

what's this
onlyLinux

Bai

AE

Bo

i

9t'petfEah es iowtIiiii
JULIA EVANS

bark
httpsKjvns ca

2

perf on Linux is one of my favorite debugging tools.
It lets you:

I've even used it more than once to profile Ruby
programs, so it's not just for systems wizards.

The zine explains both how to use the most important
perf subcommands and a little bit about how perf works
under the hood.

trace system calls faster than strace
profile your C, Go, C++, node.js, Rust, and Java/JVM
programs really easily
trace or count almost any kernel event
(e.g. "perf, count how many packets every
program sends")

Table of Contents
am

EditionG µg E

UsingperfwT

perf top 4 5
perf record G 7

analyzing perf record data 8 9

perf node.js1 Java 10
kernel functions in my stack trace 11

perf cheat sheet x 12 13

perf stat 14 15

perf trace 16

HOWpertworksmnTIEEE.EEHIFIperfevent.openTFO.EE
EI EE

overview 17
on kernel versions 18
howprofiling with perf works 19
whichlanguagesperf can profile 20
perf under the hood 21 22
more perf resources 23

3

V

perf top

I know howmuch
pr E I t o

o Y
wtfv

4

$ sudo perf top

My favorite place to start with perf is
perf top.

I like to run perf top on
machines when a program is
using 100% of the CPU and I
don't know why.

As an example, let's profile a really simple
program I wrote. It has a single function,
run_awesome_function, which is an infinite loop.

void run_awesome_function () {
 int x = 0;
 while (1) {
 x = x + 1;
 }
}
int main() { run_awesome_function(); }

Here's the code
I ran. I called
the binary
use_cpu.

While that's running, start perf top. It needs to run
as root, like every perf subcommand.

perf top output

Be

kernel functions

Ifunction is doingencryption aes because
I'm writing to an encrypted filesystem

g

Here's what it looks like when I run perf top when

use_cpu is running on my laptop:

% of the CPU the function is using
name of program or library
function name/symbol

functions in userspace programs
functions in the kernel

Here's what it looks in an example where the
kernel is using a lot of CPU:

 99.78% use_cpu [.] run_awesome_function
 0.02% [kernel] [k] update_vsyscall
 0.02% [kernel] [k] __softirqentry_text_start

 27.70% [kernel] [k] cpuidle_reflect
 11.87% libxul.so [.] _init
 10.24% [kernel] [k] _aesni_enc1
 6.75% [kernel] [k] end_bio_extent_writepage
 3.94% [kernel] [k] find_get_pages_contig

perf top can tell you about both:

This is telling us that 100% of the CPU time is being
spent in run_awesome_function:

ftp.xtape.TTperf record oiao o o Do

perfrecorathj

i t hgaatTmooperf
e IusavefmiyinoperfrecordafilecaHedperf.O'ata

PT COMMAND

6

perf top is great for getting a quick idea of what's
happening, but I often want to investigate more in depth.

perf record -p 8325 sleep 5

This useful trick lets you profile PID 8325 for 5 seconds!

There are 3 main ways to choose what process(es)
to profile with perf record:

perf record COMMAND

perf record PID

perf record -a

collects the same information as perf top,
but it lets you save the data to analyze
later. It saves it in a file called perf.data
in your current directory.

start COMMAND and
profile it until it exits
profile PID until you
press ctrl+c
profile every process
until you press ctrl+c

There's a 4th hybrid thing you can do: If you specify both
a PID (or -a) and a command, it'll profile the PID until the
command exits. Like this:

collect tracing data with perf record

list every

I ithTo

o

o

o

reorients
stacktrace

7
I

For example, let's say you have a program making
outbound network connections, but you don't know which
program. perf can help!

perf record -e syscalls:sys_enter_connect -ag

This perf incantation records every time a program
connects to a web server (the connect system call), and it
also records the stack trace that led up to the syscall.

So far we've collected profiling data with perf like
"what function is running?". When perf collects
profiling data, it samples - it checks what function
is running 100 times/second or something.

system calls
sending network packets
reading from a block device (disk)
context switches/page faults
and you can make any kernel function
into an event (that's called "kprobes")

Being able to take a syscall/page fault/disk write and trace
it back to the exact code that caused it is pretty magical.

But perf can also record lots of different kinds of
events. And when it records events, it doesn't sample -
if you ask it to record system calls, it'll attempt to
record every single system call.

Here are a few kinds of events:

analyzing perf record data

armyperf reportturn 1
i

i
100 ofthetimeisspentinthisfunction

iiperf annotate i
I 1

n 1
assemblyinstructionsr i

i

this
addinstruction
swhere

all the

timesbeing
spent

runnyperf scriptim
i

instruction

ft key symbol

8

use_cpu 13650 12337.096592: 657702 cycles:ppp:
 4e1 run_awesome_function (use_cpu)
 4f5 main (use_cpu)
 20830 __libc_start_main (libc-2.23.so)
 8fe258d4c544155 [unknown] ([unknown])

perf script prints out all the
samples perf collected as text so
you can run scripts on the output
to do analysis. Like the flamegraph
script on the next page!

perf report displays a quick
interactive report showing you which
functions are used the most

perf annotate will tell you which
assembly instructions your program
is spending most of its time
executing (be careful, can be off
by one instruction)

There are 3 ways to analyze a perf.data file
generated by perf record:

 self command shared object symbol
 0.01% use_cpu [kernel.kallsyms] [k] update_wall_time
 99.74% use_cpu use_cpu [.] run_awesome_function

 │ Disassembly of section .text:
 │
 │ 00000000004004d6 <run_awesome_function>:
 │ run_awesome_function():
 │ push %rbp
 │ mov %rsp,%rbp
 │ movl $0x0,-0x4(%rbp)
 99.68 │ b: addl $0x1,-0x4(%rbp)
 0.32 │ ↑ jmp b

y flamegraphs doth

nA An
eat biteoo.lt8opanda2igator8Ooma

faIigIa'for
Emanaida

p
open this in yourbrowser9.1

9

github.com/brendangregg/Flamegraph

$ sudo perf script | stackcollapse-perf.pl
 | flamegraph.pl > graph.svg

(this is the same perf script from the previous page)

They're constructed from lots (usually thousands) of
stack traces sampled from a program. This one above
means that 20% of the stack traces started with
and 28% started with .
To generate flamegraphs, get

and put it in your PATH. Once you have that, here's how
to generate a flamegraph:

Flamegraphs are an awesome way to visualize profling
data, profiling data. They were invented and popularized by
Brendan Gregg.

Here's what they look like:

perf node.js i

or
Java

sDgYztwwehIfshgedPintgeInPert
i.us intime1

footnotingactuallygoingto
just in timecompile nodey's
hqttomachinecodem

JITcompiled instructions
hey those instructions

OxafMfeaffeIcomiYdfutntfuhntionperf
0xaffebafSD_node.y'S

than

Ds i 111
82

node.js Java

i

10

get perf-map-agent from github
find PID of process
create-java-perf-map.sh $PID

function awesome() {
 // do a thing
}

node --perf-basic-prof
 program.js

This works because both node and Java have a JIT compiler.

Normally with interpreted languages like node.js, perf will
tell you which interpreter function is running but not
which Javascript function is running. But:

node.js communicates with perf by writing a file called
 /tmp/perf-$PID.map

How to set that up:

why are there kernel functions z

in my stack trace K

Tfunctionfromyourprogram

it i ii
I

11

Sometimes you'll get a stack trace from perf, and it'll mix
functions from your program (like __getdents64) and
functions from the kernel (like btrfs_real_readdir).
This is normal!

Example:

find 27968 97997.204322: 707897 cycles:pp:
 7fffc034eac7 read_extent_buffer ([kernel.kallsyms])
 7fffc032e4f7 btrfs_real_readdir ([kernel.kallsyms])
 7fff81229eb8 iterate_dir ([kernel.kallsyms])
 7fff8122a359 sys_getdents ([kernel.kallsyms])
 7fff81850fc8 entry_SYSCALL_64_fastpath ([kernel.kallsyms])
 c88eb __getdents64 (/lib/x86_64-linux-gnu/libc-2.23.so)

It usually means either your program did a system call or
there was a page fault, and it's telling you exactly which
kernel functions were called as a result of that syscall.

For example, because I'm using the btrfs filesystem, in
this case the getdents syscall calls the
btrfsf_real_readdir function. Neat!

sina.perfcheatsheetoo.ae
importantcommand line arguments
whatdatatoget whatprogramG to lookatF picksamplefrequency a entiresystemg recordstack traces p specify a PIDe chooseeventstorecord COMMAND runthisand

perftop getupdates live.B.BA

H
tw

perf stat counteventsFCPUcounters9 a

Reporting

12
d

Sample CPUs at 49 Hertz, show top symbols:
perf top -F 49

Sample CPUs, show top process names and segments:
perf top -ns comm,dso

Count system calls by process, refreshing every 1 second:
perf top -e raw_syscalls:sys_enter -ns comm -d 1

Count sent network packets by process, rolling output:
stdbuf -oL perf top -e net:net_dev_xmit -ns comm | strings

CPU counter statistics for COMMAND:
perf stat COMMAND

Detailed CPU counter statistics for COMMAND:
perf stat -ddd command

Count system calls for PID, until Ctrl-C:
perf stat -e 'syscalls:sys_enter_*' -p PID

Count block device I/O events for the entire system, for 10
seconds:
perf stat -e 'block:*' -a sleep 10

Show perf.data in an ncurses browser:
perf report

Show perf.data as a text report:
perf report --stdio

List all events from perf.data:
perf script

Annotate assembly instructions from perf.data
with percentages
perf annotate [--stdio]

sourcedfrombrendangregg.com perf.html
whichhasmanymoregreatexamples

perf trace tracesystemcalls otherevents

perfrecord recordprofilingdata 9 records into
perfdata file

perfrecord record tracing data
records into
perfdata file

adding new trace events

e

i 13

Trace syscalls for PID
perf trace -p PID

Trace syscalls system wide
perf trace

Sample CPU functions for COMMAND at 99 Hertz:
perf record -F 99 COMMAND

Sample CPU functions for PID, until Ctrl-C:
perf record -p PID

Sample CPU functions for PID, for 10 seconds:
perf record -p PID sleep 10

Sample CPU stack traces for PID, for 10 seconds:
perf record -p PID -g -- sleep 10

Sample CPU stack traces for PID, using DWARF to unwind stack:
perf record -p PID --call-graph dwarf

Trace new processes, until Ctrl-C:
perf record -e sched:sched_process_exec -a

Trace all context switches, until Ctrl-C:
perf record -e context-switches -a

Trace all context switches with stack traces, for 10
seconds:
perf record -e context-switches -ag -- sleep 10

Trace all page faults with stack traces, until Ctrl-C:
perf record -e page-faults -ag

Add a tracepoint for kernel function tcp_sendmsg():
perf probe 'tcp_sendmsg'

Trace previously created probe:
perf record -e probe:tcp_sendmsg -a

Add a tracepoint for myfunc() and include the retval as a string:
perf probe 'myfunc%return +0($retval):string'

Trace previous probe when size > 0:
perf record -e probe:tcp_sendmsg --filter 'size > 0' -a

Add a tracepoint for do_sys_open() with the filename as a string:
perf probe 'do_sys_open filename:string'

perf stat CPU counters

io netiiotaassOo
IEu9EnEnia mnS QinY isthough I'dneedto

A look INSIDETHECPU

I
Yag'ni

hI h oniffug
misses

Fd is fordetailed

to
billion
instructions
happen Tofeast branch

prediction
stats

14

If you're writing high-performance programs, there
are a lot of CPU/hardware-level events you might be
interested in counting:

Basically, Linux can ask your CPU to start recording
various statistics:

You might wonder:

As an example, here's part of the output of perf stat -ddd ls

$ sudo perf stat -ddd ls -R /
 Performance counter stats for 'ls -R /':
 3849.615096 task-clock (msec) # 0.535 CPUs utilized
 26,120 context-switches # 0.007 M/sec
 342 page-faults # 0.089 K/sec
 8,583,744,395 cycles # 2.230 GHz
 10,337,612,795 instructions # 1.20 insns per cycle
 1,987,339,660 branches # 516.244 M/sec
 20,738,878 branch-misses # 1.04% of all branches
 2,883,947,626 dTLB-loads # 749.152 M/sec

 7.192555725 seconds time elapsed

perfstat count any event

wildcard

Iranthese count system
through
sort n
togeta
toplist directory

entries

as

15

perf stat does introduce some overhead. Counting
every system call for find made the program run up to
6 times slower in my brief experiments.

count system calls!

I think as long as you only count a few different
events (like just the syscalls:sys_enter_open
event) it should be fine. I don't 100% understand why
there's so much overhead here though.

$ sudo perf stat -e 'syscalls:sys_enter_*' ls -R /
 > /dev/null

 8,028 syscalls:sys_enter_newlstat
 15,167 syscalls:sys_enter_write
 254,755 syscalls:sys_enter_close
 254,777 syscalls:sys_enter_open
 509,496 syscalls:sys_enter_newfstat
 509,598 syscalls:sys_enter_getdents

You can actually count lots of different events with perf
stat the same events you can record with perf record!

Here are a couple of examples of using perf stat on
ls -R (which lists files recursively, so it makes lots of
system calls):

count context switches between the
kernel and userspace!

perf trace

straws i

tae I stracemW
nostring

i fstring
i
i
i
i

a

16

strace is an awesome Linux debugging tool that
traces system calls. It has one problem though:

perf trace traces system calls, but with way less
overhead. It's safe to run in production, unlike strace.

brk(brk: 0x2397000)
write(fd: 2, buf: 0x28
read(buf: 0x7ffd77b0a8d7, 1
ioctl(cmd: TCGETS, arg: ...
ioctl(cmd: TCSETSW, arg: ...

brk(brk: 0x2397000) = 0x23
write(2, "bork@kiwi:~", 13) = 13
read(0, "\4", 1) = 1
ioctl(0, TCGETS, arg: 0x7ffd77b0a
ioctl(0, SNDCTL_TMR_STOP or TCSETSW

sometimes it drops system calls (this is sort of
an advantage since it limits overhead)
it won't show you the strings that are being
read/written.

There are 2 disadvantages though (as of Linux 4.4):

Here's a comparison of both strace and perf
trace output, on the same program:

These have the same write system call, but only strace
actually shows you what string was written.
Recently I used perf trace, and it told me Docker was
calling stat on 200,000 files, which was a VERY USEFUL
CLUE that helped me figure out that Docker gets container
sizes by looking at every file. I used perf trace because I
didn't want to deal with strace's overhead!

how perf works overview

fpthisprofiegram.conitB.f fJY
prpoegrrfamcollectsystemcallsr.LT I E

Linuxthtnetworkpacketternel

0

OI E D D
y

pe f effigy TO
A perfuserspace I EE programs I'mLinux
me program kerne analyzing

17

So here's the big picture:

the kernel gets samples/traces/CPU counters from
the programs perf asks about.

When you run perf record, perf stat, or perf top to
get information about a program, here's what happens:

Now that we know how to use perf, let's see how
it works!
The perf system is split into 2 parts:

a program in userspace called perf
a system in the Linux kernel

perf asks the kernel to collect information.

perf displays the data back to you in a
(hopefully) useful way.

on kernel versions

annotateslarchiveJberich Etna t III
I thudatadiffokalls.msOist1ockwtfoDmnwmemprobe0Dreporthumschedscriptostatotimecharth

18

perf works really closely with the Linux kernel. This
means a couple of things:

Some of the cool things in there:

This also means that there's a perf documentation folder
in the Linux git repository! You can see it on github:

github.com/torvalds/linux/tree/master/tools/perf/Documentation

sudo apt-get install linux-tools-$(uname -r)

You need to install a version of perf that exactly
matches your kernel version.
On Ubuntu, you can do that with:

perf's features (and sometimes command-line
options) change between kernel versions.

The first version of perf was in Linux 2.6.

perf.data file format spec
how to use perf's built-in Python interpreter (?) to
write scripts
all the man pages for each perf subcommand

how profiling with perf works

Ein
Linux

I

mysterious address.PK

19

command PID thread ID instruction pointer

2379
1229
4991
4991

2379
1229
4991
4992

Sometimes perf can't figure out how to turn an
instruction pointer address into a function name. Here's
an example of what that looks like:

The Linux kernel has a built-in sampling profiler.

How does Linux know which functions your program is
running though? Well, the Linux kernel is in charge of
scheduling.
That means that at all times it has a list of every process
and the address of the CPU instruction that each process
is currently running. That address is called the instruction
pointer.
Here's what the information the Linux kernel has looks like:

python
bash
use_cpu
use_cpu

0x00759d2d
0x00123456
0xabababab
0xababdddd

self command shared object symbol
0.00% nodejs nodejs [.] 0x00000759d20
0.00% V8 WorkerThread [kernel.kallsyms] [k] hrtimer_active

which programming languages
can perf profile

MmhfwCtGoR Python Ruby PHP
perf will tell you what

qnmwgjfrnn.mg

fathfrgesinterpreterwha

JVM perfwill tellJava1Scala1Clojure languages
youaboutthe

perf can use an alternate interpreter
methodtofindthe real function canstillbeuseful

like weexplainedonpage10

20

Here's how perf can help you, broken down by programming
language:

The way perf usually figures out what function your
programs are running is:

get the program's instruction pointer address
get a copy of the program's stack
unwind the stack to find the address of the
current function call
use the program's symbol table to figure out the
name of the symbol that address corresponds
to!

The important thing to understand is that perf will by
default give you a symbol from the program symbol table.
That means perf won't give you function names for binaries
where the symbols are stripped.

perf under the hood

000000000
each of these is space for 1 record

DX

a
Ya i si su

21

perf calls the perf_event_open system call
the kernel writes events to a ring buffer in
userspace
perf reads events off that ring buffer and
displays them to you somehow

Basically, it's important to use a limited amount of
memory for profiling events. So the kernel allocates
a fixed amount of money:

What's a ring buffer?

and when that memory gets full because new
records are being written faster than perf can
read them...

So if you see warnings from perf about events
being dropped, that's what happening.

It's often useful to have a basic understanding of how
our tools are implemented. So let's look at the interface
the userspace tool (perf) uses to talk to the Linux
kernel. Here's what happens, basically:

the perf event open system call

int perf event open struct perf event at tr at tr
EFFY's ovata

PID CPUto look at this is wheremostofcanbe all of them the arguments are

22

This system call is how perf asks the Linux kernel to
start sampling or tracing.

Here's the system call's signature, from
man perf_event_open:

With bcc, you can relatively easily use
perf_event_open to create your own custom
profiling/tracing events! And then you can write
code to aggregate/display them any way you want.

Search for BCC_PERF_OUTPUT in the bcc docs to learn more.

I don't find this man page all that useful for day-to-day
perf usage. But! Did you know that the perf CLI tool
isn't the only program that uses the perf_event_open
syscall?

The bcc project is a toolkit for writing advanced profiling
tools using eBPF: github.com/iovisor/bcc

more perf resources I

Brendan o a

Y Gregg's
A blog

EEEEEEE.to

Aaaaabe 11DAD
LinuxWeeklyNews
LWN.net

manJ

most importantly experimentum
b

o

o

o

Eis
JULIA

23

LWN is a great Linux publication, and they
sometimes publish articles about perf!

Thanks for reading! A few more useful resources:

brendangregg.com/perf.html

is my favorite perf resource. His blog &
talks are also useful!

perf has man pages, as you'd expect.
 man perf top, for example.

Pick a program and try to profile it!
See what your kernel is doing under different workloads!
Try recording or counting a few kinds of perf events and
see what happens!

