Pr filing &Tracing

WITH PERF

What is using

all of my CPU?! Let's ask perf!

y‘d
\ V>
(x : ‘
i\
[+) O
(0]
)i0)@ e o +o
.:o.... o. WSS) A\ m—
.:‘.+.o DY QXX . _: S °
perf lets you \¢ L) A RN
0] Profile your TraI::el system r::aujl . SR o/0
Oe °
o° \ Programs! with low overhead” and more! |, "5
L fogoooo AN . A o o e /o
0 050132006955 o [90690 2 ° .
s ‘Zo.%oo °.°°%° .oﬁ .°c?§%§%%o§o %goooo. o gggg%%%%foo.o AR .
.. ° o - °y OO o R e 045 O. ° & O
° o ol o ° ©® 4
O ° o o

what's this?

(Or\\s Linux ')
perf on Linux is one of my favorite debu%ins tools.
It lets you:

*rirace system calls faster than strace

% profile your C, Go, C++, nodejs, Rust, and Java/IVM
programs really easily

*trace or count almost *ang;" kernel event
(eﬂ. “perf, count how many packets every
program sends')

I've even used it more than once to profile Rubj
programs, so it's not jusf for sgsfems wizards.

The zine explains both how to use the most important
perf subcommands and a little bit about how perf works
under the hood.

let me show you my favorite
perf features + how T use it1

:YULlA EVAN S

@bork
h’(fPS'//jvns o

“Table of Contents

T could ° X =
dothat?

perf top
perf record
O\na\tﬁzins per{: record dota~—— §&-
PeﬁC +node.js/ Saval 10
kernel functions in my stack trace? —11
* pecf cheat sheet & ———————11-13

pem‘ stat lLI 15
perf trace

@ e(f event _open
How per{: works ~
overview 1+
on kerne! versions 18
how profiling with perf works 19

which \anguarjes perf' con pro'F le ~—~—20
perf: under the hood ~—————171-22

more perf resources —~———)7

pert top

My favorite place to start with perf is
perf top.

Ll

'l‘op

T know how much \ (yell I know how
CPU every program || much CPU every

is usintﬁ!

fonction is vsing?

I like fo run perf top on
machines when a program is
Using 100% of the CPU and I
don't kKnow why.

As an example, let's profile a really simple
program 1 wrote. It has a sinjle function,
run_awesome_function, which is an infinite loop.

Here's the code void run_awesome_function () {
int x=0;

I ran. I called :'Q while (1) {
the binary x=x+ 1
use_cpu. }}

int main() { run_awesome_function(); }

While that's running, start perf top. It needs to run
as root, like every perf subcommand.

$ sudo perf top

per-F +op out put

Here's what it looks like when 1 run perf top when
use_cpu is runnin3 on my laptop:

o o ®
99.78% use_cpu [.]run_awesome_function
0.02% [kernel] [k]update_vsyscall
0.02% [kernel] [k]__softirgentry_text_start

@ % of the CPU the function is using

@ name of program or library
@ function name/symbol

This is fe((in3 vus that 100% of the CPU time is beinﬁ

spent in run_awesome_function:
perf fop can tell you about both:

* functions in userspace programs
* functions in the Kernel

Here's what it looks in an example where the
Kernel is using a lot of CPU:

kernel functions !

(27.70% [kernel] [k] cpuidle_reflect
11.87% libxul.so [.]_init
10.24% [kernel] (k) _aesni_encl
6.75% [kernel] [k]end_bio_extent_writepage
3.94% [kernel] [k] find_get_pages_contig

+his fonction is doinﬁ encry p+ion ("aes”) because

T'm \.Jri')ring to an encr5p+ecl -Filesysi'em

@ pert mixtape w

erTsT recor GL=To%
pert d [ees

(-3 QUODQ o

perf top is Sreaf for Seffinﬂ a quicK idea of what's
happening, but 1 often want to investigate more in depth.

collects the same information as perf top,
but it lets you save the data to analyze
later. It saves it in a file called perf.data
in your current directory.

Tl displa
°o|perf top
oo

o
T'll save it in

a file called
perf. data
There are 3 main ways fo choose what process(es)
to profile with perf record:
®perf record COMMAND ¢— starf COMMAND and
profile it until it exits
@perf record PID +«—— profile PID until you
press ctril+c

heg, here's some
prO‘FilfnS dota¥

I
()

Linux
keenel

@perf record -a ¢—profile every process

until you press ctri+c

There's a 4th hybrid thing you can do: If you specify both
a PID (or -a) and a command, it'll profile the PID until the

command exits. Like this:
PID COMMAND

—
perf record -p 8325 sleep 5

This vseful trick lets you profile PID 8325 for 5 seconds!

6

collect +racin3 data. with pemC record

So far we've collected profiling data with perf like
"what function is running?". When perf collects
profiling data, it samples — it checks what function
is running 100 times/second or some’rhins.

But perf can also record lots of different Kinds of
events. And when it records events, it doesn't sample —
if you ask it to record system calls, it'll attempt to
record every single system call. 0
v

|is+ everﬁ

Here are a few Kinds of events: event with

- system calls o] perf list

— sendinﬂ network packets

— readin3 from a block device (disk)

— context switches/page faults

— and you can make any Kernel function
info an event (that's called "kprobes")

For example, let's say you have a program makin3
outbound network connections, but you don't know which

program. perf can help!

This perf incantation records every time a program
connects to a web server (the connect system call), and it

also records the stack trace that led up to the syscall.
means

[col\ec‘l‘

perf record —e syscalls:sys_enter_connect -aggack trace

Beinﬁ able to take a sgsca(l/page fault/disk write and trace
it back fo the exact code that caused it is pretty mugical.

analgzmg pe('F' record dato.

There are 3 ways to analyze a perf.data file
Senerafed by perf record:

perf report i

self
0.01%
99.74%

command
command
use_cpu
use_cpu

use_cpu

T ,,,//////////,,,0

per‘F anno‘l'ocl'e ‘\

wt
"ln\\ CLLLLLLg ey Vs Y

QSSemblj instroctions’

shared object
[kernel.kallsyms]

perf report displays a qUICK
interactive report showm3 you which
functions are used the most

symbol
[k] update_wall_time
[.] run_awesome_function

~100% of the e is spent inthis function!
perf annotate will fell you which
assembly instructions your program
is spending most of its tfime
execuﬂn3 (be careful, can be off

by one instruction)

Disassembly of section .text:

00000000004004d6 <run_awesome_function>:
run_awesome_function():

o ,\-Iaf\
push %rbp 66 in N\ie‘
mov %rsp,%rbp Mis O ce o\ ¥
movl $0x0,-0x4(%rbp) i ‘A‘V"' beind ef
99.68 | b: addl $0x1,-0x4(%rbp) ¢ i€
9.32 T jmp b
, perf script prints out all the
1
' samples perf collected as text so
1 Yyou can run scripts on the output
1
' fo do analysis. Like the flamegraph
 seript on the next page! =
o)NO!\
use_cpu 13GSé 12337 096592: 657702 cycles:ppp:
s*ock 4el run_awesome_function (use_cpu)
ko 4f5 main (use_cpu) symbol |
20830 __libc_start_main (libc-2.23.s0)

8fe258d4c544155 [unknown] ([unknownl)

—Flamesraphs

Flamegraphs are an awesome way fo visualize profling
data, profiling data. They were invented and popularized by
Brendan Greqg.

Here's what fhej look like:

;ea“' 10%)] IWre 20 7% [teeth 28% |

__panda. 20% alligator 807
main IOO %

They're constructed from lots (usvally thousands) of
stack traces sampled from a program. This one above
means that 20% of the stack traces started with [p'"nﬁm
mai

and 28% started with (";{Lgﬁor]
To generate flamegraphs, get

: github.com/brendangregg/Flamegrapht
and put it in your PATH. Once you have that, here's how
to Senerm‘e a f(amegraph:

$ sudo perf script | stackcollapse-perf.pl
| flamegraph.pl > graph.svg

open this in yodr browser ¥

(this is the same perf script from the previous page)

node.J‘s e,

per-F + or = _'Q7-_

Sava, s

Normally with interpreted lqnguages like node.js, perf will
tell you which interpreter function is running but not
which Javascript function is running. But:

@ %) We can help fell perf
Java what's going on ! \..Jug\-{\-hme"

This works because both node and Java have a JIT compiler.

ooo@

node.js

ou know, Tm

function awesome () {
QC+UO.“kj 9oing to

// do a thing
}

just -in-time compile
that to machine cade

SIT <cmpiled instructions

hey, those instructions
Ox offeaffe 3

Correspond to the
my - cool- Fon function

node.js

node.js communicates with perf by writing a file called
/tmp/perf-$PID.map
How to set that up:

©

node.js

Ox offebafe

W

Java

node ——perf-basic— prof.®33f perf-map- qaenf from Slfhub
program.js |®fmd PID of process
.@create java-perf-map.sh $PID

N‘I\S are. there kernel functions
n my stack trace?

Sometimes you'll 351‘ a stack trace from perf, and it'll mix
functions from your program (like __getdentsé4) and
functions from the Kernel (like btrfs_real_readdir).
This is normall!

Example:

find 27968 97997.204322: 707897 cycles:pp:
7fffc034eac? read_extent_buffer ([kernel.kallsyms])
Ffffc032e4f? btrfs_real_ readdir ([kernel.kallsyms])
7fff8122%9eb8 iterate_dir ([kernel.kallsyms])
7fff8122a359 sys_getdents ([kernel.kallsyms])
?7fff81850fc8 entry_ SYSCALL_64_fastpath ([kernel.kallsyms])
c88eb __getdentsé64 (/lib/x86_64-linux-gnu/libc-2.23.s0)

fonction from your program
It usually means either your program did a system call or
there was a page fault, and it's fe((ing you exactly which
kernel functions were called as a result of that syscall.

For example, because I'm usinﬂ the btrfs filesystem, in
this case the getdents syscall calls the
btrfsf_real readdir function. Neat!

oh, the kemel isn't magic.

0®

it kindo. makes sense Y

11

* perwa cheat sheet %

important command line arguments :

9 what dofa 4o getep
-F: pick sample ¥requenc3
-9: record stack traceS

@ what program(s) to look ate
-a: entire system
- p: specify a. PID

-€: choose events o recod COMMAND : run this cmd

* Pe(—F -]—OP: 99,‘\' upd(:d'es live.! *

Sample CPUs at 49 Hertz, show top symbols:
perf top -F 49

Sample CPUs, show top process names and segments:
perf top —ns comm,dso

Count system calls by process, refreshing every 1 second:
perf top —e raw_syscalls:sys_enter —ns comm -d 1

Count sent network packets by process, rolling output:
stdbuf -oL perf top -e net:net_dev_xmit -ns comm | strings

Eu o4 gu !‘cl wos
___Ual\a

* Peﬁ stod : count events Ve counters ¥ %

CPU counter statistics for COMMAND:
perf stat COMMAND

Detailed CPU counter statistics for COMMAND:
perf stat -ddd command

Count system calls for PID, until Ctrl-C:
perf stat —e 'syscalls:sys_enter_*'-p PID

Count block device I/0 events for the entire system, for 10
seconds:
perf stat -e 'block:*' -a sleep 10
* Repor‘hng X
Show perf.data in an ncurses browser:
perf report

Show perf.data as a text report:
perf report —-stdio

List all events from perf.data:
perf script

Annotate assembly instructions from perf.data
with percentages
perf annotate [--stdio]

|2

sourced from brendangregg.com [/ pec§ .himl,
which has many more great examples

xpec§ teace: trace system calls & other events

Trace syscalls system wide # Trace syscalls for PID
perf trace perf trace -p PID

kpect record: record profiling data

cords int
Sample CPU functions for COMMAND at 99 Hertz: f; T ;’;‘lo
perf record —F 99 COMMAND perf.data File

Sample CPU functions for PID, until Ctrl-C:
perf record —-p PID

Sample CPU functions for PID, for 10 seconds:
perf record —p PID sleep 10

Sample CPU stack traces for PID, for 10 seconds:
perf record —p PID —g —-- sleep 10

Sample CPU stack traces for PID, using DWARF to unwind stack:
perf record —p PID —-call-graph dwarf

*per‘F (eco(d : fecocd +racing dofo

Trace new processes, until Ctrl-C: '\

perf record -e sched:sched_process_exec -a l’ecof'dS into

pecf.dato. file
Trace all context switches, until Ctrl-C:
perf record —e context-switches -a

Trace all context switches with stack traces, for 10
seconds:
perf record -e context-switches -ag -- sleep 10

Trace all page faults with stack traces, until Ctrl-C:
perf record —-e page-faults -ag

* adding new trace events
Add a tracepoint for kernel function tcp_sendmsg():
perf probe 'tcp_sendmsg'

Trace previously created probe:
perf record —e probe:tcp_sendmsg -a

Add a tracepoint for myfunc() and include the retval as a string:
perf probe 'myfunc%return +0($retval):string’

Trace previous probe when size > 0:
perf record —-e probe:tcp_sendmsg ——-filter 'size>0' -a

ernel debuginfo

¥/ # Add a tracepoint for do_sys_open()with the filename as a string:
g perf probe 'do_sys_open filename:string' l:;)

Pe(‘P stat: CPU counters @@@@@@

ST
© 3T 35 B0

1f 3ou’re wrifing hiﬂh—performance progrqms, there
are a lot of CPU’/hardware-level events You miﬁhf be
interested in counfinﬁ:

instcuctions
pec cycle

page
faulks

L1 cache
hits /misses

‘ora\'\"«\" p(‘e.d iction
misses

You mighf wonder:

how can T tell what
the LI cache hitrate

is +kousk'£2 T'd need to
look. INSIDE THE cPU?!

hacdwace
countersy

Basically, Linux can ask your CPU fo start recordin3
various statistics:

As an example, here's part of the output of perf stat -ddd 1s
dis for detdiled

hey can you count) (on itY
L1 cache hits+
misses?

hey can you count
L1 cache hits r
misses ?

g

$ sudo perf stat -ddd 1ls -R /
Performance counter stats for 'ls -R /':

3849.615096 task-clock (msec) # 0.535 CPUs utilized
26,120 context-switches # 0.007 M/sec
342 page-faults # 0.089 K/sec
10 ¢ 8,583,744,395 cycles # 2.230 GHz
billion 10,337,612,795 instructions # 1.20 insns per cycle
instroctions 1, 987,339, 660 branches # 516.244 M/sec
hnpp8n 20,738,878 branch-misses 1.04% of all branches
'Ftlj"’ 2,883,947,626 dTLB-loads brar\c\n# 749.152 M/sec

7.192555725 seconds time elapsed Prediction
stats

14

pert stat: count any evernt-

You can actually count lots of different events with perf
stat — the same events you can record with perf record!

Here are a couple of examples of using perf stat on
1s -R (which lists files recursively, so it makes lots of

system calls):

(M count context switches between the
kernel and userspace!

@ count system calls!

wildead

$ sudo perf stat -e 'syscalls:sys_enter_*'ls -R /
> /dev/null

< count system call
T can these 8,028 syscalls:sys_enter_newlstat
Fheovon 15,167 syscalls:sys_enter_write
sock -N 254,755 syscalls:sys_enter_close
Yo %e,\ o 254,777 syscalls:sys_enter_open
.s\, 509,496 syscalls:sys_enter_newfstat
Yop W 509,598 syscalls :sys_enter_getdenb director

entries
perf stat does introduce some overhead. Counting
*every‘system call for find made the program run up fo

slower in my brief experiments.

1 think as (onﬁ as you only count a few different
events (like just the syscalls:sys_enter_open
event) it should be fine. I don't 100% understand why
there's so much overhead here fhough.

pert trace

strace is an awesome Linux debu%ing tool that

traces system calls. It has one problem though:
~
Program

perf trace traces system calls, but with way less
overhead. It's safe to run in production, unlike strace.

oh no, now I
aMm runnin
10x slowec’

Qoo

T am going 4o

Hrace you 1

There are 2 disadvanfaﬂes ’rhough (as of Linux 4.4):
(D sometimes it drops system calls (this is sort of
an advanfage since it limits overhead)
@it won't show you the strings that are being
read/written.
Here's a comparison of both strace and perf
trace output, on the same program:

"

g

~ string. O
brk(brk: 0x2397000) :brk(brk: 0x2397000) = 0x23
write(fd: 2, buf: 0x28 ywrite(2, "bork@kiwi:~", 13)=13
read(buf: 0x?ffd?7b0a8d?, 1 : read (0, "\4", 1) =1
ioctl(cmd: TCGETS, arg: ... 1ioctl(0, TCGETS, arg: 0x?ffd77b0a
ioctl(cmd: TCSETSW, arg: ... |ioctl(@, SNDCTL_TMR_STOP or TCSETSW

I

These have the same write system call, but only strace
actually shows you what s’rrin3 was written.

Recently 1 used perf frace, and it fold me Docker was
cal(ing stat on files, which was a VERY USEFUL
CLUE that helped me fiﬂure out that Docker 3e’rs container
sizes by looKin3 at every file. I vsed perf trace becavse 1
didn't want to deal with strace's overhead!

|6

how per¥ works: overview

Now that we know how to use perf, let's see how
it works!
The perf system is split into 2 parts:

© a program in userspace called perf
@ a system in the Linux kernel

When you run perf record, perf stat, or perf top fo
get information about a program, here's what happens:

— perf asks the Kernel to collect information.

o cofile this programf

G
Perf \ Collect syst s 1)

prosram ystem calls ¥

L .
@nd’uork packetsV) k:;::l

—¥ the Kernel gets samples/traces/CPU counters from
the programs perf asks about.

—» perf displays the data back to you in a
(hopefully) useful way.

So here's the big picture:

0 @ S

pect userspace progams Im

program Linux

analyzi
kernel nalyzing

on kecnel versions

perf works really closely with the Linux Kernel. This
means a couple of ’rhings:

— You need fo install a version of perf that exactly
matches your Kernel version.
On Ubunty, you can do that with:

sudo apt-get install linux-tools-$(uname —-r)

— perf's features (and sometimes command-line
options) chqnﬂe between Kernel versions.

The first version of perf was in Linux 2.6.

This also means that there's a perf documentation folder
in the Linux 3”’ repository! You can see it on 3i+hub:

github.com/torvalds/linux/tree/master/tools/perf/Documentation

Some of the cool fhinﬂs in there:

perf.data file format spec

how to use perf's built-in Python interpreter (?) to
write scripts

all the man pages for each perf subcommand

Beneh) (EWliskErracdlnied QesHifrace)
g Gy @) (alymlkm\ DIy

)

how profiling with pect work s

The Linux Kernel has a built-in sampling profiler.

T checked what function the program
Wos runnma 50,000 times and here
Linux are the results!

How does Linux know which functions your program is
rUnninﬂ fhough? Well, the Linux Kernel is in charﬂe of
schedu(iqg.

That means that at all times it has a list of every process
and the address of the CPU instruction that each process
is currently running. That address is called the instruction

pointer.
Here's what the information the Linux kernel has looks like:

command P1D thread 1D instruction pointer
python 2379 2379 0x00759d2d
bash 1229 1229 0x00123456
use_cpu 4991 4991 0xabababab
use_cpu 4991 4992 0xababdddd

Sometimes perf can't fiﬁure out how to turn an
instruction pointer address into a function name. Here's
an example of what that looks like:

B mgster{'ous address f1

self command shared object symbol
0.00% nodejs nodejs [.] 0x00000759d20
0.00% V8 WorkerThread ([kernel.kallsyms] [k] hrtimer_active

which programming languages
can perf profile?

The way perf usually fi\cjures out what function your
programs are runnin3 is:

®3ef the program'’s instruction pointer address

@ get a copy of the program's stack

@ unwind the stack to find the address of the
current function call

(@ vse the program's symbol table to figure out the
name of the symbol that address corresponds
to!

The important thing fo understand is that perf will by
default give you a symbol from the program symbol table.
That means perf won't give you function names for binaries
where the symbols are stripped.

Here's how perf can help you, broken down by programming

(qnﬂque:

Pe(-? will tell you what

Pyﬂwn, Ruby, PHP,
other intecpreted

function is ruaning la"ﬂ"ases

node.ﬁs VM perf will fell
TSava /Scala / Clojure languages you aboot the

intecpreter

ecf can use an alemate (can shill be useful !)

method to Findthe “real " function
(like we explained on page 10)

20

per'f’: under the hood

It's often useful to have a basic undersfqnding of how
our tools are implemented. So let's look at the interface
the userspace tool (perf) uses to talk to the Linux
kernel. Here's what happens, basically:

(D perf calls the perf_event_open system call

(@) the kernel writes events to a ring buffer in
userspace

@ perf reads events off that ring buffer and
displays them fo you somehow

What's a rin3 buffer?

Basically, it's important to use a limited amount of
memory for profiling events. So the Kernel allocates
a fixed amount of money:

P e

each of these is space for 1 record
and when that memory gets full because new
records are being written faster than perf can

read them... HNEEEEFEERFE
whoops! were out of space. guess T
~

can't write more eventst

Lfnu;\
So if you see warnings from perf about events
being dropped, that's what happening.

21

the perf_event_open system call

This system call is how perf asks the Linux Kernel to
start samp(in3 or fracins.

Here's the system call's signafure, from

man perf_event_open:

int perf_event_open(struct perf_event_attr *attr,

pid_t pid, int gcpu, int\group_fd,
unsigned/long[flags),;
PIDZ CPU o look at. ‘H'\is 15 whece mos1' o‘F

Can be “all of them". the arquments are.

1 don't find this man page all that vseful for day-to-day
perf usage. But! Did you know that the perf CLL fool
isn't the only program that uses the perf_event_open
syscall?

The bee project is_a toolkit for writing advanced profiling
tools using eBPF: github.comviovisor/bece

With bee, you can relatively easily use
perf_event_open fo create your own custom

profiling/tracing events! And then you can write
code to aﬂﬂreﬁafe/disp(aj them any way you want.

Search for BCC_PERF_OQUTPUT in the bee docs to learn more.

22

U more perf resources &

Thanks for readinﬂ! A few more useful resources:

Brendan —* Prendangregg.com/perf.htmle
(T;le%ls is my favorite perf resource. His b(og &
°3 talks are also usefull

LWN is a great Linux publication, and they
sometimes publish articles about perf!

Linux Weekly News
LWN.net

perf has man pages, as you'd expect.

man perf top, for example.

most impoctantly

—» Pick a program and try to profile it!
- See what your kernel is doin3 under different workloads!

- Try recordinj or counting a few kinds of perf events and

see what happens!

good luck f

have fun U

'SULIA
23

