byte from the left in the 64-bit instructions is the same
as the first byte on the left in the 32-bit instructions in Sect. 12.3. As before, notice
that the binary representation of the last byte on the right has added spaces to help
readability. Similar to their 32-bit counterparts, rax through rbx (rax, rcx, rdx,
and rbx) have bit patterns 000 through 011 and that new numbered registers r8
through r15 varies from 000 to 111. Also, notice that rax and r8 have the same
bit pattern; so how does the computer know which register is which? The answer
lies in the first byte on the left, specifically the right-most four bits as shown above.
Upon careful inspection, can the pattern be seen? First notice that when the two
registers in the instruction are rax through rbx, the first and third bits from the
right are both 0. Then notice that when the two registers are r8 through r15 the
same two bits are 1. It follows that when the first register is rax through rbx the
third bit from the right is 0 and when the second register is r8 through r15 the first
bit from the right is a 1. Of course, when the types of registers are reversed, the two
bits are reversed. It is these two bits in the first byte on the left that allows the same
bit patterns in the last byte on the right to be used for different registers.

Continuing on to another example, if a 64-bit instruction is using an immediate
operand that is 32 bits or less, then notice only 32 bits need to be allocated in the
machine language instructions as shown below:

Machine language Assembly language

48 C7 C0 00000001 mov rax,1

48 C7 C1 343EFCEA mov rcx,876543210

48 C7 C2 FFFFFFFF mov rdx,-1

48 C7 C3 CBC10316 mov rbx,-876543210

278 12 Selected Machine Language Instructions

As before, notice above that the third byte from the left, that the value goes from
C0 to C3 indicating the different registers. Further, in comparison the 64-bit
instruction is seven bytes long as opposed to just five bytes long for the 32-bit
instruction in Sect. 12.3.

What happens if the immediate value in the operand is larger than 32 bits? In the
examples below notice that the instructions are now ten bytes long in order to
accommodate the 64-bit values. Note that the right-most bits of the second byte on
the left indicate the register used as shown below:

Machine language Assembly language Right 4 bits of
2nd byte on the left

48 B8 000000024CB016EA mov rax,9876543210 1000

48 B9 018EBBB95EED0E13 mov rcx,112233445566778899 1001

48 BA FFFFFFFDB34FE916 mov rdx,-9876543210 1010

48 BB FE714446A112F1ED mov rbx,-112233445566778899 1011

Turning to the addressing of memory, consider the instructions below:

Machine language Assembly
language

Right 4 bits of first byte
on the left

Binary of the third
byte from the left

48 8B 05 0000000C mov rax,a 1000 00 000 101

48 8B 1D 00000014 mov rbx,b 1000 00 011 101

4C 8B 05 0000001C mov r8,c 1100 00 000 101

4C 8B 3D 00000024 mov r15,d 1100 00 111 101

Again, the bit pattern for the third byte from the left appears in the right column
with spaces to help with readability. Notice that the middle bits are 000 through
011 for rax through rbx and 000 through 111 for r8 through r15. As before,
the right most four bits of the left-most byte are also shown above. Again, notice
that the third bit from the right is set to 0 for rax through rbx and 1 for r8
through r15. Lastly, the four bytes on the right is the operand and indicate the
address of the memory location being referenced.

Similar to their 32-bit counterparts, there is only a slight difference between the
load and store 64-bit operations as can be seen below:

Machine language Assembly language Binary of the second byte on the left

48 8B 05 0000000C mov rax,a 1000 1011

48 89 05 00000014 mov b,rax 1000 1001

The binary equivalent of the second byte from the left is shown above to the
right, Notice that the second bit from the right is set to 1 for the load operation mov
rax,a and it is set to 0 for the store operation mov b,rax. Again, the four bytes
on the right are the operand that indicate the address of the memory location being
referenced and this will be discussed further in the next section. Further, similar bit
patterns can be found for other instructions such as add and sub, which is left as
an exercise at the end of the chapter.

12.8 Floating-Point and 64-Bit Instructions 279

12.8.3 Memory Addressing

In both of the last two examples in the preceding section, was anything noticed that
might have seemed inconsistent? Note that the addresses for the variables for the
64-bit integer instructions are only 32-bits long which is the same length as with
32-bit integer instructions. Even though the values that are stored in memory
locations and registers are 64-bits, the addresses remain at 32-bits.

Although the operands are the same length between the two instruction sets, it
should be noted that the way in which addressing of the memory locations occurs is
different. Even though the difference cannot be seen in the assembly listings, in
32-bit (�86) mode the addressing scheme has the address of the memory location in
operand of the instruction whereas the 64-bit (�64) mode the addressing scheme
has an offset from the current instruction located in the operand of the instruction.
This is true for both the 32-bit and 64-bit instructions when in 64-bit (�64) mode.

In looking at a 32-bit instruction in 32-bit (�86) mode, assume that the following
variable dog is declared at the address 00000020 in memory as shown below:

Address Machine language Assembly language

00000020 00000005 dog sdword 5

00000040 8B 05 00000020 mov eax,dog

Notice the operand portion of the mov eax,dog instruction has the address of
the memory location dog as 00000020. On the other hand, 64-bit instructions (or
32-bit instructions) in 64-bit (�64) mode access the memory location differently.
Assume in this case that the variable cat is declared at memory location
00000060 in memory as shown below:

Address Machine language Assembly language

00000060 0000000000000007 cat sqword 7

00000070 48 8B 05 FFFFFFE9 mov rax,cat

Notice that operand of the machine language instruction does not contain the
address 00000060, but rather FFFFFFE9 which is a −17 in base ten and is the
offset or how far away the memory location cat is from the mov instruction. If the
variable was located at a memory location greater than the address of the instruc-
tion, the offset in the operand would be positive.

To find out if FFFFFFE9 is the correct offset, take the address of the instruction
00000070 and add the length of the instruction (in this case 7) which results in the
address of the next instruction 00000077. Then this number is added to the offset
in the operand, FFFFFFE9, and the result is the address 00000060 of the memory
location cat.

Again, unfortunately, this cannot be seen in an assembly language listing file
where in 64-bit (�64) mode the address in the operand looks the same as in 32-bit
(�86) mode. In order to see this one must run the debugger to look at the memory
locations and this is left as an exercise at the end of the chapter.

280 12 Selected Machine Language Instructions

12.9 Complete Program: 32-Bit Assembly Listing

To help readability, the following is a cleaned-up version of the assembly listing
(.lst file) showing the machine language of the instructions discussed in Sects. 12.2
through 12.6. The source code for this program can be found at the website listed at the
end of the Preface. The program should be run in 32-bit (x86) mode as discussed in
Section A.2 and the directions for obtaining a listing are discussed in Section A.4.

.686

.model flat,c

.stack 100h

.data

00000000 00000003 num1 sdword 3

00000004 00000005 num2 sdword 5

00000008 00000000 num3 sdword ?

.code

main proc

00000000 40 inc eax

00000001 41 inc ecx

00000002 42 inc edx

00000003 43 inc ebx

00000004 44 inc esp

00000005 45 inc ebp

00000006 46 inc esi

00000007 47 inc edi

00000008 48 dec eax

00000009

0000000A

0000000B

0000000C

0000000D

0000000E

0000000F

49

4A

4B

4C

4D

4E

4F

dec
dec

dec

dec
dec

dec

dec

ecx
edx

ebx

esp
ebp

esi

edi

00000010 8B C0 mov eax,eax

00000012 8B C1 mov eax,ecx

00000014 8B C2 mov eax,edx

00000016 8B C3 mov eax,ebx

00000018 8B C4 mov eax,esp

0000001A 8B C5 mov eax,ebp

0000001C 8B C6 mov eax,esi

0000001E 8B C7 mov eax,edi

00000020 8B C8 mov ecx,eax

00000022 8B C9 mov ecx,ecx

00000024 8B CA mov ecx,edx

00000026 8B CB mov ecx,ebx

00000028 B8 00000001 mov eax,1

0000002D B9 0000000A mov ecx,10

00000032 BA FFFFFFFF mov edx,-1
00000037 BB FFFFFFF6 mov ebx,-10

12.9 Complete Program: 32-Bit Assembly Listing 281

0000003C A1 00000004 mov eax,num2
00000041 A3 00000008 mov num3,eax

00000046 8B 0D 00000004 mov ecx,num2
0000004C 8B 15 00000004 mov edx,num2
00000052 8B 1D 00000004 mov ebx,num2

00000058 89 0D 00000008 mov num3,ecx
0000005E 89 15 00000008 mov num3,edx
00000064 89 1D 00000008 mov num3,ebx

0000006A 03 C0 add eax,eax
0000006C 03 C1 add eax,ecx
0000006E 03 C2 add eax,edx
00000070 03 C3 add eax,ebx
00000072 2B C8 sub ecx,eax
00000074 2B C9 sub ecx,ecx
00000076 2B CA sub ecx,edx
00000078 2B CB sub ecx,ebx

0000007A 03 05 00000004 add eax,num2
00000080 03 0D 00000004 add ecx,num2
00000086 03 15 00000004 add edx,num2
0000008C 03 1D 00000004 add ebx,num2
00000092 2B 05 00000004 sub eax,num2
00000098 2B 0D 00000004 sub ecx,num2
0000009E 2B 15 00000004 sub edx,num2
000000A4 2B 1D 00000004 sub ebx,num2

000000AA 8B 35 00000004 mov esi,num2
000000B0 8B 3D 00000004 mov edi,num2
000000B6 8D 35 00000004 lea esi, num2
000000BC 8D 3D 00000004 lea edi, num2

000000C2 BE 00000004 mov esi, offset num2
000000C7 BF 00000004 mov edi, offset num2

000000CC BE 00000004 mov esi,4
000000D1 BF 00000004 mov edi,4

000000D6 EB 04 jmp around
000000D8 90 above: nop
000000D9 90 nop
000000DA EB FC jmp above
000000DC 90 around: nop

000000DD C3 ret
main endp

end

282 12 Selected Machine Language Instructions

12.10 Complete Program: Floating-Point and 64-Bit
Assembly Listing

To help readability, the following is a cleaned-up version of the assembly listing
(.lst file) showing the machine language of the instructions discussed in
Sect. 12.8. The source code for this program can be found at the website listed at the
end of the Preface. The program should be run in 64-bit (x64) mode as discussed in
Section A.3 and the directions for obtaining a listing are discussed in Section A.4.

Also, note that the floating-point programs that incorporate I/O as in Chap. 10
are to be run in 32-bit mode. However, to examine just the machine language
without I/O the floating-point instructions from Sect. 12.8.1 are included in this
program for convenience.

.data
00000000 40A00000 x real4 5.0
00000004 40000000 y real4 2.0
00000008 00000000 z real4 ?

0000000C 0000000000000001 a sqword 1
00000014 0000000000000002 b sqword 2
0000001C 0000000000000003 c sqword 3
00000024 0000000000000004 d sqword 4

.code
main proc

00000000 D9 05 00000000 fld x
00000006 D9 15 00000004 fst y
0000000C D9 1D 00000008 fstp z

00000012 D8 05 00000000 fadd x
00000018 D8 25 00000004 fsub y

0000001E 48 8B C0 mov rax,rax
00000021 48 8B C3 mov rax,rbx
00000024 48 8B D8 mov rbx,rax
00000027 48 8B DB mov rbx,rbx

0000002A 49 8B C0 mov rax,r8
0000002D 49 8B C7 mov rax,r15
00000030 49 8B D8 mov rbx,r8
00000033 49 8B DF mov rbx,r15

00000036 4C 8B C0 mov r8,rax
00000039 4C 8B C3 mov r8,rbx
0000003C 4D 8B C0 mov r8,r8
0000003F 4D 8B C7 mov r8,r15

00000042 4C 8B F8 mov r15,rax
00000045 4C 8B FB mov r15,rbx
00000048 4D 8B F8 mov r15,r8
0000004B 4D 8B FF mov r15,r15

12.10 Complete Program: Floating-Point and 64-Bit Assembly Listing 283

12.11 Summary

• The number of bits allocated for an instruction and how that instruction is divided
up indicates the number of opcodes, the number of register references, and the
number of memory locations that can be addressed.

• Much can be learned about the machine language of many assembly languages
by mere inspection.

• Sometimes the difference between two operations can be the difference of the
setting of only one bit.

• Some instructions such as mov eax,mem take up less memory than do mov
reg,mem instructions.

• The Intel processor is known as a complex instruction set computer (CISC) as
opposed to a reduced instruction set computer (RISC), due to the number of
instructions and addressing modes.

• When dealing with powers of 2, using arithmetic shift instructions can be sig-
nificantly faster than using imul and idiv instructions.

• Just because an instruction is faster does not mean that it needs to be used all the
time. The decision must be based on the necessity for execution speed versus
readability and maintainability.

0000004E 48 C7 C0 00000001 mov rax,1
00000055 48 C7 C1 343EFCEA mov rcx,876543210
0000005C 48 C7 C2 FFFFFFFF mov rdx,-1
00000063 48 C7 C3 CBC10316 mov rbx,-876543210

0000006A 48 B8 000000024CB016EA mov rax,9876543210
00000074 48 B9 018EBBB95EED0E13 mov rcx, 112233445566778899
0000007E 48 BA FFFFFFFDB34FE916 mov rdx,-9876543210
00000088 48 BB FE714446A112F1ED mov rbx,-112233445566778899

00000092 48 8B 05 0000000C mov rax,a
00000099 48 8B 1D 00000014 mov rbx,b
000000A0 4C 8B 05 0000001C mov r8,c
000000A7 4C 8B 3D 00000024 mov r15,d

000000AE 48 8B 05 0000000C mov rax,a
000000B5 48 89 05 00000014 mov b,rax

000000BC C3 ret
main endp

end

284 12 Selected Machine Language Instructions

• In �86 mode the operand contains the address of the corresponding memory
location whereas in �64 mode the operand contains the offset of the corre-
sponding memory location.

12.12 Exercises (Items Marked with an * Have Solutions
in Appendix D)

�1. If there is an 8-bit instruction, where 2 bits are reserved for the opcodes and 0
bits for the registers, how many opcodes and registers are there, and how much
memory can be addressed?

2. If there is a 16-bit instruction, where 4 bits are reserved for the opcodes and 1
bit for the registers, how many opcodes and registers are there, and how much
memory can be addressed?

�3. If there is a 16-bit instruction, where 5 bits are reserved for the opcodes and 2
bits for the registers, how many opcodes and registers are there, and how much
memory can be addressed?

4. If there is a 32-bit instruction, where 8 bits are reserved for the opcode and 4
bits for the registers, how many opcodes and registers are there, and how much
memory can be addressed?

5. If there is a 32-bit instruction, where 10 bits are reserved for the opcode and 6
bits for the registers, how many opcodes and registers are there, and how much
memory can be addressed?

6. Convert the following assembly language instructions to their machine lan-
guage equivalents. List the answers in both hex and binary:
∗A. add ecx,ebx B. sub ecx,edx
 C. add esi,edi D. sub edx,esi

7. Write an assembly language program and generate the .lst file to determine
the machine language format of the following 1-byte instructions. Write out the
answers in both hex and binary:
∗A. nop B. cld C. ret D. std

8. Write an assembly language program and generate the .lst file to determine
the machine language format of the following 2-byte instructions. Write out the
answers in both hex and binary:
∗A. and eax,ebx

B. or ebx,ecx
C. xor eax,eax
D. test ecx,edx

9. Key in the following program and obtain the assembly listing (.lst) file (see
Appendix A.4). Looking at the machine code for both instructions, indicate
which bit or bits are different between the two instructions.

12.11 Summary 285

64-bit(x64) Mode
.data

number sqword 5
.code

main proc
add rax,number
sub rax,number
ret

main endp
end

10. The instructions and data in the following similar programs are both 32-bit to
allow them to be executed in both �86 and �64 modes. When assembling the
programs, be sure to also create the assembly listing (.lst) files (See Appen-
dices A.2, A.3, and A.4) so that one can refer to the machine code.

32-bit (x86) Mode 64-bit (x64) Mode

.686 .data

.model flat,c number sdword 5

.stack 100h .code

.data main proc
number sdword 5 mov eax,number

.code ret
main proc main endp

mov eax,number end
ret

main endp
end main

For both programs in both modes, set a breakpoint on the first executable
instruction by right clicking on the instruction, selecting Breakpoint, and
clicking on Insert Breakpoint. Then in the Debug pull-down menu select Step
Into. To turn on the registers, in the Debug pull-down menu, select Windows,
and then select Registers. Do the same for memory but select Memory and then
select Memory 1.

Looking first at the Registers window, note the address in the eip or rip
instruction pointer register. Then find the memory location and the corre-
sponding machine code for the instruction in the Memory 1 window. If it is not
in the window, type in the address from the eip or rip register in the
Address box, or alternatively type in &main.

Although the first byte in �86 mode or two bytes in �64 mode of the
instructions look okay, the operand portion appears backwards. This is because
inside the computer the addresses in instructions and data in memory locations
are stored with the least significant byte first. For example, the data 00012468
would be stored as 68240100. This is known as little endian order. All one

286 12 Selected Machine Language Instructions

has to do to read the bytes in reverse order to determine the address in an
operand or the data stored in a memory location.

In a �86 mode, this represents the actual address of the memory location.
(Note that this might be different every time the program is executed.) One can
then find the memory location by typing in the address in the Address box and
see the contents of memory, which will also be in little endian order. Alter-
natively, one could just type in the name of the memory location preceded by
an ampersand as &number.

However, when running the program in �64 mode, the address in the
operand represents an offset. As discussed in the text, to find the location add
the length of the current instruction (which would be 6 in this case) to the
address of the current instruction. Then be sure to again reverse the bytes of the
operand and add it also. Using the calculated address, the contents of the
referenced memory location can then be seen, again in little endian order.

In both cases, write down how each instruction looks in memory and the
address of the memory location, number. In the �64 mode case, be sure to
show you work on how the address was calculated.

12.12 Exercises (Items Marked with an � Have Solutions in Appendix D) 287

Appendix A: Directions for MASM in Visual
Studio 2019 Community Edition

Note that each of the complete programs in this text have been run using Visual
Studio 2019 Community Edition. Although there are similarities in each of the
following three sections, there are also difference and the directions are written
separately to avoid confusion. The first is for C programs with inline assembly, the
second for 32-bit integer and floating-point MASM programs, and the third is for
64-bit integer MASM programs. Also, the fourth section contains directions for
obtaining an assembly listing for MASM programs (.lst file).

A.1 C Programs with Inline Assembly

• To create a new project, on the Visual Studio 2019 Get Started page, click
Create new project.

• On the next Create a new project page, choose Empty Project (where it also
says C ++, Windows, and Console underneath this selection), and click Next.

• On the Configure your new project page, in the Project Name box use the
default Project1 name or key in another name such as TestInLine. Then
determine Location where the project should be stored, whether in the default
folder given or key in another location such as F:\ for a jump drive. By default,
the Solution name is the same as the Project name, then click the Create button.

• In the Solution Explorer, right click on the name of the application (default
Project1), select Properties, then under Linker, select System, and verify that the
SubSystem is Console. (If not select it from the list).

• Again, in the Solution Explorer, expand Project1 (if not done so already), and
right click on Source Files, hover on Add, and click New Item. Note that the
default is C ++ File (.cpp). At the bottom of the screen use the default name
Source or use a different name and change the extension from .cpp to .c (as in
source.c). In either case be sure to use a .c extension (because this indicates to
use the C compiler instead of the C ++ compiler) and then click Add.

© Springer Nature Switzerland AG 2020
J. T. Streib, Guide to Assembly Language, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-35639-2

289

https://doi.org/10.1007/978-3-030-35639-2

• One can now key in a program or copy and paste a complete program from the
“Guide to Assembly Language” website. Then click on BUILD and Build
Solution. If there are no syntax errors, then click on DEBUG and then Start
Without Debugging.

A.2 32-Bit Integer and Floating-Point MASM Programs

• To create a new project, on the Visual Studio 2019 Get Started page, click
Create new project.

• On the next Create a new project page, choose Empty Project (where it also
says C ++, Windows, and Console underneath this selection), and click Next.

• On the Configure your new project page, in the Project Name box use the
default Project1 name or key in another name such as Test32Bit or TestFloat-
ingPoint. Then determine Location where the project should be stored, whether
in the default folder given or key in another location such as F:\ for a jump
drive. By default, the Solution name is the same as the Project name, then click
the Create button.

• Make sure in the ribbon that x86 appears in the Solution Platforms box which is
next to the Solution Configurations box that has the word Debug in it. If not,
select it from the list. By hovering over the boxes, one can see the names of the
boxes.

• Now in the Solution Explorer (which can appear on either the left or right side),
right click the name of the application which appear in bold near the top (default
Project1), then hover on Build Dependencies and then click Build Customiza-
tions. Then check the masm box and click OK.

• Again, in the Solution Explorer, right click on the name of the project (default
Project1) and select Properties. Then expand Linker and then click on Input. In
the Additional Dependencies, type or paste msvcrt.lib;legacy_stdio_definitions.
lib; at the beginning of the list. Be careful not to delete any other entries, do not
forget the semi-colons, and then click OK. Alternatively, or if there are problems
when building a solution, the above can be added at the beginning of the
program as follows:

includelib msvcrt.lib
includelib legacy_stdio_definitions.lib

• Then again in the Solution Explorer, right click on the name of the application
(default Project1), select Properties, then under Linker, select System, and verify
that the SubSystem is Console. (If not select it from the list). Also, under Linker,
select Advanced and verify the Entry Point is blank (and does not say main).

• Now in the Solution Explorer, expand Project1 (if not done so already), and
right click on Source Files, hover on Add, and click New Item. Note that the
default is C ++ File (.cpp). At the bottom of the screen use the default name

290 Appendix A: Directions for MASM in Visual Studio 2019 Community Edition

source or use a different name and change the extension from .cpp to .asm (as in
source.asm). In either case be sure to use a .asm extension (because this indi-
cates to use the Microsoft Assembler, MASM, instead of the C ++ compiler)
and then click Add.

• One can now key in a program or copy and paste a complete program from the
“Guide to Assembly Language” website. Then click on BUILD and Build
Solution. If there are no syntax errors, then click on DEBUG and then Start
Without Debugging. (For information on using the Debugger, see problem 10 in
Sect. 12.12.)

A.3 64-Bit Integer MASM Programs

• To create a new project, on the Visual Studio 2019 Get Started page, click
Create new project.

• On the next Create a new project page, choose Empty Project (where it also
says C ++, Windows, and Console underneath this selection), and click Next.

• On the Configure your new project page, in the Project Name box use the
default Project1 name or key in another name such as Test64Bit. Then deter-
mine Location where the project should be stored, whether in the default folder
given or key in another location such as F:\for a jump drive. By default, the
Solution name is the same as the Project name, then click the Create button.

• Select x64 in the ribbon in the Solution Platforms box which is next to the
Solution Configurations box that has the word Debug in it. By hovering over the
boxes, one can see the names of the boxes.

• Now in the Solution Explorer (which can appear on either the left or right side),
right click the name of the application which appear in bold near the top (default
Project1), then hover on Build Dependencies and then click Build Customiza-
tions. Then check the masm box and click OK.

• Again, in the Solution Explorer, right click on the name of the project (default
Project1) and select Properties. Then expand Linker and then click on Input. In
the Additional Dependencies, type or paste libcmt.lib;legacy_stdio_definitions.
lib; at the beginning of the list. Be careful not to delete any other entries, do not
forget the semi-colons, and then click OK. Alternatively, or if there are problems
when building a solution, the above can be added at the beginning of the
program as follows:

includelib libcmt.lib
includelib legacy_stdio_definitions.lib

• Again, in the Solution Explorer, right click on the name of the project (default
Project1) and select Properties. Then expand Linker and then click on System.
In the Enable Large Addresses, select No (/LARGEADDRESSAWARE:NO).

Appendix A: Directions for MASM in Visual Studio 2019 Community Edition 291

http://dx.doi.org/10.1007/978-3-030-35639-2_12

While in the System area, verify that the SubSystem is Console. (if not select it
from the list). Then click Apply and then click OK.

• Then again in the Solution Explorer, right click on the name of the application
(default Project1), select Properties, then under Linker, select Advanced and
verify the Entry Point is blank (and does not say main).

• Now in the Solution Explorer, expand Project1 (if not done so already), and
right click on Source Files, hover on Add, and click New Item. Note that the
default is C ++ File (.cpp). At the bottom of the screen use the default name
source or use a different name and change the extension from .cpp to .asm (as in
source.asm). In either case be sure to use a .asm extension (because this indi-
cates to use the Microsoft Assembler, MASM, instead of the C ++ compiler)
and then click Add.

• One can now key in a program or copy and paste a complete program from the
“Guide to Assembly Language” website. Then click on BUILD and Build
Solution. If there are no syntax errors, then click on DEBUG and then Start
Without Debugging. (For information on using the Debugger, see problem 10 in
Sect. 12.12.)

A.4 MASM Assembly Listings (.lst File)

These directions are for obtaining an assembly listing (.lst file) for 32-bit integer,
floating-point, and 64-bit integer MASM programs as created in Sects. A.2 and A.3.

• Right click on the name of the project in the Solution Explorer, click on
Properties, and expand Microsoft Macro Assembler. Make sure that if assem-
bling a 32-bit program, such as the one in Sect. 12.9, that the Platform: in the
top part of the window says Win32 and if assembling a 64-bit program, such as
the one in Sect. 12.10, that the Platform: in the top part of the window says x64.
Then click on Listing File and select Yes(/Sa) for List All Available Information,
and type in $(ProjectName).lst for Assembled Code Listing File. Then click
Apply and then OK.

• After building the program as discussed in the last bullet point in Sects. A.2 and
A.3, the .lst file can be found by clicking File, then Open, then File…, and
then clicking on the .lst file to open it.

• Be careful not to make changes to the .lst file, but only to the .asm file
because the changes made to the .lst file will be ignored by the assembler.

292 Appendix A: Directions for MASM in Visual Studio 2019 Community Edition

http://dx.doi.org/10.1007/978-3-030-35639-2_12
http://dx.doi.org/10.1007/978-3-030-35639-2_12
http://dx.doi.org/10.1007/978-3-030-35639-2_12

Appendix B: Binary, Hexadecimal, Logic,
Arithmetic, and Data Representation

The purpose of this appendix is to introduce the reader to binary and hexadecimal
numbers (the latter often abbreviated as simply “hex”), how to convert back and
forth between the two, and how to convert them to and from the decimal number
system. This chapter also introduces logic, signed integers, and binary arithmetic.
Further, it illustrates floating-point numbers and character representations.
Although there are calculators which can perform some of these conversions, it
is sometimes faster to just do the conversions by hand, which also helps one better
understand number representation. If the reader already has knowledge of these
concepts, this appendix can either be skipped or serve as a good review.

B.1 Decimal and Binary Numbers

The reader is obviously familiar with the decimal numbering system, otherwise
known as the base 10 numbering system, which contains the ten decimal digits 0
through 9. In base 10, the number 2137 can be represented as shown below:

 2 1 3 7

103 102 101 100

As should be known, 103 is equal to 1000, 102 is equal to 100, 101 is equal to 10,
and 100 is equal to 1, where in the number 2137 there is a 2 in the one thousand’s
position, a 1 in the one hundred’s position, a 3 in the ten’s position, and a 7 in the
one’s position. If each number in each position was multiplied by the value of the
position they are in, then the result would be 2 times 1000 equals 2000, 1 times 100
equals 100, 3 times 10 equals 30, and 7 times 1 equals 7. If the products of each of
these are added together, the answer is 2137:

© Springer Nature Switzerland AG 2020
J. T. Streib, Guide to Assembly Language, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-35639-2

293

https://doi.org/10.1007/978-3-030-35639-2

=

2 ∗ 1, 000 = 2, 000
1 ∗ 100 = 100
3 ∗ 10 = 30
7 ∗ 1 7
—————————
sum = 2, 137

Although this explanation of the base 10 numbering system should be fairly
obvious, it is fundamental to any numbering system, regardless of what base is
used. Computers use the binary numbering system, or in other words the base 2
numbering system. It is much easier to distinguish between just two digits, 0 and 1,
in electronic circuits than it is to represent 10 different digits. A binary digit is
known as a bit, where typically 8 bits make up a byte. For example, the number
101112 in the binary number system would be represented as follows:

 1 0 1 1 1

 24 23 22 21 20

Again, 24 equals 16, 23 equals 8, 22 equals 4, 21 equals 2, and 20 equals 1. Of
course, one can go through the next step of multiplication as done previously with
decimal numbers:

=

1 ∗ 16 = 16
0 ∗ 8 = 0
1 ∗ 4 = 4
1 ∗ 2 = 2
1 ∗ 1 1
——————–
sum = 23

However, since a placeholder is only a 1 or a 0, where 0 times anything is 0, one
only needs to look at the places where there is a 1 and add up the value of the
corresponding placeholder. The result is that there is a 1 in the sixteen’s, four’s,
two’s, and one’s positions, which adds up to 23. In fact, it is the above method that
makes it easy to convert binary numbers to decimal numbers. All one has to do is
add up the placeholder positions of those containing a 1 and the result is the decimal
equivalent. As another example, given the number 100102, what is the decimal
equivalent? There are 1 s in the sixteen’s and two’s positions, so the decimal
equivalent is 18. There are a number of exercises at the end of this appendix to
allow the reader the opportunity of additional practice.

What about conversion of decimal numbers to binary numbers? There are two
methods that can be used to accomplish this task. The first is in a sense a reverse of
the method of converting binary to decimal. Instead, one just asks how large a
particular power of two could go into a decimal number and then subtracts that
power of two. The difference is then moved to the next position and a 1 placed in

294 Appendix B: Binary, Hexadecimal, Logic, Arithmetic, and Data Representation

the current position, but if the difference is negative, a 0 is placed in the current
position, and the original number is placed in the next column. Using the previous
example of 23, where the largest power of two that can be subtracted from 23 is 16,
a 1 is placed in the 16’s position and after the subtraction a 7 remains. The process
is repeated and since an 8 cannot be subtracted from 7 without the results being
negative, a 0 is placed in the 8’s position. However, a 4 can be subtracted from 7, so
a 1 is placed in the 4’s position and a 3 remains. Further, a 2 can be subtracted from
a 3, so a 1 is placed in the 2’s position and a 1 remains, which is placed in the 1’s
position so that the number is 101112. A visual representation of this method
showing the subtraction and the corresponding binary digits in the appropriate
positions is illustrated in Fig. B.1.

Although the above method works fairly well with smaller numbers, it can get
rather cumbersome with larger numbers. Another method is repetitive division by 2,
where one just continually divides by 2 and keeps track of the remainders. For
example, 23 divided by 2 is 11 with a remainder of 1. This process continues with
11 divided by 2 is 5 with a remainder of 1, 5 divided by 2 is 2 with a remainder of 1,
2 divided by 2 is 1 with a remainder of 0, and 1 divided by 2 is 0 with a remainder
of 1. Once the result is a 0, the division should stop and the remainders are written
in reverse order as 101112, which is correct. An easy way to perform this is shown
in Fig. B.2, where the division is repeated until there is a 0, and then the remainders
are written from the bottom up, as 101112.

11 r1 10111
2 23

5 r1
2 11

2 r1
2 5

1 r0
2 2

0 r1
2 1

= Fig. B.2 Conversion of dec-
imal 23 to binary using divi-
sion method

23 7 7 3 1
–16 –8 –4 –2 –1

7 3 1 0

1 0 1 1 1

24 23 22 21 20

Fig. B.1 Conversion of dec-
imal to binary using subtrac-
tion method

Appendix B: Binary, Hexadecimal, Logic, Arithmetic, and Data Representation 295

As another example, what is the binary equivalent of the decimal number 18,
which was converted from binary to decimal previously? Again, either method can
be used, where the repetitive division method is illustrated in Fig. B.3.

Once a conversion has been made from one base to another, it can be checked
for accuracy by converting the number back to its original base. Although this is not
a guarantee that the original conversion was done properly, because a mistake
might have been made in both conversions, it does provide a way to check one’s
work and avoid some possible mistakes.

B.2 Hexadecimal Numbers

Often times, binary numbers need to be stored in an 8-bit byte, a 16-bit word, a
32-bit double word or a 64-bit quad word, where a bit is a binary digit. So, a
decimal number 2 would be stored in binary in an 8-bit byte as 00000010, in a
16-bit word as 00000000000000102, and so on, where the leading zeros will almost
always be shown. As can be seen, this can become very prone to error, where one
might accidently leave off a bit, especially when dealing with 32-bit double words
or 64-bit quad words. In order to help alleviate this problem, assembly language
programmers will often group 4 bits together to form what is known as a
hexadecimal digit. Hexadecimal is often just shortened to the word “hex” and
stands for the base 16 numbering system. In hex there are 16 digits, where the first
10 digits are the digits 0 through 9 from the decimal numbering system, and the last
6 digits are the letters A through F from the English alphabet. Table B.1 illustrates
the numbers 0 through 15 in the decimal, binary, and hex numbering systems.

Conversions between binary and hex are very common, so it is important that the
reader can readily convert back and forth between these first 16 numbers where
Table B.1 should probably be memorized. The first 10 digits are fairly easy,
because they are the same as decimal, but the second 6 letters of the alphabet can be
a little awkward at first, but this becomes easier with practice. Once one is
comfortable with the equivalencies, the conversion back and forth between hex

9 r0 = 100102
2 18

4 r1
2 9

2 r0
2 4

1 r0
2 2

0 r1
2 1

Fig. B.3 Conversion of dec-
imal 18 to binary using divi-
sion method

296 Appendix B: Binary, Hexadecimal, Logic, Arithmetic, and Data Representation

numbers and binary numbers is fairly easy, where each group of four binary digits
is represented by one hex digit and vice versa. The usefulness of hex can be seen in
the following, where instead of representing a number in a combination of 16
different ones and zeros, the same number can easily be converted to hex, where it
can be represented in just four hex digits:

16-bit Binary 16-bit Hex Equivalent
0000 0010 1100 0101 02C5

One can convert numbers directly from hex to decimal, by using the same
techniques learned with binary, where each digit position is a power of 16. Looking
at the above number 02C5, it can be represented as done previously and as shown
below:

 0 2 C 5

163 162 161 160

Again, 163 is 4096, 162 is 256, 161 is 16, and 160 is 1. Then looking only at the
positions that do not contain a 0, then 2 times 256 is 512, C (which is 12) times 16
is 192, and 5 times 1 is 1, and adding 512, 192, and 5 equals 709. The same
conversion process learned previously can be performed on the binary number,
which should result in the same number, thus helping to confirm that the conversion
between the binary and hex was performed properly. Again, this does not guarantee
that the conversion was done properly but allows one to check one’s work for
simple errors. In another example, what is 10EA16 in decimal? Again, 1 times 4096
is 4096, E (which is 15) times 16 is 240, and A (which is 10) times 1 is 10, resulting
in a total of 4346.

The conversion from decimal to hex is a little more difficult. For example, trying
to decide how many times the number 4096 goes into a number can be a little
challenging, but converting the above number 709 should provide a sufficient
example. It is obvious that the number 4096 will not work but the number 256 does
twice, so subtracting 512 from 709 leaves 197, so the first two hexadecimal digits
are 02. The number 16 goes into 197, 12 times, which is the hexadecimal digit C,

Table B.1 Decimal, binary,
and hex numbering systems

Decimal Binary Hex Decimal Binary Hex

0 0000 0 8 1000 8

1 0001 1 9 1001 9

2 0010 2 10 1010 A

3 0011 3 11 1011 B

4 0100 4 12 1100 C

5 0101 5 13 1101 D

6 0110 6 14 1110 E

7 0111 7 15 1111 F

Appendix B: Binary, Hexadecimal, Logic, Arithmetic, and Data Representation 297

leaving the number 5, so the last two digits are C5, resulting in the number 02C5.
The repetitive division method can be equally challenging, where 709 divided by
16 is 44 with a remainder of 5, 44 divided by 16 is 2 with a remainder of 12 (which
is C in hex), and 2 divided by 16 is 0 with a remainder of 2, for an answer of
02C516 as shown in Fig. B.4.

Note that the 12 is converted to C in hex and that a leading 0 is shown in order to
show all 16 bits. Given the complexity of dividing by 16, it is sometimes easier to
convert a number to binary and then convert the number to hexadecimal. It is also
sometimes advisable for especially large numbers to use a calculator, but for the
exercises at the end of this appendix, the conversions from decimal to hexadecimal
and vice versa will be kept small, so the use of a calculator should not be necessary
and is not recommended.

B.3 Overview of Logic

Prior to examining arithmetic, it might be helpful to first look at logic. Recall from
high-level languages that a “not” operation causes a false to become a true and a
true to become a false. With an “and” operation, both operands need to be true in
order for the result to be true, and with an “or” operation, only one operand needs to
be true for the result to be true. Whereas an “or” is often called an inclusive-or,
another type of “or” operation is the exclusive-or, (often abbreviated as “xor”),
where either of the operands can be true for the result to be true, but not both.
A convenient way to remember the difference between the two is that the
inclusive-or includes the case where both operands are true, and the exclusive-or
excludes that case. Note that instead of trues and falses, ones and zeros can be used
instead, as shown in the truth table in Table B.2.

Table B.2 Truth table x y not x x and y x or y x xor y

0 0 1 0 0 0

0 1 1 0 1 1

1 0 0 0 1 1

1 1 0 1 1 0

44
16 709

2
16 44

0
16 2

r5

r12

r2

= 02C516Fig. B.4 Conversion of dec-
imal 709 to hexadecimal
using division method

298 Appendix B: Binary, Hexadecimal, Logic, Arithmetic, and Data Representation

In the following examples, only 8 bits will be used instead of 16 to 64 bits to
make it simpler to understand. Given the following unsigned 8-bit memory location
called flag, where the high-order bit on the left is bit position 7 and the low-order
bit on the right is bit position 0,

flag 01101010

what if bit position 2 (third from the right) needed to be set to 1? A mask would
need to be created to change bit position 2 to a 1 and yet keep all the other bit
positions unchanged. Given the previously introduced knowledge of logic, which
logic operation and bit pattern should be used to set bit 2? If one thinks about the
basic logic operations for a few minutes, one ought to be able to reason it out.
Recall that with an “or” operation, either or both of the conditions must be true and
with an “xor” operation either one or the other, but not both, condition must be true.
Assuming that 1 stands for true and 0 stands for false, if bit position 2 is a 0, and
one wants to make it a 1, then in looking at the truth table in Table B.2, either an
“or” or an “xor” operation could be used.

However, what if bit position 2 were already a 1? Whether bit position 2 is a 1 or
a 0, the task is to set it to a 1. Using an “xor” would cause the 1 to switch to a 0,
which is not what is needed. However, using an “or” would cause the result to be a
1 regardless of whether the initial value was a 1 or a 0, which is the intended result.
In fact as a general rule, anytime a bit needs to be set, regardless of the previous
value, an “or” operation should be used.

What about the other bits? Although bit 2 can be set to a 1, how can it be that the
other bits remain unchanged? In further examining the truth table, it should be
noticed that a 0 “or” a 0 is a 0, and a 0 “or” a 1 is a 1. In other words, if all the other
bit positions in the mask are set to 0, the result would be that those bit positions
would remain unchanged. The resulting mask is 00000100 as shown below, where
only bit 2 is set to 1 regardless of whether the original bit position is a 1 or a 0, and
all the other bit positions remain unchanged:

01101010 = Flag 01101110 = Flag
00000100 = Mask 00000100 = Mask

or ———————— or ————————
01101110 = Result 01101110 = Result

What if instead of setting bit 2 to 1, it needed to be tested whether bit 2 is set to
1? A simple comparison will not do because of the other bits in the byte which may
or may not be set to 1. In other words, 00000100 does not equal 01101110, even
though bit 2 is set to 1 in both cases. As one might have guessed, a mask is needed
to filter out or clear the other bits so that only bit 2 is compared. Again, examining
the truth table, it should be noticed that the “and” operation might be a good choice,
where a 0 “and” either a 1 or a 0 results in 0, and a 1 “and” either a 0 or a 1 results

Appendix B: Binary, Hexadecimal, Logic, Arithmetic, and Data Representation 299

in either a 0 or a 1, respectively. After clearing all of the other bits, all that remains
is the value of bit position 2, and all the other bit positions are set to 0:

01101110 = Flag 01101010 = Flag
00000100 = Mask 00000100 = Mask

and ———————— and ————————
00000100 = Result 00000000 = Result

What if one wanted to just reverse or toggle a single bit? At first thought, the
“not” operation sounds good, but it must be noted that the not operation would
complement all the bits in the byte and not just a single bit. As hinted at previously
with the discussion of the inclusive-or, the exclusive-or (“xor”) might be a good
possibility. Again examining the truth table, a 0 “xor” 1 is a 1, and a 1 “xor” 1 is a
0, thus performing the toggling operation. However, what about the other bits?
Well, a 0 “xor” 0 is a 0 and a 1 “xor” 0 is a 1, which would not alter the other bits.
Looking at the two examples below, notice that in each case, bit 2 is toggled and the
other bits remain the same:

01101010 = Flag 01101110 = Flag
00000100 = Mask 00000100 = Mask

xor ———————— xor ————————
01101110 = Result 01101010 = Result

Given the above, the result is that Table B.3 is a useful summary of which
logical operator should be used for which type of operation needed. Although once
in a while it seems that some other operation will do, as was indicated in the
discussion of the inclusive-or, it is best to stick with the following table to help
subsequent programmers who might need to update code and also avoid some
difficult logic errors that can take quite a bit (no pun intended…) of time to debug.

B.4 Unsigned Numbers and Addition

Prior to examining signed numbers, it is helpful to first understand unsigned
numbers and binary addition. Unsigned numbers are just the non-negative numbers,
or in other words the number 0 and the positive numbers. For the sake of simplicity
and space, again the following discussion concerning unsigned numbers and
addition will be limited to using only 8 bits instead of 16 to 64 bits, but all the

Table B.3 Logic operations Operation Logic

Set Or

Clear And

Test And

Toggle Xor

300 Appendix B: Binary, Hexadecimal, Logic, Arithmetic, and Data Representation

concepts can be readily expanded to 16, 32, and 64 bits. Given only 8 bits, what
then is the largest unsigned number that could be represented? That number would
be 111111112, FF16, or 25510. If necessary, use the techniques learned previously to
verify that these three numbers are equal to each other.

Binary addition is similar to decimal addition except for the change in base. For
example, when two decimal digits are added together such as 1 + 1, the answer is
obviously 2. However, when two binary digits are added together and the sum is
greater than the largest digit available in binary, which is the digit 1, the solution is
to carry a 1 to the next position. The result is similar to base 10 when adding 9 + 1,
where the result is 10. The same principle holds true in binary, where when a digit
is not available, a carry of 1 occurs to the next position. Although this is not a
problem when adding numbers such as in 0 + 1, where the result is 1, but when
adding 1 + 1, the digit 2 is not available, so a 1 is carried into the next position,
where 1 + 1 is 102. The following shows the results of adding the four possible bit
combinations in binary:

0 0 1 1
+0
0

+1
1

+0
1

+1
10

When more than one-digit numbers are being added together in the decimal
numbering system, it is possible that a carry of 1 is generated, where the carry is
then added to the next column. Although this is second nature to us, an example is
shown below:

11 ← Carries
157

+978
1035

When carrying into the next position, it is possible to have three digits to add
together. This is true in binary as well, where the following shows the results of
adding the eight possible bit combinations together in binary, where the top digit is
the possible carry-in from the previous addition:

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
+0 +1 +0 +1 +0 +1 +0 +1
0 1 1 10 1 10 10 11

← Possible carries

As with decimal addition, the same occurs in binary, where two or more ones
will also generate a carry of 1 into the next column as shown below:

Appendix B: Binary, Hexadecimal, Logic, Arithmetic, and Data Representation 301

11 111 ← Carries
00110111
+00110011
01101010

Although at first binary addition may seem a little awkward, this is just because
of one’s familiarity with the decimal numbering system. However, with a little
practice it becomes much easier and there are exercises at the end of the chapter to
help one get used to binary addition.

What happens if one tries to add two numbers that end up with a sum that is too
large for an 8-bit byte? For example, consider adding the decimal numbers 202 and
168, which result in the number 370? Remember from the beginning of this section
that the largest unsigned positive number that can be stored in a byte is the number
25510. In looking at the binary arithmetic for this example, where 20210 equals
110010102 and 16810 equals 101010002, the result is

11001010
+10101000
101110010

With unsigned numbers, it is fairly obvious when a number does not fit in 8 bits,
because there is a carry-out of the leftmost or most significant bit position. In this
case what is known as the carry flag (CF) would be set to 1 in the central processing
unit (CPU). However, as will be seen later, this method does not work when dealing
with signed numbers and negative numbers.

B.5 Signed Numbers

Again for the sake of simplicity and space, the following discussion concerning
signed numbers will be limited to using only 8 bits instead of 16 or more bits, but
all the concepts can be readily expanded to 16, 32, and 64 bits. In decimal, negative
numbers are commonly represented by the appearance of the minus sign to the left
of the number. Unfortunately in a computer, everything is represented as either a 0
or a 1, which rules out the use of a minus sign. A simple solution would be to use
one of the bits in a number to represent the sign of the number, where, for example,
a 0 in the leftmost byte could represent a positive number, and a 1 could represent a
negative number. Of course, this would limit the largest possible number to only 7
bits, but in exchange, the representation of negative numbers is gained. For
example, 011111112 would represent a positive 127 and 111111112 would
represent a negative 127, where the leftmost bit would represent the sign and would
be called the sign bit. This method of representing negative numbers is called the
signed magnitude method. However, it does have a disadvantage, which is that

302 Appendix B: Binary, Hexadecimal, Logic, Arithmetic, and Data Representation

although the number 0 could be represented as 000000002, there also exists the
possibility of 100000002, which is a negative zero. Another disadvantage is that it is
more difficult for a computer to do arithmetic using the signed magnitude method,
because beyond requiring circuitry to perform addition in the arithmetic logic unit
(ALU) in the CPU, there also needs to be circuitry to perform subtraction. Thus
although this method appears to be intuitively easy, it is not used in computer
architectures.

Another method to represent negative numbers is the one’s complement method,
which makes it easier for the CPU to perform arithmetic. The reason for this is that
only circuitry for addition is needed because subtraction can be done using the
addition of negative numbers, which will be demonstrated shortly.

The way a negative number is represented using one’s complement is that for
each bit in a number, the complement is taken, similar to using the not instruction.
For example, a positive 7 in base 10 is represented as 00000111 in binary.
A negative 7 in base 10 is represented in base 2 by merely complementing each bit
as 111110002. In order to determine whether a number is negative, one first looks at
the sign bit. If it is a 0, indicating a positive number, the number is just converted to
decimal. If the sign bit is 1, indicating a negative number, then the one’s
complement must be done first, then it is converted to decimal, and also remember
to include a minus sign.

Although arithmetic is easier with one’s complement, there still remains a
problem with both a positive and a negative zero, where the complement of
000000002 is 111111112. Although this method has been used in computers in the
past, it tends not to be used in more modern computer designs.

Two’s complement is just a little more complicated than one’s complement, but
is easier to perform arithmetic and avoids the problem on both a positive and a
negative zero. As with the previous two mechanisms, positive numbers are
represented in the same fashion, and the leftmost bit is used as a sign bit. If it is a 0,
then the number is positive, otherwise if it is a 1, then the number is negative.

In order to convert a positive number to a negative number, first take the one’s
complement and then merely add a 1 to the resulting number. For example, a
positive 7 is represented as 000001112. To convert it to a negative 7, first perform
the one’s complement of 111110002 and then add 1 to the one’s complement, thus
creating the two’s complement: 111110012. Although slightly more complicated, it
makes arithmetic easier as will be seen shortly and also avoids the problem of both
a negative and a positive zero. For example, a 0 is represented as a 000000002. The
one’s complement is 111111112, and when a 1 is added to this number to obtain the
two’s complement, the result is 000000002. Although when adding 1, there is a 1
carried out of the leftmost bit position which would cause the carry flag to be set, it
should be noted that this does not indicate overflow since this is a signed number as
will be explained in the next section. The result is the carry-out discarded and
000000002 is a self-complementing number.

What this does is free up one bit combination, 100000002, which represents
−128 and means that there is one more negative number than there are positive
numbers. If one converts 100000002 to a positive number, first by taking the one’s

Appendix B: Binary, Hexadecimal, Logic, Arithmetic, and Data Representation 303

complement 011111112 and then adding 1 to it, it becomes 100000002, which
makes −128 also a self-complementing number.

Because of the ease of performing arithmetic and the lack of both a positive and
a negative zero, this method is the most common method used in today’s modern
computers, including the Intel processor. Table B.4 shows the range of numbers
that are possible in each of the three ways of representing positive and negative
numbers.

To calculate the largest positive number that can be stored in n bits, where n equals 8
in this example, note that in all three cases the largest positivenumber is 2n−1 − 1,which
equals 27 − 1, or 128 − 1, or 127. The largest negative number in sign magnitude or
one’s complement is −2n−1 − 1, or −127. But in the case of two’s complement as
mentioned above, note that the largest negative number is −2n−1, or −128.

B.6 Addition and Subtraction of Signed Numbers

In Sect. B.4, it was seen that if two numbers were added together that were too large
for a byte, a carry-out of the leftmost bit was generated and the carry flag was set
to 1. However, what about the following case when adding the signed numbers 127
plus 127? When adding these two numbers together, the answer is 254, which is
less than 255, so it should not be a problem, should it? It would not be if unsigned
numbers were used, because as mentioned previously the largest number that can be
stored in an unsigned 8-bit number is 255, or 11111111 in binary. But the question
asked here is what would happen if the signed numbers 127 plus 127 were added
together. In this case, the largest number that can be stored as a signed 8-bit number
is 127, and clearly 254 is larger than 127.

To help clarify this further, it helps to carefully examine the binary equivalent of
these numbers when they are added together:

Table B.4 Three ways of representing positive and negative numbers

Sign-magnitude One’s-complement Two’s-complement

Base 2 Base 10 Base 2 Base 10 Base 2 Base 10

01111111 +127 01111111 +127 01111111 +127

00000000 +0 00000000 +0 00000000 0

10000000 −0 11111111 −0 11111111 −1

10000001 −1 11111110 −1 11111110 −2

11111110 −126 10000001 −126 10000001 −127

11111111 −127 10000000 −127 10000000 −128

304 Appendix B: Binary, Hexadecimal, Logic, Arithmetic, and Data Representation

01111111
+01111111
011111110

If the two numbers 127 are considered to be unsigned, then the result of
11111110 is equal to 254 and there is no carry-out of the leftmost bit, so there is no
overflow. However, if the numbers are considered to be signed numbers, then it is
now the case that the answer of 11111110 is no longer a positive number, but rather
a negative number due to the 1 in the sign bit. Using two’s complement and
converting the above number 11111110 to determine its decimal equivalent, the
result is that the answer for adding a 127 plus a 127 is a −2, which is clearly
incorrect. How can the sum of two positive numbers end up being a negative
number? The answer is that they cannot and this is a case where overflow has
occurred. Although as humans we can see that something has gone wrong here,
there is a simpler way for the computer to determine an overflow condition.
Whether or not there is a carry-out from the leftmost bit position, if the carry into
the leftmost bit position is equal to the carry-out of the leftmost bit position, then no
overflow has occurred. But if one looks at the above situation, the carry-into the last
position is a 1, and the carry-out is a 0, thus indicating that overflow has occurred in
this situation, and the overflow flag (OF) in the CPU would be set to 1.

Although this might seem a little difficult, it really is not, because instead of the
system trying to keep track of what sign the numbers are and then trying to
determine under what circumstances overflow might have occurred, it is much
simpler to check these two carry bits. In fact it is much easier than even performing
any sort of comparison, and only a simple logic operation can be used. So the
question should be which logic operation can be used in this situation? If one takes
a few minutes to think about it, the answer is fairly simple. If the carry-in and the
carry-out are the same, such as both 0 or both 1, there is no overflow, so the carry
flag should be set to 0. If the carry-in and carry-out are different, such as 0 and 1, or
1 and 0, respectively, then there is overflow, so the carry flag should be 1. The
results are in the form of the truth table in Table B.5.

Given the previous overview of logic in Sect. B.3, it should be apparent that the
above operation is the exclusive-or operation, where the result is a 1 if either of the
operands are 1 but not when both operands are either a 1 or a 0. For those who have
had or are currently taking a computer organization and architecture course, it
should be noted that the computer circuitry in the arithmetic logic unit (ALU) could
use a simple exclusive-or gate that uses as input both the carry-in and the carry-out

Table B.5 Overflow Carry-in Carry-out Overflow flag

0 0 0

0 1 1

1 0 1

1 1 0

Appendix B: Binary, Hexadecimal, Logic, Arithmetic, and Data Representation 305

and the output of the gate fed to the overflow flag that can then be subsequently
tested by programmers.

With respect to subtraction, the advantage of using one’s complement and two’s
complement representation of negative numbers over sign magnitude representation
of negative numbers is that instead of subtracting the subtrahend from the minuend,
subtraction can easily be performed by just negating the subtrahend and then adding
it to the minuend.

Besides the absence of a positive and a negative zero, to illustrate the other
advantage of using two’s complement over one’s complement when performing
subtraction, it helps to first see how subtraction is performed in one’s complement.
In order to perform subtraction using one’s complement, only the complement of
the subtrahend needs to be done and then add, but the problem with this is that the
answer is sometimes off by 1 less than it should. In these cases, there is a carry-out
of the leftmost bit position and this is added to the answer to obtain the correct
answer. For example, 7 − 5 would be the same as saying 7 + (−5) as shown below.
But notice that the answer is 1 instead of 2. So in the next line, the carry-out of the
leftmost bit position 1 is added to correct the problem:

00000111
+ 11111010
100000001

+ 1
00000010

The advantage of two’s complement is that 1 never needs to be added and thus
the logic circuitry in the ALU is simpler. In order to perform the above subtraction
of 7 − 5, only the equivalent of 7 + (−5) needs to be performed by taking the two’s
complement of the subtrahend and then adding:

00000111
+ 11111011

00000010

Unlike using unsigned numbers, it is not readily apparent whether or not
overflow has occurred. Although it is not shown, looking at and walking through
the addition above, there appears to have been carry-out of the leftmost bit position
and the carry flag is set to 1. However, given the previous discussion concerning
signed numbers, would this be considered an overflow condition? It would not be,
because the carry-into the leftmost bit is the same as the carry-out of the leftmost
bit. Looking at a simpler and more obvious example, consider adding (−1) + (−1),
where the answer is obviously −2 in base 10. Looking at the addition below, it
looks as though when the two numbers are added together, there is a carry-out into
the next bit position:

306 Appendix B: Binary, Hexadecimal, Logic, Arithmetic, and Data Representation

11111111
+ 11111111
111111110

Again, the difference here is that overflow is not determined by whether or not
there has been a carry-out of the leftmost bit position, but rather overflow is
determined again by examining the carry-in into the leftmost bit position and the
carry-out of the leftmost bit position. The two numbers are the same and again there
has been no overflow.

B.7 Floating-Point Numbers

Similar to how integers can be represented as powers of ten, so too can
floating-point numbers. Consider the base-10 number 103.375. As discussed in
Sect. B.1, looking first at the whole number part it can be represented as follows:

1 � 100þ 0 � 10þ 3 � 1
Or using exponents as

1� 102 þ 0 � 101 þ 3 � 100

The fractional part would also be represented as powers of 10, but instead of
whole numbers they would be fractions as follows:

3 � 1=10þ 7 � 1=100þ 5 � 1=1000
In order to represent the fraction, the exponents would be negative as follows:

3 � 10�1 þ 7 � 10�2 þ 5 � 10�3

So, the complete number would be represented as:

1� 102 þ 0 � 101 þ 3 � 100 þ 3 � 10�1 þ 7 � 10�2 þ 5 � 10�3

But how could this be represented in binary? As before, the whole part is
converted to binary using the procedures from Sect. B.1, where 103 would be
represented as follows:

1 � 64þ 1 � 32þ 0 � 16þ 0 � 8þ 1 � 4þ 1 � 2þ 1 � 1
Or using exponents,

1 � 26 þ 1 � 25 þ 0 � 24 þ 0 � 23 þ 1 � 22 þ 1 � 21 þ 1 � 20

Appendix B: Binary, Hexadecimal, Logic, Arithmetic, and Data Representation 307

Before continuing on with the fractional part, it helps to look at the generic case.
Just as a whole part of a binary number is represented as powers of 2, so too can the
fractional part. For example, each position to the right of the decimal point can be
represented as follows where the question marks represent either a 1 or a 0.

? � 1=2þ ? � 1=4þ ? � 1=8þ ? � 1=16þ ? � 1=32. . .
Or represented as powers of 2 using negative exponents:

? � 2�1 þ ? � 2�2 þ ? � 2�3 þ ? � 2�4 þ ? � 2�5. . .

Further, just as there are two methods to convert the whole part of a decimal
number to binary, there are two ways to convert the fractional part. The first way is
to determine the largest fraction that can be subtracted from the fractional part. To
help with the method, the above representations can be expressed as follows:

? � 0:5þ ? � 0:25þ ? � 0:125þ ? � 0:0625þ ? � 0:03125. . .
For example, using the fractional part of the above number 0.375, a 0.5 can’t be

subtracted from it, so the first position to the right of the decimal point would be a 0.
However, a 0.25 could be subtracted leaving 0.125, so the second position would be
a 1. Lastly, a 0.125 could be subtracted leaving 0 indicating the process is complete
and there would be a 1 in the third position. The following can help illustrate the
process,

0.375 0.375 0.125
- 0.5 - 0.25 -0.125

0.125 0.0

and the result would be:

0 � 2�1 þ 1 � 2�2 þ 1 � 2�3

So, the representation of 0.375 in decimal would be 0.011 in binary. The
advantage of this method is that it works well with numbers that happen to be small
numbers that are fractional powers of two. However, the disadvantage is that with
numbers that have a large number of binary digits in the fractional part requires one
to know or remember the fractional powers of two which can be more difficult than
remembering the whole number powers of two.

An alternative method is to use division, although it is different than the method
for whole numbers mentioned in Sect. B.1. For example, given the fractional part of
the previous number, 0.375, one would need to recognize that it is the equivalent of
3/8. Then using the binary equivalent of both the numerator and denominator,
11/1000, the corresponding division in binary is performed as follows:

308 Appendix B: Binary, Hexadecimal, Logic, Arithmetic, and Data Representation

.0 1 1
1000 1 1.0 0 0

- 1 0 0 0
1 0 0 0

- 1 0 0 0
0

The problem with this method is that one needs to recognize what fraction is
being represented. However, if beginning with a fraction instead of the decimal
representation, this method might be easier.

A difficulty with either method that should be mentioned is that just as there are
some fractions that cannot be finitely represented in base 10 such as 1/3 there are
some fractions that cannot be represented in base 2. One such example is 1/10, or in
other words 0.1, which in base 2 would start off as follows:

0:0001100110011. . .

The problem with using either conversion method in cases like these is that one
would never reach a state where the remainder is zero and it would be difficult to
determine if and when the conversion is complete.

An even larger problem is with applications in the financial world. Given that ten
cents is one tenth of a dollar, the binary value would need to be rounded and
successive rounding would cause errors leading to inaccurate results. The solution to
this problem is to use what is known as Binary Coded Decimal (BCD) or what is
sometimes referred to as just Decimal. Essentially each base-10 digit is converted to a
4-digit binary number.

The disadvantage of BCD is that each of the ten decimal digits 0 through 9 are
stored using the bit patterns 0000 through 1001, but the remaining bit patterns 1010
through 1111 are unused in each of the 4-bit groups. The result is that BCD numbers
tend to take up more memory and use special arithmetic hardware and instructions.
This is the method used in many calculators and the COBOL programming language,
which is useful with currency applications. A complete discussion of BCD is beyond
the scope of this text and further information can be found in a text such as
Introduction to Assembly Language Programming by Dandamudi [2].

Continuing, in the early days of computing floating-point numbers were
represented using different formats. To help create a common representation, the
IEEE (Institute for Electrical and Electronics Engineers) created Standard 754 in
1985, updated it in 2008, and made revisions in 2019 [1]. The three formats are
Single, Double, and Extended precision using 32, 64, and 80 bits and are
represented in MASM as REAL4, REAL8, and REAL10, respectively.

Using more bits in the exponent allows for larger numbers and more bits in the
fractional part allows for more precision. However, the tradeoff is using more
memory, especially with arrays. Since the concepts for each of the formats is
similar, single precision will be discussed here and the format is as follows:

Appendix B: Binary, Hexadecimal, Logic, Arithmetic, and Data Representation 309

Sign Exponent Frac on

31 30 23 22 0

As with integers the sign bit indicates the sign of the number: 0 for positive and 1
for negative. The fractional part is the entire number represented as a fraction, with
the leftmost 1 not shown. Since all numbers except for 0.0 will have at least one digit
that is a 1, there is no need to store it in this format. For example, the binary number
0.011 would be left justified as 0.1 and to indicate that a shift has occurred the
exponent portion of the number would be the equivalent of 2−2. How this is actually
represented in binary will be discussed shortly. Although this might seem acceptable
for fractions, what of whole numbers? The same thing is done except in the opposite
direction. For example, the binary number 110.101 would be represented in the
fraction part as 0.10101 and the exponent would be the equivalent of 22.

But notice that in addition to whether the entire number is negative as indicated by
the sign bit, the exponent can also be positive or negative. Does there need to be yet
another sign bit? The answer is no, because the exponent can be what is called
normalized so that a sign bit for the exponent is not necessary. Note that since there are 8
bits for the exponent, it could represent the numbers −128 to 127. However, some of the
bit combinations in the IEEE standard are reserved for specific numbers or conditions
and the result is that the range of possible exponent values are from −126 to 127 instead.
So, what if the number 127 was added to each of these possible numbers? Then range
would be from 1 to 254, thus there is no need for a negative number. To denormalize an
exponent the number 127 is merely subtracted. Of the special bit combination, if the sign
is 0, the exponent is 0, and the fraction is 0, then it represents the number 0.0.

Recall that 0.375 is 0.011 in binary and would be represented as 0.1 * 2−2. To
represent the exponent of −2 the number 127 would be added, thus making the
normalized exponent 125 and would be represented as the 8-bit binary number
01111101. So, the entire number would be represented with spaces inserted to help
readability as:

0 01111101 10000000000000000000000

What of whole numbers, such as 23? It would be represented as 10111 in binary.
Since all numbers are represented in the fractional part, it would need to be shifted
to the right 4 positions which would 0.0111 * 24. To convert the exponent, 127 is
added to 4 which results in 131 and would be 10000011 in binary. The complete
number would be represented as:

0 10000011 01110000000000000000000

Returning the original number presented at the beginning of the section,
103.375, with the binary equivalent of:

1100111:011

310 Appendix B: Binary, Hexadecimal, Logic, Arithmetic, and Data Representation

The number would need to be shifted to the right 6 positions which would
0.100111011 * 26. To convert the exponent, 127 is added to 6 which results in 133
and would be 10000101 in binary. The complete number would be represented as:

0 10000101 10011101100000000000000

Lastly, what of a negative number such as −48.5? It would be represented as
110000.1 in binary. The sign bit would set to 1 and the number would be shifted to
the right 5 positions which would result in 0.10001 * 25. To convert the exponent
127 would be added which would be 10000100 in binary. The results would be as
follows:

1 10000100 10000100000000000000000

Note that additional exercises can be found in Sect. B.11.

B.8 Characters

Although a computer uses binary to perform various logic and arithmetic operations,
all the input and output are performed using character data. For simple letters and
strings, the data that is input stays in character format, is processed as such, and then
in turn is output as character data. However, when it comes to numbers that need to
be processed using arithmetic, the character representation of the numbers needs to
first be converted to base 2 so that the arithmetic logic unit (ALU) portion of the CPU
can perform the arithmetic, and if the numbers need to be output, they will then need
to be converted back to characters so that they can be displayed. This is one of the
reasons why assembly language input/output can be difficult, because in addition to
special routines necessary to communicate with the device in question, specialized
operating system functions must be called or unique routines need to be written to
perform the conversions. This is also one of the reasons why it is helpful to have the
ability to use the input/output facilities of the C programming language as discussed
in Chap. 2. However, even character data needs to be stored in ones and zeros and
various codes have been developed to represent the character data. On mainframe
computers, many times an 8-bit format called EBCDIC (Extended Binary Coded
Decimal Interchange Code) is used. The Java programming language uses Unicode,
which is a 16-bit code that can incorporate many of the symbols from languages
other than English. However, many microcomputers and some interface devices use
an 8-bit code called ASCII (American Standard Code for Information Interchange).

The hexadecimal representations of these characters can be found in the table in
the next section. It is interesting to note that not only are the character representations
of the digits in ascending order but also all of the upper and lowercase letters are in
ascending order, which makes it possible to sort character data, because the letter A
has a lower value than the letter B, and so on. It is also interesting to note that the
upper and lowercase representations of the alphabetic letters differ by only 1 bit, thus

Appendix B: Binary, Hexadecimal, Logic, Arithmetic, and Data Representation 311

http://dx.doi.org/10.1007/978-3-030-35639-2_2

making is easy to convert between the two using simple logic operations, as described
in Chap. 6. To see which bit, convert the hex codes in the table to binary using the
techniques described in Sect. B.2.

B.9 Hex/ASCII Table

312 Appendix B: Binary, Hexadecimal, Logic, Arithmetic, and Data Representation

http://dx.doi.org/10.1007/978-3-030-35639-2_6

B.10 Summary

• All numbering systems use the powers of their respective bases.
• It is helpful to memorize the first 15 numbers of binary and hexadecimal to help

with conversions between the two.
• When using unsigned numbers, the carry flag indicates overflow.
• Use “or,” “and,” and “xor,” to set, test or clear, and toggle a bit, respectively.
• There are three methods to represent negative numbers: signed magnitude, one’s

complement, and two’s complement. The first two have the problem of both a
positive and a negative zero, whereas the latter has an extra negative number.

• The two’s complement method is the most common method to represent signed
numbers and it is the method used in the Intel processor.

Appendix B: Binary, Hexadecimal, Logic, Arithmetic, and Data Representation 313

• Overflow occurs during addition with two’s complement numbers when the
carry-into the leftmost bit position is different than the carry-out of the leftmost
bit position.

• Binary Coded Decimal (BCD) represents each decimal digit as 4 binary digits.
• 32-bit floating-point numbers are represented using the IEEE standard with one

bit for the sign, 8 bits for the exponent, and 23 bits for the fraction.

B.11 Exercises (Items Marked with an � Have Solutions
in Appendix D)

1. Convert the following “unsigned” binary numbers to their decimal equivalent:

∗A. 00011111
B. 01011110
∗C. 01111110
D.
E.

10101011
10101100

2. Convert the following “unsigned” decimal numbers to their binary equivalent:

∗A. 27
B. 82

∗C. 110
D. 245
E. 127

3. Convert the following “signed” binary numbers to the decimal equivalent:

∗A. 01010111
B. 11111110
∗C. 10101111
D.
E.

01110111
11001010

4. Convert the following “signed” decimal numbers to binary (use only 8 bits):

∗
A. 54
B. 127

∗
C. -23
D. -125
E. -201

314 Appendix B: Binary, Hexadecimal, Logic, Arithmetic, and Data Representation

5. Convert the following “unsigned” decimal numbers to hexadecimal (use only 8
bits):

∗A. 73
B. 162
∗C. 200
D.
E.
255
142

6. Convert the following “unsigned” hexadecimal numbers to decimal:

∗A. 2A
B. 7E
∗C. AB
D. EF
E. 8C

7. Convert the following “signed” decimal numbers to hexadecimal (use only 8
bits):

∗A. 18
B. 100
∗C. -79
D. -112
E. -247

8. Convert the following “signed” hexadecimal numbers to decimal:

∗A. 34
B. 7A
∗C. 85
D. E0
E. F7

9. Convert the following binary numbers to hexadecimal, where signed or
unsigned is irrelevant:

∗A. 01011100
B. 10111111
∗C. 01111101
D.
E.

10001001
11000010

Appendix B: Binary, Hexadecimal, Logic, Arithmetic, and Data Representation 315

10. Convert the following hexadecimal numbers to binary, where signed or
unsigned is irrelevant:

∗A. 12
B. 6D
∗C. A1
D. FE
E. DA

11. Using the ASCII table, convert the following ASCII characters to their binary
equivalent:

∗A. “9”
B. “B”
∗C. “q”
D. “∗”
E. “?”

12. Using the ASCII table, convert the following binary numbers to their ASCII
equivalent:

∗A. 01000000
B. 01111001

∗C. 01010001
D.
E.

01101000
00100001

13. Add the following “signed” binary numbers. Indicate whether or not overflow
has occurred:

∗A. 00001001 + 00010111
B. 11101010 + 11110111
∗C. 00101111 + 11111000
D.
E.

01101111 + 01110000
01111111 + 00000001

14. Given the following “signed” binary numbers, perform the subtraction by
taking the two’s complement of the subtrahend and then adding. Indicate
whether or not overflow has occurred:

∗A. 10001000 – 00000001
B. 01111011 - 01110010

∗C. 01011111 - 10111100
D.
E.

10000001 - 01011101
01111111 - 00010111

316 Appendix B: Binary, Hexadecimal, Logic, Arithmetic, and Data Representation

15. Convert the following base-10 numbers to binary. Do not put them in IEEE
format.

*a. 33.125
b. 0.0625
c. 127.25
d. -128.75

16. Convert the following base-10 numbers to IEEE format using 32 bits. Show the
results in binary.

*a. 65.5
b. 0.1875
c. 256.0
d. 255.25

17. Convert the following base-10 numbers to IEEE format using 32 bits. Show the
results in hexadecimal.

*a. 1.0
b. 63.0
c. -2.0
d. 15.5

18. Convert the following hex numbers that are in 32-bit IEEE format to their
equivalent in base-10. The process is the reverse of converting base-10 to IEEE
format.

*a. 42030000h
b. 42808000h
c. C0000000h
d. 3E000000h

Appendix B: Binary, Hexadecimal, Logic, Arithmetic, and Data Representation 317

Appendix C: Selected Assembly Language
Instructions

This appendix is useful for quick reference. It does not contain a complete listing of
all instructions but rather only those used in this text. For further descriptions of the
following instructions, use the index to find the page number in the text for more
complete descriptions and examples of each of the following instructions. For a
more complete list of instructions, see Appendix D of Introduction to Assembly
Language Programming by Dandamudi, Springer, 2005 [2].

Abbreviations used Selected flag abbreviations

reg = register C = Carry flag

mem = memory O = Overflow flag

imm = immediate Z = Zero flag

xx = placeholder S = Sign flag

Instruction Operands Status flags affected in eflags register

add reg,reg C, O, Z, S are modified
reg,imm
reg,mem
mem,reg
mem,imm
Description: Adds the contents of the source (second) operand to the

destination (first) operand.

and reg,reg C and O set to 0
reg,imm Z and S are modified
reg,mem
mem,reg
mem,imm
Description: Logical bit-wise and of the source (second) operand on the

destination (first) operand.

© Springer Nature Switzerland AG 2020
J. T. Streib, Guide to Assembly Language, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-35639-2

319

https://doi.org/10.1007/978-3-030-35639-2

call label none are affected

Description: The address of the next instruction after the call instruction
is saved on the stack and control is transferred to the location
label.

cdq none none are affected

Description: Converts double to quad. Converts the 32-bit integer in the
eax register to a 64-bit integer in the edx:eax register
pair, where the sign bit of eax is propagated into the edx
register.

Cqo none none are affected

Description: Converts quad to oct. Converts the 64-bit integer in the rax
register to a 128-bit integer in the rdx:rax register pair,
where the sign bit of rax is propagated into the rdx
register.

cld none

Description:

none

Clears the direction flag to 0.

cmp reg,reg
reg,imm
reg,mem
mem,reg
mem,imm

C,O,Z,S are modified

Description: An implied subtraction of the second from the first operand,
where neither operand is altered and the flags set accordingly.

cmpsb none C,O,Z,S are modified

Description: Compares a string of bytes pointed at by the esi and edi
registers and sets the flags accordingly. If the direction flag
is cleared using cld, the esi and edi registers are incre-
mented, otherwise if the direction flag is set using std, the
esi and edi registers are decremented. The instruction is
often used with the rep prefix.

dec reg
mem

O,Z,S are modified
C is not affected

Description: The operand is decremented by 1.

320 Appendix C: Selected Assembly Language Instructions

fkx reg

mem

C,O,Z,S are undefined

Description: See the idiv instruction.

hcff mem none are affected
none

Description: Floating-point add. Add mem to ST(0) in the floating-point
register stack. Without operand, add ST(0) to ST(1), pop ST(0),
and sum moves up to ST(0).

heqok none C,Z,P(Parity) are modified
O,S,A(Auxiliary) are set to 0

Description: Floating-point compare. Compares ST(0) with ST(i), both in the
floating-point register stack, and sets the carry, parity, and zero
flags.

heqokr none C,Z,P(Parity) are modified
 O,S,A(Auxiliary)are set to 0

Description: Floating-point compare and pop. Compares ST(0) with ST(i),
both in the floating-point register stack, sets the carry, parity, and
zero flags, and pops the values from the floating-point stack.

hfkx mem none are affected
 none

Description: Floating-point divide. Divides mem by ST(0) in the floating-point
register stack. Without operand, divides ST(1) by ST(0) in the
floating-point register stack, pops ST(0), and quotient moves up
to ST(0).

hkcff mem none are affected

 Description: Floating-point integer add. Converts mem to floating-point and
adds to ST(0) in the floating-point register stack.

hknf mem none are affected

Description: Floating-point integer load. Converts integer mem to floating-
point and loads (pushes) it onto ST(0) in the floating-point
register stack.

hkuvr mem none are affected

Description: Floating-point integer store and pop. Pop ST(0) from floating-
point register stack, convert to integer (rounded), and store in
mem.

Appendix C: Selected Assembly Language Instructions 321

hkuvvr mem none are affected

 Description: Floating-point integer store, truncate, and pop. Pop ST(0) from
floating-point register stack, convert to integer (truncated), and

 store in mem.

hnf mem none are affected

Description: Floating-point load. Loads, or in other words pushes, mem onto
the floating-point register stack, ST(0).

hown mem none are affected
 none

Description: Floating-point multiply. Multiplies ST(0) on floating-point
register stack by mem. Without operand multiply ST(1) by ST(0),
pop ST(0), and product moves up to ST(0).

huv mem none are affected

Description: Floating-point store. Store the top element of the floating-point
register stack ST(0) into mem. This instruction does not pop the
value, but rather peeks at it and the value remains at the top of the
stack ST(0).

huvr mem none are affected

Description: Floating-point store and pop. Pop and store the top element ST(0)
in the floating-point register stack into mem.

huwd mem none are affected
 none

Description: Floating-point subtract. Subtract mem from ST(0) in the floating-
point register stack. Without operand, subtract ST(0) from ST(1),
pop ST(0), and difference moves up to ST(0).

kfkx reg C,O,Z,S are undefined

mem

Description: The dividend in the eax register is divided by the divisor
in the operand. The quotient is placed in the eax register
and the remainder is placed in the edx register. The div
instruc- tion is for unsigned division, whereas the idiv
instruction is used for signed division. Prior to using the
idiv instruction, be sure to use the cdq instruction with
32-bit integers and cdo with 64-bit integers. With 64-bits, rax
and rdx are used instead.

322 Appendix C: Selected Assembly Language Instructions

kown reg C,O are modified

mem Z,S are undefined

Description: The multiplicand in the eax register is multiplied by the
multiplier in the operand. The product is placed in the
edx:eax register pair, where the high-order bits are in edx
and the low-order bits are in eax. The mul instruction is
for unsigned multiplication, whereas the imul instruction is
used for signed multiplication. With 64-bits, rax and rdx are
used instead.

kpe reg O,Z,S are modified

mem C is not affected

Description: The operand is incremented by 1.

lgez| label none are affected

Description: Control is transferred to the location label when the ecx
register is equal to 0.

lor label none are affected

Description: Control is unconditionally transferred to the location label.

lzz label none are affected

Description: Control is conditionally transferred to the location label,
depending on the particular instruction and the correspond-
ing flag. See the list below:

Instruction: Description:

lg1lpg jump equal/jump not equal

li1lpi
lig1lpig

jump greater than/jump not greater than
jump greater than or equal/jump not greater than or equal

ln1lpn
lng1lpng

jump less than/jump not less than
jump less than or equal/ jump not less than or equal

lc1lpc
lcg1lpcg
ld1lpd
ldg1lpdg

jump above/jump not above
jump above or equal/jump not above or equal
jump below/jump not below
jump below or equal/jump not below or equal

Appendix C: Selected Assembly Language Instructions 323

jz/jnz
jc/jnc
jp/jnp
js/jns
jo/jno

jump zero/jump not zero
jump carry/jump not carry
jump parity (even)/jump not parity
jump sign (negative)/jump not sign
jump overflow/jump not overflow

lea reg,mem none are affected

Description: The address of the source (second) operand is copied into the
destination (first) operand.

lodsb none none are affected

Description: Load the al register from a string of bytes from where
the esi register is pointing. If the direction flag is cleared
using cld, the esi register is incremented, otherwise if
the direction flag is set using std, the esi register is
decremented.

loop label none are affected

Description: The contents of the ecx register are decremented, and if it
is not zero, control is transferred to the location label, oth-
erwise control falls through to the next instruction after the
loop instruction.

mov reg,reg C,O,Z,S are modified
reg,imm
reg,mem
mem,reg
mem,imm

Description: The contents of the source (second) operand are copied to the
destination (first) operand.

movsb none none are affected

Description: Copies a string of bytes from where the esi register is point-
ing to where the edi register is pointing. If the direction flag
is cleared using cld, the esi and edi registers are incre-
mented, otherwise if the direction flag is set using std, the
esi and edi registers are decremented. The instruction is
often used with the rep prefix.

324 Appendix C: Selected Assembly Language Instructions

movsxd reg,reg
reg,mem

none are affected

 Description: Move with sign-extend double. Copies a 32-bit integer from
the source register on the right to a 64-bit destination on the
left and extends the sign-bit from bit 31 through to bit 63.

mul reg
mem

C,O are modified
Z,S are undefined

Description: See the imul instruction.

neg reg
mem

C,O,Z,S are modified

Description: Negates the operand, or in other words take the two’s comple-
ment of the operand.

nop none none are affected

Description: No operation.

not reg
mem

none are affected

Description: Performs a logical not (one’s complement) operation on the
operand.

or reg,reg C and O set to 0
reg,imm Z and S are modified
reg,mem
mem,reg
mem,imm

Description: Logical bit-wise inclusive or of the source (second) operand
on the destination (first) operand.

pop reg none are affected
mem

Description: Pops a value from the stack into the operand.

popad none none are affected

Description: Pops the registers on the stack into the edi, esi, ebp, esp,
ebx, edx, ecx, and eax registers.

Appendix C: Selected Assembly Language Instructions 325

push reg none are affected
mem
imm

Description: Pushes the operand onto the stack.

pushad none none are affected

Description: Pushes the eax, ecx, edx, ebx, esp, ebp, esi, and edi
registers onto the stack.

rep none Z is modified
repe C, O, and S are not affected
repne

Description: Can be used as a prefix with instructions like cmpsb,
lodsb, movsb, scasb, and stosb. The rep prefix decre-
ments the ecx register and repeats until it is 0. The repe and
repne both decrement ecx and repeat until it is 0, but repe
will repeat while equal and stop if the result of a comparison
is not equal and the repne will repeat while not equal and
stop when the result of a comparison is equal.

ret none none are affected
Description: Control is transferred to the location immediately following

the corresponding call instruction.

rol reg,cl C and O are modified
ror reg,imm Z and S are not affected

mem,cl
mem,imm

Description: The contents of the destination (first) operand are rotated to
the left using the rol instruction or to the right using the
ror instruction by the number of bits indicated in the second
operand. When rotated to the left, the leftmost bit is moved
into the rightmost bit position and when rotated to the right,
the rightmost bit is moved into the leftmost position. On an
8086/8088 processor, imm can only be a 1.

sal reg,cl C, O, Z, and S are modified
sar reg,imm

mem,cl
mem,imm

326 Appendix C: Selected Assembly Language Instructions

Description: The contents of the destination (first) operand are shifted to
the left using the sal instruction or to the right using the
sar instruction by the number of bits indicated in the second
operand. When shifted to the left, the leftmost bit is moved
into the carry flag and the rightmost bit position is filled with
a 0. When shifted to the right, the rightmost bit is moved into
the carry flag and the leftmost bit position is copied into both
the next position to the right and onto itself to maintain the
sign bit. On an 8086/8088 processor, imm can only be a 1.

scasb none C,O,Z,S are modified

Description: Scans a string of bytes pointed at by the edi register for
the character in the al register and when found sets the
flags accordingly. If the direction flag is cleared using cld,
the edi register is incremented, otherwise if the direction
flag is set using std, the edi register is decremented. The
instruction is often used with the rep prefix.

shl reg,cl C, O, Z, and S are modified
shr reg,imm

mem,cl
mem,imm

Description: The contents of the destination (first) operand are shifted to
the left using the shl instruction or to the right using the
shr instruction by the number of bits indicated in the second
operand. When shifted to the left, the leftmost bit is moved
into the carry flag and the rightmost bit position is filled with
a 0. When shifted to the right, the rightmost bit is moved into
the carry flag and the leftmost bit position is filled with a 0.
On an 8086/8088 processor, imm can only be a 1.

std none none

Description: Sets the direction flag to 1.

stosb none none are modified

Description: Stores the contents of the al register in a string of bytes
pointed at by the edi register. If the direction flag is cleared
using cld, the edi register is incremented, otherwise if
the direction flag is set using std, the edi register is
decremented. The instruction can be used with the rep
prefix.

Appendix C: Selected Assembly Language Instructions 327

sub reg,reg C,O,Z,S are modified
reg,imm
reg,mem
mem,reg
mem,imm

Description: Subtracts the contents of the source (second) operand from
the destination (first) operand.

test reg,reg C and O set to 0
reg,imm Z and S are modified
reg,mem
mem,reg
mem,imm

Description: Logical bit-wise and between the source (second) operand to
the destination (first) operand, where the destination (first)
operand is not altered and only the flags are altered.

xchg reg,reg none are modified
reg,mem
mem,reg

Description: The contents of the source (second) operand are exchanged
with the destination (first) operand.

xor reg,reg C and O set to 0
reg,imm Z and S are modified
reg,mem
mem,reg
mem,imm

Description: Logical bit-wise exclusive or of the source (second) operand
on the destination (first) operand.

328 Appendix C: Selected Assembly Language Instructions

Appendix D: Answers to Selected Exercises

Chapter 1

1.A. Correct
1.C. Correct
1.F. Incorrect, cannot include a decimal point.

2.A. initial byte ?

2.C. x byte 'P'
x byte 'Q'

2.E. count sdword 0

3.A. Incorrect, move should be mov
3.C. Correct
3.E. Incorrect, cannot move a memory location into an immediate value
3.H. Correct

4.A. mov i,1
4.C. Direct translation :

mov c,2

mov eax,c

mov b,eax

mov eax,b

mov a,eax

5.A. mov a,'B'
5.C. Direct translation :

mov d,'E'
mov al,d
mov e,al

 5.E. Direct translation :
mov a,'2'
mov b,'?'

 mov a,b

© Springer Nature Switzerland AG 2020
J. T. Streib, Guide to Assembly Language, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-35639-2

329

https://doi.org/10.1007/978-3-030-35639-2

Chapter 2

1.A. Correct
1.C. Incorrect, delete the ADDR prior to number
3. xb=b1byb=b2

blank line
blank line
z=3

Chapter 3

1.A. Incorrect, delete the , 1
1.C. Incorrect, cannot add memory to memory
1.E. Incorrect, cannot subtract from an immediate value

2.A. mov eax,3
imul number
mov product,eax

2.C. mov eax,number
mov ebx,2
cdq
idiv ebx
mov answer,eax

3.A. mov eax,x
imul y
mov ecx,eax
mov eax,z
mov ebx,2
imul ebx
add ecx,eax
mov x,ecx

3.C. mov eax,num3
imul num4
mov ebx,eax
mov eax,num1
cdq
idiv num2
sub eax,ebx
mov total,eax

4.A. dec i
4.C. mov eax,x

add eax,y
neg eax
mov z,eax

330 Appendix D: Answers to Selected Exercises

Chapter 4

1.A. Incorrect, change = to ==

1.C. Although syntactically correct, it might not be what was intended logically

3.A. if01: cmp w,1
jne endif01
cmp x,2
jne endif01

then01: dec y
endif01: nop

3.C. if02: cmp w,1
je and02 :
cmp x,2
jne endif02

and02: cmp y,3
jne endif02

then02: inc z
endif02: nop

Chapter 5

1.A. Incorrect, .for and .endfor do not exist in MASM
1.C. Correct

3.A Three times

5.A mov edx,eax
mov eax,0
.while(edx >= ebx)
sub edx, ebx
inc eax
.endw

Chapter 6

1.A. Correct
1.C. Incorrect: rotate is not an instruction, use rol or ror.
1.E. Correct

2.B. mov eax,amount
add eax,number
sal eax,2 ; multiply by 2
mov result,eax

Appendix D: Answers to Selected Exercises 331

Chapter 7

1.A. Incorrect: it should be ret, not return.
1.C. Incorrect : there shouldn’t be a decimal point prior to the if directive.
1.E. Correct

Chapter 8

1.A.
1.C.
1.E.

Correct
Correct
Correct

2.A. 5
2.C. 200
2.E. 200

3.A.
3.C.

mov num+0,1
mov eax,num[ebx]
mov num+4[ebx],eax ; or better yet: mov num[ebx+4]

4.A. 5
4.B. 20
4.E. 3

Chapter 9

1.A. Incorrect, it should be movsb
1.C. Correct
1.E. Incorrect, it should be rep stosb
2.A. ecx = 2, esi=undefined, edi = 103, al = “c”
2.C. ecx = 1, esi=104, edi = 109, al = undefined

Chapter 10

1.A. 8

2.A. fld x
fld y
fsub
fld z
fadd
fstp answer

332 Appendix D: Answers to Selected Exercises

Chapter 11

1.A. 0000000000000000h

1.C. 001100220033FFFFh

Chapter 12

1. 22 = 4 opcodes, 20 = 1 register, 26 = 64 memory locations
3. 25 = 32 opcodes, 22 = 4 registers, 29 = 512 memory locations
6. 03CB and 0000001111001011
7. 90 and 10010000
8. 23C3 and 0010001111000011

Appendix B

1.A. 3110
1.C. 12610

2.A. 000110112
2.C. 011011102

3.A. 8710
3.C. −8110

4.A. 001101102
4.C. 111010012

5.A. 4916
5.C. C816

6.A. 4210
6.C. 17110

7.A. 1216
7.C. B116

8.A. 5210
8.C. −12310

9.A. 5C16
9.C. 7D16

10.A. 000100102
10.C. 101000012

11.A. 001110012
11.C. 011100012

Appendix D: Answers to Selected Exercises 333

12.A. ''@''
12.C. ''Q''
13.A. 001000002 No Overflow
13.C. 001001112 No Overflow

14.A. 100001112 No Overflow
14.C. 101000112 Yes Overflow

15.A 100001.0012

16.A 0 10000101 000001100000000000000002

17.A 3F800000h

18.A 32.75

334 Appendix D: Answers to Selected Exercises

Glossary

The descriptions of terms in this glossary should not be used in lieu of the complete
descriptions in the text. Rather they serve as a quick review and reminder of the
basic meaning of various terms that are first introduced in italics in the text. Should
a more complete description be needed, the index can guide the reader to the
appropriate pages where the terms are discussed in more detail.

Absolute When a memory location’s address is referenced from location 0 in
RAM, then it is known as an absolute address.
Aliasing Referencing the same memory location using two different names. In
general, this should be avoided.
Assembler A program that converts an assembly language program into a
machine language program.
Assembly language A low-level language that uses mnemonics and is converted
to machine language by an assembler.
Bankers rounding Floating-point numbers ending in 0.5 are rounded to the
nearest even number to avoid the accumulation of rounding errors.
BCD Binary Coded Decimal.
Bit bucket A term used to describe where bits go when the shifted off the end of
a register or a memory location.
Bit-wise Whenever there are operations on individual bits within a register or
memory locations, these are known as bit-wise operations, such as when using
logic, shift, or rotate instructions.
Conditional assembly A technique in a macro during assembly where one set of
instructions can be generated under one set of circumstances and yet an entirely
different set of instructions can be generated under other circumstances.
CPU Central Processing Unit.
Directive A command that tells the assembler what to do, as opposed to the
CPU.
Dynamic When a value is calculated during execution time as opposed to
assembly time, it is known as dynamic.
FIFO First In Last Out as with a stack.
Instruction A command that tells the CPU what to do as opposed to the
assembler.

© Springer Nature Switzerland AG 2020
J. T. Streib, Guide to Assembly Language, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-35639-2

335

https://doi.org/10.1007/978-3-030-35639-2

Immediate An immediate value is a piece of data that is part of an instruction
instead of being in a memory location or a register.
LIFO Last In First Out as with a queue.
Little endian order This means that the least-significant byte of an operand, or a
word, double word, or quad word appears first in memory, followed by the next
least-significant byte, and so on.
Load A load operation is the copying of the contents of a memory location or
immediate value into a register.
Machine language The native language of a processor coded in ones and zeros.
Macro A macro is a previously defined set of instructions that when invoked
will cause the previously defined instructions to be inserted into the assembly
language program.
Macro definition The original copy of the macro as it was written. It does not
take up any memory until it is invoked and expanded in the program.
Macro expansion The code from the macro definition is inserted and expanded
in the program at the point where the macro is invoked.
Macro invocation Similar to calling a procedure except that instead of
branching to and returning from a procedure, the macro definition is inserted into
the assembly program at the point that the macro is invoked.
Mask A bit pattern in a register, a memory location, or an immediate data that
when used in logical operations will filter out all other bits that do not need to be
tested or altered.
Mnemonics Abbreviations used in an assembly language to represent various
instructions.
Operator Similar to a directive, it tells the assembler what to do with respect to
an individual instruction.
Queue A data structure often implemented as an array that allows data to be put
in only on one end and removed only from the other end. The putting of infor-
mation into a queue is known as an enqueue operation and the removing is known
as a dequeue operation. The data first enqueued into a queue is the first data that is
dequeued from the queue. This first-in first-out principle makes the queue a FIFO
data structure.
RAM Random Access Memory.
Register A short-term memory location located in the CPU that is used for a
variety of operations including arithmetic, logic, counting, indexing an array, and
transferring data between memory locations.
Relative When a memory location’s address is referenced from some point in
RAM other than memory location 0, then it is known as a relative memory
address.
Stack A data structure often implemented as an array that allows data to be only
put in and taken out on one end. The placing of data on the stack is known as a
push operation and the removing of data from the stack is known as a pop
operation. The data last pushed onto the stack is the data first popped off the stack,
where this last-in first-out principle makes the stack a LIFO data structure.

336 Glossary

Static When a value is calculated at assembly time prior to execution, then it is
known as static.
Store A store operation is the copying of the contents of a register or an
immediate value into a memory location.

Glossary 337

References

1. 754-2019—IEEE standard for floating-point arithmetic. https://standards.ieee.org/standard/754-
2019.html

2. Dandamudi SP (2005) Introduction to assembly language, 2nd edn. Springer
3. Streib JT, Soma T (2017) Guide to data structures. Springer

© Springer Nature Switzerland AG 2020
J. T. Streib, Guide to Assembly Language, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-35639-2

339

https://standards.ieee.org/standard/754-2019.html
https://standards.ieee.org/standard/754-2019.html
https://doi.org/10.1007/978-3-030-35639-2

Index

A
Absolute address, 274
add, 29, 30, 282, 334
Addition, 314
Addition instructions, 31
ADDR operator, 18–20
Aliasing, 160
American Standard Code for Information

Interchange (ASCII), 311, 312
and, 323
And operator (&&), 62
Arithmetic instructions, 29–46
Arithmetic shift, 105–108
.asm, 291–292
Array of strings, 204–206
Arrays, 159–162

64-bit arrays, 258–260
floating-point arrays, 232–233

Assembler, 1
Assembly language, 1–2

B
Bankers rounding, 220
Binary Coded Decimal (BCD), 309
Binary numbers, 293–296
Bit, 294
Bit-bucket, 102
Bit manipulation

set, 96, 300
test, 96, 300
toggle, 96, 300

Bit-wise, 99
Branch instructions, 47, 51, 61, 66, 76
break (C instruction), 58
byte directive, 5, 11

C
call, 123, 324
Carry flag, 102

Case structure, 58–59
cbw, 35
cdq, 35, 324
Central Processing Unit (CPU), 3, 7
Characters, 311
cld, 198, 324
cmp, 51–53, 324
cmpsb, 198, 204–208, 324
.code directive, 3
Comments, 4–6
Comparisons, 49
Conditional assembly, 138–141
Conditional assembly directives, 138

else, 139
endif, 139
EQ,GE,GT,LT,LE,NE, 138
if, 138, 142–144
ifb, 138–141
ifdif, 139
ifdifi, 138, 142–143
ifidn, 138
ifidni, 138, 142–144
ifnb, 138

Conditional jump, 51, 57, 66
C programming language

break, 58
for, 78
if, 48–50
printf, 18–24
scanf, 25
switch, 58–59
while, 73

cqo, 251
cwd, 35

D
.data directive, 3
dec, 37, 264–265, 324
Decimal numbers, 296–298

© Springer Nature Switzerland AG 2020
J. T. Streib, Guide to Assembly Language, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-030-35639-2

341

https://doi.org/10.1007/978-3-030-35639-2

De Morgan’s rules, 71
Direction flag, 49, 198
.686 directive, 3
Directives. See individual listings
div, 34, 324
Division instructions, 32, 34
Do-while loops, 76
dup operator, 161
dword directive, 5
Dynamic, 169

E
eflags register, 9, 49, 66–67
.else directive, 53
.elseif directive, 54
.endif directives, 54
endm directive, 132
endp directive, 4, 125
.endw directive, 74
EOD loop, 82
Errors, 13
Exclusive or, 96, 99, 298–300
Execution errors, 138

F
fadd, 213
fcomi, 226–227
fcomip, 226–228, 230
fdiv, 215
fiadd, 221
fild, 219
First In First Out (FIFO), 175
fistp, 219–221
fisttp, 221
Fixed iteration loop, 78–81
Flags, 50
fld, 211
Floating-point instructions, 210–221
Floating-point I/O, 221–226
Floating-point numbers, 307–311
fmul, 214
For loop, 78
fst, 212
fstp, 212
fsub, 214
fsubr, 214

H
Hello world program, 17
Hexadecimal numbers, 296–298
High-level languages, 6

I
idiv, 34, 326
IEEE standard, 309–310
.if directive, 51–52
If statements, 59, 64
Immediate data, 6–7
imul, 32, 327
inc, 37–38, 265–267, 327
Inclusive or, 119, 298–300, 329
Inline assembly, 13–14, 225–226
Input, 23–24

64-bit input, 246
Instructions. See individual listings
Instruction timings, 275–276
Integers, 19–20
INVOKE directive, 18–21
Iteration structures, 73–90, 229–230

J
ja, 60, 327
jae, 60, 327
jb, 60, 327
jbe, 60, 327
jc, 67, 328
je, 51, 327
jecxz, 79, 327
jg, 51, 327
jge, 51, 327
jl, 51, 327
jle, 51, 327
jmp, 53, 54, 274–275, 327
jna, 60, 327
jnae, 60, 327
jnb, 60, 327
jnbe, 60, 327
jnc, 67, 328
jne, 51, 327
jng, 51, 327
jnge, 51, 327
jnl, 51, 327
jnle, 51, 327
jno, 67, 328
jnp, 67, 328
jns, 67, 328
jnz, 66, 328
jo, 66, 328
jp, 66, 328
js, 66, 328
Jump instructions, 51, 60, 66, 327–328
jz, 66, 328

342 Index

L
Label field, 4
Last In First Out (LIFO), 111
lea, 272–273, 328
Lengthof operator, 174–175
Little endian order, 286
Load operation, 10
lodsb, 191, 194–195, 328
Logic, 298–300
Logical shifts, 100–104
Logic errors, 125
Logic instructions, 96–100
loop, 79–80, 328
Loop instructions, 78–87
Low-level languages, 2
.lst file, 52, 292

M
Machine language, 2, 266
macro directive, 132
Macros, 132–135, 138

64-bit, 256–258
definition, 134
expansion, 134
invocation, 133
parameters, 135–136

Masks, 96, 299
Mnemonics, 2
model directive, 3
mov, 6–7, 14–16, 266–271, 328
movsb, 192–193, 328
movsxd, 239
mul, 32, 329
Multiplication instructions, 32–36

N
neg, 38, 39, 328
Nested if statements, 54–58
Nested loops, 85–87
nop, 52, 329
Normalization, 310
not, 97, 329
Not operator (!), 60
Number systems, 293–296

O
offset operator, 168–169, 272–274
One’s complement, 303–304
Opcode field, 4
Operand field, 4
Operator precedence, 39–41
Operators. See individual listings
Or, 97–100
Or operator (||), 61

Output, 19–21
64-bit output, 241–245

Overflow flag, 50, 305–306

P
Parity flag, 50
pop, 111–112, 329
popad, 131, 329
Postfix, 215–219
Post-test loops, 76–78
Precedence, 41–44
Pre-test loops, 73–76
printf (C instruction), 20–24
proc directive, 3, 124
Procedures, 123–127
PROTO directive, 20–23
push, 111–113, 330
pushad, 130–131, 330

Q
Queues, 175–179

R
Random Access Memory (RAM), 7
Registers, 7–8

eax, 8–11
ebp, 9
ebx, 8, 164–165
ecx, 8–9, 78–81
edi, 9, 168–173, 190–194
edx, 8–9, 33–35
eflags, 9, 49, 66
eip, 9
esi, 9, 168–173, 190–191, 195
esp, 9
r8–r15, 241
rax, 239
rbx, 238
rcx, 238
rdx, 238

rep, 193, 330
repe, 193, 330
.repeat directive, 78–80
.repeat–.untilcxz directives, 78–81
Repeat– until instructions, 76–77
repne, 194, 330
ret, 4, 124–129, 330
rol, 109–110, 330
ror, 109, 330
Rotate instructions, 108–110, 330

S
sal, 105–107, 331
sar, 105–108, 331

Index 343

scanf (C instruction), 21–24
scasb, 191, 194–196, 331
sdword directive, 11
Search (sequential), 166
Selection sort, 180–183
Selection structures, 47–70

floating-point, 226–229
Sentinel-controlled loop, 83
Sequential search, 166
Shift instructions, 100–104, 331
shl, 102–103, 331
shr, 102, 104, 331
Sign bit, 305
Signed numbers, 304–307
Sign flag, 50
Sign magnitude, 304
SIGN? operator, 50
sizeof operator, 173–175
Sort (selection), 180–185
sqword directive, 242
Stacks, 95–121

.stack directive, 3, 111
Static, 169
std, 192, 331
Store operation, 7
stosb, 194–196, 331
Strings, 191–193
sub, 31, 271–272, 332
Subprograms, 123
Subtraction instructions, 31
Swap, 114

switch (C instruction), 58–59
sword directive, 5
Syntax errors, 13

T
test, 104–105, 332
Two’s compliment, 303

U
Unary operations, 36–39
Unconditional jump, 54
Unsigned numbers, 300–302
.untilcxz directive, 78–80, 82
.until directive, 76–77

V
Variables, 1–6

W
.while directive, 74–75
While loops, 73–74
word directive, 5

X
xchg, 113–115, 332
xor, 96, 99, 332

Z
Zero flag, 50
ZERO? operator, 50

344 Index

	Preface
	Purpose
	Need
	Importance of Assembly Language
	Comparison to Computer Organization and Other Assembly Language Textbooks
	Features of This Text
	Features New to the Second Edition
	Brief Overview of the Chapters and Appendices
	Scope
	Audience
	Acknowledgements
	Feedback

	Contents
	1 Variables, Registers, and Data Movement
	1.1 Introduction
	1.2 The First Program
	1.3 Variable Declaration
	1.4 Immediate Data
	1.5 Registers
	1.6 Data Movement
	1.7 Character Data
	1.8 Errors
	1.9 Complete Program: Implementing Inline Assembly in C
	1.10 Summary
	1.11 Exercises (Items Marked with an \st Have Solutions in Appendix D)

	2 Input/Output
	2.1 Introduction
	2.2 Hello World
	2.3 Integer Output
	2.4 Integer Input
	2.5 Complete Program: Using Input, Data Transfer, and Output
	2.6 Summary
	2.7 Exercises (Items Marked with an ∗ Have Solutions in Appendix D)

	3 Arithmetic Instructions
	3.1 Addition and Subtraction
	3.2 Multiplication and Division
	3.3 Implementing Unary Operators: Increment, Decrement, and Negation
	3.4 Order of Operations with Binary and Unary Operators
	3.5 Complete Program: Implementing I/O and Arithmetic
	3.6 Summary
	3.7 Exercises (Items Marked with an ∗ Have Solutions in Appendix D)

	4 Selection Structures
	4.1 Introduction
	4.2 If-Then Structure
	4.3 If-Then-Else Structure
	4.4 Nested If Structures
	4.5 Case Structure
	4.6 Characters and Logical Operations
	4.7 Arithmetic Expressions in High-Level Directives
	4.8 Complete Program: Using Selection Structures and I/O
	4.9 Summary
	4.10 Exercises (Items Marked with an ∗ Have Solutions in Appendix D)

	5 Iteration Structures
	5.1 Pre-test Loop Structure
	5.2 Post-test Loop Structures
	5.3 Fixed-Iteration Loop Structures
	5.4 Loops and Input/Output
	5.5 Nested Loops
	5.6 Complete Program: Implementing the Power Function
	5.7 Summary
	5.8 Exercises (Items Marked with an ∗ Have Solutions in Appendix D)

	6 Logic, Shifting, Rotating, and Stacks
	6.1 Introduction
	6.2 Logic Instructions
	6.3 Logical Shift Instructions
	6.4 Arithmetic Shift Instructions
	6.5 Rotate Instructions
	6.6 Stack Operations
	6.7 Swapping Using Registers, the Stack, and the xchg Instruction
	6.8 Complete Program: Simulating an OCR Machine
	6.9 Summary
	6.10 Exercises (Items Marked with an ∗ Have Solutions in Appendix D)

	7 Procedures and Macros
	7.1 Procedures
	7.2 Complete Program: Implementing the Power Function in a Procedure
	7.3 Saving and Restoring Registers
	7.4 Macros
	7.5 Conditional Assembly
	7.6 Swap Macro Revisited Using Conditional Assembly
	7.7 Power Function Macro Using Conditional Assembly
	7.8 Complete Program: Implementing a Macro Calculator
	7.9 Summary
	7.10 Exercises (Items Marked with an ∗ Have Solutions in Appendix D)

	8 Arrays
	8.1 Array Declaration and Addressing
	8.2 Indexing Using the Base Register
	8.3 Searching
	8.4 Indexing Using the esi and edi Registers
	8.5 Lengthof and Sizeof Operators
	8.6 Complete Program: Implementing a Queue
	8.7 Complete Program: Implementing the Selection Sort
	8.8 Summary
	8.9 Exercises (Items Marked with an ∗ Have Solutions in Appendix D)

	9 Strings
	9.1 Introduction
	9.2 String Instructions: Moving Strings (movsb)
	9.3 String Instructions: Scanning (scasb), Storing (stosb), and Loading (lodsb)
	9.4 Array of Strings
	9.5 String Instructions: Comparing Strings (cmpsb)
	9.6 Complete Program: Searching an Array of Strings
	9.7 Summary
	9.8 Exercises (Items Marked with an ∗ Have Solutions in Appendix D)

	10 Floating-Point Instructions
	10.1 Memory Storage
	10.2 Floating-Point Register Stack
	10.3 Pushing and Popping
	10.4 Simple Arithmetic Expressions
	10.5 Complex Arithmetic Expressions
	10.6 Mixing Floating-Point and Integers
	10.7 Input/Output
	10.7.1 float and real4
	10.7.2 double and real8
	10.7.3 long double and real10
	10.7.4 Inline Assembly

	10.8 Comparisons and Selection Structures
	10.9 Complete Program: Implementing an Iteration Structure
	10.10 Complete Program: Implementing an Array
	10.11 Summary
	10.12 Exercises (Items Marked with an * Have Solutions in Appendix D)

	11 64-Bit Processing
	11.1 Four General Purpose Registers
	11.2 Other 64-Bit Registers
	11.3 64-Bit Integer Output
	11.4 64-Bit Integer Input
	11.5 Logic and Arithmetic Applications
	11.5.1 Shift and Rotate
	11.5.2 Logic
	11.5.3 Arithmetic

	11.6 Control Structures
	11.7 Arrays
	11.8 Procedures and Macros
	11.8.1 Calling 64-Bit Procedures
	11.8.2 Using a Macro to Call printf

	11.9 Complete Program: Reversing an Array
	11.10 Summary
	11.11 Exercises (Items Marked with an * Have Solutions in Appendix D)

	12 Selected Machine Language Instructions
	12.1 Introduction
	12.2 inc and dec Instructions
	12.3 mov Instruction
	12.4 add and sub Instructions
	12.5 mov offset and lea Instructions
	12.6 jmp Instructions
	12.7 Instruction Timings
	12.8 Floating-Point and 64-Bit Instructions
	12.8.1 Floating-Point Instructions
	12.8.2 64-Bit Instructions
	12.8.3 Memory Addressing

	12.9 Complete Program: 32-Bit Assembly Listing
	12.10 Complete Program: Floating-Point and 64-Bit Assembly Listing
	12.11 Summary
	12.12 Exercises (Items Marked with an ∗ Have Solutions in Appendix D)

	References
	Index

